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ABSTRACT

Power system networks are subjected to harmonics injection due to
the presence of non linear loads, and to the nse of all kinds of
converters and inverters. The estimation of harmonic contents of the
voltage or the current waveforms necds an  efficient parameter
estimation technique.

Parameter estimation techniques used in harmonics identification.
can be classified as either static or dynamic.

This thesis present a new application of the least squares
technique for estimating the harmonic contents. A new mnon iterative
least absolute value technique is presented as well. Results obtained
from those techniques showed :iat they cam be considered as
alternative to the discrete Fourier transform algorithm.

In the dynamic case a new least absolute value filter is
presented as an equivalent to the Kalman filter with the superiority
in the cases where the error distribution is non-Gaussian.

The thesis is concluded by comments and recommendations for

future work.
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CHAPTER 1

INTRODUCTION

Over the past several years, electric utilities have experienced
an increase in the levels of harmonic frequencies on the electrical
delivery system. Although harmonic frequencies have always been
preseﬁt on power supply systems, they have recently become of interest
to utilities.

The increasing use of solid-state power-conversion equipment
(rectifiers inverters, cycloconverters) and other power
electronic-type devices (voltage controllers, motor-speed controllers)
on distribution systems is causing utilities to become much more
concerned about harmonic voltage and current levels on these systems.
The undesirable effects of harmonic distortion in power systems have
been well documented and will be discussed in the next chapter [6,7].
The electricity supply authorities have a responsibility to insure
that, in using electrical emergy, a consumer does not cause undue
interference with, or damage to, the equipment of another consumer or
of the supply authority [1,2,3].

Accurate measurement of power system harmonics is essential to
evaluate the harmonic distortion in both current and voltage
waveforms. Most static harmonic analysis algorithms are based -either
on the discrete Fourier transform or on fast Fourier transform {7,13]
(FFT) to obtain the voltage and current frequency spectra from

discrete time samples. This thesis presents a new application of the



least squares state estimation technique, as well as, a npew, mnon
iterative, least absolute value state estimation technique for power
system harmonics identification. Static techniques give an accurate
estimation when the given waveform is stationary, but if the waveform
is non-stationary, then dynamic state estimation techniques should be
used. The thesis presents different dynamic  state estimation
techniques, such as the Kalman filter and a new weighted least
absolute value dynamic filter [40,43].

In this thesis the primary objective is to compare the accuracy
of barmonics estimation made via least sqaares criterion, least
absolute value criterion and discrete Fourier transform to each other.
Also to be compared, is the performance of the weighted least absolute
value filter to that of the Kalman filter.

The harmonic identificatisn problems which will be considered are
of two different kinds, the first onme is when the waveform has
harmonics order with an integral multiple of the fundamental frequency
only, while the second ome is when the waveform is contaminated with

frequencies lower than the fundamental frequency.



1.1: Outline of thesis

Chapter II introduces the power system harmonics problem. Here
the harmonic sources, harmonic effects and harmonic measurement

techniques are reviewed.

In chapter III the mathematical models suitable for both on and
off-line estimation are developed.

Chapter IV presents the static estimation pro:':m followed by
discrete Fourier method then the theories and derivations of the least
squares and least absolute value methods. Also incleded in this
chapter are the results obtained using these different methods.

The dynamic estimation problem is presented in chapter V and the
derivations of the Kalman filter and the weighted least absolute value
filter are presented as well as the results obtained using these

techniques.

In chapter VI conclusions are drawn and recommendations are made.



CHAPTER 1II

THE POWER SYSTEM HARMONICS PROBLEM

In this chapter, the harmonics problem is reviewed. The chapter
begins by reviewing the basic harmonic sources and effects. Then the
development of the measurement techniques for power system harmonics
will be reviewed. State estimation techniques, as they are the
mathematical tools to perform the measurement, are discussed as well.
Finally the chapter is concluded by defining different distortion

factors used in judging the distortion levels.

2.1: Introduction

The presence of power system harmonics is not a nmew problem, it
has been well-known since the first generator was built. But, nowadays
due to the widespread use of electronic equipment, arcing devices,
such as arc furnaces and equipment with saturable ferromagnetic cores,
such as transformers, power engineers pay more attention to power
system harmonics. Identification of harmonics may be of great
importance in locations where harmonic standards are to be adopted.
Also, it may be used to allocate loads which exceed specified harmonic
current limits. Furthermor:, the identification of power system
harmonics is mneeded for designing harmonic filters, thercfore an

accurate method is required to perform this identification [6,7].



2.2: Harmonic sources

The AC power system harmonic problems are mainly due to the
substantial  increase @ of mnomlinear loads resulting from new
technologies, such as wusing power electronics elements in AC/DC
transmission links or im the control of power systems using
microprocessor  controls, all this equipment creates load-generated
harmonics throughout the system. Another reason is the change of the
design philosophy. In order to be competitive, power equipment are
more critically designed nowadays. For example in iron-core devices,
their operating points are more into nonlinear regions. Operation in
such regions results in a sharp rise in harmonics. Harmonics sources,
in general, can be divided into two categories; established and known,

new and future [3,6,7].

2.2.1: Established and known harmonic sources.

Prior to the deveclopment of static converters power system
barmonic problems were mainly associated with the operation of
electric machines and transformers. Modern transformers and rotating
machines when operated normally do not in themselves cause a
significant distortion in the network. However, they can be considered
as sources of harmonics if they operate outside their nmormal operating
range or during transients. Besides these sources some ncnlinear
loads, other than static converters, can be considered as harmonic
sources. Established barmonic sources will be summarized in the next

part of this subsection.



a) Rotating machines are considered to be one of the most
important harmonic sources in the power system. Many factors can be
considered, such as the mnonsinusidal distribution of the flux in the
machine air gap, variations in the air gap reluctance over the machine
pole pitch, tooth ripple, and sudden loading of the machine, which may
cause flux distortion.

b) Transformer magnetizing currents are nonsinusidal because of
the nonlinear relationship between the flux and the current needed to
produce it.

¢) Network nonlinearities from loads, such as rectifiers and
inverters, arc furnaces, and voltage conirollers and frequency

converters, introduce harmonics.

2.2.2: New harmonic sources

While the established harmonic sources still exist, new barmonic

sources have appeared, such as:

a) energy conservation measures, such as those for improved motor
efficiency and load matching, which employ power semiconductor devices
and switching for their operation,

b) large power converters such as those used in the metal reduction
industry and high voltage direct current transmission,

¢) medium size conmverters, such as those used in the manufacturips
industry for motor control and also in railway applications,

d) the new sources of enmergy, such as wind and solar power converters

which are connected to the distribution systems,



e) static Var compensators which have largely replaced synchronous
condensers as continuously variable Var sources, and

f) low power converters, such as battery chargers which is not a
problem at the moment, but if the use of electric vehicles becomes

generally accepted this load will be a considerable harznonic source.

Together established and new harmonic sources form the sources of
barmonics considered today. With more application of static converters
in industry the problem of harmonics will be one of the most important

aspects to be conmsidered [3,6,7].

2.3: Harmonic effects

The early investigation of power systega harmonics was prompted by
interference with neighboring communication circuits. Communication
interference is the oldest and the most studied problem related to
power system harmonics. Initially, harmonics were not considered to be
a serious problem for power equipment. This presumption changed,
however, as problems arose, particularly in resonant systems with
rectifiers and shunt capacitors. In addition to increased losses due
to harmonic currents and conductor skin effect, harmonics can be
detrimental to  capacitors, rotating machines, transformers and
protective relays.

The main effects of current and voltage barmonics within the

power system can be summarized as:

a) amplification of harmonic levels due to resonance,



b) reduction in the efficiency of different system components, and
¢) shortening the useful life of plant components by ageing their
insulation.

In the next part of this section the effects of these problems on
system behavior as well as the effects on different system components

will be discussed [6,7].

2.3.1: Resonances

The problem of resonance can occur in a number of ways. An
example way being a capacitor, used for power factor correction or Var
compensation, connected to a certain bus-bar where there is a harmonic
source. A parallel resomance can then occur between the system
equivalent inductance and the capacitor. Where resonance exists,
excessive harmonic currents can flow, resulting in damage to the

capacitors used for correction or compensation.

=.3.2: Effects of harmonics on rotating machines

The presence of barmonic voltages or currents cause additional
losses in both stator and rotor circuits in the form of eddy and
copper losses. The additional losses cause over heating and the
capability of a machine to cope with extra harmonic current will
depend on the total additional losses and its effects on the overall
machine temperature rise. At the same time harmonic currents present
in the stator of an A.C. machine create shaft torques corresponding to
those harmonics. Although harmonics have little effect upon mean

torque, they can produce significant torque pulsations.



2.3.3: Fffects of harmonics on static components

Harmonic curients or voltages can affect the static components of
power system, such as transformers, tramsmission lines and capacitor
banks in different ways. It the case of transformers the harmonic
voltages stress the inmsulation by increasing the eddy and hysteresis
current losses. At the same time the harmonic currents flow give rise
to copper losses and this becomes important in the case of
transformers used with converters even in the presence of filters
because filters are usually connected on the A.C. system side. The use
of the delta connection to provide an internal path for the triple
harmonic currents can cause excessive winding current.

The flow of harmonic currents in the transmission system results
in extra losses caused by the increased root meam square current.
Another problem appears when under ground cables are used in
transmission systems. The harmonic voltages increase the dielectric
stress and hence the number of faults which may lead, at the end, to a
shorter life of the cable. The corona losses can be affected by the
harmonic voltages since coroma starting and extinction levels are a
function of peak to peak voltage.

In the case of capacitor banks the voltage distortion gives more

dielectric losses since the dielectric less is directly proportional

to the @ .we o the r.m.s. voltage. Resonance between the capacitors
and th the system can cause high currents thus increasing
dramatica:. ..5es and overheating of capacitors and could lead
to their fai... 1.



2.3.4: Effects of harmonic or protection systems

The presence of harmcaic voliages or currents in the power
circuits can lead to a false operation of the circuit breakers in some
cases, such as the case of energization of power transformers. In this
case while the secondary currents is zero there is a heavy inrush
current in the primary circuit and that leads to a false operation of

the differential protection.

2.3.5: Effects of harmonic on communication systems

The effect of noise on communication systems varies from
annoyance, at low npoise levels, to loss of information at high noise
levels. Noise voltages may be impressed om telephone circuits in many
different ways, such as electrostatic induction or inductive

coupling.

2.3.6: Other harmonic effects

Over the years, it has been reported that harmonics cause
operational problems for many other system and consumer equipment,

these can be summarized as [1,4,6,7]

1) Unstable operation of the thyristor controlled rectifiers firing
circuits based on zero voltage crossing detection.

2) Errors in induction KWh meters.

3) Interference with ripple control systems.

4) Quality changes of the picture received by television sets.

5) Excessive heating of the capacitors used in fluorescent and mercury

10



arc lighting.

6) Interference with power plant excitation systems.

2.4: Harmonic measurements

In this section the development of power system harmonic
measurement techniques will be reviewed as well as ihe most common

techniques used nowadays.

2.4.1: The development of power system harmonic measurements

The efforts of power system harmonic measurement started nearly
90 years ago. At that time most of tl> techniques used were based on
the manual calculation of harmonic levels using some form of recorded
data. One method was developed using the amplitude and time
information from a single cycle of a wave form recorded on an
oscillograph to obtain an approximation to the integrations in the
Fourier coefficient equations [7,26]. The harmonic amplitudes and
phase angles were then calculated.

As early as 1925, another method was proposed to measure the
pos et system harmonics using a dynamometer. In this instrument the
fixed coil is energized by a variable frequency current (sinusoidal)
and the current or the voltage to be analyzed is passed to the moving
coil. An average torque is produced when the two components have the
same frequency, the deflection of the moving coil provides a
measurement of the harmonic amplitude.

In 1939, due to the development of valve technology, an

electrostatic wave analyzer was used [26,7]. This used a principle
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similar to that of the dynamometer, but with an electrometer. During
the same period, another method for analyzing sine waves was produced
electronically using a Dynatron oscillator, where the frequency and
the phase angle could be adjusted relative to the fundamental
frequency, then the reference point of the phase angle measurement was
obtained by using a Thyratron valve.

As the quality and availability of electronic components
improved, it became possible to produce stable, variable frequency
oscillators, which led to the development of the techniques of
harmonic measurement. These techniques are still used by the current
generation of anmalog wave, frequency and spectrum analyzers. The fast
Fourier transform (FFT) is ome of the techmiques currently used with
digital instruments and microprocessors to provide the spectral
information [26,7].

Discussions of harmonic impedance measurement appear in
references 8 and 9. It has been found that the method described in
these references gives good results up to the mid-harmonic range.
Beyond this range bad results are obtained.

The design and operation of a system based on a portable personal
computer for the measurement of barmonic current and voltage
magnitudes and phase angles are described in reference 10. The method
used tries to avoid sources of error common to digital frequency
analysis by wusing an anti-aliasing filter, a high resolution A/D
converter and a phase locked loop to synchronize sampling to the input

fundameantal frequency.
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A digital method of analyzing harmonics in a power system has
been developed by Crevier and Marcier [12], this method permits the
equivalent network impedance to be calculated by mean of switching
capacitor banks. The method records voltages and currents digitally
and by data processing computes the amplitude and phase of the
harmonic. The proposed method is modified to take into account the
variation with time of the harmonics content of the signal. The
results obtained using this method are accurate in  amplitude, but
less accurate for the angle. This method uses Fourier transform of
a signal sampled for a finite duration .0 calculate the harmonic
amplitudes and phase angles.

