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Abstract

Electrical machine condition monitoring plays an important role in modern

industries. Instead of allowing the machines to run until failure, it is preferred

to gather more information about the machine condition before the machine is

shut down, so that the machine downtime can be reduced due to repair. Also,

it would be very useful to track the machine condition and predict the future

machine condition so that maintenance plan can be scheduled in advance. In

this thesis, artificial intelligence techniques are utilized for machine condition

monitoring. The thesis consists of 3 parts. In the first part, Neural Network

and Support Vector Machine models are built to classify different machine

conditions. In the second part, time series prediction models are built with

Support Vector Regression and wavelet packet decomposition to predict the

future machine vibration. Support Vector Regression is applied again in the

final part of the thesis to track the machine condition and determine if the

machine has thermal sensitivity issue or not. In all 3 parts, experimental

results are promising and they certainly can be used in practice in order to

facilitate the machine condition monitoring process.
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Chapter 1

Introduction

1.1 Motivation

Electrical machine condition monitoring plays an important role in modern

industries and it is an on going research topic. Traditionally, electrical ma-

chines are allowed to run until failure, and then the machines are taken off-line

and either repaired or replaced. One of the main disadvantages of this kind of

maintenance strategy is that it usually results in unexpected shutdowns of the

machines. Also, since the condition of the machine is not monitored before

the machine runs into failure, the machine downtime can be very long because

after the machine is taken off-line, its condition needs to be checked first in or-

der to determine which part of the machine does not function properly. Thus,

this kind of maintenance strategy can cause great productivity loss and hence

economic loss.

Later on, another kind of maintenance strategy is introduced, called pre-

dictive maintenance. In predictive maintenance, the condition of the machine

is monitored continually. There are two goals in predictive maintenance. One

is to determine if the machine is operating in normal condition. If not, the

next step is to determine what the fault is. This is called diagnosis. The

other goal is to keep track of the machine states and determine if the ma-

chine condition is becoming worse and worse and when the machine is likely

needed to be shut down and repaired, which is called prognosis. With pre-
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dictive maintenance, valuable information regarding machine condition can be

obtained before the machine is shut down, allowing maintenance activity to

be scheduled in advance and hence reduce the machine downtime.

When predictive maintenance is first introduced, highly trained experts are

usually required in order to analysis the data collected from the machine and

determine the current condition of the machine. With the development of ar-

tificial intelligence (AI) technologies, it becomes possible to built statistical or

AI based models to replace human experts to monitor the machine conditions.

In machine diagnosis, a classifier is required to be trained with the machine

data beforehand so that it can recognize different machine conditions. If the

trained classifier is sufficiently accurate, it can be used in the future to classify

different machine conditions and thus provides valuable information about the

machine condition before it is shut down. In machine prognosis, a time series

prediction model is needed. The model is trained to predict the future machine

condition based on its past and current conditions. Thus, it has the ability

to tell if the machine condition deteriorates. It may even able to tell when

the machine should be shut down and repaired. Therefore, prediction model

is very useful since it can greatly reduce the number of unexpected machine

shutdowns.

Neural Network (NN) and Support Vector Machine (SVM) are two impor-

tant topics in artificial intelligence and they have been used extensively in the

field of machine condition monitoring. For example, in [1] and [2], NN has been

utilized to classify different faults for rotating machines. In [3], NN is used in

regression instead of classification to predict the vibration of a turbo-generator.

SVM is a relatively new method comparing to NN. It was introduced in 1995

by Vapnik [4]. After its introduction, SVM is rapidly employed in the field of

machine condition monitoring. For instance, classifier is built with SVM in [6]

to classify multiple faults for induction motors. While SVM cannot be used

directly in regression problems, based on its theory, Support Vector Regression

(SVR) is introduced. In [7], SVR is employed to predict the future machine

2



condition.

As can be seen, NN, SVM, and SVR are very important tools in machine

condition monitoring. In this thesis, three identical back pressure steam tur-

bine generators (BPSTG) in a local oil-sand company are studied. Those

machine learning tools will be utilized to keep track of the machine conditions

and provide important information about the machines conditions before the

machines are shut down, and hence reduce the machine downtime.

1.2 Research objectives

The objective of this thesis consists of three parts. The first part is to build

classifiers with machine learning method to classify different machine con-

ditions before the machine runs into failure. Currently, all three machines

are continuously monitored and their vibration data are collected. However,

knowledge base has not been built to automatically classify the machine con-

ditions. Each machine is scheduled to be shut down and repaired every certain

number of years, and before the shutdown, very limited information about the

machine condition is known. In this thesis, classifiers will be built to auto-

matically classify the machines conditions. Based on the classification result,

maintenance plan can be made accordingly and therefore reduce the machine

downtime. The second part of the thesis is to build time series prediction

models to predict the future machine vibration. During the operation of the

machines, there is a hard limit on the level of vibration because if the vibration

is too high, it can cause damage to the machine equipment and cause serious

safety issues. Thus, accurately predicting the future machine vibration is very

important. If the predicted vibration is higher than the pre-set limit, actions

can be taken in advance to try to decrease the vibration. The last part of this

thesis is to apply the machine learning techniques to track the conditions of

certain machines. According to the on-site engineers in the oil-sand company,

some of the machines may be suffered from serious thermal sensitivity problem.

In this thesis, system models will be built to track the machine vibrations and
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determine if the machines have thermal sensitivity issue or not based on the

machine regular operational data. The models can also provide information

on how the machine vibrations are changing as time progresses due to thermal

sensitivity.

1.3 Organization of the thesis

The thesis is organized as follows. In Chapter 2, the basic theories of Wavelet

Transform will be introduced. Artificial intelligence techniques, including Neu-

ral Network, Support Vector Machine, and Support Vector Regression, are

reviewed in Chapter 3. In Chapter 4, Neural Network and Support Vector

Machine are utilized to classify different machine conditions, while in Chap-

ter 5, Support Vector Regression model is built to predict future machine

vibration. In Chapter 6, Support Vector Regression is used again to track

the machine condition and determine if the machines have thermal sensitivity

problem. Finally, the conclusion of the thesis and possible areas for future

research will be presented in Chapter 7.

4



Chapter 2

Wavelet Transform

In machine diagnosis, when building classification models to classify machine

conditions, in order to improve the classification accuracy, raw machine data,

such as the machine vibration data, may not be used directly to build classifica-

tion models. Instead, some techniques may be applied to first extract features

from the raw data. Extracting features in the time domain and frequency

domain from the machine vibration data are 2 common feature extraction

methods in machine condition monitoring. Time domain features usually in-

clude mean, variance, root mean square (rms), etc. In [8], the authors used

time domain features to built classification model to classify machine faults.

On the other hand, machine data will need to be first transformed into the

frequency domain and then frequency domain features can be extracted [9].

After Wavelet Transform is introduced, it becomes more and more pop-

ular in extracting features from machine raw data. In [10], discrete Wavelet

Transform is used to extract features from vibration signals of a gearbox, while

in [11], discrete Harmonic Wavelet Packet Transform is employed to extract

features from vibration signals measured from bearings. One of the main ad-

vantages the Wavelet Transform has is that it can transform a time domain

signal into a time-frequency domain signal [10]. When a signal is represented

in the time domain, its frequency domain information is lost. On the other

hand, time domain information will not be available when a signal is repre-

sented in the frequency domain. The general theory of Wavelet Transform is
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reviewed in the the following sections.

2.1 Continuous Wavelet Transform

The continuous Wavelet Transform can be expressed by the following equation

([12]):

T (a, b) =
1√
a

∞
∫

−∞

x(t)ψ∗(
t− b

a
)dt (2.1)

where x(t) is a finite energy signal, a is the dilation parameter, b is the trans-

lation parameter, and ψ(t) is the mother wavelet. Some common mother

wavelets include Haar wavelet, Daubechies wavelets, and Morlet wavelet. The

asterisk in the equation indicates the complex conjugate is used. The factor

1/
√
a is used for energy conservation.

2.2 Discrete Wavelet Transform

In practice, parameter a and b are usually chosen to be some discrete numbers

in order to reduce the computation load. A common selection for those 2

parameters are a = 2−m and b = n2−m. Thus, Eq. (2.1) becomes:

T (a, b) = 2m/2

∞
∫

−∞

x(t)ψ∗(2mt− n)dt (2.2)

which is the discrete Wavelet Transform (DWT). In practice, the discrete

wavelet decomposition (WD) can be implemented by using a low-pass filter,

h(n), which related to the scaling function ϕ(t), and a high-pass filter, g(n),

which related to the wavelet function φ(t) ([13], [14]):

h(n) =
1√
2
< ϕ(t), ϕ(2t− n) > (2.3)

g(n) =
1√
2
< φ(t), φ(2t− n) >= (−1)nh(1 − n) (2.4)

Figure 2.1 shows a 1-level discrete wavelet decomposition and reconstruc-

tion. During the decomposition, the original signal, x(t), is convoluted with
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Figure 2.1: One-level of discrete wavelet decomposition and reconstruction

a low-pass filter and a high-pass filter. The outputs from both filters will be

down sampled and resulting in two vectors, cA1 and cD1, which are called

the approximation coefficients and the detail coefficients, respectively. During

the reconstruction, the process is reversed. Sub-signals A1 and D1 can be re-

constructed from the wavelet coefficients cA1 and cD1, respectively. The final

reconstructed signal, x̂(t), can be obtained by summing A1 and D1:

x̂(t) = A1 +D1 (2.5)

In general, for multi-level wavelet decomposition, the approximate coeffi-

cients in the ith level, cAi, will be further decomposed into cAi+1 and cDi+1.

Figure 2.2 shows a 3-level wavelet decomposition. The signal reconstruction

can be described mathematically as:

Ai−1 = Ai +Di (2.6)

x̂(t) = Aj +
∑

i≤j

Di (2.7)

where i and j are positive integers and j is the level of wavelet decomposition.

2.3 Wavelet Packet Transform

Wavelet Packet Transform (WPT) is an extension to DWT. Unlike in WD, only

the approximate coefficients will be further decomposed at each level, both the

approximate coefficients and the detail coefficients will be further decomposed

at each level in wavelet packet decomposition (WPD). Thus, a wavelet packet

7
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Figure 2.3: Three-level of wavelet packet decomposition

tree is generated. Figure 2.3 shows a wavelet packet tree of a 3-level WPD. As

stated in [14], each node in the wavelet packet tree can be labeled by a pair of

integers (j,k), where j is the corresponding level of decomposition and k is the

order of the node position in a certain decomposition level with 0 ≤ k ≤ 2j−1.

The original signal can be reconstructed by summing all the sub-signals Pj,k,

which are reconstructed from the wavelet packet coefficients cPj,k for each node

(j, k) in the jth level decomposition:

x̂(t) =
2j−1
∑

k=0

Pj,k (2.8)

One important point needs to be emphasized is that, when a signal is

decomposed into j-level using WPD, the order of the reconstructed sub-signals,

Pj,k, may not be the same as the frequency order. For example, Table 2.1 shows

8



Reconstruction signals Frequency bands
P3,0 0-125Hz
P3,1 125-250Hz
P3,2 375-500Hz
P3,3 250-375Hz
P3,4 875-1000Hz
P3,5 750-875Hz
P3,6 500-625Hz
P3,7 625-750Hz

Table 2.1: Reconstruction signals with corresponding frequency bands for a
3-level WPD

the frequency band each reconstruction signal Pj,k contains for a 3-level WPD

when the sampling rate of the original signal x(t) is 2000Hz. It can be seen that

the reconstruction signals with higher order may not contain higher frequency

band. The reason is that down sampling may cause frequency folding in low-

pass filters and hence they may contain high frequency contents of the signal

([13], [14]).
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Chapter 3

Artificial Intelligence

As mentioned earlier, Neural Network, Support Vector Machine, and Support

Vector Regression are 3 important topics in artificial intelligence. They are

mainly used in classification and regression problems. In this chapter, the basic

theories of these 3 methods are briefly introduced with literature reviews.

