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Abstract 

Amplicon sequencing (16S rRNA gene sequencing) is widely used to profile host-associated microbial 

communities. Rapid advancements in sequencing and user-friendly bioinformatics platforms have improved 

the knowledge of microbial community composition. However, profiling samples containing low microbial 

biomass (biological samples containing limited microbial materials) using amplicon sequencing is 

challenging, as the presence of low levels of microbial genetic materials in samples leads to the generation 

of higher levels of artificial sequences during the sequencing process. The use of appropriate approaches 

to control contaminations during sample processing and sequencing, and the optimization of bioinformatics 

pipelines determine the accuracy of next-generation sequencing (NGS) based microbial profiling. QIIME2 

is one of the most used bioinformatics pipelines that allows users to perform quality filtering, classification, 

community analysis, visualization, and statistical analysis through one open-source software package. 

Denoising in QIIME2 is one of the important plugins for quality filtering, which should be handled carefully 

to generate credible outcomes from microbial community profiling. The first study (Chapter 2) of this thesis 

aimed to optimize the denoising parameters to increase the accuracy of microbial community data analysis 

when using low-microbial biomass samples. This study used primers targeting the V1V3 region of the 16S 

rRNA gene to profile the fecal microbial communities of newborn beef calves sampled using swabs and 

data were analyzed using QIIME2 with customized quality filtering steps to remove environmental 

contaminations and to filter out low abundant amplicon sequencing variants (ASVs). Use of optimized 

(truncation: forward – 294; reverse – 241; median quality score - ≥25) denoising parameters increased the 

percentage of merged read (default – 1%; optimized – 45%), and the number of samples used for 

downstream analysis compared to default approach in QIIME 2, which is based on trimming reads based 

on mean quality score (truncation: forward – 281; reverse – 207; mean quality score - ≥25). Moreover, the 

optimization of denoising parameters increased microbial diversity and classified taxa. Our study confirmed 

that optimization of denoising parameters enhances the accuracy of outcomes and interpretation of host-

associated microbial community compositions compared to default denoising parameters, especially when 

the biological sample contains low microbial biomass. Our findings revealed that the default settings of the 

bioinformatics tools might not be suitable for all microbial analyses. Customizing parameters in 

bioinformatics pipelines need to be considered to obtain credible outcomes in microbial community 

assessments. The second study (chapter 3) compared amplicon sequencing-based microbial profiles 



 

iii 
 

generated by different genetic materials (DNA vs. RNA) and hypervariable regions of the 16S rRNA gene 

(V1V3 vs. V3V4). Rectal and oral swabs (n=40) were collected from 20 newborn beef calves and used to 

extract DNA and RNA. Both DNA- and RNA-based amplicon sequencing were performed by targeting the 

V3V4 region of the 16S rRNA gene. In addition, only DNA-based sequencing was performed by targeting 

both V1V3 and V3V4 regions of the 16S rRNA gene. All sequence runs included no template controls (NTC) 

and positive controls (Clostridium butyricum). Data were analyzed using the QIIME2 platform as defined in 

chapter 2. Sequencing analysis revealed that sequences generated from NTC could be assigned to 

bacterial taxa irrespective of the genetic materials and target regions, suggesting that the amplicon 

sequencing process introduces contaminations. When comparing the impact of the target region, alpha 

diversity was higher (p<0.05) in the fecal and oral bacterial profiles generated from the V1V3 region 

compared to those of the V3V4 region. Taxonomic assignment of bacterial profiles generated using two 

hypervariable regions revealed distinct bacterial communities. For example, Actinobacteria (fecal - 

0.41±0.09%; oral - 0.51±0.10%) was abundant in bacterial profiles generated from the V1V3 region, 

whereas Firmicutes (fecal - 0.37±0.11%; oral - 0.34±0.10%) was abundant in those of V3V4 region when 

comparing D1 (prior to suckle colostrum-Day 1) samples. When comparing different genetic materials, 

DNA-based bacterial profiles (both oral and fecal) had a diverse microbial community compared to RNA-

based profiles on D1. In contrast, the diversity of the RNA-based profiles was higher than DNA-based 

profiles on D2 (after suckling colostrum from cows). In conclusion, the diversity and composition of microbial 

communities derived from low microbial biomass samples depend on the choice of genetic materials and 

the hypervariable region of the 16S rRNA gene. The inclusion of appropriate controls is crucial to increase 

the accuracy of results, regardless of the sequencing technique. 
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Chapter 1. Literature review 

1.1 Introduction 

Early life microbial colonization of the gastrointestinal tract (GIT) in human and livestock species has gained 

more attention due to its impact on immune modulation and overall host health (Kogut et al., 2016; Pluske 

et al., 2018; Caballero-Flores et al., 2022). Microbial perturbations and microbial-linked pathologies 

encourage the development of microbial interventional tools (Raman et al., 2019; Kim et al., 2021; Rosa et 

al., 2021; Song et al., 2021; Slanzon et al., 2022; Nakandalage et al., 2023; Nuzhat et al., 2023). In 

depth understanding of the true microbial community colonization in the GIT will facilitate the development 

of effective early-life microbial interventions.  

Next-generation sequencing technologies (NGS) allow researchers to profile unculturable microbial 

communities and enhance the knowledge of microbial communities in different ecosystems (Callahan et 

al., 2017). However, contaminations generated during sample collection, extraction of genetic materials, 

PCR amplification, sequencing run, and data analysis negatively affect the identification of true microbial 

community when using low microbial biomass samples (Kennedy et al., 2023). Low microbial biomass 

samples can be defined as biological samples containing a limited amount of microbial materials to profile 

microbial communities (Kennedy et al., 2023). There is a higher chance to contaminate samples, if there is 

a low microbial material. For example, previous studies reported that the identification of microbial 

colonization in the fetal environment was due to the contaminations introduced from sample collection to 

data analysis (Eisenhofer et al., 2018; Kennedy et al., 2021; Kennedy et al., 2023).   

In addition to the contaminations in low microbial biomass samples, the choice of the hypervariable 

region of the 16S rRNA gene affects microbial composition. Previous studies reported that microbial 

community composition and diversity depend on the hypervariable region of the 16S rRNA gene 

(Chakravorty et al., 2007; Kameoka et al., 2021; Abellan-Schneyder et al., 2021). For example, the alpha 

diversity of the human gut microbial community was higher in the V1V2 region compared to the V3V4 region 

(Kameoka et al., 2021).  Chakravorty and colleagues (2007) reported that taxonomic classification differs 

among different hypervariable regions of the 16S rRNA gene. The genetic material used in amplicon 

sequencing is another important factor in microbial profiling. DNA-based amplicon sequencing profiles 

dead, dormant, and active microbial communities (De Vrieze et al., 2018; Salgar-Chaparro and Machuca, 
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2019; Wang et al., 2019). In contrast, active microbial communities can be identified using RNA-based 

amplicon sequencing (De Vrieze et al., 2018). Thus, the hypervariable region of the 16S rRNA gene and 

genetic materials for microbial profiling have to be selected cautiously. However, there is limited knowledge 

on suitable hypervariable regions of the 16S rRNA gene and genetic material to identify fecal and oral 

microbial community in newborn beef calves, when using swabs to collect samples.  

The introduction of NGS technologies has not only increased the knowledge of microbial communities 

but also encouraged researchers to develop microbial analysis platforms to interpret microbial profiling 

outcomes (Callahan et al., 2016). However, the data analysis pipeline itself affects the outcomes of 

microbial community assessment based on amplicon sequencing. Thus, the credibility of microbial data 

interpretation depends on the proper use of different bioinformatics tools. However, the customization of 

bioinformatics pipelines to obtain credible outcomes in microbial profiling is limited.   

1.2 Importance of early life microbiota1  

1.2.1 Early life microbiota and gut health  

Mammalian gut health has gained research and public attention over the last decade due to its influence 

on overall host health (Kogut et al., 2016; Pluske et al., 2018). Traditionally, gut health has been defined as 

the ability to maintain disease- or pathogen-free status (Bischoff, 2011). However, gut health includes 

several physiological and functional features of the gastrointestinal tract (GIT) including nutrient digestion 

and absorption, host metabolism, microbiota, barrier function, and mucosal immune responses (Bischoff, 

2011; Kogut et al., 2016; Pluske et al., 2018). Therefore, gut health can be defined as a multifactorial 

concept that depends on the host and microbial interactions to maintain metabolism, homeostasis, immune 

functions, and overall wellbeing. 

Host–microbe interactions are one of the primary elements of gut health (Malmuthuge and Guan, 

2017; Ravisankar et al., 2018; Swanson et al., 2020), which can be affected by various internal and external 

factors throughout life. Birth mode (vaginal delivery vs. cesarean delivery), gestational age (premature vs. 

full-term), antibiotic treatments, diet (breastfed vs. formula-fed; fiber-rich vs. high-sugar, high-fat diet), 

 
1 Importance of early life microbiota is a part of a paper published: Nakandalage R, Guan LL, Malmuthuge 
N. Microbial Interventions to Improve Neonatal Gut 
Health. Microorganisms.2023;11(5):1328.https://doi.org/10.3390/microorganisms11051328. 

 



 

3 
 

infections, habits (exercise, stress), and environmental factors (geographical region) have been linked to 

perturbed microbiota and microbial-linked pathologies (Yatsunenko et al., 2012; Danzeisen et al., 2015; 

Malmuthuge et al., 2015; Ballou et al., 2016; Bamuler and Sperandio et al., 2016; Vogt and Finlay, 2017; 

Litvak et al., 2018; Ho et al., 2018; Li et al., 2021). However, some of these factors that lead to microbial 

dysbiosis are life-saving medical interventions and are thus indispensable. For example, despite the vast 

literature supporting the presence of microbial perturbations in cesarean-delivered babies and the 

increased risk of developing microbiome-linked pathologies later in life, it has tremendously improved the 

survival of babies and moms by reducing the number of deaths due to complications during pregnancy 

(Geleto et al., 2020). In such situations, microbial interventions can be used to restore perturbed microbial 

communities and to mitigate negative health outcomes/microbiome-linked pathologies. 

The colonization of gut microbiota starts during the birthing process when the fetus is exposed to 

the outside following the rupture of amniotic membranes (Caballero-Flores et al., 2023). In addition to 

infants, recent studies on livestock have shown that early life events are linked to variations in the microbial 

community. For example, naturally born calves had a higher microbial richness, evenness, and diversity in 

the rumen when compared to cesarean-delivered calves (Furman et al., 2020). Moreover, the time of 

colostrum feeding has been shown to affect the establishment of the microbial community in newborn 

calves (Ma et al., 2019). In piglets, antibiotics have been reported to alter the gut microbiota community 

(Schokker et al., 2014; Li et al., 2018; Correa-Fiz et al., 2019; Fouhse et al., 2019; Guevarra et al., 2019). 

Moreover, piglets raised in isolators and treated with antibiotics were reported to have altered microbial 

communities and immune responses (Mulder et al., 2009). 

1.2.2 Early life microbiota and immune modulation   

Maintaining a balance between protective and regulatory immune responses is vital for neonatal gut health. 

Neonates are particularly susceptible to infections, until their immune systems are functionally developed 

(Zhang et al., 2017; Hornef and Torow, 2020; Sangild et al., 2021). Germ-free animal models have revealed 

the causal relationship between commensal gut microbiota and the development of the host immune 

system during early life. For example, germ-free mice have fewer B cells (Hansson et al., 2011; Maynard 

et al., 2012; Zitvogel and Kroemer, 2021) and lower levels of secretory antibodies and antimicrobial 

peptides when compared to conventional mice (Hansson et al., 2011; Lamouse-smith et al., 2011; 
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Gensollen et al., 2016; Thomson et al., 2022). Moreover, studies have shown that preterm infants with 

perturbed gut microbial communities lack goblet cells, Paneth cells (McElroy et al., 2011), and natural killer 

cells (Zhou et al., 2016) compared to full-term infants (Collado et al., 2015; Xiang et al., 2022). This immune 

memory activated by the pioneer microbiota is known as immune imprinting (Al Nabhani et al., 2020). When 

the pioneer microbial community is perturbed, the interactions between host and gut microbiota can lead 

to the overactivation of reactive immune responses, disturbing immune homeostasis (Yamamoto et al. 

2012; Al Nabhani et al., 2020). However, these altered immune functions can only be returned by restoring 

microbiota during the neonatal period (birth to weaning) (Gensollen et al., 2016), indicating that microbial 

interventions to modulate the immune system should be conducted during this window of opportunity. In 

germ-free mice, the accumulation of invariant natural killer T cells (iNKT) in the colon and lung increased 

susceptibility to inflammatory bowel disease and asthma (Olszak et al., 2012). However, the colonization 

of germ-free mice before weaning (in the neonatal period) could only reduce iNKT numbers and disease 

incidence (Olszak et al., 2012). The recognition of lipid antigens (self and non-self) by iNKT cells, which 

establish a long-term residency in tissues, activates pro-inflammatory cytokines and skewed immune 

responses towards inflammation (Loh et al., 2014; Crosby et al., 2018). Inflammation is one of the key 

signatures of microbiome-linked pathologies, and early-life microbial colonization plays a vital role in 

maintaining immune homeostasis by modulating the development of the immune system. Similarly, germ-

free mice have fewer mucosal-associated invariant T cells (MAIT) than specific-pathogen-free mice 

(Constantinides et al., 2019). When germ-free mice were colonized during early life with a cocktail of 

commensal bacteria from wild-type mice, it restored the number of MAITs, but this was not the case in adult 

mice (Constantinides et al., 2019). These studies suggest that immune imprinting occurs when introducing 

microbiota during the neonatal period but not after. Thus, the neonatal period is a crucial time window to 

intervene in the gut microbiota to maturate immune functions and ensure a healthy gut environment later 

in life. 

1.2.3 Early life microbiota and gut epithelial barrier functions   

In addition to priming balanced immune responses, gut microbiota also plays a vital role in maintaining gut 

epithelial barrier functions (Gonzalez-Gonzalez et al., 2018; Ghosh et al., 2021). Appropriate regulation of 

barrier functions is another aspect of gut health (Bischoff, 2011). High intestinal permeability is also 
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common in preterm infants due to their immature gut microbiota composition (Ma et al., 2022). 

However, Bifidobacterium breve and human milk oligosaccharides decrease intestinal permeability in 

preterm infants (Ma et al., 2022a). A recent study in piglets revealed that antibiotic treatments for diarrhea 

decrease gut permeability (Ma et al., 2022b). In this study, administration of ampicillin for three days 

decreased the relative expression of tight-junction and adherence-junction proteins in the colons of newborn 

piglets. The expression of these proteins increases following fecal microbial transplantation (FMT), 

indicating that microbial restoration improves barrier functions. In neonatal calves, feeding colostrum 

improves the gut barrier integrity compared to feeding formula by increasing the expression of tight-junction 

proteins at four days of age (Ghaffari et al., 2021). Feeding colostrum has also been shown to increase the 

colonization of beneficial bacteria such as Lactobacillus and Bifidobacterium in the GIT of newborn calves 

(Malmuthuge and Guan, 2017; Fischer et al., 2018; Song et al., 2019). However, knowledge is lacking 

regarding whether the beneficial changes in the gut microbial community due to colostrum feeding play a 

role in the improved barrier functions of calves. Neonatal calf diarrhea is one of the major concerns in dairy 

calves, as it increases gut permeability (Araujo et al., 2015) and alters gut microbial community (Kim et al., 

2021). Recently, FMT has been used to minimize neonatal calf diarrhea and to improve gut health in pre-

weaned calves (Kim et al., 2021; Rosa et al., 2021; Slanzon et al., 2022). These studies reported that FMT 

successfully altered gut microbial community. However, the impact of FMT on intestinal barrier functions 

and gut permeability is yet to be understood. The use of probiotic supplements in dairy calves has been 

shown to increase the expression of tight-junction gene zonula occludens-1 and occludin, while increasing 

microbial diversity (Wu et al., 2021). Therefore, studying the impact of FMT on gut barrier functions will 

explain the modulatory mechanisms behind reduced diarrhea in dairy calves during FMT. However, the use 

of microbial intervention in newborn beef calves have not been studied due to the limited understanding of 

microbial colonization and difficulties in sample collection from newborn beef calves. These studies highlight 

the importance of beneficial early-life microbiota in regulating intestinal permeability. A well-maintained gut 

barrier is crucial for neonates to maintain gut homeostasis. Thus, it is evident that early-life microbiota plays 

a vital role in maintaining gut health by modulating immune functions, cellular populations, and barrier 

integrity.  
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1.3 Profiling microbial community using low microbial biomass samples   

Low microbial biomass samples can be defined as biological samples containing a limited amount of 

microbial materials to profile microbial communities, such as oral, nasopharyngeal, and skin swabs, tissue 

and mucosal samples, and bodily fluids (Kennedy et al., 2023). Swabbing is one of the non-invasive 

sampling techniques that can perform, transport, and store with less complexity (Reyman et al., 2019; 

Radhakrishnan et al., 2023). Moreover, it allows repetitive sampling of the same animal to study the 

dynamics of microbial communities over a period. A study comparing human gut microbial composition 

between rectal swabs and fecal samples reported a higher correlation between the two sampling methods 

(Radhakrishnan et al., 2023), suggesting the potential of using swabs for sample collection. The collection 

of fecal samples can be challenging in newborns due to the availability of fecal samples immediately after 

birth (Reyman et al., 2019). Thus, swab samples are one of the ways to profile the microbial community. 

However, there are limitations when profiling low microbial biomass samples (swab samples) due to the 

low amount of microbial materials. 