Much attention has been focused on the propagation of harmonic
signals in power systems for a given source, but little has been given
to identifying the source of harmonic injection. A reverse power flow
procedure is described by heydt [11] to identify the sources of
harmonic signals in electrical power systems. When energy at harmonic
frequencies is found to be injected into the network at a bus, that
bus been identified as a harmonic source. Line and bus data at several
points in the network are used with a least squares estimator to
calculate the injection spectrum of buses suspected of being harmonic
sources. Inaccuracies occur due to losses, estimation errors and
modeling errors. These inaccuracies result in errors in the spectrum
of the injected current [26,11].

Currently instruments used for the measurement of power system
harmonics fall into two broad categories, harmonic analyzers and

spectrum analyzers. Harmonic analyzers give measurement for signal
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amplitudes at harmonic frequencies only. On the other band the
spectrum analyzers scan a range of frequencies to provide a
measurement of signal amplitudes at all frequencies within that
range. Each of these methods may use either analog or digital
techniques [7]. Most frequency domain harmonic analysis algorithms are
based either on the discrete Fourier transform (DFT) or on the fast
Fourier transform (FFT) to obtain the voltage and current harmonic

spectra from discrete time samples [13].

2.5: State estimation techniques used in power systems

In order to perform the measurement of power system harmonics an
efficient mathematical tool is needed. In this section a review of
most common techaiqucs used in power system state estimation is
offered. No mathematical derivations will be offered at this point,
since complete derivations will be provided in the following chapters.
State estimation techniques are classified as static and dymamic

techniques.

2.5.1: Static state estimation techniques

The parameter estimation techniques suitable for off-line
identification are sometimes referred as static estimation techniques
as they are required to produce independent estimation from fixed

windows of previous data.
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Fourier transform

The Fourier transform and its inverse are used to map any
function in the interval minus infinity to plus infinity, in either
the time or frequency domain, into a continuous function in the
inverse domain [7]. The discrete Fourier transform is the modified
form of Fourier transform suitable for dealing with the data
available in the form of sampled time function which is the practical
case. The fast Fourier transform was developed to reduce the
computational burden of the discrete Fourier transform [13]. If N,
number of samples, is an integer multiple of two then the number of
operations is reduced from N‘ to N/2 log2 N. This become very useful
when dealing with large values of N. Most harmonic analysis algorithms

are based on Fourier transforms because of the simplicity of use, the

speed of the estimation and the accuracy of the results [7,13].

Least error squares estimation

In the least squares technique the objective is to minimize the
sum of the squares of the residuals. It has been shown [14] that the
least squares gives very good estimates if the error distribution is
Gaussian. It has been found that by using weighted matrices an even
better method developed. This became known as weighted least squares
method. With the advent of modern computers, the least squares
techniques became more popular and are now considered as one of the
most popular estimation techniques with many applications in the field
of power system state estimation.

Least squares technmiques are easy to implement on digital
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computers and give an accurate estimate providing that the error
distribution is Gaussian as meationed before. The main disadvantage of
these techniques is that they do not inherently reject outliers when

estimating [15,16].

Least absolute value estimation

The basic difference between the least absolute value and the
least squares estimation is that the best least absolute value is
obtained by minimizing the sum of the absolute values of the
residuals, whereas the best least squares approximation is obtained by
minimizing the sum of the squares of the residuals. It has been found
that if the errors in n-dimensional linear system are exponentially
distributed, then the parameters estimated by minimization of the sum
of the absolute valuc: of the residuals are optimal [17,21].

O.J. Karst [18] was the first author to present a technique for
solving this kind of estimation problems. This technique was with
iterative nature and valid only for a two dimensional case.

Barrodale [19,20] wused linear programing to solve the problem
iteratively. However, while linear programming is capable of
handling the n-dimensional system it has two main drawbacks. First, it
is iterative technique, requires comsiderable computing time. Second,
it needs a great deal of memory to perform the matrices
manipulation.

Several references [23,24] have presented techmiques to save the
computing time by decreasing the number of iterations and memory

required. Some of these techniques employ the least squares estimation
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to find the least absolute value estimation. Soposito [23] has
suggested using a  least squares estimator to establish the starting
point for a linear programming algorithm. While, the results
indicated great saving in computing time; the method is still an
iterative method. Schlossmacher presents another approach, im which he
uses successive iterations performed by an least squares estimator to
find the least absolute estimation [17,22].

This thesis presents a new, non iterative, least absolute value
technique to be wused as a static estimator for power system
harmonics. Least squares and discrete Fourier transform techniques

will be presented as well.

2.5.2: Dynamic state estimation techniques

The parameter estimation techniques suitable for on-line
identification are sometimes referred to as dynamic estimation
techniques as they update the estimate according to each new
measurement received by the algorithm.

The dynamic estimation problem for continuous data systems were
first solved by Wiener in 1940. Wiener used the least error squares
criterion. The theory has provided valuable insight into the analysis
of systems subject to random signals. However, the theory has no
practical applications in power systems due to several limitations.
Kalman, in 1960, presented a new approach to the problem. Kalman
obtained the same results as Wiener in a simpler and more direct way.
At the beginning Kalman filter had no applications in power system

state estimation, but recently more attention has been paid to the
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technique as a powerful tool in power system state estimation area
[40,42].

This thesis will present a new application of the Kalman filter
in power system state estimation as an estimator for power system
harmonics. A new weighted least absolute value filter will be used as

well for solving the same problem .

2.6: Standards for limitation of power system harmonics

The purpose of the power system harmonic measurements is to
provide data to be used in calculating different distortion factors.
These calculated values are compared to certain standards to give an
idea about the level of distortion. If those limits or standards are
violated then, there should be a solution for the harmonic problem.
This solution will be in the form of filters to eliminate or to reduce
the levels of distortion.

The objective of all the standards relating to the levels of
power system harmonics is to ensure certain requirements such as

[7.25] :

a) providing consumers with a waveform suitable for their particular
need,

b) controling the distortion to a level that the system and its
associated components can tolerate, and

c) ensuring that there is no interference with the other systems such
as communication systems.

The development of harmonic standards is based on many factors.
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These factors are well documented in many references [7.25). A
complete discussion of these factors is beyond the scope of the
thesis. However very important factors, used in the judging process.

should be mentioned.

The total harmonic distortion factor (THD)

The total burmonic conmtent, of either current or voltage, caa be
expressed as a percentage of the fundamental component using the i¢-:i

distortion factor.

n
2

THD = 100 (2 Ua )/ Ui 2.1
n=2

Where Ul i> the r.m.s value of the fundamental component

U , to Un are the r.m.s values of the harmonic components.

The individual harmonic distortion factor (IHD)

The individual harmonic distortion factor for a certain
harmonic, n, is given by the ratio of the r.m.s. harmonic to the

fundamental r.m.s. value of the waveform.
IHD = 100 ( Un )/ Ul 2.2)
For each of the three levels of the system voltages namely
transmission, distribution and utilization there should be certain

harmonic standards for the distortion factors. Of course these

standards are different from one country to another.
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2.7: Harmonic elimination and reduction

Once the harmonic distortion levels has been identified, the
final step is to ecliminate or reduce those harmonic components which
exceeds the permissible limits or standards. The simple solution to
this problem is to use a harmonic filter. The ideal goal of the filter
is the elimination of all harmful effects caused by waveform
distortion. However, this ideal goal is unrealistic from both
an economical and techmical point of view. A more practical goal then,
is to reduce the distortion to an acceptable level [7]. The design and
the performance of these filters are beyond of the scope of this

thesis.

20



CHAPTER III

MATHEMATICAL MODELLING

This chapter starts with the general mathematical formulation for
the problem of power system harmonics. Two different problems are
considered, the first one is when the wave form has harmonics order
with an integral multiple of the fundamental frequency only, this case
will be referred to as the harmonic case, while the second one is when
the waveform is contaminated with frequencies lower than the
fundamental frequency, this case will be referred to as the
sub-harmonic case. The mathematical models suitable for both off-line
state estimation and on-line state estimation will then be developed.
Finally the concept of power system harmonics identification will be

introduced.

3.1: Mathematical analysis

In this section two different algorithms are introduced. The
first one is for the harmonic analysis and the second ome is for the

sub-harmonic analysis.

3.1.1: Harmonic analysis

In this subsection it is assumed that the waveform under
consideration consists of a fundamental frequency component aad
harmonic components with order of integral multiples of the

fundamental frequency. It is assumed also that the fundamental
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frequency is known and constant during the estimation period. The
analysis here is the process of deriving expressions suitable for use
with different state estimation techniques in order to calculate the
magnitudes and phase angles of the fundamental and higher order
harmonics of a periodic waveform. Consider a non-sinusoidal voltage

given by a Fourier-type equation [26]:
N .
v(t) = Z‘n=oVn sin (nwot + ¢n) 3.1

Where v(t) is the voltage at time t, and Vn and ¢ a e
respectively, the magnitude and phase angle of harmonic n. N is the
highest number of harmonics to be conmsidered in the wave v(t); this is
a selected number, depending on the decision of the analyst.

Equation (3.1) can be written as:

N
v(t) = Z‘nao[(Vncostpnv)(sin nwot)+(Vnsind5nv)(cos nwot)] (3.2)

Define the components X and Yoy 38

X ., = Vn cos an 3.3)
Yoy = Vn sin ¢nv (3.4)

Then equation (3.2) becomes

N

v(t) = Z“o [x.., sin not + yp, €os nw t ] 3.95)

v
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By expanding the summation, equation (3.5) can be rewritten as:

v(t) =Ygy TXySIR@ t+y Cosw t ... + xstmN wt+y, vcocho ot 3.6)

Where y oy Tepresents the BC component, zero frequency harmonic. By

making the following substitutions in equation (3.6),

a ll(t) = 1
a 2(t) = sinw t
am(t) = cosaw t

a 4(t) = sm2wot

a 5(t) = cosZwot 3.7
a 2N(t) = sianot
a 2N+ft) = costot

Then equation (3.8) can be obtained as:

v(t)=a u(t)y ov+ a 2(l:)x lv+a | 3(t)y [yreeree e

....... +a . 2N(t)xNv +a

1 2N+1(t)va (3.8)
Where 2N+1 becomes the total number of unknowns

If the voltage is sampled at a pre-selected rate, the samples
would be obtained at equal time intervals, say every A4t second. A set

of m samples for the wvoltage may be designed; v(tl),
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v(tl+At), ........ v(tl+(m-1)At), where t is an  arbitrary time

reference Equation (3.8) becomes [26]

V(tl)‘\ au(tx) al2(tl) a, 2N+1(t1) —} Yov
v(tz) a“(tz) azz(tz) 3, 2N+l(t2) Xv
= (3.9)
v(tm) aml(tm) amZ(tm) am 2N +l(tm) yNV
_ L ] L
Equation (3.9) can be rewritten in vector form as:
Zv(t) = A(t) @v+ W, (3.10)

Where Z(t) is an mxl vector of sampled voltage measurements, A(t) is
an mx(2N+1) matrix of measurement coefficients, @v the(2N+1)x1
parameter vector to be estimated and W, is an mxl noise vector to be
minimized. The order of matrix A(t) and the vector @v depends,
of course, on the number of harmonics considered. In general, the
order of A(t) and @v for N harmonics contaminating the wave signal is
mx(2N+1) and (2N+ 1)x1, respectively, where m>(2N+1). The elements of
the matrix A(t) depend on the time reference t;, the sampling interval
At used, and the data window size, and can be calculated in an
off-line mode.

Equation (3.10) describes an overdetermined system of equations,

since we assume that m> (2N+1). As will be shown later the solution for
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this set of equations can be obtained through either static techniques
or dynamic techniques. Having obtained the vector @v-‘ the unknown
vector, the magnitude of any harmonic n can be calculated as:

2 2 12
Vn = ( ) - + ynv) ; n=1,...... ,N (3.11)

th
While the phase angle of the n harmonic is

-1 y
¢nv= tan ( _in_v_ ;
nv

n=1,...... ,N (3.12)

If the given waveform is a current waveform of course the same
steps explained above can be followed. Then the current magnitude of
any harmonic can be calculated as:

2 2 12
In = ( Xni + Ypi ) ; n=1,...... ,N (3.13)

th
and the current phase angle of the n  harmonic will be

-1 y .
S . = tan (-2 : n=1,.......N (3.14)

11 xlli

3.1.2: Sub-harmonics analysis

Now assuming that the waveform is contaminated with {-sth
harmonics and sub-harmonics. It is easy to split the problem into
two problems harmonics and sub-harmonics. We assume thiat the
sub-harmonics waveform is a combination of sinusoidal and

exponential terms. This is just to make the expressions derived more
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general and valid even for high frequency oscillations [27].

L
g N gt
flty = A e Pcos(wt) + Z_, Aj e’ cos(wt + D) (3.15)
where A, A, ..,AN are the oscillation amplitudes
G 5 O, seeensOy are the damping constants
2., i=2,...... »N are the phase angles of the oscillations
Bt are the sub-harmonic frequencies,

assumed to be identified in the frequency domain.

