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ABSTRACT

This thesis develops and evaluates practical methods of 'online'
excitation control for power system stabilization.

The equations of a power system are expressed in a state space
form. A method of finding the closed loop quasi-optima] excitation
control is presented. The linearized model of a single machine infinite
bus problem is considered and the method is then extended to a nonlinear
model. The problem of implementing the quasi-optimal control is studied
and a practical compromise is suggested. The results obtained with the
quasi-optimal scheme are compared with those obtained by a steepest descent
method. It is found that the quasi-optimal scheme gives optimal solution
for linear systems. The effect of time delay on the stability of tﬁe
system is also considered. Finally, the closed loop (quasi-optimal) control
has been applied to a two machine system and the effect of local control

investigated.
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CHAPTER 1

INTRODUCTION

The growth of loads as well as increaseddemand for reliability have
led to the development of complex, highly interconnected power systems.
Disturbances on such a system may propagate throughout the rest of the
system, resulting in major failures of power supply in absence of adequate
safeguards. For reliable production and transmission of electrical energy,
it is essential that the power system be stable in the sense described in
the following section. System stability can be enhanced by suitable
control techniques, some of which are described in Section (1.2). One of
the more important of these — control of machine field voltage or excit-
ation control is investigated in this thesis. A corresponding strategy
for state feedback quasi-optimal excitation control is developed and

evaluated in the chapters to follow.

1.1 Power System Stability

The definition of power system stability as given by Kimbark[1] is
"Power system stabi]i;y is a term applied to alternating current electric
power systems, denoting a condition in which the various synchronous
machines of the system remain in synchronism or 'in step' with each other.
Conversely, instability denotes a condition involving loss of synchronism
or falling 'out of step'". Depending on the magnitude and type of
disturbances, power system stability may be classified into three types.

These are described below.

Steady state stability is the ability of the power system to maintain




power transfer over the system without loss of stability or synchronism
when the magnitude of power transfer is increased gradually. It is
assumed that the increase in power Jevel upto this limit occurs slowly
enough to allow regulating devices to respond with their steady state
characteristics, and that inertia effects are negligible.

Transient stability is the ability of .the power system to maintain

stability in the presence of a sudden large change in load occasioned by
system switching (as may be caused by load switchings or circuit breaker
operations), or by a fault. It is usually assumed that the regulating
devices do not have time to function during the transient period and that
non-linear modes of system operation are encountered during the period.
Inertia is important.

Dynamic stability is the ability of the power system to maintain

stability for small disturbances and to prevent growth of oscillations.
Dynamic instability generally occurs due to lack of damping torque. Due
to the small disturbance assumption, this type of stability is usually

investigated through the use of linearized mode]s[2’3].

1.2 Basic "Swing equation" and Methods to Improve Stability

The "Swing equation" for a synchronous machine can be written as

2
d% , nds _ o .
Mzt " Pin P (1.1

where the output power Po is a function of the rotor angular position,
machine internal voltages and transfer (or mutual) admittances of the
system. The right hand side of equation (1.1) represents the acceler-
ating power Pa' At a steady state operating point of the machine,

both the velocity of the machine & and the accelerating power Pa are zero



while the rotor angle and other machine currents are constant. This is

also called an equilibrium point. The following approaches have been
used[4] fo help stabilize a system after a perturbation from the equilibrium
point takes place due to a disturbance.

1. Changing transfer admittance: Any switching of the system
configuration to improve power transfer between sources is beneficial. The
faster this is done the better. (a) The most commonly used method involves
detection and clearing of faults by protective relays and circuit breakers.
The time required has been decreased through the years due to the use of
improved equipment, to the order of 3 cycles at the present time. Any
further improvement in this figure is not likely. (b) The transfer
admittance of the power system can be changed by switching in additional
capacitors into the transmission network. Control of power system transients
by capacitor switching has been reported in 1iterature[5’6] in recent years.
Rama Rao[7] and Miniesy[BJ have considered the problem of finding the
optimal value of capacitance for particular disturbances. The difficulty
encountered by these investigators has been in pre-determining the optimal
value of capacitance and the duration of switching independent of the type
of disturbance. (c) Braking resistors are also used to change the
effective conductance of the system and for dissipating the extra energy
available during a fault. Load shedding is useful in decreasing load
on heavily loaded generators.

2. Change in mechanical input: Pin varies in accordance with the
speed governor action following deviations from scheduled frequency or as
a result of supervisory control action. Since mechanical systems have

large time constants, stabilization by controlling Pin is not very effective.



However, ffast valving" may be helpful in this regard[gl.

3. Change in field excitation: This directly controls the
internal voltage of the machine thus controlling its power output. This
approach will be considered in detail in the next section since this type

of control for stabilization is used in this thesis.

1.3 Historical Development of Excitation Control

Until recently most synchronous machines were equipped with
rotating type of exciters having relatively long time constants and low
"ceiling" voltages. As a result they were of limited effectiveness in
improving the stability of the power system.

The introduction of static excitation systems has revolutionized
the technology of excitation control. In recent years, considerable
emphasis has been placed on the use of static excitation schemes with
relatively fast response and high ceiling voltages to improve power system
stability. Two major effects of high speed voltage regulators are well
known[3’]0]. The first is the increase in the restoring synchronizing
forces made possible through the forcing of both excitation and internal-
machine fluxes. This improves transient or "first swing" stability. The
second is the deterioration of machine damping resulting in dynamic
instability. The use of additional feedback signals, particularly velocity,
through the excitation system has been suggested for satisfactory

L

operation[]1’12]. Most studies 10,12] have considered linear models even
when dealing with first swing stability. For large disturbances a non-
Tinear model is needed. It has been found possible to select

control signals such as the magnitude of acceleration that effectively



control large disturbances but degrade dynamic stabi]ity[]3]. Dine]ey[lzl
found that by a 'continuous judicious combination' of velocity and
acceleration signals a maximum effect on rotor oscillations can be produced.
Jpnes[]4] and Smith[]s] considered the problem of transient removal with

bang-bang excitation control.

1.4 Research Objective

The equations governing the power system dynamics are of high order
and nonlinear. To obtain the optimal control for stabilization (the
performance index for such problems is either time,or the norm of the devia-
tion of some or all of the states and controls from the nominal value) for
such a problem by standard optimization procedures, one has to resort to
jterative techniques even for disturbances known a-priori[7’8’]6’]7].
However, disturbances which appear on a power system are in general not
known in advance. Some system parameters such as the transfer admittances
are dependent on the location and type of disturbance, and have to be
measured immediately after a disturbance appears on the system. The control
must again act within a very small fraction of a second to stop 'first
swing' jnstability for large disturbances. By the time the optimal control
is obtained for the particular system configuration by means of 'off-line'
computations, it may be too late and instability may result. The time
Timitation is not very severe for small disturbances, however, since the
oscillations grow slowly.

Thus, in general, a truly optimal exqitation control scheme may
not be implementable due to the complexity of the controller and time
limitations. For this reason it is considered worthwhile to explore quasi-

optimal excitation schemes which are implementable on real systems.



The main objective of this study is to explore means for stability
enhancement by eliminating system transients in the least possible time.
For such control schemes to be realizable 'on-line' it is necessary to
develop techniques for efficient determination of control in terms of
system state and parameters. Secondary objectives are investigation of
the implementability of such control and consideration of practical

compromises needed to apply the control to real systems.

1.5 'Scope of Thesis

The quasi-optimal excitation control for the linearized single
machine infinite bus problem is found directly as a function of the system
states. Pontryagin's minimum principle is used to obtain the control
from a transformed simplified system. A proportional control is suggested
as a practical compromise which for small disturbances is equivalent to a
velocity feedback signal. The scheme is then extended to a nonlinear
machine model and a two machine system. Results indicate that the quasi;
optimal excitation control is very effective in removing transients, though
a bang-bang excitation scheme may not be realizable. The proportional
control which is a modification of the bang bang control is realizable and
effective. A summary of results and conclusions as well as suggestions

for future research will be presented in Chapter 6 .
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CHAPTER 2

MATHEMATICAL MODEL OF A POWER SYSTEM

The synchronous generator, exciter and load models are.presented
in the first three sections of this chapter. The mathematical models for
a power system are derived in the state space form in Sections 4 and 5.
Two cases are considered: (a) A single machine connected to an infinite
bus (hereafter referred to as single machine case), (b) two machines

feeding a load from a busbar.

2.1 Synchronous Generator Equations

Fig. 2.1 Multi-machine System Configuration



n

Assume that p machines are interconnected by a transmission
network so that they feed a single equivalent load. A multi-load system
can be reduced to this form. The equations for the mth machine are[]’ZJ:
(The 1ist of symbols is given in page xiii)

a) Voltage and flux linkage equations for the armature

ed -1 ‘pd 'id' Wd
e Rl |t (2.1)
%o 1 Ol ly im i m “o py Jm
Lre
q! m q q q
wd Xafd  Xakdl **cc xade 0 ceverrecensensnnnnnns 0 ifd
q” m 0 iiiiiiineen 0 xakq] .............. xaqu n U kdi
Thd;
1.kq'l
"kqj dm
= (2.2)

* Subscript m refers to the quantities of the mth machine.
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b) Voltage and flux linkage relations for the rotor
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Here by definition[3]

X
fdo
E., = — v (2.5)
fd red fd
m=1,2, coeeeennns p

It is assumed that there are j rotor windings on each axis and a field
winding on the direct axis.
c) The equation for the terminal voltage of the mth machine is

e =\Cyn * © (2.6)

d) The system connection relationships for the mth machine with the

. bus bar are
e R -2 x i pi
d i e w, e d +‘f§) d
w
e 2o x R i oM lpi
g m Lo, € € moam “m
Vd
+ | (2.7)
v
where Vg = Vv s1‘n(§m + ev)
Vg =V cos(sm + ev) (2.8)

oy is the angle between bus bar voltage and a common reference frame.
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e) The torque equations for the mth machine are

P8, = wg Ny (2.9)

¥y 0 1 id

(TP = (Tipdy - _ (2.10)
wq m -1 0 1q -

In order to distinguish between reference frames, subscripts
d and q are used to denote components along the two axes of machine
reference frames while subscripts D and Q refer to components of the
common reference frame. The currents and voltages of the machines are
related to the network (having common reference frame) by the trans-

formations

VD c056m -sinam Vd
= ) (2.11)
v sinsm cosé U}
m m
Id cossm sinsm ID
= (2.12)
Iq 0 -s1n6m cos$ IQ 3

2.2 The Excitation System

There are various types of voltage regulators in use but only the
direct acting continuous type of regulator and exciter is considered here.
The power amplification for modern continuous regulators is provided by
such devices as: magnetic amplifiers, amplidynes and controlled rectifiers.

Since the voltage regulator controls the reactive power of a generator, it
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usually includes certain limiting and compensating circuits. These
additions are not considered here. When a linearized model of the system
is used, the exciter and regulator may be répresented mathematically

by a series of gains and time constants[4]. In this study, however, the
voltage regulator and exciter is represented by a single gain and time
constant even for nonlinear modes of system operation.

