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ABSTRACT

This dissertation consists of three separate essays on health care operations man-

agement. Abstracts of the three essays are as follows:

Essay 1: We model emergency medical services (EMS) as Erlang loss systems and

study ambulance shortage periods, intervals with few or no ambulances available to

handle new emergency calls. We propose a simple recursion to calculate the expected

duration of ambulance shortage periods and validate our recursion with data from

Calgary, Canada, EMS. We develop analytical results for the second and higher

moments, distribution, and Laplace transform of the shortage periods for some

specific service time distributions. We provide analytical tools to investigate the

impact of two possible actions that ambulance dispatchers can take: (1) requesting

additional ambulances from neighbouring cities or other ambulance fleets, and (2)

asking that busy ambulances be freed, for example the ones currently waiting to

offload patients in EDs. Our models evaluate two performance measures: (1) the

expected remaining duration of shortage periods, and (2) the expected number of

lost calls.

Essay 2: Except for some special cases, closed form solutions for multi-server

queues with multiple classes of impatient customers do not exist due to their

high complexity. We model these systems as level-dependent quasi-birth-and-death

(LDQBD) processes and propose two novel methods to numerically solve them: (1)

we use Lyapunov analysis to truncate the state space such that the probability

mass in the truncated upper tail is guaranteed to be smaller than a pre-specified

value. This method can potentially substitute the currently-used heuristics that are

exploited within algorithms that truncate the system first and then calculate its per-

formance measures. (2) we extend an existing algorithm such that we can calculate

the stationary probabilities with a desired error tolerance—current methods do not
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provide bounds on the stationary probabilities.

Essay 3: We propose a tool to accurately predict the number of heart attack

patients in sufficiently small geographical areas of Alberta. Focusing on small spatial

units enables researchers to calculate precise estimates of travel times from the heart

attack scene to a treatment center, which is useful in finding appropriate locations

for new treatment facilities. We use standard multiple linear, Poisson, and negative

binomial regression methods to predict the number of heart attacks as a function

of the population in cohorts of age, sex, education, and income. We build, validate,

and compare the performance of these methods using an empirical data set of heart

attack counts in postal codes of Alberta from 2003 to 2010, and 2006 census data

for Alberta dissemination areas.

iii



In memory of my father, Kamal Rastpour.

iv



ACKNOWLEDGEMENTS

I am sincerely grateful to my supervisor, Professor Armann Ingolfsson, for his

continuous trust in my work, endless patience, and passion for teaching his deep

knowledge to me. I also express my warmest gratitude to my other supervisor Dr.

Padma Kaul, who was very supportive throughout my program.

I owe my deepest gratitude to Drs. Reidar Hagtvedt, Bora Kolfal, and Burhaned-
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CHAPTER 1

Introduction

This dissertation, written in partial fulfillment of the requirements for a Ph.D.

degree in Operations Management in the Accounting, Operations, and Informa-

tion Systems Department at the University of Alberta School of Business, consists

of three separate papers on health care problems. These problems are associated

with various aspects of the health care system, including emergency medical ser-

vices (EMS), emergency departments, and demand prediction for a specific type of

treatment.

The first paper, which is presented in Chapter 2 and has been co-authored by

Drs. Armann Ingolfsson and Bora Kolfal, both from the Alberta School of Business,

is on a problem in Ambulance fleet management. Mission-critical systems like fire,

police, and EMS may experience disasters if they face capacity shortages. Therefore,

it is necessary to have contingency plans to quickly restore these systems when their

utilization goes up. We focus on EMS systems and study Red Alerts (when all

ambulances are busy) and Yellow Alerts (when the number of available ambulances

falls below a threshold). Possible actions that EMS dispatchers take during shortage

periods include: (1) Requesting additional ambulances from neighbouring cities or

other ambulance fleets, (2) asking to free up busy ambulances, for example the

ones currently waiting to offload patients in EDs, or (3) repositioning available

ambulances. In the EMS systems that we are familiar with, dispatchers decide on

actions based on a combination of judgment and simple rules, such as the compliance

tables for repositioning. The dynamics of EMS systems are sufficiently complicated
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to make it difficult to reliably predict the consequences of different actions using

unaided human judgment, even by highly experienced dispatchers. We focus on the

first two actions and provide technical methods that EMS dispatchers can use to

evaluate the impacts of the actions and make their decisions based on solid results

of our methods.

The second paper, which is presented in Chapter 3 and has been co-authored

by Dr. Armann Ingolfsson and Dr. Burhaneddin Sandıkçı from the University of

Chicago’s Booth School of Business, develops performance evaluation methods for

two-class multi-server queues with abandonment. Such methods are useful, for ex-

ample, for investigating ways to reduce emergency department (ED) waiting times.

Prolonged waiting times in EDs have turned to serious problems that threaten pa-

tients health and lives throughout the world. As innovative solutions for long waiting

times, hospitals redesign the patients’ flow in EDs. Hospitals, for example, create a

fast track for less acute patients through which these patients are seen by physician

assistants without occupying resources needed by more acute patients. We provide

an analytical tool to investigate the impact of such redesigns on waiting times of

patients with different acuity levels. We view an ED as a queueing system with

multiple servers (beds or physicians), multiple priority classes (acuity classes), and

abandonment (patients who leave the system without being seen by a physician),

and model it as an infinite level quasi-birth-and-death process. We specifically focus

on queues with two impatient customer classes that have different service and pa-

tience rates. We use Lyapunov analysis and truncate the state space such that the

stationary probability mass in the truncated upper tail of the state space is below

some tolerance. As another analytical tool, we provide algorithms to calculate the

steady state probabilities and performance measures with any desired accuracy. Our

algorithm automatically truncates the state space such that the error tolerance is

satisfied.

The third paper, which is presented in Chapter 4 and has been co-authored by

Dr. Armann Ingolfsson, Dr. Reidar Hagtvedt from the Alberta School of Busi-

ness, and Dr. Padma Kaul from the University of Alberta Faculty of Medicine &
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Dentistry, is on a problem in demand prediction for heart attack treatment facili-

ties. We propose a tool to accurately predict the number of heart attack patients

in sufficiently small geographical areas of Alberta. Focusing on small spatial units

enables researchers to calculate precise estimates of travel times from the heart at-

tack scene to a treatment center, which is useful in finding appropriate locations

for new treatment facilities. We use standard multiple linear, Poisson, and negative

binomial regression methods to predict the number of heart attacks as a function

of the population in cohorts of age, sex, education, and income. We build, validate,

and compare the performance of these methods using an empirical data set of heart

attack counts in postal codes of Alberta from 2003 to 2010, and 2006 census data

for Alberta dissemination areas.
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CHAPTER 2

Modeling Yellow and Red Alert Durations for

Ambulance Systems

2.1 Introduction

Whether they are caused by a mass-casualty incident, extreme weather, a ter-

rorist attack, heavy traffic, or an unanticipated demand surge, capacity shortages

in mission-critical systems can lead to a disaster if no contingency plans have been

made. These systems are designed to almost always have capacity to respond to

emergencies. Still, periods when such systems run out of resources do happen and

are important enough to have a name: Red Alerts. More generally, systems that pro-

vide highly time-sensitive services such as emergency services, intensive care units,

and recovery services contractors for seminconductor manufacturing, aerospace, de-

fense, medical equipment and other industries (Kim et al. 2010) are designed to

minimize the frequency with which capacity is fully utilized, but reducing that fre-

quency to zero could be impossible or prohibitively expensive. Surges in demand

will occasionally cause all or nearly all capacity to be utilized. The purpose of this

chapter is to propose and analyze models of the duration of such shortage periods

and of actions that could be taken to reduce the duration or impact of such periods,

focusing on the specific context of emergency medical services (EMS).

EMS practitioners distinguish between three levels of intensity of resource usage:

High, medium, and low (Fitch et al. 1993). The highest intensity level corresponds

to periods when no ambulances are available to cover medical emergencies and
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these periods are typically referred to as “Red Alerts.” A medium intensity level,

corresponding to periods when less than a threshold number1 of ambulances are

available, is sometimes referred to as a “Yellow Alert,” which is the terminology we

will use in this chapter. Red Alerts pose health and safety issues that are of concern

to the general public, as reflected in frequent media reports: Sinnema (2012) reports

that the Edmonton, Alberta EMS system spent 9 hours and 45 minutes on Red Alert

during the first nine months of 2010 (0.15% of the time), for example. Schneider

(2012), Pedersen (2012), and myFOXdetroit (2011) are recent examples of reports in

a similar vein, for the EMS systems in Calgary, Toronto, and Detroit, respectively.

Ambulance shortage periods commonly follow surges in emergency depart-

ment (ED) workload that cause delays in freeing ambulances whose staff are

waiting to transfer care of their patients to ED staff. Such delays tie up am-

bulances and reduce the EMS system’s ability to respond to new calls. Sin-

nema (2010) reports that Edmonton paramedics were tied up in EDs for one

hour and 22 minutes on average during the first 9 months of 2010. In order

to shorten alert periods, EMS departments may ask EDs to prioritize the un-

loading of ambulances. The prioritization process has been formalized in an ED

Surge Capacity Protocol in Alberta (Alberta Health Services 2010) and elsewhere

(Stony Brook University Medical Center 2012, The College of Emergency Medicine

2012) and medical researchers have investigated the impact of such protocols on ED

crowding (Cha et al. 2009, Watase et al. 2012).

In the EMS context, Yellow Alert periods are important from two perspectives:

(1) the onset of a Yellow Alert is a signal to dispatchers to take actions to prevent the

situation from deteriorating into a Red Alert, and (2) a small number of available

ambulances in the system increases the average distance to the closest available

ambulance, which results in longer response times. In practice, dispatchers take

actions to attempt to shorten Yellow Alerts, but it is difficult to select actions

because (1) it is difficult to predict Yellow Alert durations, and (2) there is a lack

of appropriate performance measures that can be used to assess the likely impacts

of an action. We will address both of these issues.
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Table 2.1: EMS configuration in Edmonton,2008, and Calgary, 2009.
Parameter Edmonton Calgary

Yellow Alert threshold (θ) 8 12
Minimum number of scheduled ambulances 19 28
Maximum number of scheduled ambulances 36 54
Average number of scheduled ambulances 25 41
Average utilization 57% 43%

Table 2.2: Alert periods’ descriptive stats. in Edmonton, 2008, and Calgary, 2009.
Yellow Alert Red Alert

Statistic Edmonton Calgary Edmonton Calgary

Sample Size 1349 703 587 9
Mean (min.) 106.41 7.09 7.20 1.37
Standard Deviation (min.) 120.26 11.53 11.32 1.32
Maximum (min.) 1012.02 127.28 138.93 4.53
Squared Coefficient of Variation 1.28 2.64 2.47 0.94

Tables 2.1-2.2 and Figure 2.1 provide EMS configurations, descriptive statistics,

and empirical distributions for EMS alert periods in Edmonton and Calgary during

2008 and 2009, respectively. Yellow and Red Alerts were more frequent in Edmonton

than Calgary, consistent with the higher ambulance utilization in Edmonton. Alert

period durations are highly variable (with squared coefficients of variation larger

than one in most cases), which suggests that Red and Yellow Alert durations are

difficult to predict.

Possible actions that EMS dispatchers take during shortage periods include: (1)

Requesting additional ambulances, (2) asking to free up busy ambulances, for ex-

ample the ones currently waiting to offload patients in EDs, or (3) repositioning

available ambulances. Action (3) is only possible during Yellow Alerts but not dur-

ing Red Alerts because there are no available ambulances to reposition. In the

EMS systems that we are familiar with, dispatchers decide on actions based on a

combination of judgment and simple rules, such as the compliance tables for repo-

sitioning that are discussed in Alanis et al. (2013). The dynamics of EMS systems

are sufficiently complicated to make it difficult to reliably predict the consequences

of different actions using unaided human judgment, even by highly experienced

dispatchers. When dispatchers consider requesting new ambulances, for example,
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(b) Calgary

Figure 2.1: Alert periods’ CDF in Edmonton, 2008, and Calgary, 2009.

as ambulance shortage durations are difficult to predict, they face the uncertainty

of whether the shortage period will naturally end soon or whether it will last for

an extended time period. Mobilizing new ambulances is costly and adds stress to

dispatchers and ambulance crews, all to no avail, if the alert is short-lived.

One perspective is to view this problem as an optimal control problem and

formulate it as a Markov decision process where costs of lost calls, requested ambu-

lances, and expedited services are minimized. Instead of an MDP formulation, we

use a simple M/G/c/c model. Furthermore, we restrict the policy space to focus

on policies similar to ones already used in practice, by assuming that the actions of

requesting additional ambulances and increasing the service rate can only be taken

if the system has reached a Yellow Alert period. We develop methods to quickly

perform calculations to provide decision support to dispatchers, so that when the

system is within a Yellow Alert, they can instantly see the impacts of triggering

intervention actions on the system.
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Figure 2.2: System states related to Yellow and Red Alerts. c = 41, θ = 12.

We mathematically model the duration of alert periods and the impacts of re-

questing additional resources and freeing up busy ambulances on the severity and

duration of these periods. The third possible action, repositioning, has been investi-

gated recently by several researchers (Alanis et al. 2013, Maxwell et al. 2010, Schmid

2012). Our work complements this work by investigating other actions that EMS

operators can take during ambulance shortage periods. Our models are intended to

help compare the effectiveness of different actions.

We model EMS systems as Erlang loss (M/G/c/c) systems. We view calls that

arrive during a Red Alert as “lost,” as other researchers have done (Maxwell et al.

2010, for example), because typically other resources (the fire department or EMS

supervisors, for example) respond to such calls, rather than the call waiting in a

queue. We study Yellow and Red Alerts as special cases of “k-partial busy periods”:

time intervals during which k or more of the c servers are busy. Red Alerts are

c-partial busy periods and Yellow Alerts are (c− θ+ 1)-partial busy periods, where

θ is the Yellow Alert threshold for the number of busy ambulances—a Yellow Alert

remains in effect with θ − 1 or fewer available ambulances. Figure 2.2 illustrates

Yellow and Red Alerts assuming θ = 12 and c = 41.

We make the following contributions:

1. We prove an insensitivity result: The first moments of partial busy period

durations depend on the service time distribution only through its mean and

can be expressed in closed form. The higher moments are sensitive to the

shape of the service time distribution.
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2. We validate our model by showing that it can be used to predict the mean

partial busy period durations for the Calgary EMS system.

3. We develop recursive equations for the Laplace Transform (LT) of partial busy

period duration distributions for the M/G/c/c system.

4. We characterize the distribution of partial busy period durations for loss

systems with exponential (M/M/c/c) and generalized hyperexponential

(M/GH/c/c) service time distributions. We analyze higher moments of partial

busy period durations for M/M/c/c systems and provide recursive solutions

and monotonicity results for the variance and squared coefficients of variation

of partial busy period durations.

5. We formulate and solve absorbing Markov chains to predict the impact of

requesting new ambulances and freeing up ambulances in emergency depart-

ments on the residual duration of alert periods and on the number of lost calls

during these residual periods.

6. We illustrate how our methods could be used to aid dispatchers in selecting a

combination of actions that optimizes the residual duration of an alert period

or the number of lost calls.

The remainder of the chapter is organized as follows. We review related past

work in Section 2; we define and analyze k-partial busy period durations in Section 3;

we validate our models in Section 4; we analyse the impacts of two actions, adding

servers and increasing the service rate, on two performance measures, remaining

alert period duration and the number of lost calls during these residual periods, in

Section 5; we illustrate how ambulance dispatchers can use our methods to manage

ambulance shortage periods in Section 6; and we conclude in Section 7.

2.2 Literature Review

We survey four streams of related literature: (1) modeling of EMS systems, (2)

insensitivity results for loss systems, (3) modeling of partial busy periods, and (4)

9



strategies to mitigate capacity or inventory shortages in various contexts.

EMS System Models: We are not the first to model EMS systems as loss sys-

tems; see Restrepo et al. (2009) who model EMS systems as M/G/c/c systems and

Li and Whitt (2013) who treat them as more general loss systems, for example. The

Erlang loss model ignores two key aspects of EMS systems, however: Servers (ambu-

lances) are not homogeneous, because of their geographic locations, and parameters

(arrival rates and number of servers) vary with time. Larson’s (1974, 1975) exact

and approximate hypercube queueing model (HQM) addresses the geographic het-

erogeneity of servers. Many researchers have used variants of HQM to study EMS

systems. Researchers who have formulated queueing models to study ambulance

repositioning (Alanis et al. 2013, Maxwell et al. 2010) and offload delay in EDs

(Almehdawe et al. 2012) have also assumed that calls that arrive when all ambu-

lances are busy are lost. Fewer researchers have explicitly incorporated time-varying

parameters in an analytical EMS system model; Ignall and Walker (1977) did this for

an EMS system and Kolesar et al. (1975) for police patrol cars. Simulation models

of EMS systems typically do incorporate time-varying parameters (Henderson and

Mason 2004, Mason 2013). We adopt the Erlang loss model for simplicity, in order

to make progress on modeling the duration of partial busy periods and on modeling

the impact of actions to mitigate capacity shortages. We assess the impact of some

of the simplifications that are inherent in the Erlang loss model in Section 4.

Insensitivity results for loss systems: Taylor (2013) defines an insensitive

stochastic model as one whose “stationary distribution depends on one or more of its

constituent lifetime distributions only through the mean,” and provides an extensive

literature review. The best known insensitive stochastic models are M/G/c/c and

M/G/∞.

Although the steady state probabilities of the M/G/c/c system are insensitive to

the service time distribution beyond its mean, the same is not true for the transient

occupancy probabilities. We show that the first moments of the k-partial busy

10



period durations, although they are measures of transient behavior, are insensitive

to the service time distribution beyond its mean.

Partial busy periods: Busy periods are unambiguously defined and well studied

for single-server queues; they begin when a customer arrives to an empty system and

last until the server becomes idle again for the first time. For analytical results, see

Gross and Harris (1998, p. 102), for example. For multi-server queues, however, the

terminology for busy periods varies. Omahen and Marathe (1978) use “busy period

Tk” and Sharma (1990, Chap. 4.4) use “k-server busy period” to refer to k-partial

busy periods. Artalejo and Lopez-Herrero (2001) use “partial busy periods” for

what we refer to as 1-partial busy periods—that is, at least one server is busy—and

they use “full busy period” for what we refer to as c-partial busy periods—that is,

all servers are busy. Other authors (Chan et al. 2013, for example) have followed

Artalejo and Lopez-Herrero in using the term “partial busy period,” and we extend

that term in defining k-partial busy periods.

Omahen and Marathe (1978) and Sharma (1990) studied k-partial busy periods

for the M/M/c and M/M/c/N (with queue capacity = N−c) systems, respectively.

Bountourelis et al. (2013) report that k-partial busy periods have not been studied

for loss systems, except as a special case of the M/M/c/N system. Our focus

on loss systems allows us to obtain stronger results than those in Sharma (1990).

Bountourelis et al. (2013) discuss applications of loss models in modeling hospital

intensive care units (ICU) and highlight the importance of studying the length of

periods during which ICUs are full, that is, c-partial busy period durations. We

thoroughly investigate k-partial busy period durations, for k = 1, . . . , c, for Erlang

loss systems and provide formulas to calculate their LT, probability density function

(PDF), and moments.

Shortage strategies: Alert periods are conceptually similar to low-inventory pe-

riods for a retailer or a manufacturer, or periods where almost all beds in a hospital

ward are occupied. Lawson and Porteus (2000), Duran et al. (2004), and Veeraragha-
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van and Scheller-Wolf (2008) discuss the use of “expediting” during low-inventory

periods. Chan et al. (2011) discuss the use of “speedup” in an ICU in order to

accommodate new patients that need to enter the ICU. Such short-term actions are

not without risk—for example, KC and Terwiesch (2012) show that speedup can

increase the chance of ICU readmission and decrease an ICU’s peak capacity. The

actions that we consider (requesting additional ambulances and freeing up busy

ambulances) can be viewed as examples of expediting and speedup. We provide

methods to compare the impacts of the two actions of interest on the expected

residual Yellow Alert duration and the number of lost calls during this period.

2.3 Partial Busy Period Modeling

We model an EMS system as a multi-server loss system with Poisson arrivals

and a general service time distribution, that is, as an M/G/c/c queueing system.

We use Q to denote a generic interarrival time (exponentially distributed with mean

1/λ) and we use T to denote a generic service time (generally distributed with mean

1/µ) with cumulative distribution function (CDF) FT (t). In this section, we first

present our results for an exponential service time distribution. We present general-

izations of some of our results for state-dependent service rates and for deterministic

(D), generalized hyperexponential (GH), and general continuous (G) service time

distributions. See Table A.1 for a list of notations in this chapter.

A k-partial busy period is a period during which at least k out of c servers are

busy. If an arrival at time t0 increases the number of busy servers to k (decreases the

number of available servers to c−k), then a k-partial busy period begins at t0. This

period ends when a departure leaves k− 1 busy servers (c− k+ 1 available servers)

behind for the first time after t0. We use Bk to denote the length of a generic k-

partial busy period and we use E(Bk), Var(Bk), SCV(Bk) = Var(Bk)/E(Bk)
2, and

LBk
(s) =

∫∞
0 e−sxfBk

(x)dx to denote the first moment, variance, squared coefficient

of variation of Bk, and the LT of the PDF of Bk, fBk
(x), respectively.

Our mathematical approach relies on the Markov process state description:
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X(t) =
(
ν(t), T̃1(t), . . . , T̃ν(t)(t)

)
, where the right-continuous function ν(t) ∈

{0, 1, . . . , c} is the number of busy servers at time t, and T̃1(t), . . . , T̃ν(t)(t) is a

random permutation of the residual service times of the busy servers at time t.

Erlander (1967) proves that this process has the following stationary distribution:

lim
t→+∞

Pr
(
ν(t) = k, T̃1(t) ≤ t1, . . . , T̃k(t) ≤ tk

)
= Pk

k∏

i=1

FT̃ (ti), (2.1)

where Pk is the probability of having k busy servers, and FT̃ (t) is the stationary

excess distribution of the service time, FT̃ (t) = µ
∫ t
0(1 − FT (s)) ds. See Takács

(1969) for a discussion of this result and Brumelle (1978) for a generalization. In

what follows, we assume that the process starts with the stationary distribution (or

equivalently, that the process started in the distant past).

All proofs are in Appendix A.

2.3.1 Partial Busy Periods for the M/M/c/c System

In Theorem 2.1, we characterize the first two moments and the distributional

form of k-partial busy period durations when the service time distribution is expo-

nential.

Theorem 2.1. If T is exponentially distributed, then Bk follows a hyperexponential

(H) distribution with c − k + 1 components. The first moment, variance, squared

coefficient of variation, and LT satisfy the following equations.

E(Bc) =
1

cµ
, E(Bk) =

λ

kµ
E(Bk+1) +

1

kµ
, k = c− 1, . . . , 1. (2.2)

Var(Bc) = E(Bc)
2, Var(Bk) =

λ

kµ
Var(Bk+1) + dk, k = c− 1, . . . , 1, (2.3)

dk =
λ

kµ
E(Bk+1)

2 + E(Bk)
2.

SCV(Bc) = 1, SCV(Bk) =
λ

kµ

E(Bk+1)
2

E(Bk)2
(SCV(Bk+1) + 1) + 1, k = c− 1, . . . , 1,

(2.4)

LBc(s) =
cµ

s+ cµ
, LBk

(s) =
kµ

λ+ kµ+ s− λLBk+1
(s)

, k = c− 1, . . . , 1. (2.5)
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Figure 2.3: Numerical results for M/M/41/41 with λ = 20, µ = 1.

The closed form solutions to the equations for E(Bk) and Var(Bk) in (2.2)-(2.3) are

as follows:

E(Bk) =
1

µ

c−k∑

i=0

(k − 1)!

(k + i)!

(
λ

µ

)i

, k = 1, ..., c− 1, (2.6)

Var(Bk) =

c−k−1∑

i=0

dk+i(k − 1)!

(k − 1 + i)!

(
λ

µ

)i

+
(k − 1)!

(cµ)2(c− 1)!

(
λ

µ

)c−k

, k = 1, ..., c− 1.

(2.7)

E(Bk) and Var(Bk) are strictly decreasing in k but SCV(Bk) is not guaranteed to

be monotonic in k.

Figure 2.3 shows how E(Bk), Var(Bk), and SCV(Bk) vary with k for an

M/M/41/41 system with λ = 20 and µ = 1, and illustrates the monotonicity

results in Theorem 2.1. We see that the SCV for Bk can be large (as high as 6 in

this example), which is consistent with the high empirical SCV of 2.64 for yellow

alert durations in Calgary that we saw in Section 1.

Equations (2.2)-(2.5) generalize to an M/M/c/c system with state-dependent
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service rates µk, k = 1, . . . , c, that is, the equations hold when we replace µ with µk.

Erlang loss models with state-dependent service rates have applications in traffic

flow modeling (Jain and Smith 1997), and in designing evacuation networks (Weiss

et al. 2012). Alanis et al. (2013) indicate that ambulance service rates in an EMS

system may depend on the number of busy ambulances.

2.3.2 Partial Busy Periods for the M/GH/c/c System

The class of GH distributions is a generalization of the exponential distribution,

to mixtures of exponential distributions where some of the mixture weights are

allowed to be negative. The GH distribution is a useful modeling tool because

the distribution of any positive random variable can be approximated with a GH

distribution to any desired accuracy (Botta and Harris 1986). If the service time

distribution is GH, then the expressions for the first moment in Theorem 2.1 remain

valid, and we can characterize the class of distributions for the k-partial busy periods

as generalized hyper-Erlang (GHE)—a mixture of Erlang distributions where some

of the mixture weights are allowed to be negative.

Theorem 2.2. Partial busy period durations of the M/GH/c/c system follow GHE

distributions, and their first moments can be calculated with (2.2) or (2.6).

2.3.3 Partial Busy Periods for the M/G/c/c System

The results from Theorem 2.1 regarding the first moment extend to general

service time distributions, which implies that the first moments of k-partial busy

periods in an M/G/c/c system are insensitive to the shape of the service time dis-

tribution beyond its mean. This insensitivity property does not extend to higher

moments of k-partial busy periods, however. Theorem 2.3 states these results for-

mally, together with a recursive equation for the Laplace Transform of the PDF

of Bk. Given k busy servers, we use the random variable Rk to denote the time

between the last event (arrival or departure) epoch and the next event epoch, and

we use events Lk (Lc
k) and Nk (N c

k) to denote that the last event was an arrival (a
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departure) and that the next event is an arrival (a departure), respectively.

Theorem 2.3. The first moment, E(Bk), satisfies (2.2) and (2.6), for general

continuous and for deterministic service time distributions. The higher moments

of Bc, E(B
n
c ) for n ≥ 2, are sensitive to the shape of the service time distribution.

The LTs of the PDF for Bk satisfy the following recursion for a general continuous

service time distribution:

LBc(s) = LRc|Lc
(s), (2.8)

LBk
(s) = LRk|Lk

(s)

(
1− Pr(Nk|Lk)

1−LRk|L
c
k
(s)LBk+1

(s)

1− Pr(Nk|Lc
k)LRk|L

c
k
(s)LBk+1

(s)

)
,

k = c− 1, . . . , 1, (2.9)

Our derivations in Appendix A involve conditioning on whether a k-partial busy

period will include one or more (k + 1)-partial periods or none. We prove that the

higher moments of Bc (E(Bn
c ) for n ≥ 2) are sensitive to the shape of the service

time distribution, by demonstrating that E(Bn
c ) is different for an exponential service

time distribution than for a uniform service time distribution with the same mean.

