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Abstract

Model-based control design of small-scale helicopters involves considerable chal-

lenges due to their nonlinear and underactuated dynamics with strong couplings

between the different degrees-of-freedom (DOFs). Most nonlinear model-based

multi-input multi-output (MIMO) control approaches require the dynamic model

of the system to be affine-in-control and fully actuated. Since the existing formu-

lations for helicopter nonlinear dynamic model do not meet these requirements,

these MIMO approaches cannot be applied for control of helicopters and control

designs in the literature mostly use the linearized model of the helicopter dy-

namics around different trim conditions instead of directly using the nonlinear

model. The purpose of this thesis is to derive the 6-DOF nonlinear model of the

helicopter in an affine-in-control, non-iterative and square input-output formula-

tion to enable many nonlinear control approaches, that require a control-affine

and square model such as the sliding mode control (SMC), to be used for control

design of small-scale helicopters. A combination of the first-principles approach

and system identification is used to derive this model. To complete the nonlinear

model of the helicopter required for the control design, the inverse kinematics

of the actuating mechanisms of the main and tail rotors are also derived using

an approach suitable for the real-time control applications. The parameters of

the new control-oriented formulation are identified using a time-domain system

identification strategy and the model is validated using flight test data. A robust

sliding mode control (SMC) is then designed using the new formulation of the

helicopter dynamics and its robustness to parameter uncertainties and wind dis-

turbances is tested in simulations. Next, a hardware-in-the-loop (HIL) testbed

is designed to allow for the control implementation and gain tuning as well as

testing the robustness of the controller to external disturbances in a controlled

environment on the ground. The controller is also tested in real flights.
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αtail Slope of the tail servo angle to the PW of the signal [rad/s]

δcol Main rotor collective pitch input [rad]

δped Tail rotor blade pitch input [rad]

δlon, δlat Longitudinal and lateral cyclic pitch input [rad]

δx, δy Euler rotation angles of the swashplate [rad]

δ0tail Y-intercept of the tail servo angle to the PW of the signal [rad]

θmr Pitch angle of the main rotor [rad]

θtail Pitch angle of the tail rotor [rad]

θ0tail Zero pitch angle of the tail blade [rad]

λ0 Main rotor inflow ratio [-]

µ Advance ratio [-]

µ̄ Advance ratio normalized by Vh/(ΩRmr) [-]

µx, µy, µz Non-dimensional airflow components [-]

ρ Air density [kg/m2]

σmr, σtr Main and tail rotor solidity factor [-]

τf Time-constant of the rotor flapping [sec]

τmr, τtr Main and tail rotor blade element radial distance ratio [-]

τs Time-constant of the stabilizer bar [sec]

υa Axial inflow ratio [-]

φ, θ, ψ Euler angles [rad]

Ψ Blade azimuth angle [rad]



Ω Main rotor speed [rad/s]

Subscripts

fus Fuselage

ht Horizontal tail

mr Main rotor

tr Tail rotor

vt Vertical tail



Chapter 1

Introduction

Autonomous control design for small-scale unmanned helicopters has received

growing attention in recent years. The advent of lightweight and low-cost avionics

and onboard computers, combined with excellent maneuverability, ability for

vertical take-off and landing (VTOL), hovering and low-speed flight capability

have made them an ideal choice for a variety of applications. Some applications

are search and rescue, powerline inspection, gas leak detection, border and coastal

patrolling, police enforcement, reconnaissance and aerial mapping.

In the following, the control design challenges for small-scale helicopters and

the proposed solutions in literature are introduced. The thesis overview and

organization is then outlined in this chapter.

1.1 Control Design Challenges and Proposed Solutions

A small-scale helicopter is a 6-degree of freedom (6-DOF) multibody system which

is composed of a main rotor to control the vertical motion, a tail rotor to control

the heading angle and a rigid fuselage between the main and tail rotors. The

longitudinal and lateral motion are resulted from tilting of the main rotor disk

towards the longitudinal and lateral directions. The collective pitch of the main

blades controls the amount of the thrust generated by the main rotor while cyclic
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pitch of the blades controls the tilting of the rotor disk. The collective pitch

of the tail blades controls the moment generated around the vertical axis of the

vehicle.

There are considerable challenges in the control of small-scale helicopters due

to their high-dimensional, nonlinear, non-minimum phase and underactuated dy-

namics as well as inherent instability and strong couplings between the different

DOFs.

In non-model-based control approaches such as fuzzy logic [1], reinforcement

learning [2] and neural network [3], the dynamic model of the helicopter is ei-

ther completely neglected or a very rudimentary model is used. Therefore, any

deviations from the flight conditions in which they are trained could result in

instability of the closed-loop system. Model-based control approaches are better

suited for the control of small-scale helicopters as they capture a more accurate

model of the system dynamics and its parameter variations due to the changes

in the flight conditions.

Both linear and nonlinear approaches have been studied in the literature for

the model-based control of small unmanned helicopters. A multi-loop control

approach is commonly used in most linear control designs due to the time-scale

difference between the translational and attitude subsystems of the helicopter

[4, 5, 6, 7, 8, 9]. In this approach, each input controls one helicopter output in

a single-input single-output (SISO) feedback loop and the attitude dynamics of

the helicopter is decoupled from the translational motion using two main control

loops. The slower outer-loop, controls the heave, longitudinal and lateral motion

by calculating the desired collective command and attitude angles required to fly

the helicopter towards its desired path. These desired attitude angles are then

used as the reference inputs to the inner feedback loop. The inner-loop is used

to control the attitude of the helicopter which has a much faster time-constant
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than the translational motion.

A linearized model of the helicopter dynamics is used in the multi-loop ap-

proach and the cross couplings between different DOFs are neglected. Since the

cross coupling dynamics is important, this often results in a poor performance

of the controller. To account for the cross couplings that exist between different

DOFs of the helicopter, a multi-input multi-output (MIMO) control approach

has been used in recent years [10, 11, 12].

A MIMO approach for the control of small-scale helicopters is presented in

[10] using the input-output feedback linearization technique. The exact input-

output linearization fails to linearize the helicopter dynamics and results in having

unstable zero dynamics. Then, the zero dynamics are stabilized by neglecting

the couplings between moments and forces and using approximate input-output

linearization and bounded tracking is achieved in simulation. To present the

system in an input-affine form, unrealistic control inputs including the derivatives

of the main and tail rotor thrust and the flapping angles are used instead of the

physically-controllable inputs such as the collective, cyclic and pedal inputs.

Another MIMO approach is described in [11] to control small-scale helicopters

in hover using a backstepping technique. To do this, the flapping dynamics and

small body forces are neglected and a simplified model of the helicopter dynamics

around hover is used for the control design. In [12], a MIMO control design for a

small-scale helicopter using a discrete-time backstepping technique is presented.

To obtain the dynamic model of the helicopter in a cascade form suitable for

the backstepping control design, simplifying assumptions are used. For example,

the induced velocity is assumed constant in all flight regimes and the effects

of the vehicle velocities in the thrust calculations are neglected to obtain the

thrust of the main and tail rotors proportional to the collective and pedal inputs,

respectively. Also, the drag torque of the main and tail rotors are neglected.
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Another nonlinear control design using a cascade approach is presented in

[13]. An inner-outer loop control structure is used to decouple the attitude and

translational dynamics. Simplifying assumptions are used for the control design.

For example, the contribution of the roll and pitch moments due to the stiffness of

the main rotor hub to the attitude dynamics of the fuselage is neglected. Also, the

contribution of the small body forces due to the rotor flapping to the translational

dynamics is neglected. Then, a nonlinear control method is used to compensate

for the contribution of the tail rotor to the small body forces.

Control design using H∞ loop-shaping technique for a Yamaha R-50 helicopter

is presented in [14, 15]. The control design is based on an inner-loop outer-

loop technique in which a 30-state nonlinear model of the helicopter dynamics is

linearized around several operating points on the desired flight envelope. Then,

based on the obtained linear models a gain-scheduled H∞ loop-shaping controller

is designed to cover this desired flight envelope.

A nonlinear model predictive tracking control (NMPTC) algorithm is pre-

sented in [16] for a Yamaha R-50 helicopter. The nonlinear model of the heli-

copter dynamics is discretized, then the tracking control problem is formulated as

a cost minimization problem which is solved by a fast-converging gradient-descent

method. Tuning of the cost weight matrices and constants in the potential func-

tion are found to be the major implementation issues.

A state-dependent Riccati equation (SDRE) design is presented for the XCell-

90 and Yamaha R-Max helicopter platforms in [17]. The nonlinear helicopter

dynamics are manipulated into a pseudolinear state-dependent coefficient (SDC)

form and then an optimal feedback gain matrix is calculated at every time step

by solving the standard linear quadratic regulator (LQR) problem. Due to the

existence of various non-parameterizable terms into SDC form and the fact that

the helicopter model is not linear with respect to the controls (non affine-in-
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control), some nonlinearities of the model are neglected to obtain a control-affine

SDC formulation of the helicopter dynamics required for the SDRE control design.

A nonlinear compensator is then designed to augment the control input so that

the neglected nonlinearities are approximately cancelled.

Due to its robustness to the bounded uncertainties and external disturbances,

sliding mode control (SMC), [18], is another nonlinear MIMO approach suitable

for the control of small-scale unmanned helicopters. A robust nonlinear flight

control using SMC for a small-size autonomous helicopter in hover is presented

in [19]. The nonlinear helicopter dynamic is first simplified by neglecting the drag

torque of the main and tail rotors as well as the couplings between the aerody-

namic forces and moments and then linearized using the feedback linearization

technique. Then the linearized model is converted into a canonical form to obtain

a square model. To present the system in an input-affine form, unrealistic control

inputs including the roll, pitch and yaw moments and the second derivative of

the main rotor thrust are used instead of the physically-controllable inputs.

Another SMC approach is described in [20] for the translational rate com-

mand (TRC) control of a Bell 205 helicopter in hover. A linearized model of the

helicopter around hover in a canonical form is used and a SMC is designed to

meet the handling quality specifications for the TRC control in hover.

Other SMC control of small-scale helicopters with a linearized helicopter dy-

namics around hover for the control design are presented in [21, 22, 23, 24]. A

model reference SMC design for the hover control of a small indoor helicopter

is described in [21] and a multi-loop control approach is used. The nonlinear

model of the helicopter is linearized around hover and the coupled motion of the

helicopter is disregarded so that each DOF is treated as an independent SISO

system. Then, a SMC is designed for each of the longitudinal and lateral control

loops and the proportional-integral-derivative (PID) method is used for the heave
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and yaw control loops.

Another SMC approach to control a small-size helicopter is described in [22].

A multi-loop control structure is used in this approach to decouple the DOFs

of the helicopter motion using these three main control loops: position, velocity

and attitude loops. Equations of each loop are simplified to obtain a suitable

form for the SMC algorithm. For example, the small angle assumption is used

for the Euler angles in the velocity loop to linearized the equations and obtain

an input-affine form. Then, a SMC is designed for each loop.

Formation control of a group of small-size autonomous helicopters using SMC

approach is proposed in [25]. Two leader-follower control schemes are introduced

to obtain arbitrary three-dimensional formations and for each scheme a sliding

mode controller is designed to maintain the formation. The flapping dynamics

of the rotor is neglected and unrealistic control inputs including the main and

tail rotor thrust and roll and pitch moments are used instead of the physically-

controllable inputs to represent the system in an input-affine form. A control-

point approach is then used to obtain the square form for the control design.

The helicopter dynamics is divided into three time-scale subsystems with slow,

middle and fast modes and a multi-timescale control based on SMC algorithm

is used in [26]. The nonlinearities regarding the main and tail rotor inflow are

eliminated and the induced velocity is assumed to be constant in all flight regimes.

For each mode a nonlinear controller is designed using SMC and simulation results

are presented. However, the slow-mode controller requires iteration to solve for

the control inputs which can result in a non-unique solution.

Most control designs in the literature including both the multi-loop and

MIMO control approaches use the linearized model of the helicopter around dif-

ferent trim conditions instead of directly using the nonlinear model. This restricts

the validity of the linear model to the vicinity of the trim conditions around which
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it is linearized. So multiple linear models are required to cover a wide range of

flight regimes and multiple gain-scheduled controllers are needed to control the

helicopter in all these regimes [27]. The complex aerodynamic nature of the

thrust generation in helicopters cause the aerodynamic forces and moments to

change significantly between different flight conditions. These simplifications by

linearization and/or cancellation of the nonlinear terms or by neglecting couplings

between the aerodynamic forces and moments are not desirable when controlling

an unmanned helicopter for a wide range of flight regimes [28].

1.2 Thesis Overview

Most MIMO model-based nonlinear control approaches require the dynamic model

of the system to be: (1) affine-in-control, i.e. linear with respect to the control

inputs, and (2) fully actuated i.e. having equal number of DOFs and control

inputs. Since the existing formulations for helicopter nonlinear dynamic model

do not meet these requirements, these MIMO approaches cannot be applied for

control of helicopters.

The purpose of this work is to derive the 6-DOF nonlinear model of the heli-

copter that is affine-in-control, non-iterative and has a square input-output form.

This will allow for many nonlinear control approaches that require a control-affine

and square model such as the sliding mode control (SMC), feedback linearization,

etc. to be used for control design of small-scale helicopters. A 6-DOF nonlinear

model must be sufficiently accurate to represent the behaviour of the actual he-

licopter. This requires a detailed model of the aerodynamic forces and moments

generated by the main and tail rotors, fuselage-rotor couplings and the inverse

kinematics of the actuating mechanisms of the main and tail rotors. Also, this

model must be identified to obtain its unknown parameters and validated to be

used for control design.
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This thesis is organized into nine chapters with the chapter content shown

schematically in Figure 1.1. Chapter 1 contains the introduction, control design

challenges, literature review and thesis goals. In Chapter 2, the experimental

setup is described. This includes a small-scale helicopter airframe, custom avion-

ics, ground station and autopilot software, used for the identification and vali-

dation of the mathematical model of the helicopter and control implementation.

The GPS latency problem and the proposed solution is also discussed. For the 6-

DOF nonlinear dynamics of a small-scale helicopter, a new control-oriented model

in a square and affine-in-control formulation is developed in Chapter 3. The new

model is non-iterative and is derived using a combination of first-principles and

system identification. The control point approach is then used to obtain the

square input-output formulation. The rotational dynamics of the helicopter is

modeled using two methods: (1) a hybrid model, and (2) using first-principles

which are compared. In addition, the influence of the gyroscopic effect of the rotor

on the roll and pitch responses is examined in Chapter 3. The inverse kinematics

of the main rotor actuating mechanism including a 4-point swashplate mecha-

nism and the Bell-Hiller mixer as well as the tail rotor kinematics are derived in

Chapter 4. The nonlinear kinematic model is validated using experiments and

compared with the linear approximations in Chapter 4.

In Chapter 5, a time-domain identification strategy is developed to identify

the unknown parameters of the nonlinear model of the helicopter derived in Chap-

ter 3, using a combination of ground and flight test data. The ground tests are

performed using an aerodynamic force measurement testbed to identify the lift

and drag coefficients of the main and tail rotors. Flight tests are conducted

to identify the unknown parameters of the coupled fuselage-rotor (f-r) dynamic

model and empennage drag in a sequential identification process. The identi-

fied model is then cross validated in Chapter 5 using flight test data. A robust
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sliding mode control (SMC) is designed in Chapter 6 using a combination of the

6-DOF nonlinear square control-affine model of the helicopter and inverse kine-

matics of the actuating mechanisms derived in Chapters 3 and 4. Simulations are

performed to test the performance of the controller in the tracking of complex

trajectories in the presence of parameter uncertainties and wind disturbances.

In Chapter 7, a hardware-in-the-loop (HIL) testbed is designed for small un-

manned helicopters to provide an intermediate step between simulation and real

flight test and allow for implementation issues on the real hardware to be tested.

The testbed provides a safe and low-cost platform to implement control algo-

rithms and tune the control gains. It also allows for testing the robustness of

the controller to external disturbances in a controlled environment. The exper-

imental results of the SMC implementation on the actual helicopter using the

HIL testbed are presented in Chapter 8. The HIL testbed experiments include

hover, forward, sideways and figure-8 trajectories for the longitudinal and lateral

control, and step and figure-8 trajectories for the heading control. The experi-

mental results from the real flight tests are presented for the heading-hold and

hover maneuvers in Chapter 8. Major results and recommendations for future

research are presented in Chapter 9.

1.3 Thesis Contributions

The major contributions of this thesis are outlined in the following:

1. A new control-oriented model in an affine-in-control, non-iterative and

square input-output formulation for the 6-DOF nonlinear dynamics of a

small-scale helicopter is derived. The hybrid model and first-principles ap-

proaches for modeling the rotational dynamics of the helicopter are com-

pared. The influence of the gyroscopic effect of the rotor on the roll and
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Figure 1.1: Schematic of the thesis organization.
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pitch dynamics of the helicopter is studied [29, 31].

2. The inverse kinematics of the actuating mechanism of the main rotor in-

cluding a 4-point swashplate mechanism and the Bell-Hiller mixer as well

as the kinematics of the tail rotor are derived using a fast approach suitable

for the real-time control applications. The inverse kinematics is validated

using experiments and compared to the linear approximations [32].

3. A time-domain system identification strategy using a combination of ground

and flight test data to identify the unknown parameters of the nonlinear

model of the helicopter is developed. The identified model is validated using

flight test data in the time-domain [33].

4. A robust SMC is designed using the new formulation of the helicopter dy-

namics. Three-dimensional complex trajectory tracking simulations are

performed and the robustness of the controller to the parameter uncer-

tainties and wind disturbances is examined [31].

5. A HIL testbed for small unmanned helicopters for the control implemen-

tation, initial controller gain tuning and testing the robustness of the con-

troller to external disturbances in a controlled environment is designed and

tested [30, 34]. A SMC, designed based on the new formulation of the he-

licopter dynamics, is implemented on an Evolution-Ex helicopter using the

HIL testbed and the robustness of the controller to external disturbances

is verified [34].



Chapter 2

Experimental Setup

The complete experimental apparatus used in this work is composed of: a small-

scale helicopter airframe, avionics and electronic hardware, ground station, com-

munications and autopilot software subsystems. The experimental apparatus is

designed for the identification and validation of the mathematical model of the

helicopter as well as control implementation hardware and software.

2.1 Helicopter Airframe, Avionics and Electronic Hardware

The helicopter airframe is an Evolution-Ex helicopter shown in Figure 2.1, which

is an electric powered R/C helicopter weighing 8 kg with a blade span of 1.9 m

and capable of carrying a payload of about 8 kg. The rotor hub is hingeless,

equipped with a Bell-Hiller stabilizer bar (flybar) and the main and tail rotor

blades have symmetrical airfoils.

Custom helicopter avionics is shown in Figure 2.2. The avionics weighs 3.5 kg

and consists of: a Crossbow NAV440 inertial measurement unit (IMU), a pair of

Xstream RF modems for wireless communications between the helicopter and the

ground station, a servo switch card (SSC), a laser range sensor for precise landing,

a 3-cell Lithium-Polymer (LiPo) battery, a microcontroller for the battery voltage

and current monitoring and an onboard PC/104 computer.
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Figure 2.1: Evolution-EX helicopter with Avionics.

The Crossbow NAV440 inertial measurement unit (IMU) shown in Figure 2.2

is a GPS-aided inertial navigation system, which includes three rate gyros, ac-

celerometers, a 3-axis magnetometer and a 4 Hz global positioning system (GPS)

receiver with a rugged enclosure to protect the module from the environment.

The NAV440 IMU module provides inertial data including the Euler angles, roll,

pitch and yaw rates, velocity and accelerations as well as the position of the vehi-

cle at a rate of 20 Hz. The NAV440 module does not directly measure the velocity

of the vehicle, but obtains the velocity through integration of the data from the

accelerometers and the integration drift is corrected using the GPS data through

a built-in Kalman filter. The data communication to the PC/104 is through the

serial port RS-232.

A Microbotics servo switch card (SSC) is a multiplexing switch for servo

command signals used for switching between the manual radio and automatic

control during the control implementation and is shown in Figure 2.3. Recording

the pilot commands to the servos during the identification and validation tests

is also done on the SSC. The data communication to the PC/104 is through the

serial port RS-232.

The PC/104 onboard computer module is an embedded computer with a
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Figure 2.2: Avionics of the helicopter.

Figure 2.3: Microbotics Servo Switch Card (SSC) module.
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Pentium M 1.4 GHz CPU, 512 MB RAM and a 8 GB compact flash (CF) memory

composed of multiple modules above each other including the CPU, power supply

and data acquisition modules. Since PC/104 has only two serial ports and the

data communication of the RF communication, IMU, SSC and Range sensor

modules are through the serial port RS-232, a Diamond Emerald MM-8 serial

multiplexer stack is used to extend the serial ports of the PC/104 computer.

To accurately measure the speed of the main rotor, an Allegro ATS616 hall-

effect sensor attached underneath of the main gear of the rotor is used. The data

from the hall-effect sensor is recorded by the SSC module.

All the modules are connected via a custom motherboard to allow for reliable

communications between the modules. More details on the avionics and the

electronic hardware of this work can be found in [35].

2.2 Ground Station and Communications

To monitor the status of the helicopter during the flight, a ground station sys-

tem including a ground station laptop, communication modules and a high-gain

omnidirectional antenna is used as shown in Figure 2.4. The ground station is

also used to update the control gains during the flight to allow the control gain

tuning.

A pair of Xstream RF modules are used to communicate between the ground

station and the helicopter. The RF module on the ground sends a request for

data signal which is amplified by a high-gain omnidirectional antenna and trans-

mitted to the onboard RF module. The onboard RF module obtains the required

helicopter data including the altitude, attitude and heading information, rotor

speed, voltage and current of the main rotor, avionics and servo batteries from

the IMU and other sensors. This data is transmitted by the RF module on the

helicopter back to the ground station.
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Figure 2.4: Ground station.

A graphical user interface (GUI), shown in Figure 2.5, on the ground station

computer is used to monitor the helicopter states. The GUI allows for an efficient

monitoring of all the status data received from the helicopter during the flight

including the altitude, attitude and heading information, rotor speed, and voltage

and current of the main rotor, avionics and servo batteries.

The GUI, shown in Figure 2.6, also allows updating all the control gains

during the flight.

2.3 Autopilot Software and Control Implementation

A real-time operating system is critically important for the implementation of

the control algorithms on a helicopter platform and to implement the control

algorithm designed in this work in real-time. Here the xPC Target software is

used.

The real-time software environment xPC Target from the Mathworks, gen-
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Figure 2.5: Ground station interface.

Figure 2.6: GUI for the online updating of the Control Gain.
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erates C-code from a SimulinkTMmodel and allows for a rapid controller devel-

opment and real-time implementation. The xPC Target software supports the

PC/104 computer, serial multiplexer board and data communications through

serial ports, and has an embedded option allowing for the stand-alone implemen-

tation of the controller onboard. It also facilitates all the linear algebra operations

used in the model-based controller designed in this work.

To facilitate controller modifications and code debugging, the autopilot soft-

ware is designed in a module-based architecture. The implementation diagram

of the autopilot software is shown in Figure 2.7, in which the PC/104 computer

receives the data from the IMU, SSC, RF modem, voltage and current microcon-

troller and range sensor modules through the serial ports. Then, the PC/104 runs

the xPC Target real-time kernel at the sampling frequency of 40 Hz and calcu-

lates the servo inputs. The servo inputs are then implemented on the helicopter

through the SSC module.

