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Abstract

Sourdough fermentation, one of the oldest unit operations in food production, is currently
experiencing a revival in bread production at the household, artisanal, and the industrial level. The
expanding use of sourdough fermentation in bread production and the adaptation of fermentation
to large scale industrial bread production also necessitates the development of novel starter
cultures. Developments in the last years also have expanded the tools that are used to assess the
metabolic potential of specific strains, species or genera of the Lactobacillaceae and has identified
multiple ecological and metabolic traits as clade-specific. This review aims to provide an overview
on the clade-specific metabolic potential of members of the Lactobacillaceae for use in sourdough
baking, and the impact of these clade-specific traits on bread quality. Emphasis is placed on
carbohydrate metabolism, including the conversion of sucrose and starch to soluble
polysaccharides, conversion of amino acids, and the metabolism of organic acids. The current state
of knowledge to compose multi-strain starter cultures (synthetic microbial communities) that are
suitable for back-slopping will also be discussed. Taken together, the communication outlines the

current tools for selection of microbes for use in sourdough baking.

Keywords: Lactobacillus, Fructilactobacillus sanfranciscensis, glutathione, exopolysaccharides,

acid resistance, synthetic microbial communities, kokumi.
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1. Introduction

Sourdough is a cereal dough used for production of bread, flat bread or steamed bread that includes
lactic acid bacteria as major fermentation organisms. Sourdough has been used for more than
14,000 years in bread production (Arranz-Otaegui et al., 2018). The use of back-slopped
sourdoughs to produce bread that was very similar to bread we consume today has been
documented 2000 years ago (Plinius Major, 74AD) but is likely substantially older. In the 20™
century, relatively pure cultures of baker’s yeast grown on molasses were introduced as leavening
agent (Brandt and Génzle, 2006). The use of sourdough as leavening agent continued in artisanal
baking, and in rye baking to achieve acidification (Brandt and Génzle, 2006). Industrial equipment
for large-scale sourdough production was first installed about 100 years ago in the Soviet Union
(Brandt and Génzle, 2006) and became common in other parts of Central, Northern and Eastern

Europe in the second half of the 20" century (Meuser, 1995; VVogel et al., 1999; Wiese et al., 2009).

The microbiology of sourdough has been subject to scientific investigation since the beginning of
the 20" century (Holliger, 1902; Kline and Sugihara, 1971; Spicher and Stephan, 1993). The
resurgence of the commercial interest in sourdough in wheat and rye baking also has resulted in
an increase of publications on sourdough: searching Pubmed with the keyword “sourdough” lists
only 39 publications between 1948 and 2000 but 937 publications between 2001 and 2022
(accessed April 11™, 2023). Collectively, this body of literature that accumulated over the past 120
years informs on ecological principles of community assembly in sourdough (Géanzle and Ripari,
2016; Ganzle and Zheng, 2019), describes the nutritional and technological function of sourdough
in bread making (Aroraet al., 2021; Géanzle, 2014; Gobbetti and Génzle, 2023; Moroni et al., 2009)
and provides reliable data on the microbial composition of more than 700 sourdoughs that are used

in bread making at the household level, or in artisanal and industrial bakeries (Arora et al., 2021,
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De Vuyst et al.,, 2023, 2021; Génzle and Zheng, 2019). The most recent comprehensive
compilation of lactobacilli is provided by De Vuyst and co-authors (De Vuyst et al., 2023). With
all this information available, what necessitates an update on selection of lactic starter cultures for
use in (steamed) bread production? Several developments in recent years fundamentally changed

how sourdough is used, and how cultures are selected:

First, the use of sourdough fermentation in baking is changing and expanding. Until the 20"
century, the main function of sourdough was its use as leavening agent. The use of sourdough as
sole leavening agent dictates fermentation procedures that continuously maintain rapid growth and
maximum leavening power of sourdough microbes by frequent back-slopping (Brandt et al., 2023;
Ganzle and Ripari, 2016). These sourdoughs almost invariably include Fructilactobacillus
sanfranciscensis and Kazachstania humilis as dominant members of the community of
fermentation microbes (De Vuyst et al., 2016; Ganzle and Zheng, 2019). Industrial uses of
sourdough for acidification of rye doughs in the 20" century were optimized for high contents of
acidity; these fermentation processes select for acid-tolerant fermentation microbes of the genera
Lactobacillus and Limosilactobacillus (Génzle and Zheng, 2019). In recent years, the use of
sourdough by amateur bakers that bake at the household level has increased substantially; this
trend was in part fuelled by the COVID-19 pandemic which also limited the availability of baker’s
yeast for several weeks in spring 2020 (“sourdough - Explore - Google Trends). Baking at the
household level is done with diverse fermentation protocols that meet the individuals’ needs;
correspondingly, sourdoughs maintained by amateur bakers are more diverse than sourdoughs

maintained in bakeries (Landis et al., 2021).

An expanded use of sourdough is also observed in industrial bread production. This trend is fuelled

by several factors, the need to provide “clean label” or “kitchen friendly” ingredient lists to
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consumers (Asioli et al., 2017), and the aim to reduce cost for ingredients by using in-house
fermentation know-how. The labels of current commercial white pan breads often list more than a
dozen ingredients or additives; the use of sourdough as sole leavening agents allows simplification
to include only three ingredients, flour, water and salt. In addition, national nutrition
recommendations include breads both as “ultra-processed” foods, which are not recommended for
frequent consumption, and as “minimally processed” foods, which are recommended as part of a
healthy diet (Anonymous, n.d.; Armet et al., 2022). Sourdough fermentation is recognized as a
processing step that replaces ingredients and additives to allow production of “minimally

processed” whole grain breads (Génzle, 2014; Ma et al., 2021).