3.1 Neural Network

Neural Network (NN) is an important part in artificial intelligence. As more

and more powerful computers are available, larger and larger dimension NN

models may be built [15] for complex systems. One of the main applications

of NN is building classifiers. As stated in [16], when dealing with simple

regression and classification problems, linear models, such as least squares, are

preferred due to its simplicity. However, for problems with higher dimension

and non-linearity, the applicability of the linear models are usually limited. On

the other hand, NN is theoretically capable of approximating any non-linear

function to any arbitrary accuracy when two or more hidden layers of neurons

are used [1]. Nowadays, NN is used in many different fields, including machine

condition monitoring. For example, as mentioned before, classification models

are built with NN to classify different faults for rotating machines in [1] and [2].

In [17], in order to help electricity suppliers make better marketing strategy,

NN classifier is built to classify electricity consumers into different groups based

on their energy consumption. Also, the authors in [18] built NN classifiers

10
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Figure 3.1: Neural Network structure

to predict if a company will go bankrupt based on its financial statement.

Moreover, in [19] and [20], NN has been used in the field of image recognition.

Figure 3.1 shows the structure of a Feed-Forward Neural Network with 1

hidden layer. From the figure, it can be seen that the structure consists of 3

layers, input layer, hidden layer, and output layer. The input layer contains

the inputs to the network, xi, while the output layer contains the outputs of

the network, Oi. The hidden layer is used to map the inputs to the outputs and

it can have more than 1 layer. The circles in the hidden layer are referred to as

neurons. Each neuron is connected to the elements in the previous layer and

the layer after by a line, and there is a weight, wi, associated with each line.

Each neuron can have multiple inputs and produce 1 output. The operation

inside a neuron can be described by the following equation:

Oi = σ(
∑

r

wi−1
r Oi−1

r ) (3.1)

where the superscript i indicates the layer number. The function σ is called

the activation function [16]. In a regression problem, the activation function

is identity. Hence,

Oi =
∑

r

wi−1
r Oi−1

r (3.2)

On the other hand, in a classification problem, the activation function can

be some threshold functions, such as the sign function and the tanh function.
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Figure 3.2: Neural Network structure with 2 inputs and 2 hidden neurons

Usually, a sigmoid function is used as an activation function,

σ(a) =
1

1 + e−a
(3.3)

It can be easily noticed that 0 ≤ σ(a) ≤ 1. Thus, in a two-class classification

problem, when the network output is larger than 0.5, the inputs can be classi-

fied to Class 1. On the other hand, when the network output is less than 0.5,

the inputs can be classified to Class 2. In a multi-class problem, one option is

to increase the number of outputs, so that for a specific class, only one output

can have a value higher than 0.5, and all the other outputs have values less

than 0.5.

The calculation of a NN output and the NN training algorithm are pre-

sented in [21], and they are briefly reviewed below. For simplicity, the network

in Figure 3.2 is considered. The network has 2 inputs, 1 output, and 1 hidden

layer. By working backward, the following relationship can be obtained:

O5 = σ(
∑

r

wr,5Or) = σ(w3,5O3 + w4,5O4)

= σ(w3,5σ(
∑

s

ws,3Os) + w4,5σ(
∑

t

wt,4Ot)

= σ(w3,5σ(w1,3O1 + w2,3O2) + w4,5σ(w1,4O1 + w2,4O2)) (3.4)

When training a NN, the objective is to minimize the following error func-

tion:

E =
1

2
(O − t)2 (3.5)

where E is the error, O is the NN output, and t is the real value. Backpropa-

gation algorithm is usually used to train a NN. Its general theory is reviewed

below [21].
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Figure 3.3: Neural Network structure with 2 inputs and 2 hidden neurons

Let

δi =
∂E

∂yi
(3.6)

∂E

∂w3,5

=
∂E

∂y5

∂y5

∂w3,5

= δ5
∂y5

∂w3,5

(3.7)

∂y5

∂w3,5
=
∂(w3,5O3 + w4,5O4)

∂w3,5
= O3 (3.8)

Hence,
∂E

∂w3,5

= δ5O3 (3.9)

In general,
∂E

∂wi,j
=
∂E

∂yj

∂yj

∂wi,j
= δjOi (3.10)

To compute δ5,

δ5 =
∂E

∂y5
=

∂E

∂O5

∂O5

∂y5
(3.11)

∂E

∂O5

=
∂

∂O5

[
1

2
(O5 − t)2] = (O5 − t)

∂

∂O5

(O5 − t) = O5 − t (3.12)

∂O5

∂y5

=
∂σ(y5)

∂y5

= σ(y5)(1 − σ(y5)) = O5(1 − O5) (3.13)

Hence,

δ5 = (O5 − t)O5(1 − O5) (3.14)

Following the same procedure,

∂E

∂w1,3
=
∂E

∂y3

∂y3

∂w1,3
= δ3O1 (3.15)
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Figure 3.4: A non-terminal node is connected to more than 1 neurons in the
next layer

δ3 =
∂E

∂y3
=

∂E

∂O3

∂O3

∂y3
(3.16)

∂E

∂O3
=
∂E

∂y5

∂y5

∂O3
= δ5

∂(
∑

l wl,5Ol)

∂O3
= δ5w3,5 (3.17)

∂O3

∂y3
=
∂σ(y3)

∂y3
= σ(y3)(1 − σ(y3)) = O3(1 − O3) (3.18)

Hence,

δ3 = (δ5w3,5)O3(1 −O3) (3.19)

Comparing the equations for δ3 and δ5, it can be seen that they are not

the same in terms of the equation format. This is because node 5 is a terminal

node, while node 3 is not. In this case, node 3 is connected to only 1 node,

node 5. The equation for δ3 will be different again if node 3 is connected to

more than 1 node. Consider the case shown on Figure 3.4. Node 3 is connected

to 2 nodes, node A and B. As before,

∂E

∂w1,3
=
∂E

∂y3

∂y3

∂w1,3
= δ3O1 (3.20)

δ3 =
∂E

∂y3
=

∂E

∂O3

∂O3

∂y3
=

∂E

∂O3
[O3(1 − O3)] (3.21)
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∂E

∂O3
=
∂E

∂yA

∂yA

∂O3
+
∂E

∂yB

∂yB

∂O3
=

∑

k

∂E

∂yk

∂yk

∂O3

=
∑

k

δk
∂(

∑

l wl,kOl)

∂O3

=
∑

k

δkw3,k (3.22)

where k is the number of nodes node 3 is connected to. In this case,

δ3 = O3(1 − O3)(δAw3,A + δBw3,B) (3.23)

In general, for a non-terminal node,

δl = Ol(1 − Ol)
∑

k

δkwl,k (3.24)

To summarized, the backpropagation algorithm includes the following com-

putations:

1. Calculate the network output from the given input.

2. Update δ based on the following equations:

∂E

∂wl,n
= δnOl (3.25)

δn =
∂E

∂yn
= On(1 −On)

{

t− O if terminal
∑

k δkwn,k otherwise
(3.26)

3. Update the weights of the network,

wi,j = wi,j + ηδjOi (3.27)

where η is the learning rate.

3.2 Support Vector Machine

Support Vector Machine (SVM) is a relatively new technique developed in

the last decade. It is first introduced by Vapnik in 1995 [4]. In SVM, by

using kernel functions, the inputs belonging to different classes are mapped

15



into feature spaces, and the goal is to find an optimal hyperplane to separate

the inputs based on their classes. Since it is introduced, SVM has been widely

used in many different fields. For example, in [22], the authors built classifiers

with SVM to predict in advance if a student will be admitted to a physical

education school. In [23], SVM classifier is built to classify a credit card

applicant into 2 types, ‘good credit’ and ‘bad credit’. Further more, in [24],

the authors built SVM classifier to predict the type of cancers a patient may

have. Beside these, SVM has also been used extensively in the field of machine

condition monitoring. For instance, In [4], SVM is used to classify different

gear faults. The general theory of SVM is reviewed below [25].

3.2.1 Hard-margin SVM

Considering a 2-class classification problem, assuming there are N data points

xi (i = 1, 2, ..., N), they either belong to Class 1 (yi = 1) or belong to Class

2 (yi = −1). If the data are linearly separable, there would be a decision

function:

D(xi) = wTxi + b ≥ 1 for yi = 1 (3.28)

D(xi) = wTxi + b ≤ −1 for yi = −1 (3.29)

where w is the weighted vector and b is a constant. Eq. (3.29) can be

rewritten as:

yi(w
Txi + b) ≥ 1 (3.30)

The equation

D(x) = wTx+ b = c for − 1 < c < 1 (3.31)

can be considered as a separating hyperplane that separates the data xi. As

defined in [25], the distance between the separating hyperplane to the nearest

data is called the margin, as illustrated in Figure 3.5. In a classification prob-

lem with SVM, the goal is to find a separating hyperplane which maximizes

the margin, and it is called the optimal separating plane. In this case, when

c = 0, the margin is maximized.
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Optimal hyperplane 0=+bxwT

Class 1 hyperplane 1=+ bxwT

Class 2 hyperplane 1−=+bxwT

Max.

margin

1=iy

1−=iy

M

+x

−x

Figure 3.5: Linear separable data in two-dimension space

Considering 2 points on the Class 1 plane and Class 2 plane, x+ and x−, as

shown in Figure 3.5, |x+ − x−| is perpendicular to the separating hyperplane.

Thus,

|x+ − x−| = M (3.32)

where M is the margin width. Since w is perpendicular to all 3 planes, the

relationship between x+, x−, and w can be expressed as:

x+ − x− = λw (3.33)

where λ is a positive number. Also, since the points x+ and x− are on the Class

1 plane and Class 2 plane, respectively, they satisfy the following equations:

wTx+ + b = 1 (3.34)

wTx− + b = −1 (3.35)

Combining Eq. (3.32) to (3.35), λ can be solved.

wT (x− + λw) + b = 1

(wTx− + b) + λwTw = 1

−1 + λwTw = 1

17



Hence,

λ =
2

wTw
(3.36)

Also,

M = |x+ − x−| = |λw|

= λ|w| = λ
√
wTw

=
2
√
wTw

wTw
=

2√
wTw

(3.37)

Therefore, the goal is to maximize Eq. (3.37). In other words, the objective

is to minimize the following equation:

Q(w) =
1

2
||w||2 (3.38)

subjecting to the following condition:

yi(w
Txi + b) ≥ 1 for i = 1, 2, ...N (3.39)

The data which lay on the Class 1 boundary or the Class 2 boundary will

satisfy the equality in Eq. (3.39), and these data are called support vectors.