Extending the proof to k < c does not appear to be easy but we conjecture that

E(Bn
k ) is sensitive to the service time distribution for n ≥ 2, for k = 1, . . . , c−1 just

like it is for k = c. In Appendix A, we also prove (2.8)-(2.9) and provide expressions

for their components.

2.4 Model Validation

In the preceding section, we analyzed the standard Erlang loss model, with ex-

tensions to state-dependent service rates. If we model an EMS system as a standard

Erlang loss system, then we implicitly assume that the arrival rate, service rate, and

number of servers are constants that do not vary with the time or the system state.

In reality, arrival rates and the number of servers vary with time and past work

(Alanis et al. 2013) suggests that service rates are state-dependent, which threatens

the validity of the standard Erlang loss system. In this section, we investigate the
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impacts of these deviations from our assumptions and propose a way to mitigate

the negative impacts of these deviations.

We validate the Erlang loss model by estimating the model primitives (λ, µ, c)

from data, using the primitives to compute model outputs, and comparing the model

outputs to empirical outputs. The outputs that we focus on are the expected partial

busy period durations, calculated using (2.2) (we use (2.2) with state-dependent

service rates, µk, if the service rates are state-dependent). We proceed to compare

the model outputs to empirical outputs in four steps: (1) We ignore the threats to

the validity of the Erlang loss model and estimate non-time-varying and non-state-

dependent model primitives. (2) We estimate state-dependent service rates µk. (3)

We segment time into periods in which the assumptions of constant arrival rate and

constant number of ambulances are more tenable. For each segment, we estimate

non-time-varying and non-state-dependent model primitives. (4) Within each time

segment obtained in (3), we estimate state-dependent service rates.

We use 2009 data from the Calgary, Alberta EMS systems. The data includes

108,420 calls. We removed 13,952 calls that were not followed by an ambulance

dispatch and we removed an additional 734 calls because of missing or incorrect

data, leaving 93,734 observations.

We find that time segmenting has a greater impact than using state-dependent

service rates but both of these refinements to the analysis improve the agreement

between model outputs and empirical outputs. We conclude this section by aggre-

gating model outputs across time segments and comparing the aggregated predicted

partial busy period durations to their empirical counterparts.

2.4.1 Step 1: Constant Parameters

We calculate the sample path for the number of busy ambulances ν(t) (right-

continuous function ν(t) ∈ {0, 1, . . . , c} is the number of busy servers at time t) by

adding one at each call arrival epoch and subtracting one at each service completion

epoch. We remove the data for 1 January 2009 and initialize the sample path

with the number of active calls at 0:00 am on 2 January, based on the assumption
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that none of these active calls arrived more than 24 hours before that instant. KC

(2013) used a similar approach to initialize a sample path for the number of busy

physicians in an emergency department. We use the sample path to compute samples

of empirical k-partial busy period durations {bki, k = 1, . . . , c, i = 1, . . . , nk}, which

we use to calculate sample estimates bk = (1/nk)
∑nk

i=1 bki of E(Bk), where bki and

nk are the ith k-partial busy period duration and the total number of k-partial busy

periods in the sample path, respectively.

We estimated the arrival rate (λ̂ = 10.69 calls per hour) as the reciprocal of

the average interarrival time, the service rate (µ̂ = 0.68 patients per hour) as the

reciprocal of the average service time, and the number of servers (ĉ = 41) as the

rounded average number of scheduled ambulances in the data set. We then obtained

the model outputs E(Bk) by using (2.2). Figure 2.4 shows large and systematic

differences between the model outputs E(Bk) and the empirical outputs bk. In the

remainder of this section, we reduce these differences by controlling for time of the

week and for state-dependent service rates.

2.4.2 Step 2: State-dependent Service Rates

We follow Whitt (2012) in computing a death rate estimate d̂k (and an associated

95% confidence interval) for state k as the number of transitions that reduce ν(t)

from k to k − 1, divided by the time spent in state k. The death rate for state

k equals the number of busy servers, k, times the service rate per server, µk, and
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Figure 2.4: Predictions and empirical partial busy periods in Calgary, 2009.
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therefore we estimate the state-dependent service rates as µ̂k = d̂k/k.

As Figure A.3 shows, the estimated service rates decrease with the number of

busy ambulances, which is consistent with findings in Alanis et al. (2013). They hy-

pothesized that this “slowdown” effect occurs because a large number of ambulance

patient arrivals causes ED crowding, which increases the time that ambulances are

tied up in EDs, which translates to lower EMS service rates. We make a similar

observation in our data that both average hospital times and average response times

increase when the number of busy ambulances increase, which could be because of

crowded EDs and increased travel distances; we further observe that the magnitude

of increase in the hospital time is larger. We smoothed the service rate estimates

using weighted linear regression (with the sample sizes for each k as weights), re-

sulting in the linearly decreasing estimates µ̂linear
k = 0.86 − 0.0091k per hour. We

combined these service rate estimates with our previous estimates for the arrival

rate and the number of servers from Step 1 to obtain the state-dependent service

rate model outputs in Figure 2.4. We obtained this curve by using (2.2) with µk.

We see that incorporating state dependence improves the fit of the model outputs

to the empirical outputs slightly, but large and systematic errors remain.

2.4.3 Step 3: Time-varying Parameters

EMS arrival rates are known to vary systematically by time of day and day of

the week (Channouf et al. 2007, Setzler et al. 2009, Kim and Whitt 2014). Instead of

explicitly incorporating time-varying parameters in our model (as Ignall and Walker

(1977) did), we evaluate a simpler approach: We divide time into segments where the

parameters do not vary much, and use our model separately for each time segment.

This approach is similar to the “stationary-independent-period-by-period” (SIPP)

approach discussed by Green et al. (2001).

Figure A.4 shows estimated hourly arrival rates with 95% confidence intervals

and estimated hourly numbers of scheduled servers. Figures A.5-A.6 show estimated

hourly arrival rates separately for “weekdays” (midnight on Sunday until 7 pm on

Friday) and “weekends” (7 pm on Friday until midnight on Sunday). We chose 7
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pm on Friday as a breakpoint because the arrival rate pattern is different for Friday,

Saturday, and Sunday nights than for the rest of the week.

We divided every weekday and weekend day into 8 segments, namely 0:00-3:00,

3:00-7:00, 7:00-9:00, 9:00-13:00, 13:00-15:00, 15:00-19:00, 19:00-21:00, and 21:00-

24:00. We describe the heuristic that we used to obtain the time segments in Ap-

pendix A.2, and we illustrate the segments in Figures A.5-A.6. Within each time

segment, the arrival rate varies by at most 3 calls per hour and the number of

servers varies by at most 5 ambulances. Although the arrival rates and the number

of servers may not be close to constant within chosen time segments, as we shall

discuss later in this section, their variation is small enough to meet our needs.

Many k-partial busy periods cross the boundaries between time segments, which

complicates the task of obtaining empirical average partial busy period durations to

compare to the model outputs. We address this by concatenating sample paths for

a fixed time segment on consecutive days, as we illustrate in Figure 2.5. In order

to explain this procedure, we focus on the weekday 9:00-13:00 segment (Segment 4)

below:

1. Pool all calls with arrival epochs (but not necessarily service completion

epochs) between 9:00 and 13:00 on weekdays in 2009, excluding 1 January

(Figure 2.5(a)). Let n be the number of weekday 9:00-13:00 segments in the

sample.

2. Calculate the inter-arrival time αi for call i in the call pool (Figure 2.5(b)).

For i = 1, the inter-arrival time is the time from 9:00 until its arrival (α1 = t).

For the first call in the segment on day j, for j = 3, . . . , n the inter-arrival

time is equal to the time from the last arrival epoch in the segment on day

j− 1 to 13:00 plus the time from 9:00 to the first arrival epoch in the segment

on day j (α5 = t′ + t′′, for the example in Figure 2.5(b)).

3. Calculate the arrival epoch ai and departure epoch di for each call i in the

pool: ai =
∑i

n=1 αn, di = ai + si, where si is the service time of call i.
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(b) Concatenated sample paths

Figure 2.5: We concatenate sample paths for 9:00 - 13:00 weekday calls.

4. Starting from the number of active calls at 9:00 on 2 January 2009, construct

a sample path ν(t) for the number of busy ambulances by incrementing at

every arrival epoch and decrementing at every service completion epoch.

5. Compute k-partial busy period durations and their sample averages, as

previously described.

We estimated constant model primitives λ̂(τ), µ̂(τ), and ĉ(τ), separately for each

time segment τ = 1, . . . , 16, and used these primitives to compute model outputs

for each segment by using the method in Step 1. We obtained λ̂(4) = 13.37 calls

per hour, µ̂(4) = 0.58 patients per hour, and ĉ(4) = 42 ambulances for weekdays

9:00-13:00 (time segment τ = 4), for example. As Figure 2.6 illustrates, we obtain

an excellent fit between model and empirical outputs for Segment 4. Graphs for the

other 15 segments show excellent fits as well.

Kim and Whitt (2014) propose more sophisticated methods than we used to

obtain segments within which the arrival rate is almost constant, but as we saw,

the segments we chose are sufficient to obtain close agreement between model and

empirical outputs, even though the arrival rates (and the number of servers) are not

close to constant within each of our segments.
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Figure 2.6: Model outputs for weekday 9:00 to 13:00.

2.4.4 Step 4: State- and Time-dependent Parameters

As a final step, we estimate state-dependent service rates µ
(τ)
k separately for each

time segment τ and state k and use them, together with segment-specific estimates

for arrival rate and number of servers, obtained in Step 3, to compute the model

outputs. As Figure 2.6 illustrates, incorporating state-dependent service rates has

only a minor impact over Step 3 for the weekday 9:00-13:00 time segment, and the

same was true for the other time segments as well.

2.4.5 Aggregating Over Time Segments

Using the Step 4 analysis, we calculate expected partial busy period durations

E
(
B

(τ)
k

)
for every time segment τ = 1, . . . , 16 and k = 1, . . . , ĉ(τ). We aggregate

over the time segments in order to obtain model outputs that, we hope, will closely

match the empirical outputs bk for the whole sample.

Let B′k be the duration of a k-partial busy period in the real EMS system,

which as we have seen has time-varying arrival rates, server counts, and state-

dependent service rates. We proceed heuristically to derive an expression for E(B′k)

as a function of the E
(
B

(τ)
k

)
that we obtained from homogeneous Erlang loss models
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with state-dependent service rates:

E
(
B′k
)
≈

16∑

τ=1

Pr(B′k begins in time segment τ)E
(
B

(τ)
k

)
≈
∑16

τ=1 E
(
N

(τ)
k

)
E
(
B

(τ)
k

)

∑16
τ=1 E

(
N

(τ)
k

) ,

(2.10)

where N
(τ)
k is the number of k-partial busy periods that begin in the segment-τ

sample path. We approximate E
(
N

(τ)
k

)
as:

E
(
N

(τ)
k

)
= l(τ)λ(τ)π

(τ)
k−1, (2.11)

where l(τ) is the total time spent in Segment τ , and π
(τ)
k−1 is the steady-state proba-

bility that the segment-τ Erlang loss system has k−1 busy servers. We use standard

formulas (Gross and Harris 1998, p. 80, for example) to obtain π
(τ)
k−1. The rationale

for the approximation is that λ(τ)π
(τ)
k−1 is the steady-state rate at which k-partial

busy periods begin in the segment-τ system. Combining approximations (2.10)-

(2.11), we obtain the following weighted average model outputs:

E(B′k) =

16∑

τ=1

w
(τ)
k E

(
B

(τ)
k

)
, w

(τ)
k =

l(τ)λ(τ)π
(τ)
k−1∑16

τ=1 l
(τ)λ(τ)π

(τ)
k−1

.

As Figure 2.7 shows, these weighted average model outputs provide a good fit

to the empirical outputs bk, as 2/3 of E(B′k)s are within the confidence intervals

for k values of 30 or higher, which correspond to alert periods. It is noteworthy

that this excellent fit is obtained even though we ignore the spatial distribution of

ambulances, calls, and hospitals in our model.

2.5 Modeling the Impact of Operational Changes

As discussed in Section 3.1, once a Yellow Alert period begins, ambulance dis-

patchers face the uncertainty of whether the shortage period will end soon naturally,

or whether the system will operate with a shortage of available ambulances for an

extended period of time that could lead to a Red Alert. In this section, we extend
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Figure 2.7: Aggregating over time segments.

the Erlang loss model to incorporate two corrective actions that dispatchers could

take to reduce the duration of a Yellow Alert and the number of lost calls during

Red Alerts: (1) Call in additional servers (ambulances) and (2) increase the service

rate.

Call in additional servers: In a real system, it might be possible to request ambu-

lances from neighboring municipalities, from another service (from an interfacility-

transfer ambulance fleet, for example), or by asking new ambulance crews to come

on duty. We model this action by adding a parameter n for the number of addi-

tional ambulances and a parameter 1/δ for the expected value of the exponentially

distributed time V until all n additional ambulances are available; we assume that

all n new ambulances become available at the same time.

Increase the service rate: During extreme ambulance shortages, service times can

be reduced by expediting, which could take the form of prioritizing the unloading

of ambulances that are tied up in hospital EDs. Such prioritization should shorten

the service times of those busy ambulances that are currently in EDs or will soon

arrive at an ED and, therefore, the rate at which busy ambulances become available

should increase. We model the service rate increase to capture, at least roughly, the

overall effects of expediting. We add a single parameter to model this action—the

new and increased service rate, µnew; assumed to take effect as soon as the action

is taken.

In reality, these actions would presumably be reversed after a Yellow Alert has
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ended and the two actions we consider may have different flexibilities in terms of

getting reversed as crew members that have been called in may need to stay on work

until the end of their shift, but it would be easier for ED personnel to reverse their

actions and offload ambulance patients with normal speed. We do not specify when

the actions are reversed, in order to keep our models simple and because our main

interest is in how these actions impact the duration and severity of a Yellow Alert.

We need performance measures to quantify the impact of the two actions. We

know of no formal performance measures that are used in practice. The outcome

that dispatchers would like to avoid, however, is a call that arrives during a Red

Alert. We define two performance measures that are related to this outcome: (1)

the expected remaining Yellow Alert duration, and (2) the expected number of lost

calls during the remaining Yellow Alert duration. The first measure is an easy-to-

interpret proxy for the outcome of interest. The second measure is directly related

to the outcome of interest. If we are within a k-partial busy period and the current

number of busy servers is k′ ≥ k, then we use B̃kk′ to denote the remaining k-

partial busy period duration and Hkk′ to denote the number of lost calls during the

remaining k-partial busy period duration. Setting k equal to c − θ + 1, where θ is

the Yellow Alert threshold, provides our two performance measures as a function of

the current number of busy servers, as E
(
B̃kk′

)
and E

(
Hkk′

)
.

We begin by computing E
(
B̃kk′

)
and E

(
Hkk′

)
assuming that no action is taken,

for an M/M/c/c system. Then we extend the analysis to include the impacts of

the two actions. We use standard results from the theory of absorbing continuous-

time Markov chains. We indicate how the results generalize to an M/G/c/c system

by analysing the imbedded Markov chain at event epochs (arrival, departure, and

the availability of new servers if we request new servers), using standard results for

absorbing discrete-time Markov chains. In this section, we use Ω to denote the state

space for an absorbing Markov chain, A to denote the set of absorbing states, and

Ac to denote the set of transient states (with A ∪Ac = Ω).
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2.5.1 The M/M/c/c System

For theM/M/c/c system, we calculate the performance measures at an arbitrary

time epoch t0 within a k-partial busy period, given no action; given that we request

additional servers; and given that we increase the service rate. We assume that

the number of busy servers at t0 is ν(t0) = k′, k′ = k, . . . , c. For convenience, we

suppress the dependence on time.

2.5.1.1 No Action

We decompose the residual duration as B̃kk′ = Υk′ + Υk′−1 + · · · + Υk, where

Υi is the time it takes for the number of busy servers to decrease from i to i − 1.

For the M/M/c/c system, because of the memoryless property of the exponential

distribution, Υi equals Bi in distribution. Therefore:

E
(
B̃kk′

)
=

k′∑

i=k

E(Bi), k′ = k, . . . , c, (2.12)

To compute the expected number of lost calls before the current Yellow Alert

ends, we modify the M/M/c/c system such that Ω = {k− 1, ..., c} and A = {k− 1},

as depicted in Figure 2.8(a). The infinitesimal generator matrix Q in canonical form

(Kao 1996) is

Q =

A Ac

A 0 0

Ac Y Z

. (2.13)

The fundamental matrix (Kao 1996, p. 256) for this Markov chain is

V = −Z−1, (2.14)

where vij is the expected time spent before absorption in transient state j, given

that the chain begins in transient state i. The fundamental matrix provides an

alternative way to obtain E
(
B̃kk′

)
, as

∑
i∈Ac vk′i (the total expected time spent in
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(b) A new server is added.

Figure 2.8: Absorbing states (indicated by thicker borders) in modified systems.

all transient states prior to absorption). The fundamental matrix also provides a

way to obtain the expected number of lost calls, which equals the call arrival rate

times the expected time spent in state c, that is:

E(Hkk′) = λvk′c, k = 1, . . . , c, k′ = k, . . . , c. (2.15)

2.5.1.2 Add Servers

We augment the M/M/c/c/ state space by adding the indicator state variable

w(t) for whether the n requested servers have become available and use the ordered

pair (ν(t), w(t)) to denote the state at time t. We also define an adjusted k-partial

busy period, which begins when the number of busy servers increases to k and ends

when the number of available servers increases to more than c− k for the first time.

Figure 2.9 illustrates the difference between adjusted and regular k-partial busy

periods when n = 1. Both of these periods begin when there are c scheduled servers

in the system and the number of busy servers increases to k. The regular partial

busy period ends when the system enters a state with less than k busy servers (left

of the dashed line) while the adjusted one ends when the system enters a state with
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Figure 2.9: Regular and adjusted k-partial busy periods when n = 1.

more than c− k available servers (left of the dashed-dot line).

We modify the Markov chain (ν(t), w(t)) such that Ω = {(k − 1, 0),

..., (c, 0), (k, 1), ..., (c + n, 1)} and A = {(k − 1, 0), (k, 1), ..., (k + n − 1, 1)}. Fig-

ure 2.8(b) shows Ω, A, and Ac when n = 1. The expected residual duration of the

adjusted k-partial busy period equals the total time spent before absorption in all

transient states:

E
(
B̃kk′

)
=
∑

s∈Ac

v(k′,0)s, k = 1, . . . , c, k′ = k, . . . , c, (2.16)

We obtain the expected number of lost calls using the same logic as for (2.15),

except now we have two Red-Alert states—(c, 0) and (c+ n, 1):

E (Hkk′) = λ
(
v(k′,0)(c,0) + v(k′,0)(c+n,1)

)
, k = 1, . . . , c, k′ = k, . . . , c. (2.17)

2.5.1.3 Increase the Service Rate

When we increase the service rate from µ to µnew = aµ (a > 1), we assume

that the remaining service times for all calls currently in service, as well as the

service times for all new calls, will be exponentially distributed with rate µnew.

We therefore re-evaluate (2.12) and (2.15) using µnew to evaluate the impact of a

service rate change on the expected residual k-partial busy period duration and on

the expected number of lost calls, respectively.
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2.5.1.4 Take Both Actions at the Same Time

To analyze the impacts of calling n new ambulances in and increasing the service

rate form µ to µnew, we re-evaluate (2.16)-(2.17) using µnew.

2.5.2 The M/G/c/c System

In analyzing the M/M/c/c system, we allowed the time when a corrective action

is taken to be an arbitrary epoch within a k-partial busy period. In the M/G/c/c

system, however, we assume that the corrective action is taken at an arrival epoch,

t0, within a k-partial busy period, with ν(t0) = k′ ∈ {k + 1, . . . , c} busy servers

immediately after the arrival.

Our analysis depends on t0 only through k′ and therefore we normally suppress

dependence on t0 in our notation. A similar analysis can be done for a corrective

action at a departure epoch. We omit the details, both for brevity and because

we expect corrective actions to be less relevant at a departure epoch, when an

ambulance becomes available without any dispatching action.

2.5.2.1 No Action

Similar to Section 2.5.1.1, we decompose the residual duration as B̃kk′ = Υk′ +

Υk′−1+· · ·+Υk. As we assume that t0 is an arrival epoch, Υk′ is equal in distribution

to Bk′ . The next component, Υk′−1, is the residual duration of a (k′−1)-partial busy

period, starting immediately after a departure that leaves k′−1 busy servers behind,

that is, Υk′−1 is distributed as B̃k′−1k′−1|Lc
k′−1. More generally, Υi is distributed as

B̃ii|Lc
i for i = k′ − 1, k′ − 2, ..., k. Therefore,

E
(
B̃kk′ |Lk′

)
= E(Bk′) +

k′−1∑

i=k

E
(
B̃ii|Lc

i

)
, k = 1, . . . , c, k′ = k + 1, . . . , c,

(2.18)

We use Theorem 2.4 to compute terms in (2.18).
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Theorem 2.4. In the M/G/c/c system, the following equations hold:

E
(
B̃ii|Lc

i

)
=

E(Ri|Lc
i )

1− λE(Ri|Lc
i )
(1 + λE(Bi+1)), i = c− 1, c− 2, . . . , 1, (2.19)

where E(Ri|Lc
i ), the expected sojourn time when there are k busy servers in the

system and the last event was a departure, is calculated by:

E(Ri|Lc
i ) =

∞∫

0

e−λt(1− FT̃ (t))
i dt.

To compute the expected number of lost calls before the current Yellow Alert

ends, we recall the state description used in Section 2.3: X(t) =
(
ν(t), T̃1(t), . . . ,

T̃ν(t)(t)
)
. Erlander (1967) shows that the stationary distribution for X(t) is of prod-

uct form (see (2.1)), meaning that as t tends to infinity, the residual service times of

the busy servers, T̃i, are i.i.d. and follow the stationary excess distribution, FT̃ (t).

Immediately after a departure, the residual service times remain i.i.d. Immediately

after an arrival, the residual service times also remain i.i.d., except that the remain-

ing service time of the newly arrived customer follows the service time distribution,

FT (t). We use these results to define the following Markov chain that is imbedded

immediately after arrival and departure epochs: (νn, en), where νn = ν(t+n ) and en

is a binary variable equal to 1 if the n-th event at epoch tn is an arrival and 0 if it

is a departure.

We modify the imbedded discrete-time Markov chain of the M/G/c/c system

such that Ω = {(k−1, 0), ..., (c−1, 0), (k+1, 1), ..., (c, 1)} and A = {(k − 1, 0)}. The

transition probability matrix P in canonical form (Kao 1996) is

P =

A Ac

A I 0

Ac Y Z

. (2.20)
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The fundamental matrix (Kao 1996, p. 188) for this Markov chain is

W = (I − Z)−1, (2.21)

where wij is the expected number of times the system visits the transient state j

before absorption, given that the chain begins in transient state i. The fundamental

matrix provides an alternative way to obtain the expected residual Yellow Alert

duration, by multiplying the expected number of visits to each transient state with

the expected time spent per visit to that state, summed over all transient states:

E
(
B̃kk′ |Lk′

)
=

∑

s∈Ac

(
w(k′,1)s

)
E(Rs), k = 1, . . . , c, k′ = k + 1, . . . , c. (2.22)

We calculate expected sojourn times E
(
R(c,1)

)
, E

(
R(.,1)

)
, and E

(
R(.,0)

)
as in (A.4),

(A.13) and (A.18), respectively. The fundamental matrix also provides a way to

obtain the expected number of lost calls, which equals the call arrival rate times the

expected number of times the chain visits state c times the expected time spent in

state c per visit:

E (Hkk′ |Lk′) =
λw(k′,1)(c,1)

cµ
, k = 1, . . . , c, k′ = k + 1, . . . , c. (2.23)

2.5.2.2 Add Servers

As in 2.5.1.2, we augment the state space of the imbedded discrete-time Markov

chain (νn, en) to (νn, en, gn), by adding an indicator state variable gn for whether

the n requested servers have become available, and we modify the imbedded Markov

chain such that Ω = {(k− 1, 0, 0), ..., (c− 1, 0, 0), (k+ 1, 1, 0), ..., (c, 1, 0), (k, 0, 1), ...,

(c+ n− 1, 0, 1), (k+ 1, 1, 1), ..., (c+ n, 1, 1)}, and A = {(k− 1, 0, 0), (k, 0, 1), ..., (k+

n − 1, 0, 1)}. Figure 2.8(b) shows Ω, A, and Ac when n = 1. We extend (2.16) to

obtain E
(
B̃kk′

)
:

E
(
B̃kk′ |Lk′

)
=

∑

s∈Ac

w(k′,1,0)sE(Rs), k = 1, . . . , c, k′ = k + 1, . . . , c. (2.24)
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We show how to calculate expected sojourn times, E(Rs)s, in Appendix A.5.

We extend (2.17) to obtain E (Hkk′):

E (Hkk′ |Lk′) = λ

(
w(k′,1,0)(c,1,0)

cµ
+

w(k′,1,0)(c+n,1,1)

(c+ n)µ

)
,

k = 1, . . . , c, k′ = k + 1, . . . , c. (2.25)

2.5.2.3 Increase the Service Rate

Similar to 2.5.1.3, we re-evaluate (2.18) and (2.23) using µnew to see the impacts

of the service rate change on the expected residual k-partial busy period durations

and the expected number of lost calls, respectively.

2.5.2.4 Take Both Actions at the Same Time

To analyze the impacts of calling n new ambulances in and increasing the service

rate form µ to µnew, we re-evaluate (2.24)-(2.25) using µnew.

2.6 Numerical Results and Managerial Insights

We illustrate our results using a scenario that approximates the Calgary EMS

system on weekdays from 9:00 to 13:00 (Segment 4). We investigate the impacts

of several parameters on the effectiveness of possible actions. We formulate two

optimization problems, which we solve via complete enumeration, in order to dis-

play the tradeoffs between the two actions that we consider. We implemented the

methods discussed in Section 2.5 in Matlab. The calculations were, in all cases,

near-instantaneous, making the methods suitable for inclusion in real-time decision

support systems.

We begin by relating the abstract action of increasing the service rate from µ

to µnew = aµ to the concrete action of freeing of ambulances tied up in EDs. We

decompose the number of busy ambulances as k′ = k1 + k2 + k3 where k1 is the

number of ambulances in EDs that will be released early, within the next 1/µearly

(µearly > µ) time units; k2 is the number of ambulances in EDs that will be released
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within the next 1/µ time units; and k3 is the number of ambulances that are busy

outside of EDs and work with the service rate µ. We approximate the average service

time after taking the action of freeing k1 ED ambulances within 1/µearly time units

as

1

µnew
=

1

aµ
=

k1
k′

1

µearly
+

k2 + k3
k′

1

µ
, (2.26)

which implies that

a =
k′

(µ/µearly)k1 + k2 + k3
. (2.27)

It is inherent in this approximation that we assume that the remaining service

times of all k′ busy ambulances and the service times of new calls are exponentially

distributed with rate µnew.

The parameter estimates for Segment 4 are: λ̂(4) = 13.37 calls per hour, µ̂(4) =

0.58 patients per hour, and ĉ(4) = 42 ambulances. We focus on a situation where

the number of busy servers is k′ = 40 (2 ambulances available), and we study

the sensitivity of the performance measures to different actions that dispatchers

take. We also find the best combination of corrective actions to take under given

conditions.

2.6.1 Sensitivity Analysis

Figure 2.10 illustrates the sensitivity of the two performance measures to the

number of ambulances freed from EDs (k1 = 1, 2, 3) and the time it takes to free

them (1/µearly = 0, 5, ..., 100 minutes). For a given number of freed ambulances, we

observe that both performance measures improve linearly with the time it takes to

free the ambulances. The marginal impact of increasing the number of ambulances

by one does not appear to diminish greatly as we move from 1 to 2 to 3 released

ambulances.

