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Abstract

W ith the increased use of percutaneous implants for head and neck re­

construction there is an ongoing need for clinically efficient techniques to 

monitor fixture integrity. Mechanical impact testing is gaining popularity 

as it does not suffer from the limitations associated with conventional diag­

nostic techniques. This study documents a Finite Element Analysis which 

simulates an impact test using contact elements in a transient analysis. The 

model contains a  specified interface between the simulated implant and bone 

which allows analysis of potential clinical situations including loss of osseoin- 

tegration, loss of bone margin height and development of a soft connective 

tissue layer a t the bone-implant interface. Three im portant results were de­

termined:

- Clinical changes in the integrity of the interface

should be detectable from the frequency response changes

- The higher frequency visible on the raw accelerometer 

signal appears to be a second natural frequency of the system

- The second natural frequency shows promise for providing 

additional information as to the condition of the interface
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Introduction

Chapter 1

1.1 Introduction and Literature Review
Bone anchored implants are increasingly being utilized in a broad range of 
oral and extraoral reconstructions as foundations for dental arches, portions 
of the head (ears, eyes, noses) and as part of a Bone Anchored Hearing Aid 
(BAHA) system. A typical implant and abutm ent system used for percuta­
neous reconstructions is shown in Figure 1.1. These implants are typically 
3-6 mm in diameter and range in length from 3-4 mm (BAHA and facial 
applications) to 7 - 20 mm (dental reconstructions). The quality of the sup­
porting bone can be assessed qualitatively or through bone density studies 
from radiographs. The condition of the bone-implant interface, however, in­
cluding the implant threads and the adjacent tissue undergoing remodelling, 
can have a dram atic effect on the success or failure of the system and is much 
more difficult to evaluate. The direct structural and functional connection 
between ordered, living bone and the surface of a load-carrying implant is 
defined as osseointegration [1], This process begins immediately after the 
implant has been installed. If this does not occur, the development of con­
nective soft tissue in the bone-implant interface may begin and can lead to 
failure of the implant. The status of the implant-bone interface during this 
crucial time is extremely im portant in evaluating when the implant can be 
put into service (loaded) or whether further healing is necessary. In addi­
tion, over time osseointegration can deteriorate and /o r the degree of bone 
in contact with the implant surface can reduce. As a result of these poten­
tial clinical conditions, there is an ongoing need to monitor the "health” or

1
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CHAPTER 1 2

integrity of the bone-implant interface from initial installation throughout 
the life of the implant. Although implant survival rates are high in many 
applications, it is vital to be able to determine if any change in the health of 
this interface occurs [2, 3].

■ H m

Figure 1.1: Typical Im plant/A butm ent System [1]

V:

■ ■■ .. ■ ■■■■ ' :

: . ■

Conventional diagnostic techniques, including radiography and magnetic 
resonance imaging are limited as a means of determining the sta tus of osseoin­
tegration. While they are able to evaluate bone quality, im plant shielding 
causes poor resolution at the implant-tissue interface limiting the ability to 
monitor this vital area [4,5], Additionally, using radiography, the changes 
in bone are often well advanced before becoming evident on radiographic 
images. O ther techniques such as measuring removal torque are too inva­
sive to be used in either the operating room or for clinical visits [6], As 
a  result, dynamic mechanical testing methods have been proposed and are 
presently in use. These mechanical techniques are all, in one form or another, 
based on determining the resonant frequency of the implant-tissue system. 
As the resonant frequency is dependent on the manner in which the implant 
is supported by the surrounding biological tissue, changes in this resonant 
frequency (perhaps coupled with changes in the internal damping) should 
be linked to changes in the status of this interface [7]. For instance, if the

::
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CHAPTER 1 3

bone stiffness increases, the implant will be held more securely therefore the 
frequency should go up. If there is a loss in bone margin height the implant 
will be less secure therefore the frequency should go down. This, of course, 
assumes tha t there are no other changes in the implant system that may 
overshadow those in the interface.

The only commercially available system developed specifically for osseoin- 
tegrated implant assessments is the Osstell®. This system employs a trans­
ducer mounted on the implant or the abutment. The transducer excites 
the system over a range of frequencies and simultaneously monitors the re­
sulting response to determine the resonant frequency of the implant-tissue- 
transducer system. The results of several investigations using this resonance 
frequency analysis (RFA) system have reported varying success in identify­
ing changes in the implant status [8-12]. One of the major drawbacks to the 
Osstell® system is tha t a, large m ajority of the oral based implant restora­
tions use non-recoverable, cemented, fixed prostheses and the status of the 
implant cannot be monitored once the prosthesis is in place.

Alternative techniques to the Osstell® system are based on an impact 
technique. Early attem pts using a transient approach are outlined in the 
thesis by M eredith [13]. More recently, Elias, Brunski and Scarton pro­
posed the use of an instrumented impact hammer to evaluate the mechanical 
impedance variations caused by interface changes [5]. Huang and co-workers 
also used an impact hammer to excite the im plant-abutm ent unit [14], The 
resonant frequency of the freely vibrating system was determined from the 
acoustic signal obtained from a microphone mounted in close proximity to 
the abutm ent.

An alternate system, the Periotest®, utilizes a handpiece containing an 
accelerometer and a signal processing unit to monitor and interpret implant 
motion [15,16]. The Periotest® hand piece contains a metal rod, of approx­
imately 9 grams, that is accelerated towards the im plant-abutm ent via an 
electromagnet, as depicted in Figure 1.2 [17]. The acceleration response of 
the rod, while in contact with the implant-abutm ent, is measured using the 
accelerometer attached to the rear of this rod. The Periotest® was originally 
developed to measure the mobility of natural dentition but numerous inves­
tigators have considered its application for implants with varying degrees of 
success [18-20]. It appears some of the inconsistencies are due to variations 
in the protocol for using the system and some from the imprecision in the 
processing of the accelerometer signal [21]. However there are benefits to this 
system. The Periotest® hand piece provides a convenient means to dynami­
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CHAPTER 1 4

cally excite the im plant-abutm ent system in areas tha t may be too cramped 
to utilize RFA or impact hammer devices. Also, the Periotest® handpiece 
can be used on im plant-abutm ent systems with lion-recoverable, cemented 
restorations. As well, the output signal from the accelerometer may contain 
information unavailable to the RFA systems which can be more completely 
utilized to determine the sta tus of the interface layer. For example, the hand 
piece has recently been adapted for use in a system designed to measure the 
damping capacity of materials [22],

Propulsion Coil Measuring Coil

Starting Button Support Accelerometer

Magnet

Signal Processing Unit

Figure 1.2: Periotest® Schematic

In the Periotest® system, the raw accelerometer signal is filtered and 
processed to yield a quantitative measure of mobility related to the Miller 
Mobility Index for natural dentition [15]. An example of the signal before 
and after conditioning is shown in Figure 1.3 with a schematic diagram of 
the corresponding motion of the implant and rod shown in Figure 1.4. The 
time required for the filtered accelerometer signal to return to its zero value 
has been termed the contact time, C T , depicted in stages 1 through 3 in 
Figure 1.4. In the processing unit of the Periotest® this contact time is used 
to calculate the so-called Periotest® Value (PTV).

If the system is modelled as a single degree of freedom vibration system, 
the contact time can be thought of as a half period and the natural frequency
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CHAPTER 1 5

0.2

< , -0.4
T>

•0.6

- 0.8

—  Raw Accelerom eter Signal 
  Conditioned Periotest Signal

0 .0124 0 .0125 0 .0126 0.0127 0 .0128 0.0129
Time (seconds)

Figure 1.3: Typical Accelerometer Signal

Stage 1 Stage 2 Stage 3 Stage 4

Figure 1.4: Schematic of Resulting Motion of Implant and Rod During A 
Normal Strike
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CHAPTER 1 6

of the implant-tissue-Periotest® rod combination is simply

P =  2 • C T

In terms of the natural frequency, the PTV  can be expressed as

P T V  =  50000 -  21.3 (1.2)

Figure 1.3 shows th a t there can be considerable differences between the 
raw accelerometer signal and the conditioned signal from the Periotest®. 
While these differences may not be im portant for natural dentition as the 
range of PTV values is relatively large (-6 to 50), they have more significance 
for im plant-abutm ent systems where the m ajority of results have P T V ’s over 
a much more limited range (-8 to 2).

The purpose of the present work is to further investigate the possibility of 
using this impact technique to more precisely monitor the status of the bone 
- implant interface. To accomplish this, a more detailed understanding of 
how the geometric and clinical variables affect the response is necessary. For 
instance, do variables such as osseointegration levels and loss of bone margin 
height have an appreciable effect on the overall response? To investigate 
these issues, the raw accelerometer signal (see Figure 1.3) will be more fully 
investigated as it appears to have higher frequency components that could be 
potentially used to glean more information about the “health” or integrity of 
the implant interface. There has been some debate as to what this apparent 
higher frequency represents. Elias [5] stated  it was due to partial separation 
between the impact tool and the implant, resulting in a  “bouncing” effect. 
It has also been hypothesized this frequency is merely electrical noise on the 
accelerometer signal or the second mode of vibration of the implant-tissue 
system. This will be investigated in the following chapters to understand 
the source of this component of the signal and if it can be used to better 
understand the status of the interface.

In order to interpret the signal from the accelerometer and relate it to the 
condition of the interface, it is necessary to understand the role of each of 
the components of this dynamic system and its effect on the output signal. 
To this end, Finite Element Analysis (FEA) is used as it allows a means 
to dynamically model the im plant-abutm ent with considerable detail, This 
includes modelling the supporting structure including the introduction of a 
specific interface layer th a t can have different properties.
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FEA has been used by numerous researchers to investigate the implant- 
tissue connection. Many studies are concerned with stress and strain  in the 
interface layer. The goal can be to determine the maximum strain due to 
occlusal loading [23-30] or to optimize implant design in order to minimize 
stress [31-36]. The other vein of research focuses on dynamic modelling which 
attem pts to find relationships between natural frequencies and the surround­
ing conditions of the implant. For example, Huang et al. [37] utilized modal 
analysis of the implant-tissue system to investigate how bone type and bone 
density affects resonant frequency. Williams et al. [38] utilized force harmonic 
response and localized impulse excitation to improve a model investigating 
the effect of bone type on natural frequency. In the current work, FEA is 
used to produce a more thorough dynamic model of the im plant-abutm ent 
by including the impact of the Periotest® rod with the implant.

1.2 Thesis Outline
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Chapter 2 details how the salient features of the FEA model were derived 
from the in vivo and in vitro situations, beginning with a brief overview 
of the components and placement of percutaneous implants. This leads to 
a discussion on the characteristics of the implants and abutm ents th a t are 
being investigated in vivo and the typical signals acquired during patient 
testing. A comparison between the filtered Periotest® signal and the raw 
accelerometer signal is also included. A description of the in vitro model and 
testing apparatus is described and compared to the in vivo situation.

Chapter 3 focuses on the finite element simulation of the in  vitro model. 
An overview of FEA basics is followed by a simplified numerical model used 
to evaluate the plausibility of two natural frequencies being visible on the 
accelerometer signal. This leads to a review of the process used to verify 
the software produces accurate results in both two and three-dimensions, in­
cluding comparisons to analytical and experimental results. The validity and 
usefulness of two FEA models (a model using modal analysis and a model 
using impact analysis) is debated and the superior model is chosen. This 
requires an overview of certain techniques utilized by the FEA software in­
cluding modal analysis solvers, transient analysis solvers and contact element 
theory. The most appropriate model is verified using extensive comparisons 
to analytical and in vitro results.

Chapter 4 simulates three, more complex cases which would be difficult
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CHAPTER. 1 8

to simulate in vitro. These include determining the response to a loss of 
osseointegration, a decrease in bone margin height and a general change 
in implant interface stiffness simulating the development of connective soft 
tissue. The results of these three cases are then discussed with a view to 
better understand the in vivo situation.
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Chapter 2 

Derivation of the Salient FEA  
M odel Parameters

In order to finally develop a numerical model which simulates the in vivo 
situation, an in vitro experimental model was developed. This was done to 
identify the salient features to be included in the finite element model.

2.1 Percutaneous Bone Anchored Implants
The percutaneous implant system is made up of three m ajor components: 
the fixture, the abutm ent and the connection screw (Figure 2.1). For clarity, 
the term  “fixture” and “im plant” will be used interchangeably in this thesis. 
These components are generally made from titanium , with the fixture having 
a defined finish and geometry thought to create a firm, intim ate and lasting 
connection with the host bone [2], The general procedure for installation 
begins with placement of the fixture. The fixture is installed by drilling a 
hole into the host bone, sized according to the m anufacturer’s specifications, 
into which the fixture is inserted to the required depth. Depending on the 
application, the fixture can be covered with skin or a healing abutm ent can 
be attached and the system left to heal for a period of weeks or months, 
depending on the clinical practice. Once the fixture is deemed ready, the 
working abutm ent and prosthesis are attached and loading begins.

During this healing period, it is generally believed tha t a  process of os­
seointegration takes place. Osseointegration has been defined as a process 
of bone ingrowth at the implant surface to create a secure bond with the

■■ 9 ■■
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 ABUTMENT
CONNECTION

SCREW

SUPPORTING
MATERIAL

IMPLANT

Figure 2.1: Components of a Typical Implant System

bone [39]. This processes creates a bond which allows tensile forces to  be 
sustained between the fixture and the surrounding tissue. This greatly in­
creases the effective stiffness of the implant-tissue system allowing the im­
plant to withstand greater loads without threatening the integrity of the 
fixture.

Figure 2.2 has been included in order to clarify various descriptive terms 
used herein. The abutm ent height is the vertical length of the abutm ent 
extending past the top of the implant. Engagement length is the vertical 
length of the implant th a t is surrounded by bone. The interface layer is 
a thin layer which simulates the implant th'reads and the adjacent tissue 
undergoing remodelling. Striking height is the vertical distance between the 
surface of the bone and the point of contact between the impact rod and the 
abutm ent.
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IMPACT R O D -ABUTMENT -v

ABUTM ENT
H EIG HT

STRIKING
HEIGHTIMPLANT

ENGAGEM ENT
LENGTH

BONE

INTERFACE
LAYER

IMPLANT DIAMETER

Figure 2.2: Schematic of Implant System Including Im portant Terms

2.2 Validation of the In Vitro Model
While there are a  plethora of implant systems, simulations were focused on 
the Branemark implant systems, widely used in typical oral restorations and 
BAHA placements, to gain an appreciation of the range of variations expected 
in clinical situations. For the oral case a 9 mm long, 4 mm in diameter 
im plant was chosen along with a 10 mm abutm ent, since a prosthetic tooth 
is typically about 1 cm high. The extra-oral case used a 4 mm long, 3.75 mm 
in diam eter implant with 5 mm abutm ent, typical for the BAHA system.

Figure 2.3 depicts the typical response of an oral im plant-abutm ent sys­
tem  to a Periotest® strike a t the top of the abutm ent. The two curves rep­
resent the raw accelerometer signal and the conditioned Periotest® signal. 
The im portant differences include the filtering and subsequent elongation of 
the contact time of the processed signal.

The conditioned signal has been filtered to remove the higher frequency
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Raw Accelerom eter Signal 
Conditioned Periotest Signal
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Figure 2.3: O utput from an Impact Test In  Vivo

seen in the raw signal. This allows the Periotest® processing unit to calculate 
the Periotest® Value (PTV), which is a measure of the contact time as out­
lined in the introduction. This filtering, however, elongates the contact time, 
artificially reducing the stiffness of the supporting tissue. Also, this elon­
gation is not constant and appears to be most prevalent at low PTV  (high 
stiffness) which is the case for implants. Since the conditioned signal is both 
altering the contact time and eliminating potentially useful information, the 
unadulterated signal was saved during all in vivo tests using a multi-channel 
A /D  data  acquisition system (InstruNet Model 100 A /D  8 Bit I/O , GYV 
Instrum ents Inc, Somerville, MA, USA) sampling at 167 kHz. The signals 
were later processed in MATLAB® (The M ath Works Inc, Natick, MA, USA) 
using custom F FT  software to determine the frequencies present.

