
University of Alberta

EXTRACTING STRUCTURED KNOWLEDGE FROM TEXTUAL DATA
IN SOFTWARE REPOSITORIES

by

Maryam Hasan

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Maryam Hasan
Spring 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

Examining Committee

Eleni Stroulia, Computing Science

Denilson Barbosa, Computing Science

Ken Wong, Computing Science

Marek Reformat, Electrical and Computer Engineering

To my dear Mojtaba and Negar

Abstract

Software team members, as they communicate and coordinate their work with oth-

ers throughout the life-cycle of their projects, generate different kinds of textual

artifacts. Despite the variety of works for mining software artifacts, relatively lit-

tle research has focused on communication artifacts. Software communication ar-

tifacts contain useful semantic information that is not fully explored by existing

approaches.

This thesis, presents the development of a text analysis method and tool to ex-

tract and represent valuable information from a wide range of textual data sources

from software projects. The developed system integrates Natural Language Pro-

cessing techniques and statistical text analysis methods, with software domain knowl-

edge. The extracted information is represented as RDF-style triples which consti-

tute interesting relations between developers and software products. We applied

our system to analyze five different textual sources, i.e., source code commits, bug

reports, email messages, chat logs, and wiki pages. In the evaluation of the system,

we found its precision to be 82%, its recall 58%, and its F-measure 68%.

Acknowledgements

First of all, I would like to thank my supervisor Dr Eleni Stroulia. Her guidance

and experience have helped me to become a researcher. She gave me research

freedom and support to explore and build up diverse ideas throughout my research

as a graduate student.

I am also grateful to my co-supervisor, Dr Denilson Barbosa for his guidance

and feedback on this research. I thank to his help and insightful comments during

my graduate studies.

I would like to thank all the members of Software Engineering Research Lab

(SERL) for all their help. In particular, many thanks are reserved to Marios Fokaefs,

who kindly helped during the evaluation of the developed approach. As a domain

expert, he selected a sample of sentences as our test set, and helped for the evalua-

tion of our results.

I would like to thank the members of Stanford parser group for their great tool.

Specially, I would like to thank Christopher Manning for his very helpful support.

Finally and foremost, my great appreciation goes to my parents and my husband

for their endless love, support, and care that they have given me, and to my lovely

daughter, for being a big part of my life.

Table of Contents

1 Introduction 1
1.1 Motivation and Background . 1
1.2 The Research Problem . 3
1.3 Contributions . 3
1.4 Outline . 5

2 Related Work 7
2.1 Ontology Learning for Software Domain 7

2.1.1 Summary . 9
2.2 Understanding the Software Project 10

2.2.1 Summary . 13
2.3 Understanding the Communications among Software Developers . . 14

2.3.1 Summary . 15

3 A Method for Analyzing Textual Artifacts of Software Projects 17
3.1 Data Pre-processing . 18

3.1.1 General Data Cleaning . 20
3.1.2 Bug Reports . 21
3.1.3 SVN comments . 21
3.1.4 Wiki Pages . 22
3.1.5 Email messages . 22
3.1.6 IRC Chat Logs . 23

3.2 Term Extraction . 25
3.3 Syntactic Analysis . 29
3.4 Semantic Analysis . 32

3.4.1 Semantic Annotation . 33
3.4.2 Semantic Representation 35

3.5 Pattern Extraction . 37

4 Evaluation 41
4.1 Experiments . 41

4.1.1 The Input Dataset . 41
4.1.2 Experimental Results . 42

4.2 Evaluation . 45
4.2.1 Empirical Evaluation Method 46
4.2.2 Evaluation Results . 49

4.3 Discussion . 51

5 Conclusions and Future Work 53
5.1 Conclusions and Contributions . 53
5.2 Future Work . 56

Bibliography 58

List of Tables

3.1 Data cleaning and acquisition . 24
3.2 Created Domain Vocabulary, Including the Concepts and the Cor-

responding Sample Terms. 29

4.1 Syntactic/Semantic Analysis Results for the Wikidev2.0 data sources 44
4.2 Samples of Comparing Extracted Triples with Reference Triples . . 49
4.3 Comparison Results for the Extracted Triples 50
4.4 Evaluation Results of the Tool for each Data Source 50

List of Figures

3.1 Tool Architecture . 19
3.2 Sample Result of Data Preprocessing on an Email message 25
3.3 Constituency tree for the sentence ”I used Java and Eclipse before.” 30
3.4 Dependency tree for the sentence “I used Java and Eclipse before.” 30
3.5 Augmented Dependency tree for the sentence “I used Java and Eclipse

before.” . 30
3.6 Stanford Parsing result for the sentence “I used Java and Eclipse

before.” . 32
3.7 The sentence “I used Java and Eclipse before.” after parsing and

semantic annotation. 36
3.8 The semantic relations of the RDF triples produced by the pattern-

extraction process. 38
3.9 Dependency paths in the XML tree to represent Rule 1, Rule 2, and

Rule 3. 39

List of Plates

...

List of Symbols

...

Chapter 1

Introduction

1.1 Motivation and Background

During software-development activities (i.e. requirements analysis, system design,

implementation and testing), software developers continuously communicate with

each other to coordinate their work. Coordination becomes particularly important

when developers have to work together on complex, long-term projects [3].

As software team members work and communicate with each other, their ex-

changes get stored in a collection of heterogeneous artifacts. Some of these arti-

facts are composed of more structured data (e.g., source code), yet others include

unstructured information (e.g., documentation in natural language).

The software research community has long recognized the importance and po-

tential usefulness of the information contained in these artifacts and has developed

several approaches for analyzing them [41, 5, 33]. These approaches have been

applied to many software engineering problems such as reverse engineering, trace-

ability, program comprehension, software reuse, software maintenance and recov-

ery [28]. The most interesting findings, and those most directly relevant to our own

work, are reviewed in Chapter 2.

In spite of the predominance of natural-language text around software devel-

opment activities, most research in the area of “mining software repositories” is

focused on analyzing the more structured artifacts of the process, usually source

code and bug reports. For example, the work presented in [42, 41] examines data

from source code for project comprehension, but do not analyze other data sources.

1

However, the knowledge about a software project is usually spread in different data

sources, namely the bug descriptions, discussion messages, documentation, and

commit logs. There are quite a few research projects on analyzing multiple data

sources associated with software development. However these approaches either

ignore the semantic information that can be found in the text included in these data

sources, or employ supervised techniques, assuming that someone will manually

annotate (part of) the text in order to train a system to extract such semantic infor-

mation. For example, the approaches presented in [3, 10] don’t extract any seman-

tic relations between domain terms; rather they rely on extraction and annotation of

terms and concepts. To mention an example of supervised methods, [21, 22] man-

ually classified at least 2000 commit messages in order to create the training set for

the automatic classification of commit messages. As another example, [3] used a

combination of hand-written parsing rules for ontology population.

Earlier research has demonstrated that the textual sources attached to the soft-

ware artifacts contain a wealth of domain knowledge that can become a valuable

resource of information for current and future members of the software commu-

nity [10]. Specifically, the content of the developers’ informal communications is

a rich source of additional information that complements, and often elaborates on,

the formal documents. For example, through exchanges over communication chan-

nels such as email and chat, developers discuss the requirements of their software

system and the details of system design. They negotiate the distribution of tasks

among them and make decisions about the internal structure and functionalities of

code modules. Finally, they discuss ideas for eliminating bugs or the best way to

implement new features [19].

In the rest of this chapter we state the research problem that we addressed in

this thesis, we describe our contributions to the state of the art, and we provide an

outline of the thesis.

2

1.2 The Research Problem

Although software development artifacts implicitly contain information about dif-

ferent aspects of the software development, they are weakly integrated, unstructured

and hard to explore [10].

While previous research demonstrates the feasibility of the idea that important

knowledge can be extracted from software artifacts, the nature of such artifacts

should be taken into account. Indeed, software projects produce large, distributed,

heterogeneous, and unstructured information sources. We believe that a logical next

step is to provide methods that can explore the knowledge provided by the complete

range of heterogeneous information sources associated with software projects. We

need a way to explore the semantics of information on the variety of software arti-

facts, including the bug reports, discussion messages, documentation, and commit

logs. A major challenge in achieving this goal is that they generate vast amounts of

information as a result of their interactions, but that information is not well struc-

tured. The following requirements should be considered by the methods that ex-

plore software artifacts [10]:

1. Ability to deal with multiple document collections;

2. Coverage of heterogeneous data sources; and

3. Ability to deal with unstructured data sources.

Our work in this thesis develops an initial approach towards addressing this re-

search problem and makes several contributions, as summarized in the next section.

1.3 Contributions

In this thesis, we developed a text analysis method and tool to extract and represent

useful pieces of information from multiple data sources associated with the software

project. Text analysis is commonly known as a knowledge discovery process that

aims to extract information from unstructured text [44]. We proposed and validated

the use of lexical, syntactic, and semantic analysis to extract semantic information

3

from software textual data and represent them using a structured and formal data

model such that they can be queried by end users. Extracted semantic and structural

information reduce the time and effort to obtain a comprehension level required for

the software maintenance. The extracted information can also be combined with

the source code information to better support various software maintenance tasks

and activities [34, 35]. The major contributions of this thesis are as follows.

1. Analyzing a wide range of textual data sources around software develop-

ment

Despite the variety of works in the area of mining software artifacts, relatively

little research has focused on the diverse set of communication artifacts, ex-

plored in this thesis. Software communication artifacts, in addition to source

code artifacts, contain rich semantic information that is not fully explored by

existing approaches. The proposed approach exploits a wider range of tex-

tual information sources associated with software projects, including, source

code commits, bug reports, email messages, chat logs, and wiki pages. Sec-

tion 3.1 describes the specific features of each data source and the challenges

for analyzing it.

2. Applying unsupervised methods

Our approach for analyzing textual sources around software artifacts relies

on unsupervised methods that don’t require the specification of rules or train-

ing sets. Our text-analysis system incorporates Natural Language Processing

(NLP) techniques and statistical text-analysis methods, aware of software do-

main knowledge, and applies these methods in an integrated manner to five

different sources of software artifacts, in order to understand the semantics

conveyed by the artifacts. Within the text-analysis process, we make use of

a number of standard NLP tools, including sentence splitter, Part-of-Speech

(PoS) tagger, and dependency parser. We provide more details in Section 3.2.

3. Applying a deep syntactic and semantic analysis

4

In order to explore software project information, we apply a combined syn-

tactic and semantic analysis on textual artifacts to extract valuable knowledge

about various aspects of the software life-cycle. We propose a term extrac-

tion and semantic annotation method to obtain information about individual

software terminologies mentioned in the text. The developed system also de-

tects predicate-argument structures in order to extract the relations between

the identified terms. Our approach attempts to obtain semantic information

as RDF-style (Resource Description Framework) triples 1 from unstructured

textual sources. The extracted triples constitute instances of a rich conceptual

model of the domain that captures interesting relations between developers

and software products. Sections 3.3 and 3.4 contain a detailed description of

these analyses.

As a result, a deep analysis of such textual artifacts reveals valuable information

about various aspects of the software life-cycle: the background and expertise of

developers (e.g., “I have used JUnit before”), the roles and responsibilities assumed

by the various team members (e.g., “I focused on testing for this package”), and

their specific contributions to the various project artifacts (e.g., “I added method M

to class C”). Furthermore, the informal nature of such communication channels can

also offer ways of extracting more subtle information about the dynamics among a

team’s members (e.g., “who communicates the most/least and with whom”, “who

asks the most questions”).

Our final goal is to explore a series of activities around the software code. These

include the discovery that a bug exists or that a new functionality is needed, deter-

mining those active developers working on an issue, identifying a possible solution

to the issue.

1.4 Outline

The rest of this thesis is organized as follows.

In Chapter 2, we review other researches related to analyzing software textual

1(http://www.w3.org/RDF/)

5

artifacts for different purposes including (a) ontology learning from information

sources associated with software artifacts, (b) natural-language analysis for under-

standing the life-cycle of software projects, and (c) understanding the communica-

tions around software developers.

In Chapter 3, we provide the details of the proposed approach for analyzing

textual information of software artifacts. We describe our framework and differ-

ent tasks that should be accomplished including syntactic parsing, term extraction,

semantic annotation and representation, and pattern extraction.

In Chapter 4, we present our evaluation of our framework. We describe our

experiment on the Wikidev2.0 data sources. Moreover, we present an empirical

evaluation method and describe the evaluation metrics that we employ. We use

these metrics to assess the results of our experiment.

