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: :Abstract

| .‘With kt‘he increased’use of percutaneous implants for head and neck re; :
: Cohstructio‘h there is an ongoing need for clinicalkly efficient techniques to |
‘ mbnitor ﬁxt‘ure integrity.‘ Mechanical impact testing is gaining popularity
és it does not suffer from the limitations associated with conventional diag-
ﬁostic techniques. This study documents a Finite Element ‘Analysis which
simulates an impact test using contact elements in a transient analysis. The
fnodel coﬁtains a specified intérface between the simulatéd implant and bone
which allows analysis of potenfial clinical situations including loss of osseoin-
: tegration, loss of bone margin height and development of a soft. connective
tissue layer at the bone-implant interface. Three important resulﬁs were de-

-, ‘termined:

- Clinical changes in the integrity of the interface
should be detectable from the frequency response changes
" The higher frequency visible on the raw accelerometer

- signal appears to be a second natural frequency of the system -

- The second natural frequency shows promise for providing

+ additional information as to the condition of the illterface‘
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Chapter 1

Introduction

1.1 Introduction and Literature Review

Bone anchored implants are increasingly being utilized in a broad range of
oral and extraoral reconstructions as foundations for dental arches, portions
of the head (ears, eyes, noses) and as part of a Bone Anchored Hearing Aid
(BAHA) system. A typical implant and abutment system used for percuta-
neous reconstructions is shown in Figure 1.1. These implants are typically
3-6 mm in diameter and range in length from 3-4 mm (BAHA and facial
applications) to 7.- 20 mm (dental reconstructions). The quality of the sup-
porting bone can be assessed qualitatively or through bone density studies
from radiographs. The condition of the bone-implant interface, however, in-
cluding the implant threads and the adjacent tissue undergoing remodelling,
can have a dramatic effect on the success or failure of the system and is much
more difficult to evaluate. The direct structural and functional connection
between ordered, living bone and the surface of a load-carrying implant is
defined as osseointegration [1]. This process begins immediately after the
implant has been installed. If this does not occur, the development of con-
nective soft tissue in the bone-implant interface may begin and can lead to
failure of the implant. The status of the implant-bone interface during this -
- crucial time is extremely important in evaluating when the implant can be -
- put into service (loaded) or whether further healing is necessary. In addi-
tion, over time osseointegration can deteriorate and/or the degree of bone
in contact with the implant surface can reduce. As a result of these poten-
tial clinical conditions, there is an ongoing need to monitor the “health” or
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" CHAPTER i

integrity of the bone-implant interface from initial installation throughout
the life of the implant. Although implant survival rates are high in many
applications, it is vital to be able to determme if any change in the health of
this mterface occurs [2,3].

Figure 1.1: Typical Implant/Abutment System [1]

. Conventional diagnostic techniques, including radiography and magnetic
resonance imaging are limited as a means of determining the status of osseoin-
tegration. While they are able to evaluate bone quality, implant shielding
causes poor resolution at the implant-tissue interface limiting the ability to
monitor this vital area [4,5). Additionally, using radiography, the changes
in bone are often well advanced before becoming evident on radiographic
‘images. Other techniques such as measuring removal torque are too inva-
sive to be used in either the operating room or for clinical visits [6]. - As
a result, dynamic mechanical testing methods have been proposed and are
presently in use. These mechanical techniques are all, in one form or another,
based on determining the resonant frequency of the implant-tissue system.
As the resonant frequency is dependent on the manner in which the implant
is supported by the surrounding biological tissue, changes in:this resonant
frequency (perhaps coupled with changes in the internal damping) should
be linked to changes in the status of this interface [7]. For instance, if the

Reproduced with permiésion of the copyright owner. Further reproduction prohibited without permission.




CHAPTER 1 | | ‘ 3

- bone stiffness increases, the implant will be held more securely therefore the
~ frequency should go up. If there is a loss in bone margin height the implant
will be less secure therefore the frequency should go down. This, of course,
assumes that there are no other changes in the implant system that may
overshadow those in the interface.

The only commercially available system developed specifically for osseoin-
tegrated implant assessments is the Osstell®. This system employs a trans-
ducer mounted on the implant or the abutment. The transducer excites
the system over a range of frequencies and simultaneously monitors the re-
sulting response to determine the resonant frequency of the implant-tissue-
transducer system. The results of several investigations using this resonance
frequency analysis (RFA) system have reported varying success in identify-
‘ing changes in the implant status [8-12]. One of the major drawbacks to the
Osstell® system is that a large majority of the oral based implant restora-
tions use non-recoverable, cemented, fixed prostheses and the status of the
implant cannot be monitored once the prosthesis is in place.

Alternative techniques to the Osstell® system are based on an impact
technique. Early attempts using a transient approach are outlined in the
thesis by Meredith [13]. More recently, Elias, Brunski and Scarton pro-
posed the use of an instrumented impact hammer to evaluate the mechanical
impedance variations caused by interface changes [5]. Huang and co-workers
also used an impact hammer to excite the implant-abutment unit [14].. The
resonant frequency of the freely vibrating system was determined from the
acoustic signal obtained from a microphone mounted in close proximity to
the abutment.

An alternate system, the Periotest®, utilizes a handpiece containing an
accelerometer and a signal processing unit to monitor and interpret implant
motion [15,16]). The Periotest® hand piece contains a metal rod, of approx-
imately 9 grams, that is accelerated towards the implant-abutment via an
electromagnet, as depicted in Figure 1.2 [17]. The acceleration response of
the rod, while in contact with the implant-abutment, is measured using the
accelerometer attached to the rear of this rod. The Periotest® was originally
developed to measure the mobility of natural dentition but numerous inves-
tigators have considered its application for implants with varying degrees of
success [18-20]. It appears some of the inconsistencies are due to variations
in the protocol for using the system and some from the imprecision in the
processing of the accelerometer signal [21]. However there are benefits to this
system. The Periotest® hand piece provides a convenient means to dynami-
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. CHAPTER1

cally excite the implant-abutment system in areas that may be too cramped
to utilize RFA or impact hammer devices. Also, the Periotest® handpiece
can be used on implant-abutment systems with non-recoverable, cemented
restorations. As well, the output signal from the accelerometer may contain
_information unavailable to the RFA systems which can be more completely
‘utilized to determine the status of the interface layer. For example, the hand
piece has recently been adapted for use in a system designed to measure the
damping capacity of materials [22].

F’robulsion Coil .- Measuring Coll

- Slarting Button Support Accelerometer

Lh‘lagnet \

- : ‘ylmp‘éc\ Rod -

Signal Processing Unit -

Figtlre 1.2; Periotest® Schematic

In the Periotest® system, the raw accelerometer signal is filtered and
processed to yield a quantitative measure of mobility related to the Miller
- Mobility Index for natural dentition [15]. An example of the signal before
and after conditioning is shown in Figure 1.3 with a schematic diagram of
the corresponding motion of the implant and rod shown in Figure 1.4. The
time required for the filtered accelerometer signal to return toits zero value
has been termed the contact time, CT, depicted in stages 1 through 3 in
Figure 1.4. In the processing unit of the Periotest® this contact. time is used
to calculate the so-called Periotest® Value (PTV).
If the system is modelled as'a single degree of freedom’ vibration system,
the contact time can be thought of as a half period and the natural frequency
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Yax 1~*’f"‘! .:

[ Raw Accelerometer Signal
--«-- Conditioned Periotest Signa!

Stage 1 Stage2  Stage3  Stage 4

Figure 1.4: Schematic o.f‘ Resulting Motion of Implant and Rod During A
Normal Strike ‘ ‘
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~of the implant-tissue-Periotest® rod combination is sifnply

1 11)

P=37cr
In terms of the natural frequency, the PTV can be expressed as
: } 1 k o
PTV = 50000 <——) —21.3 . : (1.2)

Figure 1. 3 shows that there can be con31de1able differences between the

raw accelerometer signal and the conditioned signal from the Periotest®.

~ While these differences may not be important for natural dentition as the

range of PTV values is relatively large (-6 to 50), they have more significance

- for implant-abutment systems where the majority of results have PTV’s over
a much more limited range (-8 to 2).

The purpose of the present work is to further investigate the possibility of'
using this impact technique to more precisely monitor the status of the bone
- implant interface. To accomplish this, a more detailed understanding of

- how the geometric and clinical variables affect the response is necessary. For
‘instance, do variables such as osseointegration levels and loss of bone margin
height have an appreciable effect on the overall response? To investigate
these issues, the raw accelerometer signal (see Figure 1.3) will be more fully
investigated as it appears to have higher frequency components that could be
potentially used to glean more information about the “health” or integrity of
the implant interface. There has been some debate as to what this apparent
higher frequency represents. Elias [5] stated it was due to partial separation
between the impact tool and the implant, resulting in a “bouncing” effect. -
It has also been hypothesized this frequency is merely electrical noise on the °
~accelerometer signal or the second mode of vibration of the implant-tissue -
~system. This will be investigated in the following chapters to understand
‘the source of this component of the signal and if it can be used to better
understand the status of the interface. : ‘

In order to interpret the signal from the accelerometer and relate it to the
condition of the interface, it is necessary to understand the role of each of
the components of this dynamic system and its effect on the output signal.
To this end, Finite Element Analysis (FEA) is used as it allows a means
to dynamically model the implant-abutment with considerable detail, This,
includes modelling the supporting structure including the introduction of a -
specific interface layer that can have different properties. ‘ ‘
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~ FEA has been used by numerous researchers to investigate the implant-
tissue connection. Many studies are concerned with stress and strain in the
interface layer. The goal can be to determine the maximum strain due to
occlusal loading [23-30] or to optimize implant design in order to minimize
stress [31-36]. The other vein of research focuses on dynamic modelling which
attempts to find relationships between natural frequencies and the surround-
ing conditions of the implant. For example, Huang et al. [37] utilized modal
analysis of the implant-tissue system to investigate how bone type and bone’
~ density affects resonant frequency. Williams et al. [38] utilized force harmonic
* response and localized impulse excitation to improve a model investigating
* the effect of bone type on natural frequency. In the current work, FEA is
used to produce a more thorough dynamic model of the implant-abutment
by including the impact of the Periotest® rod with the implant.

1.2 Thesis Outline

Chapter 2 details how the salient features of the FEA model were derived
from the in vivo and in vitro situations, beginning with a brief overview
of the components and placement of percutaneous implants. This leads to
a discussion on the characteristics of the implants and abutments that are
- being. investigated in vivo and the typical signals acquired during patient
testing. A comparison between the filtered Periotest® signal and the raw
accelerometer signal is also included. A description of the in vitro model and
testing apparatus is described and compared to the in vivo situation.
Chapter 3 focuses on the finite element simulation of the ‘in vitro model.
An overview of FEA basics is followed by a simplified numerical model used
to evaluate the plausibility of two natural frequencies being visible on the
accelerometer signal. This leads to a review of the process used to verify
the software produces accurate results in both two and three-dimensions, in-:
. cluding comparisons to analytical and experimental results. The validity and
- usefulness of two FEA models (a model using modal analysis and a model
. using impact analysis) is debated and the superior mode! is chosen. This
requires an overview of certain techniques utilized by the FEA software in-
cluding modal analysis solvers, transient analysis solvers and contact element
theory. The most appropriate model is verified using extensive comparisons
to analytical and in vitro results. ‘ v .
Chapter 4 simulates three, more complex cases which would be difficult
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. CHAPTER1 8

- to simulate in witro. These include determining the response to a loss of
' osseointegration, a decrease in bone margin height and a general change
~in implant interface stiffness simulating the development of connective soft -
. tissue. The results of these three cases are then discussed with a view to '
_better understand the in vivo situation. ' ;
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Chapter 2

Derlvatlon of the Sallent FEA
‘Model Parameters

In order to finally develop a numerical model which simulates the in vivo
situation, an'in vitro experimental model was developed. This was done to
identity the salient features to be included in the finite element model.

2.1 Percutaneous Bone Anchored Implants

The percutaneous implant system is made up of three major components:
the fixture, the abutment and the connection screw (Figure 2.1). For clarity,
the term “fixture” and “implant” will be used interchangeably in this thesis.
These components are generally made from titanium, with the fixture having
a defined finish and geometry thought to create a firm, intimate and lasting
connection with the host bone [2]. The general procedure for installation
begins with placement of the fixture. The fixture is installed by drilling a -
hole into the host bone, sized according to the manufacturer’s specifications,
into which the fixture is inserted to the required depth. Depending on the
application, the fixture can be covered with skin or a healing abutment can
be attached and the system left to heal for a period of weeks or months,
depending on the clinical practice. ‘Once the fixture is deemed ready, the
working abutment and prosthesis are attached and loading begins.

‘ During this healing period, it is generally believed that a process of os-

- seointegration takes place. Osseointegration has been defined as a process

~of bone ingrowth at the implant surface to create a secure bond with the
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CONNECTION
 SCREW

-~ SUPPORTING
e MATERIAL”“”‘\ .

K AT g i
: Figure 2.1:. Components of a Typical Impla,nt Sysﬁem ‘

bone [39]. This processes creates a bond which allows tensile forces to be
sustained between the fixture and the surrounding tissue. This greatly in- -
- creases the effective stiffness of the implant-tissue system allowing the im-
- plant to withstand greater loads without threatening the integrity of the
- fixture. ' - |
~ Figure 2.2 has been included in order to clarify various descriptive terms
used herein. The abutment height is the vertical length of the abutment
extending past the top of the implant. Engagement length is the vertical
length of the implant that is surrounded by bone. The interface layer is
a thin layer which simulates the implant threads and the adjacent tissue
undergoing remodelling. Striking height is the vertical distance between the
surface of the bone and the point of contact between the impact rod and the’
~abutment,. . ' : :
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 IMPACT ROD —

ABUTMENT -\ :

’ O : - ; ‘ | KRR L LA L) “r “
. ABUTMENT | : .
. ABU STRIKING

: HEIGHT o~ IMPLANT HEIGHT
\ ENGAGEMENT
LENGTH E
AR
‘ v | /
INTERFACE-/ |
LAYER
| — e
~ IMPLANT DIAMETER

Figure 2.2: Schematic of Implant System Including Important Terms

2.2 Validation of the In Vitro Model

While there are a plethora of implant systems, simulations were focused on
the Branemark implant systems, widely used in typical oral restorations and
BAHA placements, to gain an appreciation of the range of variations expected
in ‘clinical situations. For the oral case a 9 mm long, 4 mm in diameter
implant was chosen along with a 10 mm abutment, since a prosthetic tooth
is typically about 1 em high. The extra-oral case used a 4 mm long, 3.75 mm
in diameter implant with 5 mm abutment, typical for the BAHA system.
Figure 2.3 depicts the typical response of an oral implant-abutment sys-
tem to a Periotest® strike at the top of the abutment. The two curves rep-
resent the raw accelerometer signal and the conditioned Periotest® signal.
The important differences include the filtering and subsequent elongation of
the contact time of the processed signal.
The conditioned signal has been filtered to remove the higher frequency
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— Raw Accelerometer Signal -
----- Conditioned Periotest Signal

Figure 2.3: Output from an Impact Test In 'Vivo

seen in the raw signal. This allows the Periotest® processing unit to calculate
~ the Periotest® Value (PTV), which is a measure of the contact time as out-
lined in the introduction. This filtering, however, elongates the contact time,
artificially reducing the stiffness of the supporting tissue. Also, this elon-
gation is not constant and appears to be most prevalent at low PTV (high
stiffness) which is the case for implants. Since the conditioned signal is both
altering the contact time and eliminating potentially useful information, the
unadulterated signal was saved during all in vivo tests using a multi-channel
A/D data acquisition system (InstruNet Model 100 A/D 8 Bit I/O, GW
Instruments Inc, Somerville, MA, USA) sampling at 167 kHz. The signals
were later processed in MATLAB® (The MathWorks Inc, Natick, MA, USA)
using custom FFT software to determine the frequencies present.
Since the host bone has constantly changing material properties due to
ongoing remodelling, it would be difficult to verify a numerical simulation
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using the in vivo situation. However, a material named FRB-10 has a modu-
lus (8.4 GPa) in the reported range of cortical bone (5 - 20 GPa) [39]. Thus,
to assist in the development of a measurement protocol and the validation
of analytical and numerical models, the in vitro experimental model shown
schematically in Figure 2.4 was developed using this material. This model
allowed the majority of the variables affecting the response of the implant-
abutment to a impact test to be varied to determine how specific variables
affect the response of the system.