Since the host bone has constantly changing material properties due to 
ongoing remodelling, it would be difficult to verify a numerical simulation
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CHAPTER 2 13

using the in vivo situation. However, a material named FRB-10 has a  modu­
lus (8.4 GPa) in the reported range of cortical bone (5 - 20 GPa) [39]. Thus, 
to assist in the development of a measurement protocol and the validation 
of analytical and numerical models, the in vitro experimental model shown 
schematically in Figure 2.4 was developed using this material. This model 
allowed the m ajority of the variables affecting the response of the implant- 
abutm ent to a impact test to be varied to determine how specific variables 
affect the response of the system.

Im pact Rod

Aluminum P o s t

rR EM O  Disk

Acrylic In terface Layer

Dr

Figure 2.4: Schematic of Simplified In Vitro Model

The in vitro model is approximately the size of an oral im plant-abutm ent 
system. It consists of an aluminum post fixed with acrylic into the center 
of a disk of FRB-10(Measurements Group Inc, Raleigh, NC, USA). The 
mechanical properties and sizes of these components are given in Table 2.1. 
The thickness of the interface (0.38 mm) is relatively large in order to account 
for the root diameter of the implants threads as well as the tissue in close 
proximity to the implant.

The disk was clamped in a circular trough which was in turn  mounted 
in a clamping device that also supported the clamped Periotest® handpiece 
(Figure 2.5), The clamped handpiece was mounted on a microscope stage to 
allow adjustm ent of the position of the rod relative to the abutm ent.
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2-A X IS M ICR O M ETER

VERTICAL

S U P P O R T
PE R IO T E ST  H A N D PIEC E

IM PLANT/ABUTM ENT

PLATFORM

Figure 2.5: Testing A pparatus for In Vitro Model
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Figure 2.6: O utput from an Im pact Test In Vitro
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Table 2.1: Model Properties and Dimensions

Post Radius (P,.) 2 mm Post Height (P/,) 20 mm
Abutm ent Height (A/,) 10 mm Engagement Length (E^) 9 mm
Interface Thickness (If) 0.38 mm Interface Height (I/,) 9 mm

Disk Radius (Dr ) 20 mm Disk Height (D/,) 9 mm
Periotest® Rod Radius (R,.) 1 mm Periotest® Rod Length (Rl ) 20 mm

Component Young’s
Modulus

(GPa)

Poisson’s Ratio Density
(kg/m 3)

FRB Disk 8.4 0.31 1800
Aluminium Post 73 0.32 2800

Acrylic Interface Layer 0.5 0.30 1800
Periotest® Rod 200 0.30 9.4 grams

A typical response of the in vitro model to an impact a t the top of the 
post is shown in Figure 2.6. Comparison of this response to tha t of the 
in vivo response shown in Figure 2.3 suggests tha t the signals are similar 
as both appear to be made up of a half period of a low frequency with 
a higher frequency superimposed. Signals were analyzed using the custom 
F FT  software and produced the results shown in Table 2.2.

Table 2.2: Frequency Response Comparison for In Vivo and In Vitro

Experiment Low Frequency (Hz) High Frequency (kHz)
In  Vivo - 10mm abutm ent 

9mm implant, 4mm diameter
1900 27.0

In  Vitro - 19 mm post 
9mm engagement, 4mm diameter

2100 30.0

As the comparisons were both qualitatively and quantitatively similar, 
the in vitro model appears to capture the essence of the in vivo response. 
However, the in vitro model is limited in its ability to simulate more complex
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CHAPTER 2 16

cases of failure found in vivo. Thus a finite element model was created which 
could be verified using the in vitro model and then expanded to simulate these 
in vivo failure situations. The response of the in vitro model to impact tests 
a t five striking heights, starting  at the top and decreasing in 1 nun intervals, 
were recorded in Table 2.3 for use in the verification process described in 
C hapter 3.

Table 2.3: Frequency Response a t Five Striking Heights for In Vitro Model

Striking Height (mm) Low Frequency (Hz) High Frequency (kHz)
10 (Top) 1790 39.8

9 1910 42.7 \
8 2077 42.3
7 2307 40.5
6 2492 38.9
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Chapter 3

Construction and Validation of 
the Finite Element M odel

As described above, the use of impact testing for implants is effective for 
determining changes in the supporting structure by measuring changes in 
the natural frequency. While essentially all the previous studies assume the 
response of the implant - abutm ent is equivalent to th a t of a one degree of 
freedom vibrating system, the actual response indicates what appears to be a 
second frequency. In order to determine if this second frequency may be due 
to excitation of a higher mode of vibration which may be useful in evaluating 
the health of the implant, finite element analysis was utilized.

After a brief overview of the finite element method, a simplified finite 
element model of the system is developed and verified against an analyti­
cal solution to evaluate whether or not higher modes could be excited and 
would be distinguishable in the impact test. As it appears this is the case, 
a more extensive finite element model was developed to explore the utility 
of the higher mode. Two techniques, a  modal and a transient analysis, are 
compared to evaluate which m ethod yields the better results when compared 
with the in vitro and in vivo situations.

3.1 Finite Element Analysis Basics
FEA is a process where the original continuous structure is divided into many 
smaller, finite elements. Each of these h-elements is a  linear or quadratic 
system described by the element’s governing equations. The elements are

17
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CHAPTER 3 18

defined by nodes, generally found on the ends or corners of the elements. 
Consecutive elements share nodes along common boundaries creating conti­
nuity across the entire body. A change in one element therefore affects the 
initial or boundary conditions of the surrounding elements. By minimizing 
the internal energy of the system it is possible to determine the final con­
figuration of the elements given the initial and boundary conditions of the 
original body. Appendix A contains a simple example to illustrate the FEA 
method.

Although FEA has some distinct advantages over analytical techniques, 
one m ust be aware of its limitations. For example, it is advantageous that 
m aterial properties, such as Young’s modulus, density and Poisson’s ratio, 
are “built into” the elements. Analytical methods, in the case of vibrations 
for instance, may require approximations for spring stiffness or inertial prop­
erties. Using FEA these properties are calculated during the solution phase 
so they are accurate for the input geometry and material properties of the 
elements. However, there is the m atter of the number of elements used to dis­
cretize the geometry. Consider a rigidly fixed, three-dimensional cantilever 
beam with a square cross section tha t is loaded vertically a t the free end. Al­
though a single 3-D brick element can accurately capture the geometry of the 
model, it will not produce the analytically expected deflections. It requires 
a fine discretization to capture the changing slope of the beam. However, 
the more elements, the larger the global stiffness matrix, which has a direct 
correlation to processing time. This is analogous to a Fourier Series approx­
imation. The more higher order terms tha t are included, the more accurate 
the solution but with increased calculation difficulties. Therefore, one looks 
to find the optimum balance between accuracy of solution with processing 
time. This process is generally termed “testing for convergence” . By in­
creasing the number of elements and comparing to the previous solution, one 
can determine the minimum required number of elements to come within a 
prescribed criterion of the converged solution. Fewer elements will result in 
high amounts of solution error while more elements will result in additional 
processing time, Testing for convergence is a necessary step in any finite 
element analysis if the results are to be trusted. These concepts are used in 
the following section while investigating the higher frequency present in the 
Periotest® accelerometer signal.

A - : r : V .

V;■ ■
■&>

. :

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 3 19

3.2 Approximate Analysis of Periotest 
celerometer Signal

© Ac-

To evaluate whether or not, the higher frequency evident in the raw accelerom­
eter signal could be due to excitation of an additional natural frequency, an 
approximation of the system was used to estimate the modal participation 
factors of the first three modes. As the completely analytical analysis of the 
transient loading of a cantilever with a point mass is quite complicated, the 
system was instead broken into a number of beam segments forming the ap­
proximate lumped mass model illustrated in Figure 3.1. The details of this 
m ethod are given in Appendix B. Table 3.1 compares the first three natural 
frequencies of a  rigidly fixed cantilever (M  — 0 and ks —> oo) solved both 
analytically and using finite element method, showing tha t the finite element 
system converged to the solution of the continuous system:

Pn  =
m i  / e i

2?r pA L ‘
H z (3.1)

where pn is natural frequency of the n th node, (3L is a constant dependent on 
the desired mode [40], E is Young’s modulus of the cantilever, I is the second 
moment of area about the neutral axis, L is the length of the cantilever, A 
is the cross sectional area and p is the density of the material.

Table 3.1: Natural Frequency Comparison of Continuous and Finite Systems

System First Natural 
Frequency (Hz)

Second Natural 
Frequency (Hz)

Third Natural 
Frequency (Hz)

Continuous 286 1791 5014
Finite 284 1780 4985

The results show the first three modes of a 200 degree of freedom (DOF) 
model converged to be within 0.6% relative error for the case with the support 
being rigid and the free end having no mass.

Having shown the finite DOF solution converges to the analytical solution 
for a simple cantilever, this m ethod was expanded to the case of an elastically 
supported beam with a point mass, with the assumption tha t the solution
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L L

I = 12.566 mmJ 

A = 12.566 mm*

p = 2800 kg/m3 

E = 73 GPa

«

Figure 3.1: Model Approximating Elastically Supported Beam with Point 
Mass

would again converge to the continuous system solution. In this case M was 
increased to 13 times the mass of the beam to simulate the mass of the impact 
rod and ks was decreased until the first two mode shapes were rigid body 
modes, as predicted by Hurst [41]. The first three resultant mode shapes 
are depicted in Figure 3.2. Again the solution converged below 1% with 
200 DOF. Using modal superposition for the transient impact, the modal 
participation factors (M PF) for the first three modes, shown in Table 3.2, 
indicate tha t the first mode had an M PF 24 times th a t of the second and 
1400 times tha t of the third.

First Mods Shape Second Mode Shape Third Mode Shape

Figure 3.2: First Three Expected Mode Shapes

As a result, it is expected th a t the second mode of vibration would have
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Table 3.2: Modal Participation Factors for First Three Natural Frequencies

N atural Frequency M PF
1st 3.02xl0~2
2nd -1 .2 6 x l0 -3
3rd 2.21xl0~5

a smaller amplitude on an accelerometer signal than  would the first. As well, 
the participation of the third (and subsequent) natural frequencies would be 
so minor, relative to first mode, th a t they could be reasonably neglected. 
The results from this approximation suggest th a t the higher frequency could 
plausibly be the second natural frequency and explains why other modes are 
not observed. The development of a realistic finite element model should 
then allow a more thorough examination of these modes and how they are 
affected by changes in the supporting structure.

3.3 Analytical Verification of Finite Element 
Model

As the first and possibly second natural frequencies of the implant struc­
ture during an impact test are under investigation, a verification process was 
undertaken to ensure the finite element package (ANSYS 7.1, ANSYS Inc, 
Canonsburg, PA, USA) produced realistic first and second natural frequency 
results for a simple case th a t could be solved analytically before constructing 
more realistic models. It was decided of the four solvers applicable to vibra­
tional analysis (modal, harmonic, spectrum  and transient analysis) only the 
modal and transient analyses would be compared to the analytical solution. 
Harmonic analysis was not considered since it would utilize the same model 
as modal analysis but does not conveniently produce mode shapes. Spectrum 
analysis was not considered since the resultant stress field was not of interest 
to this research.

The cantilever seen in Figure 3.3 was used to verify the FEA package. 
The geometry and material properties were selected to yield an analytical 
solution with a first natural frequency in the same order of magnitude as the 
in vivo and in vitro results shown in Table 2.2 yet meeting the “long and
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slender” assumption used for the analytical solution (Thomson [42]).

s p L = 10 cm

■

9 \  E = 100 GPa •

A = 1 cm x 1 cm

p = 1000 kg/m3

Figure 3.3: Finite Element Representation of Beam Used for Verification

Table 3.3: Theoretical F irst and Second Natural Frequencies of Verification 
Model

PL Frequency (Hz)
First 1.875 1615

Second 4.694 10123

iVy V 
V V '■■■
■ ■■ ■ 

yy: *
U;/ v ■
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Table 3.3 contains the first two natural frequencies predicted by 
Equation (3.1) with the mode shapes seen in Figure 3.4 and described by:

»(z)“ cosh
(\ P L ) x

-cos
^ (0L )x

—a  I sinh +  sin
'̂ (0 L )x

(3.2)
where a  =  0.7341 for first mode and 1.0185 for second mode [40], These 
frequencies and mode shapes will be compared to the results from the modal 
and transient finite element models detailed below.
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Figure 3.4: F irst and Second Theoretical Mode Shapes of Verification Model 

3.3.1 Modal Analysis Verification
Modal analysis is a m ethod of determining the natural frequencies and mode 
shapes of a  given structure. The finite element m ethod is similar to the 

V analytical method of modal analysis with some slight changes to decrease
processing time.

While ANSYS has a number of solver types that can be chosen from for 
: modal analysis, the subspace method was used for this research. The sub­

space method is the most robust of the solution options since it does not use 
master nodes to speed up the solution process, thus it reliably converges to 
a solution. The basic subspace algorithm-, is outlined in Appendix C, with 
further details in Bathe [43] and Wilson [44], In this method, an eigenvalue 
problem consisting of the mass and stiffness matrices is solved to produce 
the natural frequencies (eigenvalues) and mode shapes (eigenvectors) of the 
structure. The difference from the analytical method is that the entire eigen­
value problem does not have to be solved. It is possible to solely extract 
the first few frequencies, saving huge amounts of processing that would be 
required to solve the full problem.

The model shown in Figure 3.5 was created for the modal analysis verifi­
cation using the dimensions in Figure 3.3 with the left face of the beam fully 
constrained. Sample code can be found in Appendix F, Sections F.2.

The mesh size was reduced until the first natural frequency of the three- 
dimensional system converged within 1%. The final model consisted of 10000 
SOLID45 elements (quadratic elements comprised of 8 nodes having three 
degrees of freedom at each node: translation in the nodal x, y and z direc­
tions [45]). The resulting natural frequencies are compared to the analytical
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Figure 3.5: Modal Verification Model

solution in Table 3.4 with the mode shapes compared in Table 3.5 and shown 
in Figures 3.6 and 3.7.

Table 3.4: Modal Analysis Verification Comparison - Frequency

First Natural 
Frequency (Hz)

Second Natural 
Frequency (Hz)

Analytical M ethod 1615 10123
Modal Analysis 1611 9664
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The relative errors for the first and second natural frequencies of the 
modal analysis are 0.2% and 4.5% respectively, and the mode shapes are 
within 1% and 4% respectively, thus the modal analysis m ethod produces 
reasonable results for this verification problem.

3.3.2 Transient Analysis Verification
As the name implies, transient analysis determines the transient response 
of the system based on the boundary and initial conditions. Unlike modal 
analysis, the transient analysis solution type does not calculate natural fre­
quencies directly. To find the natural frequencies, nodal displacements were 
plotted versus time and analyzed using the custom MATLAB FFT  software. 

W hile transient analysis is not as direct when determining natural frequen-
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Table 3.5: Modal Analysis Verification Comparison - Mode Shape

Deflection at 
x  = k3

(Normalized)

Deflection at
r  _  2L 

3
(Normalized)

Deflection at 
x  = L  

(Normalized)
Analytical M ethod (1st Mode) 0.166 0.547 1.00

Modal Analysis (1st Mode) 0.166 0.545 0.995
Analytical M ethod (2nd Mode) -0.590 -0.423 1.000

Modal Analysis (2nd Mode) -0.611 ; - 0.441 0.995

Figure 3.6: First Mode Shape of FEA Verification Model

Figure 3.7: Second Mode Shape of FEA Verification Model
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cies. it can be used with non-linear elements, such as contact elements, which 
the modal analysis m ethod cannot.

Transient analysis solves for the response of the system over some desired 
time (the response time). As outlined in Appendix D, this response time is 
broken into discrete intervals, where the system is assumed to be quasi-static. 
By knowing the initial conditions of displacement, velocity and acceleration 
at time t  — 0, it is possible to estimate the displacement, velocity and accel­
eration at the end of the first time step. The solution to this step is the initial 
condition vector of the next time step. This process is repeated until the total 
response time is reached. It is im portant to test for convergence of the time 
discretization, reducing the size of the time step until the solution converges 
below 1%. This is required because the quasi-static assumption would be 
false if the time step is too large since the acceleration through each time 
step could not be reasonably assumed linear. ANSYS recommends a time 
step which is 20 times smaller than the shortest desired period (associated 
w ith the highest frequency).