For the data which are not on the Class 1 nor Class 2 boundary, they will

satisfy the inequality in Eq. (3.39). These data can be deleted while the

optimal separating plane can still be determined.

Before trying to solve Eq. (3.38) and (3.39), the calculation can be trans-

formed into a dual Lagrangian problem,

Q(w, b, α) =
1

2
wTw −

N
∑

i=1

αi(yi(w
Txi + b) − 1) (3.40)

where α = (α1, ..., αN)T and they are the Lagrange multipliers. Eq. (3.40)

satisfies the following Karush-Kuhn-Tucker (KKT) constrains:

∂Q(w, b, α)

∂w
= 0 (3.41)

∂Q(w, b, α)

∂b
= 0 (3.42)

αi(yi(w
Txi + b) − 1) = 0 for i = 1, 2, ..., N (3.43)

αi ≥ 0 for i = 1, 2, ..., N (3.44)
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For support vectors, they satisfy the equation yi(wxi + b) = 1. Thus, based

on Eq. (3.44), αi > 0 for all support vectors. On the other hand, αi = 0 for

all non-support vectors.

Using Eq. (3.40), Eq. (3.41) and (3.42) can be simplified as

w =
N

∑

i=1

αiyixi (3.45)

and
N

∑

i=1

αiyi = 0 (3.46)

With Eq. (3.45) and (3.46), Eq. (3.40) can be simplified as

Q(α) =

N
∑

i=1

αi −
1

2

N
∑

i,j=1

αiαjyiyjx
T
i xj (3.47)

subject to
N

∑

i=1

αiyi = 0, αi ≥ 0 for i = 1, 2, ..., N (3.48)

At this point, quadratic programming can be used to solve the optimization

problem and calculate αi. Finally, the classification decision function becomes

D(x) =
N

∑

i,j=1

αiyi(x
T
i xj) + b (3.49)

3.2.2 Soft-margin SVM

In practice, there are many cases in which the data are linearly inseparable.

In those cases, hard-margin SVM cannot be used to classify the data and the

so-called soft-margin SVM needs to be used. In soft-margin SVM, a slack

variable ξ is introduced and Eq. (3.30) becomes:

yi(w
Txi + b) ≥ 1 − ξi, ξi ≥ 0 and i = 1, 2, ..., N (3.50)

From Figure 3.6, it can be seen that when 0 ≤ ξi ≤ 1, even though the distance

between the data xi and the optimal hyperplane is less than the maximum

margin, the data can still be correctly classified. On the other hand, if ξi ≥ 1,
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Optimal hyperplane 0=+bxwT

Class 1 hyperplane 1=+ bxwT

Class 2 hyperplane 1−=+bxwT

Max.

margin

1=iy

1−=iy

iξ

jξ

Figure 3.6: Linear inseparable data in two-dimension space

the data xi will be misclassified. It is easy to understand that in soft-margin

SVM, the goal is to minimize

Q(w, b, ξ) =
1

2
||w||2 + C

N
∑

i=1

ξi (3.51)

subject to

yi(w
Txi + b) ≥ 1 − ξi (3.52)

where ξ = (ξ1, ξ2, ..., ξN) and C is a constant parameter which determined the

trade-off between the classification margin and the classification error.

Again, the above optimization problem can be transform into a dual La-

grange problem

Q(w, b, ξ, α, β) =
1

2
||w||2 + C

N
∑

i=1

ξi

−
N

∑

i=1

αi(yi(w
Txi + b) − 1 + ξi) −

N
∑

i=1

βiξi (3.53)

where α = (α1, α2, ..., αN) and β = (β1, β2, ..., βN). The optimal solution
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satisfies the following KKT conditions:

∂Q(w, b, ξ, α, β)

∂w
= 0 (3.54)

∂Q(w, b, ξ, α, β)

∂b
= 0 (3.55)

∂Q(w, b, ξ, α, β)

∂ξ
= 0 (3.56)

αi(yi(w
Txi + b) − 1 + ξi) = 0 (3.57)

βiξi = 0 (3.58)

αi ≥ 0, βi ≥ 0, ξi ≥ 0 (3.59)

Similar to the hard-margin SVM case, using Eq. (3.53), Eq. (3.54) to

(3.56) can be simplified as

w =
N

∑

i=1

αiyixi (3.60)

N
∑

i=1

αiyi = 0 (3.61)

αi + βi = C (3.62)

Substituting Eq. (3.61) and (3.62) into Eq. (3.53), the optimization prob-

lem becomes to maximize

Q(α) =

N
∑

i=1

αi −
1

2

N
∑

i,j=1

αiαjyiyjx
T
i xj (3.63)

subject to
N

∑

i=1

αiyi = 0, and 0 ≤ αi ≤ C (3.64)

Same as in the hard-margin SVM case, quadratic programming can be utilized

to solved for αi, and the classification decision function is

D(x) =

N
∑

i,j=1

αiyix
T
i xj + b (3.65)

which is identical to the decision function in the hard-margin SVM case.
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Figure 3.7: Mapping input data to feature space

3.2.3 Kernel functions

Soft-margin SVM certainly provides a useful way to classify linearly insep-

arable data; however, there are cases that even though soft-margin SVM is

used, the optimal classifier still does not have high generalization capability.

In order to enhance the linearly separability of the data, a non-linear vector

function, Φ(x), can be used to transform the original m-dimension data x

into q-dimension feature space, as shown in Figure 3.7, and the classification

decision function becomes:

D(x) =

N
∑

i,j=1

αiyiΦ(xi)
T Φ(xj) + b∗ (3.66)

As stated in [4] and [26], if the dimension of the feature space is high,

the transformation could be computational expensive. Since only the inner

product, Φ(xi)
T Φ(xj) is considered, it is possible to define a function:

K(xi, xj) = Φ(xi)
T Φ(xj) (3.67)

to calculate the inner products, and it is called the kernel function. With the

kernel function, the optimization problem becomes to maximize

Q(α) =
N

∑

i=1

αi −
1

2

N
∑

i,j=1

αiαjyiyjK(xi, xj) (3.68)

subject to
N

∑

i=1

αiyi = 0, and 0 ≤ αi ≤ C (3.69)
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Thus, the decision function is

D(x) =
N

∑

i,j=1

αiyiK(xi, xj) + b∗ (3.70)

where

b∗ = yj −
N

∑

i=1

αiyiK(xi, xj) (3.71)

Kernel functions cannot be defined arbitrary and they need to satisfy Mer-

cer’s theorem. Some common kernel functions include linear, polynomial, and

radial basis functions (RBF). Readers can refer to [25] for more detailed de-

scriptions on the Mercer’s theorem and kernel functions.

3.2.4 SVM multi-class classification

SVM was firstly used as a dual classes classifier. However, in practice, there

are many cases that more than 2 classes are involved and needs to be classified.

Fortunately, many classification strategies using SVM have been introduced

for multi-class classification. The one-against-all and one-against-one are two

of them which are widely used when dealing with multi-class problems. They

are briefly reviewed below. Readers can refer to [27] for more details.

In the one-against-all method, N SVM classifiers will be trained for an

N -class classification problem. When training the ith classifier, i ≤ N , the

data samples from the ith class are labeled as +1, and the data samples from

the other classes are labeled as −1. Thus, during testing, when data samples

from the ith class are presented to the classifiers, only the ith classifier will

classify the samples as +1, and the other classifiers will classify the samples

as −1.

On the other hand, in the one-against-one method, N(N − 1)/2 classifiers

will be trained for an N -class classification problem. Each classifier is trained

to classify 2 classes. For example, classifier A can be trained to classify the ith

and jth classes. In testing, all test samples are presented to all classifiers. If

a sample is classified to the ith class by classifier A, the score for the ith class
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is increased by 1, otherwise the score for the jth class is increased by 1. After

the sample is classified by all the classifiers, the class of the data sample can

be determined based on which class has the highest score.

3.3 Support Vector Regression

SVM was original limited to solve classification problems. However, as the

introduction of loss functions, SVM has been extended to solve regression

problems, and the new technique is called Support Vector Regression (SVR)

[28]. As stated in [29], in SVR, the goal is to find a function f(x), which maps

the input to the output, while minimizing the difference between the predicted

value ŷi and the actual value yi based on the loss function. Assuming there

are training data (x1, y1), (x2, y2), ..., (xN , yN), where xi is the input and yi is

the output, in a linear case, f(x) can be expressed as

ŷ = f(x) = wTx+ b (3.72)

where w is the weighted vector and b is a constant. While trying to minimize

the difference between the predicted value and the actual value, in SVR, it is

also desirable to keep the function f(x) as flat as possible [29], which means w

should be as small as possible. One way to find a small w is to minimize the

norm, i.e. ||w||2 =< w,w >, where < ·, · > denotes the inner product. Thus,

the regression problem becomes to

min.
1

2

N
∑

n=1

(ŷi − yi)
2 +

1

2
||w||2 (3.73)

Quadratic error function is used in Eq. (3.73) to calculate the error between

the predicted value and the actual value. In practice, the ε-insensitive error

function is often used, which is shown on Figure 3.8 and can be mathematically

expressed as

Eε(ŷi − yi) =

{

0, if |ŷi − yi| < ε

|ŷi − yi| − ε, otherwise
(3.74)
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ε− ε+

x

i
ξ

Figure 3.8: ε-insensitive error function

Reader can refer to [30] for more details on error functions. With the

ε-insensitive error function, the regression problem becomes to minimize

C
N

∑

n=1

Eε(ŷi − yi) +
1

2
||w||2 (3.75)

Where C is the trade-off between the flatness of f(x) and the prediction error.

Similar to SVM, in SVR, there are cases that with the optimal f(x), some

actual values may not lie within the region [ŷ − ε, ŷ + ε], and slack variables

ξ and ξ̂ needs to be introduced to deal with those cases so that for any given

actual value yi, it lies within the region [ŷi − ε− ξ̂i, ŷi + ε+ ξi] (Please refer to

Figure 3.9). When yi lies above ŷi + ε, ξi > 0 and ξ̂i = 0. On the other hand,

when yi lies below ŷi − ε, ξi = 0 and ξ̂i > 0. Thus, the objective function of

the SVR problem can be rewritten as

min. C

N
∑

i=1

(ξi + ξ̂i) +
1

2
||w||2 (3.76)

subject to

ξi ≥ 0 (3.77)

ξ̂i ≥ 0 (3.78)

yi ≤ ŷi + ε+ ξi (3.79)

yi ≥ ŷi − ε− ξ̂i (3.80)

Again, the above optimization problem can be transformed into a dual
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Figure 3.9: Linear SVR with slack variables

Lagrangian problem [16]:

L =C

N
∑

i=1

(ξi + ξ̂i) +
1

2
||w||2 −

N
∑

i=1

(µiξi + µ̂iξ̂i)

−
N

∑

i=1

αi(ε+ ξi + ŷi − yi) −
N

∑

i=1

α̂i(ε+ ξ̂i − ŷi + yi) (3.81)

where αi, α̂i, µi, µ̂i ≥ 0 and they are the Lagrange multipliers. Substituting

Eq. (3.72) into Eq. (3.81) and set the derivatives of L with respect to w, b,

ξi, and ξ̂i to zero, the following equations can be obtained

∂L

∂w
= 0 ⇒ w =

N
∑

i=1

(αi − α̂i)xi (3.82)