- ImpactRod | 4R | 4
: ‘-*—————*RL ‘

- +Aluminum Post

y

Acrylic Interface Layer

b

O

Figure 2.4: Schematic. of Simplified In Vitro Mddel

The in vitro model is approximately the size of an oral implant-abutment
system. It consists of an aluminum post fixed with acrylic into the center
of a disk of FRB-10(Measurements. Group Inc, Raleigh, NC, USA). The
~ mechanical properties and sizes of these components are given in Table 2.1.
- The thickness of the interface (0.38 mm) is relatively large in order to account
- for the root diameter of the implants threads as well as the tissue in close
proximity to'the implant.

The disk was clamped in a circular trough which was in turn mounted
in a clamping device that also supported the clamped Periotest® handpiece
(Figure2.5). The clamped handpiece was mounted on a microscope stage to
allow adjustment of the position of the rod relative to the abutment.
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Figure 2.6: Output from an Impact Test In Vitro
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Table 2.1: Model Properties and Dimensions

Post Radius (P,) 2 mm Post Height (P;,) 20 mm
Abutment Height (Aj) 10 mm Engagement Length (E.) 9mm
Interface Thickness (I;) 0.38 mm Interface Height (I5) 9 mm

- Disk Radius (D,.) 20 mm Disk Height (D) 9 mm
Periotest® Rod Radius (R,) | 1 mm | Periotest® Rod Length (R;) | 20 mm
Component Young’s Poisson’s Ratio Density
Modulus (kg/m?)
| (GPa)
FRB Disk 8.4 ‘ 0.31 1800

Aluminium Post 73 0.32 2800
Acrylic Interface Layer 0.5 0.30 1800

Periotest® Rod 200 0.30 9.4 grams

A typical response of the in vitro model to an impact at the top of the
post is shown in Figure 2.6. Comparison of this response to that of the
in vivo response shown in Figure 2.3 suggests that the signals are similar
as both appear to be made up of a half period of a low frequency with
a higher frequency superimposed. - Signals were analyzed using the custom
FFT software and produced the results shown in Table 2.2,

Table 2.2: Frequency Response Comparison for In Vive and In Vitro

Experiment Low Frequency (Hz) | High Frequency (kHz)
In Vivo - 10mm abutment 1900 27.0 ‘
9mm implant, 4mm diameter ‘
In Vitro - 19 mm post 2100 ‘ 30.0
‘9mm engagement, 4mm diameter

-As the comparisons were both qualitatively and quantitatively similar,
the. in vitro model appears to capture the essence of the in vivo response.
However, the in vitro model is limited in its ability to simulate more complex
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.~ cases o fnlure found in vivo. Thus a ﬁmte element model was created Wthh
~could be verified using the in vitro model and then expanded to simulate these
-in vivo failure situations. The response of the in vitro model to impact tests
‘at five striking heights, starting at the top and decreasing in 1 mm intervals,
were recorded in Table 2. 3 for use in the verlﬁcatlon process described 'in . .

F’VI‘able 2.3: Frequency Respori_se at Five Striking Heights for In Vitre Mode‘l-: ‘

Striking Height (mni) Low Frequency (Hz)

IIlgh Flequency (kIIz)

10 (Top) | 1790 30.8
| 1910 27

2077 23

2307 105

2492 38.9
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Construction and Validation of
the Finite Element Model

~As described above, the use of impact testing for implants is effective for
- determining changes in the supporting structure by measuring changes in -
. the natural frequency. While essentially all the previous studies assume the
“response of the implant - abutment is equivalent to that of a one degree of
freedom vibrating system, the actual response indicates what appears to be a
second frequency. In order to determine if this second frequency may be due
to excitation of a higher mode of vibration which may be useful in evaluating
the health of the implant, finite element analysis was utilized.

After a brief overview of the finite element method, a simplified finite
element model of the system is developed and verified against an analyti-
cal solution to evaluate whether or not higher modes could be excited and
would be distinguishable in the impact test. As it appears this is the case,
a more extensive finite element model was developed to explore the utility
of the higher mode. Two techniques, a modal and a transient analysis, are
compared to evaluate which method yields the better results when compared
with the in vitro and in vivo situations.

3.1 Finite Element Analysis Basics

FEA is a process where the original continuous structure is divided into many
smaller, finite elements. Each of these h-elements is a linear or quadratic
system described by the element’s governing equations. The elements are

17
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defined by nodes, generally found on the ends or corners of the elements.
Consecutive elements share nodes along common boundaries creating conti-
nuity across the entire body. A change in one element therefore affects the
initial or boundary conditions of the surrounding elements. By minimizing
the internal energy. of the system it is possible to determine the final con-
figuration of the elements given the initial and boundary conditions of the
original body.. Appendix A contains a simple examplo to illustrate the FEA
method.

Although FEA has some distinct advantages over analytical techniques,
one must be aware of its limitations. For example, it is advantageous that
material properties, such as Young’s modulus, density and Poisson’s ratio,
are:“built into” the elements. Analytical methods, in the case of vibrations

. for instance, may require approximations for spring stiffness or inertial prop-

- erties. Using FEA these properties are calculated during the solution phase

- s0 they are accurate for the input geometry and material properties of the
elements. However, there is the matter of the number of elements used to dis-
cretize the geometry. Consider a rigidly fixed, three-dimensional cantilever
heam with a square cross section that is loaded vertically at the free end. Al-
though a single 3-D brick element can accurately capture the geometry of the
model, it will not produce the analytically expected deflections. It requires
a fine discretization to capture the changing slope of the beam. However,
the more elements, the larger the global stiffness matrix, which has a direct
correlation to processing time. This is analogous to a Fourier Series approx--
imation. The more higher order terms that are included, the more accurate
the solution but with increased calculation difficulties. Therefore, one looks
to find the optimum balance between accuracy of solution with processing
time. This process is generally termed “testing for convergence”. By in-
creasing the number of elements and comparing to the previous solution, one
can determine the minimum required number of elements to come within a
prescribed criterion of the converged solution. Fewer elements will result in
high amounts of solution error while more elements will result in additional
processing time, Testing for convergence is a necessary step in any finite
element analysis if the results are to be trusted. These concepts are used in
the following section while investigating the higher frequency plesent in the
Periotest® accelerometer signal.

‘Reproduced With permission of the copyright owner. Further reproduction prohibited without permission.
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3.2 Approximate Analysis of Periotest® Acé
celerometer Signal |

To evaluate whether or not the higher frequency evident in the raw accelerom-
eter signal could be due to excitation of an additional natural frequency, an
approximation of the system was used to estimate the modal participation
factors of the first three modes. As the completely analytical analysis of the
transient loading of a cantilever with a point mass is quite complicated, the
system was instcad broken into a numbcr of beam segments forming the dp-
proximate lumped mass model illustrated in Figure 3.1. The details of this
method are given in Appendix B. Table 3.1 compares the first three natural
frequencies of a rigidly fixed cantilever (M = 0 and k; — o0) solved both
analytically and using finite element method, showing that the finite element
system converged to the solution of the continuous system:

_ (8L | B

Pn="on \ pAL?

Hz (3.1)
where p,, is natural frequency of the nt* node, 3L is a constant dependent on
the desired mode [40], E is Young’s modulus of the cantilever, I is the second
moment of area about the neutral axis, L is the length of the cantilever, A
is:the cross sectional area and p is the density of the material.

Table 3.1: Natural Frequency Comparison of Continuous and Finite Systems

System First Natural | Second Natural | Third Natural
Frequency (Hz) | Frequency (Hz) | Frequency (Hz)
Continuous 286 1791 5014
Finite 284 1780 4985

The results show the first three modes of a 200 degree of freedom (DOF)
model converged to be within 0.6% relative error for the case with the support
being rigid and the free end having no mass.

Having shown the finite DOF solution converges to the analytical solution
for a simple cantilever, this method was expanded to the case of an elastically

- supported beam with a point mass, with the assumption that the solution
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L L
S sy : ‘
o V4 - L=10cm ;
Dk, k, Pk, Pk, K, p = 2800 kg/m?
' E=73GPa
] =12.666 mm?
A =12.566 mm?

* Figure 3.1: Model Approximating Elastically Supported Beam with Point
Mass ‘

would again converge to the continuous system solution. In this case M was
increased to 13 times the mass of the beam to simulate the mass of the impact
rod and k, was decreased until the first two mode shapes were rigid body -
modes, as predicted by Hurst {41]. The first three resultant mode shapes
are depicted in Figure 3.2. Again the solution converged below 1% with
200 DOF. Using modal superposition for the transient impact, the modal
‘participation factors (MPF) for the first three modes, shown in Table 3.2,
indicate that the first mode had an MPF 24 times that of the second and
1400 times that of the third. ‘ : :

Iy
v
i

; ‘/:..} ‘y‘ k

i Flrst Mode Shape " Second Mode Shape ‘ Third Mode Shape

ey Y.

"E‘igure 3.2: First Three Expected:Mode Shapes

,As a result, it is expected that the second mode of vibration would llave .
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Table 3.2: Modal Participation Factors for First Three Natural Frequéncies

Natural Frequency MPF
1st 3.02x107*
2nd —-1.26x1073
3rd 2.21x107°

a smaller amplitude on an accelerometer signal than would the first. As well,
the participation of the third (and subsequent) natural frequencies would be
so minor, relative to first mode, that they could be reasonably neglected.
The results from this approximation suggest that the higher frequency could
plausibly be the second natural frequency and explains why other modes are
not observed. The development of a realistic finite element model should
then allow a more thorough examination of these modes and how they are
affected by changes in the supporting structure.

3.3 Analytical Verification of Finite Element
- Model |

As the first and possibly second natural frequencies of the implant struc-
ture during an impact test are under investigation, a verification process was
undertaken to ensure the finite element package (ANSYS 7.1, ANSYS Inc,
Canonsburg, PA, USA) produced realistic first and second natural frequency
results for a simple case that could be solved analytically before constructing
more realistic models. It was decided of the four solvers applicable to vibra-
tional analysis (modal, harmonic, spectrum and transient analysis) only the
modal and transient analyses would be compared to the analytical solution.
Harmonic analysis was not considered since it would utilize the same model
as modal analysis but does not conveniently produce mode shapes. Spectrum
analysis was not considered since the resultant stress field was not of interest
to this research.

The cantilever seen in Figure 3.3 was used to verify the FEA package.
The geometry and material properties were selected to yield an analytical
solution with a first natural frequency in the same order of magnitude as the
in vivo and in wvitro results shown in Table 2.2 yet meeting the “long and
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L slender” assumption used for the analytical §oluti6n (Thomson [42])

\2

L=10cm

' \E=100GPa
| A=1cmx1em
o = 1000 kg/m?

ey »__Figure 3.3: Finite Element Representation df Beam Used for Verification

~Table 3.3: Theoretical First':and Second Natural Frequencies..vof Veriﬁcatio:nr

~Model
- BL | Frequency (Hz)
First | 1.875 1615 -

Second | 4.694 10123 -

o Table 3.3 contains the first two natural frequencies predicted by
- Equation (3.1) with the mode shapes seen in Figure 3.4 and described by:

_ y (%) = cosh (%?3) —co:"s_ ((—ﬂ—f—)f> —0 (sinh <(ﬁé—)—g‘) +sin<@_§iz?

where o = 0.7341 for first mode and 1.0185 for second mode [40]. - These
' frequencies and mode shapes will be compared to the results from the modal.
. and transient finite element models detailed below.
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First hode ‘ | Second Mode

‘Figure 3.4: First and Second Theoretical Mode Shapes of Verification Model

3.3.1 Modal Analysis Verification

 Modal analysis is a method of determining the natural frequencies and mode

- shapes of a given structure. The finite element method: is similar to the
analytical method of modal analysis with some slight changes to decrease
processing time.

While ANSYS has a number of solver types that can be chosen from for
modal analysis, the subspace method was used for this research. The sub-
space method is the most robust of the solution options since it does not use
master nodes to speed up the solution process, thus it reliably converges to
a solution. The basic subspace algorithm is outlined in Appendix C, with
further details in Bathe [43] and Wilson [44]. In this method, an eigenvalue

~ problem consisting of the mass and stiffness matrices is solved to produce

© the natural frequencies (eigenvalues) and mode shapes (eigenvectors) of the -
structure. The difference from the analytical method is that the entire eigen-
value problem does not have to be solved. It is possible to solely extract
the first few frequencies, saving huge amounts of processing that would be
required to solve the full problem.

The model shown in Figure 3.5 was created for the modal analysis verifi-
cation using the dimensions in Figure 3.3 with the left face of the beam fully
constrained. Sample code can be found in Appendix F, Sections F.2. '

' The mesh size was reduced until the first natural frequency of the three-
dimensional system converged within 1%. The final model consisted of 10000
SOLID45 elements (quadratic elements comprised of 8 nodes having three

- degrees of freedom at each node: translation in the nodal x, y and z direc-
" tions [45]). The resulting natural frequencies are compared to the analytical
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Figure 3.5: Modal Verification Model

solution in Table 3.4 with the mode shapes compared in Table 3.5'and shown
in Figures 3.6 and 3.7. :

Table 3.4: Modal Analysis Verification Comparison - Frequency

First Natural | Second Natural
Frequency (Hz) | Frequency (Hz)
Analytical Method 1615 10123
: Modal Analysis 1611 9664

The relative errors for the first and second natural frequencies of the
modal analysis are 0.2% and 4.5% respectively, and the mode shapes are
within 1% and 4% respectively, thus the modal analysis method. produces

~reasonable results for this verification problem. ‘

3.3.2 Transient Analysis Verification

As the name implies, transient analysis determines the transient responsé‘
of the system based on the boundary and initial conditions. Unlike modal
analysis, the transient analysis solution type does not calculate natural fre-
quencies directly. To find the natural frequencies, nodal displacements were
plotted versus time and analyzed using the custom MATLAB FFT software.
While transient analysis is not as direct when determining natural frequen-
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‘Table 3.5: Modal Analysis Verification Comparison - Mocle Shape

Deflection at

Deflection 'at

Deflection at

-0.611

z=2£ z =2k z=1L
- (Normalized) | (Normalized) | (Normalized)
Analytical Method (1st Mode) 0.166 0.547 1.00
Modal Analysis (1st Mode) - 0.166 0.545 0.995
Analytical Method (2nd Mode) -0.590 -0.423 1.000
Modal Analysis (2nd Mode) - 0441

0.995

saxe]
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| Figure 3.7: Second Mode Shape of FEA Vefiﬁcation Model
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cies, it can be used with non-linear elements, such as contact elements, which
the modal analysis method cannot.

Transient analysis solves for the response of the system over some des1red
time (the response time). As outlined in Appendix D, this response time is
broken into discrete intervals, where the system is assumed to be quasi-static.
By knowing the initial conditions of displacement, velocity and acceleration
- at time t = 0, it is possible to estimate the displacement, velocity and accel-

* eration at the end of the first time step. The solution to this step is the initial
~ . condition vector of the next time step. This process is repeated until the total
response time is reached. It is important to test for convergence of the time
discretization, reducing the size of the time step until the solution converges
below 1%. This is required because the quasi-static assumption would be
false if the time step is too large since the acceleration through each time
step could not be reasonably assumed linear. ANSYS recommends a time
step which is 20 times smaller than the shortest desired period (associated
with the highest frequency).