The same model param eters as used previously in the modal analyses were 
used for the transient analysis with the inclusion of a 100 N load applied 
vertically a t the end of the beam for the first 0.0001 seconds of the total 
response time (0.001 seconds). An example of the code used to create this 
model can be found in Appendix F, Section F.3.

Again, the model consisted of 10000 SOLID45 elements and the time step 
converged within 1% at 5 x 10-6 seconds. The resulting natural frequencies 
and mode shapes are compared to the analytical solution in Tables 3.6 and 
3.7 with the first mode shape again shown in Figure 3.6. It was not possible 
to determine the second mode shape from the transient analysis since its am­
plitude was much smaller than the first thus the shape was indistinguishable.

Table 3.6: Transient Analysis Verification Comparison

First Natural 
Frequency (Hz)

Second Natural 
Frequency (Hz)

Analytical Method 1615 10123
3-D Transient Analysis 1611 9677

The relative errors for the first and second natural frequencies of the 
transient analysis are again 0.2% and 4.5% respectively, and the first mode
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Table 3.7: Transient Analysis Verification Comparison - Mode Shape

Deflection at

* = 1  
(Normalized)

Deflection at
-r -  .6 3

(Normalized)

Deflection at 
x  =  L  

(Normalized)
Analytical Method (1st Mode) 0.166 0.547 1.00
Transient Analysis (1st Mode) 0.165 0.545 0.995

■■■ ■ 
-  .

shape is within 1%, with the result that the transient analysis m ethod also 
produces reasonable results for the three-dimensional verification analysis. 
As expected, the modal and transient analyses produced equivalent results for 
given geometry and properties, which added confidence to the finite element 
method.

3.4 In Vitro Simulation
Having shown th a t ANSYS produces reasonable results for the first and sec­
ond modes during the verification process, a more realistic model was con­
structed to simulate the in vitro model with confidence that the FEA package 
could produce comparable results. If this is the case, the FEA model will be 
expanded to evaluate situations tha t would be difficult to reproduce in vitro.

As both the modal and transient analyses yielded essentially the same 
results compared to the analytical solution, simulations were done using both 
techniques to determine which technique is “better” based on:

1) processing time
2) accuracy of solution compared to in vitro
3) ease of expanding simulation to model more complex cases

■■ i
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3.4.1 Simulating the In Vitro  Model using Modal Anal­
ysis

The initial modal analysis model was constructed with the dimensions and 
properties listed in Table 2.1. However, as the acrylic layer is relatively thin, 
and the stiffness of the FRB disk is relatively low compared to the aluminium 
post, it was initially hypothesized that the majority of the displacement of 
the supporting structure would be due to the disk deflecting in the immedi­
ate vicinity of the aluminium post. The acrylic layer was thought to have 
negligible affect on the response of the system and was therefore not included.

In addition, to compare results from the modal analysis to the in vitro 
results, it was necessary to simulate the mass of the Periotest® rod. As the 
impact rod is assumed to stay in contact with the aluminium post during 
the strike, the mass of the impact rod was modelled as a point mass. This 
was accomplished by increasing the density of a small cluster of elements at 
the striking height, resulting in a total point mass of 9.4 grams. The element 
cluster is g of the semi-annular region 1 mm high between the outer radius 
of the rod and a radius of 1 mm, as depicted in Figure 3.8. The model shown 
in Figure 3.9 was the result.

The model was meshed with approximately 14000 tetrahedral elements 
with mid-sided nodes (SOLID92). These quadratic elements are comprised 
of 10 nodes having three degrees of freedom at each node: translation in 
the nodal x, y, and z directions [46]. Convergence testing was performed to 
ensure the mesh was adequately dense such that solutions did not change 
more th a t 1% if the element size was halved. Only one half of the structure 
was considered due to symm etry as shown. The outer cylindrical surface 
of the disk was fully constrained to simulate the conditions assumed to be 
present in the in vitro apparatus.

Figure 3.10 is a plot of the results over five striking heights compared to 
those of the in vitro model. It has been reported the Periotest® has 100 Hz 
resolution, thus error bars representing + /-  50 Hz were included for the in 
vitro d a ta  [21]. No error bars were included for the modal analysis da ta  as 
the frequency was the direct output.

It is apparent that although the results for a strike a t the top of the 
aluminium post are reasonable when compared to the in  vitro results, the 
results diverge as the striking height is decreased with a relative error at 
the lowest strike of 33%. Two possible reasons for these discrepancies were 
examined.
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D e n s e  E lem en ts

V 2  m m

m m

Figure 3.8: Diagram Depicting the Location of Dense Elements Simulating 
a Point Mass

Figure 3.9: Modal Analysis Model W ith No Interface Layer
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Figure 3.10: Comparison of Modal Analysis with No Interface Layer to In 
Vitro Model (First Mode)

The initial hypothesis was the modal analysis method itself. This method 
is akin to placing the structure on a shaker table and exciting the entire mass. 
The impact testing however im parts a small amount of energy to the system. 
It was hypothesized th a t this was insufficient to excite the entire mass of the 
disk. The strike would cause deflections in the disk in close proximity of the 
aluminium post, but the m aterial at larger radii would not displace because 
there was insufficient energy to initiate motion. In this case, the resultant 
mass and stiffness matrices would be much smaller than those for the modal 
case, as the D O F’s that weren’t excited could be neglected. Thus, the two 
methods wouldn’t be comparing the same systems. However, this cannot 
lie true. Consider two nodes on either side of the limit of displacement in 
the disk. The node which moves will experience a. shear stress where as the 
node which is stationary will not, according to Hook’s Law. There will be a
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discontinuity in the stress field at this location which is not possible in the 
finite element method. Thus the entire mass of the disk must be excited by 
the impacting rod so this cannot be the source of error.

The final explanation was that the error was caused by neglecting the 
acrylic interface layer. Although the interface layer is thin, the documented 
Young’s modulus of acrylic is 1 - 3 GPa [47]. However, due to the inho­
mogeneity of the acrylic used in vitro (air bubbles, FRB particles, etc) the 
modulus was taken to be 0.5 GPa, which is an order of magnitude less than 
the modulus of the FRB disk. If the acrylic and FRB are thought of as two 
springs in series, the stiffness of the weaker spring is dominant, thus it is 
feasible that the interface layer could have a significant effect on the natural 
frequencies of the system even though the layer is thin compared to the disk. 
W hen the interface layer is included, with the properties found in Table 2.1, 
the model produced the results shown in Figure 3.11, using the code found 
in Appendix F, Section F.4. The error bars have equivalent meaning to the 
previous results.

O  In V itro  M ode l □  AN S Y S  M oda l A n a lys is  - In te rfa ce  L aye r

Height of Strike from Top (mm)

Figure 3.11: Comparison of Modal Analysis with Interface Layer to In  Vitro 
Model
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Although the response of the modal analysis with the interface layer still 
diverges from the in vitro response as striking height decreases, the results 
are more consistent than the previous model (5% error).

The second mode was more difficult to determine using modal analysis. 
Figure 3.12 depict the first ten mode shapes of the simulation. The second
calculated mode involves axial vibrations of the aluminium post. Since the

■
Periotest® accelerometer only measures accelerations in the radial plane this 
mode must be neglected when the modal results are compared to the in vitro 
results. Some of the other mode shapes contain localized oscillation of the 
point mass while the remainder of the model stays relatively stationary. It 
is believed this is due to ill-conditioning of the mass m atrix since there are 
elements with relatively high density in close proximity to less dense elements. 
Therefore the accuracy of these modes is suspect.

The two modes shapes tha t do not vibrate axially and do not have pre­
dominant point mass oscillation are the fifth and sixth. Both of these mode 
shapes appear to be combinations of the predicted mode shapes shown in 
Figure 3.2. They both have resonant frequencies th a t are the same order 
of m agnitude as the in vitro results (29 kHz for the fifth and 35kHz for the 
sixth). As such, it is difficult to decide which mode shape, if either, should be 
chosen as the “second mode shape” . Due to these difficulties, second mode

. ■

s a ; -
V v V
bT

v  .

results are not presented for the modal analysis.

3.4.2 Simulating the In Vitro  M odel using Transient 
Analysis

The transient analysis model was constructed with the dimensions and prop- 
* • 

erties listed in Table 2.1, including the interface layer. Figure 3.13 depicts
the transient model consisting of approximately 15000 SOLID92 elements 
(1% convergence criterion). Again, only one half of the structure needed to 
be considered due to symmetry.

The method of exciting the structure in a transient analysis is im portant 
as the response of the structure will depend on the shape of the forcing func­
tion and the amount of tim e it is applied. As these factors are unknown for

Tv A the 'in vitro situation, a transient forcing function could not be used. Instead, 
an impact between a simulated Periotest® rod and the aluminium post was 
used. To model the impact, contact elements were created between the two 
adjacent surfaces of the rod and post so th a t the impact rod and the rest of
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Figure 3.12: Mode Shapes for Modal Analysis (1-10)
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Figure 3.13: Transient Analysis Model

the system could move independently of each other without allowing the rod 
to penetrate the post. This was done using a combination of 3-D eight node, 
surface to surface contact elements which are used to represent contact and 
sliding between three dimensional deformable surfaces [48] (CONTA174) and 
3-D target elements which overlay the solid elements describing the bound­
ary of the deformable body [49] (TARGE170). Section 3.5 outlines how these 
elements function in the transient analysis.

The Periotest® rod was constrained to move horizontally and was as­
sumed to have an initial velocity of 0.2 m /s  to match the m anufacturer’s 
specifications of the Periotest’s® performance. Since the impact of the rod 
is normal to the surface of the aluminium post, sliding is assumed to be neg­
ligible thus friction coefficients were ignored to save processing time. The 
transient analysis used a typical sampling rate of once every 0.6 microsec­
onds. In cases where greater resolution was required this was increased such 
th a t the sampling rate was 20 times faster than the highest desired frequency, 
as recommended by ANSYS.

The transient simulation produced the results in Figures 3.14 and 3.15 
at five striking heights. The lower frequency was determined by filtering 
out all frequencies above 5 kHz and then determining the contact time as

m m

. . : . ■■■ ■, 
> ';W% ■J

' 1 '
. v,  V
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outlined in the introduction. The higher frequency was found using the 
custom iVlATLAB FFT software with all frequencies below 20 kHz filtered 
out. For-Figure 3.14,-the in-vitro error bars again represent'the resolution 
of the analysis of the Periotest® accelerometer signal. The transient analysis 
error bars represent the difference between to adjacent d a ta  points when 
calculating the contact time. For instance, there may not be a d a ta  point 
exactly on the zero displacement axis, thus it lies somewhere between theM :
point before and after the axis crossing. For Figure 3.15, the in vitro and

. . . ; transient analysis error bars represent the frequency resolution of the FFT.
The first natural frequency results m atch well with the in vitro results 

with only a 3% relative error. There is a 13% error for the higher frequency, 
bu t the shape of the FEA results curve is qualitatively similar to the second

■ ■ ■

■ ■ ■■ ■
■■

■ .

■•••■I,.''..
: ■

v - . ' V  V

mode in vitro results. Before the higher frequency was deemed to be a result 
of a higher mode being excited, further comparisons with analytical results 
were done.

3.4.2.1 Higher Frequency Investigation

Due to the difficulties encountered in determining the second mode during 
the modal analysis, further analytical results were used to verify the transient 
simulation produced the theoretically expected second natural frequency.

Although the FEA response signal (Figure 3.16) looks qualitatively sim­
ilar to the accelerometer signal (Figure 1.3), the FEA signal is a plot of the 
displacement of a node from the aluminium post over tim e while the in vitro 
signal is an acceleration curve over time. A direct comparison between both 
the amplitude and time scales is therefore not possible. However, if the sig­
nals are assumed to be a combination of harmonic functions, the acceleration 
signal is equivalent to a sum of scaled displacement signals [40], This scal­
ing is independent of time however, therefore the frequencies evident in the 
displacement response are also evident in the acceleration response.

As both the experimental and numerical results have reasonably well cor­
related higher frequency components, the higher frequency does not appear 
to be due to electronic or numerical “noise” . In addition the contact status 
of the impacting rod and the aluminium post remained closed throughout 
the entire time, suggesting tha t the higher frequency did not originate from 
“bouncing” of the impact rod. Thus it is likely th a t this higher frequency is 
the second natural frequency of the system.

To verify if the transient analysis model can produce accurate second
- ■ ■ ■ ■ ■ ■; ' ' :

' ■ ■ ■

■ ■ ' ■ ■ ' ' '
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Figure 3.14: Comparison of Transient Analysis to In Vitro Model
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Figure 3.16: Typical Transient Analysis Signal

mode frequencies, the in vitro system, while being impacted with the rod 
at the free end, was modelled as a Bernoulli-Euler beam fixed at one end 
with a  point mass a t the other [42] and compared to the transient results. 
The solution for this problem results in the transcendental equation for the 
frequency param eter (PL) given in Appendix E. For the beam param eters 
given in Table 2.1, the first two values of (PL) are 0.5776 and 3.9311. The 
theoretical natural frequency of vibration of this system can be determined 
using Equation (3.1).

The transient model was used to determine the first and second natural 
frequencies of a system with an infinitely stiff disk and interface layer result­
ing in a rigidly fixed, 10 mm long cantilevered aluminium post similar to the 
Bernoulli-Euler approximation. All other geometry, material properties and 
boundary conditions remained the same as the transient verification model. 
The FEA results were compared to the frequencies predicted by Equation 
(3.1) in Table 3.8.

The FEA model was within 0.8% relative error of the analytical solution 
for both cases. As this is below the convergence criterion of 1%, the model 
yielded acceptable results.

Since no separation was found to occur during the strike in the finite
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Table 3.8: First and Second Natural Frequency Comparison for Cantilevered 
Aluminium Post

Method First Natural 
Frequency (Hz)

Second N atural 
Frequency (kHz)

Analytical 2711 126
FEA 2728 127

element analysis and the model predicted the second natural frequency for 
both the analytical and in vitro cases, there is strong evidence th a t the higher 
frequency in the experimental signal is indeed a second mode of vibration of 
the im plant-abutm ent system.

3.4.2.2 Sensitivity o f Transient Analysis to D efining Variables

Since the second natural frequency curve of the transient results seems qual­
itatively similar to the in vitro results (Figure 3.15), but shifted up by ap­
proximately 5kHz, a sensitivity investigation was undertaken on the transient 
model to determine if slight alterations of the m aterial properties or dimen­
sions of the model produced more closely matched results for the second 
natural frequency while not increasing the relative error of the first.

Figures 3.17 to 3.21 outline the results of this sensitivity study. Second 
order polynomial best fit curves have been included to help display the results 
but are not meant to be interpolations between da ta  points. Dimensions such 
as disk radius and thickness, post radius and length, and impact rod radius 
and length were not altered since they could be accurately measured. Other 
m aterial properties, such as Young’s modulus of the impact rod and disk, 
and density of the disk and interface layer were found to have a negligible 
effect on the first and second natural frequencies of the system and thus were 
not included.

As shown in the figures, the only variable that could be altered to decrease 
the second natural frequency while maintaining the first is the density of the 
aluminium post. Varying the density from 2500 kg /in 3 to 3100 k g /m 3 only 
varied first mode by 50 Hz while second mode dropped from 50 kHz to 45 kHz. 
However, the density would have to be approximately doubled to produce 
the desired results and measurements of the in vitro post prove this to be

4
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Figure 3.17: Sensitivity Results for Altering Interface Young’s Modulus
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Figure 3.19: Sensitivity Results for Altering Aluminium Post Density
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unrealistic. Thus the results in Figures 3.14 ancl 3.15 seem to be the most 
appropriate values.

3.4.3 Choosing the “Better” Model
Consider the criterion for choosing the “better” model. The processing time 
for the transient analysis was much longer than the modal analysis: approx­
imately G hours compared to 30 minutes. However, the relative error for 
the first mode of the transient solution was only 3% compared to 5% for 
the modal analysis. In addition, the transient analysis method, unlike modal 
analysis, can include contact elements which are appropriate for simulating a 
loss of osseointegration. Finally, as shown in Figure 3.15, the transient solu­
tion produced reasonable second mode frequencies while the modal analysis 
results for the higher mode shapes were difficult to evaluate. Therefore the 
transient analysis model was deemed the better model.
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3.5 The Use of Contact Elements in the Tran­
sient Analysis-

■y . t

T h e  combination of contact and target elements is used to represent contact 
and sliding between 3-D surfaces. The elements are located on the surface of 
existing 3-D solid elements with midside nodes, sharing the same geometric 
characteristics as the solid to which it is connected. It is stated  in the element 
description th a t “contact occurs when the element surface penetrates one of 
the target segment elements on a specified target surface.” [48] Although this 
seems straight forward, the processes of determining if contact has occurred 
and the result thereafter are somewhat complex and will be discussed briefly 
below.