It is clear that this expression represents the general possible
low or high frequency dynamic oscillations. This model represents the
dynamic oscillations in the sysiem in cases such as, the currents of
an induction motor when controlled by variable speed drive. As a
special case, if the damping constants are equal to zero then the
considered wave is just a summation of low frequency components.
Without loss of genmerality, for simplicity, it can be assumed that
only two modes of equation (3.15) are considered, them equation
(3.15) becomes

gt gt
fity = Ae 1 cos(wt) + A, e 2 cos(w,t + ) (3.16)

Using the well-known trigonometric identity

o _ o .
c s(cozt + ¢2) cosa,t cos@2 sinw, t smcb2
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Then equation (3.16) can be rewritten as:

gt gt O'qt
fh)=A € lcosa)lt+(e 2 n:osco,t)Azcosq)z-(e - sina)zt)Azsimﬁ2 3.17

It is obvious that equation (3.17) is a nonlinear function of
A’s, a’s and @’s. By using the first two terms in the Taylor series

Tt

expansion of Ac ' i=1,2. Equation (3.17) turns out to be

f(t)=Alcoswlt + (t coswlt)(Alal) + (cosw,t)(Azcosdﬁz)
+ (t cosa.)zt)(Aza'2 cos¢2) - (sinwzt)(A2 sin¢2)

- {t sincozt)(Aza2 sinqbz) (3.18)

Where Taylor series expausion is given by:

ot
e =14 ot + ...

Making the following substitutions in equation (3.18), equation

(3.21) can be obtained.

= Ax ’ X,= Alal

X,= A2 cos d§2 ; X,= A202 cos ¢2 3.19)
X, = A2 sin 452 ; Ag= Aza2 sin (bz

and
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h“(t) = cos wt ; hlz(t) =t cos @t

hB(t) = cos w,;t ; hM(t) = t COos @t (3.20)
hls(t) =-sin w,t ; hus(t) =-t sin ,t
f(t) =hl l(t)xl +h12(t)x2+hl3(t)1v;3 +hl 4(t)x4+hl 5(t)x . +h ) 6(t)X . (3.21)

If the function f(t) is sampled at a pre-selected rate, its
samples would be obtained at equal time intervals, say At second.
Considering m samples, then there will be a set of m equations with an

arbitrary time reference t given by

_ - - - - .]
f(tl) h“(tl) hu(tl) hls(tx) X
f(tz) hzx(tz) hzz(tz) hzs(tz) %
= | .. - e . (3.22)
f(tm) hm l(t,m) hm 2(tm) hm 6(tm) X,

It is clear that this set of equations is similar to the set of
equations given by equation (3.9). Of course the onmly difference lies
in the elements of the matrix H which has replaced the matrix A in

equation (3.9). Thus a similar equation to (3.10) can be written as:

Z(t) = Hit) @ + w (3.23)

Where Z(t) is the vector of sumpled easurements, H(t) is an mx6, in

this simple case, matrix of measurement coefficients, © is an 6xl
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parameter vector to be estimated and w is an mx1 noise vector to be
minimized. The dimensions of the previous matrices depend on the
number of modes considered as well as on the number of terms truncated
from Taylor series.

Using either static or dynamic state estimation techmiques the
solution of the overdetermined system described by (3.23) can be
obtained. Having estimated the parameter vector @, the amplitude,
damping constant and the phase angle can be determined using the

following equations:

A1 = X (3.24)
X,
o, = X (3.25)
2 2 12
A2 = [x3 + X, ] (3.26)
2 2 12
[ X, + X ]
G. = (3.27)
2 2 24 112
[x + x7]
-1
¢2 = tan ( X, / X, ) (3.28)
or
-1
= tan ( X, / X, ) (3.29)

3.2: System modelling

It has been shown in the previous section that both harmonics and
sub-harmonics analysis have the same form of equations described by

(3.9) or (3.22). Now the problem is, how to estimate the parameter
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vector ©@. In this section different models, based on the derived
equations (3.9), will be developed to be wused in solving the

estimation problem either statically or dynamically.

3.2.1: Static estimation model

As described in section 3.1 the problem has been formulated as
the set of equations given by (3.9) or (3.22). In vector form both of

these equation can be written as given in equation (3.10)

Z1t) = A() O + w (3.30)

In general if there are m samples and U unknowns, Z(t) will be an mxl
vector of measurements, A(t) is an mxU matrix of coefficients, @ is
the Uxl parameters vector to be estimated and w is an mxl noise vector
to be minimized [26].

Assuming that this system is an overdetermined system, m>U, this
arrangement is suitable for solving the problem using any static
estimation technique and will be referred to, when ever used, as the

static model (SM).

3.2.2: Dynamic state estimation models

The suitable form for dynamic state estimation techniques is the
state space form. The system equations will be arranged in such a way
as to be in this form. Two different models will be developed
according to the time reference chosen. If the time  reference is

considered to be a rotating reference this will lead to model 1 but,
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if the time reference is chosen to be a stationary reference, then

model 2 will be obtained [13,42].

Model 1

For this model a rotating time reference is used. In this model
the state transition matrix becomes the identity matrix, while the
connection matrix H is a time varying matrix [13].

Equations (3.8) and (3.21) are basically the same equations, or,
in more specific terms, equation (3.21) is a special case of equation
(3.8). Thus it is possible to write one gemeral equation to represent
any of the two cases, harmonics or sub-harmonics, as:

v(t)=h“(t)xl+h12(t)x2+hl3(t)x3.... +h (t)xU_l +hm(t)xU (3.30)

1 U-1
Here U is considered to be the total number of unknowns, then

LS SRS S the unknowns, and of course, they could be either

U
harmonics or sub-harmonics parameters depending on the h’s and the
sampled wave used.

If the voltage is sampled at a pre-selected rate, its samples
would be obtained at equal time intervals, say A4t seconds, Then
equation (3.31) can be written at stage k , k=1,2,...... K, where K is

the total number of intervals, K=[window size in seconds/At] =

[window size in seconds x sampling frequency(Hz)].

v(kat) =h“(kA Ox, ) +h12(kA t)xz(k) +oeens +hw(kA t)xU(k) (3.31)
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If there are m samples, equation (3.31) turns out to be a set of

equations. Each equation defines the system at a certain time kAt.
zi(kAt) = Hi(kAt) ak) + w(k) ; i=1,2,..,m (3.32)
This equation can be written in a vector form as:

z(kAat) = HkA4t) Ok) + w(k) (3.33)
where

z(k) is mx1 measurement vector taken over the window size.

&(k) is Uxl state vector to be estimated. It could be harmonic or

sub-harmonic parameters depending on both H(k) and z(k).

H(k) is mxU matrix giving the ideal connection between z(k4t) and O(k)
in the absence of noise w(k). If the elements of H(kAt) are given by
equation (3.7) then the problem is the harmonic problem, while the
problem will be the sub-harmonic problem if the elements are given by
equation (3.20). It is clear that in both cases H(kAt) is a time

varying matrix.

w(k) is an mxl noise vector to be minimized and is assumed to be

random white noise with known covariance construction.

Equation (3.33) describes the measurement system equation at time

kat.
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The state

expressed as:

B a
xl(k+ 1)
xz(k+ D
x3(k+ 1)

-------

space

variable

................

----------------

equation for

..... X, k)
..... xz(k)
..... X 3(k)
| xU(k)

this model

+ &(k)

Equation (3.34) can be rewritten in vector form as:

Ok+1) = dk+1) Ok) + &k)

Where
D)
e(k)

is UxU state transition matrix

is Ux1 plant rcics vector.

may be

(3.34)

(3.35)

Together equations (3.33) and (3.35) form model 1 (Ml1). It is

worthwhile to state here, that in this state space representation the

time reference was picked to be a rotating time reference which caused

the state transition matrix to be the identity matrix and the H matrix

to be a time varying matrix [13].

Model 2

In the previous model, model 1, the time reference was a rotating

time reference and that caused the state
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constant identity matrix and the H(kA4t) matrix to have time varying
clements. In this part, another model for the state transition and
the H(kAt) matrices is derived [13,42]. This model is referred to
as model 2 (M2). In this model the time reference is chosen to be a
stationary time reference. The state transition matrix in this case
depends on the sampling rate, At, and the number of samples (K)
chosen. It is a constant matrix, rather than unity, for a specified
sampling frequency and a specified number of harmonics. The model
developed here is suitable for the case of harmonics. Of course a
similar derivation can be made if we start with the sub-harmonics
equation.

Recall equation (3.1) which is
N 0
v(t) = Z‘n=°Vn sin (nwot + @ n)

This can be considered as the sum of sinusoidal waveforms having
different frequencies. To find the state space variable model for this
signal waveform, it is better to start with a simple case, in which
the waveform is assumed to be a pure sinusoid, n=1 only. then equation
(3.1) becomes

j(nw°t+¢n)
v(t) = Vn e ;n=1 (3.36)

or in another form

v i
vit) = V_ e e " ;n=1 (3.37)
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Substituting for X and Y, from equations (3.3) and (3.4) into

equation (3.37). equation (3.38) can be obtained as:

ja v
vi) = (x +jy e ° ;=1 (3.38)
Where
X =V cos @ n=1
* ’ " (3.39)
y, = Vn sin ¢'n n=]

For this case, n=1, the in phase and quadrature components x“and Y.
after time A4t, which is the time required for the state transition
from step O to step 1, will have a new angle. The new expressions

for xnand y, will be

x (1)
y () = V_sin(®_++w 41) n=1 (3.40)

V cos(®@ + w At) n=1]
n n n

Where @ = 1w = wois the fundamental frequency.

Equations (3.40) can be written in a different form as:

x, (D

yn( 1) = Vncos din(sinwnA t)+Vnsin din(coswnzl t) n=1

V cos® (cosw At)-V sind (sinw A4t) n=1
o n n n n n

Substitute from (3.39) into (3.41), then equation (3.42) caa be

obtained as:
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xn(k+1) = xn(k)cos(a)nAt)-yn(k)sin(a)nAt) =1 (3.42)

y (k+1) = x (Ksin(@ A1) +y, (K)cos(w A1) =1 '
Thus the state variable representation takes the following form:

x (k+1) cos w At - sin w 4t x (k)

" = " “ " (3.43)

yn(k+ 1) sin wnAt cos @, At yn(k)
The measurement equation then becomes

T
2k) = [0 1][xK y@®] + &k m=1  (3.44)

Equations (3.43), (3.44) are derived for the pure sinusoidal
waveform, n=1. Now let us return to the gemeral case where the signal
includes N frequencies; the fundamental plus N-1 harmonics,
neglecting the D.C. component the state variable representation may

be expressed as:

- ~— e

[ (k+1) | xl(k)_
| M, 0
y,(k+1) y,(K)
...... = e 4 &) (3.45)
x (k+1 k
N ) 0 .. M * )
y(k+1) i Y (&)

Where the sub matrices M, are given by
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cos(wiz] t) -sin(wiA t) W
M. = (3.46)

sin(wiA t) cos(wiA t)

s -

In this expression i=1,2,....N and wi=ico the harmonic frequency.

The measurement equation can be then expressed as:

[ x, (k) ]
PALY)

zZk) = [0101...10] e |+ W(K) (3.47)
x, (&)
¥ (K

L -

Together equations (3.45) and (3.47) represent model 2 for
harmonics calculations. It is clear that the state tramsition matrix
depends on the sampling frequency as well as on the number of

samples,K ,chosen.

Finally to conclude this section the general state space
representation, suitable for dynamic state estimation problem, will be

in the following compact form

Ok +1) = dk) Ok) + &k)
z(k) = Hk) %) + w(k) (3.48)

These equations are valid for both model 1 and model 2 with the
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difference only in the transition matrix and the H(k) vector.
Model 1 can be obtained if the state tramsitior matrix @(k) is an
identity matrix while the H(k) vector is a time dependent vector. on
the other hand Model 2 will be obtained i the state tranmsition matrix
is picked to be a block diagonal matrix as given in equation (3.46)
while the vector H(k) is a constant vector given by equation (3.47)
[12,42].

In equations (3.48) &(k) and w(k) are assumed to be random white noise
with known covariance structure and they are assumed to be
uncorrelated to each other. The covariance matrices for the &(k) and

w(k) vectors are given by

Qw, =k
T
E [ ek) e(i) ] = (3.49)
0, i#k
_R(k), i=k
T
E[wk wi)] = (3.50)
0, ik
T
E[wk ei)] =0 for all k and i (3.51)

3.3: Harmonic sources identification

Having calculated, statically or dynamicallv, the harmonic
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magnitudes and phase angles for both current and voltage, at a certain
bus in the power system network, the average power generated from a
harmonic n can be calculated simply using either the magnitude and the
phase or the direct and quadrature components, x and y, for each
barmonic. If the direct and quadrature components are used then the

average power can be expressed as:

Pu = 0.5 [ X, X, + v, Y. ] n=1,2,....N (3.52)

Where nv referred to the voltage component of the harmonic n and ni
referred to the current component of the harmonic n as mentioned
earlier. Of course equation (3.52) is for the static case. A similar
equation can be written for the dynamic case, where there will be a
value for the power at each step k corresponding to each estimation of
the parameter vector @(k). In this case the average power expression

is given by

P (k) = 05¢[ xnv(k) xni(k) + ynv(k) y (K ] n=1,2..,N (3.53)
In both equations (3.52) and (3.53) the values of x and y are
expressed as maximum values. A harmonic source is said to exist, at

any bus, when the voltage v(t) and the current i(t) are such that

[ L S + Y., Y ]>0 n=273,..,N {3.54)
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In other words, the average injected power associated with harmonic
frequency nw , P, other than the power frequency, w , is positive

[11,26].
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CHAPTER 1V

PARAMETER ESTIMATION: THE STATIC CASE

In this chapter, the parameter estimation techniques applicable
to off-line harmonics identification is considered.

The chapter starts with the presentation of different static
state estimation techmiques namely, the Discrete Fourier transform
(DFT), the Least error squares (LS) and the Least absolute value
(LAV). Each of the three algorithms will be tested, separately, first
using simulated examples, then practical data will be wused for

comparison between the different techniques.

4.1:. Static estimation techniques

In this section different static estimation techniques applicable
to harmonics identification is considered with a complete derivation

whenever necessary.

