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Abstract

Analysis of complex networks is one of the most important topics in the Ma-

chine Learning field. At the same time, classical probabilistic graphical rela-

tional models are one of the most popular methods used to perform such tasks.

However, there are several limitations associated with a process of constructing

probabilistic relational models. Some of them are: inability to cope with fully

masked data; assumptions of data independence; insufficient interpretability

and precision of models; and inadequate modelling of network’s dynamics in

continuous time. All this leads to construction of simplified models, as well as

lack of full utilization of the available data.

In this thesis, we proposed a number of methods developed based on differ-

ent types of Machine Learning techniques, such as Deep Learning and Bayesian

nonparametric and stochastic processes, to address these limitations. More

specifically, we propose some modifications of the mixed membership stochas-

tic blockmodel, i.e., we focus on modeling: 1) coupling relations within/across

groups/communities of nodes using the multilayer network with static set-

tings; 2) coupling relations between communities using a matrix factorization

method; and 3) coupling relations between nodes across groups/communities

using a long short term memory.

In addition, we also improve the ability of relational models from the per-

spective of accuracy (model performance) and interpretability. In this case,

we enable clustering of both nodes and edges simultaneously. We use discrete

fragmentation coagulation process to cluster nodes of a network, and mixed
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membership stochastic blockmodel to cluster its edges. Furthermore, we fo-

cus on modelling changes in relational data occurring over continuous time.

Specifically, in order to prevent an information loss we use the continuous frag-

mentation coagulation process to model the community evolution, as well as

Hawkes process to model the reciprocating relation among nodes. We validate

our model using synthetic and real datasets.
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Chapter 1

Introduction

1.1 Problem Statement

Complex networks represent all kinds of systems that contain, and are based

on, rational data. Their analysis and processing allow us to gain insight into

structures they represent – we learn more about nodes themselves and even

more about relations existing between them. For example, when we ana-

lyze e-commerce related networks we can find out more about preferences of

individuals or relations between them and could provide so-called ‘targeted

advertising’ of different products or services. In the case of a task of cluster-

ing nodes of knowledge graphs, nodes with similar characteristics can be ‘put’

together to form groups1, Figure 1.1. In all these situations, the key is to

discover relations between the nodes of a network, would they represent items

or individuals.

Analysis of the existing work in such areas as artificial intelligence, machine

learning and data mining leads to a conclusion that some aspects of data-based

analysis of complex networks are considered to a limited degree. Besides, a

few assumptions made during construction of Bayesian models limit their abil-

ities to represent complexity of networks and to analyze them thoroughly. In

particular, some of the most significant issues are: (1) latent class models, as

typical Bayesian models used for network analysis, lack the ability to deal with

scenarios where all relations within/across specific groups are masked; (2) ex-

isting modelling techniques that assume data independence could be replaced

1www.allthingsdistributed.com
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Figure 1.1: Knowledge Graph

by deep learning methods that promise more tailored for specific needs analy-

sis of real data; (3) entity-based and linkage-based clustering methods used for

analysis of network behaviour separately – one at a time – may lead problems

related to interpretability and model precision; and finally (4) discretization

of continuous data could cause information loss when complex networks are

created and analysed. Therefore, we can postulate that models constructed

under such cirumanstances are significantly simplified and although they are

capable of achieving a state-of-art performance, such assumptions lead to sim-

plified operations that could be inadequate at different scenarios. Below, we

elaborate and illustrate consequences of these cases and assumptions.

1.1.1 Data Masking

Latent class models are one of classical methods used for modelling relations.

Such methods focus on learning: (1) latent group for each entity; as well as

(2) relations within/across groups. These models are able to predict/recover

partially unobserved data. They allow to summarize the behaviour of the

entities within/across group of the data. Yet, they are not very effective in the

cases when observations of relations between entities within/across specific
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groups are fully masked. At the same time, masked data is quite common

because of the security and privacy issues.

1.1.2 Data Independence

Nowadays, deep learning methods are quite successful in solving natural lan-

guage and computer vision problems. Such technology shall be exploited in

tasks related to analysis of complex network. One can envision an investigation

whether the block of classical Bayesian model may be approximated using deep

learning techniques. Such methods would address assumptions/limitations re-

lated to current Bayesian models. In particular, relational models usually

involve two elements: group vectors representing the node latent information;

and similarity matrix representing degrees of similarity between groups. From

the perspective of a Bayesian model, the node’s feature vector is often ex-

pressed as a multinomial distribution, while each entry of the similarity matrix

is modelled as a Bernoulli distribution. Parameterizing the nodes information

and/or similarity matrix in such a way implies data independence. However,

such a strong assumption may limit the capability of a method to model de-

pendencies between latent groups. In the real world, to analyze the relation

between entities, it is more reasonable to consider the group-pair for each

two entities dependently. In a more formal way, the conditional independence

should be ruled out:

Pr(zA, zB|θA, θB) �= Pr(zA|θA)Pr(zB|θB)

1.1.3 Model Simplification

In the existing Bayesian relational models, there is an implicit assumption

of considering either the latent classes (communities) of entities or groups of

linkages singly but not simultaneously. For example, an entity-based cluster-

ing model focuses only on community clustering of entities ignoring potential

grouping of linkages.

However, this will lead to at least two drawbacks. One of them is lack of

interpretabiliy: an entity that belongs to one community can play different

3



Figure 1.2: Example of Bayesian method for network analysis

roles in contact with other entities within/across communities. Additionally,

these roles of the entity to others are also influenced by the other communities.

Therefore, combing/considering entities and linkages is a demanding task, see

an example in Figure 1.2. Another drawback is related to the model precision

as the inappropriate size of community or group number may lead to an under-

fitting or overfitting problem. This becomes even more crucial in the case of

a dynamic setting as the community evolution may cause the number of com-

munities to vary with time. Here, difficulties arise in finding a method suitable

to infer a number of parameters (communities, groups) during construction of

a model.

1.1.4 Time Discretization

A process of constructing a model based on temporal data introduces another

type of challenge – handling continuous time. In such cases, time discretization

is often applied. However, it is not easy to determine a size of discretization

interval in a way of all single events are captures, uneven distribution of events

makes such a process almost impossible to succeed, see Figure 1.3. Whatever

the technique of preprocessing is used, e.g., binarizing the data after time dis-

cretization, it leads to a loss of information and difficulties in extract realistic

4



Figure 1.3: Example of time segmentation

character of data. In a case of complex networks, this is even more crucial, as

the analysis of dynamics of network structure may be influenced by the inap-

propriate time discretization. One possible solution is to make discretization

time based on a small time interval but that lead to high computational cost.

1.1.5 Summary of Introduced Issues

A number of critical issues that have been addressed in this work can be

summarized in the form of following points:

• latent class models are not able to deal with situations where all relations

within/across specific groups are masked;

• models of complex network assume data independence that can lead

to inability to discover latent relations and dependencies that can be

addressed using deep learning methods;

• Bayesian models consider only either entity-based clustering or linkage-
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based clustering; and that may lead to two problems: lack of inter-

pretability and decreased model precision;

• Bayesian models are not able to capture temporal changes in relations

between entities due to a fixed size of model’s components;

• discrete time-series models of continuous data with time discretization

lead to a lost of information or/and characteristics of the data.

1.2 Objectives

The objectives of the work presented here is to address the mentioned above

problems associated with analyzing and processing of complex networks. They

be presented as a set of selected activities:

• Modelling coupling relations of latent groups and dependencies of nodes’

latent features: this task focuses on relaxation of limitations related

to conditional independence in the mixed membership stochastic block-

model and deal with cases when relations with/across specific groups are

fully masked. Specifically, we model the coupling relations within/among

nodes (mixed membership) over time, and the dependence of relation

within/across groups (similarity matrix).

• Clustering nodes and edges simultaneously: the current relational mod-

els focus on either node clustering or edge clustering. We identify the

weakness of these approaches and propose to cluster the nodes and edges

simultaneously in a discrete time.

• Modelling continuous data: process of time discretization lead to re-

duction of valuable information, especially in the case of reciprocating

information between nodes. We apply the continuous clustering meth-

ods to model the community evolution, and stochastic process to model

the reciprocating information.

6



1.3 Research Contributions

It is anticipated that the presented research work will lead to the following

undertakings:

• proposing a deep learning method (multilayer network) that partially re-

laxes conditional independence assumption related to node’s latent mem-

bership in Bayesian models – this has led to proposing an approximation

of mixed membership stochastic blockmodel (Chapter 3);

• proposing a deep learning method (long short term memory) able to

capture changes in the correlation between nodes’ information (mixed

membership) over time (Chapter 3);

• proposing the matrix factorization method to model the dependence of

group relation (Chapter 3);

• constructing a two-level structure of complex network (enriching the

model structure) in order to ensure preserving the full network struc-

ture by integrating the Bayesian nonparametrics method with mixed

membership stochastic blockmodel (Chapter 4);

• utilizing the Bayesian nonparamterics method to model evolution of a

network (correlation of network structure) over time (Chapter 4);

• using the Polya-Gamma data augmentation to increase the efficiency of

the inference (Chapter 4);

• extending the static Bayesian nonparametric Hawkes process to the dy-

namic version utilizing the Bayesian nonparametric method (Chapter

5).

1.4 Organization

In Chapter 2, we briefly introduce the background and methods that are fun-

damental to our research, including neural network, lstm, Gibbs sampling,

7



Poisson process. Besides, we also review the current literature related to rela-

tional models.

In Chapter 3, we refine the mixed membership stochastic blockmodel so the

constructed model enable expressing: 1) coupling relations within/across the

nodes by the multilayer network under the static setting; 2) coupling relations

among communities using the matrix factorization; and 3) coupling relations

among nodes using the long short term memory.

In Chapter 4, we enhance the ability of relational models via clustering the

nodes and edges simultaneously. We use a discrete fragmentation coagulation

process to cluster the nodes and mixed membership stochastic blockmodel to

cluster the edges.

In Chapter 5, we focus on modelling the relational data in the continuous

time. Specifically, we used the continuous fragmentation coagulation process to

model the community evolution and Hawkes process to model the reciprocating

relation among the nodes.

In Chapter 6, we provide the conclusion to our study and propose some

ways to extend the current model.
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Chapter 2

Preliminaries and Literature
Review

2.1 Deep Learning

2.1.1 Neural Network

Human brain is capable of natural language process, pattern recognition, logic

reasoning and etc. One research field of artificial intelligence is to imitate the

function of the human brain by machine. The basic structure of the human

brain is composed of interconnected biological neurons. Each neuron processes

a simple operation, such as outputting a [0, 1] signal according to the input.

However, with the cooperation of millions of neurons, the human brain can

perform a task like sensing, recognition and reasoning which is hard for the

machine. Inspired by the structure of the human brain and the architecture

of the biological neuron, the artificial neuron network is invented. One basic

neuron network is composed of the input layer, hidden layer and the output

layer. A basic neuron network is shown in Figure 2.1. Each layer is composed

of the neuron nodes. The function of one neuron node is expressed as:

y = f(
∑
i

wixi + b)

where xi is the input of the neuron node, and wi and b is its associate weight

and bias and f is the activation function. One choice of the activation function

is the sigmoid function σ(x):

σ(x) =
1

1 + e−x

9



Figure 2.1: Example of neural network

Figure 2.2: Recurrent neural network1

The reason behind that is the sigmoid function provides the nonlinearity and

is easy to perform the derivative. Besides, for inference, the forward and

backward propagation is utilized to learn the network weight w. There are

several types of neuron networks, such as perceptron [69], Hopfield net [33]

and Kohonen Maps [42]. In our work, the perceptron is chosen to release the

assumption of conditional independence.
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Figure 2.3: Long Short Term Memory1
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2.1.2 Long Short Term Memory

The long short term memory 1 [30], called ’LSTM’, is inspired by the recur-

rent neural network (RNN)1. The recurrent neural network is a deep learning

method commonly used in the sequence learning such as speech recognition,

text annotation and etc. The structure of RNN is shown in Figure 2.2. How-

ever, one limitation of the RNN is the lack of long dependency in useful in-

formation. For example, there is a sentence ’I speak English. ... I am fluent

in English’. The task is to predict the word after the ’in’. However, due to

the structure of RNN, the information about ’English’ may be lost due to the

information pass with a long interval. To overcome the limitation, the LSTM

allows the past information to pass through the gate. The common structure

of LSTM is shown in Figure 2.3. Like the σ in Figure 2.3, it will generate the

output within the range [0, 1]. If the output is really small, the past informa-

tion will be thrown out and restored vice visa. There are several variations of

LSTM, such as Gated RNNs [87] and Clockwork RNNs [45]. In our work, the

classical LSTM is utilized to model the dependency between the feature.

2.2 Bayesian Nonparamertic

2.2.1 Dirichlet Process

In probability theory, Dirichlet process belongs to a bundle of stochastic pro-

cesses of which realizations are a set of probability distributions. The Dirich-

let process is composed of two parts: H, a base distribution and α a positive

called the concentration parameter, denoted as DP (α,H). Formally, DP can

be defined as follows [20]:

Theorem 1. Let H be a probability distribution over a measurable space θ and

α be a positive real number. Consider any finite measurable partition A1, ..., Ar

of θ,

∪R
r=1 Ar = θ, Ar ∩ As = ∅, ∀r, s (2.1)

1colah.github.io
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Let G a random probability measure on θ. We say that G is a DP with base dis-

tribution H and concentration parameter α, denoted as G ∼ DP (α,H), if the

probability measure G on each partition over θ follows a Dirichlet distribution

(G(A1), ..., G(Ar)) ∼ Dir(αH(A1), ..., αH(Ar)) (2.2)

Theorem 2. Let G be a Dirichlet process on (θ,H) with parameter α, and let

X1, ..., Xn be a sample size n from G.Then the conditional distribution of G

given X1, ..., Xn, is as a Dirichlet process with parameter α +
∑n

i=1 δXi
:

G|X1, ..., Xn, α,H ∼ DP (α + n,
α

α + n
H +

n∑
i=1

δXi
) (2.3)

2.2.2 Chinese Restaurant Process

The Chinese Restaurant Process (CRP) is a distribution over partitions of

entities with a single parameter α. CRP can be easily depicted by showing

how to draw the sample from it. Consider such a scenario that there is an

infinite number of tables with infinite capacity in a restaurant. A sequence of

N customers come to the restaurant to choose a table to sit. The indicator of

customer i sitting at table k is denotes as zi = k. The table to be chosen by

the customer n can be sampled from:

Pr(zn|z1, ..., zn−1, α) =
α

α + n− 1
δK +

1

α + n− 1

K−1∑
k=1

nkδk (2.4)

where nk =
∑n−1

i=1 δ(zi = k) is the number of first n − 1 customers sitting at

table k.

2.3 Inference

2.3.1 Markov Chain Monte Carlo Methods

One common target for PGM is to find the optimal value for the latent vari-

able. However, explicit analysis can be hard to perform on the PGM. In other

words, it is intractable to find an analytical solution. Instead, normally an

approximate solutions needs to be applied on the real problem. Therefore,

13



Markov chain Monte Carlo (MCMC) methods become appealing and attract

attention in the field of machine learning.

In general, MCMC methods provide a numerical solution to estimate a

certain integration expression. The estimated integration based on the MCMC

methods can be expressed:

Ex∼fX(x)[g(x)] =

∫
x

fX(x)g(x)dx ≈ 1

N

N∑
n=1

g(xn) (2.5)

The sequence of x1, ..., xN is the samples based on fX(x) probability density

distribution (PDF) constructed by Markov chain. Here we introduce two sam-

pling techniques based on MCMCmethods: Metropolis-Hastings sampling and

Gibbs sampling.

Metropolis-Hastings Sampling

A reversible Markov chain can be constructed by the Metropolis-Hastings

(MH) sampling. The reversible property is that the Markov chain must fulfill

the requirement of the detailed balance:

π(xt)p(xt−1|xt) = π(xt−1)p(xt|xt−1) (2.6)

Where π(x) is the target distribution (equivalent to the above PDF fX(x))

and p(xt−1|xt) is the transition probability. One important conclusion can be

deduced by the detailed balance that:

π(xt) =

∫
xt−1

π(xt−1)p(xt|xt−1))dxt−1 (2.7)

Therefore one way to check if a sampling method works is to verify whether

the sampling method is satisfied with the detailed balance condition. In MH,

q(xt|xt−1), proposal transition distribution, is used to generate the Markov

chain. The basic MH sampling scheme is shown in Algorithm 1. A simple

proof is given to show MH meets with the detail balance.
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π(xt)q(x∗|xt)min(1,
π(x∗)q(xt|x∗)

π(xt)q(x∗|xt)
) = min(π(xt)q(x∗|xt), π(x∗)q(xt|x∗))

(2.8)

= min(π(x∗)q(xt|x∗), π(xt)q(x∗|xt))
(2.9)

= π(x∗)q(xt|x∗)min(1,
π(xt)q(x∗|xt)

π(x∗)q(xt|x∗)
)

(2.10)

Algorithm 1 Metropolis-Hastings Sampling

1: Initialize x0

2: for t = 0 to N − 1 do
3: Generate a uniform variate u ∼ U(0, 1)
4: Generate a proposed variate x∗ ∼ q(x∗|xt)

5: if u ≤ π(x∗)q(xt|x∗)
π(xt)q(x∗|xt)

then
6: xt+1 = x∗
7: else
8: xt+1 = xt

9: end if
10: end for

Gibbs Sampling

Gibbs sampling (GS), as a special case of MH, is widely used in MCMC meth-

ods. Consider a random vector variable x ∈ R2 with a joint distribution

π(x1, x2). Suppose that the marginal distribution π(x1), π(x2) over x1 and x2

can be derived and π(x1|x2), π(x2|x1) are the conditional distributions of x1

and x2. The GS with 2 blocks scheme is shown in Algorithm 2. (Note: it is

easy to extend GS with 2 blocks to GS with M blocks.)

