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Abstract

In recent times, there has been increased seismicity in geologically stable

basins in North America, thought to be associated with hydraulic fracturing

and/or waste water disposal activities. Induced events could generate a seis-

mic hazard higher than natural seismicity, particularly in areas with small-

to-moderate natural background seismicity, leading to increasing concerns for

operators, regulators, and the public in general. Therefore, it has been nec-

essary to quantify the seismic hazard related to anthropogenic activities. In

this thesis, we develop a Probabilistic Seismic Hazard Analysis to estimate the

seismic hazard related to induced seismicity. Some of the main challenges to

adapt Probabilistic Seismic Hazard Analysis to induced seismicity include the

non-stationary behavior of the induced events, the prediction of future recur-

rence rates, and determine when seismicity declustering is appropriated for the

hazard analysis.

First, we developed a methodology to compute synthetic earthquake cat-

alogs for non-stationary seismicity using Monte Carlo simulations. We found

that the Poisson model remains relevant for analyzing non-stationary induced

seismicity. We define non-stationary Gutenberg-Richter parameters to describe

time-dependent seismicity rates and to assess the hazard for this type of seis-

micity. Then, we apply two methodologies to predict the Gutenberg-Richter pa-

rameters related to injection-induced seismicity, in particular, temporal changes

in the a-values. Our results show that these short-term predictions are able

to describe the changes in the overall seismicity patterns within a reasonable

level. However, they make inaccurate predictions for specific magnitude ranges,

resulting in an under- or overestimation of the hazard, among other things, due
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to the assumption of unchanged b-values.

We also identify the cases when seismicity declustering is recommended. If

mainshocks and aftershocks have considerably different b-values, declustering

leads to improved hazard assessments, since it allows for better estimations of

the magnitude-frequency distribution of the largest events. On the other hand,

if mainshocks and aftershocks have similar b-values, declustering is not recom-

mended since it eliminates large magnitude events that significantly contribute

to the seismic hazard. We also show that assuming Poissonian distributions in

hazard predictions does not lead to inaccurate long-term hazard predictions,

even if time-varying aftershock sequences are present in the catalog.

Finally, I describe a methodology to build seismicity scenarios in areas prone

to induced earthquakes. This type of scenario building, based on projected

operations in susceptible areas to induced seismicity, can give us insights into

future seismicity patterns. Building seismicity scenarios is one of the first

steps to fully forecast seismic hazard for induced seismicity. I also recommend

the assessment of retrospective annual seismic hazard analysis in areas prone

to induced earthquakes, like the province of Alberta. These annual seismic

hazard assessments can provide useful insights into the temporal evolution of

the seismic hazard related to anthropogenic activity.
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Chapter 1

Introduction

1.1 Background

Induced seismicity refers to earthquakes caused by human activities. The con-

cept behind induced seismicity is that certain industrial activities change the

state of stress of the earth’s crust, resulting in the potential failing of critically

stressed faults (Ellsworth, 2013). Some of the industrial activities associated

with induced seismicity include: impoundment of reservoirs, surface and under-

ground mining, withdrawal of fluids and gas from the subsurface, and injection

of fluids into underground formations (McGarr et al., 2002; Ellsworth, 2013).

Seismicity associated with petroleum production has been recorded since the

1920s, with reservoir impoundment since the 1930s, and with high-pressure

liquid injection since the 1960s (McGarr et al., 2002). However, the number of

induced seismicity cases has increased over time, particularly with the develop-

ment of unconventional hydrocarbon shales and the extraction of geothermal

heat (Ellsworth, 2013).

Extensive use of hydraulic fracturing and waste water injection wells have

been required to develop shale oil and gas plays. Recent studies (Atkinson

et al., 2015; Ellsworth, 2013; Van der Baan and Calixto, 2017) have shown

increased seismicity in geologically stable basins in North America, thought to

be associated with hydraulic fracturing treatments and/or waste water disposal

wells. In some cases like Oklahoma (USA), waste water disposal activities have
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been linked to events as large as magnitude M = 5.6 (2016 Pawnee earthquake,

Langenbruch and Zoback (2016)) resulting in injury and damage of buildings

(Hincks et al., 2018).

In this light, induced seismicity associated with shale oil and gas production

has become an increasing concern for operators, regulators, and the public in

general. Due to the increase in human-induced seismicity associated with shale

oil and gas production, it is necessary to quantify the seismic hazard related

to these activities. The seismic hazard caused by induced seismicity could

be higher than the natural seismic hazard, especially in areas with small-to-

moderate natural background seismicity (Atkinson et al., 2015). This is the case

of many places in North America, including the Western Sedimentary Basin

of Canada, where hydraulic fracturing and waste water disposal activities may

have increased seismic hazard, with implications for building codes, safety and

public perception.

Government and industry have used Probabilistic Seismic Hazard Analy-

sis (PSHA) for assessing hazard related to natural seismicity, and it can be

used to delineate the hazard caused by human-induced events. PSHA quan-

tifies the possible ground motion at one location, in a period of time, caused

by earthquake shaking (Cornell, 1968; Baker, 2008). Some recent studies have

delineated methods to assess the hazard related to induced events, based on

modified versions of the PSHA. Atkinson et al. (2015) made a preliminary haz-

ard evaluation for the Fox Creek area (Alberta), based on earthquake catalogs

that contain the induced events, and Ground Motion Prediction Equations

(GMPEs) suited for induced seismicity. Petersen et al. (2016), Petersen et al.

(2017) and Petersen et al. (2018) elaborate a one year hazard forecast for the

central and eastern United States, based on catalogs with recorded induced

events, together with different sets of GMPEs. These studies assume station-

arity as a first approach, in accordance with the traditional PSHA for natural

seimsicity.

However, these preliminary studies still require to solve some of the main

challenges in the implementation of PSHA for induced seismicity. In this thesis,

we develop a PSHA to estimate the seismic hazard related to induced seismicity,

proposing novel methodologies to solve some of the main challenges of PSHA
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for induced seismicity, including the non-stationary behavior of the induced

events, the prediction of future recurrence rates, and determine when seismicity

declustering is appropriated for the hazard analysis.

1.2 Motivation and contribution

The primary purpose of this thesis is to develop a model able to quantify the

seismic hazard related to induced events. PSHA was originally designed for

natural seismicity, and there are multiple challenges in the implementation of

this method for induced events. Through this thesis, we describe the changes

required to adapt PSHA for induced seismicity. Simultaneously, we investigate

some of the driving science questions related to induced seismicity and its

impact on the hazard analysis:

1. If we have non-stationary earthquake sequences like induced seismicity,

can we still develop a PSHA model for the hazard estimations?

2. Is assuming a Poisson distribution still valid for the seismic hazard anal-

ysis, in particular, if we are dealing with non-stationary seismicity?

3. If we know beforehand specific geological and operational parameters in

a seismogenic area, can we predict the future rate of earthquakes related

to human-induced activity? If so, can we incorporate this information in

PSHA?

4. If we decluster an earthquake catalog, are we getting accurate estima-

tions of the seismic hazard, particularly an appropriate estimate of the

recurrence rate for large magnitude events?

Understanding these questions is fundamental to characterize induced events

and properly adapt induced seismicity into PSHA. To answer these questions,

we delineated novel methodologies, and conducted examples which ultimately

contribute to the development of seismic hazard analysis for induced seismicity.

The most relevant innovations and contributions of this thesis are enumerated

as follows:
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1. We derive analytic expressions for non-stationary occurrence rates, which

are verified using Monte Carlo simulations. The use of time-dependant

Gutenberg-Richter parameters is a particular relevant innovation in this

thesis.

2. We develop a PSHA methodology that allows non-stationary seismicity

like induced seismicity. The use of non-stationary seismicity rates in the

PSHA methodology is a novel approach delineated in this thesis.

3. We show that, in terms of seismic hazard analysis, declustering is only

recommended in catalogs with a large number of earthquakes or in cata-

logs where the b values of the mainshocks are significantly different than

the b-values of the complete catalog.

4. We show that the Poisson statistics and simulations lead to a represen-

tative assessment of long-term seismic hazard, even if aftershocks have a

non-Poissonian distribution. The use of non-stationary Poisson distribu-

tions in PSHA is one of the innovations in this thesis.

5. We incorporate physics-based models into PSHA to forecast the future

rate of earthquakes for induced seismicity.

1.3 Thesis overview

Chapter 2 describes the main steps of PSHA using the Monte Carlo simulation

method, as well as identifying the main challenges of implementing PSHA for

induced seismicity.

Chapter 3 shows a methodology to evaluate statistically the hazard related

to non-stationary seismic sources like induced seismicity. To delineate non-

stationary seismicity rates, we define time-dependent Gutenberg-Richter (GR)

parameters. We show two examples: (1) a synthetic case with two seismic

sources; and (2) a recent case of induced seismicity, the Horn River Basin,

Northeast British Columbia, Canada.

Chapter 4 describes two methodologies designed to predict the earthquake

recurrence rates related to induced seismicity: the Seismogenic Index and the
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Hydromechanical Nucleation model. We apply both methods to the Horn River

Basin induced seismicity case. We compare predictions of both models versus

observed seismicity. To make a complete seismic hazard analysis, we include

the generation of synthetic ground motion catalogs and seismic hazard maps.

Chapter 5 investigates if separating mainshocks and aftershocks using a

temporal declustering approach, leads to more accurate hazard assessments,

particularly for large-magnitude events. We apply a simulation method based

on the Epistemic-Type Aftershock Sequence (ETAS) to generate mainshock

(declustered) and complete (non-declustered) synthetic earthquake catalogs.

We show two examples: two ynthetic examples (short and long-term seismicity)

and a case of induced seismicity, Oklahoma, USA.

Chapter 6 presents an overview of the reported induced seismicity cases

in Alberta. Then, I propose a methodology to build seismicity scenarios in

areas susceptible to induced earthquakes. This type of scenario building, based

on projected operations in susceptible areas to induced seismicity, can give us

insights into future seismicity patterns. Building seismicity scenarios is one of

the first steps to fully forecast seismic hazard for induced seismicity.

Chapter 7 presents the conclusions of the thesis and suggested possible

directions for future research.
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Chapter 2

Probabilistic Seismic Hazard

Analysis and challenges for

induced seismicity

2.1 Introduction

Probabilistic seismic hazard analysis (PSHA) has been largely used for assessing

hazard related to natural seismicity, and it can be used to delineate the hazard

caused by human-induced events. PSHA quantifies the possible ground motion

at one location, in a period of time, caused by earthquake shaking (Cornell,

1968; Baker, 2008). Two of the main PSHA products are: (1) the seismic hazard

curve, that is, the annual rate of exceedance vs. ground motion intensity; and

(2) the seismic hazard maps, which describe spatially the likelihood to reach

or exceed a ground motion in a period of time.

PSHA products are used by governments and industry in applications for life

and property safety, such as developing building code requirements, deciding

the security criteria for critical facilities like dams, hydroelectric plants, nuclear

plants, and determining earthquake insurance rates (Baker, 2008; Mulargia

et al., 2017). Seismic hazard maps are routinely updated to account for more

accurate earthquake recurrence parameters and a more refined understanding

of the seismic sources. Figure 2.1 shows the 2015 National Building Code of
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Figure 2.1: 2015 National Building Code of Canada seismic hazard maps. This
map shows the 2 % likelihood to reach or exceed a given PGA (g) in the next 50
years. In this map, g represents the gravitational acceleration. From Natural
Resources Canada (2015).

Canada seismic hazard map (Natural Resources Canada, 2015). This map

shows 2 % likelihood to reach or exceed a given ground motion (Peak Ground

Acceleration, PGA) in the next 50 years. As expected, the areas with higher

seismicity correspond to the areas with a higher likelihood of ground motions,

for instance, the pacific coast of Canada.

The PSHA principles were defined first by Cornell (1968), with subsequent

modifications and additions over the years, including the use of Monte Carlo

simulations for the generation of synthetic earthquake catalogs (Musson, 2000).

