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CHAPTER 1

Let Z denote the integers, —— ttn:mnegenxmdﬂothemmep,z{z]ttwpolynamalsmz

(P)
with integer coefﬁdcnts, and -ZLl the polynamals in z with coefficients in -=— (p) The primary pur-

pose of this ﬂlwusthcocmpansmofm:thodsforsymbohcallysolvmgtlwhnearsystanofequa— .
tions S '
AR () = b(2), L o (1)
, whu‘cA(z)nsamatnxofordaNandb(z)navectoroflcngﬁ:anmcanponcnmbungpolyno- -
mials in z. ' . - ' '

 The established method of salving (1.1) is the modular method, described in careful. detail by
McClellan[13]. This method is essentially one of determination of the value of the solution at cer-
tain evaluation points, followed by interpalation over these points to yield, finally, the solution in
rational form. Extensive theoretical and empirical investigations have been performed comparing
the modular method for solving (1.1) with other viable methods, such as the Gaussian Elimination
(exact-division) algarithm, the two-step, fraction-free method, and the multi-step methods (see
McClellan{14], Bariess[2], Cabay and Lam{8] and Higginson[10] ). The conclusions reached are
 that, as a \gmcral problem solving algorithm (that is, for random A(z) and b(z)), the modular
method is dlearly superior. Cansequently, in this thesis, from all these methods, cnly the modular
method is given consideration..

" In this thesis, dwmodtﬂmmcthodumparedﬂ;cmeumnyandanpnmﬂywrthmcpowcr
series method, introduced recently by Cabay{5]. This method sscntlally dammna the dmvatwes
| of the solution at a single evaluation point, from which the power series form, and eventually the
rational function form of the solution is then constructed. |



- The thesis commences by describing in Chapter 2, an giablished method for solyingvsysfans

(P) These solutions are basic in the development of both the modular and powcr smcs

methods for solving systems over- —%{p—)l

-

Chopter 3 describes the modular ‘nethod for solving systems over %5)1 Included in the

dcvelopmcnt are detailed cost‘stimatm and a new tumination criterion.

G

Omptcr 4 describes thc powa series mcthod for salving systam over %’31 In addmon to‘ '

dcnvmg cost estimates, some intrinsic problems for the xmplcmmtatxon of the method are
highlighted. |
The major purpose of this thesis is a theoretical and empirical comparison of costs of the
: modﬂmang;&rasmumcthodsmmdamdaammcdmo{problmfmwhdlmchm
superior. Chapter 5 describes the implementation of thmc methods and thcdtcstmg procedures
used. Empirical results confirm the theoretical cost estimates of Chapters 3 and 4 and identify
pracicl tade- offs between the methods. : . | :

'Ihcﬁnaldmptcrmathcﬂ:emcthockof(haptcrs3and4tosolvesystcmsoverz[z] Hav-

ing obtained the solutions of (1.1) over %—)]- for several primes p,, i = 0,1, ..1,y, the Ounae v .l "

Remainder Theorem permits the construction of the solution over’ Z{z]. ‘Cost estimates are’
obtained, problems with bad primes are identified, and a new termination criterion is derived.

-«



CHAPTER 2

Thc Adjoint Sotution over ——-

i (P)
\
2.1. Introduction
Given the matrix A.of order N with entries over E)- let A*Y denote the adjoint of A
Then,
AMA=dI, | (2.1)

whcrcdxsthcdctmmnantoanndesthcldcntxtymamxofordaN
For thc system of linear equations

Ax=b, | (2.2)
the adjoint solution is defined to be the pair (y,d) where '

= A“"b.‘ ) . . (23)
If d # 0, then from (2.1) and (2.2), it follows that

'x = y/d. | (2.4)
On the other hand, if d = 0, then x may not exist, whereas the adjoint solution always does.
In subsequent chapters, it is the adjoint solution that is usually required.
To obtain the - ..." solution, a variant of the Gaussian elimination MOd (see Forsythe
- and Moler [9] and Lizson [11], is used. The method consists of three ster.

In the first step, [ . varc elimination yields the triangular decomposition

where P is a permutation matrix, L}. a_Jower triangular matrix of multipliers and.



[ '
uu v e . umﬂ

U= .‘ Uy k-1 My y4 , R _ ‘. » (2.6)
0 Weper "0 gy '

- J
is the upper echelon form of A.

In the second step, forward substitution is used to find a vector b’ such that

. Lb’ = Pb. : - 2.7
A solution of (2.7) always exists since L is a lower triangular matrix with 1’s along the diagonal.

It now follows from (2.3), (2.5) and (2.7) that
y= A“‘] b . . ] | . (2.8)
adj
=Py s
= U4 (L7pY b) = 14 (derpyL1P B)
=det(P) U B’
and, in addition, that
N .
d = det(P) det(U) = det(P)-[] uy (2.9)
. i=1
where det(P) = +1. Thus, except for the sign of det(P), the adjoint solution of (2.2) is also the
adjcint salution of
Ux=b' (2.10)
It remains, therefare, in the last step to salve (2.10) for (y,d). If rank(U) = N, then x is

obtained from (2.10) by back substitution and then

y=dx " | : @.11)
follows. If rank(U) = N-2, (i.c. the last two rows of U are zero) then rcplacing any'éolumn c'uU



by b ’ results in a matrix with rank at most N-1. It now follows by Cramer’s rule that

y=0. . 2.12)
If rank(U) = N-1 (i.e. the last row only of U is zero), then Cramer’s rule for the last N-k+1 com-
ponents of y yiclds ' |

» = (—D”"‘[jr:[lluy] [.Iilu””] by | i (2.13)
and

y=0,i=k+1k+2, ... N o o _ (2.14)

where k is as in (2.6). The remaining components of y are obtained by back substitution applied

i

to
Uy=db =0. : (2.15)
That is,
k . .
=t Y oy, i =k=1k=2, ..., 1 . (2.16)
=i+l . :
2.2. Cost Analysls

The number of arithmetic operations required to find the adjoint solution (y,d) to (2.2) is
cousited as a measure to the cost of finding the salution. In the count, anly the dominating terrms
'arc retained. .

. U !

The first step is to find the triangular dc_compositimi (2.5). This step requires —?J3L operations

(counting additions and muultiplications)(see Atkinson [1]).

The forward 'sﬁbsﬁtution of the second step to solve (2.7) requires N? operations.

The third step invalves finding the adjoint solution to (2.10). If d # 0, then the back substi-
tution requires A operations. The calculation of the determinant, d, and its subsequent use in
(211) to ﬁnd y requires 2N operations. Thus the total number of operations to find the soluﬁbn

*(y,d) “~ (2.10) and (2.11) when d # 0 is N%. If d = 0, then to find (2.12) or (2.13) and (2.14)



requires at most N operations and the subsequent back substitution to find (2.16) requires at most
k? operations. Thus, since k < N, the back substitution requires at most N? operations to find the

adjoint solution to (2.10).

Thus the total cost of finding the adjoint solution to (2.2) requires

e . 217)
operations. To find the salution for another b when the triangular decomposition (2.5) is available
N \\
requires only - \
. \
2NV ' ) ' ,(218) \\
additional operations for each b. )



CHAPTER 3

Modular Methods over Z:]

3.1. Description

Let A(z) be a matrix of arder N and b(z) be a vector of length N, where the elements of
’ A(z) and b(z) are univariate polynomials of degree at most 3, whose coefficients are over —G-)- the
integers modulo the prime p. This chapter describes the modular. technique for finding the adjoint

solution (y(z),d(z)) where

Y =A@ bz | (.1
and -

d(z) = det(4(2)). : | , - @I

A) Y(2) = d() b2, o 6y
where y(z) is a vector of length N of polynomials over m All arithmetic consxdcred in this
chapter is donc over —— (p)

~.