Algorithm 2 Gibbs Sampling

1: Initialize x1
0, x

2
0

2: for t = 0 to N − 1 do
3: Generate a proposed variate x1

t+1 ∼ π(x1
t+1|x2

t )
4: Generate a proposed variate x2

t+1 ∼ π(x2
t+1|x1

t+1)
5: end for
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2.4 Stochastic Process

2.4.1 Counting Process

Definition 2.4.1. Counting Process A stochastic process is a counting process

N(t) and satisfied with:

1. N(t) >= 0

2. N(t)is monotonic

3. N(t) ∈ Z
+ = {0, 1, . . . }

2.4.2 Poisson Process

Definition 2.4.2. Poisson Process A Poisson process is a counting process

N(t) with rate λ, of which the value belongs to Z
+ = {0, 1, . . . }, if satisfied

with:

1. N(0) = 0 and N(t) is monotonic;

2. The transition probability

Prmn(h) = Pr[N(t+ h) = n|N(t) = m]

are stationary, such that

Prmn(h) =

⎧⎪⎨
⎪⎩
1− λh+ o(h) if n = m

λh+ o(h) if n = m+ 1

o(h) if n > m+ 1

The sequence of Xn are called the interarrival times of a Poisson process

N(t). The interarrival times Xn are independent and identically distributed

RVs which follow an exponential distribution with parameter λ.

f(t) =

{
λe−λt if t >= 0

0 if t < 0

Theorem 3. The Poisson process has the distribution with mean λt as:

Pr(N(t) = n) =
(λt)n

n!
e−λt
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Memoryless Property of Poisson Process

Suppose the interarrival time Xn has arrived and the Xn+1 has not arrived

yet. And assume that there is no event arrived between [tn, tn + m]. The

probability that the event Xn+1 will not arrive before tn +m+ t is calculated

as

Pr(τ > tn +m+ t|τ > tn +m) =
e−λ(tn+m+t)

e−λ(tn+m)

=e−λt

It is found that the probability is independent of the previous events and the

waiting time m. So the property of Poisson process is called memoryless.

Superposition of Poisson Process

Suppose that there are M independent Poisson process Nm(t) with the rate

λm where m = 1, . . . ,M . The sum of Poisson process Nm(t) is still a Poisson

process N(t) with the rate λ, λ =
∑M

m=1 λm.

Proof.

E[e−tN ] =E[e−t
∑M

m=1 Nm ]

=
M∏

m=1

E[e−tNm ]

=
M∏

m=1

[
∞∑
n=1

λn
m

n!
e−λme−tn]

=
M∏

m=1

[e−λm

∞∑
n=1

λn
m

n!
e−tn]

=
M∏

m=1

[e−λmeλme−t

]

=e
∑M

m=1 λm(1−e−t)

Decomposition of Poisson Process

Suppose there is a Poisson process N(t) with the rate λ. Then the Poisson

process N(t) can be split into M independent Poisson process Nm(t) with the
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rate rmλ, m = 1, . . . ,M and
∑M

m=1 λm = λ. Assume there are nm arrival of

events with Poisson process Nm(t) and n =
∑M

m=1 nm.

Proof.

P(n1, . . . , nm|n) =
n!

n1! · · ·nM !
rn1
1 · · · rnM

M

As n follows Poisson distribution with λ, then

P(n1, . . . , nm) =P(n1, . . . , nm|n)P(n)

=
n!

n1! · · ·nM !
rn1
1 · · · rnM

M

λn

n!
e−λ

=
(r1λ)

n1

n1!
e−r1λ · · · (rMλ)nM

nM !
e−rMλ

2.4.3 Hawkes Process

Definition 2.4.3. Hawkes Process (Hawkes process) Let a stochastic process

be a counting process N(t) with the history Ht. The counting process N(t) is a

Hawkes process if the conditional intensity function λ(t|Ht) satisfies with the

form:

λ(t|Ht) = λ∗(t) +
∑
i;t>Ti

φ(t− Ti)

where λ∗(t) is called the base intensity function and φ(·) is called the kernel

function. The sequence of Ti is the event happened before t.

Likelihood for Hawkes Process

The conditional intensity λ(t|Ht) can be expressed in forms of the conditional

probability density function f(t|Htn and its corresponding cumulative density

function F (t|Htn). For simplicity, denote the shorthand λ(t) for the conditional
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intensity λ(t|Ht). The λ(t) can be expressed as follows:

λ(t) dt =
f(t|Htn) dt

1− F (t|Htn)

=
Pr[tn+1 ∈ (t, t+ dt)|Htn ]

Pr[tn+1 /∈ (tn, t)|Htn ]

=
Pr[tn+1 ∈ (t, t+ dt), tn+1 /∈ (tn, t)|Htn ]

Pr[tn+1 /∈ (tn, t)|Htn ]

=
Pr[tn+1 ∈ (t, t+ dt), tn+1 /∈ (tn, t),Htn ]

Pr[tn+1 /∈ (tn, t),Htn ]

=Pr[tn+1 ∈ (t, t+ dt)|tn+1 /∈ (tn, t),Htn ]

=Pr[tn+1 ∈ (t, t+ dt)|Ht]

To rewrite the λ(t),

λ(t) =
f(t|Htn)

1− F (t|Htn)

=
∂
∂t
F (t|Htn)

1− F (t|Htn)

=−
∂
∂t
(1− F (t|Htn))

1− F (t|Htn)

=− ∂

∂t
ln(1− F (t|Htn))

Integrate both side from tn to t,∫ t

tn

λ(s) ds =−
∫ t

tn

∂

∂s
ln(1− F (s|Htn)) ds

=− ln(1− F (s|Htn))|ttn
=− ln(1− F (t|Htn))

Arrange the above equation,∫ t

tn

λ(s) ds = − ln(1− F (t|Htn))

e−
∫ t
tn

λ(s) ds = 1− F (t|Htn)

F (t|Htn) = 1− e−
∫ t
tn

λ(s) ds
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Replace the F (t|Htn) with the above formula into the expression of λ(t),

λ(t) =
f(t|Htn)

1− F (t|Htn)

λ(t) =
f(t|Htn)

e
∫ t
tn

λ(s) ds

f(t|Htn) = λ(t)e−
∫ t
tn

λ(s) ds

Suppose the sequence of T1, . . . , Tn are observed, the likelihood function can

be expressed as:

L = e−
∫ Tn
0 λ(s) ds

n∏
i=1

λ(Ti)

2.5 Literature Review

2.5.1 Latent Class Model

The latent class model (LCM) is to model the data by its latent class. One

classical LCM is the Gaussian mixture model (GMM). In GMM, to generate

a data point xi, a latent class zi for the node ui is first assigned, and then the

data point is sample from the associated the Gaussian distribution N (μzi , σzi).

In complex network, the stochastic blockmodel (SBM) [4], [32] is the first rep-

resentative in LCM. The procedure to generate the relations between two

entities in SBM can be decomposed to two steps. The entity i and j are firstly

assigned to the latent class zi and zj respectively. Secondly, the relation will

be generated according their associated entry of the class similarity matrix.

One extension of SBM focuses on the prior of by Bayesian nonparametric. [38]

applied the Chinese restaurant process (CRP) on the number of latent commu-

nities. One important extension can be traced back to the mixed membership

stochastic blockmodel (MMSB) [3]. The key contribution of which is to allow

each entity to hold multiple groups in a network. As MMSB is of importance

to our work, the details of MMSB are given as follows:

MMSB aims at modelling the relation between entities. What distinguishes

MMSB from previous work is that MMSB allows each entity to belong to each

group to some degree. Assuming that there are K groups in one community.
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MMSB uses a k dimensional vector θi of entity i to depict its membership with

K latent groups. In MMSB, the sender indicator sij and the receiver indicator

rij specify the latent group indicator for each directed relation xij between

entity i and j which are derived by their membership respectively. Then each

xij is determined by a compatibility matrix B with the sender indicator sij

and the receiver indicator rij where the compatibility matrix represents the

group relation. The generative process of MMSB can be described as follows:

• ∀i ∈ {1, 2, ..., N}

– draw membership distribution θi ∼ Dirichlet(α)

• ∀k, l ∈ {1, 2, ..., K} × {1, 2, ..., K}

– draw community relation Bkl ∼ Beta(λ1, λ2)

• ∀i, j ∈ {1, 2, ..., N} × {1, 2, ..., N}

– draw sender indicator sij ∼ Multinomial(θi)

– draw receiver indicator rij ∼ Multinomial(θj)

– draw relation xij ∼ Bernoulli(Bsijrij)

MMSB also introduced a sparsity parameter to account for non-interaction

between entities being due to limited opportunities for interaction rather than

holding entities different groups.

Bi-LDA [66]implemented the MMSB in recommendation system. In the

model, each user and movie is represented as a mixed membership vector and

an rating matrix is used to present the relation between communities from

users and movies. [49] made extensions to Bi-LDA to develop a dynamic

version to model changes of users’ interests. [23] forwarded a more efficient

inference on the prediction of recommendation system.

Many works made extensions to MMSB. The assortative mixed member-

ship stochastic blockmodel (a-MMSB) [25] derived an efficient inference on

MMSB by stochastic variational inference (SVI). Integrating a-MMSB with

nested Chinese restaurant process (nCRP) which constructed a hierarchical
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Figure 2.4: Graphical model of MMSB.

structure with the CRP, multiscale community blockmodel (MCBM) [29] leads

to the construction of a tree with infinite children (nodes). Each entity belongs

to one node that represents a community. To construct relations between enti-

ties at different levels, the entities share the compatibility matrix of the same

parent nodes. [52] introduced the stochastic gradient Markov chain Monte

Carlo (SG-MCMC) derive an efficient inference. One type of extensions fo-

cuses on the communities modelling by Bayesian nonparametric. Similar to

the extensions, the infinite relational model (IRM) [38], to SBM, [37] also intro-

duced the CRP to model the evolution of communities including (split, merge,

appearance and disappearance). The Bayesian community detection (BCD)

[60] paid attention on the difference between the relation of within/across

communities. [39] proposed the hierarchical Dirichlet process (HDP) on the

model with a scalable inference algorithm. [16] also implemented the HDP

on the MMSB, and introduced the correlation and dynamics to the communi-

ties. Another extension, the copula mixed membership stochastic blockmodel

(cMMSB) [17], used the Copula function to introduce a dependence between
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Figure 2.5: Graphical model of latent feature model.

membership indicators. [22], [83] incorporated the dynamics to MMSB by

introducing the correlation of latent communities via Gaussian distribution.

[19] proposes a deep and scalable version of the MMSB.

2.5.2 Latent Feature Model

Another class of relational models is the latent feature model (LFM). The LFM

provides another way to model the relations between entities via assigning

the latent features to each entity instead of the latent classes. And another

feature compatibility to represent the relation between features. One classical

graphical model of LFM is presented in Figure 2.5. Assume that there are N

entities and K features. The procedure of the LFM generative model is given

as follows:

• ∀i ∈ {1, 2, ..., N}

– ∀k ∈ {1, 2, ..., K}
23



∗ draw feature indicator zik ∼ Bernoulli(πk)

• ∀k, l ∈ {1, 2, ..., K} × {1, 2, ..., K}

– draw feature relation Bkl ∼ Beta(λ1, λ2)

• ∀i, j ∈ {1, 2, ..., N} × {1, 2, ..., N}

– draw relation xij ∼ Bernoulli(σ(zᵀ
i Bzj))

where σ(·) is the sigmoid function.

One representative of LFM is the latent feature relational model (LFRM)

[57] which induced the Indian buffet process (IBP) [79],[27] to determine the

number of features and feature selection for each entities. The dynamic rela-

tional infinite feature model[21] furtherly extended LFRM for the longitudinal

network. The infinite multiple relational model (IMRM) [61] addressed the

challenge of computation cost from the LFM. [63] extended [57] by introduc-

ing the subcluster within the latent feature by Dirichlet process in the infi-

nite latent attribute model (ILA). [92] focuses on utilizing hierarchical gamma

process on static networks mainly. [86][85] make substantial contributions of

incorporating the completely random measures into the modelling.

2.5.3 Matrix Factorization Model

Matrix factorization model is another important class in relation modelling.

And it is also closely related to the recommender system. One classical matrix

factorization model is the singular value decomposition (SVD) where the rat-

ing matrix RM×N is factorized into two matrix: the user matrix UM×K and the

movie matrix MK×N . The learned user and movie matrix can be used to pre-

dict the unobserved ones. On basis of SVD, [43], called SVD++, took the bias

of users and movies into consideration. [44] introduced the dynamics into the

SVD++ by combining the static features of uses and movies with the time de-

pendent components. The probabilistic matrix factorization (PMF) [59] is the

first probabilistic method on matrix factorization. The Bayesian nonparamet-

ric method [26] is also taken into the consideration. [25] used the hierarchical
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structure to capture the sparse factors and modelled the long-tail properties of

users and items. The Bayesian Poisson tensor factorization (BPTF) [71] con-

sidered the tensor factorization by introducing another component along with

the component of the user, item and time. The Bayesian Poisson tucker de-

composition (BPTD) [72] took the advantage of the event tokens, event types

and multinetwork snapshots to learn the structure of the relations. [91] placed

the Gaussian process and Hawkes process on tensor decomposition to model

the effects between events. [34] incorporated the multi-level side information

with the non-negative matrix factorization. [76] levaraged the multilayer and

temporal networks to capture the information of both nodes and linkages.

2.5.4 Deep Learning Model

With the rise of deep learning, several deep architectures have been proposed

for network modeling. The discussion is limited within two types of networks:

the word-embedding model and the graph convolutional network.

Word embedding models present the opportunity to capture more com-

plex interactions than the flat methods mentioned previously. DeepWalk [64]

fused deep learning with network modeling by applying the SkipGram lan-

guage model on information obtained from random walks on the network.

This allows it to learn a latent feature representation for each entity. While

successful at representing network entities as low dimensional embeddings,

this approach has not performed as well on link prediction tasks [90]. The

relational deep learning [82] model uses a deep hierarchical Bayesian structure

which captures relational information necessary for link prediction. Recently,

[35] have proposed the hierarchical latent feature model which incorporates

side information in the form of node attributes and models latent features

using a network structure similar to that of deep belief nets. In terms of in-

corporating varying relational information, the multiplex network embedding

model (MNE) [90] unifies different relations into a single embedding space.

The graph convolutional network (GCN) [41] is another architecture in

complex networks. The GCN is supposed to generalize the convolutional neu-

ral network (CNN) from the domain of computer vision, natural language
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processing to the domain of complex networks or social networks. One impor-

tant component of the CNN is the convolutional layer which can be interpreted

as a convolution operation on a signal or an image. The convlutional layer will

aggregate the characteristic of the information capture the structure in a lo-

calized area as the input of the next layer. In the complex network, it is hard

to implement the convolutional operator directly. Instead, the spectral graph

theory [9] is developed to encode the graph structure. More recent develop-

ment [74] in this area established a theoretical formulation of CNN on graphs

motivated by graph signal processing (GSP). Spectral Networks and Deep Lo-

cally Connected Networks on Graphs [8] proposed a spectral construction on

the graph Laplacian. [11] extended the [8] to enhance the spectral filter and

approximate it with the Chebyshev polynomials [28]. The GCN furtherly sim-

plified [11] with the first order approximation of the Chebyshev polynomials.

[73] as a application of the GCN had a good performance on the task of the

knowledge graph completion and [88] worked well in the recommender system.
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Chapter 3

Deep Dynamic Mixed
Membership Stochastic
Blockmodel Based Network for
Link Prediction

Latent community models are successful at statistically modeling network data

by assigning network entities to communities and modelling entity relations

as the relations of their communities. In this chapter, our contributions are

from two aspects: (1) We describe the limitation of these models in inferring

relations between two communities when the entity relations between these

communities are unobserved. We propose a solution to this problem by fac-

torizing the community relations matrix into two community feature matrices,

thereby adding a dependency between community relations. (2) We utilize the

deep learning techniques to approximate the components of classical proba-

bilistic relational model for complex network. We introduce the deep dynamic

mixed membership stochastic blockmodel based network (DDBN) to demon-

strate the feasibility of such an approach. Our model takes the advantage of

the matrix factorizaiton to solve the above problem and marries the mixed

membership stochastic blockmodel (MMSB) with deep neural networks for rich

feature extraction and introduces a temporal dependency in latent features

using a long short-term memory unit for dynamic network modeling. We eval-

uate our model on the link prediction task in static and dynamic networks and

find that our model achieves comparable results with state-of-the-art methods.
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Figure 3.1: An example illustrating the problem of unobserved community
relations.