The same model parameters as used previously in the modal analyses were
- used for the transient analysis with the inclusion of a 100 N load applied -
. vertically at the end of the beam for the first 0.0001 seconds of the total

- response time (0.001 seconds). An example of the code used to create this
-model can be found in Appendix F, Section F.3. '

Again, the model consisted of 10000 SOLID45 elements and the time step
converged within 1% at 5 x 1075 seconds. The resulting natural frequencies
and mode shapes are compared to the analytical solution in Tables 3.6 and
3.7 with the first mode shape again shown in Figure 3.6. It was not possible

- to determine the second mode shape from the transient analysis since its am-
plitude was much smaller than the first thus the shape was indistinguishable.

Table 3.6: Transient Analysis Verification Comparison

First Natural | Second Natural
‘ Frequency (Hz) | Frequency (I1z)

Analytical Method 1615 . 10123

3-D Transient Analysis 1611 9677

The relative errors for the first and second natural frequencies of the
‘transient analysis are again 0.2% and 4.5% respectively, and the first mode
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Table 3.7: Transient Analysis Veriﬁéation Comparison - Mode Shape

Deflection at | Deflection at | Deflection at
T=2£ T = % x=1L
' (Normalized) | (Normalized) | (Normalized)
Analytical Method (1st Mode) 0.166 0.547 1.00
Transient Analysis (1st Mode) 0.165 0.545 0.995

shape is within 1%, with the result that the transient analysis method also
produces reasonable results for the three-dimensional verification analysis.
As expected, the modal and transient analyses produced equivalent results for
given geometry and properties, which added confidence to the finite element
method.

3.4 In Vitro Simulation

Having shown that ANSYS produces reasonable results for the first and sec- .
ond modes during the verification process, a more realistic model was con- -
structed to simulate the in vitro model with confidence that the FEA package
could produce comparable results. If this is the case, the FEA model will be
expanded to evaluate situations that would be difficult to reproduce in vitro.
- As both the modal and transient analyses yielded essentially the same
results compared to the analytical solution, simulations were done using both
techniques to determine wh1ch technique is “better” based on:

1) = processing time
2) accuracy of solution compared to in vitro
3) ease of expandmg simulation to model more complex cases:
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 3.4.1 Simulating the In Vitro Model using Modal Anal-
' ysis ’
‘The initial modal analysis model was constructed with the dimensions and
properties listed in Table 2,1. However, as the acrylic layer is relatively thin,
and the stiffness of the FRB disk is relatively low compared to the aluminium
post, it was initially hypothesized: that the majority of the displacement of
the supporting structure would be due to the disk deflecting in the immedi-
ate vicinity of the aluminium post. The acrylic layer was thought to have
negligible affect on the response of the system and was therefore not included.
In addition, to compare results from the modal analysis to the in vitro
results, it was necessary to simulate the mass of the Periotest® rod. As the
- impact rod is assumed to stay in contact with the aluminium post during -
- the strike, the mass of the impact rod was modelled as a point mass. This
was accomplished by increasing the density of a small cluster of elements at
the striking height, resulting in a total point mass of 9.4 grams. The element
cluster is % 5 of the semi-annular region 1 mm high between the outer radius
of the rod and a radius of 1 mm, as depicted in Figure 3.8. The model shown
in Figure 3.9 was the result.

The model was meshed with approximately 14000 tetrahedral elements
with mid-sided nodes (SOLID92). These quadratic elements are comprised
of 10 nodes having three degrees of freedom at each node: translation in
- the nodal x, y, and z directions [46]. Convergence testing was performed to
- ensure the mesh was adequately dense such that solutions did not change

- more that 1% if the element size was halved. Only one half of the structure
“was considered due to symmetry as shown. The outer cylindrical surface
of the disk was fully constrained to simulate the conditions assumed to be
present in the in vitro apparatus.
~ Figure 3.10 is a plot of the results over five striking heights compared to
those of the in vitro model. It has been reported the Periotest® has 100 Hz
resolution, thus error bars representing +/- 50 Hz were included for the in
vitro data [21]. No error bars were included for the modal analysis data as
the frequency was the direct output. -
‘ It is apparent that although the results for a strike at the top of the
- aluminium post are reasonable when compared to the in vitro results, the -
- results diverge as the striking height is decreased with a relative error at -
“the lowest strike of 33%. Two possible reasons for these discrepancies were

examined.
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Dense Elements |

- Figure 3.8; Diagram Depicting the Location of Dense Elements Simulating
‘ a Point Mass T NS : : , ‘ .

Figure 3.9: Modal Analysis Model With No Interface Layef ‘
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[ lIn Vitro Model  DANSYS Modal Analysis - No Interface Layer |

First Mode Frequency (Hz)
=
o
o

2
‘Height of Strike from Top (mm}

. Figure 3. 10: Comparison of Modal Analysm with No Inteltace Layer to In_,
_Vitro Model (First Mode) ;

The initial hypothesis was the modal analysis method itself. This method
"';is akin to placing the structure on a shaker table and exciting the entire mass.
The impact testing however imparts a small amount of energy to the system.
It was hypothesized that this was insufficient to excite the entire mass of the
disk. The strike would cause deflections in the disk in close proximity of the
aluminium post, but the material at larger radii would not displace because
there was insufficient energy to initiate motion. In this case, the resultant
mass and stiffness matrices would be much smaller than those for the modal
case, as the DOF’s that weren’t excited could be neglected. Thus, the two
- methods wouldn’t be comparing the same systems. However, this cannot
- be true. Consider two nodes on either side of the limit of displacement in
. the disk. The node which moves will experience a shear stress where as the
‘node which is stationary will not, according to Hook’s Law. There will be a
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discontinuity in the stress field at this location which is not possible in the
finite element method. Thus the entire mass of the disk must be excited by
the impacting rod so this cannot be the source of error.

The final explanation was that the error was caused by neglecting the
acrylic interface layer. Although the interface layer is thin, the documented
Young’s modulus of acrylic is 1 - 3 GPa [47]. However, due to the inho-

- mogeneity of the acrylic used in vitro (air bubbles, FRB particles, etc) the
. modulus was taken to be 0.5 GPa, which is an order of magnitude less than
- the modulus of the FRB disk. If the acrylic and FRB are thought of as two
- springs in series, the stiffness of the weaker spring is dominant, thus it is
feasible that the interface layer could have a significant effect on the natural
frequencies of the system even though the layer is thin compared to the disk.
When the interface layer is included, with the properties found in Table 2.1,
the model produced the results shown in Figure 3.11, using the code found
in Appendix F, Section F.4. The error bals have equivalent meamng to the
p1ev1ous results.

L() In Vitro Model . CANSYS Modal Analysis - Interface Layer I
3000 X :

2500 — ‘ ¢ : 3

[

2000

il
1500

1000

First Mode Frequency (Hi) :

. 500

L0 EREE 2 : -3 4
‘ " 'Height of Strike from Top (mm) ‘

- Figure 3.11: Comparison of Modal Analysis with Interface Layer to In Vitro
- Model ' * 1
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Although the response of the modal analysis with the interface layer still -
. diverges from the in vitro response as striking height decreases, the results
" are more consistent than the previous model (5% error).

The second mode was more difficult to determine using modal analysis.
Figure 3.12 depict the first ten mode shapes of the simulation. The second
calculated mode involves axial vibrations of the aluminium post. Since the
Periotest® accelerometer only measures accelerations in the radial plane this
mode must be neglected when the modal results are compared to the in vitro
results. Some of the other mode shapes contain localized oscillation of the
point mass while the remainder of the model stays relatively stationary. It
is believed this is due to ill-conditioning of the mass matrix since there are
elements with relatively high density in close proximity to less dense elements.

~ Therefore the accuracy of these modes is suspect.

The two modes shapes that do not vibrate axially and do not have pre-
dominant point mass oscillation are the fifth and sixth. Both of these mode
shapes appear to be combinations of the predicted mode shapes shown in
Figure 3.2. They both have resonant frequencies that are the same order
of magnitude as the in vitro results (29 kHz for the fifth and 35kHz for the
sixth). As such, it is difficult to decide which mode shape, if either, should be
chosen as the “second mode shape”. Due to these difficulties, second mode
results are not presented for the modal analysis.

3.4.2 Simulating the In Vitro Model using Transient
Analysis

The transient analysis model was constructed with the dimensions and prop-
erties listed in Table 2.1, including the interface layer. Figure 3.13 depicts
the transient model consisting of approximately 15000 SOLID92 elements
(1% convergence criterion).. Again, only one half of the structure needed to
be considered due to symmetry.

The method of exciting the structure in a transient analysis is important
as the response of the structure will depend on the shape of the forcing func-
tion and the amount of time it is applied. As these factors are unknown for
the in vitro situation, a transient forcing function could not be used. Instead,
an impact between a simulated Periotest® rod and the aluminium post was
used. To model the impact, contact elements were created between the two
adjacent surfaces of the rod and post so that the impact rod and the rest of
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Figure 3.13: Transient Analysis Model

~ the system could move independently of each other without allowing the rod -
*to penetrate the post. This was done using a combination of 3-D-eight node,

- surface to surface contact elements which are used to represent contact and
sliding between three dimensional deformable surfaces [48] (CONTA174) and
3-D target elements which overlay the solid elements describing the bound-
ary of the deformable body [49] (TARGE170). Section 3.5 outlines how these
clements function in the transient analysis.

The Periotest® rod was constrained to move horizontally and was as-
sumed to have an initial velocity of 0.2 m/s to match the manufacturer’s
specifications of the Periotest’s® performance. Since the impact of the rod
is normal to the surface of the aluminium post, sliding is assumed to be neg--
ligible thus friction coefficients were ignored to save processing time. The -

~ transient analysis used a typical sampling rate of once every 0.6 microsec-
. onds. In cases where greater resolution was required this was increased such
that the sampling rate was 20 times faster than the highest desired frequency,
as recommended by ANSYS.

The transient simulation produced the results in Figures 3.14 and 3.15
at five striking heights. The lower frequency was determined by filtering
out all frequencies above 5 kHz and then determining the contact time as
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outlined in the introduction. The higher frequency was found using the
custom MATLAB FFT software with all frequencies below 20 kHz filtered
out. For Figure 3.14, the in vitro error bars again represent the resolution
of the analysis of the Periotest® accelerometer signal. The transient analysis
error bars represent the difference between to adjacent data points when
calculating the contact time. For instance, there may not be a data point
exactly on the zero displacement axis, thus it lies somewhere between the
point before and after the axis crossing. For Figure 3.15, the in vitro and
“transient analysis error bars represent the frequency resolution of the FFT.
The first natural frequency results match: well with the in vitro results
with only a 3% relative error. There is a 13% error for the higher frequency,
but the shape of the FEA results curve is qualitatively similar to the second
mode in vitro results. Before the higher frequency was deemed to be a result
of a higher mode being excited, further comparisons with analytical results
were done. ‘

3.4.2.1 Higher Frequency Investigation

Due to the difficulties encountered in determining the second mode during
the modal analysis, further analytical results were used to verify the transient
simulation produced the theoretically expected second natural frequency.
Although the FEA response signal (Figure 3.16) looks qualitatively sim-
ilar to the accelerometer signal (Figure 1.3), the FEA signal is a plot of the
displacement of a node from the aluminium post over time while the in vitro
signal is an acceleration curve over time. A direct comparison between both
the amplitude and time scales is therefore not possible. However, if the sig-
nals are assumed to be a combination of harmonic functions, the acceleration
signal is equivalent to a sum of scaled displacement signals [40]. This scal-
ing is independent of time however, therefore the frequencies evident in the
displacement response are also evident in the acceleration response.

As both the experimental and numerical results have reasonably well cor-
- related higher frequency components, the higher frequency does not appear
- to be'due to electronic or numerical “noise”. In addition the contact status
of the impacting rod and: the aluminium post remained closed throughout
~ the entire time, suggesting that the higher frequency did not originate from
“bouncing” of the impact rod. Thus it is likely that this higher frequency is
the second natural frequency of the system.

To verify if the transient analysis model can produce accurate second
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Figure 3.16: Typical Transient Analysis Signal

mode frequencies, the in wvitro system, while being impacted’ with the rod
at the free end, was modelled as a Bernoulli-Euler beam fixed at one end
with a point mass at the other [42] and compared to the transient results.
The solution for this problem results in the transcendental equation for the
- frequency parameter (8L) given in Appendix E. For the beam parameters

_given in Table 2.1, the first two values of (SL) are 0.5776 and 3.9311. The
theoretical natural frequency of vibration of this system can be determmed
using Equation (3.1).

The transient model was used to determine the first and second natural
frequencies of a system with an infinitely stiff disk and interface layer result-
ing in a rigidly fixed, 10 mm long cantilevered aluminium post similar to the
Bernoulli-Euler approximation. All other geometry, material properties and
boundary conditions remained the same as the transient verification model.
The FEA results were compared to the frequencies predicted by Equation
(3.1) in Table 3.8.

The FEA model was within 0.8% relative error of the analytical solution
for both cases. As this is below the convergence crlteuon of 1%, the model
.yielded acceptable results.

Since no separa’clon was found to occur during the strike in ‘the finite
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Table 3 8: First and Second Natural Frequency Compauson for Cantilevered
“Aluminium Post ;

Method First Natural | Second Natural -
Frequency (Hz) | Frequency (kHz)
Analytical 2711 126

FEA - 2728 127

_element analysis and the model predicted the second natural frequency for
both the analytical and 4n vitro cases, there is strong evidence that the higher
frequency in the experimental signal is indeed a second mode of vibration of
the implant-abutment systen. ' '

3.4.2.2 Senéitivity of Transient Analysis to Defining Variables -

Since the second natural frequency curve of the transient results seems qual-
itatively similar to the in vitro results (Figure 3.15), but shifted up by ap-
proximately 5kHz, a sensitivity investigation was undertaken on the transient
- model to determine if slight alterations of the material properties or dimen-
" sions of the model produced more closely matched results for the second
" natural frequency while not increasing the relative error of the first.
. Figures 3.17 to 3.21 outline the results of this sensitivity study. Second
“order polynomial best fit curves have been included to help display the results
but are not meant to be interpolations between data points. Dimensions such
~as disk radius and thickness, post radius and length, and impact rod radius
and length were not altered since they could be accurately measured. Other
material properties, such as Young's modulus of the impact rod and disk,
and density of the disk and interface layer were found to have a negligible
 effect on the first and second natuxal frequencies of the system and thus were
- not included. : :
As shown in the figures, the only variable ‘that could bealtered to decrease -
the second natural frequency while maintaining the first is the density of the
* aluminium post. Varying the density from 2500 kg/m3 to 3100 kg/m> only
-varied first mode by 50 Hz while second mode dropped from 50 kHz to 45 kHz.
However, the density would have to be approximately doubled to produce
the desired results and measurements of the in vitro post prove this to be
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- unrealistic. Thus the 1esults in Figures 3.14 and 3.15 seem to be the most.r.
- appropriate values. : 2

3.4.3 Choosing the “Better” Model

~ Consider the criterion for choosing the “better” model. The processing time

- for the transient analysis was much longer than the modal analysis: approx-
‘imately G hours compared to 30 minutes. However, the relative error for
the first mode of the transient solution was only 3% compared to 5% for -
the modal analysis. In addition, the transient analysis method, unlike modal
analysis, can include contact elements which are appropriate for simulating a
loss of osseointegration. Finally, as shown in Figure 3.15, the transient solu-
tion produced reasonable second mode frequencies while the modal analysis :
results for the higher mode shapes were difficult to evaluate. Therefore the.
tran51en’c analysis model was deemed the better model.
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3. 5 The Use of Contact Elements in the Tran—v‘
| sient Analysis

The combination of contact and target elements is used to represent contact
and sliding between 3-D surfaces.. The elements are located on the surface of
existing 3-D solid elements with midside nodes, sharing the same geometric

" characteristics as the solid to which it is connected. It is stated in the element
description that “contact occurs when the element surface penetrates one of
the target segment elements on a specified target surface.” [48] Although this
seems straight forward, the processes of determining if contact has occurred
and the result thereafter are somewhat complex and will be discussed briefly
below.

