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ABSTRACT

The objective of this research was to develop behavior
models for the design of deep reinforced concrete beams with
particular reference to shear in continuous beams. A series
of beam tests was performed to aid in the development of
this objective,

The experimental program consisted of 6 simple span
beams and 17 two span continuous beams, each span being 2 m
in length. The shear span to depth ratios ranged from 1 to
2.5. Various arrangements and amounts of web reinforcement
were used including: no web reinforcement, minimum and
maximum horizontal web reinforcement, and minimum and
maximum vertical web reinforcement. The beams were
supported and loaded by columns cast monolithically with the
beams. The loads were applied through columns to the top of
the beams at midspan.

Measurements made during each test included applied
loads and reactions, midspan deflections, and concrete and
steel strains. The strains were measured over 2 to 5 inch
gage lengths. Cracks were marked and photographed at each
load step.

The beams generally failed in shear, exhibiting a wide
range of behavior, ranging from very brittle to very
ductile, depending on the amount and arrangement of the web
reinforcement, and the shear span to depth ratio. Within

the range of parameters tested, horizontal web reinforcement

iv



was found to be ineffective. Vertical stirrups when used in
sufficient numbers increased the beam strength and greatly
improved the ductility. Beams with this amount of vertical
wéb reinforcement (about ACI maximum stirrups) did not
exhibit typical deep beam behavior in that they did not show
an increase in shear strength with a decrease in shear span
to depth ratio.

The test specimens behaved as "trusses" or “"tied
arches" after the formation of cracks. It was found that
the plastic truss model gave good predictions of stresses as
well as ultimate strength provided that appropriate models
were used. The effective concrete strength was found to be
less important than the current concrete plasticity
literature suggests. The choice of an appropriate plastic
truss was found to be very important, especially for the
statically indeterminate beams where several different
plastic trusses are plausible.

Design recommendations based on plastic truss models of
behavior are presented.for simply supported and continuous

deep beams.
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1. INTRODUCTION

1.1 Problem Statement

This work considers shear in deep reinforced concrete
beams, with particular reference to continuous beams. Such
members typically occur as transfer girders, pile caps and
foundation walls, for example. A deep beam for the purposes
of this thesis is defined as a directly loaded beam with a
shear span to depth ratio, a/d, between 0.5 and 2.5.

A distinguishing feature of deep beams is that after
the formation of inclined cracks, "tied arch" behavior may
develop which in turn provides for considerable reserve
"shear" capacity. Shallow beams, that is beams with a/d
greater than about 2.5, do not develop significant arching
behavior, and generally fail shortly after the formation of
inclined cracking unless web reinforcement is provided. On
the other hand, very deep beams with a/d less than about 0.5
fall into the category of brackets or corbels. They may not
even develop inclined cracking and may fail with a sliding,
or shear friction type of mechanism.

The deep beam can be considered as the transition
between a slender beam and a bracket or corbel. Current
concrete design codes, such as the American Concrete
Institute (ACI) Building Code (ACI, 1977), do not provide
for a smooth transition in shear capacity between slender
beams and deep beams, and between deep beams and corbels. A

second problem with current design procedures is that they



are éﬁpirically based on data from simple span beams. As a
result, the ACI Code design equations "blow up" for

continuous deep beams. When the critical section for shear
is near the point of inflection, which it frequently is, the

ACI design equations require division by zero.

1.2 Research Objectives
The general objective of this research was to develop
design procedures for continuous deep beams. Specifically,
however, the objective was to develop a rational physical
model which would explain the ultimate strength behavior of
deep beams. The physical model should:
1) adequately predict ultimate strength,
2) provide a smooth transition in capacity from slender
beams through to corbels,
3) clearly explain the function of concrete,
longitudinal and transverse steel,
4) account for different types of loading and support

conditions,
5) provide a clear understanding of the "flow of forces"
through the member,
6) result in correctly detailed reinforcement.
Once derived, such a model can form the basis of design

rules.



1.3 Outline of Problem Solution

As with all research, the search for a solution started
with a review of the existing literature on déep beams.
This review is presented in Chapter 2. Its purpose was to
identify pertinent experimental data, establish the prime
variables and the range of interest for each variable,
critically examine existing problem formulations with a view
to identifying defects or "gaps" in the formulations, and to
determine areas which require further experimentation. Each
of the existing theories required calibration to test data
in some form or another. This led to the development of an
experimental program designed to provide the necessary data.

The experimental program is described in Chapter 3.
The program consisted of 23 beams, simply supported and
continuous, with various arrangements of web reinforcement
and various shear span to depth ratios. The tests provided
quantitative information on concrete strains, steel strains
and load deflection behavior as well as qualitative
behavioral observations,

Chapter 4 consists of an interpretation of the data and
a synthesis of the problem in light of the data. This
results in the development of a simple conceptual model of
behavior.

The simple conceptual model is developed into a
detailed computational model in Chapter 5. The model is
calibrated against the available data and its limits of

application are examined.



"A calibrated, simplified, but rational design model is
presented in Chapter 6. The model is an explicit plasticity
model, and as such it is presented in a manner which is more
or less compatible with design procedures currently being
proposed for the Canadian concfete design code.

A summary of the proposed design provisions and
significant observations and conclusions are presented in
Chapter 7.

~Design examples are given in Appendix B.



2. LITERATURE REVIEW

2.1 Introduction

The existing literature on deep beams was reviewed.
First, general background, or overview papers were
considered. Although these works do not present original
findings they do attempt to collect and synthesize the data
available at the time they were written. From these
references, the important parameters which affect deep beams
can be identified.

The next area examined was major research papers on
deep beams. These papers present original experimental data
along with empirical or semi-empirical analyses of the
results. They represent the major works leading to the
Canadian, American, British and European design recommenda-
tions, along with some papers which have not found their way
into design codes yet. These works are examined to see how
they consider or account for the important parameters which
influence deep beam behavior.

The growing literature on plasticity in reinforced
concrete was examined. While most of this literature does
not deal specifically with deep beams, deep beams do fall
within the scope of most plasticity methods. The.various
plasticity solutions are examined to see how they consider
each of the important parameters which influence deep beam

behavior.,



2.2 General Background

The Joint ASCE-ACI Task Committee 426 "Shear and
Diagonal Tension" (ACI-ASCE, 1973) produéed a benchmark
paper on shear in reinforced concrete members in 1973. The
basic mechanisms of shear transfer in slender concrete beams
were identified as:

v shear force transferred by stirrups

S

\Y shear force transferred by the compression zone

cz
V4 shear force transferred by dowel action of
longitudinal steel
Vay shear force transferred by aggregate interlock
along the diagonal tension crack.

The total shear capacity Vo is given as:

Vp = Vg + Vg + Vg + Vyy (2.1)
It was recognized that in deep beams, arch action can
provide an additional method for transmitting the loads to
the supports. This is true provided that the reinforcement
is detailed such that the beam can act as a tied arch. Five
failure modes for deep beams were identified. These are
illustrated in Fig. 2.1. The anchorage and bearing failures
relate to inadequate detailing. Once adequate details are
used, these premature failures will not develop, and the
strength of the beam will then depend on the strength of the
tension tie (flexural failure) or the strength of the

concrete arch or strut (arch rib failure). Hence, the main



Type of Failure

1. Anchorage failure
2. Bearing failure

3. Flexural failure

4. & 5. Arch-rib failure

Figure 2.1. Modes of Failure of Deep Beams From
ACI-ASCE, 1973



steel ratio p and the concrete strength f'_ are important
variables which affect the behavior of deep beams.

The type of tied arch or truss which can form depends
on the method of load application. For example, the beam
shown in Fig. 2.1 would mobilize a different truss geometry
if the point loads were moved closer to midspan. The slope
of the inclined truss members, approximately equal to d/a,
would change. A marked increase in shear capacity occurs in
beams with a/d less than about 2.5. If the point loads were
replaced with an equivalent uniformly distributed load, the
truss or tied-arch geometry would be different again and the
strength would change. If the loads were 'hung' from the
bottom of the beam, it is not possible to visualize a truss
or tied arch which would carry this type of loading unless
large amounts of 'hanger' reinforcement are used to 'lift'
the applied forces to the top of the beam. As a result,
only beams with direct loading exhibit shear strength
increases associated with deep beams. Hence the type of
loading and a/d are important parameters which affect the
behavior of deep beams.

It is worth noting that much of the literature
considers M/Vd, the ratio of moment to the shear times the
effective depth, to be a very important parameter. For
simply supported, point loaded beams, M/Vd reduces to a/d
since M = av, Most of the data available on deep beams
relates to such simply supported beams so that empirical

correlations based on M/Vd can be rewritten with a/d as the



parameter. For uniformly loaded simply supported beams,
M/Vd and a/d can be related but the relationship depends to
a large extent on the definitions of M, V, a and d. The
real difficulty with using M/Vd as a parameter occurs in
continuous beams. In this case M/Vd is highly dependent on
definitions and dimensions. Still worse, it no longer
relates to the slope of thé inclined members of the tied
arch which develops after inclined cracking. As a result,
a/d will be considered the prime parameter rather than M/vd.
The type of shear reinforcement can have an effect on
the shear capacity. Reinforcement may be vertical
(perpendicular to the longitudinal axis of the beam) or
horizontal (parallel to the longitudinal axis of the
beam). As a beam becomes deeper or shorter, the inclined
cracks become more vertical, and vertical stirrups become
less effective while horizontal web reinforcement is
believed to become more effective as shear friction
reinforcement across the inclined crack. Inclined web
reinforcement is a possibility but it usually is not
practical due to placing difficulties. As a result, only
vertical web reinforcement and horizontal web reinforcement
will be considered in this review. This reinforcement may
be dealt with quantitatively through the parameters Py the
ratio of vertical web reinforcement area to gross concrete
area of a horizontal section, and Ph the ratio of horizontal
web reinforcement area to gross concrete area of a vertical

section.



The nature of the loading is an importaht issue if the
loading causes reversals of shear. In the case of wind
loading, reversals do occur, but the main requirement is
that the member develop its design ultimate strength,
Earthquake loading on the other hand requires several cycles
of inelastic load reversal. The inclined cracks and the
associated truss which develops must change as the direction
of the loading changes. The extensive cross-inclined-
cracking which develops raises doubts about the contribution
of the céncrete to the shear capacity of the member, 'Paulay
(1969) has examined this problem, which is a guestion of
ductility as well as strength. This thesis will deal with
the development of the design ultimate strength under
monotonic loading only, earthquake loading and inelastic
load reversals will not be considered.

A parameter not adequately discussed in the literature,
but which significantly affects the strength of deep beams
is the 'Statical condition'. That is, whether the member is
simply supported'or continuous. In the continuous case a
point of inflection occurs within the shear span. At this
point the top and bottom flexural steel are both in
tension. This has a considerable effect on the cracking of
the beam web, as it tends to pull the concrete apart,
reducing the effective strength of the concrete compression
members of the truss or tied arch which develops after
inclined cracking.

In summary, the parameters of interest which affect the

10



behavior of deep beams are

1) the shear span to depth ratio, a/q4,

2) the compressive strength of the concrete, f

3) the geometrical ratio of flexural steel area to
concrete area, p

4) the geometrical ratio of vertical web reinforcement
area to concrete area, p,

5) the geometrical ratio of horizontal web reinforcement
area to concrete area, Ph

6) type of load

7) statical condition,

2.3 Major Deep Beam Literature

The purpose of this section is to review a few major
papers on deep beams and examine how each considers the
important parameters listed in the previous section.

Dischinger (1932) provided an elastic analysis of deep
reinforced concrete beams. This analysis clearly
illustrated that in an elastic deep beam, sections that are
plane before bending do not necessarily remain plane after
bending. Information on thé extent and magnitude of the
tensile zones was used in determining the necessary flexural
reinforcement on a working stress design basis. The
Portland Cement Association (1980) still produces a
publication based on Dischinger's work. There have been
several other elastic solutions for deep beams (Chow,

Conway, and Winter, 1952; Geer, 1960 for example). All of

11
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ﬁhese, Dishinger's included, suffer from the fact tﬁat they
are not valid after cracking has occurred in the beam, and
th&t they do not provide any information on the ultimate
strength of deep beams.

Leonhardt and Walther (1966) conducted a major
analytical and experimental investigation of the behavior of
deep beams. It was found that while elastic solutions
provide a good description of behavior before cracking, the
stresses measured after cracking differed significantly from
the theoretical elastic stresses. In particular, the actual
stresses in the reinforcement of the tensile chord were much
smaller than those values predicted from elastic solutions.
All of the test beams developed a marked 'strut frame
action', that is, a truss developed with inclined concrete
compression members and horizontal steel tension members.
The stresses in the tension chord reinforcement decreased
much less towards the end of the girder than the moments,
implying that the steel acted as a tension tie with
approximately constant force from one end of the beam to the
other., It was recommended that the main flexural
reinforcement be carried straight to the supports without
cutoffs, and that it be adequately anchored there.

Leonhardt and Walther suggested that this could best be
accomplished with 180° hooks lying in a horizontal plane
since the vertical bearing stress helps clamp the
reinforcement, improving its pull out resistance. Vertical

hooks do not benefit as much from the bearing pressure and



the vertical extensions tend to straighten out and push the
cover off the end of the beam rendering the extension
useless.

The distribution of bending moment in the continuous
beams tested by Leonhardt and Walther was found to
correspond to that obtained from an elastic analysis which
included shear deformations. In a deep continuous beam, the
shear deformations reduce the interior support moment, and
increase the midspan moments, and thus should not be
neglectd. (It might be argued in hindsight that since the
reinforcement in the specimens was proportioned on the basis
of a linear elastic solution including shear deformation,
plastic redistribution of internal forces would ensure
agreement with this solution.) The principal compressive
stress in the concrete in the support regions was greater
than predicted by theory, and was often critical. A grid of
reinforcement in these regions was recommended to help
resist these stresses, For bottom and indirect loading, web
reinforcement was required to prevent a shear failure, while
there was no danger of a shear failure in top loaded beams.

For beams loaded on top and supported on the bottom so
that compression struts could develop, vertical or inclined
web reinforcement was of no benefit. Leonhardt and Walther
concluded that, "For deep beams with L/d < 2, one should not
speak of shear and shear reinforcement. Such beams always
fail because the concrete crushes near the bearing where the

principal compression stresses become critical and give the
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upper limit of the carrying capacity, if the tie bars ‘are
well anchored and distributed." It should be pointed out
that the test specimens were very deep beams, generally with
a/d < 0.5. As a result, the results may not be directly
applicable in the range of a/d values studied in this
'feport. In addition, the beams were supported on steel
bearing plates which may have contributed to the failure of
the concrete near the supports.
| The CEB design recommendations for deep beams (Comite
Européan du Béton, 1970) are based primarily on the work of
Leonhardt and Walther. 1In summary, they provide
recommendations for the distribution and detailing of main
reinforcement which encourages and ensures tied arch
behavior. The design recommendations recognize the effects
of p, type of loading, the statical condition, and to some
extend a/d. The effect of effective concrete strength (fé)
. is dealt with by requiring an additional gfid of reinforce-
ment in the region of point loads and point supports so that
the stress becomes less important. Finally web reinforce-
ment (pv and ph) is only required for temperature and
shrinkage. The CEB recommendations apply to very deep
beams, and thus are only applicable to the low a/d end of
the range of beams investigated in this thesis. |

De Paiva and Siess (1965) conducted a series of tests
on 19 deep beams with L/d ratios between 2 and 4. The
specimens all had a span of 24 in, with overall heights

ranging from 7 in. to 13 in. The beams were loaded with 2



point loads giving a/d ratios ranging from 0.67 to 1.33,
Although these beams are shallower than those of Leonhardt
and Walther, they still exhibited tied arch behavior.
Empirical equations fitted to the data considered the
effects of fé, p, and a/d. It was found that vertical and
inclined stirrups had no effect on the formation of the
inclined cracks and seemed to have little effect on the
ultimate strength of beams failing in either flexure or
shear. The results of this study have limited application
because:

1) Almost half, (9 out of 19) the specimens failed in
flexure. This makes the population of shear failures
rather small, and leads to questions of confidence in
the empirical equations,

2) The small size of the specimens may have introduced
scale effects. In tests of slender beams the shear
strength tends to increase as the specimen size
decreases (Chana, 198l1). Size induced shear strength
increases of 20% to 50% could exist in these tests.