1.3.1 Importance of studying microbial community using low microbial biomass samples   

Rapid advancements in next-generation sequencing (NGS) have improved the knowledge of microbial 

community composition. However, the accuracy of the data generated through NGS and user-friendly 

bioinformatics tools has generated debatable outcomes. For example, the presence of microbiota in the 

fetus and intrauterine environment during a healthy pregnancy is highly debatable in microbiome research 

(Lauder et al., 2016; Lim et al., 2018; Malmuthuge and Griebel, 2018; De Goffau et al., 2019; Guzman et 

al., 2020; Rackaityte et al., 2020; Stinson et al., 2020; Kennedy et al., 2021; Mishra et al., 2021). Previous 

studies conducted to identify fetal microbial community in C-section and vaginal-delivered fetuses 

(terminated pregnancies) identified a low number of microbial taxa by sequencing the 16S rRNA gene 

(Guzman et al., 2020; Rackaityte et al., 2020; Stinson et al., 2020; Mishra et al., 2021). For example, one 

of the studies reported that 18 bacterial taxa were enriched in the vaginally-delivered terminated fetuses 

during the second trimester compared to negative controls (Rackaityte et al., 2020). Sequencing of the16S 

rRNA gene to profile microbiota across fetal organs detected the low number of microbial taxa in the gut, 

skin, placenta, and lungs after elective termination of pregnancy during the second trimester (Mishra et al., 

2021). In contrast, sequencing of fetal meconium samples collected by swabbing during cesarean surgeries 
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before delivery confirmed contamination taxa in negative controls (Kennedy et al., 2021). De Goffau and 

colleagues (2021) reanalyzed the fetal data from a study conducted by Rackaityte and colleagues (2020) 

and reported that Micrococcus luteus identified in fetal samples were falsely assigned to fetal samples due 

to the batch effect. Rackaityte and colleagues (2020) used two different batches of samples by changing 

the sampling procedure and including negative control only in the second batch. During bioinformatics data 

analysis using decontam to remove contaminations cannot distinguish Micrococcus from fetal samples in 

batch 1. However, Micrococcus was not present in batch 2 fetal samples after removal of contaminations 

using decontam due to the inclusion of negative controls in batch 2, suggesting the importance of including 

controls in low microbial biomass studies. A recent study conducted by Kennedy and colleagues (2023) 

clearly explained that the microbial signals detected in fetus samples resulted from contaminations during 

sampling, nucleic acid extraction, and sequencing. In addition to humans, Malmuthuge and Griebel (2018) 

confirmed the in-utero sterility of the ovine fetus during the third trimester of pregnancy when using 

appropriate controls and proper sample collection methods. All these studies suggest that contaminations 

and cross-contaminations are challenges of sequence-based microbiome research, especially when using 

samples with low or no microbial biomass. Early-life microbial colonization affects gut health, barrier 

functions, and immune imprinting (Nakandalage et al., 2023). The generation of accurate knowledge on the 

early life microbial colonization process is important for the development of microbial interventional tools to 

overcome the lifelong consequences of microbial-linked pathologies and maintain overall host health. 

1.3.2 Pitfalls in profiling microbial community using low microbial biomass samples 

When using low microbial biomass samples, contaminations originating during microbial profiling outweigh 

the true microbial signals compared to high microbial biomass samples (Kennedy et al., 2023). 

Contaminations can occur from the beginning of sample collection until data analysis. Previous studies 

reported that contaminations originated through samples, laboratory environments, laboratory reagents 

including PCR master mixes, nucleic acid extraction kits, plastic consumables, and researchers (Table 1.1). 

For example, a study conducted to identify the contaminations in commonly used DNA extraction kits 

reported that microbial signals could be detected in all DNA extraction kits used in the study and the 

microbial profiles varied between different kits and batches (Salter et al., 2014). Another study identified 88 

bacterial genera when using molecular-grade water to extract DNA (Glassing et al., 2016). Moreover, cross-
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contaminations can occur through tag switching (barcode cross-contamination), index hopping (mismatch 

indexing reads to sequencing reads), residual sequences from previous sequencing runs, and genetic 

materials from other samples during sample processing (Carlsen et al., 2012; Eisenhofer et al., 2018; 

Larsson et al., 2018). These studies suggest that microbial communities are misrepresented by these 

potential contaminations, especially when microbial DNA is low in the samples. The high sensitivity of NGS 

technologies helps to detect contamination and/or cross contaminations, if include proper controls in 

microbial profiling.  

Furthermore, artificial sequences generated through sequencing runs and data analysis pipelines 

lead to misinterpretation of microbial community compositions. Different algorithms and plugins in 

bioinformatics platforms have been used to remove contaminations from microbial data. For example, 

DADA2, deblur, cutadapt, trimmomatic are a few different bioinformatics tools used to remove sequencing 

errors, primers, and barcode sequences using different algorithms (Chen et al., 2014; Callahan et al., 2016). 

However, the use of default settings in computational quality control tools (e.g., denoising, quality filtering) 

leads to false positive interpretations in low or no-microbial biomass research (Davis et al., 2018), 

suggesting the importance of optimization of bioinformatics tools to obtain credible outcomes. A study 

conducted by Malmuthuge and Griebel (2018) used a length-based quality filtering step to remove non-

specific sequences from the 16S amplicon sequence data when the use of gel-based amplicon purification 

was not available. Authors identified cross contaminations in positive controls and contaminated taxa in the 

fetal intestine in the absence of the length-based quality filtering step (Malmuthuge and Griebel, 2018). This 

study suggests that the data analysis pipeline itself can introduce contaminations during microbial 

community profiling. Rai and colleagues (2021) reported that different truncation lengths during denoising 

affect the downstream analysis. Their findings revealed that removing low-quality sequences influences the 

sample size, which affects the statistical power during downstream analysis (Rai et al., 2021). Another 

study compared microbial diversity and composition with and without a denoising step (denoising removed 

noises identified during pyrosequencing and qPCR) reported reduced accuracy of alpha diversity analysis 

in the absence of denoising (Reeder and Knight, 2010). Thus, appropriate data analysis pipelines are 

required to maintain the credibility of data obtained from low microbial biomass samples. This created a 
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need to optimize bioinformatics tools based on the quality of the data set to identify real/true microbial 

communities beyond the use of appropriate controls to identify contaminations.  

1.3.3 Mitigating the challenges in profiling microbial community using low microbial biomass 

samples 

Contaminations can be controlled throughout the microbial profiling process including; 1) during sampling, 

2) amplicon generation, 3) sequencing, and 4) data analysis.  

1.3.3.1 Preventing contaminations during sampling  

Careful sample collection and processing is one of the ways to overcome contaminations and biases in low 

microbial biomass samples. Sample collection can introduce contaminations from the environment, 

laboratory surfaces, and humans. These contaminations can be minimized by performing proper sample 

collection and handling. For example, a study conducted to profile microbiota in ovine fetuses during the 

third trimester of pregnancy maintained sterility during sampling (Malmuthuge and Griebel, 2018). In this 

study, researchers maintained a sterile surgical field, autoclaved surgical instruments, immediate sample 

collections after opening fetal membranes, avoid contaminations from the skin, and minimized human 

microbiota contamination by minimizing the number of people involved in the surgical procedure, wearing 

sterile masks, gloves, hair covers and gowns (Malmuthuge and Griebel, 2018). These strict guidelines 

during sample collection and handling helped the authors confirm fetal gut sterility during the third trimester 

of pregnancy (Malmuthuge and Griebel, 2018). In addition, Eisonhofer and colleagues (2019) suggested 

the importance of using the same personnel to collect the samples, the same reagents and equipment to 

perform laboratory experiments, wearing protective clothes and equipment to minimize human 

contamination, and use of reagents and consumables with the lowest level of contaminations during 

sampling (Eisenhofer et al., 2019).  

1.3.3.2 Preventing contaminations during amplicon preparation 

The use of proper controls during amplicon preparation to identify contaminations and cross-contaminations 

can reduce the generation of controversial findings in microbial research. Previous studies that identified 

microbial communities in no/low microbial biomass samples did not report the use of appropriate controls 

(Satokari et al., 2009; Aagaard et al., 2014; Doyle et al., 2014; Collado et al., 2016; Nagpal et al., 2016; 

Zhu et al., 2018). However, the use of negative controls and blanks during the sequencing of no or low 
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microbial biomass samples facilitated the identification of contaminated microbial taxa from commercial 

DNA extraction kits, molecular grade reagents, and the environment (Kennedy et al., 2023). Lauder and 

colleagues (2016) reported that the microbial profiles of placental samples cannot be distinguished from 

those of blank controls. They found that contaminations introduced during DNA purification could not be 

separated from placental samples (Lauder et al., 2016). Glassing and colleagues (2016) reported 181 

contaminated bacterial genera in molecular-grade reagents. These studies clearly suggest the importance 

of incorporating appropriate controls in all steps of microbial profiling. As a result, recent studies used 

various types of controls to monitor the contaminations and cross-contaminations, such as sample blanks, 

DNA extraction blanks, no template controls during amplification, and a known bacterial community as a 

positive control (Eisenhofer et al., 2019). Negative controls help to monitor background contamination levels 

and understand the sources of contaminations. This helps remove contaminations before downstream data 

analysis. For instance, the use of negative controls in studies with low microbial biomass samples detected 

60 microbial taxa across multiple studies (Eisenhofer et al., 2019). The detected microbial taxa in negative 

controls may depend on the nucleic acid extraction kit, molecular grade reagents, and sequencing methods. 

Cross-contamination of biological samples can be detected by including positive controls. Researchers use 

mock communities or serial dilution of known bacterial taxa as positive controls to identify cross-

contaminations (Minich et al., 2018; Eisenhofer et al., 2019). These controls must run alongside biological 

samples to detect contaminations and cross-contaminations.  

1.3.3.3 Preventing contaminations during sequencing 

During sequencing, hundreds of libraries are sequenced parallelly on one lane of a flow cell, which can lead 

to cross-library contaminations during high-throughput next-generation sequencing (Larsson et al., 2018). 

Cross-contamination from previous sequencing runs is another way to introduce contamination during 

sequencing (Eisenhofer et al., 2018). Maintenance wash in between sequencing runs should be performed 

to avoid run-to-run cross contaminations in sequencing machines (Eisenhofer et al., 2018). Barcode 

sequencing errors and index hopping (mismatch of index reads to sequencing reads) are other ways of 

cross-contamination on the sequencing instrument (Larsson et al., 2018). The use of appropriate controls 

(negative and positive controls) that went through the amplicon generation step at the same time as 
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samples allow for identifying cross contaminations and contaminations from sequencing reagents and flow 

cells (Eisenhofer et al., 2018).  

1.3.3.4 Preventing contaminations during data analysis 

Data analysis pipelines and bioinformatics platforms also influence the outcomes of microbial profiling. 

Comparison of biological samples with controls helps to determine the contaminated microbial taxa 

(Eisenhofer et al., 2019). Saffarian and colleagues (2019) reported that removal of contamination taxa 

identified in previous studies during bioinformatics analysis without using proper controls to identify 

contaminations in the present study might lead to misinterpretation of microbial communities. These finding 

suggest the importance of using appropriate controls to identify contaminations in each study. The 

denoising step in the QIIME2 bioinformatics pipeline helps to remove low-quality raw sequences (barcodes, 

primer dimers, chimeras, PCR errors and sequencing errors) using DADA2 or deblur denoising algorithms 

(Hall and Beiko, 2018). However, the denoising step cannot be used to remove contaminated taxa. 

Therefore, quality filtering steps should be customized based on the quality of the data set after sequencing. 

For example, ASVs/OTUs identified in no template controls can be filtered out by quality filtering following 

denoising to remove contaminations from reagents.  

In addition, Decontam is an open-source R package used to identify contaminations in amplicon and 

metagenomics sequence data by using a statistical approach (Davis et al., 2018). Decontam identifies and 

removes contaminated ASVs/OTUs/taxa present in negative controls based on the relative abundance and 

frequency. Decontam use two types of metadata (1) DNA concentration and (2) sequenced negative control 

samples to remove contaminations (Davis et al., 2018). These data allow decontam to perform statistical 

analyses and identify contaminations based on the prevalence and frequency of microbial samples in 

negative controls. However, decontam neither recognizes the presence of contamination when 

contaminations present in few samples nor removes cross-contaminations (Davis et al., 2018). Decontam 

identify contaminations based on pattern of samples. Therefore, decontam is less sensitive to detecting 

contaminations presence in low number of samples (Davis et al., 2018), suggesting that decontam may not 

applicable for low microbial biomass samples.  
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1.4 Molecular techniques to profile microbiota  

1.4.1 Methods to profile microbial communities  

Currently, there are a number of tools available to profile microbiota. Culturing of bacteria and microscopic 

evaluations were the first methods employed to report microbes in an ecosystem (Lagier et al., 2015). 

These microbial detection methods have become the gold standard for detecting microbiota for many years 

(Fraher et al., 2012). Biochemical characterization of novel microbes can fully understand if they can grow 

in a culture media and study in vitro (Fraher et al., 2012). This is one of the main advantages of culture-

based methods, which is important to understand the characteristics of novel microbes. To date, culture-

based approaches characterized less than 30% of microbiota (Fraher et al., 2012). The limited 

understanding of the growth conditions of anaerobic microbes negatively affects the development of proper 

culture media to grow them in vitro (Fraher et al., 2012). Thus, culture-based approaches can generate only 

a limited knowledge of the GIT microbiota, which is dominated by anaerobes. Culture-based microbial 

identification can also be time-consuming.  

Genetic materials of microbes have been used to profile microbial communities in culture-independent 

molecular-based microbial profiling approaches. The use of genetic materials has provided the opportunity 

for the rapid identification of both culturable and non-culturable organisms. There are a number of ways to 

profile microbial communities using culture-independent approaches (Table 1.2). For example, denaturing 

gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP), 

fluorescence in situ hybridization (FISH), and DNA microarrays were used as low-throughput microbial 

profiling techniques in the past (Fraher et al., 2012; Strathdee and Free, 2013). DGGE has provided 

valuable information on microbial communities by separating short to medium-length DNA fragments 

(Fraher et al., 2012; Strathdee and Free, 2013). However, the use of the DGGE technique in microbial 

profiling is limited due to the less reproducibility, labor intensiveness, and the availability of limited sequence 

information (Fraher et al., 2012; Strathdee and Free, 2013). T-RFLP has the same limitation when profiling 

the microbial community, even if it provides a quantitative comparison through visualization of DNA 

fragments on a gel by fluorescent labeling (Fraher et al., 2012). Probe hybridization techniques, such as 

FISH and DNA microarrays use fluorescent-labeled oligonucleotide probes to target bacterial DNA 

sequences, which allows phylogenetic identification of species (Fraher et al., 2012). However, these 
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techniques cannot be used to target unknown bacterial species (probes designed to target specific bacterial 

species) and there is limited detection of low-abundance species. Even though these techniques improved 

the knowledge of microbiota colonization in different ecosystems, limitations including no phylogenetic 

identification, inability to identify unknown species, and difficulties in identifying low abundance species limit 

the use of these techniques for the characterization of microbial communities.  

The first-generation sequencing approach, Sanger sequencing has been widely used until the 90th 

century to identify cultured and uncultured bacteria with phylogenetic relationships using chain termination 

by dideoxynucleotides (Jamuar et al., 2016; Mardis, 2017). However, due to the high cost and labor-

intensive process of Sanger sequencing, next-generation sequencing (NGS) has been introduced to reduce 

the cost and enhance the output of sequencing. NGS techniques generate high-throughput data from a 

large number of samples in parallel within a short period. Illumina, 454 Pyrosequencing, and SOLiD are 

commercially available next-generation sequencing technologies (Rothberg and Leamon, 2008; Ellermann 

et al., 2017). Among NGS techniques, 454 Pyrosequencing was the first available NGS technique to profile 

microbiota (Rothberg and Leamon, 2008; Bleidorn, 2017). It can sequence a higher number of sequences 

(500 million bases) in a single run compared to Sanger sequencing (Fraher et al., 2012). However, the high 

cost and high error rates are limitations of 454 pyrosequencing (Fraher et al., 2012; Razali et al., 2017). 

Illumina currently dominates microbial sequencing research due to the higher read depth and coverage 

compared to other sequencing techniques. Illumina sequencing allows the generation of high throughput 

read counts with lower cost and error rates (Luo et al., 2012; Bleidorn, 2017).  

Amplicon and metagenomics sequencing are used widely to profile microbial communities depending 

on the research objectives. Amplicon sequencing uses marker genes to profile microbiota. The 16S rRNA 

gene is mainly used to profile bacteria and archaea communities, while internal transcribed spacer (ITS) is 

used to profile fungal communities (Nilsson et al., 2009; Johnson et al., 2019). The presence of the 16S 

rRNA marker gene in all bacteria species provides an opportunity to use it as a universal marker gene 

(Wang et al., 2015). In contrast, metagenomics sequencing of total DNA extracted from a microbial 

community generates knowledge of both taxonomic and functional compositions (Munshi and Sharma, 

2018). The functionality of a microbial community is explained as the abundance of genes and functions 

(Gilliland et al., 2012; Fraher et al., 2012).  Metagenomics sequencing can be costly and contaminated by 



 

14 
 

host and environmental DNA. Moreover, metagenomics sequencing requires a higher amount of DNA as 

the starting material (Quince et al., 2017; Knight et al., 2018). Thus, metagenomics shotgun sequencing is 

not applicable for samples that are low in microbial biomass or degraded (Quince et al., 2017; Knight et al., 

2018). Metatranscriptomics sequencing can also be used to assess the functionality of a microbial 

community. This approach uses RNA extracted from a microbial community and assesses the expression 

of microbial genes (Jovel et al., 2022).  

1.4.2 Targeting hypervariable regions of the 16S rRNA marker gene to profile microbial 

communities  

The 16S rRNA marker gene is around 1600 bp long and phylogenetically conserved across all prokaryotic 

species (Bharti and Grimm, 2021). Thus, the 16S rRNA marker gene has been considered the gold 

standard marker gene to study microbial ecology. It consists of nine hypervariable regions (V1-V9) with 

conserved regions in between the variable regions, which can be used to design primers to target 

phylogenetically different taxa (Chakravorty et al., 2007; Abellan-Schneyder et al., 2021). However, all 

hypervariable regions have not displayed the same sensitivity and resolution in terms of profiling microbiota 

(Yang et al., 2016). Thus, no single hypervariable region can be used to distinguish among all bacterial 

species. Besides, one hypervariable region may not be suitable to profile microbial communities from 

various ecosystems due to the distinct microbial communities among different ecosystems  

Taxonomic classification varies when targeting different hypervariable regions using different primer 

sets. One of the studies conducted by Chakravorty and colleagues (2007) characterized 110 pathogenic 

bacterial species using primer sets to target V1-V8 hypervariable regions. They revealed that the V1 region 

of the 16S rRNA gene differentiated Staphylococcus spp. However, V2 and V3 regions were suitable to 

distinguish all pathogenic bacterial species to genus level except, species belonging to Enterobacteriaceae 

(Chakravorty et al., 2007). In addition, the taxonomic resolutions were lower in V4, V5, V7, and V8 

hypervariable regions up to genus or species level (Chakravorty et al., 2007). This suggests that primers 

targeting different hypervariable regions have varying capacities to profile bacterial communities. Moreover, 

primer sets covering more than one variable region in the 16S rRNA marker gene can improve the resolution 

of microbiota profiling (Abellan-Schneyder et al., 2021). The fecal bacterial community composition of the 

same individual was distinct when sequenced using different primer sets. For instance, the use of seven 
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different primer pairs targeting seven hypervariable regions (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and 

V7-V9) of the 16S rRNA gene to profile human fecal microbiota revealed that Verrucomicrobia was only 

detected when using V3-V4, V4, V6-V8, and V7-V9 primers, while Proteobacteria and Firmicutes phyla can 

be identified from all primer pairs (Abellan-Schneyder et al., 2021). The presence and absence of phyla 

Actinobacteria, Tenericutes, and Lentisphaerae differed across hypervariable regions (Abellan-Schneyder 

et al., 2021), confirming that all bacterial phyla cannot be detected using a single hypervariable region of 

the 16S rRNA gene. Moreover, the V4-V5 primer pair displayed a low abundance of Bacteroides (Abellan-

Schneyder et al., 2021). This dissimilarity between different hypervariable regions of the 16S rRNA gene is 

due to the different resolutions of different hypervariable regions to profile bacterial taxa. For example, some 

bacterial taxa are unclassified at the genus level when using some of the 16S rRNA hypervariable regions, 

whereas the same bacterial taxa can be classified when using different hypervariable regions of the 16S 

rRNA gene. This is one of the reasons for the observed higher variability of microbial taxa between different 

regions of the 16S rRNA gene (Abellan-Schneyder et al., 2021). In Silico, an assessment of the theoretical 

coverage of bacterial genera using the Silva database revealed a higher coverage in V1-V2, V1-V3, and 

V3-V4 compared to V6-V8 and V7-V9 regions (Abellan-Schneyder et al., 2021). These results suggest that 

the choice of primer pairs targeting the hypervariable region of the 16S rRNA gene is one of the important 

factors to consider in microbiota profiling.  

