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Abstract

In this thesis, we are focusing on developing an efficient simulation al-

gorithm to price the path-dependent options, which remains a challenging

problem in derivatives finance. The Heston model, a widely used stochastic

volatility model, will first be introduced. Then, we will discuss and evaluate

several methods used in simulating the Heston model, including the Explicit

and Weighted Heston simulation algorithm. The research will be extended to

the path-dependent option pricing with the simulation results of the Heston

model. The least squares Monte Carlo approach and its favorable alternative

method, stochastic approximation, will be explained and compared. Finally,

we will introduce the branching algorithm to improve the pricing scheme. Nu-

merical results for pricing different kinds of path-dependent options will show

the performance of the branching stochastic approximation algorithm is orders

of magnitude better in pricing options than the traditional method.
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Chapter 1

Introduction

In section 1.1, we will review the history and development of the stochastic

volatility models and their simulation method. In section 1.2, a brief introduc-

tion to the path-dependent option valuation, especially the dynamic program-

ming scheme will be given. In section 1.3, we will introduce the development

of particle filters and review the theory involved within solving the problems in

this thesis. Finally in section 1.4, we will describe the motivation and the main

contributions of this thesis. Also, the outline of this thesis will be presented.

1.1 Stochastic Volatility and the Heston Model

The behavior of financial markets can be modeled by stochastic differen-

tial equation(SDE), which describe the motion of the underlying assets such

as stock prices. The geometric Brownian motion(GBM), utilized in the Black-

Sholes model, is the most widely used model for describing stock prices be-

havior. A stochastic process St is regarded to follow a geometric Brownian

motion if it satisfies

dSt = µSt dt+ κSt dBt, (1.1)

where B is a standard normal Brownian motion and µ, κ denotes the constant

drift and volatility. Despite having an analytic solution, the GBM model has

overly simple assumptions such as constant volatility and interest rate. Since
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the volatility always changes over time, a number of works have been done

to relax the constant volatility assumption by making the volatility stochastic

(see [1],[2], and [3]).

By far, the most popular model within a class of stochastic volatility model

was introduced by Heston[4]. It has the advantages of giving the closed-form

European call option. Let B and β be two independent standard Brownian

motions. The Heston model can be formulated as

d

(
St

Vt

)
=

(
µSt

ν − %Vt

)
dt+



√
1− ρ2StV

1
2
t ρStV

1
2
t

0 κV
1
2
t



(

dBt

dβt

)
, (1.2)

with µ ∈ R, ν, %, κ > 0 and ρ ∈ [−1, 1], which represents the instantaneous cor-

relation between the stock process and the variance process. As the volatility

component in (1.2) is the Cox-Ingersoll-Ross model, if the model parameters

do not satisfy ν ≥ κ2

2
(known as Feller condition), then Vt process can hit 0 and

result in the failure of taking square root of a negative number. As suggested

in [5], the Heston model performs superior than other well-known stochastic

volatility model on real data.

Despite the fact that the Heston model was introduced more than 20 years,

the simulation for its process dynamic using the discretization method still

remains inefficient. Also, there are few researches on providing any form of the

explicit solution directly to the Heston model. These limit the use of Heston

model especially when one considers pricing and hedging a path dependent

derivatives such as American and Asian option. However, several important

breakthroughs have been proposed recently.

First of all, instead of the traditional Euler-Maruyama and Milstein approx-

imation scheme, Broadie and Kaya [6] developed a bias-free exact method for

the Heston by simulating from its exact distribution. Although theoretically

attractive, its use is limited by the complicated implementation. For exam-

ple, the algorithm involves a Fourier inversion of the conditional characteristic

function of the integrated volatility distribution. The complex calculation also
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becomes slow as time increases.

Then, Kouritzin[7] considered an explicit weak solution to the Heston

model with some restriction on the model parameters and furthered the result

to the general cases by re-weighting the outcomes of the so called Closest Ex-

plicit Heston. The simulation based on the explicit weak solution and weighted

Heston solution is relatively easy and will be widely used in pricing heavily-

path-dependent options.

1.2 Valuing Path-dependent Options via Dy-

namic Programming and Simulation

In this section, we will focus on a more practical problem of valuing the

options. Unlike pricing the European option, which only requires the terminal

value (except for the cases of stochastic volatility with jump model), pricing

path-dependent options, such as American option, require the entire simulation

path, leading the problem to be more complicated. Traditionally, it can be

achieved by using the finite difference method suggested by Schwartz [8] and

Howison[9]. Also, the binomial tree pricing model originally proposed by Cox,

Stephen and Ross[10] provides an executable way in pricing the options that

can be exercised at any time prior to the expiration. However, these methods

will be computationally expensive or fail for the dimensionality issue, when

being applied to the models with multiple factors or jumps. An alternative

is to use the Monte Carlo method and dynamic programming to find the

optimal exercise time and calculate the option price. The most successful and

popular least squares Monte Carlo(LSM) method is introduced by Longstaff

and Schwartz[11] and further analyzed by Clément et. al. [12]. We will also

explain this classical algorithm in detail in section 3.1.

Suppose there is a complete filtered risk-neutral probability space (Ω,F , {Ft}Tt=0, P )

supporting a Markov chain {(St, Vt)}Tt=0 with state space D = DS ×DV , rep-

resenting the price and volatility process. We denote the discounted payoff
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process as {Zt, t ≥ 0} where Zt represents the discount payoff received for

executing the option at time t. For example, Zt = e−µt(K − St) ∨ 0 for an

American put. Then, the goal of option pricing is to compute option value

supτ∈T0,T Ê[Zτ ], where Tt,T denotes the collection of stopping times with values

in {t, t+ 1, ..., T}. In order to get the optimal stopping time τ0 ∈ T0,T , we can

use the dynamic programming in this case. Clément E.[12] found that the best

stopping time can be found by working backwards:

{
τT = T

τt = t1{Zt≥E[Zτt+1 |Ft]}∩{Zt>0} + τt+11{Zt<E[Zτt+1 |Ft]}∪{Zt=0} ∀ t < T
.

(1.3)

However, how to calculate these conditional expectations to obtain the

stopping time remains unknown. Therefore, Longstaff and Schwartz[11] sug-

gested employing the projection and Monte Carlo techniques. By projecting

the conditional expectation onto the closed linear span, we can rewrite the

equation (1.3) in terms of the number J of the projection function used:





τJT = T

τJt = t1{Zt≥PJ
t [Z

τJ
t+1

]}∩{Zt>0} + τJt+11{Zt<PJ
t [Z

τJ
t+1

]}∪{Zt=0} ∀ t < T
. (1.4)

where P J
t [ZτJt+1

] is computed by

P J
t [ZτJt+1

] = αJ
t · eJ(St, Vt) (1.5)

To ensure the projection and Monte Carlo work, Clément E.[12] proposed the

following assumptions:

Total there are measurable R-valued functions (ek)
∞
k=1 onD such that {ek(St, Vt)}∞k=1

is total on L2(σ(St, Vt), 1{Zt>0}dP̂ ) for all t = 1, ..., T − 1.

Non-singular Ê[eJ(St, Vt)(e
J(St, Vt))

′1{Zt>0}] is positive definite for all J ∈
N, where eJ = (e1, ..., eJ)

′.

The key idea of the LSM algorithm is to estimate the coefficients αJ
t
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by using cross-section of Monte Carlo and least-squared regression. How-

ever, Kouritzin[7] showed a favorable alternative, applying the stochastic al-

gorithm(SA) with the coefficient estimations, which avoids the messy matrix

inversion step. The SA algorithm will also be analyzed in section 3.2.

1.3 Development and Theory of Particle Fil-

ter Method

As mentioned in the end of section 1.1, Kouritzin [7] introduced the weighted

Heston solution to the general Heston model. Although it will be carefully ex-

plained in section 2.2, we want to state here that the simulation for the option

price using weighted Heston can be regarded as the analog of a weighted par-

ticle filter in sequential Monte Carlo.

The weighted particle filter can be used as an approximation of the unnor-

malized filters, a solution to the non-linear filtering problems. The non-linear

filtering problem refers to estimating the current state of a non-observable ran-

dom signal X given the history of a distorted, corrupted partial observation

process Y living on the same probability space (Ω,F , P ) as X. The main

object of the non-linear filtering is to calculate the conditional probabilities:

πk (A) = P
(
Xk ∈ A

∣∣FY
k

)
, k = 1, 2, ..., (1.6)

for all Borel sets A where FY
k

.
= σ{Yl, l = 1, ..., k} contains all the informa-

tion from the previous observations. This can be solved by the unnormalized

filter approach. Under the notion of the unnormalized filter, the conditional

probability stated in equation 1.6 can be expressed by:

πk(f) =
σk(f)

σk(1)
, k = 1, 2..., (1.7)
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where σk(f) is the unnormalized filter defined by:

σk(f) = EQ
(
Lkf (Xk)

∣∣FY
k

)
, k = 1, 2... (1.8)

Finally, to get the filters implemented on computers, we can numerically ap-

proximate the unnormalized filter by sequential Monte Carlo method such as

the weighted particle filter. A particle filter estimates the unnormalized filter

σk(f) by

σN
k (f) =

N∑

i=1

Li
kf(x

i
k), k = 1, 2, ..., (1.9)

where N is the number of particles and initial particles {xi
0}Ni=1 are drawn

independently from the initial distribution of Xn.

Since the conditional probability πk(f) in equation (1.9) is recovered form

the unnormalized, we can find particle filter estimates for πk(f) by

πN
k (f) =

σN
k (f)

σN
k (1)

=

N∑
i=1

Li
kf(x

i
k)

N∑
i=1

Li
k

, (1.10)

where N is the number of particles.

Although the weighted particle filter can be applied to approximate the

unnormalized filter, it often suffers from the particle spread. Gorden et al.[13]

discovered the problem can be solved by simply redistributing particles inde-

pendently to the same location according to their relative likelihood. They

named the algorithm as the bootstrap filter and was later improved by the

residual resampling by Liu and Chen [14], stratified resampling by Kitagawa

G. [15], combined residual-stratified resampling discussed in [16] and system-

atic resampling proposed in [17]. Then a different approach was taken in [18],

which has been shown to outperform to the resampled method mentioned

above.



7

1.4 Contributions and Outline

Pricing path-dependence options by simulation, especially for the Heston

model, remains a difficult problem for the following reasons: For the simulation

of Heston model, the existing methods such as Euler and Milstein are highly

time consuming that they will not be the proper choices for pricing especially

when T is large. Secondly, the popular tool for valuing the path-dependent

option, the LSM method, will usually fail when seeking higher accuracy or

pricing with a multi-factor model due to the ill-conditioned matrix inversion.

Therefore, we consider solving these two problems simultaneously and provid-

ing a more effective as well as accurate algorithm for pricing options.

The main contribution of this thesis are that with the support of my su-

pervisor, Dr. Michael Kouritzin, we develop a new approach to simulate the

Heston model and empirically show that the Explicit and Weighted Heston

simulation algorithm is far superior to the traditional discretization method in

computation efficiency. Besides, we prove the failure of LSM algorithm based

on the experiment and demonstrate the advantages of using the stochastic

approximation scheme for pricing options. Finally, we first realize the sequen-

tial Monte Carlo in pricing. In particular, we introduce a class of branching

method into price evaluation. By simulation results, we show the pricing per-

formance for Branching-SA is orders of magnitude better than the traditional

methods.

In Chapter 2, we will first review the traditional simulation method to the

Heston model. Then we will put emphasis on the newly proposed explicit

and weighted solution to the Heston model and provide the algorithm. By

comparing the performance and execution time, the explicit and weighted

Heston simulation is so much better than the existing method. In Chapter 3,

focusing on the algorithm of pricing the path-dependent options, we will recall

both the well known LSM method and its favorable alternative, stochastic

approximation. Then we will extend and further our works by employing

the branching particle system. In Chapter 4, numerical comparison for the
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performance and execution time of the method discussed in Chapter 3 will

be provided. A parameter for comparing the efficiency of the algorithm, the

“Performance Factor” will be defined and used to show that branching with

stochastic approximation algorithm performs much faster than the tradition

pricing method. For the convenience of readers, we put all the proofs and

calculations in Chapter 5, the Appendix.
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Chapter 2

Simulation of the Heston Model

In section 2.1, we will review the Euler and Milstein scheme for the Heston

model and discuss its limitation. Then in section 2.2, we will state and explain

the results given in [7] for Explicit and Weighted solution to the Heston model.