:  ■ ■■

■6 ••A

■ -■ ■■■
4

3.5.1 Contact Status and Pinball Radius
According to the ANSYS Structural Guide [50], “the position and the motion 
of a contact element relative to its associated target surface determines the 
contact element sta tus” . The contact status can be one of four options:

Open far-field contact Sliding contact 
Open near-field contact Sticking contact

The two possibilities of interest here are open far and near-field contact. 
Open far-field contact refers to a case when the contact and target elements 
are reasonably far from each other and the possibility th a t contact will oc­
cur in the next time step is unlikely. Contact element solutions are solved 
iteratively thus the choice of transient solution options, such as time step 
intervals, are im portant for a convergent solution. This will be further dis­
cussed in Section 3.5.2. Open near-field contact refers to the case when the 
contact and target elements are close to each other and contact will likely 
occur in the next time step.

The target elements monitor contact status a t Gauss points, calculated 
positions between the nodes of the element as determined by the Gauss inte­
gration procedure [51]. Imagine a sphere around each of these Gauss points, 
whose radius is called the pinball radius, depicted in Figure 3.22. If a Gauss 
point of a contact element enters this sphere the status changes from far to
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near-field contact. The pinball radius defaults to four times the depth of the 
underlying element but can be changed if deemed necessary.

, C ontact E lem ent
O pen C ontact D istan ce

Contact 
T olerance  
D istan ce '

-  P inba ll R ad ius

Target E lem ent G a u ss  Point

Figure 3.22: Surface to Surface Contact Depiction 

3.5.2 Importance of Time Step Intervals
Time step intervals are a very im portant factor concerning contact status. If 
the time step interval is large it will require fewer steps to reach the final time 
value, thus the solution will be found in a shorter period of time. However, 
if the interval is too large it is possible th a t a t time t  the contact element is 
outside the pinball radius and at time t + At, the contact element has passed 
through the pinball region and out the other side, again falling outside the 
pinball radius. Since contact sta tus is only updated at the end of each time 
step interval the status would remain as open far-field contact. In this case 
the solution is still found, however it will be equivalent to the case where 
contact elements were not included and thus be erroneous.

If the time step intervals are small, the above problem will not occur, but 
it will take a great deal of tim e for the status to change to open near-field 
contact. Generally nothing of importance to the analysis occurs while the 
contact status is open far-field contact thus this is wasted processing time.
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It is therefore beneficial to optimize the time step interval to minimize 
processing time and yet still converge to an accurate solution. Once open 
near-field contact sta tus has been reached, a key-option in the CONTA174 
element description can be implemented which begins to decrease the time 
step interval. This.way a relatively large time step interval can be used to 
minimize the amount of processing required to reach open near-field contact 
and then it is reduced to improve convergence when contact is imminent.

3.5.3 Importance of Element Size
Once open near-field contact status has been reached the distance from the 
contact element Gauss point to a surface joining the target element Gauss 
points is calculated until it is less than a prescribed tolerance, as shown in 
Figure 3.22. At this point the elements are said to be in contact. This is done 
for all con tact/target possibilities thus it is beneficial to use as few elements 
as possible to minimize processing time. However, if the elements are too 
large this generally causes convergence or contact status problems. So again 
an optim ization of contact and target element size must be found.

3.5.4 Contact Algorithms
Once contact has been established, the status will change to either sliding 
or sticking contact. This will depend on parameters selected by the user 
according to the required information. The intricacies of both sliding and 
sticking contact were deemed unnecessary here, thus the general algorithm to 
enforce contact used in both  will be covered. There is a choice of two contact 
algorithms: penalty m ethod and augmented Lagrangian method (ALM).

In order to illustrate the penalty method through an example, consider 
the problem depicted in Figure 3.23. This cantilevered beam can be described 
using finite element theory 'as follows, considering only the deflections (rota­
tional D O F’s not shown for clarity).

A: n  k 2 2  A33
k2\ k 2 2  k 2 2

A-31 A3 2 A33
(3.3)
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P

2 3

G ro un d

Figure 3.23: Cantilever Beam Meshed with Two Elements 

Considering the loading conditions, we can rewrite equation (3.3) as:

If P  is large enough, the beam will bend down until it touches the ground, 
at a : deflection u3 =  a. According to the finite element expression, there is 
nothing to say tha t “ground” exists, thus the beam would continue to bend. 
However, if a contact element were present, the tip of the beam would have 
entered the pinball radius of the target element on the ground, changing the 
sta tus to open near-field contact. The first time step in which the tip has 
passed the plane at a the penalty method would be implemented.

The penalty method uses a large penalty constant (C), relative to the 
entries in the stiffness m atrix, to basically swamp out other terms in the 
equation and form a  constraint on the system. For problems involving bend­
ing ANSYS recommends using C  =  0.1 • max\E\ without concern for the 
discrepancy in units. The ANSYS Structural Guide [50] states this recom­
mendation satisfies the suggested value C — max\I<ij\ x 10'1 in most cases 
without having to calculate the maximum K y  value, which saves processing 
time [52].

For the example above, the third node cannot pass through a thus its 
displacement, u3, must be constrained to equal a. This is done by adding C 
to the node’s diagonal term in the stiffness matrix, /c33, and adding (C • a) 
to the node’s term in the force m atrix (P).
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/Cll k i 2  ki3
&21 k ,2 2  k ,2 3

_̂ 31 &32 (̂ ’33 + C)
Expanding the final equation in the set:

(P + Ca)
(3.5)

3̂1 ' U\ +  &32 ' u2 + (&33 + C) ■ Us = (P + Cct) (3.6)

and dividing by C:

^3 1  . k 32 , ,& 3 3  ■ v , P  . .  .
~ Q U \ +  ~ Q U1 +  ( ' q ' + , 1 ) u 3 =  ( ^  + a )  (3.7)

From Equation (3.7) it is apparent that if C satisfies the recommendation
£  cabove, and noting that £  is generally of small magnitude, the equation is

approximately equal to:
«3 -  a (3.8)

which is the desired constraint on the system. This can be changed slightly so 
th a t the vertical location of 1 1 ,3 could be constrained to the vertical location of 
a  node on a  surface below it. Thus if the surface moved so would the tip of the 
beam. The forces generated between the nodes in contact m ust be checked at 
the end of every iteration to ensure that they remain in compression. If the 
forces become tensile then the penalty constant must be removed because 
the nodes are losing contact and should no longer be constrained.

This method has some distinct advantages: it is relatively simple to im­
plement, it introduces no new equations and has a physical interpretation. 
However, the penalty m ethod suffers from ill-conditioning th a t worsens as 
the penalty constant is increased, while constraints are satisfied exactly only 
in the limit of infinite penalty values [53].

A basic explanation as to why the penalty method can suffer from ill- 
conditioning is as follows. If the penalty constant is very large, it is like 
introducing a very stiff spring into the system. Since the  penalty method 
is only implemented during the time step after the contact Gauss point has 
passed through the target element this new spring is under compression. 
Before the solver moves onto the next time step it iterates to find the equi­
librium position of this new system, which includes the spring. To do this, 
the contact element is “pushed back” as the spring settles a t equilibrium, 
where the contact Gauss point lies on the surface of the target element (or 
within a prescribed tolerance value). However, if the spring is too stiff, it
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pushes the contact element out of the pinball radius and thus the contact 
status changes to open far-field contact. The solver deems this acceptable 
and moves onto the next time step and the solution attem pt fails.

However, as stated above, the constraint is only satisfied exactly as C  
approaches infinity, as shown in Equations (3.7) and (3.8). Using a finite 
value of C inevitably introduces numerical error. It is therefore beneficial to 
use the ALM to increase the accuracy of the solution.

Unfortunately, the Augmented Lagrangian Method does not lend itself 
to physical interpretation. It is merely a complex set of equations utiliz­
ing concepts from the energy method, Lagrange multipliers and the penalty 
method. Full descriptions on this derivation or its implementation can be 
found in [53], [54] and [55]. In short, the solution is found by solving a com­
plex integral containing the Lagrange multiplier and a penalty term  such 
th a t it satisfies the constraint condition.

It may seem that this method would require more processing time to 
solve these complex integrals, which would be true if only one iteration were 
required. However, the ALM will converge to  a solution much faster than 
the penalty method, and with greater accuracy. It is also not prone to the 
ill-conditioning which plagues the penalty method. Therefore, for complex 
systems, such as the one in question, the ALM will greatly reduce processing 
time while increasing accuracy over the penalty approach. This is the reason 
it was used for this application.
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Chapter 4 

FEA Simulation Results

As described in the introduction, a healthy implant will begin the osseoin- 
tegration process almost immediately after implantation. Ideally, the host 
bone will create a strong, lasting interface with the implant. Unfortunately, 
this is not always the case. The osseointegration process can fail, the bone 
around the neck of the im plant can begin to recede or a layer of connective 
soft tissue can form around the implant. Since all of these possibilities create 
a change in the bone or interface surrounding the implant, there should be 
a measurable change in the impact test signal. Indeed, according to patient 
data, there is a drop in the first natural frequency before an implant fails. 
The goal in this chapter is to quantitatively simulate the changes in fre­
quency for each of these failure situations and use this information to predict 
the source of the in vivo failures so preventative measures can be taken.

Some of these situations are difficult to simulate with in vitro experi­
ments. A reduction in bone margin height may be possible, bu t a loss of 
osseointegration would be difficult to simulate. For these situations the FEA 
approach provides an excellent alternative. Having shown the FEA simula­
tion to produce realistic results compared to the in vitro model for the first 
and second natural frequencies, the simulations are altered to simulate these 
degenerative situations,

48
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4.1 Simulating the Changes in the Interface 
Layer

The three specific changes in the implant - bone interface which are simulated 
are loss of osseointegration, loss of bone margin height and development of 
connective soft tissue in the bone-implant interface. This was accomplished 
through modifications to the interface region of the model. Pull osseointe­
gration is simulated in the FEA model by having the aluminium post and 
interface layer share nodes along their common boundaries, thus allowing no 
separation between the two. W hen a loss of osseointegration is simulated, the 
post and interface layer no longer share nodes along the common boundaries. 
Instead a layer of contact elements are meshed between the two to allow sep­
aration, but not penetration, in the area of osseointegration loss. The nodes 
below this loss still coincide however. For the simulation of reduced bone 
margin height, the height of the interface layer is reduced to simulate reced­
ing bone around the neck of the implant. From a mechanical viewpoint, the 
difference in these two cases is th a t while there is no possibility of generating 
tensile forces between the post and the surrounding interface layer in either 
case, compressive forces can be generated in the situation in which there is 
only a loss of osseointegration. The development of connective soft tissue in 
the interface layer is simply modelled as a reduction in the stiffness of the 
entire interface layer.

The simulations are for the typical im plant-abutm ent systems mentioned 
previously (extraoral prostheses: 4 mm implants with 5 mm abutm ents and 
oral implants: 9 mm implants with 10 mm abutm ents). In all instances it 
was assumed that the rod impacts the top of the abutm ent. In the extraoral 
case, the dimensions of the model were altered from those found in Table
2.1 to those found in Table 4.1 and depicted in Figure 4.1. Again the outer

T : v; cylindrical surface of the disk was constrained and the mesh size was reduced,
specifically around the interface layer, until 1% convergence was reached. 
Sample code for constructing these models can be found in Appendix F, 
Section F.5,

4.1.1 Results of Changes in the Interface Layer
is Figures 4.2 to 4.5 show the variation in the values of the first and second

natural frequencies that occur for the simulated increasing loss of osseoin-

v y -  .w  ■■

;c;: v. 
;
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Aluminum Post

Acrylic Interface Layer

Pr
D,

Figure 4.1: Schematic of Simplified BAH A Model

tegration and loss of bone margin height for oral implants (Figures 4.2 and 
4.3) and the extra-oral (BAIIA) implants (Figures 4.4 and 4.5). It has been 
assumed th a t the region of loss begins a t the outer surface (skin side) of the 
hard tissue and propagates towards the base of the implant [56]. The error 
bars for the first natural frequency plots represent the contact time error 
described in Section 3.4.2 while those for the second natural frequency plots 
represent the FFT  resolution.

For the first (lowest) natural frequency (Figures 4.2 and 4.4), both sizes

Table 4.1: Model Properties for Extraoral Prostheses (BAHA)

Post Radius (P,.) 2 mm Post Height (P>,) 20 mm
Abutm ent Height (A/,) 5 mm Engagement Length (E /J 4 mm
Interface Thickness (It) 0.38 mm Interface Height (I/,) 9 mm

Disk Radius (D,.) 20 mm Disk Height (D/,) 9 mm
Periotest® Rod Radius (Rr) 1 mm Periotest® Rod Length (R/,) 20 mm
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of im plant-abutm ents evaluated show measurable changes for relatively small 
regions of loss. As it has been reported tha t changes equivalent to 100 H z  
are statistically significant [21], a loss of approximately 0.2 mm would be 
detectable for the shorter implants and 0.4 mm for the longer system. The 

.•■A: : • difference in loss (osseointegration vs. bone loss) is not distinguishable until
the loss has extended to approximately 0.8 mm. for the shorter implant and 
to approximately 1.9 mm for the longer, down the height of the implant,
depicted as “h” in Figures 4.2 to 4.5. While the second (higher) natural 
frequencies (Figures 4.3 and 4.5) show a similar trend as the length of the 
loss none increases, the differences between loss of osseointegration and bone 
loss are not as evident.

The simulations for the development of a softer interface layer, which 
could correspond to the development of connective soft tissue or reduced 
stiffness during healing, are given in Figures 4.6 to 4.9 for the two sizes of 
implants. The error bars have equivalent meaning to the previous figures. 
Figures 4.6 and 4.8 show the dram atic change in the lowest natural frequency 
as the stiffness (modulus of elasticity) of the interface layer changes. The 
region between the dashed lines is an estimated range of modulus of elasticity 
for soft connective tissue (scar tissue) to hard tissue (quality bone) and it 
is evident th a t the lowest natural frequency can change in the order of 50% 
and therefore would be easily detectable. The higher natural frequency also 
shows a similar percentage change with stiffness, however, the actual change 
in frequency is even larger than for the lower natural frequency. It should 
be remembered tha t for these simulations, the change in stiffness occurs over 
the entire interface simultaneously.

Examining Figures 4.3 and 4.5, there appears to be large, sudden drops 
in the second frequency as the amount of loss, be it osseointegration or bone 
margin height, occurs. For the oral case (Figure 4.3) this occurs between 2 
and 3 mm of bone loss, while for the BAHA (Figure 4.5) it occurs between 1 
and 1.5 mm for both a loss in osseointegration and bone margin height. This 
is intriguing and the source of this phenomena is unknown. A speculative 
explanation would draw from the problems experienced when looking for the 
second mode using modal analysis. Even if the modes th a t have localized 
oscillation of the point mass are neglected, there are still a number of mode 
shapes tha t seem reasonable and have frequencies in the same order of magni­
tude. It is hypothesized th a t as the amount of loss increases, there is a point 
were the dominant second m ode shape switches from one shape to another. 
This is supported by the F F T  output shown in Figures 4.10 and 4.11. The
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Figure 4.2: First Natural Frequency Comparison for Simulated Loss of Os­
seointegration and Loss of Bone Margin Height (Oral Implants)
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First M ode R esp o n se  to  Changing Interface Stiffness -O rel Implants (10m m  A b d m m  Eng)
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Figure 4.6: First Mode Response to Changing Interface Stiffness - Oral Im­
plant
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:: First .Mod* R esp o n se  to  Changing Interface S tiffness • BAHA im plants (5mm AbMmm Eng)
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dominant spike in Figure 4.10 occurs around 68kHz, but there is a lesser spike 
around 55kHz. Although the signal is quite noisy, this could be interpreted 
as two modes being excited where the modal participation factor of the mode

CHAPTER 4 56

with a resonant frequency of 68kHz is greater than the other. In Figure 4.10, 
the changing constraint conditions on the aluminium post no longer support 
the original mode shape (bending for example) thus the M PF of tha t mode 
decreases and the mode present a t 55kHz dominates (translational perhaps). 
This could be valuable information when interpreting in vivo results. If there 
appears to be a large drop in the second natural frequency it could be due to

it shows promise for determining the cause of frequency changes in vivo. For 
instance, consider a BAHA patient. If the first natural frequency drops 
from 2500 Hz to 2000 Hz it could be due to a change in stiffness of the 
interface layer due to remodelling of the bone, which may be beneficial to

height and preventative measures should be started to attem pt to save the 
implant. If the second natural frequency was found to drop from around 80 
kHz to 60 kHz however, it could be estimated from Figures 4.4, 4.5, 4.8 and 
4.9 tha t this could only be due to a change in stiffness of the interface layer. 
The drop in second natural frequency is too large to be a loss of bone margin 
height. Using this comparative analysis technique may allow more accurate 
prediction of the cause of changes in natural frequency.

a change in dominant second mode, thus signalling a  possible failure of the 
implant.

