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Abstract

In this dissertation we present new methods for designifigeit Raptor codes in
finite and practical block lengths. First we propose an esitenof Raptor codes
which keeps all the desirable properties, including thedmcomplexity of encod-
ing and decoding per information bit, and improves the peronce in terms of
the reception rate. Our simulations showé; reduction in the required overhead
at the benchmark block length of 64,520 bits, and with theesaomplexity per
information bit. Second, we consider the practical settuith short block lengths
of 10® < k < 10*. Based on a new vision of the inactivation decoding procgss,
set a new degree distribution design criterion for the Lubypgform (LT) part of
Raptor codes. A family of degree distributions that satibynew design criterion
is analytically derived. The finite length performance asttamily is investigated

by using computer simulations and is shown to outperfornctim¥entional design.
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Chapter 1

| ntroduction

1.1 Motivation

Communication networks such as the Internet and cellulavor&s have tremen-

dously improved every aspect of our lives. Our modern lifeddits from this tech-

nology to the extent that it cannot function without comnuation networks any

more. The demand for this technology is ever increasing.o&ting to the Cisco,

the projected Internet traffic is in a hockey stick-like upavaurve to reach 50 bil-

lion connected devices by 2020. This projected growth delmamcreased speed,
bandwidth, and throughput, which have pressed networkydess into a constraint-
bound corner. Cisco Visual Networking Index (VNI) antidipsithe annual global
IP traffic will reach two-thirds of a Zettabyte (Trillion Gadpytes) by 2013 [1]. This

number represents more than a fivefold increase over totrayraffic.

Failure to fulfil this demand affects the development andaeson of on-line
services where, lowering the costs and saving time and energrucial for the
stability and improvement of economy, especially in depebb counties such as
Canada. Moreover, such a failure will harm all related itides such as communi-
cation device manufacturing and all emerging on-line sevisuch as Internet TV,
on-line education, sensor networks, and the revolutionknyd technology just to
name a few.

Satisfying this demand based on the current methods of datanhission re-

quires significant increase in the infrastructure at a tresoes cost. However,



thanks to the novel ideas in the coding theory, such as sstet&ling, data transmis-
sion at much higher rates on the available hardware sett@g$e made possible.
This is an accepted fact by the community of experts and nesiores of inter-
national standards for communication over networks hareadl been revised to
include the possibility of using rateless coding.

The main problem in communication networks is to achievén lilgoughput
while facing noise, packet loss, interference, and fadihgfawhich vary with
time, sometimes even at time-scales shorter than a singkepiansmission time.
In such situations, achieving high data transmission natd#sconventional trans-
mission schemes requires perfect tracking of channel peteasand well adapta-
tion to the instantaneous conditions. An ideal solutionriataless coding scheme,
in which the scheme of encoding in the transmitter does ned @&y explicit es-
timation or adaptation of the channel quality. However, tla@smission rate will
implicitly adapt to the channel’s level of quality.

As an example, a packet broadcasting communication systeneiwhich han-
dles the communication of data from one source to severalvers in packets of
usually very large number of bits. An important instance wflsa system is the
Internet. In particular, for multimedia files, a server ltoasts the same informa-
tion packets to multiple clients. Communication in suchteyss, however, faces
challenges and necessitates new specialized solutioeaye behind current lim-
itations. One development that has recently attractedat gesal of interest is the
idea of Fountain codes which was first mentioned without galigk construction
in [2,3]. In particular, a family of Fountain codes, calledf®or codes [4, 5] has
already been incorporated in several 3rd generation vese(8GPP) and digital
video broadcasting (DVB) standards, including but not tedito, 3GPP MBMS,
DVB IPTV AL-FEC, and DVB RSC [6]. Thus, Fountain codes arereutly the
subject of extensive research both in academia and ind(estyy Digital Fountain
Inc.) for practical technologies.

Before the invention of Fountain codes, when broadcastngteivers with

different channel quality, the data rate had to be choseorditg to the worst



receiver. That is, a high-speed receiver had to suffer Isscatithe presence of a
low-speed receiver. Fountain codes resolved this probletrainsmitting different
mixtures (i.e., different XOR combinations) of originaltdgackets. Receivers use
the received packets to decode the original data by solviset @f liner (XOR)
equations. Theoretically, broadcasting continues uiittha receivers are able to
decode the data successfully. In practice, however, tlnisgss terminates earlier
because of various limitations. The high-speed receivabls to decode the data
as soon as sufficient number of packets (enough linear emsatis received in a
relatively short period of time. The low-speed receiver also decode all the data,
but compared to the high-speed receiver, it takes a longer td receive enough
packets, i.e., it has to listen longer to the channel. Hantarestingly, each receiver
pays for channel access according to its own channel quality

In this dissertation we will address some of the imperfedidsing in the ap-
plication of Raptor codes in practical settings. The twonmzategories of these
imperfections include the effect of finite length and the pomational complexity.
Regarding the first one, it worth to mention that all the asiaglgnd design of Raptor
codes are conventionally based on the assumption of antenfirfiormation block
length. However, in practice we always deal with finite bléekgths. This fact in-
validates some of the assumptions in the conventional sissdynd causes some gap
between the maximum achievable rates and the channel tapébere has been
some attempts to consider these effects and some modifisdtas been made to
reduce this gap specially in very short block lengths, busthod these attempts
lead to computationally complex solutions. Here, we witlarsider the design of
Raptor codes long with the effect of these imperfectionsiatrdduce some modi-
fications in the design of these codes to keep the compleftdaydable and reduce

the gap between the achievable transmission rates anddaha&lcapacity.

1.2 Contribution and Outline of Thesis

The next chapter of this thesis will briefly review the the @lesystem and channel

models used throughout the thesis. The conventional scbénteta transmission
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over such channel is discussed and the classical fixed rditegcsolutions for the
channel model are reviewed. Moreover the basic idea of Baurbding is in-
troduced and finally LT codes and Raptor codes are presestdtkdwo practical
instances of Fountain codes.

In Chapter 3, we propose some modification in the originaigiesf Raptor
codes based on a technique referred to as #rabtatiori. Annotation provides
the possibility of turning a portion of useless transmissia the original design
of Raptor codes into innovative transmissions providing m&formation to the
receiver. The Annotation scheme is introduced in detaitsthe performance of
annotated Raptor codes are compared with the original desigaptor codes, us-
ing computer simulation. As confirmed by the simulationsdheotated scheme
is capable of reducing the number of useless transmissipn8% in the bench-
mark example, while keeping the complexity unchanged. Kethain advantage
of the annotation technique is to provide a framework forimgndifferent levels
of protection to the information symbols in the transmiasidhis property can be
easily used in other directions. As an example, one can usgation for unequal
error protection rather than reducing the number of useksssived symbols and
increasing the reception rate. This work was presentedarnEEE Information
Theory Workshop (ITW) conference in October 2011, in Patgzil [7].

Design of Raptor codes specified for small block lengths m@udsed in Chap-
ter 4. Current practical settings suggest using infornmabtocks as short as a
few thousands. In this case a computationally more expemgeoding algorithm,
named‘inactivation decoding,’introduced in [8], is preferred due to its better per-
formance in terms of overhead. The effect of using inaatwedecoding is consid-
ered .Accordingly a new design criterion has is introducEie new design based
on this criterion is performed and the performance of newgeds compared to that
of conventional Raptor codes already adopted in the 3GPRdyneans of com-
puter simulations. The results show notable improvemeanthé computational
costs of this practical method. The new design reduces th@auof computa-

tionally expensive inactivation operations significanflyhis work is accepted for



publication in the IEEE Transactions on Communications iancurrently sched-
uled for the upcoming issue [9].
Finally, Chapter 5 presents our conclusions and suggests potential future

research initiatives resulting from this work.



Chapter 2

Background

The goal of this chapter is to briefly review some major cote@ghich have been
used in this thesis. The following section introduces ttesere channel which is
considered as the model of the channel under study in thissthRetransmission
as a practical solution which has been widely used in datstngssion over erasure
networks is reviewed in section 2.2, and theaiversality property” is introduced.
Next, we review the properties 6Reed-Solomon”codes as the most successful
fixed rate erasure correcting codes in section 2.3. “MIBS propertyis also dis-
cussed in the same section. Sections 2.4 to 2.6 review th®fdateless coding and
the two famous practical instances of rateless codes nddietpdes and Raptor
codes. Their encoding and decoding schemes along withdbeiplexity proper-

ties are explained.

2.1 Erasure Channels

An, erasure channdk a mathematical model for channels which introduce corrup
tion to the transmitted data in an extremist manner. Theuwapsuch a channel is
either the perfectly transmitted input, or a report of feelwithout any partial infor-
mation about the transmitted symbol (ioft informatior). Although this model
was more of an extreme theoretical case when it was intratiogd=lias [10] first

in 1955, it is a perfect model in many existing and emergingitanication sys-
tems nowadays. Probably the most famous example of a pabetigsure channel

is a link in a packet network such as the Internet. The patkatsmitted on these
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Figure 2.1: Ag-ary erasure channel with an input alphabet of gizand an output
alphabet of size + 1.

links are either received without error or not received. mare general view, any
noisy channel protected with an error-correcting code beshhke an erasure chan-
nel since the received symbol is either decodable or coelglateless. In the first
case, the error correcting code recovers the transmittethalyperfectly, and the

transmission can be supposed to be performed noiselessrwidh, the received

symbol is very poor and not decodable which then can be taken arasure.

In a more accurate way, the mathematical model gfay erasure channel
could be described as depicted in Fig. 2.1. The set of inpinaddet for such chan-
nel is {sy, sq,...,s,}, While the output alphabet set consists of all the possible
inputs, and an erasure repertEach input symbol is then assumed to have-ap,
probability of successful transmission, and will be erasgthe channel with prob-

ability p.. The capacity of this channel can be easily calculated gs [11

C = (1 —pc)logy(q)



2.2 Retransmission Scheme and Universality

Conventionally, communication over an erasure channelbeas performed by
retransmission based on feedback. Under this approacieeeiyer is supposed to
inform the transmitter about the packets or segments ofakeewlhich are received
by sending a small amount of information on the feedback isbla he transmitter
will then be able to track the reception process, identifieserased transmissions,
and keeps transmitting them again until all the data is vecesuccessfully [12].

Besides simplicity, this scheme has a very interesting gntgpwhich made
it, conventionally, the widely accepted practical solatfor transmission over an
erasure channel. This important property is the indeperelehthe transmission
scheme from the channel state. In other words, no matter thiegirobability of
erasure in the channel is, the transmission scheme always wee same way. As
we will discuss later this transmission scheme is not evéimah, however, the sim-
plification coming from its independence from the channafesthas been of such
a great benefit in practice to compensate its lack of opttgnalihis universality
property gives a single design of transmitter and receiverhy erasure channel.
Hence, no channel parameter estimation is required andarmels will be required
in the systems for the adaptation of transmission schentetoitannel state. How-
ever, yet this scheme provides a higher rate of data trasgmig a channel with
higher quality and vice versa. We will refer to this propeas/universality.

