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Abstract

Explainable artificial intelligence models are becoming increasingly important

as restrictions grow for corporate use of blackbox models whose predictions

affect people’s lives and yet cannot be interpreted. Black boxes do not convey

trust to end-users and are difficult to train and debug for developers.

Model agnostic explanation methods, like SHAP [23], can be used post hoc

to shed light on these blackbox predictions. With access to a model’s predic-

tions, SHAP can generate scores for relative feature importance. This work

focuses on explanations generated for Natural Language Processing (NLP)

where the features that SHAP uses are words.

There are currently no generally accepted methods to generate explanations

in NLP. However, SHAP can calculate importance scores for each word where

the most important words can be taken as the explanation. SHAP should

be structure-agnostic, meaning it should not be influenced by the number or

types of layers in the model, it should only be influenced by the quality of

the predition. Otherwise, SHAP predictions cannot be fairly compared across

models because SHAP may be biased towards certain structures.

Importance scores from SHAP are converted to a mask to either include or

ignore each word of the input, providing the generated explanation. The Eraser

[10] dataset provides human annotated explanations for NLP tasks that can

be used as a gold standard by comparing them to the explanations generated

by SHAP. An F1 score can then be used as a notion of the quality of the

explanation by comparing the generated explanation to the human annotated

ii



explanation.

This work investigates whether the quality of explanations generated by

SHAP is structure agnostic. Using a dataset with ground truth explanations in

a sentiment analysis task, we compare the SHAP output across different types

of models. Our main finding is that CNN models using intrinsic explana-

tion underperformed CNN models without intrinsic explanation, while having

nearly identical accuracy. These findings demonstrate that the underlying

model can impact SHAP’s performance and may favour certain structures of

models.
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I asked myself the other day: is it the pants that don’t fit me anymore? or is

it me who doesn’t fit into my pants now? it’s a very important question

because the answers determine the course of action: go to a tailor or go to a

gym.

– Aksakal on stack overflow
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Chapter 1

Introduction

1.1 Overview

Machine learning (ML) models often differ from statistical models in that the

former focus on prediction, while the latter focus on inference [16]. When fo-

cusing on prediction, different models are fit to maximize some sort of measure

of accuracy, without needing to understand why a prediction was made. While

for inference, different models are fit to the data with the intent on learning

about the phenomena that created the data.

Many projects have focused on prediction, which has led to progressively

larger ML models. From BERT’s 110 million [9] to NVIDIA MegatronLM’s

8.3 billion [34] to OpenAIs GPT-3’s 175 billion [5] parameter network, these

highly accurate models have far too many parameters for a human to interpret.

When a model’s process for calculating the prediction is not understood, it is

considered a blackbox.

A number of different approaches have been designed to address this issue

of explainability, as explainability is considered a positive feature of a model

[12]. A correct answer may seem confusing without the supporting evidence,

and an incorrect answer may be easier to spot if it is paired with the faulty

explanation. By providing explanations, whether the provided prediction is

correct or not, the model can be more readily trusted.

Intuitively, an explanation should reflect the reasoning that led to the an-

swer [17]. The “answer” in the case of an ML model is a prediction based on

some input data. The explanation is supporting evidence for why a prediction
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was made. Given this picture (input), it is not a picture of a cat (prediction);

the object had feathers (explanation). This work considers two approaches

used to address the issue of black box models: intrinsic explanation and post

hoc explanation.

Intrinsic explanations are generated by any framework where models are

designed to be explainable by having some part of the output structured to be

the explanation of the model. In the case of linear regression, the regression

formula is considered to be the explanation. While in ML, some layer of the

model needs to be trained to give the explanation. Lei et al. [22] designed a

two-model architecture, such that the first model generates the explanation

that the second model uses for prediction. We use this framework to generate

the intrinsic explanations involved in the experiments in our work.

Post hoc explanations are generated by any framework that can be

applied to a model. SHAP (SHapley Additive exPlanations) [23] is considered

to be a model agnostic form of post hoc explanation in that it can be used as

a wrapper around any previously trained model. By model agnostic, we mean

that the underlying components or processes of the model should not affect

the explanation; only the accuracy of the prediction need be considered.

These approaches are not mutually exclusive. A model that has been

trained with intrinsic explanation could still be used in a post hoc explanation

framework. By setting up an experiment where the intrinsic explanation can be

removed, we can determine whether these two approaches are complementary

or antagonistic.

SHAP does not have access to any of the model’s intermediary weights

or parameters. The explanation that SHAP produces is based solely on the

relation between the input and prediction of the model. This is, to a large

extent, why SHAP can be model agnostic. By gradually altering the inputs to

the model and observing the changes in prediction score, SHAP can determine

which features of the input were most relevant to the prediction. Features

that contributed most to the prediction can be thought of as the explanation.

Feature relevance, represented by a SHAP value, is then a product of the

model, and any differences in these values can only be attributed to properties
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of the model.

We look at training two different structures of models and comparing the

resulting explanations that SHAP produces. If SHAP is model agnostic, then

it should only be the predictions that affect the quality of explanations. Any

differences between the quality of explanations should be random noise and

not biased towards a particular underlying structure. If there are systematic

differences between these structures that cannot be explained by prediction

scores, then SHAP must be affected by model structure.

1.2 Motivation

1.2.1 Explanations

Simply ignoring the drawbacks of purely predictive models is no longer an

option. There are cases of ML models with exagerated training scores in

medical imaging that were actually just using remnants of marker left by

the medical professionals that annotated the data [42]. Other cases show

insignificant pertubations in the input leading to wildly inaccurate predictions

[37].

We can negate errors and identify biases in models by exposing how the

model arrived at its decision. The General Data Protection Regulation has

started to legislate the need for transparent or explainable models in businesses

[11].

There are different interpretations of explainable artificial intelligence (XAI)

terms, but in general the more questions you could ask of your model and have

answered, the more understandable the model. Typical questions include:

• Is a particular feature redundant?