4.1.1: Discrete Fourier transform (DFT)

In  this subsection the equations applicable to wuse for
calculating the direct and quadrature componeuts of the harmonics are
presented. The derivation of these equations is well documented in
many references [8,30].

The frequency content of 2 periodic stationary discrete time
signal x(n), with M samples, can be expressed using the discrete

Feurier transform as [7,8,13,30,31]:
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X(fk) = =z x(tn) e 4.1
Where Q = 2n/ M

The inverse Fourier transform is thus

M jk$2n
x(t) = f=| X(f) e 4.2)
Both the time domain function and the frequency domain spectrum are
assumed periodic, with a total of M samples per period. Without going
through derivations, if the sampled signal is a voltage signal then
the direct and quadrature components of the barmonic n can be

expressed as:
2 ¥ :
X, =M €=1 Vk sin nwt “4.3)
7 M
Y. = M {5 , Y, cos nw t 4.4)

Where Vk is the sample of the voltage at time t; k=1,...,M. Simply,
if 'V ois replaced by Ix’ the sample of the curremt at t, similar
expressions for the harmonic current components can be obtained.

The parameter vector, &, for either the current or the voltage
can be then identified by substituting for n=1,2,..... ,N in equations

(4.3) and (4.4).
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_xﬂ

@DFT = . 4.5)

Once the parameter vector has been identified, the harmonic
magnitude and phase angle can be calculated using equations (3.11) to
(3.14). Then the barmonic sources can be identified according to
equation (3.55).

It is worthwhile to state here the basic assumptions embodied in

the application of the DFT. These assumptions are [13]:

a) the signal is assumed to be of a constant magnitude during the

window size considered (stationary),

b) the sampling frequency is equal to the number of samples multiplied

by the fundamental frequency,

c¢) the sampling frequency theorem 1is satisfied by choosing the
sampling frequency to be at least twice the highest frequency in the

signal to be analyzed, and

d) the frequencies of the harmonics are an integral multiple of the

fundamental frequency.
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4.1.2: Least error squares estimation

Given the overdetermined system of equations described by

equation (3.30)
() = At) @ +w

the geueralized least error squares estimation is obtained as the
value of the parameter vector © which minimizes the following cost

function [26,39]
T
1,0) = [ 2(t) - A®O ] W [ z) - ADO ] - (4.6)

In equation (4.6) W is a diagonal matrix of order mxm and m is the
total number of samples. It is called the weighting matrix. It can be

written as
W(t) = diagonal [ wi(t) ,i=1,2, ..., m ] “4.7)

In equation (4.7) the matrix W(t) is a symmetric positive definite
matrix. The elements of W(t) are assigned to each measurement so that
the measurements with the larger weights have a greater influence on
the cost function and thus on the solution.

Equation (4.6) can be rewritten as follows

T
J . (@)=z(t) W(t)z(t)-ZQTA.Et) W(t)z(t)+ @TA{t)W(t)A(t)@ 4.8)



By setting Q_d-‘_é@ = 0 and solving for @
T 1T '
@GLS = [ A(t) W() A(t) ] A@) W) z(v) (4.9)

Equation (4.9) thus gives the best estimation of the parameter vector
© that minimizes the error squared. The estimate obtained this way is
called the generalized least squares estimation or some times it is

called the weighted least squares estimation.

If Wit) = w1

Where w 1is a positive scalar and I is the identity matrix, the

estimate @ is given by

@LS = [ AT(t) A(t) ]—l Azt) Z(t) (4.10)
or
+
@LS = A(t) z(t) 4.11)
where
+ T -1 T
Ay = [ AM® A ] A@®) 4.12)

is the left pseudo-inverse [39].

© obtained above in equation (4.10) is called the least squares
estimate @LS’ and it is clear that this is a special case of the
generalized least squares solution. The basic assumptions in this

technique is that the sampling theorem is satisfied and the signal

45



under consideration is a statiomary signal [26,32,33,39].

The least squares technmique is easy to implement on a digital
computer and usually requires a reasonable computing effort. The
technigue produces excellent estimates when the error distribution is
Gaussian. On the other hand if there are outliers in the measurements

the technique fails to produce the optimal estimate [21,22].

4.1.3: Least absolute value estimation

Given the overdetermined system of equations as stated in
equation (3.30). The LAV estimation problem is to estimate @L AV such
that the absolute value of the error i, minimized. The least absolute
value cost function can be written as:

m U

3@ =2 _ |z-Z _ A 6| 4.13)

=t i

Where z, is the iull measurement
@j is the jth unknown
U is the total number of unknowns
Aij is the element in the i‘h row and jul column of the
(mxu) matrix A.

th
The i residual is given by

r =z -2 A 6 4.14)

The iterative nature of linear programming techniques, as

46



discussed earlier in chapter 2, have deterred many potential users of
the least absolute value technique. In 1987 Christensen and Soliman
developed a new LAV technique which is noa-i¢terative and produces a
unique solution if the matrix A is of full rank [22]. This - "“.iigue
used the least squares estimate as & basis for the solutivn. "ae
estimate obtained through this technique closely matches that
resulting from conventional linear programming algorithms. The new
method follows directly from the the theorem governing LAV estimation,

which reads as follows [21,22,34].

Theorem: If the column rank of the (mxU) matrix A is k, k = U (for
maximal rank k=U), then there exist a vector @L AV corresponding to a
best approximation that interpolates at least k points of the

measurement set.

From this theorem Christensen and Soliman proposed, that the
problem can be solved directly by choosing the best k points and then
use them in solving a full determined system of equation providing
that the matrix A is a full rank matrix [21,22]. The technique then
has been modified [34] to get rid of the error resulted in some

special cases. The steps to be followed in this mew algorithm are as

follows,

1. Given the overdetermined system of equation shown in a vector

form as:
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Z=A6 +w |, (4.15)

where Z = mxl vector of measurements,

= Uxl vector of unknowns,

A = mxU matrix of rank U describing the relationship between

Z and O, and
w = mxl vector of errors.
2. Find the least error squares estimation @LS as

T -1T
Oy = (A A) A Z . (4.16)

3. Calculate the least error squares residuals vector gemerated from

this solution as

r=2- A@LS . (4'17)

4. Calculate the standard deviation of these residuals,

1 m 2 12
S.D. = [ r_ @1, (4.18)

m-U+1

th
where r, is the i residual given by equation (4.12),

I is the mean value of the residuals.

5. If the observation (measurement z) has a residual greater than

the standard deviation, this measurement is considered as an outlier,

48



and it may be corrected and replaced with &« new measurement z

w

according to the following relation

=z .- ,1 € m. “4.19)

i new i

6. Recalculate the least squares solution wusing the new measurements

if there is any.

7. Find the new least squares residuals generated from this

solution, r .
new

8. Rank the residuals T beginning with the smallest and ending

with the largest .

2. Select the first U measurements corresponding to the first

U smallest residuals.

10. Use the U measurements with the smallest residuals to find the

LAV estimate as follows,

@LAV = A, z, (4.20)

where z, are the U measurements having the smallest residuals
A, is UxU reduced matrix corresponding to the z

measux:ments.
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The least absolute value residuals can be then calculated as :

ri LAV zi - Ai @LAV i=1;2,---,m (421)

th
Where Ai is the i row of the A matrix.

Some = ntages of this technmique can be stated here such as, it is
very sit ' ‘o use, it is a non-iterative techmique that reduces the
computational time dramatically, it has the ability to reject the
outliers without amy prior knowledge about them and it gives a better
solution than the least squares if the measurement error distribution

is not Gaussian.

4.2: Test of the algorithms: simulated examples

In this section, the three algorithms mentioned above are tested
using simple simulated examples. Different factors that affect the
estimation process are examined. Here the waveform is considered to
have a constant magnitude during the data window size (stationary
waveform). Later ir section 4.3 the algorithms will be tested for

nonstationary waveforms [26,30].

4.2.1: The discrete Fourier transform case

In this subsection the discrete Fourier transform algorithm is
tested. The exawiple used here is the full wave rectifier voltage
waveform. The algorithm is used to calculate the harmonics magnitudes
and hence to examine the effects of the different factors on the

behavior «f the algorithm. The full wave rectifier voltage waveform
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contains only the even harmonics. The exact values of the Fourier
coefficients are given by: (see Appendix I)
4V m

a = 5 n=24,6,...,.N (4.22)
. n(n”-1)

where
Vm is the maximum value of the voltage waveform,

N is the total number of harmonics considered in the waveform,

and the D.C. component is given by

a = ———— | (4.23)

A computer program was doveloped to genmerate the sampled voltage.
These samples can be wused to calculate the magnitudes and the phases
of the harmonics of the sampled voltage signal. Assuming that the
maximum voltage is equal to onme per unit then all the coefficients
will be expressed in per unit values.

At the beginning a specific pumber of harmonics, 26, is
considered with 60 samples and to satisfy the sampling theorem [7] the
sampling frequency is chosen to be 3600 Hz. The per unit harmonics
magnitudes are shown in figure (4.1) and the corresprnding percentage
error in the estimated magnitudes is given in figure (4.2). Examining
those two plots shows that, no odd harmonics appear as expected and

the percentage error starts with a very small value for the second
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Harmonics magnitudes
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Fig. 4.1 Line spectrum of the full wave rectifier voltage
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Fig. 4.2 The percentage error in the voltage magnitudes

53



harmonic and increased gradually as the harmonic order increases. It
is clear that the maximum error is about 85% which is quite high.
Different factors that affect the estimate are next conmsidered to see

when this error will be within an acceptable range.

Number of harmonics conside: d

To study the effect of the number of harmonics considered, a
constant window size, 1 cycle, is chosen with 80 samples and a
sampling frequency of 4800 Hz. Figure (4.3) shows the percentage error
in the magnitude of both the 6th and 8th harmonics versus the number
of harmonics considered. Examining this curve shows that the number of
harmonics considered bas no effect on the estimate and hence the

percentage error.

Sampling frequency

The effect of the sampling frequency on the behavior of the
algorithm is examined when the sampling rate varies between 1800 and
6000 Hz in steps of 600 Hz. Figures (4.4) and (4.5) show the
variations of the magnitudes of the 4th, 6tk, 10th, 16th, 18th and
the 20th harmonics with the sampling rate for a data window size of 1
cycle with 20 harmonics considered. The percentage error in estimating
the magnitudes of the 4th, 6th and the 8th harmonics is shown as well
in figure (4.6). Careful examination of these figures indicates that,
for the sampling frequency less than twice the frequency of the
highest harmonic considered, 2x20x60=2400 Hz, the percentage error is

relatively higher than that with the sampling rate equal to 2400 Hz.
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By increasing the sampling rate the percentage error decreases. It is
clear that for a good estimate the sampling frequency should be higher
than twice the frequency of the highest harmonic considered in the
waveform and the higher the frequencv, after that, the better the

estimate obtained.

Data window size

The effect of varying the data window size on the behavior of the
algorithm is examined for 30 harmonics and a sampling frequency of
3600 Hz. Figure (4.7) shows that increasing the data window size from
1 cycle to 4 cycles in step of one complete cycle reduces the
percentage error slightly. . should be mentioned here that an
integral multiple of one complete cycle should be used in order to get

2 minimum error.

Frequency drift

There is always uncertainty in determining the actual fundamental
frequency in the power system waveforms. It may not be 60 Hz exactly
during the steady state operation. An acceptable drift in a power
system is about +0.05S Hz. The effects of the frequency drift on the
estimates of the harmonics magnitudes will be investigated. This is
done simply by sampling the signal at §9.5 Hz instead of 60 Hz, -0.5
Hz drift. Considering 26 harmonics and a sampling rate of 3600 Hz with
60 samples. The effect of -0.5 Hz frequency drift appears in figure
(4.8) as a slight deviation of the estimate from the exact value. It

is a small error for a small drift but increasing the drift more than
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0.5 Hz could cause a higher error. However, to maximize accuracy, it
is better to update the fundamental frequency for each set of

measurements.

Bad data

It is possible to have bad measurements, unusual events in the
system waveforms, when performing the measurement process. For the 26
harmonics considered and a sampling rate of 3600 Hz the set of the
measurements, 60 samples, is contaminated with two points of bad data.
This is simply done by reversing the sign of the measurement. Figure
(4.9) shows that the harmonics magnitudes estimate is strongly
affected by the bad data presence. This is considered to be ome of

the disadvantages of the discrete Fourier analysis.

The previous discussions show that the discrete Fourier transform
algorithm gives excellent results if the sampling frequency is high
enough, the data window size is an integral multiple of a complete
cycle and if the signal is a statiopary signal. One more case which
satisfies the above conditions is considered here to verify this
conclusion. In this case the sampling frequency is chosen to be 10800
Hz and there are 180 samples comsidered in one full cycle. Figure
(4.10) shows that the maximum percentage error resulted in estimating
20 harmonics is only about 3% . On the other hand, if the data is
contaminated with bad measurements the estimate obtained starts to
have a large error. It was also found that the frequency drift gives

an acceptable error in the estimate if that drift is within the
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allowable range, +0.05 Hz.

4.2.2: The Least squares case

In this subsection The least squares algorithm is tested using
the same simulated example, full wave rectified voltage, used for
testing the discrete Fourier transform algorithm in section 4.2.1.
Different factors that affect the estimation process are considered
such as, the data window size, the sampling rate and the number of
harmonics considered. The effects of the bad data points and the
frequency drift on the estimate are discussed as well.