Static exciters or electronic exciters are now almost universally
used for large generators. The maximum output voltage (or ceiling voltage)
for these exciters is as large as 7 per unit[s] compared to about 2 per
unit for conventional type of exciters. The corresponding time constants
are also of the order of 10-20 milliseconds compared to about .5 seconds
for that of an amplidyne type of exciter. This type of exciter may be very
reasonably represented by a single gain and time constant. The voltage

regulator equation is written as

K

SRS S— - -

where Kr is less than zero.

2.3 Load representation

Various load representations are used for stability studies.
Constant impedance, constant current or constant power and constant power
factor load models may be used. Until recently loads in stability studies
have been customarily represented as impedances which are constant under

changing voltage and frequency conditions. This practice has been accepted
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for one or more of the following reasons[6]

(a) For studies of the fifst transient swing of a small system
characterized by a generating plant feeding radially into a load area, the
load representation is not very critical.

| (b) The constant impedance elements lend themselves to simple
models. In this case loads may be included in the admittance matrix of
the system. Until the advent of large scale digital computers, it has
been impractical to make any other assumption for load response.

(c) Data on the . response of system load to disturbances has
been generally unavailable in the literature and it is almost impossible
to obtain such data on the system.

(d) It is possible to achieve a completely closed form[7]
simulation algorithm by making the assumption that all loads have a
constant impedance current-voltage-frequency characteristic which saves
computational time and effort.

From the above considerations, the simplest type of load
representation, constant impedance, is used throughout the study. The

load is described by the complex matrix equation

[v1 = [Z][1] (2.14)

Or by its inverse

[11 = LYI[v] (2.15)

Each of these equations can be expanded to a set of the form
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2.4 Single machine infinite bus system

In stability studies, the interval of time of interest is relatively
small compared to the time constants of the governor and the prime mover.
While governor and prime mover responses are important, they are
ineffective in the early part of the machine swing and will, if considered,
contribute to stability. For simplicity, the torque variations due to

governor control are neglected. The amortisseur windings are known to aid
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stability, so these are also not considered. The system studied is

shown in figure 2.2.

Ors— .

X

Fig. 2.2 System configuration for single machine case.

For this case o, in equation (2.8) is zero. Combining the terminal
constraint with the machine flux linkage equations and replacing Efd by
u(t), the following set of ordinary nonlinear differential equations is

obtained. (Details are given in Section A2-1 of appendix A2).

X = £(X) +du(t) (2.17)

where

%= Liggs igs igs n, 617 (2.18)

d is a vector of constant elements.

The voltage regulator equation is

K
pu(t) = = e, - Lou(t) -
r

r

K

Tr

us(t) + (E0 - Kr etr)/rr (2.19)

The linearized state equations for the machine given in section A2-2 of

appendix A2 are
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The torque equations, in particular, are
(Tmn)m N (Tin)m - (xafd 1.1"d 1-q)m ¥ (xd - xq)m (id 1'q)m (2.23)
S = My (2.24)

where m=1, 2

Equation (2.22) is similar to equation (A2-1.13) except that a5 is a
function of the variable bus voltage v and arguments of sine and cosine
terms change from § to 6+ev. The bus bar voltage is obtained by the

relation

v=1Zi, (2.25)

where 12 is the load current.
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AX = C aX + d au(t) (2.20)

The corresponding linearized regulator equation is

5 K
. _ .
au(t) j§1 C6j X5 * Cg6 au(t) » us(t) (2.211,

2.5 Two machine system

The following system configuration is considered

Oxim | —0)

MACHINE I . MACHINE O

LOAD

=

Fig. 2.3 System configuration for two machine case.

As in the case of the single machine, the governor action and amortisseur
windings are neglected. The following set of differential equations is
obtained

Xy= £(X0s )+ dpup(t) (2.22)
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APPENDIX A2-1

The differential equations for the single machine infinite bus
case are developed in this section. For this case ev in equation (2.8)
is zero. It is assumed that there is only one winding on the rotor - the
field winding.

Substituting the terminal constraints equations (2.7) and (2.8)

in equation (2.1) and rewriting equation (2.3) gives (neglect saturation)

w r
o fd .
Py = oy = rg, i (A2-1.1)
fd fd Xafd o fd fd
= [fg_ j,+Ri, -2 x i + vsins]
Phyg = ¥ wy Plg ¥ Relg w, €4q
+ o Riy+ wpy (A2-1.2)
Xe . . w .
pwq = wo[B;'pIq + Re’q + Z;'Xe]d + vcosé]
+ uy R iq - why (A2-1.3)

Substituting the flux linkage relations (2.2) and (2.4) in the above

three equations, the following simultaneous equations are obtained

r ] . [ . ®o fd
Xefd Xaeg O Pigg wo'ed ed * Era X oo
afd
Xafd -(xd+xe) 0 Pig = mo(Re'+R)'id + wo(Re+R)1'q
. - b pe.
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~ -
0
-wX_ 1_ + w_vsing
9 q 0
+ (A2-1.4)
Lwo(Re+R)iq + movcosi

which in turn gives the following nonlinear differential equations

where

Pleg

Pid =

Plg ©

req(x +x )i X_ea(R_+R) X_eq(x +x )
fd*"d "e’ fd  “afd‘’e i - afd*"q "e (1+n)i

q
Ad Ad Ad
Xabd V. req(Xgtxe)

+ __Z;—_ sins -~ '_"Z;'—_—'Efd (A2-1.5)
reg Xafa ;. XerdRetR) L XeralxgtXe)
—_— +t — - (1+n)i

A fd A d A q
d d d

X v r .

ffd . fd

+ y sin§ - X;— Ecq (A2-1.6)

X (x +x_) (R_+R)
afd . d e . e . v
= === (1+n)i - — (1+n)i, - i - -— cosé
Aq fd Aq d Aq q Aq
(Az-] 07)
2
L. Kafd ™ Xera(Xate)
d Wy
X _+X
A =-3-E
q ™

Substituting pid and piq in equation (2.7) gives



%o Ted Xafd . ["e Xegd (Rg*R)
=gy t|

+ R ] i
e d
0y A4 wy B4

€4

X Xeeq(X +X_) X r
e 7ffd*"q "e + x (1+n)i_ - e fd E
e q w. A fd
Wy Ad o'd

X X Vv
+{V+_f_f_d__e_

sing
Wy 84 ]

X, X X (x +x)
eg = =2 (1n)igy + [xe -ed e ](Hn)’id
W Aq Wo Aq

Xx_(R_+R) XV
e - == v - 5 ] cos
w, A q “o q

0 °q

The torque and voltage regulator equations can be written as

pn = %‘— - finﬂ Tgq 1 ¥ (Xd;: ! 1diq
Ps = wyn
PEgq = éﬁ & - %_'Efd * (Eo'Kr etr)/%r - éﬁ'us(t)
r r r
where e% = eg + eg
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(A2-1.8)

(A2-1.9)

(A2-1.10)

(A2-1.11)

(A2-1.12)

(A2-1.12a)

Equations (A2-1.5) to (A2-1.7) and (A2-1.10), (A2-1.11) can be grouped as



Pigg
P'id
p1q

pn

L ps

apy Tgq T iy * a]3(]+n)iq + ap5sing
a1 ifd + a,, id + a23(1+n)1'q + azssina

a3](1+n)ifd + a32(]+n)id + a33i + a35C088

q

a1 ifd iq ta,, id iq + K

o

fd

g |

26

(A2-1.13)
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APPENDIX A2-2

For small perturbations, the system equations can be linearized
about an operating point. In such cases, the change in speed deviation
is negligibly small, so that w/w0 = 1. To include the voltage regulator
action in the general linearized model, it is necessary to obtain an
expression for perturbation of terminal voltage in terms of the states
chosen.

From equation (A2-1.12a)

e e '
re, =32 e, + 9% e (R2-2.1)
t o d €0 q
The voltage regulator equation in the linearized form is
Kr 1 Kr
pAEfd = pa Aet - AEfd T Us(t) (A2-2.2)
r r r

Substituting the linearized forms of he, and Aeq in (A2-2.1) one gets
PAEgy = Cgy Algq + Cgp Mg + Cgz Al + Cgg A8 + Cgg AEgy

- ?- us(t) (A2-2.3)
r

where

_ Kr €40 "fd Xafd Xe Kr €0 Ye *afd

%1~ 7. ey
Ty €to Yo d Tr o Yoq

-
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Sty ete) ot | sl

c = ——
62 T €0 woAd Ty €44 woAq
oo _K_Lidi [x . Xq xffd(xq+xe):|+ K_r‘_egg[R ) xe(Re+R)]
63 T €0 e moAd T e L © woAq
K e XV e X X v
65 = ~ —LESQ' s1n60|: B BEA_'}' gr_e_dg_ cosso[v * e_w%g__]
r to 0q r to od
L T ¢ B
66 T €40 wohy T
(A2-2.4)
The linearized voltage current torque relations are written as
PAT ] ei1 S22 S3 0 G5 [Agg| |9
paiy €1 C2 3 0 S5 |2y dy
pAiq = €31 C32 33 0 C3g Aiq +10 Efd
pn €41 C42  Ca3 0 O ] 0
AS 0 0 0 w. O AS 0
"p - L 0 - o - J
(A2-2.5)
where cij = aij; i=1,2,3

=1,2, 3

Cade
!



1-1"do + a2 1'do
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(A2-2.6)



CHAPTER 3
CLOSED LOOP QUASI-OPTIMAL EXCITATION CONTROL FOR A SINGLE MACHINE

3.1 Introduction

The disturbances appearing on a power system are, in general,
not known in advance. To the best knowledge of the author, the
available methods of optimization involve iteration even for a known
disturbance; This is costly in terms 6f computing time. The time
involved in finding the optimal control by digital computers, after a
fault appears on a system, may be so long that the system becomes unstable
before a control strategy is determined. A suitable control must overcome
or avoid this. Secondly, a predetermined strategy (found by iterative
schemes) will not be optimal for other than the design disturbance. A
closed Toop control in which the excitation depends on actual conditions
and requires a minimum of computation in its implementation is desirable.
This chapter discusses such a control.

The stability problem for a single machine infinite bus system
is formulated in Section 2. A quasi-optimal state feedback excitation
control for the linearized system is suggested in Section 3. Section 4
investigates the closeness of the quasi-optimal solution to the optimal
one. In Section 5, the method is extended to the nonlinear machine model.
For implementing the quasi-optimal closed loop control on real systems,
a practical compromise is suggested in Section 6. The properties of a
functional which depends on the states of the system is discussed in

Section 7. The results obtained for the single machine infinite bus system
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are discussed in Section 8.