The size of the amplicon (amplicon length) also influences the resolution of taxonomic classification. A 

higher amplicon length in microbial profiling leads to generating higher taxonomic resolution of microbial 

community composition. For example, a study comparing the microbial profiles of the human gut generated 

using full-length (V1-V9) and short-read (V3-V4) amplicons reported a higher resolution at the species level 

when using full-length amplicon sequencing (Matsuo et al., 2021). Second-generation sequencing (Illumina 

sequencing) provides the opportunity to sequence amplicon lengths up to 600 bp using Illumina MiSeq 

sequencing technology. However, third-generation sequencing enables to sequence of full-length 16S 

rRNA genes using Oxford Nanopore MinION and PacBIOs Sequel (Bharti and Grimm, 2021). This allows 

the sequence up to 10,000 bp long-length reads in a short time (Bharti and Grimm, 2021). However, 

relatively higher error rates, high costs, limited applicability for high throughput techniques, and less 

standardization of protocols and data analysis pipelines are major drawbacks in third-generation 
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sequencing (Bharti and Grimm, 2021). On the other hand, 16S rRNA gene amplicon sequencing is more 

compatible with samples contaminated with host (tissue samples) and low microbial biomass (Knight et al., 

2018). 

1.4.3 Choice of genetic materials to profile microbial communities 

Microbial community composition depends on the type of genetic material used to generate amplicons. 

Amplicon sequencing-based microbial profiling mainly relies on DNA as the genetic material to profile 

microbiota in an ecosystem. However, DNA-based diversity profiling identifies the total microbial community 

of a niche, including dead, active, and dormant microbial cells (De Vrieze et al., 2018; Salgar-Chaparro and 

Machuca, 2019; Wang et al., 2019). Dead and dormant microbial cells lead to an overestimation of active 

microbial communities (Wang et al., 2019). Previous studies reported that not all microbiota in a community 

are active and the active microbes cannot be differentiated through DNA-based approaches (Salgar-

Chaparro and Machuca, 2019). In contrast, RNA-based amplicon sequencing can only profile active 

microbes in a community (De Vrieze et al., 2018). Previous studies comparing DNA and RNA-based 

bacterial density and diversity revealed significant differences between total and active microbial 

communities (Li et al., 2016; De Vrieze et al., 2018; Malmuthuge et al., 2019; Salgar-Chaparro and 

Machuca, 2019). One of the studies comparing the microbiota in oil production facilities revealed significant 

differences in the microbial community between DNA and RNA-based diversity profiling (Salgar-Chaparro 

and Machuca, 2019). Authors reported that the richness of the microbial community was higher in RNA-

based profiling compared to DNA-based profiling (Salgar-Chaparro and Machuca, 2019). A previous study 

conducted by Li and colleagues (2016), compared the rumen microbial community composition of beef 

steers using DNA and RNA-amplicon sequencing and revealed a higher alpha diversity in RNA-based 

amplicon sequencing. Another study conducted by Malmuthuge and colleagues (2019) quantified rumen 

bacterial densities from birth to six weeks of life using DNA and RNA and reported higher rumen bacterial 

densities in DNA-based approaches compared to RNA-based approaches from day zero to six weeks in 

dairy calves (Malmuthuge et al., 2019). Another study reported that archaea communities of anaerobic 

digestion plants showed a significantly higher alpha diversity on DNA-based sequencing compared with 

RNA-based sequencing (De Vrieze et al., 2018). Similarly, beta diversity analysis based on a weighted 

UniFrac distance matrix reported that archaea communities between DNA and RNA-based sequencing 
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were significantly different (De Vrieze et al., 2018), suggesting the difference in archaea community 

composition. However, they did not observe significant differences in diversity for the bacterial community 

between DNA and RNA-based sequencing. Moreover, this study (De Vrieze et al., 2018) did not mention 

information regarding the PERMANOVA analysis (e.g., R2) to show how much genetic material contributed 

to the separation observed in beta diversity analysis. In addition, the relative abundance of some rumen 

microbial families (e.g., Streptococcaceae) was higher in DNA-based amplicon sequencing, while the 

relative abundance of some bacterial families (e.g., Desulfovibrionaceae, Elusimicrobiaceae and 

Sphaerochaetaceae) were higher in RNA-based amplicon sequencing (Li et al., 2016), suggesting that 

changes in microbial community composition among DNA and RNA-based microbial profiling impact on 

microbial diversity. In addition, some bacterial families have not been detected in DNA-based sequencing 

(Li et al., 2016). For example, two bacterial phyla (Elusimicrobia and Verrucomicrobia) and one bacterial 

family (Elusimicrobiaceae) were only identified in RNA-based sequencing (Li et al., 2016). The difference 

between DNA and RNA-based microbial profiling in terms of diversity might be due to the identification of 

dead microbial cells in DNA-based profiling, which masks the lower abundant active microbial cells. This 

difference highlights the importance of using RNA-based approaches to identify active microbial 

communities in an ecosystem. Even though conducting the RNA extraction procedures is more laborious 

due to the susceptibility to degradation, RNA-based approaches generate a better understanding of active 

microbiota (Salgar-Chaparro and Machuca, 2019). In addition to the identification of dead and dormant 

microbial cells by DNA-based profiling, microbial diversity, and community composition are overestimated 

by DNA-based approaches due to the presence of more than one 16S rRNA gene copy in some bacterial 

genomes (Kembel et al., 2012; Angly et al., 2014; Louca et al., 2018). However, the difference between 

total (DNA-based) and active (RNA-based) microbial communities in newborn beef calves has not been 

well studied previously using low microbial biomass samples.  

1.4.4 Microbial profiling and bioinformatics tools  

The introduction of NGS technologies not only lead to studying various microbial communities but also 

encouraged researchers to develop novel and user-friendly microbial analysis platforms to summarize and 

interpret data (Callahan et al., 2016). High throughput data should be handled properly to generate credible 

outcomes from microbial studies. There are many open-source software for microbiome data analysis, 
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including Mothur, Quantitative Insights into Microbial Ecology (QIIME2; https://QIIME2.org), and phyloseq 

(Schloss et al., 2009; Reeder and Knight, 2010; Golob et al., 2017; McMurdie and Holmes, 2013; Karstens 

et al., 2018; Bolyen et al., 2019). These bioinformatics tools convert millions of sequencing reads into 

operational taxonomic units (OTUs) or ASVs, followed by taxonomic classifications (Karstens et al., 2018). 

A combination of bioinformatics tools creates a bioinformatics pipeline to convert raw sequences into 

microbial profiles. However, a default workflow of developers might not fit all microbial data analysis.  

Bioinformatics tool is one of the factors that determine the outcomes of the microbiota surveys. For 

example, one of the recent studies used different bioinformatics pipelines to assess how each 

bioinformatics pipeline can affect biological conclusions (Siegwald et al., 2019). Interestingly, authors 

identified significant differences in microbial community richness and diversity when comparing Mothur and 

Qiime bioinformatics pipelines (Siegwald et al., 2019). For example, lower richness and diversity were 

observed when using mothur compared to QIIME2 (Siegwald et al., 2019). Another study reported that 

bioinformatics platforms and reference databases affect diversity analysis of microbial communities (Golob 

et al., 2017). They found that in silico generated bacterial community analysis using the QIIME2 

bioinformatics platform correctly classified 12% of organisms when using greengenes database, while the 

Silva database correctly classified only 8.8% of organisms (Golob et al., 2017). Marizzoni and colleagues 

(2020) compared, four commonly used user-friendly bioinformatics pipelines (QIIME2, Bioconductor, 

UPARSE, and mothur) using human fecal samples to evaluate the impact of bioinformatics pipelines on the 

taxonomic classification. Authors reported that taxonomic assignment at phylum and genus level was 

similar across all the pipelines while showing differences in terms of relative abundance for all phyla 

identified (Marizzoni et al., 2020). Among these microbial data analysis software, QIIME2 provides an 

interactive platform to conduct data analysis, visualization, and statistical analysis through one open-source 

software package (Mohsen et al., 2019).  Mothur can only be used to perform data analysis but users have 

to rely on other software (eg: R statistical software package) to visualize data (Bolyen et al., 2019). Phyloseq 

tools conduct statistical analysis of microbial data and generate visualizations (Bolyen et al., 2019). Thus, 

Phyloseq can be used to analyze outputs generated from QIIME2 and Mothur.   

Due to its user-friendly nature (Caporaso et al., 2010; Bolyen et al., 2019), QIIME2 has been widely 

used for microbiota analysis in a wide range of research areas. It contains a series of plugins (Figure 1.1), 

https://qiime2.org/
https://www.frontiersin.org/people/u/833824
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including demultiplex (demux), denoising (dada2/deblur), generation of the feature table, and taxonomic 

classification (feature-classifier), and diversity analysis (diversity) to convert raw sequencing data into 

graphics-based results (Mohsen et al., 2019). For example, the “q2-demux” plugin in QIIME2 allows the 

creation of an interactive sequence quality plot to visualize the quality of sequencing data (Hall and Beiko, 

2018). The interactive sequence quality plot is a box plot that visualizes the quality of each base position 

(Hall and Beiko, 2018). These interactive quality plots are used in determining the truncation length of 

sequencing reads in subsequent denoising analysis (Hall and Beiko, 2018). However, the credibility of 

results depends on the use of different plugins according to the nature of the experiment. 

Among different plugins available in the QIIME2 software package, denoising is one of the most 

important and time-consuming steps, which can determine the outcomes of microbial community analysis. 

Denoising in computational bioinformatics is used to remove amplicon sequencing errors and aid to identify 

true biological signals (Callahan et al., 2016). Previous studies showed that denoising increases the 

accuracy of alpha diversity analysis compared to filtering data without using denoising (Reeder and Knight, 

2010). The denoising step includes quality filtering, removal of chimera, and joining the paired-end reads 

(Callahan et al., 2016; Hall and Beiko, 2018; Estaki et al., 2020). DADA2 and Deblur are the two plugins 

used in QIIME2 to remove low-quality sequencing reads (sequencing errors, barcodes/tags, PCR errors, 

primer bias, sequencing depth bias, and chimeras) based on algorithms (Callahan et al., 2016; Amir et al., 

2017). DADA2 denoiser develops amplicon sequence variants (ASVs) as their exact sequence variant, in 

contrast, deblur name these exact sequence variants as sub-operational taxonomic units (sOTUs) (Rosen 

et al., 2012; Callahan et al., 2017). ASVs develop in DADA2 describe features (taxa) in the microbial world 

with higher accuracy compared to sOTUs generated by clustering the same features into one group 

(Callahan et al., 2017). For example, one of the studies conducted to compare bioinformatics pipelines 

(DADA2, QIIME2-Deblur, and USEARCH-UNOISE3) reported the highest sensitivity in DADA2 compared 

to other denoising methods (Prodan et al., 2020). The authors reported that QIIME-uclust produced a large 

number of false positive OTUs and incorrect alpha diversity measures (Prodan et al., 2020). In addition, 

authors identified USEARCH-UNOISE3 shows the best balance between resolution and specificity 

compared to DADA2 and QIIME2-Deblur (Prodan et al., 2020). These studies suggest the importance of 
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careful selection and proper handling of computational bioinformatics tools for profiling microbial 

communities after sequencing.  

Analytical biases generate during data analysis are critical in studying microbiota. Different 

bioinformatics pipelines have different plugins and algorithms that can use to filter sequencing errors and 

artificial sequences generated (Siegwald et al., 2019). These quality-filtering approaches mainly alter the 

outcomes of microbial profiling. Current bioinformatics platforms, however, incorporate error correction 

algorithms up to single nucleotide levels that can identify true biological insight. For example, DADA2 and 

Deblur are integrated into the QIIME2 pipeline, which allows accurately profile microbial communities (Hall 

and Beiko, 2018), if handle them properly based on the nature of experiment.   

In summary, microbial profiling depends on the use of plugins available in a bioinformatics pipeline 

(Golob et al., 2017). Thus, subtle changes to parameters used in plugins can alter the outcomes of 

microbiota profiling. Use of default setting may result in false positive outcomes, which mislead the 

understanding of microbial community in an ecosystem. Hence, we suggest that customization/optimization 

of computational bioinformatics tools is crucial for the generation of credible information in microbial 

studies.  

1.5 Knowledge gaps, hypothesis and objectives  

The rapid advances in culture-independent microbial profiling techniques have improved the knowledge of 

microbiota. However, profiling of microbiota in low microbial biomass samples has become controversial 

due to the potential contaminations occur throughout the sequencing process. Although this can be 

controlled partly by the inclusion of appropriate controls, customization/optimization of bioinformatics 

pipelines will greatly enhance the outcomes of microbial profiling. In addition, the knowledge on the 

selection of genetic materials and the hypervariable region of the 16S rRNA gene to profile oral and fecal 

microbial communities in newborn beef calves using swabs samples (low microbial biomass samples) is 

limited.   

This study hypothesized that the credibility/accuracy of microbial community composition generated by 

low microbial biomass samples depends on the use of proper molecular biological techniques, choice of 

genetic materials, choice of the hypervariable region of the 16S rRNA gene, and optimization of 

bioinformatics pipelines. The objectives of this thesis were to:  
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(1)  optimize the denoising parameters in the QIIME2 bioinformatics pipeline to increase the accuracy of 

microbial community profiling in low microbial biomass samples (Chapter 2); 

(2) assess the impact of genetic materials (DNA vs. RNA) on microbial profiles generated from low microbial 

biomass samples (Chapter 3),  

(3) assess the impact of hypervariable regions of the 16S rRNA gene (V1V3 vs. V3V4) on oral and fecal 

microbial communities of newborn beef calves (Chapter 3).  
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1.7 Tables and Figures 

Table 1.1 Limitations of microbial community profiling using low microbial biomass samples. 

 

  

Limitation References 

Contaminations during sampling and laboratory environment  
Nguyen, et al., 2015 

Eisenhofer et al., 2019 

Contamination from plastic consumables Motley et al., 2014 

Contaminations from researchers/technicians   Eisenhofer et al., 2019 

Contaminations from nucleic acid extraction kits  

Weyrich et al., 2017; 

Salter et al., 2014; Lauder 

et al., 2016; Glassing et 

al., 2016   

Contaminations from PCR master mix Eisenhofer et al., 2019 

Cross contaminations from other samples  
Seitz et al., 2015; 

Ballenghien et al., 2017 

Cross contamination during sequencing run 
Seitz et al., 2015; 

Ballenghien et al., 2017 

Use of default settings/lack of customization of bioinformatics tools Eisenhofer et al., 2019 
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Table 1.2 Advantages and disadvantages of different molecular techniques to profile microbiota. 

  

Technique  Advantages  Disadvantages  References  

Denaturing Gradient Gel 

Electrophoresis (DGGE)  

Short to medium-length DNA fragments for further 

analysis, fast 

Less reproducibility, labor 

intensiveness, limited sequencing 

information  

Fraher et al., 2012; 

Strathdee and Free, 2013 

Terminal Restriction Fragment 

Length Polymorphism (T-RFLP) 

Quantitative comparison through visualization of 

DNA fragments in a gel by fluorescent labeling 

Less reproducibility, labor 

intensiveness, limited sequencing 

information  

Fraher et al., 2012 

Fluorescence In Situ Hybridization 

(FISH) 

Fluorescent-labeled oligonucleotide probes to target 

bacterial DNA sequences, phylogenetic 

identification   

Unable to identify unknown 

species (probe designed to target 

specific bacterial species)  

Fraher et al., 2012 

DNA microarrays  Phylogenetic identification, fast   
Limited detection in low 

abundance species 

Fraher et al., 2012 

454 pyrosequencing  
Phylogenetic identification, fast, identify unknown 

species     

High cost, high error rate Rothberg and Leamon, 

2008; Bleidorn, 2017 

Illumina sequencing  
High throughput read counts with lower cost and 

error rates 

Biases through PCR and 

sequencing 

Luo et al., 2012 
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 Figure 1.1 Basic workflow of Quantitative Insights into Microbial Ecology (QIIME2; https://qiime2.org) 

bioinformatics pipeline.  

 

  

https://qiime2.org/
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Chapter 2.  Customization of denoising parameters in QIIME2 bioinformatics platform to increase 

the accuracy of microbial community profiling 

2.1 Abstract  

Rapid advancements in sequencing and user-friendly bioinformatics platforms have improved the 

knowledge of microbial community composition. However, the credibility of the data generated through 

next-generation sequencing (NGS) and computational bioinformatics tools has become debatable. The use 

of appropriate approaches to control contaminations during sample processing and sequencing and the 

optimization of bioinformatics pipelines determine the accuracy of NGS-based microbial profiling. QIIME2 

is one of the most used bioinformatics pipelines that allows users to perform quality filtering, classification, 

community analysis, visualization, and statistical analysis through one open-source software package. 