PSHA using the Monte Carlo method has several advantages over conventional

PSHA based on analytic expressions (Cornell, 1968), including its adaptability

to different seismicity models, its ability to handle uncertainty, and its ease

of implementation to compute a variety of hazard statistics (Musson, 2000).

In this chapter, we describe the main steps of PSHA using the Monte Carlo

simulation method, as well as identifying the main challenges of implementing
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PSHA for induced seismicity. Some of these challenges include: (1) The non-

stationary behavior of the induced seismicity; (2) The prediction of future

recurrence rates related to induced seismic sources; (3) the debate of whether

or not declustering is appropriate for seismic hazard analysis.

2.2 Probabilistic Seismic Hazard Analysis us-

ing the Monte Carlo simulation method

PSHA using the Monte Carlo simulation approach generates synthetic earth-

quake catalogs based on defined recurrence parameters (Musson, 2000). This

method follows a very similar procedure to the conventional PSHA, with the

difference that the hazard statistics are extracted from synthetic earthquake

catalogs rather than analytical calculations. The Monte Carlo approach as-

sumes the occurrence of earthquake events as a stationary process following a

Poisson distribution in time (Assatourians and Atkinson, 2013). However, this

method is flexible enough to introduce a non-Poissonian and/or non-stationary

behavior (Musson, 2000).

PSHA using the Monte Carlo simulation method consists of the following

steps: (1) Define a seismic source area; (2) Obtain the Gutenberg-Richter (GR)

parameters (a-and b-values) from observed earthquake catalogs; (3) Generation

of synthetic earthquake catalogs; (4) Generation of ground motion catalogs

by using Ground Motion Prediction Equations (GMPEs); (5) Generation of

seismic hazard curves and maps. Figure 2.2 shows a sketch of PSHA using the

Monte Carlo simulation method.

1. Define earthquake source areas: The seismic source areas are defined

as the regions that contain the seismic events (Baker, 2008). One of the

most important steps consists of defining faults, areas or volumes that

could generate seismic events. The potential sources are identified based

on recorded seismic events that constitute the historical seismicity. When

individual seismogenic faults are not possible to identify, the earthquake

sources are described as areas where earthquakes could occur anywhere

8



Figure 2.2: Main steps of PSHA using the Monte Carlo simulation method:
(1) Define a seismic source area, (2) from recorded earthquake catalogs, obtain
GR parameters (a-and b-values), (3) simulate synthetic earthquake catalogs,
(4) use GMPEs in order to get Ground Motion catalogs, (5) generate seismic
hazard curve. Based on the PSHA steps from Baker (2008)

(Baker, 2008). Conventional PSHA assumes an unchanged seismic source

area over time, delimited by using historical earthquake catalogs.

2. Define the seismic source parameters: The Gutenberg-Richter re-

currence law (1944) describes the earthquake size distribution for a partic-

ular region. This law states the relationship between the magnitude and

the total number of earthquakes in a given region, following the relation:

log(λm) = a− bm, (2.1)

where λm represents the rate of earthquakes with magnitude greater than

m, in other words, the total number of events N greater than m divided

by the time duration of the catalog. The a-value specifies the overall rate

of earthquakes in a region, and the b-value indicates the ratio of small and

large magnitude events. The a- and b-values are commonly obtained by

plotting, on a semi-log scale, the rate of earthquakes vs. magnitude from

observed catalogs, and then fitting a curve with slope b and Y-axis inter-
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cept a, to the observed data points. Two of the most common methods

used to obtain the GR parameters, a- and b-values, from observed cat-

alogs are the least square method (LSM) and the Maximum Likelihood

Method (MLM, Aki (1965)).

Seismicity declustering is a standard method applied to the earthquake

catalogs before the estimation of the GR parameters described above.

This method consists of generating a mainshock catalog by removing fore-

shocks and aftershocks from the observed catalog (Gardner and Knopoff,

1974). Therefore, the focus relies on the recurrence parameters of the

mainshocks, which, in turn, are the large magnitude earthquakes. As ex-

pected, the large magnitude events are related to higher ground motions

and, therefore, higher potential damage. More details about seismicity

declustering can be found in chapter 5.

The a- and b-value together with the Maximum Magnitude (Mmax) and

the Minimum Magnitude (Mmin) characterize the seismic source param-

eters. Mmax gives the upper bound of the linear recurrence law, based

on observations (Kramer, 1996), and Mmin is the lowest magnitude event

taken in the catalog. Often, the Mmax boundary value is not well defined;

for that reason, some models select a range ofMmax values and then assign

different weights to each value, following the logic-tree format (Kramer,

1996). In other words, several hazard curves are calculated using a range

of Mmax values and then these results are combined depending on their

weight and likelihood. This logic-tree format can be also applied to pairs

of a- and b-values to account for the uncertainty in the GR parameters.

Frequently, the Minimum MagnitudeMmin is equivalent to the Magnitude

of Completeness (Mc) of one area. The Magnitude of completeness is the

minimum magnitude above which all earthquakes within a certain region

are reliably recorded (Wiemer and Wyss, 1997). Therefore, the Minimum

Magnitude Mmin does not necessarily correspond with the lowest magni-

tude recorded in the earthquake catalog. Estimations of a- and b-values

are usually performed only considering events above the Magnitude of

Completeness Mc value.
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3. Generation of synthetic earthquake catalogs: The generation of

synthetic earthquake catalogs using the Monte Carlo simulation method

can be summarized in two main steps: (1) Simulation of a temporal point

process to obtain arrival times for a single realization; (2) Simulation of

earthquake magnitudes m. To generate arrival times for a single real-

ization, a Monte Carlo sampling is performed to the inverse cumulative

distribution function (CDF) of the Poisson distribution with stationary

rate λ. In this step, the earthquake recurrence λ is defined by the GR

parameters, eq.2.1, and the average number of samples in a realization

is given by the recurrence rates and the period of time to simulate. To

generate magnitudes for each time arrival, another Monte Carlo sampling

is performed to the inverse CDF of the GR recurrence law, eq.2.1. Conse-

quently, each pair of time arrivals and magnitudes represent a synthetic

event. Finally, the location of these synthetic events is assumed to be

uniformly random distributed within the seismic source area.

Each realization represents a possible scenario of seismicity in a forthcom-

ing period of time. By repeating multiple times, different realizations are

simulated, resulting in the synthetic earthquake catalog to analyze. From

these synthetic catalogs, it is possible to extract the statistics and study

the seismic hazard in one area, in a period of time. One of the advantages

of the Monte Carlo simulation is that, by generating a large number of

realizations, it is possible to calculate the likelihood of rare but poten-

tially damaging events. A more detailed description of the generation of

synthetic earthquake catalogs using the Monte Carlo simulation method

can be found in chapter 3, including the changes necessary to allow non-

stationary seismicity.

4. Generation of ground motion catalogs: To generate ground motion

catalogs, it is necessary to define first the ground motion prediction equa-

tions (GMPEs) for one area. The GMPEs predict a probability distribu-

tion of ground motion intensity (E.g. Peak ground acceleration (PGA),

Spectral acceleration (SA), etc.) as a function of several variables such

as magnitude, distance, and site characterization (Baker, 2008; Bourne

et al., 2014). Each magnitude-distance pair is related to a predicted
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ground motion intensity. The ground motion prediction equations are

generally developed using statistical regression on thousands of observed

ground motion intensities from several earthquakes (Baker, 2008).

Once the synthetic earthquake catalog has been generated, we calculate

the distances between a selected site and the locations of the synthetic

events. Given the distance and magnitude of the synthetic events, we use

GMPEs to estimate the ground motions that would cause these synthetic

events in the selected site. These estimated ground motions result in

a catalog of ground motions. To count for the aleatoric variability in

the ground motions, a random number drawn from the standard normal

distribution is multiplied by the sigma value (variability of the GMPE

model), and added to the log of the ground motions (Assatourians and

Atkinson, 2013).

5. Generating seismic hazard curves and maps: From the ground

motion catalogs, we can obtain statistical results for the hazard analysis.

For instance, the rate of exceeding a ground motion in a period of time,

λ(gm ≥ gmj; ta, tb), is given by counting all the ground motions larger

than gmj, and dividing this count by the time duration of the simulations

(tb − ta) and the number of realizations of the synthetic catalog. Then,

the seismic hazard curve is generated by plotting the rate of exceedance

as a function of ground motions.

The seismic hazard maps are built by calculating first the seismic hazard

curves at different sites. Then, a common rate of exceeding a ground

motion λ(gm ≥ gmj; ta, tb) is defined for all seismic curves and the related

ground motion is selected. This yields a ground motion value for each

considered site, which in turn can be interpolated to generate a seismic

hazard map. Assuming a Poisson process, the rate of exceeding a ground

motion λ(gm ≥ gmj; ta, tb) is equivalent to the probability P [N > 0; ta, tb]

to reach or exceed an event in a period of time (tb − ta) (Baker, 2008):

λ(gm ≥ gmj; ta, tb) =
− ln(1− P [N > 0; ta, tb])

tb − ta
, (2.2)
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where P [N > 0; ta, tb] is the probability to reach at least one event (N >

0, N is the number of events) in a period of time (tb − ta). For instance,

the 2% probability of exceedance in 50 years is equivalent to the rate of

exceedance λ(gm ≥ gmj; ta, tb) = 0.000404, or 1 event with a recurrence

of 2, 475 years. More details about the generation of synthetic ground

motion catalogs and seismic hazard maps can be found in chapters 4 and

6.

2.3 Challenges in PSHA for induced seismicity

There are numerous challenges in the implementation of PSHA for induced seis-

micity. First, traditional PSHA (Cornell, 1968) has been developed assuming

a temporal stationary Poisson process, which fits well for natural mainshock

seismicity. However, induced seismicity is conditioned in time and space by

the well operations, therefore, assuming temporal stationarity and a Poisson

process will have significant effects on the hazard calculations (Atkinson et al.,

2015). Furthermore, the common time durations and likelihoods for evaluating

the probability of exceedance in the natural hazard maps (e.g. 2% probability of

exceedance in 50 years) are no longer representative, because the induced seis-

micity is unlikely to be temporally stationary in that time frame, and relevant

human processes may last less than 50 years (e.g. hydraulic fracturing treat-

ments and even waste-water injection). To deal with these issues, we develop a

methodology to evaluate statistically the hazard related to non-stationary seis-

mic sources like induced seismicity. We use time-dependent GR parameters,

which lead to a time-varying rate of earthquakes. We also derive analytic ex-

pressions for occurrence rates which are verified using Monte Carlo simulations.

Further details can be found in chapter 3 of this thesis.

Second, traditional seismic hazard analysis assumes future rates based on

GR parameters from historical seismicity. On the other hand, prediction of

GR parameters for induced seismicity is still a major challenge due to the lack

of recorded events and its non-stationary behaviour. In chapter 4 we describe

two physics-based models in order to address this issue: The Seismogenic Index

(Shapiro et al., 2010; Langenbruch and Zoback, 2016) and the Hydromechani-
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cal Nucleation model (Norbeck and Rubinstein, 2018). The Seismogenic Index

(Shapiro et al., 2010) modifies the classical GR relationship to allow time de-

pendent cumulative a-values. This cumulative a-value increases depending on

the total volume injected and the Seismogenic Index, which is related to the

volume concentration of preexisting faults and the state of stress in one par-

ticular area (Shapiro et al., 2010). The Hydromechanical Nucleation model

(Norbeck and Rubinstein, 2018) relies on the empirical seismicity rate model

from Dieterich (1994) and Segall and Lu (2015), which relates the changes in

the Coulomb stress with changes in the seismicity rates. Also, Segall and Lu

(2015) assume that the Coulomb stress change is proportional to the pressur-

ization rate instead of the total injected volume and thus pore pressure change.

