Minimal Well-Founded Semantics

and Autoepistemic Circumscription *

L1 Yan Yuan
Department of Computing Science
The University of Alberta
Edmonton, CANADA T6G 2H1
yuan@cs.ualberta.ca

Abstract

In this paper we propose the minimal well-founded semantics for logic programs with
negation based on the fixpoint of the double Gelfond-Lifschitz transformation which
overcomes the existing problems associated with the stable, the well-founded, and the
stable class semantics. By representing logic programs as autoepistemic theories, we
are able to represent various semantics as simple circumscription formulas

KEY WORDS: Logic Program Semantics, Autoepistemic Logic, Circumscription

1 Introduction

The fixpoint and the alternating fixpoint, based on the Gelfond-Lifschitz (GL) transforma-
tion introduced in [5], have been used to characterize both the stable and the well-founded
semantics, two most prominent semantics for logic programs with negation [2, 1]. In fact,
an interpretation [/ is a stable model of program P if and only if it is a fixpoint of the
GL-transformation of P and the well-founded semantics is determined by the set of all
alternating fixpoints, i.e., fixpoints of the double GL transformation, of program P.

*This paper is available as a technical report TR92-15 at the University of Alberta, Computing Science
Department.

The stable semantics [5] for logic programs is handicapped by the no-stable-model prob-
lem that programs may not always have stable models while the well-founded semantics [3]
may not be adequate to characterize the intuitive meaning of logic programs [6, 1]. (See
Section 3 for details.)

Recently, Baral and Subrahmanian have proposed the stable class semantics to resolve
the problems associated with the stable and the well-founded semantics[1]. The basic idea
is that the GL transformation of a program may not have any fixpoint, but there might be
a collection of points, called the stable class, so the GL-transformation cycles around this
collection of points. Then the stable class semantics is defined by the union of all minimal
stable classes. As shown in [1], the stable class semantics is always consistent and it indeed
presents the intuitive meaning for some programs. However, Example 3.3 in Section 3 shows
that the stable class semantics suffers from the problem that unreasonable conclusions may
be deduced.

In this paper, we are trying to resolve the same problems addressed by Baral and
Subrahmanian, but take a different approach. A program may not always have fixpoints,
which is the cause of the no-stable-model problem, but it always has at least one alternating
fixpoint. Instead of considering stable classes, we concentrate on alternating fixpoints.

Since the well-founded semantics is determined by the set of all alternating fixpoints,
not necessarily those minimal ones, and the inadequateness of the well-founded semantics is
caused by those non-minimal alternating fixpoints, it is natural to extend the well-founded
semantics by using only minimal alternating fixpoints, which leads to our definition of the
minimal well-founded semantics.

We have demonstrated that the minimal well-founded semantics has overcome those ex-
isting problems associated with the stable, the well-founded, and the stable class semantics.

Following the direction of representing a logic program as an autoepistemic theory [4,
10, 11], we are able to represent various semantics of logic programs in terms of second
order formulas, namely, circumscription formulas on autoepistemic theories.

Let P(P,LP) be an autoepistemic theory for a logic program, we show that the stable
semantics is characterized by

CIRC(P(P,LP); P)N(P=LP)
and the well-founded semantics is characterized by
CIRC(P(P,LP); PYNCIRC(P(LP,P); LP)

The minimal well-founded semantics can also be characterized by a second order formula.

2 The Alternating Fixpoint Revisited
A logic program is a set of clauses of the form
a—by,...,b,,c1, ..., 0y

where m,n > 0 and a, b;’s, and ¢;’s are atoms. Without loss of generality we assume that the
program has been instantiated and thus consists of a (possibly infinite) set of propositional
clauses.

Let P be a program and I a (two-valued) Herbrand interpretation of P. Then the
Gelfond-Lifschitz transformation of P with respect to I is the logic program P’ obtained
from P as follows:

1. eliminating from P each clause whose body contains the negation of an atom in [;
2. from the body of each remaining clause in P, delete all negative literals.

Recall the transformation Tp([), called the immediate consequence operator for a Horn
program, whose output is a set of atoms such that @ € Tp([) if and only if a is the head of
some clause in P all of whose literals in the body are in I. P! is a Horn program and hence
has a unique least model which is given by Tpr | w.

We define Sp(I) = Tpr T w. A fizpoint of Sp is an interpretation of P such that
I =Sp(I). A fixpoint of Sp is also called a fixpoint of P

Proposition 2.1 ([5, 2]) I is a stable model of P if and only if [is a fixpoint of Sp. O

One of the problem here is that Sp may not always have fixpoints.