Second, while conventional bread production continues to use wheat and to a lesser extend rye as
sole or major cereal ingredients, flours from other cereals, pseudocereals or pulses are increasingly
used in production of specialty bread, in production of gluten free bread, or to up-cycle by-products
of food processing such as bran or brewer’s spent grains (Katina et al., 2012; Moroni et al., 2009;
Neylon et al., 2021; Pontonio et al., 2023). Current knowledge on the presence of lactic acid
bacteria in cereal fermentations documents that fermentation parameters rather than the choice of
the fermentation substrate impact the selection of starter culture (De Vuyst et al., 2023; Lin and
Ganzle, 2014a; Pswarayi and Géanzle, 2022), correspondingly, the choice of the fermentation
substrate impacts the selection of starter cultures only in few cases. Fructilactobacillus
sanfranciscensis occurs in wheat and rye sourdoughs only (De Vuyst et al., 2023; Géanzle and
Zheng, 2019). The antimicrobial activity of sorghum phytochemicals selected against FI.
sanfranciscensis (Sekwati-Monang et al., 2012); the high content of phenolic compounds in red or

brown sorghum varieties attenuate also the growth of other lactobacilli (Pswarayi et al., 2022). As
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outlined below, specific substrates may require cultures with specific metabolic traits for improved

bread quality.

Third, the expanded use of genome sequence data for the phylogenetic and metabolic
characterization of lactobacilli since 2015 has enabled the identification of metabolic and
ecological traits of lactobacilli that are specific for specific phylogenetic clades (Duar et al., 2017;
Sun et al., 2015; Zheng et al., 2020, 2015). To illustrate, until the 1990ties, sequencing of 16S
rRNA genes of a bacterial isolates was a significant achievement. Metabolic traits of sourdough
lactobacilli that impact bread quality were largely considered to be species specific (Hammes and
Ganzle, 1998). In 2015, genome sequences for most type strains of lactobacilli were available (Sun
et al., 2015; Zheng et al., 2015). In 2023, the cost for sequencing of a bacterial genome is about $
100 (€ 68), and will likely be further reduced to be on par with the cost for Sanger sequencing of
16S rRNA genes. In silico genome analysis allows the high-throughput screening of several
hundred strains for presence / absence of desirable or undesirable metabolic traits to prioritize few
strains for subsequent screening with more labor-intensive baking applications, and has thus
become a routine part of experimental designs to understand the function of sourdough microbes
in bread production. Current knowledge also provides reasonable confidence to conclude on
relevant metabolic traits on the basis of the phylogeny and taxonomic position of isolates (Qiao et

al., 2022; Zheng et al., 2020, 2015).

In short, developments in the last decade have altered the selection criteria that are used to select
sourdough cultures, and have expanded the tools that are used to assess the metabolic potential of
specific strains, species or genera. This review aims to provide an overview on the clade-specific
metabolic potential of members of the Lactobacillaceae, subsequently termed lactobacilli, which

constitute a vast majority of sourdough microbes, for use in sourdough baking.
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2. A tale of two tribes: Heterofermentative versus homofermentative lactobacilli.

Phylogeny. Homofermentative and heterofermentative lactobacilli form two distinct phylogenetic
clades (Figure 1). Because a single node separates the two groups of organisms, the evolution of
heterofermentation was a unique event and all heterofermentative lactobacilli are offspring of a
shared common ancestor (Qiao et al., 2022). Homofermentative and heterofermentative
lactobacilli co-exist in many of their establishment niches, which was related to resource
partitioning (Tannock et al., 2012). This co-existence is characteristic for intestinal microbial
communities in mammals (Walter, 2008) or in social bees (Kwong and Moran, 2016). In mice,
homofermentative and heterofermentative lactobacilli were shown to co-exist over evolutionary
relevant timelines (Lin et al., 2018). Homofermentative and heterofermentative lactobacilli also
co-exist in fermented foods such as back-slopped dairy starter cultures that include lactococci and
Leuconostoc species, spontaneous fermented vegetables, and in sourdoughs (Génzle, 2022; Van

Kerrebroeck et al., 2017).

Metabolism. Homofermentative lactobacilli preferentially use glucose; the use of other
carbohydrates is repressed trough carbon catabolite repression (Barrangou et al., 2006; Ganzle,
2015; Monedero et al., 2007). In contrast, many heterofermentative lactobacilli preferentially
utilize the disaccharides maltose and sucrose (Ganzle, 2015; Stolz et al., 1993; Teixeira et al.,
2013). During growth on glucose as sole carbon source, the ATP yield of homofermentative
lactobacilli is twice as high as the ATP yield of heterofermentative lactobacilli (Ganzle, 2015). In
wheat and rye doughs, sucrose and maltose are the predominant carbohydrate sources and in initial
stages of fermentation, oxygen and fructose, which are used as electron acceptors by
heterofermentative lactobacilli, are also abundant (Génzle, 2014); in these conditions, the energy

yield of heterofermentative metabolism is higher (Figure 2) and, correspondingly,
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heterofermentative lactobacilli are generally numerically abundant in sourdoughs when compared
to homofermentative lactobacilli (Arora et al., 2021; Géanzle and Zheng, 2019; Van Kerrebroeck
et al., 2017). The most distinguishing metabolic properties of homofermentative and
heterofermentative lactobacilli are phosphofructokinase, the rate limiting enzyme of glycolysis,
which is present in most homofermentative lactobacilli but absent in virtually all
heterofermentative lactobacilli; the presence of mannitol dehydrogenase in most
heterofermentative lactobacilli, and the presence of the two domain acetaldehyde / alcohol
dehydrogenase, which converts acetyl-coA to ethanol, in most heterofermentative lactobacilli
(Figure 3). Pyruvate formate lyase is exclusive to homofermentative lactobacilli (Figure 3).
Mannitol-phosphate dehydrogenase, which enables the use of mannitol as carbon source, is
virtually exclusive to homofermentative lactobacilli with Periweissella as the only

heterofermentative genus that is capable of mannitol utilization (Fanelli et al., 2022) (Figure 3).