Third, some studies have discouraged the application of seismicity declus-

tering in the seismic hazard evaluation, as it might reduce the predicted hazard

by excluding a large number of small-to-medium magnitude-size earthquakes

(Atkinson et al., 2015; Langenbruch and Zoback, 2016). Seismicity decluster-

ing classifies the events from an earthquake catalog into foreshocks, mainshocks

and aftershocks (Van Stiphout et al., 2012). On the one hand, the background

or mainshock events are a consequence of tectonic loading, and are considered

temporally independent. On the other hand, aftershocks, foreshocks or trig-

gered earthquakes are temporally dependent, they are consequence of a parent

event, either a background or another triggered event (Van Stiphout et al.,

2012).

Time-dependency might not be the only difference between mainshock and

aftershock sequences. Some studies suggest different b-values between main-

shock (declustered) and complete (non-declustered) earthquake catalogs (Utsu,

1966; Suyehiro and Sekiya, 1972). In contrast, other authors suggest that the

observed difference is not statistically significant (Knopoff et al., 1982) or it is

simply an statistical artifact (Lombardi, 2003). If mainshocks and aftershocks

have different b-values, then this is likely to impact the hazard assessment, be-

cause generally a single b-value is assumed within a source region. The b-value

is used to extrapolate occurrence rates to earthquake magnitudes that may

not be well represented within the observed catalog. As a consequence, as-

suming averaged b-values may lead to biased hazard assessment. In chapter 5,
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we use synthetic earthquake catalogs based on the Epistemic-Type Aftershock

Sequence (ETAS) methodology (Ogata, 1988, 1998; Ogata and Zhuang, 2006)

to determine the implications of seismicity declustering in the hazard analysis.

We also study a case when it is appropriate to decluster an earthquake catalog.

Other challenges have to be properly addressed, including the prediction of

the maximum magnitude for induced events, the development of GMPEs for

induced seismicity, or even more accurate physics-based models for the estima-

tion of earthquake occurrence. In chapter 7, we provide a further description of

these pending issues, as well as future steps to generate a fully adapted seismic

hazard analysis for induced seismicity.
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Chapter 3

Including Non-stationary

Magnitude-frequency

distributions in Probabilistic

Seismic Hazard Analysis 1

3.1 Introduction

Several studies (Ellsworth, 2013; Atkinson et al., 2015; Petersen et al., 2016;

Atkinson et al., 2016; Van der Baan and Calixto, 2017) have shown increased

seismicity in geologically stable basins in North America, thought to be associ-

ated with hydraulic fracturing treatments and/or salt water disposals. Some of

these studies have delineated methods to assess the hazard for induced events,

based on modified versions of the traditional probabilistic seismic hazard anal-

ysis (PSHA). Atkinson et al. (2015) made a preliminary hazard evaluation for

the Fox Creek area (Alberta), based on earthquake catalogs that contain the

induced events, Ground Motion Prediction Equations (GMPEs) suited for in-

duced seismicity, while assuming stationarity as a first approach. Petersen

1A version of this chapter has been published as: Reyes Canales, M., and van der Baan, M.,
2019, Including Non-stationary Magnitude-Frequency distributions in Probabilistic Seismic
Hazard Analysis: Pure and Applied Geophysics, 176, 2299-2319.
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et al. (2016) and Petersen et al. (2017) elaborate a one year hazard forecast

for the central and eastern United States, based on catalogs with recorded in-

duced events, together with different sets of GMPEs. However, these studies

are limited to short-term hazard predictions due to the assumption of temporal

stationarity, which presumes that the induced seismicity sequence remains of

unchanged intensity during both the observation and forecasting period.

Conversely, Langenbruch and Zoback (2016) and Van der Baan and Calixto

(2017) show that the rate of earthquakes in Oklahoma first strongly increased

but now greatly subsided in line with salt-water disposal volumes. It is evident

that the induced seismicity has a non-stationary behaviour as it is strongly

dependent on human activities. The traditional PSHA, which assumes station-

arity, has to be modified in order to properly assess the hazard due to changing

seismicity rates over time.

The Monte Carlo simulation method for PSHA (Musson, 2000; Assatouri-

ans and Atkinson, 2013; Bourne et al., 2014, 2015) is flexible enough to deal

efficiently with non-stationary seismicity. This method consist of two main

steps: (1) generation of synthetic earthquake catalogs and (2) generation of

ground motion catalogs by using ground motion prediction equations (GM-

PEs). Even though traditional PSHA has been previously adapted to allow for

time-dependency (e.g. Convertito et al. (2012)), the Monte Carlo method for

PSHA has several advantages over traditional PSHA based on analytic expres-

sions (Cornell, 1968), including its adaptability to different seismicity models,

its ability to handle uncertainty, and its ease of implementation to compute

a variety of hazard statistics (Musson, 2000). One of the shortcomings of the

Monte Carlo simulation method is, however the increased number of calcula-

tions and thus increased computation times, compared with direct evaluation

of analytic equations.

In this study we develop a methodology based on Monte Carlo simulations

for the generation of non-stationary earthquake catalogs using time-dependent

Gutenberg-Richter parameters. We also derive analytical expressions for var-

ious occurrence likelihoods such as annual rates of exceedance, in the case of

non-stationarity. We verify these expressions using Monte Carlo simulations.

These simulated catalogs are intended to be used in further PSHA steps to
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develop a complete methodology for non-stationary seismic hazard analysis

including the assessment of expected ground motion. To exemplify the appli-

cability of the developed methodology and evaluate the implications of non-

stationary seismicity in the hazard analysis, we study two examples. The first

example is a synthetic case with two seismic sources (background and induced)

and arbitrary seismic parameters. The second example comprises a recent

case of induced seismicity: the Horn River Basin, Northeast British Columbia,

Canada.

3.2 Theory

3.2.1 Non-Stationary magnitude-frequency distributions

We assume that the magnitude-frequency distribution of earthquakes is de-

scribed by the Gutenberg-Richter (GR) distribution given by (Gutenberg and

Richter, 1944):

log(N) = a− bm, (3.1)

where N is the number of earthquakes with a magnitude greater than m. Notice

that log refers to logarithm base 10. The b-value indicates the ratio of small

and large magnitude events and the a-value is related to the number N0 of

earthquakes with a non-negative magnitude per unit time duration (e.g., month

or year). The latter is given by:

N0 = 10a. (3.2)

Eq. 3.1 can be used to compute the discrete cumulative distribution function

(CDF) as Baker (2008):

FM(m) =
1− 10−b(m−Mmin)

1− 10−b(Mmax−Mmin)
, (3.3)

where FM(m) denotes the cumulative distribution function for magnitude m,

Mmax is the maximum magnitude and Mmin is the minimum magnitude con-

sidered for the synthetic catalog. Taking the derivative, the probability density
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function (PDF) can be computed. The discrete probability for a magnitude

m to occur within the range [mj, mj+1), a magnitude bin, is given by the

subtraction of the two boundary CDF values (Baker, 2008):

P (mj ≤ m < mj+1) = FM(mj+1)− FM(mj), (3.4)

with mj and mj+1 respectively the lower and upper magnitude and j is an

integer index to create magnitude bins. To calculate the rate of earthquakes

λ(mj ≤ m < mj+1) per unit time duration for a magnitude bin, we multiply

the probability of occurrence P (mj ≤ m < mj+1) of that magnitude bin, eq.

3.4, by the total expected number of earthquakes N(Mmin ≤ m ≤ Mmax) per

unit time duration in the range m = [Mmin,Mmax], yielding:

λ(mj ≤ m < mj+1) = P (mj ≤ m < mj+1)N(Mmin ≤ m ≤Mmax). (3.5)

The expected number of earthquakes N(Mmin ≤ m ≤ Mmax) per unit time

duration in the range m = [Mmin,Mmax] is derived from the Gutenberg-Richter

relation, Eq.3.1, as:

N(Mmin ≤ m ≤Mmax) = 10a−bMmin − 10a−bMmax . (3.6)

If the time unit is a year, then λ(mj ≤ m < mj+1) and N(Mmin ≤ m ≤Mmax)

refer to the annual rate of earthquakes for a magnitude bin and the annual

number of earthquakes in the range m = [Mmin,Mmax], respectively.

Generally the earthquake rate λ(mj ≤ m < mj+1), eq.3.5, is assumed to

be stationary (that is, time-invariant). In this case the intercept a and slope b

in the GR distribution, eq.3.1, are constant. For non-stationary sequences the

rate λ(mj ≤ m < mj+1; t) is still given by eqs. 3.5 and 3.6, but now the GR

parameters, a(t) and b(t), are understood to vary with time t, that is:

λ(mj ≤ m < mj+1; t) = P (mj ≤ m < mj+1; t)N(Mmin ≤ m ≤Mmax; t), (3.7)

where the expected number of earthquakes N(Mmin ≤ m ≤ Mmax; t) per unit
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time duration in the range m = [Mmin,Mmax], is redefined as:

N(Mmin ≤ m ≤Mmax; t) = 10a(t)−b(t)Mmin − 10a(t)−b(t)Mmax . (3.8)

Similar expressions hold for eqs. 3.3 and 3.4 to compute the probability of

occurrence of a magnitude bin P (mj ≤ m < mj+1) in a time-varying frame:

P (mj ≤ m < mj+1; t) = FM(mj+1; t)− FM(mj; t), (3.9)

where FM(m) is redefined as:

FM(m; t) =
1− 10−b(t)(m−Mmin)

1− 10−b(t)(Mmax−Mmin)
. (3.10)

The considered Mmin and Mmax magnitudes in eq. 3.8 and 3.10 are however

kept fixed. These non-stationary earthquake rates will be used in the generation

of synthetic earthquake catalogs and to verify the occurrence statistics.

3.2.2 Poisson distribution and derived statistical quan-

tities for the seismic hazard analysis

The Poisson distribution describes the number of events within a certain time

interval for stationary earthquake rates, and it has been traditionally assumed

to describe the temporal distribution of earthquakes (Cornell, 1968; Assatouri-

ans and Atkinson, 2013; Baker, 2013; Anagnos and Kiremidjian, 1988). The

stationary Poisson distribution is defined as (Cornell, 1968):

P [N = n; ta, tb] =
λn(tb − ta)ne−λ(tb−ta)

n!
, (3.11)

whereP [N = n; ta, tb] is the probability of n occurrences happening in a time

interval ∆t = tb− ta, for start and end times ta and tb respectively, and λ is the

rate of occurrence of events per unit time duration. By definition 0! = 1. Note

that eq. 3.11 only depends on the time interval ∆t = tb − ta, instead of the

individual start and end times. For the stationary case, λ is equivalent to the
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rate of earthquakes λ(mj ≤ m < mj+1) per unit time duration for a magnitude

bin, eq. 3.5. Thus, λ(tb − ta) equals the number of events of this magnitude

bin within the considered time interval. The probability of at least one event

happening in a time interval P [N > 0; ta, tb] is defined as (Baker, 2013):

P [N > 0; ta, tb] = 1− e−λ(tb−ta). (3.12)

The non-stationary Poisson model has a rate of occurrence that varies with

time. In this case, we use the mean mλ(ta, tb) of the time-dependent rate, in-

stead of a constant rate of occurrence. The non-stationary Poisson distribution

is defined as (Sigman, 2013):

P [N = n; ta, tb] =
mn
λ(ta, tb)(tb − ta)ne−mλ(ta,tb)(tb−ta)

n!
, (3.13)

where mλ(ta, tb) is the mean of the time-varying rate of occurrence λ(t) in the

time interval t = [ta, tb], defined as (Sigman, 2013):

mλ(ta, tb) =

∫ tb
ta
λ(s)ds

(tb − ta)
. (3.14)

For instance, λ(t) could be equivalent to the time-varying rate of earthquakes

λ(mj ≤ m < mj+1; t) per unit time duration for a magnitude bin, eq.3.7, and

mλ(ta, tb) results in the mean rate of earthquakes mλ(mj ≤ m < mj+1; ta, tb)

for a magnitude bin in the time interval ∆t = tb − ta. λ(t) could also be the

rate of earthquakes λ(Mmin ≤ m ≤ Mmax; t) per unit time duration for the

entire range m = [Mmin,Mmax], that is:

λ(Mmin ≤ m ≤Mmax; t) = P (Mmin ≤ m ≤Mmax; t)N(Mmin ≤ m ≤Mmax; t),

(3.15)

where N(Mmin ≤ m ≤ Mmax; t) is given by eq. 3.8 and P (Mmin ≤ m ≤
Mmax; t) is a modification of eq. 3.9, resulting in:

P (Mmin ≤ m ≤Mmax; t) = FM(Mmax; t)− FM(Mmin; t). (3.16)
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Replacing λ(t) by λ(Mmin ≤ m ≤Mmax; t) in eq. 3.14, mλ(ta, tb) results in the

mean rate of earthquakes mλ(Mmax ≤ m ≤ Mmin; ta, tb) for the entire range

m = [Mmin,Mmax], in the time interval ∆t = tb − ta.