Van Gelder proposed the alternating fixpoint to resolve the problem. The basic idea
is that Sp man not always have fixpoints, but Sp(Sp([1)), the double GL-transformation,
does.

An alternating fizpoint of program P is an interpretation I of P such that

I'=Sp(Sp(1))

Let Ap(I) be Sp(Sp(1)). By [2, 1], Sp is antimonotonic, that is, Sp(/) C Sp(J) if J C I,
and Ap is monotonic, whose least fixpoint is given by Ap T w. Therefore, every logic
program has at least one alternating fixpoint.

Proposition 2.2 ([2]) Let 7" be Ap | w, the least fixpoint of Ap, F' = {ala ¢ Sp(T)}.
Then < T, F > is the well-founded model of P. a

In fact, the well-founded semantics can also be characterized by the set of all alternating
fixpoints. The proof of the following corollary follows from the above proposition and the
fact that Sp is antimonotonic and Ap is monotonic.

Corollary 2.3 A literal L is true in the well-founded semantics of P if and only if it is true
in every alternating fixpoint of P. a

Baral and Subrahmanian proposed the stable class semantics to resolve the no-stable-
model problem [1]. A stable class of program P is a set S of interpretations of P such
that

S={Sp(I)|l €S}

Then the sable class semantics is defined by the union of all minimal strict stable classes
of P, based on the preference relation defined in [1]. They have also shown that the stable
and the stable class semantics coincide for stratified programs.

3 Problems with Existing Semantics

All three prominent semantics can be characterized by the fixpoints of GL-based transfor-
mations. However the following examples demonstrate various problems with these three
semantics which must be addressed.

Example 3.1 Consider P given by

a «— —b

b— -a

p—a

p—"p
This program has a unique stable model {b,p}. Due to the self-recursion of the fourth
clause, it is very difficult to determine the value of p. However such difficulty shall not be
used to justify the truth values of both b and p. O

The above example shows that, other than the inconsistency problem, the stable seman-
tics also suffers from the biased-truth-assignment problem. The well-founded semantics, on
the other hand, may not be adequate to characterize the meaning of logic programs, as
demonstrated by the following example.

Example 3.2 ([1]) Consider the following program P

a <~ —b
b~ —a
c—a
c—b

P has four alternating fixpoints, that is, my = {a,c} and my = {b,c}, mz = 0, and
my = {a,b,c}, Among which, the first two are stable models.

Our intuition tells us that ¢ should be true according to the semantics of P, while both a
and b should have an unknown truth value. These are exactly the truth values assigned by
the stable semantics. However, the well-founded semantics assigns the unknown to all three
atoms, due to the very existence of two extra alternating fixpoints that are not fixpoints,
namely ms and my. a

The stable class semantics characterizes the intuitive meaning for programs in the above
two examples. However, the following example clearly shows that the stable class semantics
may yield unreasonable conclusions.

Example 3.3 Let P be given by

a — —a
b— —b
c+— a,"a
c—b,b

P has two strict stable classes, viz. C1 = {{a,b,c},0},and Cy = {{a, ¢}, {b,c}}, but only Cy
is minimal. Therefore, the stable class semantics of P is determined by C5, which implied
c is true.

Since the premises for ¢ can not be satisfied in any circumstance, ¢ shall not be true in
any reasonable semantics. a

4 Minimal Well-Founded Semantics

The well-founded semantics is based on the alternating fixpoints and therefore, avoids the
no-fixpoint problem. However, not every alternating fixpoint makes positive contributions
to defining semantics. We believe the inadequateness of the well-founded semantics is due
to those undesirable alternating fixpoints such as ms and my4 in Example 3.2.

The stable class semantics uses the preference relation between the stable classes to rule
out those undesirable stable classes. However, the preference relation used by Baral and
Subrahmanian is solely based on the largeness of stable classes, which may retain wrong
stable classes.

Consider P in Example 3.3 again. P has two strict stable classes ¢ and 5 that are
comprised of four alternating fixpoints of P, viz. my = {a,b,c}, my = 0, ms = {a, ¢}, and
myq = {b,c}. The undesirable conclusion of the stable class semantics may be avoided if
(1 is preferred to 5, not vice versa. Readers may notice that among all four alternating
fixpoints of P, my is the only one that is also a model of P.

We take a different approach to eliminating undesirable alternating fixpoints.