3.5.1 Contact Status and Pinball Radius

According to the ANSYS Structural Guide [50], “the position and the motion
of a contact element relative to its associated target surface determines the
contact element status”. The contact status can be one of four options:

Open far-field contact ~ Sliding contact
Open near-field contact  Sticking contact

_ The two possibilities of interest here are open far and near-field contact. '
. Open far-field contact refers to a case when the contact and target elements
~ are reasonably far from each other and the possibility that contact will oc-
cur in the next time step is unlikely. Contact element solutions are solved
iteratively thus the choice of transient solution options, such as time step
intervals, are important for a convergent solution. This will be further dis-
cussed in Section 3.5.2. Open near-field contact refers to the case when the
contact and target elements are close to each other and contact will hkely
occur in the next time step."

" The target elements monitor contact status at Gauss points, calculated
positions between the nodes of the element as determined by the Gauss inte-
gration procedure [51]. Imagine a sphere around each of these Gauss points,

- whose radius is called the pinball radius, depicted in Figure 3.22. If a Gauss
. point of a contact element enters this sphere the status changes from far to
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near-field contact. The pinball radius defaults to four times the depth of the
underlying element but can be changed if deemed necessary.

‘ . Contact Element’
‘Open Contact Distance

‘Contact <
Tolerance g S ~
Distance S~ Sawn P
N \\ R e Ay pinball Radius
i mian B einiaan “""‘”’"‘""V" I SR AR '.,. . eld e e
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! : 1
o C- ) ]

Target Element Gauss Point

= ’Figur‘e 3.22: Surface to Surface’ Contact Depiction

3.5.2 Importance of Time Step Intervals

. Time step intervals are a very important factor concerning contact status. If
the time step interval is large it will require fewer steps to reach the final time
value, thus the solution will be found in a shorter period of time, However,
if the interval is too large it is possible that at time ¢ the contact element is
outside the pinball radius and at time ¢ + At the contact element has passed
through the pinball region and out the other side, again falling outside the
pinball radius. Since contact status is only updated at the end of each. time
step interval the status would remain as open far-field contact. In this case
the solution is still found, however it will be equivalent to the case where
contact elements were not included and thus be erroneous. ‘ ‘

If the time step intervals are small, the above problem will not occur, but
it will take a great deal of time for the status to change to open near-field
contact. - Generally nothing'of importance to the analysis occurs while the
contact status is open far-field contact thus this is wasted processing time.
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- It is therefore beneficial to optimize the time step interval to minimize
. processing time and yet still converge to an accurate solution. Once open
' near-field contact status has been reached, a key-option in the CONTA174
- element description can be implemented which begins to decrease the time
‘step interval. This way a relatively large time step.interval can be used to
minimize the amount of processing required to reach open near-field contact
and then it is reduced to improve convergence when contact is imminent.

'3.5.3 Importance of Element Size

Once open near-field contact status has been reached the distance from the
contact element Gauss point to a surface joining the target element Gauss
. points is calculated until it is less than a prescribed tolerance, as shown in"
* Figure 3.22. At this point the elements are said to be in contact. This is done °
. for all contact/target possibilities thus it is beneficial to use as few elements
“as possible to minimize processing time. However, if the elements are too
large this generally causes convergence or contact status problems. So again
an optimization of contact and target element size must be found.

3.5.4 Contact Algorithms

Once contact has been established, the status will change to either sliding
- or sticking contact. This will depend on parameters selected by the user
+ according to the required information. The intricacies of both sliding and"
. sticking contact were deemed unnecessary here, thus the general algorithm to
- enforce contact used in both will be covered. There is a choice of two contact
-algorithms: penalty method and augmented Lagrangian method (ALM).

In order to illustrate the penalty method through an example, consider
the problem depicted in Figure 3.23. This cantilevered beam can be described
using finite element theory as follows, considering only the deﬂectlons (rota-
tional DOF’s not shown for clarity).

ki ke ksl [w F ' ‘
kay ko koz| {us| = | Fo| | (3.3)

ka1 kaa kas U3 F3
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- Ground

Fig‘ure 3.23: Cantilevef Beam Meshed with Two Elements -

i E—Considering the loading conditions, we can reﬁ;rite equation (3.3) as:

kin koo kg w\ /0 ‘
kot koo kos| |ua | =0} - (3.4)
kar ka2 ks3] \ua P :

‘ If P is large enough, the beam will bend down until it touches the ground,
- at a deflection u3 = a. According to the finite element expression, there is
" nothing to say that “ground” exists, thus the beam would continue to bend.
- However, if a contact element were present, the tip of the beam would have
“entered the pinball radius of the target element on the ground, changing the
- status to open near-field contact. The first time step in which the tip has
passed the plane at a the penalty method would be implemented.
 The penalty method uses a large penalty constant (C), relative to the
entries in the stiffness matrix, to basically swamp out other terms in the
equation and form a constraint on the system. For problems involving bend-
ing ANSYS recommends using C' = 0.1 - maz|E| without concern for the
discrepancy in units. The ANSYS Structural Guide [50] states this recom-'
- mendation satisfies the suggested value C' = maz|K;;| x 10! in most cases"
 without having to calculate the maximum K,] value, which saves processmg .
. time [52]. \
~ For the example above, the third node cannot pass through a thus its
displacement, ug, must be constrained to equal a. This is done by adding C
to the node’s diagonal term in the stiffness matrix, ka3, and adding (C - a)
to the node’s term in the force matrix (P).
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ki kg ki3 Uy .0

ka1 koo kas up | = 0 . (3.5)
: kar ksa  (kss + C)| \us (P + Cha) S
Dxpandmg the ﬁnal equation in the set: : -
Kot -t + kap - s + (kag + C) -us = (P+Ca) - (3.6)

~and dividing by C:
| Ckn | kw ‘ P
—Uu U — +1luz = (=
cutguty thu=(z
From Equation (3.7) it is apparent that if C satisfies the recommendation
above, and noting that g is generally of small magnitude, the equation is
approximately equal to:

fsy +a) | (3,%)

uz~a ‘ ‘ (3.8)

~which is the desired constraint on the system. This can be changed slightly so
that the vertical location of ug could be constrained to the vertical location of
anode on a surface below it. Thus if the surface moved so would the tip of the
beam. The forces generated between the nodes in contact must be checked at
the end of every iteration to ensure that they remain in compression. If the
forces become tensile then the penalty constant must be removed because
the nodes are losing contact and should no longer be constrained.
This method has some distinct advantages: it is relatively simple to im-
plement, it introduces no new equations and has a physical interpretation.
. However, the penalty method suffers from ill-conditioning that worsens as
- the penalty constant is increased, while constraints are satisfied exactly only
in the limit of infinite penalty values [53].

A Dbasic explanation as to why the penalty method can suffer from ill-
conditioning is as follows. If the penalty constant is \reLy_Imge it is like
introducing a very stiff spring into the system. Since the penalty method
is only implemented during the time step after the contact Gauss point has
passed through the target element this new spring is under compression.
Before the solver moves onto the next time step it iterates to find the equi-
librium position of this new system, which includes the spring. To do this,
the ‘contact element is “pushed back” as the spring settles at equilibrium,
where the contact Gauss point lies on the surface of the target element (or
within a prescribed tolerance value). ‘However, if the spring is too stiff, it
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~pushes the contact element out of the pinball radius and ‘thus the contact -
status changes to open far-field contact. The solver deems this acceptable
and moves onto the next time step and the solution attempt fails.

However, as stated above, the constraint is only satisfied exactly as C
“approaches infinity, as shown in Equations (3.7) and (3.8). Using a finite
value of C inevitably introduces numerical error. It is therefore beneficial to
use the ALM to increase the accuracy of the solution.

Unfortunately, the Augmented Lagrangian Method does not lend itself
to physical interpretation. It is merely a complex set of equations utiliz- -
ing concepts from the energy method, Lagrange multipliers and the penalty
method. Full descriptions on this derivation or its implementation can be
found in [53], [54] and [55]. In short, the solution is found by solving a com-

plex integral containing the Lagrange multiplier and a penalty term such
that it satisfies the constraint condition.

It may seem that this method would require more processing time to
solve these complex integrals, which would be true if only one iteration were
required. However, the ALM will converge to a solution much faster than
the penalty method, and with greater accuracy. It is also not prone to the
ill-conditioning which plagues the penalty method. Therefore, for complex
systems, such as the one in question, the ALM will greatly reduce processing
time while increasing accuracy over the penalty approach.: This is the reason
. it was used for this application.
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Chapter 4
FEA Simulation Results

As described in the introduction, a healthy implant will begin the osseoin-.
tegration process almost immediately after implantation. Ideally, the host
bone will create a strong, lasting interface with the implant. Unfortunately,
this is not always the case. The osseointegration process can fail, the bone
around the neck of the implant can begin to recede or a layer of connective
soft tissue can form around the implant. Since all of these possibilities create
a change in the bone or interface surrounding the implant, there should be
a measurable change in the impact test signal. Indeed, according to patient
data, there is a drop in the first natural frequency before an implant fails.
The goal in this chapter is to quantitatively simulate the changes in fre-
quency for each of these failure situations and use this information to predict
the source of the in vivo failures so preventative measures can be taken.
Some of these situations are difficult to simulate with in wvitro experi-
ments. A reduction in bone margin height may be possible, but a loss of -
osseointegration would be difficult to simulate. For these situations the FEA
approach provides an excellent alternative. Having shown.the FEA simula-
‘tion to produce realistic results compared to the in vitro model for the first
and second natural frequencies, the simulations are altered to simulate these
degenerative situations, ‘

48
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4.1 Simulating the Changes in the Interface
Layer | .

The three specific changes in the implant - bone interface which are simulated
are loss of osseointegration, loss of bone margin height and development of
connective soft tissue in the bone-implant interface. This was accomplished
through modifications to the interface region of the model. Full osseointe-
~gration is simulated in the FEA model by having the aluminium post and
interface layer share nodes along their common boundaries, thus allowing no
separation between the two. When a loss of osseointegration is simulated, the
post and interface layer no longer share nodes along the common boundaries.
Instead a layer of contact elements are meshed between the two to allow sep-
aration, but not penetration, in the area of osseointegration loss. The nodes
below this loss still coincide however. For the simulation of reduced bone
margin height, the height of the interface layer is reduced to simulate reced-
ing bone around the neck of the implant. From a mechanical viewpoint, the
difference in these two cases is that while there is no possibility of generating
~tensile forces between the post and the surrounding interface layer in either
. case, compressive forces can be generated in the situation in which there is
only a loss of osseointegration. The development of connective soft tissue in
the interface layer is simply modelled as a reduction in the stiffness of the
entire interface layer.

. The simulations are for the typical implant-abutment systems mentioned
previously (extraoral prostheses: 4 mm implants with 5 mm abutments and
oral implants: 9 mm implants with 10 mm abutments). In all instances it
was assumed that the rod impacts the top of the abutment. In the extraoral
case, the dimensions of the model were altered from those found in Table
2.1 to those found in Table 4.1 and depicted in Figure 4.1. Again the outer

- cylindrical surface of the disk was constrained and the mesh size was reduced, -
specifically around the interface layer, until 1% convergence was reached.
‘Sample code for constructing these models can be found' in Appendix F,
Section F.5.

4.1.1 Results of Changes in the Interface Layer

Figures 4.2 to 4.5 show the variation in the values of the first and second
natural frequencies that occur for the simulated increasing loss of osseoin-
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- Figure 4.1: Schematic of Simplified BAHA Model

*‘tegration and loss of bone margin height for oral implants (Figures 4.2 and
4.3) and the extra-oral (BAHA) implants (Figures 4.4 and 4.5). It has been
assumed that the region of loss begins at the outer surface (skin side) of the
hard tissue and propagates towards the base of the implant [56]. The error
bars for the first natural frequency plots represent the contact time error
described in Section 3.4.2 while those for the second natural frequency plots
represent the FFT resolution. ‘

For the first (lowest) natural frequency (Figures 4.2 and 4.4), both sizes

| Table 4.1: Model Properties for Extraoral Prostheses (BAHA)

Post Radius (P,) 2 mm Post Height (P},) 20 mm
Abutment Height (A;) 5 mm Engagement Length (E;) | 4 mm

- Interface Thickness (I;) 0.38 mm Interface Height (I;,) - 9 mm
Disk Radius (D,.) 20 mm Disk Height (D) 9 mm

Periotest® Rod Radius (R,) | 1 mm | Periotest® Rod Length (Rz) | 20 mm
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of implant-abutments evaluated show measurable changes for relatively small
regions of loss. As it has been reported that' changes equivalent to 100 Hz
are statistically significant [21], a loss of approximately 0.2 mm would be
detectable for the shorter implants and 0.4 mm for the longer system. The
difference in loss (osseointegration vs. bone loss) is not distinguishable until
the loss has extended to approximately 0.8 mm for the shorter implant and
to approximately 1.9 mm for the longer, down the height of the implant,
depicted as “h” in Figures 4.2 to 4.5. While the second (higher) natural
frequencies (Figures 4.3 and 4.5) show a similar trend as the length of the
loss zoue increases, the differences between loss of osseointegration and bone
loss are not as evident.

The simulations for the development of a softer interface layer, which

: could’ correspond to the ‘development of connective soft tissue or reduced
stiffness during healing, are given in Figures 4.6 to 4.9 for the two sizes of
implants. The error bars have equivalent meaning to the previous figures.
Figures 4.6 and 4.8 show the dramatic change in the lowest natural frequency
as the stiffness (modulus of elasticity) of the interface layer changes. The
region between the dashed lines is an estimated range of modulus of elasticity
for soft connective tissue (scar tissue) to hard tissue (quality bone) and it
is evident that the lowest natural frequency can change in the order of 50%
and therefore would be easily detectable. The higher natural frequency also
shows a similar percentage change with stiffness, however, the actual change
in frequency is even larger than for the lower natural frequency. It should
be remembeted that for these simulations, the change in stiffness occurs over
the entire interface simultaneously.

Examining Figures 4.3 and 4.5, there appears to be large, sudden drops
in the second frequency as the amount of loss, be it osseointegration or bone
margin height, occurs. For the oral case (Figure 4.3) this occurs between 2
and 3 mm of bone loss, while for the BAHA (Figure 4.5) it occurs between 1
and 1.5 mm for both a loss in osseointegration and bone margin height. This
is intriguing and the source of this phenomena is unknown. A speculative
explanation would draw from the problems experienced when looking for the
second mode usirig modal analysis. Even if the modes that have localized
oscillation of the point mass are neglected, there are still a number of mode
shapes that seem reasonable and have frequencies in the same order of magni-

tude. It is hypothesized that as the amount of loss increases, there is a point

were the dominant second mode shape switches from one shape to another.