Analogous to eq. 3.12, the probability of at least one event for the non-

stationary Poisson distribution is defined as:

P [N > 0; ta, tb] = 1− e−mλ(ta,tb)(tb−ta), (3.17)

The non-stationary Poisson distribution, eq. 3.13, is also applicable if multiple

independent sequences occur such as a constant background seismicity and

non-stationary induced seismicity. In this case the rate λ(t) in eq. 3.14 to

compute the mean rate of occurrence mλ(ta, tb) simply becomes the sum of the

rates of all sequences, that is:

mλ,tot(ta, tb) =

∫ tb
ta

(λbg(s) + λind(s))ds

(tb − ta)
, (3.18)

where the background and induced rate of earthquakes are given by λbg(t) and

λind(t) respectively. Eqs. 3.11 - 3.18 can be used to compute analytic expec-

tations given known or estimated (non-)stationary GR magnitude-frequency

distributions. For instance, eqs. 3.12 and 3.17 can be used to determine the

likelihood that an event with a magnitude between 4.5 and 5.5 occurs in the

next five years.

The rate of exceedance λexc(m ≥ mj; t) per unit time duration for a mag-

nitude level is another useful statistical variable for seismic hazard analysis. It

represents the number of events at time t in excess of a certain magnitude per

unit time duration. It is defined as:

λexc(m ≥ mj; t) = P (mj ≤ m ≤Mmax; t)N(Mmin ≤ m ≤Mmax; t), (3.19)

where N(Mmin ≤ m ≤ Mmax; t) is given by eq.3.8, and P (mj ≤ m ≤ Mmax; t)

is the time-varying probability of occurrence of a magnitude m occurring in
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the range m = [mj,Mmax], that is:

P (mj ≤ m ≤Mmax; t) = FM(Mmax; t)− FM(mj; t). (3.20)

The cumulative distribution function FM is again given by eq.3.10. If required,

we can define a separate rate of exceedance per unit time duration for the

background seismicity λexc,bg and the induced seismicity λexc,ind.

Eqs. 3.19 and 3.20 are extensions of eqs. 3.4, 3.5 and 3.7 for the rates

of events within a single magnitude bin. It is possible to define a mean rate

of exceedance mλ,exc(m ≥ mj; ta, tb) for a magnitude level in a time interval

∆t = tb− ta, by inserting the appropriate exceedance rate λexc(m ≥ mj; t) into

eq. 3.14. Note also that by inserting the mean rate of exceedance mλ,exc(m ≥
mj; ta, tb) into eq. 3.17, and then inverting the resulting expression, we obtain:

mλ,exc(m ≥ mj; ta, tb) =
− ln(1− P [N > 0; ta, tb])

tb − ta
. (3.21)

Eq. 3.21 is used to relate the probability P [N > 0; ta, tb] of at least one event

to exceed a magnitude m in a time interval [ta, tb] to a mean annual rate of

exceedance mλ,exc(m ≥ mj; ta, tb). This is useful since probability P [N >

0; ta, tb] is often provided in seismic hazard analyses as will be shown later.

This expression is valid for stationary and non-stationary sequences. However,

for non-stationary sources, the time interval [ta, tb] has to be identical for both

quantities.

If the GR parameters have known uncertainties then it is possible to com-

pute upper, lower and middle (average) curves, reflecting for instance one times

the standard deviation. This will be described in more detail in the implemen-

tation section.

3.2.3 Generation of synthetic earthquake catalogs using

the Monte Carlo method

The quantities shown previously can also be obtained from synthetic earth-

quake catalogs by counting, creating simultaneously a verification procedure
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to ensure all computations are correct. On the other hand, the generation of

these synthetic earthquake catalogs are the first step in the PSHA methodology

using the Monte Carlo simulation method.

The generation of synthetic earthquake catalogs using the Monte Carlo

method can be summarized in two main steps: (1) Simulation of a temporal

point process to obtain event origin times; (2) Simulation of earthquake mag-

nitudes. For the non-stationary case, the simulation of temporal point process

is given by the thinning method for a non-stationary Poisson process (Sigman,

2013; Zhuang and Touati, 2015). This method provides the event origin times

of the synthetic events, in the context of non-stationarity.

The simulation of a stationary Poisson process is performed by applying

Monte Carlo sampling to the inverse cumulative distribution function (CDF)

of the Poisson distribution with constant rate λ (Zhuang and Touati, 2015):

τ =
−ln(r)

λ
, (3.22)

where τ is a random temporal variate, λ is the rate of occurrence, and r is a

random number obtain from a uniform distribution between [0,1]. In order to

generate a sequence of events in the time frame [ta, tb], we define the following

algorithm:

Algorithm 1: Simulation of event times of a stationary Poisson process

with rate λ between times ta and tb (Zhuang and Touati, 2015):

1. Set t = ta, K = 0.

2. Generate r.

3. t = t+ −ln(r)
λ

. If t ≥ tb, then stop.

4. Set K = K + 1 and set tK = t.

5. Go to step 2

Where tK is the vector that contains the desired event origin times and K

the number of event origin times. However, for the thinning Poisson process
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to handle non-stationary sequences, an extra ’rejection’ step is added and the

rate of occurrence of events λ is a function of time.

For the thinning process, we simulate a stationary Poisson process at rate

λ∗, where λ∗ ≥ max(λ(t)). The rate λ∗ is larger than needed for the actual

process, so for each simulated time arrival, we independently generate another

random number r to decide whether to keep it or reject it. If r ≤ λ(t)/λ∗, we

keep the arrival time (Sigman, 2013). Any λ∗ that satisfies the condition λ∗ ≥
max(λ(t)) works for the thinning process; however, we recommend a λ∗ similar

-but still larger- than max(λ(t)), in order to avoid excessive computational

cost.

Algorithm 2: Simulation of event times of a non-stationary Poisson pro-

cess with rate λ(t) between times ta and tb (Sigman, 2013; Zhuang and Touati,

2015):

1. Consider λ∗ such that λ∗ ≥ max(λ(t)).

2. Set t = ta, K = 0.

3. Generate r.

4. t = t+ −ln(r)
λ∗

. If t ≥ tb, then stop.

5. Generate r.

6. If r ≤ λ(t)/λ∗, then set K = K + 1 and set tK = t.

7. Go back to step 3.

Note that time t keeps advancing in this algorithm irrespective if an event

is accepted or rejected. For the generation of synthetic earthquake catalogs in

the entire range m = [Mmin,Mmax], the rate of occurrence λ(t) is equivalent to

the time-dependent rate of earthquakes λ(Mmin ≤ m ≤Mmax; t), eq. 3.15.

Once we generate the K event origin times in the time period [ta, tb], we

sample the GR distributions considering that the event origin times are grouped

in intervals equivalent to the time samples used to describe the temporal evo-

lution of the GR parameters. For the generation of magnitudes m, we apply
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Monte Carlo sampling to the inverse cumulative distribution function (CDF)

of the GR distribution (Zhuang and Touati, 2015):

m =
−ln(r)

b(t)ln(10)
+Mmin, (3.23)

where r is again a random number obtain from a uniform distribution between

[0,1]. During the sampling, any m > Mmax is excluded (Truncated GR distri-

bution), and the sampling is repeated until we get K values with m ≤ Mmax.

We pair the event origin times in a time sample t′, with magnitudes sampled

from the GR distribution at time t′, defined specifically by a(t′) and b(t′).

By repeating the simulation of event origin times and sampling of the GR

distributions, we create multiple realizations of the synthetic earthquake cat-

alog. The use of multiple independent realizations is useful since it allows

for computing more robust statistics in particular for short or rapidly varying

sequences.

It is possible to simulate multiple independent processes. For instance,

we could have stationary background seismicity combined with a time-limited

induced seismicity sequence, each described by its own set of GR distributions,

eq. 3.1. In this case, the background seismicity would have an intercept abg and

slope bbg which are time independent, whereas the induced seismicity sequence

would have an intercept aind(t) and slope bind(t) leading to different earthquake

rates λbg and λind in eqs. 3.5 and 3.15.

The key is to create each synthetic catalog independently and separately.

Once created they can be combined for further analysis. As a practical note we

recommended using the same time units, time durations and again the same

Mmin and Mmax magnitudes. How to deal with uncertainties in estimated GR

parameters will be described in the next section.

3.3 Implementation

The generation and evaluation of the synthetic magnitude catalogs is done

in three steps, namely: (1) computation of the relevant earthquake rates, (2)

Monte Carlo simulation, and (3) computation of the analytic expectancies and
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verification.

3.3.1 Computation of the earthquake rates

For a given set of seismic parameters (a(t)-and b(t)-values, Mmin and Mmax),

we calculate the time-dependent rate of earthquakes λ(Mmin ≤ m ≤ Mmax; t),

eq. 3.15. The rates are calculated for each time sample t in a given range (e.g.

t = [ta; tb]), where the time samples are defined by the used time unit (e.g. day,

week, month, year).

We will assume that the seismic parameters are known, for instance, from

historic catalogs in the case of natural (background) seismicity or by evaluating

current and past induced seismic catalogs at one specific site. If the appropri-

ate seismic parameters are unknown as is likely for future induced seismicity

then the proposed methodology still allows for evaluating scenarios where for

instance the GR intercept aind is twice that of the background seismicity abg

for a limited time-frame.

One caveat is that it is important to ensure that the derived a-value is nor-

malized per unit area when comparing different catalogs such as for natural

and induced seismicity. This explains for instance the role of the activation pa-

rameter as used by (Ghofrani and Atkinson, 2016), which plays a normalization

role instead of representing a likelihood of occurrence.

3.3.2 Monte Carlo simulation

For the generation and evaluation of synthetic earthquake catalogs, we define

five steps: (1) Generation of event origin times, (2) Generation of magnitudes,

(3) Multiple processes, (4) Inclusion of uncertainties, and (5) Extract relevant

statistics.

Generation of event origin times: following the thinning method for

non-stationary Poisson process (algorithm 2), we can generate a single realiza-

tion of event origin times for the rate of earthquakes λ(Mmin ≤ m ≤Mmax; t).

Again, these will be the event origin times for the magnitudes in the full range

m = [Mmin,Mmax]. We can repeat this process until we generate Nr realiza-

tions of event origin times, see figure 3.1. In the case of stationary sources,
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we simply apply the stationary Poisson simulation (algorithm 1), keeping a

constant rate of earthquakes λ(Mmin ≤ m ≤Mmax).

Generation of magnitudes: Once the event origin times have been gen-

erated, we group them into time intervals that correspond to the different GR

distributions per time sample. Then, we sample each GR distribution, using

eq. 3.23, and pair the sampled magnitudes with the corresponding event origin

times contained in that time sample. The grouping is purely done to reflect

that observed GR parameters are always estimated within certain time inter-

val in historical earthquake catalogs. This step is not required for continuous

distributions.