3.2 Statement of the problem

| Eixchl'{)ER N SYNCHRONOUS
MACHINE
REGULATOR uitr)

Fig. 3.1 System block diagram

Assuming that the éynchronous machine is equipped with a static
excitation system, the regulator time constant is very small with respect
to the machine tiﬁe constants and initially T, (equation 2.19) is taken
as zero. Then the voltage regulator equation becomes a static equation.
The exciter in such a case can be driven to the ceilings almost instant-
aneously. The dynamic equations for a single machine case, as given in the

previous chapter, are

X(t) = £(X) + d u(t) (3.1)

The magnitude of the field voltage is bounded by the exciter ceiling so
that the normalized scalar control u(t) is constrained in magnitude by
the relation |u(t)|< 1. It is assumed that u(t) is a piecewise continuous

function of time.
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The system under consideration returns to the stable equil-
ibrium point (see the definition given in Chapter 1).if both velocity
and acceleration (n, n) of the machine decreases to zero following a
disturbance while the final rotor angle remains constrained in the range
from 0 - w/2 radians. |

The optimization problem can be stated as: Find the admissible
control u(t) which transfers system (3.1) from the set of given initial

states X(0) to the desired final states

(o) Page)d = O

n(tf)[x4(tf)] = 0 (3.2)
0 < G(tf)[woxs(tf)] < m/2

So that the cost functional

J =ff dt (3.3)

is minimized, since it is desired that the transients are eliminated in

the least possible time.

3.3 The linearized system

The linear system is valid for only small disturbances. For
such cases, the rotor angle does not traverse far beyond the operating
point. It is likely that the rotor angle will always remain between 0 and
n/2 radians. For stable operation following a disturbance, it is desired

that the machine velocity and acceleration should drop to zero in the
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smallest possible time. Rewriting the linearized machine equations
from equation (2.20) (disregarding the regulator time constant) leads
to

AX = C aAX + d u(t) (3.4)

and the swing equations become

Aé = wyh (3.5)
n=cy Aifd *.Cy Aid + Cy3 Aiq (3.6)
Step 1
Differentiate equation (3.6) with respect to time to get
i = Ccpypaicy + cpp PATY + €43 pAiq (3.7)

Substitute the equations for pAifd, pAid and pAiq from equation (3.4) into
(3.7) to obtain

n = (Cqy cqp * Cgp Cpy * €3 C39)aigy + (cpq cqp *
Caz Cp2 * C43 C3p)lig + (cgy Gz * Cyp Cp3 * €43 Cyzdaiy
+ (cqy €15+ Cgp Cop * Cy3 Cag)a8 + (Cpydy + cppdy)u(t)

(3.8)

or n= L(aicys 2y, Aiq, A8) + b u(t) (3.9)
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Since Aifd’ Aid, Aiq and As are functions of time, the above equation can

be written as
n=L(t) +b u(t) (3.10)
where  L(£) = (egy ©pq *+ Cgp Gy * Cy3 Cay)big * (cgy €1p ¥ Gy S
Cq3 C3p)0ig + (cgy 3 # 542 Cp3 * Cq3 C33)aig
+ (cgq cq5 * Cqp Co5 + C43 C35)9

(3.11)
b = ¢4 d1 * ¢ 9y

Equation (3.10) can be represented by the block diagram in figure 3.2.

Jur)

l_.
> Y

Fig. 3.2 Double integral plant with disturbance L(t).

This is a so called double integral plant where the input to the plant is
modified by an additive term L(t), the value of which is generally

unknown. (Properties of L(t) are given in Section (3.7)). The system
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(3.10) is called controllablel!d only if

IL(t)| < |b u(t)] (3.12)
or |L(t)/b] <1 (3.13)
For small disturbances, the quantity L(t) is small enough. It is assumed

that L(t) is at least piecewise continuous.

Step 2

L(1)

-
o
=
Ky
v
-
w
-

Fig. 3.3 A portion of L(t) and control u(t)
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L(t) depends on the states of the system (3.4) and its initial value is
known. Suppose at t = to’ L(t) is Lo‘ The optimal control problem can
be reformulated as follows:

Given the system

n= uo(t), Uomin < uo(t) < Uomax (3.14)

where uo(t) =L+ b u(t) (3.15)

Find the admissible control that forces the system (3.14) from any initial
state {"(o)’ ﬁ(o)} to the origin in shortest possible time.

The analysis, using Pontryagin's minimum principle (P.M.P) for
time optimal control of the system (3.14) is given in several references[2]
and is briéfly outlined here for completeness only.

For convenience, assume STEH then system (3.10) can be rewritten

as

i] = X, (3.16)

Rz uo(t)

[These x's may not have any relation with X in equation (3.4)].

The Hamiltonian for (3.16) is given by
H=1+ xz(t) p](t) + uO(t) pz(t) (3.17)

If x*(t), p*(t) and u:(t) correspond to the optimal state, costate and

control respectively, then by the minimum principle

1+ xy(t) py(£) + uS(t) pp(t) < 1+ xy(t) py(t) + u(t) py(t) (3.18)
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holds for all admissible qo(t) and for te;[to, tf]. Equation (3.18)

gives
Yomax? if Pz(t) <0

*
u,(t) = .
Uomins 1T Pp(t) > 0

The costate variables satisfy the relation

AORES = G

Let ™ and L) be the initial values of the costates, then

p](t) =m = constant

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

Note that pz(t) is a straight 1ine in the Py - t plane and can intersect

the time axis once only. So from relation (3.19), the optimal control

is piecewise constant and can switch at most once. Assume uo(t) =a

(which is either Uomax ©" Yomin

) and let xi(o) = £y and xz(o) = &.

Equation (3.16) can be solved with these initial conditions for constant

control to obtain the relations
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x'(t)=g +£;t+lat2 (3.25)
1 1 2 2 :

Next, eliminate t to find

_ 12 1 .2
X1 =8y tog X -0 6 (3.26)
where | t = (x2 - gz)/a (3.26a)

Equation (3.26) is the equation of the trajectory in the Xy - xé plane
originating at (g],gz) as affected by the action of the control a. The
switch curve is the locus of all points (x],xz) which can be forced tb

zero by the control u_ = o and is given by

0
%
Y° = {fxl’xz) P Xy oL ThTSanti] C ° (3.27)
o xg ,
If 1= - [T, - Tb[Sgnix,1] (3.28)

then the control law can be given as

* Yomin if [°>0
uo(t) = (3.29)

Uomax ifJ°<0

: o * 3
in for Xy > 0, otherwise uo(t) is u But

* -
If }° = 0, then uo(t) is u omax"

om
for a physical system, the trajectory does not continue along the curve



39

}° = 0 for a finite interval of tinel2],

Step 3

Given the system of equations (3.16), for any set of initial
states (g],gz) the optimal control u:(t) is obtained by control law
(3.29). The value of the optimal control u*(t) is decided by the relation

(3.15). If b is positive, implies u = 1 and if b is negative

uomax

Uomax implies u = -1 and vice versa.

The term L(t) depends on Mgy Ay, Aiq and A§ (and derivative
of the disturbance function, if there is a sustained disturbance). The
initial value of L(t) is calculated depending on the initial values of
currents and rotor angle. The optimal control is then obtained for the
constant value L . This control u(t) (* for the optimal values are
dropped for the rest of the analysis) is then used to solve the system

of equations (3.4) for a small time step.

Step 4

At the end of the first interval, at t = t (fig. 3.3), suppose
that the states in the Xp = Xy plane are 54 and the corresponding values
of other states are {Aifd(]), Aid(])’ Aiq(]) and AG(])}. Using these
new values of currents and angle recalculate L(t). Suppose L(t) = L
at t = ty. If Ly = Lo, the control law (3.29) still holds good and
the process is continued. However, if L1 # LO’ then the second problem
is:

Given the system of equations



Fig. 3.4 Moving switch curves in phase plane.
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3
1

= L] + bu(t)
(3.30)

u, (t), < up(t) cu

Umin Tmax
Find the admissible control that forces the system (3.30) from the given
initial states 54 to the origin in minimum possible time. Proceeding

as before, the switch curve is given by

1 xg
LR EOURRS Tl /v 1 eow s Bl (3.31)

and the switching function and control scheme is similar to (3.28) and

(3.29) respectively with L, replaced by L. Similarly at t=tp, the switch

curve for L(t) = Lp is given by

2
X2

p_ . - =
vooE lxyxp) g 2L, = [bTSgnixyr] ~ O (3.32)

Figure 3.4 shows the set of moving switch curves in the phase plane.

3.4 Optimality of the control

It can be seen that for finding the control u(t), the quantity
L(t) has been approximated by a staircase function. Since L(t) is being
approximated, it would appear the control scheme (3.29) would give rise
to a sub-optimal solution. In fact, if equation (3.10) was solved by
applying this control scheme, only a sub-optimal solution would be found,
the nearness to optimality being decided by the size of the step.

However, a close look would reveal that equation (3.10) is just a
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dummy equation which is needed to find the optimal control. The
information obtained from (3.10) is deciding the control at the sample
points {t], tz, ....ts, «+..} Which in turn is being fed to the system
(3.4). It will be shown that irrespective of the variation of L(t) in
the range te:[to, ts-T]’ the control u is +1 (figure 3.3).

Observe that at t = to’ the control is +1 in figure 3.3 and it
is optimal since by proposition L(t) does not change instantaneously.
Again at t = t], the control is +1;by the control law (3.29) at that
instant also the control is optimal. Since right hand side of equation
(3.1) is linear in the control u, the time optimal control for system
(3.4) is bang bang i.e., either it is +1 or -1. The only other
possibility in this particular case is that the control switches from +1
to -1 and then switches back to +1 in the interval {to,t]}. This means
that the control switches twice in the first time step. But this interval
can be chosen small enough so that the control really cannot have two
intermediate switches. Moreover, the number of switchings for system (3.4)
is finite. It is improbable that the control will switch twice in each
subinterval. It can be seen in the figure that in the intervals {tyst11s
{tystyl, """{ts—Z’ts-1}’ irrespective of the variation of L(t) the
control is +1 i.e., in this interval, the staircase approximation of L(t)
does not affect the optimal scheme.

However, the control switches at t = tg and this switching is
determined by a constant value Ls' But since L(t) does not remain constant
in {ts-l’ts}’ the correct switching can be anywhere in this interval.

The error in switching will be negligible since the subintervals can be

made very small as allowed by numerical integration procedures with
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sufficient accuracy.

The control obtained by the above scheme is optimal over each
subinterval, except possibly in the neighbourhood of the switch points.
As the solution is time optimal in each subinterval, it is optimal over
the whole interva1[3]. (A similar work done by Oldenburger[4] is given

in Section A3-1 of appendix A3).

3.5 The nonlinear model

For large disturbances, the linearized machine model gives a poor
approximation. In such cases, the rotor angle might swing past 90 degrees
and there is a possibility that the machine will settle momentarily at
the unstable equilibrium point. For stable operation of the machine, the
velocity and acceleration of the machine should drop to zero fo]]owin§
a disturbance while the final rotor angle should be constrained between
0 and /2 radians. A

In finding the control function, it is recognized that n is very
small. So the terms where n (speed deviation) is coupled to other system
states are neglected. (This is not necessary but simplifies the algorithm).