This is supported by the FF'T output shown in Figures 4.10 and 4.11. The
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dominant spike in Figure 4.10 occurs around 68kHz, but there is a lesser spike

. around 55kHz. Although the signal is quite noisy, this could be interpreted
as two modes being excited where the modal participation factor of the mode
with a resonant frequency of 68kHz is greater than the other. In Figure 4.10, °
the changing constraint conditions on the aluminium post no longer support
‘the original mode shape (bending for example) thus the MPF of that mode
decreases and the mode present at 55kHz dominates (translational perhaps).
This could be valuable information when interpreting in vivo results. If there
appears to be a large drop in the second natural frequency it could be due to
a change in dominant second mode, thus signalling a possible failure of the
implant. - ‘

When the first and second natural frequency data are used in conjunction
it shows promise for determining the cause of frequency changes in vivo. For
instance, consider a BAHA patient. If the first natural frequency drops :
. from- 2500 Hz to 2000 Hz it could be due to a change in stiffness of the
- interface layer due to remodelling of the bone, which may be beneficial to
‘the integrity of the implant. However, it could be a loss of bone margin
height and preventative measures should be started to attempt to save the
implant. If the second natural frequency was found to drop from around 80
kHz to 60 kHz however, it could be estimated from Figures 4.4, 4.5, 4.8 and
4.9 that this could only be due to a change in stiffness of the interface layer.
The drop in second natural frequency is too large to be a loss of bone margin
height. Using this comparative analysis technique may allow more accurate
prediction of the cause of changes in'natural frequency. *
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Chapter 5

Conclusions

With the development of impact testing it appears to be possible to quanti-
tatively measure changes in implant status in vivo by monitoring the natural
frequency of the implant - tissue system. However, due to the constant
remodelling at the interface it is difficult to determine the source of these
changes. Thus, the in vitro model was developed and shown to produce
similar results to the in vivo situation while enabling strict control over the
dominant variables affecting the response of the system. In order to expand
the study further and obtain quantitative data for various simulated failure
modes, a finite element simulation of the in vitro model was developed. This

-model had a distinct interface region rather than one with the implant di-
‘rectly coupled to the hard tissue. This allowed the introduction of different
interface stiffnesses as well as introducing contact elements to simulate a
loss of osseointegration. This interface model was verified through compari-
son to in vitro experiment and analytical analysis and used to answer three
important questions regarding impact testing of implants.

Firstly, the higher frequency visible on the raw accelerometer 51gnal is not,
due to bouncing of the impact rod against the implant. The contact status.
remained closed during simulations at all striking heights. Due to the strong
correlation between this higher frequency and the simulated second mode, it

. appears it is in fact a second natural frequency of the system.

Secondly, the results of the FEA simulation indicate that clinical changes
in the integrity of the interface (loss of osseointegration, loss of bone margin
height, development of connective soft tissue) should be detectable from the
frequency response changes, The simulations indicate that with either a loss
of osseointegration or bone margin height for the shorter implant of as little
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as 0.2 mm, the change in frequency response is sufficient to be clinically
detectable. In addition, changes in the stiffness of the interface, such as
~might occur after initial implant placement or through the development of
. connective soft tissue, result in easily measurable frequency changes. These
' changes are so minor, however, that it is unlikely they could be detected
“using conventional diagnostic techniques. ‘
Finally, the potential of using the additional information provided: by
the second (higher) natural frequency is promising and could prove to be
valuable. When used in conjunction with the lower natural frequency it is
“possible to predict the source of changes in the interface stiffness. However,
the precision of the second natural frequency is still a concern since it required
an FFT to determine the frequency from the displacement data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




References

(1] P.I. Brénemark, G. Zarb, and T. Albrektsson. Tissue-]ntegmfed Prosthe-
ses: Osseointegration in Clinical Dentistry. Quintessence Publishing
Co., 1985.

[2] R. Adell, U. Lekholm, B. Rockler, and P.1. Branemark. A 15-year study
of osseointegrated implants in the treatment of edentulous jaw. In-
ternational Journal of Oral Surgery, 6:387-416; 1981.

[3] T. Albrektsson, G. Zarb, P. Worthington, and A.R. Eriksson. The long-
term efficacy of currently used dental implants. a review and pro-
posed criteria for success. International Journal of Oral and Maz-
illofacial Implants, 1(1):11-25, 1986.

4] S. Sundén, K. Grondahl, and H.-G. Grondahl. Accuracy and precision in

- the radiographic diagnosis of clinical instability in brénemark dental
- implants. Clinical Oral Implants Research, 6:220-226, 1995.

[5] J. Elias, J. Brunski, and H. Scarton. A dynamic modal testing technique
for noninvasive assessment of bone-dental implant interfaces. Inter-
national Journal of Oral and Mazillofacial Implants, 11(6):728-734,
1996.

[6] L. Carlsson, T. Rostlund, B. Albrektsson, and T. Albrektsson. Re-
moval torques for polished and rough titanium implants. Interna- '
tional Journal of Oral and Mazillofacial Implants, 3(1):21-24, 1988. -

- [7] J. Duyck, H. J. Rgnold, H. van Qosterwyck, I. Naert, J. Vander Sloten,
and J. E. Ellingsen. The influence of static and dynamic loading on
marginal bone reactions around osseointegrated implants: an ani-
mal experimental study. Clinical Oral Implants Research, 12:207-
218, 2001. '

[8] N. Meredith, K. Book, B. Friberg, T. Jemt, and L. Sennerby. Resonance

60

Reproduced W|th permission of thé copyright owner. Further reproduction prohibited without permission.




'REFERENCES ‘ ‘ o 61

frequency measurements of implant stability in vivo. Clinical Oral
Implants Research, 8:226-233, 1997.

[9] N. Meredith, D. Alleyne, and P. Cawley. Quantitative determination of
the stability of the implant-tissue interface using resonance frequency
analysis. Clinical Oral Implants Research, 7:261-267, 1996. ‘

[10] R. Nedir, M. Bischof, S. Szmukler-Moncler, J.P. Bernard, and Jacky
Samson. Predicting osseointegration by means of implant primary
stability. Clinical Oral Implants Research, 15:520-528, 2004.

[11) M. Bischof, R. Nedir, S. Szmukler-Moncler, J.P. Bernard, and Jacky
Samson. Implant stability measurement of delayed and immediately
loaded implants during healing. Clinical Oral Implants Research,
15:529-539, 2004. ‘

[12] R. Glauser, L. Sennerby, N. Meredith, A. Rée, A. Lundgren, J. Got-
tlow, and C. Hammerle. Resonance frequency analysis of implants
subjected to immediate or early function occlusal loading. Clinical
Oral Implants Research, 15:428-434, 2004.

[13] Neil Meredith. On The Clinical Measurement of Implant Stability and
Osseointegration. PhD thesis, Department of Biomaterials/Handicap
Research, Institute for Surgical Sciences, Goteborg University,
Goteborg, Sweden, 1997.

[14] H.-M. Huang, C.-L. Chiu, C.-Y. Yeh, C.-T. Lin, L.-H: Lin, and S.-Y. Lee.
Early detection of implant healing process using resonance frequency -
analysis. Clinical Oral Implants Research, 14:437-443, 2003. ‘

[15] D. Lukas and W. Schulte. Periotest - a dynamic procedure for the diag-
‘ nosis of the human periodontium. Clinical Physics and Physiological
‘ Measurement, 11:65-75, 1990.
[16) W. Schulte and D. Lukas. Periotest to monitor osseointegration and to
check the occlusion in oral implantology. Journal of Oral Implantol-
ogy, 19:23-32, 1993.
(17] G. Faulkner, J. Wolfaardt, and A. Chan. Measuring abutment/implant
joint integrity with the periotest instrument. International Journal
of Oral and Mazillofacial Implants, 14(5):681-688, 1999.
[18] D. van Steenberghe, J. Tricio, I. Naert, and M. Nys, Damping char-
acteristics of bone-to-implant interfaces; a clinical study with the
periotest device. Clinical Oral Implants Research, 6:31-39, 1995.

Reproduced‘\qxvi"’[h‘perf’nissioh of the copyright owner. Further reproduction prohibited without permission.



" REFERENCES | | 6

[19] J. Olivé-and C. Aparicio. The periotest method as a measure of osseoin-
tegrated oral implant stability. International Journal of Oral and
Mazillofacial Implants, 5(4):390-400, 1990. :

[20] A.B. Carr, E. Papzoglou, and P. Larsen. The relationship of peuotest
values, biomaterials, and torque to failure in adult baboons. Inter-
national Journal of Prosthodontics, 8:15-20, 1995. ‘

[21) G. Faulkner, D. Giannitsios, W. Lipsett, and J. Wolfaardt. The use
and abuse of the periotest for 2-piece implant/abutment systems.
International Journal of Oral and Mazillofacial Implants, 16(4):486-
494, 2001.

[22] James Earthman. System and method for quantitative measurements of
energy damping capacity. United States Patent, September 19, 2000.
Patent Number - 6,120,466.

[23] B. Dejak, A. Mlotkowski, and M. Romanowicz. Finite element analysis
of stresses in molars during clenching and mastication. The Journal
of Prosthetic Dentistry, 90(6):591-597, 2003.

 [24] L. Jimmlové, T. Dostélovd, A. Kécovsky, and S. Konvitkova. Influence
of implant length and diameter on stress distribution: ‘A finite ele-
ment analysis. Journal of Prosthetic Dentistry, 91(1):20-25, 2004.

-[25) S. Ishigaki, T. Nakano, S. Yamada, T. Nakamura, and F. Takashima.
: - Biomechanical stress in bone surrounding an implant under simu-
lated chewing. Clinical Oral Implants Research, 14:97-102, 2003.

[26] A. O Mahony, J. Williams, and P. Spencer. Anisotropic elasticity of
cortical and cancellous bone in the posterior mandible increase peri-
implant stress and strain under oblique loading. Clinical Oral Im-
plants Research, 12:648-657, 2001.

[27]: A. Mellal, H.W.A. Wiskott, J. Botsis, S.S. Scherrer, and U.C. Belser.
Stimulating effect of implant loading on surrounding bone. Compari-
son of three numerical models and validation by in vive data. Clinical -
Oral Implants Research, 15:239-248, 2004.

28] H. Van Qosterwyck, J. Duyck, J. Vander Sloten, G. Van der Perre,

‘ M. De Cooman, S. Lievens, R. Puers, and I. Naert. The influence of
bone mechanical properties and implant fixation upon bone loading
around oral 1mplants Clinical Oral Implants Research 9:407-418,
1998

Reproducéd.w\ith pérfnissioh .of the copyright owner. Further reproduction prohibited without permission.




" REFERENCES ‘ 6

[29] H. Van Oosterwyck, J. Duyck, J. Vander Sloten, G. Van der Perre, and
. L. Naert. Peri-implant bone tissue strains in cases of dehiscence: a
* finite element study. Clzm(*al Oral Implants Research, 13:327-333,
+2002.

[30] F. Zarone, A. Apicella, L. Nicolais, R. Aversa, and R. Sorrentino.
Mandibular flexure and stress build-up in mandibular full-arch fixed
prostheses supported by osseointegrated implants. Clinical Oral Im-
plants Research, 14:103-114, 2003.

[31] K. Akga, M.C. Cehreli, and H. iplikgioglu. Evaluation of the mechani-

' cal characteristics of the implant-abutment complex of a reduced-

diameter morse-taper implant. Clinical Oral Implants Research,
14:444-454, 2003.

[32] H.-J. Chun, S.-Y. Cheong, J.-H. Han, S.-J. Heo, J.-P. Chung, I.-C. Rhyu,

‘ Y .-C. Choi, H.-K. Baik, Y. Ku, and M.-H. Kim. Evaluation of design
parameters of osseointegrated dental implants using finite ‘element
analysis. Journal of Oral Rehabilitation, 29:565-574, 2002.

[33] J.P. Geng, Q.S. Ma, W. Xu, K.B.C. Tan, and G.R. Liu. Finite element
analysis of four thread-form configurations in a stepped screw im-
plant. Journal of Oral Rehabilitation, 31:233-239, 2004.

'~ [34] S. Hansson. The implant neck: smooth or provided with retention ele-
ments. Clinical Oral Implants Research, 10:394-405, 1999,

[35) S. Hansson. A’ conical implant-abutment interface at the level of the
marginal bone improves the distribution of stress in the support
bone. Clinical Oral Implants Research, 14:286-293, 2002.

[36] L. Lang, B. Kang, R.-F. Wang, and B. Lang. Finite element analysis
to determine implant preload. The Journal of Prosthetic Dentistry,
90(6):539-546, 2003.

[37] H.-M. Huang, S.-Y. Lee, and C.-Y. Yeh C.-T. Lin. Resonance frequency
assessment of dental implant. stability with various bone qualities:
a numerical approach. Clinical Oral Implants Research, 13:65-74,
2002.

[38] K.R. Williams and A.D.C. Williams. Impulse response of a dental im-
‘ plant in bone by numerical analysis. Biomaterials, 18:715-719, 1997.

[39] Stephen Cowin. Bone Mechanics Handbook, CRC Press, 2001.

Reproduced with p'ermissionv of the copyright owner. Further reproduction prohibited without permission.




' REFERENCES ! | | | 64

- [40] Robert Blevins. Formulas for Natural Frequency and Mode Shape.

' - Robert E. Krieger Publishing Company, 1979.

[41] Stephen Hurst. Investigation of Periotest® and Osstell® instruments for
measuring craniofacial implant integrity. Master’s thesis, University
of Alberta, 2002.

[42) William T. Thomson. Theory of Vibration with Applications - 5th Edi-
tion. Prentice-Hall, Inc., 1998,

[43] K.-J. Bathe. Finite Element Procedures in En_?;ineering Analysis.
Prentice-Hall, 1982.

. [44] EL Wilson and T. Itoh. An eigensolution strategy for large systems.
Computers and Structures, 16(1-4):259-265, 1983.

‘[45] ANSYS Inc, Canonsburb, Pa. ANSYS 7.1 Documentation
- Reference - Part 1. Element Library - SOLID4S.

[46] ANSYS Inc, Canonsburb, Pa. ANSYS 7.1 Documentation - Element
Reference - Part I. Element Library - SOLID92.

[47] Polymer material properties, 2004.

[48] ANSYS Inc, Canonsburb, Pa. ANSYS 7.1 Documentation
Reference - Part I. Element Library. - CONTA17/.

[49] ANSYS Inc, Canonsburb, Pa. ANSYS 7.1 Documentation
Reference - Part 1. Element Library - TARGE170.

[60] ANSYS Inc, Canonsburb, Pa. ANSYS 7.1 Documentation - Structural
Guide - Chapter 11: Contact.

[51] Erwin Kreyszig. Advanced Engineering Mathematics. John Wiley and
Sons Inc, seventh edition, 1993,

[52] T. Chandrupatla and A. Belegundu. Introduction to Finite Elements in
Engineering. Prentice Hall Inc, third edition, 2002, ‘

[63)'J. C. Simo and T. A. Laursen. An augmented lagrangian treatment
- of contact problems involving friction. Computers and Structures,
42:97-116, 1992.

‘[54] Michel Fortin and Ronald Glowinski. Augmented Lagrangian Methods.
Elsevier Science Pub, Co., 1983 ‘

Element

Element

Element

Reproduced With ’permi‘séhion ‘c‘)f the cbpyright owner. Further reproduction prohibited without permission.




 REFERENCES 65
[55] Ronald Glowinski and Patrick Le Tallec. Augmented Lagrangian and

- operator-splitting methods in nonlinear mechanics. SIAM Studles in
Apphed Mathematlcs Philadelphia, 1989.