3.1 Introduction

In today’s increasingly interconnected world, networks are a useful tool for

capturing complex structures in relations such as those found between friends,

sports teams, email exchanges, and academic papers. Statistical modeling of

these networks is a challenging and long studied problem going back to the

social sciences at the turn of the 20th Century [24]. Its goal is to discover a

statistical representation of a network’s entity relations and, if the network is

dynamic, model their changes over time. This representation can then be used

to solve common problems in artificial intelligence research such as missing

data completion, clustering, and network forecasting. Statistical modeling has

been used on data found in areas ranging from biology [3] to social networks

[21] to recommender systems [49].

Consider an input network as represented by an adjacency matrix describ-

ing the relations (edges) between network entities (nodes). One approach at

modeling such a network which has received considerable attention, block-

modeling, decomposes it into communities that share similar properties and

assigns entities with membership to them. Conceptually, these communities

may be thought of as clusters of entities. Relations between communities are

the degree of compatibility between two communities and are modeled in a
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community relations matrix. Thus, relations exist on two levels: entity and

community. Blockmodels model a relation between two entities as the relation

between their respective communities. One limitation of this approach arises

when all entity relations between communities are unobserved. To illustrate

this, consider the toy example in Figure 3.1 which presents a graphical repre-

sentation of a network as well as the community relations matrix for its three

communities (C1, C2, C3). Solid lines represent observed relations between

entities (white circles) whereas dashed lines represent unobserved relations.

In this network, relations from entities belonging to C3 going to entities be-

longing to C1 are unobserved. Blockmodels, therefore, have no information to

draw upon when inferring the community relation between C3 and C1. Thus

the value of the relation is reduced to a prior, represented by a question mark

in the community relations matrix.

In this work, we propose the deep dynamic mixed membership stochas-

tic blockmodel based network (DDBN) which extends the mixed membership

stochastic blockmodel (MMSB) [3] and overcomes the aforementioned limita-

tion by factorizing the community relations matrix into two community feature

matrices. This approach introduces a dependency between community rela-

tions which allows our model to use information from observed community

relations to infer unobserved community relations. Furthermore, we replace

the probabilistic framework of the MMSB with a multilayer network (MLN)

architecture. This hierarchical approach allows for extracting richer latent

features and for modeling the interactions between them. Finally, our model

introduces a temporal dependence between latent features via a long short-

term memory (LSTM) [30] recurrent neural network (RNN). The RNN learns

the temporal changes in latent features, thereby providing a natural extension

of the MMSB to the dynamic setting and eliminating the need for modeling

each time-step in the dynamic network separately.

The remainder of this chapter is organized as follows. Section 2 formalizes

the problem of unobserved relations in the MMSB and describes our proposed

model. Section 3 compares the factorized and unfactorized community rela-

tions matrices and presents our model’s performance on link prediction tasks
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Figure 3.2: Graphical model of DBNN

using real world and synthetic datasets. Section 4 concludes the work.

3.2 Model Description

In this section, we first formulate the problem of network modeling, then

describe the MMSB modeling approach along with its limitation. Further,

we present our proposed model as it applies to static networks. Finally, we

extend our static model to handle dynamic networks thereby completing the

description of our full model.

3.2.1 Problem Formulation

We define a static network as an N × N binary adjacency matrix, X, that

represents the directed relationships between N entities such that xij = 1 if a

relationship from entity ei to entity ej exists and xij = 0 otherwise. Given a

fixed number of communities, K, we represent the set of entities that belong to

community p as Cp for p ∈ {1, 2, ..., K}. The relations between communities

are modeled by a K×K community relations matrix, B, where bpq represents
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the probability of a relation from an entity in Cp to an entity in Cq. In

the MMSB, the community membership of entities are represented by two

membership indicators, zi→j and zi←j for sender ei and receiver ej, respectively.

Both zi→j and zi←j are one-hot vectors of size K that assign ei and ej to one

community. The generative process is described as follows:

• ∀i ∈ {1, 2, ..., N}

– draw membership distribution θi ∼ Dirichlet(α)

• ∀p, q ∈ {1, 2, ..., K} × {1, 2, ..., K}

– draw community relations bpq ∼ Beta(λ1, λ2)

• ∀i, j ∈ {1, 2, ..., N} × {1, 2, ..., N}

– draw sender’s indicator zi→j ∼ Multi(θi)

– draw receiver’s indicator zi←j ∼ Multi(θj)

– draw relation xij ∼ Bernoulli(zi→jBzi←j)

Where α and λ are the priors for θ and B, respectively. One limitation of

this model arises when the relations between two communities are unobserved.

To illustrate this, consider a scenario where for two communities, p and q, all

relations from Cp to Cq are unobserved. The value of B is inferred on its

posterior: p(B|X, λ1, λ2) ∼ p(X|B)p(B|λ1, λ2). When all entity relations are

unknown, the posterior of B is reduced to its priors: p(B|λ1, λ2). Thus, when

relations from Cp to Cq are masked, bpq is reduced to its priors, p(bpq|λ1, λ2).

3.2.2 Static Model

Our model overcomes this limitation by introducing matrices A ∈ R
K×M and

W ∈ R
M×K and factorizing the community relations matrix as B = AW. A

and W may be thought of as feature matrices for communities such that ap

and wT
q are the M dimensional feature vectors for Cp when it is the sender

and Cq when it is receiver. (Here ap is the pth row vector of A and wT
q is the

qth column vector of W.) The value of M ≥ 1 is a hyperparameter that adds
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flexibility to our model by controlling the size of the community features. The

relation from community p to community q is therefore modeled as the dot

product of community p’s sender feature and community q’s receiver feature,

bpq = apw
T
q . It should be noted that our approach introduces a dependency

between communities and models the correlations between them. This is a

departure from MMSB in which community relations are independent. To

increase the interpretability of AW, we normalize it to the range (0, 1) by

passing it through the logistic sigmoid function, σ(AW) = 1/(1+exp(−AW)).

We replace the MMSB sampling scheme for zi→j and zi←j with a MLN of

L fully-connected layers. This architecture takes advantage of the hierarchical

nature of MLNs to extract latent entity features and model the correlations

between them. We denote these features as θi→j,l and θi←j,l for l ∈ {1, 2, ..., L},
representing the latent feature at layer l for ei when it is the sender and re-

ceiver, respectively. We follow feature extraction with a softmax layer applied

to the last latent features in the MLN, θi→j,L and θi←j,L. In contrast to MMSB,

this allows for partial membership of an entity to a community. It is important

to note that community membership indicators are independent of the other

actor in the relation but dependent on their role in it (i.e. sender or receiver).

The features at each layer l as well as the values A and W are learned by

stochastic gradient descent, minimizing the following objective function:

L(X,X′) = −
∑
i,j

[I[xij = 1]ln(x′
ij) + I[xij = 0]ln(1− x′

ij)]

Where X′ is the matrix of predicted entity relations and I is the indicator

function. The full generative model is described as follows:

• ∀i, j ∈ {1, 2, ..., N} × {1, 2, ..., N}

– ∀l ∈ {1, 2, ..., L}

∗ update θi→j,l = σ(RS,lθi→j,l−1 + dS,l)

∗ update θi←j,l = σ(RR,lθi←j,l−1 + dR,l)

– update sender’s membership indicator

zi→j = Softmax(RS,zθi→j,L + dS,z)

32



– update receiver’s membership indicator

zi←j = Softmax(RR,zθi←j,L + dR,z)

– linkage xij ∼ Bernoulli(σ(zi→j[AW]zi←j))

Here, RS,l, RR,l, dS,l, dR,l are the MLN weights and biases at layer l for the

sender and receiver, respectively. The softmax weights and biases are denoted

similarly, using z in their subscripts: RS,z, RR,z, dS,z, dR,z.

3.2.3 Dynamic Model

We begin by considering the drawbacks of applying our static model indepen-

dently for each time-step. First, the indices of communities in the community

relations matrix may change, resulting in uninterpretable community relations

and membership indicators across time-steps. Furthermore, there is no mech-

anism for transmitting information from previous time-steps. Having such a

mechanism would counteract the problem of missing data in sparse datasets.

Finally, such an approach does not allow for network forecasting as there is no

capacity for predicting θ values in successive time-steps.

Before we proceed with the description of the dynamic model, we extend

our notation from static networks to the dynamic setting. We represent a

dynamic network with T time-steps, X, as a time-series of T static N × N

binary matrices Xt for each time-step t ∈ {1, 2, ..., T}. We extend our notation

by adding a temporal dimension to our membership indicators and latent

features as zti→j, z
t
i←j, θ

t
i→j,l, θ

t
i←j,l.

In our proposed dynamic model, the community relations matrix is shared

across time-steps, thus assuming that communities and their relations are in-

variant across time. This assumption is not applied to community member-

ships, which we model by adding a temporal dependence on latent entity

features. Markov probability models, used in previous dynamic models [21],

[83], apply the Markov assumption, p(θt+1|θt, ..., θ1) = p(θt+1|θt), to model the

relation between θt+1 and θt. We relax this assumption to account for long

term temporal dependencies between latent features. To model these depen-

dencies, we employ an LSTM component. LSTMs are a type of RNN that
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learn dependencies by controlling the inflow and outflow of information into

their memories. This allows them to model long and sporadic temporal de-

pendencies without encountering the problem of vanishing gradients suffered

by other types of RNNs. The key component of the LSTM, the memory cell

ct, stores information from previous time-steps. Its status is controlled by

three gates: input it, forget f t, output ot. Our input for predicting θt+1
i is the

concatenation of membership indicators at the previous time-step, denoted as

[zti→j, z
t
i←j]. This approach is similar to the topic variant of Latent LSTM

Allocation [89]. Our LSTM can be formalized as follows:

xt = [zti→j, z
t
i←j]

it = σ(Sxix
t + Syiy

t−1 + Sci ◦ ct−1 + di)

f t = σ(Sxfx
t + Syfy

t−1 + Scf ◦ ct−1 + df )

ct = f t ◦ ct−1 + it ◦ tanh(Sxcx
t + Sycy

t−1 + dc)

ot = σ(Sxox
t + Syoy

t−1 + Scoc
t + do)

yt = ot ◦ tanh(ct)

yt = [θt+1
i→j,1, θ

t+1
i←j,1]

Where S and d are the weights and biases of the LSTM, subscripted by the

gates they are associated with. x and y are the LSTM inputs and outputs

and ◦ is the Hadamard product.

We distribute a fixed static model across time such thatA,W,R, and d are

the same at each time-step. The LSTM links the static models through the first

latent features at each time-step, θti→j,1 and θti←j,1. This relationship is outlined

graphically in Figure 3.2, which describes the model architecture at one time-

step. We train our model alternately such that at each training iteration

we first backpropagate on the full dynamic model and then backpropagate

the static model. In our experiments, this increases stability and decreases

convergence time. Algorithm 3 outlines the training procedure for DDBN.
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Algorithm 3 Training Procedure for DDBN

Input: Time series of adjacency matrices X′; number of communities K;
dimensionality of community features M
Output: Predicted entity relations as time series of adjacency matrices
X

1: Initialize MLN and LSTM weights R and S
2: repeat
3: for i, j ∈ {1, 2, ..., N} × {1, 2, ..., N}, i �= j do
4: Obtain θ1i→j,L and θ1i←j,L by MLN forward pass
5: Update z1i→j = Softmax(RS,zθ

1
i→j,L + dS,z)

6: Update z1i←j = Softmax(RR,zθ
1
i←j,L + dR,z)

7: Update x1
ij = σ(z1i→j[AW]z1i←j)

8: end for
9: for t ∈ {2, 3, ..., T} do
10: for i, j ∈ {1, 2, ..., N} × {1, 2, ..., N}, i �= j do
11: Obtain θti→j,1 and θti←j,1 by LSTM forward pass
12: Obtain θti→j,L and θti←j,L by MLN forward pass
13: Update zti→j = Softmax(RS,zθ

t
i→j,L + dS,z)

14: Update zti←j = Softmax(RR,zθ
t
i←j,L + dR,z)

15: Update xt
ij = σ(zti→j[AW]zti←j)

16: end for
17: end for
18: for mini-batch do
19: Compute the gradients for objective function L(X,X′) =

−
∑

i,j,t[I[x
t
ij = 1]ln(x′tij) + I[xt

ij = 0]ln(1 − x′tij)] w.r.t A, W, R,
d, S and update using Adam optimizer [40], repeat for A, W, R, d

20: end for
21: until convergence

3.3 Evaluation

We evaluate our model performance on the link prediction task wherein a

subset of relations between pairs of entities is masked and the goal is to predict

the value of these masked relations. We divide our model evaluation into three

subsections, each building upon the previous in terms of model complexity.

First we compare the performance of B to our factorized community relations

matrix AW and provide the intuition behind this approach. This is followed

by evaluating our static and dynamic models separately and comparing to

results found in the literature. The metric used in evaluation is the area under

the receiver operating characteristic curve (AUC) calculated by performing a
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threshold sweep on the true positive rate plotted against the false positive rate.

In all of our experiments, we use the Adam [40] optimizer when performing

stochastic gradient descent.

3.3.1 Dataset Overview

We use seven real-world datasets in our evaluation procedures: MIT Reality

[14]; NIPS Collaboration [70]; Soccer transfers; Lazega [47]; Coleman [10];

Temporal EU Email [48].

• The MIT Reality dataset includes information about the amount of time

spent in close proximity between 94 students and staff at a major uni-

versity. We followed [17] in binarizing the data by assigning a 1 value

when the time is greater than 10 minutes and 0 otherwise, producing

a 94 × 94 asymmetric matrix. The entities are grouped into four com-

munities: first year lab students, lab students with more than one year

experience, lab staff, and Sloan Business School students.

• The NIPS dataset contains the co-authorships of papers published at the

NIPS conference between 1987 and 2012. We follow the process in [17]

to obtain a 92× 92 symmetric matrix.

• The Soccer dataset consists of the player transfers made between 327

European and North American soccer clubs between seasons 2007/2008

and 2016/2017. The data was obtained from Soccer News1. Clubs are

grouped into three communities based on the league they play in: Big

Four (English Premier League, La Liga, Bundesliga, Serie A); Rest of

Europe; North America. The matrix is binarized by assigning a 1 value if

at least transfer exists between clubs, creating a 327× 327 asymmetrical

matrix.

• Lazega’s law dataset describes the social network of 71 attorneys in an

American law firm between the years 1988 and 1991. The different types

of relations measured are binarized to produce a 71× 71 matrix.

1www.soccernews.com
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• Coleman’s dataset describes the friendship network of 73 American high-

school boys taken half a year apart, creating a 2 × 73 × 73 asymmetric

matrix.

• The Temporal EU Email dataset shows the relations of 1005 members

of a European research institution as per the emails sent between them.

The data was collected over 803 days and split into seven time-steps,

giving a 7× 1005× 1005 matrix.

3.3.2 Hyperparameter Selection

Applying the MMSB to a neural network framework adds an element of flexibil-

ity not offered by the original model. This flexibility is controlled by choosing

the model hyperparameters: θ dimension, M , and number of MLN hidden

layers. In our work, we set the dimension of θl to K for l ∈ {1, 2, ..., L}. We

explore the effects of community feature size by running models with varying

M values on the NIPS, MIT, and Lazega datasets. Each dataset is randomly

split into a training set and testing set by masking 20% of the entity relations.

Overfitting is prevented by using a held-out validation set to select the best

model after 10000 training iterations. The average test AUC scores of five

runs on each dataset are provided in Figure 3.3. We notice that low values of

M give low test AUC values, suggesting the community features are not large

enough to capture the information required to model complex community re-

lations. Increasing M leads to better results up to M = 4, after which point

the test AUC plateaus in each dataset.

Similarly, the test AUC results for various hidden layer sizes, shown in

Table 3.3.2, suggest that simpler models are preferable. We notice models with

one hidden layer outperform deeper models on all datasets, with an inverse

correlation between number of hidden layers and test AUC. All models reach a

training AUC ≥ 0.99 after 10000 iterations and the best model is chosen via a

held-out validation set. This suggests that deeper networks are overfitting to

the dataset and are less capable of extracting the generalized features required

to successfully predict masked entity relations.
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For an intuitive grasp of our approach, consider that in matrices A and

W each community feature vector is represented in M dimensional Euclidean

space, RM . We use the inner product between community features, a and wT ,

passed through a logistic sigmoid operation to represent community relations.

