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Abstract

Estimation of internal states of nonlinear systems has been a wide area of interest in

recent years for control design and online processing. According to the difficulty of

setting up sensors and also the cost they impose for implementation, estimation of

these states would decrease the operation cost of the industrial systems. Nonlinear

filter design for two classes of systems known as Lipschitz and one-sided Lipschitz

is presented in this thesis. Filter design for Lipschitz nonlinear systems is investi-

gated in discrete-time and one-sided Lipschitz nonlinear systems in continuous-time.

One-sided Lipschitz systems represent an extension of the well known class of Lips-

chitz systems that has been used in the control literature for the past four decades.

We present a complete solution of the filtering problem when the noise sources have

bounded energy, i.e., we solve the synthesis of the so-called H∞ filter that minimize

the effect of disturbances over the estimates. Our solution will be shown to be robust

with respect to parametric and unstructured nonlinear uncertainties. In the case of

Lipschitz nonlinear systems, missing information and delayed measurement is mod-

elled and the sufficient condition under which the filter design is asymptotically stable

is presented. The problem is then formulated in terms of Linear Matrix Inequalities

(LMIs) which can be easily solved using commercial software packages.
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Chapter 1

Introduction

In practical applications, internal states of physical systems play a significant role for

the purpose of control, system monitoring, fault detection, etc, therefore having access

to instantaneous measures of these states is of crucial importance. Unfortunately, full

state information is usually not available because that would require one sensor for

each variable which can be very expensive and sometimes impossible to obtain. To

reach our goals these unknown quantities must be reconstructed using dynamical

systems called observers. Observers accomplish this task using the input and output

information of the process combined with the known model of the system. The key

work here is to guarantee that under some conditions the estimated states converges

to real ones. Observer design for linear time invariant systems is well understood.

However, in real application systems show nonlinear characteristics which is more

complex and modeled by nonlinear functions. Unfortunately, observer design for

nonlinear systems needs much effort and no universal theory has been developed. In

many cases, however, some states are available from measurement and only few of

them needed to be reconstructed and it is referred to as the reduced-order observer

problem. The design problem is to find a dynamical system which is asymptotically

stable to guarantee that the estimated states converge to real ones.

Nonlinear observer design is a topic that has attracted constant research over the

past four decades. Early results on nonlinear observers considered the class of so-

called Lipschitz systems. The seminal work by Thau, [1], presented the first sufficient

condition for nonlinear observer (asymptotic) stability. Thau’s condition proved to be

difficult to use in observer design and several researchers contributed to the solution
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of the observer synthesis problem. Raghavan [2] proposed a method to obtain the

observer gain based on solving an algebraic Riccati equation (ARE). Rajamani [3]

showed that Raghavan’s method fails for some observable (A,C) pairs and proposed an

algorithm based on a gradient-based optimization that ensures asymptotic stability.

Reference [4] considers a similar problem but uses dynamic observer gains that can

provide fast convergence and a larger region of attraction. Additional important

recent work on observer design for Lipschitz systems includes [5], [6], [7], [8], as well

as extensions to observers for sampled-data systems [9], time-delay systems, [10],

unknown input observers [11] and a variety of applications (see for example [7], [12]).

Related to nonlinear observer design is the more involved filtering problem, con-

sistent of reducing the effect of noise and disturbance from the estimation error.

Nonlinear filtering for Lipschitz systems has focused primarily in noise sources with

bounded energy and the filtering problem is thus referred to as H∞ filtering. Im-

portant references on the subject include [4], [13], [14], [15], [16], and [17]. Wear,

temperature and other physical phenomena are the main factors causing changing

parameters in the real systems. Hence, a proper design procedure must consider this

type of uncertainties and changing parameters in the problem formulation to ensure

that the estimation does not diverge to unreal values or to infinity. Robust filter

design for nonlinear systems in the presence of additive uncertainty and time-varying

parameter uncertainties is discussed in [15], [16] and sufficient conditions for stability

of the design are presented there.

Lipschitz nonlinear observer design is a well known approach among other design

tools introduced for filter design and observer design. Most nonlinear functions satisfy

Lipschitz condition in a region around the equilibrium point. One drawback of ex-

isting design methods is that they can typically guarantee observer stability for only

small Lipschitz constants, thus limiting the operating region to a small neighbour-

hood of the equilibrium point. Reference [18] deals with this problem by maximizing

the Lipschitz constant, in an attempt to enlarge the region of operation.

Development in communication technologies, fast transmission rate has enabled

the estimation process to be carried out in a monitoring/control unit away from the

plant. However, network failure, package drop out are the most challenging difficulties

existent in stability study and filter design. In [19, 20] the missing information is
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modelled as a Bernoulli distribution for a sensor network application, but it does

not consider the time delay existent between the plant and estimator. Motivated

by the aforementioned drawbacks, a robust nonlinear filter design that includes both

communication time-delays and missing information in measurement is investigated

here. Moreover, the measurement equation considered here comprises nonlinearity

which is also assumed to satisfy a Lipschitz condition.

Very recently, a more general framework has been proposed based on the use of

the so-called one-sided Lipschitz continuity condition. One sided-Lipschitz systems

provide a generalization of the more familiar notion of Lipschitz systems in the sense

that, every Lipschitz system is also one-sided Lipschitz. Moreover, given a Lipschitz

system, its one-sided Lipschitz constant is typically smaller than the Lipschitz one,

and it can never be larger, thus providing a framework that can provide less restric-

tive results [21]. Nonlinear observers for one-sided Lipschitz systems were considered

in [22, 23]. In these works, sufficient conditions for asymptotic stability of the ob-

servers were derived. However, no systematic method for finding the observer gain

is proposed. Observer design for one-sided Lipschitz systems was considered in [24],

using an algebraic Riccati equation approach, and [21] using linear matrix inequalities

(LMIs).

This thesis is organized into two parts: In the first chapter our interest is in

the filtering problem for continuous time one-sided Lipschitz systems. As with the

previous work on Lipschitz systems, we consider noise sources with bounded energy

and study the synthesis of H∞ filters that minimize the effect of disturbances over the

estimates. Our results therefore generalize previous results on observers in that, in the

absence of noise or disturbances, our filters provide an asymptotic reconstruction of

the state of a one-sided Lipschitz system. Sufficient conditions under which the filter

design is asymptotically stable in the presence of uncertainties are also presented.

In the second chapter discrete time filter design for Lipschitz nonlinear systems is

investigated. As mentioned before, it is assumed that the estimation is carried out

in control unit away from the system. So, delayed measurement and failure of the

network is modelled and applied in finding the stable filter. Sufficient conditions

under which the filter design is asymptotically stable in the presence of uncertainties

are also stated.
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Chapter 2

Observer Design and Lipschitz
Nonlinear Systems

Estimation of internal variables of practical systems plays a significant role in appli-

cations such as control, monitoring, fault diagnosis when physical variables of systems

can not be measured directly. Practical systems can be modeled by continuous time

state space model as presented here,

ẋ(t) = Ax(t) + φ(x, u)

y(t) = Cx(t)
(2.1)

where x ∈ Rn, y ∈ Rp are states and outputs of the systems. φ(x, u) is the nonlinear

function describing the nonlinearity in the system. A and C are known matrices

with appropriate dimension. A dynamical system, called observer recovers the state

by applying the known model of the real system along with the input and output

information of the system. Observer stability is the main concern in this area which

has been attracted many efforts during the last four decades. Asymptotically stable

observers guarantee that the estimated variables of the real system asymptotically

converge to actual values. Many works on the structure of observers and condition

of stability have been done in both linear and nonlinear systems. The most pop-

ular structure which is considered by investigators is the so called Luenberger-like

observers. Finding the proper observer gain which stabilizes the observer and drives

the observer state to the actual system state are the main concern in this design
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problem. Consider the continuous time nonlinear observer below,

˙̂x(t) = Ax̂(t) + φ(x̂, u) + L(y(t)− Cx̂(t))

ŷ(t) = Cx̂(t)
(2.2)

where L is the observer gain and it should be computed in a way to stabilize the

observer. If we consider φ(x) = 0, the design problem will be reduced to the linear

design problem. Nonlinear observer design problem has remained an open problem

for the last several decades. By imposing constraints in the design problem, designers

try to find the most appropriate gain for the particular equilibrium point and stabilize

the observer around that point. Considering a particular class of nonlinear systems

is one of the restriction put in this approach. The most famous of these nonlinear

functions is called Lipschitz systems described as follows,

||φ(x1)− φ(x2)|| ≤ ρ||x1 − x2|| (2.3)

for all x1, x2 ∈ D ⊂ Rn. A function f satisfying this inequality is said to be a locally

Lipschitz. ρ is the so-called Lipschitz constant which is positive.

Thau did the first work on the analysis of these types of systems [1]. Observer gain

L is the only design parameter and also is assumed to be a constant. In his work, no

design approach is proposed but just a way for checking the stability of the design

by investigating whether or not A−LC is stable and also if corresponding Lyapunov

and Riccati equations have a symmetric positive solutions. Several researchers were

inspired by Thau’s work to develop an algorithm for Luenberger-like observer design.

Rajamani shows that the place of both eigenvalues and eigenvectors of A − LC can

affect the stability of the observer and it is not a wise decision to put the eigenvalues far

from the imaginary axis. To get the good response of the system he tried to minimize

the condition number, the ratio of maximum eigenvalue/singular value and minimum

eigenvalue/singular value of A − LC and developed a gradient based algorithm to

obtain a suitable observer gain for the design problem [3].

So far it was assumed that the observer gain L is constant. Pertew et.al [4] considered

a dynamical gain observer design in a new dynamic framework and they suggested

the following structure,

˙̂x(t) = Ax̂(t) + φ(x̂, u) + η(t)

ŷ(t) = Cx̂(t)
(2.4)
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where η has a state space representation. They constructed the dynamic of error and

converted the observer design problem to H∞ design procedure as shown in Fig. 2.1,

The design problem can be solved after regularization and they also parameterized

Figure 2.1: H∞ standard setup

all dynamic observer gain. It is shown that the design procedure is less conservative

than some other approaches stated in literature and has the advantage that one

can emphasize the performance requirements of the observer over specific frequency

ranges. Also results show that the observer has a fast convergence and also ends up

with greater Lipschitz constant.

Uncertainty that we encounter in the system modeling is one of the critical factors we

should consider in the design problem. Pertew et. al. [11] modeled this uncertainty

as a disturbance added to the system and study the stability of the error dynamics

by dynamic gain for the observer. Proposed observer suggested by them has the

following form,

ż(t) = w1(t) + w2(t) + Tφ(x̂)

x̂(t) = z +Hy
(2.5)

where w1, w2 are dynamical systems and assumed that they have state space represen-

tation and T and H are unknown matrices to be calculated based on known matrices

of the system [11]. Constructing the error dynamic, the design problem again can

be converted to H∞ design problem mentioned before and solving the problem, the

dynamic gain is obtained.

As it can be seen, nonlinear observer design for a class of continuous systems is

considered so far and some approaches for the design problem is investigated and a

solution for encountering with uncertainty is stated. Nowadays, implementation is

carried out by digital systems. To do the design problem in discrete time system

we need to discretize the continuous time system to the discrete one and solve the
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problem. Exact discretization of the system is unavailable, so Euler approximation

method has been used by many authors in the literature. It maintains the structure

of the original nonlinear model and also it is easy to obtain. Here, we consider the

design problem for the class of Lipschitz nonlinear systems with the form as previous

one but the only difference is that ρd = Tρ. Where ρd is the discrete time Lipschitz

constant.

Abbaszadeh et.al. [9] proposed an LMI approach for the design of the Luenberger

like observer for the discretized system. They have shown that by finding the opti-

mal values of the design, we can get a larger Lipschitz constant which leads to the

robustness in the design problem. They also extended their approach to a H∞ filter

design problem where an exogenous disturbance which belongs to L2 spaces added

to the nonlinear model. The objective of the design is to stabilize the observer and

also reduce the effect of the disturbance on controlled output which is stated as H∞

filter design. This problem also can be solved again by minimization subject to some

inequality which must be hold.

Assoudi et.al [25] considered a more general form of nonlinear systems as below which

are uniformly observable and control affine,

ẋ = f(x(t)) +
∑m

k=1 ui(t)gi(x(t))

y(t) = h(x(t))
(2.6)

where f , g and h are smooth functions. It has been shown that there is a transforma-

tion that converts the system above to the Lipschitz nonlinear system that we have

considered so far. By using Euler approximation, Luenberger based observer can be

obtained by this method. They have shown that, under some conditions, exponential

observer of the discrete time system is achieved even if Euler approximation can not

model the continuous system well.

Arcak et. al. [26] also considered a general form of Luenberger based observer prob-

lem and they assume that the compensation part of the observer is a function of

input, output and estimated states,

x̂(k + 1) = F a
T (x̂(k), u(k)) + lT (x̂(k), u(k), y(k)) (2.7)

in which F a
T is the approximate discretization and T is the sampling time. To solve

the problem, we have to find a Lyapunov function V (e), e is the error dynamic, to

7



satisfy some conditions which leads to semiglobal practical asymptotic convergence

of the observer.