[56] B. Brunski. In vivo bone response to biomechanical Ioadlng at the
bone/dental-implant mtelface Admmces n Dental Research, 13: 99—
119, 1999. :

 [57] M.L. James, G.M Smith, J.C. Wolford, and P.W. Whaley. Vibration
/ ‘ of Mechanical and Structural Systems - 2nd Edition. IIalperColhns,‘
1994. . ‘

e [58] ANSYS Inc, Canonsburb, Pa. ANSYS 7.1 Documentatzon Structuml :
i Guide - Chapter 3: Modal Analysis.

i’ [59] ANSYS Inc, Canonsburb, Pa. ANSYS 7.1 Documentatzon Theom Ref
erence - Chapter 17: Analysis Procedures.

[60] Singiresu Rao Mechanical Vibrations. Addison-Wesley Pubhshmg Com- y
pany, second edltlon, 1990 :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A
FEA Example

‘ ﬁectlon of the end of the rod is:
: PL

6 = EZ = 1lmm “ : “ e (A.l)
L=10cm X
— P= 100 kN
\ E = 100 GPa |

A=1cmx1cm

Figure A.1: FEA Example Rod -

‘ Imaglno the rod is divided into three elements, resultmg in the nodes ;
~ depicted in Figure A.2.. :
- Bathe [43] shows that the governing equation for a linear 10d element is:

2EAE-G e

66

Reproduced with permiséion of the copyrigh{ owner. Further reproduction prohibited without permission.

Consider the rod. shown in Figure A.l. ‘The analytlcal solutxon for the de— b




4 Appendix A

[= 10/3cm f 10/3¢cm  r=10/3cm

|>. - r > P=100 kN
1 \ 2 3 4
E = 100 GPa

A=1cmxicm

- Figure A.2: Finite Element Representation of Rod"

* . where E = 5 in thls case. Thus, using the global stiffness matrix constructlon
o technlque outlined in Appendix B, the problem can be written as: !

1 -10 0 U 5 S
3E'A -1.2 =1 0 up | | P2 o DRI
L 0 =1 2 =1l1lus| | F (A3 ’
0 0 -1 1 Uy Ey .

The boundary conditions state that displacement at u; = 0 and Fy = P.

. Using the elimination approach, Equation (A.3) can be written as:

‘ 2 -1 07 [us 0 :
3—? -1 2 =1|[ug] =10 - (A4)
0 -1 1 Uy P : .

The displacement vector can be solved using {u} = [k]7}{F} thus:.

w1110 L

up | == (1 2 2| [0 O (AB)

w) A1 2 3] \p e

< gives: | E
| . pL [} R
{u} =373 § | S ‘(A-G)

' Theryef“ore,‘ the displacement of the end of the rod is u = Ik A = lmm whxch S
matches the analytical result. .
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Appendix B

Modal Participatidn Factors
from a Continuous System
Approx1mat10n

- If it can be shown that the natural frequencies of a finite DOF system ap--
proximating a simple continuous system converge to the continuous solution .
- then it is reasonable to approximate -a continuous system too complex to °
“solve analytically in the same manner. A finite approximation of a rigidly
fixed, uniform cantilever will be solved to prove feasibility and then the pro-
cedure ‘will be used to approximate the modal participation factors of the
first three natural frequencies of an elastically supported beam with a mass
-on the free end. This complex system is similar to the implant - abutment
system being struck by the impact rod and the solution will be used to de-
termine the plausibility of only two natural f1equenc1es; belng visible on the
accelerometer signal. ‘ ‘

B.1 Governing Equation

Thomson [42] shows that if synchronous motion is assumed t;he governlng
equation for the system:

@M= ®1)
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| Appéﬁdix B

can be used to determine the natural frequencies and corresponding mode
shapes by solving the eigenvalue problem:

W-Rmli=0 (B2

Thetefore it is necessary to detelmme the stiffness matrlx [k] and the

- mass matrix [m)].

B.2  Constructing the Stiffness Matrix

The governing equation for a single beam element with two degrees of freedom k
at each node (vertical displacement and rotation) is the following: ‘

12 6L -12 6L7 [w ol |
CEBI6L 4 —6L 2L*| 6| [T B3
I?|-12 =6L 12 —6L| |w| " | R

6L 2L2 —6L 412 \6, Ty

Recall that a global stiffness matrix can be assembled from elementary

e stlﬁli(,ss matrices. For example, if there are two beam elements with stiffness

‘matrix [k] and [K] 1espect1vely, connected at node 2, they can be assembled
as follows

Pﬂn k12 k13 k14 0 0 (1 Fy
ka1 koo ka3 ka4 0 0 0 T
kv ks Ksz + K11 kaa+ Ko Kz Ky | v _ | 2 (B.4)
kg kag kiz+Ko1 kg + Koo Koz Koyl | 62 T, '
0 0 1{31 ' ]{32 ]{33 : ]{34 U3 F 3
B 0 0 ‘ 1(41 1(42 1(43 ](44J 93 T3

I a linear spring were connected from node 1 to the ground, depicted in |
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‘Fig“t‘lre B.1, the governing equation would become:

P\’)n -+ ]Cs klg k]a “ k14 0 0 ks 0 (5] Fl
kor ko kaa ke 0 0 0 0 Opf6f Ty
kar  kay ksz+ Ky ka4 G2 Kz Ky 0 0] v F
kg ke kis+ Iy k4K Ky Iy 0 0] |6 | T

0 0 K3 I3 L 1(33 ](34 0 0 V3 o F3
0 0 K4 Ky Ky Ky 00 O3 Ty
ke 0 0 0 0 0 k ofly, F,
0 0 0 0 0 0 0 0f\g T,)
. A " g " (B'5)
~ |Node3 - Node2 Node 1 -
K ‘ k‘ % k.
‘ Gound

F‘igure B.1: Cantilever with Spring Attached to Ground

‘However, since the vertical and rotation displacement of the ground is
- zero, the corresponding rows and columns of the global stiffness matrix can
~be eliminated using the elimination approach resulting in the equation below.

(ki + ks ko k13 k14 0 0 V1 F

35} kas ks ky 0 0 61 1T
ks ks kst Ko ks + K Kig Kyl |vw| _ | P (B.6)
kg ke kaa+ Koy ky+ K Ko I4| | 62 T, =

0] 0 1{31 [(32 ' 1(33 I (34 U3 F: 3

i 0 0 . K41 1{42 1(43 1{44‘_ 93 ‘Tg
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B.3 Constructing the Mass Matrix

The mass matrix could ‘be constructed in a similar manner, but in order to

simplify the calculations.a lumped mass approximation was used. A lumped -
mass approximation is where the mass of the element is applied as two equal

masses at the ends of the element. In this case, the lumped mass approxi-
~mation eliminates any rotational inertia terms in the mass matrix, resulting

in
fim; 00 0 0 O]

0 00 0.0 O L

0 0 my 0 0 O ol

000000 (B.7)
0 0 0 0 mg O
| 0 0 0 0 0 0]

This is a reasonable approximation in this case since the elements are
-undergoing small deflections thus little rotation is occurring. In the case of
~ a point mass, the extra mass, M, can be added to the appropriate node."

Since the rotational terms in the mass matrix are zero, it is beneficial to
- rearrange the stiffness matrix to simplify calculations.

B.4 Matrix Partitioning for Coordinate Re-
duction

By rearranging the global mass and stiffness matrix so that the coordinates
arranged as ‘

n = (%) ey

~ restilts in the following equation

Y@ A0-0 e
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As shown in (42}, this can be manipulated to: SRR A e
MV +HV =0 (B.10).

where . : : ‘

H = (Jy = Ji2J5" Ja1) ‘ (B.11)
Equation (B.10) is an eigenvalue problem if it is assumed V = —p?V and can
be solved for the natural frequencies and vertical displacenient mode shapes
of the system as explained in [42].

B.5 Comparison to Coritinuous Cantilever

Using the methods outlined above, the system depicted in Figure B.2 was
constructed in MATLAB using the code found in Appendix F, Section F.1. "
To simulate the rigidly constrained cantilever, the spring stiffness, k,, was
~ increased until the first natural frequency for a 50 element system converged
~below 1%, effectively turning the springs into rigid bodies. In this case, what
is called the effective length of the system in the MATLAB code is half the
total length of the cantilever since only half of the total beam is free to
move. The point mass was not included. With these parameters, the first
three natural frequencies converged below 1% with 200 elements.
. The continuous system has natural frequencies given by:

= 2 [_ET * .
= (BL)uy/ 5 AL (B.12)*

In order to simplify comparisons, the (BL) term of the first three frequen-
~cies from the finite system are listed below. ‘

System | (BL); | (BL)s | (BL)s
Continuous | '1.875 | 4.694 | 7.855
Finite 1.870 | 4.680.] 7.832

Table B.1: (8L) Comparisons of Continuous and Finite Systems

The finite system converged within 0.3% relative error for the first three ‘
theoretical (8L) values. Therefore, simulating a continuous system with a
- finite DOF model is acceptable. :
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Lengthi2 , “ Lengthi2

L3
v
L'y
v

}
=@

Thére are a
total of n nodes
and n/2 springs

Figure B.2: Model Approximating Elastically Supported Beam with Point
Mass ‘ -

The case of an elastically supported beam with a point mass on the free
end (Fig B.2) is used as a more accurate representation of the implant -
abutment system. The point mass was assumed to be 13 times the mass of

“the total beam, which is analogous to the implant system (9 gram impact
rod, 0.7 gram aluminum post). ‘However, this model is merely an approxi-
mation. It does not take into account displacements along the axis of the
beam and the stiffnesses of the supporting springs are not accurate. It does
however provide a reasonable platform to determine the plausibility of only
two natural frequencies being visible on the accelerometer signal.

.The stiffnesses of the springs were reduced until the first three expected
mode shapes were found, depicted in Figure B.3. The first two of these mode
shapes are predicted by Hurst [41] and the third is assumed to be a bending
mode. The number of elements was increased until the first three natural
frequencies converged below 1% (200 elements). At this point the model was
assumed to be a realistic representation of the continuous system. The (8L)
were not recorded as they are not of interest in this case. Instead, the modal
participation factors of the first three natural frequencies are desired.
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‘ /”

Liay ey

£ First Mode Shepe Second Mode Shape Third Méde Shape’
Figure B.3: First Three Expected Mode Shapes

B.G - Determining Modal Participation Factors

-~ The mode shapes can be normalized to the mass matrix and combined to
form the modal matrix, as detailed in [57]. If synchronous motion is assumed,
the displacement vector can be written as: ‘ ‘

{a(0)} = [W{n(®)}  Bw)

| S0 : o
| EOIUOI B
~ Using this substitution the governing equation can be transformed to:

G+ # |m=0 (B

| fiy + pry = 0 | (B.16)

These n equations can be solved for the n 7’s individually since the equa-
tions have been uncoupled. However, it is first necessary to determine the
~initial conditions of the system. This system is approximating the implant
- abutment during a strike from the impact rod, thus the IC’s of that sys-
tem will be used. Since it is difficult to accurately determine the shape of
the forcing function caused during the duration of the strike, the transient

‘Therefore“ '
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response of the system was not used. Instead, the strike can be considered
an impulse over a short period of time thus there is an initial velocity vector
while the initial displacement vector remain zero. To determine the initial
velocity vector it was assumed the implant would rotate about its lowest
node, O (similar to the first mode shape) and angular momentum would be
consewed as depicted in Figure B.4.

‘v | : Lo | mv,
. . . e——
]t —— S e
Lo =
IO, ¥ | Jgez P ")
B 5F | ‘ L]

o | : ‘ o . 0
Figure B.4: Momentum Diagram

: Conselvmg angular momentum about the base of the 1mplant and real-;
1zmg 61 =0:

| mu, L = mug L + Jbs (B
92 =2 ‘and J = 31ML? so: ‘ ‘ ‘ o
. . | N . ‘1 ‘ ! “ ) ; “ :
mvy = m’U2 + §]\([’U2 { S | (818) ‘
thus v, is: - o : :
I o . (B 19)

: Since the 1mplant is rotating about its base, the angular velocity isw = 2.
' Therefore, the initial velocity of any point on the implant is given by wr,
~where 7 is the distance measured from the bottom of the implant. Using this
relationship and knowing the impact rod strikes the implant at 0.2m/s, it
was possible to determine the initial velocity vector for the implant,
. Using the general solution for Equatlon (B.16) with only an initial veloc1ty‘
1esults in:

n(t) = Msin(p,.t) : (B.20)

2
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: and using Equation (B.13) means that the equation of motion of the end of
-the beam (node n), where the impact is taking place and thus the signal is
being recorded, is equal to:

Cz(t) = [u)(n,:) - ()} ‘ - (B21)

The modal participation factors (MPF) are found as: -

() = MPF, sin(pit) + MPFysin(pat) + MPFysin(pst) + ... (B.22)

The values in Table B.2 were found using the MATLAB code. The first
natural frequency has a MPF approximately 24 times greater than the second
and 1400 times greater than the third. This would suggest that it is plausible
that only the first two frequencies would be visible from the accelerometer
signal when struck at the top of the implant.

Natural Frequency MPF
1st 3.02x107*
2nd —1.26x1073
3rd 2.21x107°

Table B.2: Modal Participation Factors for First Three Natural Frequencies

Note: If instead of assuming the aluminium post rotates about its lowest
node but rather is free, this results in:

mu
= — B.2
V= +3M (B.23)
3v§ .
w= o (B.24)

The first natural frequency then has a MPF approximately 24 times
 greater than the second and 1360 times greater than the third. Therefore
. the MPF’s are similar in both of these cases. Note that the actual physical
~ system would be expected to fall somewhere between these two systems.
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Subspace Modal Solver :

At first glace, the subspace method seems to be a very simple process. In
application this is true, which is the beatty of the method. 'However, the
mathematical theory behind the method is anything but simple. For further
details and proofs, refer to Bathe [43] and the ANSYS reference manual [58].
This appendix is merely an overview of the process.

The subspace iteration method solves for p eigenvalues and correspondmg
‘elgenvectors which satlsfy '

[€]u] = [M][][N] | (C.1)

where [1] = [ul, JT2 I /.L,,] and [A] = diag(A;). These eigenvectors also must
ﬂsatlsfy the orthogonahty conditions: ‘

WM =N (C2)
[T (M) ) = (1] | (c3)

ThlS is accomphshed using simultaneous vector inverse itération:

KXk = [M)[X]k ‘ : (C.4)

[X]x is the current estimate of the g-dimension subspace spanmng a portion of
the solution space of Equation (C.1). Since the eigenvectors in Equation (C:1)
form an [M]-orthonormal basis of the q-dimensional least-dominant subspace
of the operators [K] and [M], the estimate [X]; will converge towards [u].
‘Choosing the initial estimate [X]o is an important step and is accom-
plished automatically in ANSYS as described below. The number of starting

7
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‘iteration vectors are determined from: "

g=p+d . (CH)

'whexe
p = the requested number of modes to extract
d = number of extra iteration vectors (defaults to 4)
The d extra vectors are used to increase the convergence rate of Lhe Lequested
modes. . ‘ -
The vectors comprising [X]o depend if rigid body modes are present. "
For every rigid-body mode, the position in the vector corresponding to the *
degree of freedom of which the mode takes place is set to a unit value. The
- remaining vectors in [X], are initialized to random vectors. By randomizing
the vectors, ANSYS ensures that all mass DOF’s are excited.
With the initial estimate, Equation (C.4) is solved:

(Rl = (K] (MI[X e ()

 The projections of the operators [K] and [M] onto the q—d1men51onal subspace

F are found:
Ko = RN KR €7
(Mg = [Xh+1[M][X]m (c.8) -

:The elgenvalue problem for the subspace is solved:

Ken@en = M @nlllen  (©9)

ANSYS utilizes a generalized Jacobi iteration technlque to accomphsh this
* to minimize processing time [43].

" Before continuing, the vectors comprising [Q] must be made mthogonal
to one another. This is'so [Q)] satisfies the conditions in Equation (C.3). This
is done using the Gram-Schmidt method, described in Section C.1. '

From this, an improved approximation of the eigenvectors can be found: .