• What if a particular feature had been a different value?

• Which feature contributed most to this decision?
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1.2.2 Natural Language Processing

Natural language processing (NLP) is a domain that has an intricately de-

pendent and vast feature space that is human language. Other domains with

tabular and numerical data benefit from having the input space represented

in a way that is often objective and easier to interpret. The numerical na-

ture allows for straightforward comparisons of data points, while the tabular

nature often means that the number of features will not dwarf a reasonable

cognitive effort. In human language, there are subjectivity issues. Consider a

sentiment analysis task [35] where we need to judge the magnitude of emotion.

Now imagine having to determine which of the following statements carries the

more negative sentiment: “I hate ice cream” or “Ice cream is the worst”?

To represent language we can use some one-hot encoding or bag-of-words

model. One-hot encodings are vectors with as many elements as you are trying

to encode. In NLP, each element of the vector corresponds to a unique word

of the corpus. To encode a particular word, every element of the vector is set

to zero except for the element that corresponds to your word, which is set to

one. This leads to an incredibly large and sparse matrix that is no more than

a lookup table. Simple methods, like one-hot encoding, are at their limits in

many tasks [26]. If you choose instead to convert words or sentences to learned

embeddings, like embeddings from BERT[9] or USE[6] , then you add a level

of complexity to your input space which is difficult for a human to understand.

For the experiments in this work, we define an explanation in NLP in an

extractive sense. An extractive explanation is some subset of the input words,

that generate a near identical prediction as compared to the prediction from

the entire input set. In the top sentence of fig. 1.1, the word “good” (and

“terrible” in the bottom sentence) is responsible for a large fraction of the

model’s deviation from the base value. We can consider “good” and “terrible”

as explanations for the two phrases.

Determining the number of words to include in the explanation will depend

upon the sentence given. A short sentence may only have a word or two that

were relevant to the prediction, while a longer passage may require far more.
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Instead of choosing a fixed number, we use a threshold that is relative to

the prediction. This threshold governs what percentage of the prediction the

words must account for to be considered. Based on a chosen threshold, these

SHAP values can then be evaluated as a string of binary variables determining

whether we keep or discard the word associated with that binary variable. This

string of binary variables, or mask, creates an extractive explanation from the

input text.

Figure 1.1: Illustration of SHAP’s highlighting based on given sentence. Red
highlighting contributes to a positive predition, blue highlighting a negative
one.

1.2.3 Model Alteration

Model alterations are used to generate pairs of similar models that differ only

by this alteration.

In linear regression with regularization, normalization of input can posi-

tively impact the results. Regularization can help with issues of multicollinear-

ity and feature importance. Both of these issues are a concern for a sentiment

analysis task [20].

Model alterations are used in our experiment to create the basic architec-

ture, to create two different structures of models and their resulting SHAP

values compared by calculating an F1 score with a set of human annotated

explanations.

This thesis explores the following question:
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Does the underlying structure of a model impact the resulting

explanations from SHAP?

We explore this question using a sentiment analysis task in NLP. Sentiment

analysis is the approach to determine the valence for a given language input.

Provided some text, for example, a movie review, decide whether there is a

negative (0) or positive (1) valence associated with it. Several different neural

networks are used, and their decisions are fed into SHAP. SHAP then outputs

the relative importance of each word towards the model’s prediction.

The belief that SHAP is model agnostic prompts this investigation. SHAP

can produce feature importance for any model, without needing to know any-

thing about the inner layers, leading to this categorization of being model

agnostic. However, if knowing some aspect of the inner layers, while keep-

ing prediction accuracy consistent, can affect SHAP’s output then SHAP is

perhaps not as model agnostic as once thought.
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Chapter 2

Background Material

In this chapter underlying concepts of this thesis that pertain to model expla-

nations are discussed. To begin, definitions of some XAI terms are expressed.

With these definitions, embeddings can be related to explanation. Next, a

summarization of the types of models that are used. Different models have

different ways of processing the input and may behave differently with the

explanation methods. Finally, an overview of the two methods of explanation

explored in this work is given.

2.1 Common Terms

Many terms in XAI are not yet concretely defined. Some terms like inter-

pretable and explainable are used interchangeably in some papers, while dif-

ferentiated in others [3]. Some terms, like interpretability and explainability,

are not absolutes and are better described with relations. Regression is often

a baseline to compare to, because it can often be used to generate a solution

to machine learning questions.

2.1.1 Interpretability

Interpretability defines a scale of how easily understood a model is. How

easily can one follow the path from the inputs to the outputs; and for layers

or components themselves, how readily can we digest the information using

a reasonable cognitive effort. Linear regression models are often an example

given for an interpretable model because each step of the calculation has a
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purpose that can be readily understood.

Many deep neural networks are seen at the other side of the interpretabil-

ity spectrum, where calculations are too numerous and logic not understood.

Model complexity is often considered equivalent to a lack of interpretability

[27].

2.1.2 Explainability

Like interpretability, explainability also speaks to how well understood a sta-

tistical or ML model is. Explainability differs in that it is not a matter of

being able to follow the calculations of the model, but understanding how or

why the model arrived at a certain answer.

An explanation should highlight the relevant details for how a decision

was made. Linear regression models are also explainable because they give a

formula for how to predict a new datapoint. We can also ask questions, such

as: “what if feature 1 had been a different value?”, by simply modifying the

input variable to the regression equation.

2.1.3 Explanation Scope

Local explainability refers to how the prediction of a particular instance was

done. Techniques like SHAP offer local explainability, as Shapley values give

feature importance for a specific datapoint that do not necessarily apply to

the dataset at large.

Global explainability refers to how a model’s predictions are made through-

out the dataset. Regression offers a global explanation, because a common

formula used to calculate all datapoints is returned.