Chapter 5, provides a summary of the main points of our work and the results

of the evaluation process. It also discusses some possible future works for this

research.

6

Chapter 2

Related Work

There has been a significant amount of work in the context of analyzing software

textual artifacts for different purposes including (a) ontology learning from infor-

mation sources associated with software artifacts, (b) natural-language analysis for

understanding the life-cycle of software projects, and (c) understanding the com-

munications around software developers. In this chapter, we discuss the literature

that is most closely related to our thesis in each of the above groups.

2.1 Ontology Learning for Software Domain

There are different works for ontology learning from information sources associated

with software artifacts. In the following we review some of them which are more

important and related to our work.

K. Bontcheva and M. Sabou [10], presented an approach for learning domain

ontologies from multiple sources associated with the software projects, i.e., source

code, user guides, and discussion forums. They used the natural language process-

ing services provided by the GATE (General Architecture for Text Engineering)

[13], which is one of the most widely used NLP tools. Their technique relies on

unsupervised learning methods that are portable across application domains and

consists of four stages. Firstly, relevant terms are extracted from source code. Then

the domain terms identified in the source code are used as a starting point for ex-

ploring unstructured sources which include documentations and forums. Thirdly,

the terms extracted from the source code and textual artifacts are submitted for

7

a concept identification process to identify terms referring to the same concept.

Finally, the automatically learned ontology is modified manually by an ontology

editor in order to remove the irrelevant concepts and add missed ones. Although

their approach provide ontology learning from multiple data sources, they don’t ex-

tract any semantic relations between domain terms; rather it relies on extraction and

annotation of terms and concepts.

A similar approach was used by Y. Zhang, R. Witte and their colleagues [44, 37]

to find the relations and dependencies among various software artifacts as traceabil-

ity links, based on an ontology learning technique. To achieve this goal they utilized

structural and semantic information in software artifacts, i.e., the documentation

and source code, by means of text mining and source code parsing, and created a

formal ontological representation for both software artifacts. In order to populate

the source code ontology, they developed an ontology-based program comprehen-

sion tool, SOUND (Software Ontology for UNDerstanding), which identifies con-

cept instances from source code. They implemented a text mining subsystem based

on the GATE framework, to extract concept instances from software documents.

After representing source code and documents in the form of an ontology, these

ontological representations, along with semantic information conveyed by the arti-

facts, are then used to establish traceability links between software implementation

and documentation at the semantic level. They tried to link instances from source

code and documentation using ontology alignment techniques.

More recently, they extended their previous research to empower software main-

tenance with ontology [40]. They first defined an ontological representation model

as RDF for the software artifacts (i.e., source code and documents), in order to

map documentation to source code. The source code ontology contains concepts

mapped to the source code entities and the document ontology contains concepts

in programming domain, including programming languages, design architecture,

data structures, and algorithms. Their ontological model, also include some seman-

tic relations between concepts, such as “implements(class, interface)”. Secondly,

they deployed text mining and source code analysis to automatically populate the

ontological model with concept instances, in a similar way as [44]. For the text

8

mining task, they deployed GATE, in order to perform sentence splitting, part-of-

speech tagging, named entity recognition, coreference resolution, syntactic analysis

and relation detection. For the relation detection subtask, they extracted predicate-

argument structure which is similar to our approach. However they applied syn-

tactic parsing and a number of predefined grammar rules, rather than dependency

parsing. After the ontology populated from source code and documentation arti-

facts, it is explored, queried and reasoned by utilizing semantic web clients.

Another interesting project in this area is the work of Ankolekar [3]. They devel-

oped a prototype of semantic web model for the open source software (OSS) com-

munities. They provided an ontology as a semantic model for bug reporting mes-

sages, source code, and developers. Their ontology contains several sub-ontologies

including, code ontology, bugs ontology, developers ontology, and interactions on-

tology. In order to populate the ontology, they collected instances of concepts and

roles from software artifacts such as source code files, bug reports, and CVS com-

mit logs. Their ontology population is a semi-automated process and uses a com-

bination of hand-written parsing rules and information extraction patterns. Their

approach demonstrated the feasibility of capturing the semantics of different kinds

of artifacts to help the task of bug resolution in OSS communities.

2.1.1 Summary

The research projects reviewed in this section is similar to our work in that they

map information from software artifacts to a structured data model, such as on-

tology. Although they analyze information from a variety of repositories, such as

source code repositories and bug reports, these projects ignore communication data

sources, such as email messages, and chat logs, and do not extract any kind of se-

mantic relations between concepts in the text, but focus solely on teh extraction of

terms and concepts.

9

2.2 Understanding the Software Project

There is substantial research in the context of analyzing software artifacts for un-

derstanding the software project. In the following we review those, which are more

important and related to our work.

T. Yoshikawa and his colleagues [42], proposed a technique for identifying the

traceability links between a natural language sentence describing features of a soft-

ware product and the source code of the product, using a domain ontology. The

inputs of their system are the source code, domain ontology, and a description sen-

tence in natural language. They first analyze the source code and extract a call-

graph for the methods and their invocations. Then they extract the words exist in

the sentence using stemming, unifying synonyms, and filtering stop words. Finally,

they traverse the call-graph with the information of the words and the given ontol-

ogy, to produce a subpart of call-graph as pieces of source code related to the input

sentence. Although by using traceability links developers can potentially locate

code fragments corresponding to documentation, this system requires the “domain

ontology” as input which is a challenging task by itself.

Another similar work for analyzing the source code for program comprehen-

sion purposes presented by Würsch and his colleagues [41]. They developed an

approach to answer questions about source code, such as “what are the subclasses

of a class?”, or “what fields are declared as this type?”. They combined toolsets

for source code analysis with ideas from the Semantic Web to enable developers

to query software artifacts through natural language question answering. For this

goal, they represented the information extracted from the source code with the Web

Ontology Language (OWL). They first created an RDF graph data model of the key

concepts of source code such as: packages, classes, methods, accesses, invocations.

The created ontology then serves as input for a guided natural language interface in

which the developers can query the data.

More recently, T. Fritz and G. Murphy [18] identified 78 interesting questions

about software development through interviews with professional developers such

as “What have developers been working on?”, or “Who is working on what?”. An-

10

swers to these questions require information from several data sources such as,

source code, change sets, wiki pages, exception tracks, and test cases. They intro-

duced an information fragment model and a prototype tool to automate the compo-

sition of different kind of data source related to software artifacts. They used the

prototype tool to answer a set of eight questions, by composing information frag-

ments, originating primarily from traditional repository-mining methods. The tool

also examines textual data from Wikis but it does not do any substantial syntactic

or semantic analysis; rather it relies on recognizing IDs and names.

Another project aiming at answering questions developers ask is Codebook [5],

which is a framework for mining software repositories and connecting developers

and their work artifacts. The Codebook creates a graph useful for answering end-

user’s questions about software development activities. First, a set of crawlers ex-

tract information from the project repositories (i.e., source code, work items, user

directory) and store them in a database as a graph. Then, a set of paths created

by domain experts is uploaded into database as regular expressions and used to

discover the paths that exist in the graph. Finally, front-end applications use web

services to query the database to answer end-user’s questions. With respect to text,

it simply recognizes names within textual objects and infers that the object in ques-

tion “mentions” the named individual. One drawback of their framework is that it is

based on a supervised technique and relies on the paths created by domain experts.

A. Hindle, and et al. [21, 22] proposed a method to automatically classify large

commit messages into maintenance categories including, corrective, adaptive, per-

fective, feature addition and non-functional improvement. They applied several

machine learners on features extracted from the commit data, such as frequency

of the words in the commit messages, author of the commit, and modified mod-

ules. Their approach assumes that commit messages and the identity of authors

provide learners with enough information to accurately and automatically classify

large commit messages into maintenance categories. However one drawback of

their approach is that they had to manually classify at least 2000 commits into the

maintenance categories in order to create the training set for the automatic classifi-

cation. They evaluated the results of the learners via 10-fold cross validation, and

11

achieved accuracies consistently above 50%. In the field of software evolution and

process extraction, they published another similar work [23]. In order to charac-

terize a projects behaviour, they classified revisions into four classes source code,

testing, documentation, build. After extracting data for revisions and releases, they

classified the revisions by aggregation and windowing. Their classification was

based on the file types associated with software processes.

In other works, A. Hindle and his colleagues [20, 24], proposed a method to

extract a set of independent topics from a corpus of commit-log comments. Their

methodology to derive and label topics consists of several steps. First they gath-

ered data from commit messages from source control repositories, by removing

stop-words and using stemming. Then they extracted topics by applying Blei’s

LDA (Latent Drichlet Allocation) algorithm [8] on the word distribution of com-

ment messages. In [20], they also applied unsupervised and supervised learning

techniques to label extracted topics. For the unsupervised labelling they tried to as-

sociate each topic with a label from a list of keywords and related terms. They

generated different sets of word-lists based on ISO9126 quality model [7], and

Word-Net. For the supervised labelling they applied several machine learners on

features extracted from the commit data, such as word counts per message. Their

unsupervised method got the accuracy between 55% and 75%, while their super-

vised method achieved the accuracy between 60% and 80%. Their research tried

to abstract software artifacts by their subject matter by these topics, however they

only examined version control repositories and ignored other artifacts.

A similar work of topic labelling for software quality, proposed by Neil A. Ernst

and John Mylopoulos [16]. They applied a software repository mining technique

to investigate the software quality in software projects. Their assumption was that

requirements for software quality can be conceived as a set of labels assigned to

the conversations of project participants such as mailing list discussions, bug re-

ports, and subversion commit logs. They labeled each message of conversations

with appropriate software quality requirements. Their quality model was derived

from ISO9126 [7] which is a standard for software quality and describes six qual-

ity requirements, reliability, usability, maintainability, functionality, portability, ef-

12

ficiency. For each quality label, they first construct a word list using Wordnet’s

synsets, hypernyms and stems. Then, they query the corpora of the software project

with these word lists to create a table of events. Each event is any message which

contains at least one term in the word lists. They evaluated their results based on

precision and recall. They randomly selected 100 messages for each quality re-

quirement, and achieved the precision as 79% and recall as 51%.

Finally, A. Hindle and his colleagues [25], extended their previous work [24, 21]

and presented an approach for recovering software development processes from

several software artifacts including, mailing list archives, commit log comments,

and bug tracker reports. In order to extract the processes used by developers,

they proposed a semi-automatic technique for analyzing software artifacts. Their

methodology involved the following steps: acquisition and extraction, unsupervised

analysis, manual annotation, supervised analysis, and results reporting. The acqui-

sition and extraction step attempts to extract data from software artifacts including

version control, mailing lists, and bug trackers. The unsupervised analysis creates

word bags, using topic analysis and frequency analysis. Word bags are dictionaries

of terms related to a concept such as efficiency or requirement. They are used for

labelling of bug reports or commit comments with predefined concepts. The anno-

tation step uses word bags to manually annotate bug reports or commit comments

with predefined concepts. For the supervised analysis they used Bayesian classifier

to label topics extracted during unsupervised analysis with non-functional require-

ments such as, efficiency, reliability, usability, maintainability, portability. topic

labelling and maintenance classification.

2.2.1 Summary

The works that we reviewed in this section examine data from software artifacts

for the purpose of project comprehension. However these works do not do any

substantial syntactic or semantic analysis of the software artifacts to deeply explore

the semantic information that can be found in textual units of these data sources;

rather they rely on recognizing names and assigning labels. Another drawback of

the reviewed approaches is that some of them are based on supervised techniques

13

which need some manual training data sets.

2.3 Understanding the Communications among Soft-
ware Developers

There exists an interesting body of research in the context of analyzing software

communication artifacts, to discover developer roles, contributions, and associa-

tions in the software development. In the following we introduce some of them

which are more related.

Rigby and Hassan [36] used the LIWC, to examine the mailing list of Apache

http server developers. LIWC, is a psychometrically-based analysis tool, similar

to the TAPoR. They conduct three preliminary experiments to assess the appropri-

ateness of this tool for information extraction from mailing lists. Their goal was to

gain insight into the type of people who participate in and the discussions that occur

on the mailing list. They also tried to determine the personality types of four top

developers, to understand why they join and leave the project.

In a similar work, Yu and his colleagues [43] adopt a social-network model for

representing the interactions of open-source software developers and mining their

email archives using data clustering techniques. In fact, they applied data mining

techniques to study the dynamics and the evolution of open-source social networks.