Differentiating the nonlinear swing equation (A2-1.13) yields

ps(‘s/‘*’o) = (ag Tgq + gy TgdPig +ag iy pigy
+ ay, iq pid (3.33)

Substituting the nonlinear voltage current relations from equation (A2-1.13)
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in equation (3.33) gives
3 _ 2 .2 2
Po(8/uy) = agy agy Tgg" + 3yy Az 147+ (agy ag3 + 3y a3)ig

t(ag) agy + 3y agyligy 1y + (agy ayq + a5 ay) + 3y 335)
Tra Tq * (3g7 212 % 345 335 * 3y5 333) 1 i

+ (ag) Tgq * 3gp 1g) 235 €088 + (agy 275 + 3y, ag) iy sins

+ (a4] d] tay, d2)1'q Efd (3.34)
Equation (3.34) can be written as
p3(s/u;) = L(t) + b(t) u(t) (3.35)

where  L(t) = ay a3y igy” + agp agp 147 + (a7 313 + 3y 3y5)i 7
* (ag) agp + 3yp a39)igq 1g *+ (349 2y *+ 245 3y + 2y 233)
Teg 1q ¥ (347 312+ 355 355 + 3y5 333)14 1
* (agy Tgg + agp Tg) 235088 + (3 ag5+ 25 a55) i sing

(3.36)
b(t) = (a41 dy + a,, dz)iq
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Assume that L(t) and b(t) are constant at their initial values L, and

b, respectively and Tet x; = &/w,, then (3.35) can be written as

0’
Xy = X,
*2 = Xg (3.37)
X3 = uo(t)
where uo(t) =L, + bo u(t)
(3.38)
and Yomin < uo(t) < Yomax

The optimization problem is to find the admissible control that

forces the system (3.37) from any set of initial states {g](x](o)),
gz(xz(o)), E3(X3(0))} to

0 < X](tf) < ﬂ/2wo
XZ(tf) =0 (3.39)
X =0
3(t,)

in the shortest possible time.

As in the case for the second order system (3.16), the Hamiltonian
can beconstructed and it can be shown that the H-minimal control is piecewise
constant and can switch, at most, twice. The system of equations (3.37)

can be solved for constant uo(t) = o to give

X3 = at + 53 (3.40)



x:gﬁ +€t+
2" 72 3t &
2
3 g,t
_ at 3
X9 =t R
from (3.40) t = (xg - E3)/a
Substituting for t in (3.41) one gets
X 2 £ 2
Xo = &5 F 3 .3
2 2 2o 2a

.1 3 %23 1,3, %%
x'l -—-2-&3 ) +€]-_—2—x3 + o
3o 3a
Or
1 .3 XX3 _ 1 3 583
ﬁ*ﬁ%’a'ﬁ+ﬁ%'a
o o

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.47)

(3.48)
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Expression (3.48) is the equation of a surface in the X1=Xp=X3 plane for

any initial state (g],gz,g3). The equation of the trajectory passing
through Xy = w/2wo, Xy = 0 and Xy = 0 is given by



X] -3, " - =5 X3 (3.49)

which is one of the switching surfaces in the X=XoX3 plane.

The other surface which passes through the origin is given by

X, X
_ 273 1 3
17 T3 2 X3 (3.50)
(¢ 3
2
X3
where a = L0 + b0 Sgn{x2 - ZILO T boSgn{x3}]}; b0 <0 (3.51)

In the region between these two surfaces, the control is decided by the

states Xy=X3 and the switching curve is given by

2
X3 .
Xz - ZILO + bOSgn{x3}] =03 b0 <0 (3.52)

The following steps are involved in finding the control

1. Determine Xy and X3.

x32
X, = 3
2 2[LO + bOSgn{x3}]

2. Determine } b, < 0 (3.53)

3. If}>0,a=u otherwise a = u

omin omax’

4. If ¥ =0 and X3 > 0, a=u otherwise a = u

omin omax”
XX
. 2”3 1 3
5. Determine § = Xq - 50— - + X (3.54)
e\ -z~ w32
XX
Tp =% - 23+ L x> (3.55)

6. If) <0and}] >0
17 A

47
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X32
u(t) = Sgn [%2 AT bOSgn{x3}]] b bg< 0 (3.56)

7. If ¥ >0, u(t)=1 ;b <0
1 0

(3.57)

If 22 <0, u(t) = -1 bo <0

The system does not continue along the‘switching surfaces for a finite
interval of time due to system imperfections[4]. The process outlined

above is continued until the desired final states are reached.

3.6 Proportional Control

So far it has been considered that the regulator time cbnstant T
is zero, so that the exciter can be driven to-the ceiling voltages
instantaneously. This means that for small deviations of velocity and
acceleration, the exciter will still be repeatedly driven to the limfts.
This causes unnecessary wear and tear to the equipment and is equivalent
to 'firing a cannon to kill a bug'. It deteriorates the machine internal
voltage and worsens the terminal voltage of the machine. Moreover, the
reproduction of complicated control functionsby physical equipment in
industry is generally costly and practical compromises must be made[4].
To allow normal voltage regulator action, a small deadzone has to be
provided so that when the oscillations are small enough, the voltage

regulator takes over. It is usually not convenient in practice to use

u(t) = Sgn J (3.58)

-as the control equation but to employ the proportion relationship
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u = KJ (3.59)

where k is as large as possible. For k = «, equation (3.59) reduces to
(3.58). An optimum value of k has to be found by measurement or computer
simulation. Too high a gain throws the system into a steady hunting.
Equation (3.59) gives approximate bang bang control for large disturbances.
When the oscillations gradually die out, normal voltage regulator action
takes over.

For small disturbances the acceleration term in ] is negligible

compared to the velocity term, so that proportional control gives

u(t)

()
kn (3.60)

1]

which is the velocity signal as used at present. -For large disturbances
a combination of velocity and acceleration terms is determined by L(t),
i.e., by the various currents and the rotor angle. References [5,6,7,8]
bear this out. The proportional control is not quasi-optimal and, in

general, quasi-optimal or optimal control may not be implementable.

3.7 Some comments on L(t)

Rewriting equation (3.9)

i = L(Aifd,Aid,Aiq,Aa) + b u(t) © (3.61)

The arguments of L are functions of time, so without loss of generality
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equation (3.61) may be expressed as

n=L(t) +bu(t), |u(t)] <1 - (3.62)

The block diagram for system (3.62) is given in figure 3.2.

The concept of controllability, as given in reference [2] is that
a system is controllable if it is possible to drive any state of the
system to the origin in finite time. Here controllability means complete

controllability (global controllability). For example, the system
n=u(t), Ju(t)] <1 (3.63)

is completely controllable. But if the upper and Tower bounds of the
control u(t) is such that 0 < u(t) < 1, then system (3.63) is not completely
controllable since there are some states in the state space which can never
be brought to the origin with the application of this control. It is
obvious that the system (3.62) is controllable only if[4]

IL(t)/b] < 1 (3.64)

The term L(t) could be considered an additive disturbance term to
the input of system (3.63) which is governed by a set of differential
equations. It can be seen that L(t) does not contain any output or
derivative of the output feedback term and also L(t) can have any value
satisfying constraint (3.64).

For the nonlinear system (3.35) L(t) contains feedback terms such as
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§ and n. Moreover, for large disturbances, it may not satisfy the
constraint (3.64) for a]]i;e[to,tf]. In such cases, the solution
obtained with the control scheme is not optimal.

To summarize, L(t) should have the following properties, so that
the solution will be closest to optimal. |

1. It should be continuous in the time interval, at least it
should not have any jump discontinuities.

2. It should satisfy the relation
|[L(t)/b] < Ju(t)| for all te[to,tf] (3.65)

3. Output feedback terms should not dominate L(t) and L(t)
should not have any other constraint except (3.65).
A sub-optimal solution is obtained if
1. L(t) contains output or derivatives of output feedback
which are dominant.
2. The uncontrollable region is followed by a long controllable

section[4].

An example, showing that a sub-optimal solution is obtained when

L(t) contains output terms, is given in Section A3-2 of appendix A3.

3.8 Discussion of results

A power system comprised of synchronous generators and transmission
network, whose parameters are given in section A3-3 of appendix A3, was
simulated on a digital computer. Damper windings and saturation of the
machine and governor action are not considered. The system configuration

is given in figure 2.2,
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2) The linearized model - 10% torque step.

For small disturbances, the nonlinear differential equations of
the system can be linearized about an operating point. A 10% input
torque step is considered for such a system.

Figure 3.5 shows the effect of exciter ceiling on the response
of the system. With the bang bang control the time for stabilization and
the angular deviation increases, as the exciter ceiling is decreased;

that is, the effectiveness of the control decreases.

u=-1
L .
66.4 L v=+l 4_;»‘ I-n——-NORMAL FIELD
1

64.8 |-
©
(-]
K3
w 63.2 |-
- |
A
< 2

61.6 |-

L i | 1 N
0
60 0 0.16 0.32 0.48 0.64 0.80
TIME (sec)

Fig. 3.5 Rotor angle time characteristics for 10% torque step
(Bang bang control).

1. Ceiling voltage 3 p.u.
2. Ceiling voltage 5 p.u.
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The optimal bang bang control results in a deadbeat response.
While the use of proportional control provides a well damped stabilization,
it is not optimal and takes more time to stabilize. Voltage regulator action

alone leads to dynamic instability. These are shown in figures 3.6, 3.7

and 3.8.
100

= 3
[\
o /\//\
W /\ —
9 4 V U '\
<

I L J
| 2 3
TIME (sec.)

o

o

Fig. 3.6 Angle time characteristics for 10% torque step.
1. Optimal control.
2. Proportional control.

3. Voltage regulator alone.
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ACCELERATION
(p.v.)

‘ —
| 0.002

VELOCITY
(p.u.)

-0.001

-0.02 ==

Fig. 3.7 Velocity vs acceleration plot corresponding to Fig. 3.6.
1. Optimal control.

2. Proportional control.



driven too hard but effective stabilization is obtained.
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Increasing the

regulator gain implies a shift of the roots of the Tinearized system to

the right hand side of the complex frequency plane.

assumes that the regulator gain is infinite.

The bang bang control

Case Reg.Gain Control Signal Ceiling Stability Time to

Final rotor

Voltage stabilize angle
(p.u.g (sec)
1 -4.5  Proportional +5 Stable - 68°
2 -4.5 Voltage +5 Unstable - -
Regulator
only
3 -10 Prop 5 Stable - 68°
4 -10 V.R. +5 Unstable - -
5 -100 Prop +5 Stable - 68°
6 -100  V.R. 5 Unstable - -
7 -1000 Prop +5 Stable - 68°
8 -1000 V.R. +b Unstable - -
9 - Bang bang +5 Stable J8 62.1°
10 - Bang bang +3 Stable 35 65.7°
Table 3.1 10% Torque Step, linearized system.

22) Nonlinear model - 30% torque step.

This is a relatively large disturbance and the system has to be

-~
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0.0016 }-
3
Q.
~ 0.0008 -
>
(18]
(&)
(]
[17]
a ! )
0
“ 50 80 90
ANGLE (deg)
-0.0008 L_

Fig. 3.8 Angle vs velocity plot corresponding to Fig. 3.6.
' 1. Optimal control.

