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Abstract

In the realm of image processing, machine learning models have achieved remarkable

progress in tasks such as classification, recognition, and video analysis. However,

their reliance on closed-set assumptions limits their performance in real-world scenar-

ios where unseen anomalies frequently occur. This limitation is particularly critical

in medical applications, where undetected anomalies can have severe consequences.

Addressing this open-set problem through anomaly detection is imperative for devel-

oping robust systems capable of adapting to unpredictable real-world scenarios.

In this context, medical anomaly detection stands as a pivotal challenge due to

the inherent unpredictability of pathological conditions. Despite recent advances,

existing benchmarks for anomaly detection primarily focus on industrial and natural

images, neglecting the specific requirements of medical domains. This has led to

inconsistencies in data utilization and a lack of standardized evaluation protocols,

impeding fair comparisons among methods. To bridge this gap, we introduce BMAD,

a unified benchmark tailored specifically for assessing anomaly detection methods on

medical images. BMAD comprises six reorganized datasets spanning five medical

domains, alongside standardized evaluation metrics and a comprehensive codebase

supporting 15 state-of-the-art algorithms.

The analysis on BMAD reveals that no single model achieves universal effective-

ness across multiple medical domains, emphasizing the need for more generalized

approaches. To this end, we propose a novel multimodal framework leveraging the

Contrastive Language-Image Pre-training (CLIP) model to identify anomalies within

medical data. By employing language models to describe and reconstruct image infor-
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mation, our approach achieves state-of-the-art performance across multiple domains,

demonstrating improved generalization capabilities.
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Chapter 1

Introduction

1.1 Thesis Motivation and Scope

With the proliferation of machine learning in image processing, numerous models

have emerged, proficiently tackling diverse tasks like classification, recognition, and

video analysis. While these methods excel in their respective niches, they often suffer

from a key limitation: their performance is inherently tied to the specific datasets

they’ve been trained on. This limitation, known as the closed-set problem, becomes

particularly pronounced in the realm of detection task. In the canonical setting, clas-

sifiers are designed and trained to identify instances belonging to known categories,

but in the real world, systems may be confronted with inputs that do not belong to

any of the predefined classes they were trained on. These unknown or unseen classes

pose a significant challenge, as misclassifying them as one of the known classes can

lead to catastrophic consequences, especially in safety-critical applications such as

autonomous driving, medical diagnosis, and surveillance systems. Hence, the quest

for effective strategies to address the open-set problem is necessary, among which un-

supervised anomaly detection relying on normal samples during model training has

potential to advance the field.

When delving into the applications of open-set concepts, unsupervised anomaly

detection, which targets to identify the unseen abnormalities from the majority nor-

mal population, emerges as a particularly valuable tool in the medical domain. This
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heightened practicality stems from the fact that abnormal pathological conditions are

inherently unpredictable and difficult to simulate. Consequently, anomaly detection

systems offer a means to identify these unforeseen conditions, leading to cost savings

and enhanced healthcare. By flagging deviations from what is considered normal,

these systems facilitate early interventions while minimizing the need for exhaustive

diagnostic testing. As such, anomaly detection plays a pivotal role in medicine, en-

suring more effective diagnoses and ultimately contributing to improved healthcare

outcomes.

Given the paramount importance of anomaly detection, recent endeavors have led

to the establishment of several benchmarks [1–4]. Nevertheless, these benchmarks

predominantly concentrate on industrial and natural images, overlooking the critical

need for medical-specific datasets. Due to the lack of dedicated medical anomaly

detection benchmark, existing works on this topic usually utilize datasets originally

intended for supervised classification [5–8] or segmentation tasks [9, 10] for construct-

ing experimental datasets. In literature, we observed inconsistencies in data citation

[11–13].Further more, since substantial data curation is required for this purpose, the

lack of standardized protocols for reorganizing datasets suitable for anomaly detection

and localization [14–16] impeds fair comparisons among methods.

To address these shortcomings, we introduce BMAD1, a unified and exhaustive

evaluation benchmark tailored specifically for assessing anomaly detection methods

on medical images. BMAD comprises six meticulously reorganized datasets spanning

five medical domains (brain MRI, liver CT, retinal OCT, chest X-ray, and digital

histopathology) alongside three pivotal evaluation metrics. Furthermore, it incor-

porates fifteen state-of-the-art (SOTA) anomaly detection algorithms, providing a

standardized and well-maintained platform for comprehensive comparisons. Through

rigorous evaluations of these algorithms on BMAD, we offer insightful discussions on

1A CC BY-NC-SA license is granted to BMAD, ensuring compliance with all original dataset
licenses.
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the results, outlining promising research avenues for the future.

In our endeavor to address the scarcity of comprehensive benchmarks, we uncovered

a salient observation: the absence of a single, universally effective, and generalizable

model that can proficiently address anomaly detection tasks spanning multiple medi-

cal domains. To address this limitation, we introduce a novel approach which takes a

multimodal framework, the Contrastive Language-Image Pre-training (CLIP) model,

as a cornerstone for identifying anomalies within medical data. This approach em-

ploys the pretrained language models to describe image information, setting it apart

from previous endeavors in medical anomaly detection that only replies on visual data

in data analysis. Our experimental results suggest that our proposed language-image

model-based method enables a more nuanced distinction between anomalous and

normal medical images. This enhancement also facilitates a more precise localization

of anomalies. Importantly, our approach exhibits remarkable effectiveness across a

wider array of medical domains, underscoring its improved generalization capabilities

on multiple domains, thereby contributing significantly to the academic discourse in

medical anomaly detection.

Our contributions of this thesis can be summarized as follows:

• We have developed a comprehensive and standardized benchmark that includes

six datasets from five common medical domains. To ensure consistency and

comparability, we have made significant efforts to reorganize and adapt the

datasets to the unsupervised anomaly detection setting in computational med-

ical imaging.

• We have created a well-structured and user-friendly codebase that supports 15

state-of-the-art anomaly detection algorithms and their evaluations.

• We have conducted a thorough analysis of the strengths and weaknesses of the

algorithms on the BMAD datasets. Our findings and discussions will inspire

researchers to develop more advanced anomaly detection models for medical
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data.

• We have devised, a novel, high-performance model that exhibits the capability

to encompass multiple medical imaging domains for anomaly detection.

1.2 Thesis Structure

This thesis includes the following components. Chapter 1 provides a detailed intro-

duction of the practical value of anomaly detection and highlights the absence of

comprehensive benchmarks for medical anomaly detection. Additionally, we intro-

duce our proposed benchmark effort and a more comprehensive model for medical

anomaly detection. Chapter 2 gives a detailed background that have thoroughly

introduced the background and current state-of-the-art advancements in anomaly de-

tection methods. Chapter 3 exhaustively delineates the proposed medical anomaly

detection benchmark, BMAD, which stands as a significant contribution in this thesis.

The establishment of BMAD is grounded in meticulous medical annotations, thereby

bridging the gap in the anomaly detection landscape by offering multi-domain med-

ical data as a robust foundation. BMAD also provides open-source code for SOTA

algorithm implementation and performance evaluation, fostering accessibility and re-

producibility for researchers in the field. Chapter 4 meticulously outlines our novel

multimodal medical anomaly detection framework that addresses the gap by offering

a highly generalized detection model, thereby enhancing its applicability and efficacy

across diverse medical domains. Finally, Chapter 5 discusses the limitations and

shortcomings of our study. Potential directions for future work is also presented.
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Chapter 2

Background

In this chapter, we present a comprehensive review on related works on anomaly de-

tection that serves as the cornerstone for the subsequent discussions within this thesis.

Specifically, we start from the traditional anomaly detection techniques proposed be-

fore deep learning. Then deep learning anomaly detection works are presented. In

the last section of this chapter, we delve into the our target application scenario,

medical anomaly detection. We summarize the prior arts and their pros and cons are

discussed.

2.1 Traditional Anomaly Detection Works

Anomaly detection aims in identifying deviations from normal operational behavior,

which can indicate potential damage or faults. These techniques analyze data to

pinpoint unusual patterns that may signify the onset of damage, allowing for timely

maintenance and intervention. The image anomaly detection based on traditional

statistics and machine learning algorithms can often be categorized into the major

groups presented in Table2.1.

2.1.1 Statistical Modeling

Gaussian model based methods assume data generated from a Gaussian distribu-

tion or a mixture of Gaussions. This category of methods estimates parameters like
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mean and covariance using maximal likelihood estimation (MLE) from the training

data. With the inferred distribution, they apply a threshold to the probabilities as

anomaly scores to identify outliers.

Regression model based solutions are widely used for time-series anomaly

detection [17, 18]. Fits a regression model to data, then computes anomaly scores

based on residual errors for test instances.

Histogram based approaches follow a simple non-parametric approach that

uses histograms to profile normal data. This category of methods is also known as

frequency-based approaches and often favored in intrusion and fraud detection for

capturing behavioral patterns efficiently.

Nearest neighbor strategy is the cornerstone of the methodology revolves around

assessing the anomaly score of a specific data point by quantifying its distance or dis-

similarity from its neighbor. If the computed distance separating a data point from its

nearest neighbor surpasses those typically observed among other data points within

the dataset by a substantial margin, it serves as a strong indication that the query

data point exhibits anomalous or outlier behavior.

2.1.2 Bayesian Networks (BN)

Bayesian networks have been successfully employed for anomaly detection in multi-

class scenarios. For univariate categorical datasets, a fundamental approach leverag-

ing näıve Bayesian networks involves estimating the posterior probability of observ-

ing a specific class label c (drawn from a predefined set of normal class labels along

with an anomaly class label), conditional on a given test data instance x. This can

be formalized as estimating P (c | x). The predicted class for this test instance is

then determined as the one yielding the highest posterior probability, i.e., the class

c∗ = argmaxc P (c | x). This approach allows for the detection of anomalies by com-

paring the posterior probability of the anomaly class label against those of the normal

class labels, thereby enabling the identification of instances that are unlikely to belong
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to any of the normal classes.

2.1.3 Support Vector Machines (SVM)

SVMs have been applied to one-class anomaly detection, using one-class learning

techniques to define a region containing training data instances. Kernels, like radial

basis function (RBF), can learn complex regions after projecting data into a high-

dimensional space. The basic principle to classify test instances as normal is whether

they fall within the learned region, and anomalous otherwise. Variants have been

proposed for anomaly detection in audio signals, novelty detection in power plants,

and system call intrusion detection. The technique has also been extended to detect

anomalies in temporal sequences, with one variant finding the smallest hypersphere

containing all training instances and classifying test instances outside it as anomalous.