In most of the real world applications there is no perfectibeek channel pro-
vided. In many applications, such as internet based conuations, the feedback
channel is exactly the same as the forward channel. Therafoe feedback is also
subject to erasure at the same rate. Moreover, in most casdbédck traffic also
uses the same resources as of the data transmission, aredredaces the portion
of capacity achieved by data transmission rate.

The wastefulness of the feedback based retransmissiomsctuens out to be
even worse in a broadcast scenario to multiple receivetsdifferent channel qual-
ities. The common situation in an intermediate stage ofstemario is to have each

receiver received a random fraction of the transmitted ddiah is independent of
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the fraction received by other receivers. Therefore, tratter has to keep broad-
casting many packets while some of the receivers have gineaeived them but
others have not. Now assume there is a receiver with a venygi@amnel quality.
This receiver will keep requesting many packets while méshe other receivers
have already received them. However, the transmitter heisiter drop the weakest
receiver and do not answer its request any more, or to keemsehitting the re-
guested packets. This translates in either failure of weedivers at any given time,
or many redundant receptions for most of the receivers all the transmission pe-
riod. Adding the fact that for many applications such as l&se or internet based
communications, the quality of channel changes over time tlaus many receivers
will experience a period of time when their channel is in ayy@yor quality, shows
that the strategy of giving up over weak receivers will fadmy receivers. Hence,
huge redundant reception looks inevitable under the fegdibased retransmission
for broadcast.

The important lesson learned from Shannon is that the dgpaicihe erasure
channel does not depend on the existence of feedback cHafherhis means that
there should be an erasure correcting coding scheme whehrdu use feedback,
or just use the feedback for a limited constant amount of tlatesmission, and yet

is able to transmit data at rates arbitrarily close to theacayp

2.3 Conventional Forward Erasure Correction Scheme

The study of forward erasure correcting codes has a longriisthe most powerful
code for erasure correction is widely accepted to be the fSeéaimon (RS) code
[13—-16]. The power of these codes is in the sense that theyapeble of correcting
the highest number of erasures compared to all the otharrerasrrecting codes of
the same block length. In other words, if we have a block miformation symbols
of a ¢g-ary alphabet, (where = 2! for some integer), and encode them, using a

RS code, to a block af encoded symbols of the same alphabet, for sarsach



that
k<n<2?7—-1.

Then the decoder is capable of fixing upite- k erasures on any transmitted code-
word, and obviously no other coding scheme will be able toettelp than this. This
property is referred to as thefaximum distance separabi@DS), and any code
having this optimal property is called an MDS code. As a resadeiving anyk
packet from am-packet length encoded block suffices for the successfuldieg.

Reed-Solomon codes have received much attention aftaerititieaduction in
late 60’s. They have been used in many application incluthiegligital data stor-
age devices such as Compact Discs, DVDs, Blue-ray Discs.edsaw in digital
communication applications such as digital subscriber (IDSL), worldwide in-
teroperability for microwave access (WiMAX), and in broadting applications
such as the digital video broadcasting (DVB) standard DVVB+&#l advanced tele-
vision systems committee (ATSC) standards. Albeit, theyraow being replaced
by modern alternatives such as low density parity check (Cpéddes used in the
new version of DVB-S, named DVB-S2.

Despite all the desirable properties of RS codes, like amgrdinear block code,
they have a fixed predefined rae= k/n. If the number of erasures occurred in
the channel during the transmission ofi-goacket long encoded block is less than
or equal ton — k£, then as described before the decoder is able to recovertible w
k-packet long data. However, if the number of erasures exceesllimit, then the
decoder fails. This means that in order to guarantee theessftd decoding the
transmitter needs to know the maximum number of erasurepérniad ofn trans-
mission. Therefore, tracking channel quality is requirbtbreover, the encoding
and decoding scheme needs to be customized. In another fen&S code does
not have the desirable universality property. This will detg the performance in
fast dynamically changing channels even more since in tas¢ the rate of the
code needs to be set according to the worst possible chanabtygto keep the
transmission active in all the instances, or the transnttel the receiver need to

keep changing the encoding and decoding scheme constaatlyhe period of data
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transmission.

Now, considering the scenario of broadcasting to multipteivers with differ-
ent channel qualities again, will reveal even more probleinsthis case even if
the channel quality of all the receivers is known and doeschanhge rapidly, yet
the RS code rate has to be set according to the worst chanalilycamong all to
make sure that even the weakest one will be able to decodessfatly. This again
translates to a lot of rate loss for all the strong receivers.

Furthermore, RS codes also suffer from their high companati complexity.
According to [12], these codes are practical only for smalh, andg, since the
standard implementation of encoding an decoding has a catignal cost of the
orderO(k(n — k)log,(n)) packet operations. Then the idea of setting the coding
rate according to the worst channel quality will be penalilzg a super linear com-
plexity increment. In simple words, the strong receiveri nave to pay extra not
only for reception delay while unnecessary extra redungackets are transmitted
but also in terms of computational complexity for decodinigick they will not
really benefit from.

According to the discussion above, we seek a coding schenwhwlas the
universality property along with the forward erasure cotign simultaneously. In
the next section we will introduce the idea of “Fountain cddirst presented
in [2, 3], and the two most well known practical coding schermdesigned based on
this idea: LT codes [17] introduced by Luby, and Raptor cddes] introduced by

Shokrollahi which all show the required properties verylwel

2.4 Fountain Codes and Rateless Property

The idea of Fountain codes, called thdidital Fountain” is to design a coding
scheme in which the transmitter provides a theoreticalljless stream of output
symbols. Each symbol provides a partial information abbett original infor-
mation symbols, and any subsetiofor slightly larger) received symbols provides
enough information for the decoder to decode the wiioileformation symbols.

When the receiver finally collects enough symbols to be abpetform the decod-
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ing successfully, it will send a single bit feedback mesdagke transmitter, and
announces the termination of its demand. Therefore, Fouotales do not have a
predefined fixed coding rate and hence they are also cakeeléss codes.

As a result of such properties, the transmission procesfiawk the universal-
ity property since the erasure probability of the channdlljust affect the average
number of transmissions required to guarantee the recepfia subset of: re-
ceived symbols. The encoding and decoding scheme as wkk as¢rage required
number of receptions will remain the same for all the differehannel qualities.

In addition to the universality property, Fountain codek &so provide a nearly
MDS property as well. As described in the previous sectionyl®S code has this
property that any subset éfencoded symbols in amsymbol long encoded block
suffices for the successful decoding, and then the code mbtaf fixing any
number of erasures less than or equakte k. In Fountain codes although there
is no fix predefined length for the encoded block, the MDS property holds in the
sense that any subset of sizer slightly larger thark of received symbols will
enable the decoder for recovering the origih&formation symbols.

One simple idea to generate such a Fountain code is to sirapivery out-
put symbol be a random linear combination of the origihahessage symbols in
which any information symbol appears with a uniformly ramdyp chosen coeffi-
cient. Since we assume the information symbols belong td@rabet of sizey,
and we need to define multiplication and addition over th@&etformation pack-
ets, a natural choice for the symbol’s alphabet is then ai&a&dd of sizeq which
will be referred to ag+F'(¢). Obviously then the coefficients for the random linear
combinations will also be selected from the same alphabet.

There are a lot of approaches to inform the receiver aboutdeéicients of
each linear combination. One solution is to use a commororargenerator whose
state is known by the transmitter as well as every receiveatier solution which
is more practical in the packet networks is to include therimiation about the
coefficients of linear combination in the header of each wugacket. Note that

in the latter case, each output packet will be a random linearbination of the
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original £ information packets, while each packet itself consists lafge number,
sayd, of symbols fromG F'(q). Therefore, when the number of symbols in each
packet is much larger than the total number of packets, fi.ec< d), then the
header which contains coefficients ofG F'(¢) will be negligible compared to the
size of output packet.

Now lets check how the simple idea of random linear combamativill provide
the properties of a Fountain code. As a Fountain code, eagpliiogsymbols of this
coding scheme will provide a partial information about thigioal £ information
symbols which is the corresponding random linear combnadf them. Moreover,
the number of transmissions required for successful regasenot determined by
the coding scheme and depends on the probability of erasuteeichannel. In
other words, this scheme is a rateless coding scheme. Theamnwhoutput sym-
bols required by the receiver to be able to decode the ofigimformation symbols
is equivalent to the number of random linear combinatiogsiired for successful
decoding. Obviously, successful decoding in this schemansisolving a system
of linear equations in terms of thie information symbol. Hence, the necessary
condition for successful decoding translates to having afdenear combinations
received, which forms a full rank linear equation systemotimer words, the re-
ceiver needs to receive enough symbols to have at kelastarly independent lin-
ear combinations. Restating the Theorem 3.1 in [6] in theeodrof our discussion,
we have the following result. Assuming the receiver hasivedg1 + ¢)k output
symbols of such coding scheme, the probability of succésfcoding is lower
bounded as

1
(¢ — g+
where, A is the coefficient matrix of the linear equation system csponding to

Prisuccessful decoding= Prirk(A) = k] > 1 —

the set of received symbols, and /), is the rank of matrixA. Moreover, through
this theses we will use the notion of “reception overhead&mresent the value of
the quantitye as described above.

As a result, for any arbitrarily small reception overheadn appropriate choice

of the code alphabet sizedecreases the probability of failure in decoding to any
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desirable value. Furthermore, as the number of informagamkets: tends to infin-
ity, with a small non-zero overhead, even for a small alphaizeq the probability
of decoding failure tends to zero.

This means that all the properties of a Fountain code isfeatiwith this sim-
ple scheme. However, this scheme is not a practical soldtierto the complexity
of the decoding algorithm in this scheme. As mentioned apdgeoding of this
scheme is indeed a matrix inversion over the coefficientimafrthe linear equa-
tion system corresponding to the received symbols. The txity of this decod-
ing algorithm hence is known to be of the order®@fk?) operations inG'F'(q).
Knowing that this code operates well (i.e. with small ovexdie whery, andk are
large, this complexity makes the introduced scheme imjmalct

The importance of the simple random linear Fountain codihgsie mentioned
above is to prove the possibility of designing Fountain sodgpresenting all the
properties in their definition. The next two sections wildbly explain the structure
of LT and Raptor codes as the most well-known instances ohtaiu codes with
practically tractable computational complexity.