2.4 GPS Latency

One of the challenges in the implementation of the controller is dealing with a

phenomenon called GPS latency. GPS data is used in the inertial navigation

system to compute the position of the helicopter with respect to the inertial

frame. The GPS receiver often uses the time and position data from four satellites

to calculate the position of the vehicle. Due to the variety of reasons such as

the number of visible satellites and position data computation and transmission

delays, GPS data is typically processed at a lower rate than the other IMU data,

which results in a delay in the position determination. This phenomenon is called

GPS latency. To solve this problem, a 9th-order Kalman filter observer is designed

with details in Appendix A.
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2.5 Summary

An experimental platform composed of a small-scale helicopter airframe, avionics,

ground station and autopilot software has been developed for the identification

and validation of the mathematical model of the helicopter and control imple-

mentation purposes. A ground station is developed to allow for monitoring the

status of the helicopter during the flight. That also allows control gain tuning

during helicopter operation. Autopilot software is developed using the xPC Tar-

get solution to allow for the real-time implementation of the control algorithm.

The autopilot software is designed in a module-based architecture to facilitate

controller modifications and code debugging. A Kalman observer is designed to

deal with the GPS latency overcoming one of the important challenges in the

implementation of the controller.

Control-oriented mathematical modeling of the helicopter and subsequent

model identification, validation and real-time control implementation on the ex-

perimental platform are described in the following chapters.



Chapter 3

Square Affine-In-Control Modeling of the

6-DOF Helicopter Dynamics1

Small-scale helicopters have a high-dimensional, highly nonlinear and coupled

dynamics with complex rotor aerodynamics. A detailed rotor wake analysis may

require advanced experimental and numerical techniques to accurately address

the rotor behaviour in various flight regimes [36, 37]. A mathematical model

of the helicopter dynamics is needed to design a model-based controller. This

model should include the 6-DOF rigid-body dynamics of the helicopter fuselage

and the rotor dynamics. Detailed mathematical models of the helicopter dy-

namics and the aerodynamic forces and moments generated by the subsystems

are described in [38, 39, 40]. For example, a 30-state model for a Yamaha R-50

small-scale helicopter that includes fuselage rigid-body dynamics, main rotor, tail

rotor, stabilizer bar, dynamic inflow, and actuator dynamics is described in [40].

However, such models are currently impractical for the control design purposes as

the number of states is too large and require excessive computation for real-time

implementation.

To obtain a simpler control-oriented helicopter dynamic model, a combination

of first-principles and system identification is used to derive an affine-in-control

1A version of this chapter has been submitted for publication in [31].
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and square model of the helicopter nonlinear dynamics. To model the rotational

dynamics of the helicopter, two approaches are used: (1) using a “hybrid model

approach” as described in section 3.2, and (2) using a “first-principles approach”

as described in section 3.8. After being parameterized, both these models are val-

idated and compared to flight test data from an Evolution-EX helicopter (shown

in Figure 2.1) in Chapter 5.

3.1 Fuselage Rigid-Body Dynamics

The dynamic response of the Evolution-EX helicopter is modeled as the combina-

tion of these four main subsystems: the fuselage rigid-body dynamics, the main

rotor, the tail rotor and the empennage. To determine the 6-DOF motion of the

helicopter fuselage with respect to the ground, two frames of reference are used

as shown in Figure 3.1. Frame {B} is the body coordinate system attached to the

helicopter at the center of gravity (CG), and frame {I} is a reference attached to

the ground that is assumed inertial.

The states of the helicopter are the linear velocity v = [u v w]T , angular

velocity ω = [p q r]T in the body coordinates (shown in Figure 3.1), the Euler

angles θ = [φ θ ψ]T , and the position of the helicopter CG with respect to the

inertial frame p = [x y z]T . The mass and moment of inertia tensor are denoted

by m and I = diag3×3(Ixx, Iyy, Izz), in which the off-diagonal terms are neglected.

The Newton-Euler equations of motion are used to determine the 6-DOF rigid-
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body dynamics of the helicopter fuselage as:

v̇ =
1

m
F− ω × v (3.1)

ω̇ = I−1M− I−1(ω × I ω) (3.2)

θ̇ = Φ(θ) ω (3.3)

ṗ = RI
b(θ) v (3.4)

where F and M are the vectors of external forces and moments applied to the

helicopter fuselage in the body coordinates, respectively, and RI
b and Φ are the

linear and angular velocity transformation matrices from the body to inertial

coordinates [17], as follows:

RI
b =


cθcψ −cφsψ + sφsθcψ sφsψ + cφsθcψ

cθsψ cφcψ + sφsθsψ −sφcψ + cφsθsψ

−sθ sφcθ cφcθ

 , Φ =


1 sφtθ cφtθ

0 cφ −sφ

0 sφ
cθ

cφ
cθ


with “s”, “c”, and “t” corresponding to “sin”, “cos”, and “tan”, respectively.

Next, a non-iterative simplified model is derived for the aerodynamic forces and

moments generated by the main and tail rotors and the empennage of a small-

scale helicopter.

3.2 Main Rotor

This section outlines the forces and moments generated by the main rotor and

their control-affine representation.

The pitch angle of the rotor blades can change both collectively and cyclically

during rotation around the hub. The main rotor pitch angle can be represented

using the first harmonic components of the Fourier series expansion in terms of
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Figure 3.1: Schematic of the helicopter with the control point CP.

the blade azimuth angle Ψ, shown in Figure 3.3, as:

θmr = δcol + δlat cos(Ψ) + δlon sin(Ψ) (3.5)

The collective pitch angle δcol controls the thrust to give helicopter the lift

required for the vertical motion. The longitudinal δlon and lateral δlat cyclic pitch

angles control the pitch and roll motion, by generating more lift on one side of

the main rotor than the other.

To calculate the induced forces and moments on the helicopter fuselage, a

model of the rotor flapping dynamics is required since the main rotor is coupled

to the fuselage angular and translational dynamics through the rotor flapping

dynamics. The coupled fuselage-rotor-stabilizer bar (f-r) dynamics is commonly

represented by the “hybrid model approach” [41]. In this approach, the rotor

flapping dynamics is approximated by the tip-path-plane (TPP) flapping with
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Figure 3.2: Longitudinal and lateral flapping schematics of the main rotor.

two states a1 and b1 which are the longitudinal and lateral flapping angles, re-

spectively. The states a1 and b1 are the coefficients of the first harmonic approx-

imation in the Fourier series representation of the rotor flapping equations. The

flapping dynamics of the main rotor is represented by two first-order differential

equations:

ȧ1 = −q − a1

τf
+
Ab
τf
b1 +

1

τf

(∂a1

∂µ
µx +

∂a1

∂µz
µz

)
+
Klon

τf
(δlon +Ksc1) (3.6)

ḃ1 = −p− b1

τf
+
Ba

τf
a1 +

1

τf

∂b1

∂µv
µy +

Klat

τf
(δlat +Ksd1) (3.7)

where the non-dimensional airflow components are:

µx =
u− u

wind

ΩRmr

, µy =
v − v

wind

ΩRmr

, µz =
w − w

wind

ΩRmr

and Klon and Klat are the corresponding input cyclic controls to flap gains, τf

is the time-constant of the rotor flapping, Ab and Ba are the flapping cross-

coupling derivatives and Ks is the stabilizer bar to rotor flap gain. Also, u
wind

,

v
wind

and w
wind

are the wind velocity components in the body coordinates and

the longitudinal, ∂a1
∂µ

, and lateral, ∂b1
∂µv

, dihedral stability derivatives represent the
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flapping effects due to the translational velocities and are described in [38].

Small-scale helicopters are very agile and responsive vehicles and usually

equipped with a stabilizer bar (flybar) to help facilitate their control by a pi-

lot. The stabilizer bar can be considered as a secondary rotor attached to the

rotor shaft above the main rotor as shown in Figure 3.1. The stabilizer bar acts

as a lagged rate feedback to the f-r dynamics to stabilize the helicopter against

rapid changes in the roll and pitch angles (high roll and pitch rates) caused by

either the pilot commands or external moments due to wind gusts and can be

represented by the following equations [41]:

ċ1 = −q − c1

τs
+
Clon
τs

δlon (3.8)

ḋ1 = −p− d1

τs
+
Dlat

τs
δlat (3.9)

where τs is the time-constant of the stabilizer bar and Clon and Dlat are the input

derivatives.

The roll and pitch moments on the fuselage are generated as a result of the

longitudinal and lateral flapping of the TPP, respectively. The coupling of the

main rotor to the angular dynamics of the fuselage can be approximated by a

linear torsional spring between the rotor and the fuselage with a constant stiffness

coefficient Kβ, as shown in Figure 3.2. Tilting of the TPP induces rolling and

pitching moments on the fuselage. The offset of the TPP from the CG, zcg,

also contributes to the generated moments through tilting of the thrust vector.

Assuming the small flapping angles, the total moments generated by the main

rotor are calculated as:

Mroll = (Kβ − Tmrzcg)b1 (3.10)

Mpitch = (Kβ − Tmrzcg)a1 (3.11)
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Figure 3.3: Rotor disk and blade strip schematic viewed from above.

The coupling of the main rotor to the translational dynamics of the fuselage is

through tilting the rotor TPP towards longitudinal and lateral directions as shown

in Figure 3.2. Assuming the small flapping angles, the total forces generated by

the main rotor along the longitudinal and lateral axes of the fuselage are:

Fx = −Tmra1 (3.12)

Fy = Tmrb1 (3.13)

The total force and moment contribution of the main rotor are:

Xmr = Fx +Hxmr

Ymr = Fy +Hymr

Zmr = −Tmr

Lmr = Mroll −Hymrzcg

Mmr = Mpitch +Hxmrzcg

Nmr = Qmr (3.14)

where Hxmr and Hymr are the in-plane forces generated due to the uneven distribu-
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tion of the drag on the Tip-Path-Plane (TPP) in forward or sideways maneuvers.

A combination of the blade element theory and momentum theory is used

to derive the thrust Tmr, drag torque Qmr and in-plane forces Hxmr and Hymr .

The helicopter’s velocity vector v is incorporated into the model to obtain the

thrust and drag torque for the main and tail rotors. The helicopter’s translational

velocity vector in body coordinates {B} is resolved into the {rpn} coordinates

attached to the blade element shown in Figure 3.3. Then, all the elementary

aerodynamic forces and moments are averaged around the azimuth angle Ψ and

integrated along the blade span.

This provides an analytical representation of the thrust and drag torque as a

function of the vehicle’s translational and angular velocities which can be used

for different flight regimes. The relative air velocity vector of the element E in

Figure 3.3 in {rpn} frame is:

V rpn
E = Rrpn

b (Vrel + Ω× ymr) (3.15)

where Rrpn
b is the rotation matrix from {B} to {rpn} coordinates as:

Rrpn
b =


cΨ sΨ 0

−sΨ cΨ 0

0 0 1

 (3.16)

and ymr = [ymr cos Ψ ymr sin Ψ 0]T is the vector of the blade element, Ω = [0 0 Ω]T

is the main rotor angular velocity vector, Vrel = vi − (v − v
wind

) is the vector of

relative air velocity, vi = [0 0 Vi]
T is the main rotor inflow vector and v

wind
=

[u
wind

v
wind

w
wind

]T is the wind velocity vector - all in the body coordinates. The

induced velocity of the main rotor (Vi) will be described later in this section.

The non-dimensional velocity components ur, up, and un are the normalized air
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Figure 3.4: Blade section flow conditions in a general flight.

relative velocity components in {rpn} coordinates.

The relative air velocity components on the blade section “E” (shown in Fig-

ure 3.3) is shown in Figure 3.4. First taking the average from the elementary

lift force on the blade section around the azimuth angle Ψ and then integrating

along the blade span and considering small inflow angle Φ, the main rotor thrust

is calculated as:

Tmr = ρπR4
mrΩ

2CT (3.17)

where,

CT =
σmr
4π

∫ 1

0

∫ 2π

0

CLup
2 dΨdτmr

and CL = CL0 + CLα
(
θmr − un

up

)
is the lift coefficient, CLα is the lift curve slope,

CL0 is the zero lift curve slope, σmr = 2cmr/(πRmr) is the solidity factor and

τmr = ymr/Rmr.

Defining the input vector u = [δcol, δlat, δlon, δped]
T , the main rotor thrust can
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be written in the affine-form as:

Tmr = f
T

+ b
T
u (3.18)

where,

f
T

=
1

4
ρπR4

mrΩ
2σmr

(
CL0

(2

3
+ µ2

x + µ2
y

)
+ CLα(µz − λ0)

)
(3.19)

b
T

=
1

4
ρπR4

mrΩ
2σmrCLα



µ2
x + µ2

y + 2
3

−µy

µx

0



T

and λ0 is the inflow ratio of the main rotor defined as λ0 = Vi/(ΩRmr).

Note that for symmetrical blades, such as the one used on the Evolution-EX

helicopter, the zero lift curve slope coefficient CL0 in Eq. (3.19) is zero, so it is

not needed in subsequent calculations.

The thrust in Eqs. (3.18) and (3.19) varies significantly with induced velocity,

so it must be accurately determined for the nonlinear model of the helicopter

dynamics to be valid over a wide range of flight regimes. Since the induced

velocity depends on the thrust and the thrust depends on the induced velocity,

an iterative solution is typically used to calculate the induced velocity of the main

rotor [38]. This requires excessive computation for real-time implementation.

To find a closed-form solution suitable for real-time control applications and

avoid iterative methods, a continuous empirical model, the modified Glauert

equation [42], is used to calculate the induced velocity. This method can pre-

dict the inflow at all flight regimes through an explicit and continuous solution.
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Figure 3.5: Induced velocity profile in the axial flight.

The induced velocity of the main rotor is:

Vi =
υaVh√
1 + µ̄2

(3.20)

where Vh =
√
mg/(2ρπR2

mr) is the induced velocity in hover, µ =
√
µ2
x + µ2

y is

the advance ratio and µ̄ is the advance ratio normalized by Vh/(ΩRmr).

The axial inflow ratio υa is expressed by three continuous piecewise functions

as:

υa =


−1

2
Va −

√
V 2
a

4
− 1 if Va ≤ −2

1− 1
2
Va + 25

12
V 2
a + 7

6
V 3
a if − 2 < Va < 0

−1
2
Va +

√
V 2
a

4
+ 1 if Va ≥ 0

(3.21)

where Va is the normal-to-the-disk component of the free stream velocity nor-

malized by Vh. The first and third equations of Eq. (6.6) are equivalent to the

momentum theory for the high rate descent and climb regimes respectively. The

second equation represents a rational curve-fitting of experimental results to ac-
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count for the condition between the vertical climb and windmill brake state, which

corresponds to the low-rate descent regimes [42]. Unlike most control-oriented

helicopter models which use numerical and iterative methods to calculate the

induced velocity, this formulation above provides a non-iterative empirical model

of the induced velocity. For example, the induced velocity calculated in the axial

flight using Eq. (6.6) is shown in Figure 3.5.

The drag torque of the main rotor due to the profile drag in a similar affine-

form is:

Qmr = ρπR5
mrΩ

2CQ (3.22)

where,

CQ =
σmr
4π

∫ 1

0

∫ 2π

0

(
CLupun + CD0up

2
)
τmr dΨdτmr

and CD0 is the zero lift drag coefficient. Main rotor drag torque in the control-

affine form is:

Qmr = f
Q

+ b
Q
u (3.23)

where,

f
Q

=
1

8
ρπR5

mrΩ
2σmrCLα

(
CD0

CLα

(
1 + µ2

x + µ2
y

)
− 2(µz − λ0)2

)

b
Q

=
1

8
ρπR5

mrΩ
2σmrCLα(λ0 − µz)



4
3

−µy

µx

0



T
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The in-plane forces due to the difference in the drag forces generated on the

advancing and retreating sides of the main rotor are:

Hxmr = ρπR4
mrΩ

2CHxmr = f
Hx

+ b
Hx

u (3.24)

Hymr = ρπR4
mrΩ

2CHymr = f
Hy

+ b
Hy

u (3.25)

where,

CHxmr = −σmr
4π

∫ 1

0

∫ 2π

0

(
CLupun + CD0up

2
)

sin(Ψ) dΨdτmr

CHymr =
σmr
4π

∫ 1

0

∫ 2π

0

(
CLupun + CD0up

2
)

cos(Ψ) dΨdτmr

and,

f
Hx

= −1

4
ρπR4

mrΩ
2σmrCD0µx

b
Hx

=
1

8
ρπR4

mrΩ
2σmrCLα(µz − λ0)



2µx

0

1

0



T

f
Hy

= −1

4
ρπR4

mrΩ
2σmrCD0µy

b
Hy

=
1

8
ρπR4

mrΩ
2σmrCLα(µz − λ0)



2µy

−1

0

0



T
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3.3 Tail Rotor

The force and moment contribution of the tail rotor are:

Xtr = Hxtr

Ytr = Ttr

Ztr = Hztr

Ltr = −Ttrzfus

Mtr = Qtr +Hxtrzfus

Ntr = Ttrxfus (3.26)

The aerodynamic forces and moments generated by the tail rotor are obtained

in a similar manner to the main rotor. Tail rotor thrust is:

Ttr = ρπR4
trn

2
trΩ

2CTtr (3.27)

where ntr is the gear ratio of the tail to main rotor and CTtr is:

CTtr =
σtr
4π

∫ 1

0

∫ 2π

0

CLtru
2
rtr dΨdτtr

where CLtr = CLαtr
(
θtr− untr

urtr

)
is the tail rotor lift coefficient and CLαtr is the tail

rotor lift curve slope, σtr = 2ctr/(πRtr) is the tail rotor solidity factor, urtr and

untr are the normalized tangential and vertical air relative velocity components

in the tail blade coordinates and τtr = ytr/Rtr.

The tail rotor thrust in the control-affine form is:

Ttr = f
Ttr

+ b
Ttr

u (3.28)
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where,

f
Ttr

= −1

4
ρπR4

trn
2
trΩ

2σtrCLtrvtail

b
Ttr

=
1

4
ρπR4

trn
2
trΩ

2σtrCLtr



0

0

0

u2
tail

+ w2
tail

+ 2
3



T

The non-dimensional variables of the tail rotor are defined as:

u
tail

=
u− u

wind

ntrΩRtr

, v
tail

=
v − v

wind
− Vitr + x

fus
r

ntrΩRtr

, w
tail

=
w −KλVi − wwind

ntrΩRtr

where Vitr is the induced velocity of the tail rotor obtained similar to the main

rotor in Eq. (6.6) and Kλ is the main rotor downwash on the empennage.

The drag torque of the tail rotor is:

Qtr = ρπR5
trn

2
trΩ

2CQtr (3.29)

where,

CQtr =
σtr
4π

∫ 1

0

∫ 2π

0

(
CLtrurtruntr + CD0tru

2
rtr

)
τtr dΨdτ

The tail rotor drag torque in the control-affine form is:

Qtr = f
Qtr

+ b
Qtr

u (3.30)
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where,

f
Qtr

=
1

8
ρπR5

trn
2
trΩ

2σtrCLtr

(
CD0tr

CLtr

(
u2
tail

+ w2
tail

+ 1
)
− 2v2

tail

)

b
Qtr

=
1

6
ρπR5

trn
2
trΩ

2σtrCLtr



0

0

0

v
tail



T

The in-plane forces of the tail rotor can be calculated as:

Hxtr = ρπR4
trn

2
trΩ

2CHxtr = f
Hxtr

+ b
Hxtr

u (3.31)

Hztr = ρπR4
trn

2
trΩ

2CHztr = f
Hztr

+ b
Hztr

u (3.32)

where,

CHxtr = −σtr
4π

∫ 1

0

∫ 2π

0

(
CLtrurtruntr + CD0tru

2
ttr

)
sin(Ψ) dΨdτ

CHztr =
σtr
4π

∫ 1

0

∫ 2π

0

(
CLtrurtruntr + CD0tru

2
ttr

)
cos(Ψ) dΨdτ
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f
Hxtr

= −1

4
ρπR4

trn
2
trΩ

2σtrCD0trutail

b
Hxtr

= −1

4
ρπR4n2

trΩ
2σtrCLtrvtail



0

0

0

u
tail



T

f
Hztr

= −1

4
ρπR4

trn
2
trΩ

2σtrCD0trwtail

b
Hztr

= −1

4
ρπR4

trn
2
trΩ

2σtrCLtrvtail



0

0

0

w
tail



T

In the next section, the forces and moments generated by the helicopter em-

pennage are derived.

3.4 Empennage

The force and moment contribution of the empennage is due to the aerodynamic

lift and drag generated by the vertical and horizontal tails, and the fuselage drag.

The aerodynamic forces and moments of the vertical tail [17] are:

Yvt =
1

2
ρSvt

(
Cvt
LαVvt(v − vwind) + v2

vt

)
Lvt = −Yvtzvt (3.33)

Nvt = Yvtxvt

where, Vvt =
√
(u− u

wind
)2 + (w − w

wind
+ xvtq −KλVi)2 and vvt = v−v

wind
+xvtr−Vitr

are the axial and normal velocities of the vertical tail respectively.
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The aerodynamic forces and moments of the horizontal tail are:

Zht =
1

2
ρSht

(
Cht
Lα|u− uwind|wht + w2

ht

)
Mht = −Zhtxht (3.34)

where, wht = w
wind
− xhtq −KλVi is the normal velocity of the horizontal tail.

The fuselage drag is:

Xfus = −1

2
ρSfusx Vfus(u− uwind)

Yfus = −1

2
ρSfusy Vfus(v − vwind)

Zfus = −1

2
ρSfusz Vfus(w − wwind

+ Vi) (3.35)

where, Vfus =
√
(u− u

wind
)2 + (v − v

wind
)2 + (w − w

wind
+ Vi)2 is the dynamic pressure

of the fuselage.

3.5 Combined Forces and Moments on Helicopter Fuselage

Combining the individual forces and moments of the main rotor, tail rotor and

empennage results in the equations of the total forces and moments applied to

the helicopter fuselage:

F =


Xmr +Xfus

Ymr + Ytr + Yvt + Yfus

Zmr + Zht + Zfus

+ RI
b

−1


0

0

mg

 (3.36)

M =


Lmr + Ltr + Lvt

Mmr +Mtr +Mht

Nmr +Ntr +Nvt

 (3.37)
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By substituting Eqs. (3.36) and (3.37) into (3.1) and (3.2), the nonlinear

helicopter dynamics are:

ẋ10×1 = h(x,u)
10×1

θ̇ = Φ(θ) ω

ṗ = RI
b(θ) υ (3.38)

where x = [u v w p q r a1 b1 c1 d1]T are the states and h(x,u) is a nonlinear

function of the states and inputs. This represents the non-affine-in-control 6-DOF

dynamic model of the helicopter.

The helicopter dynamics represented by Eq. (3.38) are not suitable for most

MIMO control approaches. To overcome this, a new formulation to represent the

helicopter dynamics in an affine-in-control form is derived in the next section.

3.6 Affine-In-Control Model

To obtain a control-affine model of the helicopter dynamics, each term in Eqs.

(3.36) and (3.37) must be decomposed into: an input-dependant component and

an input-independent component. To do this, the algebraic equations of the

longitudinal and lateral flapping angles are required.

The flapping dynamics of the main rotor is represented by two first-order

differential Eqs. (3.6) and (3.7). To design a robust controller based on the

nonlinear model of the helicopter dynamics, all the states, including the flapping

angles must be observable. However, the direct measurement of the flapping

angles is not available. To avoid the need for the state estimation of these states

and since the time-constant of the main rotor, τf , is very small (Table 5.1), Eqs.