The algorithm and the implementation method will also be provided in this

section. Finally in section 2.3, a numerical comparison will be presented to

show the significant time advantage gained by using the Explicit simulation

algorithm.

2.1 Discretization method of Heston Model

2.1.1 Euler Scheme

The most popular and simplest way to approximate the paths of both the

stock price and the stochastic variance process is by applying the first order

Euler scheme. Partition time T into M equal length intervals, so ∆t = 1
M
.

The Euler discretization of the stochastic variance process is

Vt = Vt−1 + (ν − %Vt−1)∆t+ κ
√
Vt−1∆βt. (2.1)



10

The discretization for the stock price process is

St = St−1 + µSt∆t+
√
1− ρ2St−1V

1
2
t−1∆Bt + ρSt−1V

1
2
t−1∆βt. (2.2)

Using the independent and Gaussian increments properties for the Brownian

motion, we can simulate ∆Bt and ∆βt by generating a standard normal ran-

dom variable N and replacing the increment by
√
∆tN . To be implemented on

computer, there are other efficient algorithm for generating the standard nor-

mal random variables such as applying the Box-Muller transformation method.

If U1 and U2 are two independent uniform random variables on (0, 1), then Z1

and Z2 are independently distributed according to the standard normal distri-

bution if

Z1 =
√
−2 lnU1cos2πU2

Z2 =
√

−2 lnU1sin2πU2

2.1.2 Milstein Scheme

An alternative way to simulate the Heston model is using the 2-dimension

Milstein Scheme. The basic 2-dimension Milstein Scheme for Heston is

Vt = Vt−1 + (ν − %Vt−1)∆t+ κ
√

Vt−1∆βt +
1

4
κ2(∆β2

t −∆t) (2.3)

St = St−1 + µSt∆t+
√

1− ρ2St−1V
1
2
t−1∆Bt + ρSt−1V

1
2
t−1∆βt

+
κ

2
(
√

1− ρ2Ĩ(2,1) +
ρ

2
(∆β2

t −∆t))
(2.4)

where

Ĩ(2,1) =

∫ t

t−1

∫ t

t−1

dβtdBt (2.5)

To simulate the double Wiener integral, we have to introduce several ad-

ditional random numbers which will bring more noise to the method. Kahl

and Jackel [19] suggested another integration scheme based on interpolation

of the drift and diffusion term, as well as incorporated the decorrelation of the
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diffusion term and included the Milstein scheme. The so called IJK scheme

for stock price process reads

lnSt = lnSt−1 + µ∆t− 1

4
(Vt−1 + Vt)∆t+ ρV

1
2
t−1∆βt

+
1

2
(V

1
2
t−1 + V

1
2
t )(∆Bt − ρ∆βt) +

1

4
ρ(∆βt −∆t)

(2.6)

Kahl has shown in their paper that the IJK method is superior in convergence

behavior than the Euler method and does not require additional random num-

bers or aids for convergence acceleration.

2.1.3 Failure of the discretization method

From (2.2) and (2.3), both the Euler and Milstein methods need to handle

the negative volatility values or we can not take square root in both price

and variance processes. The fix under wide use is called the Full Truncation

scheme. By setting the negative volatility to zero, the algorithm can work but

more bias is introduced. Observed by Bordie and Kaya, when 2ν
κ
≤ 1, the bias

of the Euler discretization will stay large even with a very fine time step size.

Therefore, it is essential to study how often the Euler and Milstein schemes

will produce a negative volatility under certain parameter settings.

We will call a simulation where a negative volatility is produced a failure

and define the break time as the first time this occurs. Suppose we have the

Heston model with the parameters as the following: µ = 0.0319, ρ = −0.7, % =

6.21, κ = 0.61 and ν = κ2

4
and the initial state is S0 = 100, V0 = 0.010201. As

ν < κ2

2
, the Feller condition does not hold and the volatility can hit zero but

not drop below zero.

The relative breaking frequency of Euler and Milstein simulations in this

case are shown in Tables 1 and 2 below.
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Scheme Euler Milstein

N 10, 000 40, 000 10, 000 40, 000

Steps 100 200 100 200

T= 1 0.972386 0.972184 0.932158 0.914071

T= 2 0.026434 0.025734 0.062245 0.077341

T= 3 0.001134 0.001033 0.005166 0.007731

T= 4 0.000045 0.0000465 0.000394 0.000777

T= 5 0.000001 0.0000025 0.000037 0.0000713

T= 50 0 0 0 0

Table 1: Relative breaking frequency for ν = κ2

4
, κ = 0.61, % = 6.21

As shown in the result, none of the particles survived till the end of T = 50

for both Euler and Milstein. In other words, simulating the Heston model

directly using the traditional discretization method is unfeasible when ν < κ
2
.

One might think that this only happens when the volatility is supposed to

hit zero. However, increasing ν to κ2

2
, which is the critical or first case that

the volatility should not hit 0, we still encounter the same problem, especially

for Euler scheme.

Scheme Euler Milstein

N 10, 000 40, 000 10, 000 40, 000

Steps 100 200 100 200

T= 1 0.802964 0.767827 0.000492 0

T= 2 0.147584 0.165 0.000488 0

T= 3 0.037084 0.0.047847 0.000506 0

T= 4 0.009277 0.013768 0.000524 0

T= 5 0.002313 0.003941 0.000484 0

T= 50 0 0 0.976822 1

Table 2: Relative breaking frequency for ν = κ2

2
, κ = 0.61, % = 6.21

For ν = κ2

2
, we see that Milstein scheme with 200 steps works well while
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the Euler will suffer from hitting zero in simulation.

We further increased the ν to κ2 and found that with Euler scheme, there

is still large number of particles going negative in this case.

Figure 1: Euler with N=10, 000, Step
Size=100

Figure 2: Euler with N=40, 000, Step
Size=200

This figure shows how often the Euler will actually hit zero and algorithm

will fail as time evolves. With 100 steps, we found that none of the 10,000

particles survive until the end.

2.2 Explicit and Weighted Solution of Heston

Whereas the failure and the slow convergence rate of the Euler and Milstein,

[7] showed that the Heston SDEs were actually explicitly solvable in a way

that is very convenient for simulation, which will boost the efficiency of path-

dependent option pricing.

2.2.1 Explicit Solution

Discovered in the companion paper of Kouritzin and Remillard [20] that a

necessary and sufficient condition for the Itô SDE

dXt = b(Xt)dt+ σ(Xt)dWt, (2.7)

to have a strong solution with such an explicit representation locally (for some

drift coefficient b) is the diffusion coefficient columns σj satisfy the Lie bracket
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condition:

(∇σi)σj = (∇σj)σi ∀i, j. (2.8)

Unfortunately, the Heston model does not satisfy (2.8) since

(∇σ1)σ2 =


 svρ

√
1− ρ2 +

sκ
√

1−ρ2

2

0


 6=

(
svρ
√

1− ρ2

0

)
= (∇σ2)σ1

when σ = (σ1 σ2) =

( √
1− ρ2sv

1
2 ρsv

1
2

0 κv
1
2

)
, where s and v represent the state

variables for price and variance. Hence, weak solutions have to be considered

to get an explicit representation for the Heston SDEs.

However, it is proved by Kouritzin [21] that scalar SDEs only have explicit

solutions for specific drift coefficients. Therefore the explicit solution has to

be restricted under certain condition. As stated in Kouritzin’s paper [7], when

the following Condition (C) holds, there exists a weak solution for the Heston

model.

C ν = nκ2

4
for some n = 1, 2, 3, ....

Theorem 2.1. Suppose n ∈ {1, 2, 3, 4, ...}, Condition (C) holds andW 1, ...,W n, B

are independent standard Brownian motions. Then, the Heston (price and

volatility) model (1.2) has explicit weak solution:

St = S0 exp

(√
1− ρ2

∫ t

0

V
1
2
s dBs +

[
µ− νρ

κ

]
t

+

[
ρ%

κ
− 1

2

] ∫ t

0

Vsds+
ρ

κ
(Vt − V0)

)
,

(2.9)

Vt =
n∑

i=1

(Y i
t )

2, (2.10)

where {Y i
t = κ

2

∫ t

0
e−

%
2
(t−u)dW i

u + e−
%
2
tY i

0}ni=1 are Ornstein-Uhlenbeck processes

and

βt =
n∑

i=1

∫ t

0

Y i
u√∑n

j=1(Y
j
u )2

dW i
u
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is the other Brownian motion appearing in (1.2).

The above theorem establishes a weak solution to the Heston model. Also,

instead of applying the discretization method, it provides an explicitly com-

putable way to simulate the Heston. The advantage for simulating through

the explicit solution is quite obvious. Comparing with the traditional dis-

cretization methods, it eliminates the discrete bias and significantly improves

the efficiency. Rather than sampling for the stochastic integrals, the explicit

solution only requires the users to compute two deterministic integrals. The

stochastic integral in (2.9) is conditionally Guassian given V and since V and B

are independent, the simulation is only a normal random variable with mean 0

an variance
√

1− ρ2
∫ t

0
V

1
2
s ds. Besides, we can sample the Ornstein-Uhlenbeck

Process easily since

Yt =
κ

2

∫ t

0

e−
%
2
(t−u)dWu + e−

%
2
tY0 ∼ N (e−

%
2
tY0,

κ2(1− e−%)

4%
) (2.11)

2.2.2 Weighted Solution

Though the explicit solution is an efficient way to simulate the Heston

model, its merit is restricted by the specific parameters required by Condition

(C). To handle the general Heston model, Kouritzin [7] proposed a solution

by re-weighting the outcomes of the so-called Closest Explicit Heston, which

is defined as:

d

(
Ŝt

V̂t

)
=

(
µκŜt

νκ − %V̂t

)
dt+



√

1− ρ2ŜtV̂
1
2
t ρŜtV̂

1
2
t

0 κV̂
1
2
t



(

dBt

dβ̂t

)
,

(2.12)

where n =
⌊
4ν
κ2 +

1
2

⌋
∨ 1, νκ = nκ2

4
, µκ = µ + ρ

κ
(νκ − ν). In this case, the

Condition (C) holds and the model can be explicitly solved.

Theorem 2.2. Let ε ∈ (0, 1), T > 0, (Ω,F , {F}t∈[0,T ], P ) be a filtered proba-

bility space, V0, S0 be given random variables with V0 > ε, {W 1, ...,W n, B} be



16

independent standard Brownian motions with respect to (Ω,F , {F}t∈[0,T ], P ),

Ŝt =S0 exp

(√
1−ρ2

∫ t

0

V̂
1
2
s dBs+

[
µ− νρ

κ

]
t+

[
ρ%

κ
− 1

2

]∫ t

0

V̂sds

+
ρ

κ
(V̂t −V̂0)

) (2.13)

V̂t =
n∑

i=1

(Y i
t )

2, ηε = inf
{
t : V̂t ≤ ε

}
and (2.14)

L̂t = exp

{
ν − νκ
κ2

[
ln(V̂t)− ln(V̂0) +

∫ t

0

κ2 − νκ − ν

2V̂s

+ % ds

]}
, (2.15)

where Y i
t = κ

2

∫ t

0
e−

%
2
(t−u)dW i

u + e−
%
2
tY i

0 for i = 1, 2, ..., n. Define

βt =
n∑

i=1

∫ t

0

Y i
u√∑n

j=1(Y
j
u )2

dW i
u +

∫ t∧ηε

0

ν − νκ

κV̂
1
2
s

ds, and (2.16)

P̂ (A) = E[1AL̂T∧ηε ] ∀A ∈ FT . (2.17)

Then, ηε is a stopping time and L̂t∧ηε is a Lr-martingale with respect to P for

any r > 0. Moreover, (B, β) are independent standard Brownian motions and

d

(
Ŝt

V̂t

)
=





(
µŜt

ν − %V̂t

)
dt+



√

1− ρ2ŜtV̂
1
2
t ρŜtV̂

1
2
t

0 κV̂
1
2
t



(

dBt

dβt

)
, t ≤ ηε

(
µκŜt

νκ − %V̂t

)
dt+



√
1− ρ2ŜtV̂

1
2
t ρŜtV̂

1
2
t

0 κV̂
1
2
t



(

dBt

dβt

)
, t > ηε

(2.18)

on [0, T ] with respect to P̂ .