Crist (1971) conducted static tests on nine large scale
deep beams with span-to-depth ratios between 1.6 and 3.8.
The loading consisted of 7 point loads which represented an
almost uniformly distributed load. The observed behavior of
the specimens was similar to that already described.
Equations for the static shear strength of deep beams were
derived using the lower boundary of the data for these and

other tests., Some 73 tests were considered. Crist's

15



semirational derivation of design equations is important as
it is the basis for the ACI code recommendations for deep

beams. It starts with the premise that:

Total shear capacity = shear capacity of the concrete +

shear capacity of the web

reinforcment
V. = V. + V (2.2)

The shear capacity of the concrete V. is assumed to be:

v, =[3.5 - 5 ()

\
5 g [1.9 7ET + 2500 () ed] bd (2.3)

1
d
The second term represents the inclined cracking load of a
slender beam (ACI 1977) while the first term reflects the
reserve shear capacity of deep beams after the development
of inclined cracking. The critical section is assumed to
occur at the midlength of the inclined crack. For uniformly

distributed loads, this was found to occur at:

(2.4)

I
(e
N

ot
£
=
®
3

Qjr
n
()]

16



17

The ACI recommendations differ slightly in that:

M \")
Vo =[3.5 - 2.5 3] [1.9 VEL + 2500 o 5 d] b d (2.5)
u

ﬁ; w
with the critical section taken at 0.152n’for uniform. loads,
and 0.5a for concentrated loads.

The shear capacity of the web reinforcement was
developed considering shear friction along the inclined
crack as illustrated in Fig. 2.2. The shear friction

analogy gives:

§ = Fpp tan ¢ (2.6)
where FDT = the normal force on the inclined crack; tan ¢ =
the apparent coefficient of friction; and S = the shear
along the crack. The vertical component of the shear along

the crack is:
V. =S sin 8 (2.7)

The normal force Fpp is produced by tension in the
reinforcement which results from crack dilation as slip
occurs. Assuming that the stirrups are yielded at the

ultimate load condition:

F = A f ' (2.8)
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(a) Forces on Inclined Crack Plane

/—Web Reinforcement

Reinforcement

(b) Forces in Stirrups Along Inclined Crack Plane

Figufe 2.2. Derivation of Equations for Web
Reinforcement in Deep Beams



And from geometry this gives:
For = Z(Fpq) § = EF, sin (a; +6) (2.9)
And therefore:

V_ =IF_. sin («a,

s vi ; +0) tan ¢ sine (2.10)

With further trigonometric and algebraic manipulation for
vertical and horizontal web reinforcement

A A
Vg = £, d tano [gl cos®o + gXE sinze] (2.11)

S h

where A, and s refer to vertical web reinforcement and Ayt
and Sh refer to horizontal web reinforcement. A lower bound
to the crack inclination data for uniformly loaded deep

beams gives
cos?e = 1o (1 + =0 (2.12)

This can be used with Eq. 2.11 to give:

>

2 A
Yo+ s -®) (2.3

v_=f_ d tan¢ |
y h

s
ACI uses this equation assuming that the coefficient of
friction, tan ¢, is equal to 1.0 while Crist originally

suggested that tan ¢ = 1.5. For deep beams, the normal or

19
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clamping stress provided by the reinforcemenf is quite
small. The rock mechanics literature (Barton, 1973)
indicates that the coefficient of friction, tan ¢, for
existing crack surfaces and presumably precracked concrete
is dependent on the normal stress.

£ 0

tan ¢ = tan [20 log,, (Efiﬂ + 30 ] (2.14)
where Sh is the clamping stress on the crack surface.
Typically fé/on is approximately 20 in Crist's beams. For
this value Eqg. 2.14 gives tan ¢ = 1.48.

The analysis of Vg assumes that failure takes place by
sliding along the inclined crack. Because such a failure is
a complete failure mechanism in itself, there is no rational
basis for adding the capacity V, to the capacity of this
‘failure mechanism. The sliding hypothesis is an upper bound
solution in accordance with the upper bound plasticity

theorem. Thus, V. represents an upper limit to the total

s
shear capacity, and not just the shear capacity of the web
reinforcement.

In summary, Crist recognizes the influence of f'c as it
. affects the tensile strength of the concrete and the
inclined cracking load. He does not consider the
compressive strength of the concrete relative to any
compressive stress the concrete must carry. The effect of

a/d is considered directly in Eg. 2.5 and indirectly in Eq.

2.12. The model does take into account web reinforcement as



shear friction reinforcement, but ignores the effect of the
main reinforcement acting in a similar manner. There is no
logical reason for ignoring this effect. The shear
transmitted across the crack by the vertical component of
the stirrup forces is not considered. The statical
condition (continuity) of the beam is not considered. For
continuous beams Eq. 2.3 and 2.5 present "division by zero"
problems when the critical section is near the point of
inflection. The Crist model of behavior does not recognize
the tied arch or truss which develops after inclined
cracking. Finally, on the basis of the upper bound theorem,
the superposition of V. and Vg is not strictly rational.
Kong (1977) has conducted numerous tests on deep
beams. His work forms the basis for British practice (CIRIA
1977). On the basis of tests with 0.23 < x/h < 0.70, where
X = the clear shear span, a semi-empirical equation for

shear capacity was obtained:

v, =6(1-0.35F £.bh+c,z A ¥ sin2p (2.15)
The first term relates to the shear carried by the
concrete while the second term relates to the shear carried
by the reinforcement. The geometric symbols are illustrated
in Fig. 2.3. C; is a coefficient equal to 1.4 for normal
weight concrete and 1.0 for lightweight concrete, C, is a
coefficient equal to 130 MPa for plain round bars and 300

MPa for deformed bars, and f,; is the split cylinder tensile

21



/ Reinforcement

Figure 2.3. Kong's Symbol Definitions
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strength of the concrete. The test specimens were loaded
with concentrated loads rather than uniformly distributed
loads. This accounts for some of the differences between
the recommendations of Kong and those of Crist. The second
term of Eq. 2.15 is almost identical to the Eg. 2.10,
however, the area of the main reinforcement is included in
Eq. 2.15 while it is ignored in Eq. 2.10.

The comments on Crist's work are also valid for Kong's
results. It should be pointed out that Kong's tests had
very deep shear spans with a/d ranging between about 0.25
and 0.8. Again, Eg. 2.15 does not seem to reflect the tied-
arch behavior described by Leonhardt.

There are many other minor deep beam studies. They
will not be discussed specifically since they contain
results and conclusions similar to those already
considered. The significant conclusions are:

1) Current design recommendations are semi-empirical and
are based on tests simply supported deep beams which
are at the deep end of the range of a/d of interest.

2) Current design recommendations do not attempt to
predict the strength of the tied-arch or truss which
forms after inclined cracking.

3) There is strong disagreement about the effectiveness
of web reinforcement, particularly horizontal web

reinforcement.
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2.4 Plasticity Literature

During the last two decades, the growing literature of
plasticity in reinforced concrete has developed to the
extent that it forms the basis for shear design in some
reinforced concrete design codes (CEB, 1978; Si1a, 1976).
Generally, a modified Mohr-Coulomb failure criterion with a
zero or small tension cut-off and an associated flow rule
are used in conjunction with the upper and lower bound
plasticity theorems. The lower bound solutions generally
take the form of truss models while the upper bound
solutions relate to the various possible failure
mechanisms. Most of the published solutions are 'exact' in
the plasticity sense in that the upper and lower bounds for
the collapse load are identical. The lower bound solutions
are particulafly useful in design since they give the
designer an understanding of the 'flow of forces' through
the member, and if the failure criteria are adequate, the
solutions will always be safe estimates for member
capacity. Only lower bound solutions will be discussed
here. For a more complete discussion of plasticity in
reinforced concrete, see Appendix A.

Two typical simple truss models are presented in
Fig. 2.4 (Marti, 1980; Jensen, 1979). The essential
.features of these models are:

1) The concrete only resists compression and has an

effective compressive strength f; = vfé where

v < 1.0,



(a)

(b)

Figure 2.4. Plastic Trusses for Beams Without
Web Reinforcement
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2) Steel is required to resist ali tensile forces, -

3) The centroids of each truss member and the lines of
action of all externally applied loads at a joint
must coincide.

4) Joints are accommodated by using hydrostatic stress
elements (wedges of concrete shown with dark shading
in Fig. 2.4) in which both principal stresses are
equal to fg%.

5) Bearing plates, support conditions, and details must
be such that local bearing failures in the concrete
do not occur.

Provided that the conditions in item 5 are satisfied;

simple equilibrium gives:
V = T tan 6 (2.16)

where T is the yield force in the steel member of the

truss. Closed form expressions based on Eq. 2.16 are
available for some simple cases, but if a suitable truss can
be drawn, the angle 6 can be scaled from the drawing, and
Egq. 2.16 can be used directly. Some examples are
illustrated in Fig. 2.5.

A simple span beam with horizontal web reinforcement is
shown in Fig. 2.5(a). The load is carried by two trusses -
an upper truss utilizing the web bar, and a lower truss
utilizing the main reinforcement. The capacity of each

truss may be determined with Eq. 2.16 and added together.



P
» T,
—Cy=T,
oA P V
Simple 6, 0 | Fixed
Support VL VR4 Support
(b) Fixed-Simple Support Conditions '
P

\"
(c) Beam With Vertical Web Reinforcement

Figure 2.5. Applications of Plastic Trusses
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Figure 2.5(b) illustrates a beam with fixed~simple support
conditions. At the fixed support, two trusses carry the
load - an upper truss utilizing the top reinforcement with
force T,, and a lower truss utilizing the bottom
reinforcement with force T;. Again, the capacity of each
truss may be determined with Eq. 2.16 and added together. A
simple span beam with vertical web reinforcement is shown in
Fig. 2.5(c). The plastic truss uses the stirrups as
vertical web members, This case will be discussed in detail
in Chapter 5.

The plasticity trusses consider each of the 7 important
parameters listed in Section 2.2 in an explicit manner. The
shear span to depth ratio a/d as well as other geometric
considerations are reflected in 8. The concrete strength f;
géverns the joint details and these, in turn, govern 6. The
type of loading and statical condition govern the geometry
of the plastic truss.

Apparently the most important parameter in the plastic
truss models is the effective concrete strength. This
relates to the strain softening behavior of concrete.

Often, portions of the concrete will be stressed beyond peak
strength and begin to soften before other portions of the
concrete begin to mobilize full strength. Hence one cannot
rely on mobilizing the full strength of the concrete over
the entire section. 1In addition, local effects often give
rise to local complicated stress distributions which are

oversimplified in the plasticity model (Thurlimann, 1979).
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This leads to the introduction of an effective concrete
strength vfé, where v < 1.0 is an efficiency factor. Wwhile
Exner (1979) employs theoretical means to evaluate the
efficiency factor, values of v are usually.back calculated
from test data, and thus depend upon the plasticity model
used in predicting the member capacity. At present,
different v factors are suggested for beam shear, punching
shear, anchorage, etc.

There are other forms of plasticity solutions for deep
beams. Manuel (1974), Kumar (1976) etc. present less
rigorous versions of the models already discussed. Collins
and Mitchel (1980) have presented a somewhat more rigorous
solution in that they attempt to describe the entire
nonlinear response of the concrete in a beam web. Their
work is based on an empirically obtained constitutive
relationship for reinforced concrete under uniform plane
stress conditions. The method has yet to be fully developed
and verified for problems with nonuniform stress fields such
as those in point loaded deep beams where compression struts
develop. In Collin's analysis, the design "problem" in a
typical deep beam is not shear, rather it is one of

excessive bearing stress at the support.

2.5 Unresolved Issues
This brief literature review has brought to light a
number of unresolved issues. The problems start with an

inadequate data base for a/d between 1.0 and 2.5, especially
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when spans are continuous. The current semi-empirical
design recommendations must be extrapolated for the range of
parameters of interest. This extrapolation may not be
appropriate, for there is considerable disagreement about
the effectiveness of web reinforcement, particularly
horizontal web reinforcement. The plasticity solutions
which attempt to predict the strength of the tied-arch or
truss which forms after inclined cracking rely on a concrete
efficiency factor v. Appropriate truss models and
efficienéy factors for the type of deep beams under
consideration in this thesis have yet to be determined due
to the lack of sufficient test data.

In iight of the above, an experimental test series was
designed to provide data on the effects of statical

condition, p /s py+ and f', for a/d between 1.0 and 2.5.



3. EXPERIMENTAL PROGRAM

3.1 Overview of Experimental Program

The experimental program consisted of tests of 23
specimens, 4 of which were tested by Ong (1982). This
chapter is a brief summary of the testing program. The
detailed documentation for the tests can be found in a
report by Rogowsky, MacGregor and Ong (1983). The specimens
included 6 simple span beams and 17 two span continuous
beams, each span being 2 m in length. The shear span to
depth ratios ranged from 1 to 2.5. Various arrangements and
amounts of web reinforcement were used including: no web
reinforcement, "minimum" and "maximum" horizontal web
reinforcement, and "minimum®” and "maximum" vertical web
reinforcement. The beams were supported and loaded by
columns cast monolithically with the beams. The loads were
applied through columns to the top of the beams at midspan.

Measurements made during each test included applied
loads énd reactions, midspan deflections, and concrete and
steel strains. The strains were measured mechanically over
2 to 5 inch gage lengths. Cracks were marked and
photographed at each load step.

The beams generally failed in shear, exhibiting a wide
range of behavior, ranging from very brittle to very ductile
depending on the amount and arrangement of the web

reinforcement, and the shear span to depth ratio.
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3;2 Test Specimens

The standard series of specimens at each shear span to
depth ratio consisted of 7 beams shown schematically in
Fig. 3.1. Beams 1 and 2 in each series were simply
supported and contained identical flexural reinforcement.
Stirrups were provided at only one end of each of these
beams giving a total of 4 different web reinforcement
conditions in the 4 simply supported shear spans. The
remaining beams in the series were two-spén continuous beams
which had the geometry of two simple spans end to end. All
of the continuous beams in a series had the same main
flexural reinforcement, and were symmetrical so that 5
different web reinforcement conditions were considered. in
the continuous shear spans.

The identification number for each beam consists of an
integer number corresponding to its place in the test series
as shown in Fig. 3.1, followed by a '/' and a real number
which indicates the nominal shear span to depth ratio,
followed by 'N', or 'S' indicating the north and south shear
span. Hence, BM 2/1.0N conceptually has the same basic type
of reinforcement, and is directly comparable to BM 2/1.5N
and BM 2/2.0N. A suffix of 'Tl' indicates that the data is
for the first loading of the beam leading to failure of one
of the shear spans (virgin test), while a suffix of 'T2'
indicates that the data is for the retest of the beam after
the initial failure had been reinforced externally. The

second test series, shear span to depth ratio of 1.5, had 8
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.
beams. Beam 8/1.5 had minimum vertical and minimum
horizontal web reinforcement.

The locations of the centre lines of the loads and
teactions were the same for all beams tested. Only the beam
depth and size of loading column were varied to obtain the
desired shear span‘to depth ratios. The beams were loaded
and supported through column stubs cast integrally with the
beam to load and support the beam in a realistic manner.