2.1.4 Transparency

The term blackbox refers to a model that is on one extreme of the interpretabil-

ity spectrum, where all internal weights, parameters, and calculations are kept

hidden; only the inputs and outputs are known. The model may give fantastic

results, and may even offer an explanation, however there is no expectation to
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interpret the steps of the model with reasonable cognitive effort. SHAP treats

all models as blackboxes, because it only accesses the input and output values.

In contrast to a blackbox, a model could be deemed a whitebox or glassbox,

meaning that its internal weights and/or processes are exposed. This can allow

explanation methods to be designed for such a model, taking advantage of

internal parameters like attention weights. For example, Sundararajan et al.

[38] use calls to the gradient operator to calculate what they dub “integrated

gradients”.

2.2 Embeddings

Embeddings are multidimensional numerical representations of objects. In

NLP, these objects are word related; in this work they are numerical represen-

tations of words. Embeddings are meant to cluster semanticly similar objects

even if they are syntactically distant. However the vectors are generated, they

generally result in embeddings which make little or no sense to a human. Al-

though embeddings lack interpretability, they still seem necessary for AI since

they are so prominent in state-of-the-art research[5], [9], [15], [43]. They can

be learned through a number of approaches like word2vec (W2V) [26] or Uni-

versal Sentence Encoder (USE) [6]. Whatever the method of construction, the

process of embedding changes the objects of variable length to vectors of fixed

length – a critical step to make the natural language an acceptable input for

ML.

Most embeddings do not constrain the dimensions to line up with certain

attributes – like a happiness dimension or a part of speech dimension. There

has been work in this direction, which could help alleviate interpretability

issues [28]. The only real human interpretability that embeddings give us is

their relative values in terms of a similarity metric like cosine similarity.

2.3 Models

Post hoc and intrinsic explanations are tested on a variety of models as an

exploration of the space. These models include convolutional neural networks
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(CNN) [21], long short term memory networks (LSTM) [14], and transformer

networks [40]. These models process their input quite differently and their

explanations may reflect these differences.

2.3.1 CNN

CNN process data by sliding a window, called a kernel, over the input and per-

forming a convolution operation. Convolution, in this scenario, is the element-

wise multiplication and then sum of the kernel with the input. The kernel

operates like an n-gram model, processing the sentence n tokens at a time,

illustrated in fig. 2.1. A CNN can have many kernels of the same and differing

sizes, all of which can create higher-order features for subsequent layers of the

network.

Lead by example by using a lead pencil.

Lead by example by using a lead pencil.

Lead by example by using a lead pencil.

Figure 2.1: Illustration of sliding window of convolution for CNN. The 1-
dimensional kernel is of size 3. The first 3 trigrams of the sentence are shown.

The different convolution operations are independent and can be performed

in parallel, making training fast. CNNs possess properties that are ideal for

NLP, such as local invariance and compositionality [39].

2.3.2 RNN/LSTM

Recurrent neural networks (RNN) force the input to be processed one token

at a time, similar to a human’s sequential reading, treating the input as a time

series [39]. The sequential nature allows the RNN to bring context information

calculated from previous tokens of the sentence. The context, or state, is

calculated for each element of the input by combining the previous state and

the current token’s embedding. This state can act as a memory, allowing

connections to be made between words both near and far. A layer is needed

10



for each token of the input, however we often think of an RNN as a single

layer. This distinction is illustrated in fig. 2.2. Although the RNN seems to

run similarly to a human’s interpretation of a sentence, the serial nature of its

processing makes it much slower than its competitors.

A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .

Figure 2.2: On the left: a compact illustration of the RNN. On the right: an
unrolled illustration of the RNN where each layer is shown separately.

As the forward pass of an RNN processes input one token at a time, so

must the backpropagation. The longer the input, the longer the chain for

backpropagation in the model. When many small or large derivatives are

multiplied together the backpropagation gradient can grow or shrink to an

unusable term. This problem of vanishing or exploding gradients is partially

addressed with long short term memory networks (LSTM). Instead of trying to

represent all context information in the state, the information is regulated by

a number of gates that allow the LSTM cell to add or remove information from

the state. These gates allow the network to keep associations between distant

points of the input and drop unimportant information without suffering from

vanishing or exploding gradients.

2.3.3 Transformer

Transformers are networks built around self-attention [40]. Self-attention is the

mechanism that a transformer uses to incorporate the context of the input.

Three large matrices (query, key, and value) are maintained that allow the

comparison of all elements of the input to be done in parallel. Each element

of the input has its own query, key, and value vectors. The relation between
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2.4 Explanation

2.4.1 Post Hoc Explanation

Post hoc explanations can be obtained from fully trained networks, even if they

were not designed with explainability in mind. Many post hoc explanation

methods are model agnostic [25].

2.4.2 SHAP

SHAP (SHapley Additive exPlanations) is a method that leverages the idea of

Shapley values, from coalitional game theory[33], to compute feature contribu-

tion[24]. Shapley values are the marginal contributions of each input element

across the power set of possible coalitions. That is to say, for every set of input

features that do not include a certain feature, what is the contribution made

by adding this feature. In each set of input features, the contribution may be

different, so the average contribution is taken across all sets of features.

This attribution method satisfies the properties of efficiency, symmetry,

and dummy [33].

• Efficiency: The sum of all Shapley values is equal to the prediction made

by the model with all features.

• Symmetry: Two features that affect the model equally in all coalitions

will have identical Shapley values.

• Dummy: A feature that never affects the model will receive a Shapley

value of 0.

In NLP, however, performing the calculation of marginal contribution across

all coalitions of a natural language input that could easily contain hundreds

of words is not feasible. Instead, SHAP approximates Shapley values by using

a randomly generated subset of the possible coalitions. The original model is

used to make the predictions for these new inputs, handling feature absence by

sampling another random instance. Integrating over this marginal distribution

gives us the Shapley approximations.
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In NLP, SHAP doesn’t need to sample from other instances when a feature

is left out, because unlike tabular data, natural language does not have a set

number of columns to fill. Instead, a particular feature that is left out is

masked in such a way that the model will ignore it. Since the calculation

of Shapley values can be computationally taxing, SHAP also makes use of a

related concept called Owen values. Owen values are a specific scenario of the

game theory situation where specific coalitions of features are not possible.