The angle between two community features is the cosine similarity between

their two vectors. The vector length of a community feature can be thought

of as the community’s influence since longer vectors push community relations

closer to 0 or 1. Therefore even if we mask a community relation, we can use the

cosine similarity and vector length to infer the masked community’s features

relying solely on the unmasked community features. To demonstrate this, we

design a synthetic dataset by randomly placing two dimensional community

sender and receiver features equidistant on the unit circle. By using such a

dataset, we can ensure that the true community features in A and W can be

represented in a two dimensional feature space.

We compare the performance of the unfactorized community relations ma-

trix B to our factorized community relations matrix AW by truncating the

static model such that community memberships are fixed, performing infer-

ence on the community relations matrices only. The truncated model inputs,

zi→j and zi←j, are obtained from the ground truth community memberships

of the Synthetic, MIT, and Soccer datasets. For each dataset, we mask entity

relations from community p to community q and train two truncated models,

one for B and one for AW. We repeat this process K2 times, masking and

training all community relations separately. Both models report a mean train-

ing AUC of 0.7316, 0.6994, and 0.6993 for the Synthetic, MIT, and Soccer

datasets, respectively.

We obtain the true community relations from community p to community

q by calculating the proportion of entity relations present from Cp to Cq:

Btrue
pq =

∑
i∈Cp

∑
j∈Cq

xij

|Cp||Cq|

Where |Cp| and |Cq| is the number of entities that belong to communities p

and q, respectively.

We compare the inferred value of the missing community relation, apw
T
q ,
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Dataset 1 Hidden 2 Hidden 3 Hidden

NIPS .9660 .9405 .9322
MIT .9040 .8846 .8530
Lazega .8550 .8361 .7840

Table 3.1: Mean test AUC for DDBN with various number of hidden layers
for NIPS, MIT, and Lazega datasets.

to two prior assumptions one could make when inferring Bpq: average and

symmetry. The average prior assumes the value of Bpq to be the average

of all known non-diagonal outgoing relations. The symmetric prior assumes

that relations between communities are symmetric, Bpq = Bqp. Note that the

symmetric prior can only be applied to off-diagonal community relations.

The mean and standard deviation of absolute errors between inferred com-

munity relations and their true values are reported in Table 3.3.3. We split our

results into on-diagonal and off-diagonal representing intra and inter commu-

nity relations, respectively. On the Synthetic dataset, our model outperforms

both priors, thereby proving the intuition behind our factorized approach. The

symmetric prior outperforms our factorized model on off-diagonal relations in

MIT and Soccer which can be explained by a high degree of symmetry in these

datasets. Our model outperforms the average prior in all cases.

3.3.3 Static Model Evaluation

We evaluate the performance of our static model on the NIPS, MIT, and

Lazega datasets. Each dataset is randomly divided into training and testing

sets comprising 80% and 20% of the data, respectively. The training set is fur-

ther split into a validation subset, the size of which is dataset dependant with

smaller datasets receiving a larger fraction of training relations for validation.

We first perform a hyperparameter exploration on our static model to find the

best performing K and mini-batch size. We train our static model on each

dataset for 10000 iterations and use the AUC of a held-out validation set to

select the best model and prevent overfitting. Our model is trained five times

to account for different results due to random weight initializations. The test
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Figure 3.3: Comparison of mean test AUC for various M values on the NIPS,
MIT, and Lazega datasets

Dataset Avg. Prior Sym. Prior AW

Synth. Off-Diagonal .2114 .2594 .0206
±.1162 ±.1529 ±.0172

MIT Off-Diagonal .0270 .0112 .0227
±.0146 ±.0082 ±.0211

Soccer Off-Diagonal .0105 .0070 .0090
±.0094 ±.0039 ±.0095

Synth. On-Diagonal .2106 − .0095
±.1286 − ±.0059

MIT On-Diagonal .0567 − .0486
±.0672 − ±.0639

Soccer On-Diagonal .0861 − .0483
±.0498 − ±.0662

Table 3.2: The absolute error (mean ± standard deviation) of AW and two
priors on B.

40



Model NIPS MIT Lazega

IRM .8901 .8261 .7056
±.0162 ±.0047 ±.0167

LFRM .9348 .8529 .8170
±.1667 ±.0179 ±.0197

MMSB .9524 .8561 .7989
±.0215 ±.0176 ±.0102

iMMM .9574 .8617 .8074
±.0155 ±.0124 ±.0141

NMDR − .8569 .8285
− ±.0138 ±.0114

cMMSB .9581 .8794 .8273
±.0153 ±.0159 ±.0148

DDBN .9660 .9040 .8550
±.0064 ±.0055 ±.0054

Table 3.3: Static model performance (test AUC mean ± standard deviation)
on the link prediction task for the NIPS, MIT, and Lazega datasets.

Figure 3.4: Adjacency matrix heatmaps of the ground truth relations (top)
and DDBN learned relations (bottom) for three static datasets. Darker colours
indicate a higher probability of a relation between entities.
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AUC means and standard deviations are reported in Table 3.3.3.

We compare our static DDBN with benchmarks obtained in [17] on the

following models: IRM, LFRM, MMSB, infinite mixed membership model

(iMMM) [46], nonparametric metadata dependent relational model (NMDR)

[39], and the better performing variant of cMMSB for each dataset. Our model

reliably outperforms these models on the tested datasets. We notice that the

difference in performance is greater on the asymmetric and denser datasets.

Furthermore, we notice lower standard deviations than the other models, sug-

gesting DDBN is less sensitive to weight initializations and stochasticity in the

training process.

Figure 3.4 shows the heatmaps of the ground truth and DDBN predictions

for the three datasets. The heatmaps illustrate the network adjacency matrix

with darker colours indicating a higher probability of a relationship between

entities.

3.3.4 Dynamic Model Evaluation

We follow a similar evaluation procedure for our dynamic model as we did for

our static model, this time using the dynamic Coleman and Email datasets.

Before applying the dynamic model, pretraining is performed on the static

model. In this step, the static model is trained on all training data, regardless

of time-step, until a plateau in validation AUC, after which the dynamic com-

ponent is added to the pretrained model and the full DDBN is trained. This

is done to decrease the amount of training steps performed on the dynamic

model and therefore decrease training time. As before, each dataset is trained

five times. The mean Test AUC results are provided in Table 3.3.4.

We compare DDBN with structure and embedding based approaches us-

ing baselines obtained from independent runs of implementations provided

in [90] of the following models: Common Neighbour, Jaccard Coefficient,

Adamic/Adar [1], MNE, DeepWalk, and principled multilayer network em-

bedding (PMNE) [55]. In addition, we compare to tensor factorization method

BPTF, using the implementation provided in [71]. Overall, our model out-

performs structure and embedding based approaches and is competitive with
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Model Coleman Email

Common Neighbour .8794 .9150
±..0210 ±.0029

Jaccard Coefficient .8821 .9057
±.0196 ±.0027

Adamic/Adar .8823 .9186
±.0204 ±.0029

MNE .8990 .8816
±.0203 ±.0045

DeepWalk .9107 .7605
±.0221 ±.0051

PMNE .9085 .7598
±.0119 ±.0062

BPTF .8895 .9592
.0246 .0149

DDBN .8920 .9481
±.0067 ±.0026

Table 3.4: Dynamic model performance (test AUC mean ± standard devia-
tion) on the link prediction task for the Coleman and Email datasets.

BPTF. We notice that, like its static counterpart, DDBN is more consistent

in its results, as can be seen in the lower test AUC standard deviations.

3.4 Conclusion

In this paper we described the problem of unobserved community relations

in latent community models and proposed a solution by factorizing the com-

munity relations matrix. To this end, we introduced the deep dynamic mixed

membership stochastic blockmodel based network (DDBN), an extension of the

MMSB applied to the deep neural network setting. The main contributions of

this model are summarized as follows:

• The community relations matrix, B, is factorized into two feature ma-

trices A and W similar to the approach used in Collaborative Filtering

models.

• We apply the MMSB to a deep neural network, enabling the model to

capture more complex latent interactions between entities. Inference via
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Gibbs sampling is replaced with stochastic gradient descent.

• The MMSB is extended to the dynamic setting through an LSTM which

models the changes in latent features across time.

Empirical results show that this approach outperforms the unfactorized com-

munity relations matrix of the MMSB. Our model achieves comparable results

on the link prediction task to state-of-the-art models on both static and dy-

namic real world datasets.
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Chapter 4

Fragmentation Coagulation
Based Mixed Membership
Stochastic Blockmodel

The Mixed-Membership Stochastic Blockmodel (MMSB) is proposed as one

of the state-of-the-art Bayesian relational methods suitable for learning the

complex hidden structure underlying the network data. However, the current

formulation of MMSB suffers from the following two issues: (1), the prior infor-

mation (e.g. entities’ community structural information) can not be well em-

bedded in the modelling; (2), community evolution can not be well described in

the literature. Therefore, we propose a non-parametric fragmentation coagula-

tion based Mixed Membership Stochastic Blockmodel (fcMMSB). Our model

performs entity-based clustering to capture the community information for

entities and linkage-based clustering to derive the group information for links

simultaneously. Besides, the proposed model infers the network structure and

models community evolution, manifested by appearances and disappearances

of communities, using the discrete fragmentation coagulation process (DFCP).

By integrating the community structure with the group compatibility matrix

we derive a generalized version of MMSB. An efficient Gibbs sampling scheme

with Polya Gamma (PG) approach is implemented for posterior inference. We

validate our model on synthetic and real world data.
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Figure 4.1: An example to illustrate the intuition of the proposed model. Each
community (C1, C2 and C3) consists of two groups G1 and G2. Entities within
each group are represented by black dots. Four types of interactions are con-
sidered: within/across groups and within/across communities. In MMSB, a
6 × 6 compatibility matrix can be used (left part). In our model, it is repre-
sented by 2 compatibility matrices: one representing the group relations within
communities and another representing the group relations across communities.
(right part)
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4.1 Introduction

Analysis of complex networks is an important research topic leading to a

variety of useful applications. To this end, many interesting and promis-

ing approaches have been proposed to address various challenges in investi-

gating these complex networks. The Mixed-Membership Stochastic Block-

model (MMSB) [3] is one such state-of-the-art model in using Bayesian meth-

ods to discover meaningful underlying hidden structure. In general, MMSB

assumes each entity in the network has a mixed-membership distribution over

the groups. To generate the link between two entities, each entity would sample

a belonging group from its mixed-membership distribution. The compatibility

value between these two sampled groups would then determine the probability

of generating this link.

MMSB has garnered considerable interest in recent years, however, it is

not good at embedding certain prior information such as, for instance, the

entities’ community structure. When the entities in the network are assumed

to have a mixed-membership distribution over the groups, the entity itself

would belong to only one community. That is to say, we should consider two

types of clustering in MMSB: entity-based clustering (i.e. communities for

entities) and linkage-based clustering (i.e. groups for links.)

For example, each footballer can play multiple positions (groups) in one

match while only belonging to one team (community). This situation is quite

common in the real world. Besides, consider the more general example in

Figure 4.1 where there are three communities {Ci|i ∈ 1, 2, 3} in the network,

each composed of two groups (G1
i , G

2
i ). If we use a 6× 6 compatibility matrix,

this will hinder interpretability because entities that should belong to groups in

the same community may belong to groups in different communities. Under

this setting, the MMSB can’t not infer any community information about

entities. Moreover, the size of the compatibility matrix is bigger than the true

one (or the proposed one in Figure 4.1.) which may lead to an overfitting

problem.

Furthermore, another issue will also be prominent under the dynamic set-
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ting. Recall that with respect to temporal dynamics, most of MMSB-based

temporal models focus on correlation among groups in the adjacent time slice.

However, the size of their compatibility matrices is same across time which

leads to another shortcoming. Consider, for instance, a simple case where

there is a complex network with just 2 time slices. At time slice 1, there is

one community that consists of 4 groups. It is reasonable to use MMSB with

a 4 × 4 compatibility matrix to represent it. However, at time slice 2, the

community splits into two communities. Each community still consists of 4

groups but the entities originally in the same group may have different rela-

tions based on the community they belong to. Thus a compatibility matrix of

size 8×8 is more suitable at time slice 2. This causes a problem when selecting

the compatibility matrix size in the MMSB. Choosing the 4 × 4 matrix will

lead to an underfitting problem while choosing the 8 × 8 one will lead to an

overfitting problem.

In this work, we focus on the following problems:

• In a complex network, we should consider two types of clustering: entity-

based clustering (communities for entities); and linkage-based clustering

(groups for links). MMSB-based models only adapt the second one in

both static and dynamic setting and this will hinder community inter-

pretability.

• Community evolution exists in complex networks across time. MMSB-

based models are not able to capture these changes by merely adjusting

the size of the compatibility matrix as they use a fixed size compatibility

matrix across time.

To handle these two problems, we propose the fragmentation coagulation

based Mixed Membership Stochastic Blockmodel (fcMMSB).

To enrich the structure of MMSB, we introduce a community level to

MMSB in which the Chinese restaurant process (CRP) is used to partition

entities. Due to the nonparametric property of CPR, the number of communi-

ties doesn’t need to be specified and this makes the model more flexible. For
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entities in the same community, MMSB is carried out independently to enable

each entity to hold multiple groups.

To distinguish the group relations within/across communities, we make use

of two compatibility matrices, one for modeling relations between groups in

the same community and one for modeling relations between groups in differ-

ent communities. Specifically, we introduce an across community adjustment

parameter which acts as a modifier on the intra group relations across commu-

nities so that intra group relations are different if the groups belong to different

communities.

Furthermore, to handle the issue in the dynamic setting, we incorporate

the discrete fragmentation coagulation process (DFCP) [15], [56] to model the

community evolution across time. This allows us to release the limitation of

the fixed size compatibility matrix in MMSB across time. The reason is that

DFCP can automatically learn the number of communities at each time slice.

Also, the changes in the number of communities would influence the entities’

group membership. Therefore, this will influence the size of compatibility

matrix implicitly. Besides, DFCP helps to model situations such as community

splitting and merging while also generalizing MMSB such that when there is

only one community in the network, it just turns back to the vanilla MMSB.

With this approach, communities can merge into super communities or split

into small communities.

The remainder of the chapter is organized as follows. In Section 2, the

preliminaries are introduced. We formulate our model, and describe the gen-

erative procedures in detail in Section 3. In Section 4, we provide the inference

procedure via a Polya-Gamma (PG) approach whereas in Section 5, we evalu-

ate our method on both synthetic and real datasets. Finally, we conclude the

chapter in Section 6.

4.2 Model Formulation

In fcMMSB, our task is to do link prediction for the unobserved entity interac-

tions, based on the observed ones. We focus on binary-valued interaction with
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Figure 4.2: Visualization of fragmentation and coagulation processes in
fcMMSB. For example, the community of {1, 2, 3, 4, 5} at time t− 1′ will
first be split into 3 small sub-communities {1}, {2, 3}, {4, 5} and then be re-
clustered into communities at time t′.

a total number of N entities at T time slices. Formally, these interactions can

be defined as a binary 3-d tensor X ∈ {0, 1}TN×N , where xt
ij = 1 represents a

directed interaction between entity ui and entity uj at time slice t, and xt
ij = 0

represents no interaction. Other format of the observed interactions is possible

by considering different forms of the likelihood functions.

4.2.1 Modelling Community Evolution Using DFCP

In our model, each entity (individual) is associated with a community, so com-

munity evolution influences relations between entities. Consider, for example,

a scenario where corporations are communities, the branches within these cor-

porations (IT, accounting, etc.) are groups, and the network models relations

between employees. In the case of a corporate merger, the interactions between

employees in the same branches of the merging corporations will increase. In

general, we can categorize community evolution into four types: appearance,

disappearance, split, and merge. We use fragmentation and coagulation to

depict all four types of changes such that coagulation and fragmentation cor-
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respond to merging and splitting, respectively. Community appearance and

disappearance can be viewed as extensions of community splits and merges.

Since communities evolve, it is hard to know the number of communities a

priori, thus our model infers the number of communities using non-parametric

Bayes.

We adopt the DFCP framework to implement these two operations. DFCP

is a non-parametric dynamic clustering process where clusters are first split

(fragmentation) and then merged (coagulation). DFCP performs the frag-

mentation and coagulation processes alternately. To describe the procedures

of fragmentation and coagulation, we define a set of disjoint non-empty sub-

sets, νt = {χt
1, ..., χ

t
r} where χt

h is a latent community h at t and r is the

number of communities at time t. Furthermore, each subset χt
h consists of

disjoint entities ui in the network. Figure 4.2 provides the visualization of

fragmentation and coagulation processes. In our model, we process fragmen-

tation and coagulation at times t − 1′ and t, respectively. At time t − 1′,

the fragmentation process partitions each community χt−1′
h from νt−1′ while at

time t the obtained partitions are coagulated into a new set of communities

νt′ = {χt′
1 , ..., χ

t′
r }.