The set of good Fountain codes with desirable propertiestisimited to the
LT and Raptor codes. Following the principals of digital Rtain design many
other researchers have studied the design of Fountain botle$or basic practical
settings [18,19], as well as for specific applications swchreequal error protection

or streaming [20-22].

25 LT Codes

Luby transform codes, or LT codes, are the first practicalnfain codes. Similar
to the random linear Fountain codes introduced in the pusvezction, an LT code
also works by transmitting a theoretically unlimited numobglinear combinations
in the form of output symbols. Based on the same discussilaeaproperties of
a Fountain code are achieved by the LT codes as well.

Let us define the degree of a linear combination of a set ohkbasr,, ..., z;

as the number variables contributing in the linear commnawith non-zero coef-
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ficients. The heart of LT code design is in the distributiomefrees of its random
linear combinations. We will also interchangeably use thgression tlegree of
output symbgl to refer to the degree of the linear combination corresibag to
that output symbol. As we will discuss later in this sectitms specific random
structure will enable an alternative version of decodinthwi computational com-
plexity of the orderO(kIn(k)). Hence, comparing to the much more complex
Gaussian elimination decoding used in the random lineantamu codes, which
was suffering from itgD(k?*) complexity, LT codes are practical for a much larger
information block lengtk.

25.1 Encoding

The goal of the LT encoder is to produce a stream of output sysntvhere, similar
to the random linear Fountain codes, each output symboiges\the information
equivalent to a linear equation in terms of a subset of thgiral £ information
symbols. Moreover, to enable a more efficient decoding in ades, the degrees
of the linear combinations corresponding to the receivedimts need to follow
a specific distribution. This distribution is called th@Bust Solitof distribution,
and we will discuss it in more details in subsection 2.5.3ic8ithe set of received
symbols will be a random subset of all the transmitted sysiidolimplement the
required statistic in the set of received symbols we justineemplement it in the
set of all transmitted symbols.

In order to achieve the goals of encoding, LT encoders paréotwo step pro-
cess for producing each output symbol as follows. In the §itsp the encoder
samples a random variabdewith the robust Soliton distribution. The outcome of
this sampling will then obviously inherit the distributi@md will be used as the
selected degree for the output symbol.

The second step consists of selectingformation packetsy;, , ..., z;,, and a

vectora = [ay,...,aq) € GF(q)? both uniformly at random. Finally the output
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symboly will be produced as follows:
d

Yy = E aj.’ljij,

j=1

where all the summations and multiplications are done inG#&q). This pro-
cess is then iteratively repeated by the transmitter toyge@nd transmit as many
output symbol as needed until it receives an acknowledgefran the receiver(s)
confirming the successful recovery of the whole messagéeodata to be trans-
mitted is outdated.

In order to calculate the complexity of this encoding scheveeneed to know
the total number of output symbols required for successfnlimission. This quan-
tity obviously depends on the average probability of eraswer the transmission
period. It is then easy to see than the total number of tressaoms required for

having a(1 + )k received symbols converges to
(1+e)k
Elpd]

for largek. In the above equatioff|-], denotes the statistical average operator, and

(2.1)

as shown in [17], for the LT codes, the overheatales witht as
o ()
\/E 9

whered is the probability of failure. Moreover, as we will show inbmection 2.5.3,

(2.2)

the average degree of an output symbol in LT codes i©@fi(k)). Hence, the
average number of operations@¥’(¢) required for each output symbol, which we
will refer to as the complexity per output symbol, is of thel@rO(In(k)). Now
from (2.1) and (2.2) we derive the total average complexitgrecoding for an LT

code is of the order

o ((\/E—l— In? (%)) VEIn(k)

B ) = O (kn(k)). (2.3)

2.5.2 Decoding

The decoding process in LT codes, is equivalent to solvimgeat system of equa-

tions in an efficient way with a complexity as low &k In(k)). The basis of this
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decoding algorithm is to iteratively reduce the linear dguresystem through back
substituting values of the recovered information symbnlshie equations corre-
sponding to the received symbols, and recover the valuewfimermation sym-
bols from the equations which will reduce to trivial degiaee form.

Description of this process could be put in several diffeveays including the
graph theory representation, or in the context of matrirfogpresentation as done
in the next chapter. In this subsection we will describe ihgghe graph theory
literature since this will help for the analysis behind tlesign of the degree distri-
bution which will be briefly explained in the following sulitmn. In this regard,
we first need to go through some notations.

The main concept in this context is thdetoding graph Assume, we have
received a set dfl + )k symbolsr, ..., a4, The decoding graph is a bipartite
graph with two vertex sets calleanput node% and “output nodes Input nodes
consists ofk vertices, corresponding to theinformation symbols, and similarly,
the other vertex set, output nodes, consist§lof <)k vertices, corresponding to
the received symbols. Each output node is connected to ahmaple if and only if
the information symbol corresponding to that input nodedaen-zero coefficient
in the corresponding linear combination. With this conivégtrule, the degree of
each output node is equivalent to that of its correspondingived symbol.

The other notation used in the graph representation of LE'satkcoding algo-
rithm is the set of (reduced) degree-one output nodes cidiéettipple”.

At the beginning, we first initiate the ripple with all the deg-one received
symbols. As one can infer from this method of initiation, thegree distribution
used at the transmitter for producing the output symbolsisi¢ée provide a non-
zero probability for degree one since otherwise this dewpdigorithm will not be
initiated. Consequently, as long as the ripple in not entpty,decoder iteratively
performs the following steps.

First note that each degree-one output node the ripple has a single; neigh-
bour among the input nodes. Besides, sinces of degree one, its value (upon a

known coefficient) reveals the value of its neighbourHence, in the first step the
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value of any input node adjacent to a degree-one output motheiripple will be
recovered. In the second step, since the degree-one owtges Mo not provide any
further information about the value of any other input naatej hence they are not
useful for the rest of decoding, we simply delete them froendbcoding graph af-
ter recovering the value of their neighbours. Having the®alf some of the input
nodes recovered, in the third step we substitute their gadluéhe linear equations
of the remaining output nodes and reduce their degrees. efotke decoding graph
updated with this process, we simply delete them along iithf #heir edges from
the graph. This in turn will reduce the degree of the remgmatput nodes. The
reduction of degrees in the remaining output nodes provadassitive probability
of achieving new reduced degree-one output nodes to redillipiple, which forms
the fourth step in a single iteration of this decoding.

A careful selection of the output node degree distributasshown in [17], will
guarantee that with a reception overhead of O(ﬁE{I’an (%) \/E> the ripple will
always remain non-empty through the iterations of decadiviiile the ripple is not
empty, the decoder repeats the iterations and recoversinforenation symbols.
When the ripple gets empty, if the decoding is not accometisyet, the receiver
should receive more symbols from the channel. The lineaatsous corresponding
to each new received symbol will first be reduced by substifuhe already recov-
ered information symbols. Then, the reduced equation widdbded to the graph as
a new output node with the corresponding reduced set of inpdés neighbours.
As soon as a new (reduced) degree-one output node is addexidedoding graph,
the decoder refills the ripple and resumes the decoding.r®ite if for any reason
the transmission is terminated before the decoding is faisthen the decoder will
report a failure.

The operations of the decoder as described above are nudsildeletions
of the edges of decoding graph. This decoder is hence nargeeldtie deletion
decoder. One can however think of the same decoder workitrgoking messages
over the edges of the same original decoding graph. In tteésative view we may

assume that in each iteration edges first transmit zero/@ssages from output
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nodes to the input nodes and then vice versa with the follgwiries. Initially
all the messages are zero except for the messages from aegreritput nodes
transmitted to their input node neighbours. The messagébevupdated in each
iteration according to the following rules. An edge will &ax message one from its
output node end to its input node end if and only if the outuatenend has received
a one from any other adjacent edge in the previous iterafinerwise it will take

a zero message. Consequently, an edge will take a messafferrits input node
end to its output node end if and only if the input node end kasived a one in
the first step of this iteration. Otherwise it will take a zenessage. It is now easy
to see that this decoding algorithm is a version of the sedathessage passing
decoder [23].

One can conclude that sending a message one from an outpaitaad input
node represents that the value of that input node can be dédhydhe information
available at that output node at the previous iteration,iamdjuivalent to deleting
that edge in the edge deletion version. Similarly, sendingeasage one from an
input node over all of its edges represents that the valugi®friput node has been
deduced and now can be substituted in all the output nodeoGdly, now comple-
tion of decoding happens when all the input nodes receiveaat b one message on
some edge or equivalently, messages transmitted over edgesdecoding graph
are all one.

Calculating the order of complexity for this decoding algun is easier using
the edge deletion version. The total number of operations it{q) required is
equivalent to the number of edges in the graph upon a consteficient. As-
suming the total number of received symbolgis+ <)k, wheree scales withk

according to (2.2), the complexity of decoding is of order

O <(¢% + In? (g)) Vk ln(k)) = O (kn(k)).

In the next subsection we will briefly review some of the ititn behind the

design of Soliton distribution, and some of its properties.
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2.5.3 DegreeDistribution Design

In this subsection we will review some of the properties @ tlegree distribution
used in the encoding of LT codes. Through these propertiesetintuition about
the design of a good degree distribution could be derivedwiN@ot go into much
details since this will be discussed in more details in the nhapters, where we
basically propose our modifications and contributions ab. wiehere has been a
large amount of research done on the design of good degteiudli®ns for Foun-
tain codes with different properties over the last years.aHetailed discussion on
the design of Soliton degree distribution, one can see &6,

Assume the receiver has received+ )k symbols. For a randomly chosen
information symbol, the necessary condition to be recduerly the decoder is
that it should have been participated with a non-zero coeffiadn at least one of
the received symbols. In other words, the receiver will r@@able to recover the
value of an information symbol if its value has not appearedrny of the linear
equations corresponding to the received symbols. To put ihé graph theory
context used in the description of the decoding processigout node needs to be
connected to at least one of the output nodes in the decodapdgNow, knowing
that the neighbours of any output node are selected unijoaintandom at the
transmitter, we will derive a necessary condition on theaye degree of a good
degree distribution. The total number of edges in the dexpdraph is equivalent

to

(1+¢)kd,
whered denotes the average degree in the degree distribution. Famcomly
chosen input node, according to the uniformly random seleaf information
symbols at the transmitter, the probability of being cot@éd¢o an output node of
degreed is (1 — %). Now assuming the independence of connection to any of the
edges we can derive a good lower bound on the probability whbalegree zero

(i.e. not connected to any of these edges). This probalsgitybe lower bounded
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as

which can be well approximated as
e~ d0+e), (2.4)

Therefore, its a reasonable goal in the design of degreghdison to keep this
probability bounded by a function @&f converging fast enough to zero as the num-
ber of information symbol& grows, e.g., ag. Now to do so, the average degrée
needs to be of the ordé€?(In(k)).