To make comparisons between the simulations and the statistical quantities

possible, we group the synthetic magnitudes in magnitude bins, given a defined

bin size. This is needed since all analytical occurrence statistics are computed

for magnitude ranges (E.g. eq.3.5).

The resulting synthetic earthquake catalog contains event time, realization

number and magnitude, for a seismic source defined by either stationary or

non-stationary GR parameters. Such catalogs are equally needed for analysis

of ground motion in a full seismic hazard analysis (Assatourians and Atkinson,

2013). Figure 3.1 shows a sketch of the Monte Carlo simulation methodology

for the generation of non-stationary earthquake catalogs.

Multiple processes: If multiple processes occur such as natural and in-

duced seismic sources with different statistical properties, then we simulate

each process independently using their appropriate GR parameters, creating

two or more separate synthetic catalogs. The processes may have different

time durations or activity levels (See synthetic example, figure 3.2). The syn-

thetic catalogs can be combined in order to extract the statistics and study the

related hazard.

Inclusion of uncertainties: During the estimation of the GR parameters

from historical catalogs, we take the uncertainties in the a-and b-values into

account. Hazard studies (Halchuk et al., 2014) rely on the error in the b-value

by defining 3 sets of GR parameters, namely upper (b-value + error), lower

(b-value - error), and middle curves (b-value). The corresponding a-values are

correlated to the b-values, and they are simply calculated from the b-values and
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N , eq. 3.1.

PSHA uses the logic tree approach, which gives a weight to each set of GR

parameters (Assatourians and Atkinson, 2013). Generally, the middle curve

gets a weight of 0.68 (Halchuk et al., 2014), considering that in a Gaussian

distribution 68% of the data values are within one standard deviation of the

mean. In order to include the weights, we multiply the number of earthquakes

N0 of each set of GR parameters, eq. 3.2, by its corresponding weight. Next,

we simulate independently each weighted set of GR parameters (Upper, lower

and middle curves) generating 3 different catalogs. Finally, we combine the 3

catalogs to generate a unique synthetic catalog that counts for the uncertain-

ties in the GR parameters. The same three sets of GR parameters are used

to compute the analytic expressions, yielding again upper, lower and middle

curves.

Extract relevant statistics: From the synthetic earthquake catalogs we

can extract important statistical quantities for the hazard analysis. The mean

rate of earthquakes mλ(mj ≤ m < mj+1; ta, tb) in a time interval can be ob-

tained by counting the number of events within that magnitude bin, and then

dividing this count by the length of the time interval t = [ta, tb] and the number

of realizations Nr.

The probability P [N = n; ta, tb] of n occurrences with magnitudes between

Mmin and Mmax in a time interval ∆t = tb − ta can be obtained from the

synthetic catalogs by counting the number of realizations with 0, 1, 2,... n

occurrences and dividing by the number of realizations (Nr). Clearly this can

be done for any magnitude range. Likewise, by dividing the relevant time

duration it is possible to obtain expectancies that annually n events occur in a

specified magnitude range for the considered time interval.

Finally, the mean rate of exceedance mλ,exc(m ≥ mj; ta, tb) for a magnitude

level in a time interval can be obtained by counting the number of events with

magnitude m bigger than a certain magnitude level, and again dividing by the

length of the time interval ∆t = tb− ta and the number of realizations Nr. It is

important to use multiple realizations for non-stationary processes in particular

for those that are very limited in duration, since all derived statistical quantities

have estimation variances that are inversely proportional to the number of
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realizations. Contrary to stationary sequences, it is not possible in these cases

to average over longer time durations.

Figure 3.1: Sketch of the Monte Carlo simulation methodology for the gen-
eration of non-stationary earthquake catalogs. (A) Definition of the time-
dependent a(t)-and b(t)-values, and (B) equivalent rate of earthquakes. Notice
how each temporal sample might correspond to a different GR distribution.
(C) Generation of multiple realizations containing different event origin times,
using the thinning method for non-stationary Poisson process. (D) Sampling
of the GR distributions. (E) Synthetic catalog containing time, realization and
magnitude.

3.3.3 Analytical expectancies and verification

In order to verify the Monte Carlo simulation results, we will compare some

statistical quantities derived from the simulations with the equivalent analytical

quantities. These analytical quantities are: (1) The probability P [N = n; ta, tb]

of n occurrences with magnitudes between Mmin and Mmax in a time interval

∆t = tb − ta; (2) the mean rate of earthquakes mλ(mj ≤ m < mj+1; ta, tb)

for a magnitude bin in a time interval ∆t = tb − ta; and (3) The mean rate

of exceedance mλ,exc(m ≥ mj; ta, tb) for a magnitude level in a time interval

∆t = tb − ta.
The probability P [N = n; ta, tb] of n occurrences with magnitudes between

Mmin and Mmax in a time interval ∆t = tb − ta, is calculated theoretically

using eqs. 3.13-3.15. Likewise, the mean rate of earthquakes mλ(mj ≤ m <
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mj+1; ta, tb) for a magnitude bin in a time interval ∆t = tb − ta, is given by

inserting the rate of earthquakes λ(mj ≤ m < mj+1; t) per unit time duration

for a magnitude bin, eq.3.7, into eq. 3.14. The rate λ(mj ≤ m < mj+1; t) is

given by the expected number of earthquakes N(Mmin ≤ m ≤Mmax; t) per unit

time duration in the range m = [Mmin,Mmax], eq. 3.8, and the probability of

occurrence P (mj ≤ m < mj+1; t) of a magnitude bin, eq. 3.9, where the

probability P (mj ≤ m < mj+1; t) depends on the cumulative distribution

function FM(m; t), eq.3.10. The expected number of earthquakes N(Mmin ≤
m ≤ Mmax; t) and the cumulative distribution function FM(m; t) are both

directly determined by the GR parameters, and the minimum and maximum

magnitude, Mmin and Mmax, eqs. 3.8 and 3.10.

The mean rate of exceedance mλ,exc(m ≥ mj; ta, tb) for a magnitude level

in a time interval ∆t = tb − ta, is given by inserting the rate of exceedance

λexc(m ≥ mj; t) per unit time duration for a magnitude level, eq.3.19, into eq.

3.14. Simultaneously, the rate of exceedance λexc(m ≥ mj; t) is given by the

expected number of earthquakes N(Mmin ≤ m ≤ Mmax; t), eq. 3.8 and the

probability of occurrence P (mj ≤ m ≤ Mmax; t) of a magnitude m occurring

in the range m = [mj,Mmax], eq. 3.20, where the probability P (mj ≤ m ≤
Mmax; t) depends on the cumulative distribution function FM(m; t), eq.3.10.

These analytical quantities can be directly compared with the same quan-

tities derived from the Monte Carlo simulations for verification. All variables

can be extended to include spatial variations in the GR parameters such that

ground motion predictions can be made, which is the ultimate goal of prob-

abilistic seismic hazard analysis (Cornell, 1968; Assatourians and Atkinson,

2013).

3.4 Synthetic example

For illustration purposes we consider the following situation. A region has a

stationary natural seismicity with GR parameters: abg = 4, producing N0 =

10, 000, eq.3.2, and bbg = 1. An induced seismicity sequence occurs between the

years 10 through 19. Starting year 20, only natural seismicity occurs. The first

time interval t = [0, 9] has no induced seismicity. While the induced seismicity
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is active, the GR parameters are equal to:

b(t) = 1 +
cos(π(t−10)

9
)

5
, (3.24)

a(t) = 4 +
cos(π(t−10)

9
)

2
, (3.25)

where t is a discrete temporal sample, starting at t = 10 years, when the induced

seismicity appears. The time unit used in this example is year. We consider

a minimum and maximum magnitude of Mmin=4.0, Mmax=6.0 respectively

and a magnitude bin size of Mbin = 0.1. Figure 3.2 (A) shows the temporal

variation of the GR values for the background and induced sources. Figure

3.2 (B) shows the rate of earthquakes per year in the range m = [4, 6], for

both sources and the resulting combined seismicity in the period [10, 19]. It

also shows a hypothetical moving time interval with limits ta and tb. This time

interval will be used to illustrate the changes in the hazard statistics given by

the temporal variations in the source parameters.

Figure 3.2: (A) Temporal evolution of the annual a(t)-and b-values for the back-
ground and the induced seismicity. (B) Equivalent annual rate of earthquakes
λ(Mmin ≤ m ≤ Mmax; t) in the range m = [4.0, 6.0], for the background, induced
and combined seismicity. The total seismicity rate is the sum of rates for background
and induced seismicity, eq. 3.18. However induced seismicity is limited to the years
10 through 19. All seismicity returns to the natural pattern starting year 20.

We compute 5 independent simulations each comprising Nr = 10, 000 real-

izations with a time duration of 30 years. Both sources were simulated inde-

pendently and their catalogs were combined for the statistical analysis. The
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number of realizations is chosen because of the low rates for both the low-

est and highest magnitudes of interest, combined with the short duration of

the induced seismicity sequence. This also allow us to validate the theoretical

predictions for non-stationary sequences.

We evaluate the importance of the start ta and end tb times of the time inter-

val, and how the inclusion of sections with active induced seismicity alters the

statistics. Figures 3.3 (A) and (B) show how the mean annual rate of earth-

quakes mλ(mj ≤ m < mj+1; ta, tb) and the mean annual rate of exceedance

mλ,exc(m ≥ mj; ta, tb), change for 10-year length intervals with different start

times. The total rate while both processes are active is simply the sum of

both processes. As expected, the mean rates increase with the duration of in-

duced seismicity in the interval. For instance, the annual rate of earthquakes

λ(4 ≤ m < 4.1; t) for the magnitude bin m = [4, 4.1) equals 0.2, 0.27 and 0.42

events per year for the periods of t = [0, 9], t = [5, 14], and t = [10, 19], respec-

tively (Figure 3.3(A)). The spread in the predictions for different realizations

is indicative of the estimation variances of the Monte Carlo simulations. Both

theoretical (solid lines) and simulated predictions (dots) agree very well in all

cases.

Note that the mean rate of exceedance mλ,exc(m ≥ mj; ta, tb) tail off towards

the end and deviate from a straight line (Fig. 3.3 B). This occurs because we

limited the maximum magnitude Mmax to 6. In other words, magnitudes in

excess of 6 are not possible, and the annual rate λ(5.9 ≤ m < 6) and the rate

of exceedance λexc(m ≥ 5.9) for the largest magnitude bin are thus identical.

This indicates in turn that although we compute all occurrence probabilities

assuming a Gutenberg-Richter distribution for event magnitudes, generated

synthetic event catalogs by Monte Carlo simulation by design do not follow

this distribution for the largest magnitude events.

We can relate a probability of exceedance P [N > 0; ta, tb] in a time interval

[ta, tb] to an annual rate of exceedance λexc(m ≥ mj; t) for a magnitude level,

using eq. 3.21. In figure 3.3 (B) we highlight the probability of exceedance of

10% in 10 years, which is equivalent to λexc(m ≥ mj; t) = 0.01. This value

results from eq.3.21, using P [N > 0; ta, tb] = 0.1 and ∆t = 10 years. We use a

10 year period since this is the length of the considered time interval. For the
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Figure 3.3: (A) Mean annual rate of earthquakes mλ(mj ≤ m < mj+1; ta, tb), as
a function of magnitude within a 10 year interval starting respectively at 0, 5 and
10 years. (B) Corresponding annual rate of exceedance mλ,exc(m ≥ mj ; ta, tb), as a
function of magnitude. The likelihood of occurrence of 10% in 10 years is indicated in
the plot. (C) Probability as a function of number of occurrences, P [N = n; ta, tb] of
n, within the magnitude range m = [4, 6] for the 10 year time interval starting at at
0, 5 and 10 years. (D) Equivalent probability as a function of number of occurrences,
P [N = n; ta, tb] of n, within the magnitude range m = [5, 6]. The (partial) presence of
induced seismicity clearly affects the occurrence statistics. Theo=Theoretical values.
Sim=simulation number, each using 10,000 realizations.