Now, we provide the generative process for communities using DFCP. To

sample community indicator zti for each entity ui where i ∈ {1, ..., N}, we start
an initialization with CRP at t = 0 as:

Init(zi
t) : p(zi

0 = h|z0−i)

=

{
|χ0

h|/(N + ζ − 1) if χ0
h ∈ ν0

−i

ζ/(N + ζ − 1) if χ0
h = ∅

where z0−i is the community indicator for all entities excluding entity ui, ζ is

concentration parameter, ν0
−i is the set ν0 excluding ui, |χ0

h| is the number of

entities in χ0
h and ∅ is a new community at t = 0.

In the fragmentation part, each community splits into small communities

and executes a CRP partition independently. The fragmentation process at

t �= 0 is summarized as:
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Frag(zi
t) : p(zti = h|νt−1′

−i , νt
−i, z

t−1′
i = q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
|χt

h|/(|χt−1′
q |+ ζ − 1) if χt−1′

q ∈ νt−1′
−i , χt

h ∈ νt
−i

ζ/(|χt−1′
q |+ ζ − 1) if χt−1′

q ∈ νt−1′
−i , χt

h = ∅
1 if χt−1′

q = ∅, χt
h = ∅

0 otherwise

We note that all the elements in χt
h also belong to χt−1′

q .

In the coagulation part, we execute a CRP partition on the set of commu-

nities. The coagulation process at t′ is summarized as:

Coal(zi
t′) : p(zi

t′ = e|νt′
−i, ν

t, zi
t = h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if χt′

e ∈ νt′
−i, χ

t
h ∈ νt

−i

|Ω|/(|νt|+ η − 1) if χt′
e ∈ νt′

−i, χ
t
h = ∅

η/(|νt|+ η − 1) if χt′
e = ∅, χt

h = ∅
0 otherwise

where η is the concentration parameter for the coagulation process and Ω

represents the communities at t which belong to the community set with index

e at time t′. = {χt
v|χt

v ⊆ χt′
e }.

4.2.2 Generating Relations

In reality, it is common that an entity plays roles in multiple groups. For

example, a doctor may be the supervisor of a nurse and the subordinate of

the hospital director. Therefore, we induce MMSB to each entity at the group

level by imposing a mixed membership vector θti on each entity ui at a time

slice t. (θti is a membership of entity ui over K groups where
∑

k θ
t,k
i = 1).

For each pair of entities ui and uj, we sample group indicators gti→j, g
t
i←j from

Multinomial(θti) and Multinomial(θtj). The arrow in gti→j and gti←j indicates

the sender (from ui to uj) and the receiver (from uj to ui), respectively.

Now, we construct a compatibility matrix to predict entity relations xt
ij

based on the community and group indicators. Imagine that there are several

communities consisting of groups inside a complex network. It is quite com-

mon that the inner structure (group relations) of each community is similar.

For example, each company has sales and marketing departments. Besides,
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Figure 4.3: Graphical model of fcMMSB. Hyperparameters are not shown.
·t and ·t′ denote the time index of fragmentation and coagulation process re-
spectively. Notation: zt = {zti |i ∈ {1, ..., N}}.

groups within the community are more likely to have tighter interactions than

ones across communities. Moreover, across community, groups with similar

functionality are more probable to have interactions. Therefore two assump-

tions are made to construct these relations. First, group pair relations within

communities are consistent. We use a compatibility matrix, B, to model all

within community group relations. Second, interactions between entities from

the same group but in different communities may be different from ones in

the same group and community. To account for this we add a K-array across

community adjustment parameter Q to on-diagonal values of the B. This pro-

vides a flexible way to model the differences of within-group entity relations

based on whether the entities are in the same community. Furthermore, we

set the value of relations between entities that do not share community nor

group to a small value, ε. For each pair of entities ui and uj, we sample xt
ij
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from Bernoulli( 1
1+exp (−ytij)

) where

ytij =

⎧⎪⎨
⎪⎩
Blk if zti = ztj, g

t
i→j = l, gti←j = k

Bkk +Qk if zti �= ztj, g
t
i→j = gti←j = k

ε otherwise

Group pairs are always correlated in the real world. For example, employee-

employer relations can be unidirectional while employee-employee may be bidi-

rectional. We are interested in the correlation of group pairs so the Inverse-

Wishart prior is imposed on the variance σkl of the normal distribution of

Blk and Bkl. Finally, we share the group-level compatibility matrix B and

adjustment parameter K-ary Q across time due to the data sparsity.

In summary, the fcMMSB generative model is as follows:

• To generate compatibility matrix B

– sample σkl ∼ Invwishart(υ, �)

– sample (Blk, Bkl) ∼ N (μkl, σkl)

– sample Bkk ∼ N (μB, σB)

• For each across community adjustment parameter Qk

– sample Qk ∼ N (μQ, σQ)

• For each mixed membership of entity ui

– sample θti ∼ Dirichlet(α)

• For each community indicator zti

– sample z0i ∼ Init(zi
0)

– sample zti ∼ Frag(zi
t)

– sample zt
′
i ∼ Coal(zi

t′)

• To generate each directed relations xt
ij

– sample sender group gti→j ∼ Multinomial(θti)
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– sample receiver group gti←j ∼ Multinomial(θtj)

– sample xt
ij ∼ Bernoulli( 1

1+e
−yt

ij
)

We give the graphical model of fcMMSB in Figure 4.3.

4.3 Inference

Our model is intractable for exact inference, instead we derive a Gibbs sam-

pling scheme for posterior inference. The target is to predict the unobserved

relations between entities by inferring parameters z, θ,B,Q,g and σ. The

parameter in bold represents its total set.

The joint distribution p(x, z, θ,B,Q,g|ε, α, ζ, η) can be expressed as:

∏
i,j,t

p(xt
ij|zti , ztj, Qgti→j

,Bgti→jg
t
i←j

, ε)
∏
i

Init(z0i )

∏
i,t

Frag(zti)Coal(z
t′
i )

∏
k

p(Qk|μQ, σQ)p(Bkk|μB, σB)

∏
i,j,t

p(gti→j|θti)
∏

l,k,l 	=k

p(Blk,Bkl|μkl, σkl)
∏
i,t

p(θti |α)

4.3.1 Sampling Blk, Bkl(l �= k) Using Polya-Gamma

For simplicity, the (Blk, Bkl) pair is denoted as a vector B̂ in this section. The

Polya-Gamma (PG) data augmentation is implemented for B̂. Following [65],
(eφ)

m

(1+eφ)n
can be expressed as 2−neκφE{e−wφ2/2} with a PG variable ω ∼ PG(n, 0),

where κ = m − n/2. Furthermore, with conditional distribution p(w|φ), we
have ω|φ ∼ PG(n, φ). Assuming that the prior of φ follows N (μ, σ) with

likelihood (eφ)
m

(1+eφ)n
, the posterior of φ is a Gaussian distribution. Therefore, the

true posterior of φ can be derived by updating φ and ω alternately.

In our model, B̂ is updated via PG approach by alternately sampling

B̂, ωlk, ωkl:

B̂|− ∼ N (μ∗, σ∗)

ωlk ∼ PG(nlk, Blk), ωkl ∼ PG(nkl, Bkl)
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where

μ∗ = σ∗(κ+ σklμkl)

σ∗ = (Ω + σkl
−1)

−1

κ = (κlk, κkl). Ω is a diagonal matrix of ωlk and ωkl. κlk = n1
lk − nlk/2. Here

nlk =
∑

t,i,j I[g
t
i→j = l] · I[gti←j = k] · I[zti = ztj] and n1

lk =
∑

t,i,j I[g
t
i→j =

l] · I[gti←j = k] · I[zti = ztj] · I[xt
ij = 1] where I is an indicator function. As the

sampling scheme of Bll and Ql is similar with B̂, we omit the procedure here.

4.3.2 Sampling gti→j

Collapsed Gibbs sampling is used on gti→j by marginalizing over θti . The pos-

terior of gti→j can be expressed as:

p(gti→j = k|−) ∝ [ey
t
ij ]

I[xt
ij=1]

1 + ey
t
ij

ni¬j
k (t) + αk∑

k n
i¬j
k (t) + αk

where ni¬j
k (t) =

∑
l,l 	=j I[g

t
i→l = k].

4.3.3 Sampling z

The prior of latent communities sequence zi is:

pprior(zi) = Init(zi
0) · Coal(zi0

′
) · . . . · Frag(ziT−1)

so the posterior of zi can be described as:

p(zi|−) ∝ p(xi·,x·i|z, θ,B,Q,g, ε) · pprior(zi)

=
∏
j,t

[ey
t
ij ]

I[xt
ij=1]

1 + ey
t
ij

· [e
ytji ]

I[xt
ji=1]

1 + ey
t
ji

· pprior(zi)

where ytij follows the previous definition in section 3. For computational sim-

plicity, we use forward-backward algorithm on p(zTi |−). Here xi· = {xt
ij|j ∈

{1, ..., N}, t ∈ {0, ..., T − 1}},x·i is defined similarly.

4.3.4 Sampling σkl

As the prior and likelihood of σkl are a conjugate pair, we give the posterior

of σkl directly.

σkl|− ∼ Invwishart(1 + υ, �+ (B̂− μkl)(B̂− μkl)
ᵀ
)
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Figure 4.4: AUC comparison on synthetic data.

4.3.5 Prediction

In the previous sections, we derived the samples at each iteration. We would

like to use these samples to estimate the unobserved relations. Our prediction

target at iteration s, x̂
t[s]
ij , is expressed as θ̂tᵀi ·B̄· θ̂tj, where the superscript of θ̂

tᵀ
i

is the transpose of the vector. Here each dimension of θtj is θ̂t,ki =
ni
k(t)+αk∑

k ni
k(t)+αk

and ni
k(t) =

∑
j I[g

t
i→j = k]. Each entry B̄lk of B̄ is 1

1+exp (−Ȳlk)
and Ȳlk =

I[zti = ztj]Blk + I[l = k]I[zti �= ztj](Blk +Qk) + I[l �= k]I[zti �= ztj]ε.

4.4 Evaluation

4.4.1 Synthetic Data

To demonstrate the problem of the MMSB mentioned in the introduction, we

generate a synthetic dataset with N = 100 and T = 2, the generative process

for which is described as follows:

1. Instantiate a network structure of three communities containing two
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groups each. For each time slice, generate the mixed membership for 100

entities by sampling the Dirichlet distribution with parameters [0.8, 0.2]

or [0.2, 0.8] depending on the group. Set B to be a 2× 2 compatibility

matrix with high on-diagonal values and low off-diagonal values.

2. For time slice 1, if both entities belong to the same community perform

step 3, otherwise set the entity relation to 0. For time slice 2, if both en-

tities belong to the same community and group perform step 3, otherwise

set the entity relation to 0.

3. Generate entity relations using the Bernoulli distribution with parameter

(θᵀiBθj) for the relation between ui and uj.

For evaluation, we randomly split the data into 2 subsets: 80% for training

and 20% for testing. We compare our model with two different MMSB models

varying in the number of groups in the compatibility matrix. The train and

test AUC results are provided in Figure 4.4. We notice that when the number

of groups in MMSB is 2, it is underfitting relative to fcMMSB with 2 groups.

When the number of groups in MMSB is 6, there are two possible outcomes:

overfitting and not overfitting. The overfitting of the MMSB is demonstrated

by the higher train AUC and lower test AUC on time slice 2 compared to our

model. Overfitting is not always the outcome, however, and the stochastic

nature of the MMSB means that on different runs, the MMSB may achieve

similar results to our model, as shown by MMSB-non in Figure 4.4. This

demonstrates the problem of choosing the number of groups in the MMSB.

4.4.2 Prediction Relations

To demonstrate the potential of our fcMMSB model, we use five real-world

datasets for validation. We use the relation prediction task to validate our

model. The area under the ROC (Receiver Operating Characteristic) curve

(AUC) is used as a performance metric. Here, we randomly select 80% data

for training and leave the 20% for testing. Each experiment is run for five

times, and we report the AUC results with their mean and standard deviation

values. Five real-world datasets are described as follows:
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Table 4.1: Model performance: AUC (mean and standard deviation) on the
real dataset. Note: * represents a dynamic model.
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• The Coleman dataset [10] contains the information about the friendships

of boys in an Illinois high-school. It records the three closest friends for

each student in the fall of 1957 and spring of 1958. The binarized dataset

is a 73× 73× 2 asymmetric matrix.

• The Student net dataset [16] describes the relations between students.

We binarize the relations at each time slice, leading to a 50 × 50 × 3

asymmetric matrix.

• Mining Reality dataset [13] records contact data of 96 students at the

Massachusetts Institute of Technology (MIT) over 9 months in 2004.

The dataset is split into 10 time slices, then we set each entity pair value

to be 1 at that time slice if they have at least one contact during that

time. Thus, it leads to a 96× 96× 10 symmetric matrix.

• The Hypertext 2009 dataset [36] records the contact network ACM Hy-

pertext 2009 conference attendees. The relation between two attendees

is 1 if they have a face-to-face contact over 20 seconds. We split the

dataset into 10 time slices and binarize it, leading to 113 × 113 × 10

symmetric matrix.

• The Infectious dataset [36] describes the face-to-face interactions be-

tween people during the exhibition INFECTIOUS: STAY AWAY in 2009

at the Science Gallery in Dublin. Each relation is 1 if those two people

had face-to-face contact for at least 20 seconds. We binarize the relations

at each time slice, leading to a 410× 410× 10 symmetric matrix.

4.4.3 General Performance

We use eight baseline methods for comparison:

• One structure-based model: Common neighbor (CN) [62].

• Five feature or cluster based models: Mixed Membership Stochastic

Blockmodel (MMSB) with Gibbs sampling [3], Temporal Tensorial Mixed

Membership Stochastic Blockmodel (T-MBM) [76], Bayesian Poisson
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Figure 4.5: Comparison of AUC between MMSB and fcMMSB on the Cole-
man dataset.

Tensor Factorization (BPTF) [71], Collaborative filtering with tempo-

ral dynamics (SVD++) [44] and Dependent relational gamma process

model (DRGPM) [86].

• Two embedding based models: Scalable Multiplex Network Embedding

(MNE) [90] and DeepWalk [64].

We show the results in Table 4.1. The overall result of fcMMSB is compet-

itive with DRGPM and outperforms the other state-of-the-art models. This

may result from fcMMSB, with its flexible structure, being more suitable for

long time series datasets in which the number of communities may vary across

time. The DRGPM performance on Student net dataset may suffer from the

short time sequence of the dataset.

Compared with vanilla MMSB, fcMMSB also shows its advantage on both

short and long time series dataset. We compare our model with MMSB by

varying the group number parameter on the Coleman dataset in Figure 4.5.

fcMMSB achieved better AUC on both train and test sets. When we increased

the group number, train AUC on both models increased. Due to the flexible

structure of fcMMSB, the margin of train and test AUC between fcMMSB and
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Figure 4.6: Visualization of community clustering on the Student net dataset
across time.

MMSB is relatively larger with smaller group numbers. While the train AUC

of MMSB is relatively close to that of fcMMSB, the test AUC is lower.

Besides, we compare fcMMSB with vanilla MMSB by looking at the trained

compatibility matrix for the Hypertext dataset in Figure 4.8. We see that the

MMSB compatibility matrix is similar to the within-community matrix in

fcMMSB. However, there is a moderate difference in fcMMSB between the

within-community and across communities matrices for the entry (2,2). This

shows that the group-pair relation within a community is not same as the

one across communities, therefore MMSB with its single compatibility ma-

trix, cannot properly model this network. This is why the fcMMSB is better

than MMSB on the Hypertext dataset; its more flexible structure is better at

modeling multiple communities. In comparing the compatibility matrices of

other datasets, we find this to be the case with other datasets as well. We

also observe that the second role of the membership covers the main part for

most people due to sparsity which can be interpreted as the inactive role.

This interpretation is consistent with the compatibility matrix. In Figure 4.6,

we visualize the community clustering result on the Student net dataset. We

find the data points are dense along the diagonal. This is consistent with

our assumption that the interactions within the community are tighter than

the ones across communities. Besides, we find that most entities belong to the

same communities across time, even though the community index may change.

This shows why DFCP is used in our model since DFCP constructs a temporal

dependency for communities across time.
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Figure 4.7: Left: User activeness across time. Middle: The recovered number
of user interactions. Right: The original number of user interactions.

Furthermore, to show the dynamic of membership in the Infectious dataset,

for each time slice, we randomly select one user who is active at that time slice.

To show the intensity of user activeness, we define activeness, AC, for each

user i at time slice t to be ACt
i = θti

ᵀ ·B ·1. We present the user activeness and

the recovered number of users’ interactions with the original one in Figure

4.7. It is interesting that the user is active in consecutive time segments.

Meanwhile, comparing the user activeness with the original user interactions,

it is easy to observe that they have correlations. This shows the membership

used for user activeness really reflects the characteristic of the data. Also the

recovered number of user interactions is similar with the original one in Figure

4.7. Besides, we find that BPTF got the relatively low AUC compared with

the other four datasets. It seems that the tight correlation of features across

time inherent in BPTF does not fit this dataset. Overall, fcMMSB is stable

in both dense (Coleman, Student net, Mining reality) and sparse (Hypertext,

Infectious) datasets.