They used communications in the mailing lists of two open-source projects, Linux

and KDE to construct and analyze the social network. In order to group distributed

developers according to their interaction, they applied hierarchical clustering. Al-

though they are interested in the same informal communications as we are, they do

not actually examine the text of the email messages but only explore the connectiv-

ity of the senders and recipients from email threads.

A similar paper in constructing social networks of email correspondents from

the email archives published by Christian Bird et al. [6]. They extract a social

network by analyzing the headers of the email archives of Apache HTTP server

project, examining how the connections between developers on the mailing list re-

late to their development activity in the source code. They tried to find the relation-

14

ships between the activities of developers in the email archives and their software

development activity, to see how the connections between developers on the mailing

list relate to their development activity in the source code. From the social network

measures, they concluded that the level of activity in the source code is a strong

indicator of the social status of a developer among other developers. However, like

Yu and his colleagues [43], they did not examine the body of the messages and only

consider the name of the email participants.

Another approach to group developers and construct a social network from the

change logs stored in the CVS repository was proposed by Huang and Liu [26].

They analyzed the log data to determine developers’ contributions and construct

a graph where a node represents a developer and an edge represents a contribution

between developers. Then they analyzed the graph to find core and peripheral devel-

opers. The peripheral developers made minor contributions and the core members

worked very closely with each other. Similarly Lopez-Fernandez and his colleagues

[32] propose the idea of creating developer network from source code repositories.

Their main goal was to categorize developers into different groups based on their

collaboration. They also created a module network where two modules were con-

nected if they were committed together.

Finally A. Meneely and his colleagues [33] proposed an approach for failure

prediction based on developer network analysis. They constructed a developer net-

work from version control commits in a similar way as Lopez-Fernandez and his

colleagues [32]. In their developer network, each node represents a developer and

two developers are connected if they have both made a change to at least one file

during the same release. They found that the prediction model based on a network

of developers performed significantly well in prioritizing files based on predicted

failures.

2.3.1 Summary

Taking into consideration the lessons learnt from previous approaches, in this the-

sis we propose an unsupervised text-analysis approach to extract information from

multiple sources associated with the software project, including, source code com-

15

mits, bug reports, mailing lists, chat logs, and wiki pages. In order to exploit such

information, we integrate natural language processing techniques and statistical

methods, with software domain semantic knowledge and apply them to five differ-

ent sources of textual data. Comparing with the existing approaches, the strength of

our technique is that (1) it explores a wider range of textual information sources as-

sociated with software projects; (2) it deals with the different types of data sources

based on unsupervised techniques, i.e., natural language processing techniques, sta-

tistical methods, and domain specific knowledge; and (3) it applies a thorough lexi-

cal, syntactic and semantic analysis on textual artifacts to extract valuable semantic

information about various aspects of the software life-cycle.

16

Chapter 3

A Method for Analyzing Textual
Artifacts of Software Projects

In this chapter, we discuss our methodology for analyzing several sources of textual

information in the software domain. Our main motivation is to gain insights about

the information in the data sources, created by the individual team members over the

various stages of the project. This information is collected through the WikiDev2.0

tool [4], as it is being used by a software team during a term-long course project.

The fundamental methodological assumption of our work is that, through their

members’ collaboration, software teams develop a “shared understanding” about

what they discuss in each of their communication channels. In order to exploit this

information, we developed a text analysis methodology, based on two complemen-

tary analyses, i.e., syntactic and semantic analysis. We applied our methodology to

five different sources of the natural language textual data of a software development

team. The five textual data sources were (a) wiki pages, (b) SVN comments, (c) bug

descriptions, (d) email messages, and (e) IRC chats.

We developed our methodology for syntactic and semantic analysis, by inte-

grating state-of-the art computational-linguistic techniques with domain-specific

knowledge, in order to extract useful pieces of information about various aspects

of the software life cycle.

Our overall methodology can be broken down into five main phases as the fol-

lowing:

1. Data Pre-processing, including data cleaning, sentence boundary detection,

17

and data acquisition.

2. Term extraction, including candidate extraction and term weighting.

3. Syntactic analysis, including syntactic tagging and dependency parsing.

4. Semantic analysis, including semantic annotation, and semantic representa-

tion.

5. Pattern extraction.

Generally, during the above five stages, the unstructured natural language data

of software artifacts are analyzed in order to generate structured data annotated with

domain semantics, which then can be queried to extract useful pieces of data.

Figure 3.1 presents the different phases of the developed system and their con-

nections. As Figure 3.1 illustrates, after the raw data have been cleaned and pre-

processed, the separate sentences first go through the syntactic analysis to produce

syntax trees. The syntax trees of all the sentences, along with the domain vocab-

ulary generated by the term extraction task, then serve as the inputs to a semantic

analyzer which performs semantic annotation and produces semantic representa-

tions of the sentences. Finally, the annotated syntax trees represented in XML

(eXtensible Markup Language) go through pattern extraction for further analysis

to generate RDF-style (Resource Description Framework) 1 triples. More details of

each process are presented in the following sections.

3.1 Data Pre-processing

The textual data created during software development are frequently very noisy.

Noisy unstructured text data are typically found in informal texts such as online

chat, text messages, emails, wikis and web pages. Unfortunately, simply applying

text analysis tools, which are usually not designed for analyzing noisy data, may

not bring good results. However, preserving such information makes traditional text

processing methods (e.g., parsing, tagging, and stemming) unsuitable. Therefore,

1(http://www.w3.org/RDF/)

18

1.	 Data	 Pre-‐processing	

Data	
Cleaning	

Sentence	
Boundary	
Detec3on	

Data	
Acquisi3on	

3.	 Syntac5c	 Analysis	

PoS	
Tagging	

Dependency	
parsing	

4.	 Seman5c	 Analysis	

Seman3c	
Annota3on	

Seman3c	
Representa3on	

Separate	
Sentences	 	

WikiDev2.0	
Textual	
	 data-‐	 	
sources	

2.	 Term	
Extrac5on	

Candidate	
Extrac3on	

Term	
Weigh3ng	

Domain	
Concepts	 &	
Wordlist	

Vocabulary	

5.	 Pa?ern	 Extrac5on	

XQuery	 	
PaKerns	

XQuery	
Processing	

Sentence	
Parse	
	 Trees	

Seman3cally	 &	
Syntac3cally	 	
Annotated	 	
XML	 Trees	

RDF	 	
Triples	

Cleaned	
Text	

Figure 3.1: Tool Architecture

the data need some pre-processing and cleaning before any subsequent analysis can

be applied.

Basically, data cleaning is defined as a process of normalizing texts by eliminat-

ing irrelevant non-text data, or any noise elements [38]. For example, in our corpora

typical noise elements include pieces of source code inside the text, (wiki, html, and

javadoc) markup tags, greetings and signatures in the email messages. Another es-

sential part of any cleaning process in text analysis involves the identification and

removal of duplicate data [38]. This step is important, especially when the data are

used in statistical analysis such as frequency functions. Duplicate or redundant data

may result in either misleading or probably, false results. For example, the quoted

parts of email messages are common duplicate data.

19

3.1.1 General Data Cleaning

Our analysis used five different data sources from the software artifacts of Wikidev2.0.

Before they could be analyzed further, these data had to be refined and abstracted

from the raw data sources stored in the Wikidev2.0 database. Apparently, these

data sources needed some general cleaning which was common among different

kind of data sources. Poor spelling and punctuation, abbreviations, acronyms and

domain-specific language can cause noise in all data sources. Eliminating all of the

noise from our data sources was impossible; however, we tried to remove some of

the typical elements of noises as follows:

• Removing non ascii characters;

• Removing pieces of source code;

• Removing html, xml, wiki and javadoc markup tags;

• Replacing http links with a corresponding text. For example, replacing the

link “http://hypatia.cs.ualberta.ca/ucosp/index.php” with “ucospURL”;

• Replacing the name of some tools and programming languages with a corre-

sponding name. For example, replacing C++ with Cpp, or .Net with dotNet;

• Removing the extension form the name of files such as “.txt”, “.java”, “.php”.

They should be removed because the parser may consider them as the period

for the end of sentence;

• Removing bullets or numberings;

• Eliminating arbitrary use of punctuation marks and capitalization, such as

“{”, “[”, and “>”;

• Fixing spelling errors in the name of some domain-specific terms such as

class names and table names. For instance, replacing “UML Handler” with

“UMLHandler”.

20

In addition to the above types of generally applicable data cleaning, some kinds

of data artifacts need some specific refinements which differ from those of the other

artifacts. For example, transforming the data in chat logs and email messages into

a refined format suitable for subsequent analysis, involves some particular clean-

ings. By considering the general and particular cleanings required for different

data sources, we tried to refine the raw data source and extract the data fragments

required for our analysis. In the following sub-sections, we describe the specific

features and challenges of each data source, also identify the data fragments that

we obtained from them.

3.1.2 Bug Reports

Bug reports are one of the relatively clean data sources, because the interaction

between the bug reporters is relatively well recorded and formal. Bug reports need

only general refinements such as, removing pieces of source code, html and xml

tags, and http links.

Bugs or tickets are usually tracked by means of an issue/bug tracking service

such as “bugzilla”. The bug-tracking system typically records the identity of the

bug reporter, the bug description, and the date of the bug report. In the bug-tracking

system, the bug identifiers are assigned to a ticket with a unique identity.

Bug records often contain pieces of information, such as the reporter of the bug,

its description, and other team members mentioned within the bug description.

3.1.3 SVN comments

Another rich and relatively clean source of information created during software de-

velopment life-cycle is sub-version commits. Similar to the bug reports, they only

need some general cleaning. Subversion control repositories include collections of

files committed together in the repository and the associated comments. For each

commit, the data elements that the sub-version system typically records include,

source code files, the author of the commit, revisions, and the commit message.

Commit messages are the comments that programmers write when they commit re-

visions to the source control repository, which is the most readily accessible source

21

of project artifacts.

The data elements we abstracted from SVN comments included, the author of

the commit, other team members mentioned within the message of the commit, and

the actual commit message.

3.1.4 Wiki Pages

Wiki pages are written by using a specific markup language which includes dif-

ferent markup tags to specify the structure and formatting of the page contents.

For example, in wiki text, a bulleted list in typically designed using an “asterisk”.

Therefore, in addition to the general cleanup process, wiki pages also need some

specific kinds of cleaning to remove wiki markup tags. In order to convert the wiki

text into plain text, first the wiki text is transformed into HTML text. Then, the

HTML text is changed to plain text by using a HTML parser. We used the dedi-

cated HTML parser of the MediaWiki 2 for this purpose. Another feature of wiki

pages is that each wiki page may have several revisions. We considered only the

last revision for each wiki page, to prevent redundancy of the wiki data.

After cleaning the wiki pages, the data elements we derived from this data

source included the author of the last revision, the users mentioned within the con-

tent of the last revision, and the content of the last revision as plain text.

3.1.5 Email messages

Compared to other software development artifacts, such as change-log commits or

bug reports, mailing lists are less structured. However, these lists contain valuable

information about the development process, design decisions, and developers’ char-

acteristics. The email messages have the following specific features. Firstly, email

messages contain duplicate and invalid data, stored in raw formats, which threaten

the applicability of text analyzing approaches and need further processing. In email

messages, users usually refer to the text of previous participants by quoting their

messages. However, the additional text may not be desirable for text analysis ap-

proaches, as it is redundant information. Quoted messages typically begin with one

2http://www.mediawiki.org/wiki/MediaWiki

22

or more “>” signs at the beginning of a line (one for each level of quotation), and

they can be easily removed automatically. Secondly, email messages also contain

“signature” elements at the end of the text. Signatures are typically used as a sign of

identity and to indicate the end of a message, and contain stereotypical phrases like

“thank you” and “best regards”. Signatures may contain a variety of artifacts, such

as contact information, text graphics, and quotes. Many free email services may

also add advertisements as a signature in their messages. As a result, the informa-

tion included in the signature part of emails is often repetitive and unrelated to the

message and should be removed. Finally, email messages are point-to-point mes-

saging and therefore target particular recipients. As a result, the data we extracted

from the mailing lists included the author of the message, the direct recipient(s),

the team members mentioned within the body of the message, and the body of the

message. In the mailing list of Wikidev2.0, the recipients of the each email mes-

sage are all the users. However, in some messages the author specifies the name(s)

of specific recipient(s). We extracted the possible specific recipient(s), from the

beginning of the message.