Rather than the average degree, obviously the ratio betdiferent degrees in
the degree distribution used for encoding will affect theayics of the decoded
portion of information symbols over the iterations of delcgdprocess. The dy-
namics of decoding process along with its dependency onébeesd distribution
structure was well studied in the context &ND-OR tree analysid24] and also
in the context of hyper-graph collapse procesm [25]. The relations between
these two approaches have been noted by several researcharssin [26]. Here
we will briefly explain this using the first approach. To do sdsibeneficial to
represent the degree distribution using a polynomial nathedgenerating poly-
nomial” Q(z) = Zi’il Q;z". In this representatiorf); will denote the probability
of generating (or equivalently receiving) an output syndfalegree.. Hence, one
can easily see that, > 0, Vi, and>.2 , = 1.

Similarly, the degree distribution of the input nodes casodleen represented
by a generating polynomial. As shown in [4], the degree itlistion of the input

nodes in the decoding graph can be derived as

W(z) = (1 - J(1k— x>)(1+a)k. (2.5)

Now assume that at an arbitrary iteratioof the decoding process, the portion

of recovered information symbols ig for somel > z; > 0. According to the

message update rules described in the previous subseatiercan easily deduce
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that the average portion of recovered information symbothé next iteration will
be derived as
Q- x)

Tit1 =L (1 - W) ) (2.6)

where()'(z) denotes the derivative 6f(x). Now from (2.5), we have
V(1 —a;) req_
1— i) ) < e (1—a)
L ( (1) ) =

As a result of (2.6) and (2.5), a sufficient condition for trecadding to start with
a non-zero portion of degree-one output nodgsand accomplish the decoding

successfully could be derived as follows:

I4+e)(1-2) < r, T € [x0,1].

el
This is in turn equivalent to

—In(1—2) <Q(z), 2 €[0,1— z).

Now integrating both sides, and using the Taylor series esipa of the right side

at the equality, results in

This is called thefteal Solitori distribution. It has been first shown by Luby in [17]
that this distribution will theoretically represent aletrequired properties for the LT
codes. However, it has some practical drawbacks. Firg,ahiunbounded degree
distribution, while for any finite number of information sywis, k&, the maximum
possible degree for output nodes will be Moreover, it has been shown that the
good property of ideal Soliton in refilling the ripple is vesgnsitive to the variance.
In other words, a small variation in the behaviour of the discdrom the theoretical
average case can lead to an empty ripple. And finally, thd f8leliton does not
produce any degree-one output symbol, and hence the dgoadimever start.

To cure the drawbacks of ideal Soliton, Luby proposes togoerthe following

modifications:
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i) Truncate the distribution at some specific point so thatlitbe practical for
finite number of information symbols.

i) Add some more weight to the probability of smaller degree that it will
provide more reduced degree-one output nodes as the dgcsidiis and produce
a larger ripple.

iii) Add a relatively notable weight to some high degree tejxehe average
degree and the coverage at the required point.

iv) Add a non-zero probability to the choice of producing cEgone output
symbols to provide a non-empty initial ripple.

The result makes the decoding process more robust to smiaflivas from the
average behaviour. This new degree distribution is thdea#he ‘tobust Solitofi
distribution. Putting it in the mathematical language,ribigust Soliton distribution
is formulated as follows:

For two parameters, ando, take

s = cln(g)\/%,

wherec, andé are chosen such th@tis an integer.

Then the robust Soliton degree distribution is given by

O, :
Qi:ki,'lzl,...,k,
Zz‘:l@i
whereo; is given by
Lis i=1
S+ £ i=2 k_q
0. — z(il—l) ;k . » k’ ‘s
o TR =4
oy i=%41,.. .k

In the next section we will briefly review the main idea behthd design of
Raptor codes. We will also look through the basic advantafBsptor codes over
LT codes, but we leave the details of their design to the ttapters where we also

present some new contributions to their design.
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2.6 Raptor Codes

LT codes, already reviewed in the previous section, proadet of interesting
properties. The main advantage of LT codes over the dendemafountain codes
introduced in section 2.4 is to achieve almost all the goaperties of Fountain
codes (except for the fact that they need a slightly largertozad) while keeping
the encoding and decoding complexity as efficient a®@fIn(%)). However, the
complexity-overhead trade-off achieved by the LT code®igime best possible. To
make it more clear, lets take a look at a typical averagenmtdiate performance
of LT codes. Figures 2.2 and 2.3 show the progress in the nuofbecovered
information symbols versus the number of received symhmiah LT code with
k = 65536.

These figures, as a typical examples, reveal a fact aboutetedahg of LT
codes. Although a significant portion of input symbols beeawcoverable with
a very small overhead, but, there are always a few rare inpdesiwhich remain
disjoint from all the received symbols and will hence remaimrecoverable un-
til a significant overhead is received. In order to avoid gignificant overhead,
Shokrollahi introduced the brilliant idea of using an outede [4, 5]. A similar
idea was also independently introduced by Maymounkov i [18

Based on the design proposed in Raptor codes, the transfingteises a linear-
complexity erasure correcting outer-code of ratgo encode thé: information
symbols tok’ = kR~! “intermediate symbdlslt is assumed that both the encoder
and decoder share the complete information about the steuof the outer-code
in use. As a result, decoder will be able to use the redundamglemented by the
outer-code to help the recovery of rare information symhatich do not show up
in the linear equations corresponding to the received sysnbo

The choice of outer-code could vary and will not affect theige, but the origi-
nal design proposes the use of capacity approaching eresuesting LDPC codes
such as those introduced in [27-29].

After performing the outer-encoding in the transmitteg thst of transmission

process will be totally equivalent to performing an LT cagliover thek’ interme-
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Figure 2.2: Samples of decoding progress in terms of the ruwftdecoded sym-
bols with respect to the number of received symbols for LTesofdrk = 65536
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Figure 2.3: Average decoding progress in terms of the numib@éecoded symbols
with respect to the number of received symbols for LT codes:fe- 65536. The
dashed red line shows the total number of input symbols.
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diate symbols. The only difference is in the choice of deglis&ribution. As we
will discuss later in this section, the degree distributised for the Raptor codes
can benefit from having a finite average degree not dependingenumber of
symbols to be encoded (i.&.or £’). This will result in a finite average number of
operations inG F'(q) per output symbol for encoding. In other words the total com-
plexity of encoding for Raptor codes then will be of the or@¥(1+ <)), which is
linear in the information block sizk, rather than the super linear total complexity
of encoding for LT codes derived as (2.3).

In the receiver, the decoding will not have any changes coeap@ that of LT
codes except for the fact that as soon as a portion of sige)k = (14-0) Rk’ of the
intermediate symbols are recovered, the receiver will metnto continue receiv-
ing new symbols. At this point, using the decoder of the eutate, the receiver
will be able to recover the few last missing intermediate sgla exploiting the
dependences implemented among the intermediate symbolgythouter-coding.
Recovering thé: original information symbols will be easy at this point ugitne
bijective mapping of the outer-coding rule.

The complexity of this decoding scheme is easy to evaluditeifimg a discus-
sion similar to that of Subsection 2.5.2. Again the compieri the first phase
is scaled by the number of edges in the decoding graph. Dueetdirtite aver-
age degree of the degree distribution in use, this complexitf orderO(1 + ¢)k.
Moreover, the complexity of the remaining phases are linearas the outer-code
in use has a linear complexity of decoding. Hence, the taabding complexity
remains linear in the information block size

Finally we briefly review how does a finite average degree sesfin the case
of Raptor codes. Assume we ha\et )k received symbols. Using (2.4), itis easy
to find the probability of leaving a randomly chosen intermgslsymbol isolated
in the decoding graph. Therefore, the expected value of timber of isolated

intermediate symbols can be easily derived as
k/e—(l—i-s)zf.
Hence, in order to have an average coverage rate-efo) R over the intermediate
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symbols in the decoding graph, it is enough toas follows

—In(1—(1+0)R)

d =
1+e¢

2.7)

As one can see from (2.7), the required average degree imnRapdes then is a

finite value which does not scale with the information bloides:.
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Chapter 3

Annotated Raptor Codes

In this chapter, we introduce a variation of Raptor codeleddhe annotated Raptor
codes which reduce the overhead of conventional Raptorscatide keeping the
encoding and decoding complexity linear. Although desifthese codes is out
of the scope of this chapter, numerical examples are prdviol@emonstrate their
lower overhead even without a fine optimization.

After a quick review of conventional Raptor codes and iniidg our notations
in Section 3.2, in Section 3.3 we provide our main idea fouogag the overhead
while keeping the complexity unchanged. In Section 3.4, escdbe the encod-
ing and decoding of the proposed annotated Raptor codeswhimontinued by
some general comments on the design of code parameterstior5g&. Finally in
Section 3.6, a numerical example on a benchmark block leisgihesented. The

chapter is summarized and concluded in Section 3.7.

3.1 Introduction

Fountain codes such as LT code [17] and Raptor codes [4] wiyi@ally designed
to achieve the capacity on any binary erasure channel (BEtB)n@ channel in-
formation and at very low complexity. The decoding compexif Raptor codes
under edge deletion (ED) decoding [4, 17] is linear with theck length. There-
fore, these codes are the natural choice for data trangmisser channels with un-
known or very fast changing properties. Raptor codes presaany of their inter-

esting properties over other channels such as the binamnsyme channel, additive
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white Gaussian noise and fading channels [30—-33]. Thesesdualve been already
adapted as the forward error correction code for multimédeadcast/multicast
services (MBMS) by the 3rd Generation Partnership ProgGHP) [34].

In practice, it is well known that ED needs a small overheadsioccessful
decoding. Specifically, to decodeinformation bits,k(1 + ¢) received bits are
needed at the decoder, wherés referred to as the overhead. More specifically,
even with the highly optimized designs a non-zero overhsateded if using the
low complexity ED decoding. In order to avoid this overheadeduce it to a
negligible amount, a more complex decoding algorithm isothiiced for Raptor
codes called the inactivation decoding [8], but this aldni is practical only for

small block lengths due to its non-linear complexity.

3.2 Background and Notations

In this section, we briefly review the encoding and decodingpbaventional Raptor
codes. Unlike what is most common in the literature of ra®leodes, we use the
matrix form rather than the graph representation. The mfdirim is more suitable
for explaining annotated Raptor codes later. In this sactiee also introduce the

notations and definitions that will be used later.