Laila et. al. [27] investigated reduced order observer when some of the internal states

appear in the output equation. If we separate these two types of variables we have

the following form of the nonlinear system,

η̇ = f1(η)ξ

ξ̇ = f2(η, ξ) + g(η)u

y = η

(2.8)

where f1, f2 and g are smooth functions. After discrtization of the system, the

proposed observer is,

ξ̂a(k + 1) = f+(ηa(k))η
a(k+1)−ηa(k)

T

+Tf2(ηa(k), f+
1 (ηa(k)η

a(k+1)−ηa(k)
T

) + Tg(ηa(k))u(k)
(2.9)

where f+ is the pseudo inverse of f . They considered stability of the proposed

observer in terms of semiglobal asymptotic stability and guaranteed that the error is

bounded if some conditions are satisfied.

In the process of modeling real systems we typically encounter model uncertainty.

Moreover, time delay often exists in systems, so investigating the effect of these two

facts on the design problem is important. Xu [16] and Lu. et al. [12] solved this

problem for the discrete time observers. Two groups of undelayed and delayed states

along with unstructured uncertainty is used to model the desired problem and it can

be seen below,

x(k + 1) = (A+ ∆A)x(k) + (Ad + ∆Ad)x(k − d) +B1f(k, u(k), x(k), x(k − d))

+D1w1(k)

y(k) = (C + ∆C)x(k) + (Cd + ∆Cd)x(k − d) +B2g(k, u(k), x(k), x(k − d))

+D2w2(k)

(2.10)

where w1(k) and w2(k) is the exogenous disturbance which belongs to L2, ∆A, ∆Ad,

∆C and ∆Cd are unknown matrices and also f and g are Lipschitz functions. They

have formulated the design procedure using LMI approach and claimed that the solu-

tion obtained has robustness against time varying uncertainty imposed to the system.
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Throughout this chapter, we provided a brief review on the observer design of Lips-

chitz nonlinear systems in both continuous and discrete time domain. In the following

chapter, a new class of nonlinear system so called One-Sided Lipschitz will be pre-

sented and the observer design for this type of nonlinear system will be investigated.

In the last chapter, filter design for Lipschitz nonlinear system along with time delay,

uncertainty and missing information will be presented.
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Chapter 3

One-Sided Lipchitz Nonlinear
Filter Design

3.1 Problem Statement

Throughout this chapter, R represent the field of real numbers, Rn the set of n-

tuples of real numbers, and Rn∗p represents the set of real matrices with n rows and

p columns of real numbers. A matrix P ∈ Rn∗n is positive definite (respectively,

positive semi-definite) is for any vector x ∈ Rn, xTPx is a positive (respectively, non

negative) real number. In this case we write P > 0 (respectively, P ≥ 0). L2[0,∞]

denotes the space of Lebesque measurable functions satisfying

||u||L2 =

√∫ ∞
0

uT (t)u(t)dt <∞

where ||u||L2 is the L2 norm of the function u. Consider now the following nonlinear

system:

ẋ(t) = Ax(t) + φ(x, u) +Bu(t) +Dw(t) (3.1)

y(t) = Cx(t), (3.2)

where x ∈ Rn, u ∈ Rm, y ∈ Rp. w is the noise signal which belongs to L2[0,∞] and

φ(x, u) represents the nonlinearity which satisfies the following one-sided Lipschitz

condition:

< f(x1, u
∗)− f(x2, u

∗), x1 − x2 > ≤ ρ||x1 − x2||2 (3.3)

f(x, u) = Pφ(x, u) (3.4)
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for all x1, x2 ∈ D ⊂ Rn, where P is a symmetric positive definite matrix [23]. A

function f satisfying (3.24) is said to be a locally one-sided Lipschitz. ρ is the so-called

one-sided Lipschitz constant which can be either positive or negative. If the inequality

holds for all x1, x2 ∈ Rn the function is globally one-sided Lipschitz. Function φ(x, u)

in (3.4) is known to us presenting the nonlinearity in the real system. One of the

goals of the design approach here is to find the symmetric positive definite matrix P

to satisfy the one-sided Lipschitz condition. So, this matrix which is unknown could

be considered one of the design variables in the following Theorems in this chapter.

Consider now a filter with the following form,

˙̂x(t) = Ax̂(t) + φ(x̂, u) +Bu(t) + L(y(t)− Cx̂(t)) (3.5)

ŷ(t) = Cx̂(t). (3.6)

We define the estimation error e and the controlled output z as follows:

e = x− x̂ (3.7)

z(t) = He(t), H ∈ Rn∗n (3.8)

According to (3.7) and (3.5)-(3.6), the error dynamics is given by

ė(t) = (A− LC)e(t) + φ(x, u)− φ(x̂, u) +Dw(t). (3.9)

Our objective is to find a filter gain L to (i) asymptotically stabilize the error dynamics

when w = 0, and (ii) minimize the L2 norm of the controlled output z in the presence

of noise, i.e. find a minimum µ such that

||z||L2 ≤ µ||w||L2 (3.10)

Following the approach in [18], our formulation will also maximize the one-sided

Lipschitz constant. As shown in Section 3.2, doing so will accomplish two important

objectives. In the first place, maximizing the one-sided Lipschitz constant that results

in a stable filter will result in a larger region of attraction when the one-sided Lips-

chitz condition is satisfied only locally. Secondly, maximizing the one-sided Lipschitz

constant also provides some desirable stability robustness properties with respect to

nonlinear uncertainties, whenever the actual value of the Lipschitz constant is less

that the optimized value.
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In the following sections, the filter design with three different assumptions will be

presented.

1. it is assumed that the nonlinear system has the dynamic equations as described in

(3.1), (3.2).

2. additive time-varying uncertainties will be added to the linear part of the nonlinear

dynamic system and asymptotic stability of the nonlinear filter is investigated.

3. In the case of having measurement of some system states, reduced-order filter

design is carried out to estimate the unknown states.

3.2 Filter Design

We begin this section stating a series of simple Lemmas that will be needed in the

proof of our main result.

Lemma 1 [28] Let D, S and F be real matrices of appropriate dimensions and F

satisfying F TF ≤ I. Then for any scalar ε > 0 and vectors x,y ∈ Rn, we have

2xTDFSy ≤ ε−1xTDDTx+ εyTSTSy.

Proof. It is straightforward that for any pair of real numbers a and b we have,

ab ≤ a2

4
+ b2.

The above inequality follows immediately substituting a = 2
√
εxTDF , b = 1√

ε
yTST ,

along with the assumption F TF ≤ I. �

Lemma 2 (Schur Complement) The following quadratic matrix inequality and LMIs

are equivalent,

(a)

 Φ11 Φ12

Φ21 Φ22

 < 0

(b)
Φ22 < 0

Φ11 − Φ12Φ−1
22 ΦT

12 < 0
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Lemma 3 [29] The matrix inequality given by X + WW T < 0 is equivalent to the

LMI  X W

W T −I

 < 0.

Proof. it can be easily verified that I W

0 I

 X W

W T −I

 I 0

W T I

 =

 X +WW T 0

0 −I


We conclude that

 X W

W T −I

 is equivalent to

 X +WW T 0

0 −I

. Using Shur

complement

 X +WW T 0

0 −I

 < 0 result in X +WW T < 0. �

We now state and prove our first result on filter design. In this result (Theorem

1) we do not seek for optimal noise attenuation. Rather, we assume a known, pre-

established desirable value µ of the gain condition (3.10) and obtain the observer gain

L and positive-definite P that satisfy this gain. This approach has some advantages

and disadvantages over optimal solutions. The remarks following Theorem 1 provide

additional insight. A different approach which minimizes µ is provided in Theorem 2

Theorem 1 Consider nonlinear system (3.1)-(3.2) satisfying the one-sided Lipschitz

condition (3.3), along with the filter (3.5)-(3.6). The error dynamics is L2 bounded

satisfying the norm condition (3.10) if there exist ε >0, matrix Q > 0, symmetric

positive definite matrix P, matrix G and fixed µ > 0 such that the following LMI

optimization problem is feasible,

min(−ρ)

s.t.


HTH −Q+ 2ρ P

√
ε 0

∗ −I 0

∗ ∗ DTD
ε
− µ2I

 < 0 (3.11)

ATP + PA−GC − CTGT +Q < 0 (3.12)

After solving the LMI, L = P−1G.
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Proof: Consider the Lyapunov function V = eTPe. Computing the first derivative

of V along the error dynamics we obtain

V̇ = [eT (A− LC)T + (φ(x, u)− φ(x̂, u))T + wTDT ]Pe

+eTP [(A− LC)e+ φ(x, u)− φ(x̂, u) +Dw]

= eT [(A− LC)TP + P (A− LC)]e+ 2eTP (φ(x)− φ(x̂)) + 2eTPDw.

Assuming that (A−LC)TP +P (A−LC) < −Q, for some symmetric Q > 0, we have

ATP + PA−GC − CTGT < −Q (3.13)

where G = PL. Taking into account of (3.3) and (3.13) we obtain:

V̇ ≤ eT [(A− LC)TP + P (A− LC) + 2ρ]e+ 2eTPDw (3.14)

< eT [−Q+ 2ρ]e+ 2eTPDw (3.15)

Using Lemma 1 we have,

2eTPDw ≤ εeTP 2e+ ε−1wTDTDw. (3.16)

Substituting (3.16) into (3.14), the following inequality is obtained,

V̇ ≤ eT [−Q+ 2ρ]e+ εeTP 2e+ ε−1wTDTDw. (3.17)

Now if we define,

J =

∫ ∞
0

(zT z − µ2wTw)dt (3.18)

then we have that

J <

∫ ∞
0

(zT z − µ2wTw + V̇ )dt.

To guarantee that J ≤ 0, we must have

zT z − µ2wTw + V̇ ≤ 0 (3.19)

so,

zT z − µ2wTw + V̇ ≤ eTHTHe− µ2wTw + eT [−Q+ 2ρ]e (3.20)

+εeTP 2e+ ε−1wTDTDw (3.21)

≤ eT [HTH −Q+ 2ρ+ εP 2]e+ wT [ε−1DTD − µ2I]w < 0
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Using Lemma 3 and the fact that X = HTH−Q+ρ and W =
√
εP , inequality (3.20)

can be converted to the LMI (3.11). As mentioned before, the one-sided Lipschitz

constant is maximized in this problem to guaranteed robustness against some un-

certainties in the system. Introducing the constant ε into the LMI formulation adds

some flexibility to the design problem and can help to make the LMI be feasible for

a particular choice of µ. �

Remark 1: Once the matrix P obtained solving the LMIs, the Lyapunov function

V and its derivative V̇ are, respectively, positive and negative definite for all x ∈ Rn.

Therefore, the only limiting factor in establishing the region of attraction for the filter

(3.5)-(3.6) is given by the neighborhood D ⊂ Rn of the origin where the one-sided

Lipschitz condition is satisfied. The following corollary, is therefore an immediate

consequence of these observation.

Corollary 1 Under the assumptions of Theorem 1, the region of attraction for the

filter (3.5)-(3.6) is the largest invariant set contained in D ⊂ Rn.

Remark 2: A mentioned earlier, Theorem 1 maximizes the one-sided Lipschitz con-

stant that can be tolerated in the design. One clear advantage is that maximizing this

value leads to a larger region of attraction, as a consequence of Corollary 1. Another

important reason, however, is that maximizing ρ brings some important robustness

properties to the design. The following proposition clarifies this point. Consider a

perturbation of the system (3.1)-(3.2) defined as follows:

ẋ(t) = Ax(t) + φ∆(x, u) +Bu(t) +Dw(t) (3.22)

y(t) = Cx(t), (3.23)

φ∆(x, u) represents the perturbed nonlinearity satisfying,

f∆(x, u) = f(x, u) + ∆f(x, u) (3.24)

for all x1, x2 ∈ D where f∆(x , u) = Pφ∆(x , u) and ∆f unstructured nonlinear uncer-

tainty in Φ(x, u).

15



Proposition 1 Assume that the one-sided Lipschitz constant for the nominal system

(3.1)-(3.2) and perturbed one (3.22)-(3.23) are ρ and ρ∗, respectively. The error

dynamic is L2 bounded satisfying the norm condition (3.10) if the additive Lipschitz

uncertainty ∆ρ defined by

< ∆f(x1, u)−∆f(x2, u), x1 − x2 >≤ ∆ρ||x1 − x2||2

is such that less than or equal to ∆ρ ≤ ρ∗ − ρ.