10% probability in 10 years, we find for this hypothetical example m = 5.68,

m = 5.72 and m = 5.85 for the periods of t = [0, 9], t = [5, 14], and t = [10, 19],

respectively.

Figure 3.3 (C) shows the probability of n occurrences within the magnitude

range m = [4, 6], for different intervals with constant length of 10 years with

start times ta of respectively 0, 5 and 10 years. Again, the first time interval
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t = [0, 9] has no induced seismicity (no overlap), the second interval t = [5, 14]

half overlaps the induced seismicity period, and the third interval t = [10, 19]

full overlaps the period of induced seismicity. The theoretical values, eqs. 3.13

and eq.3.18, appear as a solid line, and the Monte Carlo simulation results

appear as dots. Figure 3.3 (D) shows the probability of n occurrences within

the magnitude range m = [5, 6], for the same intervals with constant length of

10 years. Both figures show how the induced seismicity significantly impacts

the magnitude-frequency distributions. For instance, the likelihood of exactly

3 events in the magnitude range m = [5, 6] to occur is respectively 0.16, 0.20,

and 0.26 for the periods of t = [0, 9],t = [5, 14], and t = [10, 19] (Figure 3.3

(D)). As we can see in these examples, the amount and duration of induced

seismicity contained in the time interval alters the hazard statistics.

To illustrate the influence of the length of the time interval [ta, tb], the

duration of the predictions, we evaluate different lengths while both sources

are active. The time intervals are changing to respectively 1, 3, 5 or 10 years

length, all starting at ta = 10 years. As before, we compute both the theoretical

expectations and five Monte Carlo simulations using 10,000 realizations each.

Figures 3.4 (A) and (B) show the mean annual rate of earthquakes mλ(mj ≤
m < mj+1; ta, tb) and the mean annual rate of exceedancemλ,exc(m ≥ mj; ta, tb),

for the different time interval lengths. As we expected, the mean annual rate

of earthquakes increases while the time interval includes increasing amounts of

accelerating induced seismicity. For instance, the annual rate of earthquakes

for the magnitude bin m = [4.5, 4.6) equals 0.094, 0.095, 0.10 and 0.13 events

per year for time intervals with 1, 3, 5 and 10 years length, respectively (Figure

3.4 (A)). Given the design of this synthetic example, The curves in figure 3.3 for

the time interval t = [10, 19], are equivalent to the curves in figure 3.4 for the

10-years time interval. Both cases share the same interval length and period,

and thus seismicity.

Figures 3.4 (C) and (D) show the probability of n occurrences within the

magnitude range m = [4, 6] and m = [5, 6], respectively, for the same four

models. Again, the solid lines show the theoretical values and the dots show

the results from the Monte Carlo simulations. As in figures 3.3 (D) and (C),

the probability to have at least one occurrence increases while the time interval
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Figure 3.4: (A) Mean annual rate of earthquakes mλ(mj ≤ m < mj+1; ta, tb) , as
a function of magnitude within 1, 3, 5 and 10 year length intervals, starting at year
10 (First year of induced seismicity). (B) Corresponding annual rate of exceedance
mλ,exc(m ≥ mj ; ta, tb), as a function of magnitude. (C) Probability as a function of
number of occurrences, P [N = n; ta, tb] of n, within the magnitude range m = [4, 6]
for the 1, 3, 5 and 10 year length intervals. (D) Equivalent probability as a function of
number of occurrences, P [N = n; ta, tb] of n, within the magnitude range m = [5, 6].
The time interval length, as well as the inclusion of induced seismicity, affects the
occurrence statistics. Theo=Theoretical values. Sim=simulation number, each using
10,000 realizations. TI= time interval length.

includes period of combined induced and background seismicity. For instance,

the most likely number of events in the range m = [4, 6] is 1, 4, 8 and 21 for the

time intervals with 1, 3, 5 and 10 years length, respectively (Figure 3.4 (C)).
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3.5 Horn River Basin case

3.5.1 Area of study and Data

We study the impact of induced seismicity on hazard analysis, using the re-

cent activity in the Horn River Basin, Northeast B.C. as an example. Several

studies have been made in the Horn River Basin due to the significant increase

of seismicity related to the hydraulic fracturing activities conducted between

Dec. 2006 and Dec.2011 (BC Oil and Gas Commission, 2012; Farahbod et al.,

2015a,b), particularly in the Etsho area (Figures 3.5 (A) and (B)). The de-

tected seismicity in the area was very low prior to 2006, but with an important

increase since Dec. 2006, particularly between 2010 and 2011 in line with the

amount of human activity.

Due to the lack of recorded seismicity at the Horn River Basin, we assume

that the GR parameters before Dec. 2006, for natural seismicity, are based

on the GR parameters described by the 2015 National seismic-hazard model

of Canada (Halchuk et al., 2014). For the period between Dec. 2006 and Dec.

2011, we assume that the GR parameters are based on calculations made using

the catalog from Farahbod et al. (2015b), which contains induced earthquakes

in the Horn River Basin. This catalog consists of 338 events recorded between

Dec. 2006 and Dec. 2011, with magnitudes ranging between m = 1.0 and

m = 3.6.

Analysing the catalog from Farahbod et al. (2015b), it is possible to dis-

tinguish 2 periods where the induced seismicity has clearly different recurrence

statistics: a first period with lower earthquake rates between Dec. 2006 and

Dec.2009, and a second period with higher rates between Dec.2009 and Dec.

2011. Figure 3.5 (C) shows the earthquake magnitudes vs. time, as well as the

indicated two periods with different recurrence statistics. The difference be-

tween periods is thought to be related to a considerable increase in the injection

rates after Dec. 2009 (Farahbod et al., 2015a), see figure 3.5 (D), leading to

increased earthquake activity. After Dec. 2011 we assume that the seismicity

rates return to their natural state.
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Figure 3.5: (A) Location of the Horn River Basin, Northeast British Columbia.
The Etsho area (circle in red) is described as the area with much seismic activity
in the basin (From Farahbod et al. (2015b)). (B) Location of the seismic
events (yellow dots) using the catalog from Farahbod et al. (2015b). The
blue square (IS) indicates the seismic source area used in this study. The
polygons in the picture represent some of the natural sources defined by the
2015 seismic-hazard model of Canada (Halchuk et al., 2014). FTH: Foothills,
ROCN: Rocky Mountain fold/thrust belt north, MKM: Mackenzie Mountains,
SCCWHC: Stable cratonic core western Canada H. (C) Earthquake magnitudes
as a function of time, using the catalog from Farahbod et al. (2015b). The two
distinctive periods of induced seismicity are shown. (D) Monthly injection rates
in the Horn River Basin. Notice the subtantial increase in the injection volumes
after Dec. 2009 (Vertical arrows). From Farahbod et al. (2015a).

3.5.2 Seismic parameters from the different time peri-

ods

We focus on the Etsho area within the Horn River Basin (Figures 3.5 (A) and

(B)) where much of the induced seismicity occurred between 2006 and 2011 (BC

Oil and Gas Commission, 2012). We first compute relevant GR parameters for

the natural and induced sequences. Because natural and induced seismicity
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Lower curve (w=0.16) Middle curve (w=0.68) Upper curve (w=0.16)
GR Foothills anat,3=1.84 anat,1=2.43 anat,2=3.034

N0=69.18 N0=269.15 N0=1081.43
bnat,3=0.64 bnat,1=0.8685 bnat,2=1.090

GR Etsho aetsho,nat,3=0.26 aetsho,nat,1=0.85 aetsho,nat,2=1.44
N0=1.837 N0=7.12 N0=28.17
bnat,3=0.64 bnat,1=0.8685 bnat,2=1.090

Table 3.1: GR parameters for the natural seismicity at the Foothills area and
the rescaled values for the Etsho area. These are annual anat−values. w: weight
of each GR distribution.

cover different areas, one must normalize the derived a−values per unit area

before computing occurrence statistics.

For the GR parameters of natural seismicity, before Dec. 2006 and af-

ter Dec. 2011, we use the Foothills source area, as described by Halchuk et al.

(2014). The total Foothills area is 308,349.10 km2. To count for the uncertainty

in the GR parameters, Halchuk et al. (2014) uses a mix of three GR distribu-

tions for this area. Table 3.1 shows the GR parameters for the Foothills area

and the rescaled values for the Etsho area. The weights of each distribution

are shown in the table. The rescaled N0 are obtained by first calculating the

density of earthquakes and then by multiplying these densities with the area of

induced earthquakes. Using eq.3.2, we have the following earthquake densities:

(1) 8.88x10−4, (2) 3.51x10−3, and (3) 2.29x10−4 earthquakes/km2/year. The

Etsho area is 8,262.57 km2 (Blue square fig.3.5 (B)).

Finally when combining all three sets, the N0 values of each set are first

multiplied with their respective weights. For the analytical results, we calculate

the rates from the weighted sets, and then sum the results. In the case of the

Monte Carlo simulations, we simulate each weighted set, and then combine all

simulation cubes to obtain a unique catalog. It is important to emphasize that

using a somewhat different natural seismicity rate does not greatly affect the

hazard computations during the period of induced seismicity since the latter

dominates then.

To study the temporal evolution of the GR parameters during the periods

of induced seismicity, we define a moving time window to screen the catalog.

In this case, we define a 1-year sliding time window. Then, the GR values

are assigned to the corresponding central month in each time window. This
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process is repeated by moving the entire time window one month ahead every

time, until the central month equals the last month of the catalog. For the end

points, the time window will include sections of the natural events.

For the calculation of the GR parameters in each time interval, we use

only the earthquakes with magnitude equal or bigger than the magnitude of

completeness (Mc) estimated for the Horn River Basin. According to the cal-

culations of Farahbod et al. (2015b), the magnitude of completeness equals

Mc = 2.4 for the induced events in the Horn River Basin between Dec.2006

and Dec.2011. To estimate the b-values, we use a modified version of the max-

imum likelihood method (MLM, Aki (1965), Wiemer and Wyss (1997)), that

accounts for the magnitude binning. The annual a-values are calculated from

the b-values and eq. 3.1. However, we convert annual a-values to correspond-

ing monthly ones. This is done by dividing their N0 values by 12, and then

transforming these back using eq. 3.2.

The uncertainties in the GR parameters are also included. This is done

by adding or subtracting the errors estimated for the b-values, resulting in 3

curves for both the a-and b-values. For the estimations of the b-value error, we

use the method described by Shi and Bolt (1982). For the middle set of GR

parameters, we assign a weight of 0.68 for the Monte Carlo simulations. For

both the upper and lower set obtained by adding or subtracting the errors in

the b-values, we assign a weight of 0.16.

Figures 3.6 (A) and (B) shows the temporal evolution of the a-and b-values

in the Horn River Basin. Notice the constant GR parameters before and af-

ter the induced seismicity period and the decrease of the b-values around Dec.

2010, likely associated with the increased injection rates. Again, the tem-

poral evolution of GR parameters indicates 2 distinctive periods of induced

seismicity. For all periods, we consider a minimum and maximum magnitude

of Mmin=2.5, and Mmax=5.0 respectively, based on the range of magnitude

earthquakes recorded in the catalog.

We choose Mmax=5.0 based on previous hazard assessments for induced

seismicity in Western Canada. For instance, Atkinson et al., (2015) made a

preliminary hazard evaluation for Fox Creek (Alberta, Canada) using values for

the maximum magnitude between Mmax=4.5 and Mmax=6.5. These values are
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smaller than the maximum magnitude for natural seismicity in the area, which

range between Mmax=6.5 and Mmax=7.5. The largest earthquake recorded in

the Horn River Basin is m=3.6. Based on these observations, we consider that

a Mmax=5.0 would be appropriate for the hazard analysis instead of Mmax=7.5

as used in the fifth generation seismic hazard model for Canada (Halchuk et al.,

2014) . We will briefly address this point further in the discussion section.