Figure 2.11 illustrates the impact of requesting new ambulances (n = 1, 2, 3)
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and the average time until the new ambulances are available (1/δ = 0, 5, ..., 100

minutes). In contrast to the straight lines in Figure 2.10, the curves in Figure 11 are

nonlinear, approaching the horizontal base-case line asymptotically. This happens

because increasing the time to free the ED ambulances beyond the original value of

1/µ results in performance that is worse than the base case, whereas increasing the

average time until new ambulances are available causes the impact of requesting a

new ambulance to approach zero, compared to the base case. We see clear evidence

of diminishing marginal impact of requesting new ambulances, especially for the lost

calls performance measure.

When we look closely at Figure 2.11(a) we see an unexpected pattern, whereby

the residual Yellow Alert duration increases slightly when the average time until

the requested ambulances become available decreases from roughly 3 minutes to 0.

To understand why this happens, consider the following two opposing impacts of a

request for new ambulances on the residual Yellow Alert duration: (1) It shortens

the Yellow Alert duration because it ends when the number of busy ambulances

drops to k+n−1 (rather than k−1), and (2) it increases the Yellow Alert duration

because increasing the number of servers enables the system to serve additional

customer(s), who would have been lost if the system did not have the additional

n servers. When k′ and the ambulance-arrival rate are large enough, Impact (2)

is larger than Impact (1) and requesting new ambulances increases the expected

residual Yellow Alert duration.

We summarize our observations from the sensitivity analyses, based on the re-

sults reported in Figures 2.10-2.11 and additional scenarios that are not reported

here. The marginal impacts of µnew, n, and 1/δ, holding all other parameters con-

stant, appear to be as follows for the M/M/c/c system:

❼ The expected residual Yellow Alert duration E
(
B̃kk′

)
decreases when µnew

increases and decreases when n increases, but may or may not decrease when

1/δ increases.

❼ The expected number of lost calls during the residual Yellow Alert duration
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(a) Expected residual Yellow Alert duration.
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(b) Expected number of lost calls.

Figure 2.10: Sensitivity analysis: Released ambulances’ numbers and times.
Note: In all scenarios, the arrival rate and the number of scheduled ambulances are equal to those of the base case:

a λ̂(4) = 13.37 ambulances per hour, ĉ(4) = 42 ambulances. The base case service rate is µ̂(4) = 0.58

a patients per hour
(

1/µ̂(4) = 103 minutes
)

.
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E
(
Hkk′

)
decreases when µnew increases, n increases, and 1/δ increases.
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(a) Expected residual Yellow Alert duration.
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(b) Expected number of lost calls.

Figure 2.11: Sensitivity analysis: Called-in ambulances’ numbers and arrival rates.
Note: In all scenarios, the arrival rate and the number of scheduled ambulances are equal to those of the base case:

a λ̂(4) = 13.37 ambulances per hour, ĉ(4) = 42 ambulances, µ̂(4) = 0.58
a patients per hour.
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2.6.2 What Is the Best Combination of Actions?

Suppose it costs c1 to request an additional ambulance and c2 to release an

ambulance from an ED, respectively. If the total budget for taking corrective

actions is b, then we find the best combination of corrective actions by solving the

following optimization problems for the two performance measures:

minimize z1 = E
(
B̃kk′

)
,

subject to c1x1 + c2x2 ≤ b,

x1, x2 integer,

minimize z2 = E
(
Hkk′

)
,

subject to c1x1 + c2x2 ≤ b,

x1, x2 integer.

We do not attempt to quantify the cost coefficients and the budget in these

optimization problems precisely. Rather, we view the optimization problems as a

convenient way to provide information to dispatchers, by displaying the results of

complete enumeration of all feasible combinations of actions, and identifying the op-

timal solution for each problem. Given that the calculations are near-instantaneous,

dispatchers could experiment in real time with changing the cost coefficients and

other input parameters.

Figure 2.12 shows complete enumeration results for a scenario where k′ = 40,

c1 = c2 = 1, b = 3, and 1/δ = 1/µearly = 10 minutes. As highlighted, spending the

whole budget on requesting new ambulances is the best decision for both perfor-

mance measures. To understand why this happens, suppose that we compare the

impact of requesting one new ambulance with freeing one ambulance from an ED,

assuming that the average time for the new ambulance to arrive and the time to

free the ED ambulance are fixed to be equal to 10 minutes. From Figures 2.10-2.11,

we see that requesting a new ambulance has greater impact on both the expected

residual Yellow Alert duration (8 minutes vs. 3 minutes) and the expected number

of lost calls (0.16 vs. 0.04).

In Figure 2.13, we show how the complete enumeration results change when we

decrease the time to release ED ambulances from 10 to 0.001 minutes and increase
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(a) E(res. Yellow Alert)
in mins.

(b) Expected number of
lost calls.

Figure 2.12: k′ = 40, c1 = c2 = 1, b = 3, 1/µearly = 1/δ = 10 min.

(a) E(res. Yellow Alert)
in mins.

(b) Expected number of
lost calls.

Figure 2.13: k′ = 40, c1 = c2 = 1, b = 3, 1/µearly = 0.001 min., 1/δ = 60 min.

the time for new ambulances to become available from 10 to 60 minutes. In this

scenario we see (1) a situation where the two performance measures lead to different

optimal solutions and (2) that the optimal solution shifts to using a combination of

freeing up ED ambulances and requesting new ambulances, at least for the lost calls

performance measure.

2.7 Conclusion

This chapter provided an understanding of capacity shortage periods in mission

critical systems like fire, police, and EMS. We focused on EMS systems and modeled

these systems as Erlang loss systems (M/G/c/c) and showed that the expected

duration of periods during which at least k out of c servers (ambulances) were

busy were independent of the service time distribution shape beyond its mean. We

obtained an easy-to-use recursion to calculate the expected duration of ambulance-
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shortage periods. We validated our recursion against a year’s worth of data from

the Calgary EMS. By computing outputs separately for multiple time segments and

weighing the time segments appropriately, we obtained a close match between the

model outputs and the empirical outputs.

We calculated the LTs of the duration of server-shortage periods for theM/G/c/c

system and used these calculations to show that server-shortage periods had gener-

alized hyper-Erlang and generalized hyperexponential distributions if service times

had generalized hyperexponential and hyperexponential distributions, respectively.

We discussed the monotonicity of the expected value, variance, and the squared

coefficient of variation of the duration of server-shortage periods for the M/M/c/c

system.

We used the theory of absorbing Markov chains to predict the impacts of re-

questing new ambulances and of releasing ambulances in EDs. Our methods could

be used for real-time decision support systems for EMS dispatchers—for example

by showing how different combinations of requesting new ambulances and releasing

ambulances in EDs impacted two performance measures: The expected remaining

duration of a Yellow Alert and the number of lost calls during this residual duration.

We showed that these two performance measures do, in some cases, lead to different

optimal actions.

We did not consider costs associated with requesting new ambulances and ex-

pediting their service in our analyses as it was beyond the scope of this research.

However, it would be interesting to consider these costs to study the impact of hav-

ing different yellow alert thresholds on the system performance and to study policies

for reversing the actions that are taken. Another direction for future work is con-

sidering the response time, period from the moment that a call is received until an

ambulance unit arrives at the scene, as a performance measure. Then one can study

the impact of taking any of the two actions on response time and investigate how

this performance measure changes by the number of available ambulances. Note

that when new ambulances are requested, travel times would tend to get shorter,

but we ignore this fact in our model. Another limitation of current work is that we
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ignore differences between the flexibility of the two actions that we study.

Endnote

1. Protocols that define when a medium intensity level or Yellow Alert is trig-

gered sometimes include additional considerations besides the number of available

units, such as “7 or fewer units ... sustained for 15 minutes” (from an overcapacity

protocol for Edmonton Zone EMS and EDs published in 2011). We assume that

alert periods are defined solely based on the number of available units, for simplicity.
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CHAPTER 3

Modeling Queueing Systems With Abandonment And

Priorities As Quasi-Birth-Death Processes

3.1 Introduction

Prolonged waiting times have turned to serious problems for emergency depart-

ments (ED) in most countries, and threaten patients’ health and lives throughout

the world (Hoot and Aronsky 2008, Higginson 2012). Studying almost 1 million ED

visits during 2007 from non-federal, acute-care hospitals in California, Sun et al.

(2013) report that crowded ED periods, measured by the number of diverted ambu-

lances, can be associated with 300 inpatient deaths, 6,200 hospitalization days, and

$17 million care costs. In addition, hospitals lose revenue when EDs are crowded

as patients leave without being seen (LWBS) by a physician and ambulances get

diverted to other hospitals. Pines et al. (2011) estimate that a hospital can increase

its revenue by ✩10,000 to ✩13,000 per day, per 1-hour reduction in ED waiting times

by capturing LWBS patients and diverted ambulances.

Timely access to ED physicians is a key factor in providing quality care for pa-

tients and increases the revenue for care provider institutes. Hospitals, however,

compromise care quality and bear excessive costs as they struggle to provide ade-

quate emergency care staff to handle the demand in a timely fashion. It is a difficult

task for hospitals to constantly adjust their resources such that all patients receive

timely access to care because the demand is non-homogeneous and highly variable.

In their report prepared for the American Academy of Emergency Medicine, Eitel
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Table 3.1: ESI suggested time lines for different acuity levels (Gilboy et al. 2011).

Acuity level Suggested wait time

I: Resuscitation Immediate
II: Emergent 1− 14 minutes
III: Urgent 15− 60 minutes
IV: Less urgent 1− 2 hours
V: Non urgent 2− 24 hours

et al. (2010) mention that the arrival rate of patients at EDs varies by time of the

day, day of the week, and seasons, and not all patients have the same acuity level;

some need immediate care while others can wait to see a physician.

An inherent complexity of an ED is that patients with different acuity levels need

to be treated differently. Patients with life threatening conditions (like heart attack)

have to be immediately seen by a physician, while others with less serious conditions

(like stable abdominal pain) can be seen at a later time. When a patient arrives

at an ED, a triage nurse assesses the patient’s acuity level almost immediately, and

assigns the patient to an acuity category. Guidelines for patient acuity assessment

and patient wait times vary from one hospital to another even within a country.

The Emergency Severity Index (ESI) is a widely used five-level ED triage guideline

that assigns an ED patient to one of the following five categories: Resuscitation,

emergent, urgent, less urgent and nonurgent (Gilboy et al. 2011), and suggests

waiting time standards as shown in Table 3.1. Almost 60% of about 3,000 U.S.

hospitals studied by McHugh et al. (2012) use ESI as their triage guideline.

In practice, however, patients may wait much longer than what guidelines rec-

ommend. The American College of Emergency Physicians (2013) reports that the

average time for emergent patients to be seen by a physician was 37 minutes (more

than twice as long as the recommended 14 minutes), according to national-level data.

Carter et al. (2014) provide a systematic review on impacts of prolonged waiting

times and report that previous studies find excessive waiting times are associated

with higher LWBS rates. Research shows that LWBS patients do not necessarily

belong to less and non urgent acuity levels (IV and V) (Rowe et al. 2006, Baker
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et al. 1991).

Redesigning the ED flow process is considered as an innovative solution to mit-

igate prolonged waiting time issues. Sanchez et al. (2006) empirically demonstrate

how an ED in the United States shortened waiting times and reduced the number of

LWBS patients by creating a fast track for less acute patients through which these

patients are seen by mid-level care providers (physician assistants and nurse practi-

tioners) without occupying resources needed by more acute patients. Oredsson et al.

(2011) provide a systematic literature review on studies that investigate impacts of

different ED redesigns. Yildiz et al. (2015) investigate the impacts of an alternative

ED flow redesign where the initial triage is provided by a physician (rather than a

nurse) and patients with higher acuity levels are directed to a waiting room until a

bed is assigned to them while less acute patients are treated by the triage physician.

Regardless of empirical findings that support creating fast tracks for EDs, some

researchers are skeptical about their benefits. Lin et al. (2014), for example, argue

that, unless additional resources are utilized, the fast track will improve performance

measures for patients eligible for fast track and will worsen the performance measures

for some other patients.

ED systems are so complex that it is not a trivial task to thoroughly understand

the impact of fast track, or other ED flow redesigns, on performance measures.

Viewed as a queueing system, an ED has multiple servers (care providers), multiple

priority classes (acuity classes), and abandonment (LWBS patients). The analysis

of multi-server queues with multiple classes of impatient customers is challenging,

as we outline in the next section.

Organ transplantation systems are another example of systems that can be

viewed as multi-server queues with multiple impatient priority classes. In these

systems patients with different acuity levels are added to waiting lists to receive or-

gans and might die (abandon the system) while waiting. Drekic et al. (2015) model

and study an organ transplant problem as a single-server queue with two classes of

impatient customers.

In this work, we use the performance evaluation problem for EDs as our moti-
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vation and model multi-server queues with priorities and abandonment as level-

dependent quasi-birth-and-death (LDQBD) processes. We specifically focus on

queueing system with two priority classes and propose generic methods to calcu-

late performance measures of these queueing systems. We propose an algorithm to

analytically find a truncation level for the LDQBD process such that the probabil-

ity mass in the truncated upper tail is guaranteed to be less than a pre-specified

amount. We also propose another algorithm to numerically calculate stationary

performance measures of the LDQBD process with desired accuracies.

3.2 Literature review

We focus our review of past work on three areas: 1) models of queues with

priorities, 2) models of queues with priorities and abandonment, and 3) LDQBD

processes.

Queues with priorities: Cobham (1954, 1955) calculates the expected waiting

times of customers from different priority groups in M/G/1 and M/M/c priority

queues. Subsequent work has extended Cobham’s work from expected waiting times

to waiting time distribution (Davis 1966) and waiting time Laplace Transform (Kella

and Yechiali 1985) when the priority groups have identical service time distributions.

There are papers in the literature that study queueing systems with priority classes

that have non-identical service time distributions. Miller (1981a) derive the steady

state distribution of the M/M/1 system with two priority classes with different

service rates, for both preemptive and non-preemptive settings and Bose (2013,

Chapter 4) obtains mean performance measures (mean waiting time, for example)

of M/G/1 queues with multiple classes of customers with different average service

times, and obtain the steady state distribution for M/G/1 queues with two classes

of customers with different service time distributions. Kleinrock (1964), Kleinrock

and Finkelstein (1967), and recently Stanford et al. (2014) extended the literature

of priority queues by studying queueing systems in which priorities of customers

increase by time.
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Queues with priorities and abandonment: There exists a large body of papers on

queues with abandonment (Palm 1957, Barrer 1957, Garnett et al. 2002, Zeltyn and

Mandelbaum 2005, for example); there is, however, a relatively small number of pa-

pers that investigate abandonment for priority queues as these systems are usually

too complex to be analytically tractable. Choi et al. (2001) obtain the steady state

probabilities for M/M/1 systems with two customer classes that have different ser-

vice rates where the higher-class customers have a preemptive priority over the lower

class ones, and customers from the higher class have a deterministically-distributed

patience while others are indefinitely patient. Brandt and Brandt (2004) extend

the findings of Choi et al. (2001) to cases where the patience of customers from the

higher class are generally distributed, and derive the steady state probabilities and

the waiting time distribution of customers from the lower class. Rozenshmidt (2008)

extend the literature by studying multi-server queues. They calculate the expected

waiting time of customers from any class for an M/M/c queue with two classes

of impatient customers, where the service and patience rates are the same for both

classes. Iravani and Balcıoğlu (2008) and Sarhangian and Balcıoğlu (2013) study six

different single-server and multi-server queueing systems with patient and impatient

customers, where the service rate is the same across different customer classes; the

priority is preemptive or non-preemptive and the impatience rate may change across

the classes. Different steady state performance measures have been obtained. Jouini

and Roubos (2014) consider an M/M/c queue with two classes of customers when

one class has a non-preemptive priority over the other. They assume both customer

classes have the same service and impatience rates, and then obtain the Laplace

Transforms of different waiting time performance measures under different service

disciplines. Wang et al. (2015) claim to be the first researchers who analytically ana-

lyze a multi-server system with impatient customer classes and a preemptive priority

policy when the service rate is different across the classes. The authors obtain a

closed form generating function for the number of customers from the lower priority

group in the system for a system with two servers; for systems with more than two

servers, they obtain the moments of the number of lower-priority customers in the
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system. It appears that there is no analytical work on waiting times of low-priority

customers in multi-server queues with impatient customer classes when the service

rates are different across customer classes.

Quasi-birth-and-death processes: A generalization of a birth-death process is

called a quasi-birth-and-death (QBD) process when univariate state variables are

extended to bivariate state variables with the first and second dimensions called

the level and phase, respectively, such that one-step transitions from a state are

restricted to states in the same level or levels above and below (no restriction in the

phase dimension). QBD processes provide a powerful framework for formulating

and computing performance measures for a variety of queueing and other stochastic

systems (See Latouche and Ramaswami 1999, Chapter 1, for a wide range of exam-

ples). Drekic et al. (2015), Campello et al. (2013), Delasay et al. (2013) and Sun

(2008) discuss different applications of QBD processes in the healthcare sector while

Kawanishi (2008) and Zhang et al. (2011) use these processes to study problems in

other service sectors. There are two main types of QBDs: level-independent (the

transition rates are independent of the level) and level-dependent (the transition

rates depend on the level). Level-independent QBDs are analogous to birth-death

processes with a geometric tail, leading to closed-form expressions for various per-

formance measures. These closed-form expressions typically involve the so-called

rate matrix, which usually has to be computed numerically. There has been a great

deal of research on properties and algorithms for level-independent QBD processes

Neuts (1981), Latouche and Ramaswami (1999). Level-dependent QBDs (LDQBD)

are analogous to birth-death processes with birth or death rates that do not stabi-

lize as the value of the state variable increases, such as the birth-death processes

for M/M/∞ and M/M/c+M (Erlang A) queues. Except for the M/M/∞ special

case, typically one cannot find closed-form expressions for performance measures

for such systems. Latouche and Ramaswami (1999, Chapter 12) demonstrate that

performance measures of an LDQBD can be expressed in terms of rate matrices that

depend on the level. Kharoufeh (2011) describes two major complications for calcu-

lating the steady state probabilities for a generic LDQBD with an infinite state space
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as: 1) the state space must be truncated in an appropriate manner, and 2) the rate

matrices need to be computed efficiently. Bright and Taylor (1995), Baumann and

Sandmann (2012), and Baumann and Sandmann (2013) numerically compute the

rate matrices and steady state probability vectors for infinite state space LDQBDs.

The main shortcomings of their methods are: 1) the state space truncation pro-

cesses are heuristic, and 2) there are no error bounds on calculated steady state

probabilities. We address both of these shortcomings in this chapter.

We demonstrate that multi-server queues with priorities and abandonment can

be modeled in a natural way as LDQBD processes. We specifically focus on queues

with 2 impatient customer classes that have different service and patience rates.

We use Lyapunov analysis as in Dayar et al. (2011) and truncate the state space

such that the stationary probability mass in the truncated upper tail of the state

space is below some tolerance. As another analytical tool, we provide algorithms to

calculate the steady state probabilities and performance measures with any desired

accuracy. Our algorithm automatically truncates the state space such that the error

tolerance is satisfied.

3.3 Models and Definitions

Consider a continuous-time Markov chain {Xt, t ∈ R
+} on the state space

S = {(ℓ, h) : ℓ ∈ Z
+, h ∈ Y}, where Z

+ = {0, 1, ...} and Y = {0, 1, ..., p}, for a

given positive integer p. The stochastic process depicted by this Markov chain is a

QBD process if its transitions from state (0, h) are restricted to states (0, h′) and

(1, h′), and its transitions from state (ℓ, h), for ℓ ∈ Z
++, where Z

++ = Z
+\{0}, are

restricted to states (ℓ − 1, h′), (ℓ, h′), and (ℓ + 1, h′), for h, h′ ∈ Y (Latouche and

Ramaswami 1999, Chapter 6). See Table B.1 for a list of notations in this chapter.

The first coordinate of state (ℓ, h) is known as its level, and the second coordinate

is known as its phase. We focus on positive recurrent QBD processes with infinite

number of levels and a finite fixed number of phases.

The infinitesimal generator matrix Q of such a QBD Markov chain is block
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tridiagonal:

Q =




A
(0)
1 A

(0)
0

A
(1)
2 A

(1)
1 A

(1)
0

A
(2)
2 A

(2)
1 A

(2)
0

A
(3)
2 A

(3)
1

. . .

. . .
. . .




, (3.1)

where the matrix blocks A
(ℓ)
0 and A

(ℓ)
1 , ℓ ∈ Z

+, denote the transition rates from

level ℓ to levels ℓ+1 and ℓ, respectively, and the matrix blocks A
(ℓ)
2 , ℓ ∈ Z

++, denote

the transition rates from level ℓ to level ℓ− 1. All of the matrix blocks in Q are of

size (p+ 1)× (p+ 1).

Example 3.1. Erlang A model. Assume customers arrive following a Poisson pro-

cess with rate λ to a queueing system with c servers. The customers’ service and

patience times are independently and identically distributed exponential with rates

µ and γ, respectively. This is the standard Erlang A model. We include it as a test

case, where we can use Algorithm B.1 from Ingolfsson and Tang (2012) to compute

the stationary distribution in order to illustrate our Lyapunov analysis in Section

3.6 in a simple setting.

To model the system in Example 3.1 as a QBD process, we consider the number

of customers ℓ in the system as the level. In this QBD process, p = 0 as there is

only one state in each level. When the system is in state (ℓ, 0), either transition

type 1 occurs and the system moves to state (ℓ + 1, 0) after a customer arrival, or

transition type 2 occurs and the system moves to state (ℓ− 1, 0) (if ℓ > 0). We use

s = min(c, ℓ) and q = max(ℓ − c, 0) to denote the number of customers in service

and in the queue, respectively. Table 3.2 shows the two transitions types and their

associated rates where the function αj(ℓ, h) denotes the transition rate from state

(ℓ, h) in the direction of transition class j ∈ {1, ..., J}. The infinitesimal generator

matrix has block matrices of size 1× 1:
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Table 3.2: Transitions of an Erlang A system from state (ℓ, 0).

j Transition type To Rate (αj(ℓ, 0))

1 Customer arrival (ℓ+ 1, 0) λ
2 Customer departure (ℓ− 1, 0) sµ+ qγ

Q =




−λ λ

µ −(λ+ µ) λ

. . .
. . .

. . .

cµ −(λ+ cµ) λ

cµ+ γ −(λ+ cµ+ γ) λ

. . .
. . .

. . .




. (3.2)

Example 3.2. A single-server queue with two priority classes. Assume that there

are two customer classes, each with an independent Poisson arrival process with

rate λi, independent exponentially distributed service times with rate µi, and in-

dependent exponentially distributed patience times with rate γi, i = 1, 2. Class-1

customers have preemptive priority over Class-2 customers: Class-2 customers can

receive service only if there is no Class-1 customer in the system, and if a Class-2

customer is receiving service when a Class-1 customer arrives, then the Class-2 cus-

tomer immediately returns to the queue freeing the server for the arriving Class-1

customer.

To approximate the system in Example 3.2 as a QBD process, we need to decide

how to map the Class-1 and Class-2 customer counts to the level and the phase.

Given that Class-1 customers receive priority, truncating the maximum number of

Class-1 customers as finite should result in less error, and therefore we associate the

Class-1 customers with the phase and the Class-2 customers with the level. Because

of the preemptive policy, the Class-1 customer sub-system evolves independently

of Class-2 customers. Therefore, if there was no limit p on the count of Class-1

customers, then the Class-1 sub-system would reduce to an Erlang A queue. This

reduction suggests that a reasonable value for p can be determined by approximating
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Figure 3.1: Transitions of a 2-priority multi-server queue from state (ℓ, h).

Table 3.3: Transitions of a 2-priority 1-server queue from state (ℓ, h).

j Transition type To Rate (αj(ℓ, h))

1 Class-1 arrival (ℓ, h+ 1) ✶<p(h)λ1

2 Class-2 arrival (ℓ+ 1, h) λ2

3 Class-1 departure (ℓ, h− 1) s1µ1 + q1γ1
4 Class-2 departure (ℓ− 1, h) s2µ2 + q2γ2

the Class-1 sub-system with an Erlang A queue and choosing a sufficiently large p

so that the probability of the number in the Erlang A system being greater than

p is less than a small value ǫh, where ǫh is a parameter given by the user denoting

desired accuracy. Based on the algorithm developed by Ingolfsson and Tang (2012)

to compute performance measures for birth-death processes, we propose Algorithm

B.1 to compute an appropriate value for p.

Figure 3.1 illustrates possible transitions of the system from state (ℓ, h). When

the system is in state (ℓ, h), we use the binary variables s1 = min{h, 1} to denote the

number of Class-1 customers receiving service, e = 1 − s1 to denote the number of

servers that are not busy with Class-1 customers, and s2 = min{ℓ, e} to denote the

number of Class-2 customers receiving service. We use q1 = h− s1 and q2 = ℓ− s2

to denote the number of Class-1 and Class-2 customers in the queues, respectively.

Possible transitions of this system are described in Table 3.3 where the indicator

function ✶A(x) equals 1 when x satisfies condition A, and equals 0 otherwise.
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When p = 2, the infinitesimal generator matrix blocks are:

A
(ℓ)
0 =




λ2

λ2

λ2




, A
(ℓ)
1 =




∗ λ1

µ1 ∗ λ1

µ1 + γ1 ∗




, l ∈ Z
+,

A
(ℓ)
2 =




µ2 + q2γ2

ℓγ2

ℓγ2




, l ∈ Z
++.

We use “*” for a generic diagonal element, whose value is chosen such that Q has

zero row sums.

Example 3.3. A multi-server queue with two priority classes. We extend Example

3.2 by assuming that the system has s > 1 servers.

As we did in Example 3.2, we consider the number of Class-2 customers as the

level ℓ, and the number of Class-1 customers as the phase h. We approximate the

Class-1 sub-system with an Erlang A queue and choose p large enough such that

the probability of the number in the Erlang A system being greater than p is less

than ǫh. We determine p in the same fashion as we did for Example 3.2.

The possible transitions for Example 3.3 system is similar to those of Example

3.2 in Figure 3.1 and Table 3.3; however, the parameters s1, s2, q1, and q2 have to

be redefined as follows. When the system is in state (ℓ, h), we use s1 = min{h, s} to

denote the number of Class-1 customers receiving service, e = s− s1 to denote the

number of servers that are not busy with Class-1 customers, and s2 = min{ℓ, e} to

denote the number of Class-2 customers receiving service. We use q1 = h− s1 and

q2 = ℓ − s2 to denote the number of Class-1 and Class-2 customers in the queues,

respectively.

52



The infinitesimal generator matrix blocks are:

A
(ℓ)
0 =




λ2

. . .

λ2




, A
(ℓ)
2 =




s2µ2 + q2γ2
. . .

s2µ2 + q2γ2




, ℓ ∈ Z
++,

A
(ℓ)
1 =




∗ λ1

s1µ1 + q1γ1 ∗ λ1

. . .
. . .

. . .

s1µ1 + q1γ1 ∗ λ1

s1µ1 + q1γ1 ∗




, ℓ ∈ Z
+.

3.4 Review of LDQBD Theory and Algorithms

The matrices G(ℓ) and R(ℓ), for ℓ ∈ Z
+, play an important role in analyzing

QBD processes (Latouche and Ramaswami 1999). The (i, j)th element of G(ℓ) is

the probability of visiting state (ℓ, j) in the first visit to level ℓ when the process

starts from state (ℓ + 1, i), and the (i, j)th element of R(ℓ) is the average sojourn

time in state (ℓ + 1, j) before the first return to level ℓ per unit time in state (ℓ, i)

provided that the system started at (ℓ, i).