The modular methods make use of the Chinese Remainder Theorom (CRT) for polynomials

to find the solution over the polynomials over -0-5 To use the CRT, the system (3.2) is first

.~ solved modulo the prime polynomial m(z) to obtain the adjoint solution (@.40) of

<

A@)7E) 5 d()b(z) mod m(), : (3.3)
where \ ‘ ‘ .
5T = y(z) mod m(2) ‘ | (3.4)

d,(z) = d(z) mod my(z)



Az) = A(z) mod my(z)

b,(z) = b(z) mod .
/() = b(z) mod m(z) | Py
These residuals, y{z) and dT(z—)-, fori = 0,1, -+, are thcn used to reconstruct the solution

(y(2),d(2)) via the CRT, where  is such that

£

deg [Ij[oml(z)] =3, 3.5)

8 being the maximum degree of the solution’s. palynomials. |
Since the linear polynomxals ( ] 7€ —(f-)—, are irredudble over %5]- the pnmc poly-
nomials m(7) are set to m(z) = (z - z,), and yis settoy = & in (3.5). Using these linear poly-
" nomials (z - z,], the next step is to solve (3.2) modtﬁo (z - z,). But finding a polynomial’s vaiuc
modulo a linear polynomial, (z - z,], is cquivalent to evaluating that polynormial at the point z,.
AG)mod (- = z) = AG) N (3.6)

b(z) mod [z z) = bz) |

" d(z) mod (z ) = d(z,)
and

¥(2) mod (z = 7) = y(z)
for each polynomial m(z) = (z - z,), i=01,...,b
Therefore, to find the solution (ﬂ?)',d?(z—)), the system [A(z),b(z)] is evaluated at the point

z, and the resultant system A(z,) y_(")' d,(z) b(z,) is solved over - (p) " The solution to the system

over Z has rsults whose elements are in —— a8 well, and as such

(») (P)
@ =y ’ | Y )



() = 4. | | |
“These 5 and & for the different prime polynomials m(z) = (¢ = ) are then the resicuals

\

1

used by the CRT t0 recomstruct the pdlynomials of the so)ution.

\

A pant to note is that thcsc residuals y, 7 and d, are exactly thc values of their respective poly-

nomlals 'y(z) and d(z) evaluated at the pant 7 and thadorg are interpolation points of the polyno-
" mials. As well, the polynoials mnbccmstmctedumqudyuptoadegrccawhmcvcr their values
are known at 8+1 distinct cvaluatmn points. So the apphcauon of the CRT for the reconstruction

of the polynomlals is basically the mterpolapon of thc po]ynomxals from their values at these

points.
The Newtonian form of the CRT is used for the reconstruction of the polynomials

b@. d(2)) from their residuals 57 end &, i = 0,1, ... 8. This algorithm, explained below in

terms of d,, to find the polynomial d(z), can be applied for cach element in the vector y(z). The

algorithm defines the resultant palynomial di”(z) of degree k, at the kih stage, iteratively as

k-1 . '
d¥i(z) = d*N(2) + a4 I (z - z,), (3.8)
=0
 where a,e%, k=012 ...,5and |
=d%z) = dy ~ : (3.9)

= (&:— d‘“‘”(z)) X S mod (z —Az,).

The S, are defined as

S E:}( ]_1 [kI-:Il[ ]]_1 » . . 3 10
= T2z = Z—z mod p. .

k o ra Ll =2 . P ‘ ( )
In the impler. - of this algorithm with the maximum degree of the solution known, the S,’s

can be cz ilai. ‘o the initiation of the algorithm and stored far use provided the z, are

known.
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3.2. Implementation of the Modular Technique
The first step in the imp]cfnmtatim is to find a bound on the degree of the adjoint Solution
(3.11). The bound, 8, put forth by McQlellan[13), is defined as -
5= [5, + Iﬁla,] - MIN[&,,G,.‘. -8 | ' (3.11)
 where 8, i =12, ... N, is the maximum degree of an entry in column i of A(z) and 8, is the

maximum degree of the entries in the right hand side, b(z).

The next step is to set the. evaluation points z, i = 0,1, . . ., 5. For this implcmmtation, the
sweresettobez = i,i=0,,...,8. With the z so set, the S, values become

S = :i:[:(k—i)" = ‘1‘11;'-1 = (k1) modp, | (3.12)
fork=12,....5. | |

The third step is the evaluation of the matrix A(z) and the vector b(z) at z, to ~ot the
integer system [A_;,I;] such that

A = A(K)
. h=b) |

for k = 0,1, ...,8. The evaluation of matrix A(z) and the vector b(z) at the point z, is straight-
" forward and is done using Horner’s method.

The fourth step is solving A, x; = b to obtain the adjoint solution

Ay = d; by mod p, | B (3.13)
fork=01,...,8.

The adjoint solution of (3.13) over % is found using the LU decomposition procedures of
Chapter 2. Kirst, the decompasition into triangular matrices is applied to 4,, then the solution is
extracated from this triangular decomposition and the right hand side . The decompasition into
triangular matrices returns the determinant, d,, of A;. If A, is singular then back substitution



11

returns the adjoint solution vector, ;, so that ()'-:, 0) . On the other hand, when X:is non-
singular, the triangular dcoomposiﬁon process will return d, # 0. Thus, to get the adjoint solution
vector, y, the result , x,, from the application of forward and back substitution, must be multiplied

by d,.

J

The fifth step is the application of the CRT (39) to the residuals (3,4 ) for

i=0,,...,5 This yilds
[} k-1 .
@) =3y M- : (3.14)
t=0 i=-0 . .

d(z) = édu ’1’1‘(:—:).

and d',e Y Equatxon 3. 14) is called ti.

@

whe:rcy,mavcctoroflmgﬂwaxthduncmsm (p)

mixed radix representation of the adjaint solution.
In the sixth and final step, this mixed radix representation (3.14) is transformed into the

more usual fixed radix form

[ ' o .
¥(@) = Tyt o (3.15)
k=0
)
d(z) = zdkz"
where y; is vector of length N with elancnts in = (p) and d,,e (p)

. Cast Apalysls
To analyse the cost of obtaining the adjoint solution (y(z),d\(z)l 0 satisfy (3.2), the measure
used is the number of arithmetic operations required to find the solution with only the dominating
terms retained. ‘
~ The cost of precalculating the S; for the CRT using (3.12) requires & operatxons where & is

the bound on the degree of the solution’s polynommls



12.

The cost of evaluating the matrix A(z) and the vector b(z) at the 8+1 evaluation points,

where Horner's rule is used, is 259N op&atioqs.
Calculating the 8+1 adjoint solutions to the systems over '(;% using the procedure of

"Chapter 2, requires %GN’ operations.

To calculate the coefficient, g;, of the term at the k* stage of the CRT application, using
(3.9) and the precalculated S;, involves the evaluation of the polynomial d*~'I(z) of degree k-1 at
the point z,,.plugs 2 operations to find ;. Thus, to find the cocfficient @, requires 2k operations.
Therefore, the total number of operations for the application of the éRT to the N+1 elements of
the solution to get polynomials of degree 8 requires 8’N operations.

The last count to consicicr is that required to transform the solution from the l\nixcd radix

form (3.14) to the fixed radix from (3.15). This transformation requifes 8N operations.

Therefore, the total operation count for finding the adjoint solution in the form (3.15), gi@

the bound 8 < 9 N, has the dominating terms

43N? + %—BN‘. | (3.16)

| 3.4. Terminating the Iteratlon -
 When calculating the terms of the polynomial solution up to the bound, 8, unnecessary calcu-
lations are performed when the bounds are too pessimistic. The following thécmn can be used to
determine if suffident terms of the polynomial solution have becn found to guarantee that the
“adjnt somﬁm'(y(z),d(z)] has been found such that, when d(z) # 0,

= X2 | y
x(z) @) .17
The theorem is 7 <ztension to the polynomial case of the theorem presented by Cabay [4] -

far solving linear systems over the integers. .
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One point to notice about the theorem is that' the coefficients of the polynomials need not be

restricted to a field and may be over an arbitrary intergal domain.

" Theorem 3.1

Suppose A(z) = [a,,(z)] is a matrix of order N and b(z) = [b,(z)] is a vector of length N,

where
af2) =af’ + a2 +aP 2+ -+ +af) 2 (3.18)
by(z) = b + bbl) 2+ P2+ -+ b 2.

aresuchmaideg[a,,(z))'saanddeg[b,(z)] soforallij,0SijsN -

If the mixed radix representation of the adjoint solution [y(z),d(z)) is |

¥z = u(z) + 0 (z - zo) _: - - ) o . (3’.1’9)
b b 0= n) o [ meent) F s @ (= %) o= 2ue)

d@) = () +0 (s~ 2) - [z~ )

e 0l )+ e m ) = ),

where : ‘
@) =yo+ ez - zo]L : | (3.20)

syrlema)-n)+ o el (- a)

d(2) = do + dy [z — )

rarl-a)f-n)+ o raf- ) (,;,u_i),

then
AQ) 3() = 4 b@). - : (3.21)

Proof
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Suppose the contrary, i.e. A(z) y(z) — 4(z) b(z) # O. ‘Then for some démmt of

A(2) y(z) — d(z) b(z), there exists a nonzero polynomial p(z) such tﬁgt

0= |16y @) - 46 53], = [a) 9e) - 41 5], + £
But ' |

k@ y® - 40 66)], = (40 5 - 4 2],
+ [A(Z) Yu+a+1(2) = duyrari(2) b(‘)],'-([’ - Zo) : (Z".T Zu+a))- ‘

Therefore,
PG) = (% 5) - e = 2ued) A6 raos(®) = dssese) 5]
= (z - zo) . . (z - zu-n] [/éla:j(z)[)’uuﬂ(z) ]I - d‘l+0+1(z) b:(z)]- -
Since p(z) # 0, '
j-élal](Z) [y‘l*l+l(z)]l - du+u+1(z) bll(z) #* 0
and its degree is = 0. This implies =
deg (p(2)) = deg[o(z"“*l)-[_élau(z) [5ursni@)], = s b.(z)]]

>M+ 3. .
Thus,

deg (A(2) () - 4@ @) > M+ 0.
But t

k961 - aer 0], - 2 [3@ |, - 40 8,

wherédeg[[“y,(z) ]J] < M and deg(d,(z) )‘S M. 'Ihus,.

i [.{;14,@) [»@], - 46 b,(,)] |



315

-1

= [/ﬁ ((?) o(z"]) - o(¥) o[z')] = deg[o(***))

=M+ 4.
Therefore, -

deg [AG) n(2) - 4 b(2)| s M+ 0,

and thus the contradiction.