Contrary to the synthetic example we do not simulate the natural and

induced sequence separately but assume a single time-varying GR distribution

in both the analytic computations and Monte Carlo simulations. This simplifies

the calculations but also means we do not need to identify natural from induced

events between Dec. 2006 through Dec. 2011.

Figure 3.6: Temporal evolution of the (A) b-values, and (B) monthly a-values in the
Horn River Basin. For the periods before Dec. 2006 and after Dec 2011, only back-
ground seismicity is assumed. The induced seismicity parameters were calculated
from the observed catalog (Fig. 3.5 (C)). The uncertainties in the GR parameters
are also included, by adding or subtracting the errors in the b-values. The green,
blue and red curves describe the set of GR parameters for the upper, middle and
lower curves in the occurrence statistics. Vertical arrow indicates change in injection
volume, separating first and second period of induced seismicity. MLM=Maximum
likelihood method.
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3.5.3 Hazard analysis

We compute 5 independent simulations each comprising Nr = 10, 000 realiza-

tions with a time duration of Nt = 120 months (Dec.2004 up to Dec. 2014),

based on the seismicity and GR parameters described before. We consider a

magnitude bin size of Mbin = 0.1, and monthly rates of earthquakes. In the case

of the background seismicity, the transformation to monthly rates leads to the

following a−values: aetsho,nat,1=-0.226, aetsho,nat,2=0.37, aetsho,nat,3=-0.81. For

consistency purposes, we later transform the analytical and simulated monthly

rates to annual rates of earthquakes by multiplying by 12.

Figures 3.7 (A) and (B) show the predictions for the mean annual rate

of earthquakes mλ(mj ≤ m < mj+1; ta, tb), and the mean annual rate of ex-

ceedance mλ,exc(m ≥ mj; ta, tb), for the periods before and after the induced

events, as well as the first and second period of the induced seismicity. Both

the theoretical predictions and the quantities derived from the five Monte Carlo

simulations are plotted. The upper, middle and lower analytic curves are in-

cluded in order to show the variable range of rates generated by the uncer-

tainties in the GR parameters. The occurrence statistics of these curves are

calculated by using the time-dependent GR parameters described in figure 3.6

and the expressions in the theory section. These curves are not necessarily

straight lines, because they are obtained by averaging multiple curves resulting

from time-dependent GR parameters.

For instance, the mean annual rate of earthquakes mλ(2.5 ≤ m < 2.6; t),

for the magnitude bin m = [2.5, 2.6), is equal to 0.0088 events per year for

the periods before and after the induced seismicity, and increases to 2.59 and

11.44 events per year for the first and second period of induced seismicity,

respectively. On the other hand, the annual rate of exceedance mλ(m ≥ 2.5)

for magnitudes m ≥ 2.5, is equal to 0.048 events per year for the periods before

and after the induced seismicity, and increases to 7.39 and 51.49 events per

year for the first and second period of induced seismicity, respectively. The

catalog contains annually respectively 7 and 48.5 events of m ≥ 2.5 for the

same periods. This confirms the substantial increase in seismicity in the period

Dec. 2006 through Dec. 2011 in the Horn River Basin, as shown in figure 3.5

(C).
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Using different time intervals [ta, tb], we compute the probability of n occur-

rences within the magnitude range m = [2.5, 4), in order to study the impact

of the induced seismicity in the Horn River Basin. We choose the ranges

m = [2.5, 4) to properly compare the predictions with the recorded catalogs,

since the largest recorded magnitude was m = 3.6 (Fig. 3.5(C)). Figure 3.8

(A) shows the probability of n occurrences (Eq. 3.17), within the magnitude

ranges m = [2.5, 4), for a 3-year time interval for the natural seismicity, that is,

before Dec. 2006 and after Dec. 2011. This plot shows, for instance, that the

likelihood of zero natural events in the magnitude range m = [2.5, 4) to occur

within three years equals 0.87.

Likewise, figure 3.8(B) shows the probability of n occurrences within the

magnitude range m = [2.5, 4), for the 3-year interval in the first period of

induced seismicity (Dec. 2006 - Dec. 2009). The most likely number of events,

within the magnitude range m = [2.5, 4), is 21 events with a probability of

0.088. This prediction is similar to the actual number of earthquakes m =

[2.5, 4) recorded in the catalog of Farahbod et al. (2015b) between Dec. 2006 -

Dec. 2009, which was 21 events.

Finally, figure 3.8 (C) shows the probability of n occurrences within the

magnitude range m = [2.5, 4), for the 2-year interval in the second period of

induced seismicity (Dec. 2009 - Dec. 2011). The most likely number of events

within the magnitude range m = [2.5, 4), is 99 events with a probability of

0.040. This prediction is similar to the actual number of earthquakes m =

[2.5, 4) recorded between Dec. 2009 - Dec. 2011, which was also 99 events.

We can also obtain the likelihood of larger-magnitude events, for instance,

the probability of n occurrences within the magnitude range m = [4.0, 5.0].

Figure 3.8 (D) shows the probability of n occurrences within the magnitude

range m = [4.0, 5.0], for the 3-year interval in the first period of induced seis-

micity (Dec. 2006 - Dec. 2009). The most likely number of events was 0, with a

probability of 0.90. Figure 3.8 (E) shows the probability of n occurrences within

the magnitude range m = [4.0, 5.0], for the 2-year interval in the second period

of induced seismicity (Dec. 2009 - Dec. 2011). There is a predicted probabil-

ity of 0.07 to have no earthquakes within the magnitude range m = [4.0, 5.0].

Fortunately, no events in this magnitude range actually occurred. We can enu-
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merate a couple of reasons why this prediction seems to fail. First, it is possible

that the observations fell in the 0.07 probability of no occurrence. However, it

is more likely that the discrepancy between observed and predicted likelihood

for an m = [4.0, 5.0] earthquake is caused by the large uncertainties in the

predictions for moderate to larger magnitude events (Figures 3.7 and 3.8 (D)).

Traditional PSHA is typically based on earthquake catalogs that cover sev-

eral decades. Any magnitude events that have average recurrence periods that

are well contained (sampled) within the length of available observations will

have reasonable estimation variances in terms of their occurrence rates. Con-

versely, magnitudes that occur only rarely or are not observed will have large

uncertainties in estimated occurrence rates. Their occurrence rates are in prac-

tice estimated by extending (extrapolating) the frequency-magnitude statistics

beyond the range of well-constrained observations. In this case the largest

observed magnitude is 3.6. Therefore obtaining reliable estimates for the oc-

currence likelihoods of events with magnitudes m = [4.0, 5.0] is very challeng-

ing. These uncertainties are further compounded if we are dealing with non-

stationary sequences since the magnitude-frequency statistics will now vary

over time, thus making it even more difficult to reliably establish the occur-

rence periods of the largest events of interest.

3.6 Discussion

Traditional seismic hazard analysis has always assumed that the earthquake

rates are stationary such that long-term predictions become feasible (Cornell,

1968; Baker, 2013). Clearly, induced seismicity is determined by anthropogenic

patterns and is thus likely strongly correlated to the amount of industrial activ-

ity (Brodsky and Lajoie, 2013; Langenbruch and Zoback, 2016; Van der Baan

and Calixto, 2017; Convertito et al., 2012; Bourne et al., 2014). Treating in-

duced seismicity as a stationary process is thus likely to lead to biased long-term

predictions. This is one of the reasons why Petersen et al. (2016) and Petersen

et al. (2017) opted for one-year hazard predictions.

The developed analytical expressions and Monte Carlo simulations can han-

dle both stationary and non-stationary sequences thus allowing for a true as-
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Figure 3.7: (A) Mean annual rate of earthquakes mλ(mj ≤ m < mj+1; ta, tb), as
a function of magnitude for the periods before and after the induced seismicity, as
well as the first and second period of induced seismicity. (B) Corresponding mean
annual rate of exceedance mλ,exc(m ≥ mj ; ta, tb), as a function of magnitude. The
continuous lines show the analytical values for the upper, middle and lower curves
resulted from the averaging of the GR parameters in figure 3.6. Sim=simulation
number, each using 10,000 realizations.

sessment of the likelihood of larger magnitude events to occur within a certain

timeframe. The good match between the actual number of earthquakes in the

catalog and the prediction from the non-stationary Poisson model supports

the use of the Poisson model for injection induced seismicity, as suggested by

Langenbruch et al. (2011) and Langenbruch and Zoback (2016).

The use of the Poisson model has allowed for computing hazard statistics

analytically (Cornell (1968), Baker (2013)). The Poisson model assumes how-

ever that the earthquakes occur randomly in time and space. This is not accu-

rate since earthquakes tend to cluster temporally and spatially (e.g. as seen in

aftershock sequences). Conversely, mainshocks have been shown to be tempo-

rally independent Gardner and Knopoff (1974), leading some authors (Gardner

and Knopoff, 1974; Reasenberg, 1985) to strongly advocate that earthquake

catalogs are declustered by (1) identifying mainshocks, and (2) removing all

associated aftershock sequences. The GR parameters are then computed from

declustered catalogs, and subsequently used in hazard predictions (e.g., Pe-

tersen et al. (2016)). The GR parameters of the declustered catalogs tend to
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Figure 3.8: Probability as a function of the number of occurrences, P [N = n; ta, tb]
of n, within the magnitude range m = [2.5, 4.0) for (A) the periods before and after
induced seismicity, (B) the first period of induced seismicity and (C) the second
period of induced seismicity. Once more, the presence of induced seismicity clearly
affects the occurrence statistics. The actual number of events in the first and second
period of induced seismicity are indicated with a red line. Probability as a function of
the number of occurrences within the magnitude range m = [4.0, 5.0] for (D) the first
period of induced seismicity, and (E) the second period of induced seismicity. These
results confirm the change in the hazard statistics between the two periods of induced
seismicity. The continuous lines show the analytical values for the upper, middle and
lower curves resulting from the uncertainties in the GR parameters. Sim=simulation
number, each using 10,000 realizations.

have smaller a-values and thus a reduced number of predicted earthquakes,

eq.3.2. On the other hand, the b-value is often enlarged, indicating a larger

likelihood for the occurrence of larger magnitude events, eq.3.3. Declustered

catalogs thus tend to increase the predicted hazard. Other authors argue that

declustering is only needed to minimize spatial distortions in earthquake occur-

rences and may lead to significant underestimation of the true seismic hazard

if no compensation is applied to correct for the removed seismicity (Marzocchi
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and Taroni, 2014). Furthermore, final predictions can depend strongly on the

used declustering algorithm (Van Stiphout et al., 2012).

The Monte Carlo simulation method described here can be changed to han-

dle the occurrence of aftershocks, following mainshocks. However, this would

require extensive knowledge of the recurrence patterns both in space and time.

This may not be feasible in practice but it would allow for testing the hypoth-

esis if using mainshock/aftershock sequences instead of a random temporal

occurrence has a substantive influence on hazard predictions on the timescales

of years to decades. It is important to emphasize however that the short-term

non-stationarity due to the occurrence of mainshock/aftershock sequences is

different from the intermediate to long-term non-stationarity considered in this

paper since the former only have a minor influence on the GR parameters

describing long-term time scales. Conversely, induced seismicity can strongly

fluctuate as it is determined by the amount of industrial activity (Brodsky and

Lajoie, 2013; Langenbruch and Zoback, 2016; Van der Baan and Calixto, 2017).

Further work is necessary to create a complete hazard analysis for induced

seismicity. Some of the future aspects include:

1. The GR parameters are not known beforehand; however, the developed

methodology allows us to evaluate different hazard scenarios from a di-

verse set of time-varying GR parameters. The GR parameters might be

obtained from alternative sources of information, for instance, the seismo-

genic index (Shapiro et al., 2010), models based on compaction (Bourne

et al., 2014, 2015, 2018), or the in-situ state of stress Roche et al. (2015).