Matrix G(ℓ) is a stochastic matrix and is related to matrix R(ℓ) through the

following equations (Latouche and Ramaswami 1999), for ℓ ∈ Z
+:

G(ℓ) =
(
−A(ℓ+1)

1 −A
(ℓ+1)
0 G(ℓ+1)

)−1
A

(ℓ+1)
2 (3.3a)

R(ℓ) = A
(ℓ)
0

(
−A(ℓ+1)

1 −A
(ℓ+1)
0 G(ℓ+1)

)−1
(3.3b)

= A
(ℓ)
0

(
−A(ℓ+1)

1 −R(ℓ+1)A
(ℓ+2)
2

)−1
(3.3c)

We use the row-vector π = (π0,π1, ...) to denote the stationary distribution

of the QBD process, where πℓ = (πℓ,0, ..., πℓ,p) is a row vector and πℓ,h denotes the

steady-state probability of being in state (ℓ, h), ℓ ∈ Z
+ and h ∈ Y. The rate matrices

provide a way to compute the vectors πℓ recursively (Latouche and Ramaswami
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1999):

πℓ+1 = πℓR
(ℓ), ℓ ∈ Z

+. (3.4a)

The steady state probability vector is the solution to πQ = 0 and π1 = 1, where

1 is a column vector of ones of appropriate size. Following standard QBD analysis,

using (3.4a) for ℓ = 0, πQ = 0 leads to an equation for π0:

π0

(
A

(0)
1 +R(0)A

(1)
2

)
= 0. (3.4b)

Using (3.4a) to express πℓ in terms of π0, the normalization condition becomes:

(
∞∑

ℓ=0

πℓ

)
1 = π0(I +R(0) +R(0)R(1) + · · · )1 = 1. (3.4c)

where I is an identity matrix of appropriate size.

Algorithm 3.1 outlines Baumann and Sandmann’s (2013) first algorithm to com-

pute an estimate π̂ of the stationary distribution π by truncating the system at level

n <∞.

This algorithm has two limitations. It is not clear how to choose the truncation

level n, and it is not clear how the truncation impacts the accuracy of the estimate

π̂ of the stationary distribution. We address these limitations in the remainder of

this chapter.

Algorithm3.1: Baumann and Sandmann (2013) algorithm for πℓ estimates.
Input: Truncation level n,

Initialization: R̂
(n)

= 0,

For ℓ = n− 1, ..., 0, compute R(ℓ) = A
(ℓ)
0

(
−A(ℓ+1)

1 −R(ℓ+1)A
(ℓ+2)
2

)−1
,

Solve x̂0

(
A

(0)
1 + R̂

(0)
A

(1)
2

)
= 0 to obtain x̂0,

For ℓ = 0, ..., n− 1, compute x̂ℓ+1 = x̂ℓR̂
(ℓ)
,

Normalizing factor: ĉ = (
∑n

ℓ=0 x̂ℓ)1,

π̂ℓ = x̂ℓ/ĉ, for ℓ = {0, ..., n} .
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3.5 Approaches to Determine Truncation Levels and Error Bounds

We propose two methods to provide bounds on the accuracy of performance mea-

sures that are calculated with Algorithm 3.1: (1) Inspired by Dayar et al. (2011),

we use Lyapunov theory to compute a truncation level so that the truncated upper-

tail state space is guaranteed to contain at most a pre-specified proportion of the

stationary probability mass. Our Lyapunov analysis is separate and independent of

Algorithm 3.1 and provides a method to calculate the parameter n for Algorithm

3.1. (2) We extend Algorithm 3.1 in such a way that our proposed algorithm endoge-

nously determines the truncation level n and guarantees a pre-specified tolerance

on the elements in the vector πℓ′ of probabilities for a given level ℓ′ ∈ Z
+.

3.6 Lyapunov Analysis to Determine Truncation Level

Lyapunov functions are used to analyze the stability of dynamical systems (Lu-

enberger 1979), including Markov chains (Meyn and Tweedie 1993). Lyapunov

functions can also be used to determine truncation limits for Markov chains such

that the stationary probability mass in the truncated upper-tail state space is below

some tolerance as illustrated by Dayar et al. (2011).

We will use the equilibrium point of a mean-field approximation in order to derive

Lyapunov functions. A mean-field approximation for a continuous time Markov

chain replaces discrete and random transitions with continuous and deterministic

transitions (Izquierdo et al. 2011). The original process Xt transitions to Xt +

(δℓ,j , δh,j) at exponential rate αj(Xj) for j = 1, . . . , J , where (δℓ,j , δh,j) is the vector

of changes to the state variables for Transition j. In contrast, in the mean-field

approximation, X̃t changes to X̃t + (δ̃ℓ,j , δ̃h,j)×∆t+ o(∆t) as time changes from t

to t+∆t, where the deterministic rates of change are computed as follows:

δ̃ℓ,j =
J∑

j=1

αj(ℓ, h)δℓ,j and δ̃h,j =
J∑

j=1

αj(ℓ, h)δh,j . (3.5)

The equilibrium point (ℓ∗, h∗) of the mean-field approximation of a Markov chain
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is the point for which the expected outgoing and incoming rates in each state variable

direction are equal. That is,

∑

j∈I
(1,0)
(ℓ∗,h∗)

αj(ℓ
∗, h∗) =

∑

j∈I
(−1,0)
(ℓ∗,h∗)

αj(ℓ
∗, h∗), (3.6)

∑

j∈I
(0,1)
(ℓ∗,h∗)

αj(ℓ
∗, h∗) =

∑

j∈I
(0,−1)
(ℓ∗,h∗)

αj(ℓ
∗, h∗), (3.7)

where I
(i,j)
(ℓ,h) denote the set of transitions that take the state (ℓ, h) to state (ℓ+i, h+j).

We introduce a Lyapunov function g(ℓ, h) : S → R
+ for queueing systems

with two impatient customer classes and use this function together with results in

Dayar et al. (2011, Section 3) to calculate the truncation level n so that (
∑n

ℓ=0 πℓ)1

≥ 1 − ǫℓ, or equivalently
(∑∞

ℓ=n+1 πℓ
)
1 < ǫℓ, for a given ǫℓ > 0 (ℓ in ǫℓ stands for

the level). This truncation level can be used in Step 1 of Algorithm 3.1, instead of

using heuristics to obtain n.

As Dayar et al. (2011) discuss, g(ℓ, h) is a Lyapunov function if a finite set C

and a real number ρ > 0 exist such that the function g and its drift, dg(ℓ, h), the

average change in the value of g after a transition, satisfy the following conditions:

1. The drift is negative outside C: dg(ℓ, h) ≤ −ρ, ∀(ℓ, h) ∈ S\C,

2. The drift is finite within C: dg(ℓ, h) <∞, ∀(ℓ, h) ∈ C,

3. The sublevel sets of the Lyapunov function are finite: {(ℓ, h)|g(ℓ, h) ≤ r} is

finite for all r <∞.

The drift of g(ℓ, h) is calculated as (Dayar et al. 2011, Equation (4)):

dg(ℓ, h) =

J∑

j=1

αj(ℓ, h)(g(ℓ+ δℓ,j , h+ δh,j)− g(ℓ, h)). (3.8)

If g(ℓ, h) is a Lyapunov function, then one can set ρ = z/ǫℓ − z, where z =

sup{dg(ℓ, h)|(ℓ, h) ∈ S}, and form set C = {(ℓ, h) ∈ S|dg(ℓ, h) > −ρ}. Dayar et al.

(2011, Page 1012) show that
(∑

(ℓ,h)∈C π(ℓ,h)

)
≥ 1 − ǫℓ. That is, more than 1 − ǫℓ

percent of the probability resides in Level n = max{ℓ|(ℓ, h) ∈ C} and below.
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We use the Euclidean distance from the equilibrium point (ℓ∗, h∗) of the mean-

field approximation of the QBD process as our Lyapunov function. We first illustrate

our Lyapunov analysis by applying it to an Erlang A system (Example 3.1), and

then we apply our method to a more complicated multiple-server systems with two

impatient customer classes (Example 3.3). We skip Example 3.2 because it is a

special case of Example 3.3, with c = 1.

Example 3.4. Example 3.1 continued.

We show that the following is a Lyapunov function for the Erlang A system:

g(ℓ, 0) = (ℓ− ℓ∗)2, for ℓ ≥ 0, (3.9)

where ℓ∗ satisfies λ = s(ℓ)µ + q(ℓ)γ = min(c, ℓ)µ +max(ℓ − c, 0)γ; this equation is

obtained by combining (3.6) and Table 3.2 formulas. The mean-field equilibrium

point occurs where the Erlang A birth rate (λ) equals the death rate (sµ + qγ).

The death rate is piece-wise linear in ℓ, with slope µ for ℓ ∈ [0, c) and slope γ for

ℓ ∈ [c,∞), as shown in Figure 3.2. Since the death rate is strictly increasing, there

is a unique level at which the birth rate equals the death rate, and this is the mean-

field equilibrium point ℓ∗. Consideration of the two cases where λ is either above or

below the death rate cµ when ℓ = c leads to the following expression for ℓ∗:

ℓ∗ =





λ/µ if λ/µ < c

(λ− (µ− γ)c)/γ if λ/µ ≥ c.
(3.10)

We apply (3.8) and obtain the drift of (3.9) in terms of the system parameters:

dg(ℓ, 0)
ℓ≥0

=





2 (ℓ− ℓ∗) (λ− µℓ) + λ+ µℓ if λ/µ < c

2 (ℓ− ℓ∗) (λ− cµ− γℓ+ cγ) + λ+ cµ+ γℓ− cγ if λ/µ ≥ c.
(3.11)

where ℓ∗ is obtained using (3.10). The first expression is for the case where the

offered load, λ/µ, is less than the number of servers, and the second expression
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Figure 3.2: The value of ℓ∗ depends on the relative magnitude of cµ and λ.

is for the case where the offered load exceeds the number of servers. The system

remains stable even in the second case, because of customer abandonment.

One can confirm that both functions in (3.11) are concave quadratic functions

of ℓ, and for any ℓ0 ∈ Z
+ that is larger than (3.11) roots, we have:

❼ dg(ℓ0, 0) < 0

❼ dg(ℓ0, 0) ≤ dg(ℓ, 0) for 0 ≤ ℓ ≤ ℓ0

❼ dg(ℓ, 0) decreases when ℓ increases for ℓ > ℓ0

Therefore, if C = {(ℓ, 0) ∈ S|ℓ ≤ ℓ0} and ρ = −dg(ℓ0, 0), then dg(ℓ, 0) ≤ −ρ, ∀(ℓ, 0) ∈

S\C (Condition 1 holds). Furthermore, dg(ℓ, 0) < ∞, ∀(ℓ, 0) ∈ C (Condition 2

holds), and the number of states (ℓ, 0) ∈ S that satisfy ℓ ≤ ℓ∗ +
√
r is finite for all

r <∞ (Condition 3 holds).

We assume c ≤ λ/µ—one can repeat the analysis for λ/µ ≤ c in the same

fashion as we do here. The maximum of (3.11) happens at ℓmax = 0.25 + λ/µ, and

z = dg(ℓmax, 0) = 2(λ+ 0.0625µ). Then we set ρ = z/ǫℓ − z and form C = {(ℓ, 0) ∈

S|dg(ℓ, 0) > −ρ} to obtain n = max{ℓ|(ℓ, 0) ∈ C}.

Table 3.4 shows states that include more than 99% (ǫℓ = 0.01) of the steady

state probabilities for different scenarios of Erlang A systems when λ = c = 10 and

γ = 0.1. System 1 has a low offered load per server of λ/(cµ) = 0.2. We decrease the

service rate and keep all other parameters unchanged, resulting in Systems 2 and 3
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Table 3.4: Lyapunov analysis outputs for Example 3.4.

Parameter/
Output System 1 System 2 System 3

µ 5 1 0.1
ℓ∗ 2 10 100
ρ 2041.87 1981.24 1981.24
C {0, ..., 28} {0, ..., 111} {10, ..., 201}
n 28 111 201
n′ 11 36 125
Pr(ℓ > n) 0.8734× 10−25 0.1192× 10−21 0.7856× 10−22

with offered loads per server of 1 and 10, respectively. As expected, the probability

mass moves towards higher states with decreasing service rate.

As Dayar et al. (2011) discuss, the Lyapunov analysis may provide overly con-

servative ranges for a given tolerance ǫℓ. We used Algorithm B.1 to calculate the

smallest truncation level n′ that satisfies
(∑n′

ℓ=0 πℓ

)
1 ≥ 0.99, and we used Algo-

rithm B.2 to compute the upper-tail probability above the Lyapunov truncation

level n. We see in Table 3.4 that the Lyapunov truncation levels are indeed much

larger than they need to be for these systems, providing error tolerances of smaller

than 10−20 instead of the desired ǫℓ = 0.01.

Example 3.5. Example 3.3 continued.

We show that the following is a Lyapunov function for multiple-server queueing

systems with two impatient customer classes:

g(ℓ, h) = (ℓ− ℓ∗)2 + (h− h∗)2, for ℓ, h ≥ 0, (3.12)

where ℓ∗ and h∗ satisfy ✶<p(h)λ1 = s1(h)µ1+q1(h)γ1 and λ2 = s2(ℓ, h)µ2+q2(ℓ, h)γ2;

these equations are obtained by combining (3.6), (3.7) and Table 3.3 formulas. That
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is,

h∗ =





λ1/µ1 if c > λ1/µ1,

(λ1 + (γ1 − µ1)c)/γ1bbbbbbbbbb. if c ≤ λ1/µ1,
(3.13)

ℓ∗ =





λ2/µ2 if c > λ1/µ1 + λ2/µ2,

(λ2 + (γ2 − µ2)(c− λ1/µ1))/γ2 if λ1/µ1 < c ≤ λ1/µ1 + λ2/µ2,

λ2/γ2 if c ≤ λ1/µ1

(3.14)

The first expression of (3.13) is for the case where the offered load by Class-1

customers, λ1/µ1, is less than the number of servers, and the second expression

is for the case where the Class-1 offered load exceeds the number of servers. For

(3.14), the first expression is for the case where the system capacity is enough

for both customer classes, the second expression is for the case where the system

capacity is enough for the Class-1, but not enough for both classes, and the third

expression is for the case where the system capacity is not enough even for Class-1

customers.

We apply (3.8) and obtain the drift of (3.12) in terms of the system parameters:

dg(ℓ, h)
ℓ,h≥0

=





(2ℓ− 2ℓ∗)(λ2 − µ2ℓ) + (2h− 2h∗)(λ1 − µ1h)+

µ2ℓ+ µ1h+ λ1 + λ2 if c > λ1/µ1 + λ2/µ2,

(2ℓ− 2ℓ∗)(λ2 − µ2(c− h)− γ2(ℓ− c+ h))+

(2h− 2h∗)(λ1 − µ1h) + µ2(c− h)+ if λ1/µ1 < c ≤

γ2(ℓ− c+ h) + µ1h+ λ1 + λ2 λ1/µ1 + λ2/µ2,

(2ℓ− 2ℓ∗)(λ2 − γ2ℓ)+

(2h− 2h∗)(λ1 − c− (h− c)γ1)+

γ2ℓ+ c+ (h− c)γ1 + λ1 + λ2 if c ≤ λ1/µ1,

(3.15)

where ℓ∗ and h∗ are obtained using (3.13) and (3.14). Note that the system capacity

for Class-1 customers, p, is an input that is chosen sufficiently large such that 1) As
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discussed in Example 3.3, the probability of having more than p Class-1 customers

in associated Erlang A system is less than ǫh, and 2) p ≥ h∗ to guarantee that

✶<p(h)λ1 = s1µ1 + q1γ1 has a solution.

Each of the three equations in (3.15) is the sum of a concave quadratic function

of ℓ and a concave quadratic function of h. In the same fashion as in Example 3.4,

one can confirm that (3.12) is a Lyapunov function.

We assume that there is enough capacity to cover the offered load from both

customer classes, that is c > λ1/µ1 + λ2/µ2—one can repeat the analysis for other

cases in the same fashion as we do here. The maximum of (3.15) happens at ℓmax =

0.25 + λ2/µ2 and hmax = 0.25 + λ1/µ1, and z = dg(ℓmax, hmax) = 2(0.0625(µ1 +

µ2) + λ1 + λ2). Then we set ρ = z/ǫℓ − z and form C = {(ℓ, h) ∈ S|dg(ℓ, h) > −ρ}.

We illustrate the analysis as follows. Class-1 patients have more complex com-

plaints, therefore their service rate is smaller than that of Class-2 patients and

Class-1 patients are less likely to abandon compared to Class-2 patients; following

this rationale, we set µ1 = 1, µ2 = 2, γ1 = 0.1, and γ2 = 1. We assume that 10% of

the patients are Class 1 and 90% are Class 2, that is, λ1 = 0.1λ and λ2 = 0.9λ. The

resulting offered load is R = λ1/µ1 + λ2/µ2. We vary the offered load by varying

λ, and we set the number of servers c equal to the offered load. We choose values

of λ that result in integer values for the offered load. For a given λ, we choose p

such that the probability of of having more than p patients in the Erlang A system

associated with Class-1 sub-system is less than ǫh = 10−6. We choose a very small

ǫh to virtually cover all of the possibilities for the number of Class-1 customers in the

system. We set ǫℓ = 0.01 and find Level n below which 99% of the total probability

resides. Table 3.5 shows Level n for different systems with varying offered load from

1 to 2 and 3. As expected, the probability mass moves towards higher states when

the offered load increases.
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Table 3.5: Lyapunov analysis for Example 3.5.

Parameter/Output System 4 System 5 System 6

λ 1.8189 3.6364 4.9091
R = c 1 2 3
ℓ∗ 0.8182 1.6364 2.4545
h∗ 0.1818 0.3636 0.5454
ρ 376.5039 769.4775 1294.4943
C {(0, 0), ..., (16, 7)} {(0, 0), ..., (23, 7)} {(0,0),...,(31,8)}
n 16 23 31
p 7 7 8

3.7 Extension of Algorithm 3.1

We focus on the LDQBD model of multi-server queues with two classes of impa-

tient customers and propose an algorithm to calculate a lower bound and an upper

bound for the steady state probability vector of a given level ℓ′ ∈ Z
+, πℓ′ and πℓ′ ,

respectively, such that πℓ′1 − πℓ′1 ≤ ǫℓ′ , for any desired error tolerance ǫℓ′ . Note

that this condition guarantees that all of the probabilities πℓ′,h, h = 0, . . . , p at Level

ℓ′ are known to within the tolerance ǫℓ′ .

To recall, Algorithm 3.1 starts from a heuristically-chosen Level n and assigns

R(n) = 0. The recursive formula (3.3c) is used to calculate the rate matrices for

Levels n − 1, ..., 0. At the end, the normalizing factor and all state variables are

calculated. In contrast, our Algorithm 3.2 starts from Level 0 and updates the

normalizing factor and bounds on πℓ′ at the end of each iteration using a procedure

that is discussed later in this section. Our algorithm proceeds until a truncation level

k has reached that guarantees the bounds on πℓ′ to be within the error tolerance.

From the list of input parameters, we use λ1, λ2, µ1, µ2, γ1, γ2, c, and p to build

the transition matrix blocks A
(ℓ)
0 , A

(ℓ)
1 , and A

(ℓ)
2 for different system levels. We use

τ to denote a level above which the rate matrices are element-wise decreasing; that

is, R(τ+i) ≤ R(τ+i+1) for i ∈ Z
++. Finding τ is still an open problem. Later, in our

numerical examples, we discuss a heuristic method that we use to choose τ .

Iteration ℓ of Algorithm 3.2—Iteration 0 includes lines 2-16 and Iteration ℓ ≥ 1

is the ℓth loop in lines 17-27—commences by calling Algorithm 3.3 that calculates
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a lower bound and an upper bound for the rate matrix R(ℓ), which relies on bounds

that Algorithm 3.3 calculates for G(ℓ). In order to obtain the G(ℓ) bounds, we

compute approximations to G(ℓ) based on the assumption that the system never

visits levels at or above ℓ + m. We provide m as an input for Algorithm 3.3. An

advantage of having a large m is that we obtain a better estimation of G(ℓ); a

disadvantage, on the other hand, is that it would be time consuming to obtain the

G(ℓ) estimation and we might encounter round-off errors. The choice of parameter

m is discussed later in numerical examples.

Iteration ℓ of Algorithm 3.2 continues by calculating a lower bound and an

upper bound for the unnormalized stationary probability xℓ. When ℓ = 0, we use

variations of (3.4b), and for ℓ > 0, we use variations of (3.4a) to obtain the bounds.

We proceed by calculating a lower bound and an upper bound on the normalizing

factor c. At the end, we calculate bounds on the stationary probability of level ℓ′

and check whether the bounds satisfy our error tolerance.

To illustrate how the algorithm works and discuss the choice of parameters τ

and m, we calculate bounds on π0 for System 4 of Table 3.5 when ǫℓ′ = 0.01 and

then repeat our numerical experiments on variations of System 4 by increasing λ.

For System 4, we set τ = ⌈ℓ∗⌉ because when the system is in level ℓ > ℓ∗, the

expected next move would be towards level ℓ − 1. It may indicate that the system

tends to spend more time in level ℓ − 1 than it does in level ℓ. According to

the interpretation of the elements of a rate matrix, it follows that R(ℓ−1) ≥ R(ℓ).

We choose the parameter m by trial and error. When m = 5, regardless of the

number of iterations, we cannot calculate π0 within the 0.01 error tolerance. When

we set m = 30, because of round-off errors, some elements of the lower bound

for rate matrices become larger than the associated upper bound elements. When

we set m = 15, the algorithm finds the bounds on π0 after 5 iterations. Figure

3.3 shows how the bounds on the first 3 elements of π0 become tighter and the

Gap = (π0 − π0)1 decreases by increasing the truncation level from one iteration

to the next.

Table 3.6 shows the bounds on π0,0 of multi-server multi-class queues similar to
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Table 3.6: Bounds on the stationary probability π0,0 of Example 3.5.

Parameter/Output System 4 System 7 System 8 System 9

λ 1.82 9.09 18.18 54.54
p 7 9 11 31
R = c 1 5 10 30
τ 1 5 9 25
m 15 30 40 60
Lower bound 0.3038 0.0051 0.0000 0.0000
Upper bound 0.3071 0.0091 0.0009 4.1401× 10−8

Truncation level 4 5 4 10
Time (seconds) 5 11 13 43

Table 3.5 systems with offered loads that vary between 1 and 30. By increasing the

load, the probability mass shifts towards higher states and the probability of being

in state (0, 0) decreases.

3.8 Error Bounds for New Algorithms

Proofs of all propositions in this section are provided in Appendix B.2. There are

two types of errors in the π̂ℓ values as estimated in Algorithm 3.1: Rate-matrix error

and level-truncation error defined below. Let xℓ, ℓ = 0, ..., n, be the vectors that

would be obtained if the true rate matrices R(0), ...,R(n−1) were used in Algorithm

3.1. Define:

∆xℓ := xℓ − x̂ℓ, ℓ = 0, ..., n. (3.16)

Using (3.16), we define and decompose the normalizing constant c as:

c :=

(
∞∑

ℓ=0

xℓ

)
1 =

(
n∑

ℓ=0

xℓ

)
1+

(
∞∑

ℓ=n+1

xℓ

)
1 (3.17)

=

(
n∑

ℓ=0

x̂ℓ

)
1+

(
n∑

ℓ=0

∆xℓ

)
1+

(
∞∑

ℓ=n+1

xℓ

)
1, (3.18)
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and, re-write πℓ as:

πℓ =
xℓ

c
=

x̂ℓ +∆xℓ

(
∑n

ℓ′′=0 x̂ℓ′′)1+ (
∑n

ℓ′′=0∆xℓ′′)1+
(∑∞

ℓ′′=n+1 xℓ′′
)
1

(3.19)

=
x̂ℓ +∆xℓ

ĉ+ (
∑n

ℓ′′=0∆xℓ′′)1+
(∑∞

ℓ′′=n+1 xℓ′′
)
1
. (3.20)

When computing π̂ℓ using Algorithm 3.1, we call the error caused by ignoring

∆xℓ and (
∑n

ℓ′′=0∆xℓ′′)1 the rate-matrix error and the error caused by ignoring
(∑∞

ℓ′′=n+1 xℓ′′
)
1 the level-truncation error.

We use the following notational convention in our developments. Let X be a

generic (p+1)×(p+1) matrix of unknown non-negative entries. We useX to denote a

known element-wise lower bound of X and X to denote a known element-wise upper

bound of X; that is X ≤X ≤X, where we use inequalities to denote element-wise

orderings. Let ∆X = X −X and ∆X = X −X, which implies that ∆X ≤ ∆X.

Although the error matrix ∆X is unknown (because X is unknown), its upper

bound ∆X is computable (because the lower and upper bounds are known). We

use (X)i,j to denote the (i, j)th entry of X.

We develop all material needed to construct Algorithms 3.2-3.3 in 5 steps. In

the first step, we develop bounds for the G matrices; in the second step, we develop

bounds for the R matrices; in the third step, we obtain bounds for x0; in the fourth

step, we develop bounds for the unnormalized stationary probabilities of higher

levels and develop bounds for the normalizing factor; and in the last step se develop

bounds on the stationary probability vector of interest.

Step 1: Bounds for G(ℓ), ℓ ∈ Z
++.

As we do not need G(0) in our calculations, we skip G(0). Following (Phung-Duc

et al. 2010), for ℓ ∈ Z
++ and m ∈ Z

+, we define G
(ℓ)
m and R

(ℓ)
m as estimates of G(ℓ)

and R(ℓ), such that the (i, j)th element of G
(ℓ)
m is the probability of visiting state

(ℓ, j) in the first visit to level ℓ provided that the process starts from state (ℓ+1, i)

and never visits the level ℓ + m + 1 and levels above. And the (i, j)th element of

R
(ℓ)
m is the average sojourn time in state (ℓ + 1, j) before the first return to level
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ℓ per unit time in state (ℓ, i) provided that the system started at (ℓ, i) and never

visits the level ℓ+m+ 1 and levels above.

Some properties of the G
(ℓ)
m and R

(ℓ)
m matrices are as follows (Phung-Duc et al.

2010): For ℓ ∈ Z
++ and m ∈ Z

+,

Property 3.1. Similar to equations (3.3a)-(3.3c), G
(ℓ)
m and R

(ℓ)
m are related as

follows:

G(ℓ)
m =

(
−A(ℓ+1)

1 −A
(ℓ+1)
0 G

(ℓ+1)
m−1

)−1
A

(ℓ+1)
2 (3.21a)

R(ℓ)
m = A

(ℓ)
0

(
−A(ℓ+1)

1 −A
(ℓ+1)
0 G

(ℓ+1)
m−1

)−1
(3.21b)

= A
(ℓ)
0

(
−A(ℓ+1)

1 −R
(ℓ+1)
m−1 A

(ℓ+2)
2

)−1
, (3.21c)

Property 3.2. G
(ℓ)
0 = R

(ℓ)
0 = 0,

Property 3.3. G
(ℓ)
m ≤ G

(ℓ)
m+1, R

(ℓ)
m ≤ R

(ℓ)
m+1,

Property 3.4. limm→+∞G
(ℓ)
m = G(ℓ), limm→+∞R

(ℓ)
m = R(ℓ),

Property 3.5. G
(ℓ)
m is a sub-stochastic matrix: All entries are non-negative, and

each row sum is at most 1.

To calculate G
(ℓ)
m , we define Lℓ(X) :=

(
−A(ℓ+1)

1 −A
(ℓ+1)
0 X

)−1
Aℓ+1

2 and com-

bine it with (3.21a) as:

G(ℓ)
m = Lℓ

(
Lℓ+1

(
...