W hen the first and second natural frequency data  are used in conjunction

the integrity of the implant. However, it could be a loss of bone margin

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 4 57

x 10

Frequency (HzJ
*10

Figure 4.10: Filtered F F T  O utput for A Simulated Im pact Test on BAHA 
Model with 1mm of Osseointegration Loss

x 10'

42 3 5 e 7 8 9
Frequency(Hz) x 10

Figure 4.11: Filtered FFT  O utput for A Simulated Im pact Test on BAHA 
Model with 1.5mm of Osseointegration Loss

■ ■
■ ; . '

■ ■ ■

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission
AAA .. . ■ ■■

-.Vrv-

•'•‘v .

■ I
■ ■ ■■



Chapter 5 

Conclusions

V  j  . ■

W ith the development of impact testing it appears to be possible to quanti­
tatively measure changes in implant status in vivo by monitoring the natural 
frequency of the implant - tissue system. However, due to the constant 
remodelling at the interface it is difficult to determine the source of these 

: changes. Thus, the in vitro model was developed and shown to produce
similar results to the in vivo situation while enabling strict control over the 
dominant variables affecting the response of the system. In order to expand 
the study further and obtain quantitative data  for various simulated failure 
modes, a  finite element simulation of the in vitro model was developed. This 
model had a distinct interface region rather than one with the implant di­
rectly coupled to the hard tissue. This allowed the introduction of different 
interface stiffnesses as well as introducing contact elements to simulate a 
loss of osseointegration. This interface model was verified through compari­
son to in vitro experiment and analytical analysis and used to answer three 
im portant questions regarding impact testing of implants.

Firstly, the higher frequency visible on the raw accelerometer signal is not 
due to bouncing of the impact rod against the implant. The contact status 
remained closed during simulations at all striking heights. Due to the strong 
correlation between this higher frequency and the simulated second mode, it 
appears it is in fact a second natural frequency of the system.

Secondly, the results of the FEA simulation indicate tha t clinical changes 
in the integrity of the interface (loss of osseointegration, loss of bone margin 
height, development of connective soft tissue) should be detectable from the 
frequency response changes. The simulations indicate th a t with either a loss 
of osseointegration or bone margin height for the shorter implant of as little
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as 0.2 mm, the change in frequency response is sufficient to be clinically 
detectable. In addition, changes in the stiffness of the interface, such as 
might occur after initial implant placement or through the development of 
connective soft tissue, result in easily measurable frequency changes. These 
changes are so minor, however, tha t it is unlikely they could be detected 
using conventional diagnostic techniques.

Finally, the potential of using the additional information provided by

-

.

V:;''
the second (higher) natural frequency is promising' and could prove to be

■ .

valuable. When used in conjunction with the lower natural frequency it is 
possible to predict the source of changes in the interface stiffness. However, 
the precision of the second natural frequency is still a concern since it required 
an F FT  to determine the frequency from the displacement data.

: ■ ■ h:':--. '
m y
y y - y

>
v T  V ' : .  
T T ::-

■■■■■■ ■

\ y y y y -  ' . .■
.. ,_ \ /.

: ■
;'\.v

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



References

[1] P.I. Branemark, G. Zarb, and T. Albrektsson. Tissue-Integrated Prosthe-
ses: Osseointegration in Clinical Dentistry. Quintessence Publishing 
Co., 1985.

[2] R. Adell, U. Lekholm, B. Rockier, and P.I. Branemark. A 15-year study
of osseointegrated implants in the treatm ent of edentulous jaw. In ­
ternational Journal o f Oral Surgery, 6:387-416, 1981.

[3] T. Albrektsson, G. Zarb, P. W orthington, and A.R. Eriksson. The long­
term  efficacy of currently used dental implants, a review and pro­
posed criteria for success. International Journal of Oral and Max­
illofacial Im,plants, 1(1):11—25, 1986.

[4] S. Sunden, K. Grondahl, and If.-G. Grondahl. Accuracy and precision in
the radiographic diagnosis of clinical instability in branemark dental 
implants. Clinical Oral Im.plants Research, 6:220-226, 1995.

[5] J. Elias, J. Brunski, and IT Scarton. A dynamic modal testing technique
for noninvasive assessment of bone-dental implant interfaces. Inter­
national Journal o f Oral and Maxillofacial Implants, 11 (6) :728—734, 
1996.

[6] L. Carlsson, T. Rostlund, B. Albrektsson, and T. Albrektsson. Re­
moval torques for polished and rough titanium  implants. Interna­
tional Journal o f Oral and Maxillofacial Implants, 3(1) :21—24, 1988.

[7] J. Duyck, IT J. Rpnold, IT van Oosterwyck, I. Naert, J. Vander Sloten,
and J. E. Ellingsen. The influence of static and dynamic loading on
marginal bone reactions around osseointegrated implants: an ani­
mal experimental study. Clinical Oral Implants Research, 12:207— 
218, 2001.

[8] N. Meredith, K. Book, B. Friberg, T. Jem t, and L. Sennerby. Resonance

60

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



REFERENCES 61

frequency measurements of implant stability in vivo. Clinical Oral 
Implants Research, 8:226-233, 1997.

[9] N. Meredith, D. Alleyne, and P. Cawley. Quantitative determ ination of 
the stability of the implant-tissue interface using resonance frequency 
analysis. Clinical Oral Implants Research, 7:261-267, 1996.

[10] R. Nedir, M. Bischof, S. Szmukler-Moncler, J.P. Bernard, and Jacky
Samson. Predicting osseointegration by means of implant primary 
stability. Clinical Oral Implants Research, 15:520-528, 2004.

[11] M. Bischof, R. Nedir, S. Szmukler-Moncler, J.P. Bernard, and Jacky
Samson. Implant stability measurement of delayed and immediately 
loaded implants during healing. Clinical Oral Implants Research, 
15:529-539, 2004.

[12] R. Glauser, L. Sennerby, N. Meredith, A. Ree, A. Lundgren, J. Got-
tlow, and C. Hammerle. Resonance frequency analysis of implants 
subjected to immediate or early function occlusal loading. Clinical 
Oral Implants Research, 15:428-434, 2004.

[13] Neil Meredith. On The Clinical Measurement o f Implant Stability and
Osseointegration. PhD thesis, Departm ent of Biom aterials/Handicap 
Research, Institute for Surgical Sciences, Goteborg University, 
Goteborg, Sweden, 1997.

[14] H.-M. Huang, C.-L. Chiu, C.-Y. Yeh, C.-T. Lin, L.-II. Lin, and S.-Y. Lee.
Early detection of im plant healing process using resonance frequency 
analysis. Clinical Oral Implants Research, 14:437-443, 2003.

[15] D. Lukas and W. Schulte. Periotest - a dynamic procedure for the diag­
nosis of the human periodontium. Clinical Physics and Physiological 
Measurement, 11:65-75, 1990.

[16] W. Schulte and D. Lukas. Periotest to monitor osseointegration and to
check the occlusion in oral implantology. Journal of Oral Implantol- 
ogy, 19:23-32, 1993.

[17] G. Faulkner, J. Wolfaardt, and A. Chan. Measuring abutm ent/im plant
joint integrity with the periotest instrument. International Journal 
o f Oral and Maxillofacial Implants, 14(5):681—688, 1999.

[18] D. van Steenberghe, J. Tricio, I. Naert, and M. Nys. Damping char­
acteristics of bone-to-implant interfaces; a clinical study with the 
periotest device, Clinical Oral Implants Research, 6:31-39, 1995.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

■ :
'P'Sr-P'P.P,.--

Y-.:: ■. /  :



REFERENCES 62

[19] J. Olive and C. Aparicio. The periotest method as a  measure of osseoin­
tegrated oral implant stability. International Journal o f Oral and 

M axillofacial Implants, 5(4):390-400, 1990.

[20] A.B. Carr, E. Papzoglou, and P. Larsen. The relationship of periotest
values, biomaterials, and torque to failure in adult baboons. Inter­
national Journal o f Prosthodontics, 8:15-20, 1995.

[21] G. Faulkner, D. Giannitsios, W. Lipsett, and J. W olfaardt. The use
and abuse of the periotest for 2-piece im plant/abutm ent systems. 
International Journal of Oral and Maxillofacial Implants, 16(4):486- 
494,2001.

[22] James Earthm an. System and method for quantitative measurements of
energy damping capacity. United States Patent, September 19, 2000. 
Patent Number - 6,120,466.

[23] B. Dejak, A. Mlotkowski, and M. Romanowicz. Finite element analysis
of stresses in molars during clenching and m astication. The Journal 
of Prosthetic Dentistry, 90(6):591—597, 2003.

[24] L. Jimmlova, T. Dostalova, A. Kacovsky, and S. Konvickova. Influence
of implant length and diameter on stress distribution: A finite ele­
ment analysis. Journa l of Prosthetic Dentistry, 91(1):20—25, 2004.

[25] S. Ishigaki, T. Nakano, S. Yamada, T. Nakamura, and F. Takashima.
Biomechanical stress in bone surrounding an im plant under simu­
lated chewing. Clinical Oral Implants Research, 14:97-102, 2003.

[26] A. O ’Mahony, J. Williams, and P. Spencer. Anisotropic elasticity of
cortical and cancellous bone in the posterior mandible increase peri- 
implant stress and strain under oblique loading. Clinical Oral Im ­
plants Research, 12:648-657, 2001.

[27] A. Mellal, H.W.A. W iskott, J. Botsis, S.S. Scherrer, and U.C. Belser.
Stimulating effect of implant loading on surrounding bone. Compari­
son of three numerical models and validation by in vivo data. Clinical 
Oral Implants Research, 15:239-248, 2004.

[28] H. Van Oosterwyck, J. Duyck, J. Vander Sloten, G. Van der Perre,
M. De Cooman, S. Lievens, R. Puers, and I. Naert. The influence of 
bone mechanical properties and implant fixation upon bone loading 
around oral implants. Clinical Oral Implants Research, 9:407-418, 
1998.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



REFERENCES G3

[29] H. Van Oosterwyck, J. Duyck, J. Vander Sloten, G. Van der Perre, and
I. Naert. Peri-implant bone tissue strains in cases of dehiscence: a 
finite element study. Clinical Oral Implants Research, 13:327-333, 
2002 .

[30] F. Zarone, A. Apicella, L. Nicolais, R. Aversa, and R. Sorrentino.
M andibular flexure and stress build-up in mandibular full-arch fixed 
prostheses supported by osseointegrated implants. Clinical Oral Im ­
plants Research, 14:103—114, 2003.

[31] K. Akga, M.C. Qehreli, and H. Iplikgioglu. Evaluation of the mechani­
cal characteristics of the im plant-abutm ent complex of a reduced- 
diam eter morse-taper implant. Clinical Oral Implants Research, 
14:444-454,2003.

[32] H.-J. Chun, S.-Y. Cheong, J.-H. Han, S.-J. Heo, J.-P. Chung, I.-C. Rhyu,
Y.-C. Choi, H.-K. Baik, Y, Ku, and M.-H. Kim. Evaluation of design 
param eters of osseointegrated dental implants using finite element 
analysis. Journal of Oral Rehabilitation, 29:565-574, 2002.

[33] J.P. Geng, Q.S. Ma, W. Xu, K.B.C. Tan, and G.R. Liu. Finite element
analysis of four thread-form configurations in a stepped screw im­
plant. Journal of Oral Rehabilitation, 31:233-239, 2004.

[34] S. Hansson. The implant neck: smooth or provided with retention ele­
ments. Clinical Oral Implants Research, 10:394-405, 1999.

[35] S. Hansson. A conical im plant-abutm ent interface at the level of the
marginal bone improves the distribution of stress in the support 
bone. Clinical Oral Implants Research, 14:286-293, 2002.

[36] L. Lang, B. Kang, R.-F. Wang, and B. Lang. Finite element analysis
to determine implant preload. The Journal of Prosthetic Dentistry, 
90(6):539-546, 2003.

[37] H.-M. Huang, S.-Y. Lee, and C.-Y. Yeh C.-T. Lin. Resonance frequency
assessment of dental implant stability with various bone qualities: 
a numerical approach. Clinical Oral Implants Research, 13:65-74, 
2002 .

[38] K.R. Williams and A.D.C. Williams. Impulse response of a dental im­
plant in bone by numerical analysis. Biomaterials, 18:715—719, 1997.

[39] Stephen Cowin. Bone Mechanics Handbook. CRC Press, 2001.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



REFERENCES 64

[40] Robert Blevins. Formulas for  Natural Frequency and Mode Shape.
Robert E. Krieger Publishing Company, 1979.

[41] Stephen Hurst. Investigation of Periotest® and Osstell® instruments for
measuring craniofacial implant integrity. M aster’s thesis, University 
of Alberta, 2002.

[42] William T. Thomson. Theory of Vibration with ApplicaMons - 5th Edi­
tion. Prentice-IIall, Inc., 1998.

[43] K.-J. Bathe. Finite Element Procedures in Engineering Analysis.
Prentice-IIall, 1982.

[44] E.L. Wilson and T. Itoh. An eigensolution strategy for large systems.
Com.puters and Structures, 16(1-4):259—265, 1983.

[45] ANSYS Inc, Canonsburb, Pa. A N S Y S  7,1 Documentation - Element
Reference - Part I. Element Library - SOLID45.

[46] ANSYS Inc, Canonsburb, Pa. A N S Y S  7.1 Docum.enta.tion - Element
Reference - Part 1. Element Library - SO LID 92.

[47] Polymer material properties, 2004.

[48] ANSYS Inc, Canonsburb, Pa. A N S Y S  7.1 Documentation - Element
Reference - Part I. Element Library - CONTA17J,.

[49] ANSYS Inc, Canonsburb, Pa. A N S Y S  7.1 Documentation - Element
Reference - Part I. Element Library - TARGE170.

[50] ANSYS Inc, Canonsburb, Pa. A N S Y S  7.1 Documentation - Structural
Guide - Chapter 11: Contact.

[51] Erwin Kreyszig. Advanced Engineering Mathematics. John Wiley and
Sons Inc, seventh edition, 1993.

[52] T. Chandrupatla and A. Belegundu. Introduction to Finite Elements in
Engineering. Prentice Iiall Inc, third edition, 2002,

[53] J. C. Sirno and T. A. Laursen. An augmented lagrangian treatm ent
of contact problems involving friction. Computers and Structures, 
42:97-116, 1992.

[54] Michel Fortin and Ronald Glowinski. Augmented Lagrangian Methods.
Elsevier Science Pub. Co., 1983.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



REFERENCES 65

[55] Ronald Glowinski and Patrick Le Tallec. Augmented Lagrangian and
operator-splitting methods in nonlinear mechanics. SIAM Studies in 
Applied Mathematics, Philadelphia, 1989.

[56] B. Brunski. In vivo bone response to biomechanical loading at the
bone/clental-implant interface. Advances in Dental Research, 13:99- 
119, 1999.

[57] M.L. James, G.M Smith, J.C. Wolford, and P.W. Whaley. Vibration
of Mechanical and Structural Systems - 2nd Edition. HarperCollins,

[58] ANSYS Inc, Canonsburb, Pa. A N S Y S  7.1 Documentation - Structural
Guide - Chapter 3: Modal Analysis.