2. Proportional control.

One factor of interest in stability studies is the gain of the
voltage regulator. The regulator gain was varied from -4.5 to -1000
with the results shown in Table 3.1. It is found that a gain of -1000
drives the exciter almost in bang bang fashion even for a small disturbance.
With the proportiona] control, a higher gain regulator takes less time to

stabilize. A gain of -100 appears to be optimal in that the exciter is not
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represented by non-linear equations. The term L(t)/b(t) exceeds, in
magnitude, the control u(t) for a very small period of time. According
to the definition of controllability introduced in section 3.7, the system

is uncontroljable for that period of time.

ANGLE ( deg.)

0 ! L !
0 ! 2 3

TIME (sec.)

Fig. 3.9 Angle time characteristics for 30% torque step.
1. Bang bang control.

2. Proportional control.
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0.004 I~
3 1
o
: . D .
o 60 68 7 76 84 102
Y . ANGLE (deg)
a.
(7e]
‘ 2
-0.004 |-
Fig. 3.11 Angle vs velocity plot corresponding to Fig. 3.9.
1. Bang bang control.
2. Proportional control.
12 - !
3
L2 2 N
w
O 09}
<
—
o |
O
>
I
Z 0.6 |-
=
[+ 4
w
[
0.3 | | | 1
0 0.16 0.32 0.48 0.64
TIME (sec)
Fig. 3.12 Terminal voltage characteristics for 30% torque step.

1. Bang bang control.
2. Proportional control.
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The bang bang control obtained by the closed loop scheme is sub-
optimal. This results in an overshoot in the angle time characteristics
(fig. 3.9). The time required for stabilization is fairly small. The
proportional control leads to a heavily damped oscillatory response. The
corresponding phase plane plots are shown in figures 3.10 and 3.11. Figure
3.12 shows the variation of terminal voltage with time for the bang bang
“as well as proportional control. Proportional control is better in this

regard.
i22) Nonlinear model - 100% torque pulse for 3 cycles. -

This is a severe disturbance. The term L(t)/b(t) remains very
large with respect to u(t) for a considerable period of time. The system
initially is uncontrollable. However, this uncontrollable section of L(t)
is followed by a long controllable section, giving a sub-optimal solution.
The angle time characteristics (fig. 3.13) show a large overshoot followed
by an undershoot. Proportional control produces a highly damped response
with a longer settling time. The two curves are nearer to each other than
in the 30% torque step case. In figure 3.13 it is observed that the
proportional control gives a lower first peak than the bang bang control.
The bang bang control causes a large initial slope in the states and when
the disturbance ceases after 3 cycles, leads to a large peak in angle due
to inertia. On the other hand, the proportional control is slower and
by the time it becomes effective, the disturbance is not in effect,
requiring less effort and consequently the first peak is lower. The phase

plane plots are shown in figures 3.14 and 3.15. If in this case, the torque



ANGLE (deg.)
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pulse were 150% for 3 cycles, the system would be uncontrollable for the

particular ceiling voltage.

90

80

N
o

o
o

-]

1 |
0 0.5 1.0 1.5 2.0

TIME (sec.)

Fig. 3.13 Angle time characteristics for 100% torque pulse.
1. Bang bang control.

2. Proportional control.

2.5
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"%/ELOC!TY
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Fig. 3.14 Velocity vs acceleration plot corresponding to Fig. 3.13.
1. Bang bang control.

2. Proportional control.
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0.008

0.004

SPEED DEV. (p..)
o

-0.004

-0.008 *~

Fig. 3.15 Angle vs speed deviation plot corresponding to Fig. 3.13.
1. Bang bang control

2. Proportional control.
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Fig. 3.17 Field voltage variation for 100% torque pulse.
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Fig. 3.16 Terminal voitage characteristics for 100% torque pulse.
1. Bang bang control.

2. Proportional control.
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A factor of interest is the terminal voltage of the machine (fig. 3.16).
As would be expected, the bahg bang control deteriorates the voltage
regulation, since the voltage regulator action is completely overridden by
the bang bang control. This is offset to some extent by faster elimination
of the transients. Figure 3.17 shows multiple switching in the field
voltage. This is partly due to sudden variations in L(t) and b(t) and
partly because of quasilinearization of these qualities. This is dealt
with in more detail in the next chapter.

Apart from 30% torque step and 100% torque puise, several other
cases have been considered. These are summarized in Table 3.2. With the

voltage regulator alone, all cases are unstable.

Case Mode of Control Time to Final rotor
disturbance Signal Stability stabilize angle
(sec)
1 20% torque step Bang bang Stable .355 sec 70°
2 20% torque step Proportional Stable - 74°
3 30% torque step Bang bang Stable .48 84°
4 30% torque step Proportional Stable - 82°
5 50% pulse for Bang bang Stable .668 59.5°
3 cycles
6 50% pulse for Proportional Stable - 60°
3 cycles
7 100% pulse for Bang bang Stable .988 59.5°
3 cycles .
8 100% pulse for Prcportional Stable - 60°
3 cycles

Table 3.2 Nonlinear system, torque step and pulses

(Kr = - 100, celing = 5 p.u.)
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iv) Nonlinear model - Three phase fault at intermediate bus; cleared in

3 cycles by opening a line.

The bang bang control gives one overshoot and a small undershoot
(fig. 3.18). While the fault is on and a small period afterwards, the
system is uncontrollable. If the final rotor angle is considered free,
the system attempts to stabilize at the unstable equilibrium point and
then slowly creeps further out of phase. The constraint on the final
rotor angle prevents this. With the proportioﬁa1 control, the system has
a heavily damped stable response and on the voltage regulator control alone,
is unstable (first swing). The phase plane plot (Fig. 3.19) shows that
the uncontrollable period continues until the maximum velocity is reached
and the loops produced are apparently due to harmonic torques. Figures
3.20 through 3.25 show the plots of velocity vs angle phase plane, field
and terminal voltage characteristics, field and different armature currents.
Figure 3.26 shows the angle time characteristics for a ceiling voltage
of + 4.3 p.u. A ceiling voltage lower than this causes instability for
the particular disturbance.

The three phase short circuit is also considered for a relatively
lightly loaded condition. This and the summary of the case considered is

given in Table 3.3.
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Fig. 3.18 Angle time characteristics for 3 phase fault.

1. Bang bang control.
2. Proportional control.

3. Voltage regulator only.
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Fig. 3.19 Velocity vs acceleration plot corresponding to Fig. 3.18

for bang bang control only.



SPEED DEV. (p.u.)

0.008 —

0.004 |-

30

-0.004 |-

-0.008 -

Fig. 3.20

120 150
ANGLE (deg)

Angle vs velocity plot corresponding to Fig. 3.18.
1. Bang bang controi.

2. Proportional control.
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Fig. 3.21 Field voltage characteristics, proportional control.
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Fig. 3.22 Field current time characteristics, proportional

control.
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Fig. 3.23 Direct axis armature current - time characteristics,
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Fig. 3.24 Quadrature axis armature current - time characteristics

proportional control.



TERMINAL VOLTAGE

1.40

1.0S

0.70

0.35

74

LA 1A S S

T T T

{ | | | |
0 0.8 1.6 .24 3.2 4.0

TIME (sec)

Fig. 3.25 Terminal voltage variation with time, proportional

control.
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Operating Case Control Ceiling Stability Time to Final rotor
point signal : stabilize angle
(sec)

8o = 60° 1 Bang bang =7 Stable 1.011 72°
o

Pout = 929 2 Bang bang 4.3 Stable 2.04 82
3 Proportion %5 Stable - 85°

-al '

4 Voltage regul- :
ator only =5 Unstable - -

s = 50° 5 Bang bang

I+
(3]

Stable .694 83°

I+
o

Pout = 73% 6 Proportion Stable - 68°

-al

Table 3.3 Three phase short circuit cleared in 3 cycles

by opening a line
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APPENDIX A3-1
Oldenburger[4] considered a system

X = u(t) - L(¢) (A3-1.1)

78

where L(t) is an arbitrary disturbance term and the control is constrained

in magnitude by |u|< 1.

By a geometrical construction and also applying direct method of

optimization, he found a switch curve

_ . + X2|X2|

0 (A3-1.2)

Let equation (A3-1.2) be investigated now. For L(t) = Ly»at t =t

t
-—
]
-

u =

Yomin =

|
]

~~

p—

+

-

o

~—

which means that for x2>0

’° 2 (A3-1.4)
= Xq - A3-1.4
T 2Uomin
2
o x2
and for x,<0, } =X; - zp— (A3-1.5)



Equation (A3-1.4) and (A3-1.5) are identical to equation (3.45). He
considered the solution to system (A3-1.1) using optimal scheme found

from equation (A3-1.2) to be suboptimal.
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APPENDIX A3-2

This section considers an example where the term L(t), considered
in Section 3.3, contains output feedback. The problem is solved by the
technique suggested in Section 3.3 and the switch curves obtained are
compared with those obtained by a standard optimization method.

The equation of the harmonic oscillator is

X+ wlx = u(t) (A3-2.1)

The control u(t) is constrained in magnitude such that |u(t)[< 1. The
problem is to find the admissible control which transfers system (A3-2.1)
from the given initial states to the origin in smallest possible time.
Considering x = Xqs X = Xy the first set of switch curves for the
system (A3-2.1) obtained by applying Pontryagin's Minimum Principle

(Reference [2]) in the range |x]|§ 2 is

(-1 + (wxx)% =15 wx, <0 (A3-2.2)

(1) + (wxp)? =15 axy 2 0 (A3-2.3)

which are two semicircles shown in figure A3-2.1 (curve 1).
Next, consider -mzx = L(t), then equation (A3-2.1) can be written

as

X-|=X2

A3-2.4
L(t) + u(t) ( )
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Constraining L(t) in magnitude, so that
IL(t)] <1 (A3-2.5)
or |m2Xl <1 (A3-2.6)

and applying the technique presented in Section 3.3, the switch curve

obtained is

x2|x2|

—— =0 (A3-2.7)
2[1 + wx;Sgnix,}]

X'I+
For Xy > 0 and w = 1, the equation of the switch curve is

X
2 =0 (A3-2.8)

2

or 2% 2%y + %) = 0 (A3-2.9)

which is curve 2 in figure A3-2.1 in the range |x1| < 1. By the constraint
(A3-2.6) no information is available for |x;] > 1.

Here the quantity L(t), i.e. -x, does not satisfy the restrictions
imposed on it in Section 3.8. (a) Here, L(t) is a pure output feedback
term, but as indicated, L(t) should not be dominated by output feedback
terms. (b) The final value of L(t) is zero in this case, which puts
an extra restriction on it in addition to (A3-2.5).

Sti11 it can be seen from figure A3-2.1 that for states sufficiently
near the origin, the scheme (A3-2.7) gives a near optimal solution implying
that if L(t) is small compared to u(t), the solution will be close to

2

optimal. It can be seen that for w“ < .5, the switch curves (1) and (2) in

figure A3-2.1 are very close to each other for |x]| < 1. Switch curve 3
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Fig. A3-2.1 The harmonic oscillator and sub-optima1 control.

gives another sub-optimal so]ution[z] for system A3-2.1.