(
Lℓ+m−1

(
G

(ℓ+m)
0

))))
, ∀ℓ ∈ Z

++, ∀m ∈ Z
+, (3.22)

where G
(ℓ+m)
0 = 0 due to Property 3.2. Employing Properties 3.3-3.4, one can

confirm that G
(ℓ)
m ≤ G(ℓ) = limm→+∞G

(ℓ)
m . Therefore, G(ℓ) := G

(ℓ)
m is a lower

bound for G(ℓ) and its error is ∆G(ℓ) = G(ℓ) −G(ℓ).

To construct an upper bound G(ℓ) on G(ℓ), we use the sub-stochastic matrix

G(ℓ). Define ai
(ℓ) := 1 − row sum of the ith row of G(ℓ), for i ∈ Y. We obtain

G(ℓ) by adding ai
(ℓ) to each element in the ith row of G(ℓ). The error matrix
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∆G(ℓ) = G(ℓ) −G(ℓ) is an upper bound on ∆G(ℓ). In summary:

G(ℓ) ≤ G(ℓ) = G(ℓ) +∆G(ℓ) ≤ G
(ℓ)

= G(ℓ) +∆G
(ℓ)
, (3.23)

where

∆G
(ℓ)

=
(
a(ℓ), ...,a(ℓ)

)
, (3.24)

where a(ℓ) =
(
a
(ℓ)
0 , ..., a

(ℓ)
p

)T
is a column vector. As G(ℓ) is a stochastic matrix, if

any element of G(ℓ) is larger than 1, then we replace that element with 1.

Step 2: Bounds for R(ℓ), ℓ ∈ Z
+.

Define matrix functions (3.25a)-(3.25b) with argument matrix X for ℓ ∈ Z
+:

Mℓ(X) := −A(ℓ+1)
1 −A

(ℓ+1)
0 X, (3.25a)

Nℓ(X) := A
(ℓ)
0 X−1. (3.25b)

Comparing (3.3b) to (3.25b), one can confirm that R(ℓ) = Nℓ

(
Mℓ

(
G(ℓ+1)

))
.

We use these matrix functions to build bounds for R(ℓ) as stated below:

Proposition 3.6. 0 ≤ R(ℓ) ≤ R(ℓ) ≤ R
(ℓ)
, where R(ℓ) := Nℓ

(
Mℓ

(
G(ℓ+1)

))
,

R(ℓ) = Nℓ

(
Mℓ

(
G(ℓ+1)

))
, and R(ℓ) := Nℓ

(
Mℓ

(
G(ℓ+1)

)
+D(ℓ)

)
; the non-negative

diagonal matrix D(ℓ) is defined as:

(
D(ℓ)

)
i,j

= 0, i 6= j,
(
D(ℓ)

)
i,i

=





0 if s
(ℓ)
i > 0,

∣∣∣s(ℓ)i

∣∣∣+ ξ(ℓ) if s
(ℓ)
i ≤ 0,

(3.26)

where |.| is the absolute value of a number, s
(ℓ)
i is the i-th row sum of Mℓ

(
G(ℓ+1)

)

and ξ(ℓ) is a scalar in the open range of
(
0,mini∈Y

{
r(ℓ)i

})
given that r(ℓ)i is the i-th

row sum of Mℓ(I).

The error matrix ∆R
(ℓ)

= R(ℓ)−R(ℓ) is an upper bound on ∆R(ℓ) = R(ℓ)−R(ℓ).
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Step 3: Bounds for x0.

Let y = (y0, ..., yp) be a row vector of unknowns and define Z = A
(0)
0 G(1). La-

touche and Ramaswami (1999, Theorem 12.1.4), show that R(0)A
(1)
2 = A

(0)
0 G(1).

Bright and Taylor (1995) show that y
(
A

(0)
1 +R(0)A

(1)
2

)
= 0, or equivalently

y
(
A

(0)
1 +Z

)
= 0, has a positive solution y > 0 such that y1 = 1. We expand the

system y
(
A

(0)
1 +Z

)
= 0 as:

(y1, ..., yp+1)







−a1,1 . . . a1,p+1

...
. . .

...

ap+1,1 . . . −ap+1,p+1




+




z1,1 . . . z1,p+1

...
. . .

...

zp+1,1 . . . zp+1,p+1







=

(0, ..., 0). (3.27)

To solve (3.27) we fix one variable and remove one equation and then normalize

the solution as described by Baumann and Sandmann (2012). If y is a solution for

(3.27), then x0 = αy, ∀α ∈ R, is also a solution for (3.27). We choose α such that

x0,p+1 = 1 and remove the last equation, and re-write (3.27) as:

(x0,1, ..., x0,p)







−a1,1 . . . a1,p
...

. . .
...

ap,1 . . . −ap,p




+




z1,1 . . . z1,p
...

. . .
...

zp,1 . . . zp,p







=

− (ap+1,1 + zp+1,1, ..., ap+1,p + zp+1,p). (3.28)

As G(1) is unknown, we cannot compute the exact value of Z, and in turn can

not solve (3.28). Instead, we use Z = A
(0)
0 G(1) and Z = A

(0)
0 G

(1)
in Proposition

3.7 to provide a lower bound and an upper bound for x0.

Proposition 3.7. 0 < x0 ≤ x0 ≤ x0, If x0 and x0 are solutions of x0K = 0

and x0

(
K +H

)
= 0, respectively, where K = A

(0)
1 + A

(0)
0 G(1) and K = A

(0)
1 +
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A
(0)
0 G

(1)
; the non-negative diagonal matrix H is defined as:

(H)i,j = 0, i 6= j, ∀i, j ∈ Y, (3.29)

(H)p+1,p+1 = 0, (H)i,i
∀i∈Y\{p+1}

=





0 if gi > 0,

(−gi − ξ)/xi if gi ≤ 0,
(3.30)

where

gi =
(
x
(
A

(0)
1 +A

(0)
0 G

(1)
))

i
, (3.31)

and ξ > 0.

As a result of Proposition 3.7, ∆x0 := x0 − x0 is an upper bound on ∆x0 :=

x0 − x0.

Step 4: Bounds for xℓ, ℓ ∈ Z
++.

We combine x0 and x0 from Proposition 3.7 with recursions xℓ+1 = xℓ R
(ℓ) and

xℓ+1 = xℓ R
(ℓ), for ℓ ∈ Z

+, to obtain bounds on xℓ:

Proposition 3.8. ∀ℓ ∈ Z
++, 0 ≤ xℓ ≤ xℓ ≤ xℓ.

Step 5: Bounds for πℓ.

For a truncation level k ≥ τ , we calculate bounds on the normalizing coefficient

c and obtain bounds on πℓ. Using Proposition 3.8, we find a lower bound c for c:

c =

(
k∑

ℓ=0

xℓ

)
1+

(
∞∑

ℓ=k+1

xℓ

)
1 ≥

(
k∑

ℓ=0

xℓ

)
1 ≥

(
k∑

ℓ=0

xℓ

)
1 =: c. (3.32)

To obtain an upper bound c on c, we use the rate matrix of Level τ higher

than which the elements of rate matrices decrease by increasing the level; that is

R(τ+i+1) ≤ R(τ+i) for i ∈ Z
++. Finding τ is an open problem; we use a heuristic to
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find it as discussed in Section 3.7. If ℓ > τ then:

n∏

i=1

R(ℓ+i) ≤
(
R(ℓ+1)

)n
, n ≥ 1. (3.33)

We expand c as we did in (3.18), and use the inequalities from Propositions 3.7

and 3.8, and (3.33) as follows:

c =

(
k∑

ℓ=0

xℓ

)
1+

(
∞∑

ℓ=k+1

xℓ

)
1 (3.34)

=

(
k∑

ℓ=0

xℓ

)
1+ xk+1

(
I +R(k+1) +R(k+1)R(k+2) + ...

)
1 (3.35)

≤
(

k∑

ℓ=0

xℓ

)
1+ xk+1

(
I +R(k+1) +R(k+1)2 + ...

)
1 (3.36)

=

(
k∑

ℓ=0

xℓ

)
1+ xk+1

(
I −R(k+1)

)−1
1 (3.37)

≤
(

k∑

ℓ=0

xℓ

)
1+ xk+1

(
I −R(k+1)

)−1
1 =: c. (3.38)

The last inequality holds if all eigenvalues of R(k+1) are strictly within the unit

circle. If this condition does not hold, then we set c =∞.

Proposition 3.9. 0 ≤ πℓ ≤ πℓ ≤ πℓ, where πℓ = xℓ/c and πℓ = xℓ/c.

3.9 Conclusion

We proposed methods to study the waiting times in an ED. We modeled the ED

as an LDQBD process with infinite levels and finite phases, because it was natural

to view the ED as a queueing system with multiple servers (physicians or beds)

and multiple classes of customers (patients with different acuity levels) who were

impatient (patients might leave the system before being seen by a physician). Our

modeling approach can be applied to other health care areas like organ transplan-

tation systems.

The methods available to compute stationary performance measures of LDQBDs
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are numerical and rely on heuristically truncating the system at a level. Two main

shortcomings of these methods are: 1) the truncation level is chosen heuristically,

and 2) there are no error bounds on calculated performance measures.

In this study, we proposed two algorithms to address the issues associated with

current solution approaches. In the first algorithm, we used Lyapunov analysis to

cut the LDQBD state space such that the truncated upper tail was guaranteed to

include less than a desired proportion of the probability mass. This method can

be used with currently available methods to find an appropriate truncation level.

In the second algorithm, we extended one of current solution methods such that

the new algorithm automatically truncates the system at a level and calculates the

performance measure of interest with a desired accuracy. We provided numerical

examples to demonstrate our methods. However, more numerical experiments are

needed to (1) compare the truncation levels that we get from the Lyapunov analysis

with those of Algorithm 3.2, and (2) compare the performance of solution algorithms

for LDQBDs that are available in the literature with that of Algorithm 3.2.

Another interesting direction for future research is extending our LDQBD model

to systems with more than two customer types. Here, we discuss two potential

approaches that one can take to extend our results to systems with n customer types,

namely Class-1 (the highest priority) up to Class-n (the lowest priority) customers:

(1) One can map Class-n customer counts to the level and assume that the system

capacity for these customers is unlimited. One can further assume that the system

capacity for all other customer classes is limited, and use all possible combinations of

the number of Class-1 to Class-(n−1) customers as the system phase. One potential

difficulty associated with this approach is that it is not obvious how one should set

the system capacity for Class-1 up to Class-(n − 1) customers such that desired

blocking probabilities are satisfied. (2) One can use the following heuristic: Use the

two-class model to analyze Class-n customers versus Class-1 to Class-(n-1) customers

combined, then use the two-class model to analyze Class-n and n − 2 customers

combined versus Class-1 to Class-(n − 3) customers. Continue this approach until

enough information is gathered.
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Algorithm3.2: Computing bounds on πℓ′ for a given level s ∈ Z
+.

aaaaaaaaaaaaaaaaaaaaaaaa
1. Input ℓ′, ǫℓ′ , λ1, λ2, µ1, µ2, γ1, γ2, c, τ , m, p, ξ,

2. Initialize ℓ = 0, xℓ′ = 0, xℓ′ = (∞, ...,∞),

3. Call Algorithm 3.3 to compute R(0) and R(0),

4. Solve x0

(
A

(0)
1 +A

(0)
0 G(1)

)
= 0 for x0,

5. Solve x0

(
A

(0)
1 +A

(0)
0 G

(1)
+H

)
= 0 for x0, where

6. (H)i,j = 0, i 6= j, ∀i, j ∈ Y, and

7. (H)p+1,p+1 = 0, (H)i,i
∀i∈Y\{p+1}

=

{
0 if gi > 0,
(−gi − ξ)/xi if gi ≤ 0,

8. gi =
(
x
(
A

(0)
1 +A

(0)
0 G

(1)
))

i
.

9. x1 = x0 R(0) and x1 = x0 R(0),

10. Initialize normalizing factors:

11. c = x01, c1 = x01,

12. If ℓ ≥ τ and all eigenvalues of R(1) are strictly within the unit

13. circle Then c2 = x1

(
I −R(1)

)−1
1, otherwise c2 =∞,

14. c = c1 + c2,

15. πℓ′ = xℓ′/c and πℓ′ = xℓ′/c,

16. While (πℓ′ − πℓ′)1 > ǫℓ′

17. ℓ = ℓ+ 1,

18. Call Algorithm 3.3 to compute calculate R(ℓ+1) and R(ℓ+1),

19. xℓ+1 = xℓ R
(ℓ) and xℓ+1 = xℓ R

(k),

20. Update normalizing factors:

21. c = c+ xk1, c1 = c1 + xℓ1,

22. If ℓ ≥ τ and all eigenvalues of R(ℓ+1) are strictly within the unit

23. circle Then c2 = xℓ+1

(
I −R(ℓ+1)

)−1
1, otherwise c2 =∞,

24. c = c1 + c2,

25. πℓ′ = xℓ′/c and πℓ′ = xℓ′/c,

26. Return

27. Output truncation level k = ℓ,πℓ′ ,πℓ′
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Algorithm3.3: Computing bounds on R(ℓ) for a given level ℓ ∈ Z
+.

aaaaaaaaaaaaaaaaaaaaaaaa
1. Input: ℓ, λ1, λ2, µ1, µ2, γ1, γ2, c, m, p,

2. G
(ℓ+m+1)
0 = 0,

3. For i = m, ..., 1, compute G
(ℓ+i)
m−i+1 =

(
−A(ℓ+i+1)

1 −A
(ℓ+i+1)
0 G

(ℓ+i+1)
m−i

)−1
A

(ℓ+1)
2 ,

4. G(ℓ+1) = G
(ℓ+1)
m ,

5. ∆G(ℓ+1) =
(
a(ℓ+1), ...,a(ℓ+1)

)
, where ai

(ℓ+1) = 1−∑p
j=1

(
G(ℓ+1)

)
i,j
, ∀i ∈ Y,

6. G(ℓ+1) = G(ℓ+1) +∆G(ℓ+1),

7. R(ℓ) = A
(ℓ)
0

(
−A(ℓ+1)

1 −A
(ℓ+1)
0 G(ℓ+1)

)−1

8. R(ℓ) = A
(ℓ)
0

(
−A(ℓ+1)

1 −A
(ℓ+1)
0 G(ℓ+1) +D(ℓ)

)−1
, where

9.
(
D(ℓ)

)
i,j

= 0, i 6= j, and

10.
(
D(ℓ)

)
i,i

=

{
0 if s

(ℓ)
i > 0,

−s(ℓ)i + ξ(ℓ) if s
(ℓ)
i ≤ 0,

11. s
(ℓ)
i =

∑
j∈Y

(
−A(ℓ+1)

1 −A
(ℓ+1)
0 G(ℓ+1)

)
i,j
.

12. ξ(ℓ) = min

{∑
j∈Y

(
−A(ℓ+1)

1 −A
(ℓ+1)
0

)
i,j

∣∣∣∣ i ∈ Y

}
/2.

π π π π π π

π π π π π π

π π π

Figure 3.3: Bounds on π0 elements for System 4 in Table 3.5.
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CHAPTER 4

Predicting the Spatial Distribution of Demand for

Percutaneous Coronary Intervention in Alberta

4.1 Introduction

Accurate estimates of demand for health care services are essential in health

care planning. These estimates are used for both short-term planning, surgical

scheduling (Chow et al. 2011), for example, and for long-term planning, location

(Gu et al. 2010) and capacity planning (Patrick et al. 2015), for example. In this

chapter, we specifically focus on providing a framework for predicting the number

of heart attack patients in geographical areas that are sufficiently small to provide

useful estimates of travel times. This study has been inspired by the health care

authorities’ need for accurate demand estimates for heart attack treatment centers

in Alberta.

When our heart pumps properly, it delivers oxygen and blood to every part of

our body. At the same time, coronary arteries supply blood and oxygen to the

heart itself. Myocardial infarctions, or heart attacks, occur when a coronary artery

is partially or completely blocked by a blood clot. Once blocked, an artery no

longer properly supplies oxygen to a certain part of the heart muscle, and this lack

of oxygen causes a heart attack. If a clot blocks an artery completely, all parts of

the heart supplied by the artery start to die, and a severe heart attack, ST-Segment

Elevation Myocardial Infarction (STEMI), occurs (Fogoros 2008b). Partial blocking

of an artery results in a less severe heart attack, referred to as NSTEMI (Fogoros
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2008a). We use the terms “heart attack” and “STEMI” interchangeably in this

research. Heart attack and other diseases and injuries of the cardiovascular system

are called cardiovascular diseases (Heart & Stroke Foundation 2013). Percutaneous

Coronary Intervention (PCI), restoration of the blood flow in a blocked heart artery

by inserting a tube into the artery, is an effective heart attack treatment method if

administered in a timely fashion (Kutcher et al. 2009, Armstrong et al. 2003).

According to the Heart & Stroke Foundation (2013), almost 70,000 heart attacks

occur in Canada each year and around 16,000 of these patients die, mainly out of

hospitals. During 2008, almost 6% of all deaths in Canada were attributed to heart

attacks. Bakal et al. (2011) estimate based on 2002 − 2007 Alberta Health and

Wellness data that the annual rate of heart attack in Alberta is 0.8 per 1000 people.

There are currently three PCI facilities in Alberta—two in Edmonton and one in

Calgary. Patel et al. (2007) estimated that 70% of Albertans above the age of 20

can reach one of the current PCI facilities within the 90-minute window by ground

ambulance. Therefore, almost a third of adult Albertans do not have timely access

to a PCI facility, which has prompted research on adding new facilities and on more

efficient usage of the current facilities. The sensitivity of this treatment method

to the time that has passed after the onset of a heart attack until the operation

starts, motivates health care authorities to find the best set of locations to open new

PCI centers to maximize timely coverage of the population. This research provides

accurate demand estimates for PCI centers as a foundation for future studies on

finding the optimal locations.

In order to mitigate issues associated with data aggregation errors in future

studies on finding the best locations for PCI facilities, we use the Dissemination

Area (DA) as our spatial unit. DAs are small geographical areas with population

sizes from 400 to 700 that cover all the territory of Canada. DAs are defined by

Census Canada and are the smallest geographical units for which all census data

are published (Statistics Canada 2010).

A good deal of research has been done on identifying and studying heart attack

risk factors such as smoking, inactivity, high blood pressure and total cholesterol
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(e.g. Wielgosz et al. 2009, Wilson et al. 1998), and the odds of having a heart attack

for a specific person based on the level of her unhealthy behaviour and physical

conditions (e.g. Wilson et al. 1998). Nevertheless, we can not use these heart attack

risk factors as predictors of the number of heart attacks in a DA because direct

information about individual-level heart attack risk factors is not readily available

for DAs. For example, it is difficult to obtain information about the proportion of

people with high blood pressure in a DA as opposed to in the whole province.

We use the population size in each of several cohorts, defined by age, gender, in-

come, and education as explanatory variables which are published by Census Canada

for DAs. As we discuss in Section 4.2, medical researchers have done a great deal of

research on the impact of the variables that we use in this study either directly on

an individual’s chance of developing a hard attack or on heart attack risk factors. In

contrast, we study the impact of these variables on the DA level; we use statistical

models to predict the number of heart attack patients in DAs as a function of the

explanatory variables.

We use Poisson regression to build predictive models of heart attack counts.

Poisson regression assumes that the dependent variable has a mean that is a func-

tion (the “link function”) of the explanatory variables. We show that the commonly

used exponential link function has undesirable properties in our setting and instead

propose using the identity link function, together with constraints on parameter

values to ensure that the predicted Poisson means are positive. We compare the

predictive power of Poisson regression with that of a standard multiple linear re-

gression approach.

4.2 Literature Review

Heart diseases are significantly more common in middle-aged men than in

women. Heart attack rates increase for both men and women with age but the

increase is steeper for women (Hulley et al. 1998, Jousilahti et al. 1999, Martins

et al. 2001, Albert et al. 2006).

76



Other than age and sex, there are other risk factors for cardiovascular diseases:

Blood pressure; smoking; total, LDL, and HDL cholesterol (Gordon and Kannel

1982); family history; and obesity (Grundy et al. 1993). Information about these

risk factors is not readily available at the DA level.

Lack of education and income are associated with higher risk factor levels for

cardiovascular diseases (Winkleby et al. 1992, Diez-Roux et al. 2000). The corre-

lation between education level, income and cardiovascular risk factors are stronger

in high-income countries like Canada (Rosengren et al. 2009, Goyal et al. 2010).

Information about the education and income levels of the population are available

at the DA level in Canada.

4.3 Data

Statistics Canada publishes census data every 5 years—the last one was in 2011.

We use the 2006 census (as opposed to 2011) to obtain information about age, sex,

education, and income variables for each DA in Alberta because 2006 falls within

the 2003-2010 period for which we have heart attack incidence data, as discussed

below. In the 2006 census, Alberta was covered by 5209 DAs. As shown in Figure

4.1, the population size of almost 40% of the DAs did not fall into the 400-700 range,

the population size of a DA as defined by Statistics Canada (2010). This could be

because, for each census, the population count from the previous census is used to

define DA borders, so the process of defining DA borders is always lagging behind

the process of counting actual population of the DAs. Descriptive statistics of the

population of DAs is presented in Table 4.1. As we discuss later in Section 4.4,

the high variation in the DA population adds to the complexity of our prediction

process.

The 2006 census provides information about the number of people in the follow-

ing cohorts:

❼ Males, by 5-year age groups (0-5, 6-10, ..., 76-80, and over 85),

❼ Females, by 5-year age groups (0-5, 6-10, ..., 76-80, and over 85),
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Table 4.1: Alberta DAs’ population and heart attack incidence per DA.
Statistics DAs STEMIs per DA

Total number 5,209 14,287
Mean 628.48 2.74
Standard Deviation 535.30 4.27
Median 524 2
Maximum 11,881 74
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(b) Population distribution CDF.

Figure 4.1: The population distribution in Alberta DAs in 2006 census.

❼ Males with post-secondary degree,

❼ Females with post-secondary degree,

❼ Those with low income that are over 65. Statistics Canada (2010) defines a

low-income person or family as one “who spend 20% more than average of

their before-tax income on food, shelter and clothing.”

We build and validate our models using empirical heart attack data from Alberta.

Our data set includes 14,287 heart attack incidents that occurred in Alberta from

2003-2010 by postal code (PC). A PC consists of one or more postal addresses that

Canada Post has assigned a single six-character alphanumeric code, for example,

T6G 2R6 (Canada Post 2012). We aggregate the PC-level heart attack incidence

data to the DA level because our explanatory variables are at the DA level. Figure

4.2 shows a heat map of the rate of STEMI patients in DAs across the province. Total

of 14,287 STEMIs over 8 years spread over 5,209 DAs with average population of

628.48 translates into an average of approximately one heart attack per 1,833 people

per year.
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Figure 4.2: Heat map for STEMI incidents in Alberta DAs.

Figure 4.3 shows histogram of the proportion of DAs with different number of

observed STEMIs in Alberta over the study period. Note that more than 30% of

the DAs did not have any STEMI patients from 2003 to 2010. Figure 4.4 shows

the scatter plot of STEMI counts versus DA populations with a trend line that

has been estimated by no-intercept simple linear regression. The slope of this trend

line, 0.0038, is the predicted chance of an individual in Alberta to experience a heart

attack over an 8-year period given that the total population is the only explanatory

variable. If we divide this number by the duration of study period, 0.0038/8 =

0.00047, we then obtain a rate close to what we roughly calculated in the previous

paragraph, 1/1,833 = 0.00054.
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Figure 4.3: STEMI distribution in Alberta DAs.
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Figure 4.4: STEMI distribution in Alberta DAs.

4.4 Model Specification

If X is the total population of a DA, and this is the only information available,

then a natural formula to predict the number Y of STEMI patients in that DA is Y =

bX, where b is the probability that an individual will experience a STEMI incident.

If we know the number X1 of females and number X2 of males in that DA, then

Y = b1X1+ b2X2 is a natural formula to predict Y , with b1 and b2, the probabilities

that a female and a male will experience a STEMI incident, respectively. Note that

these two equations have the desirable properties that (1) A DA with zero population

has zero predicted STEMI incidents and (2) if the DA population increases by

a given percentage, holding the gender ratio constant, the predicted number of

STEMI incidents increases by the same percentage. In other words, these equations

are invariant to scale.
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In general, if one has information about the population of each Cohort j, where

j = 1, ..., n, in each DA, then one can estimate the number of STEMI patients with

a similar function, Y =
∑n

i=1 biXi, using standard multiple linear regression with

the intercept forced to 0. However, Y is integer-valued and often 0, and therefore we

also investigate the use of count regression models such as Poisson regression and

binomial regression.

In our models, each DA is an observation where the number Yi of STEMI patients

in DA i, i ∈ {1, . . . ,m} is the dependent variable and the number Xij of people in

Cohort j, for j ∈ {1, ..., n}, of DA i are the explanatory variables. Let Xi be

the population of DA i, i ∈ {1, . . . ,m}. Ideally, the cohorts would be mutually

exclusive and collectively exhaustive, which would imply Xi =
∑n

j=1Xij , for all

i ∈ {1, . . . ,m}, but unfortunately it is not always possible to define the cohorts to

satisfy these conditions because of data limitations.

To predict the number of STEMI incidents in a DA using Poisson regression,

we assume that Yi, i ∈ {1, . . . ,m}, has a Poisson distribution with mean λi, which

is related to a linear combination of the explanatory variables Xij , j ∈ {1, . . . , n},

through a function f(.). The function f(.) is referred to as the link function. It

follows that, for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, the probability of observing

yi STEMI incidents in DA i is:

Pr(Yi = yi|Xij = xij) =
e−λiλyi

i

yi!
, λi = f


b0 +

n∑

j=1

bjxij


 . (4.1)

We will use the “hat” symbol to denote the estimated parameters.

The most common link function is the exponential function (Greene 2012). That

is, λi = exp(b0 +
∑n

j=1 bjxij). King (1988) argues that the exponential link func-

tion is usually appropriate, at least for applications in political science, because it

guarantees that the predicted Poisson means are positive and are well interpreted.

However, we show that the exponential link function has undesirable properties

when used for the count of STEMI patients in a DA. We demonstrate those unde-

sirable properties by focusing on E[Y ]/X = λ/X, the mean number of heart attacks
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per person for a DA with population X.

Let pij = Xij/Xi be the proportion of the population in DA i that belongs to

Cohort j. We postulate that the following is a desirable property for an equation

relating the Xij to Yi:

Assumption 4.1. If pij, for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, do not change

when the population Xi changes, then the per-capita heart attack rate E[Yi]/Xi =

λi/Xi is independent of Xi, that is,

∂
(

λi
Xi

)

∂Xi
= 0, ∀i ∈ {1, ...,m}. (4.2)

According to Assumption 4.1, if DAs 1 and 2 have identical cohort proportions,

that is, p1j = p2j , for all j ∈ {1, . . . , n}, then the two DAs should have identical

predicted heart attack rates. We use the following two examples to show that the

exponential link function does not satisfy Assumption 4.1.

Example 4.1. Returning to the example where the only explanatory variable is

the total population, Xi, if DAs 1 and 2 both have total population x, then all

individuals in both DAs have the same predicted chance of experiencing a heart

attack: λ/x = exp(b0 + b1x)/x. If one merges DAs 1 and 2 to form a new DA with

total population 2x, then the predicted chance of experiencing a heart attack for an

individual in the new DA is λ/(2x) = exp(b0 + 2b1x)/x, which is exp(b1x)/2 times

larger than what it was before merging the DAs.