- QED

|
* Thus, bcﬁnds for the degree of the adjoint solution are now unnmsary All that is

required to hcrmmanc the iteration is that a sufficient number of consecutive ze10 coeffidients for
all of the polynomials of the solution be enommtaed If |thc bounds on the dcgree of thc adjoint.
soluuon are: txght then as many as 9 extra 1terauons are dan to find a sufficient number of zeros
tosat:sfythetheorcmﬂmnwou]dhavcbanrequucdusmgmebound Butwhcnthcbounds are
not tight, the thedrem can result in’ ‘substantial savings by terminating the iteration long. before thc
bounds would be reached. o

If at stage M+3 + 1, where 3 and M are defined as in 'Iheorcm‘3 1, the theorem is applied
to terminate the iteration of thc algorithm, the result is the ad)omt soluuon in the mixed radix

 form 3. 19) mup if d,(z)=#0 then

| Al—o)e (=,
: y,(z) _ ¥ _ ~}'l(z) + Yusrar1iZ) C Zo) (Z lu+a] A
T T T e A @ oa) nd) (6.2
where (y\(z) ,d(z)) is the complete solution to the system. maeforez
| A(’-)(}’l(’-) f’;)’u+a+1(z) (z - zo]l. c (z - zu;o)) /\ . ' (3.23)

= (d,(z) + dy+ae1(2) (Z - Zo] T [Z - %u+a]] b(z).
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This implies
0= [40)5() - 41 e)] . o | (3.24)
+ ‘[z - zo] S (Z - ZAH-O) [A(z) )’uwf.l(z) = dyras1(2) b(l)]-
Thus, K |

0=A() v)'unn(z) = dy+a+1(2) b(2).
As a result, [y,,;,,,,(z),dm,ﬂ(z)] is a solution to the system as well. Assuming dy.,.(z)#0,

.
(for if it were then yy 4 ,.,(2)=0, as well) and since d;(z)#0, this results in

oy = 2@ dwnaa(2) | -
' @ d(z)  dwrae(z)’ ‘ C o (325

Assuming that the GCD (y,(z),d,(z')) =1 (i it is mot, then remove the common factor), then
(y~+.+1(zv),d'+‘+1(2)) look like . : » ’ .

o) =M@ 0@ | B (3.26)

() = MG) 4() | « |
for some M(z). The result is that the complete solution, (y(z),d(z)), is of the form

Y@ =3 (1+ MG (1= n) - (o - 2] roo @3.27
=40 (1+ MO (== [-me)) |

As will be seen later in Chapter 6, using the solution [y,(z),d, (2)] can lead to problems when

| solving over the integers. Therefore, if it is possible bo find thc‘ éolynomial M(z) without further

iferation of the algorithm, the eatire solution ¥(z),(z) ) could be constructed at thid point. But

(3.27) mn’bc;icwad,ésasystcmofN + 1 equations inithr.N+ 2 unknowns y(z) (a vector of

length N), d(z) and M(z): Thus M fainiot be solved for immediately. In addition, the following

cxﬁmple iilustrata that not enough information is avaiiable to determine M({z) du'ccﬂy '
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Example
m .
‘ [z (z-1) - - - (z-7) | z
A2) = : (3.28)
-1 (1+ c-19)e-8)e-9) - - - -19)
. 3z (z-1) - (z-9) + z (z—16)(z—17)
() = ' :
- {(+ (z—lS))(z—S)(z-—Q) c - (2=18)(z-16)(z—17) — 3 (z—8)(z~9)
The solution x(z) is then | )
| 3 (z-8)(z-9) -
x(z2)=1] - . (3.29)
(z—16)(z—17)
and the adjoint <olution (y(z),d(z)) is given by
' | 3 (z-8)(z-9)
y(z) = [z + (1‘+ (z—lS)] z(z-1) - - (z—14)] , (3.30)
: ' (z—16)(z—17)

vd(z) = z+ (1 + (2—15)) z (z=-1) - - - (z—14).

" When solvmg the system using the modular techniques of this chapter, the complete adjoint
solution (y(z),d(z)) , with coefficients in —(f—) p = 45233, is

Y@ =y@) +z(z=1) - - (2=13) v 041(2) - (3.31)

dz) = d(z) + 2 (z=1) - - - (2= 13)dursr(2),
where the application of Theorem 3.1 at stage 14 results in the solution (y,(z), 4,(2) ), in mixed

radix form, of
168z — 227 (1) + 31 =1)(-2)
»(z) = ' : ) (3.32)
' 2400z - 30z (z-1) + z (z—-1)(z—2)
4(z) =z

and with (y‘,“-ﬂ(z), dM+l+1(z)) as
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)’u+o+1(7-) = (z—-14) : ’ (3.33)
126 + 210 (z—15) + 51 (z—15)(z—16) + 3 (2—15)(2 16)(z~17)] .

x b
2-2(@-15 + (z—lS)(z—16) + (z—15)(z-16)(z—17)

dy+a+i(z) = (z—14)%
Since the GCD( % (2), d,(z)] =z, the reduced form of the solution (y,r(z), d,’(z)), when

expanded, is

- [32-51z+216 3(z-8)(z-9) S
) = 22 - - | (3349

2-Bz+212| |@-16)E-17)]

d:(Z)

4(@)=——=1

Using (3.33) and (3.34) to find the M(z) so that (3.26) holds results in
M(z) = (z—14)’. | | (3.35)
Therefore, there is no indication at stage M + 3 + 1 that the factor M(z) is (z—14)2. One of
the factors (z - 14) is due to tﬁc fact the non-zero portion of the remaining terms of the mixed
radix solution does not start until 2 iterations after the mﬁmt stage (i.e., the next iteration pro-
: duca zero ooefﬁaents as well). Thus thc multiple M(z) is not immediately available and, nf the
entire solutlon ( ¥(2),d(2) ] is required, it will have to be calculated by the continued iteration of

the algorithm beyond the stage at which the termination criteria can be applied.



CHAPTER 4

Power Series Methods over —zz{p—zjl

4.1. Generation of the Power Series Solution
Let A(z) be a matrix of arder N and b(z) be a vector of length N, whercthcelemcntsof

A(z) and bz) are polynomials of degree at most d with oo&ﬁcienls in TPT 'ﬂus section describes

the genexatiori of the power series solution x(z), of
. A(2) x(2) = b(2). ' 4.1

For the gcncranon of thc solution, A(z,), zge~—, is required to be non-singular, for some z,.

, (p)
Given the system A(z) and b(z) in the form

Az) = é;oA', 2 | .2)
b(z) = zb'
k=0

where A'; is a matrix of order N and b’, a vector of length N, with entries in ~—, the first step is

(p)
to find the element z, such that A(z) has rank N. As pointed out by Cabay [5], if A(z,) is singular

. for &+1 distinct points z,, where 8 is a bound on the degree of the determinant of A(z), then A(z)

mod p is singular. To fadilitate finding the matrix A(z,), the system (4.2) is put into the form

A@D) = éﬂm (z-2), | o (4.3)

s k
be)=Sh (- %) : |
£=0 <
where the demmts of A; and b, are in —— (p) Now, with A(zy) = A,, the LU decomposition of

Chapter 2 is applied to determine the rank of A,. If the rank is not N, the process of transforming
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the system (4.2) to the form (4.3) for another z, and determining the rank of the resultant constant
matrix A, is repeated. If the rank is N then a non-singular A(z,) has been found and the
transformed system (4.3), for this particular z, is used to find the power series solution to (4.1).