Contribution to bread quality. Does the presence of heterofermentative lactobacilli matter for
bread quality? The formation of acetic acid from maltose or sucrose contributes to flavor (Hansen
and Schieberle, 2005), impacts gluten properties (Clarke et al., 2004) and contributes to inhibition
of mold growth (Quattrini et al., 2019) (Table 1). The reduction of oxidized glutathione to
monomeric, reduced glutathione impacts gluten properties and loaf volume (Jansch et al., 2007;
Tang et al., 2017) and supports formation of the antifungal coriolic acid from fatty acid peroxides
(Black et al., 2013). Last but not least, the reduction of aliphatic aldehydes that originate from lipid
oxidation and decisively impact crumb flavor (Czerny and Schieberle, 2002; Hansen and
Schieberle, 2005) is dependent on the metabolic activity of heterofermentative lactobacilli
(Sugahara et al., 2022; Vermeulen et al., 2007a). The reduction of aldehydes originating from lipid

oxidation to alcohols with a much lower impact on flavor is particularly relevant for whole grain



170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

products which include the germ and thus a higher content of free fatty acids. Of note, redox-
reactions catalyzed by heterofermentative lactobacilli impact bread quality only if they are

metabolically active during the bulk and final proof (Table 1).

3. Traditional sourdough microbes: Host adapted lactobacilli, Lactobacillus spp.,

Limosilactobacillus spp. and Fructilactobacillus sanfranciscensis.

A majority of sourdoughs that are used in bakeries as sole leavening agent include FI.
sanfranciscensis as one of the dominant fermentation microbes (Arora et al., 2021; Génzle and
Zheng, 2019). In sourdoughs that are fermented to achieve high levels of acidity,
Limosilactobacillus species and Lactobacillus species typically dominate (Génzle and Zheng,
2019). These organisms are host adapted, have a small genome size, and are highly specialized to
specific host-adapted niches (Duar et al., 2017; Li et al., 2023; Li and Génzle, 2020) (Figure 3).
The ecological conditions in their respective persistence niches apparently match the conditions in

the respective sourdoughs.

What is the specific contribution of Fl. sanfranciscensis to bread quality? The organism, which
has a genome size of only about 1.3 Mbp, grows fast if sucrose and maltose and other growth
factors are present, produces acetic acid if fructose or oxygen are present, and reduces aliphatic
aldehydes and glutathione (Vogel et al., 2011). The contribution of FI. sanfranciscensis to CO;
production in traditional sourdoughs was estimated as 50% while other studies attributed CO>
production predominantly or exclusively to sourdough yeasts (Brandt et al., 2004; Haggman and
Salovaara, 2008a). The presence of this organism in most sourdoughs used a sole leavening agent,
and the quality of the breads produced with this organism documents that leavening power is the
main selection criterion for selection of sourdough cultures unless baker’s yeast is used. To date,

FI. sanfranciscensis has not been isolated from any source other than wheat and rye sourdoughs,
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and is absent in cereal fermentations that use substrates other than wheat and rye as main

ingredients (Moroni et al., 2009; Sekwati-Monang et al., 2012).

Lactobacillus and Limosilactobacillus species have slightly larger genome sizes when compared
to FI. sanfranciscensis — around 2 Mbp — and thus offer additional metabolic traits to improve
bread quality. Species of both genera are fairly acid resistant and are likely to encode for arginine
deiminiase, glutaminase, an enzyme that is exclusive to host-adapted lactobacilli, and glutamate
decarboxylase (Li and Géanzle, 2020; Teixeira et al., 2014; Zheng et al., 2015) (Figure 3). Acid
resistance increases ecological fitness of lactobacilli in the intestine of vertebrates (Krumbeck et
al., 2016; Morelli, 2000) (Figure 4). In relation to bread quality, acid resistance mechanisms in
lactobacilli provide ornithine, the precursor for the character impact compound of the wheat bread
crust (Hansen and Schieberle, 2005; Miinch and Schieberle, 1998; Thiele et al., 2002), glutamate,
a key umami tastant (Su et al., 2011; Zhao et al., 2015), and y-aminobutyrate, a bioactive
compound (Coda et al., 2010; Stromeck et al., 2011). Limosilactobacillus is among the few genera
of lactobacilli that harbor one or several y-glutamyl-cysteine ligases Cgl (Xie and Génzle, 2021)
(Figure 3). In contrast to glutathione synthesis by homofermentative lactobacilli, Cgls of Lm.
reuteri recognize amino acids other than cysteine as glutamyl acceptor (Pophaly et al., 2012; Xie
and Ganzle, 2021). Several of the dipeptides synthesized by Cgls of Lm. reuteri are kokumi active,
i.e. they interact with Ca-sensing receptors that mediate signal transduction from taste receptors to
nerve cells (Brennan et al., 2014; Ohsu et al., 2010). This interaction enhances the sensory
perception of umami, salty and sweet tastants (Toelstede et al., 2009; Zhao et al., 2016). Kokumi
active y-glutamyl dipeptides accumulate in sourdoughs fermented with Lm. reuteri to kokumi-
active concentrations but their role in sensory properties of bread remains unclear (Tang et al.,

2017; Yan et al.,, 2018). Limosilactobacillus species also produce exopolysaccharides with

10
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glycosyl hydrolase family 70 enzymes. EPS formation by Lm. reuteri contributes to formation of
biofilms in the forestomach of rodents (Lin et al., 2018; Sims et al., 2011); their role in bread

quality is discussed below.

4. Jack-of-all trades: Nomadic lactobacilli, Lactiplantibacillus plantarum and the

Lacticaseibacillus casei group.