Example 4.2. Extending Example 4.1 to the case where there are two ex-

planatory variables, namely the number Xi1 of females and the number Xi2 of

males, if DAs 1 and 2 both have the same population x1 of females and popula-

tion x2 of males, then the predicted chance of heart attack for an individual in

each of these DAs is λ/x = exp (b0 + b1x1 + b2x2) before merging the DAs, and

this chance is λ/(2x) = exp (b0 + 2b1x1 + 2b2x2) after merging the DAs. This is

exp (b1x1 + b2x2)/2 times larger than what it was before merging the DAs.

As demonstrated by Examples 4.1-4.2, if we use the exponential link function,
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then having fixed cohort proportions does not guarantee that the predicted per-

capita heart attack rates are independent of the population size. In the count

regression literature, scholars usually use exposure (Greene 2012) to address this

issue by assuming that the rate at which counts occur, as opposed to the counts, are a

function of the explanatory variables. That is, instead of λi = f
(
b0 +

∑n
j=1 bjxij

)
,

we assume λi/xi = f
(
b0 +

∑n
j=1 bjxij

)
in (4.1), where xi is referred to as the

exposure of DA i. Therefore, if the link function is exponential, then:

λi = xif


b0 +

n∑

j=1

bjxij


 = xi exp


b0 +

n∑

j=1

bjxij


 = exp (b0 +

n∑

j=1

bjxij + lnxi).

(4.3)

We see that if the link function is exponential, then the exposure approach cor-

responds to adding ln(Xi) as an explanatory variable, with a coefficient that is

forced to equal 1. Poisson regression with population exposure does not satisfy

Assumption 4.1, except in a special case where the model includes none of the co-

hort population explanatory variables that we have defined. To demonstrate this

statement, we use a new example and continuations of Examples 4.1-4.2.

Example 4.3. If there are no cohort population explanatory variables, then (4.3)

reduces to λi = exp(b0)xi, which is in the form of the function Y = bX that we

obtained at the beginning of this section. The predicted heart attack rate of an

individual is fixed and equals exp(b0).

Example 4.4. Example 4.1 continued. If we apply the Poisson regression with

exposure, then the before-merging and after-merging predicted probability of heart

attack for individuals in both DAs 1 and 2 respectively are λ/X = exp (b0 + b1X)

and λ/(2X) = exp (b0 + 2b1X), with the latter being exp (b1X) times larger than

the former.

Example 4.5. Example 4.2 continued. Following the same fashion as in Example

4.4, one can confirm that if there are two variables and one applies the Poisson

regression with exposure, then the predicted heart attack rate for individuals after
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merging DAs 1 and 2 will be exp (b1X1 + b2X2) times larger than their before-

merging predicted heart attack chance.

We propose an identity link function (f(x) = x) with a linear, without intercept,

combination of the explanatory variables, that is,

λi =

n∑

j=1

bjXij , ∀i ∈ {1, ...,m}. (4.4)

If we use (4.4) as the link function for Examples 4.1 and 4.2, then individuals in

both DAs 1 and 2 will have predicted heart attack chance of λ/X = (b1X)/X = b1

and λ/X = (b1X1 + b1X2)/X = b1p1 + b2p2, respectively, which do not vary when

the DAs are merged.

Theorem 4.1. The only model specification that satisfies Assumption 4.1 consists

of an identity link function of a linear, without intercept, combination of the ex-

planatory variables.

Proof. It follows from Assumption 4.1 that, for all i ∈ {1, ...,m}:

∂( λi
Xi

)

∂Xi
=

∂
(
f(Xi1,...,Xin)

Xi

)

∂Xi
=

∂f(Xi1,...,Xin)
∂Xi

Xi − f(Xi1, . . . , Xin)

X2
i

= 0. (4.5)

Setting the numerator of the third ratio in (4.5) equal to zero, we obtain:

∂f(Xi1, . . . , Xin)

f(Xi1, . . . , Xin)
=

∂Xi

Xi
. (4.6)

We take integrals of both sides of (4.6):

ln(f(Xi1, . . . , Xin)) = ln(Xi) + ci, (4.7)

where ci = ln(f(pi1, . . . , pin)), which is obtained by setting Xi = 1, which implies

Xij = pij , in (4.7). It follows that:

f(Xi1, . . . , Xin) = f(pi1Xi, . . . , pinXi) = f(pi1, . . . , pin)Xi, (4.8)
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where the first equality results from the definition of pij and the second one is

resulted by replacing the value of ci in (4.7).

We proceed by showing that ∂f(Xi1, . . . , Xin)/∂Xij is constant for all j ∈

{1, ..., n}. If one multiplies the right-hand side of (4.6) with ∂Xij/∂Xij , then one

obtains:

∂f(Xi1, . . . , Xin)

∂Xij
=

f(Xi1, . . . , Xin)

Xi

∂Xi

∂Xij
=

f(pi1, . . . , pin)

pij
. (4.9)

The last equality in (4.9) results from the definition of pij and (4.8).

Therefore, if the function f(.) satisfies Assumption 4.1, then it follows that f(.)

also satisfies (4.8) and (4.9), which means that f(.) is an identity link function of a

linear, without intercept, combination of the explanatory variables.

To estimate the parameter’s of the Poisson regression where the expected value

of its dependent variable is calculated by (4.4), we use the maximum likelihood

estimation (MLE) method. Our likelihood function is:

L(y1, . . . , ym|b1, . . . , bn) =
m∏

i=1

e−λiλyi
i

yi!
=

m∏

i=1

e−(
∑n

j=1 bjxij)(
∑n

j=1 bjxij)
yi

yi!
. (4.10)

The MLE estimates, b̂1, . . . , b̂n, of model parameters is the set of parameters that

maximizes (4.10). As Marschner (2010) discusses, standard methods for calculating

the MLE estimates that maximize (4.10) are numerically unstable as (4.4) may

produce negative Poisson means. Because of the instability issue, we cannot use

standard statistical software like R to compute the MLE estimates.

To compute the MLE estimates, we first derive the log-likelihood function:

ln(L(y1, . . . , ym|b1, . . . , bn)) =
m∑

i=1

ln

(
e−λiλyi

i

yi!

)
=

m∑

i=1

(yi ln(λi)− λi − ln(yi!))

=

m∑

i=1


yi ln




n∑

j=1

bjxij


−




n∑

j=1

bjxij


− ln(yi!)


 .

(4.11)
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We proceed by building a non-linear program that maximizes (4.11) and satisfies

the λi ≥ 0 constraint, for all i ∈ {1, ...,m}:

maximize ln(L(y1, . . . , ym|b1, . . . , bn))

subject to λi =

n∑

j=1

bjXij ≥ 0, ∀i ∈ {1, ...,m}. (4.12)

The objective function is a strictly concave function of the decision variables

b1, . . . , bn, because the first sum in (4.11) has three components: (1) a logarith-

mic expression, which is a strictly concave function of the decision variables, (2)

a linear expression, and (3) a constant expression, and the sum of concave, linear,

and constant functions is concave. The maximization problem (4.12) has a concave

objective function with linear constraints, and therefore, a local optimum solution

for (4.12) is a global optimum solution (Bazaraa et al. 2006).

We use the Knitro (2015) add-on in Matlab to solve (4.12) and measure the

prediction power of the Poisson regression using the Akaike Information Criterion

(AIC) statistic: AIC = 2n − 2 ln(L), where ln(L) is the maximized value of the

log-likelihood function. Shmueli (2010) and others argue that AIC is an appropriate

measure to compare predictive statistical models. Models with lower AIC values are

considered better, corresponding to either better goodness of fit (higher likelihood)

or a smaller number of parameters, or both.

We compare the prediction power of the Poisson regression that we developed

with standard multiple linear and negative binomial regressions. The binomial re-

gression is an extension of the Poisson regression where the Poisson mean is a func-

tion of a linear combination of the explanatory variables and a random residual

which has the gamma distribution. That is,

λi =
n∑

j=1

bjxij + ǫi, i ∈ {1, ...,m}, (4.13)

where the error term ǫ follows the gamma distribution (Greene 2012). In the same

fashion as we did for Poisson regression, we build a non-linear program for maxi-
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mizing the negative binomial log-likelihood function with constraints that guarantee

positive means. However, the log-likelihood function for negative binomial regression

is more complicated than that of Poisson regression, and we do not know whether

it is concave.

4.5 Results

We have m = 5209 DAs, and for each DA, we have the count of 0-85 year-old

males and females in 5-year groups 1-5,..., 81-85, and also the number of over-85

males and females. The number of males and females with post-secondary education

and the number of low-income people are also available for each DA. In total, we

have 39 variables for each DA. To find a good combination of these variables that

gives a good prediction power to our Poisson model, we use a variation of the full

enumeration approach as explained below. We build a large number of models and

use AIC to compare their prediction power.

If we were to use the full enumeration approach, we would have to compare

the AICs of more than 10 billion models. To calculate the lower bound, 1010, for

the total number of models, assume that we only have age-gender variables. If

we combine male and female age variables to unisex variables, then we will have

eighteen 5-year age group variables (1-5,...,81-85, over 85). We use cut-points to

count the number of models we can build using these variables: If there are no

cut-points, there is one model; if there is one cut-point, there are 17 models; if

there are two cut-points, there are 17 × 16/2 models, etc. Therefore, there are

∑17
k=0

(
17
k

)
= 131, 072 models. If we add gender to our models, then we will have

131,072 options for male variables and 131,072 options for female variables, or a total

of 131, 072× 131, 072 = 17, 179, 869, 184 ≈ 1.7× 1010 models. The total number of

possible models becomes much larger than 1010 if one also considers the education

and income variables.

To limit the number of models that we build and compare, we reduce the number

of age categories to 11 by combining male and female 1-5,..., 36-40 age groups into
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male 1-40 and female 1-40 age groups, respectively. We pool all under-40 age groups

into one variable because people in this age range are much less likely to get a heart

attack than those who are over 40. We also assume that males and females have the

same age groups. Therefore, the total number of models with only age variables;

age and education variables; age and income variables; age, education, and income

variables, where each category can have two possibilities of with or without gender,

reduces to 1024× 8 = 8192.

Among those models that we constructed, a model with 15 variables has the

minimum AIC, 27,328. Variables of this model are the numbers of people in the

following cohorts: 0-45, 46-50, 51-55, 56-60, 61-70, and over 70, separately for males

and females; males and females with post-secondary education; and those with low

income. Table 4.2 shows the coefficients of the explanatory variables when we use

Poisson regression with the identity link function of a linear combination of the

explanatory variables, with no intercept. To evaluate the sensitivity of estimated

parameters to the data, we randomly divide our DAs into 10 groups of almost the

same size without replication and fit our model to each of these 10 data sets. Figure

4.5 shows that the estimated parameters are stable across different subsets of the

data.

To evaluate the prediction power of the Poisson regression, we compare it’s AIC

with that of standard multiple linear and negative binomial regressions, when the

explanatory variables are as described in Table 4.2—we refer to these models as

“reduced” models. We also compare the three regression methods for a model that

includes all 25 possible variables—we refer to these models as “full” models. The

results are shown in Table 4.3.

Comparing AICs in Tables 4.2 and 4.3, one can confirm that the AICs of full mod-

els are slightly larger than that of the reduced models, but there are big differences

across AICs of different regression methods. Although negative binomial has the

minimum AIC for both reduced and full set of variables, Poisson regression is more

favorable because we do not know about the concavity of the negative binomial

log-likelihood function, and the mathematical program that we use to find the best
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Table 4.2: Comparing regression models using a selected set of variables.
Variable Poisson Linear Binomial∗

Male, 0-45 0.0077 0.0075 0.0072
Male, 46-50 -0.0099 -0.0071 -0.0097
Male, 51-55 0.0021 0.0001 0.0036
Male, 56-60 -0.0098 0.0020 -0.0147
Male, 61-70 0.0105 0.0186 0.0061
Male, 71- 0.0164 0.0197 0.0121
Female, 0-45 -0.0002 0.0011 -0.0008
Female, 46-50 0.0078 0.0030 0.0091
Female, 51-55 0.0041 -0.0005 0.0068
Female, 56-60 0.0341 0.0187 0.0413
Female, 61-70 0.0084 0.0103 0.0078
Female, 71- 0.0299 0.0253 0.0338
Male, educated -0.0009 -0.0017 -0.0005
Female, educated -0.0075 -0.0078 -0.0067
Low income -0.0102 -0.0127 -0.0085
AIC 27,328 28,635 21,381

∗ It is the best found solution.

set of coefficients for negative binomial (1) do not return the optimal solution and

(2) its final solution highly depends on the initial solution provided by the user;

we consistently got the best results when we fed the optimal solution of Poisson

regression model into the negative binomial model as an initial solution.

Figures 4.6 (a)-(c) demonstrate that the coefficients of Poisson, linear, and neg-

ative binomial regressions are similar across the reduced and full models. In par-

ticular, the coefficients of the aggregated age categories in the reduced model are

similar to the un-aggregated coefficients in the full model.

Looking at Figures 4.6 (a)-(c), we observe two counter-intuitive facts: (1) for

some age groups, the coefficients are negative, meaning that if we add people to

these cohorts in a DA, then we will reduce the predicted number of heart attacks in

that DA, which is counter-intuitive because each person has a positive probability

of having a heart attack, and (2) the coefficients of the age variables do not mono-

tonically increase by age. Explaining these patterns is an important topic for future

work.

We close with an empirical illustration of the importance of not using an expo-
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Figure 4.5: The sensitivity of model parameters to different data sets.

nential link function. The most populous DA in Alberta is located in Red Deer with

a population size of almost 11,890 people and 43 heart attacks during the study

period—remember that, as discussed in Section 4.3, the population sizes of some

DAs do not agree with the targeted 400-700 people for DAs, possibly because of

rapid population growth. Figure 4.7 shows the location of Red Deer in the province

and a close up of the most populous DA. When we used the exponential link func-

tion, our prediction for the number of STEMI incidents became 210.4 (more than 4

times the real number, 43). When we split the most populous DA into 20 fictional

homogeneous DAs with equal population size of 11, 890/20 = 594.5, the prediction

for each fictional DA became 1.31. Now the prediction of the total number of heart

attacks, 20×1.31 = 26.3 appears more reasonable. This shows how prediction using

the exponential link function depends on the spatial units defined by the govern-

ment. When we used the identity link function and no intercept, the prediction for

the whole DA became 39.18 heart attacks.
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Table 4.3: Comparing regression models using all variables.
Poisson Linear Binomial∗

Male, 0-40 0.0075 0.0077 0.0071
Male, 41-45 0.0084 0.0049 0.0072
Male, 46-50 -0.0089 -0.0069 -0.0076
Male, 51-55 0.0022 0.0003 0.0032
Male, 56-60 -0.0097 0.0016 -0.0144
Male, 61-65 0.0068 0.0139 0.0027
Male, 66-70 0.0166 0.0265 0.0126
Male, 71-75 0.0129 0.0290 -0.0002
Male, 76-80 0.0136 0.0208 0.0113
Male, 81-85 0.0163 0.0119 0.0184
Male, 86- 0.0244 0.0167 0.0256
Female, 0-40 0.0000 0.0011 -0.0005
Female, 41-45 -0.0035 0.0015 -0.0051
Female, 46-50 0.0086 0.0038 0.0100
Female, 51-55 0.0044 0.0001 0.0069
Female, 56-60 0.0350 0.0199 0.0420
Female, 61-65 0.0045 0.0047 0.0064
Female, 66-70 0.0152 0.0135 0.0139
Female, 71-75 0.0284 0.0140 0.0369
Female, 76-80 0.0224 0.0205 0.0248
Female, 81-85 0.0384 0.0435 0.0385
Female, 86- 0.0265 0.0205 0.0300
Male, educated -0.0008 -0.0016 -0.0003
Female, Educated -0.0075 -0.0078 -0.0068
Low income -0.0106 -0.0134 -0.0087
AIC 27,338 28,660 21,396

∗ It is the best found solution.

4.6 Discussion

We used the Poisson regression to predict the number of STEMI patients in DAs,

spatial units that were sufficiently small to provide useful travel time estimates. Our

dependent variable was the number of STEMI patients, and our explanatory vari-

ables were the population in cohorts of age, sex, education, and income. We showed

that the commonly used exponential link function had undesirable properties in our

setting; we demonstrated that an identity link function of a linear, without inter-

cept, combination of the explanatory variables was the only link function that was

appropriate to predict the STEMI counts. We used the AIC statistic to compare
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the predictive power of our Poisson regression model with that of standard multi-

ple linear and negative binomial regressions against two sets of variables, namely

reduced and full.

Interestingly, the AICs of all three regression approaches were similar across

different data sets, but there was big differences among AICs across modeling ap-

proaches. Although negative binomial regression consistently had the minimum

AIC in comparison with Poisson and linear regressions, Poisson regression was more

favorable because calculations of the MLE estimators for Poisson regression were

stable, but those calculations for negative binomial were unstable and did not re-

turn the optimal solutions. Two unexpected facts about results of our regression

models required further research: (1) although each person has a non-zero probabil-

ity of experiencing a heart attack, some of our coefficients were negative, implying

that adding people in those cohorts would decrease the predicted number of heart

attacks in a DA, and (2) the heart attack probability did not increase steadily by

age.

Possible paths for investigating the non-intuitive patterns that we observed in

our numerical results include: (1) Although Figure 4.5 showed that some of Poisson

regression coefficients were consistently negative in 10 different sub-samples, one

can use bootstrapping or other methods to compute confidence intervals for the

coefficients to investigate whether the negative coefficients are significantly different

from zero. One should consider that obtaining confidence intervals for coefficients

of our count regression models is not an easy task, because of the constraints on the

log-likelihood functions, (2) One might get insights into the negative coefficients by

comparing DAs that are similar for all cohorts except one with a negative coefficient,

and (3) One can investigate whether correlations between the health status of indi-

viduals, such as for married couples, could explain the non-intuitive patterns.

Possible directions for future research include: (1) developing a method, per-

haps based on bootstrapping, to compute confidence intervals for the estimated

coefficients, and (2) evaluating the impact of using each of the prediction meth-

ods discussed in this chapter on the PCI location problem and using the averages
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of historical STEMI counts as a benchmark for prediction accuracy. To obtain a

rough understanding of the performance of our Poisson model, we fitted a Poisson

model to our 2003-2006 STEMI data and used that model to predict the number of

STEMI patients for 2007-2010. As simpler benchmark methods, we also used the

raw-average and last-point prediction methods to predict 2007-2010 STEMI inci-

dence. For the former method, we divided the total number of 2003-2006 patients

with the total population to obtain the heart attack chance of each person, and then

multiplied that chance with each DA’s population to obtain a prediction of the num-

ber of heart attack patients in that specific DA over 2007-2010, and for the latter

method, we simply used the number of STEMI patients in each DA over 2003-2006

as a prediction for the number of heart attack patients in that DA over 2007-2010.

We used the root-mean-square error (RMSE) to compare the performance of these

three methods. The RMSE of the Poisson regression, raw-average, and last-point

prediction methods were 2.17, 2.26, and 1.83, respectively.

According to our data, the total number of STEMI patients during 2007-2010

were 4.7% more than that of 2003-2006. This increase could be because of an increase

in the total population of Alberta or population aging, but we could not capture

these changes with our method as we used the 2006 census data in both training

and testing steps. That could be why our method did not perform as well as the

last-point prediction method and its performance was just slightly better than that

of the raw-average method.
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Figure 4.7: The province of Alberta and a close up of the most populous DA.
Note. This figure is produced using the GeoSearch2006 product available at

Statistics Canada (2009).
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CHAPTER 5

Conclusion

In this dissertation we studied three separate problems in the heath care sector.

In the first paper, presented in Chapter 2, we were interested in partial busy periods

for loss systems because they corresponded to “Yellow Alert” and “Red Alert” peri-

ods for an ambulance system. During a Yellow Alert period, the number of available

ambulances drops below some threshold, for example, 12 ambulances for the City of

Calgary, while there is no ambulances available during a Red Alert. We introduced

a recursive method to calculate the expected durations of partial busy periods for

loss queueing systems, and showed that the expected durations of these periods were

insensitive to the service time distribution beyond its mean. We used a big data set

from Calgary EMS to validate our recursion. We also obtained the Laplace trans-

form and moments of partial busy periods under different settings. Furthermore, we

studied the impact of two actions, namely requesting new ambulances from neigh-

boring cities and expediting the service of ambulances that are currently busy, on

two performance measures, namely the duration of shortage periods and the number

of lost calls. Possible future research includes model validation against the second

moments, or standard deviations of empirical partial busy period durations, and

investigating the impact of different service time distributions on the performance

measures given a specific action.

In the second paper, presented in Chapter 3, we focused on the two main short-

comings of current computation approaches for stationary performance measures of
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infinite-level LDQBDS. These shortcomings were: (1) the truncation level is chosen

heuristically, and (2) it is not possible to calculate performance measures with a

desired error tolerance. We addressed both of these issues by proposing two sep-

arate algorithms: In the first algorithm, we used Lyapunov analysis to find the

truncation level for an infinite-level LDQBD such that the truncated upper tail is

guaranteed to have less than a pre-specified proportion of the probability mass. In

the second algorithm, we extended an algorithm from the literature such that the

new updated algorithm truncates the state space automatically and calculates sta-

tionary performance measures with a desired accuracy. We use numerical examples

to demonstrate both algorithms. Possible future research includes comparison of the

two algorithms in terms of speed and accuracy, and extending the second algorithm

to compute performance measures other than steady-state probabilities.

In the third paper, presented in Chapter 4, we proposed a tool to predict the

number of heart attack patients in sufficiently small geographical units as a function

of population size in cohorts of age, sex, education, and income. We used Poisson

regression to build our model. We showed that the identity function of a linear

combination of the explanatory variables, with no intercept, was the only functional

form for the Poisson mean that satisfied properties of our heart attack counts and the

commonly used exponential link function was not appropriate in this context. We

built our models using an empirical data set of heart attack counts in Alberta postal

codes from 2003 to 2010, and 2006 census data for dissemination areas. We used AIC

to select our model variables and to compare the predictive power of our Poisson

regression model with that of standard multiple linear and binomial regressions.

Possible future research includes investigating the two unexpected observations that

we made on our numerical results, namely the negative coefficients and the lack of

monotonicity in coefficients with age, and applying our prediction models for finding

good locations for heart attack treatment facilities.
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Takács, L. 1969. On Erlang’s formula. The annals of mathematical statistics 40(1) 71–78.

Taylor, P.G. 2013. Insensitivity In Stochastic Models. Queueing Networks: A Fundamen-
tal Approach (International Series in Operations Research & Management Science).
Springer, New York, 121–140.

Veeraraghavan, S., A. Scheller-Wolf. 2008. Now or later: A simple policy for effective dual
sourcing in capacitated systems. Operations Research 56(4) 850–864.

Wang, J., O. Baron, A. Scheller-Wolf. 2015. M/M/c queue with two priority classes. Oper-
ations Research .

Watase, T., R. Fu, D. Foster, D. Langley, D. A. Handel. 2012. The impact of an ED-only
full-capacity protocol. The American journal of emergency medicine 30(8) 1329–1335.

Weiss, A., L. Williams, J. M. Smith. 2012. Performance & optimization ofM/G/c/c building
evacuation networks. Journal of Mathematical Modelling and Algorithms 11(4) 361–
386.

Whitt, W. 2012. Fitting birth-and-death queueing models to data. Statistics & Probability
Letters 82(5) 998–1004.

Wielgosz, A., M. Arango, C. Bancej, A. Bienek, H. Johansen, P. Lindsay, W. Luo, A. Luteyn,
Cyril N., P. Quan, et al. 2009. Tracking heart disease and stroke in Canada 2009. Tech.
Rep. HP32-3/2009E, Public Health Agency of Canada.

Wilson, P. W. F., R. B. D’Agostino, D. Levy, A. M. Belanger, H. Silbershatz, W. B. Kannel.
1998. Prediction of coronary heart disease using risk factor categories. Circulation
97(18) 1837–1847.

Winkleby, M. A., D. E. Jatulis, E. Frank, S. P. Fortmann. 1992. Socioeconomic status
and health: how education, income, and occupation contribute to risk factors for
cardiovascular disease. American journal of public health 82(6) 816–820.

Wolff, R. W. 1989. Stochastic Modeling and the Theory of Queues. Prentice Hall.

Yildiz, Ozlem, Michael F Kamali, Tolga Tezcan. 2015. Analysis of triage systems in emer-
gency departments. Working Paper. Available at SSRN 2617687 .

Zeltyn, S., A. Mandelbaum. 2005. Call centers with impatient customers: many-server
asymptotics of the M/M/n+G queue. Queueing Systems 51(3-4) 361–402.

Zhang, Z. G., H. P. Luh, C.-H. Wang. 2011. Modeling security-check queues. Management
Science 57(11) 1979–1995.

105



APPENDICES

106



APPENDIX A

Proofs and Notations for Modeling Yellow and Red

Alert Durations

A.1 Section 2.3 Proofs

We first prove Theorem 2.3, then Theorem 2.2, and then Theorem 2.1 because

we refer to Theorem 2.3 and its proof when we prove Theorems 2.1 and 2.2. We use

fX(x), FX(x), and FX(x) to denote the PDF, CDF, and complementary CDF of

a positive and continuous random variable X, respectively, E(X) for the expected

value, X̃ = (X − t|X > t) for the residual lifetime, LX(s) for the LT of the PDF of

X, and Lf(y)(s) to denote the LT of a function f(y): Lf(y)(s) =
∫∞
0 e−syf(y)dy.

A.1.1 Theorem 2.3 Proof

Proof. Recursion (2.2) holds for the M/G/c/c system:

We begin by proving E(Bc) = 1/(cµ). Let {E1, E2, . . . } and {φ1, φ2, . . . } be

the sequence of events (arrivals or departures) and the sequence of corresponding

epochs, respectively. If the current time is t, we define the events Nν(t) (“next event

is an arrival”) and Lν(t) (“last event was an arrival”) and their complements as
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Figure A.1: Possible combinations of the last and next events when ν(t) = k.

follows:

Nν(t) = {En is an arrival | n = min{i : φi > t}},

N c
ν(t) = {En is a departure | n = min{i : φi > t}},

Lν(t) = {En is an arrival | n = max{i : φi ≤ t}},

Lc
ν(t) = {En is a departure | n = max{i : φi ≤ t}}.

Figure A.1 shows all possible combinations of these events. We use Rν(t) =

φi+1 − φi, where t ∈ [φi, φi+1) to denote the time between two consecutive events.

Suppose that a c-partial busy period begins at t0, which means that an arrival

occurs at t0 and ν(t0) = c. Since all c servers are busy at t0, the next event after t0

must be a departure, which occurs at t0 +Rν(t0) leaving c− 1 busy servers behind,

which means that the c-partial busy period ends at t0 +Rν(t0). Therefore,

E(Bc) = E(Bν(t0)|Lν(t0)) = E(Rν(t0)|Lν(t0)) = E(Rc|Lc). (A.1)

The first equality in (A.1) is a reminder that a c-partial busy period always begins

with a customer arrival. The third equality follows because there are c busy servers
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at t0.

Given Lc, it follows from (2.1) that Rc is the minimum of c independent random

variables, specifically c− 1 residual service times and one service time, that is,

Bc = Rc|Lc = min
{
T, T̃1, . . . , T̃c−1

}
. (A.2)

Therefore,

FBc(t) = FRc|Lc
(t) = Pr{T > t, T̃1 > t, . . . , T̃c−1 > t} = F T (t)F T̃ (t)

c−1, (A.3)

E(Bc) = E(Rc|Lc) =

∞∫

0

FRc|Lc
(t) dt =

∞∫

0

F T (t)F T̃ (t)
c−1 dt. (A.4)

In order to simplify (A.4), we define Yk(t) = F T̃ (t)
k and use FT̃ (t) =

µ
∫ t
0F T (s) ds. Then

dYk(t)

d t
=

d
(
1− µ

∫ t
0F T (s) ds

)k

d t
= −kµF T (t)Yk−1(t)⇒ (A.5)

dYc(t)

d t
= −cµF T (t)F T̃ (t)

c−1. (A.6)

By comparing the integrand in (A.4) with (A.6), we see that (A.4) simplifies as

follows:

E(Bc) = −
1

cµ

∞∫

0

dF T̃ (t)
c = − 1

cµ

(
F T̃ (∞)c − F T̃ (0)

c
)
=

1

cµ
, (A.7)

which completes the proof of E(Bc) = 1/(cµ).