Denoising in QIIME2 is one of the important plugins for quality filtering, which should be handled carefully 

to generate credible outcomes from microbial community profiling. This study aimed to optimize the 

denoising parameters to increase the accuracy of microbial community data analysis when using biological 

samples containing limited microbial materials (low-microbial biomass samples). This study used the 

V1V3 region of the 16S rRNA gene to profile the fecal microbial community of newborn beef calves using 

rectal swabs and data were analyzed using QIIME2. Use of optimized (truncation: forward – 294; reverse 

– 241; median quality score - >25) denoising parameters increased the percentage of merged read (default 

– 1%; optimized – 45%), and the number of samples used for downstream analysis compared to default 

(truncation: forward – 281; reverse – 207; mean quality score - >25) denoising parameters. Moreover, the 

optimization of denoising parameters improved microbial diversity and taxonomic classification. Our 

findings revealed that the default settings of the bioinformatics tools are not suitable for all microbial 

analyses. The customization of plugins in bioinformatics pipelines needs to be considered to obtain credible 

outcomes in microbial community assessments. 

Keywords: bioinformatics tools, denoising, microbial community composition, optimization   
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2.2 Introduction  

The identification of early-life microbial colonization in humans and other animals has gained more attention 

due to its influence on overall host health (Kogut et al., 2016; Pluske et al., 2018; Nakandalage et al., 2023). 

Profiling of microbial communities has become highly available to researchers due to the advanced next-

generation sequencing technologies (NGS) and user-friendly microbial analysis platforms (Callahan et al., 

2017). A number of methods (Mothur, Quantitative Insights into Microbial Ecology 

(QIIME2;https://qiime2.org), and phyloseq) have been introduced to perform microbial data analysis 

(Schloss et al., 2009; Reeder and Knight, 2010; McMurdie and Holmes, 2013; Bolyen et al., 2019). For 

example, Mothur is an open-source software package used to perform data analysis, however, it requires 

other software (eg: R statistical software package) to visualize data (Bolyen et al., 2019). Among these 

microbiome data analysis software, QIIME2 provides researchers with one open-source software package 

to conduct data analysis, visualization, and statistical analysis (Bolyen et al., 2019; Mohsen et al., 

2019).  Thus, QIIME2 has been widely used for microbial data analysis.  

QIIME2 contains a series of plugins (demultiplex (demux), denoising (dada2/deblur), generation of 

the feature table, and taxonomic classification (feature-classifier), and diversity analysis useful for analyzing 

raw sequencing reads and generate readable graphical outcomes (Mohsen et al., 2019). QIIME2 also 

provides the opportunity to combine different tools (e.g., cutadapt) and different options (e.g., DADA2, 

deblur) to perform the same task (Martin, 2011; Callahan et al., 2016; Amir et al., 2017; Telatin, 2021). 

However, the credibility of data generated through bioinformatics platforms depends on the use of 

appropriate plugins and parameters according to the experiment nature. For example, Bokulich and 

colleagues (2018), introduced q2-feature classifier plugin for microbial data analysis after optimizing 

previously available Qiime1 taxonomic classification methods. They optimized the commonly used 

taxonomic classification methods in Qiime1 (e.g., uclust, BLAST) to increase the species-level classification 

by removing ambiguous and null reference sequences. They also introduced QIIME2 q2-feature classifiers 

(e.g., naïve-Bayes, BLAST+, VSERACH) to accurately classify marker gene-based amplicon sequencing 

data. In addition, they also mentioned that each classifier required some degree of optimization (Bokulich 

et al., 2018), suggesting the importance of optimization of bioinformatics plugins in microbial data analysis. 

However, the optimization of one condition may not translate to another (Bokulich et al., 2018).  

https://qiime2.org/
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Denoising is one of the important and time-consuming plugins in QIIME2, which removes amplicon 

sequencing errors and chimera sequences and joins the paired-end reads (Callahan et al., 2016; Hall and 

Beiko, 2018; Estaki et al., 2020).  For example, one of the previous studies showed that the denoising tool 

increases the accuracy of alpha diversity analysis compared to quality filtering without the denoising step 

(Reeder and Knight, 2010). DADA2 and Deblur are two different plugins used in QIIME2 for denoising 

(Callahan et al., 2016; Amir et al., 2017). A comparison of different denoising plugins in a previous study 

reported that higher sensitivity in DADA2 denoiser compared to other denoising tools such as DADA2-

debluar and USERACH-UNOISE3 (Prodan et al., 2020). Moreover, DADA2 denoiser generates amplicon 

sequence variants (ASVs) as their exact sequence variant and describes microbial taxa with higher 

accuracy compared to sub-operational taxonomic units generated by Deblur (Rosen et al., 2012; Callahan 

et al., 2017). 

The use of default settings in denoising might lead to losing information on microbial community 

composition due to the lower merge reads after denoising, suggesting default settings in the DADA2 

denoising plugin might not be applicable for all microbiome analyses. The objective of this study is to 

optimize the denoising parameters to increase the accuracy of microbial community profiling in low 

microbial biomass samples.    

2.3 Materials and Methods 

2.3.1 Animal experiments and sample collection 

All experiment protocols were approved by the Livestock Care Committee at the University of Alberta (AUP-

00004183) and the University of Saskatchewan (AUP-20170015) and were conducted following the 

guidelines of the Canadian Council on Animal Care. Newborn beef calves (n=20) were obtained from the 

Rayner Dairy Research and Teaching Facility, University of Saskatchewan (Saskatoon, SK) within 24 hours 

of birth (Figure 2.1). Rectal swabs of newborn beef calves were collected after birth prior to colostrum 

feeding (Day 1-D1). Calves were allowed to suckle colostrum from cows and re-sample after 24 hours (Day 

2-D2). All samples were snap frozen in liquid nitrogen and stored at -80°C for nucleic acid extraction. 

2.3.2 Nucleic acid extraction 

Total genomic DNA from rectal swabs were extracted using the QIAamp Fast DNA stool Mini kit (Qiagen, 

USA), with a fast spin-column procedure. Briefly, swab samples were suspended in 1 mL InhibitEx buffer 
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and lysed protein using 25 µL of proteinase K. DNA was eluted using elution buffer after several cleaning 

steps following the manufacturer’s instructions. The quality and quantity of the DNA were evaluated using 

the Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific, Delaware, USA).   

2.3.3 Profiling of fecal bacterial communities in newborn beef calves using amplicon 

sequencing of the 16S rRNA gene 

Diluted DNA (50ng/µL) was used to amplify V1V3 hypervariable regions of the 16S rRNA gene using 

universal bacterial primers 9F (5’-GAGTTTGATCMTGGCTCAG-3’) and 515R (5’-

CCGCGGCKGCTGGCAC-3’) (Li et al., 2019). Amplicons were barcoded and sequenced on an Illumina 

Miseq 300 with paired-end reads at the McGill University and Genome Quebec Innovation Center (Quebec, 

Canada). 

2.3.4 Optimization of denoising parameters in QIIME2 bioinformatics platform for microbial 

profiling 

Raw sequence data were imported into QIIME2 software version 2022.2. Demultiplexed sequencing reads 

were assigned to samples using the q2-demux plugin in the QIIME2 interface and visualized the interactive 

quality plots (Figure 2.2). Based on the interactive quality plots, forward and reverse truncation lengths were 

selected as 281 bp and 207 bp, respectively to maintain a mean Phred quality score ≥25.  Feature table, 

representative sequence and denoising statistics files were generated after denoising. Denoising statistics 

were reviewed to identify the number of merged reads counts after denoising before continuing to 

downstream analysis.  

Following reviewing the denoising statics of default parameter-based denoising, they were 

optimized to maintain a minimum 20 bp long overlap between forward and reverse sequences as follows. 

Forward truncation length was increased from 281 to 294 and reverse truncation length from 207 to 241. 

Sequence quality to retain high-quality sequences was chosen as a median Phred score ≥25. 

2.3.5 Downstream analysis to profile fecal bacterial community  

Feature tables generated after denoising were subjected to three different quality filtering steps; 1. filtering 

low abundant ASVs (<0.005% of samples), 2. filtering environmental contamination (mitochondria, 

chloroplast, cyanobacteria, chloroflexi, archaea), and 3. filtering ASVs present in NTC to remove 

contaminated and artificial ASVs. Then, the remaining good-quality sequences were used to assign 
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taxonomy using the SILVA database. SILVA138-99 classifier was trained separately for V1V3 and V3V4 

primers prior to taxonomic assignment. Diversity analysis was performed using the diversity plugin in 

QIIME2. Fecal microbial diversity analysis was performed using alpha diversity indices (Shannon, Chao1, 

Faith’s phylogenetic diversity, Fisher’s index, Simpson’s index, Pielou’s evenness, and Good’s coverage) 

and beta diversity (Weighted and unweighted UniFrac Distance Matrix) within QIIME2 (2022.2 version). A 

relative abundance of identified taxonomies was generated at the phylum and genus levels.    

2.3.6 Statistical Analysis  

One-way ANOVA was conducted to compare sequencing statistics between default and optimized 

denoising parameters after testing for normality using a normal distribution test (PROC UNIVARIATE in 

SAS). Mean separation was carried out using Duncan’s multiple-range test to declare significances at P < 

0.05. Alpha diversity indices between default and optimized denoising parameters were compared using 

Kruskal Wallis non-parametric test. Weighted and unweighted UniFrac distance matrices were analyzed 

using PERMANOVA statistical test to compare microbial communities generated by two different methods. 

2.4 Results  

2.4.1 Impact of optimization of denoising parameters on sequencing statistics  

Optimization of denoising parameters increased the merge read counts nearly by 60 times (default – 

504±104; optimized – 29,312±468) and ASVs by 12 times (default – 26±5; optimized – 337±49) compared 

to default denoising parameters (Table 2.1). After optimization of denoising parameters, the percentage of 

input merge increased from 1% to 45%. Optimization of denoising parameters also increased the number 

of samples used for downstream analysis from sixteen to twenty and one to twenty on D1 and D2, 

respectively (Table 2.1). Optimization of denoising parameters increased the sequence count in each fecal 

sample compared to default denoising parameters (Table 2.2).  

2.4.2 Impact of optimization of denoising parameters on fecal bacterial diversity   

Optimization of denoising parameters increased (p< 0.0001) the Chao1 (richness) by five times, Faith’s 

phylogenetic diversity by four times and Fisher’s index by three times compared to default denoising 

parameters (Table 2.3). Optimization of denoising parameters slightly increased the Shannon (evenness 

and richness; p< 0.0001) and Simpson’s index (p = 0.0009) of the fecal bacterial community compared to 
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default denoising parameters (Table 2.3). In contrast, similar values were observed for Pielou’s evenness 

and Good’s coverage.  

Default denoising parameters only captured 46% and 34% of bacterial data based on weighted and 

unweighted UniFrac distance matrix, respectively (Figure 2.3 A). However, optimization of denoising 

parameters increased the data captured for downstream analysis up to 71% and 67% based on weighted 

and unweighted UniFrac distance matrix, respectively (Figure 2.3 B). An increase in the data representation 

with the optimized denoising parameters revealed that 53% (weighted UniFrac distance matrix) and 57% 

(unweighted UniFrac distance matrix) of the observed variations among bacterial communities could be 

explained by sampling time point (Figure 2.3B). In contrast, only 16% (weighted UniFrac distance matrix) 

and 8% (unweighted UniFrac distance matrix) of observed variation between bacterial communities could 

be explained by sampling time points when using default denoising parameters (Figure 2.3A).     

2.4.3 Impact of optimization of denoising parameters on taxonomic assessment  

Optimization of denoising parameters showed distinct taxonomic classification compared to default 

denoising parameters (Table 2.4). The use of default denoising parameters only identified four bacterial 

phyla in the fecal bacterial community of newborn beef calves. In contrast, optimization of denoising 

parameters identified 10 bacterial phyla in the fecal bacterial community of newborn beef calves. Phylum 

Proteobacteria (0.92±0.002%) dominated the fecal bacterial community when using default denoising 

parameters, while phylum Firmicutes (0.51±0.11%) was most abundant in the bacterial profiles obtained 

through optimized denoising parameters. The relative abundance of phylum Proteobacteria (0.92±0.002%) 

decreased (p< 0.05) by four times (0.22±0.06%) when using optimized denoising parameters. At the genus 

level, Sphingopyxis (0.19±0.05%), Unclassified-genera (0.19±0.07%), and Methylobacterium-

Methylorurum (0.08±0.02%) accounted for almost 50% of bacterial genera under default denoising 

parameters. However, Clostridium sensu stricto 1 (0.28±0.04%), Escherichia-Shigella (0.11±0.03%), 

and Corynebacterium (0.01±0.02%) represent around 50% of bacterial genera when using optimized 

denoising parameters. Optimization of denoising parameters increased the total number of taxa identified 

in the fecal bacterial community from 103 to 199 taxa (Table 2.4). Optimization also increased the number 

of genera identified in individual animals (Table 2.5).   
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2.5 Discussions  

Profiling of host-associated microbiota using NGS tools has gained much attention due to the vital roles 

they play in animal health. NGS-based high-throughput data needs to be analyzed using powerful 

bioinformatics pipelines. Recently, there is an increase in the field of bioinformatics to design user-friendly 

pipelines to cater high demand in analyzing NGS-based microbial data. QIIME2 is one the widely used 

open-source software to handle high-throughput microbial data (Bolyen et al., 2019; Mohsen et al., 2019). 

User-friendly plugins and interfaces in QIIME2 provide an opportunity for researchers in any field to use 

this platform to perform a microbial analysis without having prior experience (Mohsen et al., 2019). 

However, the outcomes of microbial community composition depend on these plugins. For example, 

Reeder and Knight (2010) revealed that a denoising step could reduce the diversity of microbial 

communities at the OTU level compared to that from a non-denoised (filtered data instead of denoising) 

pipeline. However, the authors reported a microbial community-dependent effect of denoising on richness. 

For example, the highest OTU richness was observed in the gut without denoising step, whereas, the skin 

microbial community had the highest richness after denoising (Reeder and Knight, 2010). This suggests 

that denoising can refine the microbial community assessments and remove the noises generated through 

sequencing. Similar to Reeder and Knight (2010), the present study revealed that optimized denoising 

parameters refined outcomes of microbial analysis. 

In the present study, we optimized denoising parameters to ensure that forward and reverse reads 

have a minimum of 20 bp overlap by choosing a median Phred score value ≥25 to truncate raw reads. The 

recommended number for overlapped base pairs between forward and reverse reads during the read merge 

step should be at least 20 bp (Hall and Beiko, 2018). Generally, truncation length for forward and reverse 

reads has decided based on the interactive sequence quality plot where the mean Phred score begins to 

drop due to low-quality sequenced reads (Callahan et al., 2016; Hall and Beiko, 2018; Callahan et al., 2019; 

Estaki et al., 2020). In the present study, the use of a mean Phred score ≥25 to select truncation length 

revealed no overlap and lower merged reads when compared to optimized denoising. Optimized denoising 

parameters created a 29 bp overlap between forward and reverse reads. The present study revealed that 

the increase in merged read counts due to optimized denoising parameters provide a sufficient number of 

reads to conduct downstream analysis.    
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A previous study conducted by Hall and Beiko (2018), provides general guidelines for conducting the 

16S rRNA data analysis using the QIIME2 bioinformatics pipeline using the microbial profiles generated 

from the gut of bumblebees. Therefore, this pipeline may not be applicable to all microbial data analyses 

and require customization depends on the experimental setup. For example, Rai and colleagues (2021) 

conducted a study with preclinical gingival samples from mice (a low microbial biomass sample) and 

reported that their limitations were low sample size and low-quality scores when profiling microbiota. The 

main challenge of the present study was to maintain an overlapped region between forward and reverse 

reads. We achieved overlapped region by defining quality of reads as median Phred score. The quality of 

sequenced reads in low microbial biomass samples is affected by background noises (Kennedy et al., 

2023). For example, a study conducted by Kennedy and colleagues (2023) compared recent studies that 

characterized microbial populations in human fetuses and reported that all detected microbial taxa are 

contaminations during sample processing, DNA extraction, and sequencing (Kennedy et al., 2023). We 

used rectal swabs to profile the bacterial community in newborn beef calves, which are low microbial 

biomass sample. As a result, we observed a decrease in base quality towards the end of the reverse read 

compared to the forward read. Choose of median Phred score over mean compensated the base quality of 

reverse reads and also created an overlapped region that increased merge reads.  

In the present study, optimization of denoising parameters not only improved denoising statistics and 

feature count but also improved the downstream analyses including, diversity (alpha and beta) and 

taxonomic classification.  Increase in the number of samples included in the analysis following the 

optimization of denoising directly influenced diversity and compositional analysis. A previous study 

conducted by Rai and colleagues (2021) reported that the use of two different truncation lengths for 

microbial data analysis resulted in distinct microbial diversities when using the same data set. Another study 

reported that the use of appropriate quality trimming leads to an increase in the number of merged reads 

passed through the quality control step when using both QIIME1 and QIIME2 bioinformatics platforms 

(Mohsen et al., 2019). For example, increasing the quality-trimming threshold from zero to eight increased 

the number of reads after merging (Mohsen et al., 2019). The findings of the present study further confirmed 

the importance of optimization of denoising parameters and bioinformatics pipelines in microbial data 

analysis.  
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2.6 Conclusions  

Denoising parameters in QIIME2 open-source software package determine the merge read counts and the 

number of samples that can be used in downstream analysis. Our study further confirmed that optimization 

of denoising parameters also enhances the accuracy of outcomes and interpretations of host-associated 

bacterial community compositions compared to default denoising parameters, especially when the 

biological sample contains low microbial biomass. These findings will help researchers to identify 

approaches to customize user-friendly bioinformatics pipelines to increase the accuracy of their results.       
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2.8 Tables and Figures 

Table 2.1 Impact of optimization of denoising parameters on denoising statistics. 

    

Statistical test - one-way ANOVA and mean separation Duncan multiple range test, a, b means with different 
superscript within same column are significantly different (p<0.05). Default – forward truncation length – 
281; reverse truncation length – 207, Optimized – forward truncation length – 294; reverse truncation length 
– 241.  
 
 
 
 
 
 
 
 
 
 
  

Parameters 

 

Default denoising Optimized denoising  P value 

Merge read count 504±104a 29,312±2,468b <0.05 

Percentage of merge reads (%) 1±0.2a 45±2b <0.05 

Mean ASVs  26±5a 337±49b <0.05 

Number of samples used for 

downstream analysis  

D1 – 16 

D2 – 01  

D1 – 20  

D2 – 20 

- 
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Table 2.2 Merged sequence counts of individual samples under default and optimized denoising 

parameters. 