Proof. It is straightforward that

< f∆(x1, u)− f∆(x2, u), x1 − x2 >=

< f(x1, u)− f(x2, u), x1 − x2 > + < ∆f(x1, u)−∆f(x2, u), x1 − x2 >

using one-sided Lipschitz inequality conditions, we get

< f∆(x1, u)− f∆(x2, u), x1 − x2 >≤ ρ||x1 − x2||2 + ∆ρ||x1 − x2||2

According to theorem 1 and the fact that ρ∗ is the maximum one-sided Lipschitz

constant obtained solving the LMIs, we should have ρ + ∆ρ ≤ ρ∗. So ∆ρ ≤ ρ∗ − ρ

shows the maximum uncertainty that can be added to the nominal system without

affecting the stability of the error dynamics. �

Remark 3: Theorem 1 provides a good compromise between a simple observer design

(i.e. a design that reconstructs the state without while ignoring noise or disturbance

action) and an optimal design that renders a filter with optimal noise properties. The

advantage of this Theorem is its simplicity: returns a filter with pre-set attenuation

properties. Our next result (Theorem 2), given next solves the optimization problem.

Our algorithm includes an additional term to the cost function with the purpose

of forcing the search algorithm to find lower gains. The price paid is an added

dependence on the tuning parameters defined in the theorem. By changing these

parameters, optimized values change significantly.

Theorem 2 Consider again the nonlinear system (3.1)-(3.2) under the same as-

sumptions in Theorem 1 The error dynamics is L2 bounded satisfying the norm con-

dition (3.10) if there exist ε >0, µ > 0, ε0 > 0, 0 < λ < 1, fixed matrix Q > 0,
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symmetric positive definite matrix P and matrix G such that the following LMI opti-

mization problem is feasible,

min((1− λ)µ2 + ε0

N∑
i=1

M∑
j=1

wijgij − λρ)

s.t.


HTH −Q+ 2ρ P

√
ε 0

∗ −I 0

∗ ∗ DTD
ε
− µ2I

 < 0 (3.25)

ATP + PA−GC − CTGT +Q < 0 (3.26)

where G=[gij ] and wij are corresponding weights. After solving the LMI, L = P−1G.

Proof. The proof follows the same lines as that of Theorem 1, but here the L2 gain µ

is minimized. The additional terms added to the optimization cost provide additional

control overvalues of the resulting filter gains. The parameter λ emphasizes the effect

of one-sided Lipschitz constant and the L2 gain µ norm constant in the cost function.

�

3.3 Filter Design for Systems with Parametric Un-

certainties

In this section we consider H∞ filter design for systems with additive uncertainty in

the linear terms. Consider nonlinear system with uncertainty:

ẋ(t) = (A+ ∆A)x(t) + φ(x, u) +Bu(t) +Dw(t) (3.27)

y(t) = (C + ∆C)x(t) (3.28)

where the time-varying parameter uncertainties are assumed to be of the form,

∆A(t) = M1F (t)N1 (3.29)

∆C(t) = M2F (t)N2 (3.30)

where F T (t)F (t) ≤ I. Suppose that the nonlinear system (3.27)-(3.28) satisfies the

one-sided Lipschitz condition (3.24), the observer is assumed to have the form of

17



(3.5)-(3.6), resulting in the error dynamic given by,

ė(t) = (A− LC)e(t) + φ(x, u)− φ(x̂, u) + (∆A+ L∆C)x(t) +Dw(t) (3.31)

Theorem 3 presents a design method to find an observer gain L that stabilizes the

error dynamic and satisfies the L2 norm condition (3.42).

Theorem 3 Consider nonlinear system (3.27)-(3.28) satisfying the one-sided Lip-

schitz condition (3.3), along with the filter (3.5)-(3.6). The error dynamics is L2

bounded satisfying the norm condition (3.10) if there exist ε >0, symmetric matrix

Q, symmetric positive definite matrix P and matrix G such that the following LMI

optimization problem is solvable,

min(−ρ+ µ2)

s.t. 

J P1S GM2 0 0 0

∗ −I 0 0 0 0

∗ ∗ −I 0 0 0

∗ ∗ ∗ R P2M1 P2D

∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ DTD
ε
− µ2I


< 0 (3.32)

ATP1 + P1A−GC − CTGT + 2ρ+Q < 0 (3.33)

where J = HTH + ATP1 + P1A − GC − CTGT + 2ρ, S = (ε + M1M
T
1 )

1
2and R =

ATP2 + P2A+ 2ρ+ 2N1TN1 +NT
2 N2.After solving the LMI, L = P−1

1 G.

Proof. Consider the Lyapunov function V = V1+V2 = eTP1e+x
TP2x. Computing

the first derivative of V1 along the error dynamics we get

V̇1 = [eT (A− LC)T + (φ(x)− φ(x̂))T + xT (∆A+ L∆C)T + wTDT ]P1e

+eTP1[(A− LC)e+ φ(x)− φ(x̂) + (∆A+ L∆C)x+Dw]
(3.34)

Using one-sided Lipschitz condition (3.24), uncertainty definitions (3.29), (3.29) and

the fact that G = P1L we obtain

V̇1 = eT [(A− LC)TP1 + P1(A− LC)]e+ 2eTP1(φ(x)− φ(x̂)) + 2eTP1Dw

+2eTP1(∆A− L∆C)x ≤ eT [ATP + PA−GC − CTGT + 2ρ]e

+2eTP1Dw + 2eTP1M1F (t)N1x− 2eTP1LM2F (t)N2x.

(3.35)
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Using lemma (III.1) we get,

2eTP1Dw ≤ εeTP 2
1 e+ ε−1wTDTDw

2eTP1M1F (t)N1x ≤ eTP1M1M
T
1 P1e+ xTNT

1 N1x

2eTP1LM2F (t)N2x ≤ eTGM2M
T
2 G

T e+ xTNT
2 N2x.

Substituting these inequalities into (3.35),

V̇1 ≤ eT [ATP + PA−GC − CTGT + 2ρ]e+ 2eTP1Dw

+2eTP1M1F (t)N1x+ 2eTP1LM2F (t)N2x

≤ eT [ATP + PA−GC − CTGT + 2ρ]e

+εeTP 2
1 e+ ε−1wTDTDw + eTP1M1M

T
1 P1e+ xTNT

1 N1x

+eTGM2M
T
2 G

T e+ xTNT
2 N2x.

(3.36)

The first derivative of V2 is computed as follows,

V̇2 = [xT (A+ ∆A)T + φ(x)T + wTDT ]P2x+ xTP2[(A+ ∆A)x+ φ(x) +Dw].

Using Lemma 1, one-sided Lipschitz condition (3.24) and uncertainty definitions

(3.29), (3.30) we get,

V̇2 = xT [ATP2 + P2A]x+ 2xTP2φ(x) + 2xTP2M1FN1x+ 2xTP2Dw

≤ xT [ATP2 + P2A]x+ 2ρxTx+ xTP2M1M
T
1 P2x+ xTNT

1 N1x

+2xTP2Dw.

(3.37)

Adding (3.36), (3.37) we have

V̇1 + V̇2 ≤ eT [ATP + PA−GC − CTGT + 2ρ]e+ εeTP 2
1 e+ eTP1M1M

T
1 P1e

+eTGM2M
T
2 G

T e+ xT [ATP2 + P2A+ 2ρ+ 2NT
1 N1 +NT

2 N2]x

+xTP2M1M
T
1 P2x+ 2xTP2Dw + ε−1wTDTDw.

Using (3.18), (3.19) we obtain,

zT z − µ2wTw + V̇ ≤ eT [HTH + ATP + PA−GC − CTGT + 2ρ]e

+εeTP 2
1 e+ eTP1M1M

T
1 P1e+ eTGM2M

T
2 G

T e

+xT [ATP2 + P2A+ 2ρ+ 2NT
1 N1 +NT

2 N2]x

+xTP2M1M
T
1 P2x+ 2xTP2Dw + ε−1wTDTDw

−µ2wTw < 0.

(3.38)
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Using Lemma 3 and the fact that X11 = HTH + ATP + PA − GC − CTGT + 2ρ,

W12 = P1(ε+M1M
T
1 )

1
2 , W13 = GM2, X44 = ATP2 +P2A+ 2ρ+ 2N1TN1 +NT

2 N2 and

W54 = P2M1, we can convert inequality (3.38) into the LMI (3.32). Finally notice

that when w(t)=0 we have ATP+PA−GC−CTGT +2ρ+Q < 0 showing asymptotic

convergent in the absence of disturbances. �

3.3.1 Examples

In this section we consider an illustrative example showing the application of both

Theorems presented here.

Example 1 Consider the nonlinear system presented by [30],

ẋ =


−10 1 0 0

−48.6 −1.26 48.6 0

0 0 −22 1

19.5 0 −19.5 −6

x+


0

0

0

3.205sin(x3)

+


1

0

2

0.5

u+


0

1

0

0

w

y =

 1 0 0 0

0 1 0 0

x
w is a summation of truncated high frequency sinusoidal signals with amplitude of 0.1

belonging to L2[0,∞]. We define the controlled output as,

z = He

where H = 0.25I4×4. Consider now a design based on Theorem 1 in which we seek

a filter with a 10db attenuation of disturbances or, equivalently, µ ≤ 0.3. Employing

Theorem 1 with µ = 0.3 and letting ε = 20, we obtain ρ∗ = 0.8231. In this exam-

ple, the parameter ε was chosen as the smallest integer that makes the LMI solution

feasible. The resulting observer gain is

L = 104.

 2.1582 −0.0023 −0.0039 0.0025

−0.0016 3.2135 4.3546 −0.4719

T .
Convergence of states (with w = 0) is depicted in Fig.3.1.
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Figure 3.1: Estimated and real states in the case of optimizing ρ

Example 2 Consider again the same systems used in Example 1. In this example

we proceed to simultaneously minimize the effect of disturbance (i.e. by minimizing

µ) and maximize the one-side Lipschitz constant ρ using Theorem 2. The tradeoff

between these two objectives can be handled with proper selection of the parameter λ.

Choosing λ = 0.7 and with the rest of the design parameters set to ε = 15, and ε0 = 0,

we complete the design. In the example, matrix Q is assumed to be as Q = .3I4×4.

After solving the LMIs we obtain µ∗ = .2604, ρ∗ = 0.9053 with the following observer

gain:

L = 105.

 0.0677 0.0014 −0.0005 −0.0005

0 4.2974 −1.0423 −1.4557

T .

We emphasize that application of Theorem 2 provides enough freedom to the de-

signer to shape the design in the way desired. In our example, disturbance attenuation

can be further reduced by taking a smaller value of the design parameter ε0. Doing

so, however, would result on larger values of the observer gain.

21



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

x
1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

x
2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

x
3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

Time (sec)

x
4

 

 

Real States

Estimated States

Figure 3.2: Estimated and real states in the case of optimizing ρ and µ

Convergence of the states are depicted in Fig.3.2.
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Example 3 In our final example we consider filter design where there is parametric

uncertainty in the system model. To this end we consider a modified version of the

system in Example 1 with uncertainties defined as follows,

M1 =


2.5 −0.2 0.1 0.1

3.5 0.3 2.5 0.4

0.2 −0.3 −1 0.1

1.5 0.5 1.5 0.1

 ,M2 =

 0.1 0.5 −0.7 0.2

0.1 0.7 −0.5 0.3

 , N1 = N2 = .1I4×4

Solving the problem using Theorem IV.I with design parameters as H = 0.25I4×4,

ε = 25, we obtain ρ∗ = 0.225 and µ∗ = .3063 and a

L =

 160.535 −151.1425 37.5955 456.3471

−135.2764 135.4853 −31.4421 −390.2546

T .
Convergence of states is depicted in Fig. 3.

3.4 Reduced-Order Filter Design

In this section we consider H∞ reduced-order filter design for systems for which

some internal states are directly available using the measurement equation. Consider

nonlinear system below,

ẋ(t) = Ax(t) + φ(x, u) +Bu(t) +Dw(t) (3.39)

y(t) = Cx(t),

where x ∈ Rn, u ∈ Rm, y ∈ Rp. w is the noise signal which belongs to L2[0,∞] and

φ(x, u) represents the nonlinearity which satisfies the one-sided Lipschitz condition

(3.24).

It is assumed that vector x can be partitioned into

 x1

x2

, where x1 are known states

and x2 are unknown ones. Using this fact, the original system can be converted to a

dynamic systems below,

ż2(t) = (LA11 + A21 − LA12L− A22L)z1(t) + (LA12 + A22)z2(t) + (L In−p)φ(x̂, u)

y(t) = z1(t)
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where z(t) = Tx(t). T is the transformation matrix defined as T =

 Ip 0

L In−p

 and

matrix A can be described as A =

 A11 A12

A21 A22

.

Consider the observer with the following form [31],

˙̂z2(t) = (A22 + LA12)ẑ2(t) + [L(A11 − A12L) + A21 − A22L]y(t)

+(L In−p)φ(x̂, u)

x̂(t) =

 y(t)

ẑ2(t)− Ly(t)

 (3.40)

where ẑ2 is the estimated states and L is observer gain should be calculated.