This theorem provides a way to produce weighted particles of the desired

Heston model until the volatility drops below ε and then falls back to the

closest explicit model after hitting the stopping rule.

Notation: We are using Ŝ, V̂ for solutions to the closest explicit Heston

model under P , reserving S, V for the solution to (2.18). Henceforth, we will

use β̂t =
n∑

i=1

∫ t

0
Y i
u√∑n

j=1(Y
j
u )2

dW i
u and βt = β̂t +

∫ t∧ηε
0

ν−νκ

κV̂
1
2

s

ds.
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It is important to stop (at ηε) before the volatility gets too small. To

illustrate this, we consider the situation where the volatility V
1
2
t = 0. Then, the

(closest explicit and general) Heston volatility equations become deterministic

dV̂t = νκdt, dVt = νdt

and it is obvious which solution one has. This makes model distributions

singular to each other when νk 6= ν. Actually, due to the randomness within

the model, the simulation outcomes from the closest explicit Heston model

can actually match the desired Heston. However, when the volatility drops

too low or even hits 0, there is not enough randomness that simulations of the

closest explicit Heston would look like the correct model.

In terms of path-dependent option pricing, we first simulate many Heston

particles {(Si
t , V

i
t ), t ≥ 0}Ni=1 from the closest explicit Heston model and use

the relative likelihood Li
t =

P̂ i

P

∣∣∣∣
Ft

as the particle weight to denote the probabil-

ity that the results are from the right Heston model. These likelihoods can be

used in lieu of the observation likelihoods (that convert from a canonical noise

process to the actual observations) in sequential Monte Carlo. In this case, the

closest explicit Heston model plays the role of the signal and the simulation

for option pricing can be thought of as the analog, σN
[0,t] =

1

N

N∑

i=1

Li
tδ(Si

[0,t]
,V i

[0,t]
),

of a weighted particle filter. Here, δ(Si
[0,t]

,V i
[0,t]

) denotes Dirac measure and

(Si
[0,t], V

i
[0,t]) denotes the path of the ith-particle’s price and volatility over [0, T ]

but held constant from t on.

2.2.3 Explicit and Weighted Heston Simulation Algo-

rithm

Before presenting the algorithm, we first define some constants to keep

things simple

a =
√
1− ρ2, b = µ− νρ

κ
, c =

ρ%

κ
− 1

2
, d =

ρ

κ
, e =

ν − νκ
κ2

, f = e
κ2 − ν − νκ

2
,
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To compute the two deterministic integrals, we can apply the following

numerical approximation method

Trapezoidal

∫ t

t−1

V̂sds ≈
1

2M

{
V̂t−1 + V̂t + 2

M−1∑

l=1

V̂t− l
M

}

Simpson’s 1
3

∫ t

t−1

V̂sds ≈
1

3M



V̂t−1 + V̂t + 2

M
2
−1∑

l=1

V̂t− 2l
M
+ 4

M
2∑

l=1

V̂t− 2l−1
M





Simpson’s 3
8

∫ t

t−1

V̂sds ≈
3

8M



V̂t−1 + V̂t + 2

M
3
−1∑

l=1

V̂t− 3l
M
+ 3

M
3∑

l=1

V̂t− 3l−2
M

+ 3

M
3∑

l=1

V̂t− 3l−1
M



.

Theoretically, all the above methods will converge to the integral as M →
∞. The experiment results provided in Section 2.3 also confirm the claim

but we can find that Trapezoidal performs a bit better than the other two

approximation schemes and it allows a more flexible way for choosing the

number of subinterval M .

On the purpose of saving computing time, as shown in (2.11), the mean

(excepted for the initial value Y0) and variance of the Ornstien-Uhlenbeck

Process are fixed once model parameters are determined. Therefore we can

calculate these terms ahead of the loop to reduce the computational time.

Define

σ = κ

√
1− e−

%
M

4%
, α = e−

%
2M

Finally, it will be more convenient for us to state the algorithm by restricting

n to the even case since we mean to use the Box-Muller Scheme. Denote

n2 =
n
2
. In other cases, we can modify the algorithm slightly by drawing one

more normal random variable and calculating Y j
t after the n2 =

⌊
n
2

⌋
loop.

The algorithm for the Weighted Heston simulation is provided together

with the Explicit simulation since it just has a minor differences between the

two schemes. In the situation of ν = nκ2

4
, we can skip the code for generating

the weight and eliminate all statements about the stopping time ηjε and weight

Lj.
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Algorithm 1 Explicit and Weighted Heston Simulation

1: Initialize
2: for j = 1 to N do

3: Sj
0 = S0, V

j
0 = V0,(L

j
0 = 1, ηjε = TjustforweightedHeston)

4: for i = 1 to n do

5: Y j,i
0 =

√
V0

n

6: end for

7: end for

8: Evolve
9: for t = 1 to T do

10: for j = 1 to N do

11: for k = 1 to M do

12: Vt−1+ k
M

= 0

13: for i = 1 to n2 do

14: draw U1, U2 U [0, 1]
15: Y j,2i−1

t−1+ k
M

= αY j,2i−1

t−1+ k−1
M

+ σ
√−2logU1cos(2πU2)

16: Y j,2i

t−1+ k
M

= αY j,2i

t−1+ k−1
M

+ σ
√−2logU1sin(2πU2)

17: Vt−1+ k
M

= Vt−1+ k
M
+ (Y j,2i−1

t−1+ k
M

)2 + (Y j,2i

t−1+ k
M

)2

18: end for

19: end for

20: Int(V j) = 0, k = 0
21: while k < M do

22: Int(V j) = Int(V j) + Vt−1+ k
M
+ Vt−1+ k+1

M

23: Int 1
V j = Int 1

V j +
1

V
t−1+ k

M

+ 1
V
t−1+ k+1

M

24: k = k + 1
25: end while

26: Int(V j) = 1
2M

Int(V j)

27: N j = N(0, a
√

Int(V j))

28: Sj
t = Sj

t−1exp(N
j + b+ cInt(V j) + d(V j

t − V j
t−1))

29: if t ≤ ηjε then

30: if mink∈{0,1,...,M−1} V
j

t− k
2

> ε then

31: Lj
t = Lj

t−1 exp

{
e

(
ln

(
V

j
t

V
j
t−1

)
+ %

)
+ fInt 1

V j

}

32: else

33: ηjε = t− 1
34: end if

35: end if

36: end for

37: end for
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2.3 Numerical Comparison of Explicit Solu-

tion

In this section, we will focus on comparing the explicit Heston Simula-

tion to the traditional discretization methods. In this approach, we create a

ground truth to judge performance by fixing Brownian paths B, β and running

the Milstein method once with the extremely fine time step ∆t = 1/2, 000.

Then we used these fixed B, β paths to calculate the error and evaluate the

performance of the simulations discussed in this subsection.

The following collection of parameters will be used in this example: ν =

νκ = κ2

4
, µ = 0.0319, ρ = −0.7, % = 6.21, κ = 0.61 and T = 10. We also take

the (non-ground-truth) Euler and Milstein time steps to be ∆t = 1/M , where

the number of steps are M = 200, 400, 1, 000. Since Condition (C) holds,

the experiment is conducted for Explicit Heston algorithm. Table 3 gives the

result of Euler and Milstein schemes with different M . And Table 4 below

shows the performance and execution time of our Explicit Heston algorithm

with the Trapezoidal, Simpson’s 1
3
as well as Simpson’s 3

8
rule.

The performance is evaluated in terms of RMS error. The RMS error is

defined as followed:

EC =

√√√√ 1

N

T∑

t=1

N∑

i=1

[
(SC,i

t − Si
t)

2 + (V C,i
t − V i

t )
2
]
,

with SC , V C being the price and volatility for comparison and S, V being the

groundtruth price and volatility.

Euler Scheme Milstein Scheme

Step Size 200 400 1, 000 200 400 1, 000

RMS 18.8256 14.1382 9.79565 10.5435 7.08773 4.2306

Time 0.81 1.672 4.026 0.936 1.733 4.731

Table 3: Comparison between Traditional Discretization
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Explicit Solution

Trapezoidal Simpson’s 1
3

Simpson’s 3
8

M 1 6 6 6

RMS 3.62901 2.89821 2.91712 3.08562

Time 0.0054 0.012 0.01 0.014

Table 4: Accuracy and Execution Time for Explicit Solution Simulation

It is clear that Explicit Heston is much more accurate and faster than the

other methods. However, to provide a more intuitive and convenient way to

calibrate the improvement, we combine performance and time factors to define

an Explicit Gain as:

Explicit Gain =
τOther

τExplcit
, (2.19)

where τExplcit and τOther are the execution times for our Explicit Heston algo-

rithm and some other methods for a fixed performance. However, it is very

hard to get the Milstein method, which has better convergence than the Euler

one, to perform the same as the worst we can obtain using the explicit weak

solution method. So we conduct the comparison by plotting the existing Mil-

stein points and extending a smooth curve to get the time estimation with the

roughly equal RMS error of the explicit solution. In this way, the estimated

time for Milstein getting the same RMS error is 5.9. We follow a similar proce-

dure to get the time estimation for Euler scheme and state the gains in Table

5.

Method Euler Milstein

Gain 2630 1093

Table 5: Explicit Gain over Euler and Milstein

It is obvious that there is significant gain in using the Explicit simulations

compared to the traditional discretization method.

For other error levels and durations, the explicit also has the similar gains

that exceed 1000.
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Chapter 3

Valuation Algorithm for Path-

Dependent Options

After improving the simulation of Heston Model, we turn our attention

to pricing path-dependent options for the Heston. As mentioned in section

1.2, a popular tool for valuing these options is by applying the method intro-

duced by Longstaff and Schwartz’s [11]. A further research on improving the

LSM method is done by Kouritzin [7] through replacing the regression with

stochastic approximation method.

In this section, we will first review these two algorithms. Then we will

consider enhancing the performance of these two methods by employing the

resampling and branching into them.

3.1 The Least Squares Monte Carlo Algorithm

Longstaff and Schwartz [11] introduced in 2001 a method for finding the

estimate of coefficients in equation (1.5) by solving a minimization problem

min
αJ

E[|ZτJt+1
− αJ · eJ(St, Vt)|21{Zt>0}], (3.1)
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and this can be implemented using Ordinary Least Squares regression. To

get a better understanding of the backward process and LSM algorithm, we

consider the following simple numerical sample.

Now, we wish to price an American Puts on a stock whose current price

is 10, and will be exercisable at a strike price K = 10 at time 1 and 2, where

time 2 is the expiration day. Suppose that the annual risk-neutral free interest

rate is 3.19% and the period between each possible exercise one day. Then we

will apply the LSM algorithm to a collection of simulated price paths in Table

3.6(a) so as to determine the optimal stopping time. Table 3.6(b) presents the

cash flow of the holder condition on the option not being exercised before time

2. The cash flow is calculated following the optimal exercise strategy which

equals to (K − St) ∨ 0.

Then, if we are in time 1, a decision has to be made to whether to exercise

the option now when the option is in-the-money. From the simulated price

matrix, we see that paths 2, 3, 7, 9, 10 are in the money at time 1. Denote

Sin(1) as the vector of the in the money stock price at time 1 and Yin(1)

the corresponding (discounted) payoff at time 2. Conduct regression on the

discounted payoff Yin(1) against the state variable Sin(1). As shown in Table

3.7(a), we regress Yin(1) on a constant and Sin(1). The result of the conditional

expectation function is E[Y |S(1) = s(1)] = 10.409 − 1.044S(1). While the

conditional expectation of holding the option is less than the payoff received

from immediate exercise, we will regard time 1 as the optimal stopping time

(temporary) for path j. The recursion proceeds by rolling back to t = 1. A

modified cash flow matrix according to the optimal exercise time has been

shown in Table 3.7(b).