Lactiplantibacillus plantarum has been described as a nomadic organism with the ability to persist
in multiple persistence niches including plant-associated habitats and the intestine of insects or
vertebrates (Martino et al., 2016). Lp. plantarum has been isolated from diverse fermented foods
(Génzle, 2022). Accordingly, the selection of starter cultures for just about any food fermentation
can default to Lp. plantarum with satisfactory but not exceptional results. Lp. plantarum has a
relatively large genome size of more than 3 Mbp and a broad metabolic potential for carbohydrate
utilization and the metabolism of secondary plant metabolites, particularly phenolic compounds
(Gaur and Ganzle, 2023; Lopez de Felipe et al., 2021; Martino et al., 2016; Siezen and van
Hylckama Vlieg, 2011) (Figure 5). The core genome of Lp. plantarum encodes for a large number
of genes coding for antimicrobial resistance, making the species highly resistant to antimicrobial
plant metabolites (Lopez de Felipe et al., 2021; Pham et al., 2023; Pswarayi et al., 2022). Lp.
plantarum has also been reported to synthesize a broad spectrum of antifungal compounds
including phenyllactate from phenylalanine (Lavermicocca et al., 2000; Ryan et al., 2009b),
10-hydroxyoleic acid from linoleic acid (Y. Y. Chen et al., 2016) (Figure 3), and cyclic dipeptides
(Ryan et al., 2009a). It remains unclear whether the metabolic and ecological traits of Lp.
plantarum are shared with other lactiplantibacilli as only the closely related Lp. pentosus and Lp.
paraplantarum as well as Lp. xiangfangensis were isolated from sourdough (De Vuyst et al.,

2023).

11
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Species of the Lacticaseibacillus casei group also have relatively large genome size of 2.5 -3 Mbp
and were isolated from diverse fermented foods as well as host-associated niches including the
gastrointestinal tract and the human vagina (Wuyts et al.,, 2017). The Lc. casei group is
characterized by oxidative stress resistance and metabolism of multiple mono- and disaccharides
(Cui and Qu, 2021; Monedero et al., 2007; Wuyts et al., 2017); its potential for metabolism of
phenolic compounds is somewhat smaller when compared to Lp. plantarum (Fig. 4). Lc. casei and
Lc. paracasei but few other lacticaseibacilli occasionally occur in sourdough (De Vuyst et al.,

2023).

Lp. plantarum is often the dominant homofermentative strain in spontaneous (i.e. not controlled
by back-slopping or starter cultures) fermentations of cereals including wheat, rye, sorghum, corn,
millet, and pseudocereals (Génzle and Zheng, 2019; Minervini et al., 2015; Moroni et al., 2009;
Pswarayi and Ganzle, 2022; Scheirlinck et al., 2008). This dominance is attributable to the stable
association of Lp. plantarum with plants (Minervini et al., 2015; Pswarayi and Génzle, 2019; Yu
et al., 2020). Lp. plantarum is also often found dominant in sourdoughs that are maintained at the
household level for extensive baking (Comasio et al., 2020; Landis et al., 2021) but is much less
prevalent and less dominant in back-slopped sourdoughs that are maintained in bakeries (Ganzle

and Zheng, 2019).

The metabolism of hydroxybenzoic and hydroxycinnamic acids by Lp. plantarum has been
documented in wheat and rye sourdoughs as well as in multiple other cereal substrates (Gaur and
Ganzle, 2023; Ripari et al., 2019) but its consequences for bread quality remain unclear. The
activity of glycosyl hydrolases and particularly of B-glucosidases of Lp. plantarum converts
glycosides of secondary metabolites to the corresponding aglycones (Landete et al., 2014). Some

(phospho-) glycosyl hydrolases of lactobacilli and their cognate phosphotransferase systems were

12
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shown to be specific for plant glycosides rather than disaccharides (Theilmann et al., 2017). The
deglycosylation detoxifies cyanogenic glycosides in cassava and yams, and vicine and convicine
in pulses (Lei et al., 1999; Rizzello et al., 2016). Glycosyl hydrolases of Lp. plantarum also
contribute to the conversion of soy isoflavones to their corresponding aglycones with higher
biological activity (Kim et al., 2010; Lim et al., 2020). Many of the most potent bitter tastants in
plants are glycosides (Hald et al., 2019; Yan and Tong, 2023). Sourdough fermentation thus
reduces the bitterness of many plant foods. Fermentative debittering is particularly relevant for red
sorghum varieties and buckwheat (Campo et al., 2016; Kobue-Lekalake et al., 2007; Wu et al.,

2019).

Strains of Lp. plantarum are frequently described as antifungal starter cultures (Axel et al., 2017;
Garnier et al.,, 2019; Lavermicocca et al.,, 2000; Ryan et al., 2009b, 2008). However, the
concentration of most antifungal metabolites of Lp. plantarum and other antifungal lactobacilli in
bread remains far below the minimum inhibitory concentration (Black et al., 2013; Quattrini et al.,
2019; Ryan et al., 2009b, 2009a). Correspondingly, the in situ inhibition of resistant spoilage
organisms, particularly Penicillium roqueforti, is rather limited and effective mold inhibition on
bread requires the additional use of preservatives or plant-derived antifungals (Géanzle and

Gobbetti, 2023; Nionelli et al., 2018; Quattrini et al., 2019; Ryan et al., 2008).

5. The also-rans: Companilactobacillus, Latilactobacillus, Pediococcus,

Furfurilactobacillus, Levilactobacillus, Weissella and Leuconostoc.

Research on the impact of sourdough on bread quality often defaults to the key organisms
described above, however, multiple other lactobacilli including species of the homofermentative
genera Companilactobacillus, Latilactobacillus and Pediococcus, and species of the

heterofermentative genera Furfurilactobacillus, Levilactobacillus, Weissella and Leuconostoc are