All specimens were concreted in a vertical position in
the same set of forms and differed only in overall depths
and number of spans. The overall dimensions are given in
Fig. 3.2. The details of the reinforcement for each beam
are given in Tables 3.1 and 3.2. Typical details are
illustrated in Figs. 3.3 and 3.4. In all cases the beam
reinforcement passed inside the vertical column bars; The
clear cover to the column ties and the top and bottom of the
stirrups was 10 mm. The clear side cover to the stirrups
was 25 mm. The side clear cover to the outside longitudinal
bars was 35 mm except in beams 1, 2, 3, and 4 of the x/1.0
series in which it was 45 mm. All bottom flexural
reinforcement extended the full length of the beam. Both
ends of the bars had standard hooks located within the
exterior column cages. All column steel extended at least
one compression development length into the beam.

Horizontal stirrups were anchored at each end with standard
hooks. All vertical stirrups were closed stirrups anchored

at the top with 135 degree hooks around a main flexural bar
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Table 3.2 Geometric Details of Specimens

. d(mm) a* a/d**
Specimen (mm)
k%
Top steel|Bot.Steel| Average
1/1.0 - 950 950 750 0.79
2/1.0 980+ 950 950 750 0.79
3/1.0 950 975 963 750 0.78
4/1.0 950 975 963 750 0.78
5/1.0 950 975 963 750 0.78
6/1.0 950 975 963 750 0.78
7/1.0 950 975 963 750 0.78
1/1.5 - 535 535 750 1.40
2/1.5 580+ 535 535 750 1.40
3/1.5 555 520 538 750 1.40
4/1.5 555 520 538 750 1.40
5/1.5 555 520 538 750 1.40
6/1.5 555 520 538 750 1.40
7/1.5 555 520 538 750 1.40
8/1.5 555 520 538 750 1.40
1/2.0 - 455 455 800 1.76
2/2.0 480+ 455 455 800 1.76
3/2.0 455 420 438 800 1.83
4/2.0 455 420 438 800 1.83
5/2.0 455 420 438 800 1.83
6/2.0 455 420 438 800 1.83
7/2.0 455 420 438 800 1.83
5/2.5 355 355 355 80O 2.25
* Clear distance between faces of loading and

supporting columns.

* % Average d used

**%* d for effectively anchored bars only.

(see footnote to Table 2.2)

for simply supported beams.

This top steel has been neglected in calculations
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or} in the case of simple spans, around a 6 mm stirrup
support bar. The column bars were saw cut square and tack
wélded to the steel base plates,

Lifting loops were provided at the ends of each beam.
The continuous beams were provided with a third lifting loop
over the interior support. The lifting loops consisted of
10M bars or 1/2 inch diameter prestressing strand. The bars
were abandoned in favor of the prestressing strand because
the strand readily and safely accommodated the flexing which
occurred during the movement and handling of the
specimens. The lifting loops did not appear to influence
the behavior of the beams in any way.

All reinforcement, except the column ties consisted of
deformed bars. The 6 mm diameter deformed bars were
obtained from Sweden while the remaining bars were obtained
locally. The reinforcement had a specified yield strength
of 400 MPa with measured yield strengths ranging from 380 to
480 MPa. The bar yield forces are given in Table 3.1. The
average Young's Modulus for the reinforcement was
approximately 204,000 MPa.

The concrete mix was designed to produce a 28 day
cylinder strength of about 30 MPa. Normal Type 10 Portland
cement and normal weight river washed aggregates were
used. The maximum aggregate size was 10 mm and the slump
was approximately 100 mm. Owing to variation in the supply
of aggregates and cement over the dufation of construction

and testing (14 months), the inevitable delay in the testing
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of individual specimens and the variable curing conditions
in the laboratory, there was considerale scatter in the
values of concrete strength at the time of testing. The
concrete properties at the time each specimen was tested are
given in Table 3.3.

The specimens were heavily instrumented to obtain as
much information as possible about the behavior of the beams
at each stage of loading. All loads and reactions were
determined with load cells. The steel and concrete strains
were measured using Demec Gages (demountable mechanical
extensometers). Displacements were measured with standard
dial gauges and linear variable-differential transformers
(LVDT's). The data acquisition computer became functional
part way through the testing program and was used to record
data for the last 15 specimens.

The specimens were tested in the loading frame shown in
Fig. 3.5. The loads were applied by hydraulic jacks. The
load was applied in increments, with approximately 7 load
steps to failure. During each increment, the load was kept
constant while cracks were marked and photographed, and
loads, displacements, and strains were measured and
recorded. |

Each beam was tested to failure twice. After the first
shear span failed, it was externally reinforced with a yoke
above and below the beam and twelve 3/4 in., diameter tie
rods acting as stirrups, The external reinforcement is

visible in Fig. 3.5. The support reactions of the
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Figure 3.5 Loading Frame and Test Set-up
(Beam 5/1.0 is shown in the testing frame)
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continuous beams were then remounted on their bearing plates
to allow for any movement due to adding the yokes. The

beams were then retested.

3.3 Test Results

This section of the thesis presents a brief summary of
the test results with typical results presented where
appropriate. Most of the data has been reduced to graphical
form for ease of interpretation.

All of the beams were tested spanning in a north-south
direction. The figures illustrating the beams always have
the north end of the beam shown as the left end. Thus, the
drawings of the east face have been reversed. This has been
done to allow direct comparison of data from the two faces.

The loads and reactions at failure are given in Table
3.4. The percentage difference between the loads and the
reactions is given in the last column. The corresponding
ultimate shear strengths are given in Table 3.5. 1In these
tables the two lines given for each beam refer to the first
and second tests, respectively. Graphs of the jack load vs.
midspan deflection are presented in Figs. 3.6 to 3.13.

Crack patterns, concrete strains, and steel strains
have been reported for each beam‘(Rogowsky et al., 1983).
The results for a few typical beams are presented here. The
data for each beam consists of a sketch of the crack pattern
with shaded areas representing regions that crushed or

spalled at failure. The concrete strains are plotted on a
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Table 3.4 Loads and Reactions at Ultimate Failure

Rl ri | ¥4 r2 R3
[ TYT Type of Ued e/°P
Mark Reinforcesent| ¥. Support R, Jack Int. Support $. Jack §. Support <)
Resction (ki) Load (kM) Reaction (kM) Load (kN) Reaction (kN)
1/1.0 Min. Vert. 602* 1204 602 1
None 699 1397 699 0
2/1.0 Nin. Horiz. 750 1500 750 0
Min Vert. ¢
Min. Horiz. 750 1500 750 0
3/1.0 Min. Vert. 400* 1083 1385 1082 393 -1
Min. Vert. 400 1176 1540 1150 J86% -1
/1.0 Min. Noris. 420 1087 1330 1078 h15e -1
Min. Noriz. 378 996 1229 979 369 -1
$/1.0 Max., Vert. 413 1288 1740 1271 405 -1
Max. Vert, 304 961 1491 1333 499% -1
6/1.0 Max. RHoriz. 461 1107 1280 1083 448" -1
Max. Horiz. 479 1084 1186 1034 453 ]
7/1.0 None 287 nt 842 698 280¢ =1
None 4050 1100 1377 1070 389 -1
[ None 303 606 an3w o
Min. Vert. 354w 709 354 0
2/1.5 Min. Horiz. 226 452 226* 0
Min. Vert. +
Min. Roriz. 348 696 348 0
371.3 Min. Horiz. 158 401 A8S 398 156* -2
Kin. Vert. 181 A68 572 L64 179 -1
4/1.5 Min. Horiz. 118+ 324 41l an 116 -2
Min. Horiz. 138 373 46?7 368 136% -2
/1.5 Max. Vert. 293 858 1126 847 287 -1
Mex. Vert. s (11 1136 879 313 -1
6/1.5 Max. Horiz. 147 407 515 399 IERL 0
Max. Horiz. 150 408 S14 405 148 -1
1.5 None 137 360 445 357 135% -1
None 220* S68 693 565 219 -1
8/1.5 Min, Vert. +
Min. Horiz. 201 $43 681 $37 198+ -1
Min. Vert. +
Min., Moriz. 218 600 762 594 214 -2
1/2.0 None 177 354 177+ 1
Min. Vert. 199+ 399 199 -1
2/2.0 Min. Horiz. 185 369 185¢ 0
Hia. Vert., +
Hin. NHoriz. 204 407 204 0
3/2.0 Min. Vert. 164 425 521 422 162 -1
Min, Vert. 167 447 587 440 163¢ -2
&/2.0 Min. Roriz. 105¢ 300 390 297 103 -2
Nin. Morisz. 128 m 488 369 126* -2
5/2.0 Max. Vert. 224¢ 67? 899 661 216 -2
Max. Vert. 2462 703 918 693 237% -2
6/2.0 Max. Noriz. 113 299 372 297 111* -2
Max. Horiz. 97e 238 277 228 92 0
1/2.0 None 108 29¢ 374 291 106# -1
None 82 232 299 227 79 -1
/2.9 Hax. Vervt. 1560 486 656 478 152 -2
Max. Verc. - - - - - -
*{rdicates end of beam in which failure occurred.
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Table 3.5 Ultimate Shear Strengths

Bean Type of Wed Y Y f'c v (£' y~0.5 1
Mark Reinforcemsent (kN) (XPs) (MPa) uwooe Vu(PC)
(s1)
1/1.0 Min. Vert. 602 3.17 26.1 0.62 0.121
None 699 3.68 26.1 0.72 0.141
2/1.0 Min. Horiz. 750 3.95 26.8 0.76 0.147
Min., Vert, +
Min. Horiz, 750 3.95 26.8 0.76 0.147
3/1.0 Min. Vert. 685 3.61 28.9 0.67 0.125
Min. Vert. 764 4.02 28.9 0.75 0.139
4/1.0 Min. Horiz. 663 3.49 28.5 0.65 0.122
Min. Herie. 618 3.25 28.5 0.61 0.114
5/1.0 Max. Vert. 875 6.61 36.9 0.76 0.125
Max. Vert. 834 4.39 36.9 0.72 0.119
6/1.0 Max. Horle. 635 3.34 35.8 0.56 0.093
Max, Horiz. 605 3.18 3s5.8 0.53 0.089
7/1.0 None 418 2.20 34,5 0.37 0.064
None 695 3.66 34.5 0.62 0.106
irl.5 Nene 303 2.86 42.4 0,44 0.067
Min. Vert. 354 3.34 42,4 0.51 0.079
2/1.5 Min. Hori:. 226 2.13 42.4 0.33 0.050
Min. Vert. +
Min, Hori:. 348 3.28 42,4 0.50 0.077
3.15 Min. Vert. 262 2.30 14.5 0.61 0.159
Min. Vert. 287 2.73 14,5 0.72 0.188
41,5 Min, Horiz. 206 1.96 32.5 0.34 0.060
Min. Horie. 232 2.21 32.5 0.39 0.068
5/1.5 Max. Vert. 565 5.38 39.6 0.86 0.136
Mex. Vert. 566 5.39 39.6 0.86 0.136
6/1.5 Max. Horiz, 286 2.44 45.0 0.36 0.054
Max. Horiz. 258 2.46 45.0 0.37 0.055
1.8 None 222 2.11 30.4 0.38 0.069
None 348 3.31 30.4 0.60 0.109
8/1.5 Min. Vert, + .
Min. Horiz. 339 3.23 37.2 0.53 0.087
Min. Vert., +
Min. Horiz. 382 3.64 37.2 0.60 0.098
172.0 None 177 1.30 3.2 0.20 0.030
Min. Vert. 199 2.21 43.2 0.34 0.051
2/2,0 Min. Horiz. 185 2,06 43.2 0.31 0.048
Min., Vert. +
Min. Horiz. 204 2.27 43.2 0.34 0.053
3/2.0 Min, Vert. 261 2.97 42.5 0.45 0.070
Min., Vert. 277 3.1 42.5 0.48 0.074
4/2.0 Min. Hori:. 195 2,22 38.3 0.36 0.058
Min. Horiz. 243 2.76 38.3 0.45 0.072
5/2.0 Max. Verc. 453 5.15 41.1 0.80 0.125
Max. Verc. 456 5.18 81.1 0.81 0.126
6/2.0 Max. Horiz. 186 2.11 37.4 0.35 0.056
Max. Horie. 141 1.60 37.4 0.26 0.43
7/2.0 None 185 2.10 46.8 0.31 0.045
None 150 1.70 6.8 0.25 0.036
5/2.5 Max. Vert. 330 6.65 34.0 0.80 0.137

Max. Verc,
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sketch of the beam. Only the principal compressive strains
are shown for clarity with a crossing line representing the
location of the rosette. 1Two figures are used to present
the steel strain data. The first includes an elevation of
the beam showing the location of the reinforcement and Demec
targets superimposed on the crack pattern. Directly below
this, the steel strains are plotted as a function of the
position along the bars., A second plot relates the strain
in selected gage locations to the applied jack load. In the
latter figures, heavy solid lines are used for bottom main
steel, light solid lines are used for top main steel, and
broken lines for web steel. Data are presented for the
following specimens:
Figure Beam Typical of:
3.14(a) to (e) 1/1.0 simple span deep beam
3.15(a) to (d) 5/1.0 continuous deep beam with heavy
stirrups
3.16(a) to (4d) 6/1.0 continuous deep beam without heavy
stirrups

Beam 1/1.0 which is documented in Fig. 3.14(a) to (e)
is typical of the behavior of simple spén déep beams without
stirrups or with light stirrups. Major inclined cracks
developed almost instantaneously at a jack load bf about
350 kN. The cracks appeared to be very severe even though
the load was only about 25% of the eventual failure load.
After inclined cracking, the behavior was essentiaily that

of a truss or tied-arch. This is evident in the concrete
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Figure 3.14(a) Beam 1/1.0 Crack Patterns
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North South
End End
{
Gage Locations
\ Lower Bar -
N Upper Bar
Yield Strain \\\\ f ,ﬂ ' z\\//} Load =
| P
[T e —— e~ 1200 kN
Load =
700 kN

Location in Span
Main Steel Strains

(Strain Scale: 1mm = 50 Micro-Strain)

Figure 3.14 (d) Beam 1/.1.0 Steel Strains.
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strain diagrams (Fig. 3.14(b) and (c)) wﬁich show bands of
compressed concrete joining the load and reactions and in
the steel strain diagrams (Fig. 3.14(d)) which show almost
constant steel strains from end to end. The stirrups
crossing the major inclined crack in the North shear span
were at or near yield at failure. Some of these reached
yield at 50 to 60 percent of the failure load. Ultimate
failure was due to crushing of the compression strut as
shown in Fig. 3.14(a) or (d). Although the north end had
stirrups it failed first (Tl) at a lower load and deflection
than the south end.

Beam 5/1.0 (Fig. 3.15(a) to (c)) was typical of a

continuous deep beam with heavy stirrup reinforcement. Even

though there were a large number of stirrups present,
inclined cracking still occurred with a loud 'thud'. There
were crack "fans" over the interior support and under each
load. The compression struts formed between the cracks
making up these fans and tended to be less well defined than
in other continuous beams. The steel strain diagrams in
Fig. 3.15(c) resembled the bending moment diagréms shifted
away from points of maximum moment rather than being
constant as expected in a simple truss as observed in
Specimen 1/1.0 (Fig. 3.14(d)). Ultimate failure was due to
crushing near the top of the compression strut in the
interior shear span. This was often precipitated by
vertical opening of the inclined cracks which tended to pull

the compression strut apart. The failure was very ductile
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as can be seen from the load deflection curves in Fig.