4.5 Discussion of the limits

Though we use Gibbs sampling and data augmentation via PG approach,

the computational complexity is still O(TKN2), mainly contributed by group

indicator parameter gti→j. This makes our work hard to apply for large-scale
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Figure 4.8: Left: compatibility matrix in MMSB. Middle: compatibility matrix
within community in fcMMSB. Right: compatibility matrix across community
in fcMMSB.

datasets, although acceptable on medium datasets.

However, a good sampling scheme for other parameters is necessary. For

example, though the compatibility matrix B does not dominate the compu-

tational complexity, as the matrix B working as global parameters impact all

other local parameters including g, a good sampling scheme for B is essen-

tial and it will allow the log-likelihood to converge fast. If we use a common

sampling method like Metropolis-Hasting instead, it may lead to slower con-

vergence.

Besides, even though computational complexity is fixed, it is feasible to ad-

just the order of parameters during the sampling procedure to scale our work

up to larger datasets. First, the group indicator parameter g is independent

across time. This means we can sample parameter g at each time slice in a par-

allel way. Second, during the procedure of each sampling iteration, grouping

g into N/2 groups will also improve the sampling speed. For example, we can

sample gti→j and gtm→n simultaneously iff i �= m and j �= n. These operations

will save time during sampling. At this moment, due to the computational

complexity O(TKN2), our work is suitable for small to medium problems.

4.6 Conclusion

In this work, we highlight two problems in MMSB: the structure in MMSB

is unable to encapsulate the prior information like the community structure

of entities in the static case; and modelling the community evolution using
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a fixed size compatibility matrix may suffer underfitting/overfitting in the

dynamic case. To overcome these two problems, we developed the fragmenta-

tion coagulation based Mixed Membership Stochastic Blockmodel (fcMMSB).

Specifically, we used CRP for entity-based clustering to capture the commu-

nity information of entities and MMSB for linkage-based clustering to derive

the group information for links simultaneously. Besides, we utilized DFCP to

infer the community structure (including the number of communities) among

entities and evolution (appearance/disappearance or split/merge). Our model

combines a group-level compatibility matrix with a community adjustment

parameter to satisfy the four types of entity pair relations: within and across

communities and groups. Our model unifies these techniques to derive a

generalized MMSB. Furthermore, a PG approach is implemented for an ef-

ficient sampling scheme to infer hidden variables. Finally, we demonstrate the

fcMMSB outperforms and is competitive with the state-of-the-art methods

through experiments on real datasets.
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Chapter 5

Reciprocating Interactions
Simulation in Continuous Time

Reciprocating interactions are commonly seen in real-world scenarios. The

notable approach of [7] proposes to use pairwise Hawkes processes to model

this reciprocating interactions. As It assumes the clustering of nodes keeps

invariant along the time, this assumption over-simplifies the complexity of the

data as nodes may change to different groups along with the time. By using

the Fragmentation Coagulation Process, we allow the nodes have continuous

nonparametric clustering effect along the time.

5.1 Introduction

Bayesian relational modelling on temporal complex networks is gaining increas-

ing attention as discovering the evolution and structure of complex networks

provides the valuable information in politics, business, sports, etc. A lot of

works [22], [71] achieved success in these areas. In particular, the temporal

Bayesian relational model can be categorized into two types: Poisson matrix

factorization model and latent community model. Both type of methods con-

struct the correlation of features to model the dependency across the time.

However, due to the Markov property of Bayesian model, they lack the ability

to capture the long-term dependency across time. Therefore, the reciprocating

interactions modelling studying the influence of the previous interactions on

the future ones arouse tremendous interest in recent years. As Hawkes pro-
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cess (HP) models the self-exciting phenomenon, and owns long memory, many

recent works rely on HP to address the long-term issue.

The CRP Hawkes [7] can be considered as the first attempt to use HP to

model the reciprocating interactions between communities. [53] tried to infer

the implicit network underlying the financial activities by HP. [84] embedded

each individual in Euclidean space to capture the reciprocity and homophily

in the network. [75] introduced the Indian Buffet Hawkes process model which

allows the multiple evolving factors from the past events to drive the future

event. [58] utilized compound completely random measure (CCRM) to model

the base intensity of HP, and derived both temporal reciprocity and community

structure.

The CRP Hawkes received considerable attention in recent years. How-

ever, the model has two main issues: 1, The model is unable to capture the

evolution of community structure across time. For example, members of the

Soviet Union falling apart can be considered as a large community splitting

into smaller communities. While countries joining the North Atlantic Treaty

Organization (NATO) can be considered as the communities merging into a

large community. So to capture the community evolution is essential in the

real world. 2, the fixed characterization of the HP between groups across time

is not suitable. With the evolution of community structure, the interactions

between communities will change. So the static characterization of the HP

between groups is unable to model the real situation.

To handle these two problems, we propose the Fragmentation Coagulation

Hawkess process model (FCHP).

To allow the community structure to be flexible across time, we incorporate

Fragmentation Coagulation Process (FCP) [77] to model the community evo-

lution across time. FCP helps to model situations such as community splitting

and merging. Also community appearance and disappearance can be viewed

as extensions of community splits and merges. So FCP plays a role in enrich-

ing the community structure and constructing the dependency of communities

across time.

Meanwhile, FCP also provides the solution to allowing the dynamic char-

67



acterization of the HP between groups. With the process of FCP, the newly

community will be generated by the fragmentation or coagulation operation.

In bayesian model, each community can be considered as a latent state, which

parameterizes the corresponding HP. Compared with [78], which use Gaussian

process (GP) to model the intensity of point process, our work also dramati-

cally reduces the computational complexity .

Interestingly, HP also is widely used in change detection task [50], [51]. Our

work integrating FCP with HP also brings such a side effect. This is because

FCP captures the evolution of community structure, while the community

fragmentation or coagulation can be viewed as the consequence resulting from

a sudden change (an event happened).

5.2 Preliminary knowledge

Here we assume there is a sequence of interactions {tsij}
S

s=1
. tsij represents an

interaction from entity i to entity j happened at time ts where i, j ∈ {1, ..., N}
and ts ∈ [0, T ].

5.2.1 Fragmentation Coagulation Process

The Fragmentation coagulation process with two parameters ν and ξ is de-

scribed as follows:

• At time 0, the community indicator of entity i, zi,0, conditioned on the

community indicators of entities excluding i, z-i,0, follows the CRP as:

zi,0|(z-i,0) ∝
{
|c| if zi,0 = c
ν
ξ

if zi,0 = ∅

• Assume that zi,t- = c is the existing community, at time t there are three

cases:

– The community c splits into two communities: a and b. The prob-

ability of choosing one of the communities is:

zi,t− |(z-i,t, zi,t− = c) =

{ |a|
|c| if zi,t = a
|b|
|c| if zi,t = b
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– The community c and another community are merged into a new

community c′. The probability of following the community c′ is 1.

– Entity i leaves community c to form a new community with itself

,zi,t = ∅, at rate of ν
|c| .

• Assume that zi,t− = ∅ is the new community, the community will coag-

ulate with another community at rate of ξ.

Here t− represents an infinitesimal time before t and | · | represents the number

of elements in the set.

5.2.2 Hawkes Process

The Hawkes process is an important class of point process with a wide variety

of applications. It can be described by its conditional intensity:

λ(t) = b(t) +

∫ t

0

ψ(t) dN(t)

where b(t) is the base intensity, ψ(t) represents the triggering intensity and

N(t) is the counting process. When b(t) is a constant and ψ(t) = 0, the Hawkes

process will be reduced to the homogeneous Poisson process. One typical

kernel of triggering intensity g(t) is the exponential kernel: g(t) = ηe−ζt, where

η is the scaling parameter and ζ is the bandwidth parameter. The kernel can

be interpreted as the influence of past events on triggering new events will

decay with time.

5.2.3 Modelling reciprocating interactions through Hawkes
process

CRP Hawkes [7] presents to be the first work to use Hawkes process to model

the reciprocating interactions in the continuous time line. In CRP Hawkes, it

first uses Chinese Restaurant Process (CRP) to generate a fixed grouping πππ

(assume K distinct groups are generated) on all the nodes in the interaction

networks. Then, CRP Hawkesgenerates individual Hawkes processes (with in-

tensity function noted as λpq(t)) for each group-pair (p, q) ∈ {(k1, k2)}k1,k2 (in
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total, there are K2 Hawkes processes). Each Hawkes process would generate

group-wise interactions (Npq(·)) along the time and these group-wise inter-

actions would be assigned to nodes’ interactions (Nuv(·)) according to the

splitting rule of the Poisson process.

More formally, the corresponding generative process can presented as fol-

lows:

πππ ∼ CRP(α) (5.1)

λpq(t) = γpqnpnq + βpq

∫ t

−∞
e
− t−s

wpq dNpq(s) (5.2)

Npq(·) ∼ HawkesProcess(λpq(·)) (5.3)

Nuv(·) ∼ Thinning(Nπ(u)π(v)) (5.4)

where α is the concentration parameter of the CRP, γpq, βpq, wpq are the base

scaling parameter of base intensity, scaling parameter of the self-exiting inten-

sity and width parameter of the self-exiting intensity respectively and where

np refers the the number of nodes belong to the p-th group and where π(u)

denotes the particular group that node u belongs to.

5.3 Fragmentation Coagulation Hawkes Inter-

action model

Our Fragmentation Coagulation Hawkes (FCH) IRM allows the dynamic evolv-

ing behaviours in both the groupings on the nodes and the intensity functions

of the group-wise Hawkes processes. This is achieved by introducing the no-

table Fragmentation Coagulation Process [15], [77]. The detail operations are

constructed as follows.

5.3.1 Nodes’ clustering evolving

Fixing the groupings on the nodes is an over-simplified assumption in the real

world scenario. Take the employee interaction network in a company as an

example. It is quite common that employees belong to the same department

of the company would have similar work interaction patterns. On the other
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Figure 5.1: Top: FCP simulation. F and C represent the fragmentation and co-
agulation process respectively. Middle: scaled self-exciting intensity of Hawkes
process for community relation along two community paths: {a, d, g, i} and
{c, f}. Bottom: the intensity of Hawkes process associated with interactions
from entity 1 to entity 2.
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hand, the company may merge or split different departments to adjust to the

current challenges. Allowing the employees’ group belonging seems quite a

natural requirement.

We use the Fragmentation Coagulation Process to allow the nodes have

dynamic grouping behaviours. On one hand, In our model, FCP mainly guides

the construction of community evolution for entities in continuous time. An

illustration of FCP-Hawkes for the entity partition is shown in Fig.5.1. At

time t = 0, the entities are segmented into communities following the Chinese

restaurant process (CRP). At any time t, t ∈ (0, T ], the community with its

associated entities can be split into two communities or two communities can

be merged into one community based on FCP. Each entity i is associated with a

community indicator zi,t. Community path zi of entity i is zi = {zi,t|t ∈ [0, T )}.
And community pair path for entity i and j is z{i,j} = {(zi,t, zj,t)|t ∈ [0, T )}.

5.3.2 Hawkes Process’ evolving

In reality, it is common that two aspects influence the interaction between

entities: 1, community behaviour pattern by surrounded environment. For

example, entities interaction share similar behaviour within same community;

2, personal interaction history (the previous interactions between entities) This

corresponds to the general case that entity i will respond after entity j interacts

with i. In order to incorporate the aforementioned two aspects, Hawkes process

with the typical exponential form is implemented. The intensity of Hawkes

process on the segment associated with community pair {p, q} is parameterized

by self exciting rate (base intensity) bp,q and reciprocating kernel (triggering

intensity) gp,q. Here gp,q represents the parameter ηp,q, ζp,q in the exponential

kernel: gp,q(t) = ηp,qe
−ζp,qt. Self exciting rate bp,q and reciprocating kernel gp,q

correspond to the current influence from community p to community q and

the influence of history from community q to community p respectively. For

further usage, We also define the correspondingly unscaled self exciting rate

as bp,q and reciprocating kernel gp,q (ηp,q, ζp,q).

To parameterize the intensity of Hawkes process for each community pair,

we start with t = 0. The bp,q and gp,q for community p and q at t = 0 are
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sampled from Gaussian distribution respectively. When the community does

the fragmentation or coagulation process at t−, the new bzi,t,zj,t is generated

from the Gaussian distribution with its mean bzi,t− ,zj,t− or transformed from

linear combination of bzi,t− ,zj,t− and bzj,t− ,zi,t− , for gzi,t,zj,t vice verca. (Please

refer to the generative process for more details.) Besides, To guarantee the non-

negativity, the self exciting rate bp,q and reciprocating kernel gp,q are derived

by passing the unscaled ones through a sigmoid function, and then scaled by

corresponding b∗ and g∗ (η∗, ζ∗) for a upper bound.

Entity Interaction Generation

Finally, the interaction tsij is generated by Hawkes process with the bzi,ts ,zj,ts and

previous interactions H from entity j to i with their associated reciprocating

kernel along the associated community pair path z{i,j} where H = {trji|{trji <
tsji}.

For convenience, for the parameters in Hawkes process, we only introduce

the generative process on the self-exciting related parameters, the parameters

for the reciprocating related parameters is constructed in a similar way. In

summary, the FCP-Hawkes generative model is as follows:

• At time t = 0,

– Sample community indicator {zi,0}Ni=1 ∼ CRP(ν
ξ
) (letK∗ = maxi zi,0)

– For k1, k2 ∈ {1, . . . , K∗}, sample Hawkes process’ parameters bk1,k2 ∼
N(μb, σ

2)

• Transform the parameters of the Hawkes process whenever coagulation

or fragmentation on the communities in FCP occurs:

– Fragment community zi,t− (zj,t−) containing entity i, j into com-

munity zi,t containing entity i and zj,t containing entity j, we have

bzi,t,zk,t , bzj,t,zk,t ∼ N(bzi,t− ,zk,t− , σ
2) (5.5)

bzk,t,zi,t , bzk,t,zj,t ∼ N(bzk,t− ,zi,t− , σ
2) (5.6)

73



– Coagulate community zi,t− , zj,t− into community zi,t (zj,t), we

have

bzi,t,zk,t ∼ N(
bzi,t− ,zk,t− + bzj,t− ,zk,t−

2
, σ2) (5.7)

bzk,t,zi,t ∼ N(
bzk,t− ,zi,t− + bzk,t− ,zj,t−

2
, σ2) (5.8)

• Scaling the parameters of the Hawkes process:

– Sample the scaling parameter b∗ ∼ gamma(α, β)

– bzi,t,zi,t = b∗ 1
1+exp (−bzi,t,zi,t )

• For each interaction tsij ∈ [0, T ) from entity i to j, we have tsij ∼
PP(bzi,ts

ij
,zj,ts

ij
+
∑

H ψgzi,tr
ji

,zj,tr
ji

(tsji − trji)), H = {trji|{trji < tsji}

5.4 Inference

In this section, we describe the inference scheme of the proposed FCP-Hawkes

model. Along the flexibility of FCP-Hawkes model, it also faces two serious

problems from the inference part: (1) the model introduces the FCP, so it

brings the infinite communities; (2) the model with the HP breaks the Markov

property, so the backward-forward algorithm for temporal models (e.g. hidden

markov model) can’t be used. To overcome these two problems, we firstly

adopt the MCMC inference for Markov Jump Process (MJP) [68] to deal with

FCP. The method mainly constructs a Markov chain with a set of ”potential

jump points”, so it allows us to do sampling on discrete points. Secondly,

we use conditional sequential monte carlo (C-SMC) to deal with the non-

Markovian property of the sequence of hidden variables.

5.4.1 Sampling potential jump point J

Discretizing time is a simple approach for inference for FCP, while it will

lead to long Markov chains with the high computation cost. As FCP is a

continuous Markov process, a discrete-time Markov chain can be constructed

by uniformization for a random time-discretization. Assume that the marginal

74



distribution π0 of FCP at time 0 and rate matrix A are known. The marginal

distribution πt at time t can be expressed as:

πt = exp(At)π0

=
∞∑
n=0

((exp(−Ωt)
Ωtn

n!
)(Bnπ0))

where B = (I + 1
Ω
A). Here in the summation the first term can be inter-

preted as a Poisson distribution with rate Ω and B of the second term can be

considered as a probability transition matrix. So a discrete Markov chain can

be constructed in such a way:

1. Generate potential jump points J by Poisson process (PP) with rate Ω.

2. Set the transition probability matrix of the discrete Markov chain as B.

5.4.2 Sampling z

Given the potential jump point J , so z can be sampled from a discrete Markov

chain. However, the classical backward-forward algorithm can’t be used due to

the non-Markovian property of HP. Instead, the conditional sequential Monte

Carlo (C-SMC) is implemented to sample the set of community indicators z.