3.1.6 IRC Chat Logs

Similar to email messages, chat logs are more unstructured and allow discussions

on a wider range of topics than bug reports or commit logs. Chat logs have several

unique properties. Chat messages may be written by users with a virtual identity or

nick-name. Chat messages have no editorial modifications, therefore misspellings

in them are more frequent than in edited text. Chat messaging has a specific style

and vocabulary and its own method for expressing emotions by using emotion icons

such as “:-)” and “:-(”. Emotion icons are sequences of punctuation marks that rep-

resent feelings such as happiness, anger, and depression. Repetition of some charac-

ters in a word can also be used as a means of expressing emotions (e.g. “greaaatt!”).

Moreover, in chat messages, the use of conscious misspellings such as “cya every-

one” is frequent.

Like email messages, the chat logs are point-to-point messages which target par-

ticular recipients. That means, each chat message usually has specific recipient(s)

23

and a specific sender. In chat messaging, the names of the particular recipients

usually appear at the beginning of the message.

After we removed possible noise elements from the chat messages, the data

we extracted from each of them contained the author of the message, the direct

recipient(s), the team members mentioned within the body of the message, and the

content of the message itself.

Table 3.1 summarizes the required data cleanings and abstracted data fragments

for each data source.

Table 3.1: Data cleaning and acquisition
Data Source Abstracted Elements Required Cleanings

Bug reports author, bug description general cleaning
SVN commits author, commit message general cleaning

Wiki pages author, page content general cleaning, wiki markup
cleaning

Email messages author, body of the mes-
sage, receiver(s)

general cleaning, removing
greeting, signature and quoted
part

Chat messages author, message con-
tent, receiver(s)

general cleaning, removing
emotion icons and resolving
nick-names

In addition to common grammatical and punctuation mistakes, yet another sys-

tematic type of noise appeared in our data sources. We realized that in many of

the sentences especially the SVN comments and bug descriptions, the author of the

message did not include the subject of the sentence. For example instead of stat-

ing “I created a table”, the author may state “created a table”. By analyzing these

sentences as they were, we would have missed the information included in those

messages. In order to resolve this problem, we tried to recognize sentences with

a missing subject and to add the author of the sentence as a subject in front of the

sentences with no subject. The sentences missing a subject were the non-imperative

sentences which had a verb but no subject. In order to distinguish between the sen-

tences missing a subject and the imperative sentences, we considered one of these

two features for the imperative sentences. The first feature is that the imperative

sentences may contain the word “please”. Secondly the tense of the verb in the

24

imperative sentence is simple present.

After we cleaned the data sources and acquired the data elements, we divided

the textual data into individual sentences, by using a “Sentence Splitter” to de-

tect sentence boundaries [31]. The separate sentences, along with the other data

elements, then served as input to the syntactic analyzer for further analysis. The

data elements associated with each separate sentence included “sentence id”, “data

type”, “author”, “receiver”, and “sentence”.

Figure 3.2, presents sample results of the data cleaning and acquisition process

on an email message.

Figure 3.2: Sample Result of Data Preprocessing on an Email message

3.2 Term Extraction

The need to extract and manage domain specific terms has become increasingly

important in recent years [17]. Term extraction, aims at the recognition of domain-

specific terms from the corpora of a certain domain. Domain terms are the linguistic

representation of the domain-specific concepts in the text. Terms may consist of a

single word form, called a single-word term, or more than one word form, called

a multi-word term. The most common compound nouns that could serve as multi-

word terms include the adjective-noun and the noun-noun phrasal compounds [17].

In general, distinguishing terms from regular words in the text is not an easy

25

task. This task becomes even more complicated in the software domain for the

following reasons.

• Most available terminological vocabularies for our specific domain are still

far from being complete.

• The software terminologies change over time, and the terminological vocab-

ulary should be updated appropriately.

• The software terminological vocabularies consist of a large number of con-

cepts in various categories, including programming languages, software de-

sign and architecture, algorithms, development tools, data structures, soft-

ware quality and maintenance.

• The lexicon of a software project tends to be project-specific and is often

unique.

We propose a semi-automatic approach, in order to identify software technical

terms and populate the terminological vocabulary of our specific domain. The pro-

posed term extraction approach is based on two tasks: candidate term extraction

and term weighting. The candidate extraction task tries to identify a list of candi-

date terms containing single words. Single-word candidates are simply defined by

taking the list of all words that occur in the text but do not appear in a standard

“stop-word” list or “noise” words. Stop-words are extremely common words in

the text which do not provide any useful information, such as “about”, “then”, and

“even”.

The second task, term weighting, takes the list of candidate terms as input and

ranks them as domain related terms and regular terms. In order to find out if the

candidate terms are domain-specific terms, this task calculates a term weight for

each word in the list of candidate terms. Then it ranks them based on the assigned

weights and decides whether the weighted words are domain terms if their weights

are higher than a threshold. The words weights are usually measured based on a

statistical scale. We consider the frequency of the terms in the text as the statistical

measure to calculate the weights of candidate terms. The basic underlying idea

26

is that interesting and meaningful terms for the domain are likely to occur with

relatively high frequencies in the corpus of the domain [29].

The following formula shows the straightforward measure used to calculate the

weight for each candidate term. This measure uses the number of all terms in the

text in order to normalize the weight [29].

CandidateTerms = {W1,W2, ...,Wi, ...} (3.1)

TermWeight(Wi) =
f(Wi)∑
j f(Wj)

(3.2)

where f(Wi), is the number of occurrences of term Wi in the text.

In our work we utilized TAPoR, the Text Analysis Portal for Research, to iden-

tify candidate terms and their weights for our dataset. TAPoR, is a web-based appli-

cation developed by digital humanists. TAPoR exemplifies a lightweight analysis

of natural-language text, focusing only at the “superficial” lexical level of the text.

It provides a suite of lexical-analysis tools [2]. The tools offered by TAPoR in-

clude (a) word counts and lists, (b) word co-occurrence (i.e., keyword-in-context),

(c) word-clouds visualizations, (d) words’ collocations within sentences and para-

graphs, and (e) pattern extraction. TAPoR has had several deployments around the

world and is used to analyze the lexical properties of texts and collections.

We deployed the TAPoR word-frequency service to identify the candidate terms

and calculate term frequency as their weight. In this service, TAPoR reads the input

data from a text file, excludes stop-words and generates a list of all words sorted by

the word frequency. TAPoR can also list words by applying an inflectional word

stemmer. We considered the word stems to calculate their frequencies, because it

helps to measure the occurrences of different lexical forms of a term as a single

frequency count. Hence, a single term is derived from different lexical forms of a

term, instead of several terms. For example, without stemming, the terms diagram

and diagrams are treated as different items with separate term frequencies, while by

using stemming, they are considered as a single term diagram with one frequency

count.

27

After producing TAPoR word frequency results, we identified all the words

whose weights (i.e., frequencies) were higher than a threshold, and assigned them

to one of our domain concepts (or semantics), such as project tasks, project artifacts,

and the names of the tools. The threshold were considered a frequency value that

domain terms rarely appear with that frequency.

The frequency produced relatively good results, and its application to the cor-

pora was relatively simple. For example, in our 26,464 word software corpus (with-

out stop words), xml appeared 129 times, uml 123 times, and php 94 times. Of

course, not all domain terms exhibited high frequencies. For example, MySQL ap-

peared 5 times, and Perl only one time. Low frequency terms cause problems for

statistical approaches to find them. In order to add some important terms with low

frequency to our domain vocabulary, we augmented the vocabulary by using some

standard dictionary related to the software domain such as the IEEE Computer So-

ciety’s keywords in the “Software/Software Engineering” category 3 and “Software

Engineering Body of Knowledge (SWEBOK)” 4.

In addition to using TAPoR’s most frequent words, we also considered a set of

terms that are already part of the WikiDev2.0 database, such as the anonymized

names of the teams’ members, the names of the developed files, the programming

languages the teams used, the name of the created tables, and the IDs of the teams’

tickets and code revisions.

After aggregating these three sets of terms, the ones extracted by using TAPoR,

those selected from the Wikidev2.0 database, and those from standard software

vocabularies, we created a specific vocabulary, organized around a set of term cate-

gories, for the software-development domain. Our domain vocabulary included the

following concepts and their corresponding sample terms as depicted in Table 3.2.

We used the created domain vocabulary in order to extract domain-specific

terms from each sentence. After we recognized a word as a domain-specific term in

a sentence, we capitalized the word. The reason for this change is helping the parser

to assign correct PoS tags to the domain terms, in the sentences. For example the

3http://www.computer.org/portal/web/publications/acmsoftware
4http://www.computer.org/portal/web/swebok/html/appendixd

28

Table 3.2: Created Domain Vocabulary, Including the Concepts and the Corre-
sponding Sample Terms.

Concepts Sample Terms

Users User1, User2, ... , User9
Programming Languages Java, PHP, XML, ...
Tools Eclipse, Bugzilla, IBMJazz, ...
Tickets ticket1, ticket2 , ...
Revisions Revision1, Revision2 , ...
Action Verbs create, debug, implement, fix, make, ...
Project Tasks visualization, documentation, user interface, testing, ...
Project Artifacts class, method, table, database, script, ...
Table Names tickets, diagrams, ticketchanges, ...
Class Names XMIparser, XMLparser, Associations, ...

parser tagged the word “eclipse” as “verb” instead of “noun” in several sentences.

Capitalizing domain terms helps the parser to annotate them correctly.

3.3 Syntactic Analysis

The goal of the syntactic analysis is to assign a syntactic structure to each sentence.

A syntax tree or a parse tree is a structural model for presenting a sentence and

represents the syntactic structure of a sentence according to the grammatical rules

of the language.

Two different methods for representing the syntactic structure of a sentence can

be used: constituency trees and dependency trees. These two types of trees assume

different semantics for the syntactic-tree nodes and the edges between them [12].

The constituency tree is a phrase-structure representation, starting from consti-

tute S and ending in the sentence words as the leaf nodes. Constituents (labelled in

capital letters) are the phrase structures of the word sequences in the sentence. In

constituency trees, each non-terminal node represents a constituent such as NP (for

noun phrase), VP (for verb phrase), PP (for prepositional phrase), ADJP (for adjec-

tive phrase), and ADVP (for adverbial phrase) [30]. Figure 3.3 presents a sample

constituency tree for the sentence “I used Java and Eclipse before”.

Rather than using phrase-structure representation, a dependency tree represents

29

Figure 3.3: Constituency tree for the sentence ”I used Java and Eclipse before.”

Figure 3.4: Dependency tree for the sentence “I used Java and Eclipse before.”

Figure 3.5: Augmented Dependency tree for the sentence “I used Java and Eclipse
before.”

30

the grammatical relationships between the individual words in a sentence, as typed

dependency relations, such as subject or direct-object. In a dependency tree, the

nodes of the tree are sentence words, so that a dependency relation is established

between a pair of the words in a sentence. One of the words in each dependency

relation is the head or governing words, and the other is dependant (or subordinate)

to the first one [14, 15]. Figure 3.4 presents a sample dependency tree for the

sentence “I used Java and Eclipse before.”

The dependency-tree representation is more effective in certain tasks than the

constituency-tree representation. In information extraction applications such as re-

lation extraction, matching the relations in a sentence is easier by using the depen-

dency tree. Its use also simplifies semantic analysis tasks involving transforming

the dependency tree in any semantic representation, such as conceptual graphs or

semantic networks [14].

In spite of the apparent differences between constituency and dependency rep-

resentations, both representations provide useful information on the syntactic struc-

ture, so that they can be combined. In fact, the model that we used as a structural

model for representing the syntactic structure of our sentences is based on a de-

pendency tree augmented with some constituency information. We enhanced the

dependency tree, with the part-of-speech tag (PoS tag) of the word in each node.

We chose the augmented dependency representation because we assumed that sen-

tences containing similar information usually have the same structures in their de-

pendency trees. Figure 3.5 presents a sample augmented dependency tree for the

sentence “I used Java and Eclipse before.”