Consider the same case as studied before with the DFT, where the
number of barmonics considered was chosen to be 26 and a data window
size of ome complete cycle is considered by having 60 samples at a
sampling rate of 3600 Hz. Figure (4.11) gives the harmonics magnitudes
while figure (4.12) shows the error in this estimate. Again The error
started with a small value for the second harmonic and increased
considerably to be about 85% for the 26 harmonic. Comparing figure
(4.2) to figure (4.12) shows that the percentage error is almost the
same in both the DFT and the LS cases. Next the effects of the Number
of harmonics, the sampling rate and the data window size will be

examined.

Number of harmonics considered

For 4 constant sampling frequency, 2400 Hz, and with 60 samples
taken over 1.5 cycle the effect of varying the number of harmonics

considered is examined by changing the number of harmonics from 9 to
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Fig. 4.11 Line spectrum of the full wave voltage

For comparison with DFT see page 52
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27 in steps of 3. Figure (4.13) gives the variations of the magnitudes
of the 4th, 6th and the 8th harmonic, with the number of harmonics
considered while figure (4.14) shows the percemtage error in
estimating those harmonics magnitudes as varying with the number of
harmonics considered. Examining those two curves reveals that
increasing the number of harmonics decreases the percentage error
considerably. Compared to the DFT this was not the case, the

percentage error was constant with the number of harmonics considered.

Sampling frequency

To study the effects of the sampling frequency on the behavior of
the algorithm, a constant number of harmonics, 20, is considered and
the number of samples is chosen to be 60. Figure (4.15) gives the
variations of the harmonics magnitudes with the sampling frequency
when the sampling frequency varies between 1800 and 3600 Hz in step of
600 Hz. Figure (4.16) shows the effect of the sampling frequency on
the error in estimating the harmonics magnitudes under the same
conditions. Both figures (4.15) and (4.16) show  that the error can be
reduced by increasing the sampling rate. Of course the sampling
frequency should be at least twice the frequency of the highest

harmonic considered.

Data window size

The effect of varying the data window size on the estimated
parameters is studied by considering a constant sampling rate of 2520

Hz and 20 harmonics. In this way by varying the number of samples, the
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For comparison with DFT see page 56
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data window size will be changed comsequently. The number of samples
considered is varied between 48 to 96 in step of 12. Figure (4.17)
shows that the percentage error is constant with the data window size.
This figure implies that it is not necessary to use a window size of
an integral multiple of a complete cycle after the first cycle. This
was not the case when using the DFT algorithm, where an integral

muitiple of one compiceie cycle should be used.

Frequency drift

The algorithm was tested for different levels of frequency drift
starting from +0.05 Hz up to +0.5 Hz. The sampling frequency was
choser to be 3600 Hz while the number of samples is 60 and the number
of harmonics was 26. It has been found that the frequency drift has
little effect on the estimate if the drift is small and the error
starts increases with drift. This error is acceptable for the
reasonable frequency drift in the power system, +0.05 Hz. However to
reduce this error it is recommended that the fundaments! frequency be
updated for each set of measurements. Figure (4.18) gives the estimate
when there is -0.5 Hz frequency drift compared to the estimate without
any drift. The exact value is shown on the same graph as well. It is
worthwhile to state here how the simulation of the frequency drift
of -0.5 Hz, in this example, was made. The measurements were samplsd
at 59.5 Hz instead of 60 Hz, -0.5 Hz drift, at the same time the
connection matrix A(t), usmnally calculated off line, was calculated

using 60 Hz.

73



LS

10 7
] o o o °
‘ 8 1 Number of harmonics=20
o 1 Sampling rate=2520 Hz
:“4 J e} 2nd harmonic
v 6 —~——g— 4th harmonic
)
E“ b g~ §th harmonic
o ]
E wsnvangy—em 8th harmonic
) 4
0
y 1 B —5— o o
2 J
2 od
] - < - -
O 0 15, -
0 M L4 M 1] M 1 M 1 v T M H
40 50 60 70 g0 20 100
Number of samples

Fig. 4.17 Variation of the percentage error with
the data window size

For comparison with DFT see page 60

74



s magnitudes

armonic

H

Fig.

LS

Sampling rate=30600 Hz
Number of samples =
Number of harmonics

fl o
o

C e L, N N
XSRS Uk

[0 without frequency drif:

PA Exact value

~-.53 Hz frequency drift

2 4 6 8 10 12 14 16 18 20 22 24 26

Harmonics order

4.18 The effect of the frequency drift on
the harmonic magnitudes

For comparison with DFT see page 61

75



Bad data

To show the effect of bad data on the estimate the measurement
set is contaminated with 2 points of bad data. These points are
obtained by reversing the sign of the original points. For 26
harmonics, 180 samples and sampling frequency of 10800 Hz, the
estimate of the harmonics magnitudes is compared to that obtained
without any bad data in figure (4.19). It is clear that the estimate
is strongly affected by the bad data. This is considered to be the

main problem associated with this kind of algorithm.

Time reference (t=0)

The algorithm was tested when the time reference was selected to
be at the middle of the window size. In this case the numerical values
of the elements of each row of the left pseudo inverse matrix becomes
symmetrical about the center of the row. Then the time reference was
shifted from the middle of the data window and the algorithm was
tested again. It was then found that the position of the time
reference has no effect on the estimate of the harmonic  magnitudes
and phases. However, to reduce the computation burden, it is
recommended that the time reference should be in the middle of the

4
data window to obtain a symmetrical A matrix.

The previous discussions showed that the LS technique can be
easily applied to estimate the magnitudes and phases of the harmonics.
To get good results it is recommended that the sampling rate should

be higher than twice the frequency of the highest harmonic considered
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in the signal, to avoid aliasing. Increasing the sampling frequency
further reduces the error in the estimate. However too high a
sampling rate is undesirable as the elements of the matrix ATA)™
have to be multiplied by the sampled values, and any noise present in
the signal would be amplified. It has been found also that to reduce
the error in the estimate, more harmonics should be considered and the
data window size should be at least one complete cycle. It is not
necessary to have an integral multiple of ome cycle after that. As
mentioned before, the signal uizder consideration is assumed to be a
stationary signal. If the above recommendations are considered then an
excellent estimate would be obtiized as shown in figure (4.20). In
this case a sampling frequency as high as 10800 Hz is chosen and 180
samples, covering ome complete cycle, are used. It is clear that the

maximum error in estimating 20 harmenics is only about 3.5% .

4.2.3: The least absolute value case

Since this new approach has been developed it has been subjected
to many tests [16,21,22,34,35,36,37,38]. The technique was found to
behave just like the least squares techmique and it gives the same
results providing that there are no bad data points. Therefore the
main concern, here, is to  show  the ability of the algorithm to
reject the bad data without any prior knowledge about its presence. In
this subsection two simple examples are presented in order to support

this fact.
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Example 1

Here the example considered is the full wave rectified voltage.
Considering the last case discussed in the least squares subsection,
in which the sampling frequency was 10800 Hz, the number of samples
was 180 and there were 20 harmonics considered. Figure (4.21) shows
that the percentage error of both the LAV and the LS is almost the
same if there are no bad data points. The effect of the bad data is
shown in figure (4.22). This figure clearly indicates that while the
LS algorithm is badly affected by the bad data the 7 AV algorithm still

produces the same estimate as if there is no bad data.

Example 2 [13]

The algorithm is tested here using a voltage waveform with known
harmonic contents. The waveform consists of the fundamental, the
third, the fifth, the eleventh, the thirteenth and the nineteenth

harmonics. The waveform is described as [13]:

vit)y=1. Ocos(wt + lO) +0. 1cos(3wt +20) +0. OScos(Swt + 30) +0. 08cos(7wt +40)
+0.06cos(11wt +50) +0.05cos( 13wt + 60) +0.03cos( l9wt + 70)

The sampling frequency used for this simple example is 3840 Hz
with the number of samples=128 (2 cycles, with 64 samples/cycle). The
results obtained for harmonics magnitudes and phase angles estimates,
with no bad data, are given in figures (4.23) and (4.24), while
figures (4.25) and (4.26) give the same estimates with some bad data

points contaminating the signal. Examining these curves, for this

80



6—
5 Number of harmonics=Z.

o Sampling rate=10800 Hz

° Numcer of samples=180

” 4

@

5

o 37

4

c

S

P 2

Y

oy L.5.
17 L.AV
0

0 2 4 6 8 10 12 14 16 18 20 22

Harmonics order

Fig. 4.21 The percentage error in the voltage magnitude

81



Number of harmonics =20

" 0.7 Number of samples=180

v Sampling rate=10800 Hz

g 0.6 Number of bad data points=4
b

& 0.5

e

[0} 0.4

O

= Exact value

5 0.3 . .
& B L.5. with bad dat
1]

s 0.2 L.A.V. with bad data

2 4 6 8 10 12 14 16 18 20

Harmonics order

Fig. 4.22 The effect of the bad data on the
harmonics magnitudes



(P.U.)

Magnitude

Sampling rate=3840 Ez
Number of samples=128

Data window size = 2 cycles

O Ls.
0 LAV

5

7 11 13 19

Harmonics order

Fig. 4.23 Harmonics magnitudes

83



Y]
RISy
22 T
2 > SRR
g : Y
_________ SR N\

(o2abop) o1bue aseyq

19

13

"

Harmonics order

Fig. 4.24 Harmonics phase angles

84



(P.U.)

VAarLtAYLYAAALNAYNA YA A YA YA

VAV AV AV AV AV VY]

Magnitude

o O O O O O O O O O

s

Sampling rate=3840 Hz
Number of samples=128

\

:f‘: Data window size = 2 cyvcles

N

7

\ %

¥

\Z

7

:/ [ Exactvalue

‘2 3 LAYV
LS.

(@]

\‘:\
NN

Harmonics crder

Fig. 4.25 Bad data effects on the
harmonics magnitudes

85



LRSS, oo

A\

[ e o]
Nz
ol G
T w0 2
oo v
™M~
bE !
Lo B
© n .
53
w2
205 3
- B e
g8 g &
45 @ 4
w2z A 0
ﬂ ldﬂ.iﬁd‘ -d I-!J---i-‘
o} O < o o o o] o
~—~ O [£8] A3 ™ (§N —
(aouxbap) satbuer oseyd

19

menics order

Har

Fig. 4.26 Bad data effects on the
phase angles

86



simple example, reveals that with no bad data, the proposed algorithm
gives results as good as the least squares algorithm. With bad data
contaminating the measurements, the proposed technique produces exact
estimates, in contrast to the least squares which produces poor
estimates, and the most affected estimate with these outliers is the
phase angle of each harmonic.

Effects of the frequency drift on the estimates of the harmonics
magnitude and phase angle are also investigated for this example.
Figures (4.27) and (4.28) give the results obtained for harmonics
magnitudes as well as the phase angles, when the frequency drift is
-0.5 Hz and -2.0 Hz. Examining these two curves reveals that for a
small drift, -0.5 Hz, the harmonics magnitudes estimate do not change
appreciably, but for large frequency drift, -2.0 Hz, the magnitudes
change by small amount. Tixze phase angles are the estimates most
affected by the frequency drift. These change appreciably as the
frequency changes, and the proposed algorithm produces a poor estimate

for them.

4.3: Test of the algorithms: Actual recorded data

The three algorithms are tested again in this section using
actual recorded data. Here the considered w:vsforms are nonstationary.
A complete description of the system under consideration is given in
Appendix II. This system conmsists of a variable speed drive
controiling a 3000 HP, 25 KV induction motor, connected to an oil
pipeline compressor. A sample of the voltage and current signals is

shown in figures (4.29) and (4.30). Figure (4.29) shows the voltage
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waveform of phase A. It is almost sinusoidal, and hence it contain
nearly no harmonics. The three phase currents in figure (4.30) shows a
high harmonics level in each. It is clear that the currents have
variable magnitudes from one cycle to another (nonstationary
waveforms).

In this section a comparison between the three algorithms is made
as they dealing with nonstationary waveforms, first between the DFT

and the LS, and then between the LAV and the LS.

4.3.1: Comparison between the DFT and the LS

Here the two algorithms are compared to each other when
estimating the harmonic conmtent of the waveforms in figures (4.29)
and (4.30). The effects of the data window size, the sampling
frequency, the number of harmonics considered and the bad data
presence are examined.

First with the sampling rate=8474.57 Hz and for one  complete
cycle the harmonic content, up to 23 harmonics, of the voltage and
the currents is obtained. The line spectrum for the voltage V,is shown
in figure (4.31) while the phase angles of these harmonics voltages
are given in figure (4.32). It is clear that the voltage waveform is
almost sinuosidal where the total harmonic distortion factor was found
to be about 1.9 % with the fundamental voltage of 1.707 per unit.
Figure (4.33) gives the harmonic content of the cunrent IA while
figure (4.34) shows the corresponding phase angles of these harmonics.
The distortion factor for I was found to be about 13.66 % and 13.53 %

while the fundamental current was 1.27 and 1.33 per unit using the LS
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and the DFT techniques respectively. The harmonic power for phase A
is shown in figure (4.35). Figures (4.30) to (4.35) indicate that
both the DFT and the LS techniques give, almost, the same results with

a small difference some times.

Effects of number of harmonics

The algoritbms were tested for a different number of harmonics
considered in the voltage and the currents waveforms, the number of
harmonics is chosen to be 7, 15, 23 and 30 harmonics. The test was
performed for a sampling frequency of 8474.57 Hz and a data window
size of 2 cycles. Figures (4.36), (4.37) and (4.38) give samples of
the results obtained. Examining those curves reveals that both the DFT
and the LS algorithms produce a constant estimate with a variable
number of harmonics considered. The magnitudes and the phase angles of
the most significant harmonics in I are shown in figures (4.36) and
(4.37) while figure (4.38) gives the harmonic power of those
harmonics which is also constant independent on the number of

harmonics considered.