The full detail of C-SMC is provided in Alg.4, where the proposal distribution

of zt, rθ,t(zt|za
i
t

1:t−1), is defined as rθ,t(zt|za
i
t

1:t−1) = p(zt|za
i
t

t−1), so the unnormalized

weight wi
t can be simplified as wi

t = p(yt|x1:t, y1:t−1).

5.4.3 Metropolis-Hasting Sampling for Hawkes Param-
eter

For simplicity, we just introduce the sampling scheme of main parameters

b, g (η, ζ) in general HP. All the parameters in our model used to generate

them via nonlinear transformation of b, g (η, ζ) with the scaling parameter

b∗, g∗ can be sampled in a similar way.

The likelihood Lpq
ij with respect to interactions from entity i to j where

entity i and j go through community p and q respectively, conditioned on the
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interactions from entity j to i:

Lij = (
S∏

s=1

λ(tsij)) exp (−
∫ T

0

λ(t)) dt

=
S∏

s=1

(b
z
ts
ij

i ,z
ts
ij

j

+
∑

trji<tsij

g
z
tr
ji

i ,z
tr
ji

j

(tsij − trji))

exp (−(

∫ T

0

bzti ,ztj dt+
∑
r

∫ T

trji

g
z
tr
ji

i ,z
tr
ji

j

(t− trji) dt))

Here we describe the update of bp,q, which is similar with gp,q. The proposed

distribution is the normal distribution with the mean of current value bp,q.

The acceptance ratio of the proposed sample b̂p,q is given as: A(b̂p,q, bp,q) =

min[1, p̂(b̂p,q)
p̂(bp,q)

]. The ratio can be calculated as:

p̂(b̂p,q)

p̂(bp,q)
=

p(b̂p,q)

p(bp,q)
· exp(−

∫ t+p,q

t−p,q
b̂p,q − bp,q dt)

∏
tsij∈[t

−
p,q ,t

+
p,q)

b̂p,q +
∑

trji<tsij
g
z
tr
ji

i ,z
tr
ji

j

(tsij − trji)

bp,q +
∑

trji<tsij
g
z
tr
ji

i ,z
tr
ji

j

(tsij − trji)

Here we assume the community pair (p, q) exists among time [t−p,q, t
+
p,q)

5.4.4 Inference Framework

Formally, given a sequence of interactions tsij, the algorithm needs to infer

the hidden variable z, z = {zi|i ∈ 1, ..., N}, the scaling parameter b∗ and

g∗ (η∗, ζ∗), unscaled self-exciting and reciprocating kernel bp,q and gp,q (ηp,q, ζp,q).

We use the Ω to indicate the all variables excluding the hidden variable z,

Ω = {b∗, g∗, bp,q, gp,q (ηp,q, ζp,q)}. Generally, for each iteration, we sample the

”potential jump points” with a constant rate of Poisson process (PP), and

then we sample z and Ω separably.

The sampling scheme is given as follows:

• For k=0,

– initialize set z(k),Ω(k)
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• For iteration, k ≥ 1,

– for each entity i,

∗ sample potential jumps J aux(k) ∼ PP(Λ(t)) with rate Λ(t) =

Qt(z
t
i(k − 1), zti(k − 1))

∗ sample zi(k) conditioned on Ω(k − 1), z(k − 1) ∪ J aux(k)

– sample Ω(k) conditioned on x, z(k − 1)

Notation:

• k is the iteration index

• ωt > maxs∈Cit
−Qt(s, s)

• zi is the community paths for entity i

• Qt(s, s) = −
∑

s′ 	=s Qt(s, s
′)

• For s, s′ ∈ Cit, Qt(s, s
′) is the transition rate from community s to s′

• Cit = zt-i ∪ ∅

Algorithm 4 C-SMC with non-markovian kernel for FCP-Hawkes

Input: t ∈ J ′ ∪ J aux

1: Draw zi1 ∼ p(zi1)p(y1|zi1) for i = 1, ..., N
2: Set ai1 = i for i = 1, ..., N
3: Set wi

1 = W i
θ,1(z1) for i = 1, ..., N

4: for t = 2, ..., T do

5: Draw ait ∼
wi

t−1∑
l w

l
t−1

for i = 1, ..., N

6: Draw zit ∼ rθ,t(zt|za
i
t

1:t−1) for i = 1, ..., N

7: Set zi1:t = (z
ait
1:t−1; z

i
t)

8: Set wi
t = W i

θ,t(z1:t)
9: end for
10: Draw k with p(k = i) ∼ wi

T

11: return z∗1:T = zk1:T
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5.5 Experiments

5.5.1 Synthetic Data

To demonstrate the problem of CRP-Hawkes we generate two synthetic dataset:

static and dynamic to verify our model. The main difference between static

and dynamic data is that the belonging community of each entity is allowed

to change across time. Here we generally introduce the generative procedure

of dynamic dataset.

1. Instantiate a network structure of two communities. At time 0, the

entities are randomly assigned to one of the communities. At time T/2,

one of the communities is allowed to split into two smaller communities.

2. An M -variate hawkes process is used to generate the interactions be-

tween entities. The M represents the number of communities. The

simulation of the M-variate hawkes process is provided in Alg.5 where

bM×1,ηM×M , ζM×M represent the parameter of self-exciting and recipro-

cating kernel in hawkes process respectively.

For evaluation, we use the visualization to directly show the performance

of the FCP-hawkes model. The Figure 5.2 shows the real and inferred commu-

nity evolution of the synthetic data respectively. The community of synthetic

data have a split operation at time 5. However, such a operation can’t be well

modelled in the FCP-IRM method. From the figure, it is easily to find that

the FCP-hawkes model completely recovered the community evolution of the

dynamic synthetic data and the split operation only has a delay with 0.2 sec-

onds. And all the entities belong to the corresponding correctly communities.

The log-likelihood of both the static and dynamic synthetic data are stable

as shown in Figure 5.3. The inferred parameters of the FCP-hawkes model is

also shown in table 5.1. The inferred parameters related to the Hawkes process

share the similar values with the real ones.
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Algorithm 5 Simulation ofM -variate hawkes process with exponential kernel:
γmn(u) = ηmne

−ζmnufor synthetic data

Input: bM×1,ηM×M , ζM×M , T
1: Initialize T 1, . . . , T M

2: while s < T do
3: λ =

∑k
m=1 λ

m(s)

=
∑M

m=1(bm +
∑M

n=1

∑
τ∈T n ηmne

−ζmn(s−τ))
4: Generate u ∼ uniform(0, 1)
5: Set w = −ln(u)/λ
6: Set s = s+ w
7: Generate u ∼ uniform(0, 1)
8: if uλ <

∑M
m=1(bm +

∑M
n=1

∑
τ∈T n ηmne

−ζmn(s−τ)) then
9: k = 1
10: while uλ >

∑k
m=1 λ

m(s) do
11: k = k + 1
12: end while
13: T k = T k ∪ s
14: end if
15: end while
16: if s < T then
17: return T 1, . . . , T M

18: else
19: return T 1, . . . , T k \ s, . . . , T M

20: end if

79



Figure 5.2: Cluster evolution for synthetic data. Top: real community evolu-
tion. Bottom: learned community evolution.

Figure 5.3: Log-likelihood of static and dynamic synthetic data.
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Real Inferred

send receive b η ζ b η ζ
1 1 5.0 0.0 0.1 2.4 0.5 1.0
1 2 0.1 0.0 0.1 0.1 0.0 0.0
1 3 0.1 0.0 0.1 0.1 0.0 0.0
1 4 0.1 0.0 0.1 0.1 0.0 0.0
2 1 0.1 0.0 0.1 0.1 0.0 0.0
2 2 10 0.0 0.1 9.8 0.0 1.3
2 3 − − − − − −
2 4 − − − − − −
3 1 0.1 0.0 0.1 0.1 0.0 0.0
3 2 − − − − − −
3 3 10 0.0 0.1 10.2 0.0 1.3
3 4 0.1 0.0 0.1 0.1 0.0 1.3
4 1 0.1 0.0 0.1 0.1 0.0 0.0
4 2 − − − − − −
4 3 0.1 0.0 0.1 0.1 0.0 0.7
4 4 15 0.0 0.1 13.8 0.1 1.8

Table 5.1: The real and inferred parameter of the synthetic data

5.5.2 Test Case

Data Description

The UN dataset [5] contains the roll-call votes in the UN General Assembly

between 1946 and 2019. We choose one sub-topic related to the Palestinian

conflict as our test case. Overall 201 countries participated for vote. The first

and last day for the vote are 1947− 05− 02 and 2018− 12− 20. All the dates

are transformed into numerical values ranged from 0 to 27.1 in our model.

There are 5 types of vote choices: yes, abstain, no, absent and not a member.

Each two countries’ vote with the same choice is considered as an interaction

between them in our model. Therefore, for this test case, the interactions are

un-directional.

Result Analysis

To validate the performance of our model, different visualizations are shown in

this section. We compare our model with the FCP-Poisson and CRP-Hawkes

model in Figure 5.4. And it is easily found that the FCP-Hawkes outperforms
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over other two models. In Figure 5.5, the statistics of the initialized commu-

nities are shown. It is easily observed that the mean of the country’s first

vote for the first community is far away from from the other three communi-

ties. And within these three communities, the elements are mainly constituted

by the countries that have their first vote at time 0. Besides, looking at the

compatibility of community relations, the intensity is really high within the

second community while the intensity is relatively high between the second

and fourth community. This explains the reason the FCP-Hawkes model has

four communities at time 0.

We randomly choose several countries, and present the real and base inten-

sity of the within/across community relation according their community paths

in Figure 5.6 and 5.7. We find the FCP-Hawkes model almost recovered the

real ones. Besides, as there are some operations happened in a very short time

in the model, this leads to the spike in the real ones. Compared to the Poisson-

Hawkes, it can be solved by the reciprocating part of the Hawkes process in

our model. In Figure 5.8, we show the intensity of relation along two commu-

nity paths which are originated from the same community at time 0. Firstly

compared with the real ones shown in the top figure, the modelled ones follow

the same pattern show in the bottom figure. Secondly, the difference is obvi-

ous between the intensity of each within community relation. This explains

why around t = 1.8 there is split operation. Therefore, the fragmentation and

coagulation process are useful to model the relations between communities and

may indicate the change of the community pair relation. This phenomenon

is also reflected in the Figure 5.10 which shows the number of operations (to-

tal number of fragmentation and coagulation) across the time. As around 30

countries had their first vote between time 10 and 15 as shown in the Figure

5.9, it is predictable that as more countries are involved, more dynamics with

the community structure will happen. In the Figure 5.10, the number of op-

erations matches the pattern and after time 10 the changes (operation) are

more intense compared with the ones before time 10.
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Figure 5.4: Likelihood for model comparison.
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Figure 5.5: Statistics of the initialized communities.
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Figure 5.6: Real and modelled base intensity of within-community relations
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Figure 5.7: Real and modelled base intensity of across-community relations
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Figure 5.8: Example of split operation in UN data.

Figure 5.9: country first vote
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Figure 5.10: fcp operation time
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, several methods are presented to deal with different problems

related to analysis of complex networks. In Chapter 1, the research field,

problems and objectives are briefly introduced. Chapter 2 mainly focuses on

the general methods used in this research and the related literature review.

Chapters 3, 4 and 5 provide description of proposed methods to deal with the

problems stated in Chapter 1. They focus on analysis of dependencies between

entities’ features and their changes over time, structure itself and structure

evolution of complex networks, and continuous time-series data modelling.

Chapter 2 is composed of a number of background related topics: prelim-

inary knowledge on the deep learning technique including the classical neu-

ral network and long short term memory, nonparametric Bayesian methods

including the Dirichlet process and the Chinese restaurant process, the sam-

pling method, Monte Carlo Markov Chain (MCMC), and several stochastic

processes including the Poisson process and the Hawkes process. Also, the lit-

erature review covers the recent developments on the relational models includ-

ing latent class methods, latent feature methods, matrix factorization methods

and deep learning methods.

In Chapter 3, we describe the limitation of mixed membership stochastic

blockmodels in inferring relations between two communities when the entity

relations between these communities are unobserved. We propose a solution

to this problem by factorizing the community relations matrix into two com-
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munity feature matrices, thereby adding a dependency between community

relations. Besides, the deep learning techniques is used to approximate the

components of classical probabilistic relational model for complex network.

We introduce the deep dynamic mixed membership stochastic blockmodel

based network (DDBN) to demonstrate the feasibility of such an approach.

The DDBN takes the advantage of the matrix factorizaiton to solve the above

problem and marries the mixed membership stochastic blockmodel (MMSB)

with deep neural networks for rich feature extraction and introduces a tem-

poral dependency in latent features using a long short-term memory unit for

dynamic network modeling.

In Chapter 4, we state that the current formulation of MMSB suffers from

the following two issues: (1) inability to embed any prior information ,e.g.,

entities’ community structural information, in the modelling process; (2) com-

munity evolution is not properly addressed in the literature. Therefore, we

propose a non-parametric fragmentation coagulation based Mixed Membership

Stochastic Blockmodel (fcMMSB). Our model performs entity-based cluster-

ing to capture the community information for entities and linkage-based clus-

tering to derive the group information for links simultaneously. Besides, the

proposed model infers the network structure and models community evolu-

tion, manifested by appearances and disappearances of communities, using

the discrete fragmentation coagulation process (DFCP). By integrating the

community structure with the group compatibility matrix we derive a general-

ized version of MMSB. An efficient Gibbs sampling scheme with Polya Gamma

(PG) approach is also implemented for posterior inference.

In Chapter 5, we present a unified framework for processing continuous

time-series data. It incorporates the fragmentation coagulation process with

the Hawkes process. The fragmentation coagulation detects evolution of the

community structure in the complex network occurring in the continuous time.

This process models the reciprocating relations between entities. The propoed

method can be considered as a continuous/dynamic CRP-Hawkes in contrast

to the CRP-Hawkes [7].
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6.2 Future Work

Nowadays, large amounts of data are easily accessible on the Internet. There

are millions of user active on such platforms like Facebook and Youtube. The

current methods used to construct Bayesian relational model are not able to

deal with large-scale modelling. It is especially seen in Bayesian models that

use the series-sampling method for inference – its computational complexity

is O(N2). This prompts us to find or develop more efficient inference methods

for the relational model.

One possible solution is to apply the variational inference which uses the

variational bound (KL divergence) as guidance to optimize the objective func-

tion or the posterior distribution. A few works contributed to this field to

a large extent. [6] firstly applied the variation inference (VI) on the Dirich-

let process. Sebsequently, to deal with the efficiency problem of nested Chi-

nese restaurant process (nCRP), [80] developed the corresponding variational

method to nCRP. Furthemore, such techniques were also used in hierarchical

Dirichlet process (HDP) [81] for online learning. [31] integrated the stochastic

optimization with VI for the HDP. VI is also developed in the Poisson process

[2] which can be a promising field to explore.

Besides, another approch to reduce the dimensionality is to consider dif-

ferent ways of constructing relational models. One interesting and promising

method is to use Ber-Poisson link function [12]. For this method, observations

between nodes with no linkage do not need to be sampled. Therefore, the com-

putational cost of O(N2) can be reduced to O(Ne). This makes the sampling

method more efficient. Several works [92],[67] [35] and [18] that applied this

approach have already shown good performance. This method could also be

used to extend our work presented in Chapter 4.

However, the efficiency problem is the most crucial one in the case of con-

tinuous time-series modelling. One advanced solution to Continuous-Time

Bayesian Networks (CTBN) has been proposed in [54]. In the paper, the au-

thors have integrated a gradient-based approach with a variational method

to address the issue of scalability. This approach deserves an attention as it
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may open up a new direction in process of continuous data modeling. Besides,

another simple way to reduce the computational complexity is to use a sliding

window over the history information for the Hawkes process. As we can see,

the influence of the history for the Hawkes process will decrease with time, so

selection of an appropriate size of a sliding window not only allows to keep

most of useful information but also enables reduction of the computational

complexity.
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Appendix A

MCMC Inference for
Fragmentation Coagulation
Based Mixed Membership
Stochastic Blockmodel

Fragmentation Coagulation Based Mixed Membership Stochastic Blockmodel

(fcMMSB) is intractable for exact inference. Instead, a Gibbs sampling scheme

is derived for posterior distribution with parameters z,θ,B,Q, g and σ. (Note:

The shorthand “–” denotes all other variables in conditionals for sampling.