For the task of syntactic analysis, including part-of-speech tagging and depen-

dency parsing, we used the Stanford Parser [12, 31, 1]. Stanford parser is a very

high performance probabilistic parser, which provides constituency parsing and

dependency parsing. The separated sentences are parsed by the Stanford parser,

whereby each word is assigned a part-of-speech tag which is a grammatical label

such as “noun”, “verb”, “adjective” “adverb”, and “preposition”. Furthermore, the

Stanford parser also provides the dependency relationships between pairs of the

words in a sentence such as “subject”, “object”, and “possession”. The Stanford

31

Parse Tree:
 (S
 (NP (PRP I))
 (VP (VBD used)
 (NP (NNP Java)
 (CC and)
 (NNP Eclipse))
 (ADVP (RB before))) (. .)))

Dependency Relations:
 nsubj (used-2, I-1)
 dobj (used-2, Java-3)
 conj_and (java-3, Eclipse-5)
 advmod (used-2, before-6)

Syntactic tags:

I/PRP used/VBD java/NN and/CC Eclipse/NNP before/RB ./.

Figure 3.6: Stanford Parsing result for the sentence “I used Java and Eclipse before.”

dependencies are represented as binary relations between two sentence words. The

parser presents the dependency relations as triples including: the name of the re-

lation, the governor (or head) and the dependent elements. Figure 3.6 presents the

syntactic tags and the dependency relations created by the Stanford parser for the

sentence “I have used Java and Eclipse before”.

3.4 Semantic Analysis

The syntactic analysis described in the previous section, assigned a syntactic tag

for each word and the grammatical relationships between the sentence word pairs.

The next phase of our method is semantic analysis which consists of two main tasks.

The first task annotates the domain-specific terms that exist in the sentence by using

semantics. The second task represents the extracted syntactic and semantic infor-

mation of each sentence by using a formal data model. The following subsections

describe the two tasks of our semantic analysis.

32

3.4.1 Semantic Annotation

Semantic annotation is the task of assigning meaning to as many terms of the cor-

pus as possible. This process attempts to clarify the domain-specific roles that these

terms play. The main motivation behind this task is that the meaning of a sentence

can be inferred based on the meaning of its components in their syntactic represen-

tation [27].

This semantic annotation phase was implemented as a process of attaching spe-

cific concepts, belonging to our enumerated domain vocabulary, to the terms in the

sentence parse tree. This process led to these augmentation of the syntax tree of the

sentence by using semantic attachments.

Our process to semantically annotate the terms relies on two steps. First, it iden-

tifies any nouns in the sentence parse tree by using part-of-speech tagging created

by the syntactic analysis process. Secondly, it uses our domain vocabulary created

by the term extraction task to annotate the terms of the sentence parse trees. Given

the domain vocabulary and part-of-speech tagging, the semantic-annotation process

associates each noun in the syntax tree of the sentence with a semantic concept from

the domain vocabulary. Accordingly, a word in the syntax tree of the parsed sen-

tences will be annotated if it is tagged as a noun and if it matched with any of the

terms in the domain vocabulary.

The above process works for the words that appear as nouns in a sentence, but

it may miss words that appear as pronouns. For instance, in the sentence “I used

Java and Eclipse before”, the pronoun “I” refers to a specific user, and should be

annotated as a developer. To enable a pronoun to be annotated by the semantic

concepts as well, we need the pronoun co-reference resolution.

Moreover, throughout the text, a single term is usually referred to in different

ways, including pronominal references (e.g., “this class”). In order to find identical

terms and references, a task of coreference resolution is required. Coreference oc-

curs when two words in the text refer to the same term, and has two forms: nominal

and pronominal coreferences. For the nominal coreference resolution, we consid-

ered the following conditions:

33

• For the names of users, first name, last name, and both refer to the same user.

For example, “John”, “Smith”, and “John Smith” co-refer to the same user.

• For the name of the tools and programming languages, acronyms and full

names may refer to the same tool or programming language. For example,

the “SVN” and “Sub-Version System”, refer to the same tool, or “VB” and

“Visual Basic” co-refer to the same language.

• A term can be an abbreviation of another term. For example “MS” is an

abbreviation of “Microsoft”, and “DB” is abbreviation of “database”.

For the pronominal coreference resolution, detailed text analysis revealed that

a few simple rules could resolve the vast majority of pronominal coreferences. For

example, 80% of the occurrences of “he”,“she”,“his”, and “her”, referred to the

closest person of the same gender in the same sentence [9]. Finding a resolution

for the pronouns “it”, and “its” is more difficult because the number of possible

proceeding nominals (i.e., entities that are referred to) is much higher compared

with the other pronouns like “she” and “he”.

Our approach for the pronominal coreference resolution is very simple and is

shown below.

• We divide the pronouns into three groups:

– First Person Pronouns = {I, we, me, us, my, our, mine, ours, myself, ourselves}.

– Second Person Pronouns = { you, your, yours, yourself }.

– Third Person Pronouns = { he, she, her, hers, him, his, herself and himself,

them, their, theirs, themselves}.

• We keep the author and the receiver for each sentence. The pronouns in the

first group (i.e. “I, we, my”), refer to the author name and are annotated as

developer. Accordingly, the second group pronouns (i.e. “you, your”), refer

to the receiver’s name and are annotated as developer.

34

• In order to find the reference for the pronouns in the third group (i.e. “she,

he, her”), we refer these pronouns to the proper individual nouns in the same

sentence or in the preceding sentence, and annotate them as developer.

3.4.2 Semantic Representation

During the previous analysis, the syntactic and semantic information has been ex-

tracted from the sentences, including the syntactic tags of the words, the gram-

matical relationships between words, the domain-specific terms, and the semantic

annotation of the terms, the next task involves representing the extracted syntactic

and semantic information in a structured data model.

The semantic representation task has two main motivations. First, it maps un-

structured sentences into a formal representation of their meaning, enabling us to

run queries on them afterwards. Second, this formal representation can be used as

the input for some subsequent analysis that produces richer and more meaningful

information. In Section 3.5, we explain the use of subsequent analysis to extract

more useful knowledge.

We decided to express the extracted information from the syntactic and seman-

tic analysis in a data model using the Extensible Mark-up Language (XML). At this

stage of the process, each sentence is transformed into a syntactically and seman-

tically annotated tree, represented in XML. The annotated XML trees are stored

in the Wikidev2.0 database in order to provide an automatic retrieval of the in-

formation by running queries towards them, and to do further analysis on them.

The resulting XML representation is much more amenable to querying than the un-

structured natural sentence. As shown in Figure 3.7, each such annotated XML tree

includes the following pieces of information:

• Dependency relations between words, such as “dobj” between “Java” and

“used”;

• Syntactic tags of the words, such as “NNP” for the word “Java”;

• Semantic annotation of the domain-specific terms, such as “language” for the

term “Java”;

35

<S Type="ticket-description" ticketId="1" sentId="127
Author="User1” Receiver=“User2”> I used Java and Eclipse before.

 <Verb stem="use" ID="1" PoS="VBN" Relation="root"> Used
 <PRP ID="1" PoS="PRP" Relation="nsubj"
 semanticTag="Developer" Name="User1"> I </PRP>
 <Noun ID="2" PoS="NNP" Relation="dobj"
 semanticTag="language"> Java

 <Noun ID="4" PoS="NNP" Relation="conj_and"
 semanticTag="tool"> Eclipse </Noun>
 </Noun>

 <Adverb ID="5" PoS="RB" Relation="advmod"> before </
Adverb>
 </Verb>
</S>

Figure 3.7: The sentence “I used Java and Eclipse before.” after parsing and seman-
tic annotation.

• Stem of the verbs, such as “use” for the verb “used”;

• Type of the sentence, such as “ticket-description”;

• Author of the sentence, such as “User1”; and

• Recipient of the sentence, such as “User2”.

Figure 3.7 shows the annotated XML tree resulting from the syntactic and se-

mantic analysis of the sentence “I used Java and Eclipse before”.

XML was selected as the data model for the semantic representation of sen-

tences for two reasons. First, XML documents have a tree structure that starts at

the root and branches to the leaves. Each node of the XML tree can contain some

attributes, which provide additional information about that node. XML documents

are often referred to as XML trees. Therefore, the XML tree structure is a good fit

for representing annotated parse trees. Secondly, powerful query languages have

been specifically designed to search across a variety of XML data and query them.

By using XML Query languages, we can define queries and run them on the anno-

tated parse trees represented by XML, in order to extract useful information from

36

them. In the following section, we will explain how to define some XML Queries

to extract more useful information from annotated XML trees.

3.5 Pattern Extraction

Knowledge from the above sentence representation is extracted through pattern

matching. The underlying hypothesis is that, there are grammatical patterns that

occur in the information expressed in the sentences. In fact, the relations among

the domain concepts are represented based on the predicate-argument(s) patterns

which can be explored from the parse trees.

Accordingly, our pattern extraction method involves the matching of these “pat-

terns” against the syntactically and semantically annotated XML trees of our sen-

tences, in order to find semantic relations between domain-relevant terms. The out-

put of this process contains instances of the significant relations among the domain

concepts represented as RDF-style triples.

Each RDF triple expresses a semantic relation between two entities of the form

〈Subject, V erb, Object〉. Our pattern-extraction process attempts to recognize in-

stances of these semantic relations, as “syntactic paths” connecting a verb in the

sentence located in the proximity of two annotated domain entities. The relation

verb along with the associated terms becomes “a relation triple”, which can poten-

tially indicate a relevant semantic relation. Essentially, the syntactic dependencies

recognized by the Stanford parser provide the basis for the semantic relations be-

tween semantically annotated terms.

The proposed approach for the triple extraction traverses the annotated XML

trees and analyzes the dependency relations and the semantic annotations in order

to find predicate-argument patterns among the domain-specific concepts. In order

to extract semantic relations, our approach looks only for the dependency relations

with respect to a verb such as subject and object dependencies. The dependency

relationships make writing and establishing extraction patterns much easier.

The pattern-extraction task is implemented as a rule-based process. We define

the following three rules to search for the predicate-argument patterns that exist in

37

Cooperate	 /
Work	 with	 /...	

Commit	 /	
Check	 /	 …	

Resolve	 /	
Fix	 /..	

Handle/	
Modify	 /..	 Modify/	

Change/…	

Use/	 Work/
…	

Create	 /	
Add	 /…	

Develop/	
Know/..	

Developer	

Programming	
Language	

Tool	

ArHfact	

Task	 Ticket	

Revision	

Figure 3.8: The semantic relations of the RDF triples produced by the pattern-
extraction process.

the annotated XML trees and to extract triples from the annotated XML trees.

Rule 1: If a verb V is associated with two different entities Ei and Ej which

satisfy the condition [Subj(V,Ei) ∧ Rel(V,Ej)], then V is identified as a rela-

tional verb between entities Ei and Ej . Based on the dependency relations identi-

fied by the parser, Rel(V,Ej) can be either an “object relation” or a “prepositional

relation”. For example, the sentence “I have used JUnit” contains the object rela-

tion dobj(use, JUnit), while the sentence “I have worked with JUnit” contains the

prepositional relation prep with(use, JUnit).

Rule 2: If a verb V is associated with three entities Ei, Ej and Ek which satisfy

the condition [Subj(V,Ei) ∧ Rel1(V,Ej) ∧ Rel2(Ej, Ek)], then V is identified as

a relational verb between the two entities Ei and Ek. Based on the dependency re-

lations identified by the parser, the relation Rel1(V,Ej) can be an “object relation”

or a “prepositional relation”, and the relation Rel2(Ej, Ek) can be a “prepositional

relation”, a “conjunction relation”, or a “noun-modifier relation.”

Rule 3: If a verb Vi is associated with two entities Ei, Ej and another verb

Vj which satisfy the condition [Subj(Vi, Ei) ∧ Rel1(Vi, Vj) ∧ Rel2(Vj, Ej)], then

V is identified as a relational verb between the two entities Ei and Ej . Based on

the dependency relations identified by the parser, the relation Rel1(Vi, Vj) can be a

38

	 Verb	 (create)	

PRP	 (I)	 Noun	 (program)	

Noun	 (Java)	

Verb	 (have)	

nsubj	 dobj	 aux	

nn	

Sentence “I have created a Java program”

Figure 3.9: Dependency paths in the XML tree to represent Rule 1, Rule 2, and
Rule 3.

“clause-modifier” or a “clause-complement”, and the relation Rel2(Vj, Ej) can be

either an “object relation” or a “prepositional relation”.