[59] ANSYS Inc, Canonsburb, Pa. A N S Y S  7.1 Documentation - Theory Ref­
erence - Chapter 17: Analysis Procedures.

[60] Singiresu Rao. Mechanical Vibrations. Addison-Wesley Publishing Com­
pany, second edition, 1990.

1994

Y'7

■ ■ • . ■ : 1

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission



Appendix A  

FEA Example

Consider the rod shown in Figure A.I. The analytical solution for the de­
flection of the end of the rod is:

P L
6  =  — r =  1mm (A .l)

E A  v '

ii L = 10 cm§§
\  E = 100 GPa

8 A = 1 cm x 1 cm

Figure A .l: FEA Example Rod

Imagine the rod is divided into three elements, resulting in the nodes 
depicted in Figure A .2.

Bathe [43] shows that the governing equation for a linear rod element is:

E A 1 - 1
- 1  . 1 (A.2)
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7=10/3 cm 7= 10/3 cm 7= 10/3 cm 

^  * P=100.kN
1 2 3

E = 100 G P a

A = 1 cm x 1 cm

Figure A.2: Finite Element Representation of Rod

where Z = |  in this case. Thus, using the global stiffness m atrix construction 
technique outlined in Appendix B, the problem can be written as:

SE A  — i z — j. u ui n  , .  rtV
(A.3)

The boundary conditions sta te  tha t displacement at u\ =  0 and F4  — P. 
Using the elimination approach, Equation (A.3) can be written as:

'  1 - 1 0  0 ' f'Ui' / F 1\
- 1  2 - 1  0 u 2 f 2

0 - 1  2 - 1 u-s f 3

0 0 - 1  1 w \ f J

3 E A  
L

2 - 1  0
- 1  2 - 1
0 - 1  1

(A.4)

The displacement vector can be solved using {a} =  [&] 1 {A } thus:

u 3  =
SEA

1 1 f / °
1 2 2 0
1 2 3

gives:

(A.5)

(A.6)

Therefore, the displacement of the end of the rod is u3 =  ^  =  1 m m  which 
matches the analytical result.
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A ppendix B

M odal Participation Factors 
from a Continuous System  
Approxim ation

If it can be shown th a t the natural frequencies of a finite DOF system ap­
proximating a simple continuous system converge to the continuous solution 
then it is reasonable to approxim ate a continuous system too complex to 
solve analytically in the same manner. A finite approximation of a rigidly 
fixed, uniform cantilever will be solved to prove feasibility and then the pro­
cedure will be used to approxim ate the modal participation factors of the 
first three natural frequencies of an elastically supported beam with a mass 
on the free end. This complex system is similar to the implant - abutm ent 
system being struck by the impact rod and the solution will be used to de­
termine the plausibility of only two natural frequencies being visible on the 
accelerometer signal.

B .l Governing Equation
Thomson [42] shows that if synchronous motion is assumed, the governing 
equation for the system:

H { i i}  +  [k]{v] = {0} (B .l)
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can be used to determine the natural frequencies and corresponding mode 
shapes by solving the eigenvalue problem:

 ̂ |[A:] -  /  M i  =  0 (B.2)

Therefore it is necessary to determine the stiffness m atrix [Ai] and the 
mass m atrix [m].

B.2 Constructing the Stiffness Matrix
The governing equation for a single beam element with two degrees of freedom 
at each node (vertical displacement and rotation) is the following:

(B.3)

Recall tha t a global stiffness m atrix can be assembled from elementary 
stiffness matrices. For example, if there are two beam elements with stiffness 
m atrix [A:] and [K] respectively, connected at node 2, they can be assembled 
as follows:

‘ 12 6 L  -1 2  6 L  1 /'V\\ ( F l \
E l 6 L  4 L 2  - 6 1  2L 2 T\
L 3 -1 2  - 6 L  12 -67 , V2 f 2

6 L  2 L 2  - 6  L AL2 \02 / \ TV

kn k n k\3 kbl 0 0 ‘ f v i \ f F l \
k2\ k 2 2 k23 k2<i 0 0 0i Tx
ksx kz2 A’33 +  K n /c34 +  K \ 2 K Vi K u v2 f 2

k<u ki 2 k n  +  K'2 i kt14 +  7̂ 22 I< 2 3 K 2,\ 02 t2
0 0 I< 3 1 I< 3 2 i<33 K34 V3 F3

_ 0 0 Kn K  2 K 3 K u \0 3 / \ t3J

(B.4)

If a linear spring were connected from node 1 to the ground, depicted in
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Figure B .l, the governing equation would become:

k-u +  ks &12 kx3 ku 0 0 ks o' fv { \ /  F\ \
k2\ k22 k23 k2 4 0 0 0 0 ex Tx
&31 k32 &33 +  7^ 11 &34 +  7 1̂2 77i3 7714 0 0 V2 f 2
kn k,12 k.13 +  I<2X ku +  K 22 7723 I<24 0 0 2̂ t 2
0 0 7731 7 3̂2 7733 I<M 0 0 V3 f 3
0 0 77,1 7C,2 77,3 77,., 0 0 $3 t 3
ks 0 0 0 0 0 ks 0 va F„
0 0 0 0 0 0 0 0 w \ T J

(B.5)

N ode 3 : Node 2 N ode 1

IH) m ,

K : k

: 1— K - ,
G round

Figure B .l: Cantilever with Spring Attached to Ground

However, since the vertical and rotation displacement of the ground is 
zero, the corresponding rows and columns of the global stiffness m atrix can 
be eliminated using the elimination approach resulting in the equation below,

kn +  ks k\2 7ci3 k\4 0 0 ' [vx \ / M
k2\ k22 k23 k2,\ 0 0 Ox 7 i
k‘3X k32 k33 +  77u k3 4 +  /Vi2 7713 77i4 V2 7=2
k<x\ k,12 &43 +  7721 k, 14 +  K 22 7723 7724 e 2 t 2
0 0 7731 K 32 7733 7734 V3 7=3
0 0 F ax 77,2 77,3 7744 \ f i s  / ^ 3/
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B.3 Constructing the Mass Matrix
The mass m atrix could be constructed in a similar manner, but in order to 
simplify the calculations a lumped mass approximation was used. A lumped 
mass approximation is where the mass of the element is applied as two equal 
masses a t the ends of the element. In this case, the lumped mass approxi­
mation eliminates any rotational inertia terms in the mass matrix, resulting 
in

This is a reasonable approximation in this case since the elements are 
undergoing small deflections thus little rotation is occurring. In the case of 
a point mass, the extra mass, M, can be added to the appropriate node.

Since the rotational terms in the mass m atrix are zero, it is beneficial to 
rearrange the stiffness m atrix to simplify calculations.

B.4 Matrix Partitioning for Coordinate Re­
duction

By rearranging the global mass and stiffness m atrix so tha t the coordinates 
arranged as

in i 0 0 0 0 0
0 0 0 0 0 0
0 0 7 7 7 -2  0 0 0
0 0 0 0 0 0
0 0 0 0 777-3 0
0 0 0 0 0 0

(B.7)

M \

(B.8)

results in the following equation

(B.9)
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As shown in [42], this can be m anipulated to:

M n V  + H V  = 0 (13.10)

where
H = ( J n ~  J i2J 22% )  (B .ll)

Equation (B.10) is an eigenvalue problem if it is assumed V  =  - p 2V  and can 
be solved for the natural frequencies and vertical displacement mode shapes 
of the system as explained in [42],

B.5 Comparison to Continuous Cantilever
Using the m ethods outlined above, the system depicted in Figure B.2 was 
constructed in MATLAB using the code found in Appendix F, Section F .l. 
To simulate the rigidly constrained cantilever, the spring stiffness, kS) was 
increased until the first natural frequency for a 50 element system converged 
below 1%, effectively turning the springs into rigid bodies. In this case, what 
is called the effective length of the system in the MATLAB code is half the 
total length of the cantilever since only half of the total beam is free to 
move. The point mass was not included. W ith these parameters, the first 
three natural frequencies converged below 1% with 200 elements.

The continuous system has natural frequencies given by:

pn = m n { ^  (B '12)

In order to simplify comparisons, the (PL) term  of the first three frequen­
cies from the finite system are listed below.

System m x (PLh (PL)s
Continuous 1.875 4.694 7.855

Finite 1.870 4,680 7.832

Table B .l: (PL) Comparisons of Continuous and Finite Systems

The finite system converged within 0.3% relative error for the first three 
theoretical (PL) values. Therefore, simulating a continuous system with a 
finite DOF model is acceptable.
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Length/2 Length/2

There are a 
total of n nodes 
and n/2 springs

Figure B.2: Model Approximating Elastically Supported Beam with Point 
Mass

The case of an elastically supported beam with a point mass on the free 
end (Fig B.2) is used as a more accurate representation of the implant - 
abutm ent system. The point mass was assumed to be 13 times the mass of 
the to ta l beam, which is analogous to the im plant system (9 gram impact 
rod, 0.7 gram aluminum post). However, this model is merely an approxi­
mation. It does not take into account displacements along the axis of the 
beam  and the stiffnesses of the supporting springs are not accurate. It does 
however provide a reasonable platform to determine the plausibility of only 
two natu ral frequencies being visible on the accelerometer signal.

The stiffnesses of the springs were reduced until the first three expected 
mode shapes were found, depicted in Figure B.3. The first two of these mode 
shapes are predicted by Hurst [41] and the th ird  is assumed to be a bending 
mode. The number of elements was increased until the first three natural 
frequencies converged below 1% (200 elements). At this point the model was 
assumed to be a realistic representation of the continuous system. The (PL) 
were not recorded as they are not of interest in this case. Instead, the modal 
participation factors of the first three natural frequencies are desired.
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X

First Mods Shape Second Mode Shape Third Mode Shape

Figure B,3: First Three Expected Mode Shapes

B.6 Determining Modal Participation Factors
The mode shapes can be normalized to the mass m atrix and combined to 
form the modal matrix, as detailed in [57]. If synchronous motion is assumed, 
the displacement vector can be written as:

Using this substitution the governing equation can be transformed to:

These n  equations can be solved for the n i f  s individually since the equa­
tions have been uncoupled. However, it is first necessary to determine the 
initial conditions of the system. This system is approximating the implant 
- abutm ent during a strike from the impact rod, thus the IC ’s of tha t sys­
tem will be used. Since it is difficult to accurately determine the shape of 
the forcing function caused during the duration of the strike, the transient

M *)}  =  M M *)} (B.13)

so:
{£(*)} =  M M *)} (B.14)

M  +  V2 M  =  { 0} (B.15)

Therefore
Vr +  PrVr  =  0 (B.16)
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response of the system was not used. Instead, the strike can be considered 
an impulse over a short period of time thus there is an initial velocity vector 
while the initial displacement vector remain zero. To determine the initial 
velocity vector it was assumed the implant would rotate about its lowest 
node, O (similar to the first mode shape) and angular momentum would be 
conserved as depicted in Figure B.4.

m v. m v,

JoSi

1 1

L +

4

5F

'  4

o o

Figure B.4: Momentum Diagram

Conserving angular momentum about the base of the implant and real­
izing — 0:

m v\L .=  m,V2 L  +  J0 2

02 =  & and J  = i M L 2  so:

(B.17)

thus V2  is:

m v  i =  m v 2  +  - M v  2  

o

V 2  =
m v  1

(B.18)

(B.19)

Since the implant is rotating about its base, the angular velocity is ui = 
Therefore, the initial velocity of any point on the implant is given by cor, 
where r  is the distance measured from the bottom  of the implant. Using this 
relationship and knowing the impact rod strikes the implant at 0.2??7./s, it 
was possible to determine the initial velocity vector for the implant.

Using the general solution for Equation (B.1G) with only an initial velocity 
results in:

Vr{t) = ^ ^ s i n ( p 7i )  (B.20)Pr
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a ."v i
- ■ - - a ;
■ ■ ■ ■ ■

:

and using Equation (B.13) means tha t the equation of motion of the end of 
the beam (node n), where the impact is taking place and thus the signal is 
being recorded, is equal to:

x„(t) = [(/](??,:) • {?/(/-)} (13.21)

The modal participation factors (MPF) are found as:

x n(t) = M PFy  sin(p!f) +  M P F 2  sin(p2 t) + M P F 3  sin(p3f) +  ... (B.22)

The values in Table B.2 were found using the MATLAB code. The first 
natural frequency has a M PF approximately 24 times greater than the second 
and 1400 times greater than the third. This would suggest th a t it is plausible 
th a t only the first two frequencies would be visible from the accelerometer 
signal when struck at the top of the implant.

Natural Frequency M PF
ls i 3.02xl0“2

2 nd -1.26x10-*
3rd 2.21xl0“5

Table B.2: Modal Participation Factors for First Three Natural Frequencies

Note: If instead of assuming the aluminium post rotates about its lowest 
node but rather is free, this results in:

v 2  =

U!

m v  i
m + \ M

3 v 2

2L

(B.23)

(B.24)

The first natural frequency then has a M PF approximately 24 times 
greater than the second and 1360 times greater than the third. Therefore 
the M P F ’s are similar in both of these cases. Note th a t the actual physical 
system would be expected to fall somewhere between these two systems.

-;A, 1
: / V : .
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Subspace M odal Solver

At first glace, the subspace m ethod seems to be a very simple process. In 
application this is true, which is the beauty of the method. However, the 
m athem atical theory behind the method is anything but simple. For further 
details and proofs, refer to Bathe [43] and the ANSYS reference manual [58]. 
This appendix is merely an overview of the process.

The subspace iteration m ethod solves for p eigenvalues and corresponding 
eigenvectors which satisfy:

M M  =  M M M  ( c . i )

where [/t] =  \f.ix, /.i2 , n p] and [A] ?= cliag(Xi). These eigenvectors also must 
satisfy the orthogonality conditions:

M r ™  =  [A]

This is accomplished using simultaneous vector inverse iteration:

[K)[X ] k + 1  = [M}[X}k (C.4)

[A-]*, is the current estimate of the q-dimension subspace spanning a portion of 
the solution space of Equation (C.I). Since the eigenvectors in Equation (C. I) 
form an [M]-orthonormal basis of the q-dimensional least-dominant subspace 
of the operators [I<] and [M], the estimate [A]*, will converge towards [/j]. 

Choosing the initial estimate [A]0 is an im portant step and is accoim 
plished autom atically in ANSYS as described below. The number of starting

77 ■

(C.2)

(C.3)
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iteration vectors are determined from:

q = p + d (G.5)

where:
p = the requested number of modes to extract 
d =  number of extra iteration vectors (defaults to 4)
The d extra vectors are used to increase the convergence rate  of the requested 
modes.

The vectors comprising [A'Jo depend if rigid body modes are present. 
For every rigid-body mode, the position in the vector corresponding to the
degree of freedom of which the mode takes place is set to a unit value. The
remaining vectors in [A]o are initialized to random vectors. By randomizing 
the vectors, ANSYS ensures that all mass D O F’s are excited.

W ith the initial estimate, Equation (C.4) is solved:

[X)k+l =  (C.6)

The projections of the operators [I<] and [M] onto the q-dimensional subspace 
are found:

\[I<}M  = {X}l+1 [K)[X ] k + 1  (C.7)

[M ],,., =  [X $ +1 [M][X)m  (C.8)

The eigenvalue problem for the subspace is solved:

[A V i[(2k-+. =  (A/]A-,i[QjA-t-.[A]A-+i (C.9)

ANSYS utilizes a generalized Jacobi iteration technique to accomplish this 
to minimize processing time [43].

Before continuing, the vectors comprising [Q] must be made orthogonal 
to one another. This is so [Q] satisfies the conditions in Equation (C.3). This
is done using the Gram-Schmidt method, described in Section C.I.

From this, an improved approximation of the eigenvectors can be found:

[ A V , =  [Alfc+i[QKi (G .io)

This iteration is continued until it has converged and produces the results: 

[Ajfc+i —> [A] and [AAj)>.+ 1 —> [//] as k —> oo (C .l l)
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To ensure the values are the desired frequencies, a Strum  sequence check is 
performed. This check computes the number of negative pivots encountered 
during the formation of [/{']*,+1 [43]. This number should match the number 
of converged eigenvalues or else an eigenvalue was missed. In this case, more 
iteration vectors (cl) must be used.