First, we believe only those alternating fixpoints that are models of program P are of our
interest. An alternating fixpoint which is not a model of the program may yield conclusions
based on inconsistent assumptions. Secondly, some alternating fixpoints are larger than
others and therefore should be eliminated, as otherwise, little negative interpretations may
be deduced.

In the following definition we first define minimal alternating fizpoints of programs to
eliminate those undesirable alternating fixpoints, and then define the minimal well-founded
semantics based on the minimal alternating fixpoints.

Definition 4.1 Let P be a program and I an alternating fixpoint of P. Then I is said to
be

1. an m-alternating fixpoint ' of P if I is a model of P;
2. a minimal alternating fixpoint of P if

(a) [is an m-alternating fixpoint of P, and

(b) no proper subset of I is an m-alternating fixpoint of P; and

3. a minimal well-founded model of P if there exists a minimal alternating fixpoint J of
P such that either I = J or I = Sp(J).

The minimal well-founded semantics of P is then defined by the set of all minimal
well-founded models of P. a

Example 4.1 P in Example 3.1 has five alternating fixpoint, viz.

my = {bvp}v my = {avp}v ms3 = {a}v my = {aabap}, ms = @

Of which, my and mg are only minimal alternating fixpoints, and ms = Sp(mgz). Therefore,
the minimal well-founded models are mq, ms, and ms.

The stable semantics is biased toward b and p, while the minimal well-founded semantics
as well as the stable class semantics characterize the intuitive meaning of P. O

Example 4.2 The set of all minimal well-founded models of P in Example 3.2 is m; and
ma, i.e., the set of all its stable models. O

! According to Lemma 4.1, an m-alternating fixpoint can also be defined as an alternating fixpoint I such

that Sp(I) C I.

Example 4.3 Consider P in Example 3.3 again. P has only one minimal alternating
fixpoint, viz. my = {a,b,c}, and my = Sp(my) = 0. Therefore, the minimal well-founded
semantics is determined by my and ms. a

In summary, among all four semantics discussed so far, the minimal well-founded se-
mantics is the only one that adequately characterizes the intuitive meaning of all logic
programs discussed in the previous section. Furthermore, the following theorem shows that
the minimal well-founded semantics is always consistent.

First, we show a utility lemma.

Lemma 4.1 An alternating fixpoint / of P is a model of P if and only if Sp(1) C 1.
Proof: (=) Assume [is a model of P. Then [is also a model of PI. Since Sp(I) is the
least model of P1, Sp(I)C I.

(<) Assume Sp(]) C I and there exists a clause

a—by,...,b,,c1, ..., 0y

in P that is false in I, that is, b;’s are in I, ¢;’s are not in /, and @ is not in /. Since Sp(l) C I
and Sp(Sp(l)) = I, ¢;’s are not in Sp(l) and b;’s are in Sp(Sp(f)), which implies a is
contained in Sp(Sp([l)). This contradicts to the fact that @ ¢ I and I = Sp(Sp([)). O

Theorem 4.1 Any logic program has at least one minimal well-founded model.
Proof: 1t is sufficient to construct an alternating fixpoint that is also a model of P.

Let I = Ap | w, i.e., the least fixpoint of Ap, and J = Sp(I). Then J is also an
alternating fixpoint of P, since I = Sp(Sp(L)) = Sp(J).

Since [is the least alternating fixpoint, we have [C J, i.e., Sp(/) C I. By Lemma 4.1,
I is a model of P. a

5 Relationship with the Stable Class Semantics

In this section, we compare the minimal well-founded semantics with the stable class se-
mantics.

Let P be a program and S a stable class of P. The lowest upper bound of S, denoted
as [ub(S), is the smallest interpretation I such that every interpretation in S is a subset
of I. A stable class is said to be normal if [ub(S) € 5. Obviously, not every stable class
is normal. For example, C7 in Example 3.3 is normal but €5 is not. The meaning of a
normal stable class is well-defined since the class contains its lowest upper bound. In our
approach, we require that the concerned alternating fixpoints be models of the program. In
the following theorem we are gong to show that there exists a one-to-one correspondence
between the m-alternating fixpoint and the normal stable class.

Theorem 5.1 [is an m-alternating fixpoint of program P if and only if there exists a
normal stable class S of P such that I = lub(5).
Proof: (=) Assume [is an m-alternating fixpoint of P. Let J = Sp([). Then {I,J} is a
stable class of P. Since [is a model of P, by Lemma 4.1, J C I, and therefore, {I,.J} is
normal and [= lub({l,J}).