3.7. This was true for all 5/xx beams.

| Beam 6/1.0 was typical of a continuous beam without
heavy stirrups (Fig. 3.16). There was little difference in
béhavior for beams with no web reinforcement, minimum
stirrups, minimum horizontal web reinforcement, or maximum
horizontal web reinforcement. Inclined cracks developed in
a sudden manner. The crack fans mentioned above, were not
well developed in these beams. The beams did not have a
period of significant ductility during which the cracks
could develoé. In the deeper beams, ﬁltimate failure was by
crushing of the cémpression strut accompanied by opening of
the inclined cracks. For the shallower beams (X/2.0) the
failures tended to be caused by diagonal tension or opening
of the inclined crack. At loads near failure the strain in
the longitudinal steel tended to remain constant rather than
following the bending moment diagram as shown in Fig.
3.16(c). These beams were brittle, and in many instances,

failure occurred before the main steel yielded.

3.4 Summafy of Observed Behavior

In summary, two main types of behavior were observed.
Beams without stirf%ps or with minimum stirrups approached
tied-arch action at failure. This was true regardless of
the amount of horizontal web reinforcement present. These
failures were sudden with iittle or no plastic

deformation. On the other hand, beams with large amounts of

stirrups failed in a ductile manner.
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4. INTERPRETATION OF RESULTS

4.1 Introduction

This chapter consists of an interpretation of the data
and a synthesis of the problem in the light of the data.
This results in the proposal of a simple conceptual model of
behavior. An overview of this model is presented in this
chapter. The model will be developed more fully in the next

chapter.

4.2 Evaluation of the Data

The test data will be evaluated by considering a number
of different aspects of the deep beam problem. The effects
of statical condition; ratio of vertical web reinforcement,
p,7 ratio of horizontal web reinforcement, Py¢ Shear span to
depth ratio, a/d; and concrete strength, f'c can be examined
by considering concrete strains, steel strains, ductility,
type of failure, and ultimate shear strength.

First, consider the jack load vs. midspan deflection
diagrams shown in Figs. 3.6 to 3.13. A qualitative
evaluation of the curves indicates that there is no
signficant systematic difference in behavior of the
specimens between the virgin test, Tl and the retest, T2.

In general, beams without stirrups had very little
ductility. Continuous beams with heavy stirrups were
ductile while those with light stirrups were fairly

brittle. On the other hand, simple span beams with light
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stirrups showed some ductility.

Comparison of the load deflection curves for all the
continuous beams in each series of a/d, indicate that with
the exception of the 5/xx beams which had maximum stirrups,
all of the beams had approximately the same strength
regardless of the type of web reinforcements. See Fig. 3.9
for example. There are some variations in strength between
beams, but these may be due to variations in concrete
strength between specimens. In any event, the variations
between different specimens is of the same order as
variations in strength between the virgin test and the
retest of a.given specimen. Direct comparison of shear
strength between simply supported and continuous beams is
not possible from the jack load vs. deflection curves
because the maximum shear in a simple beam is 1/2 the jack
load while the maximum shear in a continuous beam is
approximately 2/3 of the jack load.

Further evaluation of the strength data requires
quantitative comparisons which remove the influence of
variations in the concrete strength and statical system.
These variations can be accounted for by using vu/fé or
vu//fz in comparisons of shear strength at failure. Which
parameter should be used is not clear. In shallow beams it
is common to correlate the shear stress with /fz; Smith and
Vantsiotis (1982) found that for their deep beams, better
correlations were obtained using £.. Both vu//fz and

vu/fé are given in Table 3.5. Plots were actually made
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using both parameters. Figures 4.1 to 4.,4 are presented
for the latter parameter only. It was found that both vu/fé
and vu//fz produced the same general trends except for beam
3/1.5 which had a very low concrete strength of 14.5 MPa.
The data for this beam was higher on the diagram when
correlated to vu/fé .

Figures 4.1 to 4.4 indicate the influence of the
statical system (simple span vs. continuous), a/d, and web
reinforcement type. As there are only about 10 data points
on each of these figures it is not possible to draw
statistically significant conclusions. The data for the
simple span beams has been compiled together in Fig. 4.5.
There is no distinguishable difference in strength between
the various types of web reinforcement. The data for the
continuous beams has been compiled in Fig. 4.6. Again,
there is no distinguishable difference between specimens
except for those with maximum vertical stirrups shown with
solid points. For maximum stirrups, the shear strength does
not appear to be influenced by a/d. None of the simple span
specimens had heavy stirrup reinforcement, so it was
uncertain whether a similar insensitivity to a/d occurs in
simple spans.

A composite diagram of all the data is presented in
-Fig. 4.7. The envelopes for simple span and continous span
data have been superimposed on the Figure. Simple span
beams appear to be stronger than continuous beams for low

a/d ratios, while the reverse is true for high a/d ratios.
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On the other hand, beams with heavy stirrup reinforcement
are not affected by the a/d ratio at all.

At an a/d ratio of about 2, the strength of the deep
beams has dropped close to 0.17/fz suggesting that the
transition from shallow beam to deep beam behavior occurs
near a/d = 2.0.

At this point, it should be re-emphasized that the
specimens exhibit two different types of behavior. Beams
with heavy stirrups exhibit ductile behavor with very good
agreemenf between the virgin and retest strength. All other
beams regardless of the type 6f web reinforcement had
brittle failures. For the continuous beams the virgin and
retest strengths varied considerably, but not
consistently.. That is, sometimes the beam was weaker in the
retest, and sometimes it was stronger. Beams without web
reinforcement had the greatest variability (See Beam 7/1.0
for example). Beams with heavy or light horizontal web
reinforcement have less, but still significant variability
of strength. Beams with light stirrups have even less
variability, but still had up to a 15% difference in
strength between the virgin test and retest. It appears
that while light web reinforcement does not significantly
increase the average shear strength of a deep beam, it does

lead to more consistent and repeatable results.
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4.3 Conceptual Model

The significant experimental observations which a model

must explain are:

1)

2)

3)

1)

5)

In members without sﬁirrups, the flexural steel
strains are constant along the bars between point
loads and supports

In members without stirrups subjected to point loads,
compreésion struts develop in the concrete which
carry the loads directly to the supports. The
vertical component of the strut force, and hence the
shear capacity is very dependent on a/d.

In beams without stirrups, the failures were sudden
and were due to crushing of the concrete compression
struts,

when sufficient stirrups are present, flexural steel
strains vary along the bars in approximate accordance

with a shifted bending moment diagram. However, the

top and bottom steel can have significant tension

strain at the face of the load and support columns
respectively.

when sufficient stirrups are present, crack fans
develop under the loads, and over the interior
support. These cracks diminish the effective width
of any direct compression strut which might

develop. The reduction in the amount of shear force
carried by direct strut action is indicated by the

lack of influence of a/d (the strut slope) on the
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total shear capacity.

6) when sufficient stirrups are presént, failures were
very ductile and were initiated by general yielding
of the stirrups.

What physical model explains these observations? The
shear friction models of Crist (1971), Kong (1977), etc.
reviewed in Chapter 2, do not correctly predict the
influence of horizontal and vertical web reinforcement, and
do not consider the forces developed along the flexural
reinforcement. The truss analogies based on plasticity
theory (Fig. 2.5), do predict all 6 observations in a
qualitative sense. The question is, "can they also give
acceptable quantitative results?" This is considered in

Chapter 5.

83



e IO~ N = s SIS

5. PLASTIC TRUSS MODELS

5.1 Introduction
This chapter deals with the development of plastic

truss models. The simple conceptual models of Chapters 2

and 4 will be expanded into detailed computational models,

and will be calibrated against the available data. Limits
of application for the plastic truss model (PTM) will be
examined,

Emphasis in this chapter is on analysis rather than
design. The problem in analysis is to determine the
strongest plastic truss which fits within, and is compatible
with the geometry of the beam. This work is an extension
and application of work done by Marti (1978), Muller (1981),

Thurlimann (1978), and Nielsen et al. (1978).

5.2 Basic Assumptions
In the application of the plastic truss model one
idealizes the beam as a pin jointed truss with concrete
acting as compression members and steel acting as tension
members. The basic assumptions used are:
1) Equilibrium must be satisfied
2) Elastic strains are negligible compared to the yield
strains.
3) The concrete only resists compression and has an
effective compressive strength f; = vfé,where

v < 1.0,
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4)
5)

Steel is required to resist all tensile forces.
Failure of the truss analog occurs when it forms a
mechanisms due to either a concrete compression

member crushing, or a steel tension member yielding.

The basic assumptions lead to several corollaries.

They are:

1)

2)

3)

The centroid of each truss member and the lines of
action of all external loads at a joint must
coincide. With a concurrent force system there is no
moment in the joint making the assumption of a pinned
joint reasonable.

Concrete compression struts (shown by light shading
in truss diagrams presented later in this chapter)
are in uniaxial compression with a uniform stress of
£& at the ultimate load. The end faces of a strut
are principal stress faces and must be perpendicular
to the longitudinal axis of the strut. The values of
f¢ are discussed in Section 5.4.

Joints are accommodated by using "hydrostatic stress
elements" (shown by dark shading in truss diagrams)
in which both principal stresses are equal to f%,
While these elements are usually triangular, they may
have any polygonal shape, but must have a uniaxial
compression stress equal to fé acting on each face or
facet of the element within the plane of the beam.
(These elements do not have true hydrostatic stress

because the stresses on the "free faces" will not be

85



equal to f*., The Mohr's Circle for the inplane
stresses does, however, plot as a point which is
characteristic of trué hydrostatic stress.)

4) Bearing plates, support conditions and details must
be such that local bearing and anchorage failures do
not occur,

The assumptions and corollaries given here relate
’épecifically to the plastic truss model. They represent a
special case of the more general theory of plasticity in

reinforced concrete which is given in Appendix A.

'5.3 Analysis of Beams Using the Plastic Truss Model

Use of the plastic truss model will be demonstrated
with three hypothetical examples. Beams without web
reinforcement, with horizontal web reinforcement, and with
vertical stirrups are considered.

The first example consists of a simply supported beam
without web reinforcement. The beam is subjected to a point
load at midspan. Figure 5.1 illustrates an appropriate
truss model for one half of the beam. The concrete which is
utilized as part of the truss is shown shaded, with struts
(uniaxial compression zones) in light shading and
hydrostatic stress elements (biaxial compression zones) in
dark shading. The widths of the shaded areas should be
drawn to scale, that is, the cross-sectional area of a strut
times the effective concrete strength f% should equal the

force in the strut. The truss as drawn must, of course, fit
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within the overall beam geometry. The truss in this example
is statically determinate, and barring detail failures, the
maximum capacity of the truss will be obtained when the
tension steel yields, or the compression strut crushes.
Generally the latter event will not occur if it is possible
to draw a larger strut that satisfies corollary one and
still remains within the beam geometry.

Ultimate strength for this member will be obtained when
the main steel yields. This is typical of most practical
cases one is likely to come across in practice since design
codes discourage the use of beams which are over-reinforced
in flexure. The starting point in most analyses will be to
assume that the steel yields, thus defining the magnitude of
T. The effective width of the concrete acting against the
anchor plate and the remaining truss geometry can be readily
determined. Knowing the slope of the inclined strut, 6, and
the horizontal component of the strut force, T, the vertical
component, V, is easily found. Figure 5.1(b) illustrates
the force in the bottom steel of the beam and shows the
significant difference in behavior between a truss model,
where the steel force is constant, and simple beam theory
where it varies according to the moment diagram.

The second example involves a simply supported beam
with flexural steel and one layer of horizontal web
reinforcement. Again the beam is subjected to a point load
at midspan. As shown in Fig. 5.2 there are really two

trusses present, a lower truss utilizing the main steel as
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the tension tie, and an upper truss utilizing the web steel
as the tension tie. It should be noted that each truss has
its own compression strut, tension tie and hydrostatic
element. For an ideal plastic material the capacity of the
beam would be the capacity of the lower truss plus the
capacity of the upper truss. For reinforced concrete, this
is not neceséarily the case. The kinematics are such that
the bottom steel will reach yield before the web
reinforcement, hence the lqwer truss will develop its
capacity before the upper truss. The deformations required
to yield the web reinforcement and thus develop the upper
truss will generally be large enough to destroy the lower
truss. The beam strength will thus be equal to or only
slightly larger than the strength of the lower truss which
utilizes the bottom reinforcement only. Recent tests by
Smith and Vantsiotis (1982) on simply supported deep beams
indicate that horizontal web reinforcement has little
influence on the ultimate strength of such beams. The same
Ais true for the simple span and continuous beams reported in
this thesis.

Even if the beams had ideal plasticity, the influence
of the horizontal web reinforcement would be small. Usually
the amount of web reinforcement will be small in comparison
with the main flexural reinforcement, that is Ty << Ty The
shear transferred by the upper truss is the vertical
component of the force in the upper strut. The slope of the

upper strut, 6, will be quite flat. As a result, T,, the



horizontal component of the upper strut force is small, and
V,, the vertical component of the upper strut force, is even
smaller. It would not be overly conservative to ignore the
horizontal web reinforcement when determining the ultimate
strength of the beams under consideration in this thesis,

On the basis of this argument and the experimental results,
horizontal web reinforcement will be ignored for strength
calculations in the remainder of this work.

The third and final hypothetical example consists of a
simple span beam with vertical stirrups, subjected to a
concentrated load at midspan. An appropriate truss model is
shown in Fig. 5.3. There are really several trusses
present. One truss utilizes a direct compression strut
running from the load to the support. It carries a shear

\Y The other trusses utilize a stirrup as a vertical

c*
tension web member. The left most stirrup cannot be used in
such a truss since one cannot draw a compression diagonal

from the load point to the stirrup without encroaching on
the direct compression strut.

The compression diagonals radiating from the point load
intersect the stirrups at the level of the centroid of the
bottom steel because the change in the force in the bottom
steel is required to equilibrate the horizontal component of
the force in the compression diagonal. The bottom steel
force is reduced at each stirrup by the horizontal component

"of the compression diagonal intersecting at that point.

This is illustrated in Fig. 5.3(b) where the stepped line
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shbws the resulting tension force in the bottom steel. The
tension force exceeds that calculated from the conventional
bending moment diagram throughout the shear span.

| The compression diagonals radiating from the support
intersect the stirrups at or close to the top of the
stirrups. The horizontal component of each diagonal adds to
the compression force and hence, the compression zone of the
beam. The compression zone builds up as the region of
maximum moment is approached. As pointed out earlier the
farthest left stirrup is ineffective.

The analysis of this beam begins with a sketch of the
plasticity truss from which approximate compression diagonal
slopes are obtained. Normally this truss would be
statically indeterminate, but in the plastic truss model,
plasticity concepts are used to determine the truss member
forces in a sufficient number of members to reduce the
problem to that of a statically determinate truss.

The bottom steel is assumed to yield at midspan thus
providing an estimate for T. The stirrups utilized in the
model are assumed to yield, thus providing an estimate of
the force they transmit. From the "method of joints" the
vertical component of all the compression diagonals acting
with the stirrups is equal to the stirrup yield force. The
approximate diagonal inclinations are used to obtain the
axial force and horizontal force component in each
diagonal. As illustrated in Fig. 5.3(b), the horizontal

component of force reduces the force in the bottom chord of

93



the truss (bottom steel). The force remaining in the bottom
steel at thebsupport is necessary to equilibrate the
‘compression diagonals radiating to the top of each stirrup
(these forces are known), and the direct compression
strut. The horizontal and vertical component of the direct
compression strut can be readily determined. The support
reaction is equilibrated by the sum of the vertical
components of the direct compression strut and the
compression diagonals radiating from the support.

wWith this fifst analysis, all truss member sizes can be
checked. The geometry can be adjusted, and the analysis
refined. This can be repeated until the desired degree of
accuracy is obtained. Two major questions enter into the
analysis. First, "What is the effective concrete strength?"
This affects the width of the compression struts, the size
of the truss joints, and the overall truss geometry. This,
in turn, affects the truss member forces and the beam
capacity. The second question relates to the model: "What
is the 'éorrect' plastic truss model for a given
situation?" This issue has been illustrated to some extent
vin the last two hypothetical beams. Should the truss model
utilize some of the horizontal web reinforcement? Should
all of the stirrups be incorporated into the truss model?
Will the stirrups and main reinforcement reach yield before
beam failure? Are there limits to the slope of the inclined
compression members?