Rule 1 matches with the relation in which the object component is the explicit

child under the verb component in the dependency path of the XML tree. On the

39

other hand, Rule 2 and Rule 3 cover the kind of relations in which a noun modifier

or a verb modifier exists between the verb and the object component. Intuitively,

Rule 1 covers explicit relations directly expressed in the text, while Rule 2 and

Rule 3 capture implicit relations, such as indirect objects and long-distance depen-

dency relations, as depicted in Figure 3.9.

We utilized the above rules to find relevant semantic relationships between

our domain-specific concepts. Essentially, we were looking for the triples of the

type 〈domain concept, semantic relation, domain concept〉. Our target triples

are shown in the model represented in Figure 3.8 as eight semantic relations be-

tween domain concepts. This figure presents the rich conceptual model of our do-

main that captures interesting relations between developers and software products.

As Figure 3.9 shows, each rule is associated with a specific predicate-argument

pattern in the annotated XML trees. Based on the above three rules and our target

triples, we defined a set of patterns, implemented by using the XQuery language.

XQuery is a query language designed by the W3C to search through the variety of

XML data, select the XML data elements of interest, and return the results. For

more information about the XQuery language we refer the reader to reference [39].

Once the XQuery patterns had been created, we ran the defined XQueries to-

ward the annotated XML trees in order to retrieve interesting relations as RDF

triples. We have generated fifteen XQuery patterns, for extracting our target triples

by using the defined rules. The answers returned by running the defined XQueries

on annotated XMLs were the instances of our target triples depicted in Figure 3.8.

The extracted triples were stored in a database in order to help users to efficiently

query them.

40

Chapter 4

Evaluation

4.1 Experiments

This section describes the details of our experiment on the textual data stored in the

Wikidev2.0 database. It also reports the experimental results from applying each

stage of our method to these data sources.

4.1.1 The Input Dataset

In this thesis, we used five different sources of textual information collected through

the WikiDev2.0 tool as our input dataset. The resources currently integrated into

WikiDev 2.0 include (a) subversion control repositories, (b) ticket information as

bug reports, (c) wiki pages, (d) mailing list archives, and (e) Internet Relay Chat

(IRC) logs.

The information of these resources is imported from a bug-tracking system, a

dedicated mailing list, internet relay chat logs, and SVN repository information.

Subversion-control repositories include collections of files committed together in

the repository and the associated comments. Bugs and ticket information are usu-

ally tracked by means of an issue or bug-tracking service such as bugzilla. We

selected the change-set comments and bug descriptions as two textual data sources

mainly about source code. Wikidev2.0 also collects archives of IRC from each team

project to include a real-time communication data source along with the Email mes-

sages.

For our experiment, we chose to analyze the data from a team of nine devel-

41

opers from a project-based undergraduate software engineering class. This dataset

included information about the requirements of the software system, distribution

of the tasks among developers, the internal design, and the functionalities of the

various modules in this system.

First, we collected raw data from five data sources, including 39 records from

tickets, 134 records from mailing list archives, 297 records from SVN change-sets,

621 records from wiki pages, and 2,584 records from chat logs. In total, we col-

lected 3,675 text records from the above data sources which resulted in 5,495.8 KB

of plain text. Then we analyzed these raw unstructured textual data based on the

five main stages of the methodology discussed in Chapter 3. The following section

describes the results of our experiment for each stage.

4.1.2 Experimental Results

The whole experiment consisted of several phases, in which we used different com-

ponents of the developed tool.

1. Data Cleaning and Preprocessing. First, our data sources were cleaned

from any “noise” elements, such as redundant data, pieces of source code in-

side the text, (wiki, html, and javadoc) markup tags, greetings, signature and

quoted parts from email messages. Also, possible punctuation errors in the

names of domain-specific terms were corrected. After applying the cleanup

process and eliminating noisy data, we divided the cleaned textual records

into separate sentences by using a sentence splitter. In total, we collected

the 5,265 sentences from all of the input data sources which resulted in 537

KB of plain text. The first row in Table 4.1, summarizes the results of this

process on our five input data sources. To each sentence, we attached the fol-

lowing information: (a) a sentence id, (b) the author of the sentence, (b) the

receiver of the sentence (only for email and chat messages), (c) the origin of

the sentence (svn, ticket, email, irc, or wiki), and (d) the actual sentence text.

We used this set of sentences and information fragments for the syntactic and

semantic analysis and triple-extraction task.

42

2. Term Extraction. During the term extraction task, we populated the do-

main vocabulary for the dataset. We used the TAPoR word-frequency ser-

vice to identify the domain terms from our corpus which were project tasks,

project artifacts, and the names of the tools and programming languages. The

TAPOR lexical analysis showed that our data sources contain 2918 unique

words other than those in the stop list, 24550 words other than those in the

stop list, and 56145 words in total including the stop words. We also consid-

ered a set of terms that are already part of the WikiDev2.0 database, including

the anonymized names of the teams members, the names of the developed

files, programming languages the team used, and the names of created tables.

The domain vocabulary that we created, includes the corresponding terms

for these concepts: Users, Programming Languages, Tools, Project Tasks,

Project Artifacts, Table Names, and Class Names.

3. Syntactic and Semantic Analysis. We applied syntactic parsing and seman-

tic annotation to each separate sentence and generated an annotated XML

tree for each sentence. These processes generated 180 XML trees from the

tickets, 441 XML trees from the mailing list archives, 361 XML trees from

the SVN change-sets, 938 XML trees from the wiki pages, and 2,862 XML

trees from the chat logs. In total, these analyses produced 4,782 XML trees

annotated syntactically and semantically, and 483 un-parsed text fragments.

In most of the un-parsed cases, the text fragment was not even similar to a

sentence and therefore, an XML tree could not be extracted out of it. Most of

these useless text fragments consisted only of nouns without any predicate,

such as “probably not”, or “good idea!”. Some of them started with a verb and

were missing a subject, such as “will do” and “edited”. Some other reasons

why an XML tree could not be extracted were that the text fragment content

was just noise, or that it was part of a sentence without the main words and

only attributes remained, or that it was an informal chat expression such as

“cya everyone”. However, we tried to improve the sentences were missing

a subject, by adding the author of the sentence as the missing subject. We

modified 1034 sentences from all data sources, by adding the author of the

43

sentence as the missing subject.

4. Pattern Extraction. Finally, by applying pattern extraction to the annotated

XML trees, a total of 1,605 triples were extracted. The sentences that include

information about these triples were 945 sentences. The third row of Table

4.1, summarizes the results of this stage on the input data sources. An ex-

tracted triple representing a subject-predicate-object tuple, should be treated

as correct if it has the correct and full subject, predicate and object. The valid

triples constitute instances of the eight semantic relations of the conceptual

model of the domain that capture interesting relations between developers

and software products.

We followed the above steps and ran the developed tool on Wikidev2.0 data

sources. Table 4.1 shows more details about the results of our experiment.

Table 4.1: Syntactic/Semantic Analysis Results for the Wikidev2.0 data sources
SVN
commit

Ticket Email IRC
chat

Wiki
page

Total

Number of Sentences 377 190 480 3,095 1,123 5,265
Number of Annotated XML trees 361 180 441 2,862 938 4,782
Number of Triples 208 77 158 904 258 1,605
〈developer use/...tool〉 12 1 23 58 13 107
〈developer write/...language〉 10 5 13 115 24 167
〈developer work/...task〉 7 0 7 97 13 124
〈developer create/...artifact〉 161 62 96 540 197 1056
〈developer fix/...ticket〉 16 3 3 19 0 41
〈developer check/...revision〉 2 5 0 7 0 14
〈developer workwith/...developer〉 0 1 16 68 11 96

A closer look at the results of our experiments in Table 4.1 shows that the rela-

tion 〈developer−predicate−artifact〉 is the most common relation in our dataset.

The relations 〈developer− predicate− language〉 stands in the second place, and

the relations 〈developer− predicate− task〉 and 〈developer− predicate− tool〉,

with a small difference go to the third place. The results also show that most of the

〈developer−predicate−developer〉 relations come from communication artifacts,

which are Email messages and IRC chats. The last seven rows show significant se-

44

mantic relations between domain-specific terms. From these semantic relations we

could find useful pieces of information as the following:

• Expertise of developers: Triples about programming languages or tools

showed that User6 and User9 used mostly PHP, MySQL and PostgreSQL,

while User5 and User7 used Flex, Eclipse, and UML2. Some sample sen-

tences are (User9 tried to run the Php code, User5 has started learning Php).

• Responsibility of developers: We looked for the triples about the project

tasks. We found that User5 worked mainly on testing, User8 worked on “doc-

umentation and testing”, User7 worked on “user interface”, User9 worked on

“designing”, and User5, User6, and User7 worked together on “screencast”.

Some sample sentences are, (User7 neaten up the UI along the side of UML

display, User8 take care of documentation).

• Developer’s contributions to the project: By searching for the triples about

developed classes, we found out that User5 and User6 worked with “XMI-

Parser”, User6 and User9 worked on “UMLHandler”, User6 worked on “UM-

LViewer”, and User8 worked with “Wikiroamer” and “WikiviewFactor”. Two

sample sentences from this group are, (User5 handled associations in XMI-

Parser, User8 changes wikiroamer and wikiviewfactor).

• Developer’s relationships: The triples including the names of two develop-

ers show that User4 had the most relationships and worked with all develop-

ers, and that User1 and User3 were in second and third place, respectively.

User5 worked mainly with User6, and User9 worked with User6 and User8.

Sample sentences include, (User6 modify User5 ’s Php file to allow ..., User6

and User9 should focus on preparing parser.).

4.2 Evaluation

To determine the performance of our approach, we evaluated the quality of the ex-

tracted information. This section describes the evaluation method that we employed

to assess the results of the above experiment.

45

4.2.1 Empirical Evaluation Method

Evaluation is a crucial component in the field of information extraction from text.

This task becomes even more complicated in the case of specific domains, where

no standards benchmark corpora are collected, the standards should be used are

unclear, and no baseline is available for comparison. An ideal evaluation method

for the text analysis method proposed in this thesis involves a manual comparison

with respect to an existing manually annotated corpora. Applying this evaluation

method involves two steps: the first step is to develop a set of manually created

relations by a domain expert. Then the automatically created relations are evaluated

against the manually-created ones by human evaluators based on some metrics such

as precision and recall.

Our work in this thesis identifies domain-specific terms and their relationships

expressed in a sentence. To measure the accuracy of our extraction mechanism,

we manually evaluated the extracted entity-relationship-entity triples. The applied

evaluation method is based on comparing the triples created automatically by the

proposed approach with the reference triples suggested by a domain expert from a

sample of sentences selected randomly.

In the evaluation method, the system is evaluated with respect to precision, re-

call and the F-measure. Precision is the proportion of triples predicted by the system

which are correct. Recall is the proportion of correct triples which are predicted by

the system. Finally, the F- measure computes the harmonic mean of precision and

recall, and can be used as a comprehensive indicator of combined precision and

recall values. The Precision, Recall and F-measure are computed by using the fol-

lowing equations:

Precision =
Retrieved Triples ∩Relevant Triples

Retrieved Triples
(4.1)

Recall =
Retrieved Triples ∩Relevant Triples

Relevant Triples
(4.2)

46

F =
2 ∗ Precision ∗Recall

Precision+Recall
(4.3)

The following steps describe the detailed scenario for the evaluation method

applied to our experimental results [11]:

1. A sample of sentences was selected out of the five data sources. The idea

was to find a sample set of informative sentences that reasonably written and

contained useful information about the project such as someone (possibly the

author of the sentence) knew a tool, reported a bug, or modified a class. These

sentences were selected by a domain expert and were considered as a test set

for our dataset.

2. A domain expert manually extracted all possible triples after reading and

browsing the selected sub-set of sentences. The domain expert was the teach-

ing assistant of the course project and he was quite a professional on the

domain. At this point, we obtained a sub-set of entity-relation-entity triples.

Manually extracted triples were used as a reference set of triples for our eval-

uation.

3. The triple-extraction tool was run on the collection of sentences extracted

from all data sources and created a large set of entity-relation-entity triples.

From these extracted triples, only the triples related to the selected sentences

in the test set were considered for the evaluation process. At this point, we

had a sub-set of triples automatically extracted by the developed tool.

4. The triples extracted automatically were compared with the reference triples

suggested by the domain expert based on equality or synonymy. The compar-

ison was accomplished by using the evaluator judgments, including myself

and another evaluator. This comparison resulted in

47

• True Positives (TP), i.e., triples found by the tool and by the domain

expert.

• False Positives (FP), i.e., triples found by the tool but not by the domain

expert.