The value of the option can be obtained by taking average of the discounted

payoff over all paths as:

∑
paths cashflowi × e0.0319ti

Number of paths
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Table 6: Numerical Example Matrix

(a) Simulated Sample Paths

Path t = 0 t = 1 t = 2

1 10 11.32 11.15

2 10 7.20 6.34

3 10 8.41 9.64

4 10 10.97 11.14

5 10 11.62 14.49

6 10 11.89 10.22

7 10 9.52 9.25

8 10 11.0253 10.9624

9 10 9.85 10.83

10 10 9.88 9.42

(b) Cash Flow Matrix at Time 2

Path t = 0 t = 1 t = 2

1 − − 0

2 − − 3.66

3 − − 0.36

4 − − 0

5 − − 0

6 − − 0

7 − − 0.75

8 − − 0

9 − − 0

10 − − 0.58

Table 7: Numerical Example Matrix (Continue)

(a) Regression at Time 1

Path t = 1 t = 2

1 − −
2 7.20 3.66e−0.0319

3 8.41 0.36e−0.0319

4 − −
5 − −
6 − −
7 9.52 0.75e−0.0319

8 − −
9 9.85 0

10 9.88 0.58e−0.0319

(b) Option Cash Flow Matrix

Path t = 1 t = 2

1 − −
2 − 3.66

3 − 0.36

4 − −
5 − −
6 − −
7 0.477 −
8 − −
9 0.14578 −
10 0.1215 −
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As shown by this example, the LSM is easy to conduct and the general

algorithm for American Puts will be provided below in Algorithm 2. But first,

we will specify some possible choices of basis function ek that can be used for

linearly approximating the conditional expectation. As discussed in Longstaff

and Schwartz paper [11], all of the experiments in this thesis will use the

following weighted Laguerre polynomials as the basis function.

L0(x) = exp(−x/2)

L1(x) = exp(−x/2)(1− x)

L2(x) = exp(−x/2)(1− 2x+
x2

2
)

Ln(x) = exp(−x/2)
ex

n!

dn

dxn
(xne−x)

There are also other types of basis function include Hermite, Chebyshev and

Genenbauer polynomials.

Except for selecting an appropriate type of basis functions, we also need

to decide a suitable number of the basis. For the simplest cases, when only

discussing one state variable, we might be able to obtain a desired level of con-

vergence by increasing the number of basis without encountering the problem

of inverting matrix. However, for higher-dimensional problems, the set of basis

functions should not only include terms in each factor, but also their cross-

products. Therefore, the number of basis function will increase exponentially

and easily result in computational problem in computer. In Longstaff and

Schwartz paper, they only use at most 22 basis function. However, consider a

three factor model, such as the Asian Calls, 22 basis function is not enough to

get the satisfying accuracy.

Remark The algorithm below is set up for Euler, Milstein and Explicit

Heston simulation. For Weighted Heston, we have to include L for re-weighting

(S, V, Z) to the correct joint process distribution with respect to a new prob-

ability measure P̂ when they do not under P . To be specific, we have to add

a step in Initialize with setting ζ = λ = 0 and use ζ = ζ + Lj

τJ,j
Zj

τJ,j
,λ =
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Algorithm 2 LSM Algorithm

1: Initialize
2: Pick bases function ek,set all α

J
t = 0 and all τJ,j = T .

3: Simulate Create N paths for the all the state variables. i.e. {Sj, V j}Nj=1 of
(S, V ); set Zt = e−µt(K − St) ∨ 0.

4: Backward Induction
5: for t = T − 1 to 0 do

6: Set k = 0
7: for j = 1 to N do

8: if Zj
t > 0 then

9: Sjl
t = Sj

t , V
jl
t = V j

t , k = k + 1
10: end if

11: end for

12: AJ
t = 1

k

∑k

i=1 e
J(Sjl

t , V
jl
t )eJ(Sjl

t , V
jl
t )T

13: BJ
t = 1

k

∑k

i=1 e
J(Sjl

t , V
jl
t )Zj

τJ,j

14: αJ
t = A−1

t Bt

15: Adjust Stopping Time
16: for j = 1 to k do

17: if Zj
t > 0 and Zj

t > αJ
t · eJ(Sjl

t , V
jl
t ) then

18: τJ,j = t
19: for tt = t to T do

20: Zj
tt = 0

21: end for

22: else

23: Zj
t = 0

24: end if

25: end for

26: end for

27: Value the American Puts
28: for i = 1 to N do

29: for t = 1 to T do

30: ζ = ζ + Zj
t

31: end for

32: end for

33: Value:O = ζ

N
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λ+ Lj

τJ,j
instead of ζ = ζ + Zj

t in the valuation. The final option value will be

given by O = ζ

λ
.

3.2 The Stochastic Approximation Algorithm

As explained before section 3.1, the LSM method will become highly ill-

conditioned as the number of factors and basis functions increases, Kouritzin[7]

proposed a stochastic approximation alternative to the problem which avoids

the main difficulty of matrix inversion.

First introduced by Robbins and Monro [22], stochastic approximations

(SA) algorithm has been used to solve stochastic optimization problems as

the one we state in (3.1). Following the works of Kouritzin[23] as well as

Kouritzin and Sadeghi [20] in 2015, Kouritzin[7] explained the convergence of

the stochastic approximation to the same solution as the least square method

given for equation 3.1.

Here we will give an intuitive explanation of how the stochastic approxi-

mation works. Consider the solution to the following problem. Suppose θn is

a sequence satisfying:

θn+1 = θn + ε(b− Aθn)

where ε is an arbitrary small constant. While A and b are known, it can

be proved that θn → A−1b. Taking the simplest case when b = 0 and A

is positively defined, by the recursion, we will find θn+1 = (I − εA)θn =

(I−εA)n+1θ0, and it converges to 0 = A−1b as n increased. However, assuming

that A and b are unknown, instead, we have a random sequence {bn} and {An}
such that

1

N

N∑

n=1

bn → b,
1

N

N∑

n=1

An → A

as n → ∞ i.e. satisfy a strong law of large numbers. To obtain the convergent

result in this case, we have to replace ε with γ

n
to asymptotically kill the noise.
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Then, θn is generated by the recursion:

θn+1 = θn +
γ

n
(bn − Anθn), n = 1, 2, 3, 4 . . . (3.2)

To show that θn → A−1b, we still take bn = 0 and An = A, then

θn+1 =
n+1∏

k=1

(I − γA

k
)θ0 ≈ θ0exp(−

n+1∑

k=1

γA

k
) → 0

as n → ∞ and thus θn → A−1b = 0. To solve the the problem in (3.1),

we can substitute bj = Zj

τJ,j
eJ(Sj

t , V
j
t ) and Aj = eJ(Sj

t , V
j
t )

TeJ(Sj
t , V

j
t ) in

equation (3.2) .

The SA pricing algorithm can be simply obtained by replacing several steps

in the backward induction in algorithm 2 as follows:
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Algorithm 3 Stochastic Approximation (backward induction)

1: for t = T − 1 to 0 do

2: Set k = 0

3: for j = 1 to N do

4: if Zj
t > 0 then

5: Sjl
t = Sj

t , V
jl
t = V j

t , k = k + 1

6: else

7: Zj
t = 0

8: end if

9: αJ
t = αJ

t + γ

k
(Zj

τJ,j
− eJ(Sj

t , V
j
t )

TαJ
t )e

J(Sj
t , V

j
t )

10: end for

11: for j = 1 to k do

12: if Zj
t > 0 and Zj

t > αJ
t · eJ(Sjl

t , V
jl
t ) then

13: τJ,j = t

14: for tt = t to T do

15: Zj
tt = 0

16: end for

17: else

18: Zj
t = 0

19: end if

20: end for

21: end for

Similar to the cases in LSM, when pricing under the Weighted Heston

simulation, we need to involve the particle weight to calibrate the odds that

the particles {Sj, V j}Nj=1 generated from the closet Heston represent the real

(S, V ) of underlying model. We will then change the equation in line 9 as:

αJ
t = αJ

t +
γLj

t

k
(Zj

τJ,j
− eJ(Sj

t , V
j
t )

TαJ
t )e

J(Sj
t , V

j
t ) (3.3)

and do the final valuation steps as Remark 1.
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It is relatively important to choose the right γ carefully in the algorithm

since it controls the step size towards the solution and affects the rate of

convergence of SA. Taking the γ too large might leave too much randomness

in the approximation procedure and result in a slow convergence or even a bad

result. On the contrary, if γ has been chosen too small, we might not be able

to reach the convergence result especially when the number of particles is quite

small. An alternative way is to conduct a two step stochastic approximation

as:

α̂J
t = α̂J

t +
γLj

t√
k
(Zj

τJ,j
− eJ(Sj

t , V
j
t )

Tα̂J
t )e

J(Sj
t , V

j
t )

αJ
t = αJ

t +
1

k
(α̂J

t − αJ
t )

3.3 The Branching Heston Algorithm

Having discussed the two pricing methods, we turn our attentions back to

the Theorem 2.2 in Chapter 2. As elaborated before, the idea of finding the

general Heston solutions is by re-weighting the results generated from the clos-

est explicit. However, the weights {L̂j
T∧ηε}Nj=1 will usually be uneven, resulting

in smaller number of effective particles within the whole simulation. The

problem will finally affect the efficiency and accuracy of pricing. To increase

the effective particles, we will introduce the branching algorithm suggested by

Kouritzin [18] in 2015.

3.3.1 General Branching Algorithm

In the general branching algorithm, to branch or to kill a particle is only

based on the ratio of that individual particle’s weight to the average weight At

of all the particles. First, we have to choose our resample parameter rt ∈ [1,∞],

which is used to decide whether the particle will be resampled or not. If rt = 1,

all the particle will be resampled while rt = ∞ means the algorithm works

equally as the weighted algorithm. To illustrate the method more clearly, we



31

provide a graphical view of the process in Figure 3.

Figure 3: General Branching Algorithm

As shown in Figure 3, the branching particle filter starts at time t − 1

with (Ŝj
t−1, V̂

j
t−1, L̂

j
t−1). For each particle, we compute the importance weights

using the information at t − 1. The curve denotes the importance weight

and the imaginary lines are decided by using the resample parameter and the

average weight. While the particle has its weight fall on the red part of the

curve between the imaginary lines, the particle will be preserved and its weight

will be inherited. Otherwise, we do the residual-style branching, leading the

particle to die out or duplicate with the average weight. Only the survived

particle will evolve again using Theorem 2.2.

The algorithm for the general branching is given in Algorithm 4.
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Algorithm 4 General Branching

1: Initialize

2: Set N0 = N , Nt = 0 for all t ∈ N

3: for j = 1 to N do

4: Sj
0 = S0, V

j
0 = V0, L

j
0 = 1

5: end for

6: Branching

7: for t = 1 to T do

8: for j = 1 to Nt−1 do

9: Use Theorem 2.2 and (Sj
t−1, V

j
t−1, L

j
t−1) to create (Ŝ

j

(t−1,t], V̂
j

(t−1,t], L̂
j
t)

10: end for

11: Average Weight: At =
1
N

∑Nt−1

j=1 L̂j
t

12: for k = 1 to Nt−1 do

13: if L̂k
t /∈

(
1
rt
At, rtAt

)
then

14: Offspring Number: Nk
t =

⌊
L̂k
t

At

⌋
+ ρkt , with ρkt a

(
L̂k
t

At
−
⌊
L̂k
t

At

⌋)
-

Bernoulli

15: for j = 1 to Nk
t do

16: Resample: LNt+j
t = At, (S

Nt+j
t , V Nt+j

t ) = (Ŝk
t , V̂

k
t )

17: end for

18: Add Offspring Number: Nt = Nt +Nk
t

19: else

20: Nt = Nt + 1, LNt
t = L̂k

t , (S
Nt
t , V Nt

t ) = (Ŝk
t , V̂

k
t ).

21: end if

22: end for

23: end for

To employ the algorithm into the pricing methods, we have to create the

historical particles of a child. This can be done by appending the child’s path

to its parent and grandparent, etc. As we only focus on the historical path

of the particles survived till time T , to save computational resource, we will

only preserve the index of its parents and create the ancestor ties once we
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obtain(Ŝj
T , V̂

j
T , L̂

j
T ).