Robust Support Vector Machines (RSVMs), resilient to anomalies in training data,

have been applied to system call intrusion detection. The fundamental formula for

the Support Vector Machine is given by:

min
w,b,ξ

(︄
1

2
∥w∥2 + C

n∑︂
i=1

ξi

)︄
(2.1)

subject to yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0 ∀i (2.2)

2.2 Deep Learning Anomaly Detection Works

With the powerful capability to extract abstract numerical representations of data,

deep learning is incorporated to better discriminating normal and abnormal sam-

ples for anomaly detection. Depending on how a deep neural network used for fea-

ture extraction, the existing algorithms for unsupervised anomaly detection, can be

categorized into two paradigms: data reconstruction-based approaches and feature

embedding-based (or projection-based) approaches. The former typically compares

the differences between the reconstructed data and the original data in the data
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space to identify potential anomalies, while the latter infers anomalies by analyzing

the abstract representations in the embedding space.

2.2.1 Reconstruction-based Methods

A reconstruction-based approach usually deploys a generative model for data recon-

struction. It targets for small reconstruction residues for normal data, but large errors

for anomalies. The distinction in reconstruction errors forms the basis for anomaly

detection. AutoEncoder (AE) and Variational AE have been the first and most

popular models for this purpose[27–36]. Later, Generative Adversarial Networks

(GANs) are used to replace AE for its high-quality output[5, 30, 37–40]. Recently,

there is a trend of exploiting diffusion models for normal sample generation[16,

41, 42]. In addition to convolutional neural networks, the transformer architecture is

also explore in latest studies to build these generative models[13, 43–45]. To improve

AD performance, regularization strategies are incorporated into normal sample recon-

struction. Following the idea of denoising AE, Gaussian noise is added into normal

samples for a better normal data restoration performance[33, 46, 47]. In the masking

mechanism, a normal sample is randomly masked and then inpainted back[40, 48, 49].

Furthermore, many studies focus on synthesizing abnormalities on normal training

samples and use the generative model to restore the original normal version[50–52].

Recently, the memory mechanism is exploited to further constrain model’s capability

on reconstructing abnormal samples[32, 34–36].

The following are some representative reconstruction-based algorithms for unsu-

pervised anomaly detection.

f-AnoGAN[39] is to train a GAN model on a dataset of normal images only.

The GAN consists of two main components: a generator and a discriminator. The

generator’s job is to create synthetic images that are as realistic as possible, while

the discriminator’s role is to distinguish between real images from the training set

and fake images generated by the generator. As the training progresses, the two
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components compete against each other in a zero-sum game, ultimately resulting in

a generator that can produce highly realistic images that fool the discriminator.

GANomaly[38] is a semi-supervised anomaly detection approach that leverages

the power of GANs and autoencoder principles to learn the distribution of normal

samples and identify anomalies during the testing phase. This method addresses the

challenge of scarcity or absence of labeled anomaly samples during the training phase,

making it suitable for real-world scenarios where anomalies are rare or unknown.

UTRAD[13] is a framework for anomaly detection and localization that leverages

the U-shaped Transformer architecture. It demonstrates significant performance ad-

vantages in industrial defect detection, medical disease diagnosis, and other domains.

DRAEM[50] consists of two main components: an encoder network and a decoder

network. The encoder network maps the input surface image into a latent embedding

space, while the decoder network aims to reconstruct the input image from this em-

bedding. Critically, the training of Draem is discriminative in nature, meaning that

it is optimized not only to minimize the reconstruction error for normal samples but

also to maximize the reconstruction error for anomalous samples.

2.2.2 Projection-based Methods

A projection-based method employs either a task-specific model or simply a pre-

trained network to map data into abstract representations in an embedding space,

enhancing the distinguishability between normal samples and anomalies.

One-class classification based methods

One-class classification commonly employs normal support vectors or samples to de-

lineate a tightly enclosed one-class distribution. Specifically, the one-class SVM ap-

proach, as introduced in [53], endeavors to identify a kernel function that projects

the training data onto a hyperplane within a high-dimensional feature space. Any

samples deviating from this hyperplane are subsequently designated as anomalous.
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In a similar vein, methods such as Support Vector Data Description (SVDD) [54],

DeepSVDD [55], and PatchSVDD [56] strive to encapsulate normal data within a

hypersphere, leveraging either kernel-based methodologies or self-supervised learn-

ing techniques. For a comprehensive overview of these implementations, we present

detailed information in Table 3.2.

The representative one-class classification based methods are described as follows.

DeepSVDD[55] employs a neural network as a nonlinear mapper that transforms

the raw data into a low-dimensional representation. This allows the model to capture

the complex structure of the data and adapt to various data types. Specifically,

the neural network maps the input data into a feature space where a hypersphere is

constructed to encompass the normal data points.

PatchSVDD[56] extends DeepSVDD to a patch-wise approach, enhancing its per-

formance for anomaly detection and segmentation. Specifically, PatchSVDD divides

the input image into multiple small patches and processes each patch independently.

The core idea is to map spatially proximal patches to similar locations in the hy-

persphere, leveraging self-supervised learning to endow the encoder’s features with

positional discriminability.

Normalizing Flow based methods

Normalizing Flow models data distributions meticulously [57]. In AD, it transforms

normal features into a invertible distribution, crucial for distinguishing patterns. Dur-

ing inference, normal samples naturally align with the model’s distribution, while ab-

normal samples are projected separately. This separation, facilitated by Normalizing

Flow, enables efficient anomaly identification. While during inference, the trained

flow model demonstrates its efficacy by naturally funneling normal samples into a

tightly defined distribution range, where they reside comfortably within the confines

of the model’s learned representation. Conversely, abnormal samples, which do not

conform to the patterns inherent in the normal data, are deftly projected onto a
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distinct, separate distribution range. This segregation process, facilitated by Normal-

izing Flow, enables the efficient identification of anomalies that deviate from the norm.

Advancements in this field[58–61] have introduced enhancements such as improved

computational efficiency in AD scenarios.

The latest flow-based models for anomaly detection includes the following.

CS-Flow[59] framework efficiently processes multiple feature maps of varying

scales in a unified manner. By employing normalizing flows, it assigns meaningful

likelihoods to input image samples, thereby facilitating efficient defect detection at

the image level. Furthermore, the spatial arrangement within the latent space of

the normalizing flow remains intact, rendering it interpretable. This interpretability

enables the precise localization of defective regions within the image, enhancing the

overall detection capabilities of the system.

CFLOW[61] model is grounded in a conditional normalizing flow architecture tai-

lored for anomaly detection with the ability to pinpoint defective areas. Specifically,

CFLOW incorporates a discriminatively pre-trained encoder, which is subsequently

followed by multi-scale generative decoders. These decoders explicitly assess the like-

lihood of the encoded features, leading to a model that is both computationally and

memory-efficient.

Memory Bank based methods

Memory Bank is a mechanism of remembering numerical prototypes of the training

date[62–65]. Then various algorithms such as KNN or statistical modeling are used

to determine the labels for queries. PaDim, Patchcore, and CFA are the major basic

frameworks for memory bank based methods. We provide detailed information in 3.4

to summarize all implementation aspects.

PaDiM[63] iemploys a pre-trained convolutional neural network (CNN) for patch

embedding, alongside multivariate Gaussian distributions, to derive a probabilistic

portrayal of the normal class. Furthermore, it capitalizes on the intricate correlations
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existing across various semantic levels within the CNN architecture, enhancing its

ability to precisely localize anomalies. Notably, PaDiM surpasses the current state-

of-the-art methodologies for both anomaly detection and localization, as evidenced

by its exceptional performance on benchmarks such as MVTec AD and STC datasets.

PatchCore[64] method revolutionizes anomaly detection by leveraging unsuper-

vised learning exclusively with normal samples. It employs pre-trained models, such

as WideResNet50, to extract image features and constructs a memory bank contain-

ing normal block representations. During the testing phase, PatchCore assesses the

presence of anomalies by comparing the similarity between test samples’ features and

those stored in the memory bank. Key to its success are techniques like local patch fea-

ture aggregation for broader context and robustness, and a greedy core set algorithm

to efficiently reduce the memory bank size while preserving its representativeness.

CFA[65] is to mitigate the bias of pre-trained CNNs through feature adaptation.

Specifically, CFA performs transfer learning on the target dataset, optimizing the

parameters of the patch descriptor and the contents of the memory bank to form

highly concentrated coupled hyperspheres centered around memory features in the

feature space. These hyperspheres distinguish normal from abnormal features through

contrastive supervision.

Teacher-student (T-S) based methods

Recently, the T-S (Teacher-Student) architecture for knowledge distillation has emerged

as a prevalent approach in anomaly detection (AD), as evidenced by numerous stud-

ies [11, 66–70]. In this framework, the student network learns to represent normal

samples by mimicking the teacher network’s behavior. However, for abnormal cases,

the student may struggle to accurately follow the teacher’s guidance, leading to a

representation discrepancy between the T-S pair. This discrepancy serves as the cor-

nerstone for anomaly detection, enabling the identification of patterns that deviate

from the learned normality. To provide a comprehensive overview of the implemen-
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tation details of this T-S approach, we have summarized all relevant information in

Table 3.6. This table encapsulates the key aspects of the various implementations,

facilitating a deeper understanding of the nuances and variations within the T-S ar-

chitecture for AD.

The following are classic T-S models proposed for visual anomaly detection.

MKD[11] incorporates the concept of multiresolution, where the teacher network

extracts features at multiple scales or resolutions. The student network is then trained

to mimic this behavior, learning to reconstruct or interpret the multi-scale features

in a way that captures the essence of normal patterns. By focusing on multiple

resolutions, the method can capture both global and local information, making it

more robust in detecting anomalies that manifest at different scales.

RD4AD[70] lies in utilizing a pre-trained teacher model as encoder to extract

image features and distilling these features into a student decoder. The goal of the

student decoder is to reconstruct the multi-scale features of the teacher model. How-

ever, since the student model only learns normal patterns during training, it is unable

to reconstruct abnormal features, thereby enabling anomaly detection.

SimpleNet[67], an efficient network for image anomaly detection, integrates a

pre-trained feature extractor, a feature adapter, an anomaly feature generator, and a

binary discriminator. It leverages target-oriented features, synthetic anomalies in fea-

ture space, and a simple discriminator to achieve high performance while maintaining

efficiency and practicality.

2.2.3 Vision-Language Model (VLM) Based Methods

In recent years, large-scale models have evolved rapidly, with Vision-Language mod-

els particularly standing out due to the abundance of pretrained data that enhances

their capabilities for downstream tasks. Among these multimodal models, CLIP [71],

whose diagram is illustrated in Fig 2.2, has emerged as a widely adopted multimodal-

ity approach for contrastive vision-language pretraining on vast datasets comprising
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millions of image-text pairs. It leverages the unique one-to-one correspondence be-

tween paired data, generating natural positive and negative samples. Due to the rich

knowledge gained from the contrastive learning on millions of data, the pre-trained

multimodal model has imparted remarkable versatility, enabling them to excel even

in zero-shot inference. Their prowess lies in their prompt-guided zero-shot capability,

allowing them to accurately identify and categorize previously unseen images during

the inference phase. Recent research has also expanded the zero-shot transferability

of CLIP models to open-vocabulary semantic segmentation by extracting intrinsic

dense features [63, 70, 72]. Efforts have been made to significantly improve CLIP’s

recognition performance, including prompt engineering [73] and adapter modules [71,

74].