From the above analysis, it can be seen that as long as the term
L(t) is constrained in magnitude, the control scheme gives a reasonably
good sub-optimal solution even if it contains output feedback. Of course,
sub-optimality of the scheme does not effect the solution of the original

power system equations as explained in Section 3.4.



Hamming's modified predictor corrector method was used to solve
the differential equations for the single machine case. The starting

values were found by Runge-Kutta Gill numerical integration routine.

APPENDIX A3-3
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The data for the machine was taken from Roy[7]. The system configuration

is given in figure 2.2.

Machine rating 46 MVA, 13.8 kv

Xafd .562

X4 .6803
.4363

xq 36

red .000508

Xefd .692

H 3

R .00435

Xtje = .7/section
Fiie .07/section
Xtpansf = °1

Xe .8

Re = .07

T T .0125 sec

-4.5 to -1000

The operating point for the Tinear model (underexcited) are

Tedo 1.77935
4o = .30167
i = ,718637

qo

60°
1
.662



are

€0 .85077 Q. = .0147

Egq =

]
—

The operating points for the nonlinear model (normally excited)

icgo = 2-473309 5, = 60°
i, = -564341 v o= 1

igo = 734433 P, = .916
e, = 1.05208 o = 3324
Ep, = 1.39
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CHAPTER 4

EVALUATION OF A QUASI-OPTIMAL STATE FEEDBACK EXCITATION SCHEME

4.1 Introduction

As established in the previous chapter, the quasi-optimal
control is optimal for the linearized system model. Use of this mode]l
js clearly justified when L(t) is small compared to the control u(t).

For large disturbances L(t) is quite appreciable, however, and the
quasi-optimal scheme may give a solution quite different from the optimal
ones. In order to evaluate the effectiveness of the quasi-optimal
scheme, the results obtained by this method are compared with those
obtained by a standard optimization technique.

The optimal control problem stated in Section (3.2) of Chapter 3
js solved in Section 2 using the steepest descent method. The results
obtained with the quasi-optimal scheme (closed 1loop scheme) are compared
with those obtained by the steepest descent method in Section 3. Section
4 investigates the effect of time delays on the optimal and quasi-optimal

schemes.

4.2 Numerical example using steepest descent

The steepest descent algorithm constructed by Bryson and Denham[]’z]
and later modified by Vachino[3] to take into consideration control ﬁrob]ems
with inequality constraints has been used here*. For starting the algorithm

a first guess for the optimal control (which is parametized by the switching

* Details of the steepest descent technique is given in Section A4.1 of
Appendix A4.
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times for this particular probiem) and final time is required. The
control provided by the quasi-optimal scheme is very effective in this
regard; in general, it produces much more rapid convergence to the optimal

solution than controls only slightly different from it.

Z) Linearized model
The linearized system equations rewritten from chapter 2

(dropping A for convenience)are
X=cx+du(t) (4.1)

The operating values of u(t) considered for linearization are 1 per unit.
For small disturbances the exciter may not be driven too hard and it is

assumed that it will be driven to = 3 per unit only, i.e.,
-4 <u(t) <2 (4.2)

The terminal constraints are that velocity and acceleration of the machine

at t = tf are zero, that is,

n

w; - %, =0 (4.3)

Uy = - Ry =Gy Xy Gy Xp - Gz xg =0 (4.4)
Usually, one of the terminal conditions is used as a stopping

condition of the form 9[x(tf), tf] = 0. This is not done here since both

velocity and acceleration of the machine are alternating. Satisfying

T Different symbols used in this section are defined in appendix A4.
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only one of the terminal conditions does not necessarily mean that the
process should be discontinued there. For such problems, the terminal
time tf is generally chosen as a stopping condition[4]. The time
required for stabilization by the quasi-optimal scheme is used as the
stopping time. Assuming that the quasi-optimal scheme only gives a sub-
optimal solution, the optimum time will be less than that obtained by it.

The stopping condition for a 10% torque step is chosen as

Q = 135 - tf (405)
The performance index is

¢ bl tf (4.6)

Evaluating the values of the parameters Cij at this operating point, the

terminal conditions are

b = Xq(te) =0 (4.7)

¥y .06708 x](tf) - .02913 xz(tf) + .15437 x3(tf) =0

(4.8)

Assuming two switchings of the control, the nominal control is

ug(t) =2 toststy



uy(t) = -4 tistety
F3(xlu)
. Fy(x,
0 1 (x0) /
W.—/
to h ty g

Fig. 4.1 System equations

The rewritten system equation is

X = £00-h(t-t)] + folh(t-t)) -h(t—tz] + falh(t-ty) - h(t-t;)]

88

(4.9)

(4.10)



which yields the equations of variation

6% = 6,01 - h(t-t)] + sfph(t-t.) - h(t-t))]

+ 6f3[h(t-t2) - h(t-tf)] + (fl-fz)A(t-t])Gt]

+ (fz-f3)A(t-t2)6t2 + f3A(t-tf)6tf

This vector equation can be written in the component form

6% = F, X + Lu

and A= -Fl A
where Fy = C
6d2A(t-tf) -6d2A(t-t2)
L = 0 0
0 0
0 0
. .

Sw = [‘St]s 6t2’ ‘Stf]T

Zd]A(t-tf)
2d2A(t-tf)
0
0
0

i
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(4.11)

(4.12)
(4.13)

(4.14)

(4.15)

(4.16)
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From equation (4.5), (4.6) and (4.7)

A(te) = %%ltf = [0] (4.17)
r(te) = %%1tf = [0] - (4.18)
aw] T
M (te) =-.a-x—|1,;1r -0 00 -1 0] (4.19)
sz T
Mp(te) = Wltf - [.06708 -.02913 .15437 0 0] (4.20)
aa(t) = re(t) olte) AR(t) (4.21)
) A §(EFY .
: |
or  aa(t) = [0] (4.22)
T T ¢(tf) T
aw(t) = ap(t) - 5(?;7 AQ(t) (4.23)
T T . T o .
or awe(t) = ap(t) + p(te) aa(t) (since &(te) = -1) (4.24)
or  apa(t) = an(t) (4.25)

Substituting equation (4.17) through (4.25) into equation (A4-1.15),
(R4-1.16) and (A4-1.17) gives

Is¢ =[0] (4.26)
Iys =L0] (4.27)
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3 (% g -
Iyp = } awe(t) L W
s=1 t

1 L: wadT (4.28)

s-1

Equations (4.26), (4.27) and (4.28) substituted in equation

(A4-1.11) gives the final variational equation for the control as
3oa1T -1
sw(t) =) W Ls(t) awe(t) Iyy  dy (4.29)
s=1
where dy = [dwl: d¢2] (4.30)
Equation (4.29) is considerably simpler than the original expression
given in equation (A4-1.11). Expressions similar to equation (4.29) were
obtained by other workers a]so[4].
£Z4) The nonlinear model

The procedure for the nonlinear model is similar to that for the

. T. .
Tinear one. Here Fx is given as

[ 31 ag(1¥%g)  agy%g 0

] ayp 292 agp(T4xg)  agpXg 0
Fy = a1p(14xg)  3p3(14x4) a3, (agqxy+ago%,) 0
333 33%3 (agixytagyx, 0 “o

L a15C08Xg  35C0SXg -a35sinx5 0 0
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where the parameters aij are as given in section A2-1 of appendix A2.

'IOd]A(t-t.l) -10d]A(t~t2) 10d]A(t-t3) -Sd]A(t-tf)

10d,4(t-t;) -10d2A(t-t2) 10d,8(t-t5) -5d,0(t-tc)

L = 0 0 0 0
0 0 0 0
0 0 0 0
(4.32)
where the nominal control sequence is taken as
uO(t) =5 L to < t < t-l
u(t) = -5 , ti<t<t
0 ! 2 (4.33)
uy (t) =5 s thystetg
uo(t) = =5 » tyctcts
The terminal constraints are
vy =% =0 | (4.34)
Wy = .0936667 X, X3 - .0406667 x, x3 = 0 (4.35)

s0, wy=[0 0 0 - 0] | (4.36)
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Ay, = [.0936667 x3(tf), -.0406667 x3(tf), (.0936667 x](tf) -

0406667 x,(t)), 0, 01' | (4.37)
.The rest of the procedures follow that for the linear system

4.3 Results comparing steepest descent with quasi-optimal schemes

For a 10% torque step (figures 4.2 and 4.3) it can be seen that
there is virtually no difference in the response between the closed loop

scheme and the optimal scheme (by S.D. method) except near the point where

the control switches.

66.4
64.8 |-
D)
@
O
w632
-
O
Z
<
61.6
60.0 - ] 1 ) | }
0 008 016 024 . 032 0.40

TIME (sec)

Fig. 4.2 Angle time characteristics for a 10% torque step
(Tinearized system).
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-0.12 | 2
1
. -020L

Fig. 4.3 Phase plane corresponding to Fig. 4.2.
1. Optimal control.

2. Closed loop control.

There is no doubt that the closed loop (C.L.) scheme gives optimal
control when L(t) is zero. For small disturbances, the magnitude of
the term L(t) is sufficiently small compared to the input term to yield

an almost optimal control for a piecewise constant approximation.
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Table 4.1 shows that as the integration step size is reduced, the time
reguired for stabilization is less. It is obvious that the closed ioop
scheme depends on the integration step size and does not foresee the
switch curve so that it is quite likely that the control switches several
times near the correct switch point (figure 4.3). This can be avoided

by taking larger step sizes, in which case the 'switch miss' may be quite
large resulting in at least another extra switch. The results of Table
4.1 and 4.2 show this. The best way to avoid the intermediate switches is
to provide a ‘'deadzone' so that the control does not switch if the
magnitude of the switch function ] becomes smaller than a certain pre-

determined quantity e.

Scheme Step size No. of Total cost % Error Remarks
(sec) switches (sec)

Steepest .0005 1 .3415 - -

descent (S.D.)

Closed-loop .0001 1 .3427 .352 Intermediate

(c.L.) switches (I.S)

Closed-Toop .0002 1 .3428 .382 Fewer I.S.

Closed-1o0p .0005 1 .343 .44 Still fewer
I.S.

Closed-loop .001 2 .366 6.7  Almost no
I.S.

Table 4.1 10% torque step, ]inea;ized system (ceiling voltage
+3 p.u.
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For large disturbances, the results do not agree very closely to
the optimal ones as shown in figures 4.4, 4.5 and 4.6, which are for
a 30% input torque step. This is approximately the maximum load the

machine can deliver.

92 -
84 |-
U) .
QO
-0
w 76
-
O
Z
<
68 -
0- 0.1 0.2 03 . 0.4 0.5

. : . TIME (sec)

Fig. 4.4. Angle time characteristics, 30% torque step
(nonlinear model).