In fig. 2.4, all possible combinations of the three features f1,f2,f3 are listed,

however, it could happen that the presence of f3 is only possible when f2 is

already there – Owen values allow for this adaptation.

In fig. 2.5 and fig. 2.6, SHAP’s initial partition graph is shown. This

interactivity graph is used to calculate Owen values, which are used in the

place of Shapley values.

The general formula for Owen values is:

ϕi(v,B) =
∑

R⊆M\Bk

∑

T⊆Bk\i

1

mbk

1
(

m−1

r

)

1
(

bk−1

t

) [v(Q ∪ T ∪ i)− v(Q ∪ T )]

Where M is the set of all possible coalitions, Bk is the coalition containing

i, and Q = ∪r∈RBk.

The calculation for the short sentence “Ice cream is great” is given in

table 2.1, where the sentence had the partition scheme {{0,1},{1,2}}.

Q T Union(Q,T,i) difference weight
ice 0.19 .25

cream ice cream 0.28 .25
is great ice is great 0.00 .25
is great cream ice cream is great 0.00 .25

Table 2.1: Owen values calculated for the sentence “Ice cream is great”

2.4.3 Model Intrinsic explanation

In contrast to model agnostic frameworks, if the explanation is built into the

model itself, it is a model instrinsic explanation. Since this type of explanation
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Chapter 3

Related work

In this chapter, two alternatives to SHAP are introduced. Next, a discussion

on whether using a model’s latent layers constitutes a reasonable explanation

is given. Finally, a description of a method that extends SHAP values into the

causal domain concludes the chapter.

3.1 Alternatives to SHAP

In this work, SHAP was used because it is a very popular explanation frame-

work. However there were other candidates. This work only requires that the

explanations are computed post-hoc. Two other popular post-hoc explana-

tion frameworks exist, namely, Local Interpretable Model-agnostic Explana-

tions (LIME) [32] and Anchors [31]. Both of these methods, like SHAP, work

by perturbing input data and observing how those changes affect the model’s

predictions.

LIME generates an explanation by building a simple surrogate model that

is locally faithful. The simple surrogate model is often linear, categorizing all

data as either one of two categories. While Ribeiro et al. [32] focus on linear

models, their approach could be used with other classes of models deemed

interpretable, like decision trees. LIME was shown to be a member of the

additive feature attribution methods [23], meaning its explanation model was

a linear function of binary variables. In NLP, LIME generates the same sort of

extractive explanations that SHAP does by using this binary variable for each

input token. However, unless the decision boundary between the two classes
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is truly linear, LIME can only achieve local faithfulness.

Instead of creating a linear model, the Anchors framework finds particular

“rules” that when held, give some predefined accuracy measured across the

subset of data where this rule applies. A rule is comprised of some group of

features being certain values or in certain ranges. For example, when feature 1

is greater than 5, the output is False with 98% accuracy. More succinctly, an

anchor is an IF-THEN rule holding your predefined accuracy. Ribeiro et al. [31]

also define the notion of coverage as the probability that this anchor applies

to possibly unseen instances of a dataset. In NLP, Anchors’ rules may return

n-gram like extractive explanations, such as IF:“not bad” - THEN:predict

positive.

3.2 Using model internals as explanation

Model internals, like attention weights, have garnered interest to be used as

explanations for a model’s predictions [2]. This interest has sparked a debate

for whether the use of attention weights as an explanation is valid [18], [41].

Jain and Wallace [18] found that alternative attention weights could be used in

the model that did not change the model’s prediction but that did change the

explanation. In addition, attention weights do not always align with gradient-

based measures. Wiegreffe and Pinter [41] disputes some of these claims,

arguing that the alteration of attention weights goes against what the model

has learned throughout training.

While it is still unclear to what degree attention weights represent a valid

explanation, this work attempts to avoid the debate by using the structure

of the model as the justification for the explanation [4]. Instead of looking at

unconstrained attention weights, which are a weighted contribution from many

sources, the two part model used in this work first selects a subset of the input

tokens and then makes a prediction based solely off this subset. This ensures

that only the elements from the explanation contribute to the prediction.
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3.3 Using Do-calculus in conjunction with Shap-

ley Values

Shapley values are key in many model-agnostic explanations, however, Shap-

ley values can lead to counterintuitive explanations when features vi¡olate the

independency assumption of its features [13]. Natural language features are

words and to operate as if the occurence of each word is completely indepen-

dent of the rest of the sentence is incorrect. Heskes et al. [13] proposes using

Do-calculus [29] and a causal graph to eliminate the independency assumptions

that can otherwise lead to counterintuitive explanations. “Marginal Shapley

Values” are produced from this independency assumption and are a method for

reducing computational complexity of computing “Conditional Shapley Val-

ues”. Heskes et al. offer a method of computing Shapley values that takes into

account causal relationships in the features; they dub them “Causal Shapley

Values”.

To further specify these Causal Shapley Values, Heskes et al. decompose

this total effect into a direct and an indirect effect. The direct effect is how

some cause Y is affected solely by random variable X2, possible causal models

illustrated in fig. 3.1. The indirect effect is how some other random variable,

X1, contributes to Y . The distinction between which variable is called direct

or indirect is a matter of focus in the experiment. In an experiment where

you are testing the efficay of a new drug, while measuring its interaction with

some lifestyle choice (e.g. amount of water drunk), one would name the drug

effect as direct and the water effect as indirect.
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Chapter 4

Methods

This chapter explores in greater detail the individual aspects of our exper-

iment. The aim of the experiment is to compare the SHAP output of two

different model structures. First, models are trained with intrinsic explana-

tion, explained in 2.4.3. Next, the intrinsic explanation is removed and each

model is retrained. This process is done with CNNs LSTMs and transformers.