(3.6) and (3.7) are approximated by calculating the rotor flapping in steady-

state. In addition, the cross-coupling flapping derivatives Ab and Ba, which are
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relatively small, are neglected to obtain a simpler control-oriented model. The

simplified flapping dynamics of the rotor is:

a1 = −τfq + av +Klonδlon (3.39)

b1 = −τfp+ bv +Klatδlat (3.40)

where, av = ∂a1
∂µ
µx + ∂a1

∂µz
µz and bv = ∂b1

∂µv
µy are the longitudinal and lateral

translational velocity contributions to the flapping of the main rotor. Note that

the stabilizer bar acts as a lagged rate feedback which makes the zero-dynamics

of the helicopter stable so its effect should not be cancelled by the controller.

Similarly, a human pilot stabilizes the helicopter without compensating for the

interactions of the stabilizer bar as it is designed to help a pilot to stabilize the

helicopter. Thus, the stabilizer bar dynamics are eliminated in Eqs. (3.39) and

(3.40), for later use in the control design in Chapter 6. By using Eqs. (3.39) and

(3.40) when designing the controller, the controller will not compensate for the

stabilizing effect of the flybar inputs.

Using the algebraic equations of the flapping angles, Eqs. (3.39) and (3.40), a

control-affine model of the helicopter dynamics can be obtained. By substituting

Eqs. (3.18) and (3.39) into (3.12) and assuming small flapping angles due to the

stiff rotor hub assembly, the force of the main rotor along the longitudinal axis

is:

Xmr = −(f
T

+ b
T
u)a1

=

f
Xmr︷ ︸︸ ︷

(τfq − av)fT +KlonδlonbT
u +

(
(τfq − av)bT

− [0 0 Klonf
T

0]
)

︸ ︷︷ ︸
b
Xmr

u

= f
Xmr

+ b
Xmr

u (3.41)
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The term KlonδlonbT
u in Eq. (3.41) is relatively small and is neglected. Also,

the in-plane forces of the main and tail rotor, Hxmr , Hymr , Hxtr and Hztr , are rel-

atively small for small-scale helicopters and are therefore neglected in subsequent

calculations.

Substituting Eqs. (3.18), (3.39) and (3.40) into (3.14), all components of the

main rotor can be found in a control-affine form as:

Xmr = (τfq − av)fT +
(

(τfq − av)bT
− [0 0 Klonf

T
0]
)
u

Ymr = (−τfp+ bv)fT +
(

(−τfp+ bv)bT
+ [0 KlatfT 0 0]

)
u

Zmr = −f
T
− b

T
u

Lmr = (−τfp+ bv)(Kβ − f
T
zcg) +

(
zcg(τfp− bv)bT

+
[
0 Klat(Kβ − f

T
zcg) 0 0

])
u

Mmr = (−τfq + av)(Kβ − f
T
zcg) +

(
zcg(τfq − av)bT

+
[
0 0 Klon(Kβ − f

T
zcg) 0

])
u

Nmr = f
Q

+ b
Q
u (3.42)

Similarly, components of the tail rotor are:

Ytr = f
Ttr

+ b
Ttr

u

Ltr = −z
fus

f
Ttr
− z

fus
b

Ttr
u

Mtr = f
Qtr

+ b
Qtr

u

Ntr = x
fus

f
Ttr

+ x
fus

b
Ttr

u (3.43)

Substituting Eqs. (3.42) and (3.43) into (3.36) and (3.37) and rearranging

results in:

F = F0 + Fuu (3.44)

M = M0 + Muu (3.45)
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where F0 and M0 are the input-independent force and moment vectors as:

F0 =


f
Xmr

+Xfus

f
Ymr

+ f
Ytr

+ Yvt + Yfus

f
Zmr

+ Zht + Zfus

+ RI
b

−1


0

0

mg



M0 =


f
Lmr

+ f
Ltr

+ Lvt

f
Mmr

+ f
Mtr

+Mht

f
Nmr

+ f
Ntr

+Nvt

 (3.46)

and Mu and Fu are the input-dependent matrices given by:

Fu =


b

Xmr

b
Ymr

+ b
Ytr

b
Zmr

 , Mu =


b

Lmr
+ b

Ltr

b
Mmr

+ b
Mtr

b
Nmr

+ b
Ntr

 (3.47)

where, f
(.)

are the input-independent, and b
(.)

are the input-dependent compo-

nents in Eqs. (3.46) and (3.47).

Substituting Eqs. (3.44) to (3.47) into (3.1) and (3.2) results in:

 v̇

ω̇


︸ ︷︷ ︸
ẋ6×1

=

 F0

m
− ω × v

I−1(M0 − ω × I ω)


︸ ︷︷ ︸

f(x)
6×1

+

 Fu

m

I−1Mu


︸ ︷︷ ︸

b(x)
6×4

u (3.48)

The helicopter dynamics are written in the control-affine form by rewriting

Eq. (3.48) as:

ẋ6×1 = f(x)
6×1

+ b(x)
6×4

u4×1

θ̇ = Φ(θ) ω

ṗ = RI
b(θ) υ (3.49)
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where x = [u v w p q r]T , f(x) is the state function and includes the nonlinear

centrifugal and coriolis terms and b(x) is the control gain matrix. The augmented

vector q = [x θ p]T is defined as the observable state vector of the system.

Equation (3.49) represents the affine-in-control (linear with respect to the

control inputs) and non-iterative 6-DOF dynamic model of the helicopter such

that the system matrices are only state-dependent.

3.7 Square Affine-In-Control Formulation using the Control Point

Approach

The control-affine model of the helicopter obtained in Eq. (3.49) is not in square

form as it has four inputs and six outputs. This is due to the underactuated

nature of helicopters, which also makes the control design very challenging.

In order to solve this problem, the control point approach is used [43]. The

control point CP, is an imaginary point on the main rotor axis at a fixed distance

d, above the CG as shown in Figure 3.1. Controlling the position of this point

and the yaw angle of the helicopter still results in the stabilized motion of the

helicopter. This is due to the fact that the underactuated DOFs of the helicopter

are inherently stable when a stabilizer bar is used and in the presence of a feedback

controller for the position tracking of the CP [43]. In fact, the attitude rate

feedback characteristics of the stabilizer bar results in the stable zero-dynamics

of the system. Only four control outputs: xcp, ycp, zcp and ψ are now needed

(instead of six variables, i.e. the position of the CG and Euler angles of the

helicopter).

Using the three-dimensional position of a point at a fixed distance d, above

the CG in the control output, enables the controller to react to the disturbances

in the roll and pitch DOFs which provides better stability for the closed-loop

system.
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To transform Eq. (3.49) into a square form with equal number of inputs and

outputs, the acceleration of the control point in the inertial frame is calculated

as,

ẍcp = RI
b

(
υ̇ + ω × υ + ω × (ω × dcp) + ω̇ × dcp

)
(3.50)

where xcp = [xcp ycp zcp]
T and dcp = [0 0 -d]T . By substituting Eq. (3.48) into

(3.50), the control point acceleration is:

ẍcp = f1 + b1u (3.51)

where,

f1 =
Fg

m
+ RI

b

(
ω × (ω × dcp) +mF0 + D(I−1M0 − I−1ω × I ω)

)

b1 = RI
b

(
Fu

m
+ DI−1Mu

)

D =


0 −d 0

d 0 0

0 0 0

 , Fg =


0

0

mg


Similarly, the angular acceleration of the helicopter around the yaw axis is:

ψ̈ = f2 + b2u (3.52)
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where,

f2 = fs

(
I−1M0 − I−1ω × I ω

)
+ fqq + frr

b2 = fsI
−1Mu

and,

fq = φ̇ cosφ sec θ + θ̇ sinφ tan θ sec θ

fr = −φ̇ sinφ sec θ + θ̇ cosφ tan θ sec θ

fs = [0 sec θ sinφ sec θ cosφ]

Finally, by combining Eqs. (3.51) and (3.52), the square control-affine input-

output formulation of the helicopter dynamics is:

ÿ
4×1

= g(y, ẏ)4×1 + c(y, ẏ)4×4u4×1 (3.53)

where,

y =

 xcp
3×1

ψ

 , g(y, ẏ) =

 f13×1

f2

 , c(y, ẏ) =

 b13×4

b21×4


This formulation relates the four control inputs to the four control outputs,

i.e. the three components of the control point position and the yaw angle of the

helicopter.

Therefore, Eq. (3.53) represents a non-iterative control-oriented model of the

helicopter dynamics in the control-affine and square form. This form is suitable

for the application of a wide range of nonlinear MIMO control approaches in the
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control design for small-scale helicopters.

3.8 Rotational Dynamics Using the First-Principles Approach

The hybrid model approach, in which the rotor is explicitly modeled and then

coupled to the fuselage equations of motion through rotor flapping spring deriva-

tives, is used in section 3.2 to obtain the rotational dynamics of the helicopter.

In this section, an alternative method is used to obtain the rotational dynamics

of the helicopter using the first-principles approach based on blade element and

momentum theories. The angular momentum of the main rotor, which is often

ignored due to its complexity, is considered in the fuselage equations of motion.

To do this, the angular momentum of the combined fuselage and rotor system is

calculated and the modified equations of motion of the fuselage are derived. The

roll and pitch moments are then derived using the blade element and momentum

theories and an alternate control-affine formulation of the helicopter dynamics is

obtained again.

To obtain the rotational dynamics of the helicopter, the angular momentum

of the combined fuselage and rotor system is calculated. Since most small-scale

helicopters have a hingeless and stiff rotor hub assembly, the rotor is assumed to

be rigid and the momentum effects due to the flapping are neglected. The main

blades are assumed to have a symmetrical airfoil for which the moment required

to twist the blade around its feathering axis (spanwise r-axis in Figure 3.3) is

negligible, so the momentum effects due to the feathering are also neglected.

A top view of the main rotor is shown in Figure 3.3, and the total angular

momentum of the combined fuselage and main rotor system is:

H
CG

= Iω + Rb
rpnHr +L

CG
×m(υ + ω ×L

CG
) (3.54)
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where L
CG

= [0 0 zcg]
T is the vector of the main rotor hub offset from the CG,

Rb
rpn is the rotation matrix from the blade {rpn} to the body {B} coordinates,

inverse of which is given in Eq. (3.16), and Hr is the angular momentum of the

main rotor in the {rpn} coordinates represented as:

Hr = Irωrpn (3.55)

ωrpn = Rrpn
b ωr (3.56)

ωr = ω+ Ω (3.57)

where Ω = [0 0 Ω]T and Ir = diag3×3(Ir, Ip, In) in which the off-diagonal terms

are ignored. The main rotor speed Ω, is assumed to be constant throughout this

analysis.

The last term appeared in Eq. (3.54) is due to the small vertical offset of the

main rotor hub from the CG. Since the product of the offset and the rotor mass

is very small this term is neglected. Using the Newton-Euler method, the total

moment vector acting on the helicopter is:

M =
dH

CG

dt
= Ḣ

CG
+ ω ×H

CG
(3.58)

Using Ṙ
b

rpnHr = Ω × (Rb
rpnHr) and substituting Eqs. (3.54) to (3.57) into

(3.58) results in:

M(Ψ) = Iω̇ + Ṙ
b

rpnHr + Rb
rpnḢr + ω × (Iω + Rb

rpnHr)

= Iω̇ + ω × Iω + Mr(Ψ) (3.59)

where,

Mr(Ψ) = Rb
rpnIrR

rpn
b ω̇r+ωr×

(
Rb
rpnIrR

rpn
b ωr

)
−Rb

rpnIr

(
Ω×(Rrpn

b ωr)
)

(3.60)
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The terms Iω̇ + ω × Iω in Eq. (3.59) correspond to the changes in the an-

gular momentum of the fuselage. The new term Mr(Ψ), represents the moment

corresponding to the changes in the angular momentum of the main rotor which

varies with the rotor azimuth angle Ψ. This term is often absent in the fuselage

equations of motion in the literature [10, 14, 21, 22, 23, 24, 26, 27].

To obtain the equations of motion of the fuselage independent of Ψ, an equiv-

alent TPP rotor disk model is considered for the rotating blades by averaging

Mr(Ψ) around Ψ as:

Mr =
1

2π

∫ 2π

0

Mr(Ψ)

=
1

2π

∫ 2π

0

[
Rb
rpnIrR

rpn
b ω̇r + ωr ×

(
Rb
rpnIrR

rpn
b ωr

)
−

−Rb
rpnIr

(
Ω× (Rrpn

b ωr)
)]

dΨ (3.61)

Manipulation of Eq. (3.61) results in:

Mr = Isω̇ + ω × Isω + ω × IrΩ (3.62)

where Is is the equivalent moment of inertia tensor of the TPP rotor disk model

defined as:

Is =
1

2π

∫ 2π

0

Rb
rpnIrR

rpn
b dΨ =


IP+Ir

2
0 0

0 IP+Ir
2

0

0 0 In

 (3.63)

Substituting Eq. (3.62) into (3.59) results in:

M = (I + Is)ω̇ + ω ×
(
(I + Is)ω + IrΩ

)
(3.64)
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Introducing an effective moment of inertia tensor Ie = I + Is and rearranging

Eq. (3.64) results in the modified equations of motion of the fuselage as:

ω̇ = I−1
e M− I−1

e (ω × Ieω)− I−1
e (ω × IrΩ) (3.65)

3.8.1 Gyroscopic Effect of Main Rotor

Incorporating the angular momentum of the main rotor in the equations of motion

of the fuselage allows for a better understanding of how a helicopter reacts to

the applied moments and external disturbances. In fact, the term ω × IrΩ in

Eq. (3.65) represents the gyroscopic effect of the main rotor which results in a 90

deg phase shift in the attitude response to the moments applied to the helicopter

and increases the vehicle’s resistance to the external disturbances by maintaining

its orientation.

The gyroscopic effect of main rotor has significant effects on the roll and pitch

responses of the helicopter as shown in Figures 3.6 and 3.7, which are obtained

from the simulations of the Evolution-EX helicopter subject to the external mo-

ments.

The parameters of the Evolution-EX model are summarized in Table 5.1. The

attitude response of the helicopter to a 15 Nm disturbance moment around the

roll axis of the fuselage is shown in Figure 3.6 for the Evolution-EX helicopter with

a counter clockwise rotor indicating that with the rotor gyroscopic effect present

in the equations of motion as in Eq. (3.65), the helicopter precesses around the

negative pitch axis due to the 90 deg phase shift caused by the gyroscopic effect.

However, without including the gyroscopic effect of the rotor in the fuselage

equations of motion, the vehicle tilts around the roll axis which is the opposite

to the actual rotation of the helicopter and it settles about 10 deg greater in
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Figure 3.6: Gyroscopic effect on the attitude response to a 15 Nm roll disturbance
moment (Ω = 1100 rpm).

magnitude than the case in which the gyroscopic effect is included.

The attitude response of the helicopter to a 15 N m disturbance moment

around the pitch axis of the fuselage is shown in Figure 3.7, which indicates

that the helicopter precesses around the roll axis with the rotor gyroscopic ef-

fect included. However, without including the gyroscopic effect, the vehicle tilts

around the pitch axis which is the opposite to the actual behavior of the heli-

copter and settles about 10 deg greater than the case in which the gyroscopic

effect is included.

Note that in the hybrid model approach, the gyroscopic effect is not explic-

itly included in the rotor dynamics. Instead, the flapping equations (3.6) and

(3.7) are derived such that this effect is implicitly considered. For example, the

longitudinal command δlon in Eq. (3.6) generates a moment around the x-axis

of the fuselage shown in Figure 3.2, but results in a longitudinal flapping angle

“a1” around the y-axis of the fuselage which is due to the gyroscopic effect of the
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Figure 3.7: Gyroscopic effect on the attitude response to a 15 Nm pitch distur-
bance moment (Ω = 1100 rpm).

rotor.

3.8.2 Roll and Pitch Moments using First-Principles

An alternative way of calculating the induced roll and pitch moments on the

helicopter fuselage is by using the first-principles approach. The longitudinal

and lateral cyclic commands cause the helicopter to pitch and roll by generating

more lift on one side of the main rotor than the other. The new roll and pitch

moments derived using the blade element and momentum theories are:

M̃roll = ρπR5
mrΩ

2CMφ
= f

φ
+ b

φ
u (3.66)

M̃pitch = ρπR5
mrΩ

2CMθ
= f

θ
+ b

θ
u (3.67)
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where,

CMφ
= −σmr

4π

∫ 1

0

∫ 2π

0

CLα

(
θ − un

up

)
u2
p sin(Ψ)τmr dΨdτmr

CMθ
=
σmr
4π

∫ 1

0

∫ 2π

0

CLα

(
θ − un

up

)
u2
p cos(Ψ)τmr dΨdτmr

and,

f
φ

=
1

8
ρπR5

mrΩ
2σmrCLαµx(λ0 − µz)

b
φ

=
1

12
ρπR5

mrΩ
2σmrCLα



−2µx

3
4
µxµy

−3
8
(µ2

y + 3µ2
x + 2)

0



T

(3.68)

f
θ

=
1

8
ρπR5

mrΩ
2σmrCLαµy(λ0 − µz)

b
θ

=
1

12
ρπR5

mrΩ
2σmrCLα



−2µy

3
8
(µ2

x + 3µ2
y + 2)

−3
4
µxµy

0



T

(3.69)

The new roll and pitch moments applied on the fuselage are:

L̃mr = M̃roll + LS (3.70)

M̃mr = M̃pitch +MS (3.71)

where M̃roll and M̃pitch are obtained from Eqs. (3.66) and (3.67) and LS and MS

are the stabilizer moment contributions to the roll and pitch moments applied

on the fuselage. The stabilizer bar acts as an attitude rate feedback as well as a

secondary input to cyclic pitch command through the Bell-Hiller mixer shown in
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Figure 4.2, and is modeled as [46],

LS = α1θ̇ − α2δlon = f
Sx

+ b
Sx

u (3.72)

MS = −α1φ̇+ α2δlat = f
Sy

+ b
Sy

u (3.73)

where θ̇ and φ̇ are calculated using Eq. (3.3) and the input-independent and

input-dependent components are:

f
Sx

= α1θ̇, b
Sx

= −[0 0 α2 0] (3.74)

f
Sy

= −α1φ̇, b
Sy

= [0 α2 0 0] (3.75)

where α1 and α2 are the rate and input derivatives of the stabilizer bar and are

obtained using a system identification method described in Chapter 5.

By substituting Eqs. (3.70) and (3.71) into Eq. (3.14), the modified total

forces and moments applied on the fuselage are:

F =


Xmr +Xfus

Ymr + Ytr + Yvt + Yfus

Zmr + Zht + Zfus

+ RI
b

−1


0

0

mg

 (3.76)

M̃ =


L̃mr + Ltr + Lvt

M̃mr +Mtr +Mht

Nmr +Ntr +Nvt

 (3.77)

By substituting Eqs. (3.76) and (3.77) into (3.1) and (3.2), the nonlinear
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helicopter dynamics are:

ẋ6×1 = h̃(x,u)
6×1

θ̇ = Φ(θ) ω

ṗ = RI
b(θ) υ (3.78)

where x = [u v w p q r]T , and h̃(x,u) is a new nonlinear function of the states

and inputs.

By rearranging Eqs. (3.76) and (3.77) and neglecting the rate feedback terms

of the stabilizer bar, f
Sx

and f
Sy

, which provide the zero-dynamics stability as

described earlier, the modified input-independent force and moment vectors are:

F̃0 =


Xfus

f
Ytr

+ Yvt + Yfus

f
Zmr

+ Zht + Zfus

+ RI
b

−1


0

0

mg



M̃0 =


fφ + f

Sx
+ f

Ltr
+ Lvt

fθ + f
Sy

+ f
Mtr

+Mht

f
Nmr

+ f
Ntr

+Nvt

 (3.79)

and the modified input-dependent matrices are:

F̃u =


0

b
Ytr

b
Zmr

 , M̃u =


bφ + b

Sx
+ b

Ltr

bθ + b
Sy

+ b
Mtr

b
Nmr

+ b
Ntr

 (3.80)

where fφ, bφ, fθ, bθ are found from Eqs. (3.68) and (3.69) and f
Sx

, b
Sx

, f
Sy

, b
Sx

are found from Eqs. (3.74) and (3.75) and the rest of the terms are found in the

previous sections.
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By combining the Eqs. (3.79) and (3.80), the total forces and moments are:

F̃ = F̃0 + F̃uu (3.81)

M̃ = M̃0 + M̃uu (3.82)

Substituting Eqs. (3.81) and (3.82) into (3.1) and (3.2) results in:

 v̇

ω̇


︸ ︷︷ ︸
ẋ6×1

=

 F̃0

m
− ω × v

I−1(M̃0 − ω × I ω)


︸ ︷︷ ︸

f̃(x)
6×1

+

 F̃u

m

I−1M̃u


︸ ︷︷ ︸

b̃(x)
6×4

u (3.83)

The helicopter dynamics are derived in the control-affine form again by rewrit-

ing Eq. (3.83) as:

ẋ6×1 = f̃(x)
6×1

+ b̃(x)
6×4

u4×1

θ̇ = Φ(θ) ω

ṗ = RI
b(θ) υ (3.84)

The helicopter dynamics obtained using the first-principles approach in Eq. (3.78)

is simpler and has fewer rotor dynamic parameters (α1 and α2) compared to the

one obtained using the hybrid model approach (Kβ, Klon, Klat, τf , τs, Ab, BA and

Ks) in Eq. (3.38), so its system identification is easier. However, neglecting the

momentum effects due to the rotor flapping in Eq. (3.78), results in less accuracy.

These two models of the rotational dynamics in Eqs. (3.38) and (3.78) will be

compared in more details using the flight test data in Section 5.4 in Chapter 5.
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3.9 Summary

A new control-oriented model in an affine-in-control and square input-output for-

mulation has been developed for the 6-DOF nonlinear dynamics of a small-scale

unmanned helicopter. This formulation is non-iterative and allows for the appli-

cation of a wide range of nonlinear MIMO control approaches that are unsuitable

for the underactuated and non affine-in-control systems. A combination of the

first-principles and system identification is used to derive the control-affine model

of the helicopter dynamics. Then a square input-output formulation is obtained

using the control point approach. To model the rotational dynamics of the heli-

copter, two different methods including the “hybrid model” and “first-principles”

approaches are used and compared. A more detailed comparison of these mod-

els using flight test data will be presented in Chapter 5. To obtain a complete

model of the helicopter for control design purposes, the inverse kinematics of the

actuating mechanisms of the helicopter will be derived in Chapter 4. A robust

control design based on the square and control-affine model of the helicopter will

be presented in Chapter 6.



Chapter 4

Kinematic Modeling of the Actuating

Mechanisms1

The actuating mechanisms of a small-scale helicopter, often known as the Bell-

Hiller mixer, is a system of multiple linkage mechanisms which are complex and

nonlinear and difficult to mathematically model without linearizing and simpli-

fying.

To design a model-based controller for a small-scale helicopter, a kinematic

model of its actuating mechanisms is required. The detailed kinematic model of

a 4-point swashplate mechanism and the Bell-Hiller mixer is still lacking in the

literature. These complex mechanisms have highly nonlinear kinematics but are

often treated as linear linkage mechanisms using simplifying assumptions [46, 50].

These simplifications could reduce the accuracy of the model.

A kinematic model of a 3-point swashplate mechanism and the Bell-Hiller

mixer is presented in [46] and a linear model using the small angle assumptions is

derived. Another approach for the kinematic model of the actuating mechanisms

is described in [50] where experimental data from the actuating mechanisms of

the helicopter is obtained and a curve-fitting method is used to obtain a linear

relation between the servo actuator inputs and the collective pitch of the main

1A version of this chapter has been submitted for publication in [32].
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and tail blades.