The primary advantage of the branching method is the control of the num-

ber of particles. As the average At is normalized by the initial number of

particles instead of the current, the expected number of future particles given

the current state is to be the initial N . The variation mitigation will enhance

the performance of the method. In the following sections, we will list some

branching options and discuss their performance based on how successful they

achieved in controlling particle numbers.

3.3.2 Residual Branching

As mentioned in the general branching algorithm, the offspring number Nk
t

of the branched particle is calculated by

Nk
t =

⌊
L̂k
t

At

⌋
+ ρkt (3.4)

where ρkt is a
(
L̂k
t

At
−
⌊
L̂k
t

At

⌋)
-Bernoulli random variable and hence Nk

t is unbi-

ased. Actually, there are different choices of {ρkt }Nt−1

k=1 for unbiased branching

which will influence the performance and computational efficiency. A simple

possibility is

i) Let {Uk
t }Nt−1

k=1 be independent [0, 1]-Uniform RVs.

ii) Set ρkt = 1
Uk
t ≤

(
L̂k
t

At
−
⌊

L̂k
t

At

⌋).

In this case, the {ρkt }Nt−1

k=1 are independent of each other and everything else.

The algorithm of residual branching is as follows:
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Algorithm 5 Residual Branching

1: Initialize

2: Set N0 = N , Nt = 0 for all t ∈ N

3: for j = 1 to N do

4: Sj
0 = S0, V

j
0 = V0, L

j
0 = 1

5: end for

6: Branching

7: for t = 1 to T do

8: for j = 1 to Nt−1 do

9: Use Theorem 2.2 and (Sj
t−1, V

j
t−1, L

j
t−1) to create (Ŝ

j

(t−1,t], V̂
j

(t−1,t], L̂
j
t)

10: end for

11: Average Weight: At =
1
N

∑Nt−1

j=1 L̂j
t

12: for k = 1 to Nt−1 do

13: if L̂k
t /∈

(
1
rt
At, rtAt

)
then

14: Let Uk
t be independent [0, 1]-Uniform RVs.

15: Set ρkt = 1
Uk
t ≤

(
L̂k
t

At
−
⌊

L̂k
t

At

⌋).

16: Offspring Number: Nk
t =

⌊
L̂k
t

At

⌋
+ ρkt

17: for j = 1 to Nk
t do

18: Resample: LNt+j
t = At, (S

Nt+j
t , V Nt+j

t ) = (Ŝk
t , V̂

k
t )

19: end for

20: Add Offspring Number: Nt = Nt +Nk
t

21: else

22: Nt = Nt + 1, LNt
t = L̂k

t , (S
Nt
t , V Nt

t ) = (Ŝk
t , V̂

k
t ).

23: end if

24: end for

25: end for

When implemented in the computer, we first create as many particles as

we can and allocate the remaining offspring using residuals
(

L̂k
t

At
−
⌊
L̂k
t

At

⌋)
and

independent uniform random variables.
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3.3.3 Combined Branching

We can also decrease the noise and stabilize the number of particles fol-

lowing the same idea of stratified resampling. The key idea is to generate the

uniform random variables in a smaller interval
[

k−1
Nt−1−l

, k
Nt−1−l

]
instead of draw-

ing directly from the [0, 1] interval. Here l denotes the non-resample count.

Beside, we will still employ the residual techniques for ρkt in this case and so

ρkt = 1
Uk
t ≤

(
L̂k
t

At
−
⌊

L̂k
t

At

⌋).

Combining the stratified and residual methods makes it less possible to get

mostly large or small uniform random numbers so there is less variation in the

ρkt and thus the number of particles. The combined branching algorithm is

stated in detail as followed:

Algorithm 6 Combined Branching

1: Initialize
2: Set N0 = N , Nt = 0 for all t ∈ N

3: for j = 1 to N do

4: Sj
0 = S0, V

j
0 = V0, L

j
0 = 1

5: end for

6: Branching
7: for t = 1 to T do

8: for j = 1 to Nt−1 do

9: Use Theorem 2.2 and (Sj
t−1, V

j
t−1, L

j
t−1) to create (Ŝ

j

(t−1,t], V̂
j

(t−1,t], L̂
j
t)

10: end for

11: Average Weight: At =
1
N

∑Nt−1

j=1 L̂j
t

12: Non-resample count: l = 0
13: for k = 1 to Nt−1 do

14: if L̂k
t /∈

(
1
rt
At, rtAt

)
then

15: L̂k−l
t = L̂k

t , (Ŝ
k−l
t , V̂ k−l

t ) = (Ŝk
t , V̂

k
t )

16: else

17: l = l + 1, Ll
t = L̂k

t , X
l
t = X̂k

t

18: end if

19: end for

20: Nt = l
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Algorithm 6 Combined Branching (continued)

21: for k = l + 1 to Nt−1 do

22: W k
t be independent with W k

t ∼
[

k−1
Nt−1−l

, k
Nt−1−l

]
-Uniform

23: Uk
t = W

p(k)
t , p is a random permutation of {l + 1, l + 2, ..., Nt − 1}

24: Nk
t =

⌊
L̂k−l
t

At

⌋
+ 1

Uk
t ≤

(
L̂
k−l
t
At

−
⌊

L̂
k−l
t
At

⌋)

25: for j = 1 to Nk
t do

26: LNt+j
t = At, (S

Nt+j
t , V Nt+j

t ) = (Ŝk−l
t , V̂ k−l

t )
27: end for

28: Nt = Nt +Nk
t .

29: end for

30: end for

In both Residual and Combined branching, we only focus on enhancing

the performance through optimizing the choice of ρkt . However, the resample

parameter rt is taken to be constant. We may also consider adjusting the

resample parameter along the time steps t.

3.3.4 Dynamic Branching

One example of this varying parameter is dynamic branching suggested by

Kouritzin [18], where

rt = exp


c


 1

Nt−1

Nt−1∑

k=1

(ln L̂k
t )

2 −
(

1

Nt−1

Nt−1∑

k=1

ln L̂k
t

)2



q
2


 (3.5)

with c, q > 0. To be specific, maintaining the same average amount of branch-

ing, we can use larger q > 1 and adjust c to do more resample when the system

entropy is low. In the other cases, a smaller q < 1 will be chosen. We can still

run the other steps of Combine and Residual branching by replacing the fix

parameter to the time dependent rt.
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3.3.5 Effective Particle Branching

Another way to deal with uneven weights that would arise from direct use

of Theorem 2.2 is through an effective number of particles estimate, N eff . We

set the effective and non-effective particle estimates as:

N eff
t−1 =

N2A2
t

Nt−1∑
k=1

(
L̂k
t

)2 =

(
Nt−1∑
k=1

L̂k
t

)2

Nt−1∑
k=1

(
L̂k
t

)2 , Nnoneff
t−1 = Nt−1 −N eff

t−1 .

By the equalities above, there are two extreme cases. When all L̂k
t are the same

and all particles are equally effective, we will have N eff
t−1 = Nt−1. In contrast,

if all but one of the L̂k
t were 0(or arbitrarily close to 0) and there is only one

effective particle, then N eff
t−1 = 1. Otherwise, it gives us a number somewhere

in between that can be interpreted as the effective number of particles. It

is reasonable to expect better results when branching either more or fewer

particles in the situation there are few effective ones. Intuitively, we might

branch more in order to obtain more effective particles immediately. However,

if those few particles with high weights happen to be wrong, then we will be

likely to move the majority of particles to the bad states. Hence, in effective

particle branching, we set

rt =
ceffN eff

t−1 + cnoneffNnoneff
t−1

Nt−1

= cnoneff + (ceff − cnoneff )
N eff

t−1

Nt−1

(3.6)

and let the data experimentally determine the constants ceff , cnoneff > 0.
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Chapter 4

Numerical Result

In Chapter 4, we will provide the empirical results of the pricing method

discussed above. This section will be organized as followed: first, we will com-

pare the weighted Heston simulation to the traditional discretization method

on pricing American Puts and Asian Straddles with LSM algorithm. Then,

a comparison between the LSM algorithm and its alternative, the stochas-

tic approximation approach will be presented. Finally, we will conduct an

experiment to see how the performance and efficiency will be improved by

employing the branching algorithm and reach our final conclusion for the best

pricing algorithm.

4.1 Comparison betweenWeighted Heston and

Traditional Discretization Method

In this section, we will focus on comparing the weighted Heston algorithm

to the Euler and Milstein schemes. To help convey the high efficiency of

the weighted Heston algorithm, we will stick to the LSM method in pricing

procedure but substitute the simulation of stock price and volatility by the

weighted Heston algorithm as well as other methods.
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4.1.1 Pricing the American Puts

We will conduct the comparison on American put option first. The ex-

periment will use the following model parameters: ν = 8.1κ2

4
, µ = 0.0319, ρ =

−0.7, % = 6.21, κ = 0.2, S0 = 100, V0 = 0.502, T = 50 and the strike price

K = 100. Here n = 8.1 /∈ N and Condition (C) does not hold. Hence, we will

use the full Weighted Heston algorithm with νκ = 2κ2 in the closest explicit

Heston model. Besides, we will use the weighted Laguerre polynomials with

J = 32 for the LSM pricing process.

To provide a baseline for comparing the accuracy, we run the groundtruth

with Milstein using an extraordinary fine time step M = 1
1000

and enormous

number of particle as shown in Table 8. To evaluate the performance of dif-

ferent method, we will fix the error for the three method and compare their

execution time. The error is defined as:

error =
1

100

100∑

i=1

| PE
i − P | (4.1)

with PE
i being the option price with Euler scheme and P being the groundtruth

option price. The error will be calculated using 100 independent experiment

results. The other error are defined similarly. The results are provided in

Table 9 and 10

Ground Truth

N 1, 000, 000

M 1, 000

Option Price 12.269

Table 8: Ground Truth of the American Puts for Weighted Comparison
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Euler Milstein Weighted Heston

N 10, 000 7, 225 2.500

M 100 85 15

Price 12.3116 12.2254 12.2258

Error 0.0426 0.0436 0.0432

Time 17.4178 13.156 1.387

Time Factor 1 1.324 12.562

Table 9: Execution Time for Euler, Milstein and Weighted Heston with lower
Accuracy on American Puts

Euler Milstein Weighted Heston

N 40, 000 30, 625 3, 500

M 200 175 17

Price 12.3013 12.2367 12.2366

Error 0.0323 0.0323 0.0324

Time 143.356 84.6254 2.20966

Time Factor 1 1.694 64.877

Table 10: Execution Time for Euler, Milstein and Weighted Heston with
Higher Accuracy on American Puts

In Table 9 and 10, we defined a Time Factor that resembled to the Explicit

Gain in section 2.3. It describes how many times faster can Milstein and

Weighted Heston simulation achieve compared to the basic Euler scheme with

the same error. As presented above, the Weighted Heston algorithm shows

a remarkable improvement over the traditional discretization methods. The

speed advantage will be more significant when we require a higher accuracy.

4.1.2 Pricing the Asian Straddles

Then we will perform another comparison among the Euler, Milstein and

Weighted Heston algorithm on the Asian Straddles. The payoff process for an
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Asian straddle is Zt = |Rt−K|, where R is the running average of the Heston

price. It can be calculated as the following:

Rt =
t− 1

t
Rt−1 +

1

t
St (4.2)

As the Asian Straddles option pricing model is a three factor model(stock price,

average price and volatility), we only use J = 2 for each factor to simplify the

problem. Other parameters remain the same as the American put option. The

ground truth price used for measuring the error is given in Table 11 and the

comparisons are shown in Table 12 and 13

Ground Truth

N 1, 000, 000

M 1, 000

Option Price 136.174

Table 11: Ground Truth of the Asian Straddles for Weighted Comparison

Euler Milstein Weighted Heston

N 10, 000 4, 900 3, 510

M 100 70 12

Price 135.956 135.952 136.019

Error 0.218 0.214 0.222

Time 18.8237 11.2313 1.8943

Time Factor 1 1.676 9.937

Table 12: Execution Time for Euler, Milstein and Weighted Heston with Lower
Accuracy on Asian Straddles
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Euler Milstein Weighted Heston

N 40, 000 25, 600 4, 800

M 200 160 13

Price 136.043 136.046 136.303

Error 0.131 0.128 0.124

Time 145.864 73.958 2.861

Time Factor 1 1.972 50.984

Table 13: Execution Time for Euler, Milstein and Weighted Heston with
Higher Accuracy on Asian Straddles

With a less demand of accuracy, the Weighted Heston performs at approx-

imate 10 times better than the widely-used Euler scheme. And we only need

1
50

computation time to get a more precise estimation for the option price by

applying Weighted Heston algorithm.