Defining error as e(t) = z2(t)− ẑ2(t), where z2 is unknown states, we get

ė(t) = (LA12 + A22)e(t) + (L In−p)(φ(x, u)− φ(x̂, u)) + (L In−p)Dw(t)

Controlled output for error state q is assumed to defined with the form of,

q(t) = He(t) (3.41)

where H is a known matrix. In this section, we try to find the observer gain L to

asymptotically stabilize the error dynamics in the absence of disturbances, and also

satisfy the H∞ norm of controlled output presented as below to attenuate the effect

of noise; i.e.,

||q||L2 ≤ µ||w||L2 (3.42)

Our approach will also attempt to maximize the one-sided Lipschitz constant which

will help us guarantee robustness against some nonlinear unstructured uncertainties.

The following theorems show the LMI algorithm for finding the desired parameters

for the filter.

Theorem 4 Consider nonlinear system (4.39) satisfying one-sided Lipschitz condi-

tion (3.24), the reduced order filter (3.40) is asymptotically stable and also H∞ norm

(3.42) is satisfied if there is symmetric matrix Q, symmetric positive definite matrix
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P and matrix G such that the following LMI optimization problem is solvable,

min(−ρ+ µ)

s.t.
R + 2ρ S

√
ε 0

∗ −I 0

∗ ∗ −µ2 + DTD
ε

 < 0

PA22 +GA12 + AT12G
T + AT22P + 2ρ+Q < 0

where S = P [L In−p] and R = HTH + PA22 + GA12 + AT12G
T + AT22P. After solving

the LMI, L = P−1G.

Proof. The current system can be transformed to a new one by transformation

matrix T,

z = Tx

where T =

 Ip 0

L In−p

, z =

 z1

z2

, p is the number of measured outputs, n is the

order of the system, z1 is the known states and z2 is unknown states.

Using the transformation we get the system,

ż = TAT−1z + Tφ(

 y

z2 − Ly

) + TDw (3.43)

where T−1 =

 Ip 0

−L In−p

.

If matrix A is partitioned as A =

 A11 A12

A21 A22

 and also supposed that C = (Ip 0)

equation (3.43) can be rewritten as below,

ż2 = (LA11 + A21 − LA12L− A22L)z1 + (LA12 + A22)z2 + (L In−p)φ(x̂, u)

y = z1

The error dynamic system is defined as e = z2 − ẑ2, so we have

ė = (LA12 + A22)e+ (L In−p)(φ(x)− φ(x̂)) + (L In−p)Dw
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Defining the Lyapunov function as V = eTPe, we get

V̇ = [eT (LA12 + A22)T + (φ(x, u)− φ(x̂, u))T (L In−p)
T

+wTDT (L In−p)
T ]Pe+ eTP [(LA12 + A22)e

+(L In−p)(φ(x, u)− φ(x̂, u)) + (L In−p)Dw]

Equation above result in inequality below,

V̇ = eT [(AT12L
T + AT22)P + P (A22 + LA12)]e

+2eTP (L In−p)(φ(x, u)− φ(x̂, u)) + 2eTP (L In−p)Dw

≤ eT [(AT12L
T + AT22)P + P (A22 + LA12)]e+ 2ρeT e+ 2eTP (L In−p)Dw

To show the inequality above, assume that e′T = [0 · · · 0︸ ︷︷ ︸
p

eT ], so it can be easily verified

that

eTP (L In−p)(φ(x, u)− φ(x̂, u)) =

e′T

 Ip 0p×(n−p)

0(n−p)×p P(n−p)×(n−p)

 Ip 0p×(n−p)

L(n−p)×p I(n−p)×(n−p)

 (φ(x, u)− φ(x̂, u))

so we get,

eTP (L In−p)(φ(x, u)− φ(x̂, u)) = e′
T

 Ip 0p×(n−p)

PL P

 (φ(x, u)− φ(x̂, u))

Using one-sided Lipschitz condition and the fact that

 Ip 0p×(n−p)

PL P

 is positive

definite, we have

e′
T

 Ip 0p×(n−p)

PL P

 (φ(x, u)− φ(x̂, u)) ≤ ρe′
T
e′ = ρeT e

Using lemma 1 we get,

V̇ ≤ eT [(AT12L
T + AT22)P + P (A22 + LA12)2ρ]e

+εeTP (L In−p)(L In−p)
TPe+ ε−1wTDTDw

if we define,

J =

∫ ∞
0

(qT q − µ2wTw)dt
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So,

J <

∫ ∞
0

(qT q − µ2wTw + V̇ )dt

to guarantee that J ≤ 0, we must have

qT q − µwTw + V̇ ≤ 0

So,

qT q − µwTw + V̇ ≤ eT [HTH + (AT12L
T + AT22)P + P (A22 + LA12)2ρ]e

+εeTP (L In−p)(L In−p)
TPe+ ε−1wT (DTD − µ2)w < 0

Using lemma 3 and fact that X = HTH + PA22 + GA12 + AT12G
T + AT22P + 2ρ,

W = P [L In−p] and also G = PL we get the first LMI. The second one also comes

up when w(t)=0. To guarantee robustness against uncertainty and also to attenuate

the effect of noise on controlled output, maximization on one-sided Lipschitz constant

and minimization of H∞ constant is carried out here respectively and is presented

in cost function. The main role of ε in LMI is that it adds some flexibility to the

problem by changing that the problem can be feasible.

3.4.1 Example

In this section we consider an illustrative example showing the application of Theorem

4 presented above.

Example 4 Consider nonlinear system described as below,

ẋ =


−10 1 0 0

−48.6 −1.26 48.6 0

0 0 −22 1

19.5 0 −19.5 −6

x+


0

0

0

3.205sin(x3)

+


1

0

2

.5

u+


0

1

0

0

w

y =

 1 0 0 0

0 1 0 0

x
Two system states x1 and x2 are available by measurement equation. Partitioning

the nonlinear system in a way described above, estimation of unknown states can be
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carried out using Theorem 4. After partitioning matrix A and solving the LMI, we get

L =

 −0.0506 −9.4257

−0.0001 −0.0118

, For fixed µ = .3, ε = 20 and H = .25I we get optimized

ρ∗ = 0.823. Convergence of states are depicted in the following figure.
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Figure 3.4: State estimation in reduced-order filter design

3.5 Conclusion

A new nonlinear H∞ filter design for one-sided Lipschitz systems is proposed. The

use of one-sided Lipschitz systems represents a nontrivial, significant extension of

similar results existent in the literature for Lipschitz systems. The one-sided Lipschitz

assumption is important in that (i) every Lipschitz system is also one sided-Lipschitz,

and (ii) the one-sided Lipschitz constant is less than or at most equal to the Lipschitz

constant. The combined effect of these two properties guarantees less conservative

results than those found using the, more established, theory developed for Lipschitz

systems.

Our result maximize the one-sided Lipschitz constant as one of the design goals,
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a property that provides some robustness properties with respect to nonlinear un-

certainties. The problem is formulated in LMI form, which is easily solvable by

commercially available software products.
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Chapter 4

Discrete-Time Filter Design for a
Class of Lipschitz Nonlinear
System

4.1 Problem Statement

In this chapter, discrete-time filter design for a class of Lipschitz nonlinear systems

is presented. Consider the following nonlinear system,

x(k + 1) = Ax(k) + f(x(k)) +Dw(k)

y(k) = γ(k)(Cx(k) + g(x(k)))
(4.1)

in which x ∈ Rn and y ∈ Rm are system states, measurements and w is the noise

signal which belongs to L2[0,∞]. f(x(k)) and g(x(k)) represent the nonlinearity

which satisfy the following Lipschitz condition:

|f(x)− f(x̂)| ≤ ρ1|x− x̂|

|g(x)− g(x̂)| ≤ ρ2|x− x̂|
(4.2)

A function satisfying (4.2) is said to be a locally Lipschitz. ρ1, ρ2 > 0 are so-called

Lipschitz constants. If inequalities above hold for ∀x, x̂ ∈ Rn, nonlinear functions are

globally Lipschitz.

As it can be seen in Fig. 4.1 plant information is assumed as the input of the

filter containing the model and the measurement of the nonlinear system (4.1). The

measurements taken from the plant are sent to the control unit, so this result in an

unknown delay, τ(k), between taking the measurement and receiving it at the control
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Figure 4.1: State estimation using Lipschitz nonlinear filter

unit which is assumed to be bounded, τm < τ(k) < τM . The information is exchanged

using the wireless communication links depicted in Fig. 4.1. This data might be

corrupted due to the failure of the communication network, so the measurement is

not available at that particular time to the nonlinear filter. Bernoulli distribution

γ(k) is introduced here to model the missing measurement as below,

Prob{γ(k) = 1} = E{γ(k)} = γ̄

P rob{γ(k) = 0} = 1− E{γ(k)} = 1− γ̄
(4.3)

in which the mean value of this random variable γ̄ is assumed to be known for a

particular communication network.

Now consider the Luenberger-like filter having the following form,

x̂(k + 1) = Ax̂(k) + f(x̂(k)) + L{y(k − τ(k))− ŷ(k)}

ŷ(k) = γ̄(Cx̂(k) + g(x̂(k)))
(4.4)

The dynamical error e(k) is formulated as follow,

e(k + 1) = x(k + 1)− x̂(k + 1) (4.5)

Define the controlled output z as follows,

z(k) = He(k) (4.6)

Our objective is to find a filter gain L to (i) asymptotically stabilize the error dynamics

when w(k) = 0, and (ii) minimize the L2 norm of the controlled output z in the
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presence of noise, i.e.

||z||L2 ≤ µ||w||L2 (4.7)

In the following sections, the filter design with two different assumptions will be

presented. Firstly, it is assumed that the nonlinear system has the dynamic equations

as described in (4.8). Secondly, additive time-varying uncertainties will be added

to the linear part of the nonlinear dynamic system and asymptotic stability of the

nonlinear filter will be investigated.

x(k + 1) = (A+ ∆A)x(k) + f(x(k)) +Dw(k)

y(k) = γ(k)((C + ∆C)x(k) + g(x(k)))
(4.8)

in which ∆C, ∆A are time-varying uncertainty matrices and γ is the probability of

missing information.

4.2 Filter Design

In this section, nonlinear filter design in absence of uncertainty is presented. Let

consider the nonlinear system below,

x(k + 1) = Ax(k) + f(x(k)) +Dw(k)

y(k) = γ(k)(Cx(k) + g(x(k)))
(4.9)

We now state and prove our first result on filter design based on nonlinear system

above and nonlinear filter (4.2).

Theorem 5 Consider the nonlinear system (4.1) with given nonlinearity as (4.2),

the error dynamic is L2 bounded satisfying the norm condition (4.7), if there exists

Q > 0, η, α1, α2 > 0 and positive definite matrix P1, P2, P3 and matrix G such that
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the following LMI is feasible,

Ψ1 0 0 0 Ψ15

∗ Ψ2 0 0 0

∗ ∗ Ψ3 0 Ψ35

∗ ∗ ∗ Ψ4 Ψ45

∗ ∗ ∗ ∗ Ψ5


< 0

 I GT

G P1

 > 0

ηI − Pi > 0 i = 1, 2, 3

(4.10)

where α−1
1 = ηρ2

1 and α−1
2 = ρ2

2. Ψi are presented in the following page. When the

problem solved, observer gain is obtain using L = P−1
1 G.