Again, the beauty of the subspace method is tha t the first p natural 
frequencies and corresponding mode spaces can be found by solving only a q 
dimensional eigenvalue problem, unlike the general analytical modal m ethod 
which requires all the natural frequencies to be found.

C.I Gram-Schmidt Orthogonalization
The purpose of the Gram-Schmidt Orthogonalization technique is to orthog- 
onalize each vector in a m atrix to the previous vectors, creating a basis for the 
space. In this case, the vectors will be [M]-orthogonalized so tha t Equation 
(C.3) is satisfied. The process is best described in an example.

Consider the set of vectors and mass matrix:
'0.25 0.75] [ i  0 0'

[X] =  0.5 0.5 [m}=  0 1 0
|_0.75 0.25J |_0 0 I

(C.12)

To create a basis for the plane which satisfies Equation (C.3), first [m]- 
normalize the first vector:

thus:
(C.14)

so the [m]-normalized vector is:

(C.15)

therefore:
'1 /3  0.75' 

[X]* = 2/3 0.5 
1 0.25

(C.16)
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At this point the Gram-Schmidt method is employed using the following 
equation:

j -1

i= 1

where:

and:

Pi = {<p}i M M y

{u}j-=  the vector to be orthogonaJized 
=  the new orthogonalized vector 

{ 4 >}i — the vector(s) to which {u}j is orthogonal 
In this example:

Pi = (1/3 2/3 1) 

Therefore:

^0.75\
0.5 =* f t  =  0.5833

10.25/

{u}2 =  {v}2 ~ Pl{(p}l
/0 .7 5 \ /1 /3"

=  0.5 -  0.5833 2/3
\0.25 /  \  1 ,

0.5556 \
=  [ 0.1111 

-0.3333/

[m]-normalizing {u}2 gives:

.[X]a =

which satisfies Equation (C.3).

‘1/3 1.179
2/3 0.2357

1 -0.7071

(C.17)

(0 , 18)

(C.19)

(C.20)

(C.21)

(C.22)

(C.23)

■! '

. ■ .
•4 '4 •: ■■ -

. v .

■ ■. :
■ ' ■

■ ■■ ■■ •: ■

■;? v ; : r

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Appendix D 

Transient Solver

The governing equation for motion of a structure is as follows:

M U +  CU + K U  = R ( D . l )

where M , C, and K  are the mass, damping, and stiffness matrices; R  is 
the external load vector; and U, U, and U are the displacement, velocity 
and acceleration vectors of the finite element analysis. This equation rep­
resents a  system of second-order, linear differential equations and can be 
solved by any number of standard procedures. However, for general systems 
with large matrices, these standard procedures can be very computationally 
expensive. The procedure used for Transient Analyses by ANSYS is the 
Newmark Method.

The Newmark method falls into the category of direct integration m eth­
ods. “In direct integration the equations in (D .l) are integrated using a 
numerical step-by-step procedure, the term “direct” meaning tha t prior to 
the numerical integration, no transformation of the equations into a different 
form is carried out.” [43] The theory is largely based on two ideas. First, 
rather than satisfying equation (D .l) for any time, t, it is only necessary 
to satisfy (D .l) a t discrete time intervals A t  apart. Thus the problem can 
be considered quasi-static, which includes the effect of inertia and damping 
forces, and solved as such. The second idea is that it is assumed the displace­
ment, velocity and accelerations w ith in  each time interval, A t, vary slightly. 
It is the form of these assumptions that determines the accuracy, stability 
and cost of the solution procedure. For a direct integration method it is 
necessary to know the initial conditions so that displacement, velocity and

81
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M -
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1
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■
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■
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acceleration are known at time t = 0 and can be used to find subsequent 
values during the next time interval.

The Newmark method proposes that [43]:

{r/.„} =  nodal displacement vector at time tn 
{«„} =  nodal velocity vector a t time tn 
{ii„} =  nodal acceleration vector a t time tn 
{u,„+i} == nodal displacement vector at time tn+j,
{un+i} — nodal velocity vector at time tn+1 
{ii„+} =  nodal acceleration vector a t time tn+\

The aim is to solve Equation (D .l) for n  +  1 thus it is helpful to rewrite 
Equations (D.2) and (D.3) as follows (see below for an values in terms of a, 
6  and At):

Noting tha t Equation (D.4) can be subbed into Equation (D.5) to give: 

. ( V i )  =  {un+i}[aoa7 ) -  {un}[a0 a7] -  {un}[a2 a7  -  l] -  {un }[a3 ci7  -  ci6] (D.6)

and letting:
O'l =  Cl
u,\ =  (.1 2 ( 1 7  ~  1 
0,5 =  C130.7 — tte 
This finally gives:

{u„+i} =  {u,n} +  [(1 -  <5){iin} 4- <5{un+1}]Af 

{^n+l} — {^n} T 4"

(D.2)

where:
a, S = Newmark integration parameters 
A t — t/i+i tn

=  c i q  ({i/.n+1} -  {'«„}) -  a2 {un} -  a3 {un} 

{fhi+l} =  {IIn } 4" (1(1 {(‘hi} 4- «7{fin+l}

(D.4)
(D.5)

{un+i} = a,Q{iin+i} -  cio{un} -  ci,2 {un} -  a3 {un} (D.7)
{Un+i} =  cii{un+(} -  ci\{un} -  a4{«„} -  cir,{un} (D.8)
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where:

'

v

V .  ' ■■. ■ 1 

-v n

ClQ
: 1

cii
6

aA t2 a A t
. : -1 1

■ 1Cl2 aAt
a3 — 2 a  ~

A t  ( '6
a,\ =  -  -  1 a5 = —a 2  V a
aB=  A t(l -  5) ; 0,7 = 6 A t

Notice how Equations (D.7) and (D.8) are only functions of {u.„+i} and 
other known values.

Substituting these values into Equation (D .l) at n + 1 gives:

(«o[A/] +  «i[C] -I- [A']) {t/,,-4-1} =  {/i’}-r
[M] (flo{un} +  a,2 {un} +  ^3{.fin}) +  [C] (oi{un} +  a4{tin} +  Os{iin}) (D.9)

Equation (D.9) is used to solve for {un+i} as it is the only unknown. 
Newmark showed th a t if:

a  =  I ( l  +  7 )2 J =  i  +  7 (D.10)

the solution is unconditionally stable for 7 >  0. By default 7 is set to 0.005 
in ANSYS in order to optimize numerical damping during the transient anal­
ysis. Numerical damping is used to improve the accuracy of higher natural 
frequencies by reducing the amount of numerical noise introduced during the 
solution calculations.

The HHT improvement algorithm is used in conjunction with the New­
mark method in ANSYS. It has an improved level of numerical damping in 
order to reduce calculation times and improve convergence. It introduces 
two other variables but follows the same procedure as the basic Newmark 
method. For further information see [59].

.■T
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Appendix E 

Analytical Second Natural 
Frequency

The following outlines the procedure used to solve for the first two (/3L) values 
for an analytical solution to the lateral vibrations problem of a cantilever with 
a concentrated mass at the free end. This solution will be used to calculate 
the first and second natural frequency of the system which will be compared 
to the solution of a transient FEA simulation of a similar beam to determine 
if the FEA simulation produces reasonable second mode results.

Consider the bending vibrations of the bar below.

Figure E .l: Analytical Model to Verify Second Mode of Vibration

84
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where

and

y (x t t) = Y (x )T ( t)

Y (x )  = Ci sin(f3x) +  C2  cos((3x) +  C3 sinh(/3a;) +  C 4  cosh((3x)

T ( t ) =  A sm (p t  +

E .l Boundary Conditions

x = 0 : y  =  0

& - 0ox

x = L :
d2y
d x 2

0

No displacement 

Zero Slope

No moment

and

V M

FBD

y(o) = 0
d Y
dx
d2Y
dx 2

x = o  — 0

My(L)

M

MAD

Figure E.2: FBD/M AD of Point Mass

(E .l) 

(E. 2)

(E-3)

V  = Mi)
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where [60]

V  =  E l
d3y
d x 3

y = d2y
at?

therefore

E l
d3y I

dx 3  \X- L M
d2y
W

x=L

E.2 Solve for (PL)

(E.4)

Y (x )  = Ci sin(/3x) -f C 2  cos((3x) + C 3  sinh(/3.x') +  C<\ cosh(/?®) (E.5)

Prom (E .l)

y (0 )  =  0 =  CYsin(O) +  C2 cos(0) +  Ca sinh(0) +  G, cosh(0) 
y (0 ) =  0 =  C2 +  C4

C,\ = -C o  (E.6)

From (E.2)

d Y
dx 
d Y
dx

x=o =  0 =  Ci/?cos(0) -  C 2 P sin(0) -F G3/?cosh(0) +  .Gi/?sinh(0) 

x=o =  0 — C\ +  C3

: C3 — —Cl (E.7)

Substitute (E.6) and (E.7) into (E.5)

Y{x)  =  Ci[sin(/3a;) -  sinh(/fa)] +  G2[cos(/?a?) -  cosh(/3a;)] 
d Y
—  =  Cij3[cos({3x) -  cosh(/fa)] +  C 2 P [ -  sin(Px) -  sinh(/?a;)] ;

d2Y
-j~Y =  CiP2[ -  sin(Px) — sinh(/?a;)] +  C2 p 2[ -  cos(Px) -  cosh(/?a;)] 

d3Y
=  CiP3[ -  cos(Px) -  cosh(/3x)] -f C 2 p 3 [s\n(Px) — sin(/3:c)|
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Prom (E.3)

C!/?2[ -  sin (PL) -  sinh(/?L)] +  C2 (32[ -  cos (PL) -  cosh (PL)] =  0

C\{h\) +  C 2 (h2) =  0

From (E.4)

(E.8)

E l
dhj  
d x 3 x=L = M

d2y
x=L

y{x, t) = Y (x )T ( t)

c h i  
d x 3

d3Y
x=L dx 3

x=LT(t)
d2y
~d¥ ,=l =  Y{L)

d?T 
cIt2

E l
d3Y
d x 3

x=LT{t) =  M Y (L )  (~ p 2 T ( t ))

E l
d?Y
d x 3

Substitute into (E.9)

= l =  - M p 2 Y(L ) (E.9)

EllC^i-cosiPLy-cos^L^ + C^isiniPLj-smhiPL)]]
=  —M p 2  [C\ [sin(/3£) -  sinh{{3L)\ +  C 2 [cos{j3L) -  cosh(/?L)]]

or

C\ [EI(33 [-cos((3L) -  cosh(/3L)] +  M p2[sin(/3L) -  sinh(/3L)]

\ +  C2  [El/3 3 [sin((3L) -  sinh(/?L)] +  M p 2 [cos(/3L) -  cosh(/3L)]] =  0 (E.10)

C i(h )  + C2 (j2) =  0 

Placing Equations (E.8) and (E. 10) in matrix form:

h\ h 2  

j l  32
'CA _ /o'
&  ~  \0y

V ■■ -  ■■■ ' . ■ .. ■■ ' ' / ■' . ' :■ ", ' : ' '
" ,  ■ :
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F o ra  11011-trivial C\ and C<i we require the determ inant to be zero.

[ E i p 3[sin(PL) -  sinh(PL)} 4- M p 2[cos(0L) -  cosh(/?L)]] [ -  sin(/3L)-sinh(/?L)] 

+ [ E i p 3[ -  cos(PL) -  cosh(/3L)] +  M p 2[s'm((3L) — sinh(/3L)j] [cos(/?L)-cosh(/?L)]

Simplifying

E i p 3 [—2 (1 +  cos(pL) cosh(/3L))]
+  M p 2 [2 (sin(PL) cosh(/?L) — cos(PL) sinli (/?£))] =  0 (E .ll)

However, for a beam vibrating laterally

Substitute into (E .ll):

M
1 +  cos(/3L) cosh (/?£,) -  :— :(PL) [sin(/3L) cosh(/3L) -  cos(PL)sm\i(PL)]  =  0

nib
(E.12)

The first two (PL) values tha t satisfy this equation using the properties listed 
in Table 2.1 are 0.5776 and 3.9311.

400

200

2  o 
uJ ;
I  v-200 
<5

£
e
“ * -600

0.5 2.S 35

1000

■1200

PL

Figure E.3: Plot of Residuals from E.12 Used to find PL  Values

' v  ) - A- .  A A
X- ■ y:.') A ;'; 7; y.4
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A NSYS and M ATLAB Code

F .l MATLAB Code for Analytical Analysis 
of Modal Participation Factors

clear 

num = 200;

E = 72e9;
I = pi/4*(2e-3)"4;
Length = 20e-3; 
eff_length = Length;
L = Length/num;
A = pi*(2e-3)~2; 
ro = 2800;

k = 0.00000001 *E*I/L"3;

7. Initial velocity of rod 
vO = (ro*A*Length)*0.2/(ro*A*Length + 13/3*ro*A*Length);

7. Element Stiffness
one_stiff = E*I/L',3 * [ 1 2 6*L -12 6*L;6*L 4*L~2 -6*L 2*L"2;

...-12 -6*L 12 -6*L;6*L 2*L"2 -6*L 4*L~2];

89

% Number of elements

% Beam stiffness 
% Moment of Inertia 
7, Total length 
7« "Effective" Length 
7.' Length of element 
7. Area of beam 
7. Density of beam

7. Support spring stiffness
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’/, Initialize global stiffness matrix 
stiff = zeros(2*num+2);

’/. Create global stiffness matrix 
for i=l:num

stiff((2*i-l):(2*i+2),(2*i-l):(2*i+2)) =
...stiff((2*i-l):(2*i+2),(2*i-l):(2*i+2)) + one_stiff;

end

half = length(stiff)/2; ’/» Half the number of nodes

for y=l:2:half ’/, Add a support spring to
stiff(y,y) = stiff(y,y) + k; "/.vertical component of first

end "/.half of nodes

mass = zeros (half); "/. Initialize mass matrix

mass = eye(half)*ro*A*L;
mass (1,1) - ro*A*L/2; "/, Mass of first node
mass (half,half) = ro*A*L/2 + 13*ro*A*Length; ’/. Mass of last node

inter_stiff = zeros(2*num + 2); "/, Initialize two matrices
"/.to transform the stiffness

new_stiff = zeros (2*num + 2); "/. matrix into lumped mass form

for j = l:num+l ’/, Move all displacement
inter_stiff (j ,:) = stiff ((2*j-l),:) ; ’/.rows to the top of the
inter_stiff (j+half, : ) = stiff ((2*j) ,:) ; "/.matrix and rotation to

end ’/.bottom

for x = 1 :num+l ’/. Move all
new_stiff (: ,x) = inter_stiff (:, (2*x-l)); ’/.displacement columns
new_stiff (: ,x+half): = inter_stiff (: , (2*x)) ; ’/.to the left and 

end ’/.rotation to the right

Kll = new.stiff (l:half ,l:half); "/. Break into the four quadrants
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K12 = new_stiff(l:half,half+l:2*half);

K21 = new_stiff(half+1:2*half,l:half);

K22 = new_stiff(half+l:2*half.half+l:2*half);

% Assemble the lumped stiffness matrix 
reduced_stiff = Kll - K12*inv(K22)*K21;

7. Calculate eigenvalues/vectors 
[e,f] = eig(inv(mass)*reduced_stiff);

7. Convert to the (betaL) value
sqrt(f(half,half)*ro*A*(eff.length)~4/E/I)

u = zeros (half); ■'/, Initialize the modal matrix
for n = 1:half

% Normalize the eigenvectors for u 
alph(n) = sqrt(l/((e(: ,n)) ,*mass*(e(.: ,n)))); 
u(:,n) = alph(n)*e(:,n);

end

% Plot the first three mode shapes
figure(l)
plot(u(:,half))
figure(2)
plot(u(:,half-1))
figured)
plot(u(half-2))

7, Check to make sure the u matrix is "correct" 
p_squared = u'*reduced_stiff*u;

7. Velocity vector 
v = zeros(half,1); for m = l:half 

v(m) - vO - (vO/half*m);
end
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% Normalized velocity vector 
ada_dot = u'*v;

7. Normalized displacement vector 
for q = 1:half

ada(q) = ada_dot(q)/sqrt(p_squared(q,q));
end

% Modal Participation Factors 
for r = l:half

coef(r) = u(half,r)*ada(r);
end

% Print the MPF's to screen 
coef(half) 
coef(half-1) 
coef(half-2)

7 ;:: : '

■■■ : . ■ 

1 -1  ■

I " :

1 1 1
I I

V
: ■

■■ :

. .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



:-m' > X ■. V ■:':- ^ n ^ :- ^ - i y : '/A.' :̂~:,iYK'\i'yM-yy:'r- :;'i;"';, >.: ' ':■ -'.' ^ -
x ; - : J -V- -V! '  := -  - ' I "  • '  /  : ;  . j  ■'  ■ - ' •  • . ' :  ' : : . ; • •  ':
"'vr'--" :‘.-'i ' :■: •■'-■ ',: '. ' .'-. -  - /V ;  ̂ ,-

• 'v'.. 1 '
■:■■.. :

■ ■■■ '' - V ■:
t ^ v - ’v  ■, V-.