The effective concrete strength and the appropriate
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truss models will be examined in the following sections.
This amounts to "calibration" of the plastic truss model and

will be done by comparison with the test data.

5.4 Effective Concrete Strength

In the literature the reliability of solutions obtained
with the plastic truss model is thought to be very dependent
on the choice of an appropriate effective concrete strength
f&. The usual procedure for dealing with this is to
introducé a concrete efficiency factor v such that
fé = Vfé where v is probably less than one. As discussed in
Section 2.4, this factor relates to the strain softening
behavior of concrete as well as the local complicated stress
distributions which are overly simplified in the plasticity
model,

The efficiency factor was introduced by the Danish
research group under the direction of Nielsen. At present,
different v factors have been suggested for beam shear,
punching shear, anchorage etc. For beam shear, v has been
correlated to f) (Nielsen et. al., 1978b), with the average

value being:

Hh

] .
v = 0.8 - 555 (fL in MPa) (5.1)

N

and the lower limit to their data being:

Hh

1]
v = 0.7 - 555 (f& in MPa) (5.2)



The current (May 1983) Canadian Concrete Code proposal
suggests v = 0.8 for deep beéms while the Swiss group uses
v = 1.0.

The efficiency factor can be back calculated from the
test data, and can be bracketed by using upper and lower
bound plasticity solutions. These two solutions provide low
and high estimates for v, respectively. Closed form
plasticity solutions available in Chen (1982) were used to
generate the results presented in Table 5.1 unless otherwise
noted. While the plasticity solutions were closed form,
they were often nonlinear with respect to v because the size
of the compression struts was a function of v. This
required that the values of v be obtained by iteration. For
the "uncomplicated" test beams the upper and lower bound
plasticity solutions used should give the same results in
that they are exact solutions. The problem is that finite
“support widths and concrete cover "complicate" the
solutions. While these factors do not enter into the upper
bound solution they can have a significant impact on the
lower bound solution. Hence, the solutions are not exact,
and do not produce the same estimate for v. The results
obtained from lower bound solutions should give high
estimates for v, however, this is not the case when truss
geometry is governed by support widths or reinforcement
details.

while the results in Table 5.1 are far from complete,

they appear to suggest that v could be approximately 0.3.
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This is less than half the value suggested by other authors.

The values of v in Table 5.1, present two problems:
high variability, and low efficiency v. Both of these
problems are not as severe as they first appear since the
shear capacity prediction is less than linearly dependent on
the concrete efficiency factor. For upper bound solutions,
a change in the efficiency factor for concrete changes the
internal virtual work done by the concrete. The change in
the total internal virtual work done is moderated by the
contribution of the internal virtual work done by the
steel. Hence, for beams where the steel provides a
substantial portion of the internal virtual work, strength
predictions will be somewhat insensitive to changes in the
concrete efficiency factor. For lower bound solutions, a
change in the efficiency factor for the concrete changes the
width of the compression struts required to equilibrate the
tension tie forces. Even a large change in the width of a
compression strut usually produces a very small change in
the slope of the strut. Hence the shear capacity, which is
the vertical component of the force in the strut, is quite
insensitive to changes in the efficiency factor.

Strength predictions based on an assumed efficiency
factor of v = l.OVare presented in Table 5.,2. The specimens
have been grouped in this table to emphasize certain
trends. The first observation is that while av = 1.0 is,
in many cases, 3 or 4 times the back-calculated v given in

Table 5.1, the results in Table 5.2 are generally within a



Table 5.1 Concrete Efficiency Factors

Beam
Upper-Bound Lower-Bound

Theorem Theorem
1/1.0S 1.15 1.65
2/1.0S 1.00
4/1.0 0.57
4/1.0 0.49
6/1.0 0.37.
6/1.0 0.34
7/1.0 0.24 0.16*
7/1.0 0.53 0.47%*
1/1.58 0.46 0.67
2/1.58 0.25
4/1.5 0.30
4/1.5 0.34
6/1.5 0.27
6/1.5 0.27
7/1.5 0.35 0.29*
7/1.5 0.54 0.48%*
1/2.08 0.47 1.50
2/2.08 0.35
4/2.0 0.36
4/2.0 0.44
6/2.0 0.35
6/2.0 0.26
7/2.0 0.28 0.25%*
7/2.0 0.22 0.21*

* Truss geometry governed by the rebar cover.
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Table 5.2 Strength Predictions with v = 1.0

v \"
Remarks Beam 7 TEST v TEST
LOWER BOUND UPPER BOUND
(v =1.0) (v = 1.0)
Cont. beams with 5/1.0 0.99
max. vert. web 5/1.0 0.94
reinf. 5/1.5 1.00
5/1.5 1.00
5/2.0 1,02
5/2.0 1.02
5/2.5 1.02
Simple span beams 1/1.08 1.06 1,03
without stirrups 2/1.0s 1.13 * 1.00
(* ignoring horiz. 1/1.58 0.96 0.82
web steel) 2/1.58 0.72 * 0.54
1/2.08 1.00 0.87
2/2.08 1.05 * 0.74
Simple span beams 1/1.0N 0.79
with stirrups 2/1.0N 0.99 *
(* ignoring horiz. 1/1.5N 0.88
web steel) 2/1.5N 0.86 *
1/2.0N 0.84
2/2.0N 0.86 *
Cont. beams other 3/1.0 0.86
than those with 3/1.0 0.95
max. stirrups 4/1.0 0.81
4/1.0 0.75
6/1.0 0.64
6/1.0 0.61
7/1.0 0.53 0.49
7/1.0 0.88 0.82
3/1.5- 0.44
3/1.5 0.53
4/1.5 0.37
4/1.5 0.42
6/1.5 0.38
6/1.5 0.38
7/1.5 0.54 0.43
7/1.5% 0.85 0.67
8/1.5
8/1.5
3/2.0 0.66
3/2.0 0.70
4/2.0 0.43
4/2.,0 0.57
6/2.0 0.41
6/2.0. 0.31
7/2.0 0.70 0.42
7/2.0 0.57 0.34
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féctor of 2, and in some beam categories of beams the
predictions are almost exact. This supports the statement
made earlier that large changes in v lead to smaller changes
in predicted capacity. This implies that the safety of a
deep beam is not going to be strongly influenced by the
choice of v.

Each of the four categories of beams listed in Table
5.2 requires a slightly different analogous truss. It
appears that reasonable strength predictions are obtained
with v = 1.0 for some categories. It will be shown later in
this chapter that in the categories where predictions are
not very good, a poor choice of plastic truss was made.
This poor choice, while being theoretically acceptable in a
pure plasticity sense, requires more plastic deformation
than the concrete can accommodate. Rather than accounting
for the lack of ductility by using a small value for v, it
is better to use a higher value for v, perhaps evenv = 1,0,

and a more appropriate plastic truss model.

5.5 An Appropriate Plastic Truss Model

The safety of beams designed by the plastic truss
analogy is strongly dependent on the choice of an
appropriate analogous plastic truss for the beam in
question, The most appropriate truss will be one which has
a distribution of forces similar to those in the real beam
after cracking since this would require little if any

plastic redistribution of forces. In simply supported, or



statically determinate beams, there are only a few plausible
trusses which can develop to carry the loads applied to the
beam. In continuous or statically indeterminate beams,
there are several plausible trusses that one could use.

Ssome of these trusses require more ductility from the
concrete than it is capable of providing. Hence, these
trusses will be unsafe to use, even though they are "lower
bound" solutions in the plasticity theory. This section
will attempt to identify appropriate plastic trusses for use
in various situations.

Wwith an appropriate truss, the lack of significant
concrete ductility is not an important issue. This, in
conjunction with the fact that the plastic truss solutions
are insensitive to changes in v, suggests that a high value
of v may be appropriate. For the purposes of this
discussion, v = 1.0 will be used. A somewhat smaller value
will be proposed for design purposes in Chapter 6. The
results for the four beam categories in Table 5.2 will be
studied more closely in the following sections in order to

identify appropriate plastic truss models.

5.5.1 Continuous Beams with Maximum Vertical Web
Reinforcement

The strength predictions for the first beam category,
continuous beams with maximum vertical web reinforcement are
very good. The ratio of test/predicted strength has a mean

of 1.00 and a coefficient of variation of 0.03. This
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suggests that the particular plastic truss model used is a
good model of the real behavior, and that it is reasonable
to use v = 1.0,

The truss models used in analyzing beams 5/1.0 and
5/2.5 are shown in Figs. 5.4 and 5.5; In these figures, the
light shaded areas are major compression struts, the dark
shaded areas are hydrostatic elements; ﬁhe vertical lines
are stirrups and theAradiating lines represent small
compression struts or fans equilibrating the stirrup
forces. At the top and bottom of these figures, the
predicted and observed forces in the top and bottom steel
are compared. The plastic truss model predicts the observed
steel forces very well., It predicts the correct chord
forces at the top and bottom of the beam at the face of the
load and face of the support, along with the very slow
change in chord force. Conventional beam theory, on the
~other hand, would predict a point of inflection near the
middle of the shear span with zero chord forces at this
point. Conventional theory would certainly not predict
tension in the top and bottom of beam at the same cross
section as shown in Fig. 5.4. The plastic truss, as crude
as it appéars to be at first glance, predicts the observed
behavior far better than conventional elastic beam theory
with all its mathematical elegance.

Most of the shear force in these two beams is
transmitted to the interior support by the "fans". A

smaller portion of the shear is transmitted by a direct
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compression strut from the load to the support in Fig. 5.4.
While the slope of the strut depends approximately on a/d,
the geometry of the fans does not. For the range of a/d
examined, and for beams with maximum stirrups, the influence
of the direct compression strut, and hence the influence of
a/d is small. This is clearly demonstrated by the solid
points in Fig. 4.7.

In shallower beams, such as beam 5/2.5, no direct
compression strut develops at all (Fig. 5.5). (The direct
compression strut still carried 5% of the load in beam
5/2.0.) The region between the fans is a zone of "diagonal
compression field" as described by Collins and Mitchell
(1980). This field is sloped at 32°. For a diagonal
compression field sloped at 32° the stirrups will strain
more than the longitudinal stéel. Assuming a yield strain
of 0.002 mm/mm for the steel and peak diagonal compression
strain of 0.002 mm/mm, compatibility of strains indicates a
stirrup strain of approximately 0.01 mm/mm when the
longitudinal steel reaches yield. Based on these strains,
Collins and Mitchell's (1980) Eq. 15 gives an effective
compression strength of approximately 0.5fL. Although this
implies that v is 0.5, this is of little signficance for
this beam. Reducing the concrete stréngth by 1/2 doubles
the width of compression strut required to equilibrate each
stirrup. From Fig. 5.5, it is clear that there is
sufficient concrete between struts to permit this, hence the

geometry and thus the shear capacity of this "diagonal
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compression field" zone of the beam will not change. The
fact that failure was initiated by general yielding of the
steel and not by crushing of the concrete suggests that this
is true. One can think of this as an "under-reinforced"
~beam in which the concrete is of sufficient capacity that it
does not fail before the steel yields. Building codes limit
web reinforcement to prevent failure due to crushing of the
web. The heavy stirrup reinforcement used in this beam is
slightly less than the maximum permitted by the ACI Code.
Eveh though this beam has heavy stirrup reinforcement,
it had the desirable ductility characteristics of under-
reinforced beams, deflecting 30 mm or 1/60 of the span
before failing. The other beams which had fewer stirrups
and thus were more under-reinforced in shear did not exhibit
this ductile behavior. This apparent contradiction in
behavior is due to the form of the plastic truss which was

operative in these other beam categories.

5.5.2 Simple Span Beams Without Stirrups

The second category of beams in Table 5.2 consists of
simple span beams without stirrups. This includes beams
with light horizontal web reinforcement, which was ignored
for the lower-bound plastic truss prediction in this
table. The failure loads indicated that the horizontal web
reinforcement did not significantly change the capacity of
these beams when compared to companion specimens without web

reinforcement. The strength was predicted with truss models
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similar to that shown in Fig. 5.6. The ratio of observed
shear capacity to lower bound predicted capacity for this
class of beams had a mean value of 0.99 and a coefficient of

variation of 0.14 (Table 5.2). Most of this variation was

due to specimens with a/d 1.5. A review of the crack
patterns and observations does not provide any indication of
why this occurred.

In the lower portion of Fig. 5.6, the predicted and
observed force in the bottom steel are compared. The
plastic truss model (PTM) predicts the observed steel force
very well, while conventional beam theory grossly
underestimates the force in the bottom steel at the face of
the support.

Beams in this category reached yield of the main steel,
but did not display significant ductility before the
concrete struts failed. It is believed that the elongation
of the main steel after yielding caused the compression
struts to rotate slightly. Since the joints of the truss
were not in reality pinned, this required plastic
deformation of the concrete in or near the truss joints.
This local straining of the ¢oncrete eventually caused
failure of the compression strut at either the top or bottom
end. In summary, however, Ehe truss models used for this

category produce reasonable predictions for shear strength

in spite of the limited ductility of the concrete struts.
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5.5.3 Simple Span Beams With Minimum Stirrups

The third category of beams in Table 5.2 consists of
simply supported beams with light stirrups. This includgs
beams with light horizoﬁtal web reinforcement which, as in
the previous category was ignored for the lower-bound
prédictions in this table. The strength was predicted with
truss models similar to that shown in Fig. 5.7. The ratio
of observed shear capacity to predicted lower bound capacity
for this category had a mean value of 0.87 and a coefficient
of variation of 0.08. The addition of light stirrups has
significantly reduced the variability in the results, but
the model now produces slightly unsafe predictions. The
predictions are unsafe by about the capacity of one stirrup
suggesting that not all of the stirrups have yielded.
Examination of the stirrup strain data indicates that the
stirrup closest to the point load had less stress than the
other stirrups and was probably not yielded at the time of
failure, hence the shear force carried by the stirrups was
overestimated in the plastic truss model. It is evident
from Fig. 5.7 that the upper end of this stirrup passes
through the direct compression strut and that large amounts
of deformation would be reqpired before this stirrup would
yield in tensioﬁ, unless it was unbonded where it passed
through the compression strut,

This rationale cannot be used to explain the results
for beam 1/1.0 N thch failed at a 14 percent lower load

than the opposite end of the beam (1/1.0 S) which had no web
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reinforcement at all., The stirrups appear to have made this
beam weaker. For this beam, the shear force carried by the
stirrups was quite small and was probably less than the
variation in strength of the direct compression strut due to
the natural variability of concrete. It is also possible
that the stirrups tend to pull the direct compression strut
apart reducing its ultimate strength as suggested by
Robinson (1965) and others.

The lower portion of Fig. 5.7 compares the observed and
predicted force in the bottom reinforcement. Again, the
plastic truss model predicts the observed strains very well,

In summary, the truss models used for this beam
category produce reasonable predictions for shear strength
provided that one recognizes that stirrups which are too
close to the point load or support may not be fully

effective.

5.5.4 Continuous Deep Beams Without Heavy Stirrups

The final category of beams in Table 5.2 consists of
continuous beams other than those with heavy stirrups. For
this category the ratio of the observed shear capacity to
the predictd lower-bound capacity has a mean value of 0.68
and a coefficient of variation of 0.25., An example of the
truss model used for these predictions is shown in Fig. 5.8.
The poor predictions of capacity suggest that this truss
model requires improvement. Even though this category

includes beams with light horizontal, heavy horizontal,
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light vertical, and no web reinforcement, their strengths
are indistinguishable in Fig. 4.6. This implies that the
operative plastic truss did not make signficant use of the
web steel. If this is so, the behavior of these continuous
beams can be studied by analyzing a beam without web
reinforcement.