To prove the recursion E(Bk) = (λE(Bk+1))/(kµ) + 1/(kµ), we assume that a

k-partial busy period begins at t0, where k ∈ {1, . . . , c − 1}, which means that an

arrival occurred at t0 and ν(t0) = k. We decompose the duration Bk into (1) the

time from t0 until the next event epoch t1 and (2) the time from t1 until the epoch
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Figure A.2: A schematic view of Bk and its components when t2 − t1 > 0.

t2 when the k-partial busy period ends, as illustrated in Figure A.2, so that

E(Bk) = E(t1 − t0) + E(t2 − t1). (A.8)

If the event at t1 is a departure, with probability Pr(N c
ν(t0)

|Lν(t0)), then the

number of busy ambulances drops to k − 1 at t1 and the k-partial busy period

ends; that is, E(Bk) = E(t1 − t0). Otherwise, if the event at t1 is an arrival,

with probability Pr(Nν(t0)|Lν(t0)), then the number of busy ambulances increases to

k + 1 at t1 and a (k + 1)-partial busy period begins; that is, E(t2 − t1) > 0 and

E(Bk) = E(t1 − t0) + E(t2 − t1). Therefore,

E(Bk) = E(Bν(t0)|Lν(t0)) = Pr(N c
ν(t0)

|Lν(t0))E(t1 − t0|Lν(t0))

+ Pr(Nν(t0)|Lν(t0))
(
E(t1 − t0|Lν(t0)) + E(t2 − t1|Nν(t0), Lν(t0))

)
(A.9)

Hereafter, for convenience, we replace ν(t0) with its value k.

The time interval t1 − t0 is equal to Rk|Lk. Given Lk, Rk is the minimum of

k + 1 independent random variables, specifically k − 1 residual service times, one

service time, and one inter-arrival time, that is,

t1 − t0 = Rk|Lk = min
{
Q, T, T̃1, . . . , T̃k−1

}
. (A.10)

Therefore,

FRk|Lk
(t) = Pr{Q > t, T > t, T̃1 > t, . . . , T̃k−1 > t} = e−λtF T (t)F T̃ (t)

k−1, (A.11)

E(t1 − t0|Lk) = E(Rk|Lk) =

∞∫

0

FRk|Lk
(t) dt =

∞∫

0

e−λtF T (t)F T̃ (t)
k−1 dt. (A.12)
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By using (A.5), (A.12) can be represented as

E(Rk|Lk) =

∞∫

0

e−λtF T (t)Yk−1(t) dt = −
1

kµ

∞∫

0

(
e−λt

dYk(t)

d t

)
dt

= − 1

kµ
(λLYk(t)(λ)− 1). (A.13)

Equation (A.13) results from the property Ld f(t)
d t

(s) = sLf(t)(s) − f+(0) (Schiff

1999, p. 209).

Next, we calculate E(t2 − t1|Nk, Lk). If Lk and Nk, then there is at least one

(k+1)-partial busy period nested inside the current k-partial busy period. When a

nested (k + 1)-partial busy period ends, the next change in ν(t) could be either an

increase or a decrease. If ν(t) increases to k + 1, with probability Pr(Nk|Lc
k), then

another (k + 1)-partial busy period begins. Otherwise, if ν(t) decreases to k − 1,

with probability Pr(N c
k |Lc

k), then the k-partial busy period ends. If we consider

the completion of the k-partial busy period as a “success,” then the number of

times that the system enters a (k+1)-partial busy period before the k-partial busy

period ends follows a geometric distribution with parameter Pr(N c
k |Lc

k). Therefore,

E(t2 − t1|Nk, Lk) consists of a random number N ∈ {1, 2, . . . } of cycles, each cycle

with duration Rk|Lc
k +Bk+1. As E(N) = 1/Pr(N c

k |Lc
k), we have

E(t2 − t1|Nk ∩ Lk) =
1

Pr(N c
k |Lc

k)
(E(Rk|Lc

k) + E(Bk+1)). (A.14)

Substituting (A.12) and (A.14) in (A.9) results in:

E(Bk) = E(Rk|Lk) +
Pr(Nk|Lk)

Pr(N c
k |Lc

k)
(E(Rk|Lc

k) + E(Bk+1)) (A.15)

Given Lc
k, the random variable Rk is the minimum of k+1 independent random

variables, specifically, k residual service times and one inter-arrival time, that is,

Rk|Lc
k = min

{
Q, T̃1, . . . , T̃k

}
. (A.16)
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Therefore,

FRk|L
c
k
(t) = Pr{Q > t, T̃1 > t, . . . , T̃k > t} = e−λtF T̃ (t)

k, (A.17)

E(Rk|Lc
k) =

∞∫

0

FRk|L
c
k
(t) dt =

∞∫

0

e−λtF T̃ (t)
k dt = LYk(t)(λ). (A.18)

We obtain the last equality in (A.18) using the definition Yk(t) = F T̃ (t)
k.

The only remaining unknowns in (A.15) are Pr(Nk|Lk) and Pr (N c
k |Lc

k). These

two probabilities can be calculated by conditioning on the inter-arrival time as fol-

lows:

Pr(Nk|Lk) =

∞∫

0

fQ(t) Pr(Nk|Q = t, Lk) dt

=

∞∫

0

λe−λt Pr{T > t, T̃1 > t, . . . , T̃k−1 > t} dt

=

∞∫

0

λe−λtF T (t)F T̃ (t)
k−1 dt, (A.19)

1− Pr(N c
k |Lc

k) = Pr(Nk|Lc
k) =

∞∫

0

fQ(t) Pr(Nk|Q = t, Lc
k) dt

=

∞∫

0

λe−λt Pr{T̃1 > t, . . . , T̃k > t} dt =
∞∫

0

λe−λtF T̃ (t)
k dt. (A.20)

Comparing (A.19) with (A.12) and (A.20) with (A.18), we obtain

Pr(Nk|Lk) = λE(Rk|Lk), (A.21)

Pr(Nk|Lc
k) = λE(Rk|Lc

k). (A.22)

Using (A.21)-(A.22) in (A.15), we obtain:

E(Bk) =
E(Rk|Lk) (1 + λE(Bk+1))

1− λE(Rk|Lc
k)

. (A.23)

By using (A.13) and the last equality of (A.18) in (A.23), we obtain (2.2).
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Proof. Recursion (2.2) holds for the M/D/c/c system:

With deterministic service times, we have

FT (t) =





1 if t ≥ 1/µ

0 otherwise
(A.24)

FT̃ (t) = µ

t∫

0

F T (s) ds =





1 if t ≥ 1/µ

µt if 0 ≤ t < 1/µ
(A.25)

Therefore,

E(Bc) =

∞∫

0

F T (t)F T̃ (t)
c−1 dt =

1/µ∫

0

(1− µt)c−1 dt = − 1

µ

0∫

1

xc−1dx =
1

cµ
. (A.26)

When the service time is deterministic, (A.26) shows that (A.4) reduces to the

first equation of (2.2). Next, we use (A.15), (A.27), and (A.32) to show that the

second equation of (2.2) also holds when the service time is deterministic. Note that

(A.15) holds even if the service time is not continuous.

We use induction to show that

kµE(Rk|Lk) + λE(Rk|Lc
k) = 1, k = 1, . . . , c− 1, (A.27)

where, following the same logic as (A.12) and (A.18), we have

E(Rk|Lk) =

∞∫

0

e−λtF T (t)F T̃ (t)
k−1 dt =

1/µ∫

0

e−λt(1− µt)k−1 dt, (A.28)

E(Rk|Lc
k) =

∞∫

0

e−λtF T̃ (t)
k dt =

1/µ∫

0

e−λt(1− µt)k dt. (A.29)

For k = 1, (A.28)-(A.29) reduce to (A.27). As the induction hypothesis, we assume

that (A.27) holds for k ∈ {1, ..., c− 2}, and finish the proof by showing that (A.27)
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then holds for k+1. We use integration by parts (
∫
udv = uv−

∫
vdu), and represent

(A.28)-(A.29) as:

E(Rk|Lk) =
1

λ
− (k − 1)µ

λ
E(Rk−1|Lk−1), (A.30)

E(Rk|Lc
k) =

1

λ
− kµ

λ
E(Rk−1|Lc

k−1). (A.31)

If we multiply both sides of equations (A.30)-(A.31) by kµ and λ, respectively,

and add them up, then we observe that (A.27) also holds for k + 1 if it holds for

k ∈ {1, ..., c− 2}.

As (A.21)-(A.22) hold even if the service time distribution is not continuous, we

obtain (A.32) from (A.27).

kµ

λ
Pr(Nk|Lk) + Pr(Nk|Lc

k) = 1, k = 1, . . . , c− 1. (A.32)

Using (A.27) and (A.32) in (A.15), we complete the proof.

Proof. The higher moments of Bc are sensitive to the distribution of T : We know

that the following equation holds if X is a non-negative continuous random variable

and n is a positive integer (Wolff 1989, p. 37).

E(Xn) =

∞∫

0

FX(u1/n) du. (A.33)

When n = 1, we have the well-known E(X) =
∫∞
0 FX(u) du. Combining (A.3) and

(A.33), we obtain:

E(Bn
c ) =

∞∫

0

FBc(u
1/n) du =

∞∫

0

F T (u
1/n)F T̃ (u

1/n)c−1 du. (A.34)
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We use a counter example to complete the proof: If c = 1, then

E(Bn
c ) =





n!/0.5n if T has an exponential distribution with mean 2

4n/(1 + n) if T has a uniform distribution over [0,4].

(A.35)

From this example, we see that E(Bn
c ), for c = 1 and n ≥ 2, depends on the

distribution of T .

Proof. The LTs LBk
(s) forM/G/c/c systems satisfy (2.8)-(2.9): Following the same

line of reasoning we used to obtain (A.1), we get Bc = Rc|Lc. Therefore, fBc(t) =

fRc|Lc
(t), and LBc(s) = LRc|Lc

(s) which proves (2.8). To prove (2.9), we follow

the line of reasoning we used to obtain (A.9). As Bk = Rk|Lk with probability

Pr(N c
k |Lk), and Bk = Rk|Lk +

∑N
i=1(B

i
k+1 + Ri

k|Lc
k) with probability Pr(Nk|Lk),

where Bi
k+1 +Ri

k|Lc
k are i.i.d. random variables for i = 1, . . . , N . That is,

fBk
(t) = Pr(N c

k |Lk)fRk|Lk
(t)

+ Pr(Nk|Lk)fRk|Lk+
∑N

i=1(B
i
k+1+Ri

k|L
c
k)
(t), k = c− 1, . . . , 1. (A.36)

If we take the LT of both sides of (A.36) for k = c− 1, . . . , 1, we obtain

LBk
(s) = Pr(N c

k |Lk)LRk|Lk
(s) + Pr(Nk|Lk)LRk|Lk

(s)L∑N
i=1(B

i
k+1+Ri

k|L
c
k)
(s).

(A.37)

From (Nelson 1995, p. 200), if X1 + · · ·+XN is a random sum of i.i.d. random

variables with the common LT LX(s), then,

L∑N
i=1 Xi

(s) = LX(s)N = EN

(
LX(s)N

)
= GN (LX(s)) , (A.38)

where GN (s) is the probability-generating function (PGF) of N . As discussed in

Section A.1.1, the random variable N in (A.37) is geometrically distributed with

parameter Pr(N c
k |Lc

k) and support {1, 2, . . . }, which implies that the PGF of N is
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GN (s) = Pr(N c
k |Lc

k)s/(1 − Pr(Nk|Lc
k)s). The random variables Bi

k+1 + Ri
k|Lc

k are

i.i.d., and therefore,

L∑N
i=1(B

i
k+1+Ri

k|L
c
k)
(s) = GN

(
LBk+1

(s)LRk|L
c
k
(s)

)
(A.39)

=
Pr(N c

k |Lc
k)LBk+1

(s)LRk|L
c
k
(s)

1− Pr(Nk|Lc
k)LBk+1

(s)LRk|L
c
k
(s)

. (A.40)

Substituting (A.40) in (A.37) we obtain (2.9).

The unknown components of (2.9) are LRk|Lk
(s) and LRk|L

c
k
(s). Applying the

property Ld f(t)
d t

(s) = sLf(t)(s)− limt→0+ f(t), we have LRk|Lk
(s) = sLFRk|Lk

(t)(s).

Therefore,

LRk|Lk
(s) = sLFRk|Lk

(t)(s) = sL1−FRk|Lk
(t)(s)

= s

∞∫

0

e−st
(
1− e−λtF T (t)F T̃ (t)

k−1
)
dt

= 1− s

kµ
+

s(λ+ s)

kµ
LYk(t)(λ+ s). (A.41)

The third equality in (A.41) follows from (A.11) and the last one follows from (A.13).

Similar to LRk|Lk
(s), we calculate LRk|L

c
k
(s) using (A.17) and (A.18) :

LRk|L
c
k
(s) = s

∞∫

0

e−st
(
1− e−λtF T̃ (t)

k
)
dt = 1− sLYk(t)(λ+ s). (A.42)

A.1.2 Theorem 2.2 Proof

Random variable X has generalized hyperexponential (GH) distribution with

m components if the distribution of X is a mixture of m exponential distributions,

that is,

FX(x) = 1−
m∑

i=1

aie
−λix, where

m∑

i=1

ai = 1. (A.43)
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The expected value and the LT of X are:

E(X) =

m∑

i=1

ai
λi

, LX(s) =

m∑

i=1

ai
λi

s+ λi
. (A.44)

If all of the weights on the exponential components of X are positive, then X has a

hyperexponential (H) distribution.

Random variable X has a generalized hyper-Erlang (GHE) distribution with m

components if the distribution of X is a mixture of m Erlang distributions, that is,

LX(s) =

m∑

i=1

ai

(
λi

s+ λi

)mi

,

m∑

i=1

ai = 1. (A.45)

If all of the shape parameters mi are equal to 1, then X has a GH distribution.

We stress that if i 6= j in (A.43), then λi 6= λj , but we can have λi = λj for

distinct i and j in (A.45), if mi 6= mj . The class of H distributions are a proper

subset of GH distributions, and GH distributions are a proper subset of GHE

distributions.

If X and Y are two independent GH random variables with weights ai and bj ,

and rates λi and µj for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, respectively, then the

following results hold:

Lemma A.1. The residual of X, X̃, has a GH distribution with the same rates as

X, but different weights.

Proof.

FX̃(x) =
1

E(X)

x∫

0

(
m∑

i=1

aie
−λit

)
dt =

1

E(X)

m∑

i=1

(
ai
λi
− ai

λi
e−λix

)

= 1− 1

E(X)

m∑

i=1

ai
λi

e−λix. (A.46)

The last equation holds because

1

E(X)

m∑

i=1

ai
λi

=
E(X)

E(X)
= 1. (A.47)
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Comparing (A.46) with (A.43), FX̃(x) is the CDF of a GH distribution if the

coefficients of (A.46) add up to unity, which is true as follows from (A.47).

Lemma A.2. The minimum of X and Y has a GH distribution with at most mn

components.

Proof. Let Z = min{X,Y }, then,

FZ(z) = 1− Pr(Z > z) = 1−
(

m∑

i=1

aie
−λiz

)


n∑

j=1

bje
−µjz




= 1−




m∑

i=1

n∑

j=1

aibje
−(λi+µj)z


 (A.48)

Comparing (A.48) with (A.43), FZ(z) is the CDF of a GH distribution if the

coefficients of (A.48) add up to unity, which is true:

m∑

i=1

n∑

j=1

aibj =
m∑

i=1

ai

n∑

j=1

bj = 1. (A.49)

The number of components for Z equals the number of distinct values for λi + µj ,

which is mn or less.

Lemma A.3. The weighted sum α1LX1(s) + · · · + αnLXn(s) is the LT of a

GHE random variable when the weights, αj, add up to unity, and Xj are in-

dependent (but not necessarily identical) GHE random variables with LXj (s) =

∑mj

i=1 aij

(
λij

s+λij

)mij

, where
∑mj

i=1 aij = 1, for j = 1, ..., n.

Proof. Let Z(s) = α1LX1(s) + · · ·+ αnLXn(s), where
∑n

j=1 αj = 1, then,

Z(s) =

n∑

j=1

αjLXj (s) =

n∑

j=1

αj

mj∑

i=1

aij

(
λij

s+ λij

)mij

. (A.50)

Comparing (A.50) with (A.45), Z(s) is the LT of a GHE distribution if the

coefficients of (A.50) add up to unity, which is true:
∑n

j=1 αj
∑mj

i=1 aij = 1.
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Lemma A.4. The sum of two independent GHE random variables has a GHE

distribution.

Proof. Before we prove the lemma, we obtain two preliminary results by using

induction. First, we use induction to show that if LX(s) = λ/(s + λ) and

LY (s) = (µ/(s + µ))n, then, by Lemma A.3, X + Y is GHE with rates λ and

µ, and the shape parameter associated with λ is 1. If n = 1, then

LX+Y (s) = LX(s)LY (s) =

(
λ

s+ λ

)(
µ

s+ µ

)
= a

(
λ

s+ λ

)
+ b

(
µ

s+ µ

)
,

(A.51)

where a = µ/(µ − λ) and b = −λ/(µ − λ). As a + b = 1, Lemma A.3 is satisfied.

Assume as an induction hypothesis that the statement holds when n is an arbitrary

positive integer. Given this assumption, we prove that the statement holds when

the shape parameter of Y is n+ 1. We assume that

(
λ

s+ λ

)(
µ

s+ µ

)n

= α
λ

s+ λ
+

l∑

j=1

bj

(
µ

s+ µ

)lj

, (A.52)

where l and lj are positive integers, and α+
∑l

j=1 bj = 1. Multiplying both sides of

(A.52) with µ/(s+ µ) and using (A.51), we obtain

(
λ

s+ λ

)(
µ

s+ µ

)n+1

= αa

(
λ

s+ λ

)
+ αb

(
µ

s+ µ

)
+

l∑

j=1

bj

(
µ

s+ µ

)lj+1

.

(A.53)

The weights on the components of the right hand side of (A.53) add up to unity.

Therefore, by Lemma A.3, X + Y is GHE with LT:

LX+Y (s) = LX(s)LY (s) = αa

(
λ

s+ λ

)
+ αb

(
µ

s+ µ

)
+

l∑

j=1

bj

(
µ

s+ µ

)lj+1

.

(A.54)
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Second, we use induction to show that if LX(s) = (λ/(s + λ))m and LY (s) =

(µ/(s + µ))n, then X + Y is GHE with rates λ and µ. If at least one of m or n

equals 1, then the statement holds as shown in (A.51) and (A.54). Assume as an

induction hypothesis that the statement holds when m and n are arbitrary positive

integers. Given this assumption, we prove that the statement holds when the shape

parameter of X is m+1 and that of Y is n. (The case in which the shape parameter

of X is m and that of Y is n+ 1 can be proven similarly.) We assume that

(
λ

s+ λ

)m (
µ

s+ µ

)n

=

k∑

i=1

ai

(
λ

s+ λ

)ki

+

l∑

j=1

bj

(
µ

s+ µ

)lj

. (A.55)

where k, l, ki, and lj are positive integers, and
∑k

i=1 ai +
∑l

j=1 bj = 1. Multiplying

both sides of (A.55) with λ/(s+ λ), we obtain

(
λ

s+ λ

)m+1 ( µ

s+ µ

)n

=

k∑

i=1

ai

(
λ

s+ λ

)ki+1

+

l∑

j=1

bj

(
λ

s+ λ

)(
µ

s+ µ

)lj

.

(A.56)

Following (A.54), (A.56) is a weighted sum of the LTs of GHE random variables

with weights that add up to unity. Therefore, (A.56) is the LT of a GHE random

variable (Lemma A.3) and the statement is proven.

Now, we prove that the sum of two independent GHE random variables is GHE.

If

LX(s) =

m∑

i=1

ai

(
λi

s+ λi

)mi

and LY (s) =

n∑

j=1

bj

(
µj

s+ µj

)nj

,
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then

LX+Y (s) = LX(s)LY (s) =

(
m∑

i=1

ai

(
λi

s+ λi

)mi
)


n∑

j=1

bj

(
µj

s+ µj

)nj




=
m∑

i=1

n∑

j=1

aibj

(
λi

s+ λi

)mi
(

µj

s+ µj

)nj

=

m∑

i=1

∑

j|µj=λi

aibj

(
λi

s+ λi

)mi+nj

+
m∑

i=1

∑

j|µj 6=λi

aibj

(
λi

s+ λi

)mi
(

µj

s+ µj

)nj

. (A.57)

In the last term of (A.57), for each i and j, ((λi)/(s + λi))
mi((µj)/(s + µj))

nj is

the LT of a GHE random variable (it follows from (A.56)). Therefore, (A.57) is a

weighted sum of the LTs of GHE random variables with weights that add up to

unity. That is, (A.57) is the LT of a GHE random variable (Lemma A.3) and the

lemma is proven.

Lemma A.5. If N is a positive-integer-valued random variable with PGF GN (s),

then GN (LX(s)) is the LT of a GHE distribution.

Proof. By the definition of a PGF,

GN (LX(s)) = EN

(
LX(s)N

)
=

∞∑

n=1

Pr(N = n)LX(s)n. (A.58)

In (A.58), LX(s)n is the LT of the sum of n i.i.d. random variables X1, . . . , Xn,

which has a GHE distribution (Lemma A.4). Therefore, GN (LX(s)) is a weighted

sum of the LTs of GHE random variables with weights that add up to unity, which

is the LT of a GHE random variable according to Lemma A.3.

Now, we have all material we need to prove Theorem 2.2.

Proof. Proof of Theorem 2.2.

We use induction, starting with the index c as the base case (instead of 1) and

work backwards in the index set {c− 1, ..., 1}. We first show that Bc is GHE. The

service time T is GH, which implies that the residual service time T̃ is also GH
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(Lemma A.1). It means that, according to (A.2), Bc is the minimum of a set of GH

random variables, which, following Lemma A.2, also has a GH distribution. Since

GH is a proper subset of GHE, Bc is GHE.

Assume as an induction hypothesis that Bk+1 is GHE. Given this assumption,

we prove that Bk is GHE:

Substituting (A.39) in (A.37), we obtain the LT of Bk as:

LBk
(s) =Pr(N c

k |Lk)LRk|Lk
(s)

+ Pr(Nk|Lk)LRk|Lk
(s)GN

(
LBk+1

(s)LRk|L
c
k
(s)

)
, k = c− 1, . . . , 1.

(A.59)

According to (A.10), (A.16), and Lemma A.1, Rk|Lk and Rk|Lc
k are the minimums

of GH random variables. Therefore, following Lemma A.2, Rk|Lk and Rk|Lc
k have

GH distributions. Since both Bk+1 and Rk|Lc
k are GHE, LBk+1

(s)LRk|L
c
k
(s) is the

LT of a GHE random variable (Lemma A.4). Therefore, following Lemma A.5,

GN

(
LBk+1

(s)LRk|L
c
k
(s)

)
is the LT of a GHE. Applying Lemma A.4 again shows

that LRk|Lk
(s)GN

(
LBk+1

(s)LRk|L
c
k
(s)

)
is the LT of a GHE. Therefore, the LT

of Bk in (A.59) is a weighted sum of the LTs of two GHE random variables with

weights that add up to unity and Bk is GHE (Lemma A.3).

A.1.3 Theorem 2.1 Proof

Proof. The recursion, closed form, and the monotonicity of E(Bk): We proved the

recursion (2.2) for a more general system in Appendix A.1.1. The closed form solu-

tion (2.6) for E(Bk) is obtained by successively replacing E(Bk+1) with its equation

in (2.2) starting with E(Bc). The recursion (2.2) implies that E(Bc−1) > E(Bc).

In general, (2.6) implies that E(Bk) > E(Bk+1)—one can confirm the inequality as
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follows:

E(Bk)− E(Bk+1) =
1

µ

c−k−1∑

i=0

(k − 1)!

(k + i)!

(
1− k

(k + i+ 1)

)(
λ

µ

)i

+
(k − 1)!

µ c!

(
λ

µ

)c−k

> 0, k ∈ {1, . . . , c− 2}. (A.60)

The remainder of the proof proceeds as follows. We prove (2.5) next and use it

to prove (2.3) and (2.7). The recursion (2.4) follows directly from (2.2) and (2.3).

Proof. In M/M/c/c systems, Bk satisfy (2.5) and follow an H distribution with c−

k+1 components: Due to the memoryless property of the exponential distribution,

the components of (2.8)-(2.9) from Theorem 3 are independent of the last event, so

we drop conditioning on L and Lc in this section.

The properties of the exponential distribution, combined with (2.9), imply that:

LBc(s) =
cµ

s+ cµ
, (A.61)

Pr(Nk) =
λ

λ+ kµ
, LRk

(s) =
λ+ kµ

s+ λ+ kµ
, k = 1, ..., c− 1,

LBk
(s) =

kµ

λ+ kµ+ s− λLBk+1
(s)

, k = c− 1, . . . , 1. (A.62)

To show that Bk follows an H distribution, we define the function Pm(s) as:

Pm(s) =





1 if m = 0

cµ+ s if m = 1

(λ+ (c−m+ 1)µ+ s)Pm−1(s)− λ(c−m+ 2)µPm−2(s) if m ≥ 2

(A.63)

We can represent LBc−1(s) in (A.62) using P1(s) and P2(s):

LBc−1(s) =
(c− 1)µP1(s)

P2(s)
. (A.64)
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We obtain the following expression for LBc−m(s) by recursively using (A.62):

LBc−m(s) =
(c−m)µPm(s)

Pm+1(s)
, m = 1, . . . , c− 1. (A.65)

Lemma 1 in Ledermann and Reuter (1954) implies that the roots of Pm(s) = 0,

which we will denote as −r(m)
1 , ...,−r(m)

m are distinct and negative, for m = 1, ..., c.

The same lemma implies that the roots of Pm(s) = 0 are separated by the roots of

Pm−1(s) = 0. Therefore, we can represent Pm(s) as:

Pm(s) =

m∏

i=1

(
s+ r

(m)
i

)
, (A.66)

such that

0 < r
(m)
1 < r

(m−1)
1 < r

(m)
2 < r

(m−1)
2 < · · · < r

(m−1)
m−1 < r(m)

m , m = 2, ..., c. (A.67)

From (A.65) and (A.66), we obtain:

LBc−m(s) = (c−m)µ

∏m
i=1

(
s+ r

(m)
i

)

∏m+1
i=1

(
s+ r

(m+1)
i

) , m = 1, . . . , c− 1. (A.68)

It follows from (A.67), (A.68), and Lemma 2.12.1 in Steutel (1970) that there

are unique p1 > 0, ..., pm+1 > 0 such that

LBc−m(s) = (c−m)µ

∏m
i=1

(
s+ r

(m)
i

)

∏m+1
i=1

(
s+ r

(m+1)
i

) =
m+1∑

i=1

pi
r
(m+1)
i

s+ r
(m+1)
i

, m = 1, . . . , c− 1,

(A.69)

where
∑m+1

i=1 pi = 1. The right hand side of (A.69) is the LT of an H random

variable with m + 1 components. If k = c − m, then LBk
(s) is the LT of an H

random variable with c− k + 1 components.