13
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also frequently present as major or minor components of microbial communities in sourdough
(Aroraetal., 2021; De Vuyst et al., 2023; Ganzle and Zheng, 2019). An overview of the metabolic
potential of these organisms is given in Figures 3 and 5. Of these genera, Companilactobacillus
and Furfurilactobacillus occur only in few other food fermentations and their metabolic potential
is largely unexplored when compared to other lactobacilli (Ganzle, 2022, 2015). Cp. crustorum
has been described as a producer of diacetyl in sourdough when citrate is present (Comasio et al.,
2021). It’s potential to release phenolic compounds from phenolic acid esters or glycosides rivals
or even exceeds that of Lp. plantarum (Figure 5) but this potential remains unexploited in baking
applications. Of the four Furfurilactobacillus species, Ff. rossiae and Ff. milii are most frequent
in sourdoughs (De Vuyst et al., 2023; Simpson et al., 2022). The metabolism of phenolic acids by
furfurilactobacilli is well characterized (Gaur et al., 2022, 2020) (Figure 5). In addition, strains of
Ff. milii and Ff. rossiae differ from most other heterofermentative lactobacilli by the absence of
mannitol dehydrogenase and the presence of ornithine decarboxylase (De Angelis et al., 2014)
(Figure 3). Ff. rossiae encodes for the genes for conversion of lactate to 1,2 propanediol, and for
conversion of 1,2 propanediol or glycerol to propionic acid and hydroxypropionic acid (Figure 3
and Figure 6); the latter pathway was shown to be operational in Ff. rossiae (De Angelis et al.,

2014; Liang et al., 2021).

Leuconostoc species and the two Weissella species that most frequently occur in sourdough, W.
cibariaand W. confusa, generally encode for one or multiple GH70 family enzymes that synthesize
soluble polysaccharides from starch or sucrose (Figure 7). GH70 family enzymes include three
distinct enzymatic activities. (i) Glucanotransferases convert starch to a soluble polymer with
linear and branched a —(1—4) and a-(1—6) linkages or a —(1—4) and a-(1—3) linkages (Bai et

al., 2016; Gangoiti et al., 2018b, 2017). (ii) Glucansucrases that convert sucrose to dextran,

14
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reuteran, alternan, or mutan, polymers with predominantly a-(1—6), a —(1—4) and a-(1—6),
alternating a-(1—3) and a-(1—6), or a —(1—3) and a-(1—06) linkages, respectively (Kralj et al.,
2005; Meng et al., 2016; Robyt et al., 1974; van Hijum et al., 2006). (iii) Branching sucrases use
sucrose and dextran as substrates to introduce oo —(1—2) or oo —(1—3) branching points on linear o,
—(1—6) chains (Moulis et al., 2016; Passerini et al., 2015) (Figure 8). Some GH70 family enzymes
include two catalytic domains, a dextransucrase and a branching sucrase, which share a single
glucan binding domain (Meng et al., 2018; Passerini et al., 2015) (Figure 8). Among these
enzymes, glucanotransferases form a distinct phylogenetic clade that forms the evolutionary link
to GH13 amylases (Meng et al., 2016)(Figure 8). Branching sucrases form a distinct phylogenetic
clade among dextransucrases (Figure 8). The linkage type of the polymers formed by
glucansucrases cannot be predicted from the phylogenetic position (Figure 8), it rather depends on
the amino acid sequence of the four catalytic domains of GH70 family enzymes (Meng et al.,

2016).

Of the GH70 family enzymes, the use of branching sucrases in baking remains unexplored.
Glucans including a large proportion of a—(1—3) linkages, however, are not soluble in water

(Komatsu et al., 2011) and thus unlikely to be useful in baking applications.

The use of the glucanotransferase GtfB from Streptococcus thermophilus in baking increased
bread volume and reduced retrogradation of starch during storage of bread (Biyikli et al., 2023; Li
et al., 2019), providing proof of concept that conversion of starch to a soluble polymer with
a-(1—4) and o—(1—6) linkages improves bread quality. The conversion of starch by GtfB

expressing lactobacilli during growth in sourdough remains to be explored.

The use of dextran and reuteran producing cultures, specifically Weissella spp., Leuconostoc spp.

and Lm. reuteri, to increase the volume of bread or steamed bread and to delay staling of starch
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during ageing is extensively documented (Bounaix et al., 2010; X. Y. Chen et al., 2016; Galle et
al., 2012a; Galle and Arendt, 2014; Katina et al., 2009; Lin et al., 2019; Muyanja et al., 2003).
Glucansucrase activity of lactobacilli, however, not only generates water-binding polysaccharides
but also releases fructose, which is converted to mannitol with concomitant formation of acetic
acid by most heterofermentative lactobacilli (Figure 2). In wheat baking but not in gluten free
breads, the excessive accumulation of acetate in presence of sucrose largely counter-acts any
beneficial effect that glucans may have on bread volume and texture (Galle et al., 2012a, 2012b;
Kaditzky et al., 2008). The comparison of sourdoughs fermented with Leuconostoc mesenteroides
and Weissella cibaria also revealed that sucrose metabolism by mannitol-dehydrogenase positive
heterofermenters in sourdough results an excessive sour taste of bread (Mduller et al., 2021). Of
those lactobacilli that have been used in sourdough fermentations, dextransucrase activity without
mannitol dehydrogenase activity is observed in few strains of Lactobacillus and Ligilactobacillus
species, and in most strains of W. cibaria and W. confusa (Galle et al., 2010)(Figure 7). Weissella
species produce up to 20 g dextran / kg (Hu and Génzle, 2018) and most successful applications
of EPS producing lactobacilli employed Weissella species (Bounaix et al., 2010; Galle et al.,

2012a; Galle and Arendt, 2014; Katina et al., 2009; Lin et al., 2019; Muyanja et al., 2003).

6. The lesser gods: Secondary fermenters, Paucilactobacillus spp., Secundilactobacillus

spp. and Lentilactobacillus spp.

The secondary fermenters thrive in hexose-depleted habitats after other lactobacilli or yeasts
consumed most fermentable carbohydrates (Zheng et al., 2020). Examples include the spoilage of
pickles by Lentilactobacillus species (Johanningsmeier and McFeeters, 2015), cheese spoilage by
Paucilactobacillus species (Oberg et al., 2016) and beer spoilage by Secundilactobacillus

malefermentans (Russell and Walker, 1953). Typical metabolic traits of these organisms include
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the absence of disaccharide hydrolases or phosphorylases and of mannitol dehydrogenase, the
presence of the pentose phosphate pathway, and the presence of pathways for lactate conversion
to 1,2 propanediol and further to propanoic acid and propanol (Figure 3). Metabolism of pentoses
by the pentose phosphate pathway has not been described for any heterofermentative organism;
the conversion of lactate and propanediol is well documented (Krooneman et al., 2002; Oude
Elferink et al., 2001). Many strains potentially also excel in harvesting energy from esters or

glycosides of phenolic compounds (Figure 5) but this activity has not been verified experimentally.