Animal ID Sampling Day 

Sequence Count 

Default denoising parameters  Optimized denoising parameters 

ID-1 2 0 26093 

ID-1 1 1268 6057 

ID-2 2 26 18297 

ID-2 1 520 10792 

ID-3 2 59 19942 

ID-3 1 0 33 

ID-4 2 9 24729 

ID-4 1 2196 12059 

ID-5 2 282 22068 

ID-5 1 2140 14276 

ID-6 2 18 26972 

ID-6 1 1010 8488 

ID-7 2 28 19091 

ID-7 1 400 11302 

ID-8 2 10 18990 

ID-8 1 1041 9659 

ID-9 2 15 27959 

ID-9 1 744 9900 

ID-10 2 26 27199 

ID-10 1 1307 11346 

ID-11 2 6 17809 
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ID-11 1 270 8624 

ID-12 2 7 21462 

ID-12 1 455 10871 

ID-13 2 101 14216 

ID-13 1 642 7916 

ID-14 2 8 30758 

ID-14 1 2153 9839 

ID-15 2 8 21525 

ID-15 1 967 14398 

ID-16 2 18 24173 

ID-16 1 1388 9791 

ID-17 2 11 24237 

ID-17 1 616 12617 

ID-18 2 2 30131 

ID-18 1 134 8622 

ID-19 2 69 21892 

ID-19 1 143 17320 

ID-20 2 11 23791 

ID-20 1 158 5520 
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Table 2.3 Impact of optimization of denoising parameters on Alpha diversity indexes. 

*alpha diversity analysis conducted for both fecal sample collection days (n=40) 
Default – forward truncation length – 281; reverse truncation length – 207, Optimized – forward truncation 
length – 294; reverse truncation length – 241; NS-not significant.  
 

Parameters* Default denoising Optimized denoising  P value 

Chao1 25±4a 118±9b <0.0001 

Shannon 3±0.3a 5±0.1b <0.0001 

Faith’s phylogenetic 

diversity 
3.5±0.1a 16±1.5b <0.0001 

Fisher’s index 5.7±0.9a 18±1.8b   <0.0001 

Simpson’s index 0.7±0.04 0.9±0.01 NS 

Pielou’s evenness 0.8±0.01 0.8±0.01 NS 

Good’s coverage 0.99±0.01 0.99±0.01 NS 
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Table 2.4 Impact of optimization of denoising parameters on taxonomic classification.  

Parameters Default denoising Optimized denoising 

Total number of identified taxa (Genus level) 103 199 

Number of phyla  4 10 

Predominant phyla* (%) 

Proteobacteria 

Firmicutes 

Actinobacteriota 

 

(0.92±0.02) 

(0.06±0.03) 

(0.00±0.00) 

 

(0.22±0.06) 

(0.51±0.12) 

(0.21±0.05) 

Predominant genera* (%) 

Sphingopyxis 

Unclassified 

Methylobacterium-Methylorurum 

Clostridium sensu stricto 1 

Escherichia-Shigella 

Corynebacterium 

  

 

(0.19±0.05) 

(0.19±0.07) 

(0.08±0.02) 

(0.01±0.00) 

(0.00±0.00) 

(0.00±0.00) 

 

 

(0.00±0.00) 

(0.00±0.00) 

(0.00±0.00) 

(0.28±0.04) 

(0.11±0.03) 

(0.01±0.02) 

 

Number of genera identified in individual animal (ID-Animal 

identification number)  

ID1-28 ID1-85 

 ID2-23 ID2-85 

 ID3-04 ID3-17 

 ID4-31 ID4-115 
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 ID5-43 ID5-116 

 ID6-31 ID6-88 

 ID7-13 ID7-56 

 ID8-26 ID8-85 

 ID9-24 ID9-70 

 ID10-28 ID10-97 

 ID11-18 ID11-82 

 ID12-14 ID12-64 

 ID13-27 ID13-84 

 ID14-35 ID14-87 

 ID15-33 ID15-90 

 ID16-44 ID16-89 

 ID17-25 ID17-68 

 ID18-14 ID18-75 
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Default – forward truncation length – 281; reverse truncation length – 207, Optimized – forward truncation 
length – 294; reverse truncation length – 241. *relative abundance  
  

 ID19-15 ID19-46 

 ID20-14 ID20-85 
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Figure 2.1 Experimental design and laboratory analysis for profiling fecal bacterial community in newborn 

beef calves (n = 20). Fecal samples were collected withing 24 hours after birth (Day 1 – D1) and after allow 

calves to suckle colostrum from dams (Day 2 – D2). Extracted DNA from rectal swabs were sequenced 

using V1V3 (9F – 515R) primers and data analysis were conducted using QIIME2 bioinformatics tool.  
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Figure 2.2 The simplified flow chart illustrate the sequence bacterial data analysis pipeline in QIIME2 

bioinformatics platform. Demultiplex sequence reads were imported into QIIME2 and interactive quality 

plots were visualized to select the denoising parameters and quality of the sequencing reads. First, default 

denoising parameters (truncation: forward – 281; reverse – 207, mean Phred score - ≥25) were used for 

bacterial data analysis. After reviewing denoising statistics, denoising parameters were optimized 

(truncation: forward – 294; reverse – 241, median Phred score - ≥25) to maintain minimum overlap base 

pairs between forward and reverse sequence reads using DADA2 denoising plugin in QIIME2. 

Denoising/quality filtering allow to removal of noisy reads and merged forward and reverse reads while 

generating three visualizable files (feature table, representative sequence and denoising statistics. 

Denoising statistic file displayed the merged read counts after denoising. Finally, diversity and community 

analysis were performed to identify fecal bacterial community in newborn beef calves.   
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Figure 2.3 Impact of optimization of denoising parameters (default: forward – 281; reverse – 207,optimized: 

forward – 294; reverse – 241) on fecal bacterial community composition in day 1 (D1) and day 2 (D2) 

assessed  using V1V3 hypervariable region of 16S rRNA gene by weighted UniFrac distance metrics (A) 

default and (B) optimized denoising parameters and unweighted UniFrac distance metrics (C) default and 

(D) optimized denoising parameters in QIIME2 platform and PERMANOVA statistic test.  
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Chapter 3. Selection of suitable hypervariable region and genetic material to profile true microbial 

community in newborn beef calves using low microbial biomass samples 

3.1 Abstract 

Amplicon sequencing (16S rRNA gene sequencing) is widely used to profile host-associated microbial 

communities. However, profiling low microbial biomass samples using amplicon sequencing is challenging 

due to contaminations that lead to artificial microbial sequences. This study compared amplicon 

sequencing-based bacterial profiles generated by different genetic materials (DNA vs. RNA) and 

hypervariable regions of the 16S rRNA gene (V1V3 vs. V3V4). Rectal and oral swabs (n=40) were collected 

from 20 newborn beef calves and used to extract DNA and RNA. Both DNA and RNA-based sequencing 

were performed by targeting the V3V4 region of the 16S rRNA gene. In addition, only DNA-based 

sequencing was performed by targeting both V1V3 and V3V4 regions of the 16S rRNA gene. All sequence 

runs included no template controls (NTC) and positive controls (Clostridium butyricum). Data were analyzed 

using the QIIME2 platform with customized quality filtering steps to remove environmental contaminations 

and filter out low-abundant amplicon sequencing variants (ASVs). Sequencing analysis revealed that 

sequences generated from NTC could be assigned to bacterial taxa irrespective of the genetic materials 

and target regions, suggesting that the amplicon sequencing process can introduce contaminations. When 

comparing the impact of the target region, the richness and evenness were higher (p<0.05) in the fecal and 

oral bacterial profiles generated from the V1V3 region compared to those of the V3V4 region. Taxonomic 

assignment of bacterial profiles generated using two hypervariable regions revealed distinct bacterial 

communities. For example, Actinobacteria (fecal - 0.41±0.09%; oral - 0.51±0.10%) was abundant in 

bacterial profiles generated from the V1V3 region, whereas Firmicutes (fecal - 0.37±0.11%; oral - 

0.34±0.10%) was abundant in those of V3V4 region when comparing D1 samples. When comparing 

different genetic materials, DNA-based bacterial profiles (both oral and fecal) had higher diversity compared 

to RNA-based profiles on D1. In contrast, the diversity of the RNA-based profiles was higher than DNA-

based profiles on D2. This suggests the presence of a diverse active bacterial community when samples 

were collected on D2 when compared to D1. In conclusion, the diversity and composition of bacterial 

communities derived from low microbial biomass samples depend on the choice of genetic materials and 
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the hypervariable region of the 16S rRNA gene. The inclusion of appropriate controls is crucial to increasing 

the accuracy of results, regardless of the sequencing technique.  

Keywords: amplicon sequencing, low microbial biomass samples, 16S rRNA gene, neonatal beef calves 
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3.2 Introduction 

Colonization of gut microbiota begins during the birthing process when the fetus exposes to the outside 

environment (Caballero-Flores et al., 2022). The early life microbial colonization of the gastrointestinal tract 

(GIT) in humans and livestock species gain more attention over the last decade due to its influence on 

overall host health (Kogut et al., 2016; Pluske et al., 2018). Early-life microbiota plays an important role in 

priming host immune responses (Malmuthuge and Guan, 2017; Ravisankar et al., 2018; Nakandalage et 

al., 2023) and microbial dysbiosis in neonates has been linked to negative health outcomes. As a result, 

studies to develop potential interventions to manipulate microbial composition have been increased 

(Raman et al., 2019; Kim et al., 2021; Rosa et al., 2021; Song et al., 2021; Slanzon et al., 2022; Nuzhat et 

al., 2023). However, the development and implementation of early-life microbial interventions require a 

clear understanding of true microbial colonization in the GIT. Profiling of a true microbial community 

depends on various factors, including the choice of the hypervariable region of the 16S rRNA gene and 

genetic materials.           

The choice of the hypervariable region of the 16S rRNA gene affects microbial profiling. Nine 

hypervariable regions in the 16S rRNA marker gene displayed sequence diversity and distinct taxonomic 

resolution (the ability of different regions to identify microbial taxa) among different hypervariable regions 

(Chakravorty et al., 2007; Abellan-Schneyder et al., 2021). The most used regions to profile the gut 

microbiota in literature are the V1V3 and V3V4 regions (Abellan-Schneyder et al., 2021). For example, a 

study comparing the gut microbial diversity between two hypervariable regions reported a higher alpha 

diversity in the V1V2 region compared to the V3V4 region (Kameoka et al., 2021), suggesting the 

identification of differences in microbial communities when using different hypervariable regions to profile 

microbial communities. However, there is a lack of knowledge on the most suitable hypervariable region to 

profile bacterial communities of newborn calf feces and mouth, when samples are derived using swabs. 

Moreover, microbial community composition depends on the type of genetic material used to generate 

amplicons. Amplicon sequencing-based microbial profiling mainly uses DNA, which represents active, 

dead, and dormant microbial cells (De Vrieze et al., 2018; Salgar-Chaparro and Machuca, 2019; Wang et 

al., 2019). Dead and dormant cells detected by DNA-based amplicon sequencing lead to an overestimation 

of active microbial cells in a community (Wang et al., 2019). In contrast, RNA-based amplicon sequencing 
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can profile only active/alive microbes (De Vrieze et al., 2018). Thus, profiling of microbial communities using 

RNA-based amplicon sequencing can identify active microbial communities and will provide an opportunity 

to develop successful microbial interventions. 

There is heterogeneity among previous microbiota studies in beef cattle due to the choice of primer 

pairs, genetic material used for sequencing, sequencing approaches, data analysis techniques, and other 

environmental factors (Li et al., 2016; Weese and Jelinski, 2016). Most of the previous microbial 

assessments used fecal samples, tissue samples, and digesta samples to profile microbial communities. 

However, swabbing is one of the non-invasive sampling techniques that can easily perform, transport, and 

store with less complexity compared to other sampling techniques (Reyman et al., 2019; Radhakrishnan et 

al., 2023). A study comparing human gut microbial composition between rectal swabs and fecal samples 

reported a higher correlation between the two sampling methods (Radhakrishnan et al., 2023), suggesting 

the potential of using swabs for sample collection. The collection of fecal samples can be challenging in 

newborns due to the less availability of fecal samples immediately after birth (Reyman et al., 2019). Rectal 

swabs can be used to collect microbial samples easily at any time point, consistently. Thus, in this study, 

we want to see whether swab samples can be used to profile the bacterial community of newborn beef 

calves. The objectives of this study were to (1) assess the impact of genetic materials (DNA vs. RNA) on 

microbial profiles generated from low microbial biomass samples, and (2) assess the impact of 

hypervariable regions of the 16S rRNA gene (V1V3 vs. V3V4) on oral and fecal microbial communities of 

newborn beef calves.  

3.3 Materials and Methods  

3.3.1 Animal experiments and sample collection 

All experiment protocols were approved by the Livestock Care Committee at the University of Alberta (AUP-

00004183) and the University of Saskatchewan (AUP - 20170015) and were conducted following the 

guidelines of the Canadian Council on Animal Care. Newborn beef calves (n=20) were obtained from the 

Rayner Dairy Research and Teaching Facility, University of Saskatchewan (Saskatoon, SK) within 24 hours 

of birth. Oral and rectal swabs of newborn beef calves were collected after birth prior to colostrum feeding 

(sample collected on Day 1-D1). Calves were allowed to suckle colostrum from cows and re-sample after 
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24 hours (sample collected on Day 2-D2). All samples were snap frozen in liquid nitrogen and stored at -

80°C for nucleic acid extraction. 

3.3.2 Nucleic acid extraction 

Total genomic DNA from oral and rectal swabs was extracted using the QIAamp Fast DNA stool Mini kit 

(Qiagen, USA), with a fast spin-column procedure. Briefly, swab samples were suspended in 1 mL InhibitEx 

buffer and lysed protein using 25 µL of proteinase K. DNA was eluted using elution buffer after several 

cleaning steps following the manufacturer’s instruction.  

Total RNA was extracted from oral and rectal swabs using the miRNeasy mini kit (Qiagen, USA). 

Samples were transferred to QIAzol lysis reagent and incubated at room temperature for 5 min. After 

incubation with chloroform, centrifuge for 15 min at 12,000 g at 4°C, and RNA was extracted using RNeasy 

mini-column to RNase-free water. Afterward, total RNA was reverse transcribed to cDNA using iScript™ 

reverse transcription supermix (Bio-Rad, CA), following the manufacturer’s instructions. The quality and 

quantity of the DNA and RNA were evaluated using the Nanodrop 2000 spectrophotometer (Thermo Fisher 

Scientific, Delaware, USA).     

3.3.3 Profiling of oral and fecal bacterial communities in newborn beef calves using amplicon 

sequencing of the 16S rRNA gene 

Diluted DNA (50ng/µL) was used to amplify the V1V3 and V3V4 hypervariable regions of the 16S rRNA 

gene separately using universal bacterial primers (Table 3.1). Total of 30 µL of diluted cDNA (50ng/µL) was 

used to amplify V3V4 region (Table 3.1). Amplicons were barcoded and sequenced on an Illumina Miseq 

300 with 300 bp paired-end reads at the McGill University and Genome Quebec Innovation Center (Quebec, 

Canada). Similar to the samples, a positive control (Clostridium butyricum) and a no template control (NTC; 

nucleus-free water) were processed in the same PCR and sequencing run at the same time.     

3.3.4 Estimation of bacterial densities in DNA and RNA based amplicon sequencing using 

quantitative real time PCR  

DNA and RNA-based quantitative real-time PCR was performed to estimate the total bacterial density using 

universal primers (U2-F: ACTCCTACGGGAGGCAG; U2-R: GACTACCAGGGTATCTAATCC) (Stevenson 

and Weimer, 2007) and SYBR green chemistry (Fast SYBR Green Master Mix; Applied Biosystems) with 

the ViiA 7 Real-time PCR System (Applied Biosystems, CA, USA). Cycle conditions were as follows: the 
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holding stage at 95°C for 5 minutes, followed by 40 cycles at 95°C for 20 seconds and 60°C for 1minute. 

The melting curve conditions were as follows: 95°C for 15 seconds, followed by 60°C for 1 minute, and 

95°C for 15 seconds. The standard curves for total bacteria were generated using serial dilutions of purified 

plasmid containing the 16S rRNA gene of Butyrivibrio hungatei. The copy number of 16S rRNA genes of 

targeted bacteria per swab was calculated using the same equation mentioned in Zhou et al. (2009).   

3.3.5 Bioinformatics Analysis 

Demultiplexed paired-end 16S rRNA gene sequences (oral and fecal samples) were denoised (Table 3.2; 

at least 20bp merge; median quality score >25) using DADA2 in QIIME2. Feature tables generated after 

denoising were subjected to three different quality filtering steps; 1. filtering low abundant ASVs <0.005% 

of samples), 2. filtering environmental contamination (mitochondria, chloroplast, cyanobacteria, chloroflexi, 

archaea), and 3. Filtering ASVs present in NTC to remove contaminated and artificial ASVs. Then, the 

remaining good-quality sequences were used to assign taxonomy using the SILVA database. SILVA138-

99 classifier was trained separately (using train-classifier feature in QIIME2 platform) for V1V3 and V3V4 

primers prior to taxonomic assignment. Diversity analysis was performed using the diversity plugin in 

QIIME2 bioinformatics software. Bacterial diversity of oral and fecal microbiota was performed using alpha 

diversity indices (Shannon and Chao1) and beta diversity analysis (Weighted UniFrac Distance Matrix) 

within QIIME2 (2022.2 version). 

3.3.6 Statistical Analysis 

Bacterial community composition and diversity between V1V3 and V3V4 regions were compared using 

DNA-based bacterial profiles. DNA and RNA-based bacterial communities were compared using profiles 

generated by targeting V3V4 hypervariable region. Alpha diversity indices were analyzed using the non-

parametric Kruskall-Wallis test and statistical significances were declared at p<0.05. Beta diversity analysis 

was performed using the weighted UniFrac distance matrices and PERMANOVA statistical test in the 

QIIME2 environment and statistical significances were declared at p<0.001.  
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3.4 Results  

3.4.1 Comparison of fecal bacterial profiles generated by targeting varying regions of the 16S 

rRNA gene  

3.4.1.1 Differences in read counts and observed amplicon sequence variants (ASVs) between V1V3 

and V3V4 hypervariable regions  

Comparison of read counts between the two primer pairs (V1V3 vs. V3V4 hypervariable regions) revealed 

a higher number of raw and denoised read counts (p<0.05) for bacterial profiles generated from V3V4 

compared to V1V3 region when samples were collected on D1 (Table 3.3). Denoised read counts were 

lower in bacterial profiles generated from the V3V4 region compared to the V1V3 region when samples 

were collected on D2 (Table 3.3). However, there was no significant effect of hypervariable regions on read 

counts when samples were collected on D2. In NTC, raw and denoising read counts were higher in bacterial 

profiles generated from the V3V4 region compared to the V1V3 region (Table 3.3). Comparison of ASVs 

between sequences generated from amplicon targeting two hypervariable regions showed a higher number 

of ASVs in bacterial profiles generated from the V1V3 region compared to the V3V4 region on both 

sampling days (D1 and D2). In contrast, amplicon sequencing of the V1V3 region generated lower ASVs 

counts in NTC compared to the V3V4 region.    