∂L

∂b
= 0 ⇒

N
∑

i=1

(αi − α̂i) = 0 (3.83)

∂L

∂ξi
= 0 ⇒ αi + µi = C (3.84)

∂L

∂ξ̂i
= 0 ⇒ α̂i + µ̂i = C (3.85)

Substituting Eq. (3.82) to (3.85) into Eq. (3.81), the optimization problem is

equivalent to maximize

L̂ = − 1

2

N
∑

i=1

N
∑

j=1

(αi − α̂i)(αj − α̂j)x
T
i xj

− ε

N
∑

i=1

(αi + α̂i) +

N
∑

i=1

(αi + α̂i)ŷi (3.86)
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If kernel function is used, Eq. (3.86) can be rewritten as to maximize

L̂ = − 1

2

N
∑

i=1

N
∑

j=1

(αi − α̂i)(αj − α̂j)K(xi, xj)

− ε

N
∑

i=1

(αi + α̂i) +

N
∑

i=1

(αi + α̂i)ŷi (3.87)

Eq. (3.87) needs to satisfy the condition in Eq. (3.83). From Eq. (3.84)

and Eq. (3.85), it is easy to see that Eq. (3.87) also needs to satisfy the

following conditions

0 ≤ αi ≤ C (3.88)

0 ≤ α̂i ≤ C (3.89)

and the predicted value is given by

ŷi =

N
∑

i=1

(αi − α̂i)K(x, xi) + b (3.90)

The solution to Eq. (3.87) satisfies the following KKT conditions

αi(ε+ ξi + ŷi − yi) =0 (3.91)

α̂i(ε+ ξ̂i − ŷi + yi) =0 (3.92)

(C − αi)ξi =0 (3.93)

(C − α̂i)ξ̂i =0 (3.94)

It can be noticed that αi 6= 0 when ε+ ξi + ŷi − yi = 0, which implies yi lies on

the upper boundary or above the upper boundary (see Figure 3.9). Similarly,

α̂i 6= 0 when ε+ ξ̂i − ŷi + yi = 0, which means yi lies on the lower boundary or

below the lower boundary. Since ε+ ξi + ŷi − yi = 0 and ε + ξ̂i − ŷi + yi = 0

cannot be satisfied simultaneously, at least one of αi and α̂i must be zero.

For those data points which either αi = 0 or α̂i = 0, since they determine

the boundaries, they are the support vectors. For those data points which lie

within (ŷi − ε, ŷi + ε), they have αi = α̂i = 0.
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The parameter b can be found by

b =yi − ε− ŷi

=yi − ε−
N

∑

j=1

(αj − α̂j)K(xi, xj) (3.95)

In practice, it is often to find b by taking the average of all such estimates of

b.
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Chapter 4

Machine Condition

Classification

As shown in the previous chapters, NN and SVM are 2 important tools to solve

classification problems in many different fields, and they have also been used

extensively in the field of electrical machine condition monitoring to classify

different machine conditions. In this chapter, with the machine vibration data,

both NN and SVM classification models are built to classify different conditions

of 3 back pressure steam turbine generators (BPSTG). The performance of

those 2 classification models are compared and analyzed. As indicated in [5],

NN may have limitations on generalization and can overfit the training data,

which means NN may achieve excellent classification rate on the training data

while giving poor results on the test data. This will also be validated in this

chapter. The system description is first provided in the following section.

4.1 System description

In this thesis, 3 identical BPSTGs which are used in a local oil-sand company

are studied, and they are labeled as G1, G2, and G4 by the company. Figure

4.1 shows the typical layout of a BPSTG. It consists of a steam turbine and a

generator. There are 4 journal bearings in total for each generator, bearing 1

to bearing 4. Two vibration sensors are installed on each bearing to measure

the machine vibration in the X and Y directions, and they are 90 degrees
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Figure 4.1: Typical layout of a BPSTG
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Figure 4.2: (a) Typical machine vibration orbit and vibration waveforms in
the (b) X and (c) Y directions

apart. All 3 generators are rated at 50MW. During normal operation, the

machines are running at 3600RPM and the vibration sensors measure the

vibration of each bearing every 2 hours. Every time when the sensors measure

the machine vibration, they capture the vibration in the X and Y directions for

about 8 rotating cycles. Figure 4.2 is a typical plot of the machine vibration

waveforms and orbit from the vibration data measured by the sensors. Based

on the vibration waveforms, many useful parameters can be extracted, such

as the vibration peak-to-peak value and the amplitude of the first harmonic

of the vibration waveform (1X), etc.

Since all 3 machines are identical, the conditions collected from 3 machines

can be considered as collected from 1 machine. Four different machine condi-

tions are considered in this thesis. Based on the on-site engineers’ experience,

those 4 conditions are listed as normal condition, unbalance, looseness, and

bent shaft. Their vibration orbits and waveforms are shown in Figure 4.3 to
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4.6, respectively. For each condition, 100 vibration waveforms are collected

at each sensor on bearing 3 of each machine. With the collected vibration

waveforms, wavelet packet decomposition can be utilized to extract features

from the vibration waveforms, and then the feature dimension can be reduced

by using Genetic Algorithm. Finally, NN and SVM classification models can

be built with the selected features. The complete classification process is il-

lustrated in Figure 4.7.

4.2 Feature extraction

During the digitization, the vibration waveforms are sampled at 9600Hz, hence

the Nyquist frequency is 4800Hz. Each vibration waveform consists of 1200

data points and it is decomposed into 6 levels using WPD with Daubechies

wavelet, DB8. The reason why a 6-level WPD is chosen is that, after the

decomposition, there are 26 = 64 segments. For each segment, the frequency

range is 75Hz. Thus, each segment will contain 1 frequency which is the inte-

ger multiple of the machine rotating frequency (60Hz), such as 60Hz, 120Hz,

180Hz, etc. Also, the wavelet function DB8 is selected based on the vanishing

moment. For more details on the vanishing moment, please refer to [10]. Since

there may not be any valuable information contained in the higher frequen-

cies, segments containing higher frequencies may be discarded. Therefore, in

this particular case, only the first 16 segments are retained and the rest of the

segments are discarded. The first 16 segments contain the frequency ranging

from 0Hz to 1200Hz.

Sub-signals can be reconstructed from those 16 segments and several fea-

tures can be extracted from the sub-signals. In this thesis, 5 features, which

are independent of loads and speeds of rotating machinery [32], are extracted

from the signals. The details of those 5 features are shown below.

1. Skewness (SK)

SK =

∑T
t=1(xt − µ)3

Tσ3
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Figure 4.3: Machine vibration orbit and waveforms in both directions (normal)
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Figure 4.4: Machine vibration orbit and waveforms in both directions (unbal-
ance)
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Figure 4.5: Machine vibration orbit and waveforms in both directions (loose-
ness)
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Figure 4.6: Machine vibration orbit and waveforms in both directions (bent
shaft)

where xt(t = 1, 2, ..., T ) is the tth sample of the signal x. T is the total

number of sampling points. µ is the mean value of the signal x defined

as:

µ =
1

T

T
∑

t=1

xt

and σ is the standard deviation of x,

σ =

√

√

√

√

1

T

T
∑

t=1

(xt − µ)2

2. Kurtosis (KU)

KU =

∑T
t=1(xt − µ)4

Tσ4

3. Crest indicator (CI)

CI =
max|xt|

√

1
T

∑T
t=1(xt)2

4. Clearance indicator (CLI)

CLI =
max|xt|

( 1
T

∑T
t=1

√

|xt|)2

5. Shape indicator (SI)

SI =

√

1
T

∑T
t=1(xt)2

1
T

∑T
t=1 |xt|
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Figure 4.7: Flow chart of machine conditions classification

All of the 5 features are extracted from each sub-signals and the original

vibration signal. Thus, for each vibration signal, 85 features will be generated.

Since the machine vibration orbit is considered in this thesis rather than fo-

cusing on the vibration signal in a single direction, and each vibration orbit

consists of 2 vibration signals corresponding to 2 different directions, there will

be 170 features in total for each vibration orbit.

4.3 Feature selection

In many cases, including this one, after the features are extracted from the raw

data, since the feature dimension is relatively large, it is preferred to reduce

the feature dimension in order to reduce the training time of a classification

model while ensuring the classification accuracy is at least as good as without

feature dimension reduction. There are many methods can be used to reduce

the feature dimension, including principal component analysis (PCA) [33],
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independent component analysis (ICA) [34], and Genetic Algorithm (GA).

As stated in [35], GA is one of the most efficient methods to reduce feature

dimension when the feature size is large and it is used in this case.

4.3.1 Genetic Algorithm

Genetic Algorithms is first introduced by John Holland in the 1970s [35]. It

is an optimization process to find the best solution for a given problem. It

mainly contain 3 operations: selection, genetic operation, and replacement

[36]. In GA, initially, a population is generated. It consists of a subset of all

possible solutions to a problem. Each member in the population is referred to

as a chromosome. As stated in [36], in order to improve the performance of

the algorithm, a chromosome is usually encoded in a string of variables, and

each element in the string is called a gene. The variable can be represented in

many forms, and due to simplicity, bit string encoding is often used [36] [37].

In bit string encoding, a gene is represented by either 0 or 1.

Each chromosome in the population will then be evaluated by a fitness

function. The fitness function takes a chromosome as the input and output

a number to indicate the performance of the chromosome. This is a very im-

portant step since it tells GA which chromosomes are better solution to the

problem and should be used for further operations. Thus, as can be expected,

designing a suitable fitness function is a crucial step in GA, and it is usually

different for different applications. For example, in a curve-fitting problem,

the fitness function could be a function to measure how close is the estimated

value comparing to the real value. On the other hand, in a classification prob-

lem, the fitness function could be a one to produce the classification accuracy

for each chromosome. With the fitness values, GA will select some chromo-

somes in the population for reproduction. There are many ways to select the

chromosomes, such as ranking, tournament, and proportionate scheme [36].

The rule is that the higher the fitness value of a chromosome, the higher the

chance it will be selected for reproduction. In crossover, with 2 selected chro-
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mosomes, also know as the parent chromosomes, the operator will cross over

those 2 chromosomes at a randomly chosen point and produces 2 offsprings.

For example, with the parent chromosomes 10011000 and 11100101, if the

crossover happens at the third bit, 2 offsprings will be produced, 10000101

and 11111000. Hence, each offspring has part of the genetic information of

both parents. There is a probability, Pc, associated with this operation. If

no crossover occurs, the offsprings will the same as the parent chromosomes.

In mutation, some of the bits in the offspring may be flipped. Each bit with

the probability Pm. For example, if the fourth bit is flipped in the offspring

10000101, the resulting chromosome is 10010101.

Up until this point, 2 new chromosomes are generated. If the initial pop-

ulation has N chromosomes, and depending on the setting, the first M chro-

mosomes which have the highest fitness value may be directly copied to the

new population to make sure the best chromosomes can survive, the above

operator process will continue to run until N −M new chromosomes are gen-

erated, hence a new population with size N is formed, and the performance of

the chromosomes in the new population will be evaluated again by the fitness

function. To summarize, a GA works as follows [37]:

1. An initial population is randomly generated with N chromosomes (pos-

sible solutions to a given problem).