The experiments conducted in this section empirically proved the Weighted

Heston algorithm is a better choice for simulating the Heston model in option

pricing problems for with highly efficiency.

4.2 Comparison of Stochastic Approximation

and LSM Scheme

In this section, we will decide which valuating method should be applied

when we price path-dependent options. The experiments will be performed

for American Puts first and further the discussion to a more complicated three

factor problem.

4.2.1 Valuation of American Puts

To value the American Puts, we will use the following parameters: µ =

0.0319, ρ = −0.7, % = 6.21, κ = 0.61, K = 100, S0 = 100, V0 = 0.0102, T = 50

and ν = 1
2
κ2 so the Explicit algorithm applies in this case. As in section 4.1,
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we will use the weighted Laguerre polynomials as the basis functions and all

the prices are calculated by taking the average of 100 independent experiment.

First we investigate how many basis functions we can add before the LSM

and SA algorithms fail to give a correct estimation of the option price. Tables

14, 15 show this along with performance.

SA Price SA Time LSM Price LSM Time

J=22 8.44858 0.11298 8.40775 0.124679

J=42 8.49936 0.14411 8.38028 0.258755

J=82 8.41892 0.2566856 5.58625 2.13897

Table 14: SA and LSM with N = 10, 000 on American Puts

SA Price SA Time LSM Price LSM Time

J=22 8.4213 1.24712 8.39404 1.51143

J=42 8.50788 1.79924 8.51376 2.7524

J=82 8.51644 2.64996 7.18587 20.1488

Table 15: SA and LSM with N = 100, 000 on American Puts

We can draw several conclusions from Tables 14 and 15. First, the execu-

tion time for the SA algorithm is much less than the popular LSM algorithm,

especially as J increases and matrix inversion becomes difficult. For small

number of the basis functions, SA is about 10% faster than LSM. However,

when the number of basis function increases, the SA time performance becomes

even more preferable.

Next, given enough particles (eg. N = 100, 000 here), prices and pricing

accuracy should both increase as J increase because we will obtain a bet-

ter estimate of the optimal stopping time since more information has been

exhausted. Table 15 demonstrates that as J increase from 22 to 82 the SA

option prices increase and the SA algorithm does not fail. Indeed, it should

never fail as it avoids the numeric problems of inverting a huge matrix. The

LSM algorithm does fail as prices drop dramatically and time explodes for
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large J in both Table 14 and Table 15 result from the complicated matrix

inversion in the least squares estimate.

Also we notice that prices fall in Table 14 for the SA algorithm. However,

the reason for this slight drop down (compared to change in LSM price) is

different. When N is small the projection parameter estimates are often bad

since the SA might not be able to reach the stable and convergent results.

The situation will be worst when there are lots of parameters to estimate so

the optimal stopping is easily missed, even when J is large. Therefore, with a

limited number of particles, increasing J might not be able to provide a better

result.

To provide more credible evidence of this expected price improvement in

J given large enough N , we also run the Stochastic Approximation method

with N = 1, 000, 000 and J = 12, as shown in Table 16, the American put

option price rises to 8.58712. As the number of particles and basis functions

are rather high in this situation, we will take the price as the ground truth

too.

Ground Truth

N 1, 000, 000

J 122

SA Option Price 8.58712

Table 16: Ground Truth of the American Put Price

The SA prices in Tables 14 and 15 were running in right direction. The

SA algorithm behaves better than the LSM, especially as the desired accuracy

increases.

4.2.2 Valuation of Asian Calls

We continue our comparison of SA and LSM algorithms but now on an

Asian Call option and in a situation where the Weighted Heston has to be

used.
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In this section, we will use model parameters: ν = 8.1κ2

4
, µ = 0.0319, ρ =

−0.7, % = 6.21, κ = 0.2 and T = 50 so n = 8.1 and νκ = 2κ2 is used in the

closest explicit Heston. The ground truth for this experiment is:

Ground Truth

M 12

N 1, 000, 000

J 123

SA Option Price 31.3455

Table 17: Ground Truth of the Asian Call Price

We choose to run the ground truth using SA since it has been proved in

the previous case that LSM will fail when we need to inverse a 64×64 matrix.

Hence, for the Asian Calls, which is a three factors model, it is impossible to

get the accurate results with the LSM. Also, it will take a rather long time

to run the experiment with Euler and Milstein for this value of N and a high

enough number of steps M . Limited by the time and facilities, we apply the

Weighted Heston simulation in finding the ground truth.

Following the same procedure of pricing the American Put option, we first

consider performance with different numbers of bases functions and show this

in Table 18:

SA Price SA Time LSM Price LSM Time

J=23 31.3411 11.2404 25.2365 12.511

J=43 31.3411 36.2066 20.3398 92.432

Table 18: SA and LSM with N = 100, 000,M = 12

We can clearly see that the LSM fails already when J = 23. The main

reason still lies in the matrix inversion part. Although the size of the matrix

is 8× 8, which is smaller than the feasible case in Table 15 as 16× 16, we have

both price and average price in the Asian Calls. This might result in a greater
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chance of the matrix having nearly linearly dependent rows and hence being

highly ill-conditioned to inversion even matrix size is not that huge.

The SA algorithm does not fail even for large number of basis function. The

price remains the same for J = 23 and 43 might on account of its averaging

feature. Since we are pricing options on average spot price, which varies less

and less as time goes on, the volatility inherent in the option is reduced so

increase the number of basis functions will not help much with mining addition

information. Indeed, a comparison between Tables 17 and 18 shows that the

SA algorithm with J = 2, 4 and N = 100, 000 already provides a rather close

result to the ground truth.

4.3 Comparison of the Branching-SA, Weighted-

SA, and Euler-LSM Algorithm on Ameri-

can Puts

In this section, we will conduct the experiment mainly to prove the advan-

tages for employing the branching method into option pricing. However, as the

final part of the numerical results, we are trying to establish the best algorithm

of simulating and pricing path-dependent options for Heston model. There-

fore, we will compare the traditional simulation pricing schemes as Euler with

LSM to the combination of Weighted Heston and SA algorithm. Furthermore,

the combined branching algorithm will be applied on it.

The model parameters used in this section are: ν = 8.1κ2

4
, µ = 0.0319, ρ =

−0.7, % = 6.21, κ = 0.2 and T = 50 so n = 8.1 /∈ N and Condition (C) does not

hold. Hence, we will use the full Weighted Heston algorithm with νκ = 2κ2

in the closest explicit Heston model. The initial state S0 = 100, V0 = 0.102,

and the strike price K = 100. To measure the improvement, instead of fixed

performance as we did in the previous experiments, we mean to conduct the

accuracy comparison given a suitable execution time in this section. The

alteration is made as in real market, a precise option price is placed as the
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first priority to the investors. But we are not going to make our fixed time

to be large since the results will be useless under the circumstances of fast

trading nowadays.

As demonstrated by the previous experiments, Weighted Heston shows

time advantages compared to Euler and Milstein while the SA algorithm out-

performs the LSM in pricing accuracy and saving computation time. There-

fore, we will combine these two methods for simulating and pricing options to

get a better result. The ground truth is obtained by using 122 basis functions

and a million particle for the Weighted Heston with SA method.

Ground Truth

M 5

N 1, 000, 000

J 122

SA Option Price 7.9426

Table 19: Optimal American Put Price

For the actual experiments, we fixed our computation time at around 19.5

second and calculating the pricing error for different methods. The error is

computed in the same way as in section 4.1.

Euler-LSM Weighted-SA

M 100 5

N 10, 000 65, 000

J 42 82

Price 7.371 7.932

Error 0.572 0.0103

Time 19.662 19.433

Performance Factor 1 55.534

Table 20: Comparison of Euler-LSM and Weighted-SA on American Puts

We define the Performance Factor in table 20 analogous to the Time Factor
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in the previous sections so as to measure the accuracy improvement using the

Weighted Heston with SA method. Actually this factor can be arbitrarily

large since we have proved in section 4.2 that the LSM will finally fail when we

increase the number of basis functions to 82. However, we still want the LSM

works in this case so that the comparison will be more meaningful. Therefore,

we choose 42 here, which has been shown in Table 14 that LSM algorithm

works. From the experiment results, we see that given a time, the accuracy

will be increased more than 50 times by replacing the simulation and pricing

method to Weighted Heston with SA.

Then we will extend our results by introducing branching algorithm into

pricing options. As suggested by Kouritizin [18], the number of particles in

combined branching is more stable than in residual branching, which leads

to reducing execution time and enhancing the performance of the branch-

ing algorithm. Therefore, combined branching will be used here to draw the

comparison with the Weighted-SA method in valuing the American put op-

tion. We will still fix the computation time around 19.5 and treat the error of

Weighted-SA without branching as the base line. The resample parameter for

the combined branching is set to be 3.45.

Weighted -SA Branching-SA

M 5 30

N 65, 000 18, 000

J 82 62

Price 7.932 7.9392

Error 0.0103 0.0034

Time 19.433 19.455

Performance Factor 1 3.03

Table 21: Comparison between Weighted-SA and Branching-SA on American
Puts

The performance factor for the branching algorithm is around 3, does not

show as impressive as the one in Table 21. However, that might due to the



49

fact that the error of Weighted-SA is already being really small and it requires

much more effort to increase the accuracy in this case. Actually, the price

estimation for Branching-SA is extremely close to the ground truth.

To get the best pricing algorithm for the path-dependent option pricing

problem, we can combine the results from Table 20 and Table 21. To show

the results in a more intuitive way, we sum up the performance factor based

on the traditional Euler-LSM method.

Euler-LSM Weighted-SA Branching-SA

Performance Factor 1 55.534 168.27

Table 22: Performance Factor

Apparently, the performance of Branching-SA is orders of magnitude better

than the traditional Euler-LSM, which is the most widely-used method today.

The pricing accuracy has been improved by around 170 times given the same

time using the new Branching-SA algorithm.
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Chapter 5

Appendix

5.1 Proof of Theorem 2.1

The prove is mainly taken from Kouritzin??. The SDE can be interpreted

and solved explicitly either in the strong or weak way. Weak interpretations are

often sufficient in applications like mathematical finance and filtering and allow

solutions to a greater number of equations than strong solutions. However,

there is also the possibility of finding new explicit strong solutions through

the guise of weak solutions, which should not be surprising given the result

of [24]. Moreover, weak solutions can often be converted to (marginals of)

strong solutions of a higher dimension sde, which is the first way that we will

use weak interpretations. Our approach will be to show everything explicitly

in the case n = 2 and then explain the necessary changes for n ∈ {1, 3, 4, ...}.
However, we first simplify the task by observing the “independently driven”

part of the price can be split off.
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5.1.1 Price Splitting

Suppose that

d

(
Sc
t

Vt

)
=

(
µSc

t

ν − %Vt

)
dt+


 ρSc

tV
1
2
t

κV
1
2
t


 dβ̂t, (5.1)

Si
t = exp

(√
1− ρ2

∫ t

0

V
1
2
s dBs −

1− ρ2

2

∫ t

0

Vsds

)
(5.2)

with respect to independent Brownian motions β̂, B. Then, it follows by Itô’s

formula and the independence of β̂, B that St = Sc
tS

i
t and Vt satisfy (1.2)

with β = β̂. Moreover, Si is conditionally (given V ) log-normal and hence

trivial to simulate. Hence, we only have to solve (5.1), which we do using

weak interpretations to create a higher dimension sde that does satisfy (2.8)

and hence have an explicit strong solution.