1. Optimal control.

2. Closed loop control.
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Fig. 4.5 Speed deviation vs time corresponding to Fig. 4.4.
1. Optimal control.

2. Closed loop control.

During and immediately after a large disturbance on the system,
the constraint, that|L(t)/b(t)|<1, may not be met. It was observed in
reference [5] that if for a small fraction of the total time under
consideration, L(t) does not satisfy the constraint, the scheme will

yield a sub-optimal solution. However, if the constraint is not met for
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Fig. 4.6 Phase plane plot corresponding to Fig. 4.4.
1.
2.

]
0.22 . 0.38

SPEED (x1072)

Optimal control.

Closed loop control.
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all te:[to, tf], the scheme fails to give any information about the
optimal control. Another factor to be considered here is that L(t)
cannot be considered as a disturbance term as in reference [5] since it
contains output feedback & . In such a case the solution will be close
to optimal only if the dependence of L on & is small. However, the
nonlinear system can always be linearized and the optimal control can be

applied on the basis of a linearized system.

Disturbance Scheme Step size No. of Total cost Error Remarks

switches (sec)
20% torque step S.D. .001 1 .33144 - -
20% torque step  C.L. .001 2 386 16.3%  I1.S."
30% torque step S.D. .001 1 .409912 - -
30% torque step C.L. | .001 2 .4788 16.8% I.S.

* Refer to Table 4.1.

Table 4.2 Nonlinear system (ceiling voltage %5 p.u.).

4.4 Effect of time delay

So far it has been considered that the control can be instantly
applied to the system immediately after it is found either by optimal
or quasi-optimal schemes. In general, the switching times of the control
are changed from the nominal ones, by the delay introduced by computation
(includes instrumentation delay), by the actuator (includes exciter) and

by the variation of the parameters of the system. The first two delay
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the switching of the control and the last one might cause the switching
to occur ahead of the nominal value or after it. However, it is

considered that the effect of variation of parameters on the control is
small compared to the others. In this section the effect of time delays

on the stability limits of a synchronous generator is investigated.

MEAS, INSTRUMENT
‘ {pure deloy) 4

STATES

EXCITER |
AND

> SYNCHRONOUS
VOLTAGE REGR. Ufr) I

MACHINE

=== 7777

e — . e S . ST— — e Sm—— n— — — —

Fig. 4.7 The system block diagram.

Two different cases are considered here - the effect of time delays
with fixed excitation strategy (or the so called open loop optimal control);

and the effect on closed loop excitation control.
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1) Fixed strategy

The switch curve for a particular disturbance is found by the
closed loop scheme. The switch curve crosses the time axis at several
points and these are stored (this is equivalent to storing the control).
It is also necessary to store the switch points in the 'deadzone' (where
the magnitude of the switching function is less than 10'6) since
observation for a longer period of time is needed when the control is
delayed.

The second step is to delay the control by t seconds from the
predetermined control strategy making sure that the field voltage remains
normal for t < tsec. Different values of t have been considered for the
nonlinear machine model with 20% torque step. It is observed that t = .215
seconds is in the neighbourhood of the critical delay when the system
appears to be in a 1imit cycle. For t greater than .25 seconds, the
system is unstable. The phase plane plots are shown in figures 4.8, 4.9,
4.10 and 4.11 for different values of t.

The system without any time lag returns to the equilibrium point
in about .4 seconds. The field voltage after that simply bangs around
in the ‘'deadzone' with no net effect. The disturbance considered is
small and in the absence of any stabilizing signal, the machine may remain
stable up to .92 seconds. Due to these reasons a relatively large time
does not seriously deteriorate the stability of the system for the fixed

excitation strategy which has 1ittle importance for on-line applications.
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Fig. 4.8 Velocity vs acceleration plot for no time lag (r = 0).

5
Q
z
O
O
<
-0.05 007
VELOCITY puw.
(x107)

Fig. 4.9 Phase plane plot for t = .185 Sec.
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Fig. 4.10 Phase plane plot for = = .215 Sec.
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Fig. 4.11 Phase plane plot for t = .25 Sec.
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i) Closed loop strategy

The quasi-optimal control based on the system states is computed
and stored at each point of integration. The control is applied to the
system after t seconds. The delayed control results in new system states
and the control in the subsequent steps is found on that basis. Since
the control depends on the measurement of actual states, it is expected
that the time lag allowable is less in this case. For the same
disturbance as in the previous case (open loop case), a delay of about
50 ms is critical. The system becomes unstabie for a time lag of 60 ms.
For modern excitation systems and measurement equipment, this is an
appreciable time from a stability viewpoint. The phase plane plots are

given in figures 4.12 and 4.13 for different values of time lags.

0.04

5
Q.
Z
-
O
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<
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Fig. 4.12 Velocity vs acceleration plot for = = .05 Sec.
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Fig. 4.13 Phase plane plot for t = .06 Sec.

The last case considered is that no control was applied up ¢o about
.92 seconds followed by a no-lag bang bang control. The system required
about 2.5 seconds to stabilize. This shows that a longer initial delay
is allowable even with the closed loop scheme. The critical initial delay

is seen to be about .95 seconds.
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APPENDIX A4-1
METHOD OF STEEPEST DESCENY

Many computer procedures for solving the problem stated in

[1’2’3’6]. Van Slyke[7]

Section (3.2) are available in the literature
in his Ph.D. thesis made a detailed study of mathematical programming
techniques for optimal control problems. These are not presented here.

Both Pontryagin's minimum principle (P.M.P) and the method of
calculus of variations can be applied to solve the problem stated in the
previous section. These are indirect methods in that the control is a
function of some multipliers,values of which are not known in general.
P.M.P uses a set of adjoint variables initial values of which are
generally not known. Newton Raphson method may be used to search these
jnitial values. Convergence is fast but the guess for tie initial
costate variables should be quite close to the optimal ones. This method
is seriously handicapped in that it is usually difficult to make a good
guess for the initial adjoint variables.

Iterative methods such as steepest descent and conjugate
gradient methods based on the calculus of variations deal directly with
the control and yield the optimal solution in the limit. One disadvantage
with these methods is that a local maximum (or minimum) solution may be
reached instead of the global one. The conjugate gradient method is
faster in convergence, but needs an additional set of influence functions

if the final values of the states are not free.
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Due to the simplicity of the steepest descent method, the problem
stated is solved with this method. It can be seen that the right hand
side of equation (3.1) is linear in the control variable u(t). The
optimal control for such a problem is bang bang by P.M.P. The only
unknown for these problems is the optimum value of the switching times
of the control u(t). The steepest descent algorithms constructed
by Bryson and Denham[]’Z] and Tater modified by Vachino[3J to take into
consideration control problems with inequality constraints, have been
used here. The problem is formulated as follows:

Choose the control function u(t) from a class of piecewise
continuous functions of time such that |u(t)|< 1 which takes the system
described by the vector valued differential equation

X-F(X,u) =0 (A4-1.1)

from its initial state X(o) at time t,s to its intended final state,

such that it satisfies the vector valued terminal condition

v(X(te)s te) = 0 (A4-1.2)
and minimizes the cost index (Mayer formulation)

p(X(te)s te) (A4-1.3)

The time tf is chosen as the first time that one of the terminal

conditions, referred to as a stopping condition,
2(X(te)s te) = 0 (A4-1.4)

is satisfied.
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Using the Heaviside step function[B], the equation of variation

for equation (A4-1.1) can be written as

where

the variation of control u (the

sx(t) = F, ox + Léw

L =-[(FS(1+]) - FS'i)A(t-tS)]

§ = 1,2, veenue.N
i=1,2, veeeseen
N is the total no of distinct discontinuities in u(t)
for the system of order n
su = [8ty, 8ty, .......§tN]T
A(t-ts) is a delta function occuring at the switching
instants t = ts

The influence functions are given by
A =-F A

Choosing the terminal conditions on the adjoint vector

= 3%
A¢(tf) X tf
N _ 3
Ay (te) = o te
Y
rlte) = 5% te

obtained as

switch times) in the final form is

(A4-1.5)

(A4-1.6)

(A4-1.7)

(A4-1.8)
(A4-1.9)

(A4-1.10)



sw(t) =

where

N+1 -1
) W
s=1

N+1
+) W
s=1

Aq)g;(t) = Al(t)

I
Aw(t)

(dP)?

$¢

vé

14

Computing Procedure

T
Ls(t)[x¢9(t) - wa(t) Iw

-1, T -1
L (t) xwﬂ(t) IW dy
o(te)
£/ .7
- AL(t)
Q(tf; 9]
T ) T,
te
= sw(t) W suw(t) dr
N+]
-1 T
j LS )‘¢9 dr
-1.,7T
L j L " LS 9 dt
-1 ,7T
j W LS A‘PQ dt

a) Compute

m

-1 dy

] dP) -d¢ ww
Lo T [ -1

I¢¢

(A4-1.11)
SA4—1.12)
(A4-1.13)
(A4-1.14)

(A4-1.15)

(A4-1.16)

(A4-1.17)

the nominal path by integrating the differential

equations with a nominal control variable program and fixed initial

conditions. Store

b) Comput

the solution.

e the A, functions all at the same time by integrating

L]

the adjoint differential equations backwards, evaluating the partial
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derivatives on the nominal path by reference to (a).

c) Simultaneously with (b) calculate the quantity N and
perform integrations (backwards) leading to the number IWW'

d) Select desired terminal conditions dy to bring the next
solution closer to ¢ = O than were achieved by nominal path.

e) Using the values of dy chosen, so that the final time does
not exceed the predetermined value, calculate sw(t). If tf exceeds the
predetermined value go over again to (d).

f) Obtain a new nominal path by using wyq, = wyiq ¥ S and
repeat process (a) through (f) until terminal conditions ¢ = 0 are

satisfied.



CHAPTER 5
AN EXTENDED CASE
This chapter considers an extension of the method developed in
chapter 3 to a two machine system. The closed loop control scheme for
the two machine system is developed in section 1. The results obtained

by such control, for a number of cases, is discussed in section 2.

5.1 Closed loop control for two machine system

For stable operation of synchronous generators in a power system,
the relative velocity and acceleration between any two machines in the
system should drop to zero following a disturbance while the relative
rotor angular positions should remain between 0 and w/2 radians. So
for two machine system, the optimal control probliem for stability can
be formulated as follows:

Giveﬂ the initial states Zﬂ#o); m = 1,2 and the following

information on the target states

n](tf) - nz(tf) =0
ﬁ](tf) - hz(tf) =0 (5.1)
0 < Gl(tf) - dz(tf) < w/2

where nm = Xam and Gm = Wy Xgm
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Find the admissible control um(t) which forces system (2.22) from the
given initial states to the desired final states in the minimum possible
time.