The first problem to address is that of the
overestimate of strength with the plastic truss model.

These models assume that the top and bottom reinforcement
undergo sufficient straining to ensure that both are yielded
at or before failure. The experimental observations
indicate that this is not true. The observed and predicted
forces in the top and bottom steel are compared in the upper
and lower portions of Fig. 5.8. The steel strain
measurements indicate that although the bottom steel
yielded, the top steel had smaller strains than the bottom
steel and did not reach yield. 1In most of the beams in this
category the top steel did not reach yield strain before
failure.

In a classical elastic continuous beam subjected to
midspan point loads, the negative bending moments are larger
than the positive bending moments implying that the negative
flexural cracks should have formed first. The test
specimens, which had flexural reinforcement proportioned
approximately in accordance with the elastic distribution of
moments, did not behave this way. The negaive moments were

smaller and positive moments were larger than predicted.



This agrees with the pattern of crack development in which
positive moment flexural cracks developed at midspan before
hegative moment flexural cracks developed over the interior
support.

A third corroborating observation relates to the
proportion or distribution of support reactions. For
continuous deep beams without heavy stirrups the observed
interior support reaction had a mean value of 62% of the
total applied load with a coefficient of variation of
0.04. The theoretical interior support reaction for an
elastic uncracked beam considering shear deformation effects
ranges from 64% to 68% of the total applied load for beams
x/1.0 and x/2.5 respectively. The variation in the
theoretical value reflects the influence of shear
deformations which are more significant in the deeper
specimens.

The measured steel strains, the cracking patterns, and
the distribution of support reactions all indicate that the
behavior of these specimens was somewhere between that of a
two span continuous beam, and two adjacent simple span
beams, for which the interior support reaction would be 50%
of the total applied load.

There are two explanations for this behavior. Some of
the reduction in top steel force results from relative
"settlement” of the interior support which was typically
abdut 0.25 mm but ranged as high as about 0.75 mm. SFRAME

(1982), a linearly elastic frame analysis computer program
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incorporating shearing displacements was used to examine the
possible effects of support settlement. The results
summarized in Table 5.3 indicate that for the magnitudes of
load and settlement experienced, settlement is not likely to
reduce the magnitude of the negative moment below the
maximum positive moment except in the deepest beam series.
Even in the deepest beams, support settlement effects may
not be as significant as Table 5.3 suggests since their
influence has been errestimated in the analysis by the use
of an unéracked flexural stiffness.

The second source of reduction in the top steel force
relates to the specimen behaving as a two span truss. The
constant steel strains along the bottom longitudinal
reinforcement and almost constant strains in the top steel
(Fig. 5.8) imply that it acts as a tension tie in a truss
rather than as flexural reinforcement in a conventional
beam. Two plausible elastic trusses and the resulting
member forces are illustrated in Fig. 5.9. The relative
stiffness of the interior web members in the truss in
Fig. 5.9(b) are twice as stiff as those in the truss in
Fig. 5.9(a). The reactions from the two truss models
bracket the observed support reactions, which implies that
the member forces also bracket the equivalent member
forces. Hence, if the continuous beam acts as a truss, the
top chord force will be less than the bottom chord force
unless the interior web members are very stiff. For the two

trusses shown in Fig. 5.9, a linear combination of 58% of
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the first truss plus 42% of the second truss produces the
observed distribution of support reactions. This also
produces a ratio of top chord force to bottom chord force of
0.63. Recalculating the results in Table 5.2 for this beam
category using a top chord force equal to 63% of the yield
force of the bottom chord sighificantly improves the
strength predictions. For beam 3/1.5, for example, the
ratio of average test to calculated shear strength changes
from 0.48 to 0.90. The agreement is particularly good in
view of the fact that this beam had an abnormally low
concrete strength fé = 14.5 MPa.

In summary, continuous beams without heavy stirrup
reinforcement do not possess sufficient ductility to undergo
complete redistribution. A plasticity truss with top and
bottom chord forces assigned arbitrarily will not generally
lead to safe predictions of beam capacity. The most
appropriate truss will be one which produces the expected
distribution of support reactions, For the beams tested, it
was found that the interior support reaction had a mean
value of 62% of the total applied load. This is smaller
than predicted by elastic beam theory, and has a significant
effect on the distribution of shears and moments in the
continuous beam. The plastic truss model can account for
this by utilizing a top chord force equal to approximately

60% of the bottom chord yield force.
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5.6 What is a Deep Beam?

The previous section attempted to identify appropriate
plastic truss models for deep beams. The question now is,
"What is a deep beam?" The following definition is

proposed:

A deep beam is any beam in which a substantial
portion of the load is transferred to the support

by a direct compression strut.

This is a statical rather than a geometrical definition. By
this definition a deep beam will be one which exhibits an
increase in shear strength with a decrease in shear span to
depth ratio. It obviously excludes indirectly loaded beams
(unless specially detailed), and beams which are too shallow
or have loads too far away from the support to permit the
development of struts with significant vertical components,
The test data and truss models presented previously suggest
that top loaded, bottom supported beams have the potential
for developing deep beam action if a/d is less than about
2,0. This is less than the value implied by the ACI Code
which for shear calculations defines deep beams as those
having a clear span td depth ratio xn/d less than 5. The
CEB Model Code defines deep beams as those having xo/d less
than 2 where 10 is the distance to the point of
contraflexure.

The real behavior of a deep reinforced concrete beém is
very similar to that of a truss, hence the beam can be

idealized as a platic truss in order to obtain a



quantitative distribution of the forces. Whether or not a
beam will actually develop deep beam action depends on the
deéign truss used. For example, the statical definition of
ardeep beam may exclude short shear spans with heavy stirrup
reinforcement. Heavy stirrups acting in conjunction with
the minor struts can reduce the chord forces such that no
significant horizontal force exists which can equilibrate a
direct compression strut. This is shown in Fig. 5.4 where
the direct compression strut is small, and in Fig. 5.5 where
there is no direct compression strut at all. Thus, in
Fig. 4.6 the strength of beams with heavy stifrups was
independent of a/d while the strength of beams of similar
geometry but different web reinforcement was highly
dependent on a/d. This suggests the beams with heavy
stirrups did not fit the statical definition of a deep beam
presented earlier.

There does not appear to be an upper limit to the slope
‘of the direct compression strut, hence corbels and brackets
of practical proportions fall into the category of deep
beams by the proposed definition. Hagberg (1983) has
proposed a truss model for the design of corbels and
brackets with 0.5 < a/d < 1.0, His model is very similar
but less rigorous than the plastic truss models previously
presented in this thesis. The models are compared in Fig.
5.10. The similarity suggests that the more rigorous model
is also applicable down to values of a/d equal to about

0.15. Analysis of the corbel test data obtained by Kriz and
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Raths (1965) was performed using the plastic truss model and
associated equations assuming v = 1.0. The results
presented in Fig. 5.11 indicate that the plastic truss model
is suitable and slightly conservative for corbels with a/d
ratios as low as 0.15. Thus, corbels are merely deep beam

cantilevers.

5.7 Effectiveness of Horizontal Reinforcement

The effectiveness of horizontal reinforcement has been
a matter of considerable debate in the literature. For the
simple span and continuous beams tested, horizontal
reinforcement had no measureable effect on behavior as shown
by Figs. 4.5 and 4.6. Beams with minimum or max imum
horizontal web reinforcement behaved essentially the same as
beams without web reinforcement. Recent data published by
smith and Vantsiotis (1982) also supports this conclusion.
This is in contrast to the ACI Code which indicates that
horizontal web reinforcement is more effective than vertical
web reinforcement in deep beams.

The plastic truss model shown in Fig. 5.2 suggests that
horizontal web reinforcement will not significantly increase
the strength of the plastic truss, unless the beam is very
deep, and has substantial horizontal web reinforcement as in
the case of some corbels. In using the plastic truss it
would not be prudent to assume that all of the horizontal
web reinforcement yields at failure. Kong (1977) after

testing numerous simply supported deep beams with a/d ratios
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between approximately 0.3 and 0.7 suggests an equation with
a form such that the stress in a horizontal web bar is
proportional to its relative depth within the beam. That
is, a horizontal web bar adjacent to the main steel would
yield along with the main steel while a horizontal web bar
at mid-depth of the beam would have oniy half the yield
stress. This is in sharp contrast to ACI which assumes that

all of the reinforcement is at yield.

5.8 Minimum Web Reinforcement Requirements

Some minimum amount of web reinforcement should be used
in deep beams. While this reinforcement does not influence
the mean shear resistance significantly, it does
significantly reduce the variability of the test results.
For continuous beams without web reinforcement the ratio of
retest to virgin test shear strength had a coefficient of
variation of 35%. The same ratio for beams with web
reinforcement had a coefficient of variation of 14%. Beams
with maximum and minimum stirrups had variabilities (COV) of
3% and 6% respectively while beams with maximum and minimum
horizontal web reinforcement had variabilities of 14% and
le%.

The minimum amount of web reinforcement one might
choose to use depends upon the amount of variability one is
willing to tolerate. It would appear that minimum vertical
stirrups as used in this thesis (approximately the same as

ACI minimum stirrups) are able to reduce the variability to
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the level typical of other applications of reinforced

concrete.

5.9 Relationship With Compression Field Theory

The plastic truss model (PTM) is a special case of the
more general theory of plasticity in reinforced concrete
(See Appendix A). As a lower-bound solution, it is
compatible with other lower-bound solutions such as the
compression field theory of Collins and Mitchell (1980).
Beam 5/2.5 shown in Fig. 5.5 illustrates how these two
theories compliment each other in a slender beam. The
compression field theory deals with zones of the beam which
have a uniform stress field of constant inclination. The
failure criteria for the concrete was empirically obtained
from test panels with completely uniform stress field. The
theory works best in such situations., It is uncertain
whether the compression field theory is applicable to the
direct compression struts or to the "fan" 2zones under the
load and over the interior support. It, for example, would
not predict that the first stirrup or two at each end of the
shear span would be ineffective as indicated in Fig. 5.5.
The plastic truss model deals with these fan zones. It also
deals with the case of short shear spans where the fans
intersect permitting a direct compression strut.

There are somebdifferences between the plastickﬁruss
model and compression field theory. The plastic truss model

uses a very simple failure criteria for the concrete but
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deals with the question of an appropriate model in detail.
That is, it considers questions like: how many stirrups are
effective, what are the chord forces in indeterminate beams,
is there sufficient room for the truss "joints" and
"members"? The compression field theory on the other hand
uses a simple model of uniform diagonal compression and
sophisticated constitutive law for the concfete.

Perhaps in the future it will be possible to marry the
two theories. At present the two theories can be coupled as
in Fig. 5.5 to produce solutions. The solutions may not be
legitimate not because the parents are not yet married but
because of minor inconsistencies in the effective concrete

strength used in the two theories.

5.10 Summary

In summary, this chapter has dealt with an examination
of the plastic truss model as an analytical tool for
predicting the ultimate strength of deep beams. The current
literature suggests that the effective concrete strength, as
expressed through the concrete efficiency factor v, is an
important parameter. Analysis of the test data showed that
v is highly variable because it reflects both concrete
behavior and, more importantly, whether the plastic truss
model used was good or bad. It was found that good
predictions or strength could be obtained with v = 1.0,
provided that an appropriate plastic truss model was used.

An examination of models for the beams in this thesis



indicated that:

- horizontal web reinforcement was ineffective,

- the first one or two stirrups at each end of the shear
span may be ineffective due to finite truss member and
joint sizes

- for indeterminate beams the forces developed in the
top and bottom bars may vary significantly from those
predicted by simple beam theory

It was found that once these factors were recognized, it was
‘possible to draw appropriate plastic truss models which
predicted the strength for each of the specimens. At the
transition between deep beams and slender beams, the plastic
truss models were compatible with the compression field
theory, while the truss models were found to be directly
applicable to very deep beams, i.e. corbels, with a/d as low

as 0.15.
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6. DESIGN BY PLASTIC TRUSS

6.1 Introduction
This chapter deals with design procedures utilizing
plastic truss models. Design presents a somewhat different
problem than analysis. In analysis, one tries to find the
strongest plastic truss which fits the beam geometry while
in design one starts with a truss of the required strength
and fits the beam around it.
In design, one must account for the possibility of:
- adverse loading and environmental conditions
~ understrength materials
- inaccuracies or uncertanties in the design model
This can be done through the introduction of three sets of
factors. Load factors are used to increase the specified
yloads to some extreme value in order to raccount for
overloads. Material performance factors L and ¢ g are used
to reduce the specified concrete and steel strengths in
order to account for under-strength material. And finally,
a model performance factor ¢ may be used to reduce the
strength predicted by the plastic truss utilizing factored
material properties to account for uncertainties in the
design model.
The design process consists of drawing a design truss
capable of resisting the factored loads. The design truss
would utilize factored material strengths and would have its

overall strength factored. Reinforcement would be provided
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and anchored to resist the required tensile forces.
Auxilliary reinforcement for serviceability or other
conditions would be added as required. The beam dimensions
would then be chosen so that they encompass or enclose the

design truss with adequate cover.

6.2 Performance Factors

In design, the possibility of overloads, understrength
materials, and uncertainty with regard to overall structural
response, are accounted for by load and performance
factors. The load factors proposed for use are those given
in the National Building Code of Canada (1977) which are
1.25 and 1.5 for dead and live loads respectively. These
are identical to the load factors used in the Canadian steel
design standard S16.1-M78, and similar to those used in the
European concrete design standard (CEB, 1978), but slightly
smaller than those used in the American Concrete Institute
‘design standard ACI 318-77.

The ratio of load factors to performance factors is a
measure of safety. The performance factors may be obtained
from statistical studies but in this work they will be
obtained from calibration with existing code requirements.
Once the load factors have been set, the performance factors
can be determined to maintain approximately the same level
of safety as in existing codes.

It is proposed that a separate performance factor be

used for each material - concrete and steel, rather than a
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single'performancé factor for the overall beam strength as
currently used in shear or flexure. This is done because
the plastic truss does not fail in "shear" or "flexure",
rather, the tension members or compression members in the
truss fail. Hence, it seems reasonable to use separate
performance factors (partial safety factors), as used in
CEB-FIP Model Code for Concrete Structures (CEB, 1978).

For dead and live load factors of 1.25 and 1.5, the
concrete performance factor ¢ o may be taken as 0.67. The
effective concrete strength for design purposes is taken as
£ = ¢ X 0.85 x fé. The factor 0.85 relates the strength
of the concrete in the member to the specified 28 day
cylinder strength f£.. The selected value for ¢ . is the same
as that currently used in the Canadian steel design standard
and tﬁevEuropean concrete design standard.

The steel performance factor ¢ o may be taken as 0.85.
The effective steel yield strength is taken as f; =g X

f The value of og is slightly smaller than that used for

v
structural steel in S16.1. The variability of yield
strength is greater in reinforcing bars than in structural
steel, hence a more conservative ¢s was chosen.

The performance factors for the individual materials do
not account for the variability of the combined system or
uncertainty in the design model. This may be dealt with in
at least two ways. The first proposal is that once the

design truss has been analyzed with reduced material

strengths, the truss strength would be further reduced by a
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model performance factor om = 0.95. While this parameter
deals in part with tolerances in beam diménsions and the
locations of bars, it deals mainly with variations in the
truss model. Since the problem is solved semi-graphically,
in that strut interferences and slopes are determined by
scaling the truss diagrams, there may be variations in
solutions obtained for the same problem by different
individuals. The principal difference likely to occur would
be the exclusion of one or two stirfups from the plastic
truss model as discussed in Chapter 5. The use of model
performance factor less than 1.0 is academically acceptable,
but awkward in practice. It also has the effect of
"smearing" the uncertainty over the whole truss model. An
alternative and superior approach would be to use the full
theoretical truss capacity (i.e. Om = 1.0) and be more
cautious in the development of the plastic truss. Important
details should be dealt with conservatively. This results

in putting extra safety into the critical details - where it

will do the most good.