M - J\  ■"■•• ■
^ V :V  / - V  ■',
“L :; '•■ ■' ■••■'. •••'.- • \ •

s,: ;■:■■■ -

''■ '< .. ■'•' :.i "
. :. .  • 

" :■
hi'
!•■ ■■•V-i:"1'.
.v -  ••••

;:-.v " ’V

■CAV-"- : ■

■r ■ ",

| ;,:;

Wiy.ih-': 
■ 1' '

i .

i " '  “  •. '•
■'v-i ■ '

r ‘

:v, ' •■'V-' .v

W X

Appendix  F 93

F.2 ANSYS Code for 3-D Modal Verification 
Model

finish 
/clear 
/CWD,’D:’
/config,nres,10000

/TITLE, 3-D Modal Analysis Verification
/triad,off
/prep7

! Everything is in meters, kilograms, Newtons, seconds!

beam_length = 10e-2 
beam_width = le-2 
beamthick = le-2

beam_stiff = 100e9 

beam_dens = 1000 

beam_pr =0.3

! Young’s Modulus 

! Beam density 

! Poisson’s ratio

blc4,0,0,beam_length,beam_width,beam_thick ! Create geometry

et,l,solid45

mp,ex,l,beam_stiff 
mp,prxy,1,beam_pr 
mp,dens,1,beam_dens

esize,le-3 
Mesh geometry

Element type (Solid45) 

Assign material properties

Element size vmeshjalljall

v . .  . 

■■ :
j/-/!-;.;

finish
/solu

Y.>V..v

r ::

h.r-
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ANTYPE,2

da,5,all,all ! Constrain end of beam
M0D0PT,SUBSP,1 ! Subspace solver with one mode
EQSLvjFRONT ;
MXPAND,1, , ,0

MODOPT.SUBSP,1,0,0, ,0FF 
RIGID,
SUBOPT,8,4,5,0,0,ALL

solve
finish

/postl ! List solution
set,list
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- .  '=r

F.3 ANSYS Code for 3-D Transient Verifica­
tion Model

finish 
/clear 
/CWD, »D: »
/config.nres,10000

;  V : '
V I - - .  : .

■v-v.v ■■■; 

vv-::vvvw'i -V 
B - v / :

f B
-■■■ ■ V"

-  v
B BB
BBBB
B'Bv"

v

VjB ' ■:v 7 ■
‘ V . -

B B  ; ;

B - 1:
b b b ,
B'V

b v b ; '

■vvv
B b b ;.
77' ■: >

-  V;

'{■■A"

I B bB
' / . . .  . B

‘ B - ; B  B  V

/TITLE, 3-D Transient Analysis Verification
/triad,off
/prepT

! Everything is in meters, kilograms, Newtons, seconds!

beam_length = 10e-2 
beam_width = le-2 
beam_thick = le-2

beam_stiff = 100e9 

beam_dens = 1000 

beam_pr =0.3

! Young's Modulus 

! Beam density

! Poisson’s ratio

blc4,0,0,beam_length,beam_width,beam_thick ! Create geometry

et,l,solid45

mp,ex,l,beam_stiff 
mp,prxy,1,beam_pr 
mp,dens,1,beam_dens

esize,le-3

vmesh,all,all

finish

! Element type (Solid45)

! Assign material properties

! Element size 

! Mesh geometry

m  :::vv V ;707-7' ■ . . . . . . .

b b b - b b b v , .  b ,  ;
o B B B - .  B B o  : B

7‘BV:BBBBoBB'B1'. 7-7 -;vv
c- ‘ - i

V:. 7

' B.’B B .B  7
-  B. "B V

' : B  B '  v ; ;■ : v - v - v , v;.vv;: A'777;,-o;;7
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/solu

ANTYPE,4 
TRNOPT.full 
lumpm,0

da,5,all,all

nsubst,100,100,100 
autots.on 
neqit,100 
outres,all,all

! Force applied 
time,le-4 
timint.on 
kbc, 1
fk,3,fy,50
fk,7,fy,50
lswrite

nsubst,200,200,200 
autots,on 
neqit,100 
outres,all,all

! Free vibration 
time,le-3 
timint,on 
kbc, 1
fkdele,3,all 
fkdele,7,all 
lswrite

lssolve,1,2,1

FINISH

! Constrain end of beam 

! load stepping options

! load stepping options
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F.4 ANSYS Code for Modal Analysis Model 
- Top Strike

finish
/clear
/CWD.’D:’
/config.nres,10000

/TITLE, Modal Analysis 
/FILNAME,MA,0 
/triad,off 
/prep7

! Everything is in meters, kilograms, Newtons, seconds!

disk_radius = 20e-3 
disk_thickness = 9e-3

rod_length = 20e-3 
rod_radius = 2e-3 
free_length = 10e-3

rod_density = 2800 
disk_density = 1800

disk_young_mod = 8.4e9 
rod_young_mod = 73e9

mesh_size = rod_radius/2

! Point mass
pmass_length = mesh.size 
pmass_density = 8e6

interface_thickness = 0.38e-3 
interface_young_mod = 0.5e9 
interface_density = 1800

:'

■Jy :y': ' •-V:W;r> • •

A-.'-' . •
yyyy
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! Create disk geometry
blc4,0,(-disk_thickness),disk_radius,disk_thickness 
blc4,0,(free_length-rod_length),rod_radius+

...interface_thickness,rod_length

asba,1,2

! Create rod geometry
blc4,0,(free_length-rod_length),rod_radius,rod_length

blc4,rod_radius,-disk_thickness,interface_thickness 
...,disk_thickness

blc4,(rod_radius-pmass_length),(free_length- 
...pmass^length),pmass_length,pmass_length

asba,1,4

! Create point mass
blc4,(rod_radius-pmass_length),(free_length- 

...pmass_length),pmass_length,pmass_length

aglue,all

vrotat,all,,,,,,1,6,180,8 

et,l,solid92
'■ ■' i

!Interface
mp,ex,4,interface_young_mod
mp,prxy,4,0.33
mp,dens,3,interface_density

type.l 
mat,4 \
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esize,interface_thickness 
vmesh,2,30,4

! Disk
mp,ex,1, disk_young_mod
mp.prxy,1,0.33
mp,dens,1,disk_density

type,1 
mat, 1

esize,2*mesh_size 
vmesh,3,31,4

! Point Mass
mp,ex,3,rod_young_mod
mp.prxy,3,0.33
mp,dens,3,pmass_dens ity

type,1 
mat ,3

esize,mesh_size/2 
vmesh,1

! Rod
mp,ex,2,rod_young_mod
mp,prxy,2,0.33
mp,dens,2,rod_density

type,1 
mat, 2

esize,2*mesh_size 
vmesh,4,32,4 
vmesh,5,29,4
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finish
/solu

! Modal Analysis options

ANTYPE,2 
MSAVE,0 
MODOPT,SUBSP,1 
EQSLV,FRONT 
MXPAND,1, , ,0 
LUMPM,0 
PSTRES,0
MODOPT,SUBSP, 1 , 0 , 0 ,  , OFF 
RIGID,SUBOPT,8,4,8,100,5,ALL

! Constrain system

da,16,all,all 
da,35,all,all 
da,54,all,all 
da,73,all,all 
da,92,all,all 
da,111,all,all 
da,130,all,all 
da,149,all,all 
da,l,symm 
da,2,symm 
da,4,symm 
da,6,symm 
da,142,symm 
da,156,symm 
da,151,symm 
da,147,symm

solve

finish
/postl
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set,list 
set,first 
pldisp
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F.5 ANSYS Code for Osseointegration Loss 
- Dental

finish 
/clear 
/CWD, ’D: ’ .
/config.nres,10000

/TITLE, Osseointegration Loss - Dental 
/FILNAME,Osseo,0 
/triad,off 
/prep7

! Everything is in meters, kilograms, Newtons, seconds!

disk_radius = 20e-3 
disk_thickness = 9e-3

rod_length = 20e-3 
rod_radius = 2e-3 
free_length = 10e-3

perio_length = 20e-3 
perio_radius = le-3

rod_density = 2800 
disk_density = 1800

! Mass of Periotest rod is 9.4 grams
perio_density=0.0094/(3.14*perio_radius*perio_radius*perio_length)

disk_young_mod=8.4e9
rod_young_mod=73e9
perio_young_mod=200e9

! Osseointegration Loss 
osseo_depth = 0.2e-3

'
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fric_coef = 0.3 
mesh_size = rod_radius/2

interface_thickness = 0.38e-3 
interface_young_mod = 0.5e9 
interface_density = 1800

; ! Disk and post geometry 
blc4,0,(-disk_thickness),disk_radius,disk_thickness 
blc4,0,(free_length-rod_length),(rod_radius+

...interface_thickness),rod_length

asba,1,2
:

k,20,0,free_length-rod_length 
k ,21,rod_radius,free_length-rod_length 
k ,22,rod_radius,-osseo_depth 
k,23,rod_radius,(osseo_depth/5) 
k,24,rod_radius,free_length-2*perio_radius 
k,25,rod_radius,free.length 
k,26,-0,free_length

■ "  V

a,20,21,22,23,24,25,26 

! Interface geometry
blc4,rod_radius,-disk_thickness,interface_thickness,

...(disk_thickness-osseo_depth) 
blc4,rod_radius,-osseo_depth,interface_thickness,osseo_depth

■ v- :aglue,1,2
aglue,5,3
aglue,4,2
aglue,1,3

vrotat,all,,,,,,20,26,180

k,41,rod_radius,free_length k,42,rod_radius,free_length,-.001

. V i ' -  :
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! Periotest rod geometry
cyl4,0,-.5*perio_radius,perio_radius,,;, ,perio_length
blc4,0,perio_radius,-2*perio_radius,-4*perib_radius,perio_length
vsbv,9,10

cskp,11,0,41,42,43 
wpcsys,,11

k, 43,rod_radius,free_length+.001

Appendix F 104

csys,0 
wpcsys,,0

et,1,solid92

!Interface
mp,ex,4,interface_young_mod
mp,prxy,4,0.33
mp,dens,4,interface_density
mp,mu,4,fric_coef

! Mesh size depending on amount of loss 
type,1 
mat, 4
*if,(osseo„depth/5),LT,(3/4*interface_thickness),THEN 
aesize,16,osseo_depth/4 
aesize,36,osseo_depth/4
*elseif,(osseo_depth/5),GE,(3/4*interface_thickness) 
aesize,16,(3/4*interface_thickness) 
aesize,36,(3/4*interface_thickness)
*endif
esize,interface_thickness

vmesh,3 
vmesh,7 : 
vmesh,1 
vmesh,5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix F 105

! Disk
mp,ex,1,disk_young_mod 
mp,prxy,1,0.33 
mp.dens,1,disk_density

type,1 
mat, 1

esize,2*mesh_size 
vmesh,2 
vmesh,6

! Rod
mp,ex,2,rod_young_mod
mp,prxy,2,0.33
mp,dens,2,rod_density

type,1 
mat, 2

! Mesh size depending on amount of loss 
aesize,22,mesh_size/4
*if,(osseo_depth/5),LT,(3/4*interface_thickness),THEN 
aesize,20,osseo_depth/4 
aesize,40,osseo_depth/4
*elseif,(osseo_depth/5),GE,(3/4*interface_thickness) 
aesize,20,(3/4*interface_thickness) 
aesize,40,(3/4*interface_thickness)
*endif
esize,2*mesh_size 
vmesh,4 
vmesh,8

! Perio
mp,ex,3,perio_young_mod
mp,prxy,3,0.33
mp,dens,3,perio_density
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type,1 
mat, 3

aesize,55,mesh_size/4 
esize,mesh_size 
vmesh,11

! Periotest Impact
et,2,contal74
keyopt,2,7,l
keyopt,2,5,l
R,2,0,0,0.10,0,0,0
RMORE,0,0,0,0, 0,0
RMORE, 0 ,'■,,, ,
RMORE,,,0,0, ,
RMORE,10

type,2
real,2
allsel,all
asel,s,area,,55
nsla,s,l
esurf
allsel.all

et,3,targel70 
type,3 
allsel,all 
asel,s,area,,22 
nsla,s,1 
esurf
allsel.all

! Osseointegration 
R,3,0,0,0.10,0,0,0 
RMORE,0,0,0,0, 0,0 
RMORE,0,,,, ,
RMORE,,,0,0, ,
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RMORE,10

type,2 real,3 
allsel.all 
asel,s,area,,20 
nsla.s,1 
esurf
allsel.all

type,3 
allsel.all 
asel,s,area,,16 
nsla,s,l 
esurf
allsel.all

R,4,0,0,0.10,0,0,0 
RMORE,0,0,0,0, 0,0 
RMORE,0,,,, , 
RMORE,,,0,0, , 
RMORE,10

type,2 real,4 
allsel.all 
asel,s,area,,40 
nsla,s,l 
esurf
allsel.all

type,3 
allsel.all 
asel,s,area,,36 
nsla,s,l 
esurf
allsel.all

finish
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/solu

ANTYPE.4

TRNOPT.full 
lumpm,0

! Constrain system

da,11,all,all 
da,31,all,all 
da,1,symm 
da,2,symm 
da,4,symm 
da,6,symm 
da,29,symm 
da,34,symm 
da,37,symm 
da,44,symm 
da,59,uz,0 
da,59,uy,0

! Transient Analysis Options

time,0.00045
timint.on
kbc,l

allsel.all 
vsel,s,volu,,11 
nslv,s,l
IC,all,ux,,-0.200 
allsel.all

nsubst,750,750,750 
autots.on 
neqit,100 
outres,all,all
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lswrite 

lssolve,1,1,1

FINISH

! Store displacement data of nodes 
! down center of aluminium post

/P0ST26
FILE,'osseo','rst’,’.'

SOLU,191,NCMIT 
STORE,MERGE :
FILLDATA,191, ,,,1,1 
REALVAR,191,191

NS0L,2,44075,U,X 
STORE,MERGE 
XVAR.l

NS0L,3,44115,U,X 
STORE,MERGE

NS0L,4,44117,U,X 
STORE,MERGE

NS0L,5,44119,U,X 
STORE,MERGE

NS0L,6,44121,U,X 
STORE,MERGE

! Save time history variables to file data_out.dat

*GET,size,VARI,,NSETS 
*DIM,DISP_VAL,TABLE,size,5

. : : : ■
.■ :

■
■■ ■■ '■ ■
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VGET,DISP_VAL(1,0), 1 
VGET,DISP_VAL(1,1) ,2 
VGET,DISP_VAL(1,2) ,3 
VGET,DISP_VAL(1,3) ,4 
VGET,DISP_VAL(1,4),5 
VGET,DISP_VAL(1,5),6

*CF0PEN,0p2_mm_osseo_out,dat
*VWRITE, ’ TIME ’,» TOP»,' DOWN. 1 ’, ’D0WN.2', ' D0WN.3 ’, »D0WN.4 •:<
•/.14C °/t14C %14C 7.14C 7.14C '/.14C
*VWRITE,DISP.VAL(1,0),DISP.VAL(1,1),DISP.VAL(1,2),DISP.VAL(1,3), 

...DISP_VAL(1,4),DISP_VAL(1,5)
'/.14.5G 7,i4.5G %14.5G 7.14.5G °/,14.5G '/.14.5G 
*CFCLOSE

7;;

■■■■■■■■■
■ ■ ■
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