This is done using the following theorem 'discussed by Cabay[5] to find the coefficient x; of

- k - .
x(z) = I x (z - Zg] . (4.4)
: k=0
Theorem 4.1
min(k,d) . bl; 0=<k=s34 . ’ ' :
Aox == 3 Ax,+ 1 ‘ 4.5)
=1 0 a<k
]

This method is iterative and uses, at most, the last 3 terms A,, _b“ and x; to compute the next
coeffident x,. Thus, the calculations of these coeffidents can continue as long as required. A
bound on the numb& of terms necessary to determine the solution uniquely is arrived at by noting
that the cﬁnversion of a power series to rational function form, ‘with both numerator and denomi-
nator of.degrec at Mt 8, requires at most 28 + 1 tarms of the power series.

The ﬁnz‘ﬂ‘ Stcp in producing the powcr series solution consists of converting the solution x(z)
in (4.i4) to an expansion about the point zero. This involves transforming the power series (4.4),

truncated to 28 + 1 terms, into the form
2 | - . _
x(z) = Tx' ‘ (4.6)
k=0 :

Obviously, this transformation is required only when the z, of the first step is non-zero.

v\
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4.2. Cost Analysis of Power Series Solution Generation

To find a measure of the cost of the algorithm to generate the power series solﬁtion, the
number of arithmetic operations needed to find the Soluﬁon are counted with only the dominating
terms being retained. |

The cost arises from the three parts of the algorithm. The first step is the transformation of
the system from (4.2) into (4.3) and the subsequent LU decomposition of A, to determine its rank.
If A(0) is non-singular then the system is already in the required form for the remainder of the
algorithm, and the transformation is therefore required only when z # 0. The transformation

requires 3°N? operations for gach trial z,. The LU decomposition, using the methods of Chapter 2,

requires %AP operations for each such z,.

Once the matrix A, is found with rank N, the LU decomposition from the determination of
the rank of A, is available to be used to solve for the coefficients of the power series solutidn using
(4.5). To solve for these coefficients, x;, requircs the calculation of the right hand side of (4.5)
before the forward and back substitution is applied. The calculation of this right hand side

requires 23M? operations for mch successive k. Forward and back substitution to find each x,
: requires an adc*ticnal 2V* operations. Thercfore, the operation count to find each voéfficient x, is
23N* operations; thereby, to find 28 + 1 coefficients of (4.4) requires 453N? operations.

Thus the number of operations to find the solution (4.4) truncated to 25 + 1 terms is

450N? + %Nﬂ | | 4.7)
whenever A(0) is non-singular. If A(0) is singular, then the additional cost for each trial z, in step

1 to obtain the form (4.3) is

PN +%~°‘ o | . (4.8)

operatians.
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To convert the solution from the form (4.4) to the form (4.6) when z, # 0 requires 48°N
operations.
' )

Thus, using the bounds § =< 4N, though better bounds are g;vcn by Mc(]cllan[13], the opera-

tion count for ﬁndmg the solution (4.6) to (4.1), whcrcAo is non-singular, is

47N> . | | | (4.9)
When A(0) is singular the cost is

4PN + k [%Nﬂ + a’N’]. | o . (410) .

where k is such that A(i) is singular for i = 0,1, . . . k1.

4.3. i’nde Conversion of the Power Series

Once the power series soluﬁén, x(z), to (4.1) is obtained, the next step is to convert these
power series into rational form. The method used for this conversion is the .diaganal algorithm
described by Cabay and Kao{6].

The method taka a power series a(z) and makes successive approximates p,,(z) ar;d 2, (2),

P

each of degree i; such that |

9, (2) a(z) — p,(2) = o(z2 L 1), r/ | ' (4.11)
_where q,k(z) and p, are in reduced from. The mr,thod is iterative on i, for k = 0,1,. ,m and as
such the maximum degree i, of p, (z) and g, (z) need not be known apriori. The iterative tech-
nique fits in with the generation of the power series solution ot the previous section as it generates
the terms in increasing degrees. Consequently, whenever the conversion technique requires another
term in the power series, it-can be generated updn request. The entire process can be halted when

the conversion process has reached a sufficient degree, f_, for the rational function apprommat&
The algorithm obtains the next approximates p,,, (z) and g, (z) from the previous two

approximates, p, (z) and g,(z) and p, _,(z) and g, (z), by working with their remainder power



series

9,(2) a(z) — p,(2) = o(z2 "‘H) = of (zl“1+ ‘?) (4.12)
| and
%@ a@) ~ p @ = o7 = o (Y, (4.13)

where o (zlk+1+ 'k) indicates  that the power series begins exactly with the power Mt The
approximates of degree i ., are determined by first defining the remainder power series (4.12) as

follows

.
q‘k(z) a(z) - p’k(z) = (rlgo) + ,-‘g'l)z+ cee 4 ’.‘: ) zs'g)zlhl-rlk + 0(22 lt+1+1) " (4.14)

where Sy = i, — i, and i,i‘” # 0.
This is basically findin; the first non-zero terms, r,ﬁ"), in the remainder power series and

" defining the value iy, using r{® such that

41,,(2) G(Z) - P‘t(z) =. ,"20) et o(zuﬂw»«l} , (4.1" 5)
“Thus, the polynomial r, (z), of degree S, , is defined such that '

. S :
r@=r®+rPz+..- +r,i B R ‘ | (4.16)

3
. o - s
by calculating the remainder power series’ terms r,("... ... e,

The next step in the algorithm is to make the remainder power series (4.13) such that the

polynomial r;, _ (z) is of the same degree as r,,(z). Therefore, (4.13) becomes

. P () SeY tp + dyp .
qlk_l(z) a(z) - plk_l(z) = (rll(?l + r‘k(i)lz + -t r‘k—‘l z k] zk k-1 . (4.17)

+ o(z’kﬂ* ‘b—lj"l].
=@ o),
The third step finds a polynomial b(z) of degree S;, such that 5(0) = 1, and a constant ¢

such that



¢ 1y_y(2) = b@) n(a) + o[s*""). @.18)
Using the method pointed out by Cabay and Kao[6], this step becomes the solution of the lower

triangular system

[ r{® 1 [y] [ 7]
r{) ri® y@ n
- (4.19)
5 (5= 1) (8g) G,
re? ... ,.120)J y ‘J r‘k—kl) j
' » . 5 -1
far the y. Then by normalizing the vector [y(’)] such that b(z) = § [[y“”) y(’)) Z and letting
0 =0

c= (y(")]— 1, they are as fequircd. These ¢ and b(z) are used to compute the nc;v approximates by
noting that by muli plying (4.14) Qy t(z) and subtracting c-2**1” %! times (4.17) from it, 25, more ’
terms in the resultant remainder series are zeroed out. Therefore, this is a better set of approxi-
mates to the power series a(z). |

This arithmetic then produces the following form.
b(@) (0,(2) a@@) = P, @) = ¢ 447 "1 (g,,() a(2) - p,_,@) (4.20)

= @) 4,0 ~ ¢ 47 51 g, (@) alo) - @ @ ~c 1 v, @)

= ‘hhl(z) a(z) — Pl,,ﬂ(z),
by setting

Gy @) = b(2) 9,(0) = c 417 Mg (2) | (4.21)
ond -

+1 = -
Py, (@) = b(@) p,(2) — ¢ Fe Tk 1p,k_l(z). £

‘Evaluation of (4.20) using (4.14), (4.17) and (4.18) yields



‘

_b(@) [r,k(z) PR I [2 er® ‘)] o f (4.22)
R e [f'l () IR S o(z'nl* g + \1)]
k-1 !
= fEr T (b(z) n() —c r'.k_l(Z)] + o(z2 kert ‘]‘ ,
=o[zzlk+l* 1]. !
Therefore, these new estimates p, . (z) and g, ,(z) satisfy the condition set out by (4.11) and
are of degree i; ., .

This process is iterated for k =0,1, ... ,m+1, where i,., > 8, where completion of the

next approximation step would create approximates of higher degree than required.

'4.4. Cost Analysis of the Pade Conversion

The cost of the algonthm to ﬁnd the rational function solution to (4.1) using the power series
generation of section 4.1 is mlculatcd by noting that the costs of both a]gonthms the powcx series
generation and the Pade oonvcrsxon are independent. The algonthm for the Pade conversion top
rational form requires

65N = 63°N? o (4.23)
opcrati@ for the N elements of the power series solution (sce Cabay and Kao [6]). Therefore,
using the estimates (4.9) and (4.10), the total cost of the power series method for computing the

solution in rational form is

Vi

10 a’N3 + k [-—N’ + BIN‘] (4.24)

operations where k is such-that A(i) is singular for i=01, k-1.