Effects of sampling frequency

The algorithms were tested at different sampling frequencies of
2118.644, 2824.86, 4237.2881 and 8474.57 Hz. The test was performed
for 23 harmonics and data window size of 2 cycles. As a sample of the
results obtained, figures (4.39) and (4.40) are given to show the
variations of the harmonics magnitudes and phase angles of the

current IA with the sampling frequency. Figure (4.41) gives the
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harmonics power variations with the sampling frequency as well.
Examining those figures reveals that the DFT as well as the LS
algorithm produces the same estimate for the harmonics magnitude,
phase angle and harmonics power regardless of what the sampling
frequency is. Of course increasing the sampling frequency gives more
accurate results and it was found that after about 4000 Hz the

estimates, for both techniques, are nearly constant.

Effects of data window size

The effects of varying the data window size was examined and a
sample of the results obtained is given here when the sampling
frequency is 8474.57 Hz and 23 harmonics are considered. The data
window size is chosen to be 1, 2, 3 and 4 cycles. Figures (4.42) and
(4.43) give the harmonic magnitudes and the phase angles for the
current I . The harmonic power variations with the data window size
are shown in figure (4.44). These curves show that both algorithms
produce the same estimate but, the harmonics magnitudes, phase angles
and the harmonic power are not constant, they vary from one cycle to
another. Indeed, this is due to the nature of the waveforms considered

(nonstationary).

Effects of bad data

Both algorithms were tested when the measurement set was
contaminated ‘ith bad data points. Two bad data points were chosen
randomly, where¢ the signs of the two measurements were inverted.

Figures (4.45) and (4.46) give the results obtained for the magnitude
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of the current IC when the LS and the DFT techniques are used, it can
be noticed, from these figures, that both techniques produce the same
poor estimates.

At the end of this comparison some important points should be

mentioned here. These points can be summarized as:

1. The DFT and the LS techniques produce a good estimate when used

with a reasonable sampling frequency and number of harmonics.

2. The effect of the data window size is important when dealing with
nonstationary waveforms, extensive runs showed that increasing the
data window size, im this case, gives a poor estimate and both
algorithms started to act as smoothing filters and ended up with a
false harmonics estimate as the data window size increasss. Figure
(4.47) shows that if omly ome cycle is comsidered, as a window size,
the reconstructed current is very close to the given one for the first
cycle but, after that the reconstructed, estimated, wave stays the
same while the actual current is changing from cycle to anmother. If 4
cycles are considered, as a window size, a large error occurs and the
reconstructed wave becomes nearly  sinusoidal as shown in figure
(4.48). The only way to overcome this problem is to solve for each set
of measurements, corresponding to each cycle, separately. In this way
the harmonics content of each cycle can be correctly estimated. This
is shown in figure (4.49), a very good estimate is obtained when each

cycle is considered separately.
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3. The DFT algorithm is much faster in producing the estimate than the

LS algorithm.

4. Both algorithms are semsitive to the presence of the bad data

points in the set of the measurements.

4.3.2: Comparison between the LAV and the LS techniques

The main objective of this comparison is to show that both
algorithms produce, nearly, the same estimation if the set of
measurement is free of bad data, but if the set of measurement is
contaminated with bad data then, the LAV algorithm will reject those
points automatically and produces a better estimate than that produced
by the LS. In this part samples of the results obtained are
presented.

At this stage the LAV algorithm, together with the LS, are used
for identifying the harmonic content of the voltage and current
waveforms. Once this has been done the harmonics power can be
calculated and hence, the harmonic sources can be identified. In this
test 15 harmonics are considered and a data window size of one cycle
is used with sampling frequency of 8474.57 Hz. Figures (4.50),
(4.51), (4.52) and (4.53) give a sample of the results obtained for
phase B. Figure (4.50) gives the line spectrum of harmonic magnitude
of the current of phase B, while figure (4.51) gives the phase angles
of these harmonics. The total distortion factor for the current was
found to be about 15.9% and 16.2% with the fundamental current of

1.243 and 1.238 per unit using the LS and the LAV techniques
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respectively. Figure (4.52) gives the line spectrum of the  harmonic
magnitude in the voltage of phase B. The distortion factor was found
to be about 1.9% with the fundamental voltage of 1.706 per unit using
both techniques. Furthermore figure (4.53) gives the harmonics power
of phase B. Examining these curves reveals that the current of phase B
contains, besides the fundamental, the second, the third,...and the
tenth harmonics, and after the tenth harmonic the magnitudes of the
harmonics become very small and can be neglected. It is clear that the
most effective harmonics in the current I p are harmonics number 4, 6,
3 and 5 respectively. The proposed algorithm gives results as good as
the least squares algorithm for harmonics magnitudes estimates, while
it gives different results than the least squares for the phase angles
estimates starting from the nineth harmonic. The voltage of phase B
contains harmonics of the same order as the current, but the
magnitudes are very small except for ‘he fourth and the sixth, which
have considerable magnitudes. Finally for this case harmonics number 4
and 6 can be considered as harmonic sources, since they produce
positive power. Indeed, this bus can now be considered as a harmonics
bus.

In the next part, we discuss different factors  that have great
influence on the performance of the LAV algorithm, namely the data
window size, the sampling frequency and the number of harmonics

considered.

Number of harmonics

The LAV algorithm is tested, together with the LS, with a
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different number of harmonics, starting from 11 up to 23 , with a data
window size of 1 cycle and a sampling frequency of 8474.57 Hz. Figures
(4.54), (4.55) and (4.56) give the harmonics magnitudes, the phase
angles and the power estimate variations of the third, fourth and
sixth barmonic with the number of harmonics for phase B when both LAV
and LS techniques are applied. Examining these curves shows that the
variation of the number of harmonics considered has a slight effect on
the estimate, it can be noticed also that both the LAV and the LS

algorithms give the same results.

Sampling frequency

Effects of sampling frequency on the behavior of the LAV
algorithm are studied here. One cycle is considered to estimate 15
harmonics while the sampling frequency is chosen to be 2118.64,
2824.86, 4237.28 and 8474.56 Hz. Figures (4.57) and (4.58) show a
sample of the results obtained for phase B. In figure (4.57) the
harmonics magnitudes have a comstant value for the third and fourth
harmonics, but for the sixth harmonic the magnitude changed slightly
with the sampling frequency. Figure (4.58) shows the harmonics power
variations with the sampling frequency. These curves indicate that the
sampling frequency has a slight effect on the estimates, providing
that the sampling frequency satisfies the sampling theorem. It is
obvious that increasing the sampling rate gives better results since,

most estimates started to reach a constant value after about 4237 Hz.
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Data window size

The LAV algorithm is tested, together with the LS algoritm, for
different window sizes between 1 and 4 cycles in steps of 1 cycle. The
sampling frequetcy is chosen to be 8474.57 Hz and the number of
harmonics considered is 15. Under this combination of parameters, the
LAYV algorithm is implemented to estimate the harmonics content of the
three phase currents as well as the harmonics content of the three
phase voltages and hence the harmonics power. Samples of the results
for phase B are shown in figures (4.59) and (4.60). It can be noticed,
from figures (4.59) and (4.60), that the harmonics magnitudes and the
harmonics power vary as the data window size varies. This is due to
the fact that the waveform of the phase current varies from cycle to
the other, but as mentioned earlier the estimate is accurate only when
each cycle is used separately to find the estimate for the harmonics
content in that cycle. Again it is clear that the LAV algorithm gives
results very close to those obtained using the LS algorithm specially

for the ome cycle case which is the most accurate case.

Bad data effects

The LAV algorithm is tested, together with the LS algorithm, to
estimate the harmonics magnitudes and their phase angles when the data
set is contaminated with bad data, the bad data points are chosen
randomly. Figure (4.61) gives the effect of the bad data on the
estimates of the harmonics maggitudes, when the number of harmonics
considered is 23 and the data window size is 1 cycle, while the

sampling rate is 8474.57 Hz. It can be noticed that the LAV produced
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good estimates, in contrast to the LS algorithm which produced poor
estimates. Indeed, that is tme, since the LS algorithm uses the
entire set of measurements, while the LAV algorithm uses a number of

measurements equal to the rumber of parameters to be estimated.

Conclusions

In this chapter the DFT, the LS and the LAV techniques were
presented with applications in estimating the harmonics content of
stationary and nonstationary waveforms. In the stationary case it was
found that the three algorithms produce very close estimates if there
is no bad data, but with bad data points the LAV algorithm has
produced the best estimate by rejecting those bad points. In the
nonstationary waveform case it has been found that in order to get a
good estimates, each cycle of the data should be used by the

algorithm separately.
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CHAPTER V

PARAMETER ESTIMATION : THE DYNAMIC CASE

In this chapter, the parameter estimation techniques applicable
to on-line harmonics identification are considered. The dynamic
parameter estimation problem is first introduced followed by the
theory and development of the Kalman and a newly developed least
absolute value based filter.

The algorithms are tested, first, using a simulated example, then
practical data is used. A comparison between the two algorithms will

be provided as well.

5.1: Stochastic estimation

When a dynamic system is subjected to parameter variations that
can not be specified ahead of time, then deterministic cost function
of the type considered in chapter IV can not be minimized by the
estimate. If, however, the statistics of these uncertain quantities
are known, a similar cost function can be used. The literature
indicates, that for a process where the error distribution is
Gaussian, the expected value of the least error squares cost function
results in optimal estimation. This is the well known Kalman filter
[39,40]. In the case where the error distribution is non-Gaussian
researchers have theorized that the least absolute value based fiiter
would be better, but the inherent iterative nature of this technique

has prevented the realization of such an estimator, the recent
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development of a noniterative LAV static estimator lead to the

formulation of a LAV based dynamic filter [41].

5.2: Dynamic estimation problem [39,40,42,43,44]

Given the discrete system described by the set of equations

(3.49) as:

Ok+1) = &k) OK%) + &k) (5.1)
z(k) = H(k) Ok) + w(k) $5.2)

It is assumed, at this point, that we have an initial estimate of
the process at some point k, and that this estimate is based on all
of our knowledge about the process prior to this instant. This
estimate will be denoted as é where the symbol ~ means that this is
the best estimate at this point, prior to assimilating the measurement

at instant k. Then the error in this estimate can be written as:

e(k) = Ok) - O(k) 5.3)
and the associated error covariance matrix will be

- ) T - - T

P()=E { e(k) e(k) } = E { [0(k)-O(k)] [O(K)-OK)] } (5.4)

Next the estimate © will be improved after considering the measurement

z(k) according to the following equation
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Ok) = Ok) + KK [ z(k) - H)O(K) ] (5.5)

A
where ©(k) is the updated estimate and K(k) is the gain to be
determined.
The error covariance matrix associated with this updated estimate can

then be expressed as
T A A T
P(k)=E{e(k) e(k) } = E{[O(K)-O(K)] [O(k)-O(K)] } (5.6)

Substituting from (5.2) into (5.5) and then the resultant expression

for O(k) into equation (5.6), equation (5.7) can be written as
P(k)=E{ [(@(k)'é(k))-K(k)(H(k)@(k)+W(k)-H(k)C:)(k)]
[(O19-6() K HKOW) +w(k)-HWO(K)] } . 5.7)
Performing this expectation gives
P()=(-KWH®) P(k) (KOH®) + KRRGK L), (5.8)
Now, before starting the next Step, we need to project ahead both @(k)
and P(k) to use them as initial values for the next step, (k+1).

The updated estimated é(k) is easily projected ahead via the state

transition matrix, @®(k), according to the following relation



Ok+1) = (k) Ok) (5.9)

T

The error associated with é(l 1D Ye
Ehk+1) = OK+1) - Ok+!)

: [BER)OK) +£(K)]-D(K)O(K)

= d(k)e(k)+ (k) (5.19)

Providing that ¢(k) and e(k) are uncorrelated, the error covariance

matrix can be expressed as:

l-’(k+1) = E { ;(k+l) ;(k+1)T}
T
= E { [®(K)ek)+&k)] [Bk)e(k)+ek)] }
T
= &(k) P(k) ¥() + Q) (5.11)

Now, using equations {(5.9) and (5.11) we can find the initial values
for @ and P to start the estimation process for step K+1.

Equations (5.5), (5.8), (5.9) and (5.11) together describe the
recursive chain that allows for sequential data processing; the only
missing equation here is the equation which describes the gain K.

Calculation of the gain is usually dome in such away to satisfy a
certain cost function. If the cost function is based on the stochastic
least squares minimization criteria the resulting filter is the
Kalman filter (KF) [40], but if the cost function is based on the

least absolute  value criteria, the filter will be the weighted least
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absolute value filter (WLAVF) [41].

5.2.1: Kalman filtering

The problem here is to find the gain vector K that minimizes the

stochastic least squares cost function given by [40,42 44]
m T
L, =E{ X ek ek } (5.12)
k=1

where m is the total number of measurements. It is clear that the cost
function will be a minimum when each individual cost element is an
absolute minimum.

The cost function at the k' instant can be written as:
T
L& = E { e(k) e(k) } (5.13)

Now, the problem is to find the particular vector K(k) that minimizes
the individual terms along the major diagonal of P(k), because these
terms represent the estimation error variances for the elements of the
state vector being estimated. We now, temporarily drop the symbol (k),
which refers to the instant k, in order to avoid unnecessary clutter

in the derivation [42]. Equation (5.8) then becomes
- T T
P=(0-KH) P (-KH + KRK (5.149)

Equation (5.14) can be rewritten as
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P = P - [KHP - PH'K"] + K(HPHT+R)X" (5.15)

Assuming that [HPHT+R] s symmetric and positive definite we can

write
T - T

SS =HPH +R (5.16)
Using this factorised form, equation (5.15) can be rewritten as

P =P - KHP - PH'K" + KSSTK” (5.17)
Equation (5.18) can then be obtained by completing the square in
equation (5.17).