Notably, CLIP’s innate ability to detect out-of-distribution data without additional

training inspired the us of CLIP for zero-shot anomaly detection. For instance, Win-

CLIP [75] introduced a multi-scale window moving approach for local patch process-

ing, followed by CLIP-based classification of each window. However, it suffers from

time-consuming computations due to the additional windowed image patch process-

ing. Following WinCLIP, latest anomaly detection studies have begun incorporating

CLIP models, replacing previously prevalent pretrained models like ImageNet [63, 70,

72]. for zero-shot AD tasks [76–78].

To further enhance the generalization ability of these large VLM models in spe-

cific anomaly detection domains, fine-tuning strategies have emerged. By tailoring

the models to these domains based on their pre-existing large-scale structures, they

become better suited for detecting anomalies in specific contexts, thereby improving

their overall performance and robustness.

In this thesis, we proposed a network utilizes the CLIP model in a full-shot manner

to enhance the anomaly detection performances across various medical domains. We

incorporate the text encoder in the CLIP model to restore the normal image features.

For specific details, please refer to Chapter 4 for a thorough reading.
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2.3 Medical Anomaly Detection Works

Consistent with the categorization of general anomaly detection methods, approaches

deployed in medical anomaly detection can be fundamentally divided into analogous

groups. In the context of medical image anomaly detection, autoencoders have been

extensively trained on datasets solely comprising healthy date [28, 79]. Deviations

from the learned patterns subsequently result in an elevated anomaly score, high-

lighting potential abnormalities. This principle has been successfully applied to un-

supervised anomaly detection within medical imagery [9, 80, 81], where the disparity

between the reconstructed healthy image and the anomalous input serves to pinpoint

abnormal pixels. Additionally, other research efforts have focused on harnessing Gen-

erative Adversarial Networks (GANs) [12, 82] for image-to-image translation tasks

[83–85]. Transformer networks [14, 86] have also demonstrated remarkable success in

brain anomaly detection. Moreover, in [87], a novel thresholding methodology is in-

troduced, specifically tailored for segmenting brain anomalies, further advancing the

field of medical anomaly detection. Recently, diffusion models[16, 88] have emerged

as a powerful tool for medical anomaly detection, advancing the capabilities of GANs

and demonstrating promising performance in multi medical domains.
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Table 2.1: References of traditional image anomaly detection methods.

Method based References

Statistical Modeling In statistics, anomaly detection
involves identifying observations that
deviate from the norm. This is
accomplished through statistical
modeling using various methods,
including parametric, normal
distribution-based[19–21]. And
non-parametric, distance-based
approaches[22]. As well as advanced
models like time series analysis and
clustering[23, 24].

Bayesian Networks (BN) BN has significant value in anomaly
detection. As a probabilistic
graphical model, it represents
variable dependencies through nodes
and edges, using conditional
probabilities. This handles
uncertainty, incompleteness,
correlations well, making BN ideal
for anomaly detection [25].

Support Vector Machines
(SVM)

SVM primarily relies on an algorithm
known as unsupervised SVM. SVM
aims to learn a model from the
training data that can distinguish
between normal data and anomalous
data, without the need for explicitly
providing samples of anomalous data
[26].
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Figure 2.1: Conceptual illustration of various deep learning based AD models. The
one-class classification model, normalizing flow model, teaching-student model and
memory bank model detects anomalies in the embedding space, and the reconstruc-
tion based method takes a generative model as its backbone for pixel-level anomaly
comparison between the original query and reconstruction.
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Figure 2.2: Diagram of the CLIP pretrain model.
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Chapter 3

BMAD: Benchmarks for Medical
Anomaly Detection

Anomaly detection (AD) stands as a cornerstone research challenge in machine learn-

ing and computer vision, with vital real-world applications spanning industrial inspec-

tion, video surveillance, and notably, medical diagnosis. Within the realm of medical

imaging, AD holds paramount significance in pinpointing anomalies that may serve

as indicators of rare diseases or conditions. Nonetheless, despite its pivotal role, a

universal and equitable benchmark for evaluating AD techniques on medical images

remains elusive, impeding the progress towards more generalized and resilient AD

methods tailored to this domain.

To bridge this gap, we introduce a comprehensive evaluation benchmark tailored

specifically for assessing AD methods on medical images. As shown in Figure 3.1,

this benchmark encompasses six meticulously reorganized datasets, sourced from five

diverse medical domains: brain MRI, liver CT, retinal OCT, chest X-ray, and digital

histopathology. Furthermore, it incorporates three pivotal evaluation metrics and

features an extensive lineup of fifteen cutting-edge AD algorithms. Our standard-

ized and meticulously curated medical benchmark, accompanied by a well-structured

codebase, empowers researchers to effortlessly compare and evaluate diverse AD ap-

proaches. This, in turn, fosters the development of more efficient and robust AD al-

gorithms tailored for medical imaging, thereby advancing the state-of-the-art in this
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crucial field. For additional insights into BMAD, please visit our GitHub repository

at https://github.com/DorisBao/BMAD.

Figure 3.1: Diagram of the BMAD benchmarks. BMAD includes six datasets from
five different domains for medical anomaly detection, among which three support
pixel-level AD evaluation and the other three for sample-level assessment only. BMAD
provides a well-structured and easy-used code base, integrating fifteen SOTA anomaly
detection algorithms and three evaluation metrics.

3.1 Datasets and Benchmarks

When constructing this benchmark, we had following considerations in dataset selec-

tion: diversity of imaging modalities, diversity of source domains/organs, and license

for data reorganization, remix and redistribution. Specifically, our BMAD includes

six medical benchmarks from five different domains for medical anomaly detection,

including brain MRI, retinal OCT, liver CT, chest X-ray, and digital histopathol-

ogy. We summarize these benchmarks in Table. 3.1. Within these benchmarks, three

supports pixel-level evaluation of anomaly detection, while the remaining three is for

sample-level assessment only.
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Table 3.1: Summary of the six benchmarks from five imaging domains in BMAD.

Domains Originations Annotation Level

Brain MRI BraTS2021[89] Segmentation mask

Liver CT BTCV[90] + LiTs[91] Segmentation mask

Retinal OCT RESC[92] Segmentation mask

Chest X-ray RSNA[8] Image label

Pathology Camelyon16[93] Image label

Retinal OCT OCT2017[94] Image label

Due to the absence of specific anomaly detection datasets in the field of medical

imaging, we construct these benchmark datasets by reorganizing and remixing exist-

ing medical image sets proposed for other purposes such as image classification and

segmentation. To facilitate future research and potential benchmark extension, our

benchmark codebase includes functionality for data reorganization, enabling users to

generate new datasets tailored to their needs. In the this sections, we mainly focus

on an overview of the original datasets and our data reorganization procedure.

3.1.1 Brain MRI Anomaly Detection Benchmark

Magnetic Resonance Imaging (MRI) imaging is widely utilized in brain tumor exam-

ination. The Brain MRI AD benchmark is reorganized using the flair modality of the

latest large-scale brain lesion segmentation dataset, BraTS2021 [89].

The original BraTS2021 dataset is proposed for multimodal brain tumor segmenta-

tionm comprising a collection of the complete 3D volume of a patient’s brain structure

and corresponding brain tumor segmentation annotation. It provides 1,251 cases in

the training set, 219 cases in validation set, 530 cases in testing set (nonpublic), all

stored in NIFTI (.nii.gz) format. Each sample includes 3D volumes in four modali-

ties: native (T1) and post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2

Fluid Attenuated Inversion Recovery (T2-FLAIR), accompanied by a 3D brain tu-
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mor segmentation annotation. The data size for each modality is 240 *240 *155. The

BraTS2021 dataset can be accessed at http://braintumorsegmentation.org/. Regis-

tration for the challenge is required. As stated on the challenge webpage, ”Challenge

data may be used for all purposes, provided that the challenge is appropriately refer-

enced using the citations given at the bottom of this page.

To adapt the data to AD, we built the brain MRI AD benchmark from the 3D

FLAIR volumes. All data in our Brain MRI AD benchmark is derived from the 1,251

cases in the original training set. In specific, we sliced both the brain scan and their

annotation along the axial plane. Only slides containing substantial brain structures,

usually with a depth of 60-100, were selected in this benchmark. Slices without brain

tumor are labelled as normal. Each extracted 2D slice was saved in PNG format

and has an image size of 240 * 240 pixels. With obtained image slides, to avoid

data leakage in model evaluation, we leveraged the information of patient IDs for

data partition and ensured that data from the same patient was contained by one set

only. According to the tumer segmentation mask, we selected 7,500 normal samples

to compose the AD training set, 3,715 samples containing both normal and anomaly

samples (with a ratio of 1:1) for the test set, and a validation set with 83 samples

that do not overlap with the test set. Fig. 3.2 illustrates the specific procedure we

followed for data preparation, and Fig. 3.3 provides examples of our brain MRI AD

benchmark.

3.1.2 Liver CT Anomaly Detection Benchmark

Computed Tomography (CT) is commonly used for abdominal examination. We

structure this benchmark from two distinct datasets, BTCV[90] and Liver Tumor

Segmentation (LiTs) set[91]. The anomaly-free BTCV set is initially proposed for

multi-organ segmentation on abdominal CTs and taken to constitute the train set in

this benchmark. CT scans in LiTs is exploited to form the evaluation and test data.

BTCV [90] is introduced for multi-organ segmentation. It consists of 50 abdomi-

22

http://braintumorsegmentation.org/


Figure 3.2: Diagram illustration of data preparation for the Brain MRI AD bench-
mark from 3D brain scans in BraTS2021.

Figure 3.3: Visualization of our proposed Brain MRI benchmark.

nal computed tomography (CT) scans taken from patients diagnosed with colorectal

cancer and a retrospective ventral hernia. The original scans were acquired during the

portal venous contrast phase and had variable volume sizes ranging from 512*512*85

to 512*512*198 and stored in nii.gz format. The original BTCV dataset can be ac-

cessed from ’RawData.zip’ at: https://www.synapse.org/#!Synapse:syn3193805/wiki/217753,

subject to the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

LiTS [91] is proposed for liver tumor segmentation. It originally comprises 131 ab-

dominal CT scans, accompanied by a ground truth label for the liver and liver tumors.

The original LiTS is stored in the nii.gz format with a volume size of 512*512*432.

The orignal LiTS dataset can be downloaded from its Kaggle webpage at:

https://www.kaggle.com/datasets/andrewmvd/liver-tumor-segmentation. The use of
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the LiTS dataset is under Creative Commons Attribution-NonCommercial-ShareAlike(CC

BY-NC-SA) [95].