Secondary fermenters of the genera Lentilactobacillus, Secundilactobacillus and
Paucilactobacillus are not frequently isolated from sourdoughs but are known to occur
occasionally (De Vuyst et al., 2023). What is their specific contribution to bread quality? First, the
accumulation of acetic and propionic acids contributes to mold inhibition on bread (C. Zhang et
al., 2010). Second, many species grow at 10 °C or below and thus remain metabolically active at
refrigeration temperature. Last but not least, the conversion of lactate via 1,2 propanediol to
propionate and acetate supports slow but sustained growth and metabolic activity throughout
extended incubation times of weeks or even month (Johanningsmeier and McFeeters, 2013;
Krooneman et al., 2002; C. Zhang et al., 2010). Other sourdough lactobacilli are metabolically
inactive during extended incubation times and the cell counts decrease within days of entry into
the stationary phase of growth (Stromeck et al., 2011; Vogel et al., 1999; J. Zhang et al., 2010).
Taken together, the use of secondary fermenters may enable the formulation of sourdough starter
cultures that retain viability and metabolic activity throughout refrigerated distribution and storage

for use without refreshment or extended lag times.
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7. The unlikely contenders.

Of the 32 genera of the Lactobacillaceae, only 19 are represented by genera that were identified
in more than one sourdough (De Vuyst et al., 2023; Landis et al., 2021)(compare Figure 3 and
Figure 5). The remaining 19 genera represent mainly highly specialized, insect adapted genera,
e.g. Bombilactobacillus, Apilactobacillus, Nicoliella and Convivina, organisms with unknown
ecology that are represented only by one or two species, e.g. Nicoliellaa, Holzapfeliella,
Amylolactobacillus, Dellaglioa and Acetilactobacillus, have small genome sizes and likely are also
highly specialized to specific persistence niches, and Liquorilactobacillus and Periweissella,
which include predominantly motile strains (Figure 1). Their absence in the more than 1000
sourdoughs for which reliable information on the microbial community is available means that

strains of these genera are unlikely contenders for use in sourdough starter cultures.
8. Safety aspects of the selection of starter cultures

The assessment of the qualified presumed safety (QPS) of food and feed cultures by the European
Food Safety Authority provides a robust framework to determine the safety of novel starter
cultures (Leuschner et al., 2010). Members of the Lactobacillaceae are generally not considered a
concern for human safety; the most relevant criteria the assessment of their safety are a reliable
taxonomic identification, the formation of biogenic amines, and the lack of transferrable antibiotic
resistance (EFSA, 2012; Koutsoumanis et al., 2023; Leuschner et al., 2010). The taxonomic
identification as well as the determination of the presence of transferrable genes encoding for
antibiotic resistance are based on whole genome sequencing (Campedelli et al., 2019; Chun et al.,
2018). Few species in the Lactobacillaceae, most frequently Lacticaseibacillus rhamnosus, have
caused infections in critically ill individuals; these rare infections have not questioned, however,

the QPS status of Lc. rhamnosus (Koutsoumanis et al., 2023, 2020). Weissella species are also
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considered safe fermentation organisms despite their occasional isolation from infected patients
(Kim et al., 2023; Sturino, 2018), however, Weissella species have not yet received regulatory

approval for commercial use as food or feed cultures.
9. Social aspects of starter selection.

While most experimental sourdoughs are inoculated with only one or two strains of lactobacilli,
sourdoughs that are used in bakeries or at the household level are complex communities of
microbes that typically include two to six dominant microbes. Successful sourdough starter
cultures also include multiple bacterial species which include both homofermentative and
heterofermentative lactobacilli. Our understanding of strain properties that matter for stable co-
existence with other microbes is still in its infancy. Resource partitioning between
homofermentative and heterofermentative lactobacilli as discussed above is likely also of
importance for the stable co-existence of these organisms in sourdoughs. A reconstituted microbial
community that exhibited functional and compositional stability over multiple back-slopping steps
was characterized by stable dominant strains and fluctuating satellite strains, and by transcriptome
redundancy (Calabrese et al., 2022). In intestinal communities of microbes, minor constituents
specialise on metabolism of substrates that are not available to dominant strains (Brochet et al.,
2021); this aspect may also relate to microbial communities in sourdoughs. Until our
understanding of the social context of microbial communities improves, the composition of
microbial communities can be based on those combinations of species that were frequently
identified in the same sourdough. Lactobacillus species and Limosilactobacillus species flourish
in the same persistence niches in intestinal habitats (Duar et al., 2017; Walter, 2008) and in
sourdough (Génzle and Zheng, 2019). These genera share comparable temperature optima and

acid resistance (Zheng et al., 2020) but differ with respect to the preferred substrates for
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carbohydrate metabolism (see above). In sourdoughs used as leavening agent, a combination of
Fl. sanfranciscensis, (Companilactobacillus or Lp. plantarum) and (Furfurilactobacillus or
Levilactobacillus) is frequently found (De Vuyst et al., 2021; Génzle and Zheng, 2019). Lp.
plantarum and Lv. brevis or Lm. fermentum co-exist in many food fermentations including
spontaneous sourdoughs (De Vuyst et al., 2023, 2021; Ganzle and Zheng, 2019). The stable co-
existence of microbes also depends on the fermentation conditions. Frequent back-slopping selects
for fast growing strains, long fermentations times select for fast growing and acid resistant strains
and extended storage in the refrigerator likely selects of psychrotropic strains of lactobacilli

(Landis et al., 2021; Lin and Génzle, 2014b; Meroth et al., 2003).
10. To back-slop or not to back-slop: is this a question?