P =P + (KS - A)KS - A)/T-AAT (5.18)
Expanding equation (5.18) and comparing it to equation (5.17) gives

KSAT + ASKT = KHP + PH'K' (5.19)
If A is chosen to be equal to [PHT(ST)"] then equation (5.19) is
satisfied and hence equations (5.17) and (5.18) will be equivalent.

Now refer back to equation (5.18), it is clear that the only term

involving K is the second term, and it is the product of a matrix and

its transpose, and that guarantee nonnegative diagonal elements.

Therefore to minimize the diagonal elements of P the term (KS-A)
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should be zero. Then we can write

KS=A (5.20
Substituting for A in eq ation (5.20) gives

K = 1E>HT(ST)"S‘l
= P H(SSTY! (5.21)

Substitute from equation (5.16) into equation (5.21) and reintroduce

the time step symbel, k, the Kalman filter gain can be expressed as
K(k) = PX)Hk) [H(&)PK)HEK) +R(k)]" (5.22)

Equatior (5.22) can now implemented along with equations (5.5),

(5.8), (5.9) and (5.11) to complete the discrete Kalman filter.

5.2.2: Least absolute value filtering

The weighted least absolute value cost function to be minimized

is given by [41,43,44,46]

o -
J=Z | N(©-6) - r;‘ z- H 6) | (5.23)
i=]l
where ® = Uxl actual state vector
© = Uxl mean value vector

r = weighting element of i'"® measurement

z= i*® measurement
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H = the i®® row of the measurement matrix
i
N = e’ P, and
P = UzxU error covariance matrix before the measurement

e = Ux! ¢ . an (1,1,1,...,1) vector
Using minimum norm theorem, the cost function of equation (5.23) is
minimumwr when

J=Z |g|=0 (5.24)
i=l

and hence, | & | = 0 ,with i=1,2,...,m (5.25)
where €, the i element of the cost function, is given by
- -1
& = N@©-6) -r, (z-HO) . (5.26)
Equation (5.26) can be written in a compact form as
- -1
£ =CO-6O)-R (Z-HO) =0 5.27)
where the following matrices are defined as

& = column (81’82’ ,em) ,

R'a diagonal (r;f r';,..,r:) is an mxm weighting matrix ,

H = matrix of mxU ,
C = LN, of dimensions mxU ,
where L = mx] column (1,1, ....,1) vector .
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Equation (5.27) gives the best estimation for @ as
(C+R'H O =CO + R'Z. (5.28)

If R'HO is added and subtracted to and from the R.H.S. of equation

(5.28) then this equation can be rewritten as

A

(C+R'H)®@ = (C+R'H)O + R'(Z-HO) . (5.29)
Now, define the mxU matrix A as
A = (C+R'H) . (5.30)

Then equation (5.29) becomes

A

A@ = AO + R"(Z-Hé) ) (5.31)

Equation (5.31) describes an over determined system of equations,
which can be solved using the new LAV technique explained earlier in

chapter IV. Following the same steps, equation (5.32) can be rewritten

as

A@=Aé+k"(z-Hé) (5.32)

Where the symbol * refers to the reduced set corresponding to the

best, smallest, residuals. Now the LAV solution can be reached as
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=0+ A'R'"Z-HO) (5.33)
define K as

K = A'R"
» L ]
= R A)’. (5.34)
In the dynamic case, there is only one measurement at a time, then of
course we can drop = from the equations.

Now, we can find an expression for the discrete gain at step K as

-1
(R(k) A(k))
- -1 -1
[ R(k) Le™ P(k) + HK) ] . (5.35)

K(k)

Now, equation (5.35) together with equations (5.5), (5.8), (5.9) and
(5.11) completely describe the weighted Jeast absolute value filter

algorithm,

At the end of this section is a summary of the steps to be followed to
perform the dynamic estimation process using either the KF or the

WLAVF [42,43,44,45,46).

1. Start with initial P=P(0), and ©=6(0) to calculate the filter gain
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- T - T -1
K@) .= PH(K) [ H(k)P(k)H(K)+R(K) ]
- -1
KK), ,ve= [ HK)+RE)Le™ P (k) ]
2.  Compute the error covariance for update estimate
- T T
P(k)=[I-K(k)H(K)] P(k) [I-k(kH(K)] + KK)RKK(K) .

3. Update estimate with measurement z(k)

Y

Ok) = O(k) + K(k)z(k)-HK)OK)] .

b

Project ahead error covariance and estimate

Plc+1) = SPUSE) + Q) , and

A

Ok+1) = &(k) Ok) -

It is clear that the only difference between the KF and the WLAVF

lies in the gain matrix K(k).

5.3: Test of the algorithms: simulated exaiipie

In this section, the two algorithms mentioned above are tested
using a simple simulated example. Here the waveform is considered to

have a constant magnitude during the window size (stationary
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waveform). Later in section 5.4 the algorithms will be tested for
nonstationary waveforms.

The XF and the WLAVF algorithms are tested here using a voltage
signal waveform of known harmonic content [13]. The waveform is

described as:

o [+ L4 ]
v(t)=1 .Ocos(co(t) +10)+0. 1cos(3w£ +20) +0.08¢os(5w§ +30) +0.08cos(7a)(t’ +40)
+0.06cos(1 lwg +50) +0.05cos(13w£ +60) +0.03cos(19w£ +70)

The data window size for this examplc is chosen to be 2 cycles,
with sampling frequency of 3840 Hz and 64 samples per cycle.

The two algorithms were tested using both models 1 and 2
developed earlier in chapter IV. It is worth while to mention here
that the static least squares estimate was used to provide the
algorithms with the initial values for the state vector é(O) and its
covariance matrix f’(O) [47].

It was found that both KF and WLAVF give the same estimate for
the mvignirudes and the phase angles when either model 1 or model
2 used, wu: :ae only difference was in the gain matrix K.

Figures (5.1) and (5.2) give the estimated magnitudes of the
fundamental, 3rd, 7th, 11th and the 13th respectively while  Figure
(5.3) gives the estimated phase angles for the same harmonics when KF
or WLAVF are used with either model 1 or model 2. Figure (5.4) gives
KF gain for the 60 Hz states x, and y, when model 1 is used while
figure (5.5) gives the WLAVF gain for the same components when the

same model is used. Figures (5.6) and (5.7) give the KF gain and the
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Fig. 5.1 Estimated magnitude of 60 Hz and third harmonic

using KF and WLAVF (Models 1 and 2)
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Fig. 5.2 Estimated magnitude of seventh,eleventh and
thirteenth harmonic using models | and 2

(XF and WLAVF)

145

3
o] 7
~

— 2

— O

<

oD

[8'd

e 1
[e=]
G o 13
2.
-
o
© 1 1 1 1 ¥ 1

0.0 25.0 S0.0 75.0 100.0 125.0
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Fig. 5.3 Es*imated phase angies using models 1 and 2

(KF and WLAVF)
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WLAVF gain for the component X when model 2 is used. Examining curves
from (5.1) to (5.7) reveals

1. The two algorithms, for both models, estimate exactly the harmonic
contents of the waveform, and the two models produce the same results
with the two algorithms.

2. When model 1 was used the gain values were oscillating with the
fundamental frequency, but when model 2 was used the gain clements
start to change without oscillations. In both cases the gain values
reach steady state after a short time. Indeed, this was because of the
good initialization of the filters.

3. Extensive runs show that model 1 reduced the computation time,

therefere this model will be used in the next sections.

Effects of the frequency drift on the estimates are also
investigated for this simulated example, where the drift was assumed
to change between -0.05 and -0.1 Hz. A sample of the results is shown
in figure (5.8) which indicates that for a frequency drift up to about
-0.1 Hz the estimates of the harmonic magnitudes do not change
appreciable. Of cource there is an error, about 2%, but it is
acceptable for a small drift. However the error in estimating the
phase angles could reach about 20% . To overcome this drawback, it is
important to always update the frequency by measuring it before each

measurement is used.

5.4: Test of the algorithms: Actual recorded data

The two algorithms are tested again in this section using the

151



PER UNIT

Frequency drift of -0.1 Hz

. (KF and WLAVF)

Fundamentatl

third harmonic

0.0 50.0 150,29
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actual recorded data of Appendix II. Here the considered waveforms are
nonstationary. The section starts with using the KF algorithm and then
the WLAVF algorithm and finally at the end of this section a

comparison between the two algorithms is provided.

5.4.1: Kalman filter case

The Kalman filtering algorithm is implemented for identifying and
measuring the harmonic contents for the practical system of Appendix
II. The voltage and currents waveforms are given in figures  (4.29)
and (4.30). The algorithm is tested to observe the effects of window

size, sampling frequency and number of harmonics considered.

Effects of Data window size

The algorithm is tested for different window sizes starting fromw
0.5 cycles up to 2 cycles. In this study 15 harmonics are considered
and the sampling frequency is kept conmstant at 8474.57 Hz, which is
the sampling frequency supplied and it is satisfving the sampling
theorem. Under this combination of parameters, the Kalman filtering
algorithm is implemented to estimate the barmonic coatents of the
three phase voltages as well as the barmonic contents of the three
phase currents and hence the power generated from each harmonic
component. Figures (5.9) to (5.14) give samples of the results
obtained for the estimated magnitude of the harmonics content of the
voltage and the current of phase A together with the power generated
from each phase. Examining these curves reveals the following:

1. The phase voltage V, contains nearly no harmonics, since the
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Fig. 5.9 Harmonics magnitude of V, versus time steps at

different window sizes.
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different window sizes.
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steps at different window size.
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magnitudes of the second. fourth and the sixth harmonics are almost
zero.

2. The harmonic contents of the current of phase A as well as their
phase angles are given in figures (5.10) and (5.11); it can be noticed
that this current contains the second. fourth and sixth harmonics. As
seen from these figures the harmonic magnitudes as well as the phase
angles vary as the data window size varies. Indeed this is due to the
fact that the waveforms are nonstationary.

3. Figure (5.12) gives the fundamental power for each phase namely, A,
B, and C in per :nit; it can be noticed from this figure that the
three phase powers are not the same and they vary from instant to
instant during the . stimation process, this is due to the fact that
the waveforms are unsy. metrical as well as nonstationary.

4. Figures (5.13) and (5.14) give the 4th and the 6th harmonics power
for the three phases, it can be noticed from figure (5.13) that the
4th harmonic in phase B is positive while in phase A and C are most of
the time negative. It can be also noticed from figure (5.14) that the
6th power generated from phase B is positive while for phase A and C
it is negative. However, the values of these powers are small compared

to the fundamental power.

Effects of sampling frequency

Effects of sampling frequency on the behavior of Kalman filtering
algorithm are studied when the sampling frequency varies as 2118.64,
2824.85, 4237.28 and 8474.57 Hz. while the data window size is kept

constant at 2 cycles. To avoid alaising effect, the sampling



frequency was always kept greater than twice the frequency of the
highest barmonic considered. Figures (5.15) to (5.20) give a sample of
the results obtained for the harmonic magnitudes of the current as
well as the three phase power generated from these harmonics.
Examining these curves reveals the following:

1. Provided that the sampling frequency used satisfies the sampling
theorem, it can be noticed that the sampling frequency, in this case,
has slight effects on the estimated harmonic magnitudes as seen in
figure (5.15), (5.16) and (5.17). Figure (5.18) shows the variation of
the fourth harmonic magnitude with the sampling frequency. The
harmonics power, as well are mostly constant or have a slight
variation from ome sampling frequency to another as is seen in figures
(5.19) and (5.20).

2. The fourth harmonic is still the most effective ome; it has the
higher magnitude in the current of phase A, with the second, third,
fifth and the sixth having the smaller magnitudes.

3. 1he sixth harmonic power in phase B, as shown in figures (5.18) and
(5.20), is still positive and in phase A and C is negative, even if

the sampling rate changes.

Effects of number of harmonics

To study the effect of the number of harmonics considered on the
behavior of the algorithm, a constant data window size of 1 cycle is
chosen with a sampling frequency of 8474.57 Hz. The number of
harmonics is changed from 7 to 23 and a sample of the results

obtained is shown in figures (5.21) to (5.23). These figures show the
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variation of the harmonic magnitudes when the number of harmonics is
changing. Alihough the estimate does not change much, it is obvious
that the number of harmonics considered should be kept as high as

possible to get better estimate.

Subharmonics estimation

After ihe harmonic contents of the waveforms had been estimated.
the waveform was reconstructed to get the error in this estimation.
Figure (5.24) gives the real current and the reconstructed current for
phase A as well as the error in this estimation. It has been found
that the error has a maximum value of about 10%. The error signal is
analyzed again to find if there are any subharmonics in this signal.
The Kalman filtering algorithm is used here to find the amplitade and
the phase angle of each subharmonic frequency. It was found that the
signal has subharmonic frequencies of 15 and 30 Hz. The subharmonic
amplitudes are given in figure (5.25) while the phase angle of the 30
Hz component is given in figure (5.26). The subharmonic magnitudes
were found to be time varying, without any exponsntial decay, as seen
clearly in figure (5.25).