The joint distribution with the above parameters can be expressed as:

Pr(x, z,θ,B,Q, g,σ|−) =
N∏
i=1

N∏
j=1

T−1∏
t=0

Pr(xt
ij|zti , ztj, Qgti→j

,Bgti→jg
t
i←j

, ε)

N∏
i=1

T−1∏
t=0

Pr(zti |ζ)
N∏
i=1

T−2∏
t′=0

Pr(zt
′
i |η)

N∏
i=1

N∏
j=1

T−1∏
t=0

Pr(gti→j|θti)Pr(gti←j|θtj)
N∏
i=1

T−1∏
t=0

Pr(θti |α)

K∏
k=1

Pr(Qk|μQ, σQ)Pr(Bkk|μB, σB)

K∏
k=1

K∏
l=k+1

Pr(Bkl,Blk|μkl, μlk,σkl)Pr(σkl|ϕ, ψ)

The full procedure of sampling is summarized in Algorithm 6.
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A.1 Sampling Blk, Bkl(l �= k)

The polya-gamma distribution is used for data augmentation of the inference

of [Blk, Bkl]. The main result of polya-gamma data augmentation is introduced

here. For more details, refer to [65].

We say a random variable ω follows a polya-gamma distribution, denoted

as ω ∼ PG(b, c), if

ω =
1

2π2

∞∑
d=1

gd

(d− 1/2)2 + c2/(4π)2

where the variables gd are independent and follow Ga(b, 1) gamma distribution

where b > 0 and c ∈ R. A fundamental theorem is described as following:

Theorem 4. The binomial likelihood can be expressed as:

(eφ)
m

(1 + eφ)n
= 2−neκφ

∫
e−ωφ2/2p(ω) dω

where ω ∼ PG(n, 0), κ = m − n/2. Furthermore, having ω ∼ PG(n, 0) with

conditional distribution p(w|φ), e−ωφ2/2p(ω)
∫
e−ωφ2/2p(ω)dω

,

ω|φ ∼ PG(n, φ)

This theorem gives the intuition of how the inference of the binomial likeli-

hood parametrized by the logistic transformation of variables can be simplified.

Assuming that the prior of φ follows a Gaussian distribution N (μ, σ) with bi-

nomial likelihood (eφ)
m

(1+eφ)n
, the posterior distribution of φ can be expressed as:

p(φ|−) ∝ (eφ)
m

(1 + eφ)n
1

σ
√
2π

e−
1
2
(φ−μ

σ
)
2

∝ 2−neκφ
∫

e−ωφ2/2p(ω) dω e−
1
2
(φ−μ

σ
)
2

∝ eκφ
∫

e−ωφ2/2p(ω) dω e−
1
2
(φ−μ

σ
)
2

If the ω is induced as a auxiliary variable following PG(n, φ), the posterior

distribution of φ can be simplified as:
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p(φ|−) ∝ eκφe−ωφ2/2e−
1
2
(φ−μ

σ
)
2

∝ e−
1
2

(1+wσ2)φ2−2(μ+κσ2)φ

σ2

∝ e
− 1

2

φ2−2
μ+κσ2

1+wσ2 φ

σ2(1+wσ2)

∝ e
− 1

2

(φ− μ+κσ2

1+wσ2 )
2

σ2(1+wσ2)

which is a Gaussian distribution with N (μ+κσ2

1+wσ2 , (σ
2(1 + wσ2))

1
2 ). Therefore,

the true posterior of φ can be derived by updating φ and ω alternately.

Now turn to the inference of Blk, Bkl. For simplicity, Blk, Bkl are concate-

nated, denoted as B̂ while μkl, μlk as μkl Besides, the observation xt
ij related

to B̂ is reparamterized by a vector xt
ij, expressed as: [xt

ij,0, x
t
ij,1], where

xt
ij,0 = I[xt

ij = 1]I[gti→j = k]I[gti←j = l]

xt
ij,1 = I[xt

ij = 1]I[gti→j = l]I[gti←j = k]
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Now the posterior distribution of B̂ can be described as:

Pr(B̂|−) ∝
N∏
i=1

N∏
j=1

T−1∏
t=0

Pr(xt
ij|zti , ztj, Qgti→j

,Bgti→jg
t
i←j

, ε)Pr(B̂|μkl,σkl)

=
N∏
i=1

N∏
j=1

T−1∏
t=0

Pr(xt
ij|B̂)

I[gti→j=k]I[gti←j=l]+I[gti→j=l]I[gti←j=k]

Pr(B̂|μkl,σkl)

∝
∏
i,j,t

ex
t
ij

ᵀ
B̂

1 + ex
t
ij

ᵀB̂
e−

1
2
(B̂−μkl)

ᵀ
σkl

−1(B̂−μkl)

=
[eBkl ]

n1
kl

[1 + eBkl ]nkl

[eBlk ]
n1
lk

[1 + eBlk ]nlk
e−

1
2
(B̂−μkl)

ᵀ
σkl

−1(B̂−μkl)

=
[ev

ᵀ
0B̂]

n1
kl

[1 + ev
ᵀ
0B̂]

nkl

[ev
ᵀ
1B̂]

n1
lk

[1 + ev
ᵀ
1B̂]

nlk
e−

1
2
(B̂−μkl)

ᵀ
σkl

−1(B̂−μkl)

∝eκ0v
ᵀ
0B̂e−ω0(v

ᵀ
0B̂)

2
/2eκ1v

ᵀ
1B̂e−ω1(v

ᵀ
1B̂)

2
/2e−

1
2
(B̂−μkl)

ᵀ
σkl

−1(B̂−μkl)

∝e−
ω0
2
(vᵀ

0B̂−κ0/ω0)
2

e−
ω1
2
(vᵀ

1B̂−κ1/ω1)
2

e−
1
2
(B̂−μkl)

ᵀ
σkl

−1(B̂−μkl)

=e−
1
2
(vB̂−κ̂)

ᵀ
σ̂−1(vB̂−κ̂)e−

1
2
(B̂−μkl)

ᵀ
σkl

−1(B̂−μkl)

=e−
1
2
(B̂−κ̂)

ᵀ
σ̂−1(B̂−κ̂)e−

1
2
(B̂−μkl)

ᵀ
σkl

−1(B̂−μkl)

∝e−
1
2
(B̂ᵀσ̂−1B̂−B̂ᵀσ̂−1κ̂−κ̂ᵀσ̂−1B̂+B̂ᵀσkl

−1B̂−B̂ᵀσkl
−1μkl−μklσkl

−1B̂)

=e−
1
2
[B̂ᵀ(σ̂−1+σkl

−1)B̂−B̂ᵀ(σ̂−1κ̂+σkl
−1μkl)−(κ̂ᵀσ̂−1+μklσkl

−1)B̂]

∝e−
1
2
(B̂−μ∗)ᵀσ∗−1(B̂−μ∗)

Therefore, the posterior distribution of B̂ follows N (μ∗,σ∗) where

μ∗ = σ∗(κ+ σklμkl)

σ∗ = (σ̂−1 + σkl
−1)

−1

where v0 = [1 0]ᵀ,v1 = [0 1]ᵀ and v is a two dimensional identity matrix.

κ̂ = [κ0/ω0 κ1/ω1]
ᵀ, κ = [κ0 κ1]

ᵀ, κ0 = n1
kl−nkl/2, κ1 = n1

lk−nlk/2, and σ̂−1 =

diag(ω0, ω1). ω0 and ω1 follow PG(nkl, Bkl) and PG(nlk, Blk) respectively.

nlk =
∑
t,i,j

I[gti→j = l] · I[gti←j = k] · I[zti = ztj]

n1
lk =

∑
t,i,j

I[gti→j = l] · I[gti←j = k] · I[zti = ztj] · I[xt
ij = 1]
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A.2 Sampling Bkk and Qk

The sampling scheme of Bkk and Qk is similar with B̂. For simplicity, Bkk, Qk

are also concatenated, denoted as Q̂ while μB, μQ as μQ and σB, σQ as σQ

where σQ = diag(σB, σQ). Now the posterior distribution of Q̂ can be de-

scribed as:

Pr(Q̂|−) ∝
N∏
i=1

N∏
j=1

T−1∏
t=0

Pr(xt
ij|zti , ztj, Qgti→j

,Bgti→jg
t
i←j

, ε)Pr(Q̂|μkl,σkl)

=
N∏
i=1

N∏
j=1

T−1∏
t=0

Pr(xt
ij|Q̂)

I[gti→j=k]I[gti←j=k]
Pr(Q̂|μQ,σQ)

∝e−
1
2
(vQ̂−κ̂)

ᵀ
σ̂Q

−1(vQ̂−κ̂)e−
1
2
(Q̂−μkl)

ᵀ
σQ

−1(Q̂−μQ)

∝e−
1
2
(Q̂−μ∗

Q)
ᵀ
σ∗
Q

−1(Q̂−μ∗
Q)

So the posterior distribution of Q̂ follows N (μ∗
Q,σ

∗
Q):

μ∗
Q = σ∗

Q(v
ᵀκQv + σQμQ)

σ∗ = (vᵀσ̂−1
Q v + σQ

−1)
−1

where κQ = [κ0 κ1]
ᵀ, κ0 = m1

k − mk/2, κ1 = m1
k − mk/2, and σ̂−1 =

diag(ω0, ω1). ω0 and ω1 follow PG(mk, Bkk) and PG(mk, Bkk + Qk) respec-

tively. v is expressed as:

v =

[
1 0
1 1

]

Here mk,m
1
k,mk and m1

k are expressed as:

mk =
∑
i,j,t

I[gti→j = k] · I[gti←j = k] · I[zti = ztj]

m1
k =

∑
i,j,t

I[gti→j = k] · I[gti←j = k] · I[zti = ztj] · I[xt
ij = 1]

mk =
∑
i,j,t

I[gti→j = k] · I[gti←j = k] · I[zti �= ztj]

m1
k =

∑
i,j,t

I[gti→j = k] · I[gti←j = k] · I[zti �= ztj] · I[xt
ij = 1]
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A.3 Sampling gti→j

Collapsed Gibbs sampling is used on gti→j by marginalizing over θti . Here we

assume that gi←j = l. The posterior distribution of gti→j can be expressed as:

Pr(gti→j = k|−) ∝Pr(xt
ij|zti , ztj, Qgti→j

,Bgti→jg
t
i←j

, ε)Pr(gti→j = k|gi,¬[i→j])

=
[ey

t
ij ]

I[xt
ij=1]

1 + ey
t
ij

∫
Pr(gti→j = k|θti)Pr(θti |gt

i,¬[i→j], α) dθ
t
i

where gt
i,¬[i→j] represents and ytij is expressed as:

ytij =[I[zti = ztj]Blk + I[l = k]I[zti �= ztj](Blk +Qk) + I[l �= k]I[zti �= ztj]ε

I[gti→j = k]I[gti←j = l]

The second part in the integrity can be calculated as:

Pr(θti |gt
i,¬[i→j], α) ∝Pr(gt

i,¬[i→j]|θti)Pr(θti |α)

∝
K∏
k=1

[θti,k]
nk
i,¬[i→j]

(t)
[θti,k]

αk−1

=
K∏
k=1

[θi,k]
nk
i,¬[i→j]

+αk−1

Substitute the above equation into the posterior distribution of gti→j, then

Pr(θti |gt
i,¬[i→j], α) ∝

[ey
t
ij ]

I[xt
ij=1]

1 + ey
t
ij

∫
θi,k

K∏
k=1

[θi,k]
nk
i,¬[i→j]

(t)+αk−1 dθi

=
[ey

t
ij ]

I[xt
ij=1]

1 + ey
t
ij

nk
i,¬[i→j](t) + αk∑

k n
k
i,¬[i→j](t) + αk

where nk
i,¬[i→j](t) =

∑
l,l 	=j I[g

t
i→l = k] +

∑
l I[g

t
i←l = k].

A.4 Sampling z

The prior of latent communities sequence z is:

Prprior(z|η, ζ) =
N∏
i=1

T−1∏
t=0

Pr(zti |η)
N∏
i=1

T−2∏
t′=0

Pr(zt
′
i |ζ)
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and the posterior of zti for entity i at time t can be described as:

Pr(zti |−) ∝ Pr(xt
i·,x

t
·i|−)Pr(zti |η, zt

¬i, z
t−1′)Pr(zt

′
i |zt, ζ)

=
∏
j,t

[ey
t
ij ]

I[xt
ij=1]

1 + ey
t
ij

· [e
ytji ]

I[xt
ji=1]

1 + ey
t
ji

· Pr(zti |ζ, zt
¬i, z

t−1′)Pr(zt
′
i |zt, η)

where ytij follows the previous definition from previous section. Here xt
i· =

{xt
ij|j ∈ {1, ..., N}} and xt

·i = {xt
ji|j ∈ {1, ..., N}}. Pr(zti |η, zt

¬i, z
t−1′) is the

distribution of fragmentation process for entity i at time t. Here we assume

that entity i belong to community q at time t− 1′. Pr(zti |η, zt
¬i, z

t−1′) can be

described as:

Pr(zti = h|ζ, zt
¬i, z

t′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
|χt

h|/(|χt−1′
q |+ ζ − 1) if χt−1′

q �= ∅, χt
h �= ∅

ζ/(|χt−1′
q |+ ζ − 1) if χt−1′

q �= ∅, χt
h = ∅

1 if χt−1′
q = ∅, χt

h = ∅
0 otherwise

χt
h represents the entities belonging to community h at time t and |χt

h| denotes
the number of entities in community h. Pr(zt+1′

i |zt, η) is the distribution of

coagulation process for entity i at time t′. Here we assume that entity i belong

to community h at time t. Pr(zt
′
i |zt, η) can be described as:

Pr(zt
′
i = e|zt, η) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if χt′

e �= ∅, χt
h �= ∅

|Λt′
e |/(|νt|+ η − 1) if χt′

e �= ∅, χt
h = ∅

η/(|νt|+ η − 1) if χt′
e = ∅, χt

h = ∅
0 otherwise

where νt represents the set of communities at time t, |νt| is the number of

communities and Λt
e represents the communities at t which belong to the com-

munity set with index e at time t′, denoted as Λt′
e = {χt

v|χt
v ⊆ χt′

e }.

A.5 Sampling σkl

The inverse Wishart distribution is chosen as the prior of σkl that σkl ∼
IW(υ, �). The density distribution of inverse Wishart distribution is expressed
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as following:

Pr(σkl|υ, �) =
|�|υ/2

2υp/2Γp(
υ
2
)
|σkl|−(υ+p+1)/2e−

1
2
tr(�σkl

−1)

As the prior and likelihood of σkl are a conjugate pair, we give the posterior

of σkl directly.

Pr(σkl|−) ∝Pr(B̂|μkl,σkl)Pr(σkl|υ, �)

∝|σkl|−
1
2 e−

1
2
(B̂−μkl)

ᵀ
σkl

−1(B̂−μkl)|σkl|−(υ+p+1)/2e−
1
2
tr(�σkl

−1)

=|σkl|−(υ+p+2)/2e−
1
2
tr((B̂−μkl)(B̂−μkl)

ᵀ
σkl

−1)e−
1
2
tr(�σkl

−1)

=|σkl|−(υ+p+2)/2e−
1
2
tr[((B̂−μkl)(B̂−μkl)

ᵀ
+�)σkl

−1]

so the posterior distribution of follows

σkl|− ∼ IW(1 + υ, �+ (B̂ − μkl)(B̂ − μkl)
ᵀ
)

A.6 Prediction

In the previous sections, we derived the samples at each iteration. We would

like to use these samples to estimate the unobserved relations. Our prediction

target at iteration s, x̂
t[s]
ij , is expressed as:

x̂
t[s]
ij = θ̂tᵀi · B̄ · θ̂tj

where the superscript of θ̂tᵀi is the transpose of the vector. Here each dimension

of θti and ni
k(t) are expressed as:

θ̂t,ki =
ni
k(t) + αk∑

k n
i
k(t) + αk

ni
k(t) =

∑
j

I[gti→j = k] +
∑
j

I[gti←j = k]

Each entry B̄lk of B̄ is 1
1+exp (−Ȳlk)

where Ȳlk is described as:

Ȳlk = I[zti = ztj]Blk + I[l = k]I[zti �= ztj](Blk +Qk) + I[l �= k]I[zti �= ztj]ε
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Algorithm 6 Sampling Algorithm for fcMMSB

Input: observations x, iterations D,U
1: Initialize the number of groups K, fragmentation parameter ζ, coag-

ulation parameter η, parameter of inverse Wishart distribution (υ, �),
μkl, μB, σB, μQ, σQ, α

2: for d = 1, ..., D do
3: for k = 1, . . . , K do
4: for l = 1 + k, . . . , K do
5: for u = 1, . . . , U do
6: sample Bkl, Blk

7: sample ω0, ω1

8: end for
9: sample σkl

10: end for
11: end for
12: for k = 1, . . . , K do
13: for u = 1, . . . , U do
14: sample Bkk, Qk

15: sample ω0, ω1

16: end for
17: end for
18: for i = 1, . . . , N do
19: for j = 1, . . . , N do
20: for t = 0, . . . , t− 1 do
21: sample gti→j

22: sample gti←j

23: end for
24: end for
25: end for
26: for i = 1, . . . , N do
27: for t = 0, 0′, . . . , t− 2, t− 2′, t− 1 do
28: sample zti
29: end for
30: end for
31: end for
32: return z,B,Q, g,σ
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