Figure 3.4: Visualization of our proposed Liver CT benchmark.

In constructing the liver CT AD benchmark, we made a decision not to include

lesion-free regions from the LiTS dataset as part of the training set. This choice

was based on our observation that the presence of liver lesions in LiTS leads to

morphological changes in non-lesion regions, which could impact the performance of

anomaly detection. Instead, we opted to use the lesion-free liver portion from the

BTCV dataset to form the training set. The LiTS dataset, on the other hand, is

reserved for testing the effectiveness of anomaly detection and localization. For both

datasets, Hounsfield-Unit (HU) of the 3D scans are transformed into grayscale with

an abdominal window. The scans are then cropped into 2D axial slices, and the liver’s

Region of Interest is extracted based on the provided organ annotations. Following

conversion in prior arts[96, 97], we further performed histogram equalization on each

slide for image enhancement. To be more specific, for the construction of the normal

training set in the liver CT AD benchmark, we utilized the provided segmentation

labels in BTCV to extract the liver region. From these scans, we extracted 2D slices

of the liver with a size of 512 * 512, using the corresponding liver segmentation scans

as a guide. The 2D slices were then converted to PNG format to serve as the final

AD data. We selected 1542 slices to comprise the training set. To prepare the testing
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and validation sets, we sliced the data from LiTS and stored them in PNG format

with dimensions of 512 * 512. Our testing and validation sets contain both healthy

and abnormal samples. Fig 3.4 demonstrates several samples in the Liver CT AD

dataset.

It should be noted that with the histogram equalization, some of the image content

may be distorted due to the change of image intensity. Thus, for completeness, we

also provide a version of the liver benchmark without any data processing in BMAD.

This allow researchers to access both versions and make informed decisions based on

their specific needs.

3.1.3 Retinal OCT Anomaly Detection Benchmark

Optical Coherence Tomography (OCT) is commonly used for scanning ocular lesions

in eye pathology. To cover a wide range of anomalies and evaluate anomaly local-

ization, the BMAD datasets includes two different OCT anomaly detection datasets.

The first one is derived from the RESC dataset [92] and support anomaly localiza-

tion evaluation. The second is constructed from OCT2017 [94], Which only support

sample-level anomaly detection.

RESC (Retinal Edema Segmentation Challenge) dataset [92] specifically focuses

on the detection and segmentation of retinal edema anomalies. The original training,

validation, and test sets contain 70, 15, and 15 cases, respectively. Each case includes

128 slices, some of which suffer from retina edema. It provides pixel-level segmentation

labels, which indicate the regions affected by retinal edema. The RESC is provided in

PNG format with a size of 512*1024 pixels. The original RESC dataset can be down-

loaded from the P-Net github page at https://github.com/CharlesKangZhou/P Net -

Anomaly Detection. As indicated on the webpage, the dataset can be only used for

the research community.

OCT2017 [94] is a large-scale dataset initially designed for classification tasks.Images

are categorized into 4 classes: normal, Choroidal Neovascularization, Diabetic Mac-
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ular Edema, and Drusen Deposits. The images are continuous slices with a size of

512*496. The original OCT2017 data can be downloaded at: https://data.mendeley.com/datasets/rscbjbr9sj/2.

Its usage is under a license of Creative Commons Attribution 4.0 International(CC

BY 4.0).

To construct the OCT anomaly detection and localization dataset from RESC, we

utilize the segmentation labels provided for each slice to get the label for AD setting.

To avoid data leakage, slices from the same subject only appear in either validation or

test set. In specific, we select the normal samples from the original training dataset

and adapt the original validation set into the AD setting for evaluation. On the other

hand, to construct this sample-level anomaly detection benchmark from OCT2017,

we use the disease-free samples in the original OCT2017 training set as our training

data. For images in the original test set, images in the 3 diseased classes are labeled

as abnormal. Stratified sampling is adopted to form the evaluation and test sets. Fig

3.5 demonstrates several examples in the two OCT AD datasets.

Figure 3.5: The Retinal OCT benchmarks consist of two separate datasets, each
representing different anomaly types. These datasets are used to evaluate and bench-
mark various methods in the field of retinal OCT imaging. The datasets are designed
to assess the performance of algorithms in detecting and localizing specific anomalies
in retinal images.

3.1.4 Chest X-ray Anomaly Detection Benchmark

X-ray imaging is widely used for examining the chest and provides precise thoracic

data. We reconstruct the X-ray anomaly detection benchmark from the RSNA dataset
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that was orignally created for levering ML models for chest X-Ray diagnosis[8].

RSNA [8], short for RSNA Pneumonia Detection Challenge, is originally pro-

vided for a lung pneumonia detection task. The lung images are associated with

nine labels: Normal, Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule,

Pneumonia and Pneumothorax, which covers the eight common thoracic diseases ob-

served in chest X-rays. All images are stored in DICOM format. The original RSNA

data can be accessed by: https://www.kaggle.com/competitions/rsna-pneumonia-

detection-challenge/overview. As stated in the section of Competition data: A. Data

Access and Usage, ”... you may access and use the Competition Data for the purposes

of the Competition, participation on Kaggle Website forums, academic research and

education, and other non-commercial purposes.”

To reorganize the dataset for anomaly detection, we utilized the provided image

labels for data re-partition. Specifically, ”Lung Opacity” and ”No Lung Opacity/Not

Normal” were classified as abnormal data, and we labelled images in the abnormal

categories as abnormal. We follow the original datasheet and split the data into train,

test, and validation sets for anomaly detection. Consequently, the reorganized AD

dataset including 8000 normal images as training data, 1490 images with 1:1 normal-

versus-abnormal ratio in the validate set, and 17194 images in the test set. Examples

of the chest X-ray dataset are provided in Fig 3.6.

3.1.5 Digital Histopathology Anomaly Detection Benchmark

Histopathology involves the microscopic examination of tissue samples to study and

diagnose diseases such as cancer. We utilize Camelyon16[93], a digital pathology

imaging breast cancer metastasis detection dataset, to build the histopathology bench-

mark.

Camelyon16 [93] was initially utilized in the Camelyon16 Grand Challenge to de-

tect and classify metastatic breast cancer in lymph node tissue. It comprises 400

40x whole-slide images (WSIs) of lymph node sections stained with hematoxylin
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Figure 3.6: Our proposed chest X-ray benchmark consists two types of anomalies.
These anomalies are clearly labeled in the images, and all of them are considered as
anomaly samples.

and eosin (H&E) from breast cancer patients, accompanied by multiple versions

in a lower magnification. Among these WSIs, 159 of them exhibit tumor metas-

tases, which have been annotated by pathologists. The WSIs are stored in standard

TIFF files. Note, in Camelyon16, the highest resolution available is on level 0, corre-

sponding to a magnification of 40X. The original Camelyon16 dataset can be found

at: https://camelyon17.grand-challenge.org/Data/. It is under a license of Creative

Commons Zero 1.0 Universal Public Domain Dedication(CC0).

To construct the benchmark histopathology image dataset, considering their unique

characteristics such as large size, we follow convention in prior arts[98–100] and opted
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to assess AD models at the patch level in 40X. Specifically, we randomly extracted

5,088 normal patches from the original training set of Camelyon16, which consisted of

160 normal WSIs. These patches were utilized as training samples. For the validation

set, we cropped 100 normal and 100 abnormal patches from the 13 testing WSIs.

Likewise, for the testing set, we extracted 1,000 normal and 1,000 abnormal patches

from the 115 testing WSIs in the original Camelyon16 dataset. Each cropped patch

was saved as a PNG image with dimensions of 256 * 256 pixels. Fig 3.7 presents

several examples in the constructed histopathology AD benchmark.

Figure 3.7: Examples of the digital histopathology AD benchmark. Unlike other
medical image AD benchmarks, histopathology images shows higher diversities in
tissue components.

3.1.6 Overall Remark

Among the 7 original datasets used to construct BMAD are from advanced countries.

This gives rise to inherent geographical and sampling biases, which inevitably exerts

some impact on the evaluation outcomes.
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3.2 Evaluation Metrics

Anomaly detection can be evaluated from the sample level (i.e., detection rate) and

the pixel level (i.e., anomaly localization). In accordance with established practices in

previous literature, we employ AUROC (Area Under the Receiver Operating Char-

acteristic Curve) for evaluations in both levels. Note that AUROC has limitations to

evaluate small tumor localization, as incorrect localization of smaller defect regions

has a minimal impact on the metric. To address this issue, we follow prior arts[70, 101,

102] and include another threshold-independent metric, PRO (Per-Region Overlap),

for anomaly localization evaluation.

Area Under the Receiver Operating Characteristic Curve

AUROC refers to the area under the ROC curve. It provides a quantitative value

showing a trade-off between True Positive Rate (TPR) and False Positive Rate (FPR)

across different decision thresholds.

AUROC =

∫︂ 1

0

(TPR)d(FPR) (3.1)

• To calculate the pixel-level AUROC, different thresholds are applied to the

anomaly map. If a pixel has an anomaly score greater than the threshold, the

pixel is anomalous. Over an entire image, the corresponding TPR and FPR

pairs are recorded for a ROC curve and the area under the curve is calculated

as the final metric.

• To calculate the image-level AUROC, each model independently calculates an

anomaly score from the anomaly map as a sample-level evaluation metric. Then

different thresholds are applied to determine if the sample is normal or abnor-

mal. Then the corresponding TPR and FPR pairs are recorded for estimating

the ROC curve and sample-level AUROC value.
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Per-Region Overlap

We utilized PRO, a region-level metric,to assess the performance of fine-grained

anomaly detection. PRO treats anomaly regions of different size equally, up-weighting

the influence of small-size abnormality localization in evaluation. Specifically, for each

threshold, detected anomalous pixels are grouped into connected components and

then PRO averages localization accuracy over all components. To compute PRO,

the ground truth is decomposed into individual unconnected components. Let A de-

note the set of pixels predicted to be anomalous. For connected components k, Ck

represents the set of pixels identified as anomalous. PRO can then be calculated as

follows,

PRO =
1

N

∑︂
k

|A ∩ Ck|
|Ck|

, (3.2)

where N represents the total number of ground truth components in the test dataset.

DICE score

The Dice score is an important metric in medical image segmentation, evaluating

the similarity between segmented results and reference standards. Though DICE is

not included as the major metric due to its threshold dependence, our codebase still

includes a Dice function for its potential usage. It measures the pixel-level overlap

between predicted and reference regions, ranging from 0 (no agreement) to 1 (perfect

agreement).

DICE(Mb
˜ ,Mb) =

2 · |Mb
˜ ∩Mb|

|Mb
˜ |+ |Mb|

, (3.3)

where M̃ b,Mb are the binary value for M̃,M . And M̃,M represent the prediction

score for the whole test set.

Higher Dice scores indicate better segmentation consistency and accuracy, making it

a commonly used metric in medical imaging for comparing segmentation algorithms.