Once the subharmonic parameters are estimated, the total
reconstructed current cau be obtained by adding the harmonic contents
to the subharmonic contents. Figure (5.27) gives the total resuliant

error which now is very small, less than 3%.
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5.4.2: Weighted least absolute value filter case

The WLAVF algorithm is implemented for identifying and measuring
the harmonic content for the system of Appendix II. The effects of
varying the data window size, sampling frequzncy and the number of
harmonics is examined. The subharmonic content is identified as well

in this subsection.

Eifects of data window size

The algorithm is tested for different data window size, starting
from 0.5 up to 2 cycles. The sampling frequency is constant at 8474.57
Hz and 15 harmonics are considered in this study. Figure (5.28) g.ves
the harmonic magnitudes of ihe voltage V,- It is clear that the
voitage waveform is nearly sinusoidal. Figure (5.29) gives the
harmonic magnitudes for the current I, while figure (5.30) gives the
estimation of the second harmonic magnitude using both KF and the
WLAVF  algorithms. Examining those two curves reveals that the
magnitudes of the harmonics are time-varying, as expected, and that
the most effective harmonics magnitudes are the fourth, sixth and the
second. Figure (5.30) shows, as well, that this estimation is very
close to that obtained using KF. Figures (5.31) gives the fundamental
power of the three phases while figure (5.32) gives the sixth harmonic

power. From those two figures the harmonic sources can be identified.

Effects of sampling frequency

Effects of the sampling frequency on the behavior of the

algorithm are tested here. To perform this study the data widow size
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is kept constant at 2 cycles while the sampling frequency is changing
as 8474.57, 4237.28, 2824.85 and 2118.64 Hz. Samples of the results
obtained are introduced here. Figures (5.33), (5.34) and (5.35) gives
the most effective barmonic magnitudes of the current I A when the
sampling frequency was 2118.64, 2824.85 and 4237.28 Hz respectively,
for the same frequencies the sixth harmonmic power for phases A, B and
C were found and samples of the results are given in figures (5.36)
and (5.37). Figure (5.38) gives the estimation of the fourth harmonic
magnitude when the three sampling rates are used. In this figure the
three curves are shown on a common graph. Examining all these curves
indicates that  the sampling frequency has a slight effect on the
estimate  providing that the sampling frequency is still higher than
twice the frequency of the highest harmonic considered in the waveform

and that is what happened with the KF case.

Effects of number of harmonics

The algorithm was tested for a different number of harmonics
considered in the voltage and the curremt waveforms, the number of
barmonics was changed from 7 to 23 with the sampling frequency
constant at 8474.57 Hz and the data window size was chosen to be 1
cycle. Figures (5.39), (5.40) and (5.41) give samples of the resuits
obtained. These figures show the variation of the harmonic magnitudes
when a different number of harmonics is considered. Examining these
curves shows that the number of harmonics considered has a slight
effect on the estimate., However, it is better to increase the number

of harmonic to reduce the error in the estimate.

EWaT.1




Harmonics magnitude (p.u.)

0.20

WLAVF

Current IA

# of harmonics = 9
Sampiing rate 2118.64 Hz

Window size = 2 ¢ycles

b
‘=‘ T

eI e - H #d
S
S H #6
Vs
S -
Q

H #3
) AL AL P PP EP LA b ——  H#®
< H 45
e ' ! T T 1
.0 1.0 20.0 30.0 0.0 50.0
k (time steps)
Fig. 5,33  Variation of harmonics magnitude with the time steps.

For comaprison with KF see page 162

183




Harmonics magnitude {p.u.)

10 1S 0.20

0.0S

0.400

WLAVF

For comparison with KF see page 163

184

Current [,
] # of harmonics = 9
Sampling rate 2824.858 Hz
Window size = 2 cycles
.......... [T e R
o H #6
.- H #3
""""" e L L LA = ¥ 74
H #5
0.0 0.4 20.0 0.0 10.0 50.0
k (time steps)
Fig. 5.34 Variation of harmonics magnitude with the time steps




0.

G.10

0.0s

Harmonics magnitude (p.u.)

0.00

WLAVF

Current I,
# of harmonics = 9
Sampling rate 4237.288 Hz
Window size = 2 cycles
e TN
----- H #4
N H #6
_________ H #3
"""" LT T Tl dutubinibdebe ks H #2
..................... * Cessttesave wut #5
] 1 | | 1
0.0 20.0 40.0 60.0 80.0 100.0

k (time steps)

Fig. 5.35 Variation of harmonics magnitude with the time steps.

For comparison with KF see page 164

1R8




Harmonics power (p.u.) 2X103

.0

[

.0

-1.0 0.0
i ) 1

2.0

)

-4

..........

WLAVF

6th harmonics power

4 of harmonics = 9
Sampling rate 2118.64 Hz
Window size = 2 ¢cycles

Y]

0.2

Fig. 5.36

20.0 30.0 40.0
k (time steps)

Variation of harmonics power with the time steps
samples.

186

50.0




Harmonics power (p.u.) 2X103

‘f WLAVF
e
= ]l el O L L L LT TP, TR Pa
o]
;-
o ! PC
P e e NS —

o PA
c

-
o |
N 6th harmonics power

# of harmonics = 9
2 Sampling rate 2824.858 Hz
' Window size = 2 ¢cycles
=
|
- .
2.0 10.0 20.0 10.0 40.¢ 0.7
k (time steps)
Fig. 5.37  variation of harmonics power with the time steps.

For comparison with KF see page 166

187




Hannonk31nagnhude(p4x)

WLAVF

8 - Fs=2118.64 Hz
S Fs=2824.85 Hz

-- —— Fs=4237.28 Hz
)
=

H #4
e
;.-
2
d v " R
0.0 S.0 10.0 15.0 20.0 25.0 30.0 . 35.0 40.0 45.0 50.0

k (TIME STEP)

Fig. 5.38 Variations of the harmonic magnitudes

with the sampling frequency

188




Harmonics magnitude (p.u.)

0.05

0.00

WLAVF

Current Ia

Sampling rate = 8474.5763 Hz
Window size = 1 cycle

# of harmonics = 7

.o

'''''''

e . .- M 24

R S Hes

H #3

- .

PRaR
.-
.
. .
Seaen " Seaehd #2 s
..

~H =5

40.0

Fig. 5.39

. 1
80.0 120.0 1€0.0 200.0

k (time steps)

Variation of harmonics magnitude with the time steps.

For comparison with KF see page 168

189




Harmonics magnitude (p.u.)

WLAVF

8 Current I,
© Sampling rate = 8474.5763 Hz
Window size = 1 cycle
# of harmonics = 8
[¥g)
d— ----- -
AP PR TR memeTeT Temal L H #4
2
Z- H %6
wn
cd
o
..... . . #3
--------------- mreLet=t TN 82
g | #5
© H T . H
0.0 40.0 80.0 120.0 160.0 20

k (time steps)

Fig. 5,40 Variation of harmonics magnitude with the time steps.

For comparison with KF see page 169

190

(]




Harmonics magnitude (p.u.)

0.G0

0.20

0.05

WLAVF

) *+-+* Number of harmonics=7
~———— Number of harmonics=9
- —-- Number of harmonics=11
,- H #4
0.0 30.0 60.0 90.0 120.0 15

k (TIME STEP)

Fig. 5.41 Variations of the harmonic magnitudes with

the number of harmonics considered

191




Subharmonics estimation

Once the harmonic contents of the waveform is identified, the
reconstructed waveform can be obtained. Figure (5.42) gives the real
current and the reconstructed current for phase A as well as the
resultant error. The maximum error in this estimation was found to be
about 13%. The error signal is then analyzed to identify the
subharmonic parameters. Figure (5.43) gives the subharmonic amplitudes
for the subharmonic frequencies of 15 and 30 Hz while figure (5.44)
gives the phase angle &,.

The total error is found by subtracting the combination of the
harmonic and the subharmonic contents, total recomstructed, from the
actual waveform. This error is given in figure (5.45) and it is clear

that this is a very small error with a maximum value of about 3 %.

5.5:Comparison between the KF and the WLAVF

From section 5.4 we can say generally that both filters nearly
produce very close results. However, some points could be mentioned

here

1. The estimate obtained via the WLAVF algorithm is more damped than
that obtained via the KF algorithm. This is probably due to the fact
that the WLAVF gain is more damped and reaches steady state faster

than the KF gain as shown in figure (5.46).

2. The overall error in the estimate was found to be very close in

both cases with a maximum value of about 3%. The overall error for
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both cases is given in figure (5.47).

3. Both algorithms were found to act similarly when the effects of the

data window size, sampling frequency and the pumber of harmonics were

studied.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

SUMMARY

In this study, different state estimation techniques for
identifying power system harmonics have been introduced. First, the
power system harmonic problem was reviewed in chapter II. This review
included, the harmonic sources, harmonic effects and the harmonic
measurement techniques.

In chapter III, the mathematical models suitable for solving this
problem were developed. These models were classified according to the
problem type, harmonic or subharmonmic, and also according to the
technique used, on-line or off-line.

The static estimation problem was presented in chapter IV. In
this chapter different static estimation techniques are introduced. A
new application of least squares technique is presented and compared
to the discrete Fourier transform. An application of a  new non
iterative least absolute value technique is presented as well. The
chapter was concluded by the results obtained when using these
techniques with simulated examples and real data, also a  comparison
between these techmiques was provided.

In chapter V the dynamic estimation problem was presented as well
as the Kalman filter and the recently developed weighted least
absolute value filter. The algorithms were tested using simulated

example and real data. The results were presented and a comparison was
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made.

CONCLUSIONS

From the results obtained in the off-line simulation some

important remarks can be made as follows

1. The new application of the least squares technique for identifying
power system harmonic sources gave an easy alternative to the popular

discrete Fourier technique with the same degree of accuracy.

2. The new least absolute value estimator gave a results as good as
both the discrete Fourier transform and least squares techniques with
superiority in the case of bad data. The application of this new
least absolute value technmique showed that it is a valuable

alternative to the iterative linear programming technique.

3 In the case of non-stationary waveforms if each cycle of the data
set is considered separately, as suggested, a very good estimate can

be obtained.

4. An interesting observation made during the off-line simulation, was
that the second least squares solution in the way to get the least
absolute value estimation was, in most cases, very close to the LAV
solution hence, this can be considered as an improvement in the least

squares estimation.
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5. It is obvious that in the case of stationary waveforms the static

techniques are preferable over the dynamic ones.
In the on-line simulation the results obtained reveal that

1. The dynamic filters are superior in the case of mnon-stationary

waveforms.

2. The new least absolute value filter appeared as an alternative to
the Kalman filter with almost the same computational time and a high
degree of accuracy. The LAVF would give even better results when the

error distribution is non-Gaussian.

SUGGESTIONS FOR FUTURE INVESTIGATIONS

During the course of the research, the following points have been
detected and they are suggested here as subjects for future work in

the same area.

1. This work can be extended to identify the harmonic sources in a
multibus system. The transient waveforms can be analyzed, as well,

and the amplitudes and the frequencies can be identified.

2. This theoretical work could be repeated experimentally especially
the parts with the LAV filters and compared to the theoretical work
done in this thesis. A complete simulation can be made using an

induction motor with variable speed drive and a signal from the
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voltage and the currents can be recorded in a digital form. The
digitized waveforms can then be analyzed using on or off line
filtering algorithms. After detecting the harmonic content, a suitable
circuits can be built to reduce the distortion level or to limit it to

the standard levels.

3. A continuation of the theoretical work can be in the form of
deriving the mathematical model for the extended weighted least
absolute value filter to solve the non linear problems and compare the

performance to that of the Kalman filter.
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APPENDIX I

The full wave rectifier circuit is shown in figure I.1. The

equations of the input and output waveforms are given as

Vist) = Vm sin(wt) and

V() I V_ sin(wt) I

vit} vit}
4 vit) zVmsinO t

vit) zNmsinQ 1}

o () 1

\/zn

- Ot

Fig. 1.1 The full wave rectifier circuit
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According to Fourier analysis, V_ can be expressed as

oo
V (1) = a + 2 (acos nwt + b sin nwt)
out 0 n a

n=1

T
where a= —.]l:.— { V(wt) d(wt) ,

T

a= —%— £ V(wt) cos nwt d(wt) ,
2 T ,

bn= —T—oj V(wt) sin nwt d(wt) ,

and T is the periodic time.

The analysis of the full wave rectified voltage (output voltage) gives

the Fourier coefficients as

a= ——EZ—’“ for n=2,4.6,... ,
" @i
a =0 for n=13,5,..... , and
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APPENDIX 1I

The actual data provided by ALBERTA POWER LIMITED is for a
dynamic load. The load is a variable frequency drive controlling a
3000 HP induction motor connected to an oil pipe line compressor. The
solid state drive is of 12 puls design with harmonic filtering. The
data given is the phase voltage V  and the three phase currents at

different speeds of the motor. The electrical description of the load

is given as follows:

POWER = 3000 HP , and
VOLTAGE = 25 K.V.

At the point of measurement there are voltage transformer and current

transformers with the following data:

CURRENT TRANSFORMER TURNS RATIO = 60 , and
VOLTAGE TRANSFORMER TURNS RATIO = (120)*101 .

The sampling rate is 118 micro seconds with 4096 samples (about 29

cycles).

A sample of the waveforms given for the voltage and current is

shown earlier in the body of the thesis (pages 90 and 91) .

The per unit system used in this thesis is based on the following
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quantities at the motor side:

Base K.V.A = 3000 x 746/3 = 746 K.V.A ,

Base voltage = 25/{3 =

2238
3 25

Base current =

Thus in the low tension side of

will be:

14.43 X.V. , and

= 51.684 Amperes.

the transformers the base values

= 1.2 Volts, and

14.43
Base voltage =
120x101
51.684
Base current =
60

211

= (0.8614 Amperes .