Another kinematic model for a 3-point swashplate mechanism and the Bell-

Hiller mixer of a small-scale helicopter is described in [51], which results in a set

of nonlinear algebraic equations solved by numerical methods. This is an iterative

method which requires a high amount of computations making it unsuitable for

real-time control applications.

Another approach for the kinematic model of the actuating mechanisms of a

small-scale helicopter is presented in [52] using the forward and inverse kinemat-

ics of a 3-point swashplate mechanism which is modeled using the loop-closure

equations. The Bell-Hiller mixer is modeled by writing the loop-closure equa-

tions in the Cartesian coordinates and using the dialytic elimination method.

This results in 48 solutions through solving a 48th-order polynomial and requires

applying a large number of additional constraints to find the true solution.

In the next section, the inverse kinematics of the main rotor actuating mech-

anisms including a 4-point swashplate mechanism and the Bell-Hiller mixer as

well as the actuating mechanism of the tail rotor are derived for a small-scale

helicopter using a different approach that is suitable for the real-time control ap-

plications. The inverse kinematics of the actuating mechanisms of the helicopter

is particularly important for the controller to calculate the required servo inputs.

4.1 Main Rotor Mechanism

The main rotor actuating mechanism of a small-scale helicopter is composed of

two complex linkage mechanisms: the swashplate mechanism and the Bell-Hiller

mixer. First, the kinematic equations of a 4-point swashplate mechanism are

derived. Then, the kinematic model of the Bell-Hiller mixer is derived in the

next section.
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4.1.1 Swashplate Mechanism

The swashplate mechanism, shown in Figure 4.1, is composed of two pinned

plates, one rotating and the other one stationery. Four servos allow for a three-

dimensional motion of the lower stationery plate which cause certain points on

the upper rotating plate such as A and B to experience different movements as

the azimuth angle changes.

The motion of the swashplate is characterized by two successive Euler ro-

tations, δx and δy, respectively around x1 and y1 axes of the fixed coordinates

{x1y1z1} attached to the swashplate’s lower stationery plate at the point C and

the vertical displacement zc from the center of the swashplate, point C, to the

origin of the reference coordinate {xiyizi}, point O.

The forward kinematics of the swashplate is a procedure to calculate the

swashplate’s orientations δx and δy, and displacement zc, in terms of the corre-

sponding servo angles θ11 to θ41.

To derive the forward and inverse kinematics of the swashplate mechanism,

the method used in [51] is extended to a four-point swashplate mechanism used

in the Evolution-EX helicopter. In this method, the position of each corner point

b1 to b4, is calculated using two different kinematic loops. Then, the kinematic

equations are derived by equating the relations found from each kinematic loop.

For instance, the position of the point b1 can be calculated either through the

linkage Op1j1b1 expressed in the reference coordinates {xiyizi}, or by expressing

its position first in the local coordinates {x1y1z1}, then in the reference coordi-

nates {xiyizi} through a homogeneous transformation. This procedure is repeated
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Figure 4.1: Helicopter Swashplate mechanism.
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for all four points on the swashplate as follows:

Ri
b1 = Hi

1rb1 = Ty,yp1
Tx,xp1

Ry,θ11Tx,`11Ry,θ12Rz,θ13lb1

Ri
b2 = Hi

1rb2 = Ty,yp2
Tx,xp2

Ry,θ21Tx,`21Ry,θ22Rz,θ23lb2

Ri
b3 = Hi

1rb3 = Ty,yp3
Tx,xp3

Ry,θ31Tx,−`31Ry,θ32Rz,θ33lb3

Ri
b4 = Hi

1rb4 = Ty,yp4
Tx,xp4

Ry,θ41Tx,−`41Ry,θ42Rz,θ43lb4 (4.1)

where,

rb1 = [r 0 0 1]T , rb2 = [0 r 0 1]T , rb3 = [−r 0 0 1]T , rb4 = [0 − r 0 1]T

lb1 = [`12 0 0 1]T , lb2 = [`22 0 0 1]T , lb3 = [−`32 0 0 1]T , lb4 = [−`42 0 0 1]T

and Hi
1 is the homogeneous transformation between the coordinates {x1y1z1} and

{xiyizi} defined as:

Hi
1 = Tz,zcRy,δyRx,δx (4.2)

and R and T are homogenous rotation and transformation matrices defined as:

Rx,δx =



1 0 0 0

0 cos δx − sin δx 0

0 sin δx cos δx 0

0 0 0 1


, Ry,δy =



cos δy 0 sin δy 0

0 1 0 0

− sin δy 0 cos δy 0

0 0 0 1



Tx,`11 =



1 0 0 `11

0 1 0 0

0 0 1 0

0 0 0 1


, Ty,yp1

=



1 0 0 0

0 1 0 yp1

0 0 1 0

0 0 0 1


, Tz,zc =



1 0 0 0

0 1 0 0

0 0 1 zc

0 0 0 1


(4.3)
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Expanding Eq. (4.1) results in:

r cos δy − xp1 = `12 cos θ11 + `12 cos θ13 + `11 cos θ11

r sin δy − zc = `12 sin θ11 + `12 cos θ13 + `11 sin θ11

cos2 θ13 = 1−
(
yp1
`12

)2

r sin δx sin δy − xp2 = `22 cos θ21 + `22 cos θ23 + `21 cos θ21

− r sin δx cos δy − zc = `22 sin θ21 + `22 cos θ23 + `21 sin θ21

cos2 θ23 = 1−
(
r cos δx − yp2

`22

)2

r cos δy + xp3 = `32 cos θ31 + `32 cos θ33 + `31 cos θ31

r sin δy + zc = `32 sin θ31 + `32 cos θ33 + `31 sin θ31

cos2 θ33 = 1−
(
yp3
`32

)2

r sin δx sin δy + xp4 = `42 cos θ41 + `42 cos θ43 + `41 cos θ41

− r sin δx cos δy + zc = `42 sin θ41 + `42 cos θ43 + `41 sin θ41

cos2 θ43 = 1−
(
r cos δx + yp4

`42

)2

(4.4)

Denoting the left hand side of the equations in Eq. (4.4) in order by ni,
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i = 1to12, and rearranging the equations results in:

(
n1 − `11 cos θ11

)2
= `2

12 cos2 (θ11 + θ12) cos2 θ13(
n2 − `11 sin θ11

)2
= `2

12 sin2 (θ11 + θ12) cos2 θ13(
n4 − `21 cos θ21

)2
= `2

22 cos2 (θ21 + θ22) cos2 θ23(
n5 − `21 sin θ21

)2
= `2

22 sin2 (θ21 + θ22) cos2 θ23(
n7 − `31 cos θ31

)2
= `2

32 cos2 (θ31 + θ32) cos2 θ33(
n8 − `31 sin θ31

)2
= `2

32 sin2 (θ31 + θ32) cos2 θ33(
n10 − `41 cos θ41

)2
= `2

42 cos2 (θ41 + θ42) cos2 θ43(
n11 − `41 sin θ41

)2
= `2

42 sin2 (θ41 + θ42) cos2 θ43 (4.5)

Rearranging Eq. (4.5), the forward kinematics of the swashplate are:

(
n1 − `11 cos θ11

)2
+
(
n2 − `11 sin θ11

)2
= n3`

2
12 (4.6)(

n4 − `21 cos θ21

)2
+
(
n5 − `21 sin θ21

)2
= n6`

2
22 (4.7)(

n7 − `31 cos θ31

)2
+
(
n8 − `31 sin θ31

)2
= n9`

2
32 (4.8)(

n10 − `41 cos θ41

)2
+
(
n11 − `41 sin θ41

)2
= n12`

2
42 (4.9)

Given the values of the servo inputs, the unknown variables of the swashplate

mechanism, δx, δy and zc can be calculated using Eqs. (4.6) to (4.9). This set

of nonlinear algebraic equations does not have a closed-form solution and must

be solved using numerical methods. A solution process could be first to solve

Eqs. (4.6) and (4.8) for δy and zc and then, solve Eq. (4.7) for δx. Next, the

calculated unknown variables, δx, δy and zc, are checked to satisfy Eq. (4.9).

However, the inverse kinematic of the swashplate mechanism which is required

for the control design has a closed-form analytical solution as described next.
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To derive the inverse kinematics of the swashplate, Eqs. (4.6) to (4.9) are used

again to calculate the servo angles, θ11 to θ41, in terms of the swashplate’s orien-

tations δx and δy, and displacement zc. By expanding and rearranging Eqs. (4.6)

to (4.9), the inverse kinematic of the swashplate mechanism is calculated as:

θ11 = arccos

(
`2

11 − n3`
2
12 + n2

1 + n2
2

2n1`11

cos β1

)
+ β1

θ21 = arccos

(
`2

21 − n6`
2
22 + n2

4 + n2
5

2n4`21

cos β2

)
+ β2

θ31 = arccos

(
`2

31 − n9`
2
32 + n2

7 + n2
8

2n7`31

cos β3

)
+ β3

θ41 = arccos

(
`2

41 − n12`
2
42 + n2

10 + n2
11

2n10`41

cos β4

)
+ β4 (4.10)

where,

βi = arctan

(
n3i−1

n3i−2

)
, i = 1 to 4 (4.11)

The closed-form solution for the inverse kinematics of the swashplate mecha-

nism derived in Eq. (4.10) is used for the control experiments in Chapters 7 and

8.

4.1.2 Bell-Hiller Mixer

The pitch angle of the main rotor blades can change both collectively and cycli-

cally. The Bell-Hiller mixer is the core part of the main rotor actuating mecha-

nism, that changes the collective and cyclic pitch angles of the main rotor blades

by mixing the Bell and Hiller inputs as shown in Figure 4.2. The pitch angle of

the main rotor blades can be represented by the first harmonic components of

the Fourier series expansion in terms of the azimuth angle Ψ:

θmr = δcol + δlat sin(Ψ) + δlon cos(Ψ) (4.12)
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Solving the inverse kinematics of the Bell-Hiller mixer results in the corre-

sponding orientations δx and δy, and displacement zc, of the swashplate in terms

of the desired collective and cyclic pitch of the blades. This is a complicated

12-bar linkage mechanism with inputs as the pitch angle of the main blade Θ6,

and the flapping angle of the stabilizer bar Θ4, and the outputs as the swashplate

orientations δx and δy, and the displacement zc. The kinematic equations of the

Bell-Hiller mixer are derived in two steps described as follows.

4.1.3 Collective Pitch to Swashplate Displacement

In the first step, the inverse kinematics of the Bell-Hiller mixer is derived so that

the vertical displacement of the swashplate zc is obtained in terms of the collective

pitch of the main rotor δcol. To do this, the kinematic equations are derived for

the azimuth angle at which the cyclic pitch is zero and the blades only have a

collective pitch. In the second step, the kinematic equations are derived so that

the orientations of the swashplate δx and δy, are obtained in terms of the cyclic

pitch of the main rotor.

Unlike the swashplate mechanism, the inverse kinematics of the Bell-Hiller

mixer does not have a closed-form solution. Therefore, a fast numerical approach

is used in this section to solve the inverse kinematics of the Bell-Hiller mixer.

In this approach, the kinematic equations of the Bell-Hiller mixer are derived

in the isotropic coordinates using the “vector loops” approach to minimize the

computations.

Since the Bell-Hiller mixer is a symmetrical mechanism, a seven-bar linkage,

a half-model of the mechanism shown in Figure 4.2, is used for simplicity. To

obtain the inverse kinematics of this linkage, the kinematic equations for the

loop-closures “C2386C” and “457864” are derived. First, the following variables
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Figure 4.2: Helicopter Bell-Hiller Mixer mechanism.
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are defined:

θi = eiΘi = cos Θi + i sin Θi, i = 1 to 6 (4.13)

where Θi are the linkage angles shown in Figure 4.2 in radians. For example, the

angle Θ6 is the input to the inverse kinematics and is related to the collective

pitch as:

Θ6 =
π

2
− δcol (4.14)

Also, the length variables ai and bi are defined in Table 4.1.

Table 4.1: Parameters of the Bell-Hiller mixer.
a0 = `e6e4 a3 = `e3e8 a6 = `e6e8
a1 = `Ce2 a4 = `e4e5 b1 = `e8e7
a2 = `e2e3 a5 = `e5e7 S = `Ce6

Since the kinematic equations relating the vertical displacement of the swash-

plate to the collective pitch of the blade is desired in this step, the variables θ1,

θ4, θ6 are defined as the inputs, and θ2, θ3, θ5 and S are defined as the outputs

of the mechanism. Modeling the links as vectors in the complex plane results in:

S + a6θ6 = a1θ1 + a2θ2 + a3θ3

a0 + a4θ4 + a5θ5 = a6θ6 + b1θ3 (4.15)
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Rearranging Eq. (4.15) to solve for θ2 and θ5 in terms of S and θ3 results in:

a2θ2 = S + C1 − a3θ3

a5θ5 = C2 + b1θ3 (4.16)

where,

C1 = a6θ6 − a1θ1

C2 = a6θ6 − a4θ4 − a0 (4.17)

Solving the inverse kinematics of linkage at zero cyclic pitch angle results in:

Θ1 = Θ4 =
π

2
(4.18)

Substituting Eq. (4.18) into (4.17) results in:

C1 = a6θ6 − a1i

C2 = a6θ6 − a4i− a0 (4.19)

Equation (4.19) is used to eliminate θ2 and θ5 in Eq. (4.16). Multiplying both

sides of the Eq. (4.16) by their complex conjugate parts and using the unit vector

relations θ2θ̄2 = 1 and θ5θ̄5 = 1, where bar denotes the complex conjugate, results

in:

a2
2 = (S + C1 − a3θ3)(S̄ + C̄1 − a3θ

−1
3 )

a2
5 = (C2 + b1θ3)(C̄2 + b1θ

−1
3 )

S = S̄ (4.20)



CHAPTER 4. KINEMATIC MODELING 69

Expanding Eq. (4.20) results in:

fj = α0j + α1jθ3 + α2jS + β1jθ
−1
3 + β2jθ

−1
3 S = 0, j = 1, 2

f3 = S̄ − S = 0 (4.21)

where,

α01 = C1S̄ + C1C̄1 + a2
3 − a2

2 α02 = b2
1 − a2

5 + C2C̄2

α11 = −a3(C̄1 + S̄) α12 = b1C̄2

α21 = S̄ + C̄1 α22 = 0

β11 = −C1a3 β12 = b1C2

β21 = −a3 β22 = 0 (4.22)

Multiplying each of the three equations in Eq. (4.21) by the monomials 1, θ3,

and S and using the Sylvester-Type Elimination method [53], results in:

Q9×9m9×1 = 0 (4.23)

where m9×1 is the vector of the monomials and Q9×9 is the matrix obtained by
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multiplying Eq. (4.21) by the the monomials as:

Q9×9 =



α01 α11 α21 0 0 0 β11 β21 0

β11 α01 β21 α11 α21 0 0 0 0

0 0 α01 0 α11 α21 0 β11 β21

α02 α12 α22 0 0 0 β12 β22 0

β12 α02 β22 α12 α22 0 0 0 0

0 0 α02 0 α12 α22 0 β12 β22

S̄ 0 −1 0 0 0 0 0 0

0 S̄ 0 0 −1 0 0 0 0

0 0 S̄ 0 0 −1 0 0 0



, m9×1 =



1

θ3

S

θ2
3

θ3S

S2

θ−1
3

θ−1
3 S

θ−1
3 S2


(4.24)

Factoring the variable S̄ from Eq. (4.24) and splitting the matrix Q into the

sparse matrices Q1 and Q2, results in:

(
Q1 + Q2S̄

)
m = 0 (4.25)
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where,

Q19×9
=



γ1 γ2 γ3 0 0 0 β11 β21 0

β11 γ1 β21 γ2 γ3 0 0 0 0

0 0 γ1 0 γ2 γ3 0 β11 β21

α02 α12 α22 0 0 0 β12 β22 0

β12 α02 β22 α12 α22 0 0 0 0

0 0 α02 0 α12 α22 0 β12 β22

0 0 −1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0

0 0 0 0 0 −1 0 0 0



(4.26)

Q29×9
=



C1 −a3 1 0 0 0 0 0 0

0 C1 0 −a3 1 0 0 0 0

0 0 C1 0 −a3 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0



(4.27)

and γ1 = C1C̄1 + a2
3 − a2

2, γ2 = −a3C̄1 and γ3 = C̄1. In order for Eq. (4.25) to

have a non-trivial solution, the following condition must hold:

Q1m = −S̄Q2m (4.28)
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Equation (4.28) is a generalized eigenvalue problem and can be solved by

the QZ decomposition method [54]. Also, this equation can be easily solved in

MATLABTMas:

S = eig(Q1,Q2, ’qz’) (4.29)

Therefore, given the collective pitch angle, δcol, the vertical displacement of

the swashplate zc is calculated as:

zc = he6 − S (4.30)

where he6 is the fixed height of the rotor grip from the point O, shown in Figure 4.2

and its value is listed in Table 4.2.

The above method provides a fast numerical solution for the nonlinear kine-

matics of the Bell-Hiller mixer. However, since the matrices Q1 and Q2 in Eqs.

(4.26) and (4.27) are square matrices of dimension 9, solving the inverse kinemat-

ics of the Bell-Hiller mixer using the above method results in 9 solutions. This

is a significant reduction compared to [52] with 48 solutions. The true solution

of the inverse kinematics can be obtained by applying physical constraints of the

mechanism as described in the following Pseudocode:

For i = 1 to 9

y = S(i)

If (y is real) & (y ≥ Smin) & (y ≤ Smax)

zc = he6 − y

End
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4.1.4 Cyclic Pitch to Swashplate Orientations

Given the swashplate vertical displacement zc in Eq. (4.30), the inverse kinematic

equations of the Bell-Hiller mixer are derived so that the orientations of the

swashplate expressed by the Euler angles δx and δy are obtained in terms of

the lateral and longitudinal cyclic pitch angles δlat and δlon. To do this, a local

coordinates {x1y1z1} attached to the swashplate’s moving upper plate at the

point C is defined as shown in Figure 4.2. Then, according to Eq. (4.12), the

kinematic equations are derived once at the azimuth angle Ψ = 0 deg, to solve

for δy in terms of the longitudinal cyclic pitch δlon, and once at the azimuth angle

Ψ = 90 deg, to solve for δx in terms of the lateral cyclic pitch δlat.

A similar procedure is followed to derive the kinematic equations for the

orientation of the swashplate. Since the tilting angles of the swashplate to the

cyclic pitch angle are desired, here the variables S, θ4 and θ6 are defined as

the inputs, and θ1, θ2, θ3 and θ5 are defined as the outputs of the mechanism.

Rearranging Eq. (4.15) to solve for θ2 and θ5 in terms of θ1 and θ3 results in:

a2θ2 = C3 − a3θ3 − a1θ1

a5θ5 = C2 + b1θ3 (4.31)

where,

C2 = a6θ6 − a0 − a4θ4

C3 = S + a6θ6 (4.32)

where S is obtained from Eq. (4.29). Since the stabilizer bar’s effect as a sec-

ondary input to the cyclic pitch is already included in the flapping equations (3.6)

and (3.7) in Chapter 3, the flapping angle of the stabilizer bar is again considered
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zero (Θ4 = π
2
), and Eq. (4.32) is rewritten as:

C2 = a6θ6 − a0 − a4i

C3 = S + a6θ6 (4.33)

Equation (4.33) is used to eliminate θ2 and θ5 in Eq. (4.31). Multiplying both

sides of Eq. (4.31) by their complex conjugate parts and using the unit vector

relations θ2θ̄2 = 1 and θ5θ̄5 = 1 results in:

a2
2 = (C3 − a3θ3 − a1θ1)(C̄3 − a3θ

−1
3 − a1θ̄1)

a2
5 = (C2 + b1θ3)(C̄2 + b1θ

−1
3 )

θ1θ̄1 = 1 (4.34)

Expanding Eq. (4.34) results in:

fj = α′0j + α′1jθ3 + α′2jθ1 + β′1jθ
−1
3 + β′2jθ

−1
3 θ1 = 0, j = 1, 2

f3 = θ1θ̄1 − 1 = 0 (4.35)

where,

α′01 = −a1C3θ̄1 + C3C̄3 + a2
3 − a2

2 α′02 = b2
1 − a2

5 + C2C̄2

α′11 = −a3(C̄3 − a1θ̄1) α′12 = b1C̄2

α′21 = a2
1θ̄1 − a1C̄3 α′22 = 0

β′11 = −a3C3 β′12 = b1C2

β′21 = a1a3 β′22 = 0 (4.36)

Multiplying each of the three equations in Eq. (4.35) by the monomials 1, θ1
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and θ3, and applying the Sylvester-Type Elimination method results in:

Q′9×9m
′
9×1 = 0 (4.37)

where m′9×1 is the vector of the monomials and Q′9×9 is the matrix obtained by

multiplying Eq. (4.35) by the the monomials as:

Q′9×9 =



α′01 α′11 α′21 0 0 0 β′11 β′21 0

β′11 α′01 β′21 α′11 α′21 0 0 0 0

0 0 α′01 0 α′11 α′21 0 β′11 β′21

α′02 α′12 α′22 0 0 0 β′12 β′22 0

β′12 α′02 β′22 α′12 α′22 0 0 0 0

0 0 α′02 0 α′12 α′22 0 β′12 β′22

−1 0 θ̄1 0 0 0 0 0 0

0 −1 0 0 θ̄1 0 0 0 0

0 0 −1 0 0 θ̄1 0 0 0



, m′9×1 =



1

θ3

θ1

θ2
3

θ3θ1

θ2
1

θ−1
3

θ−1
3 θ1

θ−1
3 θ2

1


(4.38)

Factoring the variable θ̄1 from Eq. (4.38) and splitting the matrix Q′ into the

sparse matrices Q′1 and Q′2, results in:

(
Q′1 + Q′2θ̄1

)
m′ = 0 (4.39)
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where,

Q′19×9
=



γ′1 γ′2 γ′3 0 0 0 β′11 β′21 0

β′11 γ′1 β′21 γ′2 γ′3 0 0 0 0

0 0 γ′1 0 γ′2 γ′3 0 β′11 β′21

α′02 α′12 α′22 0 0 0 β′12 β′22 0

β′12 α′02 β′22 α′12 α′22 0 0 0 0

0 0 α′02 0 α′12 α′22 0 β′12 β′22

−1 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0



(4.40)

Q′29×9
=



−a1C3 a1a3 a2
1 0 0 0 0 0 0

0 −a1C3 0 a1a3 a2
1 0 0 0 0

0 0 −a1C3 0 a1a3 a2
1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0



(4.41)

and γ′1 = C3C̄3 + a2
3 − a2

2, γ′2 = −a3C̄3 and γ′3 = −a1C̄3.

Therefore, given the longitudinal and lateral cyclic inputs δlon and δlat and

the vertical displacement of the swashplate zc, the tilt angle of the swashplate
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Table 4.2: Parameters of the Bell-Hiller mixer’s linear approximation.

Parameter Value(m)
r1 0.023
`e3e7 0.038
`e7e8 0.025
`e6e8 0.031
z0 0.069
he6 0.168

Θ1, is:

Θ1 = arg(θ̄1) (4.42)

where θ̄1 is a complex number and is calculated using the QZ decomposition

method as:

θ̄1 = eig(Q′1,Q
′
2, ’qz’) (4.43)

In addition, a linear approximation of the inverse kinematics of the Bell-

Hiller mixer is derived using the small-angle assumptions in the following for a

comparison with the nonlinear model:

δcol =
`e7e8

`e3e7`e6e8
(zc − z0)

δlon = − `e7e8r1

`e3e7`e6e8
(Θ1lon)

δlat =
`e7e8r1

`e3e7`e6e8
(Θ1lat) (4.44)

where z0 is the height of the swashplate from the point O shown in Figure 4.2,

at zero collective pitch. The parameters of the linear approximation of the Bell-
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Figure 4.3: Fero arm machine used to measure the dimensions of the actuating
mechanisms.