It should be noted that the Dice score is a threshold dependent metric. It requires

different threshold values for different models and datasets to better suit the specific
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task. Therefore, we opted to not include the DICE comparison in the main experi-

mentation. Instead, we reported the DICE values of the 15 algorithms for reference.

3.3 Supported AD Algorithms

BMAD integrates fifteen SOTA anomaly detection algorithms, among which four are

reconstruction-based methods and the rest eleven are feature embedding-based ap-

proaches. Among the reconstruction-based methods,AnoGAN[5] and f-AnoGAN[39]

exploit the GAN architecture to generate normal samples. DRAEM[50] adopts an

encoder-decoder architecture for abnormality inpainting. Then a binary classifier

takes the original data and the inpainting result as input for anomaly identification.

UTRAD[13]treated the deep pre-trained features as dispersed word tokens and con-

struct an autoencoder with transformer blocks. Among the projection-based methods,

DeepSVDD [55], CutPaste[72] and SimpleNet[67] are rooted in one-class classifi-

cation. DeepSVDD searches a smallest hyper-sphere to enclose all normal embeddings

extracted from a pre-tarined model. CutPaste and SimpleNet introduce abnormality

synthesis algorithms to extend the one-class classification, where generated abnor-

mality synthesis is taken as negative samples in model training. Motivated by the

paradigm of knowledge distillation, MKD [11] and STFPM [69] leverage multi-scale

feature discrepancy between the teacher-student pair for AD. Instead of adopting the

similar backbones for the T-S pair in knowledge distillation, RD4AD [70] introduced

a novel architecture consisting of a teacher encoder and a student decoder, which

significantly enlarges the representation dissimilarity for anomaly samples. All of

PaDiM [63], PatchCore [64] and CFA [65] rely on a memory bank to store normal

prototypes. Specifically, PaDiM utilizes a pre-trained model for feature extraction

and models the obtained features using a Gaussion distribution. PatchCore leverages

core-set sampling to construct a memory bank and adopts the nearest neighbor search

to vote for a normal or abnormal prediction. CFA improves upon PatchCore by cre-

ating the memory bank based on the distribution of image features on a hyper-sphere.
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As notable from the name, CFlow [61] and CS-Flow [59] are flow-based methods.

The former introduced positional encoding in conjunction with a normalizing flow

module and the latter incorporates multi-scale features for distribution estimation.

Table 3.2: Model detail of One-class classification based methods.

Implementation Details

DeepSVDD[55] utilizes a LeNet as its backbone and is trained using an
Adam optimizer with a learning rate of 1e-4. The model training follows the
setting of weight decay as 0.5e-7 and a batch size of 200. These parameter
values have been chosen based on the original research paper or
implementation.

PatchSVDD [56], in contrast to DeepSVDD, examines images at the patch
level, exhibiting commendable performance in localized detection. The
proposed model introduces the utilization of hierarchical encoders, featuring
hyper-parameters of 64 for feature dimensions and 0.9 for λ, which effectively
balances the loss function.

Table 3.3: Model detail of Flow based methods.

Implementation Details

CS-Flow [59] is trained using specific hyper-parameter settings. During the
flow process, a clamping parameter of 3 is utilized to restrict the values.
Gradients are clamped to a value of 1 during training. The network is trained
with an initial learning rate of 2e-4 using the Adam optimizer, and a weight
decay of 1e-5 is applied. These hyper-parameter settings have been
determined through a process of optimization and are considered optimal for
the CS-Flow method.

CFLOW [61] is a normalizing flows-based method. We utilized Wide
Resnet-50 as backbone and Adam optimizer with a learning rate of 1e-4 for
all benchmarks’ experiments. And we follow the original parameter settings,
including the selection of 128 for the number of condition vectors and 1.9 as
clamp alpha value.
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Table 3.4: Model detail of Mermory Bank based methods.

Implementation Details

Patchcore[64] is a memory-based method that utilizes coreset sampling and
neighbor selection. In our experiments, we evaluated Patchcore using two
backbone networks: ResNet-18 and WideResnet-50. We followed the default
hyper-parameters of 0.1 for the coreset sampling ratio and 9 for the chosen
neighbor number. These values were chosen based on the original
implementation.

PaDiM [63] leverages a pre-trained convolutional neural network (CNN) for
its operations and does not require additional training. In our experiments,
we separately evaluated all benchmarks using two backbone networks:
ResNet-18 and Wide Resnet-50. For the dimension reduction step, we
retained the default number of features as specified in the original setting.
Specifically, we used 100 features for ResNet-18 and 550 features for Wide
Resnet-50. These default values were chosen based on the original
implementation and can serve as a starting point for further experimentation
and fine-tuning if desired.

CFA [65] is also a memory bank-based algorithm. We employs a Wide
Resnet-50 backbone and follows the parameter settings outlined in the
original paper. The method utilizes 3 nearest neighbors and 3 hard negative
features. A radius of 1e-5 is utilized for searching the soft boundary within
the hypersphere. The model is trained using the Adam optimizer with a
learning rate of 1e-3 and a weight decay of 5e-4. These specific parameter
configurations play a crucial role in achieving the desired performance and
effectiveness of the CFA approach, as determined by the original research
paper or implementation.

3.4 Experiments and Discussions

3.4.1 Implementation Details

When evaluating the fifteen AD algorithms over the BMAD benchmarks, we follow

their original papers and try their default hyper-parameter settings first. If a model

doesn’t converge during training and requires hyper-parameter tuning, we try the

combination of following common settings, which include 3 learning rate (10−3,10−4

and 10−5), 2 optimizer (SGD and Adam), and 3 thresholds for anomaly maps (0.5,

0.6, and 0.7). Please refer to the Table 3.2,3.3,3.4,3.5,3.6 for the specific hyper-
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Table 3.5: Model detail of Reconstruction-based methods.

Implementation Details

DRAEM[50] is a anomaly augmentation reconstruction-based method
utilized U-Net structure. The learning rate used for two sub network training
is 1e-4, and the Adam optimizer is employed. For the remaining settings, we
follow the default configurations specified in the original work.

CutPaste[72] utilizes a Resnet-18 backbone. The backbone is frozen for the
first 20 epochs of training. We trained the model using an SGD optimizer
with a learning rate of 0.03. And the batch size for training is following to
the defeat parameter, set to 64.

GANomaly[38] is trained using an Adam optimizer with a learning rate of
2e-4. The β1 and β2 parameters of the Adam optimizer are set to 0.5 and
0.999, respectively, following the original work. The weights assigned to
different loss components are also set according to the original setting: a
weight of 1 for the adversarial loss, a weight of 50 for the image regeneration
loss, and a weight of 1 for the latent vector encoder loss. These parameter
values have been chosen based on the original research paper and are crucial
for the performance and effectiveness.

f-AnoGAN[39] is a generative network that requires two-stage training.
During the training process, we use an Adam optimizer with a batch size of
32 and a learning rate of 2e-4. Additionally, the dimensionality of the latent
space is set to 100. These parameter settings have been chosen based on the
original research paper.

parameter setting for each algorithm. For each converged model, we monitor the

training progress and record the validation accuracy every 10 epochs. The final eval-

uation is carried out on the test set using the best checkpoint selected by the validation

sets. To visualize anomaly localization results, we employ min-max normalization on

the obtained anomaly maps. This ensures the effects of all algorithms appropriately

displayed and facilitates the comparison of anomaly localization across different meth-

ods. Notably, for a reliable comparison, we repeat the training and evaluation five

times, each with a different random seed, and report the mean and standard devi-

ation of the numerical metrics. In this study, all experiments are performed on a

workstation with 2 NVIDIA RTX 3090 GPU cards.
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3.4.2 Results and Discussions

Experimental result overview. The numerical results of anomaly detection and

localization over the BMAD benchmark are summarized in Tab. 3.7, 3.8, 3.9, 3.10,

where the top three performance along each metric are highlighted by underlining.

We also provide visualization examples of anomaly localization results in Fig. 3.8,

where redness corresponds to a high anomaly score at the pixel level. Although

no single algorithm consistently outperforms others, overall, the feature-based meth-

ods shows better performance than the reconstruction-based methods. We believe

that two reasons may lead to this observation. First, applying generative models to

anomaly detection usually relies on model’s reconstruction residue in the pixel level.

However, a well-trained generative model usually has good generalizability and it has

been found in prior arts that certain anomalous regions can be well reconstructed.

This issue hurts anomaly detection performance. Second, reconstruction residue in

the pixel level may not well reflect the high-level, context abnormalities. In contrast,

algorithms detecting abnormalities from the latent representation domain (such as

RD4AD [70], PatchCore [64], etc.) facilitate identifying abstract structural anoma-

lies. Therefore, these algorithms perform much better than the generative models. It

should be noted that for benchmarks like Liver CT and Brain MRI, where the back-

ground consists mostly of black pixels and the distribution of normal and anomalous

samples is imbalanced, the numerical results exist bias. Therefore, a high pixel-level

AUROC score may indicate that the model correctly classifies the majority of normal

pixels, but it does not necessarily reflect the model’s ability to detect anomalies ac-

curately. Besides, we have several interesting observations through this research that

necessitate careful analysis in order to advance the field of medical anomaly detection.

We elaborate our insights and discoveries as follows.

Anomaly localization analysis. Since different approaches generate the anomaly

map in various ways, either relying on reconstruction error [13, 50, 70, 103], using
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gradient-based visualization [11, 64], or measuring feature discrepancy [61, 63, 65],

they shows distinct advantages and limitations. Generally speaking, both numerical

data in Table. 3.8, Table. 3.7, Table. 3.10 and the visualization results in Fig. 3.8

demonstrate that knowledge-distillation methods, especially RD4AD [70], achieve

better localization performance. Although memory bank-based algorithm, Patchcore

[64], is more convincing at sample-level detection, its abnormality localization is very

coarse. Reconstruction-based algorithms, DRAEM [50] and UTRAD [13], shows di-

verse performance. We hypothesize their distinct capability of anomaly localization

is attributed to the different architecture of CNN and transformer. We notice that

DRAEM [50] is particularly sensitive to texture information, often focusing on regions

with significant variations in tumor texture. Since such variations may be distributed

across all regions in medical imaging, it partially limits the effectiveness of the pro-

posed approach. CFlow [61] shows bad anomaly localization performance and more

investigation is needed for its improvement.

Model efficiency analysis. For all fifteen algorithms in BMAD, we conduct a com-

parative efficiency analysis, in terms of sample-level AD accuracy, inference speed and

GPU usage. The results are summarized in Fig. 3.9, where the X-axis refers to the

inference time per image and Y-axis denotes the performance of the anomaly detec-

tion result. The size of the circle denotes the GPU memory consumption during the

inference phase. PatchCore[64], RD4AD[70], and CS-FLOW[59] emerge as the top 3

models across multiple benchmarks in terms of performance. It should be noted that

though CS-Flow demonstrates comparable inference time to the other two models, it

has lower efficiency to generate pixel-lever anomaly maps.