6.3 Application of Model

The purpose of the design truss is to provide a
plausible and consistent "flow of forces" through the
beam. The plastic truss is one of many possible lower bound
plastic solutions. As such, the truss must be in
equilibrium, and the members and joints must not be stressed

to failure. For design purposes, the effective material
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strengths as determined in Section 6.2 aré used in the
model.

The plastic design truss consists of a pin-jointed
truss with steel tension members and concrete compression
members. The centroids of the members must coincide at a
joint. The joint is accommodated by the use of concrete
"hydrostatic" stress zones. The stresses in the struts and
joints will then be the maximum principal stress and are
taken equal to the effective concrete strength.

The design procedure consists of drawing to scale, a
plastic truss subjected to the factored design loads. Truss
member forces and stresses are then determined and compared
to the permissible values. Truss members are modified as
required.

This procedure may require some iteration as the force
in each member depends on the truss geometry which, in turn,
depends on the width of the compression struts and the size
of the joints which, in turn, are determined from the member
forces. One can start with a simple preliminary design
truss which is drawn approximately to scale. Slopes for
each compression member may be measured from this figure,
and used in the analysis of the truss. Once the truss
member forces have been approximately determined, the member
sizes are computed using the design material strengths. A
more accurate plastic truss model may be drawn using this
information. This model would be analyzed, and member sizes

determined again. The process is repeated until the truss
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member forces and geometry have converged to the desired
level of accuracy. Convergence is usually very rapid and
one or two iterations will usually be adequate.

Once a satisfactory plastic truss is obtained, the beam
is detailed in a manner consistent with the assumed plastic
truss. Beam dimensions should be chosen so that the plastic
truss fits entirely within the beam and is provided with
adequate cover. Auxilliary reinforcement may be added for
serviceability or other conditions.

The following thoughts may be useful in establishing
the preliminary design truss:

1. If stirrups are used, one may assume that all are
yielded and fully effective in the plastic truss model.

2. Unless the beam is shallow (a/d > 2) or large
amounts of stirrup reinforcement are used; the stirrups will
not add significant capacity to the beam. In this case, the
stirrups would be ignored in the design truss.

3. The main flexural steel requirement may be estimated
from the maximum bending moménts. As with other trusses,
the chord force may be estimated by dividing the maximum
bending moment by the internal lever arm of about 70% to 80%
of the beam depth.

4., In continuous or statically indeterminate beams, one
must arrive at a truss which produces the desired
distribution of support reactions. This is done by
adjusting the ratio of top steel to bottom steel.

5. The solution for member forces in what would



normally be an indeterminate truss is simplified by assuming
yielding (at the effective yield stress f;) of at least some

of the reinforcement, so that the plastic truss becomes
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statically determinate., The question of which reinforcement

should be assumed to yield was discussed in Chaptef 5.

6.4 Reinfofcement Details

The detailing of the reinforcement must be consistent
with the assumed plastic truss. Adequate anchorage of the
main steel is most important., Deep beams require
significantly higher bar forces at anchorage locations than
indicated by the bending moment diagram. This is
illustrated in Figs. 5.1 to 5.5. Hence, bars must not be
cut off in accordance with the bending moment diagram. They
should be anchored to develop the forces required in the
plastic truss model. The truss drawing will indicate the
desired location of the centroid of the tensile
reinforcement, so that members meet at joints, as well as
the zone over which the reinforcement may be distributed.

Some minimum amount of vertical web reinforcement
should be used to reduce the variability in the strength of
the member. The test data indicate that the current ACI
minimum web reinforcement requirement is not enough to
significantly increase the average strength, but it will
bring the weakest fractile much closer to the average
strength.

Even though horizontal web reinforcement does not
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increase the ultimate strength of a deep beam, it would be
prudent to use some horizontal reinforcement so that the
crack widths are minimized at service loads. Service-
ability requirements were not considered in this study.
Franz and Breen (1980) discuss minimum face steel
requirements.

In addition to the vertical and horizontal web
reinforcement already described, one may also require
auxilliary reinforcement in the region of loads and
supports. This reinforcement is used to handle the bursting
stresses produced by heavily loaded bearing plates. The
situation and hence the solution is similar to the anchorage
point of a prestressing cable. For beams supported and
loaded in this way, the recommendations of CEB (1970) or
CIRIA (1977) may be followed for proportioning this
reinforcement as these recommendations were based on tests
in which the beams were loaded and supported by steel
bearing plates. A real beam however, is likely to be loaded
and supported by concrete columns. All of the specimens in
this study were loaded and supported by reinforced concrete
columns with the vertical column reinforcement and ties
extending at least a compression development length into the
beam. No additional auxilliary reinforcement was used, and
apparently none was required as no bursting failures were
observed. 1If for some reason, the columns were very higﬁly

stressed, the bursting stresses should be checked.



6.5 Design Strategies

This section deals with several philosophical questions
one may address during the design of a deep beam. Should
the beam be simple span or continuous? How can one account
for support movements? Can one utilize the enhanced shear
strength of a deep beam and still have a reasonably ductile
member? All of these questions revolve around the issue of

safety.

Both simple span and continuous beams may be designed

- with the plastic truss analogy. There are, however, some

differences in the design strategy. The abundance of
experimental data for simple span beams coupled with only a
few plausible plastic trusses, permits one to design simple
span deep beams with confidence. Closed form equations can
be developed for specific reinforcement and geometric
conditions. On the other hand, the experimental data that
has been obtained for continuous beams indicates that it is
very important that one use an appropriate truss model in
the design of such a beam. The model must produce the
expected support reactions. If this is not the case, very
unsafe predictions may be obtained with the plastic truss
model. The perceived increase in safety due to redundancy

in a continuous beam may be more than offset by the

difficulty of safely predicting the strength of a continuous

beam.

Two major difficulties in the design of continuous deep

beams result from shear deformation effects and support
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movements. In the tests, support movements were kept very
small so thaﬁ only shear deformations were significant., 1In
real beams, however, larger support movements are possible
making them relatively more important. The support
movements may be due to foundafion movements or temperature,
creep, and differential strain effects between interior and
exterior columns. Support movements can drastically change
the distribution of reactions in continuous deep beams
'making it difficult to establish an appropriate plastic
truss. One solution would be to account for the uncertainty
of the plastic truss model by the use of a reduced model
performance factor Om® A better solution would be to
estimate the range of support reactions and design plastic
trusses for each limiting case (i.e. maximum and minimum
exterior reactions). This is by no means unimportant.
De Jong (1970) measured and predicted foundation movements
for several high rise bdildings founded on a stiff till.
Using these movements he analyzed the stfuctures and found
that foundation loads (suppdrt reactions) changed by up to
40%, Simple span deep beams would of course not be
sensitive to support movements.

The last question to be addressed relates to
ductility. A design utilizing heavy stirrup reinforcement
will be more ductile and more accommodating of variations in
support reactions. The stirrups permit the development of
crack fans which gradually reduce the tension forces in the

main reinforcement. With adequate stirrups, the tension is
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eventually eliminated so that no horizontal force exists to
equilibrate a direct compression strut. Wwhile stirrups
provide some ductility because of their confining effect on
the concrete, in deep beams, most of the ductility is due to
the elimination of the brittle direct compression strut. 1In
eliminating the direct compréssioh strut, the strength
enhancement'associated with low a/d ratios is lost. In
order to reach this state, the number of stirrups must be
such that the strength of the beam will be greater than that
obtained with a direct compression strut. The contribution
of extra stirrups to increased ductility is more important
than the increase in strength when viewed from an overall
safety point of view. In continuous deep beams with
uncertain support reactions, consideration should be given

to a more ductile and forgiving design with heavy stirrups.

6.6 Summary of Design Procedures
As with all structural analysis problems there are
three essential ingredients in the solution of the plastic
truss:equilibfium, kinematics, and constitutive laws.
a) Constitutive Laws
Rigid-plastic material or constitutive laws are used for
design. The effective steel and concrete strengths are

taken as:

* = =
fy 6. x £ where ¢ 0.85
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* = ' =
fc ¢, X 0.85 x fc where ¢« 0.67

These strengths are compatible with dead and live load

factors of 1.25 and 1.5 respectively.

b) Kinematics
The kinematics or geometry should be that of a pin
jointed truss. The centroids of all members framing
into a joint should coincide. While steel is used to
resist tension forces, concrete is used to resist
compression forces. The dimensions of compression
members should be determined from the member force and
the effective concrete strength. Truss joints are
accommodated by hydrostatic stress elements. The

plastic truss should be drawn to scale.

c) Equilibrium
Static equilibrium must always be satisfied in the
analysis of the plastic ﬁruss. The solution for member
forces in what might normally be an indeterminate truss
is simplified by assuming yielding (at the effective
yield stress) of at least some of the reinforcement, so

that the plastic truss becomes statically determinate.

The kinematics and statics are solved or satisfied in
an iterative manner. One starts by drawing a rough sketch

of a truss with approximate kinematics. This is analyzed to
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determine member forces which are used to refine the
kinematics. This process is repeated until convergence is
achieved.

Once a satisfactory plastic truss is obtained, the beam
must be detailed in a manner consistent with this model.
Additional reinforcement may be required for ductility,

serviceability or other conditions.



7. SUMMARY AND CONCLUS IONS

7.1 Experimental Observations

Tests were conducted on simply supported and continuous
deep beams with various depth to span ratios and various
amounts and types of web reinforcement. 1Two categories of
behavior were observed. Beams with heavy stirrup
reinforcement exhibited considerable ductility. The
strengths obtained for each end of symmetrical specimens
were very consistent. The beams in this category did not
exhibit the characteristic change in shear strength with
changes in a/d which is normally associated with deep beam
behavior. All other test specimens, that is, those beams
without significant vertical web reinforcement fell into a
second behavioral category. These beams were brittle and
somewhat inconsistent in strength unless minimum stirrups
were present. The a/d ratio had a very significant
influence on the shear strength of beams in the second
category.

A comparison of the results for simple span beams and
continuous beams indicates that both types of members had
similar shear strengths with simple span beams being
slightly stronger than cohtinuous beams at low a/d ratios
(a/d = 1.0).

The beams developed distinctive inclined cracks running
from the support to ;he point load. These cracks formed

well below failure load. This was especially true for the
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deeper beams in which inclined cracks developed at loads as
low as 1/4 to 1/3 of the ultimate load. Crack formation was
sudden, complete, and was accompanied with a bang. The
inclined cracks were widest at mid depth of the beam. Web
reinforcement did not prevent the formation of these

cracks. Flexural cracks, on the other hand, formed quietly
and grew slowly in length as the load was increased.

The specimens with light or no web reinforcement
generally behaved as trusses after cracking developed.
Cracks often defined concrete compression struts running
from the loads to the supports. Concrete strain
‘measurements implied that struts (narrow zones of high
uniaxial compression) exist in deep beams even if not
specifically outlined by cracks. Steel strain measurements
indicated constant steel strains along tension members in
the truss rather than the variation in strains expected from
the bending moment diagram. Significant steel strains were
observed in the main reinforcement at locations of zero
bending moment; These were as high as the yield strain in
some cases.

The specimens with heavy stirrup reinforcement
developed crack fans over the interior support and under the
point loads, thus reducing the influence of a direct
compression strut from load to support. The observed
variations in the concrete and steel strains were similar to
those predicted by the plastic truss analogy.

Horizontal web reinforcement was found to have no
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influence on the strength of the specimens tested. The
behavior of beams with minimum or maximum horizontal web
reinforcement was indistinguishable from that of beams

without web reinforcement.

7.2 Plastic Truss Hypothesis

The truss analogy for shear strength is not new. It
dates back to the early days of reinforced concrete design
(Ritter, 1899; Morsh, 1902). Truss models based on
plasticity were introduced about 1970 (Lampert and
Thurlimann, 1971). The plastic truss model explains the
results observed in this series of tests, and correctly
predicts the influence of each of the important parameters
on the behavior of deep beams. It provides a rational basis
for design and detailing provided that the correct model is
used. |

The plastic truss analogy has been tuned against the
experimental behavior. Using the correct truss model is far
more important than selecting values of the effective
concrete strength, unless the beam is over reinforced in
shear. A beam over reinforced in shear is one which has so
much vertical web reinforcement that the concrete web
crushes before the reinforcement yields. Current design
codes avoid this situation by limiting the amount of stirrup
reinforcement one can use so that over reinforced webs will
not occur in practice. Since web crushing will not occur in

beams designed using such codes, the concrete strength is



not overly signficant. Good strength predictions were
obtained for the test specimens even when the full concfete
strength was utilized provided that an appropriate truss
model was used in the analysis.

The selection of appropriate truss models was
considered in detail in Chapter 5. One must find a truss
model which:

- is in equilibrium with the external loads and
reactions.

- when drawn to scale with truss members of finite width
has their centroids coincident at each truss joint.

- has concrete compression members, steel tension
members and "hydrostatic" stress joints subjected to
the maximum permissible stresses.

Appropriate truss models for simple span beams are
relatively easy to obtain. The relatively few plausible
models coupled with numerous test results permit one to
design simple span beams by the plastic truss method with
confidence.

Appropriate truss models for continuous beams are more
difficult to obtain. It is possible to visualize several
different truss models for a continuous deep beam. The
safety of a continuous deep beam is very dependent on the
model used in the design. The tests indicated that unless
the beam has heavy stirrup reinforcement, it will have
limited ductility. _If the design model is significantly

different from the natural behavior of the beam, the beam
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may not have sufficient plastic redistribution capacity to
develop the assumed distribution of forces, and hence will
have less strength than predicted in the design.

The best truss model for a continuous beam will be one
which produces support reactions identical to those
experienced in the real structure. Due to creep, shrinkage,
support movements etc. there may be several possible
distributions of reactions during the life of the
structure. A suitable truss model for each possibility must
be found, and the overall beam design must permit each of
these plastic truss models to develop. For continuous deep
beams without heavy stirrups, the reliability of the
strength predictions can be no better than the reliability
of the prediction of support reactions. When the
distribution of support reactions is in doubt, one should
resort to a design utilizing heavy stirrup reinforcement.
The increased ductility of such a design will make the beam
less sensitive to support movements.

An important aspect of design utilizing the plastic
truss analogy is that a consistent model is used for "shear"
and "flexure" design. It is recommended that in designing a
deep beam, one draw the truss in detail, and then detail the
reinforcement in a manner consistent with the drawing.

An engineer can only accept responsibility for a new
design if he can (to use Westergaard's expression) "feel in
his bones" how the structure will carry the load. Drawing a

picture of the structure in action will provide the designer
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with such a feeling. Hardy-Cross (1952) has said:
"Students should be encouraged more to draw pictures of
what they are thinking about. They should draw pictures
of deformed structures, pictures of structural failure,
pictures of stress distribution. To try to draw them
raises, or should raise, hundreds of questions. If men
can't draw them they don't know what they are talking
about and the degree of detail shows the amount of
familiarity with the subject. To try to draw a picture,
... will frequently answer or invalidate a question.”
The plastic truss model is a simple application of this
“advice. It provides a rational qualitative and quantitative
explanation for the behavior of deep reinforced concrete

beams.
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APPENDIX A

Plasticity in Reinforced Concrete

During the last two decades the literature of

plasticity in reinforced concrete has grown extensively.