Hiller mixer kinematics in Eq. (4.44) are listed in Table 4.2. The dimensions of

the actuating mechanisms are measured using a FARO arm machine shown in

Figure 4.3.

Note that Eq. (4.42) calculates the longitudinal and lateral tilt angle of the

swashplate Θ1lon and Θ1lat , which are not necessarily equal to the swashplate’s

Euler angles δx and δy. To obtain the Euler angles of the swashplate in general,

two basis vectors are defined as:

n̂1 = Ry,Θ1lon
[1 0 0 0]T

n̂2 = Rx,Θ1lat
[0 1 0 0]T (4.45)

where n̂1 and n̂2 are the perpendicular unity vectors on the tilted plane of the

swashplate and R is the rotation matrix defined in Eq. (4.3).

By defining n̂3 as the normal vector of the tilted plane of the swashplate, it

can be calculated as:

n̂3 = n̂1 × n̂2 (4.46)
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The normal vector n̂3 could also be derived in terms of the tilt angles of

the swashplate δx and δy using the homogeneous transformation Hi
1 defined in

Eq. (4.2) as:

n̂3 = Hi
1[0 0 1 0]T = [n31 n32 n33 0]T (4.47)

Equating Eqs. (4.46) and (4.47) results in the swashplate’s Euler angles as:

δx = − arcsin
(
n32

)
δy = arcsin

(
n31

cos δx

)
(4.48)

Combining Eqs. (4.10), (4.29) and (4.42) results in the inverse kinematics

of the entire main rotor actuating mechanism representing the four swash servo

inputs θ11 to θ41 in terms of the collective pitch angle δcol and longitudinal and

lateral cyclic pitch angles of the main rotor δlon and δlat, which is essential for the

control implementation in Chapters 7 and 8. The forward and inverse kinematics

of the tail rotor are described in the following section.

4.2 Tail Rotor Mechanism

The tail rotor has a complex mechanism composed of two planar linkage mecha-

nisms shown in Figure 4.4. The four-bar linkage mechanism “1234”, moves the

L-shape link “345” pivoted at point “4”. An spherical joint at point “5”, connects

this link to a T-shaped link which slides on the spinning shaft of the tail rotor.

As the T-bar slides on the shaft, the pitch angle of the tail blade changes through

another linkage mechanism “5678”.

To derive the forward kinematics of the tail rotor mechanism, two kinematic

loops “12341” and “56785” are defined and the kinematic equations are derived by
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Figure 4.4: Helicopter tail mechanism.

writing the loop-closure equations for each loop. Writing the kinematic equations

for the loop-closure “12341” results in:

l12 + l23 = l14 + l43 (4.49)

Expanding (4.49) in the Cartesian coordinates results in:

c1 cos θ1 + c2 cos θ2 = c4 cos θ4 + x4

c1 sin θ1 + c2 sin θ2 = c4 sin θ4 + y4 (4.50)

where c1 = |l12|, c2 = |l23|, c4 = |l43| and x4 and y4 are the horizontal and vertical

distance of the point “4” form the origin of the X-Y coordinates, respectively.

Rearranging Eq. (4.50) results in:

c2 cos θ2 = m1 + c4 cos θ4

c2 sin θ2 = m2 + c4 sin θ4 (4.51)



CHAPTER 4. KINEMATIC MODELING 81

where m1 = x4 − c1 cos θ1 and m2 = y4 − c1 sin θ1. Adding the squares of the

equations in Eq. (4.51) and eliminating θ2 results in:

c2
2 = (m1 + c4 cos θ4)2 + (m2 + c4 sin θ4)2 (4.52)

Solving Eq. (4.52) for θ4 results in:

θ4 = arccos

(
c2

2 − c2
4 −m2

1 −m2
2

2c4m1

cos γ1

)
+ γ1 (4.53)

where γ1 = arctan
(
m2

m1

)
. Equation (4.53) provides a nonlinear relation between

the angle of the L-shape link, θ4, and the servo input θ1.

Writing the kinematic equations for the loop-closure “56785” results in:

l15 + l56 + l67 = l18 + l87 (4.54)

Expanding Eq. (4.54) in the Cartesian coordinates results in:

x56 + c6 cos θ6 = c8 cos β1

y5 + y56 + c6 sin θ6 = y8 + c8 sin β1 (4.55)

where c6 = |l67|, c8 = |l87|, and x56 and y56 are the fixed horizontal and vertical

offsets between the points “5” and “6” on the T-shaped link and y8 is the fixed

vertical offset of the point “8” from the origin of the X-Y coordinates. The

variable y5 is the vertical displacement of the slider from the origin of the X-Y

coordinates and is calculated as:

y5 = y4 + b4 cos θ4 (4.56)
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where b4 = |l45|. Substituting Eq. (4.56) into Eq. (4.55) and rearranging Eq. (4.55)

results in:

c6 cos θ6 = m3 + c8 cos β1

c6 sin θ6 = m4 + c8 sin β1 (4.57)

where m3 = −x56 and m4 = y8 − y5 − y56. Adding the squares of the equations

in Eq. (4.57) and eliminating θ6 results in:

c2
6 = (m3 + c8 cos β1)2 + (m4 + c8 sin β1)2 (4.58)

Solving Eq. (4.58) for β1 results in:

β1 = arcsin

(
c2

6 − c2
8 −m2

3 −m2
4

2c8m4

cos γ2

)
− γ2 (4.59)

where γ2 = arctan
(
m3

m4

)
. Equation (4.59) provides a nonlinear relation between

the pitch angle of the tail blade, β1, and the angle of the L-shape link, θ1. There-

fore, combining Eqs. (4.53) and (4.59) results in the forward kinematics of the

tail mechanism which allows for the calculation of the pitch angle of the tail blade

β1, in terms of the tail servo input θ1. The second tail blade is actuated through

a mirrored mechanism as shown in Figure 4.4 and its pitch angle is equal and

opposite to that of the first blade.

The model-based controller described in Chapter 6 uses the pitch angle of the

tail blades as the control input for the yaw motion of the helicopter. Therefore,

the inverse kinematics of the tail mechanism is required to calculate the desired

servo inputs.

The inverse kinematics of the tail mechanism is required to calculate the

desired servo inputs for the control design. The inverse kinematics can be ob-
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tained by following a similar procedure on the same kinematic loops “12341”

and “56785”. Rearranging and solving Eq. (4.57) for θ4 in terms of β1, and then

solving Eq. (4.51) for θ1 in terms of θ4 results in the inverse kinematics of the tail

mechanism as:

θ1 = arccos

(
(m′1)2 + (m′2)2 + c2

1 − c2
2

2c1m′1
cos γ′1

)
+ γ′1 (4.60)

where,

m′1 = c4 cos θ4 + x4 θ4 = arccos

(
m′4 − c6 sin θ6

b4

)
m′2 = c4 sin θ4 + y4 θ6 = arccos

(
m′3
c6

)
m′3 = c8 cos β1 − x56 γ′1 = arctan

(
m′2
m′1

)
m′4 = y8 + c8 sin β1 − y56 − y4

Again, a linear approximation of the inverse kinematics of the tail mechanism

is derived for the comparison with the nonlinear model, using the small-angle

assumptions as:

δped =
`12`45

`43`87

(θtail +
π

2
) + δ0tail (4.61)

where,

δped = β1

θtail = θ1 −
π

2
(4.62)

and θ0tail = 0.1169 rad is the pitch angle of the tail blade when θtail = 0. The

parameter of the linear approximation of the tail rotor mechanism are listed in
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Table 4.3: Parameters of the tail mechanism’s linear approximation.

Parameter Value(m)
`12 0.018
`45 0.015
`43 0.032
`87 0.015

Table 4.3. In addition, the tail rotor pitch can be expressed in terms of the pulse

width of the tail servo of the Evolution-EX helicopter as:

θtail = αtail(PW ) + δ0tail (4.63)

where PW is the pulse width of the pulse width modulation (PWM) servo signal

in seconds and the coefficients αtail = −1698.5 rad/s and δ0tail = 1.4724 rad are

obtained from the calibration diagram of the tail servo.

4.3 Experimental Validation of the Kinematic Model

To validate the derived inverse kinematic models of the main rotor represented

by Eqs. (4.10), (4.29) and (4.42) and the tail rotor kinematic model in Eq. (4.60),

two simple experimental setups shown in Figs. 4.5 and 4.6 are used. To accurately

measure the pitch angles of the main and tail blades, a 2000 pulse per revolution

(PPR) optical encoder is attached to each blade grip of the main rotor and one

blade grip of the tail rotor on the Evolution-EX helicopter.

The data collection process is automatic. The servo signals and the measure-

ment data from the encoders are collected at the same time using a PCI-6602

National Instrument data acquisition card and a PC running the xPC Target

real-time kernel. The experimental data is collected by sending PWM signals to
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Figure 4.5: The measurement setup for the tail rotor mechanism.

Figure 4.6: The measurement setup for the main rotor mechanism.

the servos of the helicopter and measuring the corresponding blade pitch angles

using the optical encoders shown in Figs. 4.5 and 4.6. For example, to validate

the kinematic model of the collective pitch to the swashplate displacement in

Eq. (4.29), the stabilizer bar is fixed at zero flapping angle and the four servos of

the main rotor are commanded such that the swashplate moves vertically and zc

increases from 60 to 80 mm in increments of about 2.5 mm, while the tilt of the

swashplate is kept at zero (δx = δy = 0), and at the same time, the corresponding

encoder measurements from each blade grip are collected.

The above process is repeated for the longitudinal and lateral cyclic tests

and the tail rotor mechanism. The experimental data and predicted responses
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Figure 4.7: Experimental results of the collective pitch versus swashplate dis-
placement and comparison to the nonlinear model and linear approximation.

of the nonlinear kinematic model of the actuating mechanisms of the helicopter

as well as the linear approximation models are compared in Figures 4.7 to 4.10,

which shows a good match between the predicted nonlinear kinematic model of

the main and tail rotor mechanisms and the experimental data. Therefore, the

inverse kinematics of the helicopter actuating mechanisms are validated.

The results in Figures 4.7 to 4.10 also indicate that the Bell-Hiller mixer and

the tail rotor mechanism of the helicopter are designed such that the kinematic

models obtained from the linear approximations accurately represent the actual

kinematics of the system within the operation range of the servos. However,

the linear approximations are not valid for a larger range of servo angles. For

example, in the collective pitch versus swashplate displacement graph shown in

Figure 4.7, the prediction of the nonlinear kinematic model deviates from the
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Figure 4.8: Experimental results of the lateral cyclic pitch versus swashplate
orientation and comparison to the nonlinear model and linear approximation.

linear approximation model for collective pitch angles larger than 15 deg.

4.4 Summary

The inverse kinematics of the actuating mechanisms of the main rotor including

a 4-point swashplate mechanism and the Bell-Hiller mixer and the actuating

mechanism of the tail rotor have been developed for a small-scale helicopter,

which will be used for the control experiments in Chapters 7 and 8. The linear

approximations of the nonlinear kinematics of the main and tail rotor actuating

mechanisms are also derived. The kinematic models of the main and tail rotor

mechanisms are validated in experiments and the nonlinear models and the linear

approximations are compared. The system identification and validation of the

mathematical model of the helicopter will be presented in the next chapter.
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Figure 4.9: Experimental results of the longitudinal cyclic pitch versus swashplate
orientation and comparison to the nonlinear model and linear approximation.
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Figure 4.10: Experimental results of the tail blade pitch versus tail servo arm
input and comparison to the nonlinear model and linear approximation.



Chapter 5

System Identification and Model Validation

using Ground and Flight Test Data1

System identification is often used for small-scale helicopters to extract a math-

ematical model or the parameters of an existing model using experimental data.

The two main approaches used in the system identification technique are: time-

domain and frequency-domain identification.

Frequency-domain identification is used to derive linear models and is suit-

able for the systems whose dynamics can be represented by a transfer function.

Comprehensive Identification from FrEquency Response (CIFER) is used for the

identification of a small-scale Yamaha R-50 [41]. First, the flight data is col-

lected using frequency sweeps applied one at a time to each control input while

the others are used to maintain the helicopter in hover or cruise flight. Then,

the frequency response for each input-output pair is computed and conditioned

to remove the effect of secondary inputs. Finally, by solving an optimization

problem a state-space model whose frequency response matches the flight data is

extracted and validated in the time-domain.

MOdeling for flight Simulation and Control Analysis (MOSCA) is another

frequency-domain identification tool for the identification of a small-scale CMU

1A version of this chapter has been published in [29] and submitted for publication in [33].
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R-50 helicopter [40]. MOSCA combines first-principles and system identification

techniques and uses optimization methods in the frequency-domain to obtain both

linear and nonlinear helicopter models. A 30-state nonlinear helicopter model is

linearized around multiple operating points and MOSCA is used to extract the

frequency responses. Then, these frequency responses for each input-output pair

are computed using numerous flight data. Finally, by minimizing a weighted

cost function of the mismatch between the corresponding frequency responses at

various operating points, the parameters of the nonlinear model are estimated.

The time-domain identification method is another approach which is suitable

for both linear and nonlinear systems and can be used to estimate unknown

parameters of a nonlinear model. A time-domain identification approach is used

in [44] to identify the model parameters of a Hirobo-90 small-scale helicopter.

In this approach, first the nonlinear model is linearized around hover and its

state-space representation is derived. Then, flight data is collected around hover

and the parameters of the linearized model is estimated using the Levenberg-

Marquardt (LM) method [45].

Another time-domain identification approach is presented in [46] for a small-

size Ikarus ECO helicopter. System identification is performed on a SISO basis

using four different test stands to isolate the fuselage motion into a set of de-

coupled SISO systems. First, the nonlinear model of the helicopter is linearized

around hover and a transfer function for each DOF is computed. Then, the

input-output data is collected for different DOFs by flying the helicopter on the

stands. Direct least squares method is then used to estimate the parameters of

the transfer functions.

Most system identification approaches in the literature are based on the lin-

earized helicopter dynamics around some operating points [44, 46, 47, 48, 49].

This restricts the application of these approaches to linear control methods. In
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this work, a system identification strategy to estimate parameters of the nonlin-

ear model in Eq. (3.38) using the data from the ground and flight tests is carried

out on the Evolution-EX helicopter. To validate this model in the time-domain,

flight data is used as described next.

Some parameters such as the mass, moment of inertia, air density, rotor speed,

gear ratios, size of the components, etc are measured directly. The remaining pa-

rameters are found using a time-domain system identification technique that is

suitable for nonlinear models. Actual physical parameters of the main and tail

rotor blades such as the lift curve slopes and zero lift drag coefficients are de-

termined using the ground test data from an aerodynamic force measurement

testbed. This testbed is specially designed to measure the forces and moments

generated by the rotors of small-scale helicopters around hover. The rest of the

parameters including those of the rotor dynamics and empennage drag are esti-

mated using the flight test data. The system identification strategy is described

in the next section.

5.1 Identification using Ground Test Data

To determine the lift and drag coefficients of the main and tail rotors includ-

ing CL0 , CLα , CD0 , CLαtr and CD0tr , an aerodynamic force measurement testbed

as shown in Figure 5.1 was developed. The setup is designed for small-scale

unmanned helicopters to emulate hover flight conditions and measure the aero-

dynamic forces and moments generated by the main and tail rotors around hover

[29].

The testbed has a 1.8 m main pole to minimize the ground effect of the main

rotor. To mount the helicopter on the testbed, an interface mechanism composed

of a set of three adjustable plates is used as shown in Figure 5.2. The plates can
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Figure 5.1: Aerodynamic force measurement testbed around hover.

slide with respect to each other to allow for an easy alignment of the CG with

respect to the main pole. After the position of the CG is adjusted, the plates and

the helicopter are bolted to each other to form a rigid system. This rigid system

is connected to an upper frame of the pole through eight load cells attached to

the three perpendicular faces of the plates. The eight load cells can measure all

the forces and moments applied by the helicopter fuselage to the testbed.

A ground station computer running the xPC Target real-time kernel, com-

mands the helicopter servos and collects the data from the load cells using a

PCI-6602 National Instrument data acquisition card at the sampling frequency

of 100 Hz. Using the ground data from applying different collective commands to

the servos of the helicopter and measuring the corresponding aerodynamic forces

and moments through the load cells, the lift and drag coefficients of the main

and tail rotors can be estimated.

To determine the lift and drag coefficients of the main rotor, a flight scenario
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Figure 5.2: Schematic of the testbed interface assembly.

is designed to emulate hover flight conditions at different thrust loadings. The

tail blades are detached throughout this test so that the main rotor drag torque

required for the estimation of the drag coefficient is measured at the same time.

In this test, the cyclic pitch is fixed to zero and the collective pitch increases

from 0 to 8.4 degrees in increments of 1.2 degrees and the corresponding force

measurements are collected.

Since the helicopter is fixed on the testbed throughout the tests, velocity

components of the fuselage are zero and the main rotor thrust in Eq. (3.18) is:

Tmr︸︷︷︸
Y

=
1

6
ρπR4

mrΩ
2σmr

[
1
(
δcol −

3

2
λ0

)]
︸ ︷︷ ︸

X

 CL0

CLα


︸ ︷︷ ︸

β

(5.1)

Since the thrust in Eq. (5.1) is linear with respect to the lift coefficients, a

linear least squares method is used to identify the unknown coefficients, CL0 and

CLα , using:

β = (XTX)−1XTY (5.2)
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Figure 5.3: Main rotor thrust and drag torque vs. collective input under these
conditions: Ω = 1100 rpm; Rmr = 0.95 m; ρ = 1.107 kg/m3; σmr = 0.06.

The lift coefficients obtained for the Evolution-EX helicopter are CL0 = 0.0077

and CLα = 5.496 rad−1. As was expected, the estimated value of the zero lift

coefficient CL0 , is very small due to the symmetrical airfoil profile of the main

rotor blades.

Repeating the above identification process for the drag torque model in Eq. (3.23),

the zero lift drag coefficient of the main rotor CD0 is estimated and listed in Table

5.1.

A comparison between the experimental data and the predicted response of

the identified models is shown in Figure 5.3. A “VAF” index value represent-

ing a measure of the quality of the output generated by the identified model is

calculated using the variance accounted for (VAF) index [56], as:

VAF =

(
1− var(y − ŷ)

var(y)

)
× 100% (5.3)
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where y is the measured output (experimental data) and ŷ is the predicted output.

The VAF indices of the thrust and drag torque shown in Figure 5.3 are 99% and

98%, respectively, indicating an excellent match between the predicted model of

the thrust and drag torque and the experimental data in hover. Note that each

point on the shown graphs corresponds to a quasi-steady hover condition. For

example, the 4.8 deg collective pitch and 100 N thrust corresponds to the hover

condition for the helicopter with a mass of 10.19 kg, while, the 8.4 deg collective

pitch and 200 N thrust corresponds to the hover condition for the helicopter with

a mass of 20.38 kg. The induced velocity required for the identification process

in Eq. (5.2) is found for each point using the induced velocity formula at hover

as:

Vh =

√
Tmr

2ρπR2
mr

(5.4)

It is also shown in Figure 5.3 that the thrust and drag torque of the main

rotor both change with the collective pitch in a nonlinear manner. The reason is

that the inflow ratio of the main rotor, λ0, is not constant and changes with the

thrust in a nonlinear manner itself. For example, increasing the collective pitch

in Eq. (5.1) increases the thrust in a nonlinear manner, because, it also increases

the induced velocity of the rotor in Eq. (5.4), which results in a partial decrease

of the angle of attack and the thrust value. Similar approach can be used to show

that the drag torque in Eq. (3.23) changes with the collective pitch in a nonlinear

manner. Also, the drag torque of the main rotor versus the thrust is shown in

Figure 5.4. The results indicate that the drag torque of the main rotor varies

with the thrust in a nonlinear manner.

To identify the lift and drag coefficients of the tail rotor CLαtr and CD0tr , the

main rotor blades are removed and the tail rotor blades are attached. Then, the
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Figure 5.4: Main rotor drag torque vs. thrust under these conditions: Ω =
1100 rpm; Rmr = 0.95 m; ρ = 1.107 kg/m3; σmr = 0.06.

data sets are collected and the above identification process is repeated for the

tail rotor thrust and drag torque models in Eqs. (3.28) and (3.29), respectively.

The estimated coefficients of the tail rotor obtained from Eq. (5.2) are listed in

Table 5.1. The experimental data and predicted response of the tail rotor thrust

and drag torque models are compared in Figure 5.5 and VAF indices of above

90% are obtained indicating that a good match between the predicted models

and the experimental data is achieved.

5.2 Identification using Flight Test Data

To identify the unknown parameters of the rotor dynamics and empennage drag

in Eq. (3.38), the data from real flight tests using the Evolution-EX small-scale

helicopter are used.

The mathematical model of the helicopter in Eq. (3.38), is nonlinear with

respect to the model parameters as well as the states. Therefore, a time-domain
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Figure 5.5: Tail rotor thrust and drag torque vs. pedal input under these condi-
tions: Ωtr = 6600 rpm; Rtr = 0.15 m; σtr = 0.11.

system identification technique based on the nonlinear least squares method is

used. This is an optimization technique in which the measured outputs, y, from

the flight tests are compared with the predicted outputs, ŷ, from the simulation

of the helicopter model in Eq. (3.38) and the model parameters are chosen to

minimize prediction errors using the following cost function:

Ji =
M∑
j=1

N∑
k=1

E2
j (k), i = 1 to P (5.5)

where Ej(k) = yj − ŷj, N is the number of data samples, M is the number of

outputs and P is the number of iterations.

The identification process includes the following steps:

1. Data Collection: Flight maneuvers are performed on the Evolution-EX

helicopter by a ground pilot using a radio transmitter to excite the dynamic

modes of interest and input-output flight data with a sufficient length is
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collected. The pilot commands to the servos are recorded in pulse width

modulation (PWM) using an onboard servo switch card (SSC) module and

converted to the real angles through offline kinematic calculations of the

Bell-Hiller mixer. The measurements of all the states of the helicopter

are collected using the Crossbow IMU module at a sampling frequency of

20 Hz. Then, the input-output data set is assembled. The states that do

not determine the dynamic response of the system such as the position data

from GPS are not used in the identification process. Only the states of the

dynamic equations such as the angular rates and velocities of the helicopter

CG are used as the output variables in Eq. (5.5) to identify the unknown

parameters of the system.

2. State-Space Model Representation: The state-space representation of the

helicopter nonlinear model in Eq. (3.38) is used. Initial values of the states

and the parameters, as well as the upper and lower bounds of the unknown

parameters are defined.

3. Parameter Estimation: The unknown parameters of the model are identi-

fied in this step using an iterative prediction-error minimization technique.

To do this, the state-space model of the helicopter is integrated using the

recorded inputs from the flight tests and initial guess values of the param-

eters, and the outputs are predicted at every time step. Then, the cost

function, J , Eq. (5.5), is calculated at the end of the simulation and the

parameter values are updated using the Trust-Region-Reflective algorithm

[55]. This is repeated in an iterative process until the cost function is min-

imized and becomes smaller than the termination tolerance.

4. Data Comparison: Finally, the predicted outputs are compared with the

measured outputs and a “VAF” index value is calculated using Eq. 5.3.
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Since the helicopter is an unstable system, it is difficult to design a single

maneuver to properly excite all different modes at the same time and have the

pilot maintain stability of the vehicle. Therefore, to estimate the parameters

of interest, different flight maneuvers are used to excite dynamic modes of the

helicopter. This sequential identification process has the following steps which

are outlined in the next sections.