Proof. Let consider the Lyapunov function as,

V (k) = V1(k) + V2(k) + V3(k) + V4(k) + V5(k)

= e(k)TP1e(k) +
∑k−1

j=k−τ(k) e
T (k)Qe(k)

+
∑k−τm

i=k−τM+1

∑k−1
j=i e

T (k)Qe(k) + xT (k)P2x(k)

+xT (k − τ(k)P3x(k − τ(k))

(4.11)

Substituting (4.39), (4.42) into (4.43) we get,

e(k + 1) = Ae(k) + f(x(k))− f(x̂(k), u(k))

−L{γ(k)Cx(k − τ(k))− γ̄(Cx̂(k)

+γ(k)g(x(k − τ(k)) + g(x̂(k)))}+Dw(k)

(4.12)

adding and subtracting γ̄LCx(k) and γ̄Lg(x) we have,

e(k + 1) = (A− γ̄LC)e(k) + f(x(k))

−f(x̂(k))− L{γ(k)Cx(k − τ(k))

+γ(k)g(x(k − τ(k)))− γ̄g(x(k))

+γ̄(g(x(k))− g(x̂(k)))− γ̄Cx(k)}+Dw(k)

(4.13)
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Ψ1 =


HTH + (1 + τM − τm)Q− P1

√
8γ̄ I ATP1 − γ̄GTCT ATP1 − γ̄GTCT 0

∗ −α2 0 0 0 0

∗ ∗ −α1
7

0 0 0

∗ ∗ ∗ − 7
41
P1 0 0

∗ ∗ ∗ ∗ −7P1 P1

∗ ∗ ∗ ∗ ∗ − η
7



Ψ2 = −Q

Ψ3 =


−P2

√
8γ̄ I ATP2 ATP2 CTGT

∗ −α2 0 0 0 0

∗ ∗ −α1
2

0 0 0

∗ ∗ ∗ −P2 0 0

∗ ∗ ∗ ∗ 2P2 − 2ηI 0

∗ ∗ ∗ ∗ ∗ 1
7γ̄2

P1



Ψ4 =


−P3

√
8γ̄(1− γ̄) I ATP3 ATP3 CTGT

∗ −α2 0 0 0 0

∗ ∗ −α1
2

0 0 0

∗ ∗ ∗ −P3 0 0

∗ ∗ ∗ ∗ 2P3 − 2ηI 0

∗ ∗ ∗ ∗ ∗ 1
7γ̄(1−γ̄)

P1


Ψ5 = 2(P2 + P3) + 5P1 − µ2I

Ψ15 =


ATP1D − γ̄CTGTD

0

0

0

0

0


Ψ25 =

(
0
)

Ψ35 =


γ̄CTGTD +ATP2D

0

0

0

0

0



Ψ45 =


ATP3D

0

0

0

0

0


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Computing the expectation of difference of V1(k) along the trajectory of error, we

get

E{V1(k + 1)− V1(k)} = E{eT (k)[(A− γ̄LC)TP1(A− γ̄LC)− P1]e(k)

+2eT (k)(A− γ̄LC)TP1∆fk + 2eT (k)(A− γ̄LC)TP1Dw(k)

−2γ(k)eT (k)(A− γ̄LC)TP1LCx(k − τ(k))

−2γ(k)eT (k)(A− γ̄LC)TP1Lg(x(k − τ(k)))

−2γ̄eT (k)(A− γ̄LC)TP1L∆gk

+2γ̄eT (k)(A− γ̄LC)TP1LCx(k)

+2γ̄eT (k)(A− γ̄LC)TP1Lg(x(k)) + ∆fTk P1∆fk

+2∆fTk P1Dw(k)− 2γ(k)∆fTk P1LCx(k − τ(k)))

−2γ(k)∆fTk P1Lg(x(k − τ(k)))− 2γ̄∆fTk P1L∆gk

+2γ̄∆fTk P1LCx(k) + 2γ̄∆fTk P1Lg(x(k))

+wT (k)DTP1Dw(k)− 2γ(k)wT (k)DTP1LC...

...x(k − τ(k)))− 2γ(k)wT (k)DTP1Lg(x(k − τ(k)))

−2γ̄wT (k)DTP1L∆gk + 2γ̄wT (k)DTP1LCx(k)

+2γ̄wT (k)DTP1Lg(x(k))

+γ2(k)xT (k − τ(k))CTLTP1LCx(k − τ(k))

+2γ(k)2xT (k − τ(k))CTLTP1Lg(x(k − τ(k)))

+2γ(k)γ̄xT (k − τ(k))CTLTP1L∆gk

−2γ(k)γ̄xT (k − τ(k))CTLTP1LCx(k)

−2γ(k)γ̄xT (k − τ(k))CTLTP1Lg(x(k))

+γ2(k)gT (x(k − τ(k)))LTP1Lg(x(k − τ(k)))

+2γ̄γ(k)gT (x(k − τ(k)))LTP1L∆gk

−2γ̄γ(k)gT (x(k − τ(k)))LTP1LCx(k)

−2γ̄γgT (x(k − τ(k)))LTP1Lg(x(k))

+γ̄2∆gTk L
TP1L∆gk − 2γ̄2∆gTk L

TP1LCx(k)

−2γ̄2∆gTk L
TP1Lg(x(k)) + γ̄2xT (k)CTLTP1LCx(k)

+2γ̄2xT (k)CTLTP1Lg(x(k)) + γ̄2gT (x(k))LTP1Lg(x(k))}
(4.14)

in which ∆fk = f(x(k), u(k))− f(x̂(k), u(k)) and ∆gk = g(x(k))− g(x̂(k)).
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Lemma 4 [15] Let W be the positive definite matrix W ∈ Rn×n. Then for any vectors

x,y ∈ Rn, we have

2xTy ≤ xTW−1x+ yTWy.

Using Lemma 1 and Lemma 4 and assuming that P1 = η−W1 > 0 and also Lipschitz

condition, we get

2eT (k)(A− γ̄LC)P1∆fk + 7∆fTk (η −W1)∆fk

≤ eT (k)(A− γ̄LC)TP1(7η − 7P1)−1P1(A− γ̄LC)e(k) + 7ηρ2
1e
T (k)e(k)

(4.15)

Adding and subtracting gT (x(k− τ(k))g(x(k− τ(k)) to the equation below, we have

gT (x(k − τ(k)))LTP1Lg(x(k − τ(k))) ≤ gT (x(k − τ(k)))[LTP1L− I]g(x(k − τ(k)))

+gT (x(k − τ(k))g(x(k − τ(k))

(4.16)

Assuming that LTP1L− I < 0 and G = P1L we have,

LTP1L− I = LTP1P
−1
1 P1L− I < 0 (4.17)

Using schur complement, we get  I GT

G P1

 > 0 (4.18)

The same approach is applied to gT (x(k))LTP1Lg(x(k)), ∆gTk L
TP1L∆gk. Taking into

account the above assumptions above we have,

E{V1(k + 1)− V1(k)} = E{eT (k)[−P1 + 41
7

(A− γ̄LC)TP1(A− γ̄LC)

+(A− γ̄LC)TP1(7η − 7P1)−1P1(A− γ̄LC)

+1
7
(A− γ̄LC)TP1(A− γ̄LC) + 8ρ2

2γ̄
2 + 7ηρ2

1]e(k)

+xT (k)[7γ̄2CTLTP1LC + 8γ̄2ρ2
2]x(k)

+xT (k − τ(k))[7γ2(k)CTLTP1LC + 8ρ2
2γ

2(k)]...

...x(k − τ(k)) + 2eT (k)(A− γ̄LC)P1Dw(k)

+2γ̄wT (k)DTP1LCx(k) + 5wT (k)DTP1Dw(k)}
(4.19)
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Consider that,

(A− γ̄LC)TP1(7η − 7P1)−1P1(A− γ̄LC) + 1
7
(A− γ̄LC)TP1(A− γ̄LC)

= (A− γ̄LC)TP1[(7η − 7P1)−1 + 1
7
P−1

1 ]P1(A− γ̄LC)

(4.20)

Assuming that,

(7η − 7P1)−1 + 1
7
P−1

1 = (7η − 7P1)−1((7η − 7P1)1
7
P−1

1 + I)

= (7P1 − 7η−1P 2
1 )−1

(4.21)

We have,

E{V1(k + 1)− V1(k)} = E{eT (k)[−P1 + 41
7

(A− γ̄LC)TP1(A− γ̄LC)

+(A− γ̄LC)TP1(7P1 − 7η−1P 2
1 )−1P1

(A− γ̄LC) + 8ρ2
2γ̄

2 + 7ηρ2
1]e(k)

+xT (k)[7γ̄2CTLTP1LC + 8γ̄2ρ2
2]x(k)

+xT (k − τ(k))[7γ2(k)CTLTP1LC + 8ρ2
2γ

2(k)]...

...x(k − τ(k)) + 2eT (k)(A− γ̄LC)P1Dw(k)

+2γ̄wT (k)DTP1LCx(k) + 5wT (k)DTP1Dw(k)}
(4.22)

The following equation can be easily verified,

E{V2(k + 1)− V2(k)}+ E{V3(k + 1)− V3(k)} ≤

E{eT (k)Q1e(k)− eT (k − τ(k))Qe(k − τ(k))}+ E{(τM − τm)eT (k)Qe(k)}
(4.23)

the forth part of the Lyapunov function can be analyzed as follows,

E{V4(k + 1)− V4(k)} = E{(Ax(k) + f(x(k))

+Dw(k))TP2(Ax(k) + f(x(k)) +Dw(k))

−xT (k)P2x(k)} = E{xT (k)[ATP2A− P2]x(k)

+2xT (k)ATP2f(x(k)) + fT (x(k))P2f(x(k))

+2xT (k)ATP2Dw(k) + 2wT (k)BTP2f(x(k))

wT (k)DTP2Dw(k) ≤

E{xT (k)[ATP2A− P2]x(k) + 2xT (k)ATP2f(x(k))

+2fT (x(k))P2f(x(k)) + 2xT (k)ATP2Dw(k)

+2wT (k)DTP2Dw(k)}
(4.24)
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Rewriting P2 = ηI −W2 > 0 and using lemma 4 we have,

2xT (k)ATP2f(x(k)) + 2fT (x(k))P2f(x(k))

≤ xT (k)ATP2(2W2)−1P2Ax(k) + 2ηfT (x(k))f(x(k))
(4.25)

Using the Lipschitz condition we have,

2xT (k)ATP2f(x(k)) + 2fT (x(k))P2f(x(k))

≤ xT (k)[ATP2(2η − 2P2)−1P2A+ 2ηρ2
1]x(k)

(4.26)

Substituting (4.26) into (4.62) we get,

E{V4(k + 1)− V4(k)} ≤ E{xT (k)[−P2 + ATP2A+ ATP2(2η − 2P2)−1P2A

+2ηρ2
1]x(k) + 2xT (k)ATP2Dw(k) + 2wT (k)DTP2Dw(k)}

(4.27)

Let consider the following delayed systems,

x(k + 1− τ(k)) = Ax(k − τ(k)) + f(x(k − τ(k))) +Dwd(k) (4.28)

Assuming that

E{wd(k)} = E{w(k)}

E{wTd (k)wd(k)} = E{wT (k)w(k)}
(4.29)

The last part of the Lyapunov function can be treated as below,

E{V5(k + 1)− V5(k)} = E{(Ax(k − τ(k))

+f(x(k − τ(k))) +Dw(k))TP3(Ax(k − τ(k))

+f(x(k − τ(k))) +Dw(k))− xT (k − τ(k))P3...

...x(k − τ(k))} = E{xT (k − τ(k))[ATP3A− P3]...

...x(k − τ(k)) + 2xT (k − τ(k))ATP3f(x(k − τ(k)))

+fT (x(k − τ(k)))P3f(x(k − τ(k)))

+2xT (k − τ(k))ATP3Dw(k)

+2wT (k)DTP3f(x(k − τ(k))) + wT (k)DTP3Dw(k)}

= E{xT (k − τ(k))[ATP3A− P3]x(k − τ(k))

+2xT (k − τ(k))ATP3f(x(k − τ(k)))

+2fT (x(k − τ(k)))P3f(x(k − τ(k)))

+2xT (k − τ(k))ATP3Dw(k) + 2wT (k)DTP3Dw(k)}
(4.30)
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Assuming P3 = ηI −W3 > 0 and using lemma 4 we have,

2xT (k − τ(k))ATP3f(x(k − τ(k))) + 2fT (x(k − τ(k)))P3f(x(k − τ(k))) ≤

xT (k − τ(k))ATP3(2η − 2W3)−1P3Ax(k − τ(k))

+2η3f
T (x(k − τ(k)))f(x(k − τ(k)))

(4.31)

Using Lipschitz condition we have,

2xT (k − τ(k))ATP3f(x(k − τ(k))) + 2fT (x(k − τ(k)))P3f(x(k − τ(k)))

≤ xT (k − τ(k))[ATP3(2η − 2W3)−1P3A+ 2ηρ2
1]x(k − τ(k))

(4.32)

Substituting (4.32) into (4.30) we have,

E{V5(k + 1)− V5(k)} = E{xT (k − τ(k))

[−P3 + ATP3A+ ATP3(2η3 − 2W3)−1P3A+ 2η3ρ
2
1]

x(k − τ(k)) + 2xT (k − τ(k))ATP3Dw(k)

+2wT (k)DTP3Dw(k)}
(4.33)

Now, we define the following cost function,

J ,
∞∑
k=0

(zTk zk − µ2wTk wk) (4.34)

where zk is the controlled output defined as z(k) = He(k).

Adding the ∆V to this equation we have,

J ≤
∞∑
k=0

(zTk zk − µ2wTk wk + ∆V ) (4.35)

To guarantee the stability of the error dynamic we make the following assumption,

zTk zk − µ2wTk wk + ∆V < 0 (4.36)
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Taking to account the different part of Lyapunov function and take the expectation

we have,

∆V = eT (k)[HTH + (1 + τM − τm)Q1 − P1 + 41
7

(A− γ̄LC)TP1P1(A− γ̄LC)

+(A− γ̄LC)TP1(7P1 − 7η−1
1 P 2

1 )−1P1(A− γ̄LC) + 8ρ2
2γ̄

2 + 7η1ρ
2
1]e(k)

−eT (k − τ(k))Q1e(k − τ(k))xT (k)[−P2 + ATP2A+ 2η2ρ
2
1 + 8γ̄2ρ2

2

+7γ̄2CTLTP1LC + ATP2(2η2 − 2P2)−1P2A]x(k)

+xT (k − τ(k))[−P3 + ATP3A+ 8ρ2
2γ̄(1− γ̄) + 2η3ρ

2
1

+ATP3(2η3 − 2P3)−1P3A+ 7γ̄(1− γ̄)CTLTP1LC]x(k − τ(k))

+2eT (k)(A− γ̄LC)P1Dw(k) + 2γ̄wT (k)DTP1LCx(k)

+2xT (k)ATP2Dw(k) + 2xT (k − τ(k))TATP3Dw(k)

+wT (k)DT [2(P3 + P2) + 5P1 − µ2I]Dw(k)

(4.37)

Using (4.71) and Schur complement and assuming α−1
1 = ηρ2

1 and α−1
2 = ρ2

2 we have

LMI (4.48) and the proof is completed.