[X]k+>1 = (X1 [@rrr | (C.IO)

. This iteration is continued until it has converged and produces the results:

Wer = W and (Xt =[] o5 koo (C1)
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To.ensure the values are the desired frequencies, a Strum sequence check is
performed. This check computes the number of negative pivots encountered
during the formation of [K]g; [43]. This number should match the number
of converged eigenvalues or else an eigenvalue was missed. In this case, more
iteration vectors (d) must be used.

“Again, the beauty of the subspace method is that the first p natural
frequencies and corresponding mode spaces can be found by solving only a g
dimensional eigenvalue problem, unlike the general analytical modal method"
which requires all the natural frequencies to be found.

C.1 Gram-Schmidt Orthogonalization

The purpose of the Gram-Schmidt Orthogonalization technique is to orthog-
onalize each vector in a matrix to the previous vectors, creating a basis for the
space. In this case, the vectors will be [M]-orthogonalized so that Equation
(C.3) is satisfied. The process is best described in an example.

‘Consider the set of vectors and mass matrix:

0.25 0.75 1o o ‘
[X]=]05 05| [m}={01 0 (C.12)
0.75  0.25 00!

- To create a basis for the plane which satisfies Equatlon (C.3), first [m]-
normalize the first vector:

~[3 0 0] /025 \
a? (025 0.5 0.75) [0 1 0| [ 05 | =1 - (C13)
-0 0 3] \075 ‘ '
thqs: 4 |
‘ S m=z (C.14)
" 5o the [m]-normalized vector is: |
| /0.25 1/3 S
a | 05 | ={2/3 o (Cay)
0.75 1 : ‘ ‘
therefore: ‘ ‘
R | 1/3 0.75 . e
wr=lyp ool cag
1 025 : : ER
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R At th1s pomt the Gram-Schmldt method is employed usmg the followmg
equatlon : : -

{u},—{v}g Zﬁl{¢}, . ‘(0.17)':’-:: |

i=1"

where:

> Bi= {qs}?[m]{v}j T L (018
Camd B
- {v}; = the vector to be orthogonalized
{u}; = the new orthogonalized vector r
{¢}; = the vector(s) to which {u}; is orthogonal

In this exa.mple R - :
o] fo7s\ -
01 (05| =8 =05833 (C19).

\0.25

: . 2
b= (1/31 2/3 1) 01
o ,‘ 00
o v';»,T'h'eref’ore:

{“}2"{”}2-ﬁ1{¢}1 o e

- [0.75 1/8\ 5 : e |
= <0.5> —0.5833 (2/3) - ©o)

o | (C22)
\—0.3333) S T L

ol

L 3 [1ﬁ]-'ﬁ‘¢1;1ﬁ1éplizi11g {u}z gives:

3 1] e
[X]o = [2/3 0.2357 o (Ce3)
_ 1 -—om071| T

which satisfies Equation (C.3),
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‘Transient Solver

‘The governing equation for motion of a structure is as follows:

MU+CU+ KU =R - (D.1)
where M, C, and K are the mass, damping, and stiffness matrices; R is
‘the external load vector; and U, U, and U are the displacement, velocity
and acceleration vectors of the finite element analysis. . This equation rep-
resents a system of second-order, linear differential equations and can be.
solved by any number of standard procedures. However, for general systems -
with large matrices, these standard procedures can be very computationally
expensive, The procedure used for Transient Analyses by ANSYS is the
:Newmark Method. : .

The Newmark method falls into the category of direct integration meth-
ods. “In direct integration the equations in (D.1) are integrated using a
numerical step-by-step procedure, the term “direct” meaning that prior to
the numerical integration, no transformation of the equations into a different
form is carried out.” [43] The theory is largely based on two ideas. First,
rather than satisfying equation (D.1) for any time, t, it is only necessary.
to satisfy (D.1) at discrete time intervals At apart. Thus the problem can:
be considered quasi-static, which includes the effect of inertia and damping
forces, and solved as such. The second idea is that it is assumed the displace-

-ment, velocity and accelerations within each time interval, At, vary slightly.
‘It is the form of these assumptions that determines the accuracy, stability
and cost of the solution procedure. For a direct integration method it is
necessary to know the initial conditions so that displacement, velocity and

81
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acceleratlon are known at time ¢ = 0 and can be used to find subsequent
values during the next time interval. :
The Newmark method proposes that [43]:

(i = G +10 - i} +o(dide (D3
(s} = {un} + (i} B + [ (; - a) {iin} + a{izw}} af (D)

where:
oy 0 = Newmark integration parameters
At = tyt+1 — ln

{un} = nodal displacement vector at time ¢,
{1, } = nodal velocity vector at time ¢,

{it,} = nodal acceleration vector at time ¢,
{tn+1} = nodal displacement vector at time t,.
{41} = nodal velocity vector at time ¢,
{il,g.} = nodal acceleration vector at time ¢,

The aim is to solve Equation (D.1) for n + 1 thus it is: helpful to rewrite
Equations (D.2) and (D.3) as follows (see below: for ay, values in terms of a,
6 and At): :

{tinr1} = a0 ({uns} = {ua}) — a{t,} ~ a3{il‘n‘} : (D;4)
{'&n+1} = {un} + aﬁ{ﬂn} + q7{ﬁ1l+1} . - (D‘S)
Noting that Equation (D;4) can be subbed into Equation (D.5) to give:
’ {un+l} = {un+1}aoar]) — {un}[a0a7] —{@n}Haoar — 1] = {in }asar — ag) (D.6)

. and letting:

:ay =‘aga7
aq = oty — 1
as = agay — dg
This finally gives:

{tint1} —GO{UILH} | aO{Un} "a2{un} ‘aB{iln} ‘ (D7) o
{Un+1} = al{un+1} ay{u,} — a‘,{yn} “'as{iln}:‘ - (DS)
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0T QA T At
. e Ly

; ,2"—‘C¥At | S (L3l—- 20’ “ :
AR ¢ ‘ 2 \a
oo =BHL-0) 7= 6N

: Notlce how Equations (D. 7) and (D.8) are only functlons of {un+1} and
'other known values.’ :
. Substituting these values into Ii,quatlon (D.1) at n+ 1 gives:

(1,0[1\{[] + CL][C] [I(]) {un-{-l} = {R}+ : \
[A/[] ((LO{un} + a2{un} + aS{Un}) =+ [O} al{un} + aul{un} + as{un}) (Dg) = g

‘unatlon (D.9) is used to solve for {un+1} as it is t;he only unknown
' Newmark showed that if:

=l(1-f~'y)2 ‘ 5,=%+7 -~ (D.10)
"~ the solution is unconditionally stable for v > 0. By default fy is set to 0. 005
in ANSYS in order to optimize numerical damping during the transient anal-
ysis. Numerical damping is used to improve the accuracy of higher natural
frequencies by reducing the amount of numerical noise 1nt10duced during the
solution calculations. : :

- The HHT improvement algorithm is used in conjunction with the New-

v . mark method in ANSYS. It has an unpmvcd level of numerical damping in -

- order to reduce calculation times and improve convergence. It introduces
~ two other variables but follows the same procedure as the basic Newmmk E
{method For further 1nfoxn1at10n see [59].
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"Analytlcal Second Natural
Frequency

The following outlines the proeedure used to solve for-the first two (ﬁL)““\falues':i
for an analytical solution to the lateral vibrations problem of a cantilever with

- the first and second natural frequency of the system which will be compared

-to the solution of a transient FEA simulation of a similar beam to determine

_ if the FEA simulation produces reasonable second mode results '
: C0n31der the bending v1b1at1ons of the bar below

: Figtlte E.1: Analytical h;tedel to Vefify. Seeon‘d‘Mo‘d“e of \ﬁbration

S
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e e =YETE)

f_‘:.yvhere . : e j B | e _

 Y(z) = Cysin(Bz) + Cycos(Bz) + Cysinh(fz) + Cacosh(fz) S
o T(t) = Asin(pt + ¢)

E.1 Boundary CivonditiOIl_"S |

z=0: y=0 Nodisplacement = Y(0)= | (El) “
sm0=0  (B2)

= =0 " ZerdSlope L —

——le==0 (E3)

T = L: =2=0 ‘g_No moment

i

FBD  MAD

Figure E.2: FBD/MAD of:':Poillt Mass

V = Mij(L)
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. where[60] ‘
L 4 - 631/
v=prr%Y
! EIB ‘
| S oo
therefore o
ehereiore. &y
o2 | =L

3 3
E183

E2 "‘_Srol’ve for (ﬁL)

=L = A-[

e Y(z) = C’151n(ﬁ1:)+02cos(ﬂ7:)+C'381nh(ﬁ'v)+04cosh(ﬁ:z) (E5)
F‘rom(Dl) | L
- Y(0)

Y(0) =

0=0C si’n‘(O) + Cycos(0) + Cs sillll(Q) + C4 cqsh(b) p
=Cy+Cy ‘ : ‘ :

: Fr‘o‘m (E. 2) s | ’ 4
== 0=Cif cos(O) C2Bsin(0) + C3B cosh(0) + Cyfsinh(0)
} dx

x—0—0—01+03

. Substltute (D 6) and (E. 7) into (D 5) o s
‘ )/ = C,[sin(fz) — sinh(fz)] + OQ[COS Bz) — COsh ( ,Hm)] ;

dY
-~ C1B|cos( ﬂa: — cosh(fz) ] + Cof[— sm(ﬂm) - smh(ﬁm)]

- d?Y
dz?
By 3
ke C\8 [ cos(ﬁ.z:) — cosh(fz)] + Cgﬁ [sm(ﬁa;) = sm(ﬁ:z:)]

01[32[ sin(fz) — sinh( ﬁfv )] + Cgﬂz[—‘cos(ﬁﬁ;) - co'sh(ﬁwj]‘
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-7 : ‘From (D 3) ‘

o O1ﬂ2[—sm(ﬁL)—-smh(ﬁ )]+C’2ﬁ2[_cos(,8L)—cosh(,BL)] 0 (58)
. From (E.‘4)

- - a : a
| 518 > Jomr = Mat2 el
yla,t) -—-_Y(“.?c)T(t)‘
"53:1/ | Y | ; “‘:‘32y ¢ dQT o
Frl e L iz o=t L= (L) e

d3Y SR %

B 3 =T = MY (D) (-#T(0)
&Y 2’ 2 . £
E[F o= = —Mp°Y (L) e R (EQ)

Substltute into (E.9)

EI [Clﬁs[—— cos (BL) — cosh(BL)] + Ogﬁs[sm(ﬂ[,) — sinh(BL)]]
= —Mp? [C’1 [sin(BL) — sinh(BL)] + Cg[cos(ﬁL) - cosh(ﬂL)]] *

’OI' ;

: 01 [Elﬁ [— cos(BL) — cosh(BL)] + Mp?[sin(AL) - sinh(BL)]
! + C’2 [Elﬂ3[81n L) — sinh(BL)] + Mp?*[cos(BL) — cosh(BL)]

o CC1(f1) + Ca(2) = 0
: ‘Placmg unatlons (D 8) and (E.10) in matrix form:

[ 51(@)- )

J=0 (E10)
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For a non-trivial C; and Cy we require the determinant to be zero.

[E]ﬂs[sill(ﬂL) - sinh(ﬁL)] + Mp®[cos(BL) - cosh(ﬂL)]] [~ sm(ﬂL)—-smh(ﬁL)] =
+([EI%(~ cos(BL) ~ cosh(BL)] + Mp?[sin(BL) — sin‘h(ﬂL)]] [COS(ﬂL)—-COSh(ﬁP)]

:Simplifying

EIﬁa[ 2 (1 4 cos(BL) cosh(BL))] , ‘ : |
+ Mp? [2 (sin(BL) cosh(BL) — cos(BL) smh(ﬂL))] (E-ll‘) V' Ca

However fo1 a beam v1bratmg laterally

—toor [(20)

: “Sub'sti‘t'u’te into (Ell)

14 cos(BL) cosh(SL) — ——(ﬂL) [sm(,@L) cosh(,@L) - cos(,BL) sinh(BL)] =“0 :
(E.12)

The first two (L) values that satisfy this equatlon usmg the properties listed

in Table 2.1 are 0.5776 and 3.9311.

400

©.200 : IENERESTIN S e - pei i

400 e - e e —

-800

-800

Residual From Equation E42 . -

1600

BL

1“F‘igvur‘e E.3: Plot of Residﬁﬁls from E.12 Used to find SL Values -
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clear

Lonum-= 200;

E = 72e9;

I = pi/4x(2e-3)"4;
Length = 20e-3;
eff_length = Length;

= Length/num;
= pi*(2e-3)"2;
= 2800;

= 0.00000001 HEXT/L73;

A Initial velocity of rod

.
.

“h
:%,

).
h

ANSYS and MATLAB Code

F.1 MATLAB Code for Analytical Analysis
| of Modal Participation Factors |

Number of elements

Beam stiffness
Moment of Inertia
Total length
"Effective" Length
Length of element
Area of beam
Density of beam

‘Bupport spring stiffness

(ro*A*Length)*O 2/ (ro*AxLength +- 13/3*ro*A*Length)

% Element Stiffness

~one_stiff = ExI/L"3 * [12 6%L -12 6%L;6%L 4+L~2 -6%L 2%L"2;

89

coo=12 -6#L 12 ~6%L;6xL 2+%L"2 -6%L 4*L"2];
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% Initialize global stiffness matrix
stiff = zeros(2%num+2);

% Create global stiffness matrix

for i=1:num
‘st1ff((2*1 1): (2*1+2) (2%i-1):(2%i+2)) = :
LGSEIFF((2%i=1) s (2%i+2), (2%i-1): (2%i+2)) + one stlff

end -

‘half = length(stiff)/2; ‘ " % Half the number of nodes

for y=1:2:half ‘ % Add a support spring to
stiff(y,y) = stiff(y,y) + k; ‘hvertical component of first

end ‘ _ %half of nodes

mass = zeros(half); % Initialize mass matrix

" mass = eye(half)*ro*AsL; ‘
~ mass(1,1) == ro*xA*xL/2; % Mass of first node

.mass (half,half) = ro*A*L/QRf 13*ro*AxLength; % Mass' of last node
inter_stiff = zeros(2*num + 2); % Initialize two matrices

%to transform the stiffness

new_stiff = zeros(2*num + 2); % matrix into lumped mass form

for j= 1:num+1 = % Move all displacement
inter_stiff(j,:) = stiff((2%j-1),:); krows to the top of ‘the
inter_stiff (j+half,:) = stiff((2%j),:); %matrix and rotation to

~end ‘ ' © Yibottom
b‘k‘for x.= 1:num+1 ! % Move all

new_stiff(:,x) = inter_stiff(:,(2*x-1));  Jdisplacement columns
new_stiff (:,x+half), = inter_stiff(:,(2%x)); %to the left and

end ‘ ‘ ‘ ~ hrotation to the right

Kil = new_stiff(1:half,1:half); | % Break into the four quadrants

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




| - Appendix F

new_stiff(1:half,half+1:2+%half);

- K12 =
K21 = new_stiff(half+1:2+half,1:half);
K22 = new_stiff (half+1:2+half,half+1:2+¢half);

% Assemble the lumped stiffness matrix
reduced_stiff = K11 - K12*inv(K22)*K21;

% Calculate eigenvalues/ﬁectors
[e,f] = eig(inv(mass)*reduced_stiff);

1 % Convert' to the (betal) §a1ue :
sqrt(f (half,half)*ro*A*(eff_length) “4/E/I)

u = zeros(half); % Initialize the modal matrix
for n = 1:half ‘ . : L
% Normalize the eigenvectors for u

alph(n) = sqrt(1/((e(: n))’*maSS*(e( »n))));

u(:;n) = alph(n)*e( n)
end

h Plot the first three mode shapes
. figure(1)
.~ plot(u(:,half))
figure(2)
plot(u(:,half-1))
- figure(3)
,plot(u(:;half—Q))

% Check ' to make sure the u matrix 1s “correct"
P- squared = u’*reduced stlff*u,

) Velocity vector _

© v = zeros(half,1); for m = 1:half
V v(m) = v0 - (vO/half*m);

‘end : : ‘
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% Normalized velocity vector
. ada_dot ='u’#*v; '

% Normalized displacement vector .

for q = 1:half ; T
ada(q) = ada_dot(q)/sqrt(p_squared(q,q));

end e

. % Modal Participation Factors
 for r = 1:half

- coef (r) = u(half,r)*ada(r);

end :

‘% Print the MPF’s to screen

Fnt coef (half) . |
L coef (half-1)
o coef (half-2)
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F 2 AN SYS Code for 3 D Modal Verlﬁcatlon v
Model

finish

/clear

/CWD,’D:?