Finally, the SHAP pot-hoc explanations for the two groups of models (with

and without intrinsic explanations) are compared.

4.1 Dataset

The ERASER benchmark is a collection of datasets aimed at advancing re-

search on interpretable NLP models [10] covering several NLP tasks – we focus

on the movie review dataset for sentiment analysis. section 4.1 is an abbrevi-

ated example of one of the movie reviews. The human annotated explanation

and the chosen sentiment are both highlighted in yellow. The human annota-

tions are entirely extractive, and as such, pair well with the forms of explana-

tion used in this work. Annotations for a particular movie review consist of a

number of contiguous phrases, giving their start and end word.

4.2 Model Construction

To set up the intrinsic explanation models, we reproduced Lei et al. [22] in

making a two-module network that learns to predict sentiment based on a sub-
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Models were compared using the experimental design shown in fig. 4.2.

Both intrinsic and zero intrinsic models underwent the same training process.

They are then both evaluated with SHAP, and it is these SHAP results that

are used to determine model agnosticism.

4.3 Pipeline

To guarantee consistency between trials, a pipeline was used to train, select,

and modify individual models. The subsequent subsections illustrate the steps

of the pipeline. The ability for SHAP to produce explanations was then com-

pared between counterpart models (e.g. CNNs with and without intrinsic

explanation).

4.3.1 Hyperparameter Selection

The training was done with tensorflow in a wrapper of WandB, a service that

allows the specification of a space of hyperparameters to search, and it will

iterate through the possible combinations based on the given algorithm. If a

grid search algorithm is chosen for WandB, then all possible combinations of

hyperparameters are tested. In this work, a naive bayes algorithm was chosen,

meaning WandB selects hyperparameters from distributions it is provided.

These distributions were chosen from earlier prototypes of the models, by time

constraints, or by exhaustive selection. As WandB iterates through more runs,

it evaluates the performance of models as a function of the hyperparameters

chosen; it uses these findings to better predict hyperparameters for future runs.

4.3.2 Preprocessing

An embedding layer in every model converts the language input into vector

embeddings. That embedding layer was a hyperparameter that varied by type

and size. The embedding was either a fixed Glove [30] embedding or a trainable

Keras [8] embedding layer, but in both cases the embedding size ranged from

50 to 300. Based on a model’s input size, the training and testing set had

to be truncated to the appropriated dimension and the explanation ground
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Hyperparameter Distribution type Range
Learning rate log uniform min:1e-7, max:1e-3
Input size list 100,200,300,400,500
Drop uniform min:0.1 max: 0.5
Embedding size list 50,100,200,300
Selection Lambda log uniform min:0.01, max:1.0
Continuity Lambda log uniform min:0.01, max:1.0
CNN filters list 4,8,16,32,64,128
Transformer heads list 2,4,8
Transformer dense feedforward list 32, 64,128
Transformer layers list 2,4,8
LSTM hidden list 20,50,100,200

Table 4.1: Distributions of hyperparameters

truths to match.

4.3.3 Model Selection

Once a run of models are trained, they are filtered based on their validation set

accuracy in the sentiment analysis task so that the top performing models can

be selected for downstream testing. For each architecture, 400 models were

trained. The top 40 models evaluated by accuracy in the sentiment analysis

task are used for the experiment.

In fig. 4.3 the process is shown where five models begin training as intrinsic

models. From the top-k selected models, we derive counterpart models that

are identical to the original ones except for the fact that intrinsic explanation

regularization is removed. These two intrinsic models are then retrained with

their intrinsic loss functions set to zero (shown in purple). The models trained

with intrinsic explanation are called “intrinsic”, while the models where the

intrinsic explanation was stripped away are called “zero intrinsic”.

4.3.4 Model Modification

These selected models are modified so that their intrinsic explanation regula-

tion is removed, and are retrained as the “zero intrinsic” counterpart. This

was done to retain the most similarity between counterpart models; had the

intrinsic module been removed, the counterpart model would have had con-
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Items Rank1 Rank2 Concordant Discordant
Matrix 1 1 3 0
Princess Bride 2 2 2 0
Gattaca 3 4 0 1
Airplane 4 3

Table 4.2: Two rankings of the same four movies, illustrating how the Kendall
Tau metric is calculated. It is a metric that gives more weight to the higher
ranked elements.

discordant pairs. The Kendall Tau metric is defined as:

τ = (P −Q)/(P +Q)

where P is the number of concordant pairs, Q is the number of discordant

pairs. The Kendall Tau test value ranged from (-1,1) where -1 signifies that

the two lists are in reverse order, 1 for identical order, and 0 means no cor-

relation whatsoever. The Kendall Tau metric was calculated for counterpart

models and every combination of non-counterpart models. With this distri-

bution, a percentile can be calculated for where the counterpart models fall

in comparison to all other non-counterpart models. If a model is, on average,

more similar to its counterpart model than to other models, then it will score

very highly in this percentile metric. If counterpart models are completely

independent, one would expect a middling percentile. A low percentile would

indicate that a random model behaves more similarly than the counterpart

model. table 4.2 shows two possible rankings for the same set of movies. Take

the sum of the concordant column as P, the sum of the discordant column as

Q, and enter them into the formula.

Paired T-tests [36] were used to compare counterpart models. This test

is used to compare means of two groups when each observation in one group

can be paired with an observation from the second group. The paired t-test

gives a notion of whether the treatment, in this case the removal of intrinsic

explanation, had an effect beyond random pertubations that may exist in the

data.
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Chapter 5

Results

We set out to discover whether the underlying structure of a model impacted

the explanations generated by SHAP. A number of tests and comparisons were

used to answer our research question. SHAP returns a value for each token

of the input, and these values can be organized into a ranking of which words

contributed most to the prediction by the blackbox model. Firstly, Kendall

rank correlation coefficient was used to compare an intrinsic model with its

counterpart where the intrinsic explanation was removed. This was done to

give confidence that the modified “zero intrinsic” models are still acting as

small variations on the same model, rather than two different models. Sec-

ondly, the F1 score and the top k accuracy of the models were compared in

paired t-tests. These t-tests give a metric of statistical significance for whether

removing the intrinsic cost functions affected SHAP’s performance. Finally, an

analysis of the different types of models and hyperparameters was performed.