4.2.1 Example

Example 5 In this section, state estimation for a continuous time system is carried

out using the proposed Lipschitz nonlinear filter described as below,

x(k + 1) = Ax(k) + f(x(k)) +Dw(k)

y(k) = γ(k)(Cx(k) + g(x(k)))
(4.38)

in which A =

 0.3 0.1

0.1 0.3

, D =

 0.01

0.01

, C =
[

1 0
]

and g(x(k)) = 0.01sin(x1).

Solving the LMI is needed to initialize some design criteria such as attenuation level

µ and H. These parameters are summarized as follows,

Design Criteria:

µ = 0.5

H = 0.25I

probability information of the noise, delay and missing data is given. We assume that

the measurement data is received at the central control with the missing rate of 80%
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means that γ̄ = 0.8 and delay is bounded as .01 < τ < .1. Plus, the noise with zero

mean value and variance of 1 affect the process model.

Matlab LMI toolbox is used to implement the LMI (4.48). After solving the design

problem using Theorem 5 filter gain is found as,

L =

 .002

.0021


and the Lipschitz constants obtained as ρ1 = 0.0270 and ρ2 = 0.0423.

To show the accuracy of the filter, the four following cases are considered here:

In the first case, the probability of missing information in the channel assumed to be

0.8 and no delay and noise considered. In the second case, there is a delay in the

communication network, but no missing information and no noise is considered. In

the third case, noise with variance of 1 affects the performance of the network and

in the last one probability of missing information is 0.8, delay is assumed to be in

the range mentioned and also noise affects the communication network. 1. γ̄ = 0.8,

τ = 0 and σ = 0

2. γ̄ = 1, 0.01 < τ < .1 and σ = 0

3. γ̄ = 1, τ = 0 and σ = 1

4. γ̄ = 0.8, 0.01 < τ < .1 and σ = 1

In Fig. 4.2 it is shown that states converge to the real ones for these four cases.

4.3 Filter Design for Systems with Parametric Un-

certainties

In this section, design of the nonlinear filter for estimating all the system states in

the presence of uncertainty is presented. Let’s consider the nonlinear system below,

x(k + 1) = (A+ ∆A)x(k) + f(x(k)) +Dw(k)

y(k) = γ(k)((C + ∆C)x(k) + g(x(k)))
(4.39)

in which x ∈ Rn and y ∈ Rm are system states, measurements and w is the noise signal

which belongs to L2[0,∞]. f and g are nonlinearities satisfying Lipschitz condition

41



0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

x 1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

x 2

Time (sec)

 

 

estimated states

real states

(a) γ̄ = 0.8, τ = 0 and σ = 0

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

x 1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

x 2

Time (sec)

 

 

estimated states

real states

(b) γ̄ = 1, 0.01 < τ < .1 and σ = 0

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

x 1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

x 2

Time (sec)

 

 

estimated states

real states

(c) γ̄ = 1, τ = 0 and σ = 1

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

x 1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

x 2

Time (sec)

 

 

estimated states

real states
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Figure 4.2: State estimation of four different cases

(4.2). Time-varying parameter uncertainties are presented by ∆A and ∆C as follows,

∆A = M1F (t)N1

∆C = M2F (t)N2 (4.40)
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where M1,M2, N1 and N1 are known constant matrices with appropriate dimensions

and F (t) is an unknown time varying matrix satisfies the following condition,

F T (t)F (t) ≤ I (4.41)

Assume that the Luenberger-like filter having the following form,

x̂(k + 1) = Ax̂(k) + f(x̂(k)) + L{y(k − τ(k))− ŷ(k)}

ŷ(k) = γ̄(Cx̂(k) + g(x̂(k)))
(4.42)

The dynamical error e(k) is formulated as follow,

e(k + 1) = x(k + 1)− x̂(k + 1) (4.43)

Substituting (4.39), (4.42) into (4.43) we get,

e(k + 1) = Ae(k) + ∆Ax(k) + f(x(k))− f(x̂(k))− L{γ(k)Cx(k − τ(k))

+γ(k)∆Cx(k − τ(k)) + γ(k)g(x(k − τ(k))− γ̄(Cx̂(k) + g(x̂(k)))}

+Dw(k)

(4.44)

adding and subtracting Lγ̄Cx(k) and γ̄Lg(x) we have,

e(k + 1) = (A− γ̄LC)e(k) + ∆Ax(k) + f(x(k))− f(x̂(k))

−L{γ(k)Cx(k − τ(k))− γ̄Cx(k) + γ(k)∆Cx(k − τ(k))

+γ(k)g(x(k − τ(k))− γ̄g(x(k)) + γ̄(g(x(k))− g(x̂(k)))}+Dw(k)

(4.45)

Define the controlled output z as follows,

z(k) = He(k) (4.46)

Our objective is to find a filter gain L to (i) asymptotically stabilize the error dynamics

when w(k) = 0, and (ii) minimize the L2 norm of the controlled output z in the

presence of noise, i.e.

||z||L2 ≤ µ||w||L2 (4.47)

The main result of this section presented as follow,
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Theorem 6 Consider nonlinear system (4.39) with given nonlinearity as (4.2), the

error dynamic is L2 bounded satisfying the norm condition (4.7), if there exists Q > 0,

ε1, ε2, ε3, ε4 > 0 and η, α1, α2 > 0 and positive definite matrix P1, P2, P3 and matrix G

such that the following LMI is feasible,


Ψ1 0 0 Ψ14

* Ψ2 0 Ψ24

* * Ψ3 Ψ34

* * * Ψ4

 < 0



P1 GM2 0 0 0 0 0 0

* ε1 0 0 0 0 0 0

* * P1 P1M2 0 0 0 0

* * * ε2 0 0 0 0

∗ ∗ ∗ ∗ P2 P2M1 0 0

∗ ∗ ∗ ∗ ∗ ε3 0 0

∗ ∗ ∗ ∗ ∗ ∗ P3 P3M1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ε4


> 0

 I GT

G P1

10

 > 0

ηI − Pi > 0 i = 1, 2, 3

(4.48)

where Ψi are defined in the following page, in which G = P1L, ρ2
2 = α−1

2 and ρ2
1η =

α−1
1 . After solving the LMIs, filter gain obtained as L = P−1

1 G.

Proof. Let consider the Lyapunov function as,

V (k) = V1(k) + V2(k) + V3(k) + V4(k) + V5(k)

= e(k)TP1e(k) +
∑k−1

j=k−τ(k) e
T (k)Qe(k)

+
∑k−τm

i=k−τM+1

∑k−1
j=i e

T (k)Qe(k)

+xT (k)P2x(k) + xT (k − τ(k)P3x(k − τ(k))

(4.50)
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Ψ1 =



HTH + (1 + τM − τm)Q− P1 3I γ̄ ATP1 − γ̄GTCT 0 ATP1 − γ̄GTCT 0

∗ −α2 0 0 0 0 0

∗ ∗ −α1 0 0 0 0

∗ ∗ ∗ −9P1 P1 0 0

∗ ∗ ∗ ∗ − η
9

0 0

∗ ∗ ∗ ∗ ∗ − 9
71
P1 0

∗ ∗ ∗ ∗ ∗ ∗ −Q



Ψ2 =



(10ε2 + 4ε3)NT
1 N1 − P2 γ̄

√
3 ATP2 0 CTGT ATP2

∗ −α2 0 0 0 0 0

∗ ∗ −α1 0 0 0 0

∗ ∗ ∗ −3P2 P2 0 0

∗ ∗ ∗ ∗ − η
3

0 0

∗ ∗ ∗ ∗ ∗ − P1
10γ̄2

0

∗ ∗ ∗ ∗ ∗ ∗ − 3
5
P2



Ψ3 =



(4ε4)NT
1 N1 + 10ε1γ̄(1− γ̄)NT

2 N2

√
γ̄(1− γ̄)

√
3 ATP3 0 CTGT ATP3

∗ −α2 0 0 0 0 0

∗ ∗ −α1 0 0 0 0

∗ ∗ ∗ −3P3 P3 0 0

∗ ∗ ∗ ∗ − η
3

0 0

∗ ∗ ∗ ∗ ∗ − P1
10γ̄(1−γ̄)

0

∗ ∗ ∗ ∗ ∗ ∗ − 3
5
P3


Ψ4 = 9P1 + 3(P2 + P3)− µ2I

Ψ14 =



ATP1D − γ̄CTGTD

0

0

0

0

0

0



Ψ24 =



ATP2D

0

0

0

0

0

0



Ψ34 =



ATP3D

0

0

0

0

0

0



(4.49)
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Computing the expectation of difference of V1(k) along the trajectory of error and

using (4.40), we get

E{V1(k + 1)− V1(k)} = E{eT (k)[(A− γ̄LC)TP1(A− γ̄LC)− P1]e(k)

+2eT (k)(A− γ̄LC)TP1∆fk + 2eT (k)(A− γ̄LC)T ...

...P1M1FN1x(k) + 2eT (k)(A− γ̄LC)TP1Dw(k)

−2γ(k)eT (k)(A− γ̄LC)TP1LCx(k − τ(k))

−2γ(k)eT (k)(A− γ̄LC)TP1LM2FN2x(k − τ(k))

−2γ(k)eT (k)(A− γ̄LC)TP1Lg(x(k − τ(k)))

−2γ̄eT (k)(A− γ̄LC)TP1L∆gk

+2γ̄eT (k)(A− γ̄LC)TP1LCx(k)

+2γ̄eT (k)(A− γ̄LC)TP1Lg(x(k)) + ∆fTk P1∆fk

+2∆fTk P1M1FN1x(k) + 2∆fTk P1Dw(k)

−2γ(k)∆fTk P1LCx(k − τ(k)))− 2γ(k)∆fTk P1...

...Lg(x(k − τ(k)))− 2γ̄∆fTk P1L∆gk

+2γ̄∆fTk P1LCx(k) + 2γ̄∆fTk P1Lg(x(k))

−2γ(k)∆fTP1LM2FN2x(k − τ(k))

+wT (k)DTP1Dw(k)− 2γ(k)wT (k)DTP1LC...

...x(k − τ(k)))− 2γ(k)wT (k)DTP1Lg(x(k − τ(k)))

−2γ̄wT (k)DTP1L∆gk − 2γ(k)wTk (k)DTP1LM2...

...FN2x(k − τ(k)) + 2γ̄wT (k)DTP1LCx(k)

+2γ̄wT (k)DTP1Lg(x(k))

+2γ(k)2xT (k − τ(k))CTLTP1Lg(x(k − τ(k)))

+2γ(k)γ̄xT (k − τ(k))CTLTP1L∆gk

−2γ(k)γ̄xT (k − τ(k))CTLTP1LCx(k)

−2γ(k)γ̄xT (k − τ(k))CTLTP1Lg(x(k))

+2γ2(k)xT (k − τ(k))CTLTP1LM2FN2x(k − τ(k))

+γ2(k)xT (k − τ(k))NT
2 F

TMT
2 L

TP1LM2FN2...

...x(k − τ(k)) + 2γ2(k)x(k − τ(k))NT
2 F

TMT
2 L

T ...
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...P1Lg(k − τ(k)) + 2γ̄γ(k)xT (k − τ(k))NT
2 F

T ...

...MT
2 L

TP1L∆gk − 2γ̄γ(k)xT (k − τ(k))NT
2 F

T ...

...MT
2 L

TP1Lg(x(k)) + γ2(k)gT (x(k − τ(k)))...

...LTP1Lg(x(k − τ(k))) + 2γ̄γ(k)gT (x(k − τ(k)))...

...LTP1L∆gk − 2γ̄γ(k)gT (x(k − τ(k)))LTP1LCx(k)

−2γ̄γgT (x(k − τ(k)))LTP1Lg(x(k))

+γ̄2∆gTk L
TP1L∆gk − 2γ̄2∆gTk L

TP1LCx(k)

−2γ̄2∆gTk L
TP1Lg(x(k)) + γ̄2xT (k)CTLTP1LCx(k)

+2γ̄2xT (k)CTLTP1Lg(x(k))

+xT (k)NT
1 F

TMT
1 P1M1FN1x(k)

+2xT (k)NT
1 F

TMT
1 P1Dw(k)

+2γ̄xT (k)NT
1 F

TMT
1 P1LCx(k)

−2γ(k)xT (k)NT
1 F

TMT
1 P1LCx(k − τ(k))

−2γ(k)xT (k)NT
1 F

TMT
1 P1LM2FN2x(k − τ(k))

−2γ(k)xT (k)NT
1 F

TMT
1 P1Lg(k − τ(k))...