5.2.1 Roll and Pitch Identification

To identify the unknown parameters of the rotor dynamics including Kβ, Klon,

Klat, τf , τs, Ab, BA and Ks in Eqs. (3.6) to (3.11) a roll and pitch identification

process is used. Since, the pitch and roll dynamics are coupled, identification of

these parameters are performed simultaneously to get a more accurate prediction

result.

To properly excite the roll and pitch dynamics of the helicopter, input com-

mands shown in Figure 5.6 are applied. These input commands contain low to

high frequencies as well as small to full cyclic excitations. To apply these ma-

neuvers, the helicopter is first brought to hover. Then, the pilot starts exciting

the pitch dynamics while maintaining the roll, heave and heading approximately

constant. This is followed by another maneuver to excite the roll dynamics and

maintain the other three constant.

After the flight data is collected, the lift and drag coefficients of the main and

tail rotors obtained in the previous sections are updated. Then, the identification

steps 2 to 4 (section 5.2) are applied on the data and the unknown parameters

are estimated. The output variables, yj, in Eq. (5.5), used in this step to identify

the unknown parameters of the rotor dynamics, are the roll and pitch rates, p

and q, and the state variables are: p, q, φ, θ, a1, b1, c1 and d1. The actual and

predicted responses from this identification process are shown in Figure 5.6. The
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VAF indices of the pitch and roll identified models shown in this Figure are 97.9%

and 94.9%, respectively, indicating that an excellent match between the predicted

model and the flight data is achieved with the estimated parameters.
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Figure 5.6: Actual and predicted roll and pitch responses and input excitations
under these conditions: Ω = 1100 rpm; ρ = 1.107 kg/m3 (identification).

The above process is repeated using experimental tests from different roll and

pitch maneuvers and parameter estimations corresponding to the highest VAF

indices are chosen and listed in Table 5.1. The responses shown in Figure 5.6 are

based on the selected parameter values which result in the highest VAF indices.
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Figure 5.7: Frequency response comparison between the simulation and real flight
test of the normalized pitch and roll rate responses at the sample rate of 20 Hz.

The frequency responses of the roll and pitch motion are compared in Fig-

ure 5.7 for the Evolution-EX helicopter. They show the magnitude of the nor-

malized amplitude ratio of the roll and pitch rates to the lateral and longitudinal

cyclic inputs respectively, which could be used as an alternative way to identify

the f-r dynamics as mentioned earlier in this chapter. Figure 5.7 shows that the

identified model properly matches the flight data in the frequency-domain. Note

that the noise in the magnitude plots in Figure 5.7 is due to low signal-to-noise ra-

tio as a result of the effects of the secondary inputs and thrust variations. These

effects are often removed (conditioned) in the frequency-domain identification

methods such as CIFER [41].
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5.2.2 Yaw Identification

To identify the unknown parameters of the vertical tail and main rotor downwash

on the tail rotor including Cvt
Lα

, Svt, and Kλ, a yaw identification process is used.

In this process, pedal step inputs are applied to excite the yaw dynamics such that

the helicopter goes under a full clockwise (CW) turn followed by a full counter

clockwise turn as shown in Figure 5.8.

Similar to the roll and pitch process, first, the parameters obtained from the

previous identification processes are updated and then the identification steps 1

to 4 (section 5.2) are applied and the unknown parameters of the yaw motion are

estimated. The actual and predicted responses for the yaw rate and yaw angle

are shown in Figure 5.8. The VAF index for this identification process is 91.9%,

which shows a good match between the predicted model and the actual flight data

for the yaw dynamics. The estimated parameters from the yaw identification are

listed in Table 5.1.
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Figure 5.8: Actual and predicted yaw response under these conditions: Ω =
1100 rpm; ρ = 1.107 kg/m3 (identification).

5.2.3 Heave Identification

To identify the unknown parameters of the horizontal tail as well as the fuselage

drag along the z-axis including Sht, C
ht
Lα

and Sfusz , a heave identification process

is used. In this process, two consecutive step inputs with 9 deg and 10.3 deg

collective pitch angles are applied to excite the heave dynamics as shown in

Figure 5.9.

Similar to the previous processes, the identification steps 1 to 4 are used and

the unknown parameters of the heave motion are estimated. The actual and

predicted responses for the vertical velocity and altitude are shown in Figure 5.9.

The VAF index for this identification process is 90.9%, indicating a good match

between the predicted model and the actual flight data on the heave dynamics.

Note that the Evolution-EX helicopter does not have a horizontal or vertical tail,
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Figure 5.9: Actual and predicted heave response under these conditions: Ω =
1100 rpm; ρ = 1.107 kg/m3 (Identification).

so these parameters are absent in Table 5.1.

5.2.4 Longitudinal and Lateral Velocity Identification

To identify the remaining unknown parameters of the fuselage drag including the

frontal and side fuselage area coefficients Sfusx and Sfusy , a longitudinal and lateral

velocity identification process is used. To see the effects of the fuselage drag and

estimate the above parameters, the helicopter is flown in a circular path A as

shown in Figure 5.10 reaching a longitudinal and lateral velocities above 10 m/s.

The data from the flight path B is used for the validation in the next section.

The actual and predicted responses of helicopter longitudinal and lateral ve-

locities as well as the position of the CG in the inertial frame are shown in

Figure 5.11. The VAF indices for this identification process are 97.2% and 93%

for the longitudinal and lateral velocities, respectively, indicating a good match
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Figure 5.10: Flight paths used for the longitudinal and lateral velocity identifi-
cation and validation.

between the predicted model and the actual flight data.

5.3 Model Validation

The identification strategy described in the previous section results in all the

model parameters of the helicopter dynamics in Eq. (3.38) being identified. In

the following, totally different data sets which were not used in the identifica-

tion process are used to excite the roll, pitch, yaw, and heave dynamics of the

helicopter and cross validate the model.

5.3.1 Roll and Pitch Validation

To validate the roll and pitch dynamics, new flight data, not used in the identi-

fication process, is used. The roll and pitch responses are shown in Figures 5.12

and 5.13. The VAF indices in these figures show that the helicopter dynamics in
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Figure 5.11: Actual and predicted longitudinal and lateral velocity responses on
the circular path A under these conditions: Ω = 1100 rpm; ρ = 1.107 kg/m3

(Identification).

Eq. (3.38) accurately represent the roll and pitch dynamics of the helicopter.

5.3.2 Yaw Validation

To validate the yaw dynamics of the helicopter, data shown in Figures 5.14 and

5.15 are used. Figure 5.14 shows a sinusoidal excitation and the flat peaks in

the command signal are due to the pedal input saturations. This saturation can

cause the system to go unstable and must be taken into account in the design of

the controller. A pedal step excitation is shown in Figure 5.15, which results in

almost a full yaw turn. The yaw response and VAF index show that the helicopter

dynamics in Eq. (3.38) accurately represent the yaw dynamics of the helicopter.
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Figure 5.12: Actual and predicted roll response (Validation).

5.3.3 Heave Validation

The data sets shown in Figures 5.16 to 5.18 are used to validate the heave dy-

namics. A low-speed vertical descent is shown in Figure 5.16, which is known to

be difficult to model due to the formation of an unsteady flow regime. A low-

speed and a high-speed vertical climb maneuvers are also shown in Figures 5.17

and 5.18, respectively. The VAF indices in these figures show that the helicopter

dynamics in Eq. (3.38) accurately represent the actual heave dynamics of the

helicopter.

Note that the lower VAF values in the validation graphs for the heave dy-

namics could be due to the low accuracy of the vertical velocity measurements

typically found in IMUs with a regular GPS receiver. This is due to the fact that

the vertical velocity is not directly measured, but obtained through integration

of the data from the accelerometers in the IMU and correction of the integration
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Figure 5.13: Actual and predicted pitch response (Validation).

drift using the GPS data. Therefore, the low accuracy of the altitude measure-

ments typically found in most regular GPS receivers, results in a low accuracy in

the heave velocity measurements.

5.3.4 Longitudinal and Lateral Velocity Validation

To validate the longitudinal and lateral velocity dynamics of the helicopter, data

sets from the circular flight path B, shown in Figure 5.10 is used. Figure 5.19

shows the longitudinal and lateral velocity responses corresponding to this flight

path.

The VAF indices in Figure 5.19 show that the helicopter dynamics in Eq. (3.49)

also accurately represent the longitudinal and lateral velocity dynamics of the he-

licopter.

The above results show that the overall response of the nonlinear model of the

helicopter dynamics has a good agreement with the real flight data. Consequently,
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Figure 5.14: Actual and predicted yaw response (Validation).

the derived square control-affine model of the helicopter dynamics can be used

for the control design.

5.4 Comparison of the Rotational Dynamic Models using the Flight

Test Data

The rotational dynamics of the helicopter modeled based on the hybrid model

approach in Eq. (3.38) is compared with the one modeled based on the first-

principles approach in Eq. (3.78) using the flight test data.

The unknown parameters of the rotational dynamic model in Eq. (3.78) which

are identified using the roll and pitch identification procedure are reduced to

the rate and input derivatives of the stabilizer bar: α1 and α2. Similarly, input

commands shown in Figure 5.6 are used and identification steps 1 to 4 are applied

to find these parameters. The identification results are shown in Figure 5.20,
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Table 5.1: Identified parameters of the Evolution-EX helicopter.

Parameter Value Description
m [kg] 11.5 Helicopter and avionics mass
ρ [kg/m3] 1.107 Air density
cmr [m] 0.082 Main rotor chord
ctr [m] 0.025 Tail rotor chord
Rmr [m] 0.95 Main rotor radius
Rtr [m] 0.15 Tail rotor radius
Ω [rad/s] 115 Nominal main rotor speed
ntr [−] 6.0 Gear ratio of tail rotor to main rotor
Ixx [kg m2] 0.3 Rolling moment of inertia
Iyy [kg m2] 1.6 Pitching moment of inertia
Izz [kg m2] 2.0 Yawing moment of inertia
zcg [m] −0.32 Main rotor hub height from CG
xfus [m] −1.22 Tail rotor hub offset from CG along x-axis
d [m] 3.0 Control point height from the main rotor hub
α1 [−] 53 stabilizer bar rate derivative
α2 [−] 55 stabilizer bar input derivative
αtail [rad/s] -1698.5 slope of the tail servo angle to the PW of the signal
CL0 [−] 0.008 Main rotor blade zero lift curve slope
CLα [rad−1] 5.49 Main rotor blade lift curve slope
CLαtr [rad−1] 4.95 Tail rotor blade lift curve slope
CD0 [−] 0.01 Main rotor blade zero lift drag coefficient
CD0tr [−] 0.06 Tail rotor zero lift drag coefficient
δ0tail [rad] 1.4724 y-intercept of the tail servo angle to the PW of the signal
Kβ [N m] 255 Hub torsional stiffness
Klon [−] 1.0 Longitudinal cyclic to longitudinal flap gain
Klat [−] 0.98 Lateral cyclic to lateral flap gain
τf [sec] 0.04 Main rotor time-constant of the rotor
τs [sec] 0.2 Stabilizer bar time-constant of the rotor
θ0tail [rad] 0.1169 zero pitch angle of the tail blade
Ab [−] -0.1 Lateral flapping cross-coupling derivative
BA [−] 0.1 Longitudinal flapping cross-coupling derivative
Ks [−] 0.3 Stabilizer bar to rotor flap gain
Kλ [−] 1.0 Main rotor downwash factor at fuselage
Sfusx [m2] 0.1 Frontal fuselage area
Sfusy [m2] 0.83 Side fuselage area

Sfusz [m2] 0.51 Vertical fuselage area
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Figure 5.15: Actual and predicted yaw response (Validation).

indicating that a good match between the predicted model and the flight data is

achieved.

To validate the model in Eq. (3.78), the flight test data shown in Figs. 5.21

and 5.22 are used. The VAF indices in these figures show that the helicopter

dynamics in Eq. (3.78) accurately represents the roll and pitch dynamics of the

helicopter.

The helicopter dynamics based on the first-principles approach in Eq. (3.78)

is simpler and requires fewer unknown parameters to be identified compared to

the one obtained using the hybrid model approach in Eq. (3.38), so its system

identification is easier. On the other hand, a comparison between the results

of the roll and pitch responses in Figures 5.6, 5.12 and 5.13, and Figures 5.20

to 5.22 based on the VAF indices, shows that the hybrid model approach more

accurately represents the rotational dynamics of the helicopter. This is due to
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Figure 5.16: Actual and simulated heave response in a low-speed vertical descent
(Validation).

the fact that the first-principles approach does not account for the effects of the

rotor flapping. Therefore, the helicopter dynamics in Eq. (3.53), which is based

on the hybrid model approach, will be used for the control design in Chapter 6.

5.5 Summary

A time-domain system identification strategy is used to identify the parameters of

the nonlinear model of the helicopter using a combination of ground and flight test

data. The ground test data is used to determine the lift and drag coefficients of the

main and tail rotors using an aerodynamic force measurement testbed especially

designed for small-scale unmanned helicopters to emulate hover flight conditions.

Then, the unknown parameters of the rotor dynamics and empennage drag are

identified using piloted flight test data. A nonlinear least squares method is used

to find the parameters based on a sequential identification process. The model

is cross validated using different flight data sets not used in the identification
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Figure 5.17: Actual and simulated heave response in a low-speed vertical climb
(Validation).

process indicating that the overall response of the obtained nonlinear model of the

helicopter matches the real flight data. The responses of the roll and pitch motion

are also compared in the frequency-domain showing a good match between the

identified model and the flight data in the frequency-domain as well. Moreover,

the Rotational Dynamic Models based on the hybrid model and first-principles

approaches are compared using the flight test data. This validated model is used

in a robust control design next in Chapter 6.
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Chapter 6

Nonlinear Control Design using Sliding

Mode Control (SMC)1

6.1 Control Design

The new formulation in Eq. (3.53) makes possible the application of any nonlin-

ear MIMO control methods that need the dynamic model of the helicopter in a

square and affine-in-control input-output form. To demonstrate the application

of this formulation in control of small-scale helicopters, a sliding mode control

method is used as an example. The reason for choosing SMC is that helicopters

are characterized with significant uncertainties due to the complicated aerody-

namics of the rotor. In addition, these vehicles are inherently unstable and have

a nonlinear dynamics with multiple inputs and outputs. The SMC algorithm is

a useful candidate for the control of small-scale unmanned helicopters due to its

robustness to the bounded uncertainties and model mismatches as well as guar-

anteed closed-loop stability and capability to deal with MIMO nonlinear systems.

Typically, a linearized model of the helicopter and a multi-loop control ap-

proach are used to design the SMC for small-scale helicopters [21, 22, 23, 24].

The SMC algorithm only works for the systems with dynamics represented by a

1A version of this chapter has been submitted for publication in [31].
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square and affine-in-control formulation. The underactuated nonlinear helicopter

dynamics is converted into the square affine-in-control input-output formulation

in Eq. (3.53). This new formulation allows for the application of SMC using the

nonlinear model of the helicopter for better performance in a wider range of flight

regimes compared to a linearized model. A robust control design, based on the

nonlinear model of the helicopter dynamics obtained in the previous section, is

described next.

Sliding Mode Control (SMC)

The SMC design method in this section follows [18]. The obtained square control-

affine input-output formulation of the helicopter dynamics in Eq. (3.53) is used:

ÿ
4×1

= g(y, ẏ)4×1 + c(y, ẏ)4×4u4×1 (6.1)

To design a sliding mode controller, four asymptotically stable equations in

the state-space are defined:

s = ė+ λ e = 0 (6.2)

where s is the surface function, e = y − yd is the error of the control output

from its desired value, and λ = diag4×4(λ1, λ2, λ3, λ4), with all the components to

be strictly positive, is the convergence rate. Rewriting Eq. (6.2) in the following

form:

s = ẏ − sr (6.3)

where sr = ẏd − λe. Since, the surface defined by Eq. (6.2) is asymptotically

stable, if the system is controlled such that s reaches zero and stays at zero at



CHAPTER 6. NONLINEAR CONTROL DESIGN 119

all times, the output error e, will exponentially converge to zero. In order for s

to be zero, the following Lyapunov candidate function is defined:

V =
1

2
sTs (6.4)

In order for V̇ ≤ 0, the control input is calculated as:

u = ĉ−1(−ĝ + ṡr −Ksat(Φ−1s)) (6.5)

where K = diag4×4(k1, k2, k3, k4) is the sliding mode control gain matrix, and ĉ

and ĝ are the system matrices calculated using nominal values of the model pa-

rameters. To avoid chattering a continuous saturation function with a boundary

layer thickness Φ is used in Eq. (6.5) instead of a signum function and is defined

as:

sat(Φ−1s) =


1 if s ≥ Φ

Φ−1s if − Φ < s < Φ

−1 if s ≤ −Φ

(6.6)

Using the above saturation function results in a trade-off between tracking

accuracy and robustness to bounded uncertainty [18].

In the absence of any model mismatch and uncertainties in Eq. (3.53), selec-

tion of any positive definite matrixK in Eq. (6.5) would result in the convergence

of the error e to zero. The presence of external disturbances or parameter uncer-

tainties requires the components of K to be large enough such that the following

sliding condition is satisfied:

V̇ ≤ −η|s| (6.7)
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where η has strictly positive components, and determines the convergence rate to

the surface. This condition results in the following formula for the sliding control

gain [18]:

(1−∆ii)ki +
4∑
j 6=i

∆ijkj = Gi + ηi +
4∑
j=1

∆ij|ṡri − ĝj|, i = 1, ..., 4 (6.8)

where, G and ∆ are the uncertainty bound matrices as:

|g − ĝ| ≤ G (6.9)

c = (I4×4 + δ)ĉ, |δ| ≤∆ (6.10)

By knowing the uncertainty bounds G and ∆ and solving Eq. (6.8) for Ki’s at

every time step, it is guaranteed that the control outputs will converge to their

desired trajectories.

6.2 Simulations

In this section, the trajectory tracking performance of the designed SMC and

its robustness to model parameter uncertainties is demonstrated through com-

puter simulations. The model parameters are from the Evolution-EX small-scale

helicopter found in Table 5.1.

In these simulations, the obtained square control-affine model of the helicopter

in Eq. (3.53) is used for the control design, while the more complex model in

Eq. (3.38) is used as the helicopter plant model and includes the stabilizer bar

dynamics and unsimplified model of the rotor flapping in Eqs. (3.6) and (3.7).
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6.2.1 Figure-8 Trajectory Tracking with Parameter Uncertainties

The test trajectory is a three dimensional figure-8 shown in Figure 6.1, in which

the helicopter is initially at rest at the position of (xp, yp, zp) = (10,−5,−100) m,

a point outside the desired trajectory, and transitions to the main trajectory at

20 s through a 6th-order polynomial path. Then, the figure-8 maneuver is started

and continues to 120 sec. Finally, the trajectory ends at the position (8, 0, -

100) m through another 6th-order polynomial path starting at 120 s and ending

at 150 s and stays in hover until the end of the simulation time at 180 s.

To verify controller robustness, the moment of inertia tensor and the vehicle

mass are allowed to differ by 20% from the model nominal values listed in Ta-

ble 5.1. The following three cases of uncertainties in the mass and moments of

inertia values are simulated:

1. 1.2 times the nominal values (20% uncertainty)

2. equal to the nominal values (0% uncertainty)

3. 0.8 times the nominal values (-20% uncertainty)

Note that the above uncertainties are only applied to the model parameters of

the plant, while the controller uses the original nominal values of the parameters

and is unaware of the uncertainties.

In these simulations, the height of the control point d, is selected to be 3 m

above the CG and the rotor speed is 1100 rpm. Also, the control gains are listed

in Table 6.1.

The three-dimensional paths of the helicopter’s control point and center of

gravity are shown in Figure 6.1 for all three cases. The observed offset along the
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Table 6.1: Control gains obtained from the simulations.

Gain Description Longitudinal Lateral Heading Heave
λ Convergence rate 1 0.5 3 3
F Bound on f 10 10 1 1
∆ Bound on b 0.5 0.5 0.5 0.5
η Surface reach time 1 1 1 1
Φ Boundary layer THK 0.5 0.5 0.8 0.8
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Figure 6.1: The trajectory of the CG and control point (figure-8 trajectory).

z-axis is due to the 3 m offset of the control point from the CG. All three cases are

seen to coincide with the desired trajectory demonstrating the effectiveness of the

controller in the presence of model parameter uncertainties. The helicopter icons

are depicted at times 0, 20, 40, 60, 80, 100, 120, and 180 s. The icons for the times

20 and 180 s, correspond to the start and end points on the figure-8 path and

overlap each other indicating that the controller has successfully accomplished

the desired trajectory.

The control point position components and yaw angle of the helicopter are

shown in Figure 6.2 indicating that the control outputs for all the three cases
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coincide with the desired trajectories with negligible errors. Also, the tracking

errors for these four control outputs are shown in Figure 6.3. The tracking results

show that the controller successfully tracks the desired figure-8 trajectory with a

mean absolute error of 0.18 m in the position of the control point and 0.08 deg in

the yaw angle despite ±20% parameter variations. The errors could potentially

be improved by further tuning of the control gains.

The control inputs are shown in Figure 6.4 and the controller has adjusted

the magnitude of the required control inputs to compensate for the variations of

the mass and moments of inertia from the nominal values. The magnitude of

the collective pitch δcol, is increased/decreased with the actual mass. The pedal

input, δtail, which generates the counteracting torque to balance the main rotor

drag torque is automatically adjusted to the changes in the collective pitch input.

Moreover, the lateral and longitudinal inputs, δlat and δlon, are very small due to

the negligible roll and pitch accelerations required for the desired maneuver, and

they settle at their corresponding trim levels during hover (150 to 180 s).

As the helicopter is an underactuated system with 6-DOF and 4 inputs, sat-

isfying the trajectory tracking requirements for the control outputs may not nec-

essarily guarantee the stability of the helicopter. Since the control point is a

point above the CG, the attitude of the helicopter could still have an oscillatory

motion despite satisfactory performance of the control point. Therefore, the at-

titude states of the helicopter must also be monitored to assure the stability of

the helicopter.

The roll, pitch and yaw Euler angles of the helicopter are shown in Figure 6.5,

which shows that after the initial transient responses, the roll and pitch angles

settle and reach constant angles in hover. This shows the stability of the heli-
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Figure 6.4: The control inputs: collective, longitudinal/latitude cyclic and pedal
(figure-8 trajectory).

copter attitude while performing this maneuver for all the three cases. The roll

and pitch angles are constant in hover. The helicopter in hover is tilted around

its roll axis with a negative angle of about -6 deg to compensate for the posi-

tive lateral force by the tail rotor when the nominal parameter values are used.

The roll tilt is slightly greater for the case with -20% nominal mass values and

it is slightly lower for the case with 20% nominal mass values. This is because

less thrust is generated by the main rotor to balance the helicopter with a lower

mass. Therefore, more roll tilt is required to cancel out the tail rotor thrust.

Also, since the desired forward speed is not constant in the designed trajectory,

the roll and pitch angles are constantly changing along the path to maintain the

control point on the desired trajectory all the time, until the helicopter reaches

at hover at 150 s after which they settle to their corresponding constant angles at

hover as shown in Figure 6.5. Also, the position of the helicopter’s CG is shown
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Figure 6.5: The attitude of the helicopter: roll, pitch and yaw Euler angles
(figure-8 trajectory).

in Figure 6.6.