Anomaly synthesis is challenging. In unsupervised AD methods, one common

approach is to synthesize abnormalities to augment model training. CutPaste[72]

and DRAEM[50] are the examples. However,to address the variability in shape, tex-

ture, and color of medical anomalies across different domains, a customized synthesis

algorithm is needed to simulate realistic tumor lesions and their distributions. It
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is important to acknowledge the inherent difficulty in simulating the morphology of

anomalies, and this challenge becomes even more pronounced when considering rare

diseases.

We discovered that the Brain MRI and Liver CT benchmarks are better suited for low-

level feature-based anomaly augmentation methods. This observation aligns with the

characteristics of the Chest X-ray and Histopathology benchmarks, where abnormal-

ities often exhibit distinct and observable changes in overall structure or appearance.

Therefore, it is essential to develop domain-specific approaches that account for these

factors when augmenting anomalies in medical image datasets.

Pre-trained networks significantly contribute to medical domain. Through

there is a continuous debate on if information obtained from natural images is trans-

ferable to medical image analysis, our results show that the rich representations of

pre-trained models would improve medical anomaly detection by careful algorithm

design. Among the models evaluated, algorithms based on the knowledge-distillation

paradigm (e.g. MKD [11] and RD4AD [70]) and memory bank (e.g. Patchcore [64])

leverage the powerful feature extraction capabilities of large pre-train models and ex-

hibit better performance in anomaly localization, which plays a crucial role in clinical

diagnosis. SimpleNet[67] utilized a pre-trained feature extraction module alongside a

Gaussian denoising module, proving effective for enhancing low-level feature images.

This also suggests that the denoising module operates optimally within the same

repersatatation will fit the best for the detection.

Memory bank-based methods have shown promising performances. Patch-

Core[64] is a representative example. These methods possess the ability to incorpo-

rate new memories, effectively mitigating forgetting when learning new tasks. Hence,

the memory bank serves as an ideal rehearsal mechanism. However, these methods

have specific hardware requirements to ensure efficient storage and retrieval of stored

information. Achieving high-capacity storage systems and efficient memory access

mechanisms for optimal performance while minimizing interference time presents a
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notable challenge. Furthermore, our observations indicate that memory-based meth-

ods, while sensitive to global anomalies, may not excel in terms of localizing and

visualizing anomalies when compared to feature reconstruction methods. Accurate

anomaly localization holds crucial practical value for AD algorithms and provides

valuable insights to medical professionals. Therefore, memory bank-based methods

may encounter challenges and limitations that impact their competitiveness in certain

scenarios.

Model degradation problem. The model degradation problem refers to the phe-

nomenon where a deep neural network, trained on a large dataset, experiences a

decline in performance as the network’s depth increases. In our study, we have ob-

served that this issue also exists within the BMAD benchmark. However, addressing

this problem by adding appropriate preprocessing and data augmentation techniques

to medical benchmarks poses a significant challenge. We propose that incorporating

adversarial training for medical data could be a promising approach to enhance the

robustness of the models. Adversarial training involves exposing the model to ad-

versarial examples during the training process, which are inputs specifically designed

to deceive the model. By training the model to resist such attacks, it can improve

its ability to generalize and perform well on unseen data. This approach has shown

promise in improving the robustness of deep learning models in various domains, and

we believe it could be beneficial for medical anomaly detection as well.
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Figure 3.8: Visualization examples of anomaly localization on the three benchmarks
that support pixel-level AD assessment.
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Figure 3.9: Model Efficiency Analysis. X-axis refers to the average inference time per
image and Y-axis denotes anomaly detection accuracy. The size of the circle denotes
the GPU memory consumption during the inference phase. In the sub-images, there
may be slight variations in the results due to model adjustments like selecting specific
parameters and backbones on each benchmark.
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Table 3.6: Model detail of T-S based methods.

Implementation Details

RD4AD[70] utilizes a wide ResNet-50 as the backbone network and applies
the Adam optimizer with a learning rate of 0.005. In addition, we follow the
defeat set of the beta1 and beta2 parameters to 0.5 and 0.99, respectively.
For the anomaly score of each inference sample, the maximum value of the
anomaly map is used. These settings were determined based on the original
implementation of RD4AD and can be adjusted if needed.

STFPM[69] utilized feature extraction from a Teacher-student structure. In
our experiments, we evaluated all benchmarks separately using two backbone
networks: ResNet-18 and Wide Resnet-50. We employed a SGD optimizer
with a learning rate of 0.4. Additionally, we followed the original setting with
a parameter with a momentum of of 0.9 and weight decay of 1e-4 for SGD.
These settings were chosen based on the original implementation and can be
adjusted for further experimentation if desired.

MKD[11] utilizes the VGG16 backbone for feature extraction, and only the
parameters of the cloner are trained. We follow the defeat setting with a
batch size of 64. The learning rate is set to 1e-3 using the Adam optimizer.
Additionally, the λ value is set to 1e-2, which represents the initial amount of
error assigned to each term on the untrained network. These parameter
settings are have been chosen based on the original research paper.

UTRAD[13] is based on Transformer backbone with a ReLu activation
function. We trained the model with a defeat parameters setting: batch size
of 8 and an Adam optimizer with a learning rate of 1e-4. The parameter
settings are have been chosen based on the original research paper.

SimpleNet[67] was trained using the original hyper-parameters and includes
two main modules. We retained the original parameters for the adapter and
the Gaussian noise generation module. The results are based on the best
performance achieved on the validation set during the top 40 training epochs,
following the original settings
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Methods
BTCV + LiTs

Image AUROC Pixel AUROC Pixel Pro

f-AnoGAN [39] 58.53± 0.21 NA NA

GANomaly [38] 54.60± 3.06 NA NA

DRAEM [50] 69.95± 3.86 87.45± 3.23 79.29± 5.66

UTRAD[13] 55.81± 5.66 87.88± 1.32 71.12± 3.46

DeepSVDD [55] 53.96± 1.84 NA NA

CutPaste [72] 59.33± 4.86 NA NA

SimpleNet [67] 72.28± 2.68 97.51± 0.56 91.07± 1.79

MKD [11] 60.72± 1.19 96.06± 0.27 91.08± 0.30

RD4AD[70] 60.38± 1.17 96.01± 1.19 90.29± 2.51

STFPM[69] 61.75± 1.58 91.18± 5.52 90.62± 6.87

PaDiM [63] 50.78± 0.61 90.94± 0.84 76.79± 0.41

PatchCore[64] 60.28± 0.76 96.43± 0.19 87.75± 0.49

CFA [65] 62.00± 1.08 97.24± 0.14 92.75± 0.21

CFLOW [61] 50.80± 4.47 92.41± 1.16 83.11± 1.28

CS-Flow [59] 59.37± 0.54 NA NA

Table 3.7: Comparison of anomaly detection performance on liver CT benchmark. We
report the mean and standard deviation over 5 random seeds for each measurement.
Bold indicates the best performance.
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Methods
BraTS2021

Image AUROC Pixel AUROC Pixel Pro

f-AnoGAN [39] 77.26± 0.18 NA NA

GANomaly [38] 74.79± 1.93 NA NA

DRAEM [50] 62.35± 9.03 82.29± 4.07 63.76± 4.16

UTRAD[13] 82.92± 2.32 92.61± 0.67 72.29± 2.12

DeepSVDD [55] 86.98± 0.66 NA NA

CutPaste [72] 78.81± 0.67 NA NA

SimpleNet [67] 82.52± 3.34 94.76± 1.04 78.38± 3.17

MKD [11] 81.47± 0.36 89.44± 0.24 67.59± 0.99

RD4AD[70] 89.45± 0.91 96.45± 0.17 85.86± 0.23

STFPM[69] 83.04± 0.67 95.62± 0.12 83.02± 0.44

PaDiM [63] 79.02± 0.38 94.37± 1.03 76.41± 0.84

PatchCore[64] 91.65± 0.36 96.97± 0.04 85.68± 0.24

CFA [65] 84.38± 0.87 96.33± 0.14 83.78± 0.51

CFLOW [61] 74.82± 5.32 93.76± 0.67 75.45± 3.53

CS-Flow [59] 90.91± 0.83 NA NA

Table 3.8: Comparison of anomaly detection performance on brain MRI benchmark.
We including sample-level and pixel-level results. We report the mean and standard
deviation over 5 random seeds for each measurement. Bold indicates the best perfor-
mance.
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Methods
RESC

Image AUROC Pixel AUROC Pixel Pro

f-AnoGAN [39] 77.42± 0.85 NA NA

GANomaly [38] 52.56± 3.95 NA NA

DRAEM [50] 83.22± 8.21 86.79± 3.14 63.55± 4.62

UTRAD[13] 89.39± 1.92 94.54± 1.24 77.49± 4.30

DeepSVDD [55] 74.17± 1.29 NA NA

CutPaste [72] 90.23± 0.61 NA NA

SimpleNet [67] 76.15± 7.46 77.14± 4.76 49.07± 5.23

MKD [11] 87.77± 0.87 96.18± 0.15 85.62± 0.47

RD4AD[70] 87.77± 0.87 96.18± 0.15 85.62± 0.47

STFPM[69] 84.82± 0.50 94.68± 0.57 81.27± 1.49

PaDiM [63] 75.87± 0.54 91.44± 0.42 71.68± 0.81

PatchCore[64] 91.55± 0.10 96.48± 0.10 85.84± 0.25

CFA [65] 69.90± 0.26 91.10± 0.87 69.77± 0.41

CFLOW [61] 74.95± 5.81 93.78± 0.57 76.80± 1.72

CS-Flow [59] 87.34± 0.58 NA NA

Table 3.9: Comparison of anomaly detection performance on retinal OCT benchmark.
We including sample-level and pixel-level results. We report the mean and standard
deviation over 5 random seeds for each measurement. Bold indicates the best perfor-
mance.
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Methods
OCT207 RSNA Camelyon16

Image AUROC Image AUROC Image AUROC

f-AnoGAN [39] 73.42± 1.85 55.15± 0.09 69.49± 1.98

GANomaly [38] 70.47± 9.98 62.90± 0.65 54.44± 2.57

DRAEM [50] 88.03± 8.36 67.70± 1.72 52.35± 0.77

UTRAD[13] 96.78± 0.56 75.64± 1.24 69.96± 4.64

DeepSVDD [55] 76.76± 1.37 64.48± 3.17 60.98± 1.82

CutPaste [72] 96.76± 0.62 82.61± 1.22 75.18± 0.41

SimpleNet [67] 94.68± 2.17 69.12± 1.27 62.38± 3.71

MKD [11] 96.74± 0.26 82.01± 0.12 77.54± 0.27

RD4AD[70] 97.30± 0.79 67.63± 1.11 66.81± 0.71

STFPM[69] 96.76± 0.23 72.93± 1.96 66.36± 1.01

PaDiM [63] 91.75± 0.96 77.49± 1.87 67.25± 0.32

PatchCore[64] 98.57± 0.03 76.14± 0.67 69.34± 0.21

CFA [65] 79.47± 0.56 66.83± 0.23 65.64± 0.10

CFLOW [61] 85.35± 2.11 71.53± 1.49 55.66± 1.97

CS-Flow [59] 98.47± 0.28 83.20± 0.46 68.38± 0.42

Table 3.10: Comparison of anomaly detection performance on retinal OCT bench-
mark, chest x-ray benchmark and digital histopathology benchmark. We including
only sample-level results. We report the mean and standard deviation over 5 random
seeds for each measurement. Bold indicates the best performance.
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Benchmarks BraTS2021 BTCV + LiTs RESC