...− 2γ̄xT (k)NT
1 F

TMT
1 P1L∆gk

+2γ̄xT (k)NT
1 F

TMT
1 P1Lg(x(k))

−2γ(k)γ̄xT (k)CTLTP1LM2FN2x(k − τ(k))

+γ̄2gT (x(k))LTP1Lg(x(k))}

(4.51)
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in which ∆fk = f(x(k))− f(x̂(k)) and ∆gk = g(x(k))− g(x̂(k)). Using Lemma 1 the

equation above can be rewritten as below,

E{V1(k + 1)− V1(k)} = E{−eT (k)P1e(k) + 8eT (k)(A− γ̄LC)TP1...

...(A− γ̄LC)e(k) + 9∆fTk P1∆fk

+2eT (k)(A− γ̄LC)TP1∆fk

+2eT (k)(A− γ̄LC)TP1Dw(k)

+10γ2(k)xT (k − τ(k))CTLTP1LCx(k − τ(k))

+10γ̄2xT (k)CTLTP1LCx(k)

+10γ2(k)xT (k − τ(k))NT
2 F

TMT
2 L

TP1LM2FN2...

...x(k − τ(k)) + 10γ2(k)gT (x(k − τ(k)))LT ...

...P1Lg(x(k − τ(k))) + 10γ̄2∆gTk L
TP1L∆gk

+10γ̄2gT (x(k))LTP1Lg(x(k)) + 9wT (k)DTP1Dw(k)

+10xT (k)NT
1 F

TMT
1 P1M1FN1x(k)}

(4.52)

Let assume that,

10LTP1L− I < 0 (4.53)

Using Lemma 2, we have  I GT

G P1

10

 > 0 (4.54)
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Adding and subtracting γ2(k)gT (x(k − τ(k))), γ̄2∆gTk ∆gk and γ̄2gT (x(k))g(x(k)) to

(4.52) and using the Lipschitz condition (4.2) and also (4.53), we get

E{V1(k + 1)− V1(k)} = E{−eT (k)P1e(k) + 8eT (k)(A− γ̄LC)TP1...

...(A− γ̄LC)e(k) + 9∆fTk P1∆fk

+2eT (k)(A− γ̄LC)TP1∆fk

+2eT (k)(A− γ̄LC)TP1Dw(k)

+10γ2(k)xT (k − τ(k))CTLTP1LCx(k − τ(k))

+10γ̄2xT (k)CTLTP1LCx(k)

+10γ2(k)xT (k − τ(k))NT
2 F

TMT
2 L

TP1LM2FN2...

...x(k − τ(k)) + γ2(k)ρ2
2x

T (k − τ(k))x(k − τ(k))

+γ̄2ρ2
2e
T (k)e(k) + γ̄2ρ2

2x
T (k)x(k)

+9wT (k)DTP1Dw(k) + 10xT (k)NT
1 F

TMT
1 P1M1...

...FN1x(k)}
(4.55)

Assuming that P1 = η −W1 > 0, using lemma 4 we get

2eT (k)(A− γ̄LC)P1∆fk + 9∆fTk (η −W1)∆fk

≤ eT (k)(A− γ̄LC)TP1(9W1)−1P1(A− γ̄LC)e(k) + 9η∆fTk ∆fk (4.56)

Using Lipschitz condition we have,

2eT (k)(A− γ̄LC)P1∆fk + 9∆fTk (η −W1)∆fk

≤ eT (k)(A− γ̄LC)TP1(9η − 9P1)−1P1(A− γ̄LC)e(k) + 9ηρ2
1e
T (k)e(k)

(4.57)

Consider that,

(A− γ̄LC)TP1(9η − 9P1)−1P1(A− γ̄LC) + 1
9
(A− γ̄LC)TP1(A− γ̄LC)

= (A− γ̄LC)TP1[(9η − 9P1)−1 + 1
9
P−1

1 ]P1(A− γ̄LC)

(4.58)

Assuming that,

(9η − 9P1)−1 + 1
9
P−1

1 = (9η − 9P1)−1((9η − 9P1)1
9
P−1

1 + I)

= (9P1 − 9η−1P 2
1 )−1

(4.59)

49



Substituting (4.57) into (4.60) and some simplification we have,

E{V1(k + 1)− V1(k)} = E{eT (k)[(A− γ̄LC)TP1(9P1 − 9η−1P 2
1 )−1P1...

...(A− γ̄LC)− P1 + 71
9

(A− γ̄LC)TP1(A− γ̄LC)

+γ̄2ρ2
2 + 9ηρ2

1]e(k)

+2eT (k)(A− γ̄LC)TP1Dw(k)

+10γ2(k)xT (k − τ(k))CTLTP1LCx(k − τ(k))

+10γ̄2xT (k)CTLTP1LCx(k)

+10γ2(k)xT (k − τ(k))NT
2 F

TMT
2 L

TP1LM2FN2...

...x(k − τ(k)) + γ2(k)ρ2
2x

T (k − τ(k))x(k − τ(k))

+γ̄2ρ2
2x

T (k)x(k) + 9wT (k)DTP1Dw(k)

+10xT (k)NT
1 F

TMT
1 P1M1FN1x(k)}

(4.60)

The following equation can be easily verified,

E{V2(k + 1)− V2(k)}+ E{V3(k + 1)− V3(k)}

≤ E{eT (k)Qe(k)− eT (k − τ(k))Qe(k − τ(k))}+ E{(τM − τm)eT (k)Qe(k)}
(4.61)

the forth part of the Lyapunov function can be analyzed as follows,

E{V4(k + 1)− V4(k)} = E{(Ax(k) + ∆Ax(k) + f(x(k))

+Dw(k))TP2(Ax(k) + ∆Ax(k) + f(x(k)) +Dw(k))

−xT (k)P2x(k)} ≤ E{2xT (k)ATP2Ax(k)

+4xT (k)NT
1 F

TMT
1 P2M1FN1x(k)

+3f(x(k))TP2f(x(k)) + 2xT (k)ATP2f(x(k))

+3wT (k)DTP2Dw(k)

+2xT (k)ATP T
2 Dw(k)− xT (k)P2x(k)}

(4.62)

Using (4.56)-(4.59), we get

E{V4(k + 1)− V4(k)} = E{xT (k)[−P2 + 5
3
ATP2A

+ATP2(3P2 − 3η−1P 2
2 )−1P2A+ 3ηρ2

1]x(k)

+4xT (k)NT
1 F

TMT
1 P2M1FN1x(k)

+3wT (k)DTP2Dw(k) + 2xT (k)ATP T
2 Dw(k)}

(4.63)
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Let consider the following delayed systems,

x(k+ 1− τ(k)) = Ax(k− τ(k)) + ∆Ax(k− τ(k)) + f(x(k− τ(k))) +Dwd(k) (4.64)

The last part of the Lyapunov function can be treated as below,

E{V5(k + 1)− V5(k)} = E{(Ax(k − τ(k)) + ∆Ax(k − τ(k)) + f(x(k − τ(k)))

+Dwd(k))TP3(Ax(k − τ(k)) + ∆Ax(k − τ(k))

+f(x(k − τ(k))) +Dwd(k))− xT (k − τ(k))P3...

...x(k − τ(k))} ≤ E{2xT (k)ATP3Ax(k)

+4xT (k)NT
1 F

TMT
1 P3M1FN1x(k)

+3f(x(k))TP3f(x(k)) + 2xT (k)ATP3f(x(k))

+3wT (k)DTP3Dw(k) + 2xT (k)ATP T
3 Dw(k)

−xT (k)P3x(k)}
(4.65)

Using (4.56)-(4.59), we get

E{V5(k + 1)− V5(k)} = E{xT (k)[−P3 + 5
3
ATP3A

+ATP3(3P3 − 3η−1P 2
3 )−1P3A+ 3ηρ2

1]x(k)

+4xT (k)NT
1 F

TMT
1 P3M1FN1x(k)

+3wT (k)DTP3Dw(k) + 2xT (k)ATP T
3 Dw(k)}

(4.66)

Lemma 5 [28] Assume that A, D, E and F are constant matrices, P is positive

definite matrix and F satisfying F T (t)F (t) ≤ I. Then for ε > 0 with P−1−ε−1DDT >

0, we have

(A+DFE)TP (A+DFE) ≤ AT (P−1 − ε−1DDT )−1A+ εETE (4.67)

Using this lemma and assuming that A = 0 here, we have

10γ2(k)xT (k − τ(k))NT
2 F

TMT
2 L

TP1LM2FN2x(k − τ(k))

≤ 10γ2(k)ε1x
T (k − τ(k))x(k − τ(k))

10xT (k)NT
1 F

TMT
1 P1M1FN1x(k) ≤ 10ε2x

T (k)NT
1 N1x(k)

4xT (k)NT
1 F

TMT
1 P2M1FN1x(k) ≤ 4ε3x

T (k)N1N1x(k)

4xT (k)NT
1 F

TMT
1 P3M1FN1x(k) ≤ 4ε4x

T (k)N1N1x(k)
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with the following assumptions,

P−1
1 − ε−1

1 LM2M
T
2 L

T > 0

P−1
1 − ε−1

2 M1M
T
1 > 0

P−1
2 − ε−1

3 M1M
T
1 > 0

P−1
3 − ε−1

4 M1M
T
1 > 0

(4.68)

Now, we define the following cost function,

J ,
∞∑
k=0

(zTk zk − µ2wTk wk) (4.69)

where zk is the controlled output defined as z(k) = He(k).

Adding the ∆V to this equation we have,

J ≤
∞∑
k=0

(zTk zk − µ2wTk wk + ∆V ) (4.70)

To guarantee the stability of the error dynamic we make the following assumption,

zTk zk − µ2wTk wk + ∆V < 0 (4.71)

Taking to account the different part of Lyapunov function and take the expectation

we have,

∆V = E{eT (k)[HTH − P1 + 71
9

(A− γ̄LC)TP1(A− γ̄LC)

+(1− τM − τm)Q1 + γ̄2ρ2
2 + 9ηρ2

1

+(A− γ̄LC)TP1(9P1 − 9η−1P 2
1 )−1P1(A− γ̄LC)]e(k)

−eT (k − τ(k))Q1e(k − τ(k))

+2eT (k)(A− γLC)TP1Dw(k) + xT (k)[−P2...

...+ 5
3
ATP2A+ 4ε3N

T
1 N1 + 3ηρ2

1 + 10ε2N
T
1 N1

+γ̄2ρ2
2 + ATP2(3P2 − 3η−1P2)−1P2A

10γ̄2CTLTP1LC]x(k) + 2xT (k)ATP2Dw(k)

+xT (k − τ(k))[−P3 + 5
3
ATP3A+ 4ε4N

T
1 N1

+3ηρ2
1 + 10ε1γ̄(1− γ̄)NT

2 N2 + γ̄(1− γ̄)ρ2
2

+ATP3(3P3 − 3η−1P3)−1P3A...

...+ 10γ̄(1− γ̄)CTLTP1LC]x(k − τ(k))

2xT (k − τ(k))ATP3Bw(k)

+wT (k)[9DTP1D + 3DTP2D + 3DTP3D − µ2I]w(k)}

(4.72)
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Using (4.71) and Schur’s complement the proof is completed

4.3.1 Example

Example 6 In this section, state estimation for a discrete time system is carried out

using the proposed Lipschitz nonlinear filter described as below,

x(k + 1) = Ax(k + 1) + f(x(k))

y(k) = γ(k)(Cx(k) + g(x(k)))
(4.73)

in which A =

 0.2 0.2

0.3 0.1

, D =

 0.01

0.01

, C =
[

1 0
]

and g(x(k)) = 0.01sin(x1).

Solving the LMI (4.48) is needed to initialize some design criteria such as attenuation

level µ and H and also tuning parameters like η . These parameters are summarized

as follows,

Design Criteria:

µ = 0.5

H = 0.25I

Uncertainty matrices are assumed to be the following,

M1 = 0.05I,N1 = N2 = 0.5I,M2 =
[

0.5 0.5
]

probability information of the noise, delay and missing data is given. We assume that

the measurement data is received at the central control with the missing rate of 80%

means that γ̄ = 0.8 and delay is bounded as .01 < τ < .1. Plus, the noise with zero

mean value and variance of 1 affect the process model.

Matlab LMI toolbox is used to implement the LMI (4.48). After solving the design

problem using theorem 6 the filter gain is,

L =

 0.0567

0.0558


To show the accuracy of the filter, four cases are considered here:

In the first case, the probability of missing information in the channel assumed to be

0.8 and no delay and noise considered. In the second case, there is a delay in the
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(d) γ̄ = .8, 0.01 < τ < .1 and σ = 1

Figure 4.3: State estimation of four different cases in presence of uncertainty

communication network, but no missing information occurs and no noise is added.