3.4.1.2 Comparison of fecal microbial diversity between V1V3 and V3V4 primer pairs  

The profiling of bacterial community in newborn beef calves significantly affects the choice of the 

hypervariable region of the 16S rRNA gene. The richness of the bacterial community (Chao 1) was higher 

(p<0.05) in sequences generated from amplicons targeting the V1V3 region compared to the V3V4 region 

on both sampling days (Figure 3.2). Similarly, a higher (p<0.05) evenness and richness (Shannon) of fecal 

bacterial diversity was observed in bacterial profiles generated from the V1V3 region when compared to 

V3V4 when samples were collected on D1. The evenness of the bacterial community was higher but not 

significant when samples were collected on D2 (Figure 3.2).  

The bacterial communities generated by targeting the V1V3 region clustered apart from those 

generated by targeting the V3V4 region. PERMANOVA statistical test showed that 87% of the observed 

variation (R2 = 0.87; F = 526; p<0.001) between the bacterial communities was explained by the 

hypervariable region (Figure 3.3A). A similar pattern was observed on both sampling days (Figure 3.3A). 
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Similar to the PCoA plot, the phylogenetic tree displayed two clear phylogenetically distinct clusters when 

comparing the bacterial communities between V1V3 and V3V4 hypervariable regions (Figure 3.3B).  

3.4.1.3 Taxonomic assessment of fecal bacterial community between V1V3 and V3V4 regions  

Based on taxonomic classification, the V1V3 region identified ten phyla when samples were collected on 

D1 and four phyla when samples were collected on D2. In contrast, sequences generated from amplicon 

targeting the V3V4 region identified eleven and five bacterial phyla when samples were collected on D1 

and D2, respectively. Actinobacteria (0.41±0.09%), followed by Firmicutes (0.22±0.08%) and 

Proteobacteria (0.21±0.07%) dominated bacterial profiles generated from V1V3 region when samples were 

collected on D1 (p< 0.05). In contrast, bacterial profiles generated from the V3V4 region were dominated 

by Firmicutes (0.37±0.11%), followed by Actinobacteria (0.24±0.05%), and Proteobacteria (0.20±0.07%) 

when samples were collected on D1. After 24 hours of first sampling (on D2), the V1V3 region showed a 

higher abundance (p< 0.05) of Firmicutes (0.75±0.14%) followed by Proteobacteria (0.21±0.04%), while 

Proteobacteria (0.49±0.04%) and Firmicutes (0.45±0.10%) were predominant when sequences generated 

from amplicon targeting V3V4 region. At the genus level, Corynebacterium dominated the fecal bacterial 

profiles generated by targeting the V1V3 region, whereas Escherichia-shigella (p<0.05) dominated those 

of the V3V4 region (Figure 3.4C). Furthermore, unclassified taxonomies were highly abundant sequences 

generated from amplicon targeting V3V4 compared to V1V3 hypervariable region in both sampling days 

(Figure 3.4C, Figure 3.5).  

A total of 162 and 194 bacterial genera were identified from V1V3 and V3V4 regions, respectively when 

samples were collected on D1 (Figure 3.4A). After 24 hours (D2), a total of 39 and 30 bacterial genera were 

observed when sequences were generated from amplicon targeting V1V3 and V3V4 regions, respectively 

(Figure 3.4B). Moreover, V1V3 and V3V4 hypervariable regions shared a total of 115 and 22 bacterial 

genera when samples were collected on D1 and D2, respectively (Figure 3.4A and B). Comparison of fecal 

bacterial genera in individual animals also revealed that some bacterial genera were unique when 

sequences generated from amplicon targeting V1V3 and V3V4 regions and some bacterial genera were 

commonly identified in both hypervariable regions (Figure 3.4C, Table 3.7).  
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3.4.2 Comparison of the fecal bacterial profiles generated using different genetic materials  

3.4.2.1 Differences in read counts and observed ASVs between different genetic materials  

A comparison of read counts between the two different genetic materials revealed a higher number of 

(p<0.05) raw and denoised read counts in DNA-based amplicon sequencing compared to RNA-based 

amplicon sequencing when samples were collected on D1 (Table 3.4). In contrast, lower (p<0.05) raw and 

denoised read counts were observed in DNA-based sequencing compared to RNA-based sequencing 

when samples were collected on D2. In NTC, DNA-based sequencing generated higher raw and denoised 

read counts compared to RNA-based sequencing. A higher (p<0.05) number of ASVs was identified in 

DNA-based sequencing compared to RNA-based sequencing when samples were collected on D1 (Table 

3.4), while ASV counts were not statistically different between DNA and RNA-based sequencing when 

samples were collected on D2. ASVs observed in NTC were almost five times lower in RNA-based 

sequencing compared to DNA-based sequencing (Table 3.4).  

3.4.2.2 Comparison of the fecal bacterial diversity using DNA and RNA-based amplicon sequencing   

There was a significant effect of genetic materials on the fecal bacterial diversity in newborn beef calves 

(Figure 3.6). The bacterial richness and evenness were higher (p<0.05) when using DNA-based 

sequencing to profile bacteria compared to RNA-based sequencing when samples were collected on D1 

(Figure 3.6 A and C). In contrast, bacterial richness and evenness were lower (p<0.05) when using DNA-

based sequencing to profile bacteria compared to RNA-based sequencing when samples were collected 

on D2 (Figure 3.6 B and D).   

PERMANOVA statistical test revealed that only 5.4% of the observed variation between bacterial 

communities could be explained by the genetic material (R2 = 0.054; p<0.002; F = 4.3; Figure 3.7A). The 

bacterial profiles between DNA and RNA-based sequencing cluster together without having clear 

separation. These findings were further confirmed by observing no clear phylogenetic clusters between 

DNA and RNA-based profiles (Figure 3.7B).  

3.4.2.3 Taxonomic assessment of the fecal bacterial community between DNA and RNA-based 

amplicon sequencing  

Based on taxonomic classification, DNA-based sequencing identified eight phyla, while RNA-based 

sequencing captured five phyla when samples were collected on D1. Five and four bacteria phyla were 
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identified from DNA and RNA-based sequencing, respectively when samples were collected on D2. Among 

the identified phyla, Firmicutes (0.34±0.11%) was predominant in DNA-based amplicon sequencing, 

followed by Actinobacteria (0.17±0.04%), and Proteobacteria (0.13±0.06%) when samples were collected 

on D1. In contrast, a higher relative abundance of Proteobacteria (0.33±0.08%) was observed in RNA-

based sequencing when samples were collected on D1. Proteobacteria dominated both DNA (0.44±0.04%) 

and RNA (0.32±0.08%) based sequencing followed by Firmicutes (DNA-0.28±0.05%; RNA-0.20±0.08%) 

when samples were collected on D2.  

Unclassified genera were identified in both DNA-based (0.29±0.06%) profiling and RNA-based 

(0.70±0.26%) profiling (Figure 3.8C; p< 0.05). However, the relative abundance of unclassified genera was 

two times higher in RNA-based (0.70±0.26%) profiling compared to DNA-based profiling when samples 

were collected on D1 (Figure 3.8C, Figure 3.9). The most abundant genus in DNA-based profiling 

was Escherichia-shigella (0.43±0.03%), while unclassified (0.59±0.16%) genera were predominant in RNA-

based profiling when samples were collected on D2.  A total of 71 and 197 bacterial genera were identified 

in RNA and DNA-based profiling, respectively when samples were collected on D1 (Figure 3.8A). After 24 

hours (on D2), a total of 30 bacterial genera were identified from DNA-based profiling, while RNA-based 

profiling generated 24 bacterial genera (Figure 3.8B). Even though 45 bacterial genera were shared 

between DNA and RNA-based communities when samples were collected on D1, only 13 bacterial genera 

were shared when samples were collected on D2. Comparison of fecal bacterial genera in individual 

animals also revealed that some bacterial genera were unique to DNA and RNA and some bacterial genera 

commonly identified by both genetic materials (Figure 3.8C, Table 3.7). 

3.4.2.4 Comparison of DNA and RNA based bacterial densities     

Estimation of the fecal bacterial densities in newborn beef calves revealed a lower (p<0.05) density when 

using RNA-based profiling compared to DNA-based profiling irrespective of the sample collection day 

(Figure 3.10). RNA-based bacterial densities were lower by 10,000 and 1,000 times on D1 and D2, 

respectively compared to DNA-based fecal bacterial densities in newborn beef calves.  
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3.4.3 Comparison of the oral bacterial profiles generated by targeting different regions of the 

16S rRNA gene  

3.4.3.1 Differences in read counts and observed amplicon sequence variants (ASVs) between V1V3 

and V3V4 regions 

Comparison of read counts between two hypervariable regions (V1V3 vs. V3V4) identified a higher (p<0.05) 

number of read counts in the V3V4 region compared to the V1V3 region irrespective of the sampling time 

point (Table 3.5). The V1V3 region identified a higher number of ASVs (p<0.05) compared to the V3V4 

region when samples were collected on D1 and D2 (Table 3.5). In NTC, the number of ASVs generated 

from sequences generated from amplicon targeting V3V4 region was almost double that of the sequences 

generated from amplicon targeting V1V3 region (Table 3.5).  

3.4.3.2 Comparison of the oral bacterial diversity between V1V3 and V3V4 primer pairs 

A higher evenness and richness were observed in the oral bacterial profiles generated by targeting the 

sequences generated from amplicons targeting the V1V3 region compared to the sequences generated 

from amplicons targeting the V3V4 region in both sampling time points (Figure 3.11). However, there was 

no significant effect of hypervariable region on oral bacterial diversity of newborn beef calves (Figure 3.10 

B, C, and D), except for bacterial richness when samples were collected on D1 (p<0.05; Figure 3.11A).  

The oral bacterial communities captured in sequences generated from amplicon targeting V1V3 

and V3V4 regions showed two different clusters in the PCoA plot (Figure 3.12A). PCoA plots represent 

almost 95% of the data (Figure 3.12A). PERMANOVA statistical test revealed that 84% (R2 = 0.84; F = 389; 

p<0.001) of the observed variation between the oral bacterial communities could be explained by the 

hypervariable region (Figure 3.12A). Similarly, the phylogenetic tree also displayed two phylogenetically 

different clusters between sequences generated from amplicons targeting V1V3 and V3V4 regions for the 

oral bacterial community (figure 3.12B).     

3.4.3.3 Taxonomic assessment of oral bacterial community in V1V3 and V3V4 regions 

Based on the taxonomic assessment, the oral bacterial community in newborn beef calves consisted of 12 

and 11 bacterial phyla in sequences generated from amplicons targeting V1V3 and V3V4 regions, 

respectively when samples were collected on D1. The sequences generated from amplicons targeting the 

V1V3 region identified 10 bacterial phyla and the sequences generated from amplicons targeting the V3V4 
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region captured 12 bacterial phyla when samples were collected on D2. When samples were collected On 

D1, three bacterial phyla accounted for 88% of the oral bacteria communities generated by the sequences 

generated from amplicons targeting the V1V3 region (Actinobacteriota – 0.51±0.10%; Proteobacteria – 

0.20±0.06%; Firmicutes – 0.17±0.06%; p< 0.05). When the sequences generated from amplicons 

targeting the V3V4 region were used to profile the oral bacteria, Firmicutes (0.34±0.10%), followed by 

Actinobacteriota (0.28±0.05%), and Proteobacteria (0.19±0.05%) accounted for the majority of bacterial 

phyla when samples were collected on D1. When samples were collected on D2, Proteobacteria 

dominated (p< 0.05) the oral bacterial communities generated by sequencing both V1V3 (0.54±0.12%) and 

V3V4 (0.34±0.04%) regions. When samples were collected on D2, the second most abundant phyla in the 

bacterial profiles generated by sequencing the V1V3 region were Bacteroidetes (0.21±0.09%). Whereas, 

Firmicutes (0.27±0.09%) was the second most abundant phyla (0.19±0.06%) in the bacterial profiles 

generated by sequencing the V3V4 region. 

At the genus level, Corynebacterium dominated the bacterial profiles generated by sequencing 

V1V3 (0.29±0.04%) and V3V4 (0.13±0.04%) regions when sample collected on D1 (Figure 3.12C). When 

sample collected on D2 Mannheimia (0.18±0.02%), Porphyromonas (0.13±0.03%), Alysiella (0.13±0.03%) 

and Neisseria (0.12±0.02%) represented around 50% of represented around 50% of oral bacterial genera 

in the bacterial profiles generated by sequencing V1V3 region. However, Bibersteinia (0.34±0.03%) 

and Streptococcus (0.17±0.03%) represented almost 50% of the oral bacterial profiles generated by 

sequencing the V3V4 region when sample collected on D1. In addition, a higher relative abundance of 

unclassified genera was observed in the bacterial profiles generated by sequencing the V3V4 region 

compared to bacterial profiles generated by sequencing the V1V3 region on both sampling days (Figure 

3.13C, Figure 3.14).   

When samples were collected on D1, a total of 168 and 185 oral bacterial genera were identified 

from the bacterial profiles generated by sequencing V1V3 and V3V4 regions, respectively (Figure 3.13A). 

When samples were collected on D2, the V1V3 region captured 98 bacterial genera while the V3V4 region 

identified 137 bacterial genera (Figure 3.13B). Two hypervariable regions shared 120 and 72 oral bacterial 

genera when samples were collected on D1 and D2, respectively.  Comparison of oral bacterial genera in 
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individual animals also revealed that some bacterial genera were unique to V1V3 and V3V4 regions and 

some bacterial genera commonly identified by both hypervariable regions (Figure 3.13C, Table 3.8).  

3.4.4 Comparison of the oral bacterial communities using different genetic materials  

3.4.4.1 Differences in read counts and observed ASVs between DNA and RNA-based sequencing  

Similar to the fecal bacterial communities, the use of DNA-based sequencing to profile the oral bacteria 

generated a higher (p<0.05) number of raw and denoised reads compared to RNA-based profiling when 

samples were collected on D1. When samples were collected on D2, a higher (p<0.05) number of raw and 

denoised read counts were observed in RNA-based profiling compared to DNA-based profiling (Table 3.6). 

Moreover, a higher number of ASV counts was observed in DNA-based profiling compared to RNA-based 

profiling when samples were collected on D1 (p<0.05) and D2 (p>0.05). In NTC, ASV counts were six times 

higher in DNA-based profiling compared to RNA-based profiling.  

3.4.4.2 Comparison of oral bacterial diversity between DNA and RNA-based sequencing  

There was a significant effect of genetic materials on the oral bacterial diversity of newborn beef calves 

(Figure 3.15). The richness (Chao1) of the oral bacterial community was higher (p<0.05) in DNA-based 

profiling compared to RNA-based profiling when samples were collected on D1 (Figure 3.15A). However, 

the richness of the oral bacterial community was similar between DNA and RNA-based profiling when 

samples were collected on D2 (Figure 3.15B). The evenness and richness of the oral bacterial community 

were higher (p<0.05) in DNA-based profiling compared to RNA-based profiling in both sampling points 

(Figure 3.15C, D).     

PCoA plots represent around 45% of the data (Figure 3.16A). PERMANOVA statistical test 

revealed that only 16% (R2 = 0.16; F = 15; p<0.001) of the variation between the bacterial communities was 

explained by the genetic material used for bacterial profiling (Figure 3.16A). The bacterial communities 

identified using DNA and RNA-based profiling cluster together (Figure 3.16A). There were no clear 

phylogenetically distinct clusters identified from the oral bacterial communities generated with different 

genetic materials (Figure 3.16B).  
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3.4.4.3 Taxonomic assessment of oral bacterial community between DNA and RNA-based 

sequencing  

The oral bacterial community of newborn beef calves on D1 consisted of 11 and 15 bacterial phyla when 

profiled using DNA and RNA, respectively. When samples were collected on D2, 12 bacterial phyla were 

identified in both DNA and RNA-based profiling. Three bacterial phyla accounted for nearly 80% of the oral 

bacteria identified using DNA-based profiling when samples were collected on D1 (Firmicutes – 

0.34±0.07%; Actinobacteria – 0.28±0.05%; Proteobacteria – 0.19±0.06%). More than 50% of the oral 

bacterial community profiled using RNA on D1 belong to Proteobacteria (0.54±0.14%; p< 0.05), followed 

by Bacteroidetes (0.22±0.07%) and Firmicutes (0.12±0.05%). When samples were collected on 

D2, Proteobacteria (0.53±0.10%) and Bacteroidetes (0.48±0.15%) dominated the DNA and RNA-based 

profiling, respectively. 

At the genus level, Corynebacterium (0.25±0.09%) dominated the DNA-based bacterial profiles, while 

Psychrobacter (0.27±0.05%) and Pseudomonas (0.13±0.02%) represented 40% of bacterial genera in 

RNA-based profiles when samples were collected on D1 (Figure 3.14C). Bibersteinia (0.34±0.03%) and 

Streptococcus (0.17±0.02%) accounted (p< 0.05) for 51% of bacterial genera on D2 when DNA was used 

as the genetic material for profile oral bacteria. Porphyromonas (0.33±0.06%), Bibersteinia (0.12±0.04%), 

and Neisseria (0.11±0.03%) represented 56% of bacterial genera in the oral bacterial community on D2 

when RNA was used as the genetic material for profile oral bacteria. Even though both DNA and RNA-

based profiling identified unclassified genera, DNA-based profiling showed a higher relative abundance of 

unclassified genera compared to RNA-based oral bacterial profiling (Figure 3.17C, Figure 3.18).    