5.1 Ranking

The Kendall Tau metric is used to compare rankings of all pairs of models, to

see how similar counterpart models are. It was found that, a model behaves

more like its counterpart model, on average, than to any other model.

The results from Kendall Tau comparisons are presented in table 5.1. This

shows that on average a model was among the most similar to its counterpart

model than any other model.
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Model Percentile Mean
Transformer 85.47
LSTM 79.11
CNN 75.71

Table 5.1: Where the counterpart models lie in the distribution of the Kendall
Tau metric between all pairs of models. This shows that counterpart models
were generally much more similar to each other than to any other pairing of
models. To be the 100th percentile means that the counterpart models were
the most similar models. It is a percentile mean because this percentile is
averaged across all models.

5.2 Comparisons

To calculate the importance of intrinsic explanations in a model, pairwise

T-Tests were conducted between the counterpart models. In table 5.2, the

performance of the different styles of model, both with(“-intrinsic”) and with-

out intrinsic (“-zero”) explanation, are shown. Two models’ performance from

the dataset are also included at the top.

Model Average Model Accuracy Average F1 Score
Bert-to-Bert pipeline 0.860 0.145
(Lehman et al., 2019) pipeline 0.750 0.139

Transformer-intrinsic 0.759 0.148
Transformer-zero 0.755 0.143
LSTM-intrinsic 0.718 0.176
LSTM-zero 0.718 0.173
CNN-zero 0.770 0.140
CNN-intrinsic 0.772 0.131

Table 5.2: Evaluation metrics compared to ERASER dataset numbers

To ascertain whether differences in the counterpart models had statistical

significance, p-values for table 5.2 are given in table 5.3. The CNN architecture

shows statistical significance in both F1 and top k across all thresholds, while

notably having no statistical significance between model accuracies. This indi-

cates that for the CNN architecture, SHAP is influenced by model structure.

To see that, note that if SHAP was unbiased towards the underlying struc-

ture then there would not be such a strong statistical significance across such a

large paired test. We cannot attribute this statistical significance to differences
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in accuracy, as there was no statistical significance found in that comparison.

Neither the transformer nor the LSTM showed statistical significance in either

model accuracy or explanation metrics.

In table 5.4, side by side comparisons are shown for the intrinsic and

zero intrinsic structures across all three architectures. CNNs show the zero intrinsic

models as the superior model in every category except model accuracy. This

was reflected in table 5.3 where statistical significance in this difference was

found. Despite the lack of statistical significance in evaluation metrics for

transformer, a trend of zero intrinsic outperformance seems to be present.

The LSTM architecture displays a much more balanced result.

T-test performed CNN Transformer LSTM
Model accuracy 0.67 0.46 0.95
F1 @ 0.01 0.011 0.092 0.163
F1 @ 0.02 0.017 0.265 0.859
F1 @ 0.05 0.017 0.389 0.791
F1 @ 0.10 0.013 0.406 0.627
F1 @ 0.20 0.013 0.459 0.396
F1 @ 0.50 0.015 0.435 0.449
Top k @ 1 0.001 0.651 0.331
Top k @ 5 0.000 0.482 0.308
Top k @ 10 0.000 0.470 0.280
Top k @ 20 0.000 0.592 0.807

Table 5.3: P-values from pairwise T-tests when comparing the intrinsic model
set with the zero intrinsic model set. P-values indicating statistical signifi-
cance are highlighted in blue. Statistical significance for the F1 score and
top k indicates whether SHAP’s explanations were affected by the removal of
intrinsic explanation. There was no statistical significance in model accuracy
in any architecture.
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Metrics CNN-int CNN-zero Tra-int Tra-zero LSTM-int LSTM-zero
Model accuracy 0.772 0.770 0.759 0.755 0.718 0.718

F1 @ 0.01 0.131 0.140 0.143 0.148 0.176 0.173
F1 @ 0.02 0.122 0.136 0.136 0.141 0.169 0.170
F1 @ 0.05 0.116 0.134 0.133 0.138 0.144 0.145
F1 @ 0.10 0.116 0.135 0.134 0.138 0.138 0.135
F1 @ 0.20 0.116 0.135 0.135 0.139 0.137 0.132
F1 @ 0.50 0.117 0.135 0.136 0.140 0.137 0.133
Top k @ 1 0.100 0.114 0.166 0.169 0.142 0.150
Top k @ 5 0.098 0.110 0.144 0.147 0.145 0.149
Top k @ 10 0.096 0.105 0.135 0.133 0.133 0.136
Top k @ 20 0.093 0.099 0.122 0.121 0.123 0.124

Table 5.4: Metrics for each architecture-structure pairing. Transformer is ab-
breviated to “tra”. Colouring indicates the better performing model between
the two different model structures for each architecture.

The accuracy of the top k results from SHAP being in the ground truth are

illustrated in figs. 5.1, 5.3 and 5.5. The F1 score for varying levels of threshold

for which to include each word for the extractive explanation are shown in

figs. 5.2, 5.4 and 5.6.