‘Limit-analysis' techniques have been used to

and lower bounds for the carrying capacity of

predict upper

beams in

shear. These techniques are based on the basic theorems of

plasticity which for the purposes of this thesis are: (Chen,

1982)

I: Lower-Bound Theorem

If an equilibrium distribution of stress can be

found which balances the applied load and

is everywhere

below yield or at yield, the structure will not collapse

or will just be at the point of collapse.
structure can carry at least this applied
lower-bound to the load carrying capacity
structure,.
I1: Upper-Bound Theorem
'The structure will collapse if there
compatible pattern of plastic deformation

rate at which the external forces do work

Since the
load, it is a

of the

is any
for which the

exceeds the

rate of internal dissipation. Since the structure will

fail under these external forces by this kinematic

mechanism, this load represents an upper-bound to the

load carrying capacity of the structure.
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These theorems assume or require that:

1) The material exhibits perfect or ideal plasticity.
That is, strain hardening of the steel and strain
softening of concrete are ignored.

2) A failure or yield criterion for the material is
required. It is convenient to assume a convex yield
surface from which plastic-strain rates are derivable
through the associated flow rule. This implies that
the principal plastic strains occur in the same
direction as the principal stresses and that the
resulting internal work done is positive.

3) Changes in geometry of the structure that occur at
the collapse load are insignificant, hence the
equilibrium equations can be formulated with the
original geometry.

The plasticity solutions to be examined use these
theorems and assumptions, but they differ in the rigor with
which the theorems are applied. A discussion of the
assumptions is in order. All solutions make use of
assumption 3 which effectively limits the application of
this approach to problems in which second order geometric
effects are negligible.

Most of the solutions use a "Modified Mohr-Coulomb"
failure criterion. A family of Mohr's Circles at failure
for various states of biaxial stress are illustrated in
Fig. A.l (Bresler and Pister, 1958). An idealized, Modified

Mohr-Coulomb failure envelope for biaxial stress is
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illustrated in Fig. A.2. This envelope passes through the
uniaxial tensile strength of concrete at A and the uniaxial
compressive strength at D, The arc CD and FD is a part of
the Mohr's Circle for uniaxial compression. The portions BC
and EF have the equation t = ¢ + ¢ tan ¢.

This envelope appears to be a good first estimate of
the actual experimental behavior plotted in Fig. A.l. The
Coulomb parameters c¢ and ¢ have been determined
experimentally for concrete (Johansen 1958; Richart et al.
1928). The apparent cohesion c is approximately fé/4 and
the internal-friction angle ¢ is approximately 37°. This
envelope can be expressed in terms of principal stresses and
is illustrated in Fig. A.3(a). The slope, m, of the
inclined portion in this figure is derivable from Fig. A.2
and is 4.0. The terms G1r 95 and o3 represent the three
principal stresses shown in Fig. A.3(b). In the biaxial
stress state or plane stress state'c2 = 0.

Figure A.3(b) compares this failure envelope with
experimental data obtained by Kupfer, Hilsdorf and Rusch
(1969). The modified Mohr-Coulomb failure criteria appears
té be a good, slightly conservative first estimate for the
actual experimental failure envelope except in the vicinity
of points B and E.

For lower-bound solutions the state of stress must lie
within or on the failure envelope. For upper bound
solutions, one makes use of the associated flow rule which

defines the plastic strain directions from the failure
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envelope. Between A and B in Figures A.2 and A.3(a),
cracking occurs perpendicular to the direction of the
principal tension stress. The virtual deformation &, is
normal or 90° to the crack, hence Wj, the virtual internal

work per unit of crack, is:

) (A.1)

Along BC, a sliding failure occurs with the virtual
deformation &§ acting at an angle of ¢ to the crack. The

resulting internal virtual work per unit area of crack is:

W, =(1—-'——§—i-'11) £% 6 (A.2)

At point B, the virtual displacement 6 can take place at an

angle a« to the crack such that:

6 < a < 900

and

- l] - sina * sina - sin ¢ '
Wy = [(F=528) £+ (Frosmy ) Tl o (A.3)
Along CD, a simple crushing failure takes place with the
virtual deformation acting at -90° to the plane of

crushing. The resulting internal virtual work per unit area

of the plane of crushing is:

160
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W, = f; 8 (A.4)

It should be noted that for the biaxial plane stress
condition (02 = 0) along CD, it is the o3 * Oy Mohr's Circle
which contacts the failure envelope rather than the Gy * O3
circle. The failure is out of the plane of the member and
could more properly be called a spalling failure. This
behavior is observable in the photographs presented by
Kupter et al. (1969). Equations A.l to A.4 are used in
developing upper-bound solutions,

The assumption of perfect or ideal plasticity is
questiqnable. wWhile it is generally safe to neglect the
strain hardening of the steel, it is usually unsafe to
neglect strain softening of the concrete. Often, some
portions of the concrete along the rupture face will be
stressed beyond peak strength and begin to soften before
other portions of‘the concrete mobilize their full
strength. Hence, one cannot rely on mobilizing the full
strength of the concrete over the entire section, and only
part of the rupture face is effective. This leads to the
introduction of an 'efficiency factor' v < 1.0 by which £
must be multiplied in order to get an equivalent strength f%
over the whole rupture surface. The efficiency factor is
back calculated from test data, and depends upon the
plasticity model used in predicting the member capacity.

Because of the manner in which it is empirically obtained,



v also compensates for errors in the plasticity model.

If the same failure envelope is used to de#elop upper
and lower-bound solutions, the solutions will bracket the
'exact' plasticity solution. The 'exact' solution is
obtained when upper and lower-bound solutions give the same
failure load. Most of the closed form plasticity solutions
published in the literature are exact solutions,

To illustrate the use of the plasticity models the deep
beam shown in Fig. A.4 will be analyzed using both the upper
bound and lower bound methods. Referring back to the Lower
Bound Theorem presented earlier, a lower-bound solution
involves finding a pattern of internal stresses that:

(a) is in equilibrium with the loads, and
(b) at no place exceeds the strength of the material.

The truss shown in Fig. A.5 satisfies these
requirements. The diagonal members are "compression
struts", the horizontal member is the reinforcement and the
shaded regions are "hydrostatic elements" chosen so that the
3 forces meeting at A or B or C are concurrent. This
geometry can be obtained graphically by trial, or
analytically through simple algebra, using the principles
outlined in Section 2.4. In this solution the concrete
resists compression only (i.e. f{ = 0) and shall be assumed
to have an efficiency factor v = 1.0. The lower-bound shear

capacity Vj calculated using Eq. 2.16 is:

vV, = 684 (tan 42.40) = 625 kN
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It should be pointed out that in arriving at the truss
 geometry, the horizontal length of the support bearing is
VL/bfé, similarly the vertical height of the anchorage plate
is Asfy/bfé. The dimensions shown in Fig. A.5 satisfy these
conditions.

Using the bearing plate lengths shown in Fig. A.5, one
can obtain an upper bound solution by postulating failure by
vertical opening of a tension crack running corner to corner
as illustrated in Fig. A.6. Using the same assumptions as
in the lower bound solution, i.e. v = 1.0 and f{ = 0 and Eq.
A.3, the internal virtual work done during the virtual

displacement § is:

v, = (2510 39-8) 56.1)(200 x 1293) & = 1235 x 103 5

The external virtual work for this virtual displacement is:

Since Wgp = Wy, an upper-bound to the shear strength is:

VU = 1235 kN

Hence:

V. € V<V
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Figure A.6. Upper Bound Failure Mechanism
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625 KN < V < 1235 kN

In this example, there is a significant difference between
the upper and lower-bound solutions. The problem in this
instance is that the upper-bound solution is not very

good. It has been assumed that the crack opens vertically,
that is a = 39.4°, Other angles are possible, the angles
which give the least upper-bound is the correct angle. For
a virtual displacement § acting at a general angle a to

crack inclined at an angle B the internal virtual work is:

1 bh

-— = * - 3 -
W, =[5 £X(1 - sin a) stng - Asfy cos (x + 8)] & (A.5)
The external virtual work is:
Wp =V, sin (a +B8) 8 (A.6)

This gives:

(1 - sin a) bh * _
5 sIn fc Asfy cos (a + B)

VU = sin (a + B) (A.7)
For g = 50.6°, Vy has a minimum value = 631.6 kN when a =

74.1°, Now it can be said that:

V, € V<V

625 < V< 632 kN
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The problem has been bounded to within 1%. Other failure
mechanisms need not be considered as this is accurate
enough. The problem specifications make it similar to test
specimen 1/1.0 which had failure strengths of 602 and 699 kN
in the two shear spans. The angle of crack displacement

near failure corresponded to a = 70°,



APPENDIX B

Design Example

Transfer Girder

Design a 36 ft long transfer girder which is continuous
at one end to support the loads shown in Fig. B.l. For
simplicity in this example only one load case is
considered. Normally one would also investigate the effects
of support settlement. Use f{ = 5000 psi and fy = 60000
psi.

Try a design truss with a width of 2 ft and an
effective depth of 10.5 ft. The overall beam depth will be
approximately to scale in Fig. B.2. Factored or effective
material strengths are f£% = 2850 psi and f§ = 51000 psi.

Use a model performance factor o0 = 1.0.

Left Shear Span

At the left end of the beam, a direct compression strut
carries a significant portion of the point load directly to
the support. The uniformly distributed load to the left of
the point load is carried directly to the exterior support
by a fan of minor compression struts. The plastic truss
analysis for this shear span is presented in Table B.l. The
uniformly distributed load of 8.05K/1 has been modeled as
8.05K point loads at 1 ft centres, hence the vertical force
component in each of the minor struts is 8.05%, The
horizontal force component is calculated from the vertical

component and measured strut slope. The vertical component
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Table B.l Analysis of Left Shear Span

172

Struf No. Slope 6 Force Components
(Degrees) vk nk

1-1° 88 8.05 0.3
2-1" 83 8.05 1.0
3-1' 78 8.05 1.7
4-1" 72 8.05 2.6
5-1' 67 8.05 3.4
6-1"' 63 8.05 3.4
7-1" 58 8.05 5.0
8-1" 55 8.05 5.6
9-1" 51 8.05 6.5
10-1" 48 8.05 7.2
11-1" 45 8.05 8.0
12-1" 42 8.05 8.9
13-1" 42 1160 1289
Summations 1257 1343
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of the major direct compression strut (strut number 13-1"')
is chosen so that the desired support reaction of 1257% is
obtained. The total tension force required in the bottom
chord is 1343k, Tension reinforcement consisting of 28 #9
bérs stressed at f; will be adequate. The #9 bars were
chosen instead of larger bars to reduce the anchorage
problems. It is essential that all 28 #9 bars which extend
into the left support be anchored to develop their full
strength. The dimensions for the compression struts should
be checked. The major direct compression strut carries a
total force of 1735K. The required cross sectional area is
1735/2.850 = 608 sq in. and the‘réquired dimensions are 24
in. x 25.4 in. This confirms that the member was drawn
approximately to scale in Fig. B.2.

While web reinforcement is not required for strength,
some reinforcement should be provided for serviceability.
ACI minimum requirements (Sections 11.8.8 and 11.8.9) are
satisfied with #4 @ 11" o/c vertical each face and #5 @ 10"
o/c horizontal each face.

Right Shear Span

At the right end of the beam, a major direct
compression strut is not appropriate. It would have a slope
of about 25° which is too flat. The design truss shown in
Fig. B.2 utilizes a fan of minor struts from the point
load. The vertical force is (due to the assumption of
plasticity) distributed equally to 15 stirrups. For

simplicity, the stirrups have been assumed at 1 ft
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centres. Each stirrup carries a load of 71.5K, Some
conservatism is introduced into the truss model in that
stirrups near the point load are neglected and the fan is
not permitted to get flatter than 33°. For simplicity, the
stirrups have been assumed at 1 ft centres. The final
design may utilize other stirrup spacings with an equivalent
capacity per lineal ft of beam. A similar fan of minor
compression struts occurs at the interior support. The
stirrup forces in this fan are slightly larger than in the
stirrups neaf midspan due to the uniformly distributed

load. The sti}rup force required per for of span is 71.5 +
8.05 = 79.5X, This is satisfied by #7 @ 9" o/c vertical
each face, which for simplicity will be used throughout this
shear span. The vertical bars must be lap spliced with U
bars at the top and bottom of the beam to form closed
stirrups. The truss analysis of the right shear span is
given in Table B.2. The variation in chord forces has been
calculated. The bottom chord force of 1343K under the point
load is obtained from the analysis of the left shear span.
The top chord force of 1250k at the support is obtained by
dividing the support moment by the effective truss depth.
The variation in chord forces has been plotted in Fig.
B.3(a) and (c). These diagrams were used to determine
cutoff points. The reinforcement should extend a
development length beyond these points. The final beam

design is shown in Fig. B.3(b).



Table B.2 Analysis of Right Shear Span
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Strut No. Slope 6 Force Camponents Chord Force Remaining
(Pegrees) vk uk Bottam Chordk Top Chordf
1343
14-16" 72 71.5 23 1320
14-17" 62 71.5 29 1291
14-18"' 64 71.5 35 1256
14-19°' 60 71.5 41 1215
14-20"' 56 71.5 48 1166
14-21" 52 71.5 56 1111
14-22" 49 71.5 62 1048
14-23" 46 71.5 69 979
14-24" 44 71.5 74 905
14-25" 41 71.5 82 823
14-26"' 39 71.5 88 735
14-27" 37 71.5 95 640
14-28" 36 71.5 98 541
14-29° 34 71.5 106 435
14-30" 33 71.5 110 325
15-31" 33 8.05 12 313
16-32" 33 79.5 123 190
17-33" 33 79.5 123 68
18-34"' 33 79.5 123 -55
19-35' 33 79.5 123 -177
36-37" 76 8.05 2 1250
35-37" 71 87.6 30 1248
34-37" 66 87.6 39 1179
33-37" 62 87.6 47 1132
32-37" 58 87.6 55 1077
31-37" 55 16.1 11 1066
30-37" 53 79.5 60 1006
29-37' 49 79.5 69 937
28-37" 47 79.5 74 863
- 27-37" 44 79.5 82 780
26-37"' 42 79.5 88 692
25-37" 41 79.5 92 601
24-37" 39 79.5 98 502
23-37" 37 79.5 106 397
22-37" 36 79.5 110 287
21-37" 34 79.5 118 169
20-37" 33 79.5 123 47
19-35" 33 79.5 123 =76
18-34" 33 79.5 123 ~198
17-33" 33 79.5 123 -321
16-32' 33 79.5 123 -444
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Comparison with Other Methods

This example has been contrived to be directly
comparable to that given by MacGregor and Hawkins (1977).
The service loads are equivalent (for service live load =
service dead load), and the dimensions are identical. The
flexural reinforcement is the same in both designs with
minor variations in cutoff points. The web reinforcement is
somewhat different. 1In the left shear span, the proposed
design and ACI 318 both use minimum web reinforcement. The
design of MacGregor and Hawkins which was based on the
proposed code revisions of ACI-ASCE Committee 426 (1977)
requires significantly more web reinforcement, #7 @ 12" o/c
vertical and horizontal each face. 1In the right shear span,
the vertical web reinforcement is the same in the proposed
design and the design done by MacGregor and Hawkins. ACI
318 would require considerably less vertical web reinforce-
ment (#5 @ 15" o/c E.F. vs. #7 @ 9" o/c E.F.). The
(minimum) horizontal web reinforcement used (0.25%) in this
example is 2/3 more (0.25% vs 0.15%) than used by MacGregor
and Hawkins but less than suggested by Franz and Breen
(1980) (0.25% vs 0.53%).

The plastic truss design model provides a consistent
model for flexure and shear design. 1In this example, it
produced a design for the exterior shear span similar to
that which would be obtained using ACI 318. For the
interior shear span the plastic truss required more than

three times as much vertical web reinforcement as ACI 318.
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The flexural reinforcement required was the same for the

plastic truss model and ACI 318. However, the truss model

provides detailed information on the cut-off points.
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