2. Calculate the fitness value of the chromosomes in the population.

3. Two chromosomes are selected from the current population based on

the selection strategy. The selected chromosomes will be crossed over

in a randomly chosen point with the probability Pc to produce 2 new

offsprings. For each new offspring, some of its bits may be flipped with

the probability Pm in mutation, and 2 two new chromosomes may be

generated. If M chromosomes which have the highest fitness values in

the current population are copied directly to the new population, this

step is run until N −M new chromosomes are generated.
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4. A new population is generated. Go back to step 2 until a termination

criterion is met, such as the maximum number of generations is reached,

or the fitness value reaches the pre-defined value.

At the end of the process, usually some highly fit chromosomes are in

the population, especially in the case when some chromosomes which have

the highest fitness values are directly copied to the new population in step 3,

which guarantee the survival of the best chromosome. Better results may be

obtained by adjusting the GA parameters, such as increasing the number of

generation and/or increasing the the size of the population.

4.3.2 Feature and model parameter selection with Ge-

netic Algorithm

In order to apply GA, the final size of the feature dimension N , needs to

be determined first. In this thesis, N = 5 and 20 have been tried. Other

than selecting the optimum features, GA is also used to select the optimum

parameters related to the classifiers in this case, which are the number of

neurons in the hidden layer in NN and the RBF kernel parameter σ in SVM.

The RBF kernel is defined as follow:

K(x, y) = e(
−|x−y|2

2σ2
) (4.1)

Thus, for each chromosome in GA, there will be N + 1 elements. The first N

elements contain the selected features from the total 170 features, and the last

element is the parameter for the classifiers. The last element has to be within

a certain range which is defined in advance. In this thesis, the range of the

number of neurons in NN which will be selected by GA is from 15 to 35, and

the range of σ in SVM is from 1 to 20, with a step size of 1 in both cases. The

ranges are selected based on trail runs as to ensure the classifiers built with

the selected parameters can achieve reasonable classification results.

Other than the final size of the feature dimension and the classifier param-

eter range, there are some variables needs to be set before running GA, such

37



as the population size, crossover rate, etc. In this case, the population size

has been chosen to be 10. The size has to large enough so that there will be

relatively high interchange among different chromosomes [26]. The crossover

rate and the mutation rate is set to be 0.5 and 0.3, respectively. The maxi-

mum number of generation and the fitness value are used as the termination

criterion for the GA process. The process will stop if the maximum number

of generation is reached, which is 50 in this case, or it will stop if the fitness

value reaches 0.

After all the variables are defined, the final step is to design the fitness

function. The features generated from the first 50 vibration orbits of each

machine condition are used in GA to select the optimum features. Since there

are 4 machine conditions, there will be 200 data samples, and each sample

contains 170 features. In the fitness function, for each chromosome, first of

all, the number of features in each data sample will be reduced based on the

features selected in the chromosome. Thus, the number of features in each data

sample can decrease from 170 to 20. After that, a 3-fold cross validation is

used. The data samples will be separated into 2 parts. The first part contains

2/3 of the total data samples, and the other part contains 1/3 of the total data

samples. The first part is used as training data and the second part is used as

test data. At this point, classifiers can be built. In the NN case, NN classifier

is built with the training data and the number of neurons in the hidden layer

selected in the chromosome, and then it is used to classify the test data. The

number of misclassification will be added up until the 3-fold cross validation

is over, and then the total number of misclassification will be divided by the

total number of data samples to produce the fitness value of each chromosome.

The procedure is similar in the SVM case, except that 4 SVM classifiers are

required in order to classify all 4 machine conditions with the one-against-all

classification strategy.
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4.4 Performance evaluation

With the features selected from GA, classifiers can be built to classify those

4 machine conditions. Again, the selected features from the first 50 vibration

orbits of each machine condition are used to train the classifiers, and the rest of

the 50 samples of each machine condition will be used for validation purpose.

In NN, the classifier is built with the selected number of neurons in the hidden

layer. The number of input nodes is the same as the number of the selected

features, and there are 4 output nodes, corresponding to 4 machine conditions.

Each output node is set to be 1 if the input is classified to the condition the

node is assigned to, otherwise the output node is set to be 0. Thus, during the

training, the network output is a 4*200 matrix which contains either 1 or 0. In

the SVM case, the classifiers are built with the RBF kernel using the selected

σ. As same as building SVM classifiers in the GA fitness function, 4 SVM

classifiers are required to classify 4 machine conditions, and hence there are 4

output matrices, each with size 200*1. In each matrix, a value is set to be 1

if the classifier is trying to classify the corresponding input against the other

3 machine conditions. Otherwise, the value is set to be 0. The classification

performance of NN and SVM with and without features selection, and with

different number of features, are compared below.

1. Classification without feature selection

The classification results using NN and SVM without GA are shown on

Table 4.1. In NN, there are 20 neurons in the hidden layer, while σ has

been set to be 16 in SVM. The classification rates on the test data are

95.5% and 94.5% for NN and SVM, respectively. It can be seen that

when all the features are used, NN performs better than SVM.

2. Classification with NN

Table 4.2 shows the classification results using NN with and without

GA. The classification result on the test data remain the same when the

feature size is reduced to 20 by GA while the hidden neuron number is
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Classifier Parameter (N/σ)
Class. rate Class. Rate

(training) (%) (testing) (%)
NN 20 100 95.5

SVM 16 100 94.5

Table 4.1: Classification results without feature selection

Classifier # of features Feature indices N
Class. rate Class. Rate

(training) (%) (testing) (%)
NN without GA 170 1-170 20 100 95.5

NN with GA 20
22,23,32,36,42,43,68,81,85,

19 100 95.593,95,102,105,109,111,
117,140,141,149,158

NN with GA 5 81,91,94,103,166 25 100 87.5

Table 4.2: NN model classification results with and without feature selection

chosen to be 19. The classification rate decreases to 87.5% when the

feature size is further reduced to 5. Also, in this case, it is noticed that

although the classification rate on the test data is relatively poor, the

model can classify the training data with 100% accuracy. This validates

the statement in the beginning of this chapter that when using NN, it

is possible that the model is overfit to the training data and gives poor

results on the test data.

3. Classification with SVM

The classification results using SVM with and without GA are shown

on Table 4.3. The classification rate is increased from 94.5% to 96.5%

when the feature size is reduced to 20 by GA and setting σ = 4. The

classification rate decreases to 95.5% when the feature size is further

reduced to 5. However, the classification rate is still better than the one

with SVM and without GA.

4.5 Conclusion

In this chapter, artificial intelligence techniques, Neural Network and Support

Vector Machine, are used to classify machine conditions. Features are first

extracted from machine raw vibration data using wavelet packet decomposi-

tion, and then the dimension of the features is reduced by Genetic Algorithm.
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Classifier # of features Feature indices σ
Class. rate Class. Rate

(training) (%) (testing) (%)
SVM without GA 170 1-170 10 100 94.5

SVM with GA 20
10,22,39,40,43,63,68,81,82,

4 100 96.588,97,100,101,108,120,
146,152,165,166,168

SVM with GA 5 1,16,70,105,166 3 98.5 95.5

Table 4.3: SVM model classification results with and without feature selection

With the selected features, Neural Network and Support Vector Machine clas-

sification models are built to classify different machine conditions. From the

classification results, it can be seen that when using Neural Network with Ge-

netic Algorithm, the feature dimension can be reduced from 170 to 20 while

the classification result remains the same. When Support Vector Machine and

Genetic Algorithm are used, the feature dimension can be reduced from 170

to 20 or even to 5, and both the classification results are better than using

Support Vector Machine alone. Also, under different conditions, one classi-

fication model may outperform the other one. In this case, Neural Network

performs better when all features are used, while Support Vector Machine

produce better classification results when less features are used.
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Chapter 5

Machine Prognosis

Beside machine fault classification, machine prognosis is another important

subject in machine condition monitoring. It is useful to predict the future ma-

chine condition based on its past and current conditions so that maintenance

plan can be scheduled in advance and hence reduce the number of unexpected

shutdown.

In order to predict the future machine condition, a time series model is

required. Many techniques have been developed to build time series models for

this purpose. Classical approaches include autoregressive (AR) modeling and

autoregressive moving average (ARMA) modeling. AR and ARMA modeling

are relatively easy to use and they are suitable for building models for simple

systems. However, for complex systems, AR and ARMA modeling may be

found to be difficult to build accurate models [38]. Later on, as artificial

intelligence developed, Neural Network (NN) has been widely used in machine

prognosis. For example, In [3], Feed-Forward Neural Network (FNN) was

built to predict the vibration of a rotor. In [39], Recurrent Neural Network

(RNN) is built to predict machine deterioration. In 1993, adaptive-neuro-

fuzzy inference system (ANFIS) was introduced by Jang [40], and the author

showed that ANFIS outperforms the classical approaches and NN. In [7] and

Part of the materials in this chapter are included in ‘Machine Vibration Prediction Using
ANFIS and Wavelet Packet Decomposition’ and submitted for publication in International

Journal of Modelling, Identification and Control, special issue on: “Neural Networks and
Fuzzy Logic for Modelling and Control of Mechatronic Systems”, July 2009.
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[41], ANFIS is utilized to build time series models to predict the condition of a

gear system. Other than ANFIS, Support Vector Regression (SVR) is another

technique which is developed recently and has been widely use in the field

of machine prognosis. In [28], a hybrid model is built with SVR to predict

the future state of a turbo-generator. Also, in [42], Least-Square Support

Vector Machine (LS-SVM) combining with wavelet decomposition is utilized

to predict the future vibration of a hydroturbine generating unit.

5.1 Time series prediction model

For a given signal x(n), a time series prediction model can be expressed by

the following equation:

xn+r = f(xn−(m−1)k, xn−(m−2)k, ..., xn−2k, xn−k, xn) (5.1)

where xn+r is the value at r time steps ahead, m is the embedding dimension,

k is the time delay step, which is set to be 1 in this thesis, and f is the time

series prediction model. Thus, xn+r is predicted based on its previous and

current values. When r = 1, the model is called a single step ahead prediction

model. On the other hand, when r > 1, the model is called a multi-step ahead

prediction model. In this thesis, both single step and multi-step predictions

will be considered, and r is chosen to be 1, 3, and 6.

5.1.1 Input pre-processing

Similar to building a classification model, before building a time series model,

in order to improve the model performance, it is usually preferred to pre-

process the input first. The are many methods to pre-process the inputs.

For example, in [43], after the model minimum embedding dimension has

been decided, boosting tree algorithm are used to weight the importance of

the inputs. The more important the input is, the more effect it has on the

model output. Another method is wavelet decomposition (WD). In [42], WD

was used to decompose the machine vibration waveform first before building
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the time series prediction model to predict the future machine vibration. In

this thesis, wavelet technique is also used to pre-process the input. However,

instead of using WD to decompose the machine vibration waveform, wavelet

packet decomposition (WPD) is used. As shown in chapter 2, when WD

is used, on each decomposition level, only the approximate coefficients will

be further decomposed, while the detail coefficients will be ignored. Thus,

no matter how many levels the original vibration waveform is decomposed

into, the prediction model built based on the sub-signal reconstructed from

the first level detail coefficients will be the same, and hence the prediction

accuracy cannot be improved. On the other hand, when WPD is used to

decompose the vibration waveform, both the approximate coefficients and the

detail coefficients will be further decomposed, and the overall model prediction

may be improved as the number of decomposition level increases.