5.1.2 Volatility in Case n = 2

To ease the notation, we will use Y and Z in place of Y 1, Y 2 in Theorem

2.1. We consider solutions to a Cox-Ingersoll-Ross (CIR) type Ito equation

dVt = (ν − %Vt) dt+ κ
√

Vt dβ̂t, (5.3)

for some Brownian motion β̂. Let W 1,W 2 be independent Brownian motions

so

Yt =
κ

2

∫ t

0

e−
%
2
(t−u)dW 1

u + e−
%
2
tY0, Zt =

κ

2

∫ t

0

e−
%
2
(t−u)dW 2

u + e−
%
2
tZ0 (5.4)

are independent Ornstein-Uhlenbech processes. It follows by Itô’s formula

that, if Condition (C) is true (with n = 2), then V = Y 2 + Z2 satisfies (5.3)

with

β̂t =

∫ t

0

Yu√
Y 2
u + Z2

u

dW 1
u +

∫ t

0

Zu√
Y 2
u + Z2

u

dW 2
u . (5.5)
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(Note that (β̂,W ) is a standard two dimensional Brownian motion, where

Wt =
∫ t

0
Zu√
Y 2
u+Z2

u

dW 1
u −

∫ t

0
Yu√

Y 2
u+Z2

u

dW 2
u , by Levy’s characterization.) We call

(V, β̂) a weak solution since the definition of β̂ was part of the solution. V will

also be a strong solution if Vt is measurable with respect to F β̂
t $ σ{β̂u, u ≤ t}.

A strong solution does not immediately follow from the Yamada-Watanabe

theorem since the conditions for pathwise uniqueness in e.g. Theorem IX.3.5 of

[25] can not immediately be validated. Moreover, explicit form in terms of only

β̂ is unknown. (Example 3.4 of Kouritzin [21] shows that it unrepresentable in

terms of a single Ornstein-Uhlenbeck processs.) Regardless, it is unimportant

to us if V is a strong solution or not. 1

5.1.3 Extended Price Formulation in Case n = 2

Recall W 1,W 2 are independent standard Brownian motions, set

σ(y, z, s) =




κ
2

0

0 κ
2

ρ sy ρ sz


 (5.6)

and define a new sde of the form:

d




Yt

Zt

Sc
t


 =




−%

2
Yt

−%

2
Zt

µSc
t


 dt+σ(Yt, Zt, S

c
t )

[
dW 1

t

dW 2
t

]
. (5.7)

This equation has a unique strong solution. Indeed, the first two rows im-

mediately give strong uniqueness for Y, Z and then Sc is uniquely solved as a

1There is a famous example of H. Tanaka of a simple SDE with weak but not strong
solutions.
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stochastic exponential. This solution can be rewritten as:

d




Yt

Zt

Sc
t


 =




−% Yt

2

−%Zt

2

µSc
t


 dt+




κ
2

Zt√
Y 2
t +Z2

t

κ
2

Yt√
Y 2
t +Z2

t

−κ
2

Yt√
Y 2
t +Z2

t

κ
2

Zt√
Y 2
t +Z2

t

0 ρSc
tV

1
2
t




[
dWt

dβ̂t

]
, (5.8)

where [
dWt

dβ̂t

]
=




Zt√
Y 2
t +Z2

t

−Yt√
Y 2
t +Z2

t

Yt√
Y 2
t +Z2

t

Zt√
Y 2
t +Z2

t



[

dW 1
t

dW 2
t

]
. (5.9)

Now, the last row of (5.8) together with (5.1,5.2,5.3,5.4,5.5) show that (S =

SiSc, V = Y 2 + Z2) is the Heston model with ν = κ2

2
. Moreover, (5.6) does

satisfy (2.8) since

(∇σ1)σ2 =




0

0

ρ2 s y z


 = (∇σ2)σ1 (5.10)

so we will be able to look for simple explicit solutions. Our extended Heston

system (5.7) can also be written as a Stratonovich equation:

d




Yt

Zt

Sc
t


 =




−%

2
Yt

−%

2
Zt

µSc
t − κρSc

t

2
− Sc

tρ
2 Y

2
t +Z2

t

2


dt+




κ
2

0

0 κ
2

ρ Sc
tYt ρ Sc

tZt


 •
[
dW 1

t

dW 2
t

]
,(5.11)

where the stochastic integral implied by the • is now interpretted in the Fisk-

Stratonovich sense. We define the full Fisk-Stratonovich drift coefficient to

be:

h(y, z, s, v) =




−%

2
y

−%

2
z

µs− κρs

2
− sρ2 y

2+z2

2


 . (5.12)
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Reformulating the Heston equations into a higher dimensional equation so

that commutator conditions like (5.10) are true and explicit solutions exist is

one of our main contributions. It is believed that similar techniques can be

used on some other interesting financial models.

5.1.4 Explicit Solutions for Extended Heston in case n =

2

We can solve for the possible strong solutions to (5.8). The first step is to

transform the equation to a simpler one using Theorem 2 of [20], restated here

in the case p = 3 and d = r = 2 for convenience:

Theorem 5.1. Let D ⊂ R
3 be a bounded convex domain, X0 be a ran-

dom variable living in D, W be an R
2-valued standard Brownian motion and

h : D → R
3, σ : D → R

3×2 be twice continuously differentiable functions

with σ(X0) having full rank and satisfying (2.8). Then, the Stratonovich SDE

dXt = h(Xt)dt + σ(Xt) • dWt has a solution Xt = Λ−1

(
X t

X̂t

)
on [0, τ ] for

some stopping time τ > 0, in terms of a simpler SDE

[
X t

X̂t

]
=

∫ t

0

ĥ

(
Xs

X̂s

)
ds+

(
Wt

0

)
+ Λ(X0), with ĥ(x) = (∇Λh) ◦ Λ−1(x),

and a local diffeomorphism Λ if and only if the simpler SDE has a solution up

to a stopping time at least as large as τ . Without loss of generality, the local

diffeomorphism can have the form Λ = Λ2 ◦ Λ1 for any local diffeomorphisms

Λ1 : D → R
3 satisfying ∇Λ1σ1 ◦ Λ−1

1 (x) = e1 and Λ2 : Λ1(D) → R
3 satisfying

{∇Λ2∇Λ1σ2}◦(Λ−1
1 ◦Λ−1

2 (x)) = e2, where (e1 e2 e3) = I3 is the identity matrix.

There are three things to note:

1. The diffusion coefficient is just

(
I2

0

)
for the simpler SDE.
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2. We can check this local solution to see if it is actually a global solution.

We will do this below and determine that it is a global solution in our

case.

3. We can check ĥ to see if these equations are solvable. We will do this

below and actually solve the simplified SDE and the diffeomorphism in

the extended Heston case.

4. It is shown in [20] that (2.8) is also necessary if want to have such local

solutions for all initial random variables X0.

In our Heston case X =
(
Y , Z

)′
and X̂ = Ŝc and we can use Theorem 5.1 to

obtain:

Theorem 5.2. Suppose (W 1,W 2)′ is a standard R
2-valued Brownian motion

and
(
Y t, Zt, Ŝ

c
t

)′
is the strong solution to:

d
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Y t

Zt

]
=
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2
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]
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W 2
t

]
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t
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2
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4
− κ2ρ2

8

]{
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2
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2

t

}]
dt.

Then,




Yt

Zt

Sc
t


 = Λ−1




Y t

Zt

Ŝc
t


 with

(
W 1

t

W 2
t

)
satisfies (5.8,5.9), where

Λ(x) =




2
κ
x1

2
κ
x2

x3 exp
(
− ρ

κ
(x2

1 + x2
2)
)


 , Λ−1(x) =




κ
2
x1

κ
2
x2

x3 exp
(
ρκ
4
(x2

1 + x2
2)
)


 ,

(5.13)

is a C2-diffeomorphism on R× R× (0,∞).

We do not need Condition (C) for this theorem nor even for the solution

of price S in terms of V below. We only need this condition to express the

volatility in terms of the sums of squares of independent Ornstein-Uhlenbeck
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processes. We only really care that we have a solution for the last rows

of (5.8,5.9) but we have to solve for all rows and then later throw away the

unnecessary ones. Y and Z are independent Ornstein-Uhlenbeck processes

while Ŝc just solves a linear ordinary differential equation (with coefficients

depending upon the random processes Y , Z). Hence, simulation and calcula-

tion is made easy by the explicit form of the diffeomorphism and its inverse.

Notice that Ŝc has finite variation while Sc does not. The explanation for this

is that the diffeomorphism Λ−1 brings Y and Z into the solution for Sc and

thereby handles the quadratic variation.

Proof. The idea is to find the diffeomorphisms Λ1,Λ2 in Theorem 5.1. Solving

d
dt
θ(t; x) = σ1(θ(t; x)) leads to

d

dt
θ(t; x) =




κ
2

0

ρ θ1(t; x)θ3(t; x)


 subject to θ(0; x) =




0

x2

x3


, (5.14)

and we find that θ1(t; x) =
κ
2
t; θ2(t; x) = x2; θ3(t; x) = x3 exp

(
ρκ

4
t2
)
. Substi-

tuting t = x1 in, we have that

Λ−1
1 (x) =




κ
2
x1

x2

x3 exp
(
ρκ

4
x2
1

)


 , (5.15)

which has inverse

Λ1(y) =




2
κ
y1

y2

y3 exp
(
− ρ

κ
y21
)


 . (5.16)
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Next, it follows that

∇Λ1(y) =


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0 0

0 1 0

−2 ρ
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y1y3 exp

(
− ρ

κ
y21
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(
− ρ

κ
y21
)


 (5.17)

so σ̂1(x) = {∇Λ1σ1}(Λ−1
1 x) = e1 and we have found our first diffeomorphism

in Theorem 5.1. To find the second diffeomorphism, we set

α2(x) = {∇Λ1σ2}(Λ−1
1 x) =




0

κ
2

ρ x2x3


 . (5.18)

Then, solving d
dt
θ(t; x) = α2(θ(t; x)) leads to

d

dt
θ(t; x) =
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and we find that θ1(t; x) = x1; θ2(t; x) =
κ
2
t; θ3(t; x) = x3 exp

(
ρκ

4
t2
)
. Substi-

tuting t = x2 in and taking the inverse, we have that
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2 (x) =
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Next, it follows that

∇Λ2(y) =




1 0 0

0 2
κ
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0 −2 ρ

κ
y2 y3 exp

(
− ρ

κ
y22
)

exp
(
− ρ

κ
y22
)


 (5.21)

so σ̂2(x) = {∇Λ2α2}(Λ−1
2 x) = e2 and we indeed have our second homeomor-

phism in Theorem 5.1. Now, we find Λ = Λ2 ◦ Λ1 gives the diffeomorphism in
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(5.13) and

∇Λ(y) =




2
κ

0 0

0 2
κ

0
−2 ρ

κ
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so ĥ(x)
.
= (∇Λ)h ◦ Λ−1(x) in Theorem 5.1 satisfies

ĥ(x) =


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5.1.5 Finishing Proof of Theorem 2.1 by Solving Equa-

tions in case n = 2

The solution for
(
Y t, Zt, Ŝ

c
t

)′
in Theorem 5.2 is: Y t =

∫ t
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Moreover, it follows by (5.13) and (5.4) that

Sc
t = Ŝc

t exp
(ρκ
4
(Y

2

t + Z
2

t )
)
= Ŝc

t exp
(ρ
κ
(Y 2

t + Z2
t )
)
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t exp
(ρ
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)
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and it follows by (5.24), Theorem 5.2, (5.13) and substitution that

Sc
t =Sc

0 exp
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µ− κρ

2

]
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4
− κ2ρ2

8

] ∫ t
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(5.25)

We also get a solution for the simplified Heston (2.12) by computing

Si
t = exp

(√
1− ρ2

∫ t

0

V
1
2
s dBs −

1− ρ2

2

∫ t

0

Vsds

)
(5.26)

and then multiplying St = Sc
tS

i
t to get (2.9) of Theorem 2.1 in the case n =

2.

5.1.5.1 Case n 6= 2

Insomuch as the guess and check proof of Theorem 2.1 is as simple as Itô’s

formula, our real goal here is to motivate how this solution was actually arrived

at and how weak solutions for other models might be found. With this easy

Ito lemma test, a formal proof along these lines is less important. Hence, we

have given all the steps just in the case n = 2 and we will just explain the

differences required for the case n 6= 2 instead of going through the formal

proof with these methods.