(<) Assume S is a normal stable class of P and I = [ub(S). Let J = Sp(/) and
K = Sp(J) = Sp(Sp(I)) = Ap(I). Since S is a stable class, J € S and K € S, which
implies that K C I. Furthermore, since I € .5 and S is a stable class, there exist [y and
Iy in S such that I = Sp([y) and I1 = Sp(ly), that is, I = Ap(l3) and I, € S. It follows
that I C K since I, C I and Ap is monotonic. Therefore, I = K, since K C I. It follows
that I is an alternating fixpoint. Furthermore, since Sp(/) C I, by Lemma 4.1, I is an
m-alternating fixpoint of P. O

From the above proof we can see that each normal stable class S contains a normal
class S” such that (1) S’ has at most two interpretations and (2) S and S’ have the same
lowest upper bound. Furtheremore, Let I = [ub(.S) for some normal stable class S. Since
Sp is antimonotonic, Sp([) is the greatest lower bound of 5 and Sp([) is in S. Therefore,
the meaning of a normal stable class is always determined by its lowest upper bound and
greatest lower bound, not any other interpretations.

A normal stable clagss S of P is said to be minimal if there exists no normal stable
class S’ of P such that [ub(S") C lub(S). Then, by Theorem 5.1, the minimal well-founded
semantics is determined by the set of all minimal normal stable classes.

Corollary 5.2 The minimal well-founded semantics is determined by the union of all min-
imal normal stable classes. a

6 Autoepistemic Circumscription

In this section, we demonstrate various equivalences between the semantics of logic programs
and the autoepistemic circumscription theories.

Circumscription has been proposed to express the idea that the extensions of abnormal
predicates should be minimized. Let T(Q, P) be a logic theory, where @, P are disjoint
predicates in 7. Then CIRC(T(Q, P); P)is used to denote the circumscription of T on P,
i.e., a second order theory in which the extension of P has been minimized [8, 9, 7].

Gelfond has first proposed to represent a logic program with negation as an autoepis-
temic theory by replacing negative literals —¢ with =Le¢, standing for believing in —c¢ [4].

Definition 6.1 Assume P is a logic program with a set P of predicates. Let £LP be the
set of belief predicates whose negation standing for “believing in ~P”. Then P(P,LP) is

used to represent the corresponding autoepistemic theory (also called the belief theory)
consisting of clauses
@ —byA-ANby A=Ley A+ A—Ley,.

a

Example 6.1 P = {a — -b; p — a,~q; ¢ < b,~p} can be represented by a belief
theory P(P,LP) = {a — —~Lb; p— a,~Lqg; q— b,~Lp}. Note that P = {a,b,p,q} and
LP ={La,Lb,Lp,Lq}. a

For convenience, from now on, we identify a program P(P) with its corresponding
autoepistemic theory P(P, LP) if there is no confusion.

More notations here. Assume T'(P,LP) is a logic theory. A P-interpretation (or LP-
interpretation) of 7' is an interpretation of 7' containing only atoms whose predicates are
from P (or LP). A P-model I of T is a P-interpretation such that there exists an £P-
interpretation J and I U J is a model of T. An LP-model is defined similarly. Suppose
F(P) is a logic theory, then F(LP) is the theory obtained from F(P) by replacing each
predicate p with Lp.

Theorem 6.1 Let P(P,LP) be a logic program and [be a P-interpretation of P. Then
1. Sp() = {a|CIRC(P(P,LP); P)ANTy, |= a}, where 17, = {=Lala ¢ I}.
2. Iis a fixpoint of P if and only if I is a P-model of
CIRC(P(P,LP); P)N(P =LP)
where P = LP means a < La for each atom a € P.
3. I is an alternating fixpoint of P if and only if I is a P-model of

CIRC(P(P,LP); P)A CIRC(P(LP, P); LP)

Proof: (1) a is contained in Sp(I) if and only if P! |= a, that is, if and only if
CIRC(PY(P); P) = a

However, C1RC(PY(P); P) and CIRC(P(P,LP); P) ATy, is equivalent as far as the P-
interpretation is concerned. (2) and (3) follow from (1). O

Then both the stable and the well-founded semantics can be characterized by autoepis-
temic circumscription theories. The proof of the following theorem is straightforward.