Whether or not the laborious back-slopping of sourdoughs is preferred over the use of dried
sourdoughs, or of ready-to-use starter cultures that can be reactivated with only few propagation
steps was not a question until baker’s yeast became available: Back-slopped sourdoughs leaven
bread, spontaneous sourdoughs do not, or leaven to a much lesser extent (Arranz-Otaegui et al.,
2018; Brandt et al., 2004; Génzle and Zheng, 2019; Haggman and Salovaara, 2008b). Accordingly,
most sourdoughs used as leavening agent in artisanal bakeries are back-slopped. A long history of
back-slopping means that many sourdoughs are older than the bakers that use them. Documented
or anecdotal evidence dates multiple sourdoughs to an age from 100 years to more than 150 years
of continuous back-slopping (Feinstein, 2022). The observation that sourdough yeasts are
domesticated (Bigey et al., 2021) also documents that the use of long-term back-slopped

sourdoughs is the default modus operandi in traditional sourdough baking.

Whether or not back-slopping of sourdoughs is preferred is also not a question for suppliers to the

baking industry: Dried sourdoughs, or active sourdoughs that remain stable only for few
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fermentation cycles generate revenue, sourdoughs that are back-slopped perpetually don’t. In
addition, ready-to-use sourdoughs or sourdough products provide consistent composition and
performance (Brandt et al., 2023; Brandt, 2019, 2007). Achieving the same consistent performance
with back-slopped sourdough requires substantial expertise in fermentation control, which is no

longer present in most (industrial) baking operations.

Whether or not the use of long-term back-slopped sourdoughs remains de rigueur as sourdough
fermentation is re-introduced into industrial baking is an open question. It is likely that each facility
will find its own compromise between the convenience and consistent performance of ready-to-
use sourdoughs and the cost-savings of long-term back-slopped sourdoughs (Brandt et al., 2023).
Irrespective of the balance that will be struck among different baking facilities, the stability of
microbial communities in sourdoughs over multiple back-slopping steps will likely become an
important selection criterion for sourdough starter cultures. The difficulties in predicting this

stability on the basis of current knowledge was outlined in the preceding section.
11. Conclusions

Sourdough fermentation to produce bread is one of the oldest food fermentations; at the same time,
the use of sourdough in baking is an area where current commercial and societal developments
open multiple new approaches for use of novel microorganisms and novel fermentation processes
in bread production. The demand for gluten-free bread has also introduced a large diversity of non-
conventional cereals and pseudocereals in gluten-free and conventional baking. In addition, the
tools for selection of microbes for use in sourdough baking are rapidly evolving and sequence-
based analyses and in silico prediction of the metabolic potential of specific strains or microbial
communities are readily available and affordable. Taken together, novel microbes and processes

in combination with unconventional substrates and improved high-throughput screening tools
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provide substantial room for innovation: the quest for the perfect loaf of sourdough bread

continues.
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Figure legends

Figure 1. Phylogenetic tree of type species in the Lactobacillaceae that were validly or effectively
published in March 2023. The 33 genera in the Lactobacillaceae are color coded. Bootstrap
support was calculated on the basis of 1000 replicates; values below 80% are indicated. The tree
was calculated with methodology described in (Qiao et al., 2022; Zheng et al., 2020, 2015). The
genome accession numbers are listed in Table S1, an updated list is available on

www.lactobacillus.ualberta.ca.

Figure 2. Metabolism of homofermentative lactobacilli (Panel A) and heterofermentative
lactobacilli (Panel B) in sourdough. ATP generating reactions are shown in red font; ATP
consuming reactions in white font on red background; NADH consuming reactions are shown in
blue font; NADH generating reactions are shown in white font on blue background. Enzymatic
reactions are drawn to show a neutral balance of co-factors and to indicate the ATP yields of the
pathways. Homofermentative lactobacilli preferentially use glucose as carbon source; most
heterofermentative lactobacilli preferentially utilize sucrose and maltose through disaccharide
phosphorylases. In addition, fructose, generated by yeast invertase from sucrose and fructans, and
oxygen are abundant in initial stages of fermentation, enabling regeneration of reduced co-factors
by mannitol dehydrogenase and NADH-peroxidase, respectively. Drawn according to (Génzle,

2015) with modifications.

Figure 3. Heatmap showing the proportion of type strains within a genus of the Lactobacillaceae
encoding for genes that were shown to impact bread quality (Table 1). Type strain genomes of
each species were evaluated for the presence of these enzymes by BLAST analysis using available
amino acid sequences of characterized enzymes as query (cut-offs: 40 % identity, 70 % coverage).

Values are given as % of species per genus. The accession numbers for the query sequences are
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shown in Table S2. Proteins are abbreviated as follows: Fba, Fructose-bisphosphate aldolase; Pfk,
Phosphofructokinase; Pkl, Phosphoketolase; Adh2, Alcohol dehydrogenase 2; Adhl, two-domain
Alcohol dehydrogenase 1 converting acetyl-CoA to ethanol; Mdh, Mannitol dehydrogenase; Mpd,
Mannitol phosphate dehydrogenase; Tal, Transaldolase; Tak, Transketolase; LdhD, Lactaldehyde
dehydrogenase; PduE and PduD, glycerol dehydratase medium subunits PdeE and PduD; Pfl,
Pyruvate formate lyase; ADI Arginine deiminase; OrdC, Ornithine decarboxylase; Gls,
Glutaminase; Gab, Glutamate decarboxylase; Cgl, Cystein glutamyl ligase; Gsr, Glutathione
reductase; Ldh, linoleate hydratase. Drawn with information and methodology described by

(Zheng et al., 2015).