When samples were collected on D1, a total of 185 and 154 bacterial genera were identified in DNA 

and RNA-based profiling, respectively (Figure 3.17A). When samples were collected on D2, DNA-based 

profiling generated 137, while RNA-based profiling identified 99 bacterial genera (Figure 3.17B). DNA and 

RNA-based profiling shared 103 and 68 bacterial genera when samples were collected on D1 and D2, 

respectively. Comparison of oral bacterial genera in individual animals also revealed that some bacterial 

genera were unique to DNA and RNA and some bacterial genera commonly identified by both genetic 

materials (Figure 3.17C, Table 3.8). 
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3.4.4.4 Comparison of DNA and RNA based oral bacterial densities  

Estimation of the oral bacterial densities in newborn beef calves revealed a lower (p<0.05) density when 

using RNA compared to DNA at both sampling points (Figure 3.19).  RNA-based bacterial densities were 

1,000 and 10,000 times lower when samples were collected on D1 and D2, respectively compared to DNA-

based oral bacterial densities in newborn beef calves. 

3.5 Discussions 

The present study revealed that the use of oral and rectal swabs to profile bacterial communities of newborn 

beef calves can contain contaminant taxa irrespective of the hypervariable regions (V1V3/V3V4) and 

genetic material used (DNA/RNA) and these contaminations can be eliminated by using appropriate 

controls and quality filtering step during data analysis. Swabs collect small amounts of biological samples 

(small amounts of genetic materials) that contain lower amounts of bacterial genetic materials. In the 

presence of low microbial DNA, NGS sequencing generates higher levels of artificial sequences (Kennedy 

et al., 2023). Contaminations that originate during microbial profiling outweigh the true microbial signals 

generated in low microbial biomass samples compared to high microbial biomass samples (Kennedy et al., 

2023). In our study, NTCs were used during PCR and sequencing along with the fecal and oral samples to 

identify contaminations. Following quality filtering to remove low frequency and environmental 

contaminants, NTCs contained sequences that could be assigned to bacterial taxa. Previous studies 

reported that the use of low or no microbial biomass samples generated microbial profiles that lead to 

misinterpretation of host-associated microbial community composition (Eisenhofer et al., 2018; Liu et al., 

2020; Heida et al., 2021; Kennedy et al., 2023). Our study observed a lower number of contaminated ASVs 

when using the V1V3 region to profile bacterial communities compared to the V3V4 region. Moreover, the 

use of RNA as the genetic material decreased the number of contaminant taxa in both fecal and oral 

bacterial communities. These findings suggest that researchers need to pay close attention to the choice 

of primers and genetic materials when profiling bacterial communities using low microbial biomass 

samples.    

The present study further highlighted that bacterial community assessments can also be influenced by 

the choice of hypervariable regions of the 16S rRNA gene. The use of the V1V3 region in sequencing 

captured a highly diverse oral and fecal bacterial community compared to that of the V3V4 region. A 
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previous study also reported that targeting the V1V2 region generated highly diverse bacterial profiles from 

human fecal samples compared to that of the V3V4 region (Kameoka et al., 2021). Similarly, previous 

studies in humans have reported that V1 to V4 regions provide a higher resolution and more distinct fecal 

microbial profiles compared to other regions of the 16S rRNA gene (Kim et al., 2011; Chen et al., 2019). A 

study conducted in humans reported that the V1V3 region was more appropriate to study the dynamics of 

oral microbiota than the V3V4 region (Zheng et al., 2015). In agreement with the past studies, our findings 

also suggest that the use of the V1V3 region captures the diversity of bacterial communities accurately, 

even when using low microbial biomass samples.   

In the present study, beta diversity analysis revealed distinct bacterial clusters between V1V3 and V3V4 

hypervariable regions regardless of the sampling location. The use of phylogenetic analysis revealed these 

two variable regions profile phylogenetically distinct bacteria. A previous study reported that the use of 

different primer pairs (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) to profile human fecal stool 

samples observe primer-specific clustering of bacterial communities at the genus level (Abellan-Schneyder 

et al., 2021). In agreement with the previous findings, our findings also suggest that the use of different 

regions of the 16S rRNA gene generates phylogenetically different oral and fecal bacterial 

clusters. Besides, our findings suggest that profiling bacterial communities using the V1V3 region can 

increase accuracy and taxonomic resolution compared to the V3V4 region.   

Due to the divergence and distinct resolution of hypervariable regions of the 16S rRNA gene, taxonomic 

classification also varies among different primer pairs. In the present study, a clear difference in taxonomic 

classification was observed between bacterial communities generated by profiling V1V3 and V3V4 regions. 

Kameoka and colleagues (2021) reported a higher relative abundance of Akkermansia when using the 

V3V4 region to profile microbiota compared to V1V2. Abellan-Schneyder and colleagues (2021) detected 

Verrucomicrobia in human stools when using the V3V4 region but not the V1V3 region. A study in newborn 

beef calves reported that Proteobacteria and Pasteurellaceae were the most abundant phylum and family, 

respectively in the oral microbial community when profiling bacteria using V4 hypervariable region (Barden 

et al., 2020). Even though this study used negative controls to identify contaminations, the authors did not 

filter out the ASVs identified in negative controls due to the lower read counts (Barden et al., 2020). The 

use of the V4 region limits the taxonomic resolution of bacterial community due to the short amplicon length. 
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The present study used longer amplicon lengths by combining hypervariable regions (V3V4 and V1V3), 

which increases our ability to obtain a higher resolution during taxonomic classification. Although 

Proteobacteria was one of the abundant phyla detected in the present study, the use of the V3V4 region 

(long amplicon size) revealed that Firmicutes and Actinobacteria were more abundant in the oral community 

of neonatal calves. 

The present study also revealed that bacterial community profiling can be affected by the choice of 

genetic materials. The present study revealed that the use of DNA to profile oral and fecal bacterial 

communities captured higher microbial diversity compared to RNA-based profiling, except for fecal bacterial 

diversity when samples were collected on D2, suggesting newborn beef calves were colonized by a diverse 

active microbial community on D2 compared to D1. We also speculated that the higher alpha diversity in 

DNA-based profiling when fecal samples were collected on D1 might be a result of transient dead bacteria 

on calves. In addition, we speculate that part of the active microbial community might be lost during RNA 

reverse-transcribed into cDNA. A previous study conducted by Li and colleagues (2016) reported 

controversial findings. They compared the rumen microbial community composition of beef steers using 

DNA and RNA-based profiling and reported a higher alpha diversity in RNA-based profiling, suggesting that 

rumen is colonized by a diverse active bacterial community in adult cattle. However, this study (Li et al. 

2016) was conducted using high microbial biomass samples (rumen samples) from beef steers. In our 

study, we collected low microbial biomass samples from newborn beef calves, used to optimize denoising 

parameters, and conducted additional quality filtering to remove contaminations. These might be reasons 

for identifying controversial findings between these two studies.   

In the present study, beta diversity and phylogenetic analysis revealed that both DNA and RNA-based 

bacterial community profiles clustered together and the bacterial communities did not differ by genetic 

materials. A previous study also reported that microbial communities of digestate organic waste profiles 

using DNA and RNA cluster together based on a weighted UniFrac distance matrix (De Vrieze et al., 2018). 

In agreement with the previous findings, our findings suggest that microbial community profiles using DNA 

and RNA cluster together, even when using low microbial biomass samples. Based on current bacterial 

diversity analysis, we can interpret that RNA-based profiling provides the opportunity to identify active 

bacterial communities in oral and fecal samples of newborn beef calves.    
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In addition to bacterial diversity, distinct oral and fecal bacterial taxa were observed between DNA and 

RNA-based profiles. A previous study reported that some rumen bacterial taxa (e.g., Desulfovibrionaceae, 

Elusimicrobiaceae and Sphaerochaetaceae) in beef steers could only be identified using RNA-based 

profiling (Li et al., 2016). Our study also identified that some bacterial taxa were only observed in RNA-

based microbial profiling. The current findings suggest that profiling oral and fecal bacterial communities 

using RNA will help to identify an active bacterial community in low microbial biomass samples with lower 

levels of contaminations. However, RNA-based bacterial profiles identified higher unclassified taxa in the 

fecal bacterial community in newborn beef calves, suggesting active bacterial communities in newborn beef 

calves have not been well studied and classified. Thus, future research needs to identify and classify active 

bacterial community.        

3.6 Conclusions 

Our study suggests that low microbial biomass samples (swabs) can be used to study host-

associated bacterial communities of neonates. However, the choice of hypervariable region and genetic 

materials can affect the outcomes of bacterial profiling. In conclusion, the V1V3 hypervariable region is 

more suitable to profile oral and fecal bacterial communities in newborn beef calves, as it generates 

minimum contaminant ASVs while capturing a highly diverse bacterial community. Furthermore, the use of 

RNA-based amplicon sequencing can be used to identify active bacterial communities in low microbial 

biomass samples, with lower levels of contamination. However, RNA-based bacterial profile still lacks the 

ability to study fecal bacterial community composition due to the presence of higher unclassified taxa 

compared to DNA-based bacterial profiling, suggesting that lack of current knowledge regarding the 

active bacterial classification. RNA-based bacterial profiles can be used to study fecal and 

oral bacterial diversity and oral bacterial community composition.
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3.8 Tables and Figures 

Table 3.1 Bacterial primers used to profile oral and fecal bacterial communities of newborn beef calves. 

Hypervariable 
region 

Primer name Product 
size (bp) 

Illumina adapter sequence Primers (5’-3’) Reference 

 
V1V3 

BAC9F  
506 

ACACTCTTTCCCTACACGAC
GCTCTTCCGATCT 
 

GAGTTTGATCMTG
GCTCAG 

Li et al., 
2019 

BAC515R  GTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCT 
 

CCGCGGCKGCTGG
CAC 

 

 
V3V4 

341F  
464 

ACACTCTTTCCCTACACGAC
GCTCTTCCGATCT 
 

CCTACGGGNGGC
WGCAG 

Herlemann 
et al., 2011 

805R  GTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCT 

GACTACHVGGGTA
TCTAATCC 
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Table 3.2 Denoising parameters to identify oral and fecal bacterial communities in newborn beef calves.   

*median Phred quality score ≥25 

 

 

 

 

 

 

Samples*  Parameters  V1V3 V3V4 

DNA DNA RNA 

 
Fecal 

Forward -truncation 
 
Reverse -truncation 

294 
 

241 

271 
 

222 

264 
 

222 

 
 

Oral 

 
Forward -truncation 
 
Reverse -truncation 

 
291 

 
246 

 
278 

 
223 

 
269 

 
225 
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Table 3.3 Comparison of read counts and ASVs before and after quality filtering in V1V3 and V3V4 hypervariable regions of rectal swabs 

(mean±SE). 

* total frequency <0.005%; ** taxonomy related to environment – mitochondria, chloroplast, cyanobacteria, chloroflexi, archaea; D1- day 1; D2- day 

2; NTC - no template control; PC - positive control (Clostridium butyricum); Statistical test- one-way ANOVA and mean separation Duncan multiple 

range test, a, b means with different superscript within same column are significantly different (p<0.05). 

 

Parameters  V1V3 V3V4 

D1 D2 NTC PC D1 D2 NTC PC 

Raw read count 
 

45,101±3,099a 

 
80,349±2,666 

 
12,437 

 
72,551 

 
78,864±2,036b 

 
86,887±2,310 

 
43,521 

 
95,481 

 
Denoised read count 
 

24,348±1,664a 

 
48,266±1,811 

 
7,122 

 
43,838 

 
46,454±1,595b 

 
46,395±1,288 

 
18,629 

 
37,739 

 
ASVs before filtered 
 

335±76 
 

340±64a 

 
87 

 
13 

 
226±47 

 
190±43b 

 
146 

 
16 

 

ASVs feature filtered* 

  
121±16 

 
121±11a 

 
31 

 
11 

 
85±14 

 
72±12b 

 

 
117 

 
16 

 

ASVs taxonomy filtered** 

  
120±16 

 
120±11a 

 
29 

 
11 

 
84±14 

 
71±12b 

 

 
115 

 
16 

 
ASVs NTC filtered 
  

116±15 
 

116±10a 

 
- 7 

 
83±14 

 
70±12b 

 
- 14 
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Table 3.4 Comparison of read counts and ASVs before and after quality filtering using DNA and RNA-based bacterial profiling in V3V4 

hypervariable region using rectal swabs in newborn beef calves (mean±SE). 

* total frequency <0.005%; ** taxonomy related to environment – mitochondria, chloroplast, cyanobacteria, chloroflexi, archaea; D1- day 1; D2- day 

2; NTC - no template control; PC - positive control (Clostridium butyricum); Statistical test- one-way ANOVA and mean separation Duncan multiple 

range test, a, b means with different superscript within same column are significantly different (p<0.05). 

 

 

 

 

 

 

 

 

Parameters  DNA RNA 

D1 D2 NTC PC D1 D2 NTC PC 

Raw read count 
 

78,864±2,036a 

 
86,887±2,310a 

 
43,521 

 
95,481 

 
44,941±4,635b 

 
114,733±9,081b 

 
17,811 

 
134,983 

 
Denoised read count 
 

46,454±1,595a 

 
46,395±1,288a 

 
18,629 

 
37,739 

 
17,817±3,026b 

 
84,310±7,976b 

 
8,388 

 
112,698 

 
ASVs before filtered 
 

226±47a 

 
190±43 

 
146 

 
16 

 
90±18b 

 
109±23 

 
23 
 

22 
 

ASVs feature filtered*  
 

85±14a 

 
72±12 

 
117 

 
16 

 
50±7b 

 
59±6 

 
19 
 

22 
 

ASVs taxonomy filtered** 
  

84±14a 

 
71±12 

 
115 

 
16 

 
50±7b 

 
59±6 

 
19 
 

22 
 

ASVs NTC filtered 
  

83±14a 

 
70±12 

 
- 14 

 
49±7b 

 
58±6 

 
- 21 
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Table 3.5 Read count and amplicon sequence variants (ASVs) before and after quality filtering in V1V3 and V3V4 hypervariable region in oral 

swabs.

* total frequency <0.005%; ** taxonomy related to environment – mitochondria, chloroplast, cyanobacteria, chloroflexi, archaea; D1- day 1; D2- day 
2; NTC - no template control; PC - positive control (Clostridium butyricum); Statistical test- one-way ANOVA and mean separation Duncan multiple 
range test, a, b means with different superscript within same column are significantly different (p<0.05).

 V1V3 V3V4 

Parameters  D1 D2 NTC PC D1 D2 NTC PC 

Raw read count 
 

49,991±7,326a 

 
44,562±6,048a 

 
12,437 

 
72,551 

 
80,939±2,620b 

 
83,852±1,857b 

 
43,521 

 
95,481 

 
Denoised read count 
 

25,321±3,897a 

 
25,507±3,500a 

 
6,879 

 
42,770 

 
45,412±1,645b 

 
43,677±1,539b 

 
17,187 

 
36,204 

 
ASVs before filtered 
 

395±65a 

 
116±23 

 
86 

 
16 

 
240±18b 

 
99±18 

 
146 

 
12 

 
ASVs feature filtered 
  

189±24a 

 
74±10 

 
41 

 
15 

 
123±7b 

 
63±8 

 
118 

 
12 

 
ASVs taxonomy filtered 
  

187±24a 

 
73±10 

 
39 

 
15 

 
121±7b 

 
63±8 

 
117 

 
12 

 
ASVs NTC filtered 
  

184±23a 

 
71±10 

 
- 11 

 
121±6b 

 
62±8 

 
- 11 
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Table 3.6 Comparison of read counts and ASVs before and after quality filtering using DNA and RNA -based profiling in V3V4 hypervariable 

region of oral swabs (mean±SE). 

* total frequency <0.005%; ** taxonomy related to environment – mitochondria, chloroplast, cyanobacteria, chloroflexi, archaea; D1- day 1; D2- day 
2; NTC - no template control; PC - positive control (Clostridium butyricum); Statistical test- one-way ANOVA and mean separation Duncan multiple 
range test, a, b means with different superscript within same column are significantly different (p<0.05).

 DNA RNA 

Parameters  D1 D2 NTC PC D1 D2 NTC PC 

Raw read count 
 

80,939±2,620a 

 
83,852±1,857a 

 
43,521 

 
95,481 

 
67,460±4,080b 

 
98,371±5,163b 

 
17,811 

 
134,983 
 

Denoised read count 
 

45,412±1,645a 

 
43,677±1,539a 

 
17,187 

 
36,204 

 
37,318±3,275b 

 
63,865±4,892b 

 
8,297 

 
110,332 

 
ASVs before filtered 
 

240±18 
 

99±18 
 

146 
 

12 
 

244±21 
 

113±21 
 

24 
 

24 
 

ASVs feature filtered 
  

123±7a 

 
63±8 

 
118 

 
12 

 
78±5b 

 
50±4 

 
18 

 
24 
 

ASVs taxonomy filtered 
  

121±7a 

 
63±8 

 
117 

 
12 

 
77±5b 

 
50±4 

 
18 

 
23 
 

ASVs NTC filtered  
 

121±6a 

 
62±8 

 
- 11 

 
76±5b 

 
49±4 

 
- 20 
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Table 3.7 Common and unique taxa (genus level) in fecal bacterial community profiled by different 

hypervariable regions and genetic materials for individual animals.  

Animal ID 

Number of common genera Number of unique genera 

DNA & RNA V1V3 & V3V4 DNA RNA V1V3 V3V4 

ID1 10 42 62 5 43 42 

ID2 14 50 50 14 35 23 

ID3 10 14 28 17 3 24 

ID4 18 49 65 17 66 48 

ID5 5 40 78 5 76 53 

ID6 11 40 68 11 48 53 

ID7 11 19 57 5 37 45 

ID8 19 44 59 9 41 45 

ID9 7 29 57 2 41 44 

ID10 10 36 63 5 61 50 

ID11 7 41 76 3 41 55 

ID12 9 18 31 12 46 32 

ID13 14 21 28 8 63 25 

ID14 14 31 56 9 56 51 

ID15 13 28 38 11 62 31 

ID16 7 34 57 5 55 38 

ID17 20 28 49 7 40 51 

ID18 6 30 59 3 45 42 

ID19 10 15 29 13 31 27 

ID20 8 30 50 1 55 36 
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Table 3.8 Common and unique taxa (genus level) in oral bacterial community profiled by different 

hypervariable regions and genetic materials for individual animals. 