The results in figs. 5.1 to 5.6 show three different subsets of the data:

“all” which is the entire dataset, “correct” which are only the rows the model

answered the sentiment analysis task correctly, and “confident” which are the

rows the model was confident. Confidence was defined as a prediction made

at or higher than 60%. The results from the different thresholds support

the notion that the generated explanations are explaining the model, because

the “correct” subset generally performs the best. Since the explanations are

generated to make the prediction, an error in prediction could be the result of

a poor explanation.
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Figure 5.1: Measuring top k accuracy for different values of k for CNN models.
This graph shows a clear gap between intrinsic and zero intrinsic models across
all subsets of data. The top k accuracy does not seem to be much affected by
which subset of data.
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Figure 5.2: Measuring F1 score across varying thresholds for converting SHAP
values to explanations for CNN models. Choice of subset has a noticable effect
on performance, however all zero intrinsic treatment runs outperform intrinsic
treatment runs. In both model treatments, explanation F1 score was improved
when only considering when the model was confident, the best results were
when considering only the instances where it was correct.
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Figure 5.3: Measuring top k accuracy for different values of k for transformer
models. This graph shows there is no clear difference between model treatment.
Depending on data subset, intrinsic or zero intrinsic may be best. Across
most values of k, the accuracy is improved slightly when considering only the
confident subset, and improved more when considering the correct subset.
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Figure 5.4: Measuring F1 score across varying thresholds for converting SHAP
values to explanations for transformer models. Intrinsic and zero intrinsic
treatments are grouped by subset, with the correct subset outperforming and
the confident subset underperforming the entire dataset.
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Figure 5.5: Measuring top k accuracy for different values of k for LSTM mod-
els. All lines, except for the correct subset, are tightly intertwined. The
intrinsic treatment outperforms the zero intrinsic treatment for this correct
subset.
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Figure 5.6: Measuring F1 score across varying thresholds for converting SHAP
values to explanations for LSTM models. The confident subsection was almost
identical to the entire dataset for both the intrinsic and zero intrinsic treat-
ments. The zero intrinsic treatment outperforms the intrinsic treatment for
the correct subset.
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Figure 5.7: Hyperparameter importance for the CNN models while training.
Glove, as opposed to a Keras embedding, is a hindrance to predictive accuracy
of models in training. In the “Correlation” column, red indicates a negative
number, green indicates a positive number, and the size of the bar indicates
magnitude. In the “Importance” column, it is only the magnitude to be con-
sidered.

5.3 Hyperparameters

Model specific hyperparameter correlation and importance were calculated to

facilitate a better use of training time. These metrics are calculated in WandB

and an example is shown in fig. 5.7. This figure offers two metrics: correlation

and importance. Correlation is a measure of linear correlation between a

hyperparameter and some model metric. Importance is the result of training

a random forest using hyperparameters as input to predict the model metric.

A linear model was also fit to see what variance could be explained for

both the predicting ability and the F1 score for each architecture in tables 5.5

to 5.10.

Glove embeddings had different effects on the training and the evaluaion of

SHAP. For both CNN and transformer architectures, glove embeddings were

a negative influence on the prediction results, glove embeddings actually gave

SHAP explanations a higher F1 score. This effect was statistically significant

in both prediction and F1 score. This may be because glove embeddings were
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Parameter Coef Std. Err. T-value P-value
Intercept 0.7351 0.027 27.269 0.000
batch-size -0.0001 0.000 -0.607 0.546
selection -0.0636 0.047 -1.345 0.183
continuity 0.0030 0.014 0.209 0.835
drop 0.0484 0.027 1.787 0.078
embedding-size 7.801e-05 5.31e-05 1.469 0.146
glove -0.0504 0.007 -7.444 0.000
input-size 7.474e-05 2.67e-05 2.800 0.007

Table 5.5: Linear regression results for the CNN models. Highlighting indi-
cates a p-value < 0.05. Resulting coefficients from fitting the equation: predic-
tion accuracy= batch-size + selection +continuity + drop + embedding-size
+ glove + input-size
This shows glove’s statistical significance in determining a model’s prediction
score for the resulting explanation from SHAP. The R2 value was .504

Parameter Coef Std. Err. T-value P-value
Intercept 0.1433 0.021 6.912 0.000
batch-size 6.276e-05 0.000 0.374 0.709
selection -0.0428 0.036 -1.179 0.243
continuity -0.0039 0.011 -0.358 0.722
drop 0.0155 0.021 0.746 0.458
embedding-size 5.738e-06 4.08e-05 0.140 0.889
glove 0.0255 0.005 4.897 0.000
input-size -5.171e-05 2.05e-05 -2.519 0.014

Table 5.6: Linear regression results for the CNN models. Highlighting indi-
cates a p-value < 0.05. Resulting coefficients from fitting the equation: F1 =
batch-size + selection +continuity + drop + embedding-size + glove + input-
size
This shows glove’s statistical significance in determining a model’s F1 score
for the resulting explanation from SHAP. The R2 value was .382

trained to differentiate words, while the Keras embeddings are only focused on

maximizing predictive score. Because Keras embeddings are a trained layer,

their loss function will be in line with prediction accuracy instead of expla-

nation F1 score. Glove embeddings, on the other hand, have been previously

trained to give some notion of word similarity based on co-occurence. The

information and relations learned through the training of Glove embeddings

seems to produce better explanation scores.
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Parameter Coef Std. Err. T-value P-value
Intercept 0.7506 0.023 32.212 0.000
batch-size -0.0002 0.000 -0.601 0.551
selection -0.0592 0.107 -0.552 0.584
continuity 0.0207 0.014 1.517 0.136
drop 0.0009 0.044 0.020 0.984
embedding-size 0.0002 5.08e-05 3.049 0.004
glove -0.0481 0.011 -4.385 0.000
input-size 8.009e-05 4.04e-05 1.981 0.053

Table 5.7: Linear regression results for the Transformer models. Highlighting
indicates a p-value < 0.05. Resulting coefficients from fitting the equation:
prediction accuracy= batch-size + selection +continuity + drop + embedding-
size + glove + input-size
This shows glove’s statistical significance in determining a model’s prediction
score for the resulting explanation from SHAP. The R2 value was .335 .