• False Negatives (FN), i.e., triples identified by the domain expert, but

not found by the tool.

5. We computed the prior precision and recall by making a comparison with the

reference set of triples. Prior precision is the proportion of extracted triples

that match with reference triples. Prior recall is the proportion of reference

triples that match with the extracted triples. They were computed as follows:

Precision =
True Positives

True Positives+ False Positives
(4.4)

Recall =
True Positives

True Positives+ False Negatives
(4.5)

The above formulas for calculating the precision and recall are the same as

the ones represented in 4.1 and 4.2. They are only rephrased by using true

positive, false positive, and false negative values.

6. After we calculated the prior precision and recall, the extracted triples not

matching with the reference triples were submitted to the domain expert for

posterior evaluation.

7. The expert then had the opportunity to suggest some of the non-matching

triples as relevant and therefore increase the set of correct triples. Two dif-

ferent augmentations were possible: strict and relaxed. In the strict aug-

mentation, a triple became relevant only if it should have been in the list of

reference triples but it had been neglected to be. In the relaxed augmenta-

tion, an extracted triple might not necessarily be relevant for the application

domain, but became relevant only if the domain expert judged it as a correct

and meaningful relation based on the context.

48

8. Posterior precision and recall were computed after adding the new triples that

were considered as correct triples.

In our experiments, we applied the above procedure to measure the precision

and recall. The results of our evaluation are described in the following section.

4.2.2 Evaluation Results

We applied the evaluation strategy outlined in section 4.2.1, for the extracted triples.

Firstly, a domain expert selected about 4% of the sentences out of the whole dataset

as our test set, which resulted in 191 informative sentences. Secondly, the domain

expert manually extracted all possible triples from the test set to produce our refer-

ence set of the triples. Next, the proposed method was applied to the whole dataset

to extract all of triples. Finally, the evaluators compared the triples extracted au-

tomatically with the reference triples extracted manually, in order to measure the

accuracy of the proposed approach.

Some sample triples are presented in Table 4.2 to show the process of comparing

the extracted triples with the reference triples. This comparison resulted in the

number of “true positive”, “false positive”, and “false negative” triples, as depicted

in Table 4.3.

Table 4.2: Samples of Comparing Extracted Triples with Reference Triples
Extracted Triples Reference Triples Evaluation Results

subject verb object subject verb object TP FP FN
User2 create script User2 create a script to populate the changesets and

changesetdetails tables
1

User2 populate changesetdetails change-
sets

1

User2 populate tables 1
User1 add ticketchanges ; ticket script User1 add ticketchanges to ticket script 1
User2 make modifications ; table

schemas
User2 made modifications to table schemas 1

User1 cluster java code User1 add user3 ’s clustering java code and a script to
run it incrementally

1

User1 cluster script 1
User2 fix casing issues in the gvapi scripts 1

User7 clean wikimapflexproject UI User7 clean up UI in wikimapflexproject 1
User6 add uml User6 add support for the uml: Usage relations (rela-

tions between packages)
1

User5 adapt XMI parser User5 adapt XMI parser for eUML2 files 1
User5 adapt files 1

Once the comparison was finished, we computed the prior and posterior pre-

cision and recall, using the method we described in the previous section for the

evaluation. Table 4.4 presents the overall results of the evaluation. This table also

presents the separate results of the evaluation for each data source. The sample set

49

Table 4.3: Comparison Results for the Extracted Triples
True Positive False Positive False Negative

Prior Results SVN commit 70 19 64
Bug reports 12 10 11

Email message 5 2 1
Chat log 27 6 18
Overall 114 37 94

Posterior Results SVN commit 75 14 64
Bug report 14 8 11

Email message 5 2 1
Chat log 30 3 14
Overall 124 27 90

of sentences was not selected from each data source separately. In fact, the sample

set was selected from the overall sentences of five data sources. Therefore the sam-

ple set contains erratic number of sentences from each data source. For example,

it contains a few sentences from the email messages and more sentences from the

SVN commits.

Table 4.4: Evaluation Results of the Tool for each Data Source
Precision Recall F-measure Number

of Selected
Sentences

Prior Results SVN commit 79% 52% 63% 122
Bug report 55% 52% 54% 24

Email message 71% 83% 76% 5
Chat log 82% 69% 69% 40
Overall 75% 55% 64% 191

Posterior Results SVN commit 84% 54% 66% 122
Bug report 62% 54% 58% 24

Email message 71% 83% 76% 5
Chat log 91% 68% 78% 40
Overall 82% 58% 68% 191

The overall evaluation results presented in table 4.4 shows that 82% of the

triples extracted by the developed tool are correct. This table also shows that the

tool can extract 58% of the relevant triples from the input data sources. The follow-

ing section describes the major reasons for the missing and incorrect triples in our

experiment.

50

4.3 Discussion

In this chapter, we evaluated the proposed framework, based on precision and recall.

We tried to verify the quality of the extracted triples against high-quality triples

hand-built by a domain expert. This evaluation confirmed that (1) a deeper linguistic

analysis leads to good results, and (2) good results can be achieved by using state-

of-the-art, off-the-shelf techniques.

The results of the evaluation process (see Table 4.4) indicate better precision

than recall. By verifying the results of the evaluation (see Table 4.3 and 4.2), we

identified the following reasons for the incorrect and missing triples:

• The errors were mostly due to mistakes in the output of the linguistic analysis

tools such as PoS tagger and parser. A common mistake was that, verbs at

the beginning of the sentence were often mistaken for nouns, thus causing

a lower recall. For example, the verb “add” in the sentence “added non ex-

tension directory to repo along with sample UML diagram .”, was parsed as

an adjective for the noun phrase “non extension directory”. Another type of

parsing mistake was the sentence, ”User1 added user3 ’s clustering java code

and a script”, which the parser parsed as “User3 is clustering java code and

script.”

• A second source for errors was spelling, punctuation and grammatical mis-

takes. We observed that short textual descriptions of software artifacts were

characterized by a low grammatical quality. This problem affected the results

from the NLP tools. Obviously, NLP tools perform worse on unedited text

than on well-written texts. For example, in the sentence “mimetype to html”,

a missing space existed between the word “mime” and “type”. An example

of a spelling error is the word “paramaters” in the sentence “cluster script to

handle new paramaters ”.

• Sentences without subject were another reason for low recall. Although our

tool tried to add a subject for these sentences, some sentences were inter-

preted in another way by the parser such that the tool could not recognize

51

them as sentences without a subject. For instance, the sentence “updated

cluster script to handle new parameters” has no subject; however, the parser

parsed “updated cluster” as a subject and “script” as a verb.

• In our data sources, some sentences were not complete, and the tool could

not extract any information out of them. This problem affected the recall of

the extracted set. For example, the following is an incomplete sentence: “for

testing on the web server.”

• A common source of error was that the created domain vocabulary (i.e., the

list of terms) was not complete and thus caused a lower recall. Apparently,

the quality of the term-extraction process had a direct influence on the quality

of the system. For example, it did not include the term “pidgin”, and the tool

could not extract any triple out of the sentence: “I am using pidgin, it ’s free

and open source.”

• Another reason for the low recall was that the current “extraction patterns”

did not cover complex sentences, such as “I am also about half done making

a database diff tool for us to compare databases and see what has changed

which is going to be part of our testsuite (team parser).”

In order to improve the results, we should consider increasing the recall of the

“term extraction” process even at the cost of its precision. Another way to improve

the recall would be to extend our original set of “extraction patterns” to cover more

complex sentences.

52

Chapter 5

Conclusions and Future Work

Software development involves communication among developers and coordinat-

ing work with others. These activities lead to different kinds of artifacts such as

email messages, IRC chat logs, bug descriptions, SVN commit messages, and wiki

pages. The communications among software developers contain valuable informa-

tion about their activities, the issues the team members faced during their work,

and the decisions they made. Hence, extracting this information can provide valu-

able insight into the collaboration of the team members, the relative contributions

of each member to the project, and the relation of the various software artifacts to

the project requirements.

In this section, we discuss the contributions of the research conducted in the

context of this thesis and the more important conclusions that can be drawn from it.

We also present some ideas for future work, based on our findings.

5.1 Conclusions and Contributions

In this thesis, we proposed and validated an approach for lexical, syntactic, and

semantic analysis of the textual data produced during the life-cycle of a software

project. The main underlying motivation was to extract useful pieces of informa-

tion from textual data sources in the software domain and represent them by using

a structured and formal data model that could be queried and automatically ex-

plored by end users. The extracted information can be used for several purposes. It

can be combined with source code information to better support various software

53

maintenance tasks and activities. It also can be used for answering questions about

different aspects of the software system and its development process.

In order to extract valuable knowledge from heterogeneous textual data, our text

analysis system integrates state-of-the art computational linguistic techniques with

domain-specific knowledge. The system contains five major steps: data cleaning

and pre-processing, term extraction, syntactic analysis (i.e., PoS tagging and pars-

ing), semantic analysis (i.e., semantic annotation, and semantic representation), and

pattern extraction.

The extracted information is represented as RDF-style triples. These triples

constitute an instance of a rich conceptual model of the domain that captures inter-

esting relations between developers and software products. The triples are stored

in a database in order for users to efficiently query them. For outside users of the

software, the extracted information can provide insight into the software develop-

ment practices in order to answer questions such as, “Who is working on what?”,

“What classes have the developers been working on?”, “What have the developers

been doing?”, “Who has made changes to a class?”, and “Who fixed a bug?”.

We applied the proposed text-analysis approach to extract information from five

different sources of textual information collected through the WikiDev2.0 tool. The

resources currently integrated into WikiDev 2.0 are (a) subversion control reposito-

ries, (b) ticket information or bug reports, (c) wiki pages, (d) mailing list archives,

and (e) IRC chat logs.

To get an insight about the performance of the information produced by the tool,

we verified the quality of the extracted triples against high-quality hand-built triples

by a domain expert. We evaluated the results of this experiment, based on precision

and recall. This evaluation resulted in 82% for the precision, 58% for the recall,

and 68% for the F-measure.

The results of our experiment and the evaluation stage allow us to draw the

following conclusions.

• A deeper linguistic analysis leads to good results. The dependency relation-

ships based method seems to perform better than the surface lexical analysis.

Firstly, the dependency relations increases the performance of the triple ex-

54

traction from the corpus. Secondly, the richer dependency information makes

writing and establishing extraction patterns much easier.

• Good results can be achieved by using state-of-the art, off-the-shelf tech-

niques. The text analysis process uses a number of standard NLP meth-

ods. These methods include first, cleaning the textual input data and dividing

them into individual sentences by using a sentence splitter to detect sentence

boundaries. Then, running a statistical parser and Part-of-Speech (PoS) tag-

ger that assigns syntactic labels (e.g., noun, verb, and adjective) to each sen-

tence word. Finally, the grammatical relationships between pairs of words in

each sentence are created by using a dependency parser.

• Short textual descriptions of software artifacts are characterized by having

low grammatical quality and using a specific language that make them com-

plicated for automatic analysis. In general, analyzing software artifacts tends

to be very project-specific, and the lexicon of a software project is often

unique. Therefore, software domain vocabularies (i.e., word lists) should be

tuned appropriately.

• The information extracted by using our approach (i.e., the extracted triples

and annotated xml trees) can potentially be useful for many software engi-

neering activities such as reverse engineering, traceability, program compre-

hension, software reuse, software maintenance and recovery. The extracted

triples help us to understand who is working on what and how his/her work

affects other group members. Such knowledge can also be relevant to main-

tainers.

• Our approach is domain-independent; thus, the developed tool is indeed ap-

plicable in other domains.

This thesis makes the following contributions to the field.

The first characteristic and strength of the approach is that it deals with multi-

ple heterogeneous textual sources. Indeed, the system contains different steps for

dealing with unstructured data sources. In particular, the challenge we address here

55

is not so much the development of novel methods, but rather, the improvement of

scalability in order to deal with and explore a wider range of textual data sources.

The second strength of our approach is that it relies on unsupervised meth-

ods for analyzing textual sources around software artifacts, and thus does not need

manual rules or training sets. Our text analysis system integrates natural language

processing techniques and statistical methods, with domain-specific knowledge, in

order to understand the semantics conveyed by the textual artifacts. Within the text

analysis system, we made use of a number of standard NLP tools for the task of

syntactic analysis, such as sentence splitter, pos tagger, and dependency parser. We

also generated domain-specific vocabulary based on the linguistic information and

frequency of the terms.