The simulated and desired trajectories closely match despite the 20% vari-

ations in the mass and moments of inertia parameters, showing that the SMC

based on the square control-affine model of the helicopter is effective in the tra-

jectory tracking of a complex three-dimensional figure-8 maneuver and is robust

to these bounded uncertainties.

6.2.2 Circular Trajectory Tracking with Wind Disturbances

The trajectory tracking performance of the SMC subject to a wind disturbance

is simulated in this section. The test trajectory is a forward turn maneuver

shown in Figure 6.7, in which the helicopter is initially at rest at the position

of (xcp, ycp, zcp) = (0, 0,−100) m, a point outside the desired circular trajectory,

and hovers for 30 s. Then, it transitions to the main trajectory at 80 s through
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Figure 6.6: The position components of the helicopter CG (figure-8 trajectory).

a 5th-order polynomial path. Next, the forward turn maneuver is started and

continues to 200 s. Finally, the trajectory ends at the position (80, 0, -100) m

through another 5th-order polynomial path starting at 200 sec and ending at 250 s

and stays in hover until the end of the simulation time at 300 s. The desired

altitude of the helicopter’s control point is 100 m throughout this simulation.

To verify controller robustness to external disturbances, a constant 4 m/s

wind from the north-east is considered between 110-160 s as shown in Figure 6.7.

The wind is only applied to the model of the plant and the controller is unaware

of the wind. To do this, the components of the wind velocity vector are set to

the corresponding values of the wind velocity only in the helicopter plant model

in Eq. (3.38). Similar to the previous simulation, the control gains are listed in

Table 6.1.

The path of the helicopter’s control point is shown in Figure 6.7 and helicopter

icons are depicted at times 0, 80, 110, 140, 170, 200 and 300 s. The icons of the
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Figure 6.7: The trajectory of the CG and control point (circular trajectory).

times 80 and 200 s corresponding to the start point B and end point F on the

circular path, overlap each other indicating that the controller has successfully

accomplished the desired forward turn trajectory.

The control point position and yaw angle of the helicopter for the circular

trajectory are shown in Figure 6.8 indicating that the control outputs coincide

with the desired trajectories with negligible errors. Also, the tracking errors are

shown in Figure 6.9. The tracking results show that the controller successfully

tracks the desired circular trajectory with a mean absolute error of 0.17 m in the

position of the control point and 0.4 deg in the yaw angle in the presence of wind

disturbances. The errors could potentially be improved by further tuning of the

control gains.

The Euler angles of the helicopter are shown in Figure 6.10, which again shows

that after the initial transient responses, the roll and pitch angles settle and reach
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Figure 6.10: The attitude of the helicopter: roll, pitch and yaw Euler angles
subject to a wind disturbance of 4 m/s from 110-160 s (circular trajectory).

constant angles in hover. Once the wind starts at 110 s at point C on the path,

the roll angle starts to tilt back to about 0 deg from the hover roll angle at -6

deg to compensate the fuselage drag caused by the wind component along the

negative y-axis in the body coordinates. This continues until the wind vanishes

at 160 s. In addition, tilting back around the roll axis results in an increase in the

thrust component along the z-axis. Therefore, the magnitude of the collective

pitch is decreased by the controller as shown in Figure 6.11 to compensate for

the excessive thrust and maintain the altitude of the helicopter’s control point

at 100 m. The controller adjusts the pedal input accordingly to maintain the

helicopter’s longitudinal axis tangent to the circular path and it also constantly

adjusts the longitudinal and lateral cyclic inputs so as to reject the wind and

maintain the helicopter on the desired circular trajectory.

The simulated and desired trajectories closely match despite the 4 m/s wind
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Figure 6.11: The control inputs: collective, longitudinal/latitude cyclic and pedal
subject to a wind disturbance of 4 m/s from 110-160 s (circular trajectory).

disturbances, indicating that the SMC controller based on the square control-

affine model of the helicopter is also effective in the trajectory tracking of a

forward turn maneuver and robust to the wind disturbances.

6.3 Summary

A robust sliding mode control (SMC) based on the nonlinear square control-affine

model of the helicopter dynamics obtained in Chapter 3 is designed and tested

using simulations. Two simulations are performed to test the controller tracking:

one, a three-dimensional complex figure-8 maneuver with ±20% parameter vari-

ations in the mass and moments of inertia; two, a forward turn maneuver in the

presence of 4 m/s wind disturbances. When the controller tracking is tested on a

complex three-dimensional figure-8 trajectory in simulation, good tracking with

a mean absolute error of 0.18 m in the position of the control point and 0.08 deg

in the yaw angle is achieved despite ±20% parameter variations. The simulation
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results also show that the SMC designed based on the square control-affine model

of the helicopter is effective in tracking complex trajectories in the presence of

wind disturbances with a mean absolute error of 0.17 m in the position of the

control point and 0.4 deg in yaw angle.



Chapter 7

Hardware-In-The-Loop Testbed Design for

Control Implementation and Initial

Controller Gain Tuning1

Unmanned aerial systems are a very active research area due to their broad

range of applications [57, 58, 59, 60, 61]. Researchers are working on different

types and sizes of Unmanned Aerial Vehicle (UAV) platforms, from Micro-Air-

Vehicles (MAV) including Quadrotors and micro fixed-wing aircrafts, to Ultra-

High-Endurance (UHE) vehicles [62, 63, 64, 65, 66, 67, 68]. During the process

from conceptual design to fabrication and deployment, a number of technical

and theoretical challenges must be solved. UAV control is a challenging mul-

tidisciplinary problem that combines control with dynamics and aerodynamics.

Particularly challenging are Vertical Take-off and Landing (VTOL) platforms

among which unmanned helicopters are one of the most demanding.

Due to their inherent instability, nonlinearity, non-minimum phase behavior,

and aerodynamic complexity, unmanned helicopters offer tremendous challenges

during the control design and implementation phases [69, 70, 71, 72, 73]. In-flight

tuning of control parameters of small unmanned helicopters is difficult due to

1A version of this chapter has been published in [30].
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their high manoeuvrability and inherent instability properties, and catastrophic

damage in the event of a crash. Although computer simulation is extremely useful

to test controller performance, an intermediate step between simulation and real

flight test allows for implementation issues on the real hardware to be tested.

7.1 Introduction

From simple testbed configurations to complete and costly hardware-in-the-loop

(HIL) simulation testbeds, a variety of systems have been reported in the liter-

ature. A three Degree of Freedom (3-DOF) testbed is described in [74] and [75]

and consists of an arm with a platform on one end and two propellers mounted

to the platform to emulate a helicopter. The platform itself has 1-DOF motion

about pitch axis and the whole arm is balanced with a counterweight at the other

end. Thus the arm is free to move in both elevation and azimuthal directions.

In addition, the main arm is equipped with a motorized lead screw, allowing

the motion of a mass attached to it. In this way, controllable and quantifiable

disturbances can be generated. This setup is useful to study nonlinearities, un-

certainties and unmodeled dynamics. However, due to the constraints imposed

by this system, it does not represent the response of an actual helicopter. For

example, the emulated helicopter cannot perform a free translational motion and

its Center of Gravity (CG) is constrained to the surface of a sphere.

To test the landing phase in difficult terrains for helicopters, a 5-DOF HIL

testbed is described in [76]. The system is composed of a 5-DOF test platform,

a computer that controls the motion of the testbed and an avionics box. The

testbed itself can perform linear absolute motion along x, y and z axes and two

angular motion, pan and tilt, relative to the platform in which the helicopter’s

avionics is attached. The testbed in conjunction with the avionics box are used

to emulate the helicopter’s motion based on the dynamic model, which provides
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high repeatability during emulated flight trajectory tracking in a controlled en-

vironment. This is an effective solution to the problem of landing on difficult

terrains, but it is inadequate for those cases in which unmodeled dynamics or

unexpected disturbance of the helicopter are present since the actual helicopter

is not included.

Another approach that involves a 5-DOF testbed is presented in [77]. It is

composed of a central shaft with an arm attached to it, allowing for azimuthal

and elevation motion. At the end of the arm there is a platform allowing rotation

in the three Euler directions. The helicopter cannot perform a free translational

motion but constrained motion is allowed by the testbed. A fuzzy logic based

algorithm is used to control the helicopter on the testbed. Although the testbed

works well with the fuzzy logic control as a non model-based algorithm, it is dif-

ficult to use this testbed for model-based control. This is due to the constraints

imposed by the testbed on the translational motion of the helicopter which mod-

ifies the real unconstrained helicopter response. For example, to increase the

altitude of the helicopter on the testbed, its Center of Gravity (CG) must move

towards the center of the testbed, and CG is constrained to the surface of a sphere

and cannot move freely in space.

A 6-DOF indoor stand is presented in [78] for control studies. The testbed is

composed of a linkage mechanism that allows for the free motion of the helicopter

in a 2 × 2 × 2m3 cube. The symmetrical geometry of the mechanism makes it

equivalent to a concentrated mass, and the design of the stand allows for the

free 6-DOF motion of the helicopter. However, the mechanism attached to the

helicopter constantly alters the 3D location of its CG during the operation, and

the added dynamics of the testbed might not be negligible.

Another approach is presented in [79] to test the performance of MAVs in

near-Earth environments such as forests or in an urban environment. The design
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concept is a 6-DOF gantry attached to a non-flying mockup of a MAV. The

mockup emulates the motion of the MAV using a high-fidelity mathematical

model and a control system that moves the gantry accordingly. The test rig is

equipped for emulating adverse weather conditions such as fog, rain and dust.

Although, the concept provides a suitable solution for testing MAVs in the Near-

Earth environments, it might not be suitable for the cases dealing with unmodeled

dynamics, since the actual vehicle is not included.

In this work, to facilitate tuning of control gains as well as testing both model-

based and non-model-based controllers against external disturbances for small

unmanned helicopters, a low-cost HIL testbed is designed, built, and experimen-

tally tested. By implementing a 6-DOF nonlinear mathematical model of the he-

licopter, the developed HIL simulation generates the actual motion of the vehicle

and calculates the states. Then, an onboard computer determines the control

signals to the actual helicopter mounted on the testbed. A 2-DOF testbed setup

configurable for independently testing the longitudinal, lateral, and heading con-

trol is presented. In the designed testbed, the added dynamics due to the testbed

itself is negligible. Using this testbed, the robustness of the controller can be

tested against external disturbances by manually or mechanically disturbing the

helicopter during the operation, and its performance can be tuned. This can be

difficult to do in a real flight test. A damping system is designed to exert no

damping force at hover, which allows for the hover control testing without any

interference from the damping system. If the helicopter deviates from its nominal

hover position, the damping increases and smoothly slows down the motion. This

minimizes the structural stress on the fuselage and rotor mechanism for large de-

viations. The designed HIL testbed allows for testing the helicopter in hover and

for any smooth trajectories, such as the forward flight, figure-8, etc.
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7.2 HARDWARE-IN-THE-LOOP (HIL) SIMULATION

Figure 7.1: Front and side views of the HIL testbed.

Controller gain tuning is often part of a control design, and requires the system

to be in operation during the tuning process. For small unmanned helicopters,

in-flight gain tuning is potentially risky and expensive due to the high manoeu-

vrability and internal instability properties of these vehicles which may result

in a crash during the tuning process. In order to facilitate safe tuning of con-

trol gains and to test the controller against external disturbances in a controlled

environment, a hardware-in-the-loop (HIL) testbed design for small unmanned

helicopters has been developed and is shown in Figure 7.1.

Schematics of the testbed from the front and side views are shown in Figure

7.2. This testbed is a 2-DOF system composed of a long pole to raise the he-

licopter off the floor to eliminate the ground effect, and a headpiece. The pole

is anchored to the ground, and the headpiece is connected to the pole through

a set of thrust roller bearings, which allow for the rotation of the head with re-

spect to the pole around the vertical Z-axis. The headpiece itself is composed
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of: a U-shape aluminum plate, two arms, a damping cylinder, a counter balance

weight, and one stopper on each side. The helicopter is mounted on Arm 1 which

is connected to Arm 2 through two ball bearings on the U-shape plate. This

allows for the rotation of the helicopter around the horizontal X-axis. To allow

independent testing of the longitudinal/lateral motion, a mechanical device re-

stricts the rotation of the headpiece around the vertical axis. Two adjustable

hard stoppers restrict the rotation around the X-axis to ±30deg. In the event

of controller malfunction, a nonlinear passive damping system, shown from the

front view in Figure 7.2, prevents the helicopter from hitting the hard stops at a

large angular speed.

Figure 7.2: HIL Testbed schematics, front and side views.

The damping system is composed of a double acting cylinder, fully filled with

a light oil NUTO A10. An oil line with an adjustable needle valve connects the

cylinder’s inlet to its outlet and makes a closed path of oil. Since the cylinder is

double acting and its rod extends from both ends of the barrel, it allows for the

continuous flow of oil between the chambers and does not require an oil reservoir.



CHAPTER 7. HIL TESTBED DESIGN 139

When testing the helicopter around hover on the testbed, the cylinder is

vertical and creates a negligible damping due to the vertical mechanism geometry.

As the helicopter deviates from hover, the cylinder angle relative to the vertical

pole increases and the damping increases in a nonlinear manner. Once the control

gains are properly tuned for hover, the damping cylinder is removed and the

controller is tested against external disturbances.

The counter weight is chosen to precisely balance the arms to mimic hover

condition, and the mechanism shown in Figure 7.2 is designed such that the CG

of the helicopter is aligned with the horizontal X-axis which is the axis of rotation

in roll and pitch tests.

The goal of the designed HIL simulation testbed is to safely test and tune the

longitudinal, lateral and heading controller of the helicopter in real-time on the

ground. In addition, it allows for testing the robustness of the controller against

external disturbances. Using this testbed, the helicopter can be disturbed during

operation and the performance of the controller can be tuned. Furthermore,

the testbed is designed such that the added dynamics due to the testbed itself

are negligible. The testbed can also be used for testing the avionics of small

helicopters on the ground. The disadvantage of this HIL system is that all degrees

of freedom cannot be tested simultaneously and they must be tested one at a time.

Simultaneous testing of all DOFs of the helicopter requires a more complex setup,

in which typically the added dynamics due to the testbed itself are not negligible.

The block diagram of the HIL simulation is shown in Figure 7.3. The con-

troller block represents the onboard embedded control system which calculates

and outputs control signals to the actual servos of the helicopter. The helicopter

block in the diagram represents the physical helicopter to be tested. The IMU
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Figure 7.3: Block diagram of the HIL simulation.

block represents the Inertial Measurement Unit, which determines the actual atti-

tude of the helicopter including the Euler angles and their rates at each sampling

time. However, as the helicopter is fixed on the testbed, its position and velocity

are determined using the plant simulation model. The plant simulation gener-

ates the actual motion of the helicopter using its 6-DOF nonlinear mathematical

model. Using the control signals calculated by the controller, and the current

IMU outputs as inputs, the position and velocity of the simulated helicopter are

determined at each sampling time by integrating the 6-DOF equations of motion.

The calculated states of the helicopter are then used as the feedback signal to the

controller for the next sampling time computations. This HIL is implemented in

real-time at a sample rate of 50 Hz using the xPC Target which is a real-time

software environment from Mathworks.

This HIL testbed allows for testing the helicopter not only in hover but also

for smooth trajectories, such as the cruise flight, figure-8, etc. For instance, lat-

eral control of the helicopter in a figure-8 trajectory can be implemented on the

testbed by allowing the physical rotation of the vehicle only around the roll axis

(the x-axis shown in Figure 7.2) and then calculating the actual motion of the

rest of the DOFs in the plant simulation using its 6-DOF nonlinear mathematical

model. Since, the physical motion of these DOFs are mechanically restricted on
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the testbed, and the controller is controlling all 6-DOFs of the helicopter, the gen-

erated control signal for them are not physically realized on the actual helicopter.

Rather, some of these signals are applied to the simulated helicopter model in

the plant simulation, while the control signal corresponding to the moving DOF

is physically applied to the actual helicopter.

7.3 Testbed Modeling

Figure 7.4: Testbed mechanism.

Using the Newton-Euler equations of motion (Eq. (3.2)), the attitude dynamic

model of the helicopter and the testbed can be written as:

dω

dt
= (I + Itb)

−1(M + Mtb)− (I + Itb)
−1(ω × (I + Itb)ω) (7.1)

where, the angular velocity of the helicopter in the body coordinates is denoted

by ω = [p q r]T , and I and Itb are the moment of inertia tensors of the helicopter

and the testbed, respectively. The moment of inertia due to the components on

the testbed that are moving with the helicopter is almost ten times smaller that
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of the helicopter in pitch and five times smaller in roll, thus are neglected. M is

the total moment vector applied to the helicopter from the main and tail rotor

blades. The parasitic moment vector applied from the testbed to the helicopter

is denoted by Mtb. This is due to the damping effect of the cylinder, and its

magnitude can be written as:

Mtb = −rb ˙̀ cos(
π

2
− θ − α) = −rb ˙̀ sin(θ + α) (7.2)

where, b is the damping coefficient of the cylinder. ˙̀ is the rate at which the

cylinder elongates and is calculated by taking time derivative of the loop closure

equation in the complex plane for the planar mechanism “OBC”. The following

vector relation holds for the mechanism shown in Figure 7.4:

l− r = h (7.3)

The loop closure equation can be written in the complex plane as:

` ej(
π
2
−α) − r e−j(

π
2
−θ) = jh (7.4)

where j =
√
−1. Using Euler’s formula results in:

`(sin(α) + j cos(α))− r(sin(θ)− j cos(θ)) = jh (7.5)

Rearranging Eq. (7.5) results in:

` sin(α)− r sin(θ) = 0 (7.6)

` cos(α) + r cos(θ) = h (7.7)
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Since the testbed is designed to test the helicopter around hover, where the

angles θ and α are small. Assuming small angles for θ and α in Eqs. (7.6) and

(7.7) results in:

`α− rθ = 0 (7.8)

`+ r = h (7.9)

Then, differentiating from Eqs. (7.6) and (7.7) with respect to time and as-

suming small angles results in:

˙̀α + `α̇− rθ̇ = 0 (7.10)

˙̀− `αα̇− rθθ̇ = 0 (7.11)

Rearranging Eqs. (7.8) to (7.11) results in:

α =
rθ

h− r
(7.12)

˙̀ = rθ̇
(α + θ)

1 + α2
(7.13)

Since, α is small around hover, Eq. (7.13) can be simplified to:

˙̀ = rθ̇(α + θ) (7.14)

Substituting Eqs. (7.12) and (7.14) into (7.2) results in a parasitic testbed

moment of:

Mtb = − h2r2

(h− r)2
bθ2θ̇ (7.15)

Equation (7.15) shows that the damping moment, Mtb, generated by the cylinder
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around hover is negligible when θ is small. However, if the helicopter on the

testbed becomes unstable, it starts deviating from hover and the damping mo-

ment given in Eq. (7.15) increases in a nonlinear manner. This is used to prevent

the helicopter from abrupt motion or hitting the hard end stops.

7.3.1 Tuning the Control Gains

In order to tune the control gains in hover for longitudinal, lateral and heading

motion using the testbed, the following steps are taken:

1. One of the longitudinal or lateral motion is chosen and the helicopter is

placed on the testbed accordingly. For example, the testbed setup for the

longitudinal control is sown in Figure 7.5

2. It is assumed that the positions of the CP corresponding to the other motion

and the heading of the helicopter are all equal to the desired ones. This is to

facilitate the process of finding the appropriate control gains corresponding

to a motion. For example, to obtain the gains of the longitudinal motion,

the lateral and vertical positions of the control point and the heading angle

of the helicopter are assumed to have the corresponding values in hover.

3. At hover, tune the controller gains to stabilize the helicopter to get initial

gains. Some trial and errors might be required to find the appropriate gains.

4. With the control gains set at initial values for hover, remove the damping

cylinder and repeat the test to fine tune the controller. Then the helicopter

is intentionally disturbed from the hover position and the gains are fur-

ther tuned such that the appropriate response rejection of the helicopter

to external disturbances is achieved. The applied disturbance that can be

rejected depends on the size of the helicopter and the range of the aerody-

namic moments that the blades can generate.
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5. Once the control gains for the longitudinal motion are properly tuned, they

are updated in the control program, and the controller is tuned for the

lateral motion. To do this, the helicopter is placed as shown in Figure 7.6,

and the steps 1 to 4 above are repeated to obtain the gains for the lateral

motion.

6. Once the control gains of the longitudinal and lateral motion are tuned,

the helicopter is placed on the testbed as shown in Figure 7.7, and the

procedure is again repeated to tune the controller for the heading motion.

Figure 7.5: HIL testbed setup for the longitudinal control in hover.

7.4 Summary

A HIL testbed for testing small unmanned helicopters on the ground has been

described. The testbed provides a safe and low-cost platform to test a control
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Figure 7.6: HIL testbed setup for the roll control in hover.

Figure 7.7: HIL testbed setup for the yaw control.
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algorithm in real-time and to tune the control gains. It also allows testing in

a controlled environment of the robustness of the controller to external distur-

bances. To use the testbed, 6-DOF mathematical model of the helicopter is

needed to determine the actual motion of the helicopter in the HIL system which

is described. The experimental results of the control implementation using the

HIL testbed will be presented in Chapter 8.



Chapter 8

Experimental Results1

In this chapter, the test results of the SMC implementation on the Evolution-

Ex helicopter using the HIL testbed (described in Chapter 7) and real flight

experiments are presented.

The SMC designed based on the square affine-in-control helicopter dynamics

(described in Chapter 3) is used. First, the HIL testbed is used for the initial

controller gain tuning and testing the robustness of the controller against external

disturbances in a controlled environment. Next, the real flight control results for

the heading-hold and hover maneuvers are presented.

8.1 HIL Test Results

A 2-DOF HIL testbed configurable for independently testing the longitudinal,

lateral, and heading control (described in Chapter 7) is used to tune the SMC

control gains in this section.

Following the tuning process described in section 7.3.1, the control gains for

the longitudinal, lateral and heading motion are obtained and listed in Table 8.1.

The HIL test results are presented in the following sections.

1A version of this chapter has been published in [34].
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Table 8.1: Control gains obtained from the HIL experiments.

Gain Description Longitudinal Lateral Heading
λ Convergence rate 2.5 2.5 2.5
F Bound on f 10 15 1
∆ Bound on b 0.5 0.5 0.5
η Surface reach time 1 1 1
Φ Boundary layer THK 0.8 0.6 1

8.1.1 HIL Longitudinal Control Experiment

The longitudinal control of the helicopter is tested by placing it on the testbed as

shown in Figure 7.5. Only the longitudinal motion of the helicopter is tested in

this experiment, so the physical rotation around the vertical axis of the testbed is

mechanically restricted. Although the helicopter is physically restricted to rotate

only around the pitch axis in this experiment, the controller is controlling all

6-DOFs of the helicopter. The actual motion of the helicopter is calculated using

the 6-DOF nonlinear model of the helicopter at every sampling time.

The CG of the helicopter shown in Figure 7.5 is aligned with the axis of

rotation. Depending on the size of the blades and the maximum rolling and

pitching moments generated, the needle valve on the damping cylinder shown

in Figure 7.2 is adjusted to prevent sudden movements that could damage the

vehicle during tuning. Then once the desired gains are set, the damping effects

are reduced by adjusting the needle valve and then by removing the cylinder to

test the controller subject to the imposed external disturbances without damping.

The Control Point (CP) is chosen to be 3 m above the CG on the main hub

axis of the Evolution-EX helicopter. In the following, the controller is tested

for hover, forward flight, and figure-8 trajectory tracking and the corresponding

results are presented.