Theorem 6.2 1. The stable semantics of program P is characterized by

CIRC(P(P,LP); P)A(P = LP)

2. The well-founded semantics of program P is characterized by
CIRC(P(P,LP); PYNCIRC(P(LP,P); LP)

a

Now we define the minimal well-founded semantics in terms of autoepistemic circum-
scription. Suppose P(P, LP) is a logic program, then Ty, ¢(P, LP) is used to denote

P(LP) A CIRC(P(P,LP); P)A CIRC(P(LP,P); LP)

Theorem 6.3 A formula F(P) is true in the minimum well-founded semantics of P if and
only if F(P) A F(LP) is a logical consequence of

Tws(P,LPYA-3(P', LP)(Tys (P, LP'YA (LP' C LP))

where LP' C LP mean the extension of £LP’ is the proper subset of that of LP.
Proof: First, we specify some notations. Assume [is a P-interepretation, then I, denotes
the corresponding £ P-interpretation, that is, I, = {La|a € I}.

Let T} ¢ (P, LP) denote

Tt (P, LPYA ~3(P', LP)(Tys (P, LP'YA(LP C LP)).

By Theorem 6.1 (3), [is an m-alternating fixpoint of program P if and only if I is an
LP-model of T, s(P, LP). Therefore, I is a minimal alternating fixpoint of P if and only if
I is an LP-model of T, ¢(P, LP).

Assume [and J are two P-interpretations such that I U Jg is a model of T, (P, LP).
Then by Theorem 6.1 (3), I = Sp(J) and J = Sp(l). Therefore, I is a minimal well-
founded model of P if and only if either I is a P-model of T},,,,; or I, is an £P-model of
Tiwy. It follows that F(P) is true in the minimal well-founded semantics of P if and only

if F(P) is true in every P-model of T),,,; and F(LP) is true in every LP-model of T,,+.
a

10

7 Conclusions

We propose the minimal well-founded semantics based on the alternating fixpoints of pro-
grams, and demonstrate that the minimal well-founded semantics has overcome many ex-
isting problems associated with the stable, the well-founded, and the stable class semantics.
We also demonstrate various equivalences between the semantics of logic programs and the
autoepistemic circumscription formulas.

Our work is inspired by that of Baral and Subrahmanian. However, two approaches
are quite different. By considering all stable classes, the stable class semantics suffers
from the problem that unreasonable conclusions may be deduced. On the other hand, we
consider only those alternating fixpoints which are also models of the program and therefore,
characterize the intuitive meanings of logic programs.

We have demonstrated that the stable class semantics would be the same as the mini-
mal well-founded semantics if only normal stable classes are considered, and therefore, the
unreasonable conclusions can be avoided.

Baral and Subrahmanian have extended the stable class semantics into the default theory
[1]. We believe our approach can also be used to define the extended semantics for the
default theory which will be discussed in our forthcoming paper.

References

[1] C.R. Baral and V.S. Subrahmanian. Stable and extension class theory for logic pro-
grams and default logics. Journal of Automated Reasoning, 345 — 366, 1992.

[2] A. Van Gelder. The alternatin fixpoints of logic programs with negation. In Proceedings
of the 8th ACM PODS, pages 1 — 10, 1989.

[3] A. Van Gelder, K. Ross, and J.S. Schlipf. The well-founded semantics for general logic
programs. JACM, 38:620 — 650, 1991.

[4] M. Gelfond. On stratified autoepistemic theories. In Proceedings of AAAI-87, 1987.

[65] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
Proc. of the 5th Intl. Conference and Symposium on Logic Programming, pages 1070—
1080, 1988.

[6] Y. Hu and L. Yuan. Extended well founded semantics for logic programs with negations.
In Proceedings of the 8th International Conference on Logic Programming, pages 412
— 425, 1991.

11

[7] V. Lifschitz. Computing circumscription. In Proceedings of the 9th Int. Joint Confer-
ence on Al, 1986.

[8] J. McCarthy. Applications of circumscription to formalizing common sense knowledge.
AT, 28:89-116, 1986.

9| J. MCC&I’th}i. CiI’CllmSCI’iptiOIl — a form of non-monotonic reasoning. AI, 1327*39,
g

[10] T.C. Przymusinski. Autoepistemic logics of closed world beliefs and logic program-
ming. In Proc. of the Workshop on Nonmonotonic Reasoning and Logic Programming,
pages 3-20, 1991.

[11] L. Yuan and J. You. Autoepistemic circumscription and logic programs. Journal of
Automated Reasoning, to appear.

12