4.5. Problems with the Power Series Methods
In the calculation of the solution to the system [A(z),b(z)] in rational form, the solution ele-

(@)

ments obtained by the Padc conversion algorithm are rational functions, ~-—- 4G’ j=

1,2, ...,N,

in reduced form. As mentioned before, the y,(z), j = 1,2,..,V, when calculated to the degree 8,
will divide the adjoint solution elements. Similarly, the dj(z) will divide the determinant d(z) of
A(z). However, in practice it does become desirable to express the solution in the form

) - e
where dj(z) is the least common rnultxplc (LCM) of the di(z), j = 1,2,...,N. For examplc, if the
partial solutions in the form (4.25) were available at every step k, k = 0,1, . . . ,m, then the ter-
mination test proposed by Cabay[5] could be applied. |

One method of finding the LCM of two polynomials, di(z) and di(z), I # j, of degree iy, is

~ first to determine the power series, a(z), of their quotient, dlg ; then to apply the Pade algorithm

to it. The resulting rational form, —((—))— is in reduccd form. Thus

d(z) = 1(z) 8(2) - |  (426a)
and '

d(z) = s(z) 8(2), : | * (4.26b)
where g(z) = GCD{d(2),4/(z)). Then, the least common multiple, d(z) = LcM (d(2),4(2)) is
given by

d(z) = 1(2) s(2) 8(2) = 1(2) d(2) = 5(2) (). o (a.27)

Finding the truncated power series of degree 2 i;, where i, is the maximum of the degrees of

d,(z) and dj(z) at ‘the k* stage, k = 0,1, . ..,m, can be done using the metl:;od of solving the
A . >
Jower triangular system (4.19) with the two polynomials d;(z) and d;(z) augmented by trailing zero
terms 1o get the appropriate degree 2 i;. The number of operations to complete this is 4 if. Then

B
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the application of the Pade conversion to the resultant powcr series requires at most’6 if opera-
tions. The multiplication of the polynomials to get common denominators and the appropriate
numerators is bounded by 6 i} opaations. Therefore, the cost of placing the two rational functions-

d(z) dj( )

To calculate the LCM of the N denominators of the vector of rational functions, a divide and

over a cornmon denominator is 16 i} operations.

r

conquer technique can be used to reduce the growth of the power series. The degree of the trun-
cated power series representiz a quotient must be 2 i, where i, is the largest degree of the two

polynomials making up the quotient at the k* stage. Using this technique, at the first stage

2i; + 1 terms are needed, 4 i + 1 terms at the second , . . ., and (2[b'2~‘]it+1m&t‘h€

final stage as the denominators at each stage, j, have a degree bounded by 214,
i=12 ... [os Al
The cost of calculating the comman’ denominator is then

2-[t§~] [-%] @) s ra)). - ‘- ' - (4.28)

Setting m = [log, N], (4.28) becomes

L.

LE‘V +6 22’] | (4.29)

=22 2 _ ;2 -
—3“2—((2-) 1]+6:t2"[2“‘ ] |
Using the fact that 2V > 2™, the number of operations required is

25 | ' |
3 (2 ) (4.30)
To mlculatz the common denominator at cvcry step for the rational function approxunatxons

ofdcgrccz‘fork 01,2, . ,whu‘ez,Zk,mﬁlcworstmsc, rmultsmanalgonthm

requiring
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operations. Using the bound 8 = N, (4.31) becomes
lgéa’N“v- | o 4.32)
The calculation of the common denominators is, therefore, more expensive than the calculation of
the \solution elements in rational form.
When A(z) modulo p is singular, there exists another factor in the cost of thé algorithn for -

finding the power series solution. In this case, the atternpt to find a zg such that A(z,) is nqn-

singular falls for & + 1 distinct points z, € ~— ’nns as pointed out before, is sufficient criteria to

(p)
guarantee A(z) is singular. As a result, the powcr series solution x(z) of the gysmm cannot be

found as the existence of x(z) relies on the fact A(z) mod p is non-singular. Chapter 6 investigafa
the problerns arising out of this inability o find a solution when A(z) mod p is singular when find-
ing a solution of a system of ﬁolngxnials over the integers. Fu'st; ﬁle cost of finding that A(z)
modulo p is singular is investigated.

The operation count of finding A(z) singular req\u\ir.es that for & + 1 points, z, the system be
ransformed to the form (4.3) and the LU dmomposiﬁ& ‘pr@d{ue applied to determine that the
rank of Ay is <N. This requires 3°N? + —g—N’- operations fm; each point (by 4.8). Using the

bounds § =-dN, finding out that A(z) is singular requires

PN+ ~a~‘ , . | @ 33)
operations. 'Ihe termms of this operation count for finding A(z) mod p singular, add a @ and N ordq

of canp]mty to the algorithm, respectively.

Therefore, the cost of finding that the matrix A(z) is Emgular over = is greater than the

(p)
cost of finding the solution if A(z) is not singular as 3 and N increase. The only saving grace to

this, is that, with the random matrices, it is rare that more than one value z is tried before finding



a hcm-singular A(zu] and even rarer that A(z) is singular. "I'hus, thc costs involved to find an

appropriate z, are rarely encountered and of finding A(z) singular even more so.



CHAPTER §

L 4

Comparison oll\kthomovu'-%’%L

5.1." Introduction | ,
In this chapter, the power series methods of solving systems of pol}momial equations over

e -

iyl ‘ .

b(-]%r are compared with the modular method on the basis of empirical timing. The implementation

-

of thc algorithms is done in the language ALGOLW in the multi-programuming environment pro-
vnded by the operating system MIS running on- an AMDAHL 58(0/5860. The times presented in
mmdllhpter aremmxlhsaccmdsofCPUnmccntth%O

The programming of the algorithms is done with the philosophy that any steps that are simi-
lar between the algonthms use the same routines to perform these steps. For cxamplc, the LU
decomposition of Chapter 2 is mxplemmted in a routine called by all thc mcthods’ procedures.
Also since the Pade algonthm for the conversxon of the power series to raucmal funch_on form is
ins&ted into the procedm‘c to gen'cratc the power series solut'ion, the code is exactly the same far -
the, poruon of the algonthmvt; generate the terms of the powa series in both. In addition, the |
polynormials output from the procedurm are in the same form as the polynomials of the system that:
is inputted (that is, that they are polynomials~in 7). -

Linked lists are used to represent the polynomials of the systems to give flexibility to the pro-
grams when the systems get large. To avoid excessive overhead due to the system’s allocation of
the recards of the linked ﬁsts, as these recards are dynamically ,allomted by*lthe system, record col-

lectlon routines were written and used to collect discarded records for reuse when possible. 'Ihxs

garbage collecuon was used in all the programs.
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The primes, p, for the implementation are chosen so that p? < L where L is the bound. of the
magnitude of single precision integer arithmetic for the computer. On the AMDAHL 580/5860, a
32-bit machine, L = 2" — 1, thus p < +V2T — 1."As will be seen in Chapter 6, when solving
systems over the iﬁtcgcxs, several p; are {cqmred All these primes satisfy the above condition.

By so limiting the value' of p, all arithmetic is performed using single precision operations.
That is, finding a value. modulo p is done whenever an arithmetic operation threatens to have a
result whose magnitude is larger than p and before the magnitude exceeds the bound L. In particu-
lar, this then allows for the operation (a b+ c] to be computed before ﬁndi-ng the value modulo
p is required, where g, b, and ¢ have magnitudes l&ss than p. The cost of finding the values
modulo p is«ignored whcn obtaining ooosr estimates for all methods. Inclusion would increase the

cost estimates of both methods by the same factor of—g—.

For this implementation, the inverse, b, of an clcrm:nt a# 0in ?’7) is ¢’ 'sined by applying

Eudlid’s extended algorithm to a and p. Since a and p are relatively prime, this yields the values b

andcwhcreb<psuchthat

ab+cp=1. ' : 5.1
Clearly, then '
a~ ' mod p. : ' (5.2)

R
¥

5.2, Descripﬂon of Testing Procedure

<

The prbgrams were set up as prooedurc calls that solve the polynomials systems modulo a .
m in a manner transparent to the calling: routmg except for the format of the r&sults These
prooedurs are set up in a driver that allows for the input and output of data with very little over-
hmd 'Ihc input data is assumed to Havc coeffidents that are smaller h@xﬁude than the primes,
P, where the system is solved modulo cach of these primes. This dnvcr then iterates several times

solving thc system modulo a d1ffm'cnt prime for each iteration. The amount of CPU time elapsed
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during the procedure call was recorded and output along with the average for the CPU times

elapsed for all the calls.