The price splitting was already done in general. There is no change there.

For the volatility in the case n ∈ {1, 3, 4, ...}, we start with n independent

standard Brownian motions W 1, ...,W n and follow Subsection 5.1.2. The dif-

ferences are: We replace Y, Z with {Y i
t = κ

2

∫ t

0
e−

%
2
(t−u)dW i

u + e−
%
2
tY i

0}ni=1 and

set

β̂t =
n∑

i=1

∫ t

0

Y i
u√∑n

j=1(Y
j
u )2

dW i
u (5.27)

to find that V =
n∑

i=1

(Y i)2 satisfies (5.3) when ν = nκ2

4
(and V0 =

n∑
i=1

(Y i
0 )

2).
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For the extended price formulation when n ∈ {1, 3, 4, ...}, we set

σ(y1, ..., yn, s) =




κ
2

0 0 · · · 0

0 κ
2

0 · · · 0
...

...
. . .

...
...

0 0 · · · κ
2

0

0 0 · · · 0 κ
2

sρ y1 sρ y2 · · · sρ yn−1 sρ yn




(5.28)

and find ∇σiσj = (0, ..., 0, sρ2yiyj)
′ for i 6= j so (2.8) clearly holds. (For clarity,

σ = (κ
2
, sρy1)

′ when n = 1.) Now, define a new sde of the form:

d




Y 1
t

...

Y n
t

Sc
t



=




−%

2
Y 1
t

...

−%

2
Y n
t

µSc
t



dt+σ(Y 1

t , ..., Y
n
t , S

c
t )




dW 1
t

...

dW n
t


 . (5.29)

This equation has a unique strong solution and it can be rewritten by post-

multiplying σ by OO−1, where

O =




Y n
t√
Vt

0 · · · 0
Y 1
t√
Vt

0
Y n
t√
Vt

· · · 0
Y 2
t√
Vt

...
...

. . .
...

...

0 0 · · · Y n
t√
Vt

Y n−1
t√
Vt

− Y 1
t√
Vt

− Y 2
t√
Vt

· · · −Y n−1
t√
Vt

Y n
t√
Vt




, (5.30)
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and (abusing notation by letting Yi = Y i
t )

O−1 =




Y 2
2 +···+Y 2

n

Yn

√
Vt

− Y1Y2

Yn

√
Vt

− Y1Y3

Yn

√
Vt

· · · −Y1Yn−1

Yn

√
Vt

− Y1√
Vt

− Y1Y2

Yn

√
Vt

Y 2
1 +Y 2

3 +···+Y 2
n

Yn

√
Vt

− Y2Y3

Yn

√
Vt

· · · −Y2Yn−1

Yn

√
Vt

− Y2√
Vt

...
...

...
. . .

...
...

−Y1Yn−1

Yn

√
Vt

−Y2Yn−1

Yn

√
Vt

−Y3Yn−1

Yn

√
Vt

· · · Y 2
1 +···+Y 2

n−2+Y 2
n

Yn

√
Vt

−Yn−1√
Vt

Y1√
Vt

Y2√
Vt

Y3√
Vt

· · · Yn−1√
Vt

Yn√
Vt




(5.31)

as:

d




Y 1
t

...

Y n
t

Sc
t



=




−% Y 1
t

2
...

−% Y n
t

2

µSc
t



dt+




κ
2

Y n
t√
Vt

0 · · · 0 κ
2

Y 1
t√
Vt

...
...

. . .
...

...

0 0 · · · κ
2

Y n
t√
Vt

κ
2

Y n−1
t√
Vt

0 0 · · · 0 ρSc
tV

1
2
t







dA1
t

...

dAn−1
t

dβ̂t



,

(5.32)

where (A1, ..., An−1, β̂)′ = O−1(W 1, ...,W n)′ so β̂ does satisfy (5.27). This

extended Heston solution (5.29) can also be written in Fisk-Stratonovich form

as

d




Y 1
t

...

Y n
t

Sc
t



=




−%

2
Y 1
t

...

−%

2
Y n
t(

µ− nκρ

4

)
Sc
t − Sc

tρ
2 (Y

1
t )2+···+(Y n

t )2

2



dt+σ(Y 1

t , ..., Y
n
t , S

c
t )•




dW 1
t

...

dW n
t


 ,

(5.33)

from which we can apply Proposition 2 of [20] (knowing (2.8) holds) in the

case p = n + 1 and d = r = n to find (5.33) has a strong solution up to some

stopping time τ > 0 if and only if

d




Y
1

t

...

Y
n

t


=




−%

2
Y

1

t

...

−%

2
Y

n

t


 dt+ d




W 1
t

...

W n
t


 , (5.34)
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dŜc
t =Ŝc

t

[
µ− nκρ

4
+

[
κρ%

4
− κ2ρ2

8

]

× {
(
Y

1

t

)2
+ · · ·+

(
Y

n

t

)2
dt

(5.35)

does. Moreover, the solutions to (5.33) and (5.34,5.35) satisfy




Y 1
t

...

Y n
t

Sc
t




=

Λ−1




Y
1

t

...

Y
n

t

Ŝc
t



, where C2-diffeomorphism Λ is given by

Λ(x) =




2
κ
x1

...

2
κ
xn

xn+1 exp
(
− ρ

κ
(x2

1 + · · ·+ x2
n)
)



, Λ−1(x) =




κ
2
x1

...

κ
2
xn

xn+1 exp
(
ρκ
4
(x2

1 + · · ·+ x2
n)
)



.

(5.36)

The solution to (5.34,5.35) is then

Y
i

t =

∫ t

0

e−
%
2
(t−u)dW i

u + e−
%
2
tY

i

0, i = 1, ..., n and (5.37)

Ŝc
t = Ŝc

0 exp

([
µ− nκρ

4

]
t+

[
κρ%

4
− κ2ρ2

8

] ∫ t

0

{(
Y

1

s

)2
+ · · ·+

(
Y

n

s

)2
}
ds

)

(5.38)

from which it follows using (5.36) that

Sc
t = Sc

0 exp

([
µ− nκρ

4

]
t+

[
ρ%

κ
− ρ2

2

] ∫ t

0

Vsds+
ρ

κ
(Vt − V0)

)
(5.39)

with Vt =
κ2

4

{(
Y

1

t

)2
+ · · ·+

(
Y

n

t

)2
}
. The result follows by multiplying St =

Si
tS

c
t and Itô’s formula. �
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5.2 Proof of Theorem 2.2

By Theorem 2.1, (Ŝ, V̂ ), defined in (2.13,2.14) satisfies the Heston model

with parameters νκ, µκ defined in (2.12). Hence

Mt(f) = f(Ŝt, V̂t)−
∫ t

0

µκŜu ∂sf(Ŝu, V̂u) + (νκ − %V̂u)∂vf(Ŝu, V̂u) (5.40)

+
1

2
Ŝ2
uV̂u ∂

2
sf(Ŝu, V̂u) + ρκŜuV̂u ∂s∂vf(Ŝu, V̂u) +

1

2
κ2V̂u ∂

2
vf(Ŝu, V̂u)du

(for f ∈ S(R2), the rapidly decreasing functions) has the following P -martingale

representation

Mt(f) =

∫ t

0

[κ∂vf(Ŝu, V̂u) + ρŜu∂sf(Ŝu, V̂u)]V̂
1
2
u dβ̂u (5.41)

+

∫ t

0

√
1− ρ2Ŝu∂sf(Ŝu, V̂u)V̂

1
2
u dBu with β̂t =

n∑

i=1

∫ t

0

Y i
u√∑n

j=1(Y
j
u )2

dW i
u.

Separately, it follows by Itô’s formula and (2.12) that

ln(V̂t)− ln(V̂0) =

∫ t

0

νκ − %V̂s

V̂s

ds+

∫ t

0

κ

V̂
1
2
s

dβ̂s −
1

2

∫ t

0

κ2

V̂s

ds (5.42)

so, using (??), (2.15) is equivalent to

L̂t = exp

{∫ t

0

ν − νκ

κV̂
1
2
s

dβ̂s −
1

2

∫ t

0

|ν − νκ|2
κ2V̂s

ds

}
. (5.43)

It follows from (5.43) and the Novikov condition that t → L̂ηε
t

.
= L̂ηε∧t is an

Lr-martingale for any r > 0. This fact will be used in the development below

and to conclude mt(f) is a martingale versus just a local martingale. Next, it

follows by (5.41), Itô’s formula, (2.12) and the fact dL̂t = L̂t
ν−νκ
κ

V̂
− 1

2
t dβ̂t (by
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(5.43)) that the quadratic covariance satisfies

[L̂ηε , f(Ŝ, V̂ )]t =

∫ t∧ηε

0

L̂ηε
u

ν − νκ
κ

V̂
− 1

2
u

[
κ∂vf(Ŝu, V̂u) + ρŜu∂sf(Ŝu, V̂u)

]
V̂

1
2
u du

=

∫ t∧ηε

0

L̂ηε
u

[
(ν − νκ)∂vf(Ŝu, V̂u) + (µ− µκ)Ŝu∂sf(Ŝu, V̂u)

]
du.

(5.44)

Now, it follows by (5.40,5.44) and integration by parts that

mt(f) = L̂ηε
t f(Ŝt, V̂t)−

∫ t∧ηε

0

L̂ηε
u

[
µŜu ∂sf(Ŝu, V̂u) + (ν − %V̂u)∂vf(Ŝu, V̂u)

]
du (5.45)

−
∫ t

t∧ηε
L̂ηε
u

[
µκŜu ∂sf(Ŝu, V̂u) + (νκ − %V̂u)∂vf(Ŝu, V̂u)

]
du

−
∫ t

0

L̂ηε
u

[
1

2
Ŝ2
uV̂u ∂

2
sf(Ŝu, V̂u) + ρκŜuV̂u ∂s∂vf(Ŝu, V̂u) +

1

2
κ2V̂u ∂

2
vf(Ŝu, V̂u)

]
du

is a local martingale, which by (5.41) has form

mt(f) =

∫ t

0

L̂ηε
u [κ∂vf(Ŝu, V̂u) + ρŜu∂sf(Ŝu, V̂u) +

ν − νκ

κV̂u

f(Ŝu, V̂u)]V̂
1
2
u dβ̂u

+

∫ t

0

L̂ηε
u

√
1− ρ2Ŝu∂sf(Ŝu, V̂u)V̂

1
2
u dBu.

(5.46)

(Since we have used other randomness to create the {Y i}ni=1 we can not con-

clude thatmt(f) is adapted to the filtration generated by β,B but it is adapted

to the filtration created by B,W 1, ...,W n.)

Now, L̂ηε
t and mηε

t (f)
.
= mt∧ηε(f) are martingales so one has by (5.45) and

Fubini’s theorem that

Ê

[(
f(Ŝtn+1 , V̂tn+1)− f(Ŝtn , V̂tn)−

∫ tn+1

tn

Auf(Ŝu, V̂u)du

) n∏

k=1

hk(Ŝtk , V̂tk)

]

= E

[
L̂ηε
T

(
f(Ŝtn+1 , V̂tn+1)− f(Ŝtn , V̂tn)−

∫ tn+1

tn

Auf(Ŝu, V̂u)du

) n∏

k=1

hk(Ŝtk , V̂tk)

]

= E

[
(
mtn+1(f)−mtn(f)

) n∏

k=1

hk(Ŝtk , V̂tk)

]
= 0,

(5.47)
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for all 0 ≤ t1 < t2 < · · · < tn < tn+1, f ∈ S(R2) and h1, ..., hn ∈ B(R2) (the

bounded, measurables), where

Auf(s, v) = [µs∂sf(s, v) + (ν − %v)∂vf(s, v)]1[0,ηε](u) (5.48)

+ [µκs∂sf(s, v) + (νκ − %v)∂vf(s, v)]1[ηε,T ](u)

+
1

2
s2v∂2

sf(s, v) + ρκ∂v∂sf(s, v) +
κ2

2
∂2
vf(s, v).

Now, it follows by the argument on page 174 of [26] that (S, V ) satisfies the

Au-martingale problem with respect to P̂ �.
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