DRAEM [50] 19.31± 5.52 9.38± 0.78 33.51± 3.52

UTRAD [13] 7.27± 0.06 2.33± 0.06 22.81± 0.36

MKD [11] 28.89± 0.72 14.92± 0.23 43.53± 1.10

RD4AD [70] 28.28± 0.48 10.72± 2.50 33.51± 3.52

STFPM [69] 25.40± 0.82 8.87± 2.52 49.23± 0.23

PaDiM [63] 25.84± 1.20 4.50± 0.46 38.30± 0.89

PatchCore [64] 32.82± 0.59 10.49± 0.23 57.04± 0.21

CFA [65] 30.22± 0.32 14.93± 0.08 36.57± 0.18

CFLOW [61] 19.50± 2.73 7.58± 3.16 44.83± 1.78

SimpleNet [67] 28.96± 1.73 12.26± 2.41 30.28± 1.64

Table 3.11: Anomaly detection performance quantified by DICE over BMAD. The
top method for each metric are underlined. Note that Dice is a threshold-dependent
metric. The results in the table is obtained with threshold of 0.5. By adjusting the
threshold for each result, it is possible to achieve higher performance.
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Chapter 4

A Language-Enhanced
Reconstruction Model for Medical
Anomaly Detection

4.1 Introduction

Upon establishing the first medical anomaly detection benchmark, BMAD, we found

that no single existing model possesses the universality required to comprehensively

address detection tasks across various domains. These models may perform well on

specific datasets but often lack the generalizability needed to adapt to different med-

ical data environments and detection requirements. We argue that this observation

is attributed to the significantly diverse gaps between medical domains, which poses

challenges to conventional representations learning.

Inspired by the powerful zero-shot capability and impressive transfer ability of

large vison-language foundation models like CLIP, we aim to leverage such multi-

modal models to better represent the medical information in images to overcome this

limitation,thereby assisting the model in performing anomaly detection and localiza-

tion tasks more effectively. By incorporating specialized medical knowledge, prior

information, and data characteristics, we can guide the model to more accurately

identify and delineate the contours of normal biomedical signals. This enhanced

representational capability enables the model to more effectively recognize abnormal
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patterns that deviate from the normal mode.

In this chapter, we will elaborate on how we construct a model framework that

integrates additional knowledge, as well as how we use this framework to improve the

accuracy and robustness of medical anomaly detection. We will discuss data prepro-

cessing steps, feature engineering strategies, and the process of model training and

validation. Furthermore, we will present experimental results and conduct a com-

parative analysis of the performance of different models on multiple medical datasets

to demonstrate the effectiveness and versatility of our proposed methods. Through

these efforts, we aim to advance the field of medical anomaly detection and provide

stronger technical support for healthcare.

Figure 4.1: Diagram of the proposed network.

4.2 Methods and Procedure

4.2.1 Architecture Overview

Fig 4.1 illustrates the overall workflow of the proposed network, which can be roughly

divided into two parts: Data Augmentation module and Language-Enhanced Recon-

struction module. For an input image I, it first undergoes detail enhancement through
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the Data Augmentation module. Then, the enhanced image is fed into the CLIP’s

frozen image encoder Eimage to obtain the output feature f last from the last layer.

This feature f last is subsequently input into a trainable adapter, which converts the

image information into auxiliary prompt information that is comprehensible by text.

The transformed information is then appended to a trainable blank prompt. The

newly obtained prompt is then input into the CLIP’s frozen text encoder Etext to

acquire the encoded text features, which is then reconstructed with the previously

obtained multi-dimensional image feature. Here, we employ cosine similarity as a

constraint for this reconstruction process. Eventually, we obtain a set of trained

prompts that describe the characteristic information of normal images, as well as

a trained adapter that effectively assists the image encoder Eimage in adapting to

various medical domains.

It is noteworthy that the trainable components in the proposed method are the

adaptor after the image encoder and the prompting tokens concatenating to visual to-

kens. The motivation behind this design is to bridge the domain gap between CLIP’s

pretrained dataset and the target data. Specifically, CLIP is pretrained on huge num-

bers of paired image-text data collected from internet, among which a large portion

are about natural images. Thus, CLIP is powerful to represent the rich and diverse

knowledge associated to natural images using text tokens. However, medical images

from different domains exhibit different medical content, which poses challenges to

the pretrained CLIP model for pairing the text encoder and image encoder. By lever-

aging trainable adaptor and text tokens on the target data (i.e. medical images in

our study), we aim to bridge the domain gap and inject extra domain-specific pairing

information to the CLIP model. Since the trainable components are adapted to the

targeted medical domain, the model is flexible to tailor for different AD tasks.
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4.2.2 Language-Enhanced Reconstruction

We trained the model exclusively on anomaly-free samples, so that the image branch

and text branch are re-pairing for normal data, but show large pairing errors (or,

reconstruction errors) for abnormal samples. In this study, we used Etext and Eimage

as our text encoder and image encoder in the pre-trained CLIP, respectively. The

adaptor after the image encoder is parameterized by θ, denoted by hθ, and the set of

N trainable numerical text prompts are represented by T .

Ti = [t]1[t]2 . . . [t]M , (4.1)

where i represents the i-th blank prompt andM represents the number of the trainable

tokens contained in one prompt Ti. M is a hyper-parameter and we keep the same

M for all N prompts. The rationale underlying our N trainable text prompts stems

from the process whereby, subsequent to an input image traversing the image encoder

Eimage, the resulting patch features undergo augmentation with position embedding.

Correspondingly, we target to train an individual numerical prompt for each patch

location. This integration introduces subtle distinctions, even among patches that

exhibit similarity in their original patterns, thereby enriching the representation by

the spatial information and ensuring the uniqueness of each patch embedding.

Concisely, Eimage processes the input image I to yield fk
i = Ek

image(I), where fk
i

signifies the i-th feature from the k-th layer of Eimage. To further enhance the ca-

pability of text branch in reconstructing normative patterns with prompts T and

bridging the gap between the pre-trained CLIP encoders and target medical domain,

we devised a tailored adapter module for style transfer learning. This module serves

as a refinement tool to fine-tune the image feature after Eimage, enabling it to better

capture the intricacies of medical imagery. Here, we introduce π = hθ(f
last
i ) as the

feature after the adapter, which updates each visual context token. Here, f last
i de-

notes the distinctive feature output from the culminating layer of the Eimage model.

This architecture design ensures that the image encoder Eimage is specifically adapted
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to the target medical images. Meanwhile, the Etext model processes the i-th input Pi

in an augmented form, incorporating the adapter’s output:

pki = Ek
text(Ti + hθ(f

last
i )), (4.2)

where pki represents the text feature corresponding to the ith patch extracted from

the k-th layer of Etext, thereby integrating the visual nuances of medical images into

the textual prompts.

Training objective: During training, the whole model concurrently update the

textual trainable prompts Ti alongside the parameters θ of the adapter. Our adapter

module incorporates a two-layer bottleneck architecture, specifically Linear-ReLU-

Linear, where the hidden layer effectively compresses the input dimension by a factor

of 16×. To encourage the pairing and alignment of representations from the text

branch and image branch, the cosine similarity between fk
i and pki is minimized with

normal input data only. The obtained 2-D anomaly map Mk ∈ RHk×Wk is calculate

from the previous fk, pk ∈ RCk×Hk×Wk , where Ck, Hk and Wk denote the number of

channels, height and width of the kth layer activation tensor.

Mk
i (h,w) = 1−

(︁
fk
i (h,w)

)︁T · pki (h,w)⃦⃦
fk
i (h,w)

⃦⃦ ⃦⃦
pki (h,w)

⃦⃦ , (4.3)

Then the complete set of feature maps from one layer are accumulated:

Mk
overall =

CK∑︂
i=1

Mk
i . (4.4)

A final objective loss to optimize the multimodal model combines the multi-scale

anomaly scores as follows.

L =
K∑︂
k=1

{︄
1

HkWk

Hk∑︂
h=1

Wk∑︂
w=1

Mk
overall(h,w)

}︄
, (4.5)

where K indicates the number of feature layers used in the experiment.

Inference: At the inference stage, after obtaining a set of anomaly maps from

the image-prompt pairs, we up-samples Mk to the original image size by a bilinear
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up-sampling operation Ψ. Then a precise score map S is formulated as the pixel-wise

accumulation of all anomaly maps, S =
∑︁L

i=1 Ψ(M i). Then the maximal value in S

is taken as the sample-level anomaly score.

4.2.3 Data Augmentation

As in prior work, P-Net[12], the authors show that incorporating the structure infor-

mation into the whole reconstruction network boosts medical anomaly detection. By

training an additional segmentation network in advance, P-Net generates an retina

OCT vessel structural images for each query picture and incorporates them into the

OCT anomaly detection network. Despite using the pre-trained segmentation net-

work, as P-net did, we found that the existing segmentation networks in medicine

do not possess sufficient generalization performance to adapt to data from varying

medical domains. Failing in finding an universal pre-trained model for all medical

domains, we opt to enhance the image histological information in a simple way as

shown in Fig. 4.3. Essentially, our training-free data augmentation leverages the

well-known Laplacian pyramid in Fig. 4.2 to enhance the low-frequency information

in medical images and removes high-frequency noise from an original image.

To get the low-frequency residual image, we can formulate Laplacian Pyramid by

first apply a Gaussian Pyramid. We define K to represent the level of our Gaussian

operations and I is a single image. For each I, it has a set of band-pass images:

G(I) = [I1, . . . , IK ] (4.6)

Where I should be I0. The Gaussian pyramid is essentially a downsampling pro-

cess that convolves an image with a Gaussian kernel, denoted by F↓(·) here. With

downsampleing, the size of the image will be decimated by:

Ik+1 = F↓ (Ik) (4.7)

Where a j × j input image IK will be blurred and decimated to IK+1 with size

of j/2 × j/2. For low-frequency restoration to the original image dimension, the
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low-freuqnecy residue are upsampled by K-times,

Ik = F↑ (Ik+1) + Lk, (4.8)

where IK can be seen as a invertible combination of different resolutions,F↑ (Ik+1) and

Lk. Lk is well known as Laplacian Pyramid. And for F↑ (Ik+1), it is the low-resolution

residual image which contains the key structure information.