3.2.1 Encoding

The encoding starts with a fixed rate outer code of ratnd a parity check ma-
trix H,—x)x» Which encodes an information block éfinput bits into a block of

n = % encoded bit$, ..., b,, called the intermediate bits. To produce an out-
put bit, first, the encoder randomly samples an integee {1,...,D}, D <n
from a probability distribution. This distribution is cleaterized by a generating

polynomial
D
Qz) = ',
i=1

where(; is the probability thatn = i. The encoder then uniformly at random

chooses a set of intermediate bits and produces an output bit by XORing them.
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Output bits are produced and transmitted until enough bé&seceived by the de-
coder to recover the information bits successfully.

Each output bit can be viewed as a parity check equation ohsesof inter-
mediate bits, where the parity value is transmitted on tteokl. The outer code
can also be viewed as a set of parity check equations on iatkate bits. Unlike
before, these parity values are always zero, thus they radzeriransmitted on the
channel. The decoder can use all the outer code equatiorenaréceived output
bit equation to form an equation system from which all thelmtediate bits are
recovered. The information bits are then obtained throuljhear mapping from

intermediate bits according to the outer code.

3.2.2 Edge Deletion Decoding

The decoder starts with a linear equation system consistirthe parity check

equations of the outer code
HX = O(,—p)x1;

whereQy, .4, represents an, x ¢, all zero matrix. At this point the set of recov-
ered intermediate bits is still empty. Assuming the BEC wvethsure raté, with
probability1 — § an output bit is received. Receiving each outpubpénables the
decoder to usg;’s corresponding parity check equation.

Upon receiving an equation, the decoder will substitutgsa@ocovered interme-
diate bits, and then adds the reduced equation to its equsfgiem. Whenever a
reduced equation is of weight one, the equation is put in aaktd the ripple. For
any equation in the ripple, the value of the intermediatesbitnmediately known
and can be substituted in every other equation. This praedadicalled the elimi-
nation process. It is easy to check that the order of usimgeiplements have no
effect on the performance of the decoder. Note that duriagetimination process,
the weight of some of the rows of the coefficient matrix is m&tliwhich could in
turn result in achieving new equations of weight one, andlirgfithe ripple. If the
ripple gets empty before all the intermediate bits are recey, receiver will listen

to the channel to receive more equations to refill the ripple.

31



After receiving enough bits for a successful ED decodinghaxee the following
linear equation system.

o e [Ren ] @
where,C is the coefficient matrix of the parity check equations cgpmnding to the
received bitsg is the overheadR is the vector containing the value of the received
bits andX is the set of unknown intermediate variables. After sudodigsinishing

ED decoding, upon reordering the rows, we obtain the folhgvnatrix equation.

I B
T X = nxto 3.2
{ Oakxn } { Oakxl } ( )
Here,B = [by,...,b,]" is a vector, containing the recovered values of the interme-

diate bits. Note that the reordering is just required for@ifying the representa-

tion. In the real implementation, this reordering is notdesk

3.3 Mainldea

According to [4], even using highly optimized Raptor codethwery large block
lengths, the overhead is nonzero. This means that some oéteé/ed bits will
be useless. These received bits are represented as allores@t the end of ED
decoding (see Eq. (3.2)). In other words, these rows comiainew information
about the intermediate bits given the rest of equations, Wricall them the “over-
head rows”. Although, it is not possible to avoid the ovetheaws, interestingly,
we will see that it is still possible to embed new informatiwts in them.

To embed new information bits in overhead rows, we first adaledliary set of
variablesay, ..., a,, to the binary equation system and extend the columns of the
coefficients matrix. We refer to these auxiliary columndhaf toefficient matrix and
their corresponding set of variables as “A-columns” and/&tables” respectively.
Clearly, the A-columns are not all zeros. Thus, some of thpudibits are now
XORed with bits from the A-variables. We refer to this opematas “annotation”.
The details of this operation is presented in Section 3Aslwe will explain later,

the A-variables themselves must be protected by a low-rater@ode. Let us
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denote then, — k,) x n, parity check matrix of this outer code E(® and the
encoded block bA = [ay, ..., a,,]".
As a result, in the decoding process the initial matrix foepresented in Eq.

(3.1) changes to

H(n—k)xn O(n—k)xna
“ Xon O(nsna—
O (1 —ka)xn Hgn)a—ka)ma L (n+na—(k+ka))x1

R
(@ (1+e") (k+ka)x1
C(1+e’)(k+ka)><n C(1+e’)(k+ka)><na X

Ng X1

In the above equatior[€|C] is the coefficient matrix of the parity check equa-
tions corresponding to the received bits whetepart represents the coefficients
of the intermediate bits an@(® represents the coefficients of the annotation bits.
Notice thatn, extra intermediate bits, which carky new information bits, are now
added to the system. Thus represents the new overhead. Finally upon reordering

of rows the final form after successful ED decoding is

O I XMNg anl - A x1

Mg XN Na - Ng X1

Oc/ (ktka) x (n+na) W Oc/(ky ko) x1
Ng X

The details of ED decoding for an annotated equation syssepmavided in
Section 3.4.2. Here, to make the main idea more clear, weprastoy example.
Assume that we have a block of three hits =, z3, and we produce output sym-
bols of degrees 1 to 3 with equal probabilities. Now, if foaeyple the receiver
receivesr; = x1 ® xa, 19 = T1 D 1o D T3, T3 = X9 D w3, andr, = xy, then
the ED decoding of intermediate bits will not perform anyretiation process be-
fore receiving,. Whenr, is received, it goes to the ripple and ED decoding starts
recovering the values of intermediate bits. The receivathegn system before

performing elimination is

110 "
111 S I
01 1 2T gy
1oo0]|L™ Ty
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It is easy to check that ED decoding will recover all the intediate bits with

this equation system and after ED decoding we have

010 DTy
00 1 1 BTy
0 0 O T2 TQ@T?,@T;l
100 3 s

In the above, obviously, the third row is an overhead row amttains no new
information about the intermediate bits given all the otfesvs. But if we annotate
some of the transmitted bits (say, 3 andr,) with a single A-variable:, then the

representation of equation system after receivinig

1 1 0|1 T 1
1 1 1)1 T2 . T2
01 1|1 T3 - T3
1 0 01 a T4
The ED decoding can start the elimination and recovery ghaieeat this point,

if we perform the decoding only based on the intermediate ditd in terms of
the annotated variable As a result, when the ED decoding of intermediate bits

finishes, the resulting equation system has the followimgpfo

01 010 T 7“1@7’4
0 0 110 ) o Tl@’f’g
0 0 0|1 T3 N 7’2@7‘3@7’4
10O0[1][a ry

Notice that still the third equation does not play any rolahe recovery of the
intermediate bits, but this row can be used to recover theeval the A-variable:
asa = ro ®r3 @ ry. The A-variable can in turn be used to recover any interntedia
bit which was computed in terms of the A-variable (in thisecas in the fourth
row). This example shows that with the same number of reddiits, it is possible
to recover more intermediate bits using annotation. Of @®uhis was a highly
fabricated example, in which the overhead was reduced t 2dearly, we do not
expect zero overhead in a practical setup. However, as eéden, the annotation
idea retrieves a portion of the overhead at no extra cosadt iin order to keep the
decoding complexity unchanged per information bit, we aéé that the decoding
procedure used in this toy example is not desirable. In &@&i4.2 we propose a

revised version of ED decoding for annotated Raptor codes.
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3.4 Annotated Raptor Codes

Ideally we prefer to perform the annotation such that it wilt affect any of the de-
sirable properties of the original Raptor codes. More dmadiy, we do not want to
increase the complexity per bit (neither at the encoder tibreadecoder). Achiev-
ing this goal, however, requires careful annotation anddeg. To see why the
trivial approach (similar to the one in the toy example a)ovay fail, note that
when the ED decoder uses annotated rows as pivots in rowtaperaextra com-
plexity is resulted from the 1’s in the corresponding rowshaf A-columns. Thus
a high-density of 1's in the A-columns is against the goal &dva-complexity de-
sign. Unfortunately, even starting with sparse A-colunths,density of 1's in the
A-columns gradually increases as ED decoding progresaasn@nerical simula-
tion shows that the complexity will grow super linear withaproximate exponent
of 1.3. In the following, we briefly outline an annotation methodthchieves linear
complexity.

Let us assume that we could know beforehand which transonis&nd up as
overhead rows. If this knowledge existed, we could annaiatg these transmis-
sions. Although such a knowledge cannot exist in a real setepcan annotate a
small portion of rows and pretend that they will end up beimg dverhead rows.
Thus, the decoding will start from the non-annotated rows. iGteresting observa-
tion is that if annotated rows are selected carefully, EDodewy of non-annotated
rows will recover a large portion of intermediate bits. Ihetwords, assume in a
conventional Raptor code, we carefully select and mask portion of the trans-
missions for annotation. Then, in the receiver, we first@delthe marked received
bits and perform ED decoding on the unmarked received empgtnd the parity
check equations of the outer code. When the total numbercefwed bits is close
to the number of input bits, we observe that the decoder s¥s@(1 — J,) portion
of the intermediate bits. Typically far, = 0.05, we havej, = 0.3.

After recovery of(1 — §,) portion of the intermediate bits, it is easy to see
that with probability(1 — dy)*, an annotated equation which originally contains

intermediate bits, is reduced to an equation based only erAtkariables. We
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call these reduced equations the “A-equations”. From tiAeseguations a fixed
portion of A-variables will be recoverable. Now, if the ratethe outer code of the
A-variables is selected properly, it will be possible to aée all the A-variables.
Consequently, it will be possible to de-annotate all thectaed rows in linear
complexity. In fact to keep the complexity of this de-antiota at its absolute
minimum, in this work, each annotated row has a single Aaldei in it. This also
keeps the encoding complexity linear.

Finally, after de-annotation, the rest of the intermedtzts will be recovered
using ED decoding. In terms of ED decoding of the intermedlts, the only
difference between an annotated Raptor code and a conmehtioe is that here
we have changed the order of using the received equationsus@/some of the
equations at first and postpone using the others (the ardotaies) for a while.
Between these two phases, we recover some informatiorbitsite embedded in
the annotation.

In the next section we will go through more details of the eliieg and decoding

algorithms for the annotated Raptor codes.

3.4.1 Encoding

The encoding process in annotated Raptor codes has twaseptps. In the first
step, two information blocks of lengthandk, are coded into two encoded blocks
(i.e., the intermediate variables and the A-variablesiaifixed rate outer codes
with parity check matriceBl,, i), andHEZ)a_ka)Xna.
The second step, which contains two phases, will generaiatput bit. First an
integerm € {1,..., D}, D < nwill be sampled based on a probability distribution

represented by its generating polynomial

O(z) = > (@ + Ty)a'.