Proof. The recursion, closed form, and monotonicity of Var(Bk): The nth moment,
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E(Xn), of a continuous random variable X can be obtained from its LT as follows:

E(Xn) = (−1)nL
(n)
X (0), (A.70)

where L
(n)
X (s) = (dn/dsn)LX(s). We use (A.70) to obtain the second moment of

Bk:

E(B2
c ) = L

(2)
Bc

(0) =
2cµ

(s+ cµ)3

∣∣∣∣
s=0

= 2E(Bc)
2, (A.71)

E(B2
k) = L

(2)
Bk

(0) =
λ

kµ
L

(2)
Bk+1

(s)

∣∣∣∣
s=0

+ 2

(
1

kµ
− λ

kµ
L

(1)
Bk+1

(s)

)2
∣∣∣∣∣
s=0

=
λ

kµ
E(B2

k+1) + 2E(Bk)
2, k = c− 1, . . . , 1, (A.72)

where E(Bc) and E(Bk) can be obtained from (2.2) or (2.6).

Following (A.71)-(A.72), the variance of Bk, Var(Bk) = E(B2
k)− E(Bk)

2, is:

Var(Bc) = E(Bc)
2, (A.73)

Var(Bk) =
λ

kµ
E(B2

k+1) + E(Bk)
2. (A.74)

We add and subtract (λ/(kµ))E(Bk+1)
2 to (A.74), and obtain the recursion (2.3).

If we successively replace Var(Bk+1) with its equation in (2.3), we obtain the closed

form solution for Var(Bk) in (2.7) .

If we successively replace E(B2
k+1) in (A.72) starting from k = c and working

backwards in {c− 1, ..., 1} we obtain:

E(B2
k) = 2

c−k∑

i=0

(
λ

µ

)i (k − 1)!

(k − 1 + i)!
E(Bk+i)

2, k = c− 1, . . . , 1, (A.75)

which implies that

E(B2
k)− E(B2

k+1) = 2
c−k−1∑

i=0

(k − 1)!

(k + i)!

(
(k + i)E(Bk+i)

2 − kE(Bk+i+1)
2
)(λ

µ

)i

+ 2
(k − 1)!

(c− 1)!

(
λ

µ

)c−k

E(Bc)
2, k = 1, . . . , c− 1. (A.76)
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As shown earlier in this section, E(Bk) decreases as k increases. Therefore,

(A.76) implies that E(B2
k) is also decreasing with k. As a result,

Var(Bk)−Var(Bk+1) = E(B2
k)− E(B2

k+1) + E(Bk+1)
2 − E(Bk)

2 > 0,

k = 1, . . . , c− 1, (A.77)

so the variance of Bk decreases as k increases. Note that the inside-summation

expression in (A.76) reduces to E(Bk)
2 − E(Bk+1)

2 for i = 0, which cancels out the

only negative part of (A.77), E(Bk+1)
2 − E(Bk)

2.

A.2 Heuristic for Section 2.4

We explain how we segmented weekdays. We used a similar heuristic for week-

ends. We pool all weekdays and estimated the arrival rate λ̂i and scheduled number

of ambulances ĉi for each hour i = 0, 1, ..., 23. First, we create Segment 1, consist-

ing of hours 0, ..., u0, where u0 is the largest integer that satisfies max0≤i≤u0 λ̂i −

min0≤i≤u0 λ̂i ≤ ǫλ and max0≤i≤u0 ĉi−min0≤i≤u0 ĉi ≤ ǫc, where ǫλ and ǫc are our tol-

erance levels for variation in the arrival rate and scheduled number of ambulances,

respectively. Second, we create Segment 2, consisting of hours u0 + 1, ..., u1, where

u1 is the largest integer that satisfies maxu0+1≤i≤u1 λ̂i −minu0+1≤i≤u1 λ̂i ≤ ǫλ and

maxu0+1≤i≤u1 ĉi −minu0+1≤i≤u1 ĉi ≤ ǫc. We continue creating segments in this way

until all of the 24 hours are assigned to a segment.

A.3 Figures for Section 2.4

A.4 Section 2.5 Proof

A.4.1 Theorem 2.4 Proof

Proof. The random variable B̃ii|Lc
i is the time from the moment that one of nested

(i+ 1)-partial busy periods within the i-partial busy period ends to the end of the

i-partial busy period. Therefore, B̃ii|Lc
i equals the time to finish a service after a
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Figure A.3: Average service rate as a function of the number of busy ambulances.
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Figure A.4: The arrival rate and number of scheduled ambulances by time.

nested (i+1)-partial busy period ends, Ri|Lc
i , plus a geometrically distributed ran-

dom number N ′ ∈ {0, 1, . . . } of cycles, each with duration Bi+1 +Ri|Lc
i . Therefore,

E
(
B̃ii|Lc

i

)
= E(Ri|Lc

i ) +

(
1

Pr(N c
i |Lc

i )
− 1

)
(E(Ri|Lc

i ) + E(Bk+1)). (A.78)

We use Pr(Ni|Lc
i ) = 1 − Pr(N c

i |Lc
i ) to represent (A.78) as a function of Pr(Ni|Lc

i ),

and then apply (A.22) to obtain (2.19).

We proved the expected sojourn time formula, (A.18), as a part of the proof of

Theorem 2.3 in Appendix A.1.1.
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Figure A.5: Weekdays: 00:00 on Monday to 19:00 on Friday.
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Figure A.6: Weekend: 19:00 on Friday to 24:00 on Sunday.

A.5 Expected Sojourn Times for Section 2.5.2.2

For transient state s, we obtain E(Rs) as:

E
(
R(c,1,0)

)
= E

(
min

{
V, T, T̃1, . . . , T̃c−1

})
=

∞∫

0

e−δrF T (r)F T̃ (r)
c−1 dr, (A.79)

E
(
R(m,1,0)

)
= E

(
min

{
Q, V, T, T̃1, . . . , T̃m−1

})
=

∞∫

0

e−(λ+δ)rF T (r)F T̃ (r)
m−1 dr,

m = k + 1, . . . , c− 1, (A.80)

E
(
R(m,0,0)

)
= E

(
min

{
Q, V, T̃1, . . . , T̃m

})
=

∞∫

0

e−(λ+δ)rF T̃ (r)
m dr,

m = k, . . . , c− 1. (A.81)
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We obtain (A.79)-(A.81) using the same logic as (A.4), (A.13), and (A.18). Note

that equations for E
(
R(c+n,1,1)

)
; E

(
R(m,1,1)

)
, m = k + n + 1, ..., c + n − 1; and

E
(
R(m,0,1)

)
, m = k + n, ..., c+ n− 1, are the same as (A.79)-(A.81) except that we

remove the random variable V and the factor e−δr from the equations.
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A.6 Notations

Table A.1: Frequently used notations listed in alphabetical order.
A Set of absorbing states
Ac Set of transient states

bk Empirical k-partial busy period duration
Bk k-partial busy period duraion

B̃kk′ Residual k-partial busy period duration when there are k′ ≥ k busy servers in the system
c Scheduled number of servers (ambulances)

c(τ) Scheduled number of servers (ambulances) in time segment τ
δ Arrival rate of requested ambulances
en Indicator whether the nth event is an arrival (en = 1) or a departure (en = 0)
E(X) The expected value of X
FX(x) CDF of the random variable X
fX(x) PDF of the random variable X
gn Indicator whether the requested ambulances are available right after the nth event
GX(s) Probability-generating function of the random variable X
GH Generalized hyperexponential distribution
GHE Generalized hyper-Erlang distribution
H Hyperexponential distribution
Hkk′ The expected number of lost calls during the residual k-partial busy period when there are currently

k′ ≥ k busy servers in the system
LX(s) Laplace Transform of the PDF of X
Lf(x)(s) Laplace Transform of the function f(X)
λ Arrival rate

λ(τ) Arrival rate within time segment τ
Lc

k Last event was a departure when there is currently k busy servers in the system
Lk Last event was an arrival when there is currently k busy servers in the system
µ Service rate
µk Service rate in state k
µnew The new and increased service rate

µ
(τ)
k State k service rate within time segment τ

µearly The service rate of prioritized ambulances
νn Number of busy servers (ambulances) right after the nth event
νt Number of busy servers (ambulances) at time t
Nc

k Next event is a departure when there is currently k busy servers in the system
Nk Next event is an arrival when there is currently k busy servers in the system
Ω State space
Q Call inter-arrival time
Rk Sojourn time while there is currently k busy servers in the system
SCV(X) The squared coefficient of variation of X
T Service time

T̃ Residual service time
Var(X) The variance of X
V Time to the arrival of requested ambulances
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APPENDIX B

Algorithms, Proofs, and Notations for QBD analysis

B.1 Algorithms

B.1.1 Erlang A Truncation Level

Algorithm B.1 shows the pseudo code of the algorithm by Ingolfsson and Tang

(2012) that we use to compute the truncation level p for an Erlang A system such

that the probability mass in the truncated upper tail is less than ǫh.

B.1.2 Erlang A Upper-tail Probability

Algorithm B.2 shows the pseudo code of the algorithm we use to compute the

probability mass P at and above level c+ u0 for an Erlang A system where c is the

number of servers and u0 is an integer. This algorithm is inspired by Ingolfsson and

Tang (2012) and calculates P with relative error tolerance ǫh.

B.2 Proofs for Section 3.8

B.2.1 Proposition 3.6

We complete the proof in four steps. In Step 1, we list properties of a well-

studied class of square matrices called non-singular M-matrices. In Step 2, we show
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AlgorithmB.1: Ingolfsson and Tang (2012) algorithm for Erlang A probabilities.
1. Input: λ, µ, γ, c, ǫh
2. Initialization: p =∞, ℓ = 0, u = 0, qc−ℓ = 1, qc+u = 1, converge = FALSE,∆2 = 1
3. While not converge
4. If qc+u > qc−ℓ or ℓ = c,
5. u = u+ 1
6. b = λ/(cµ+ uγ)
7. qc+u = bqc+u

8. Normalize: Σ = 1 + qc+u

9. qc+u = qc+u/Σ, qc−ℓ = qc−ℓ/Σ
10. If b < 1 Then ∆2 = bqc+u/(1− b)
11. Else

12. ℓ = ℓ+ 1
13. a = (c− ℓ+ 1)µ/λ
14. qc−ℓ = aqc−ℓ
15. Normalize: Σ = 1 + qc−ℓ
16. qc+u = qc+u/Σ, qc−ℓ = qc−ℓ/Σ
17. End

17. If ∆2 < ǫh then converge = TRUE
18.Return p = c+ u.

AlgorithmB.2: Upper-tail probability for an Erlang A system.
1. Input: λ, µ, γ, c, ǫh, ℓ0, u0
2. Initialization: P = 0, ℓ = 0, u = 0, qc−ℓ = 1 qc+u = 1 converge = FALSE; ∆1 = 1,
3 ∆2 = 1,
4. While not converge
5. If qc+u > qc−ℓ or ℓ = c,
6. u = u+ 1
7. b = λ/(cµ+ uγ)
8. qc+u = bqc+u

9. If u ≥ u0 Then P = P + qc+u

10. Normalize: Σ = 1 + qc+u

11. qc+u = qc+u/Σ, qc−ℓ = qc−ℓ/Σ, P = P/Σ
12. If b < 1 Then ∆2 = min(bqc+u/(1− b), 1)
13. Else

14. ℓ = ℓ+ 1
15. a = (c− ℓ+ 1)µ/λ
16. qc−ℓ = aqc−ℓ
17. Normalize: Σ = 1 + qc−ℓ
17. qc+u = qc+u/Σ, qc−ℓ = qc−ℓ/Σ, P = P/Σ
18. If a < 1 Then δ1 = min(aqc−ℓ/(1− a), 0)
20. If ℓ = c Then δ1 = 0
21. End

22. If (∆1 +∆2) < ǫh/(1 + ǫh) and u > u0 Then converge = TRUE
22.Return P .

132



that Mℓ(I) is a non-singular M-matrix, for ℓ ∈ Z
+. In Step 3, we prove that

0 ≤ R(ℓ) ≤ R(ℓ). In Step 4, we prove that R(ℓ) ≤ R
(ℓ)
.

Step 1.

Any square matrix E with non-positive real off-diagonal entries is an M-matrix

if E can be expressed as E = sI−F , where F ≥ 0 and s ≥ ρ(F ), the spectral radius

of F (Berman and Plemmons 1987, Page 133).

Lemma B.1. Assume X is a square matrix with non-positive off-diagonal entries.

Then:

a) X is a non-singular M-matrix if and only if there exists a vector a > 0 such that

Xa > 0.

b) if X is a non-singular M-matrix, then X−1 ≥ 0.

Proof: Follows from properties I28 and N38 in Berman and Plemmons (1987,

Chapter 6).

Step 2.

From the structure of the infinitesimal generator matrix (3.1), A
(ℓ)
0 ≥ 0, A

(ℓ)
2 ≥

0, and A
(ℓ)
1 is a matrix with non-positive diagonal and non-negative off-diagonal

entries, for ℓ ∈ Z
+. Off-diagonal elements of matrix Mℓ(I) = −A(ℓ+1)

1 − A
(ℓ+1)
0

are non-positive because all off-diagonal elements of −A(ℓ+1)
1 and −A(ℓ+1)

0 are non-

positive. Graphical representations of the signs of the entries of A
(ℓ)
0 ,A

(ℓ)
1 , and

Mℓ(I), for ℓ ∈ Z
+, are as follows (we use + and − signs to represent non-negative

and non-positive entries, respectively):

A
(ℓ)
0 =




+ . . . +

...
. . .

...

+ . . . +




,A
(ℓ)
1 =




− . . . +

...
. . .

...

+ . . . −




,Mℓ(I) =




+ . . . −
...

. . .
...

− . . . +




.

(B.1)
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Row sums of the matrix Mℓ(I) are positive because, for all i ∈ Y and ℓ ∈ Z
++:

(
A

(ℓ)
1

)
i,i

= −


 ∑

j∈Y,j 6=i

(
A

(ℓ)
1

)
i,j

+
∑

j∈Y

(
A

(ℓ)
0

)
i,j

+
∑

j∈Y

(
A

(ℓ)
2

)
i,j


 . (B.2)

Therefore,

∑

j∈Y

(Mℓ(I))i,j = −
∑

j∈Y

(
A

(ℓ+1)
1

)
i,j
−

∑

j∈Y

(
A

(ℓ+1)
0

)
i,j

=
∑

j∈Y

(
A

(ℓ+1)
2

)
i,j

> 0. (B.3)

The matrixMℓ(I) has non-positive off-diagonal entries and positive row sums (a = 1

in Lemma B.1, Part a), so is a non-singular M-matrix.

Step 3.

For stochastic matrix G(ℓ+1), the row sums of Mℓ(G
(ℓ+1)) reduce to:

∑

j∈Y

(
Mℓ

(
G(ℓ+1)

))
i,j

= −
∑

j∈Y

(
A

(ℓ+1)
1

)
i,j
−

∑

j∈Y

∑

k∈Y

(
A

(ℓ+1)
0

)
i,k

(
G(ℓ+1)

)
k,j

(B.4)

= −
∑

j∈Y

(
A

(ℓ+1)
1

)
i,j
−

∑

k∈Y

(
A

(ℓ+1)
0

)
i,k

∑

j∈Y

(
G(ℓ+1)

)
k,j

(B.5)

= −
∑

j∈Y

(
A

(ℓ+1)
1

)
i,j
−

∑

k∈Y

(
A

(ℓ+1)
0

)
i,k

> 0, ∀i ∈ Y, ∀ℓ ∈ Z
+.

(B.6)

The last inequality holds as we showed in (B.3). As 0 ≤ G(1) ≤ G(1) (inequality

(3.23)) and A
(ℓ+1)
0 ≥ 0, then Mℓ(G

(ℓ+1)) ≤Mℓ(G
(ℓ+1)), which implies that

0 <
∑

j∈Y

(
Mℓ

(
G(ℓ+1)

))
i,j
≤

∑

j∈Y

(
Mℓ

(
G(ℓ+1)

))
i,j

, ∀i ∈ Y, ∀ℓ ∈ Z
+. (B.7)

Therefore, Mℓ(G
(ℓ+1)) and Mℓ(G

(ℓ+1)) satisfy Lemma B.1, Part a) conditions and

both are non-singular M-matrices with positive inverses:

Mℓ

(
G(ℓ+1)

)−1
> 0 and Mℓ

(
G(ℓ+1)

)−1
> 0. (B.8)
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Define ∆M (ℓ) = Mℓ(G
(ℓ+1))−Mℓ(G

(ℓ+1)) ≥ 0. Using Miller (1981b) results, we

obtain:

(
Mℓ

(
G(ℓ+1)

)
+∆M (ℓ)

)−1
= (B.9)

Mℓ

(
G(ℓ+1)

)−1
− Mℓ

(
G(ℓ+1)

)−1
∆M (ℓ)Mℓ

(
G(ℓ+1)

)−1

1 + tr
(
∆M (ℓ)Mℓ

(
G(ℓ+1)

)−1) , ∀ℓ ∈ Z
+, (B.10)

where tr(.) is the sum of the diagonal elements of a matrix. Combining

Mℓ

(
G(ℓ+1)

)−1 ≥ 0 and ∆M (ℓ) ≥ 0 with (B.10) and (B.8), we conclude that

0 < Mℓ

(
G(ℓ+1)

)−1
=

(
Mℓ

(
G(ℓ+1)

)
+∆M (ℓ)

)−1 ≤ Mℓ

(
G(ℓ+1)

)−1
, and therefore

0 < R(ℓ) ≤ R(ℓ).

Step 4.

All off-diagonal entries of Mℓ

(
G(ℓ+1)

)
+D(ℓ) are non-positive, and all row sums

of Mℓ

(
G(ℓ+1)

)
+ D(ℓ) are positive (by the definition of D(ℓ), each row sum of

Mℓ

(
G(ℓ+1)

)
+D(ℓ) is at least ξ(ℓ)), therefore Mℓ

(
G(ℓ+1)

)
+D(ℓ) is a non-singular

M-matrix (Lemma B.1, Part a). As 0 ≤ G(ℓ+1) ≤ G(ℓ+1) and A
(ℓ+1)
0 ≥ 0, then

Mℓ(G
(ℓ+1)) ≤Mℓ(G

(ℓ+1)), which implies that

∑

j∈Y

(
Mℓ(G

(ℓ+1))
)
i,j
≤

∑

j∈Y

(
Mℓ(G

(ℓ+1))
)
i,j

, ∀i ∈ Y, ∀ℓ ∈ Z
+. (B.11)

As shown in (B.6), Mℓ(I)1 = Mℓ(G
(ℓ+1))1 > 0. The definition of D(ℓ) guarantees

that when we add (D(ℓ))i,i to the left-hand side of (B.11), then we get a positive

lower bound for
∑

j∈Y

(
Mℓ(G

(ℓ+1))
)
i,j
. That is

0 <
∑

j∈Y

(
Mℓ(G

(ℓ+1))
)
i,j

+
(
D(ℓ)

)
i,i
≤

∑

j∈Y

(
Mℓ(G

(ℓ+1))
)
i,j

, ∀i ∈ Y, ∀ℓ ∈ Z
+.

(B.12)

Therefore, Mℓ

(
G(1ℓ+)

)
+ D(ℓ) is a non-singular M-matrix. Applying the Miller

(1981b) formula we used in (B.10) for matrices Mℓ

(
G(ℓ+1)

)
+D(ℓ) and G(ℓ+1), one

can show that R(ℓ) ≤ R
(ℓ)
.
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B.2.2 Proposition 3.7

We prove this proposition in two steps. In Step 1, we prove that x0 > 0 and

x0 ≤ x0. In Step 2, we prove that x0 ≤ x0.

Step 1.

Assume we know G(1). To solve (3.28), we define the following notations:

xcut = (x0,1, ..., x0,p) , bcut = −(ap+1,1 + zp+1,1, ..., ap+1,p + zp+1,p),

Acut =




−a1,1 . . . a1,p
...

. . .
...

ap,1 . . . −ap,p




,Zcut =




z1,1 . . . z1,p
...

. . .
...

zp,1 . . . zp,p




.

All off-diagonal entries of Acut are non-negative (by construction) and Z > 0 (In

QBDs of our context, all phases in Level 0 are directly accessible from Level 1, so

G(1) > 0, and there is at least one non-zero entry in each row of A
(0)
0 ), therefore the

off-diagonal entries of Kcut = Acut + Zcut are positive. We multiply both sides of

(3.28) with -1 and obtain −xcutKcut = −bcut, which is a system of linear equations

with a coefficient matrix, −Kcut, that has negative off-diagonal entries and a right-

hand-side vector, −bcut, that has positive entries. The vector xcut is positive because

(3.27) has a positive solution (Bright and Taylor 1995), and therefore −Kcut is a

non-singular M-matrix as a result of Lemma B.1, Part a) in Section B.2.1.

Now, we prove that the solution of x0

(
A

(0)
1 +A

(0)
0 G(1)

)
= 0, x0, is positive. We

define Z = A
(0)
0 G(1) and write x0K = 0 in the form of (3.28) by setting x0,p+1 = 1

and removing the last equation. That is:

(
x0,1, ..., x0,p

)







−a1,1 . . . a1,p
...

. . .
...

ap,1 . . . −ap,p




+




z1,1 . . . z1,p
...

. . .
...

zp,1 . . . zp,p







=

− (ap+1,1 + zp+1,1, ..., ap+1,p + zp+1,p). (B.13)
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Let:

xcut =
(
x0,1, ..., x0,p

)
,Zcut =




z1,1 . . . z1,p
...

. . .
...

zp,1 . . . zp,p




,

bcut = −(ap+1,1 + zp+1,1, ..., ap+1,p + zp+1,p).

The inequality 0 ≤ Zcut ≤ Zcut holds, because A
(0)
0 ≥ 0 and 0 ≤ G(1) ≤ G(1)

(inequality (3.23)). Therefore, −Kcut ≤ −Kcut, where Kcut = Acut + Zcut. We

multiply both sides of −Kcut ≤ −Kcut with xcut > 0 and obtain 0 < −xcutKcut ≤

−xcutKcut. The off-diagonal entries of −Kcut are non-positive and −xcutKcut >

0, and therefore the matrix −Kcut is a non-singular M-matrix and its inverse is

a positive matrix (Lemma B.1, Part b). The vector −bcut is also non-negative,

therefore xcut = bcutK
−1
cut ≥ 0. As the system is positive recurrent, so the probability

of visiting each state is positive; that is xcut = bcutK
−1
cut > 0.

To prove x0 ≤ x0, we define ∆K = Kcut−Kcut ≥ 0. We know xcut = bcutK
−1
cut

and xcut = bcut(Kcut − ∆K)−1. As −K−1
cut ≥ 0, −(Kcut − ∆K)−1 ≥ 0, and

−bcut ≤ −bcut, then xcut ≤ xcut if we show that −(Kcut−∆K)−1 ≤ −K−1
cut. Using

results from Miller (1981b), we obtain:

−(Kcut −∆K)−1 = −K−1
cut +

1

1 + tr
(
−∆KK−1

cut

)K−1
cut(−∆K)K−1

cut, (B.14)

As both ∆K and −K−1
cut are non-negative matrices, then

(1/1 + tr
(
−∆KK−1

cut

)
)K−1

cut(−∆K)K−1
cut ≤ 0, (B.15)

so (B.14) results in −(Kcut − ∆K)−1 ≤ −K−1
cut, and therefore xcut ≤ xcut. If we

concatenate x0,p+1 = 1 to vectors xcut and xcut, we obtain x0 ≤ x0.
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Step 2.

We proceed by showing that the solution of x0

(
A

(0)
1 +A

(0)
0 G

(1)
+H

)
= 0, x0,

is positive. Analogous to Kcut, we obtain Kcut buy cutting the (p + 1)th column

and row of K. The definition of K guarantees that −x0Kcut > 0. All off-diagonal

entries of −Kcut are non-positive and there is a positive vector, x0, that satisfies

Lemma B.1, Part a), therefore −Kcut is a non-singular M-matrix, and therefore

−K−1
cut ≥ 0 (Lemma B.1, Part b). The vector −bcut is also non-negative, therefore

x0 = bcutK
−1
cut ≥ 0. As the system is positive recurrent, so the probability of visiting

all states are positive; that is x0 = bcutK
−1
cut > 0. In the same fashion as when we

showed −K−1
cut ≤ −K−1

cut in Step 1, one can confirm that −K−1
cut ≤ −K−1

cut. By

construction, we know that −bcut ≤ −bcut, so bcutK
−1
cut ≤ bcutK

−1
cut, or equivalently

xcut ≤ xcut. If we concatenate x0,p+1 = 1 to the vectors xcut and xcut, we obtain

x0 ≤ x0.

B.2.3 Proposition 3.8

This inequality holds for ℓ = 0 as stated in Proposition 3.7. As induction

hypothesis, assume that 0 ≤ xℓ ≤ xℓ ≤ xℓ holds for ℓ = 1, ..., n. We know 0 ≤

R(n) ≤ R(n) ≤ R(n). We therefore find 0 ≤ xn R(n) ≤ xn R(n) ≤ xn R(n), which

results in 0 ≤ xn+1 ≤ xn+1 ≤ xn+1.

B.2.4 Proposition 3.9

As shown in Propositions 3.7 and 3.8, xℓ ≤ xℓ ≤ xℓ, ∀ℓ ∈ Z
+. Therefore,

xℓ/c ≤ xℓ/c ≤ xℓ/c, or equivalently πℓ ≤ πℓ ≤ πℓ.
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B.3 Notations

Table B.1: Frequently used notations listed in alphabetical order.
. Upper bound
. Lower bound
(.)ij Element ij
∆. Difference between the upper bound and lower bound
1 A column vector of ones of appropriate size

A
(ℓ)
0 Matrix of transition rates from phases in level ℓ to phases in level ℓ+ 1

A
(ℓ)
1 Matrix of transition rates from phases in level ℓ to phases in level ℓ

A
(ℓ)
2 Matrix of transition rates from phases in level ℓ to phases in level ℓ− 1

c Normalizing factor
ǫh Desired maximum probability mass for the truncated upper tail of Class-1 Erlang A system
ǫℓ Desired maximum probability mass for the truncated upper tail of LDQBD

G(ℓ) G matrix for level ℓ
γ1 Impatience rate of Class-1 customer
γ2 Impatience rate of Class-1 customer
h Phase variable
k Truncation level
ℓ Level variable
λ1 Arrival rate of Class-1 customer
λ2 Arrival rate of Class-2 customer
m Parameter used to obtain estimates of the rate and G matrices

Mℓ(.) A matrix function defined to calculate bounds on R(ℓ)

µ1 Service rate of Class-1 customer
µ2 Service rate of Class-2 customer

Nℓ(.) A matrix function defined to calculate bounds on R(ℓ)

p Maximum phase
π Concatenation of probability vectors, {π0, π1, ...}
πℓ Probability vector for level ell
Q The infinitesimal generator matrix
q1 Number rate of Class-1 customer in the queue
q2 Number rate of Class-2 customer in the queue

R(ℓ) Rate matrix for level ℓ

R
(ℓ)
m Estimate of R(ℓ) given that the system does not visit levels ℓ+m and above

R
(ℓ)
m Estimate of G(ℓ) given that the system does not visit levels ℓ+m and above

S The state space
s Number of servers
s1 Number of Class-1 customer receiving service
s2 Number rate of Class-2 customer receiving service
X Matrix of unknowns
x Concatenation of before-normalization probability vectors, {x0,x1, ...}
xℓ Probability vector for level ell before mormalization
Y Set of phases, {0, 1, ..., p}
Z

+ Set of non-negative integers, {0, 1, ...}
Z

++ Set of positive integers, {1, ...}
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