Animal ID 

Number of common genera Number of unique genera 

DNA & RNA V1V3 & V3V4 DNA RNA V1V3 V3V4 

ID1 24 37 46 26 33 33 

ID2 21 37 47 16 31 18 

ID3 4 1 2 44 5 38 

ID4 35 57 57 36 35 57 

ID5 40 52 63 17 0 10 

ID6 11 11 1 32 1 70 

ID7 11 15 8 25 4 66 

ID8 15 17 7 51 5 61 

ID9 31 49 57 27 39 26 

ID10 26 41 54 15 39 26 

ID11 37 50 44 33 31 30 

ID12 35 30 37 30 42 36 

ID13 18 21 9 37 6 39 

ID14 25 50 58 2 33 26 

ID15 34 59 65 20 40 17 

ID16 32 47 52 21 37 20 

ID17 36 52 66 38 50 30 

ID18 30 41 50 30 39 15 

ID19 33 41 40 20 32 15 

ID20 29 48 71 12 52 27 
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Figure 3.1 Experimental design and laboratory analysis for profiling bacterial community. Oral and fecal 

samples were collected from newborn beef calves (n=20) before (D1-day 1) and after (D2-day 2) colostrum 

feeding. Oral and rectal swabs were used to extract the genetic material for (DNA – V1V3 and V3V4 primers 

and RNA – V3V4 primers). qPCR was performed to estimate total bacterial densities. Amplicon sequencing 

(Illumina Miseq – 2×300 bp) was performed to profile bacterial community.     
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Figure 3.2 Fecal bacterial diversity comparison (DNA-based amplicon sequencing) between V1V3 and 

V3V4 hypervariable regions using (A) alpha diversity index Chao 1 on day one (D1), (B) on day two (D2), 

(C) alpha diversity index Shannon on day one and (D) on day two; a, b means with different superscript are 

significantly different at p<0.05. 
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Figure 3.3 Comparison of fecal bacterial communities generated by targeting V1V3 and V3V4 hypervariable 

regions (A) principle coordinate analysis (PCoA) using weighted UniFrac distance metrics in QIIME2 

platform and PERMANOVA statistic test and (B) phylogenetic tree shows the phylogenetic similarity and 

distances of bacterial taxa identified from different hypervariable regions. The outer most bar plot represents 

different hypervariable regions and the inner bar plot represents sampling timepoints.  

P
C

o
A

2
 –

3
.6

%
PERMANOVA; R2 = 0.87; F = 526; P <0.001

PCoA1 – 87.76%

V3V4-D1

V1V3-D1

V1V3-D2

V3V4-D2

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

-2 -1 0 1 2 3 4

D1

V1V3

V3V4

D2

A

B



 

89 
 

 

 

Figure 3.4 Taxonomic classification of the fecal bacterial communities generated by targeting two 

hypervariable regions (V1V3 and V3V4) of the 16S rRNA marker gene. (A) Venn diagrams represent the 

total number of unique and shared genera present in all calves (n=20) on D1, (B) on D2 and (C) heat map 

compare the relative abundance of forty (40) bacterial genera identified using two primer pairs. Bacterial 

taxa are arranged from the highest relative abundance to lowest (phylum_genus).   
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Figure 3.5 Relative abundance (for individual animals; n = 20) of the fecal bacterial communities generated by targeting two hypervariable regions 

(V1V3 and V3V4) of the 16S rRNA marker gene (genus level).

0%

20%

40%

60%

80%

100%

ID
-1

ID
-2

ID
-3

ID
-4

ID
-5

ID
-6

ID
-7

ID
-8

ID
-9

ID
-1

0

ID
-1

1

ID
-1

2

ID
-1

3

ID
-1

4

ID
-1

5

ID
-1

6

ID
-1

7

ID
-1

8

ID
-1

9

ID
-2

0

ID
-1

ID
-2

ID
-3

ID
-4

ID
-5

ID
-6

ID
-7

ID
-8

ID
-9

ID
-1

0

ID
-1

1

ID
-1

2

ID
-1

3

ID
-1

4

ID
-1

5

ID
-1

6

ID
-1

7

ID
-1

8

ID
-1

9

ID
-2

0

ID
-1

ID
-2

ID
-3

ID
-4

ID
-5

ID
-6

ID
-7

ID
-8

ID
-9

ID
-1

0

ID
-1

1

ID
-1

2

ID
-1

3

ID
-1

4

ID
-1

5

ID
-1

6

ID
-1

7

ID
-1

8

ID
-1

9

ID
-2

0

ID
-1

ID
-2

ID
-3

ID
-4

ID
-5

ID
-6

ID
-7

ID
-8

ID
-9

ID
-1

0

ID
-1

1

ID
-1

2

ID
-1

3

ID
-1

4

ID
-1

5

ID
-1

6

ID
-1

7

ID
-1

8

ID
-1

9

ID
-2

0

Altererythrobacter Arthrobacter Brachybacterium Brevundimonas Clostridium_sensu_stricto_1

Corynebacterium Dietzia Georgenia Glutamicibacter Knoellia

Lautropia Marmoricola Mycetocola Nocardioides Ornithinimicrobium

Other_genera Paeniclostridium Paeniglutamicibacter Paracoccus Pseudomonas

Psychrobacter Rhodococcus Romboutsia Turicibacter Unclassified

[Ruminococcus]_gnavus_group Blautia Butyricicoccus Clostridium_sensu_stricto_2 Epulopiscium

Erysipelatoclostridium Escherichia-Shigella Fournierella Lachnoclostridium Lactococcus

Streptococcus Terrisporobacter Uncultured [Ruminococcus]_torques_group Atopostipes

Jeotgalicoccus Massilia Planococcus Solibacillus Sporosarcina

UCG-005 Enterococcus Fusobacterium Gallibacterium Lactobacillus

V1V3-D1 V3V4-D1 V1V3-D2 V3V4-D2

R
e

la
ti
v
e

 a
b

u
n

d
a

n
c
e
 (

%
) 



 

91 
 

 

 
 

Figure 3.6 Fecal bacterial diversity comparison between DNA and RNA-based amplicon sequencing of 16S 

rRNA marker gene targeting V3V4 region (A) alpha diversity index Chao 1 on day 1 (D1), (B) on day 2 (D2), 

(C) alpha diversity index Shannon on day one (D1) and (D) on day two (D2); a, b means with different 

superscript are significantly different at p<0.05.    

A
lp

h
a
 D

iv
e
rs

it
y
 I

n
d

e
x
: 

C
h

a
o

1
 

D1

a

b

a

D2

A
lp

h
a
 D

iv
e
rs

it
y
 I

n
d

e
x
: 

S
h

a
n

n
o

n
 

a
b

b

RNA

DNA

A

C

B

D

a

b



 

92 
 

 

 

 
 

 

Figure 3.7 Comparison of fecal bacterial communities generated using DNA and RNA-based bacterial 

profiling (A) principal coordinate analysis (PCoA) using weighted UniFrac distance matrix in QIIME2 

platform and PERMANOVA statistical test and (B) phylogenetic tree shows the phylogenetic similarity and 

distances of bacterial taxa identified from different genetic materials. The outer most bar plot represents 

different genetic materials and the inner bar plot represents sampling timepoints.  
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Figure 3.8 Taxonomic classification of fecal bacterial community between DNA and RNA-based amplicon 

sequencing approaches (A) Venn diagram represent the total number of unique and shared genera 

sequenced using different genetic materials in all calves (n=20) on day one (D1), (B) on day two (D2) and 

(C) heat map compared the relative abundance of forty (40) bacterial genera identified using two different 

genetic material used. Bacterial taxa are arranged from the highest relative abundance to lowest 

(phylum_genus). 
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Figure 3.9 Relative abundance (for individual animals; n = 20) of the fecal bacterial communities between DNA and RNA-based amplicon sequencing 

approaches (genus level). 
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Figure 3.10 Total (DNA) and RNA-based bacterial densities (16S rRNA gene copy/swab) in rectal swab 

samples. Mean bacterial densities represent in bars and standard error mean (SEM) denoted by error bars. 

a, b means with different superscript are significantly different (p<0.05). 
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Figure 3.11 Oral bacterial diversity comparison (DNA-based amplicon sequencing) between V1V3 and 

V3V4 hypervariable regions using (A) alpha diversity index Chao 1 on day one (D1), (B) on day two (D2), 

(C) alpha diversity index Shannon on day one and (D) on day two; a, b means with different superscript are 

significantly different at p<0.05. 
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Figure 3.12 Comparison of oral bacterial communities generated by targeting V1V3 and V3V4 hypervariable 

regions (A) principle coordinate analysis (PCoA) using weighted UniFrac distance metrics in QIIME2 

platform and PERMANOVA test and (B) phylogenetic tree shows the phylogenetic similarity and distances 

of bacterial taxa identified from different hypervariable regions. The outer most bar plot represents different 

hypervariable regions and the inner bar plot represents sampling timepoints.  
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Figure 3.13 Taxonomic classification of oral bacterial community generated by targeting two hypervariable 

regions (V1V3 and V3V4) of the 16s rRNA marker gene (A) Venn diagrams represent the total number of 

unique and shared genera present in different regions in all calves (n=20) on day one, (B) on day two and 

(C) heat map compare the relative abundance of forty (40) bacterial genera identified using two primer 

pairs. Bacterial taxa are arranged from the highest relative abundance to lowest (phylum_genus).   
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Figure 3.14 Relative abundance (for individual animals; n = 20) of the oral bacterial communities generated by targeting two hypervariable regions 

(V1V3 and V3V4) of the 16S rRNA marker gene (genus level). 
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Figure 3.15 Oral bacterial diversity comparison between DNA and RNA-based amplicon sequencing of 16S 

rRNA marker gene targeting V3V4 region (A) alpha diversity index Chao 1 on day 1 (D1), (B) on day 2 (D2), 

(C) alpha diversity index Shannon on day one (D1) and (D) on day two (D2); a, b means with different 

superscript are significantly different at p<0.05.  
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Figure 3.16 Comparison of oral bacterial communities generated using DNA and RNA-based bacterial 

profiling (A) principle coordinate analysis (PCoA) using weighted UniFrac distance matrix in QIIME2 

platform and PERMANOVA statistical test and (B) phylogenetic tree shows the phylogenetic similarity and 

distances of bacterial taxa identified from different genetic materials. The outer most bar plot represents 

different genetic materials and the inner bar plot represents sampling timepoints.   
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Figure 3.17 Taxonomic classification of oral bacterial community between DNA and RNA-based amplicon 

sequencing approaches (A) Venn diagram represent the total number of unique and shared genera 

sequenced using different genetic materials in all calves (n=20) on day one (D1), (B) on day two (D2) and 

(C) heat map compared the relative abundance of forty (40) bacterial genera identified using two different 

genetic material used. Bacterial taxa are arranged from the highest relative abundance to lowest 

(phylum_genus).
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Figure 3.18 Relative abundance (for individual animals; n = 20) of the oral bacterial communities between DNA and RNA-based amplicon sequencing 

approaches (genus level).
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Figure 3.19 Total bacterial density (DNA and RNA-based (16S rRNA gene copy/swab) in oral swab 

samples. Mean bacterial densities represent in bars and standard error mean (SEM) denoted by error bars. 

a, b means with different superscript are significantly different (p<0.05). 
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Chapter 4. General Discussion 

4.1 Significance of the study 

Host-microbial interactions play a major role in human and livestock species by affecting the growth and 

overall health of the host. The diverse microbial community colonizing the GIT during early life is critical for 

the development of the immune system and the maintenance of gut homeostasis and gut health 

(Nakandalage et al., 2023). However, early life microbial colonization is affected by various factors, leading 

to microbial dysbiosis and various negative health outcomes. Early life provides a window of opportunity to 

manipulate microbial communities (Robertson et al., 2019), suggesting that interventions during early life 

can be used to restore a perturbed microbial community and revert negative health outcomes (Mostafa et 

al., 2020; Barratt et al., 2022). However, the development of successful microbial interventions depends on 

the accurate identification of key beneficial microbiota during early life. 

            Due to the advanced next-generation sequencing and user-friendly bioinformatics pipelines, 

microbial community profiling has become popular among researchers (Callahan et al., 2017). However, 

microbial profiling using low microbial biomass samples has created debatable results (Rackaityte et al., 

2020; Guzman et al., 2020; Stinson et al., 2020; Mishra et al., 2021). For example, previous studies reported 

that the identification of microbial community in the fetal environment was due to contaminations (Lauder 

et al., 2016; Lim et al., 2018; Malmuthuge and Griebel, 2018; De Goffau et al., 2019; Kennedy et al., 

2021; Kennedy et al., 2023), suggesting profiling of low microbial community samples is challenging. 

            Appropriate molecular techniques, proper controls, and optimization of data analysis pipelines allow 

researchers to generate credible outcomes in microbial research, especially when using samples with low 

microbial biomass. Previous studies reported that the optimization of bioinformatics pipelines increased the 

credibility of microbial diversity and community profiling outcomes (Malmuthuge and Griebel, 2018; Rai et 

al., 2021). Our study revealed that optimization of denoising parameters increases the credibility of data 

generated using low microbial biomass samples. In the present study, we compared different hypervariable 

regions (V1V3 and V3V4) and genetic materials (DNA and RNA) to identify their impact on bacterial 

community composition. Based on the present findings, we can interpret that oral and fecal bacterial 

communities (low microbial biomass samples) can be profiled using the V1V3 region. In our study, we 

identified higher unclassified taxa when RNA-based sequencing was used for bacterial profiling. We 
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speculated that the bacteria community identified through RNA-based sequencing cannot be classified 

based on current databases, which suggests that the active bacterial community in newborn beef calves 

has not been well defined. Thus, future research should classify active bacterial community colonization in 

newborn beef calves. The knowledge generated through this study will provide clear guidelines to any 

researcher who wants to include a microbial analysis in their research. 

4.2 Importance of optimizing denoising parameters  

Open-source, user-friendly bioinformatics tools for microbial data analysis allow researchers to summarize 

and interpret high throughput data generated through NGS technologies. There are many bioinformatics 

tools that have been introduced to perform data analysis, including microbial diversity, composition, and 

phylogenetic analysis. Some bioinformatics tools not only perform data analysis but also conduct statistical 

analysis and data visualization. QIIME2 is one of the open-source, user-friendly bioinformatics tools for 

microbial data analysis, which can perform statistical analyses and data visualization (Mohsen et al., 2019). 

The QIIME2 bioinformatics pipeline contains numerous plugins with different algorithms to perform various 

microbial data analyses. Denoising is one of the most important and time-consuming plugins in microbial 

data analysis. During this step, researchers can perform quality filtering, remove chimeric sequences, and 

join paired-end reads (Callahan et al., 2016; Hall and Beiko, 2018; Estaki et al., 2020). However, the use 

of default settings in denoising is not suitable for all microbial analyses. 

Generally, researchers use the mean quality scores to decide the denoising parameters. The use of 

the mean to decide the denoising parameters might include outliers in the data set. These extreme values 

(outliers) may misinterpret the data set (in this study the quality of the sequences to decide the truncation 

lengths). However, the use of the median quality score to decide denoising parameters provides an 

opportunity to avoid bias generated through outliers and represent the whole dataset to decide the 

denoising parameters. In our study, we used default denoising parameters in our analysis by deciding read 

truncation based on mean Phred score ≥25.  Default denoising parameters, resulted in an extremely lower 

percentage of merged reads (~1%) after denoising. The overlapped base pair count between forward and 

reverse reads should be at least 20 bp (Callahan et al., 2016; Hall and Beiko, 2018). However, we could 

not achieve the recommended level of overlap when using default parameters to decide truncation length, 

suggesting the importance of re-evaluating sequence stats to identify approaches to improve data analysis. 
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When denoising parameters were optimized to maintain a minimum of 20 bp between forward and reverse 

reads, while maintaining a median Phred score ≥25 as the quality standard, it increased the number of 

merged reads significantly. As a result, we could see that there is an increase in the number of samples 

used for downstream analysis to assess bacterial diversity and taxonomic classification. During bacterial 

analysis, the inclusion of more samples in the downstream analysis increases our opportunities to assess 

the impact of treatments on microbial communities. It suggests that the sample size needs to be 

sufficient (statistical power) to get better interpretation during downstream analysis. Based on current 

findings we can interpret that optimized denoising parameters increase the accuracy of bacterial community 

profiling when using samples with low microbial biomass.   

4.3 Use of appropriate molecular techniques to profile bacteria in low microbial biomass samples  

Contaminations during microbial profiling lead to a misrepresentation of microbial diversity and composition. 

Contaminations can be introduced from sample collection to the end of data analysis (Eisenhofer et al., 

2018; Kennedy et al., 2023). The use of appropriate controls allows the identification of contaminations and 

quality filtering steps can be used to remove identified contaminations. Contaminated taxa were identified 

irrespective of the hypervariable region and the genetic material used to profile the microbial community. 

However, a number of contaminated taxa observed in oral and fecal samples were lower in the microbial 

profiles generated by targeting the V1V3 region and using RNA.      

Microbial community composition varied depending on the choice of the hypervariable region of the 

16S rRNA gene and the choice of genetic materials to profile microbial communities. In the present study, 

we investigated the suitable region and genetic material to profile the oral and fecal bacterial community 

using low microbial biomass samples. Our study revealed a higher bacterial diversity and distinct bacterial 

community with phylogenetically different clusters in the V1V3 region compared to the V3V4 region while 

generating a lower level of contaminant ASVs. Therefore, we conclude that the use of the V1V3 region 

increases the accuracy of bacterial analysis when using low microbial biomass samples. When looking at 

the suitable genetic material to profile low microbial biomass samples, RNA-based profiling provides higher 

diversity and lower unclassified genera in oral samples of newborn beef calves, suggesting that it is suitable 

for studying oral bacterial diversity and community composition. The fecal bacterial community of newborn 

beef calves can be studied using DNA-based microbial profiling due to the presence of higher unclassified 
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genera in RNA-based bacterial profiling. However, RNA-based bacterial profiling is suitable to study fecal 

bacterial diversity in newborn beef calves. 

4.4 Future directions 

Our study provided clear and specific knowledge/guidelines on profiling bacterial using low microbial 

biomass samples. This study can be used as a basis to optimize denoising parameters during data analysis 

in low microbial biomass samples and to identify true bacterial communities with appropriate controls. Thus, 

our findings will help researchers to reduce time on bacterial data analysis during denoising, which is one 

of the important and time-consuming processes. Moreover, this study provides fundamental knowledge on 

the choice of the hypervariable region of the 16S rRNA gene and genetic materials to profile 

bacteria. Limiting our RNA-based analysis only to the V3V4 region is one of the limitations of our 

study.  Therefore, we will not be able to accurately evaluate the impact of using RNA on bacterial profiling. 

It is important to compare RNA-based bacterial community profiles using different variable regions to 

identify variations in bacterial diversity, composition, and taxonomic classification. Moreover, this study will 

provide more opportunities for calf researchers to collect samples and conduct bacterial community profiling 

of newborn calves using swab samples to profile early-life bacteria over a period of time to assess bacterial 

dynamics during early life, disease progression, and treatments.   
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