=1
Herem = i happens with probabilit{;+ ;). Consequently, based on the selected
value of m, encoder samples another random varigble B (me%) where
B (p) represents the Bernoulli distribution with probability saficcess equal tp.
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The encoder then choosesntermediate bits uniformly at random. If the Bernoulli
outcome is success, a single A-variable bit is also selaatgdrmly at random.
Finally, the XOR of all the selected bits forms an output bittftansmission. Output
bits are generated and transmitted iteratively, until easful transmission of the

whole data block.

3.4.2 Decoding

The decoding procedure has already been described earles isection. Here we
summarize the procedure. Two separate edge deletion dscadeused. The first
one decodes the intermediate bits, using the non-annagteations and the rows
of matrix H. The second one decodes the A-variables using any row whese fi
elements are all zeros including the rows of maHi%). Obviously, as the decoders
recover some of the intermediate bits and A-variables teeowve them from all the
equations and hence each decoder may provide the otheramith sew equations
to be used in the rest of the decoding process. When both tieeldes run out of
ripple, receiver listens to the channel to receive new egagatand refill at least one

of the ripples again.

3.5 Some Commentson Design

Assume that the decoder has already received(1 + <)k bits. Moreover, assume
that through numerical search we have obtained the pratyadistribution ©(z)
for which, excluding the annotated received bits, ED dewgds able to recover a
0o portion of the intermediate bits. Based on the discussiotiss previous section,
the probability that a randomly selected row be reduced ta-aquation is

D

Pr=>"Ui(d)".

=1
Therefore, the average number of A-equations released yeebding of interme-
diate bits excluding annotated equationglis- )k P*. According to the single-bit

annotation strategy taken in this thesis, the probabiligt a randomly selected
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A-variable is not covered in the released A-equations is

(1-— i)((l—i—s)kP*) ~ 6(41272)1@13*)‘

Ng

Hence, the average number of A-variables which are now e¥edvis approxi-

mately

,(1+s)kp*> . (33)

ma = na <1 — e na
It is seen from (3.3) thatn, is an increasing function of, and thatm, <

(1+ ¢)kP*. Therefore, the new overheatcan be found as

,  c€k—m,
= 3.4
c k+ m, (3.4)

It is easily seen that’ < ¢ as long asn, > 0 (i.e.,n, > 0). Moreover,s’ is

a strictly decreasing function of,. It means that as the number of A-variables
increases, more information bits can be transmitted usimgtation, and thus, a
larger portion of the overhead can be retrieved. As a relselldwer the rate of the
outer code for A-variables, the smaller the overhead will Dee improvement in
the overhead, however, is bounded becausesaturates as a function of, (see
Eqg. (3.3)).

A very low rate outer code, however, introduces a significamirce of com-
plexity. Although there exist very good low rate codes wittelr complexity such
as LDPC codes designed for erasure channels [27-29], wheatthof these codes
tend to zero, the coefficient of the linear complexity termsnfinity. Figure 3.1
depicts complexity per information bit, measured as the lmemof XORs needed
for encoding/decoding of LDPC codes designed in [27]. Tlysrk is based on
codes that achieve 95% of the channel capacity.

To keep the complexity of annotated Raptor codes equal tofltnventional
Raptor codes, we must use an outer code for the A-variablesavbomplexity
per information bit is the same as conventional Raptor codlee complexity per
information bit of a conventional Raptor code is equal to #verage weight of

its output bits which is typically at least eight (consideyithe complexity of the
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high-rate outer code). Thus, Fig. 3.1 suggests that therfablas must be encoded
using an outer code of rate around 0.25. Obviously, lower catles can be used
to retrieve a higher portion of the overhead, but at the cbatlagher complexity
per information bit. This extra complexity, however, is tgusmall since it affects
only the parity check equations of the A-variables, whighresent a small fraction
of all equations (typically less than 4%). Nonethelessafoy fixed rate outer code,
the complexity remains linear.

Now assume we have selected an outer code ofRat®r A-variables which
guarantees successful decoding of A-variables for erastes less than — R,
with high probability. According to the above discussiows, can now select the
number of information bitg, to be encoded ta, A-variables a%, = n,R,, where

n, must satisfy

—(1+e)kP* )

Ra<1—e( na

Thus we have

—(1+¢e)kP*

<ReaTm)

(3.5)

This equation can be used to choose the number of informhbiisiio be encoded

by the rateR, outer code and be used as A-variables for annotations.

3.6 Example Codeand Numerical Results

This section provides a numerical example of an annotatgtbiRaode. As the op-
timization of the code is out of the scope of this thesis, oaanaple here does not
represent an optimal design. Indeed, in order to betteifyuke benefits of anno-
tated Raptor codes, we focus on the impact of annotation @xiating probability
distribution optimized for conventional Raptor code. Chlgave expect even better
results through optimizing a probability distribution famnotated Raptor codes.
Our focus in this example is on the highly optimized prokiapiistribution
Q(x) presented in [4] for a Raptor code with an information blotk e=64,520 bits
and an outer code of rafé = 0.9845 to produce a block of =65,536 intermediate
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Complexity per Information bit

Rate

Figure 3.1: Complexity per information bit vs. rate for caiya approaching se-
guences of LDPC codes designed for the BEC.
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1 |0.007969] O 0.007969
2 | 0.478570 0.015| 0.493570
3 | 0.161220 0.005| 0.166220
4 10.072646] O 0.072646
5
8
9

0.082558 0 0.082558
0.056058, 0 0.056058
0.037229 O 0.037229
19| 0.055590; O 0.055590
65| 0.025023] O 0.025023
66 | 0.003135] O 0.003135

Table 3.1: Example Code with= 64520 andk, = 800.

bits. As mentioned before, we use a single bit annotatioth®output bits that are
selected to be annotated. This represents the simplestdbannotation. One
may consider a degree distribution for the A-variables grtthaze it for improved
performance. Such optimizations, however, are out of thaady of this chapter.
Based on a set of numerical experiments we selected the lplibpdistribu-
tion presented in Table 3.1 for this example. Please notiaethe third column
represents the probability distribution of the Raptor cpresented in [4]. The rate
of the outer code of the A-variable is selected to be 0.25 tmwéak, = 800 in-
formation bits inton, = 3200 A-variables. These A-variables are annotated to the
65,536 intermediate bits of the above mentioned Raptor.c&il@ulations show
that the average overhead based on the annotation methoduoéd in this chap-
ter is 3.4%. This amounts to 10% overhead reduction comparbe average 3.8%
overhead of the original Raptor code. We emphasize thatdmplexity per infor-
mation bit is exactly the same for both codes. It is worthe/hd mention that by
using conventional Raptor codes, an overhead of 3.4% catlther achieved for
block lengths less than 80,000 bits [4], which would invadveuch more memory

complexity.
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3.7 Summery

Since Raptor codes need a reception overhead to be ablete@redhe information
bits, some of the received bits are indeed never used in teeps of decoding. In
this chapter, we presented an extension of the well knowndR&pdes showing
that extra information bits can be embedded through caeefobtation of a sub-
set of transmissions. We then detailed the encoding andebedihg process of
the proposed codes based on the changes made in the dedigroobinal Raptor
codes. Finally, we provided a numerical example verifying improved perfor-
mance even without optimization a probability distributfor the annotated Raptor
codes. Finding the optimal probability distribution foethew encoding/decoding

structure will reveal its full potentials.
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Chapter 4

On Raptor Code Design for
| nactivation Decoding

In this chapter, we study the design of Raptor codes for th€ BBen inactivation
decoding (ID) [8] is used. An ID decoder is essentially a maxn likelihood
decoder with controlled complexity, which can accomplisb tlecoding with a
smaller number of received symbols than any other decodeires. Hence, ID is
incorporated in 3GPP as a practical decoder [34]. Desptach literature on code
design for the conventional edge deletion decoding (e4g39, 40]), code design
for ID has not yet received much attention.

In the remainder of this chapter, we first briefly review theaating and decod-
ing of Raptor codes, focusing on ID. In Section Ill, we intuod our code design,
by proposing a new design criterion, and then we use thisr@it for an analytical
design. The numerical comparisons between the code usdtel8GPP and our

proposed code are presented in Section IV.

4.1 Introduction

LT codes were originally introduced as the first practicalfitain codes in [17]. As
such, LT codes are designed to transmit a theoreticallyessditream of symbols
until the receiver has enough symbols to decode all the nmdition bits. Raptor
codes [4], an extension of LT codes, employ an outer code @blerthe receiver

to recover the whole information stream from any sufficigtdrge subset of re-

43



covered intermediate symbols. This idea significantly iowps the performance of
LT codes, as the recovery of the last few percentages of themiation bits, which
could be very slow, is now done by using the outer code.

Raptor codes are able to asymptotically achieve the charapelcity on any
binary erasure channel (BEC) without any channel statenmdtion at the trans-
mitter or the receiver. This universal capacity-achieyangperty enables optimal
performance even in time-varying channels. Accordingdlgse codes are the nat-
ural choice for broadcasting/multicasting to a group oereers with different and
even unknown channel qualities. As a result Raptor codes Ihesn adopted by the
3rd Generation Group Partnership Project (3GPP) to be useuliitimedia broad-
cast/multicast services (MBMS) for forward error corrent{34] and digital video
broadcast-handheld (DVB-H) [35]. The desirable propsrtieRaptor codes have
motivated many researchers to study their performance esigml for other chan-
nels [30-32, 36]. Decoder design for Raptor codes has akso @ active research
area [8, 37, 38].

4.2 Encoding and Decoding of Raptor Codes

Encoding and decoding of Raptor codes have been discusseel jimevious chap-
ter in Subsections 3.2.1 and 3.2.2. Accordingly, we will gotthrough the details
of the encoding process here, while we will use the same saitations and defi-
nitions in this chapter. However, it worth to review the déiog process again here
This time we will look at this process in the context of grapédry rather using the
matrix form representation.

Decoding of the Raptor codes is performed in two separages stérst the LT
code is decoded, and then the outer code is decoded in thedssiep. Assuming
that the outer code can recover the whole information blocknfany subset of
n(R + o), o > 0 recovered intermediate bits, we focus our discussion ot.The
decoder.

For LT decoding, a decoding graph [4] is formed based on thefseceived

symbols. The decoding graph is a bipartite graph with ongexeset corresponding
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to the set of all intermediate bits, and the other set coarding to the output bits
(output nodes). Initially, each output node is adjacenhtogroup of intermediate
nodes forming the corresponding received bits.

Various decoding solutions can be used. Gaussian elimnmadlthough opti-
mal, is typically too complex. A modified version of the bélpFopagation algo-
rithm, called edge deletion decoding (EDD) [17], is an ediinti alternative when
an appropriate design ¢i(z) is performed. EDD requires a small overhead in
the number of received symbols for successful decoding [Alis algorithm uses
degree one output nodes in the decoding graph to deduce ltreeofatheir neigh-
bouring intermediate nodes, and then removes the recougerdhediate nodes to

achieve new degree-one output nodes iteratively.