CHAPTER 8. EXPERIMENTAL RESULTS 150

8.1.1.1 Hover-Longitudinal-HIL Test

To emulate hover, a constant collective pitch of δcol = 5.6 deg for Evolution-EX

at hover, is used throughout this experiment. This is due to the fact that the

vertical motion of the helicopter is mechanically restricted on the testbed, and

the generated control signal for the heave motion is not physically applied to the

actual helicopter, but is applied to the simulated helicopter model in the plant

simulation as shown in the block diagram of Figure 7.3. In this experiment,

the control signal corresponding to the pitch motion is physically applied to the

actual helicopter.
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Figure 8.1: Position and velocity of the control point in the longitudinal control -
the two overshoots at 8.5 and 21 s are due to the intentional external disturbances.

The closed-loop response of the control point position and velocity along the

longitudinal axis is shown in Figure 8.1, and the pitch angle, pitch rate, and the

longitudinal cyclic command are shown in Figure 8.2. During the experiment

the helicopter was intentionally disturbed two separate times at 8.5 and 21 s, by

manually exerting a moment of approximately 2.5 Nm to the fuselage for about

1 s to tilt it away from the level position. As shown in Figures 8.1 and 8.2, the
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Figure 8.2: Closed-loop pitch response and longitudinal cyclic input in the pres-
ence of intentional external disturbances.

controller responds by actuating the longitudinal cyclic pitch of the main rotor

blades to reject the disturbances and maintain the zero position and velocity of

the control point along the longitudinal axis with a mean absolute error of 1.5 cm

and 5.1 cm/s, respectively. Also, the steady state pitch angle and pitch rate are

close to zero, which show that the controller stabilizes the longitudinal motion of

the helicopter in the presence of the external disturbances.

8.1.1.2 Forward Flight-Longitudinal-HIL Test

The desired forward trajectory shown in Figure 8.3 is composed of two successive

acceleration/deceleration cycles. The trajectory initially starts from the zero

position of the CP at hover, and after 10 s accelerates to reach the speed of

5 m/s through a 4th-order polynomial. It continues the cruise flight at this speed

for 15 s, then decelerates again through another 4th-order polynomial until it

comes to a stop at 150 m from the starting point. This cycle is repeated in the

backward flight until it reaches the starting point.
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Figure 8.3: Position and velocity of the control point and error in the forward
flight trajectory tracking control.

The trajectory tracking results are shown in Figure 8.3. In addition, the error

in both position and velocity are also plotted in Figure 8.3 - Note the y-axis

scale of the position and velocity errors in this figure. The results show that the

controller successfully tracks the desired trajectory with a mean absolute error

of 1.8 cm in position, and 3.9 cm/s in velocity. The spikes in the position and

velocity errors at the times 25, 40, 80 and 95 s, shown in Figure 8.3, are due to

the discontinuity in the transitions between the curve segments contained in the

desired trajectory. In fact, the desired trajectory function of the control point

position, xcp, is of differentiability class C2, so its second derivative (acceleration)

is not differentiable at the transition points. This acts as disturbances on the

helicopter, and the controller reacts accordingly at the times 25, 40, 80 and 95 s

to reject them as shown in Figure 8.4. The pitch angle and pitch rate results

are shown in Figure 8.4 and are close to zero which indicate that the controller

stabilizes the longitudinal motion of the helicopter in the forward flight.
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Figure 8.4: Closed-loop pitch response and longitudinal cyclic input in the for-
ward flight trajectory tracking control.

8.1.1.3 Figure-8 Trajectory-Longitudinal-HIL Test

The trajectory shown in Figure 8.5 is composed of a 5th-order polynomial section

followed by a figure-8 section. The trajectory starts in hover at xcp = 10 m and

stays in hover for 10 s. Then, the CP moves on a 6th-order polynomial section, and

after 20 s it enters a figure-8 section defined by a smooth function. Finally, after

ending the figure-8 section at t=130 s, it transitions to a 7th-order polynomial

and comes to a stop at t=160 s and xcp = 8 m. The yaw angle is considered

constant at zero in this trajectory.

Similar to the forward flight trajectory tracking, controlling the helicopter

on the figure-8 trajectory also requires controlling the other DOFs, and since

the helicopter is physically allowed to rotate only around the pitch axis in this

experiment, only the longitudinal cyclic pitch command is physically applied to

the actual helicopter.

A comparison between the desired and experiment results in Figure 8.6 shows
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Figure 8.5: Figure-8 desired trajectory.

that the controller successfully tracks the desired trajectory with a mean absolute

error of 1.7 cm in position, and 2.1 cm/s in velocity. Also, the pitch angle and

pitch rate results in Figure 8.7 show that the controller stabilizes the longitudinal

motion of the helicopter in figure-8 trajectory tracking. Since higher order poly-

nomials are used to define the desired trajectory in this test, no spikes appeared

in the position and velocity errors in Figure 8.6.

8.1.2 HIL Lateral Control Experiment

The lateral control of the helicopter is tested by securing it on the testbed as

shown in Figure 7.6. In this position, the CG of the helicopter is aligned with

the axis of rotation as in the side view of Figure 7.6. Similar to the previous

test, once the main rotor reached the nominal speed of about 1100 rpm and the

collective pitch of 5.6 deg at hover, the controller is switched on for lateral control

of the helicopter.
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Figure 8.6: Position and velocity of the control point and error in the figure-8
trajectory tracking control.

8.1.2.1 Hover-Lateral-HIL Test

The closed-loop response of the control point position and velocity along the

lateral axis is shown in Figure 8.8, while the roll angle, roll rate, and the lateral

cyclic command are shown in Figure 8.9. During the experiment the helicopter

is intentionally disturbed three times at 7, 13 and 19 s, by applying a moment

of approximately 2.5 Nm to the fuselage for approximately 1 s to cause it to tilt

away from its desired position in hover. This test demonstrates that the controller

adjusts the lateral cyclic pitch of the main rotor blades to reject the disturbances

and maintain the zero position and velocity of the control point along the lateral

axis with a mean absolute error of 1.9 cm and 9.4 cm/s, respectively. The results

in Figure 8.9 show that the desired steady state roll angle is not zero but is -6 deg.

This is due to the fact that in hover, the helicopter must have a slight bank angle

to compensate for the tail rotor thrust, and the desired steady state roll rate is

zero. This shows that the controller stabilizes the lateral motion of the helicopter
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Figure 8.7: Closed-loop pitch response and longitudinal cyclic input in the figure-
8 trajectory tracking control.

in the presence of intentional external disturbances.

8.1.2.2 Sideways Flight-Lateral-HIL Test

Similar to the forward test in section 8.1.1.2, the desired sideways trajectory

shown in Figure 8.10, is composed of two successive acceleration/deceleration

cycles. The trajectory tracking results in Figures 8.10 and 8.11 show that the

controller tracks the desired trajectory with a mean absolute error of 2.3 cm in

position, and 5.9 cm/s in velocity, when stabilizing the lateral motion of the

helicopter in sideways trajectory tracking. Similar to the forward test in sec-

tion 8.1.1.2, the spikes in the position and velocity errors at the times 35, 50, 90

and 105 s, shown in Figure 8.10, are due to the discontinuity in the transitions

between the curve segments contained in the desired trajectory.
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Figure 8.8: Position and velocity of the control point in the lateral control - the
three overshoots at 7, 13 and 19 s are due to the external disturbances.

8.1.2.3 Figure-8 Trajectory-Lateral-HIL Test

The figure-8 trajectory is shown in Figure 8.5. As previously described, this

trajectory is composed of a 5th-order polynomial and a figure-8 section. It starts

at y = −5 m in hover and stays in hover for 10 s. Then, the CP moves on a

5th-order polynomial section for 20 s before entering a figure-8 section. Finally, it

comes to a stop at t = 160 s and ycp = 0 m after completing the figure-8 section.

The lateral motion results of Figures 8.12 and 8.13 show that the controller

successfully tracks the desired trajectory with a mean absolute error of 0.7 cm

in position and 8.8 cm/s in velocity, and stabilizes the lateral motion of the

helicopter in the figure-8 trajectory tracking.

8.1.3 HIL Heading Control Experiment

To test the heading control, the helicopter is mounted on the HIL testbed shown

in Figure 7.7, with the arm set removed and a flat aluminum plate attached on
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Figure 8.9: Closed-loop roll response and lateral cyclic input in the presence of
external disturbances.

top of the U-shape plate. The helicopter is then mounted on the flat plate such

that its CG is aligned with the vertical axis of the pole as shown in the schematic

in Figure 8.14. Similar to the previous tests, a constant collective pitch at hover

of δcol = 5.6 deg is maintained after the main blades reached the nominal spinning

speed of 1100 rpm. Then, the controller is activated to control the yaw motion

of the helicopter to the desired trajectory.

Both a step and a figure-8 yaw trajectories are tested with the results shown

in Figures 8.15 and 8.16, respectively. Figure 8.15 shows the yaw angle, yaw

rate, and tail command in the yaw control of a fast step trajectory. The results

demonstrate that the controller maintains the desired yaw angle, ψ, and yaw rate,

r, with a mean absolute error of 4.8 deg and 7.7 deg/s, respectively.

In Figure 8.16, during the figure-8 trajectory experiment the helicopter is

subject to a large disturbance for the period of 60-80 s. This is done by man-

ually deviating the fuselage away from the desired trajectory. The results in
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Figure 8.10: Position and velocity of the control point and error in the sideways
flight trajectory tracking control.

Figure 8.16 show that the controller actuates the pitch of the tail rotor blades to

reject the disturbance and maintain the desired yaw angle and yaw rate with a

mean absolute error of 2.3 deg and 1.6 deg/s, respectively.

8.2 Flight Test Results

Now that the control gains are initially tuned by the HIL testbed, the SMC is

tested in real flight on the Evolution-EX helicopter in this section. The flight

tests include heading-hold and hover maneuvers and the flight test results are

presented in the following sections.

8.2.1 Heading-Hold Control

It is very challenging to control the yaw motion of small-scale helicopters as it

has a faster response than other modes including the roll and pitch dynamics.

Therefore, model helicopters are normally equipped with a control augmentation

system including a gyro sensor and a control unit to facilitate their yaw control
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Figure 8.11: Closed-loop roll response and longitudinal cyclic input in the side-
ways flight trajectory tracking control.

by a pilot.

In the heading-hold maneuver, the yaw motion of the helicopter is controlled

by the SMC, while the longitudinal, lateral and heave motion is stabilized by a

pilot. To do this, the helicopter’s gyro system is disengaged and the yaw motion

is controlled using the SMC. First, the helicopter is brought to hover by a pilot

and then switched to automatic control. Once switched to automatic control,

the gyro system is disengaged and the heading control is taken over by the SMC

to stabilize the yaw motion and hold the yaw angle of the helicopter fixed at its

value at the time of switching. The heading-hold results are shown in Figure 8.17

The yaw control results in Figure 8.17 show that the SMC is effective in sta-

bilizing the yaw motion and maintaining the heading of the helicopter at the

zero reference angle with a mean absolute error of 9.8 deg in the yaw angle and

5.8 deg/s in the yaw rate in the presence of wind disturbances. Small devia-

tions in the yaw angle of the helicopter observed during 15-20 s is due to a side

wind disturbance which increases the angle of attack of the tail rotor blades and
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Figure 8.12: Position and velocity of the control point in the figure-8 trajectory
tracking control.

causes the tail rotor thrust to increase and temporarily deviate the heading of

the helicopter from zero. As shown in Figure 8.17, the controller rejects the wind

disturbance by decreasing the pedal input and causes the yaw angle and yaw rate

to settle back to zero.

8.2.2 Hover Control

The hover control of the helicopter in real flight using the SMC is presented in this

section. In this test, the longitudinal, lateral and heave motion of the helicopter

are controlled by the SMC and only the heading is controlled by the pilot. Similar

to the heading-hold control, first, the helicopter is brought to hover by a pilot

and then switched to automatic control. Once the pilot switches to automatic

control, the SMC starts stabilizing the helicopter in hover. The control results

are shown in Figures 8.18 to 8.21.

As shown in Figure 8.18, the controller maintains the control point position

of the helicopter at the reference position at (xcp, ycp, zcp) = (20, 16,−15) m. The

velocity components of the control point are shown in Figure 8.19, which shows



CHAPTER 8. EXPERIMENTAL RESULTS 162

0 20 40 60 80 100 120 140 160
−20

−10

0

φ 
(d

eg
)

0 20 40 60 80 100 120 140 160
−20

0

20
p 

(d
eg

/s
)

0 20 40 60 80 100 120 140 160
0

1

2

δ la
t (

de
g)

time (s)

Figure 8.13: Closed-loop roll response and longitudinal cyclic input in the figure-8
trajectory tracking control.

that the controller maintains the control point velocities around zero.

The attitude response of the helicopter is shown in Figure 8.20, which shows

that the roll dynamics is stabilized. The pitch response shows some oscillations

which can be improved by further tuning of the pitch control gains in future

works. Also, the control inputs are shown in Figure 8.21. Since, the heave

motion could not be tuned using the HIL testbed, a saturation block is used for

the collective input in the controller to avoid abrupt heave motion, which results

in the flat peaks on the collective command graph. The saturation block could

be removed in the future works after the heave gains are sufficiently tuned to

result in a better heave stabilization.
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Figure 8.14: HIL Testbed schematic for the heading experiment.

8.3 Summary

The experimental results of the sliding mode control implementation on the

Evolution-Ex helicopter using the HIL testbed and real flight tests have been pre-

sented in this Chapter. The HIL testbed experiments included hover, forward,

sideways and figure-8 trajectories for the longitudinal and lateral control, and

step and figure-8 trajectories for the heading control. The experimental results

using the HIL testbed showed that the controller achieved a ±2.5 cm accuracy on

the longitudinal and lateral position trajectory tracking, and a ±5 deg accuracy

on the heading trajectory tracking in the presence of external disturbances. The

real flight tests for the heading-hold and hover maneuvers have also been pre-

sented. The heading-hold control results from the real flight tests showed that

the SMC achieved a ±9.8 deg accuracy on the yaw control of the helicopter in the

presence of wind disturbances. The results from the HIL testbed and real-flight
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Figure 8.15: Closed-loop yaw response to the step trajectory.

tests showed that the SMC designed based on the square control-affine model

of the helicopter dynamics is implementable on the helicopter and capable of

stabilizing the vehicle in the presence of external disturbances.
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Figure 8.16: Closed-loop yaw response to the figure-8 trajectory - the overshoot
at about 60 s is due to the external disturbance applied to the helicopter fuselage
at 60 s.
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Figure 8.19: Velocity trajectory of the control point.
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Chapter 9

Conclusions & Future Work

Model-Based Control design for small-scale unmanned helicopters involves con-

siderable challenges due to their nonlinear and underactuated dynamics with

strong cross-couplings between the DOFs and a complex rotor dynamics. A new

non-iterative formulation has been derived in this thesis to represent the 6-DOF

nonlinear model of the helicopter in a square and control-affine input-output

form, which allows for the application of a wide range of nonlinear model-based

MIMO control approaches that are unsuitable for the underactuated and non-

control affine systems such as the sliding mode control, for small-scale helicopters.

9.1 Conclusions

An experimental platform composed of an Evolution-EX small-scale helicopter

airframe, custom avionics, ground station and autopilot software has been de-

scribed in Chapter 2. A ground station that allows for monitoring the status of

the helicopter as well as efficient control gain tuning during flight is also devel-

oped. An autopilot software using xPC Target for the real-time implementation

of the control algorithm is designed and has a module-based structure to facilitate

rapid controller modifications and efficient code debugging.

A new control-oriented model using a square and affine-in-control formula-
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tion has been developed in Chapter 3 for the 6-DOF nonlinear dynamics of a

small-scale helicopter. The new formulation is non-iterative and derived using a

combination of first-principles and system identification. Then, the control point

approach is used to obtain a square input-output formulation. Hybrid model

and first-principles approach are the two methods used to model the rotational

dynamics of the helicopter. The first-principles approach that includes blade el-

ement and momentum theories has fewer unknown parameters compared to the

hybrid model approach resulting in a simpler parameter identification process.

However, validation data from flight tests in Chapter 5 indicate that the hybrid

model approach more accurately represent the rotational dynamics of the heli-

copter than the first-principles approach as the first-principles approach does not

account for the effect of the rotor flapping. The influence of the gyroscopic effect

of the rotor on the roll and pitch dynamic responses of the helicopter is studied

in Chapter 3.

In Chapter 4, the inverse kinematics of the main rotor actuating mechanisms

including a 4-point swashplate mechanism and the Bell-Hiller mixer as well as

the tail rotor kinematics are derived. The kinematic models of the main and tail

rotor are validated in experiments and compared with the linear approximations.

The experimental results indicate that the kinematic models obtained from the

linear approximations accurately represent the actual kinematics of the system

within the operation range of the servos.

A time-domain system identification strategy that combines ground and flight

test data has been developed in Chapter 5 to identify the unknown parameters

of the nonlinear helicopter model. The lift and drag coefficients of the main and

tail rotors are identified using an aerodynamic force measurement testbed custom

designed to measure the aerodynamic forces and moments applied to the fuselage

of small-scale unmanned helicopters at hover using a combination of eight load
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cells. A good match between the predicted model of the main and tail rotor thrust

and drag torque, and the experimental data in hover with VAF indices of above

90% is obtained. Flight tests are conducted to identify the unknown parameters

of the coupled fuselage-rotor (f-r) dynamic model and empennage drag. These

parameters are obtained in a sequential identification process using the nonlinear

least squares method. The identified model is cross validated using flight test

data with the overall response of the identified nonlinear model of the helicopter

matching the real flight data with VAF indices of above 90% for the roll, pitch,

yaw and longitudinal and lateral velocity dynamics and a VAF index of above

80% for the heave dynamic. The dynamic responses of the roll and pitch motion

are also compared in the frequency-domain and a good match between the model

and the flight data in the frequency-domain is achieved.

A robust SMC has been designed in Chapter 6 using the new 6-DOF non-

linear square control-affine model of the helicopter. Simulations are performed

to test the controller performance including a three-dimensional complex figure-8

maneuver subject to ± 20% parameter variations in the mass and moments of in-

ertia, and a forward turn maneuver in the presence of a 4 m/s wind disturbance.

The simulation results indicate that the SMC is effective in tracking complex

trajectories and is robust to parameter uncertainties (with an error of 0.18 m in

the position and 0.08 deg in the yaw angle) and wind disturbances (with an error

of 0.17 m in the position and 0.4 deg in the yaw angle).

A HIL testbed design for small unmanned helicopters which provides a safe

and low-cost platform to implement control algorithms and tune the control gains

in a controlled environment has been developed in Chapter 7. The testbed pro-

vides an intermediate step between simulation and real flight test to allow for im-

plementation issues on the real hardware to be tested. It also allows for testing the

robustness of the controller to external disturbances in a controlled environment
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in the HIL system. A damping system with a negligible parasitic effect on the dy-

namics of the helicopter around hover is incorporated to minimize the structural

stress on the fuselage in case of controller failure or a subsystem malfunction.

The HIL system uses the 6-DOF mathematical model of the helicopter, validated

in Chapter 5, to determine the actual motion of the helicopter in real-time.

In Chapter 8, the experimental results of the SMC implementation on the

Evolution-Ex helicopter using the HIL testbed and real flight tests have been

presented. The HIL experiments included hover, forward, sideways and figure-8

trajectories for the longitudinal and lateral control, and step and figure-8 trajecto-

ries for the heading control. The experimental results showed that the controller

tuned using the HIL testbed achieved a ±2.5 cm accuracy on the longitudinal

and lateral position trajectory tracking, and a ±5 deg accuracy on the head-

ing trajectory tracking in the presence of external disturbances. Experimental

results from the real flight tests are also presented for heading-hold and hover

maneuvers. The heading-hold control results in real flight showed that the SMC

achieved a ±9.8 deg accuracy on the yaw control of the helicopter in the pres-

ence of wind disturbances. The results from the HIL testbed and real-flight tests

indicated that the SMC design based on the square control-affine model of the

helicopter dynamics is capable of stabilizing the vehicle in the presence of external

disturbances.

The HIL and real flight test results also showed the viability of the entire

design procedure including helicopter dynamic model, actuator kinematic model,

system identification and SMC design, and the real-time implementation includ-

ing HIL testbed design, helicopter hardware, avionics, real-time system, commu-

nications and ground station.



CHAPTER 9. CONCLUSIONS & FUTURE WORK 172

9.2 Future Work

The square control-affine formulation of the helicopter dynamics is derived for

small-scale helicopters with stabilizer bar. Possible future work is to extend this

to a helicopter without a stabilizer bar.
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Appendix A

Kalman Observer Design to Eliminate GPS

Latency

As mentioned in Chapter 2, GPS data is often processed at a lower rate than

the other IMU data causing the position determination to be delayed. This

phenomenon is called GPS latency as shown in Figure A.1.

The sampling frequency chosen for the controller to stabilize the helicopter is

40 Hz. The GPS refresh rate is 4Hz which is ten times slower than the sampling

frequency of the system. In other words, the GPS latency in this system is 0.225 s.

The GPS latency generates discontinuity in the position data as it holds the

current position for the next ten sampling intervals as shown in Figure A.1.

During this time, the controller is unaware of any changes in the position of the

helicopter’s CG. This can make the closed loop system unstable, therefore must

be avoided.

The IMU used in this work provides acceleration data in the body coordinates

as well as the position data from the GPS. By knowing the initial position and

velocity, the position can be simply calculated by two times integrating from the

acceleration. However, noise and inaccuracies in the acceleration measurements

result in an integration drift causing the position error to drastically grow in time.
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Figure A.1: GPS latency from the flight data.

To eliminate the integration drift and the GPS latency, a 9th-order Kalman

filter observer is designed. Kalman filter is an optimal observer that minimizes the

covariance of the estimation error. The Kalman filter designed for this purpose

receives both the GPS and acceleration data from the IMU and calculates the

estimated position, velocity and acceleration at each sampling time.

Defining the state and input vectors as xk = [x y z u v w ax ay az]
T , and

uk = [x y z ax ay az]
T , respectively, the Kalman filter can be represented as:

ẋk = Axk + Buk + Fvk

yk = Cxk + Duk + zk (A.1)

where vk is the process noise vector and may arise due to the modeling errors such

as neglecting nonlinear or high-frequency dynamics and zk is the measurement

noise vector, which are both assumed to be white noises with the power spectral
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density matrices, V and Z, chosen as:

V = 2e8

 13×3 03×3

03×3 5× 13×3

 , Z = 250× 13×3 (A.2)

Kalman filter minimizes the covariance of the estimation error ek = xk − x0,

where x0 is the predicted state vector. The state equation of the Kalman filter

can be written as:

ẋ0 = Ax0 + Buk + L
(
yk −Cx0 −Duk

)
yk = Cx0 (A.3)

where L is the optimal gain matrix of the Kalman filter, which can be found by

solving the algebraic Riccati equation [80]. This equation can be easily solved in

MATLABTMas:

L = lqe(A,F,C,V,Z)

Once the optimal gain matrix L is calculated offline it can be used in Eq. (A.3)

to predict the state vector x0 in real-time. The measured position data from GPS

for a 200 s experiment is compared with the Kalman observer outputs as shown in

Figure A.2, indicating that the Kalman observer accurately predicts the position

of the vehicle. Also, the results are zoomed in Figure A.3 for the period of 125-

130 s for a better clarity, which shows that the GPS latency is eliminated in

the predicted positions by the Kalman observer and the observer results in a

continuous and smooth prediction of the position data.
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Figure A.2: Measured and predicted position data from GPS.
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Figure A.3: Zoomed measured and predicted position data from 125 to 130 s.
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