We define the target of our proposed low-resolution residual image as SK , which

K indicates the level of Gaussian operations and also represents the number of times

we need to upsampling. So our target structure information is computed as follows:

Sk = F↑ (F↓ (Ik)) = F↑K (F↓K (I)) (4.9)

Figure 4.2: Diagram Illustrating the Process of Downsampling and Upsampling. Use
retinal image as a example.

Finally, the obtained structure information is added to the original image for an

enhanced image version for our multimodal analysis.

4.3 Results and Discussion

4.3.1 Dataset

We conduct medical anomaly detection and localization experiments on previous

banchmark work which contains seven datasets from six different domains: BraTS2021[89],
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Figure 4.3: Diagram of the our image agumentation process.

BTCV[90], LiTs[91], RESC[92], RSNA[8], Camelyon16[93], OCT2017[94]. We have

already give a detail intorduction in Table 3.1. In this work, we used the training

data for language reconstruction. The test data in the mentioned benchmarks are

used for evaluating anomaly detection and localization.

4.3.2 Metrics

We used three methods for evaluation. In accordance with established practices in

previous literature, we employ AUROC (Area Under the Receiver Operating Char-

acteristic Curve), and PRO (Per-Region Overlap) metrics to assess the performance

of anomaly detection.

4.3.3 Implementation

We adopt ViT-B-16+[104] as the visual encoder and the transformer [105] as the

text encoder by default from the public pre-trained CLIP model. We also provide
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results under ResNet [106]. we set the image size to 256 × 256. And we added a

extra medical image augmentation module. For the text encoder, we use 16 empty

tokens for reconstruction. For traning stage, we use the AdamW optimizer and set

the learning rate to 0.001, and the adaptor is optimized with 400 epochs. We report

the mean and variance of the results of MedCLIP over 5 random seeds.

Figure 4.4: In this diagram,we present the anomaly localization results of our model.

4.3.4 Performance and Ablation Studies

We present out results in Table 4.1, Table 4.2, Table 4.3 and Table 4.4 present the

performance of our results of anomaly localization and detection on different medical

domains and datasets, respectively. We compare our proposed methods with prior

vision-language based works for medical AD. We also conducted ablation experiments
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simultaneously, experimenting with different setups of vision encoders: ResNet-18,

ResNet-50, and ViT, respectively. Regarding the DA module, we performed ablation

experiments as well. The experimental results demonstrated that the combination of

ViT and DA configuration could enable our model to achieve the best performance.

Additionally, we conducted ablation experiments on the number of the reconstructed

tokens, setting them to 8, 16, 24, and 32, respectively. The model achieved the

best performance at 16. We also conducted ablation experiments on the value of k

mentioned in Equation 4.2. The experimental results, showing in Fig.4.8 demonstrate

that our k should be set to a combination of four layers, specifically 1, 2, 3, and 4.

Our method can also effectively locate the position of abnormal detection. As for

abnormal areas, our method is more sensitive and can achieve better boundary as

shown in Fig 4.4.

At the beginning of this chapter, we raised a challenging issue, which is that, ac-

cording to Chapter 3, no existing model can perfectly address the problem of anomaly

detection in various medical domains, as shown in Fig 4.5. They often overlook the

rich semantic information contained in medical images as well as the unique imag-

ing modalities of medical images. To avoid excessive manual annotation, which is

often the most costly aspect in medicine, we chose to use blank tokens to reconstruct

the multi-dimensional information contained in normal images. By adopting a text-

description perspective, we aimed to restore finer-grained normal information and

identify the location of anomalies through differences detected during the inference

stage. Our results achieved the best performance among all existing methods.

We conducted ablation experiments on the hyper-parameters M in Fig 4.6 and K

in Fig 4.8. Specifically investigating the influence of the length of trainable tokens

on the reconstruction performance. The results indicated that when M was set to

16, the reconstruction effect was optimal, leading to the best performance in med-

ical anomaly detection task. Additionally, we performed ablation experiments on

the hyper-parameter K for our selected multi-layer anomaly map. The conclusion
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Methods
BraTS2021

Image
AUROC

Pixel
AUROC

Pixel Pro

WinCLIP [39] 86.76± 0.31 94.72± 0.26 76.46± 2.86

CLIP [38] 64.43± 2.67 76.14± 1.79 54.57± 5.92

DDPM [16] 89.74± 3.12 96.14± 0.69 86.16± 3.24

Ours(ResNet-18 based with DA) 87.23± 1.34 82.54± 0.45 75.60± 2.28

Ours(ResNet-50 based with DA) 89.68± 2.12 87.73± 0.67 78.46± 2.32

Ours(ViT based without DA) 91.12± 0.84 92.40± 2.76 80.36± 1.83

Ours(ViT based with DA) 92.74± 0.84 97.01± 0.46 85.71± 0.58

Table 4.1: We compare our results on Brain MRI benchmark with prior works and
our work with different settings.

Methods
BTCV + LiTs

Image
AUROC

Pixel
AUROC

Pixel Pro

WinCLIP [39] 72.48± 2.38 96.12± 0.48 86.26± 2.26

CLIP [38] 57.81± 3.58 91.64± 1.64 74.37± 2.32

DDPM [16] 90.92± 2.68 92.32± 2.70 74.65± 0.73

Ours(ResNet-18 based with DA) 65.86± 2.92 90.14± 1.48 85.63± 1.28

Ours(ResNet-50 based with DA) 71.28± 4.10 91.62± 2.25 90.24± 3.38

Ours(ViT based without DA) 70.32± 0.24 92.40± 2.76 88.16± 2.83

Ours(ViT based with DA) 74.94± 1.34 98.84± 0.46 69.60± 1.74

Table 4.2: We compare our results on Liver CT benchmark with prior works and our
work with different settings.
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Methods
RESC

Image
AUROC

Pixel
AUROC

Pixel Pro

WinCLIP [39] 84.45± 0.21 86.79± 3.14 74.38± 0.42

CLIP [38] 74.61± 3.06 72.18± 1.43 45.01± 0.34

DDPM [16] 64.43± 2.67 76.14± 1.79 54.57± 5.92

Ours(ResNet-18 based with DA) 80.12± 2.67 90.32± 3.15 79.34± 1.82

Ours(ResNet-50 based with DA) 89.24± 1.53 94.54± 1.24 80.14± 0.72

Ours(ViT based without DA) 87.72± 1.34 90.42± 1.73 76.74± 2.16

Ours(ViT based with DA) 93.98± 2.46 95.40± 1.26 78.64± 3.64

Table 4.3: We compare our results on Retinal OCT benchmark with prior works and
our work with different settings.

Methods
OCT2017 RSNA Camelyon16

Image
AUROC

Image
AUROC

Image
AUROC

WinCLIP [39] 94.36± 0.78 79.72± 2.52 70.14± 2.08

CLIP [38] 86.62± 1.28 66.82± 1.34 64.34± 1.22

DDPM [16] 95.62± 2.34 76.14± 1.79 64.72± 3.64

Ours(ResNet-18 based with DA) 90.47± 1.71 74.54± 1.11 64.78± 0.23

Ours(ResNet-50 based with DA) 96.76± 0.62 80.23± 2.62 75.18± 0.41

Ours(ViT based without DA) 94.34± 2.36 84.36± 3.62 72.14± 0.96

Ours(ViT based with DA) 98.94± 2.46 85.70± 2.60 77.86± 1.18

Table 4.4: We compare our results on Retinal OCT, Chest X-ray and Histopathology
benchmark with prior works and our work with different settings.
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Figure 4.5: In this diagram,we present the performance outcomes of our replicated
experimental results on established medical benchmarks. While our model did not
attain exceptional performance in all evaluated metrics, it consistently achieved the
relatively optimal results across various domains, underscoring its potential for gen-
eralization within the medical domain.
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Figure 4.6: In this diagram, we showcase the anomaly detection outcomes stemming
from our ablation experiments, specifically targeting the hyper-parameters related to
the quantity of tokens M .
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Figure 4.7: In this diagram,we present the anomaly detection results of our ablation
experiments on different module combinations.
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Figure 4.8: In this diagram,we present the anomaly detection results of our ablation
experiments on hyper-parameters K.
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revealed that when K was set to include the first, second, third, and fourth layers in

superposition, the model achieved optimal performance. We also discussed the roles

of our various modules in Fig4.7 to demonstrate that the final design enables the

model to achieve optimal performance.
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Chapter 5

Conclusions, Recommendations, &
Future Work

5.1 Conclusion

In this work, we have presented two significant contributions to the field of medical

anomaly detection. Firstly, we have introduced a comprehensive medical anomaly de-

tection benchmark, comprising six diverse datasets across five key medical domains

and integrating 15 state-of-the-art anomaly detection algorithms. This benchmark

not only represents the most extensive collection to date but also provides a rigorous

evaluation framework for medical anomaly detection algorithms, enabling thorough

assessment from multiple perspectives. Secondly, we proposed a novel multimodal

approach leveraging CLIP for unified anomaly detection and localization on medi-

cal benchmarks. Our method achieves state-of-the-art performance, demonstrating

the potential of vision-language models to address anomaly detection tasks beyond

traditional training data constraints.

5.2 Limitation

5.2.1 Data Bias and Representativeness

The medical datasets used in our benchmark are predominantly collected from ad-

vanced countries, which may introduce inherent geographical and sampling biases.
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This limitation can affect the generalizability of the evaluation results to other pop-

ulations and regions.

5.2.2 Hyper-parameter Optimization

While we carefully adhered to the hyper-parameter settings proposed in the original

works for the evaluated algorithms, it is possible that some hyper-parameters did not

achieve their optimal values for specific datasets in our experiments. This could limit

the full potential of some algorithms.

5.2.3 Evaluation Framework

Our benchmark currently follows the one-for-one anomaly detection paradigm, where

a separate model is trained for each subject or class. However, recent research has

shown the advantages of unified one-for-N models that can handle multiple classes

with a single model. Evaluating such unified models on our benchmark could provide

further insights.

5.3 Remark and Future Work

To mitigate the limitations of data bias, we plan to expand the benchmark by includ-

ing datasets from a wider range of geographical locations and demographic groups.

This will enhance the representativeness and generalizability of the evaluation results.

Meanwhile, we will develop more systematic approaches to optimize hyper-parameters

for each algorithm and dataset combination. This could involve techniques such as

grid search, random search, or Bayesian optimization to find the optimal settings that

maximize performance.

Inspired by the success of our multimodal model for generalized anomaly detection

cross multi-domains, we will further explore the potential of vision-language integra-

tion for medical anomaly detection and localization. This may involve developing

new prompting techniques, incorporating domain-specific knowledge, or leveraging
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advances in vision-language pre-training models.
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