I nactivation Decoding

For moderate block length$(24 to 8192 bits), which are of interest in applications
supported by the 3GPP standard, a modified version of EDDedcalactivation
decoding (ID), was introduced in [8]. The main differencévimen ID and EDD
occurs when the set of degree one output nodes, called thle ripecomes empty.
In this case, the EDD stops until the ripple is refilled by reicgg more symbols
from the channel. ID, however, instead of waiting for morenbypls, selects some
unrecovered intermediate nodes in the remaining decodighgand temporarily
excludes them from the graph. This process is called irgttdin. By inactivat-
ing some of the intermediate nodes, their edges will alsaxbkided temporarily,
reducing the degree of some of the remaining output nodess, The decoder ex-
tracts someeduceddegree-one output nodes, whose values can be found in terms
of the inactivated bits. The decoder can now recover moexnmtdiate bits (al-
beit, in terms of the inactivated bits) until the ripple is gyagain, and another
inactivation can be performed. Finally, the decoder usass&an elimination for
the inactivated bits and finishes the decoding by using a fildiok) process, which
evaluates all the intermediate bits which have been reedviarterms of the inacti-

vated bits.
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In order to solve the subsystem of linear equations formethbyinactivated
bits, this subsystem should be full rank. The subsystem Haghaprobability of
being full rank because it is dense. However, if it is not falhk, the receiver
receives more symbols to obtain more equations and remeveattk deficiency.
This process results in a very small average reception eaerhwhich has been
shown to be less than one percent in practice [6, 38].

For selecting a node to be inactivated, many differentesias can be used [8].
One trivial choice is to randomly select an unrecoveredrimégliate node con-
nected to a reduced degree two output node. We will referiscsthategy as “Ran-
dom ID”. Another strategy, introduced in [8], is to inactigasone of the nodes in
the maximum connected componentafwhered is thedegree-two induced sub-
graph[6, 42] of the remaining decoding graph (see Fig. 1). Inating any of the
bits in a connected component@fcauses the immediate recovery of all the other
bits in that component. Hence, the second strategy, whialefgeto as “Maximum
Component ID,” performs better than Random ID. Siats subject to change dur-
ing the decoding process, the search for the largest cagtheomponent must be
repeated during each inactivation step. Thus, Max-Comptdieis considerably
more complex than Random ID.

Degree distribution design for ID is considered in [6,42here Max-Component
ID is assumed, and the design criterion is to statisticalgrgntee the existence of a
giant connected component@hat each inactivation step. Having a giant connected
component guarantees the recovery of a large portion ofswatdeach inactivation
step.

Accordingly, [6,42] introduced a procedure that take<xm) and determines
on average for how many inactivations a giant component aliiost surely be
present inGG. The design problem is then to find a generating polynofial),
which will guarantee the existence of a giant connected corept until the desired
portion of the intermediate bits is recovered. This desigiegon, in addition to
a mixture of optimization methods, has been used to desigggeed distribution
which the 3GPP has adopted [34].
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Figure 4.1: (a) The decoding graph with output nodet® ¢; and intermediate bits

b, to bg. The ripple is initiated with;, which recover$, and then becomes empty.
(b) The reduced degree two induced subgraplbased on the remaining effective
decoding graph. Irf7, every reduced degree two output node will represent an
edge. Here( contains two connected components. The maximum component
contains four nodes. Max-Component ID may, for examplepsboé, as a node

in the maximum component @f for inactivation. This choice will refill the ripple
with ¢s3, ¢5, which, in turn, recoveb; andbs in terms ofb,.
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4.3 DegreeDistribution Design

In this section, a new design criterion is proposed from Whienore efficienf)(z)
for ID is designed. The basic difference between our desnghthat of [6, 42] is
that [6,42] aims to increase the portion of bits thatguaranteedo be recovered
after each inactivation, whereas our design aims to inerdesaverageportion of
recovered bits after each inactivation. Notice that theaatumber of recovered
bits is usually more than thguaranteedortion. Thus, it appears reasonable to aim
at increasing the average recovery.

From the discussion in Section 4.2, itis obvious that foredigdecoder structure
and with a constant performance for the outer code, all thpeties of a Raptor
code are characterized by the generating polynoffal. Similar to the case of
design for the EDD, an infinite block length assumption is enodt the analytical
design of(2(z). However, the performance of the finite length case is etatla
through simulations.

For a Raptor code under EDD, the main performance measure msverhead.
Under ID, however, the overhead may not be as meaningfulusecd® performs
an inactivation instead of receiving extra symbols. As altea good measure of
performance appears to be the number of required inach&fB8] and [6], which
directly affects the decoding complexity. Therefore, oasign goal is to reduce

the number of required inactivations.

4.3.1 Evolution of Q(z) During ID

In ID, after each inactivation, the remaining degree distion changes. As a re-
sult, to study the average performance analytically, welriee remaining degree
distribution, based on the origin@lx) and the portion of the recovered intermedi-
ate bitsd. Denoting the new degree distribution@g z), we haveQ)y(z) = Q(z),
and(;(x) = 1. Also, since the selection of the intermediate bits in theoeling

is uniformly random, recovering & portion of intermediate bits is equivalent to
deleting a randomly chosénportion of intermediate nodes in the decoding graph.

Hence, we can assume that a randbportion of the edges of the decoding graph
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is also deleted. Therefore, for randomly chosen output nbdetial degreej, will
be of degreé = 1, - - - , j with probability (/) (1 —§)'67~*. Then, the average degree

distribution of the output symbols in the remaining graph lae

D D D—i . .
B 7+ o .
() = 3 Ot = 3 (Z (7)1 5>w> .
i—1 1 \j=0

1=

= Q((1 - 8)z +0).

As aresult,
~q (it isi
QM:ZQM( 4 )(1—5) 6. (4.1)
J

4.3.2 PreviousResults

Degree distribution design for ID is considered in [6, 42here Max-Component
ID is assumed and the goal of design is to statistically gutasthe existence of a
giant connected component in the degree-two induced spbgfaat each inacti-
vation step. Having a giant connected component could gtegahe recovery of
a large portion of nodes in each inactivation step. Obviotestovering one bit of
any connected componentdhresults in the recovery of the whole component.
Accordingly, [6,42] introduces a procedure that take$Xn) and determines
on average for how many inactivations, almost surely thelidoer a giant compo-
nent inG. Then the design problem is to find a generating polynofafal), which
guarantees the existence of a giant connected componeinthendesired portion
of the intermediate bits are recovered. This design coitein addition to a mixture
of optimization methods have been used to design a degreddion which has
also been adopted by 3GPP [34]. Assume that the initial géngrpolynomial is
Q(z), the receiver has receivéd + <)k symbols, and an arbitradyportion of the
intermediate bits have been recovered. Using a similamaggi as in the previous

subsection, the probability of having a reduced degreeetput node is

S ili=1) s (10,
;Qi 5 (1= 0)%07% = ———=0Q"().
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Therefore, because every output symbol of reduced degreeesults in one
edge inG, the average sum of degreeséGhis (1 + €)(1 — §)?Q”(§). Then the
average degree of is

(1+ k(1 — 6)2Q"(5)

CZQ(I)(& €)= (1- o)k

= (1+e)(1-0)Q"(5).  (4.2)

It has been shown in [43] that in order to almost surely havaigue giant
connected component in a random graph, it is necessarytshetérage degree is
strictly greater than one. In addition, when the expectegtaieof all the vertices
are equal, the size of this unique giant connected compaseancentrated around
the unique solution of the equatidn— = — e~% = 0, whered is the expected
average degree [44,45].

Accordingly, [6,42] introduces a procedure that take$Xan) and determines
on average for how many inactivations, almost surely thalebe& a giant com-
ponent inGG. The procedure is as follows: start with = 0, and iteratively for
i > 0sets® =1 — ]2 (1 —¢;), then whiledg, (67, £) > 1 sets; the root of
1 — 2 — e don@e)z — o wheredq (6%, ¢) is introduced in (4.2). Therefore,
whendg(:p)(a(“, ) < 1, ID cannot guarantee recovering a significant portion of the
remaining bits.

Then the design problem is to find a generating polynofaial), which is able
to keep the procedure running until the desired portion efitibermediate bits are
recovered. This design criterion in addition to a mixturepfimization methods
have been used to design a degree distribution which hasbakso adopted by
3GPP [34].

4.3.3 A New Design Criterion

The new design is based on a new insight into the ID processméigioned in
Section 4.2, ID starts with an EDD phase and works until thple is empty. At
this point, inactivation is performed, and another phadel is started. Thus, one
can think of ID as a series of EDDs, each applied to a portioth@funrecovered

bits. According to this view, we need a degree distributiwat twill perform well
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Figure 4.2: The decoding graph at some intermediate stegoofding. The receiver
started the decoding after receivikig= (1 + ¢)k output symbols, whereis a very
small positive number. Up to this point,da= ﬁ of the intermediate bits have
been recovered. The left part shows the non-effective panteodecoding graph at
this moment, which could not participate in the decodinghefremaining bits. The
right part is still effective and contairi$ — 0)k intermediate bits and approximately
(1 — 0)k’ output nodes as well.

under a series of EDDs despite the recovery of any portionitef BDesigning such
a distribution is a challenging task because the degregkdisbn for each EDD

step may be different. Thus, the performance may differ chestep. A degree
distribution which remains close to optimal in all EDD stepstherefore, desired.
Accordingly, we first investigate another effect of recangra / portion of the

intermediate bits on the degree distribution of the outjmatas.

An intermediate bib; is recovered when the degree of an output ngdeon-
nected tab;, is reduced to one. In fact, the last edge:pfconnects it ta),;. After
recoveringb;, the output node;; can no longer be effective in the decoding pro-
cess. Now, assume that the receiver has originally recéiveds)k symbols for
a very smalk > 0 (in practices < 0.01). Therefore, after recoveringdportion
of intermediate bits, @ portion of the output nodes will not be effective for the
rest of the decoding process (see Fig. 2). In other wordspdileg continues by
performing EDD on the remaining decoding subgraph comgifii — ¢) portion of
output nodes and the unrecovered intermediate nodes.

Now, recall that); ; represents the fraction of reduced-degieg¢ > 2 output

nodes after recoveringdgportion of intermediate nodes. Accordingly, starting with
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a close-to-optimal)(x), if for any 0 < § < 1, Q(x) satisfies
VJ 2 2, Q(;’j — (1 - (5>Qj, (43)

then the close-to-optimal performance for the next EDD stegpreserved. This
way, the code recovers a large portion of bits in each EDD. Steps, we use (4.3)

as a design criterion.