The nuidnber of iterations performed varied with the size of the problem solved due to cost
constraints but a sufficient number is used in every case until a stabilization of the times required

per iteration has occurred. This allows for startup effects to become visible when thdy exist.

With the power scncs techniques, a startup effect became noticeable in the first iteration for
large systems. Most of the effect is likely due to the larger memory requirements of the methods
as compared to the h;odular method. Therefore, a larger ‘numbq of calls to the system to get the
dynamically allocated records of the linked lists is executed at the begmmng of each test for these
methods as compared to the modular method. On subsequent iterations of the érocedurc; the gar-
bage collection provided for the reuse of the reoorch";nd thus the times for these iterations stabilize

at a lower level than the first. In the calculations of the averages for the cases when a startup
effect was noticed, the time of the first iteration is not. incorporated. |

For the input data, once the size of problem (i.e., N and 3 ) to bc done is determined, the
coefficients of the polynomals are randomly generated such that their magnitude is smaller than
the smallest prime used, 45233.'Each of the methods is then run independently on the set of data
generated for each variation of the valum of 3 and N investigated and the times collected and aver-
aged as explained above. The data for these timing runs is presented in Table 5.1.

It should be noted that with the power s&ics methods, avalu; of zg # 0 does increase the
cost of the algorithms. But, as was previously stated, a value of z, # 0 is rare. In fact, in the tim-
ing runs of Table 5.1, there are no cases where A(0) mod p is singular and thus, 7 = 0 for all the
runs. |

In Table 5.1, the column labelled MODULAR refers to the time, in milliseconds, required to
solve a particular problem by the modular method, the column labelled POWER SERIES refers to

the time required to produce the power series solution of the same problem, and the column

v



Times of Test Runs
(msec.)
Method
Degree | N , | RATIONAL
MODULAR FUNCTION POWER SERIES
1 4 4.45 9.64 3.41
: 8 36.62 T 47.81 18.15
11 77.68 98.68 41.15
12 115.68 122.99 51.98
13 134.86 151.20 64.67
14 173.28 181.88 79.38
15, 217.16 219.48 95.95 |
16 269.23 264.66 115.52
17 344.17 303.76 136.39
18 408.81 355.60 160.69
32. 3365.76 1671.44 830.26
40 7762.85 3270.10 1605.95
2 2 1.92 - 4.80 - 1.81
1 3 4.59 11.53 4.10
4 8.87 21.78 7.78
8 59.83 114.38 . 1 45.20
16 579.28 725.58 307.76
2 . 1760.91 1751.39 - 765.07
24 2410.11 242.81 __ 986.18
26 3222.26 2809.22 1246.24
32 6917.71 5138.47 27.87
3 4 14.08 37.38 . 14.03
8 95.66 211.72- 84.32
10 191.75 387.06 156.61
16 936.60 1427.64 589.03
20 2133.63 2663.59 1126.08
30 8634.27 8679.44 3672.65
31 10154.73 $502.14 4042.52
32 11020.56 10396.16 4438.68
4 3 9.80 29.16 11.05
4 2041 58.61 2.40
5 - 36.55 102.39 40.05
6 61.29 163.63 63.70
7 ©93.82. 247.68 95.94
8 144.93 345.2 136.16

Table 5.1 Times of Test Runs
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Times of Test Runs
(msec.)
Method
Degree | N ] RATIONAL | POWER SERIES
MCDULAR FUNCTION
5 8 | 18592 | 49757 | 200.59
9 265.20 685.30 277.96
10 391.70 . 373.57
6 12 861.16 - 868.21
13 1135.16 . 1092.81 -
14 1438.39 - 1350.11
7 13 1396.64 - . 1446.18
© 11147 | 1881.31 - 1792.65
16 2811.05 - 2628.96
8 | 3 24.86 T 83.78 35.19
8 369.88 1158.85 468.21
14 2185.56 - 2299.46
15 2839.40 . . 2801.70
16 3514.71 5 3374.68
16 3 72.67 274.33 124.06
8 1134.52 4255.95 1731.98
32 3 229.73 982.22 467.94
8 3878.86 - 6653.35

Table 5.2 Times of Test Runs (cont’d)
labelled RATIONAL FUNCTION refers to the time required by the power sems method plus the
additional time required to convert the power series solution, to rational form. As a summary, the

theoretical results of the obsts of each of these methods is

Modular 4PN + % aN®
Power Series : 43*°N? (5.3)
Rational Function 1032N?

Recognizing that overhead significantly effects these cost estimates for small 8 and N, the follow-
ing observations relating to the close correspondence between theory and knplancﬁmﬁm can be
made.

(1), For small 3 fixed and large N, the cost of the modular method increases by approximately a

" factor of 16 when N doules.
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(2) For a fixed and large N, the cost of producing the power series solution and its rational form

increases by approximately a factor of 8 when N doubles.

(3) For N fixed, the cost of producing the power series solution and its rational form increases

by approximately a factar of 4 when 4 doubles.
(4) The cost of producing the solution in rational form using the power series methods is

approximately -;— the cost of producing the power series solution.

The theoretical cost estimates given above suggest that for small d and small N, the modular
method is superior bto the power series mcthéd for obtaining solutions in rational from. On the
other hand, with 9 fixed, this supcn'orit} is quickly lost as N' grows in size. The crossover points -
for 9 = 1 and @ = 2 are illustrated in Hgmc 5.1 and Figure 5.2, respectfully. Indceéi, the primary

‘objectivc for the implementations is to determine the class of probl&ns for which each of the
methods is superior. Using the theoretical estimates with 9 fixed, the modular method should be

superior to the power series method for obtaining solutions in rational form whenever

43N + % IN* < 105N, o (5.4)
or equivalently, when

N = 93. ' (5.5)
Perhaps due partly to overhead and to implementation pecularities, but primarily due to the omis-
sion of lower order terms in the theoretical cost estimates, the crossovers occur sonﬁf}mt later

‘than expected. In Figure 5.3 the dotted curve illustrates that the experimental crossovers actually

occur when

N =758+ 80, ' (5.6)
The 'solid curve in figure 5.3 representing the crossover points between the power series gen-
eration and the modular method of solution is exhibiting 5 quadratic trend in N. This is as
cxpectcd since comparing the operation counts of the two methods gives
J
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.‘2250 — ’ Modular
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N ,
Figure 5.1 Timing of Methods(d = 1)

—32- ON' + 4 N? = 4 °N? + o(a’N‘). ' . | o (5.7)
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3 = c N* + o(N), \
for some constant c. This cancelation of the terms of arder 8°N* in the difference of their opera-

tion counts results in the quadratic crossover curve for the two methods. Thus, as N increases, the

power series solution quickly becomes the least costly of the two methods for a fixed degree 3.

7050 —
6300
5550

4800 —

T |
5

Figure 5.2 Timing of Methods (3 = 2)



5.3. Conclusicns
For solving systems over Z(’[pi)]-, if solutions in rational form are required, the results of the
previous section show that for small 9 the pow& scries method, together with the Pade conversion
2

algorithm, is supcrior to the modular method. The converse is true for large 3, that is, 8 = 15 N.

This anomaly between the choice of methods does not exist if solutions in truncated power
series form only are required. The class of problems for which the power series method is superior

to the modular method grows quadratically with N.

It can be observed that, in producing the solution in rational form by the power series

method, 60 per cent of the cost is attributed to the Pade conversion algorithm. The conversion of

3 = cN* + o(N)

) 3 “

a= 133N - .97

’ 0 —— T l T T I T
s 10 15 2 -2 30 35 4
' N

Figure 5.3 Crossover Curves for Modular vs Power Series Methods
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one truncated power series requires 657 operations, where § is the maximum degree of the polyno-
mials in the resultant rational function. Better algorithms, which use fast polynomial arithmetic
methods and which are of complexity of5 log?8), are currently under theoretical and practical
investigation ( see Brent, Gustavson and Yun[3], Verheijen[15] and Choi[8] ). Using these
methods, the cost of producing the solution in rational form by the power scri§s method is
4FN? + c-oN? 1og*(aN), o ~ (5.8)
for some constant c. Thus, using fast methods, the Pade conversion algorithm does not add to the
overall cost. Practically, however, the constant c is large, approximatcly 93 according to
Verheijen[15], and the advantage of fast methods is again not realized until N is large. The deter-
mination of the crossover points where, using fast methods, the power series method becomes
superior to the modular method for ﬁndiﬁg the solution in rational form is left as a subject for

future research.