5.1.2 Embedding dimension

When building a prediction model, one important step is to determine the

minimum order of the model, in this case it is also called the minimum em-

bedding dimension. There are 2 popular methods to determine the minimum

embedding dimension of a model. One method is to arbitrarily choose a rela-

tively large embedding dimension at the beginning, denoted as m′, and then

apply some reduction methods to reduce the embedding dimension. Taking

m′ = 6 as an example, the first model can be built as

xn+r = f(xn−5, xn−4, xn−3, xn−2, xn−1, xn) (5.2)

After that, some methods, such as the k-nearest neighbors (k-NN) approx-

imation method and the mutual information (MI) method, can be used to

determine which inputs in the original model can be omitted while the model

prediction accuracy stays the same or even improves. If the result shows that

xn−4 and xn−3 can be omitted, the final prediction model becomes

xn+r = f(xn−5, xn−2, xn−1, xn) (5.3)
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and the final minimum embedding dimension is 4. Readers can refer to [44]

and [45] for more details on those input selection methods. Unlike the first

method, the second method is to determine the minimum embedding dimen-

sion directly. This method includes the false neighbors method [46] and the

Cao’s method [47]. In this thesis, Cao’s method is used to determine the min-

imum embedding dimension of the time series prediction models and its basic

theory is reviewed below.

Consider a time series x(n), where n = 1, 2, ..., N . The time delay vector

is defined as

yi(m) = (xi, xi+k, ..., xi+(m−1)k),

i = 1, 2, ..., N − (m− 1)k, (5.4)

where yi(m) is the ith reconstructed vector with embedding dimension m.

Also, another parameter is defined as

a(i,m) =
||yi(m+ 1) − yn(i,m)(m+ 1)||

||yi(m) − yn(i,m)(m)|| (5.5)

where ||·|| is the Euclidian distance, yn(i,m)(m) is the nearest neighbor of yi(m) in

terms of the Euclidian distance, and n(i,m) is an integer which 1 ≤ n(i,m) ≤
N − mk. If yn(i,m)(m) = yi(m), the second nearest neighbor will be used so

that the denominator in Eq. (5.5) will not be 0.

When any two points stay close in the m and m + 1 dimensional recon-

structed space, m is qualified as an embedding dimension. However, as can be

expected, it is difficult to choose a threshold value T so that when two points

are associated to a value a(i,m) for which a(i,m) < T , those two points can

be said to be close to each other. Also, different time series may have differ-

ent threshold values. Thus, instead of trying to find an appropriate threshold

value for a given time series, the author in [47] defined a quantity as

E(m) =
1

N −mk

N−mk
∑

i=1

a(i,m) (5.6)

and

E1(m) = E(m+ 1)/E(m) (5.7)
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Figure 5.1: Process of building time series prediction model with SVR and
WPD

It is found out that E1(m) will keep changing as m increases until m reaches

a certain value m0, and m0 + 1 will be the minimum embedding dimension.

5.1.3 Prediction model construction with SVR and WPD

In this thesis, for a given time series x(n), in order to build a prediction

model to predict its value at xn+r, x(n) is first decomposed into N levels using

WPD. After the decomposition, for each coefficient vector in the Nth level,

sub-signal can be reconstructed. Cao’s method is then utilized to determine

the minimum embedding dimension for each sub-signal. With the embedding

dimension, time series model can be built for each sub-signal using SVR, and

the final prediction output is the sum of the outputs of all the models. The

complete process is illustrated in Figure 5.1. The overall performance of the

model prediction is evaluated based on the root mean square error (RMSE):

RMSE =

√

√

√

√

1

n

n
∑

k=1

(x(k) − x̂(k))2 (5.8)

where n is the total number of data point predicted and x̂(k) is the predicted

value at time k.
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Figure 5.2: Machine vibration peak-to-peak values in the X direction, G2

5.2 Time series prediction model for BPSTG

Using the method described in the previous section, single step and multi-step

time series prediction models are built to predict the future vibration of the

machine G2. Figure 5.2 shows the vibration peak-to-peak values on bearing 4

in the X direction of machine G2. The vibration data were measured during

the period from May to Aug. 2003 and there are 1475 data points in total.

As mentioned earlier, the vibration data are measured every 2 hours. With

the raw vibration data, time series prediction model can be built. The first

step is to decompose the vibration signal into different levels using WPD. In

this thesis, the decomposition level ranges from 2 to 5 and the DB8 wavelet

function is used during the decomposition. Figure 5.3 shows the reconstructed

sub-signals for a 2-level decomposition.

With the reconstructed sub-signals, minimum embedding dimension can

be determined by Cao’s method. When applying Cao’s method, for each sub-

signal, the algorithm will try to calculate the parameter E1(m) for m = 1

to 19 using the first 500 data points. Based on the calculated E1(m), the

minimum embedding dimension for each sub-signal can be determined. The

minimum embedding dimensions for all sub-signals reconstructed from 2 to

5-level WPD are shown in Table 5.1. Figure 5.4 shows the plot of E1(m) for

all 4 sub-signals reconstructed from the wavelet packet coefficients after a 2-

level WPD is applied to the original vibration signal. Based on the figures,
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Figure 5.3: Sub-signals reconstructed from a 2-level WPD of the original vi-
bration signal, (a): P2,0, (b): P2,1, (c): P2,2, (d): P2,3

the embedding dimensions for those 4 sub-signals can be selected as 9, 7, 6,

and 6, respectively.

After the minimum embedding dimensions are determined, time series pre-

diction models are ready to be built with SVR. Since the first 500 data points

are used to determine the minimum embedding dimension for each sub-signal,

those 500 data points are also used to train the SVR models. Assuming the

minimum embedding dimension is 6, when training a single step prediction

model, the training input matrix x and output matrix y will be

x =



















x1 x2 x3 x4 x5 x6

x2 x3 x4 x5 x6 x7

x3 x4 x5 x6 x7 x8
...

...
...

...
...

...
x493 x494 x495 x496 x497 x498

x494 x495 x496 x497 x498 x499



















y =



















x7

x8

x9
...

x499

x500



















The rest of the 975 data points are used to test the SVR models. All the
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Sub-sig. M Sub-sig. M Sub-sig. M Sub-sig. M Sub-sig. M

P2,0 9 P4,0 6 P4,12 7 P5,8 5 P5,20 6
P2,1 7 P4,1 10 P4,13 7 P5,9 4 P5,21 7
P2,2 6 P4,2 8 P4,14 7 P5,10 7 P5,22 7
P2,3 6 P4,3 7 P4,15 7 P5,11 4 P5,23 7
P3,0 6 P4,4 5 P5,0 6 P5,12 7 P5,24 5
P3,1 10 P4,5 5 P5,1 5 P5,13 7 P5,25 7
P3,2 5 P4,6 7 P5,2 10 P5,14 9 P5,26 7
P3,3 7 P4,7 7 P5,3 7 P5,15 7 P5,27 7
P3,4 10 P4,8 4 P5,4 8 P5,16 6 P5,28 7
P3,5 8 P4,9 5 P5,5 8 P5,17 8 P5,29 7
P3,6 7 P4,10 9 P5,6 6 P5,18 6 P5,30 7
P3,7 7 P4,11 9 P5,7 8 P5,19 6 P5,31 7

Table 5.1: Embedding dimensions for sub-signals reconstructed from 2 to 5-
level WPD

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
1

m

(a)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
1

m

(b)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
1

m

(c)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
1

m

(d)

Figure 5.4: Embedding dimensions for sub-signals reconstructed from (a):
cP2,0, (b): cP2,1, (c): cP2,2, (d): cP2,3
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# step ahead
Levels of WPD RMSE

prediction

1

2 0.0094
3 0.0062
4 0.0055
5 0.0053

3

2 0.0411
3 0.0217
4 0.0186
5 0.0147

6

2 0.1061
3 0.0509
4 0.0301
5 0.0231

Table 5.2: Prediction results for different number step ahead predictions with
SVR and different levels of WPD

SVR prediction models are built with the polynomial kernel function, which

can be expressed by the following equation,

K(x, x′) = (xTx′ + 1)d (5.9)

where d is the kernel parameter, degree, and it is set to be 1 in this case. The

trade-off parameter C is set to be 100, and ε is set to be 0.001. The model

prediction errors for different numbers of step ahead prediction with different

levels of WPD are shown in Table 5.2, and the prediction results with 5-level

WPD are plotted in Figure 5.5 against the real vibration values. From Table

5.2, it can be seen that the RMSE increases as the number of step ahead

prediction increases with the same level of WPD, which is expected. Also, for

the same number of steps ahead prediction, as the level of WPD increases, the

RMSE decreases.

5.3 Performance comparison

For comparison, two other methods, building time series model using SVR

alone and building time series model using SVR with WD, are also used to

build models to predict the future machine vibration. Again, the first 500

data points are used to determine the minimum embedding dimensions. The
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Figure 5.5: Vibration prediction results using SVR and 5-level WPD: predicted
values (red), actual values (blue): (a) 1-step ahead prediction, (b) 3-step ahead
prediction, (c) 6-step ahead prediction

minimum embedding dimensions for all sub-signals reconstructed from 2 to

5-level WD are shown in Table 5.3, and the minimum embedding dimension

is 10 when the model is built with SVR only. Table 5.4 and Figure 5.6 shows

the results using SVR alone, and Table 5.5 and Figure 5.7 shows the results

using SVR with WD. Comparing Table 5.2 to Table 5.4 and 5.5, it is clear that

time series model built with SVR and WPD gives the best prediction results,

while the model built with SVR alone gives the worse prediction results. This

highlights the importance of pre-processing the raw data before building the

prediction models. Also, from Table 5.5, it can be noticed that for any of the 3

cases, when the level of WD increases from 4 to 5, The RMSE does not change

too much. There is actually a little increase in RMSE in the single step and

3-step ahead prediction cases, while the RMSE is decreased by 1.65% in the

6-step ahead prediction case. Applying the same analysis to Table 5.2, it is

found out that, except for the single step ahead prediction case, the RMSE is
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Sub.sig. Sub.sig. Sub.sig. Sub.sig.
2-level WPD M 3-level WPD M 4-level WPD M 5-level WPD M

A2 9 A3 6 A4 6 A5 6
D1 6 D1 6 D1 6 D1 6
D2 7 D2 7 D2 7 D2 7

D3 10 D3 10 D3 10
D4 10 D4 10

D5 5

Table 5.3: Embedding dimensions for sub-signals reconstructed from 2 to 5-
level WD

# step ahead
RMSE

prediction
1 0.0522
3 0.0955
6 0.1233

Table 5.4: Prediction results for different number step ahead prediction with
SVR alone

decreased by at least 21% for the other 2 cases when the decomposition level

increases from 4 to 5. This clearly shows the advantage WPD has over WD.

As stated before, in WD, only the approximate coefficients will be further

decomposed. When the decomposition level is large enough that a nearly per-

fect prediction model may be built for the sub-signal reconstructed from the

approximate coefficients, further decompose the original signal may not have

any significant impact on the overall model prediction. At this stage, while a

sufficient accurate model may be able to build for the sub-signal reconstructed

from the approximate coefficients, accurate models may not be built for the

sub-signals reconstructed from the detail coefficients. Also, it is usually more

difficult to built accurate prediction models for sub-signals reconstructed from

the detail coefficients since those signals contain higher frequencies and higher

non-linearity. On the other hand, this is not the case in WPD. Since detail

coefficients will also be further decomposed, it is possible to build accurate

prediction model for the sub-signals reconstructed from the detail coefficients.