Parameter Coef Std. Err. T-value P-value
Intercept 0.1746 0.017 10.107 0.000
batch-size -0.0004 0.000 -1.841 0.072
selection 0.0139 0.080 0.174 0.862
continuity 0.0073 0.010 0.718 0.476
drop 0.0272 0.033 0.832 0.409
embedding-size 6.103e-06 3.77e-05 0.162 0.872
glove 0.0187 0.008 2.302 0.026
input-size -0.0001 3e-05 -3.934 0.000

Table 5.8: Linear regression results for the Transformer models. Highlighting
indicates a p-value < 0.05. Resulting coefficients from fitting the equation:
F1 = batch-size + selection +continuity + drop + embedding-size + glove +
input-size
This shows glove’s statistical significance in determining a model’s F1 score
for the resulting explanation from SHAP. The R2 value was .418.
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Parameter Coef Std. Err. T-value P-value
Intercept 0.6617 0.024 27.251 0.000
batch-size 1.018e-05 6.34e-05 0.161 0.874
selection 0.0306 0.032 0.965 0.345
continuity 0.0128 0.016 0.787 0.440
drop 0.0430 0.024 1.788 0.088
embedding-size 2.787e-05 8.2e-05 0.340 0.737
glove 0.0193 0.012 1.560 0.133
input-size 0.0002 7.91e-05 2.257 0.034

Table 5.9: Linear regression results for the LSTM models. Highlighting
indicates a p-value < 0.05. Resulting coefficients from fitting the equation:
prediction accuracy= batch-size + selection +continuity + drop + embedding-
size + glove + input-size
This indicates only statistical significance for input-size, however at a very low
value. The R2 value was 0.491.

Parameter Coef Std. Err. T-value P-value
Intercept 0.1831 0.015 11.870 0.000
batch-size 4.631e-05 4.03e-05 1.150 0.263
selection 0.0025 0.020 0.122 0.904
continuity -0.0110 0.010 -1.069 0.296
drop -0.0051 0.015 -0.332 0.743
embedding-size 5.975e-05 5.21e-05 1.147 0.264
glove -0.0060 0.008 -0.765 0.452
input-size -0.0002 5.02e-05 -3.195 0.004

Table 5.10: Linear regression results for the LSTM models. Highlighting
indicates a p-value < 0.05. Resulting coefficients from fitting the equation:
F1 = batch-size + selection +continuity + drop + embedding-size + glove +
input-size
This indicates only statistical significance for input-size, however at a very low
value. The R2 value was 0.479.
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Chapter 6

Conclusion

In this work, we investigated whether model structure could affect the quality

of SHAP explanations in a sentiment analysis task. To do that investigation,

we compared multiple counterpart models from three different architectures

(CNN, LSTM, Transformer) with and without intrinsic explanations.

When comparing F1 scores and accuracy at top k between these counter-

part pairs of structures, the only model architecture that had a statistically

significant difference was the CNN architecture. Notably, the difference in

predictive accuracy between the models with intrinsic explanation and those

without, was not statistically significant. These two observations indicate that

model structure has a role in determining SHAP efficacy. If SHAP was not af-

fected by model structure, then we would have expected to see either a change

in F1 score correlating with prediction accuracy, or no change in F1 score

between model structures.

6.1 Limitations

The sentiment analysis dataset from Eraser has only 2000 samples. With such

a small dataset, we can’t assume that the statistical significance will hold for

all sentiment analysis tasks or even a larger movie review dataset.
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6.2 Discussion

The question remains for why the effect measured in the CNN models may

have happened. To attempt to answer this, refer to how SHAP calculates

feature importance and how the model intrinsic explanation was constructed.

SHAP perturbs the input iteratively, assigning more importance to features

that are more often important in model prediction. The intrinsic explanation

has a generator layer to mask input tokens that is only ever trained on com-

plete inputs. This means that there is no notion of whether the generator (the

first module of the model, shown in fig. 2.7 works for strange input combi-

nations that SHAP may provide. While the generator may provide adequate

explanations for regular language, an input that has already had a number

of tokens masked may be out of scope for the generator. This may result in

the generator masking tokens that would not have been masked if given the

full input, which could negatively impact SHAP’s ability to determine which

tokens contributed the most to the blackbox output.

However, the reason for the difference in F1 may not have been solely due

to the intrinsic explanation, but could have been the explanation treatment

in conjunction with model architecture. Statistical significance was not found

across the board in the comparison of explanation treatment types. It was

only found in the CNN models. A key element of the CNN design is a kernel

that convolves the input. This kernel has limited context and may not be able

to cope with having masked inputs.

The significance of these results is that they show there may be a way

to increase a model’s explanation score, without significantly changing model

training. Whether this increase in model explanation score correlates to more

explainable models or whether it is simply a flaw in SHAP’s calculations is not

answered with these results. If the increase in model explanation score does

not provide an explanation that a human finds more helpful, then this may be

a way to game the SHAP value.
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6.3 Future Work

A large issue for SHAP is the interdependency of features. Following Chen

and Jordan [7], a parse tree could be input to SHAP to use instead of the

default partition scheme. The default partition scheme illustrated in fig. 2.5

and fig. 2.6, does not use any linguistic knowledge to make the partitions. This

could alleviate a major hurdle for dealing with natural language at the same

time as injecting more domain information into the process.

If SHAP or similar libraries maintain their relevance in XAI, developing a

dataset geared towards their style could be beneficial. SHAP provides scores

to every token, which can be positive or negative for the particular class pre-

diction. The Eraser datasets provide only explanations that contribute to the

actual prediction, rather than also explanations for what hindered the pre-

diction. The annotation process could instead be structured so that for each

prediction class, annotators find phrases that contribute to that class.

Since glove embeddings accounted for such a large portion of the variance

in the results, it seems a good avenue to explore whether other embeddings can

further improve SHAP. In particular, an approach of interpretable embeddings

like in Panigrahi et al. [28] could yield interesting results.
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