I}



CHAPTER 6

Sdlvlng Systems over Z{z]

Al

6.1. Description of the Method
\Given the matrix A(z), of order N, and the vector b(z), of length N, where their entries are

univariate polynomials with coefficients over the integers, finding the solution x(z) such that
¢

A(z) x(z) = b(2) ' (6.1)
can be done using the methods of the previous chapters in conjunction with the CRT for integers.

The CRT for integers allows far the construction of the integer a from its residual modulo
the d.iStinCt primcspo, PisPy - - . iPy

= umodp,i=012 ...,y _' . (6.2)
_ such that u is uniquely determined in the range 0 to ppp; - * - py — 1 (or when a range sym-

.. — 1 PR -— 1
_p(pl{’Z Py to PoP1P2 Py )‘ The

metric about 0 is required, then in the range 3 5

Newtonian version of the CRT algorithm is used for this construction. Define the value #*! at the

k* stage to be
-1 : ~
= 1 4 g, T, o | (63)
i=0 .
where
ag = u% = uy mod p, : - (6.4)
LG = ((u,‘ - u“"l)x S“)] mod p,
and '
\\\\
-1 -1 )t
| (Pl_l] ‘mod py =] p mod py. (6.5)
i=0 SO i=0

>

To ensure ult! is symmetric about 0, the g,’s must be such that

B
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4 141 . ‘
- < < —= = c e
2 Se< i 0,1,2, k

(If ul*! is required to be positive, the a, must be positive.)

* The result is the integer u!"! in the mixed radix form

-1 : ) e
utl = Eat [le] =a + alPo + ade’l Tttt ape o Py-ty (6.6)
t=0  li-o0 .
where
-1 '
l B =01y 6.7)

When v is such that

PN e 1
< PaP1 2P1 , » _ (68)

u

then u = ul),
To obtain the solution of (6.1), the first step is to determine for each prime

pi, i =01, ..., v, the matrix A,(z) and the vector b,(z) such that _

AD =A@ modp . (69)
.I;I_(;)-- b(z) mod p,.
The next step involves solving the system

ADx@) =5G)  mdp, (6.10)
for each prime p,. Using the modular method, this rmu]ts in the adjoint solution [y_(_)' d(z)) of

-

(6.10), where, for i = 0, 1 v,
W) = 4@ ™ blz) modp, ©11)

is a vector of polynomials over ?’?—) and
i

a6 = det(A,(z)) mod p, , " 6.12)
is a polynoxmal over ——— (p) Usmg the power series method, together with the Pade oonvcrsxom algo-

rithm, this results in vectars of rational functions
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D =AD  hG,i=0,L,. S - (6.13)

The numerators and acnormnators in thc vectar x,(z) are, therefore, polynomials over Z Thus,

)
with some regard for "bad primes”, p,, which are addressed in section 6.4, the modular method

gives
¥(z) = 71z) mod p, _ ' - (6.14)

d(Z) - 4_(-2)—’"“ P,
and the power series method gives

A

x(z) = %;(z) mod p,. o _ (6.15)
In (6.15), it is intended that congruences are taken seperately for the numerators and denominators

of the components.

'Ihercforc, rcgardlss of the method used wch coeffidient in the polynomials in (6.11) and
(6 12), or in (6.13), is computed modulo p,, i = 0,1, . . . ,. In the third and final step, the CRT
is applied to each of these oodﬁments This yields the integer coefficients in the polynoxmals of

y(z) and d(z), ar in x(z), as long as the integers are all bounded by

PP " py— 1
2 ) ' }
Such a bound is determined in the next section.

6.2..Cost Analysts -\
To get a measure of the cost of finding the. solution of (6.1), the first step is to find the cost
for the reconstruction of a single integer coefficient from its residues. This reconstruction is done
using modular arithmetic to avoid multi-precision arithmetic. -
Let ¥ be the bound on the number of primes required to represent the solution’s coefficients, .
such that the coeffident, u, satisfies (6.8). It is advantageous for the primes py p;, . . . ,p, to be
ordered such that p, < p,,,, i = 0,1, . .@,'y—l,aswill be seen in section 6.3. |
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The cost of calculating the integer u*] at the k* stag:c' (i.e., for the prime p), using modular
an'thmétic, involves the calculation of u*~"! mod p, and requires 2(k - _1) operations. The addi-
tional operation of finding (6.4), given that the S® are precalculated, means the cost of finding
(6.3) is 2k operations. Thus the calculation of a coefficient  in the form (5.6) requires 2 oper.a-
tions. ' |
For each of the methods used to solve the sysiem over tixc integers modulo b, the oost‘
varies. To calculate the third step of algorithm, the CRT application, the number of polynomials
in the solution and their degrees must be taken into account, Therefore, using ON as the bound on
the degree of the polynomials of the adjoint solution, the number of operations to apply the CRT

for each method are

- Modular Solution . N

/ ‘ »
Power Series Solution . 20N%My? ' o (6.16)
Rational Function Solution 2N™? . \ '

. Using the cost analysis of Chapters 3 and 4, the total number of operations required to find

the solutions modulo the y + lpzrimes(tlicscoondstep), is-
s : )

A4

Modular Solution ' 43Ny + 26N“y

I | .
Powe: Series Solution 43°Ny . (6.17)
Rational Function Soltion  106'N%y

Given that the magnitude of the coeffidents of A(z) and b(z) is bounded by v, let ¢ be such

that

y< 2P P \\

2 .
Since finding the multiprecision coefficient v modulo the prime p, require ¢+ + 1 operations, the cal-

culation of (6.9) for the y + 1 primes, (the first step), requires +ydN> operations.
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Using the bound on the sizk of the coefficient of the solution given by McClellan{13], y is

such that - \

N
J

N!an<ﬂﬂ2_"_1_’1.

It follows then that r<<vy. In fact y can be approximated by y = tN, by retaining the dominating
terms only. | |
Thus the cost of finding the solution over the integers:of (6 1) using each of the methods, in

number of opcratxons, is

Modular Solun'on ' ACN* + 40UN* + %aw’

Power Series Solution 200N + 45N (6.18)

Rationai Function Solution 236N* + 100%N*
‘s

6.3. Termlnaﬂhg the Iteration

When éalculating the solution .to the system of equations of polynomials over the integers,
unpecessary comﬁutaﬁon is done when the bound, +, iS larger than the actual numb& of priincs
required. Theorem 6.1 is de:igned to_terminate the iteration when sufficient aoam’cy +has been
achieved in the mteger coefﬁumts of the adjoint solutxon (y(z) d(z)) to (6.1) to guarantee a solu-
tion over the polynomxals over the integers.

The theorem is an extension to polynomial systems with integer coefficients of ‘the theorem

praentéd by Cabay[4] for terminating the recursion for integer systems.

Theorem 6.1

Assume that the primes, p, are ordered such that

Po<p1<py< *"*.
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Suppose A(z) = [a,,(z)] is a matrix of order N and b(z) = [b,(z)] is a vector of length N

with i
a,vj(z) =afl + afPz + a{P2? o az? ' “ (6.19) -

by(z) = bf® + b9z + b2 + - - - + bt
where 3 is the maximum degree of the polynomials in A(z) and b(z) und the coefficients aff’ and

bj" are integers. Suppose A(z) and b(z) are such that

N 3 . . . .
¥ 3|6 | s powa- - py : (6.20)
J=1 k= ‘ . :
4
3 15® | = ppipa - - Py
. k=0 ’

| foralli, 1si=<N.
If the mixed radix form of the adjoint solution (y(z),d(z)) is
¥(z) = y(z) + , ' o (6.21)
1} " i
S 0per et o 0Py Py + WPy Puvye)
=0 SA

d(z) = di(z) +

3
22‘(0'17091 o put o +0pPr Puey + A pey - -pm,ﬂ)
. k-o ) .
‘ where d
R . R AT : £
w@) = S + 0 po+ e P ppi - pu) = S (6.22)
=0 =0

3 . 8
4(2) = EZ"[dsk) +dPpot - + dPpe, - - 'Pu—l) = S Ad®
k=0 k=0 :
with 8 being the maximum degree of the solution and yf*) = [y'(f)]’ a vector of length N.with

entries from the integers mod p, such that

|,4n = (o - 12 | | : (6.23)

sb-12

W9




foralll =0,1,..., M+y+1.
| Then,
AG) 3() = 4(@) bGz). - ~ (6.24)
Proof

Suppose the contrary. This implies

A(2) y(2) — di(z) b(z) # 0 ’ ' (6.25)
but

A(2) y(z) — d(z) b(z) = 0. ‘ : . (6.26)
|
Thus, there exists an i, 1 < i <N, such that the #* element of the vector (6.26), denoted