In the third case, noise with a variance of 1 affects the performance of the network.

In the final case, probability of missing information is 0.8, delay is assumed to be in
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the range mentioned and also noise affects the communication network. 1. γ̄ = 0.8,

τ = 0 and σ = 0

2. γ̄ = 1, 0.01 < τ < .1 and σ = 0

3. γ̄ = 1, τ = 0 and σ = 1

4. γ̄ = 0.8, 0.01 < τ < .1 and σ = 1

In Fig. 4.3 it is shown that states converge to the real ones for these four cases.

As it can be seen in the Fig. 3.3 (b) before 10th Second of the simulation, there is

a bias in the estimated states. When the filter receives the measurement from the

system, the error converges to the real value.

4.4 Case Study

In this section, fourth order model of a synchronous generator connected to infinite

bus is presented [32]. In Fig. 4.4 a power network is shown and as can be seen the

entire network can be viewed like an infinite bus by the single synchronous generator

since its load and power is much larger compared to the single machine.

This model is described as follows,

dδ(t)
dt

= ω0ω(t)

dω(t)
dt

= 1
2H

[Tm − Te −Dω(t)]

dE′q
dt

= 1
T ′do

[−E ′q + (xd − x′d)id + Efd]

dE′d
dt

= 1
T ′qo

[−E ′d − (xq − x′q)iq]

(4.74)

The state vector is defined as x = [δ ω E ′q E ′d]
T . δ, ω are rotor angle and angular

rotor speed and E ′q, E
′
d and iq and id are voltage and current magnitudes in d-q frame.

Tm, Efd are input mechanical torque and electric field voltage, respectively and Te is

the electrical torque. ωo = 2πf , D, H, Tdo, Tqo are the nominal synchronous speed,

damping factor, inertia constant and d-q transient open circuit time constants.
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Electrical torque of the synchronous generator is computed as follows,

Te = E ′did + E ′qiq + (x′d − x′q)iqid (4.75)

Electrical torque and reactive power P which is the measurement transmitted to

central control unit are related through the equation below,

Te = P + I2
aRa (4.76)

Neglecting the rotor resistance Ra, Te ≈ P . Connecting the synchronous generator to

the infinite bus, current magnitudes in the d-q frame are calculated using the formula, x′d + ZI −(Ra + ZR)

−(Ra + ZR) −(x′q + ZI)

 id

iq

 = h1Ebcos(δ) + h2Ebsin(δ)− E ′q
h2Ebcos(δ)− h1Ebsin(δ)− E ′d

 (4.77)

where Eb is the bus voltage. Z = ZR+jZI is the impedance viewed from the terminal

when Eb = 0 and h = h1 + jh2 is the voltage gain at the terminal when armature

circuit is open. Assuming the purely inductive impedance, it will be reduced to

Z = ZI and h = h1 = 1.

Taylor series can be applied to the measurement equation as follows,

cos(δ) = 1− δ2

2!
+
δ4

4!
− ... (4.78)

Using this assumption, the measurement equation can be rewritten into linear part

and nonlinear one as below,

P = Cx+ g(x) (4.79)

where C =
[

0 0 h1Eba21 + h2Eba22 h1Eba11 + h2Eba12

]
and g(x) is the nonlin-

ear part of the measurement and

 a11 a12

a21 a22

 =

 x′d + ZI −(Ra + ZR)

−(Ra + ZR) −(x′q + ZI)

−1

.

The measurements taken by local sensors are sampled at each sampling time T and

sent to PMU to be transmitted to the central control unit. Reactive power and/or

active power are measurements taken as inputs for nonlinear filter to estimate the

unknown states as well as field voltage and mechanical torque.
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Figure 4.4: Asynchronous generator connected to infinite bus

4.4.1 Simulation Results

In this section, state estimation for a synchronous generator connected to infinite

bus is carried out using the proposed Lipschitz nonlinear filter. Before solving the

problem, we need to modify the system into a reduced one consisting of the last three

states since the first state is dependent to the second one. Considering the four order

model causes the unobservability problem in the design procedure. Using the states

obtained in the third order model, the rotor angle is updated at each sampling time.

Using this assumption, we have

x(k + 1) = (A+ ∆A)x(k) + f(x(k)) +Bw(k)

y(k) = γ(k)((C + ∆C)x(k) + g(x(k)))
(4.80)

in which x = [ω,E ′q, E
′
d]
T . The first equation is used to update the rotor angle at each

step of simulation. The design procedure is divided into the following steps:

1. In order to design a filter (4.42), parameters of the generator and also transmis-

sion line impedance is needed. The generator used for estimation has the following

parameters [32],
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(a) γ̄ = 0.8, τ = 0 and σ = 0 (b) γ̄ = 1, 0.01 < τ < .1 and σ = 0

(c) γ̄ = 1, τ = 0 and σ = 1 (d) γ̄ = .8, 0.01 < τ < .1 and σ = 1

Figure 4.5: State estimation of four different cases

Generator Model:

ωo = 377, H = 1.7, D = 25, Ra = 0.1, T ′do = 0.1, T ′qo = 0.1, xd = .02, xq = 0.01,

x′q = 0.05, x′d = 0.015. In this simulation, we assume that Eb = 1, and also the

generator inputs are Ef = 0.5 and Tm = 1.

The transmission line connecting the generator to the bus has the following impedance

and gains,

Transmission line:
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ZR + jZI = j0.192

h1 + jh2 = 1

2. Solving the LMI (4.48) is needed to initialize some design criteria such as attenu-

ation level µ and H. These parameters are summarized as follows,

Design Criteria:

µ = 0.3

H = 0.25I

3. In the last step, probability information of the noise, delay and missing data is

given. We assume that the measurement data is received at the central control with a

missing rate of 80%, which means that γ̄ = 0.8 and delay is bounded as .01 < τ < .1.

We also assume that noise with zero mean and a variance of 1 affect the process

model.

Matlab LMI toolbox is used to implement the LMI (4.48). After solving the design

problem using the theorem 6 filter gain is found as,

L =


0.0057

0.0048

0.0085


To show the accuracy of the filter, the four following cases are considered here:

In the first case, the probability of missing information in the channel assumed to be

0.8 and no delay and noise considered. In the second case, there is a delay in the

communication network, but no missing information and no noise is considered. In

the third case, noise with a variance of 1 affects the performance of the network. In

the forth case probability of missing information is 0.8, delay is asumed to be in the

range mentioned and also noise affects the communication network.

1. γ̄ = 0.8, τ = 0 and σ = 0

2. γ̄ = 1, 0.01 < τ < .1 and σ = 0

3. γ̄ = 1, τ = 0 and σ = 1

4. γ̄ = 0.8, 0.01 < τ < .1 and σ = 1
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Figure 4.6: State estimation with time-varying Ef

In Fig. 4.5 it is shown that states converge to the real ones for these four cases when

the field voltage is fixed.

Convergence of the filter states when the field voltage is time-varying is depicted in

Fig. 4.6. As it can be seen, field voltage is fixed for the first 3 seconds and starts

increasing from 0.5 with the slope 0f 0.1 in both synchronous generator and filter and

it is shown that the filter states track the real ones.

4.5 Conclusion

In this chapter, dynamic state estimation for a class of Lipschitz nonlinear system is

presented. Estimating the unknown states of the system is carried out using the mea-

surements available to the filter which come through a wireless channel. The delay

in transmitting the data to central units and also packet drop of the information is

considered in the proposed method. Simulation results show the efficiency and accu-

racy of the proposed filter to estimate the unknown states in the case of uncertainty

in the linear part of the dynamic system.
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Chapter 5

Summary and Conclusions

5.1 Summary and Conclusions

To monitor, control, and diagnose faults in practical applications, having access to in-

stantaneous values of internal states or physical variables play a crucial role. However,

due to technical issues and the cost of installing the sensors, part of the information

is not available. Hence, these unknown quantities must be estimated and it can be

carried out by dynamical systems called observers. Observers utilize the input and

output information of the process combined with the known system model to estimate

the unknown values. The key work here is to guarantee that under some conditions

the estimated states converge to real ones. Filtering is the other topic in the area of

estimation which tries to estimate the state of the nonlinear systems in the presence

of noise. Different structures and also tools for filter design in the system has been

developed. All these try to find a solution which is less conservative and also valid in

a large region around an equilibrium point.

In this thesis two types of nonlinear systems for the filter and observer design are

considered. first, Lipschitz nonlinear systems which is one of the well known systems is

introduced. This type of nonlinearity has been used by many researchers in developing

observers and filters. Second, a new general family of nonlinear systems, one-sided

Lipschitz systems, has been introduced which can cover a wide range of nonlinearity

in systems.

In the first chapter continuous time nonlinear H∞ filter design for one-sided Lip-

schitz systems is proposed. Full order and reduced order filter design is formulated

in the form of LMIs. The use of one-sided Lipschitz systems represents a nontrivial,
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significant extension of similar results existent in the literature for Lipschitz systems.

The one-sided Lipschitz assumption is important in that (i) every Lipschitz system

is also one sided-Lipschitz, and (ii) the one-sided Lipschitz constant is less than or

at most equal to the Lipschitz constant. The combined effect of these two proper-

ties guarantees less conservative results than those found using the, more established,

theory developed for Lipschitz systems. Our result maximizes the one-sided Lipschitz

constant as one of the design goals, a property that provides some robustness proper-

ties with respect to nonlinear uncertainties. Moreover, decreasing the effect of noise

in the estimation problem is considered by adding an extra term in the cost function

presented in this chapter. Simulation results on an unstable nonlinear system show

the proficiency of the proposed method in finding the robust solution and decreasing

the noise effect.

In the second chapter, we develop a new theorem based on LMI approach for

dynamic state estimation for a class of Lipschitz nonlinear system. In the proposed

method estimation of the unknown states is carried out using the measurements avail-

able to the filter provided by wireless communication to the control unit far from the

practical system. The delay in transmitting the data sent to central units and also

packet drop of the information which occurs in communication network presented and

also considered in the proposed method. The existence of delay in practical system

affects the performance of the systems and may cause the instability of real applica-

tion. Moreover, failure of the communication network for a short period of time may

influence the accuracy and reliability of the online application. Considering these two

common phenomenon guarantees the stability and reliability of the proposed method.

Synchronous generator connected to the infinite bus is a practical system chosen here

to show the accuracy and proficiency of the suggested algorithm. Simulation results

show that the estimated states are asymptotically converge to the real states which

can be utilized for monitoring and control application and also ensure the stability

and reliability of the distribution network.

62



5.2 Suggestions for Future Work

In the One- Sided Lipschitz nonlinear observer design presented in the second chapter,

symmetric positive definite matrix P is one of the design variables of the problem.

The reason is that the inner product of function f = Pφ and error, e, appear in

formulating the Lyapunov function and applying the One-Sided Lipschitz condition

as defined in chapter 3 easily reduces the Lyapunov function to a closed form which

can be used in forming the LMIs. Function f is an auxiliary nonlinear function while

the real nonlinear function existent in the system is φ. It would be more practical

if just the nonlinear function φ is considered in the One-sided Lipschitz condition.

However, many works have been done based on defining the One-sided Lipschitz

condition as presented in chapter 3. The next step is to find a way of design in which

auxiliary function f equal to φ and design problem just considers the nonlinearity in

the real application. Considering this fact, filter design for both discrete-time and

continuous-time One-sided Lipschitz nonlinear systems combined with time delay and

missing information can be investigated in this step. Since a wide range of systems

can be modelled by this class of nonlinearity, it would be close to the behaviour of

the practical application.

Estimation of unknown inputs or disturbances in practical application is one of

the topics considered by researchers in the area of Lipschitz nonlinear systems so far.

Using adaptive law for the input signal combined with the dynamic system is the

common way to estimate the unknown input. Applying this approach for this type

of observers can be considered especially for One-Sided Lipschitz nonlinear system.

Uncertainty, delay and missing information can be added to the nonlinear model

which can be more practical.

Reliability and stability of power distribution network is becoming more challeng-

ing since it is getting larger and larger. Having access to all the voltages and currents

phasors makes it possible to monitor the stability of the network and take action in

critical situation. In the last chapter, state estimation of a synchronous generator

connected to the infinite bus was performed. Instead of having the infinite bus, a

large distribution network consisting of lots of generators and different kinds of load

can be considered. State estimation of each bus in the network can be carried out
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while interacting with other elements of the network.

In today’s network, distribution networks are divided into smaller partitions and state

estimation for each part is performed locally in the local control unit. Information

provided in substations are transmitted to local control units by communication net-

works. Uncertainty, delay, network failure and information leakage are common in

networks. Dealing with these types of failures and considering them in the com-

munication between substations and control units must be presented in the models

provided for state estimation. Moreover, the way in which each partition communi-

cates with the neighbors affects the online estimation of voltages and currents phasors

and still is an open area.
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