Figure 4. Glutamine metabolism by Lm. reuteri. Glutamine or glutamate are imported by GadC1
or GadC2 in antiport with glutamate or GABA, respectively. Glutamate transport selects for
uncharged Glu* even at pH values where Glu** is much more abundant. Deamidation of glutamine
and decarboxylation of glutamate consume one proton each, thus increasing the proton gradient

across the membrane. Drawn according to (Teixeira et al., 2014)

Figure 5. Heatmap showing the proportion of type strains of those genera in the Lactobacillaceae
that are known to occur in sourdough encoding for genes related to metabolism of
hydroxycinnamic acids (green), hydroxyl benzoic acids (blue) and flavonoid glycosides (purple).
LP-0796, Est 1092 and HceP, hydroxycinnamic acid esterases; Parl, HcrF and HcrB,
hydroxycinnamic acid reductases; Pad, hydroxycinnamic acid decarboxylase and VprA, vinyl
phenol reductase; TanA and TanB, extra- and intracellular hydroxybenzoic acid esterases; LpdC,
hydroxybenzoic acid decarboxylase; Raml, Ram2, and RamAla, rhamnosidases; rBGLa.

B-glucosidase; LcGUS30, B-glucuronidase. Modified from (Gaur and Ganzle, 2023).
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Figure 6. Metabolic pathway of lactate and 1,2 propanediol catabolism by lactobacilli. The key
enzyme of lactate conversion is lactaldehyde dehydrogenase, which converts lactate to
lactaldehyde; the key enzyme of 1,2 propanediol conversion is the diol dehydratase PduCDE,
which converts 1,2 propanediol and glycerol to propionaldehyde and B-hydroxypropionaldehyde,
respectively. Drawn according to (Génzle, 2015). See Figure 3 for distribution of these genes

among lactobacilli.

Figure 7. Heatmap showing the proportion of type strains within a genus of the Lactobacillaceae
encoding one or more glycosyl hydrolase family 70 enzymes as well as mannitol dehydrogenase.
Representative genomes of each species were evaluated for the presence of these enzymes by
BLAST analysis using available amino acid sequences of characterized enzymes as query (cut-

offs: 40 % identity, 70 % coverage). Values are given as % of species per genus.

Figure 8. Phylogenetic tree calculated on the basis of aligned amino acid sequences of glycosyl
hydrolase family 70 enzymes. The maximum likelihood tree was calculated by 1Q-TREE multicore
version 2.1.2, using 1000 bootstrap replicates and the JTT matrix-based model. If available, all
enzymes are labelled with their respective NCBI accession number. Characterized enzymes used
as query sequences to blast against the representative genome of each species are shown in bold
letters. Background colors display type of GH70 enzyme according to (Gangoiti et al., 2018a)
GtfA (red) = glucansucrases, GtfB (blue), GtfC (green), GtfD (purple) = a-glucanotransferases.
Branching sucrases (yellow) were identified by conserved amino acid residues according to
(Muillemin et al., 2016). Where information is available, the outer ring displays the type of
polysaccharide product synthesized by the respective enzyme: dextran (blue), reuteran (yellow),

mutan (red), alternan (green).
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Table 1. Contribution of specific sourdough microbes and their metabolic activities to bread quality. Entries with grey

shading require metabolically active lactobacilli during proofing.

Metabolite / metabolic pathway Impact on quality

Organisms

Enyzmes (reference)

Carbohydrate metabolism

Dough acidification: taste and
modulation of the activity of cereal
enzymes

Formation of lactate

. . . Flavor and enhanced mold-free shelf
Formation of acetic acid life

Formation of CO; Leavening

Improved bread volume, texture and

Formation of exopolysaccharides reduced staling

Protein and amino acid metabolism

Taste compounds and flavor

Release of amino acids from peptides
Pep precursor compounds

Conversion of glutamine to
glutamate

Umami taste

Precursor to formation of 2-acetyl-2-

Conversion of arginine to ornithine pyrroline during baking

Conversion of glutamate to y-butyric
acid

Bioactive

Reduced gluten quality and bread
volume, accelerated degradation of
allergens, formation of antifungal
coriolic acid

Reduction of oxidized glutathione

Formation of y-glutamyl peptides Kokumi activity

Conversion of amino acids to flavor Improved flavor

All lactobacilli

Heterofermentative lactobacilli

Heterofermentative lactobacilli and
yeasts

Lm. reuteri, Leuconostoc spp. and
Weissella spp.

All lactobacilli
All lactobacilli

Species-specific trait of lactobacilli
Strain specific in Lm. reuteri, Lp.
plantarum, Lv. brevis and others

Fl. sanfranciscensis

Limosilactobacillus and
Lentilactobacillus species

Yeasts

Phosphofructokinase of
phosphoketolase

Mannitol dehydrogenase and two-
domain acetaldehyde and alcohol
dehydrogenase Ald2

(Brandt et al., 2004; Haggman and
Salovaara, 2008a)

Glucansucrases (Galle and Arendt,
2014)

Peptidases (Génzle et al., 2008)
Glutaminases, others (Li et al., 2020;
Vermeulen et al., 2007b)

Arginine deiminase pathway (Thiele
etal., 2002; Zheng et al., 2015)

Glutamate decarboxylase (Su et al.,
2011)

Glutathione reductase (Jansch et al.,
2007)

v-Glutamyl-cysteine ligase (Xie and
Ganzle, 2021; Yan et al., 2018)

Ehrlich pathway (Dzialo et al., 2017)
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volatiles
Lipid metabolism

Reduction of aldehydes originating
from lipid oxidation to alcohols

Hydration of unsaturated fatty acids
to hydroxyl-fatty acids

Altered flavor

Enhanced mold-free shelf life

Others
Conversion of phenolic acids Flavor, bioavailability of bioactives

Ester synthesis Flavor

Heterofermentative lactobacilli

Lv. hammesii, Lp. plantarum, others

Lp. plantarum, Lv. brevis, yeasts

Yeasts

Alcohol dehydrogenases (Sugahara
et al., 2022; Vermeulen et al., 2007a)

Linoleate hydratase (Black et al.,
2013)

Hydroxycinnamic acid reductases
and decarboxylases (Gaur and
Ganzle, 2023)

(Dzialo et al., 2017)
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