&)y @) - 4@ @),
there exists a polynomial c(z) with integer coefficients such that

[A(Z) #(@) = de(2) b(t)], =c(2) = éo YT | 46:27)

where : ' e
D :

w(z) = é_‘,oyé"f (6.28)

R h@) = SO,

su&x that
0= 40 y@) - 4@ 6], = 40 2@ - 4@ b@)], - cP@1 +Puerer (629
Denote the coefficdent of the k* term in the polynomial

- pore-aws@, -  (630)
by ,_ | :

"4 @ - 4@ 6@,

s,

(6.31)
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8 *)
@5 - d 5], = £ (40 90 - 4y b2 632)
and, using (6.27) and (6.29), this gives
0= kéoz‘"([A(z) y(z) — 4(z) b(z)]:‘) + c®pp, - - 'Pm,ﬂ) (6.33)
This implies that for all k such that ¢® # 0, that
4@ 56 - 4@ b@)]” = ~c¥pps - purer (634)
'Iilus, '

fA@ 5@ - 40 é(z)]f"l =1e® fppr e (639)

= PaP1 " " Pyt

But,
| ) \
@@ - 40 s3], = L’i"”"’ y,,(z)] - (4 b)) | 636
- B[22 o)) - (32 34 )
- 37((8 2n) - (2.0
Combining (6.32) and (6.36) with (6.22) results in
| [A(Z) %) — 4(2) b(Z)] [251 Py af? y}’)] [?‘..d’(‘) b“”] o (6.37)
= [i [: S o) (8 +y0po+ - + ) popy - 'pu-l]]] NN
J=1U+a=t 2

J+h=k

a3l (a6 (2ve)

- LE b{" (dS“’ +dpy+ -+ +dP ppy - ‘Pu—1)] |



=3 [Hp] [{ 3 afP y"’] [:E b d.""]] (6.37a)

=0 \v=-0 I+ A=k +A=k

Working with (6.19), (6.23) and (6.37a) results in
. ‘

le S o y.‘,”] - L 3 b0 d.‘“’]
=11+A=k + A=k

fabe) 5 (2o )

- [p,-;l] (P(Pl"'[’v) N [p,; 1] [pool""l’y) = (p 1),;0,,1 Py

Combining (6.37) and (6.38) gives that

[[Hp.](p )pavz "py] ’ ‘(6.39)

v=0

(6.38)

=0

[A(z) MOREIOTOINED>

But

éﬂ[[ﬂp] (_p,— 1) pr - - -pQ] \= P " Py [,"o[[,f_lopv] [I_I:p]]] . (6.40)
N

Therefore,
|[A(Z) %(z) ~ 4(z2) b(Z)],m| = ﬂuwr ' -py] [pum tcPw 1] (6.41)

< (pwr- ) pwr 1)

- <P Putyls
since the primes are ordered.

Thus, (6.41) and (6.35) constitute the contradiction.

QED

The theorem is designed to be applied at stage M + y +1, where M and vy are defined as in
Theorem 6.1, when the last y + 1 applications of the CRT to each coefficient of the polynomials
of the solution (y(z),d(z)) has yielded only O terms in the mixed radix representation of the
& : - ) ,' el i -
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ocoefficent.

6.4. Bad Prime Problems

When wlvihg the polynomial systems with integer coefficients using the methods of Chapters
3 and 4 for solving the polynomial systems with coefficents in —%—, occasionally some problems are

@
encountered with bad primes.
With the modular method the bad prime can only occur when Theorem 3.1 is utilized to ter-

minate the iteration prior to finding the complete adjoint solution. Consider the system

A@) y(2) = d(@) b(z) mod p, ' . . (6.42)

where A(z) and b(z) mod p, have degree at most 9. If Theorem 3.1 was applied to terminate the
iteration while solving (6.42) thc.n the system has its solution solved to a degree M + 8, for some
" M as defined in Theorem 3.1. Assume, as well, that when salving the system (6.1) modulo another
prime, p;, p; # p;, the scilutian modulo p, has degree 5 where 8>M + 9. (Note, if the system
modulo p; used Theorem 3.1 to s@ the iteration, the degree & is defined since M is defined in the
theorem.) Thus to apply the CRT for the integer coeffidents using these 2 systems, the wcfﬁcimts
in the solution mod p, consists of the terms of degree M + af +1and greater. But as pointed out
in ihc example in Chapter 3, the nature of the terms of degréeM +d+1and li%gher is unknown
when the theorem is appﬁcd. \
 Itis relatively simple to get around the problem when j<i as the algorithm\lo solve (6.42)
can be forced to continue until polynomials of degree 8 are obtained. Thus, the fficients to
degree & can be constructed using the CRT.
When i<j though, the problem becomes more complicated. When this happens, for all previ-
ous primes p;, k<j the system mod p; has been solved only up to a degree T with 7 < 8. Thus,

the integer coefficients of the terms of the solution of the degrees T + 1 to 3 cannot be constructed



using the information available. One method to find the solution when this happens igvolvcs dis-
cz#ding the solution so far constructed and starting the entire solution process over again with the
prime p; as the first prime in the sequence of primes. To do this shifting of the primes, the precal-
culated inverses, S® , must be recalculated using (6.5). A second method to find the solution
when a bad prime is encountered is to restart the salution process at the first prime, po, but ensur-
ing that the solution modulo p,, i < j, are guaranteed to be at least degree 5. This, again, involves
dismrdiﬁg the ‘solution thus far computed unless the solutions mod p,,il< J, are retained in the

state in which the algorithm terminated, for each prime p,.

The power series form of the solution suffers when the degree of the solutions mod p, vary
for different p,. Since the degree of the truncated power series outputfcd from the method over

Z g dependent on the degree required to form the rational function approximates of sufficient

)

| degree, the deércc of power series solution can vary. To get around this requires that the degree of
the power series from each intermediate step (i.e., mod p;) be the same. This can be done by deter-
mining thé degree of the truncated power series with mtegcr coeffidents and ensuring the inter-
mediate steps solve the power scfics mod p, to this degree. |

With the power series methods of Chapter 4, there exist other types of bad prime problems.
bne, that occurs when the matrix A(z) mod p, is singular, was discussed in Chapter 4. In this case,
the power series solution to (6.1) (which is used in the Pade ccmvefsioﬁ method) does not exist.
Whmthisooctn‘s; the prime, p,, mmtbecﬁscardcdandﬂxenext one in the sequence is used. In
addition, the cost of finding A(z) mod p, singular which is higher than ﬁndmg the soluﬁon'af a
non-singular system, is discarded with the prime. All that is réquired to determine if A(z) singular
is that A(z) mqip, be singular for y + 1 prim;sp,.

With the rational function conversion of the power sc!rim, there exists another bad prime
prbblem. It comes about because the conversion of the power series to rational funcnon form

returns the rational functions in redubed form. The problem occurs when factors are removedfrom
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the rational function solution over L, for some prime p, that do not exist in the rational func-

®
tions with integer coefficents.

To illustrate the problem, consider the adjoint solution (y(z),d(z)], d(z) # 0, of (6.1) with
integer cocfficients. The reduced rational function form of the solution with integer coefficients is

pthen

2:8 i=12 ... N . | | : ‘ o (6.43)
where

' _ yi(z)

Y1 = GCD (%)) ) 649

&(z) = di(2)

GeD( y(@).d(2) )

and '

GCD(y',(z),d',(z)) =u, - ue % ' | (6.45)
The problem occurs when '

6D (( ) mod p ), (¢'(z) mod p)) = (o) | (6.46)

where deg [(z)) > 0 for some i. Thus, the conversion of the power series solution over % will

return the rational function with the factor n(z) removed. But this factor did not exist over the

integers and thus the degree of the rational function over Zz is less than the degree of the

)
cofraponding rational funcuon over the integers and its wefﬁ&mts are not necessarily the residu-
als mod p of the coefficents of the corresponding terms of the rational function over the intcgéfs.
In addition, the factor n(z) cannot be determined from the power scris o s rational func-
tion. If the factor did not exist in all N of thc>rational functions of the solution, it- can be deter-

\ .
mined by calculating a common denominator of the rational functions but if the factor was
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removed from all N rational functions it cannot be determined. Thus, there is not any method of

recovery wh&i this type of problem occurs other than discarding the prime. |
Thus, when a bad prime is encountered, it ggneral]y means that a sizeable amount of calcula-

tion has been done that cannot be used. In addition, as in the last case, the determination of

whether a bad prime has been cnmuniemd or whether the solution is valid can be difficult.
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