Thus, in a situation which a sufficient accurate model can be built for the sub-

signal reconstructed from the approximate coefficients, further decompose the

original signal may still improve the overall prediction result because better
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Figure 5.6: Vibration prediction results using SVR alone: predicted values
(red), actual values (blue): (a) 1-step ahead prediction, (b) 3-step ahead pre-
diction, (c) 6-step ahead prediction

# step ahead
Levels of WD RMSE

prediction

1

2 0.0113
3 0.0107
4 0.0106
5 0.0108

3

2 0.044
3 0.0289
4 0.0275
5 0.0276

6

2 0.1058
3 0.0565
4 0.0428
5 0.0417

Table 5.5: Prediction results for different number step ahead prediction with
SVR and different levels of WD
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Figure 5.7: Vibration prediction results using SVR and 5-level WD: predicted
values (red), actual values (blue): (a) 1-step ahead prediction, (b) 3-step ahead
prediction, (c) 6-step ahead prediction

models may be built for the sub-signals reconstructed from the detail coeffi-

cients.

5.4 Conclusion

In this chapter, single and multi-step ahead time series prediction models

have been built to predict the future machine vibration. With the collected

vibration signal, wavelet packet decomposition is first utilized to decompose

the signal. Sub-signals are reconstructed from the approximate and detail

coefficients and the minimum embedding dimension is determined for each

sub-signal using Cao’s method. Time series model is then built for each sub-

signal using Support Vector Regression. The overall prediction result is the

sum of the outputs from all SVR models. Comparison has been make to the

other 2 methods, building prediction model using SVR alone and using SVR
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with wavelet decomposition. The result shows that the method using SVR

with WPD outperforms the other 2 methods.
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Chapter 6

Machine Thermal Sensitivity

Analysis

In the previous chapter, SVR combining with WPD is utilized to built time

series models to predict the future machine vibration based on the past and

current machine vibrations, and the results are promising. In this chapter,

SVR is used again to build models for the machine system. However, instead

of using it to predict the machine vibrations in the future, it is used to estimate

the current machine vibration with the machine output power as the model

inputs. By calculating the difference between the estimated values and the real

values, it is possible to track the machine condition and see how the condition

is changing as time progresses. More specifically, SVR is used to track the

generator rotor condition due to thermal sensitivity. The general concepts of

generator rotor thermal sensitivity is reviewed in the next section followed by

the current practice in industry regarding generator rotor thermal sensitivity

and how SVR can be applied to track the generator rotor condition regarding

this issue.

6.1 Review on machine thermal sensitivity

In this section, the basic theory and some of the common causes of generator

rotor thermal sensitivity are introduced. Readers are encouraged to consult

with [48] and [49] for details. Generator rotor thermal sensitivity is a phe-
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nomenon which the rotor vibration is changed when the generator field current

is increased. As stated in [48], even for a rotor which has thermal sensitivity

issue, it is not affected when the generator is operating with the power factor

higher than 0.85 lagging or with a leading power factor. On the other hand,

when the generator is operating with a power factor lower than 0.85 lagging,

a thermal sensitivity rotor will be affected and its vibration will change. The

rotor vibration may increase, decrease, or its phase angle may change. There-

fore, even with a thermal sensitivity rotor, a generator may not have any issues

when operating with low field current; however, its operation may be limited at

high field currents or VAR loads as the rotor vibration excesses the acceptable

limit.

6.1.1 Causes of thermal sensitivity

Generator rotor thermal sensitivity can be classified into 2 types: reversible

and irreversible. When the thermal sensitivity is reversible, rotor vibration

changes as field current varies. That is, when the field current increases, the

rotor vibration increases. Later on, when the field current decreases, the rotor

vibration will decrease as well. This type of thermal sensitivity usually does

not cause major problems in practice and the rotor can be balanced so that

its maximum vibration will not excess the limit. If the rotor vibration does

not decrease after the field current is reduced, this type of thermal sensitivity

is called irreversible. This type of thermal sensitivity is troublesome since the

rotor vibration will keep increasing, and the rotor may have to be taken off-line

and repaired in order to reduce the vibration.

As indicated in [48], one of the main reasons why a rotor is thermally

sensitive is that the copper conductors in the winding and the steel field forg-

ing have different coefficients of expansion. When field current is applied,

although both the copper and the steel forging will try to expand, due to dif-

ferent coefficients of expansion, the copper will try to expand more. Thus,

as the field current increase, the difference in expansion between those two
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can become quite large and the generated forces can be quite large as well.

Eventually, these forces can cause the rotor to bow if they are not distributed

uniformly, and the bowing will cause the vibration to change. If other fac-

tors are excluded, the bowing should vary as the field current changes and it

should be reversible. However, due to the complexity of a generator, there are

many factors can affect the thermal vibration, including shorted turns, blocked

ventilation or unsymmetrical cooling, insulation variation, wedge fit, distance

block fitting, etc. Some of these factors will be briefly explained further be-

low. Readers can refer to [48] for more information on the causes of thermal

sensitivity.

• Shorted Turns: Shorted turns is the most common cause of thermal

sensitivity. For a field which has shorted turns, when field current is

applied, the pole which has higher number of shorts will have lower

temperature comparing to the other pole. This is because the pole which

has higher number of shorts has lower electrical resistance. As a result,

the pole with higher temperature will tend to expand more than the

other pole, and hence causes the rotor to bow. As can be expected, the

amount of bow is directly related to the field current, and the thermal

sensitivity caused by shorted turns is reversible.

• Blocked Ventilation or Unsymmetrical Cooling: Blocked ventilation and

unsymmetrical cooling are quite similar to shorted turns. In block venti-

lation, a foreign object may be involved to disrupt the normal ventilation

and cooling of the field. Unsymmetrical cooling is caused by shifting of

the insulation or plugging of cooling passages. Both blocked ventilation

and unsymmetrical cooling are result in uneven temperature distribution

in the field and cause the rotor to bow. When the temperature drops,

the rotor may restore to its original form. Therefore, thermal sensitivity

caused by blocked ventilation and unsymmetrical cooling is reversible.

• Insulation Variation: When the insulation thickness and buildup are not
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even in a field, it can cause binding and uneven friction forces in the

coil slots and under the retaining rings. If this happens, the field coils

may not be able to expand uniformly and hence the field forging may be

loaded unevenly and cause the rotor to bow. The bow will increase when

increasing the field current. In some cases, the rotor may not be able

to restore to its original form when the field current decreases. This is

due to the fact that the binding of the coils may persist. Thus, thermal

sensitivity caused by insulation variation may be irreversible.

6.1.2 Thermal sensitivity test and analysis in industries

In order to test if a rotor has thermal sensitivity problem, a thermal sensitiv-

ity test can be performed. The purpose of the test is to isolate the machine

vibration which is caused by MW loading from the vibration caused by MVAR

loading. As stated clearly in [48], vibration changing with MW loading does

not indicate the thermal sensitivity problem of a rotor. Also, from the pre-

vious sections, it can be seen that thermal sensitivity has a very important

relationship with the field current. The thermal sensitivity test consists of 3

parts:

1. The thermal sensitivity test is started by loading the generator with small

MW and MVAR, 10MW and 0MVAR for example, and then MW will

be increased to about 60% of its rated value and MVAR will be reduced.

During the test, before going from 1 stage to another stage, it is very

important to ensure the generator has reached a steady state, usually

it takes about 15 to 30 minutes for each stage, and all the important

readings, such as the machine vibration, voltage, current, temperature,

etc, should be carefully recorded.

2. In the second part of the test, the generator MW will be kept constant

while the field current will be continuously increased until it reaches its

rated value. Thus, MAVR will be increased in this part. As mentioned

earlier, for a thermal sensitivity rotor, its vibration starts to change when
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Figure 6.1: Typical plot of machine output power during a thermal sensitivity
test

the generator is operating at power factor lower than 0.85 lagging. Hence,

it is very important in this part to increase the MVAR high enough so

that the generator will be operating with a power factor lower than 0.85

lagging. If the field current cannot reach its rated value without having

the machine vibration excess its acceptable limit, this part of the test

should be repeated with the maximum allowed field current.

3. The last part of the thermal sensitivity test is the reverse of the first 2

parts. The generator MVAR will be decreased while keeping the MW

constant, and then the MW will be reduced and MVAR will be increased,

so that the final generator MW and MVAR will be the same as they were

when the test is started. The complete process of a thermal sensitivity

test is illustrated in Figure 6.1. If the final machine vibration is similar

to the vibration when the test is started, it can be concluded that the

thermal sensitivity is reversible. On the other hand, if the final machine

vibration does not reduce to its started level and remains high, the ther-

mal sensitivity is irreversible and further maintenance actions may need

to be taken.

In the local oil-sand company, thermal sensitivity test is performed on all

3 BPSTGs on a yearly basis. The thermal sensitivity test serves 2 purposes.
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The first one is, as mentioned previously, to compare the machine vibration

at the beginning of the test to the machine vibration at the end of the test

and thus determine if the thermal sensitivity is reversible or not. The other

purpose is to determine how large is the difference between the vibration at

the beginning of the test and the vibration when the generator is operating

with the highest MW and MVAR during the test. The difference has to be

within a certain limit otherwise the generator will not be able to run on its

full capacity. The method used to calculate the difference between those 2

vibrations is explained in detail below.

1. During a thermal sensitivity test, at each stage, the machine vibration

peak-to-peak value and its phase can be recorded. However, it is believed

that the vibration due to thermal bow is mainly shown on 1X, which is

60Hz in this case; therefore, in order to eliminate the other effects, the

1X vibration peak-to-peak value is used. Figure 6.2 shows a typical

machine vibration waveform along with its 1X component only. Thus,

every cycle in the 1X vibration waveform in the X and Y directions can

be expressed by an cosine equation:

Vx =
1

2
Axcos(θ − θx)

Vy =
1

2
Aycos(θ − θy)

0 ≤ θ < 2π (6.1)

where Ax, Ay, θx, and θy are the 1X vibration peak-to-peak values and

phase angles in the X and Y directions, respectively, and they can all be

recorded during a thermal sensitivity test.

2. θy will be subtracted by π/2 (or added by 3π/2 if θy − π/2 < 0) since

the vibration sensor X and Y are 90o degree apart. Thus,

θ̄y = θy − π/2

Vy =
1

2
Aycos(θ − θ̄y) (6.2)
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Figure 6.2: Machine vibration waveform, (a) unfiltered, (b) 1X only

3. In order to ensure Vx and Vy are larger than 0, constant terms, 1
2
Ax and

1
2
Ay will be added to Vx and Vy, respectively. Hence,

V̄x =
1

2
Ax +

1

2
Axcos(θ − θx)

V̄y =
1

2
Ay +

1

2
Aycos(θ − θ̄y) (6.3)

4. Finally, by iteration, a θ can be found which maximizes the following

equation,

VT =

√

V̄x
2
+ V̄y

2
(6.4)

The corresponding phase angle can be denoted as θT . At this point,

the overall maximum machine vibration can be expressed by a vibration

vector with magnitude VT and phase angle θT .