/config nres; 10000

/TITLE, 3-D Modal Analy31s Verlflcatlon '
/triad,off 5
/prep7

! Everything is in meters, kilograms, NeWtons;‘sécondé! ;
beam_iength = 10e-2

“beam_width = le-2
" beam_thick = le~2

beam_stiff = 10069 o ! foﬁng’s Modulus

, beé;n_dens = 1600 | Beam density

: beam_pr = 0.3  ‘ ! PoiSson’é ratio
 b1c4,0,0,beam_length,Beam_width,beam*thick ! Creété geoaetryk‘
ét,i,solid45  : : ! Element tyﬁe (Solid45)
mp,ex,i,beam_stiff . ! Assign material pfoperties

mp, prxy,1,beam_pr
mp,dens, 1,beam_dens

‘esize,le-S ‘ : ' ! Element size vmesh,all,ail !
Mesh geometry ‘ : ‘

finish
/solu
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_ANTYPE,2

- da,5,all,all B | Constrain end of ‘beam i
- MODOPT,SUBSP, 1 | Subspace solver with one mode
EQSLV,FRONT e T e e T S I R

MXPAND,1, , ,0
- MODOPT,SUBSP, 1,0,0, ,OFF
. RIGID, ' | :
- SUBOPT, 8,4,5,0,0,ALL

’:solve

finish

/posti . | List solution
“set,list R B R
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| F 3 ANSYS Code for 3- D Transmnt Verlﬁca- ,

tion Model
finish
/clear
/CWD,’D:’

' ;3 /conflg nres, 10000

.IE/TITLE 3-D Transient Analys1s Ver1f1cat10n
/triad,off A
/prep?

" 1 Everything is in meters, kilograms, Newtons, segends! 4

beam_length = 10e-2

‘beam_width = le-2
beam_thick = le-2
:2beam_stiff = 100e9 “ ei ,“ ! Youmg’s Modulus
Zbeam_dens = 1000  .‘{ . .: ‘ ;‘Beamidensity i
: Beam pm = 0.3 | ’!, ‘ ’xPoissen’s‘matio 3 |
blc4 0,0, beam length beam width, beam_thick ! Cmeate geometfy -
vet,;,s011d45 | : | m ! Element type (Solld45)
' mp,ex,l,beam_stiff L 1 AsSign material properties

1:mp,prxy,1,beam_pr
-mp,dens,1,beam_dens

esize,le-3 Lo | Element size

‘vmesh,all,ali . v+ ! Mesh geometry

finish
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 /solu

ANTYPE,4
- TRNOPT, full
i[lumpm 0

: ;:da,S,all,all | i\‘,"é,; S ‘~FfConStrain*ehdsofébeém‘" |

nsubst, 100, 100 100 I load stepping options @
autots,on R P 1 S
neqit, 100
‘outres,all,all

_ﬂ ! Force applied

 time,le-4
‘timint,on °
kbe,1
£k,3,fy,50
£k,7,£y,50
lswrite b

nsubst 200, 200 200 - .~ 1 load stepping options

;. autots,on I e S CNIEIIS N PN LR S

' negit, 100

- outres,all,all

I Free vibration
time, le-3
“timint,on
~ kbc,1
‘fkdele, 3, a11
fkdele,7,all g
lswrite -

2 lssolve,1;2,1

FINISH
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‘F 4 ANSYS Code for Modal Analy51s Model

- Top Strlke

finish

/clear

/CWD, D’
‘/config,nres, 10000

JTITLE, Modal Analysis

/FILNAME,MA,Q
' /triad,off.
- ./prep?

| Everything is in meters, kilogréms, Newtons,

disk_radius = 20e-3
disk_thickness = 9e¢-3

rod_length = 20e-3
rod_radius = 2e-3
free_length = 10e-3

rod_density = 2800
disk_density = 1800

~disk_young_mod = 8,4e9
rod_young_mod = 73e9

mesh_size = rod_radius/2-
! Point mass

. pmass_length = mesh_size
:pmass_density = 8ef

interface_thickness = 0.38e-3
interface_young_mod = 0.5e9 -
interface_density = 1800

1l

seconds! :
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‘| Create disk geometry 7
~ Dblc4,0, (~disk_thickness),disk_radius,disk_thickness
‘blc4,0,(free_length-rod_length),rod_radius+ ‘
. .interface_thickness,rod_length

asba,1,2

! Create rod geometry ‘ :
blc4,0, (free_length-rod length) rod_radius,rod length 

blc4 rod_radius,-disk_ thlckness 1nterface thlckness
,disk_thickness

vblc4,(rod_radius~pmass_1ength),(free_length—
. .pmass_length) ,pmass_length,pmass_length

asba,1,4

! Create point mass“ o
- blc4, (rod_radius-pmass_length), (free_length-
;..pmass_length);pmass;length;pmass_length

‘aglue,all
vrotat,all,,,,,,1,6,180,8 -
et,l,solid92

“,!Interface

. mp,ex,4,interface_young_mod

‘' mp,prxy,4,0.33 -
mp,dens, 3,interface_density

type,1
mat,4
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,'fe51ze 1nterface thlckness~5
”jvmesh 2,30,4

V',' DlSk .

. .mp,ex, 1 disk young_mod &

. mp,prxy,1,0.33 o
" mp,dens,1,disk_density

-,ftypé,i'
- mat, 1

- - esize,2*mesh_size
- vmesh,; 3,31,4

! Point Mass. i

~ mp,ex,3,rod_young_mod
~mp,prxy,3,0.33 :
mp,dens,3,pmass_ den31ty

1“type,1
. mat,3

‘esize, mesh._ 51ze/2
'vmesh 1

' Rod :
~mp,ex,2,rod_young_ mod -
mp,prxy,2,0.33 '
3‘mp,dens;2,rod;density

 type,1
. mat,?2

Eesize,Q*mGSh_siie
" vmesh,4,32,4
~vmesh,5,29,4
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‘finish |
/solu

i) Modal Analysis options

ANTYPE, 2

MSAVE, 0

MODOPT, SUBSP, 1

EQSLV,FRONT -

MXPAND,1, , ,0

LUMPM, 0

PSTRES, 0

MODOPT, SUBSP,1,0,0, ,0FF
RIGID,SUBOPT,8,4,8,100,5,ALL

! Constrain system

da,16,all,all
da,35,all,all
da,54,all,all
da,73,all,all
da,92,all,all
da,;111,all,all
da,130,all,all
da,149,all,all
da,1,symm
da,2,symm
da,4,symm
da,6,symm
~da,142,symm
da,1566,symm -
da,151,symm .
da,147,symm

solve

. finish
 /postl
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o set,first
-~ pldisp
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F 5 ANSYS Code for Osseomtegratlon Loss
- Dental

finish

/clear

/CWD, 'D:’
:/config,nres,ioooo

/TITLE, Osse01ntegrat10n Loss - Dental
/FILNAME,Osseo,0 :

/triad,off

/prep?

N Everything is in meters, kilograms, Newtbns,‘ségonds! 

. disk_radius = 20e-3
- disk_thickness = 9e-3

tod_length 20e-3
rod_radius = 2e-3
free_length = 10e-3

perio_length % 20e?3~
perio_radius = 1e-3

l rod._density = 2800
. disk_density = 1800

‘| Mass of Perlotest rod is 9.4 grams :
perlo den51ty—0 0094/ (3. 14*per10 radlus*perlo radlus*perlo 1ength)

disk -young_ mod 8.4e9
rod_young_mod=73e9
perio_young_mod=200e9

! Osseoihtegration Loss
. osseo_depth = 0.2e-3
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fric_coef =‘0.3
mesh_size = rod_radius/2

interface~thicknesé‘= 0.38e-3
interface_young_mod .= 0.5e9
interface_density = 1800

.t Disk and post geometry

blc4,0, (-disk_thickness), disk_ radlus disk_ thlckness

blc4,0, (free_length-rod_length), (rod_radius+
‘1nterface_th1ckness),rod_length

aSba,1,2

k,20,0,free_length-rod_length
k,21,rod_radius,free_length-rod. length
k,22,rod_radius,-csseo_depth
. k,28,rod_radius, (osseo_depth/5)
k,
k,
k

24,rod_radius,free_length-2*perio_radius =
25,rod_radius,free_length :
26,-0,free_length

a,20,21,22,23,24,25,26

! Interface geometry ‘ ‘
~ blc4,rod_radius,-disk_thickness, interface thlckness,
. (disk_thickness~-osseo_depth) -
b1c4,rod_radius,—osseo_depth,interfaCe_thickness,osseo_depth

-aglue, 1,2
aglue,5,3
aglue,4,2
aglue,1,3

vrotat,all,,,,,,20,26,180

k,41,rod_radius,free_length k;42;rod;radius,freé_length,-.001~
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.fkj43,foa_radius,free_length+:001

. cskp,11,0,41,42,43
- wpcsys, , 11

1 Periotest rod geometry

1cyl4,0,-.5%perio_ radius,perio_ radlus,,,,perlo 1ength sl
: ‘blc4,0,perio. rad1us,—2*per10 rad1us,—4*per10 radlus,perlo 1ength5‘
. vsbv,9,10 : :

“csys,0
wpcsys, ,0

 et,1,501id92

!Interface
mp,ex,4,interface young_mod
mp,prxy,4,0.33

mp,dens, 4, interface_density
mp,mu,4, frlc coef

I Mesh size dependlng on amount of 1oss
type 1 :
mat,4
*if, (osseo_depth/5),LT, (3/4*1nterface thlckness) THEN
aesize,16,0sseo_depth/4
' aesize,36,0sseo_depth/4 ~ ‘
. *elseif, (osseo_depth/5),GE, (3/4*interface_ thlckness)
.aesize, 16, (3/4*interface_thickness)
¥ae31ze,36,(3/4*1nterface_th1ckness)
*endif . '
esize,interface_thickness

vmesh, 3
vmesh,7
vmesh, 1
vmesh, b
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I Disk o
 mp,ex,1,disk_young_mod
~mp,prxy,1,0.33 '
mp,dens,1,disk_density

type,i
mat, 1

esize,2*mesh_size
vmesh, 2
vmesh, 6

! Rod: , ‘
mp,ex,2,rod_young_mod
mp,prxy,2,0.33

mp,dens,2,rod_density

type,1
mat, 2

| Mesh size depending on amount of 1633
- aesize,22,mesh_size/4
#if, (osseo_depth/5),LT, (3/4*interface_ thlckness) THEN
aesize,20,0sseo_depth/4
aesize,40,o0sseo_depth/4 o
- *elseif, (osseo_depth/5),GE, (3/4*interface thlckness)
~ aesize,20, (3/4*interface_thickness)
aesize,40, (3/4*interface_ thlckness)
*endif
esize,2*mesh_size
vmesh,4
vmesh, 8

! Perio , ,
mp,ex;3,perio_young_mod
mp,prxy,3,0.33

mp,dens, 3,perio_density
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type,1
. mat,3

‘aesize,b55,mesh_size/4
“ esize,mesh_size
‘vmesh, 11

i Periotest Impact
'ét,2,conta174
keyopt,2,7,1
‘keyopt,2,5,1
R,2,0,0,0.10,0,0,0
RMORE, 0,0,0,0, 0,0
RMORE,O,,,, , -
RMORE,,,0,0, ,.
RMORE, 10

type,2

real,?

L allsel,alllg

- asel,s,area;,SS
nsla,s,1 :
esurf .
‘allsel,all

. et,3,targel70
. type,3
~allsel,all
- asel,s,area,,22
"~ nsla,s,1
‘esurf '
allsel,all

! Osseointegration’
R,3,0,0,0.10,0,0,0
RMORE,0,0,0,0, 0,0
.-RMORE:O::,a P
- “RMORE, ,,0,0, ,
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 RMORE, 10

" type,2 real,3
“‘allsel,all
~asel,s,area,,20

. nsla,s,1

" esurf
~allsel,all

type,3
allsel,all -
asel,s,area;,16
nsla,s,1
esurf
allsel,all

R,4,0,0,0.10,0,0,0 = -
- RMORE,0,0,0,0, 0,0
. RMORE,O,,,, ,
“RMORE, , ,0,0,

‘RMORE, 10

~ type,2 real,4
allsel,all
asel,s,area, ;40
nsla,s,1
esurf
allsel,all

 type,3

- allsel,all
‘asel,s,area,,36
nsla,s,1 :
esurf ;
“allsel,all

finish
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:'-/éolu;ﬁ_ 
. ANTYPE,4.

~ TRNOPT,full
flumpm,O

| Constrain system

da,11,all,all
‘da,31,all,all
da,1,symm
da,2,symm
da,4,symm
da,6,symm

da, 29, symm
da, 34, symm
da, 37, symm
da,44, symm
da,59,uz,0 -
da,59,uy,0

! Transient‘Analysis Options

time,0.00045
timint,on
" kbe,1

allsel,all"
vsel,s,voln,,11
nslv,s,1 ‘
IC,all,ux,,-0.200"
allsel,all

nsubst, 750,750,750
o autots,on
i neqit,100.
. outres,all,all
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lswrite.

1ssolve,1,1,1

. FINISH

! 8tore displacement. data of nodes
.| down center of aluminium post

" /POST26
FILE, ’osseo’,’'rst’,’ .’

SOLU, 191,NCMIT
STORE,MERGE
FILLDATA,191,,,,1,1
REALVAR, 191,191

~ NSOL,2,44075,U,X
. STORE, MERGE
XVAR,1

NSOL,3,44115,U,X
STORE,MERGE

NSOL,4,44117,U,X
STORE ,MERGE

NSOL,5,44119,U,X
STORE, MERGE

NSOL,6,44121,U0,X
STORE, MERGE

i Save time history variables to file data_out.dat

*GET,size,VARI, ,NSETS
*DIM,DISP_VAL,TABLE,size,5
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VGET,DISP_VAL(1, 0),1
VGET,DISP_VAL(1,1),2
. VGET,DISP_VAL(1,2),3
- VGET,DISP_VAL(1,3),4
“VGET,DISP_VAL(1,4),5
VGET,DISP_VAL(1, 5),6

*CFOPEN,Op2_mm_oséeo_0ut,dat ' O AR

*VWRITE, *TIME’, *TOP’, DOWN_1’, ’DOWN_2’, ’DOWN_ 3' *DOWN_ 4’*

%14C %14C %14C %14C %14C %14C :

*VWRITE DISP_VAL(1,0),DISP_VAL(1,1),DISP_VAL({, 2),DISP VAL(1 3),
.DISP_VAL(1,4),DISP_VAL(1,5)

%14, SG %14.5G %14.5G %14.5G %14.5G %14 5G

*CFCLOSE
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