The procedure for the two machine system is similar to that for
the single machine case and is briefly outlined as follows:

For each machine, differentiate the swing equations (2.23) with
respect to time and substitute the voltage current relations. Then the

following set of differential equations is obtained

p3(817u;) = Ly(t) + by(t) uy(t) (5.2)

p3(6,/uy) = Ly(t) + by(t) uy(t) (5.3)

Subtracting equation (5.3) from (5.2) yields

p3(67/u;) - P(8yluy) = Ly(8) = Ly(t) + by(t) uy(t)
' -b,(t) u,(t) (5.4)

or p3(6/wo) = L(t) + u(t) (5.5)
where § = 6] - 62

L(t) = L](t) - Lz(t) (5.6)
u(t) = b](t) u1(t) - bz(t) uz(t)

As before, assuﬁing Xy = G/wo, equation (5.5) gives the set of differential

equations
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i1 = X,
X, = Xy | (5.7)
ks = uo(t)

where uo(t) = L1(o) - L2(o) + b](o) ul(t) - b2(o) uz(t) (5.8)

. < <
and Yomin = Uo(t) < Yomax

Defining the following quantities as

2
) %3 if x>0 (5.9)
= X - .
2 zuomin ’ 3
3 x32 ] v ( )
= X, = if Xo<0 5.10
2 2uomax ’ 3
XnX
R b e
0 3a
XoX
= 273 1 3
22 = X-I i + 3—2- x3 (5.]2)
. o
where o = L(o) + Ugmin if)}>0 (5.13)
a=L(0) +uy,, ifL<0 ' (5.14)
Then the control scheme is
uo(t) = Uomax if 2] <0 (5.15)
ug(t) = ugpiy I > 0 (5.16)

Otherwise, uo(t) = Ugnax if ] <0 . (5.17)
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uo(t) = u if)>0 (5.18)

omin

As in the case of a single machine system ,the constraint on L(t) that

[L(t)]| < Ju(t)] (5.19)

should be satisfied. This implies that u < 0.

omin
Substituting equation (5.15) through (5.18) the initial value of the
quasi-optimal control u](t) and uz(t) is obtained from equation (5.8).
The process is continued until the desired final states are reached.
The proportional control for the two machine case is obtained in a

similar way as for the single machine case.

5.2 Discussion of results

The system configuration as given in figure 2.3 is considered.
The machines are interconnected by a double circuit transmission line
and feed an impedance load from the intermediate bus. The two machines
considered are identical but carry different loads. Machine II has less
load than machine I. Faults and disturbances are considered on machine I
only. The following cases are considered. (Data for the two machine

system are given in section A5-1 of appendix AS5).

z) 100% torque pulse for 3 cycles.
The angle time characteristics in figure 5.1 shows that the
application of bang bang control results in a near deadbeat response.

This changes the original load sharing between the two machines. The
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proportional control based on the relative velocity and acceleration

of the system gives a heavily damped response, bringing the system to

the original operating point. The intermediate bus voltage returns to
normal. Though the relative velocity of the machines becomes zero, the
system speed up by about .4% (figure 5.4). On a real system, this will
not happen since the governing system will act to bring down the speeds
of the individual machine. Figures 5.2 and 5.3 give the phase plane plot
and figure 5.5 shows the variation of the terminal voltage of the

individual machines.

REL. ANGLE (deg)

0 S | 1 | | |
0 04 08 1.2 1.6 2
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Fig. 5.1 Relative angle time characteristics for 100% torque pulse

1. Bang bang control.

2. Proportional control.
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Fig. 5.2 Relative velocity vs. relative acceleration plot
corresponding to Fig. 5.1.

1. Bang bang control.

2. Proportional control.
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Fig. 5.3 Relative angle vs relative velocity plot
corresponding to Fig. 5.1.

1. Bang bang control.

2. Proportional control.
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Fig. 5.4 Velocity vs time with proportional control,
100% torque pulse.

1. Machine 1

2. Machine II
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Fig. 5.5 Terminal voltage variation with proportional control,
100% torque pulse.

1. Machine I
2. Machine 1I
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Fig. 5.6 Field voltage characteristics with proportional control,
100% torque pulse.

1. Machine I

2. Machine 11
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i2) 150% torque pulse for 3 cycles ' |

This is a very severe disturbance. The bang bang control results
in an overshoot and an undershoot. The intermediate bus (load bus)
voltage is very much reduced resulting in a totally different load sharing
between the machines. The proportional control results in a heavily
oscillatory response (fig. 5.7) and a return to nearly normal load sharing.

Figure 5.8 gives the phase plane plot.

REL. ANGLE (deg)
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Fig. 5.7 Relative angle time characteristics for 150% torque pulse.
1. Bang bang control.

2. Proportional control.
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Fig. 5.8 Phase plane plot corresponding to Fig. 5.7
1. Bang bang control.

2. Proportional control.
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i4i) Three phase short circuit at the transformer end of the first
machine cleared in 3 cycles (underexcited case)

The second machine is normally excited. Both the machines are
relatively lightly loaded. (Machine I is loaded at .73 per unit).
Figure 5.9 shows that both bang bang and proportional control results
in similar type of oscillations. The proportional control restores the
load bus voltage and machine internal voltage, while the bang bang
control reduces them. Figure 5.10 shows the phase plane'plot and figure
5.11 shows the variation of the individual rotor angles with proportional
control only. It can be seen that the rotor angles continue to increase
with time; this is due to the off-set in velocity of the individual

machines. Again, this will not occur if governor action is taken into

consideration.
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Fig. 5.9 Relative angle-time characteristics for 3 - ¢ fault
on under excited machine.

1. Bang bang control.

2. Proportional control.
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Fig. 5.10 Relative angle vs velocity plot corresponding
to Fig. 5.9.

1. Bang bang control.

2. Proportional control.
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Fig. 5.11 Angle time characteristics with proportional control.
1. Machine I

2. Machine II

iv) Three phase short circuit on first machine (normal excitation).
In this case machine I is loaded about .85 per unit and machine II

about .4 per unit. Figure 5.12 shows that bang bang control deteriorates
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the machine and bus voltages so much that when the system tends to
stabilize after about .8 seconds, the maximum power delivered by the
two machines(at these voltages)is much less than that demanded by
the load, resulting in instability. Proportional control, however,
retains the machine as well as bus voltage, so that the system

stabilizes in about 1.6 seconds.
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Fig. 5.12 Relative angle time characteristics for a 3 - ¢ fault
on the normally excited machine.

1. Bang bang control.

2. Proportional control.

v) The effect of local control.
A 100% torque pulse for 3 cycles is again considered on the

first machine. Figure 5.13 shows the relative angle vs time characteristics.
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Curve 1 is with bang bang control on both the machines, whereas curve 2
is with control on the first machine only, second machine with normal
field voltage. Curve 3 shows the response when control is applied on
machine II only. It can be seen that applying control on the first
machine only takes less time as compared to that when control is applied
on both of them. This demonstrates that local disturbances are better
taken care of by local control. In this case the local control also
depends on the global variables. Figure 5.14 shows the phase plane plot

corresponding to curves 2 and 3 in figure 5.13.
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Fig. 5.13 Relative angle-time characteristics for 100% torque pulse.
1. Control on both the machines.
2. Control on Machine I only.
3. Control on Machine II only.
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Fig. 5.14 Phase plane plot corresponding to Fig. 5.13;
1. Control on Machine I only.

2. Control on Machine II only.
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APPENDIX A5-1
TWO MACHINE SYSTEM DATA

The two machines considered are identical and their parameters
are given in section A3-3 of appendix A3. Two system conditions were
considered - (1) both machines normally excited, and (2) machine I
under excifed.

The operating quantities for the under excited case is given as

M/C I M/C II
ifd 1.42348 ifd 1.77935
id .231041 id .0066098
1q .987381 1q .19621
$ 60° 8 10°
e, .7696. _ e .9983
Po .72976 P0 .1957
Qo -.27684 Q0 -.01021
v =1
ZL = ,852 [1:.712 rad.

Operating quantities for the normally excited case are



MC 1

2.3131
.4464
745
40°
1.044
.8841
.2025

=1
.8246 | .0142 rad.
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2.224
.2407
.3027
15°
1.0927
.3599
.2215



CHAPTER 6

AN

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

6.1 Summary and Conclusions

In this thesis, a quasi-optimal excitation control for power system
stabilization is found directly as a function of state and parameters of
the system. It is suited to online controls requiring relatively little
hardware, either digital or analog, as it is not necessary to solve the
system differential equations. Based on the closed loop scheme, two types
of excitation control have been investigated:

4) Bang bang control scheme - This provides dead beat response for
small disturbances (figures 3.5 and 3.6). However, for large disturbances
there may be an uncontrollable period resulting in a sub-optimal solution.
The exciter ceiling voltage, which limits the control signal, has a direct
bearing on both the uncontrollable period and the speed of response during
the controllable period. Increasing the exciter ceiling provides better
damping of the transient (figure 3.5). If a bang bang control is used,
some deadband must be provided to allow normal voltage regulator action to
take place. This also can take care of any switching chatter.

ii) Proportional control - In the case of a large disturbance, the
exciter is rapidly driven to its ceiling and the control action is almost
bang bang. As the system settles down, the exciter voltage variations
decrease and the effects of voltage regulator action become dominant.
Dynamic stability is retained. Although the transient is longer with

greater excursions in rotor angle, the transition to normal voltage regulator
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action is smooth and does not require additional control equipment. The
demand on the excitation system is lower. The regulator time constants
may be taken‘into account. The results obtained with these two types of
control are presented in Chapters 3 and 5.

The results obtained with the closed loop quasi-optimal scheme are
compared with those obtained by a steepest descent method. For small
disturbances, the closed 1oop scheme is found to yield an optimal solution.
It may be noted that although the steepest descent technique was used to
evaluate the closed loop scheme, the amount of computation required for
steepest descent methods precludes online control. This may give worse
results than the closed loop scheme for other than the design disturbances.
For the application of steepest descent methods, the closed loop scheme
offers computational advantages in that the results provide a good set of
initial switching times for the steepest descent algorithms, so that
convergence is rapid. The comparison of closed Toop scheme with the steepest
descent method is given in Section 4.3 of Chapter 4.

The effect of instrumentation and related time delays is not as severe
for predetermined control strategies as for the closed loop scheme. This is
shown in Section 4.4 of Chapter 4. Since the sensing and measuring
instruments as well as the static excitation systems have very small time
constants, their effect is less appreciable. Even a relatively long initial
time delay followed by a bang bang excitation strategy retains system
stability.

For multimachine systems, the control is obtained based on the
information from all machines in the system. For local disturbances, local
control may be more effective, in which case the amount of computation is

also minimized.
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6.2 Suggestions for further research

Fﬁrther areas of investigation include the extension of these
methods to include governor and prime mover dynamics and consideration
of damper windings. Tests on real machines should be performed to compare
the results with computer simulation. Methods for determining L(t) and b(t)
or reasonable approximation of these quantities with a minimum of comput-
ation and equipment should be investigated. The sensitivity of these
quantities to parameter variations are also of concern.

Modern power systems are very complex and the possibility of
monitoring the optimal control from a central computer should be explored.
Study of local control involving the local variables only, needs concern.

Further investigation of local versus central control should be
made as, if local control is satisfactory from a stability viewpoint, it
wou]d be superior in terms of cost, equipment and complexity and speed of

control.