Compared to other existing approaches, the strength of our technique is that, it

provides a deep analysis of textual artifacts, rather than a lightweight analysis that

focuses only at the superficial level. We applied a thorough lexical, syntactic and

semantic analysis in an integrated manner to five different sources of software arti-

facts, to extract valuable knowledge about various aspects of the software life-cycle.

We proposed a term extraction and semantic annotation method to obtain informa-

tion about individual software terminologies mentioned in the text. The developed

system also detects predicate-argument structures in order to extract semantic rela-

tions between the identified terms. Our approach represents the extracted semantic

information as RDF-style triples.

5.2 Future Work

In this thesis, we proposed an approach for analyzing the textual data from software

projects to extract valuable information. Although, we covered a variety of issues

on this topic, we envision that some improvements can be done in the context of

enhancing the method. Many directions for future research on the ideas presented

in this thesis, can be considered. Some of them are outlined below.

Extracted triples can be used for diverse purposes, from answering question

about different aspects of the software system to software maintenance applications.

56

One possible future work would be developing a domain-specific query language

(based on our underlying conceptual model represented in Figure 3.8) for flexible

question-answering on the project lifecycle.

Future studies can also investigate how the information from more traditional

repository mining approaches can be combined with and complemented by infor-

mation extracted from textual data, and whether the text can provide further evi-

dence to support the information inferred by using these other approaches.

As another improvement, the term extraction method could be extended to in-

crease the list of terms in the domain vocabulary (see Section Term Extraction in

Chapter 3). Our term extraction method could be improved by applying multiple-

word term extraction algorithms, and by using methods that consider synonymy

(e.g., WordNet synset). Also, augmenting the vocabulary by including entities from

the source code would be a straightforward method for improvement.

The pattern extraction method could be extended by adding more lexical-based

extraction patterns to complement the current high coverage patterns (see Section

Pattern Extraction in Chapter 3). Extending our extraction patterns may lead to the

definition of more extraction rules. In this thesis, we defined three rules, but accord-

ing to our evaluation results, our rules do not cover some complicated sentences.

Another possible improvement would be to extend our underlying conceptual

model to cover more RDF-triple patterns (see Figure 3.8). This extension might

happen when a new concept is added to our domain vocabulary, or when a new type

of relationship between existing concepts is discovered.

Finally, an interesting extension to our work would be visualizing the extracted

information to represent the interesting relations between developers and software

products in a graphical model.

57

Bibliography

[1] The stanford parser: A statistical parser. http://nlp.stanford.edu/software/lex-
parser.shtml, 2010.

[2] Tapor: Text analysis portal for research. http://taporware.mcmaster.ca/ tapor-
ware/textTools/, 2011.

[3] Anupriya Ankolekar, Katia Sycara, James Herbsleb, Robert Kraut, and Chris
Welty. Supporting online problem solving communities with the semantic
web. In Proceedings of the 15th international conference on World Wide Web
(WWW 2006), Edinburgh, Scotland, pages 575–584. ACM Press, 2006.

[4] Ken Bauer, Marios Fokaefs, Brendan Tansey, and Eleni Stroulia. Wikidev 2.0:
discovering clusters of related team artifacts. In CASCON ’09: Proceedings
of the 2009 Conference of the Center for Advanced Studies on Collaborative
Research, pages 174–187, New York, NY, USA, 2009. ACM.

[5] Andrew Begel, Yit P. Khoo, and Thomas Zimmermann. Codebook: discov-
ering and exploiting relationships in software repositories. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering, ICSE
’10, Cape Town, South Africa, 1-8 May 2010, pages 125–134, New York, NY,
USA, 2010. ACM.

[6] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand
Swaminathan. Mining email social networks. In MSR ’06: Proceedings of
the 2006 international workshop on Mining software repositories, pages 137–
143, New York, NY, USA, 2006. ACM.

[7] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Software engineering -
product quality - part 1: Quality model. Technical report, 2001.

[8] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet alloca-
tion. Journal of Machine Learning Research, 3:993–1022, 2003.

[9] Kalina Bontcheva, Marin Dimitrov, Diana Maynard, Valentin Tablan, and
Hamish Cunningham. Shallow methods for named entity coreference reso-
lution. In Proceedings of the 9th conference on Traitement Automatique des
Langues Naturelles, TALN 2002, June 2002.

[10] Kalina Bontcheva and Marta Sabou. Learning ontologies from software ar-
tifacts: Exploring and combining multiple sources. In Proceeding of the
2nd International Workshop on Semantic Web Enabled Software Engineering
(SWESE), 2006.

58

[11] Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini, editors. Ontology
Learning from Text: Methods, Evaluation and Applications, volume 123 of
Frontiers in Artificial Intelligence. IOS Press, July 2005.

[12] Marie catherine De Marneffe, Bill Maccartney, and Christopher D. Manning.
Generating typed dependency parses from phrase structure parses. In In LREC
2006, 2006.

[13] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin
Tablan. Gate: A framework and graphical development environment for ro-
bust nlp tools and applications. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics (ACL’02), Philadelphia, PA,
USA, 2002.

[14] Marie-Catherine de Marnee and Christopher D. Manning. Stanford typed de-
pendencies manual.

[15] Marie-Catherine de Marneffe and Christopher D. Manning. The stanford
typed dependencies representation. In Proceedings of the Workshop on Cross-
framework and Cross-domain Parser Evaluation, COLING’08, pages 1–8,
Stroudsburg, PA, USA, Aug 2008. Association for Computational Linguis-
tics.

[16] Neil A. Ernst and John Mylopoulos. On the perception of software quality
requirements during the project lifecycle. In REFSQ, pages 143–157, 2010.

[17] Katerina T. Frantzi and Sophia Ananiadou. Automatic term recognition using
contextual cues. In In Proceedings of 3rd DELOS Workshop, 1997.

[18] Thomas Fritz and Gail C. Murphy. Using information fragments to answer
the questions developers ask. In Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering - Volume 1, ICSE 2010, Cape
Town, South Africa, 1-8 May 2010, pages 175–184. ACM, 2010.

[19] Maryam Hasan, Eleni Stroulia, Denilson Barbosa, and Manar Alalfi. Ana-
lyzing natural-language artifacts of the software process. In Early Research
Achievement track of the 26th IEEE International Conference on Software
Maintenance (ICSM’2010), Timisoara, Romania, September 12-18, 2010,
2010.

[20] Abram Hindle, Neil A. Ernst, Michael W. Godfrey, Richard C. Holt, and John
Mylopoulos. Automated topic naming to support analysis of software mainte-
nance activities. In The 33rd International Conference on Software Engineer-
ing, ICSE 2011, Waikiki, Honolulu, Hawaii, Vancouver, 2011. in press.

[21] Abram Hindle, Daniel M. Germán, Michael W. Godfrey, and Richard C. Holt.
Automatic classification of large changes into maintenance categories. In The
17th IEEE International Conference on Program Comprehension, ICPC 2009,
Vancouver, British Columbia, Canada, May 17-19, 2009, pages 30–39, 2009.

[22] Abram Hindle, Daniel M. German, and Ric Holt. What do large commits
tell us?: a taxonomical study of large commits. In MSR ’08: Proceedings of
the 2008 international working conference on Mining software repositories,
pages 99–108, New York, NY, USA, 2008. ACM.

59

[23] Abram Hindle, Michael W. Godfrey, and Richard C. Holt. Release pattern
discovery: A case study of database systems. In 23rd IEEE International
Conference on Software Maintenance, ICSM 2007, October 2-5, 2007, Paris,
France, pages 285–294, 2007.

[24] Abram Hindle, Michael W. Godfrey, and Richard C. Holt. What’s hot and
what’s not: Windowed developer topic analysis. In 25th IEEE International
Conference on Software Maintenance (ICSM 2009), September 20-26, 2009,
Edmonton, Alberta, Canada, pages 339–348. IEEE, 2009.

[25] Abram Hindle, Michael W. Godfrey, and Richard C. Holt. Software process
recovery using recovered unified process views. In Proceedings of the Inter-
national Conference on Software Maintenance (ICSM 2010), 2010.

[26] Shih-Kun Huang and Kang min Liu. Mining version histories to verify the
learning process of legitimate peripheral participants. In MSR, 2005.

[27] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics and
Speech Recognition. Prentice Hall, second edition, February 2008.

[28] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey and
taxonomy of approaches for mining software repositories in the context of
software evolution. J. Softw. Maint. Evol., 19(2):77–131, 2007.

[29] Kyo Kageura and Bin Umino. Methods of automatic term recognition: A
review. In Terminology 3(2), pages 259–289, 1996.

[30] Dan Klein and Christopher D. Manning. Natural language grammar induction
using a constituent-context model. In Neural Information Processing Systems,
NIPS, pages 35–42, 2001.

[31] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In
In Proceedings of the 41st Meeting of the Association for Computational Lin-
guistics, pages 423–430, 2003.

[32] L. Lopez-Fernandez, G. Robles, and J. M. Gonzalez-Barahona. Applying
social network analysis to the information in cvs repositories. In Proceedings
of the International Workshop on Mining Software Repositories, pages 101–
105, 2004.

[33] Andrew Meneely, Laurie Williams, Will Snipes, and Jason Osborne. Predict-
ing failures with developer networks and social network analysis. In SIGSOFT
’08/FSE-16: Proceedings of the 16th ACM SIGSOFT International Sympo-
sium on Foundations of software engineering, pages 13–23, New York, NY,
USA, 2008. ACM.

[34] Denys Poshyvanyk. Using information retrieval to support software main-
tenance tasks. Software Maintenance, IEEE International Conference on,
0:453–456, 2009.

[35] Denys Poshyvanyk and Andrian Marcus. Using information retrieval to sup-
port design of incremental change of software. In Proceedings of the 22nd
IEEE/ACM international conference on Automated Software Engineering,
ASE ’07, pages 563–566, New York, NY, USA, 2007. ACM.

60

[36] Peter C. Rigby and Ahmed E. Hassan. What can oss mailing lists tell us? a
preliminary psychometric text analysis of the apache developer mailing list. In
Fourth International Workshop on Mining Software Repositories, MSR 2007
(ICSE Workshop), Minneapolis, MN, USA, May 19-20, 2007, Proceedings,
page 23, 2007.

[37] Juergen Rilling, Yonggang Zhang, Wen Jun Meng, René Witte, Volker
Haarslev, and Philippe Charland. A Unified Ontology-Based Process Model
for Software Maintenance and Comprehension. In Models in Software Engi-
neering: Workshops and Symposia at MoDELS 2006, Genoa, Italy, October
1-6, 2006, Reports and Revised Selected Papers, volume 4364 of LNCS, pages
56–65. Springer Berlin/Heidelberg, 2007.

[38] Jie Tang, Hang Li, Yunbo Cao, and Zhaohui Tang. Email data cleaning. In
Proceeding of the eleventh ACM SIGKDD international conference on Knowl-
edge discovery in data mining, KDD ’05, pages 489–498, New York, NY,
USA, 2005. ACM Press.

[39] Priscilla Walmsley. XQuery. O’Reilly Media, Inc., 2007.

[40] Ren Witte, Yonggang Zhang, and Juergen Rilling. Empowering software
maintainers with semantic web technologies. In European Semantic Web Con-
ference, pages 37–52, 2007.

[41] Michael Würsch, Giacomo Ghezzi, Gerald Reif, and Harald Gall. Support-
ing developers with natural language queries. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1,
ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pages 165–174, 2010.

[42] Takashi Yoshikawa, Shinpei Hayashi, and Motoshi Saeki. Recovering trace-
ability links between a simple natural language sentence and source code
using domain ontologies. In 25th IEEE International Conference on Soft-
ware Maintenance (ICSM 2009), September 20-26, 2009, Edmonton, Alberta,
Canada, pages 551–554, 2009.

[43] Liguo Yu, Srini Ramaswamy, and Chuanlei Zhang. Mining email archives
and simulating the dynamics of open source project developer networks. In 4th
International Workshop on Enterprise Modelling and Simulation, Montpellier,
France, June 16-17, 2008, 2008.

[44] Yonggang Zhang, Ren Witte, Juergen Rilling, and Volker Haarslev. An
ontology-based approach for traceability recovery. In 3rd International Work-
shop on Metamodels, Schemas, Grammars, and Ontologies for Reverse Engi-
neering (ATEM’06), pages 36–43, 2006.

61