By following the procedures outlined above, the maximum vibration vector

can be calculated for the machine vibration at the start of the thermal sensitiv-

ity test and at the point when the machine is operating with the highest MW

and MVAR during the test, and then the vibration difference between those

2 conditions can be calculated. Figure 6.3 is a typical plot of the vibration

vectors during a thermal sensitivity test.
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Figure 6.3: Typical plot of the machine 1X vibration vector during a thermal
sensitivity test

6.1.3 Limitation of current practice on thermal sensi-

tivity

As indicated earlier, currently, the thermal sensitivity test serves 2 purposes,

one is to determine if the machine thermal sensitivity is reversible or not. The

other purpose is to see how large is the vibration difference between when the

machine is operating at low load (beginning of the test) and at high load (the

middle point of the test). However, how the machine vibration changes due to

thermal sensitivity in a long term has not been taken into consideration. Also,

if the machine thermal sensitivity is irreversible, after a thermal sensitivity

test, the machine vibration may be higher than the vibration at the beginning

of the test, and the vibration may keep increasing as time progresses. Thus,

thermal sensitivity test is destructive and the machine condition may become

worse after a thermal sensitivity test. Moreover, when a machine is undergo

a thermal sensitivity test, it has to be removed from the production line, and

hence reduce the productivity. It would be better to find a way to determine

if a machine has thermal sensitivity issue or not from the machine regular

operational data rather than performing a thermal sensitivity test. In the

next section, one of the artificial intelligence techniques, SVR, will be utilized

63



to track the machine condition and provide some preliminary information on

whether the machines have thermal sensitivity problem.

6.2 Machine vibration tracking for thermal sen-

sitivity analysis

In order to track the machine vibration due to thermal sensitivity, a system

model is required. The inputs of the model will be the generator output real

power and reactive power, and the output of the model will be the machine

1X vibration. While the machine vibration data are collected every 2 hours,

the machine output power data may be recorded every 2 minutes. Therefore,

before building the system model, The machine output power data will be

matched with the machine vibration data first. The machine output power

data recorded at the same time when the machine vibration data are collected

will be use to build the system model, and the rest of the machine output

power data will be discarded. Other than the machine output power, many

other factors, such as the temperature of the machine operating environment,

may also have impacts on the machine vibration. However, machine output

power can be directly controlled by the on-site engineers, and this is why they

are chosen as the inputs of the model. The model will estimate the machine

vibration based on the generator output power, which can be mathematically

expressed as

y = f(P,Q) (6.5)

where P and Q are the machine real and reactive power, respectively, and y

is the machine 1X vibration. If the model is properly trained and the ma-

chine thermal sensitivity is irreversible, the difference between the estimated

vibration and the real vibration may become larger and larger as time pro-

gresses. Instead of using the magnitude or phase angle of the vibration vector

as the model output, the vibration vector can be separated into 2 parts by the
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following 2 simple equations:

VTX = VT cosθT

VTY = VT sinθT (6.6)

Thus, any changes in the magnitude and phase angle of the machine 1X vi-

bration will be reflected in VTX and VTY .

6.2.1 Machine thermal sensitivity analysis on G1

In this and the next section, the generators G1 and G2 will be investigated.

Based on the previous thermal sensitivity test results, G1 does not seem to be

suffered from serious thermal sensitivity problem and the thermal sensitivity

is reversible. On the other hand, G2 may have serious thermal sensitivity issue

and it is irreversible.

Figure 6.4 shows the plots of VTX and VTY of G1. The vibration data is

obtained during the period from Jan. to Aug. 2003 on bearing 4 and there are

2761 data points in total. From Figure 6.4, no obvious trend can be noticed.

VTX and VTY do not seem to increase or decrease as time progresses. In order

to confirm that the machine condition did not change during that period, SVR

models can be built to estimate the machine vibration based on the machine

output power. If the machine condition indeed did not change during that

period, the estimated vibration should be very close to the real vibration as

long as the model is properly trained.

When building the SVR models in this section, the polynomial kernel func-

tion is selected and the kernel parameter, degree, is set to be 2. The kernel

function and its parameter are chosen based on trial and error. The first 700

data points are used to train the SVR models and the model error is simply the

difference between the estimated machine 1X vibration vector and the actual

machine 1X vibration vector:

error = VT (XorY ),actual − VT (XorY ),estimated (6.7)
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Figure 6.4: Plots of (a) VTX and (b) VTY , G1

Figure 6.5 and 6.6 shows the SVR model estimated results along with the

actual machine 1X vibration vector and the model error. It can be seen that,

for both VTX and VTY , the estimated results are very close to the real values

and the model errors stay at around 0 all the time. Also, from the error plots,

there is no clear trend that the model error increases or decreases as time

progresses. Therefore, it can be concluded that the condition of G1 did not

change during the period from Jan. to Aug. 2003, and a thermal sensitivity

test around this period may not be necessary for G1. From the plots, it can also

be concluded that there is a direct relationship between the machine output

power and the machine 1X vibration. It is possible to build an accurate model

with machine real and reactive powers as the model inputs to estimate the

machine 1X vibration.

6.2.2 Machine thermal sensitivity analysis on G2

Similar analysis can be applied to generator G2. Figure 6.8 shows the plots

of VTX and VTY of G2. The vibration data is obtained from Jan. to Sep.

2003 on bearing 3 and there are 3123 data points in total. SVR models are

built with the same kernel function and parameter for VTX and VTY , and
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Figure 6.5: (a) SVR model estimation for VTX , estimated values (red), actual
values (blue), and (b) model error, G1
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Figure 6.6: (a) SVR model estimation for VTY , estimated values (red), actual
values (blue), and (b) model error, G1
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again the first 700 data points are used to trained the models. The estimated

results and model errors are shown on Figure 6.9 and 6.10. From Figure 6.9,

the estimated results are close to the actual values and the model errors are

around 0 for all data points. On the other hand, on Figure 6.10, starting from

data points around 1920, which corresponding to June 23, 2003 in actual date,

the actual vibration starts to increase, which causes the difference between

the estimated VTY and the actual VTY starts to increase and finally settles

down at data points around 2200, which corresponding to July 16, 2003 in

actual date. If the vibration vectors are plotted during the period from June

23 to July 16, the result would be similar to Figure 6.7. VTX did not change

too much during that period and it remained at about 2.5 mil, while VTY

increased approximately from -1 to 1 mil. Thus, the vibration vector went from

the forth quadrant to the first quadrant, and the magnitude of the vibration

vector actually decreased first and then increased. This is the reason why

it is preferred to separate the vibration vector into VTX and VTY instead of

considering the magnitude and phase angle of the vibration vector. During

a short period of time, if there is a noticeable trend in VTX or VTY , it would

be either increasing or decreasing. There are 2 possible reasons that may

explain why the actual vibration increases. The first one is that the actual

vibration increases after data point 1920 is due to the increase of generator

output powers, which are the inputs of the SVR model, and the SVR model

cannot produce close results after the increase of the inputs. However, since

the model estimated values are very close to the actual values for the first 1800

data points, it can be confirmed that the SVR model has been trained properly

and it should produce outputs accordingly if the inputs are increased. Also, by

checking the generator output during the period from Jan. to Sep. 2003, the

output powers are always fluctuating between 10 to 50MW and 10 to 20MVAR.

Thus, this may not be the true reason why the actual vibration increases. The

second reason is that the machine condition has changed. One way to change

the machine condition is that the machine has been taken off-line and some
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maintenance activities has been preformed on the machine. However, G2 was

continuously running during the period from Jan. to Sep. 2003 without any

shutdown or maintenance. The other way which may cause the change of

machine condition is that the machine has thermal sensitivity problem and it

is irreversible. When the machine is operating at high MVAR/field current, its

vibration may change and start to increase. By checking the generator output

powers, it is found out that, on June 23, 2003, the generator was operating

with very high MVAR, such as 25MW and 30MVAR, 45MW and 30MVAR,

etc. Thus, although further investigation may be required, at this point, it is

reasonable to assume that the vibration change is due to thermal sensitivity

and a thermal sensitivity test can be performed to confirm this.

6.3 Conclusion

In this chapter, the general idea of machine thermal sensitivity and the current

industry practices regarding machine thermal sensitivity are reviewed. Sup-

port Vector Regression is utilized again in this chapter to build system model

to estimate the machine vibration based on the machine output power. The

system model is used to track the machine condition and provide some prelim-

inary information on whether the machine has irreversible thermal sensitivity
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Figure 6.8: Plots of (a) VTX and (b) VTY , G2
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Figure 6.9: (a) SVR model estimation for VTX , estimated values (red), actual
values (blue), and (b) model error, G2
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Figure 6.10: (a) SVR model estimation for VTY , estimated values (red), actual
values (blue), and (b) model error, G2

issue or not. Experimental results show that, for generator G1, the estimated

VTX and VTY are very close to the real values and hence G1 may not have

any serious thermal sensitivity issue. On the other hand, for generator G2,

although the estimated VTX are close to the real values, part of the estimated

VTY are significantly different than the real values, and the result suggests that

G2 may have thermal sensitivity problem. These conclusions agree with the

previous thermal sensitivity test results.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, artificial intelligence techniques are applied to the field of elec-

trical machine condition monitoring. The thesis consists of 3 main parts. In

the first part of the thesis, Neural Network and Support Vector Machine, com-

bining with wavelet packet decomposition and Genetic Algorithm, are utilized

to build classification models to classify different machine conditions. Ex-

perimental result obtained with either method is excellent, although under

different conditions, one method may perform better than the other one. In

the second part, single step and multi-step ahead time series prediction models

are built with Support Vector Regression and wavelet packet decomposition to

predict the future machine vibration based on the past and current machine

vibration. Prediction results are compared to the results obtained with the

other 2 methods, building time series models with SVR alone and with SVR

and discrete wavelet decomposition. The comparison shows that the method

using SVR and WPD outperforms the other 2 methods. In the last part of

the thesis, system model is built with SVR. The model inputs are the machine

output power while the model output is the machine 1X vibration. The model

maps the input to the output and hence keeps track of the machine vibration

and provides some useful information to determine if the machine has thermal

sensitivity problem or not.
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7.2 Future work

Electrical machine condition monitoring is an on going research subject and

the future research directions in this project may include the followings. For

the machine condition classification part, data representing more machine con-

ditions may be collected so that the classifier can classify more machine con-

ditions. Different feature extraction/selection methods may be used in order

to further improve the classification result. Regarding building time series

model to predict machine future vibration, more accurate models are required

in order to make more steps ahead prediction. The more steps ahead predic-

tion can be make, the more time the on-site experts will have in advance to

schedule a maintenance plan. For machine thermal sensitivity, future research

may include further investigation on the relationship among machine output

power, machine thermal sensitivity, and machine vibration, so that when there

is a significant change in machine vibration, it can be determined if it is due

to machine thermal sensitivity problem. Future work may also include the

implementation of the methods discussed in this thesis. Currently, a commer-

cial software is used in the local oil-sand company and the software can only

perform some simple analysis on the vibration data, such as transforming the

vibration waveform into the frequency domain. Some open source softwares,

LabView and dSPACE for example, may need to be used in order to implement

those methods in actual practice.
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