4.3.4 TheProposed Code Design

According to (4.1),

D—i

(1—9) Z Qisy (0 +j)!5j.

Qs = a S
L e j!

Now, let us define

D—i . . j

=0 J

Then we obtair2;; = L= f; . In addition, according to (4.3), for all> 2 it is
desired to hav€s, = (1—6)<,;. Thus, we can formulate part of the design criterion

asfs; = il(1 —0)~=1Q;, or equivalently,
)Igi ‘
Vi > 2, Z is ZH O i1 =gy,
s NPV
Z—lQZZ 7,+j 2 5 (45)
Jj=0 !

In (4.5), the summation on the right-hand side is derived\atuating the Taylor
series expansion of the functigh— 2)!2=¢=Y centred atry = 1 forz = 1 — 4.
Assuming the maximum degrele could be infinite, equation (4.5) suggests the

following solution:

Qz) = f: — ! r', (4.6)

Surprisingly, this solution is the well known ideal Solitdistribution [17]. This,

however, is an infinite degree distribution which cannot $edin a practical setup.
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With a finite allowed maximum degreP, (4.6) must be modified. In the next
subsection, we provide a finite approximation of (4.6) teatains close to optimal

throughout the decoding process by satisfying (4.3) witb@gapproximation.

4.3.5 Finite Maximum Degree Design

Recall that for the outer code to finish the decoding sucabgsthe LT code re-
quires a recovery rate greater th@dr- o. Also, for a finite maximum degree design,
to satisfy (4.3) and motivated by (4.6), we seekHn) approximately in the form
of

Q@):Z;“iiwxa

)

As was first mentioned in [26], the hypergraph collapse psctudied in [25]
is identical to the EDD process. Now, letbe a positive real number less than
or equal to the smallest positive root @f + €)' (z) + In(1 — z) = 0. Then, as
k — oo, under EDD,rk intermediate bits are recoverable with a high probability
from any set of 1 4 ¢)k received bits [25]. Similar results were also obtained in [4
based on the And-Or tree analysis [24]. This result was usédiQ] to study the
performance of EDD for recovery of a less-than-one portibihe message bits as
needed in Raptor codes. The average recoverable portidtsdbba given degree
distribution, therefore, is equal to the smallest positoa of (1+)Q'(z) +1In(1 —
x) = 0.

—In(1—2x)
(14¢) '
z € (0, R+ o). By using the Taylor series expansienin(l — z) = > °° £, a

i

Thus, to achieve a recovery rate Bf+ o, we need?'(z) > for all

necessary condition for all € (0, R + o) can be derived as

[ “—In(1—1)
Q(x)—/o Q(t)dtz/o Aiod

~2(l1=In(l—-2))+In(l —z)
B (1+¢)

7

00
€T

2 (T e)ii— 1)

2




Among all the terms of the formy;(z) = , the termw,(z) has the maxi-

mum derivative in the interval, £ (2=, JJrl) Also Vi>j>0>2, Lu(z)>

4 (z) for anyz € I,. Therefore, to have

Ve (0,R+0) (4.7)

for a givene, it is enough to set

i it (1 — %) ™ (4.8)

=2

wherem is an integer such that > m* and2-=! < (R+0) < 7y ande > +a.
Clearly, choosing a largen results in a better approximation to (4.6).

Using (4.7) and (4.8), we obtain

Vo e (0, (R+0)),
z(l—In(1—2))+In(l —z) — 2™ (1 + 5).
(1+2)(X, iy — tamt)

The right-hand side of (4.9) is a strictly increasing fuantiof z. Thus, we can

(4.9)

finish the design by choosingequal to the value of the right-hand side evaluated
atr =R+ 0.

In order for the decoding to start and recover a portion oérimediate bits
before the first inactivation, we provide a very small pesif;, as do the existing
approach.

Settingm = m* provides the lowest computational complexity since doing s
obtains the smallest average degree of the distributionveder, settingn = m*
also reduces the probability of covering a randomly seteoteermediate bit in an
output symbol and therefore slightly increases the recepiverhead. This slight
increase is a side-effect of a decreasing outer code rateiBGPP for a smaller
block length. At/ = 1024, the outer code rate is reducedio= 0.9381, and set-
tingm = m* = 16 makes the average degree of 6)r) slightly smaller than that
of the 3GPP. Moreover, the probability of leaving an intedee bit uncovered
(not involved in any of the equations corresponding to tloeired bits) is approx-

imately e~ (D0+2) [2], where(Y' (1) represents the average degree. Therefore, for
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successful decoding, a slightly higher overhead will balede As reported in Table
l, this increase is around 0.33% fboe 1024 and only 0.04% fo¥ = 8192.

The choice of the outer code rafkin the 3GPP is based on the performance of
the adopted?(z). Appropriate outer code selection for our propo$Ed) can be
considered. Among other solutions for this slight incraagée overhead, one can
either allowm to be larger tham* or add a term of higher order to prevent the loss
of coverage. In Section 4.4, we will compare our design nically with that of
the 3GPP.

4.4 Numerical Results

In order to verify the performance of our proposed codes, avepare the perfor-
mance of the degree distribution adopted in 3GPP with thpqeed degree dis-
tribution introduced in (4.8), where: is chosen to be equal ta*. In each case,
similar to [6, 38, 42] we assume that the receiver receivesign overhead to form
a full rank equation system in terms of the intermediatealdes. As ID is a ver-
sion of ML decoding, having a full rank equation system idisigint for successful
decoding. Hence, the decoding success rate is always one.

Figures 4.3 and 4.4 depict the average performance of bgtieéelistributions
for different block lengthg, and the different strategies used for selecting a node
for inactivation. As discussed in Section 4.3, the basiswfamparison is the
number of required inactivations. Thus, figures 4.3 and 4o¥ige the cumula-
tive distribution function (CDF) for a normalized numberioéctivations (i.e., the
number of inactivated nodes required for successful dagodivided by the block
length). Figure 4.3 compares the performance of our prapdsgree distribution
with that of the 3GPP codes under two different selectioatstyies for a block
length of¢ = 1024. figure 4.4 repeats the same comparisondfer 8192. In both
figures, the rate of the outer code is chosen according to aRelines. This rate
for ¢ = 8192 is equal toR = 0.9834 and for/ = 1024 is R = 0.9381. As figures 4.3
and 4.4 reveal, for all cases, the performance of our prapdegree distribution is

superior to the degree distribution of the 3GPP.
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each iteration a complete block of information is transedtaind its overhead is
calculated.
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calculated.

57



Table 4.4 shows the average performance measures for oulasioms, which
are again based an = m*. In this table,d = /(1) is the average degree of the
distributions,z represents the average reception overhead. Al$Q, comp, and
I'rana denote the average normalized number of inactivations wieeselection of
nodes for inactivation has been performed based on usingldxeComponent ID
and Random ID strategies, respectively. Table 4.4 indsctitat our codes signifi-

cantly reduced the number of inactivations at the cost abaty higher overhead.

45 Summary

A new criterion for the design of degree distributions faaétivation decoding was
presented. Based on this criterion, a family of degreeidigions was found an-
alytically. The suggested family was modified for the preaiticase of finite max-
imum degree. The simulation results confirmed the supéyiofi the proposed

codes over existing designs.
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Table 4.1: Average performance measures for the 3GPP catl¢harproposed
design withm = m*.

Code 14 d = Q/(l) g ]_Max—Comp I_Rand
1024 4.6184 0.38% 4.49% 9.40%
3GPP
8192 46184 0.44% 1.54% 4.03%
1024 3.9739 0.66% 3.20% 7.04%
New Design

8192 5.0854 0.48% 1.13% 2.59%
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Chapter 5

Conclusions

This thesis focused mainly on rateless codes for erasumnehaThe purpose of
this research was to study the new techniques for improviegoerformance of
Raptor codes in practical settings. The results presentéis work are used to
combat the imperfections rising from the finite length obirmhation block.

In Chapter 3 a new technique for rateless code design, nanmedadion, was
introduced. Annotation provides the possibility of retirey a portion of overhead
in the original design of Raptor codes. Based on this teal&ig generalized ver-
sion of Raptor codes, called annotated Raptor codes, weoeluted. We evaluated
the performance of the new design for information block targf & = 64520, and
compared the results with that of the original Raptor codég comparison shows
that annotated Raptor codes are capable of achieving higiramission rates in
finite lengths compared to the original design of Raptor sodé&e reduction in the
overhead is shown to be more thEivs.

The design of Raptor codes for short block lengths are studi€hapter 4. In
current practical settings the information block is uspathound several thousands.
In this case a computationally more expensive decodingidihgo, named inactiva-
tion decoding, is preferred due to its better performanderims of overhead. We
proposed a new design criterion for Raptor code design uhdesetting. Based on
this criterion an analytical framework for the Raptor co@sidn is presented and
the codes designed using this approach are compared witlotiventional design.

The results show notable improvements in the computatiowetk of this practical
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method. The new design reduces the number of computatyoeglensive inac-
tivation operations significantly. The amount of requiregread is shown to be
decreased in different block lengths. However, for veryrsbtock length (e.qg.,

k = 1000), a slight increase in the overhead is observed.

5.1 FutureResearch Directions

This thesis work provides a foundation for further researolseveral interesting
topics. The annotation technique presented in Chapter 8sop@ew way of rate-
less code design. The main advantage of this method is tadaroNfferent levels
of protection to different sets of information symbols iretboding. The goal in
our design was to retrieve a portion of overhead and coneenesof the useless
received symbols into innovative receptions which tramsmw information to the
receiver. This potential however can be used in other daestsuch as non-equal
error protection over different sets of information synghoBetting an analytical
framework for the analysis of performance in the new desidhhelp the investi-
gation of the advantages in this generalized design, anthizinig it for different
applications.

Among other methods to provide a higher level of protectioannotated Rap-
tor codes is to use the more powerful inactivation decodiggrahm for decoding
the annotated part of the message in the receiver. Desigrcbhfdes can benefit
the analysis provided in Chapter 4 of this thesis. Our ihéigperiments shows that
such codes can reduce the reception overhead aghfhdompared to the original
Raptor code. However, the optimal design needs more asalysi experiments.

The close connection between rateless codes and netwonkgcpbmises a
significant gain in using the rich analytical backgroundatétess codes for network
coding. This connection has been first noticed and used ih [A&hough the
original design of LT codes and Raptor codes do not allow il in a distributed
fashion required for network coding, some notable effoats &lready been made to
design decomposable versions of these codes [47]. Ineg¢istigthe capabilities of

new design approaches presented in this thesis for exteisidistributed versions
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can open a new direction for research in future.
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