Future approaches may relate injection rates with a-values, as proposed

by Shapiro et al. (2010). This might be specially useful for current ac-

tivities in order to forecast hazard seismicity, as applied in Oklahoma by

Langenbruch and Zoback (2016).

It is unclear if the total or only mainshock seismicity is proportional to

the net injection volumes. For instance, various studies related to salt-

water disposal in Texas and Oklahoma, USA, find that the total seismic-

ity, including mainshocks and aftershocks, is proportional to the injected

volumes (Keranen et al., 2014; Hornbach et al., 2015; Langenbruch and

Zoback, 2016). Conversely, Brodsky and Lajoie (2013) determine a direct
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correlation between the net volume (injected minus produced) and the

seismic activity in the Salton Sea Geothermal field after they remove af-

tershocks using the model of Ogata and Zhuang (2006). Total seismicity

and net or injection volume are uncorrelated in their case history. They

thus postulate that only the level of mainshock seismicity is proportional

to net volume. Clearly in order to predict temporal changes in seismic

hazard it will be very important to establish what causal relationship is

most appropriate for a specific region and/or type of industrial activity.

2. An important aspect is the specification of the maximum magnitude

Mmax. One of the reasons to define a maximum magnitude Mmax is

due to geological conditions since the magnitude is related to the fault

area (Wyss, 1979; Scholz, 1982). For instance, we would not expect an

earthquake larger than a certain magnitude m if there are no faults of suf-

ficient size. The second reason is related to the very low likelihood of the

large magnitude events. Estimation variances in Monte Carlo simulations

are proportional to the number of realizations and inversely proportional

to the likelihood of occurrence. In other words, very rare events have

large estimation uncertainties, in that a single drawn event can greatly

influence final predictions. This explains for instance the increasing devi-

ation from the theoretical curves in figures 3.7 (A) and (B) for the rarest

events. To circumvent this issue, Monte Carlo simulations often impose

a maximum magnitude to stabilize predictions.

3. The above methodology is very flexible and devised such that it can be

easily extended to handle also spatial variations in seismicity in order to

generate a full seismic hazard analysis in terms of expected peak ground

motion within a certain timeframe. In case of the Monte Carlo simula-

tions this implies defining spatial occurrence statistics and incorporating

appropriate ground motion predition equations, using a similar numerical

scheme as used by Assatourians and Atkinson (2013) and Musson (2000).
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3.7 Conclusions

A method to compute synthetic earthquake catalogs and associated occurrence

earthquake statistics is developed for non-stationary seismicity, using Monte

Carlo simulations. The Poisson model remains relevant for analysing and com-

puting non-stationary induced seismicity. However, non-stationary Gutenberg-

Richter (GR) parameters have to be included in order to properly assess the

hazard for this type of seismicity. In both examples, tests showed excellent

agreements between analytical predictions and numerical results.

In the simulated forecasts, we assume that the GR induced parameters

are known. The next steps will include incorporating relationships between

earthquake parameters and injection volumes, and extensions to handle spatial

source distributions as well as ground motion evaluation in order to generate a

complete methodology for non-stationary probabilistic seismic hazard analysis.
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Chapter 4

Forecasting of earthquake rates

using physics-based models for

probabilistic seismic hazard

analysis: a case study 1

4.1 Introduction

Probabilistic seismic hazard analysis (PSHA) has been largely used for assessing

hazards related to natural seismicity. PSHA quantifies the possible ground

motion at one location, in a period of time, caused by earthquake shaking

(Cornell, 1968; Baker, 2008). PSHA outputs (e.g., seismic hazard curves and

seismic hazard maps) are used by governments and industry in applications for

life and property safety, such as developing building code requirements, deciding

the security criteria for critical facilities like dams, hydroelectric plants, nuclear

plants, and determining earthquake insurance rates (Baker, 2008; Mulargia

et al., 2017).

Recent studies (Atkinson et al., 2015; Ellsworth, 2013; Van der Baan and

1A manuscript including parts of this chapter is in preparation for submission to Pure
and Applied Geophysics
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Calixto, 2017) have shown increased seismicity in geologically stable basins

in North America, thought to be associated with hydraulic fracturing treat-

ments and/or waste water disposal wells. As a result, it has been necessary

to quantify the seismic hazard related to induced activities associated with

shale oil and gas production. However, there are some challenges in the imple-

mentation of PSHA for induced seismicity, including the estimation of future

induced seismicity rates and its non-stationary behavior. Reyes Canales and

Van der Baan (2019) developed a methodology to include non-stationary seis-

micity rates in the seismic hazard analysis, where the changing rates result from

time-dependent Gutenberg-Richter (GR) parameters. However, estimating and

forecasting GR parameters for induced seismicity is still a major challenge due

to the lack of recorded events and the time dependency of rates. In contrast,

this is a lesser problem for natural seismicity, since seismic hazard analysis

assumes stationary GR parameters based on long-term historical catalogs.

Petersen et al. (2016) and Petersen et al. (2017) elaborate a one-year haz-

ard forecast for the central and eastern United States, based on catalogs with

recorded induced events. These studies are limited to short-term hazard predic-

tions due to the assumption of temporal stationarity, which presumes that the

induced seismicity sequence remains of unchanged intensity during both the ob-

servation and forecasting period. On the other hand, some physics-based mod-

els like the Seismogenic Index (Shapiro et al., 2010) and the Hydromechanical

Nucleation Approach (Norbeck and Rubinstein, 2018) have been implmented

in order to forecast time-dependent GR parameters related to induced seismic-

ity. In the context of this study, physics-based models refer to the approaches

that include physical properties (geological and operational parameters) in the

forecasts of human-induced events.

The Seismogenic Index (Shapiro et al., 2010) modifies the classical GR

relationship to allow time-dependent cumulative a-values. This cumulative a-

value increases depending on the total volume injected and the Seismogenic

Index, which is related to the volume concentration of preexisting faults and

the state of stress in one particular area (Shapiro et al., 2010). On the other

hand, the Hydromechanical Nucleation model (Norbeck and Rubinstein, 2018)

relies on the empirical seismicity rate model from Dieterich (1994) and Segall
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and Lu (2015), which relates the changes in the Coulomb stress with changes

in the seismicity rates. Also, Norbeck and Rubinstein (2018) assume that the

Coulomb stress change is proportional to the pressurization rate instead of the

total injected volume and thus pore pressure change.

In this study, we evaluate the performance of both physics-based approaches

using two tests: (1) how accurate are the rate predictions (number of earth-

quakes exceeding a certain magnitude per month); (2) how appropriate are

the predictions for specific magnitude ranges (given by forecasted GR param-

eters). The first test is important since it describes the changes in the overall

seismicity patterns. The results from the second test are used to predict the

exceedance probability and the likelihood for a certain magnitude event to oc-

cur within a fixed time period. We apply both methodologies to one area with

recent induced seismicity: the Horn River Basin, Northeast British Columbia

(BC). We generate synthetic earthquake catalogs using the Monte Carlo sim-

ulation approach (Reyes Canales and Van der Baan, 2019; Assatourians and

Atkinson, 2013; Musson, 2000). From these catalogs, we can obtain relevant

statistics for the hazard analysis, and compare both models using the two test

criteria. In order to make a complete Probabilistic Seismic Hazard Analysis

(PSHA), we also include the generation of synthetic ground motion catalogs

and ground motion predictions. For the first test, our results show that the

predictions follow the observed induced seismicity patterns: increase and de-

crease of the number of earthquakes, in line with the anthropogenic activities,

and a similar number of earthquakes per month. However, for the second test,

the predictions for specific magnitude ranges may both under- or overestimate

the hazard, among other things, due to the complexity in the evolution of the

seismicity and possible changes in the GR parameters that are not seen by the

models. The latter is especially relevant for the b-value, which may change over

time but is assumed constant for both models.
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4.2 Theory

4.2.1 Forecasting Gutenberg Richter parameters: Physics-

based models

One of the most difficult challenges in the seismic hazard analysis for induced

seismicity is the prediction of the Gutenberg-Richter (GR) parameters (a-and

b-values). In this chapter, we describe two physics-based models to address this

issue: The Seismogenic Index (Shapiro et al., 2010; Langenbruch and Zoback,

2016), and the Hydromechanical Nucleation model (Dieterich, 1994; Segall and

Lu, 2015; Norbeck and Rubinstein, 2018).

Seismogenic Index: Shapiro et al. (2010) modify the classical Gutenberg-

Richter magnitude-frequency distribution to include fluid injection-induced earth-

quakes at hydrocarbon and geothermal reservoirs. The Gutenberg-Richter

magnitude-frequency distribution is given by (Gutenberg and Richter, 1944):

log(N) = ac − bM, (4.1)

where N is the number of earthquakes with a magnitude greater than m. The b-

value indicates the ratio of small and large magnitude events, and the ac-value

is related to the cumulative number of N0c earthquakes with a non-negative

magnitude. The latter is given by:

N0c = 10ac . (4.2)

On the other hand, Shapiro et al. (2010) define the following magnitude-

frequency distribution:

log(N) = log(Qc(t)) + Σ− bm = a′c(t)− bm, (4.3)

where Qc(t) is the cumulative volume injected up to time t, Σ is the Seismogenic

Index, and a′c(t)-value is related to the cumulative number N0c of earthquakes

with a non-negative magnitude up to time t. Notice how the a′c(t)-value is

time-dependent and is determined by the cumulative volume injected and the

Seismogenic Index. In order to get the annual a′(t)-value, we simply divide the
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equivalent cumulative number N0c, equation 4.2, by the time duration of the

catalog.

The Seismogenic Index Σ incorporates the volume concentration of pre-

existing faults and the state of stress in one area (Shapiro et al., 2010). It is

supposed to be a constant parameter with time (Shapiro et al., 2010; Langen-

bruch and Zoback, 2016). In practice, the Seismogenic Index is obtained by

calculating the cumulative ac-value from a catalog with induced earthquakes

and the cumulative volume injected in that time, as follows:

Σ = ac − log(Qc(t)). (4.4)

Once the Seismogenic Index is calculated for one area, it is possible to

predict the changes in the cumulative a′c(t)-value by adding the log of the

future volume to inject to the Seismogenic Index:

a′c(t) = log(Qc(t)) + Σ. (4.5)

Notice that the assumption of constant Seismogenic Index relies on the

assumption of constant b-value. Temporal changes in the b-value could alter

the estimations of the Seismogenic Index and a′c(t)-value.

The Seismogenic Index has been calculated and applied in different in-

duced seismicity cases with promising results, including seismicity related to

salt-water injection, hydraulic fracturing treatments, and geothermal activities

(Shapiro et al., 2010; Langenbruch and Zoback, 2016).

Hydromechanical Nucleation model: Dieterich (1994) and Segall and

Lu (2015) develop an empirical seismicity rate model that relates changes in the

Coulomb stress with changes in the seismicity rates. The temporal evolution

of seismicity rate can be described by using the following ordinary differential

equation:

˙R(t) =
R(t)

tc

( ṡ
ṡ0
−R(t)

)
, (4.6)

where R(t) is the ratio between the seismicity rate r(t) resulting from the

injection, and the background seismicity rate r0:
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R(t) = r(t)/r0. (4.7)

The stressing rate ṡ is the Coulomb stressing rate on the faults, and ṡ0

represents the tectonic stressing rates. The Coulomb stress is defined as:

s = τ − f(σ − p), (4.8)

where τ is the shear stress, f is the fault friction coefficient, σ is the normal

stress, and p is the fluid pressure (Pollard and Fletcher, 2005).

Finally, the parameter tc is the characteristic decay time and is defined by:

tc =
āσ̄

ṡ0
, (4.9)

where ā is the direct-effect parameter in the rate-and-state friction formulation,

and σ̄ is the effective normal stress. The parameter tc reflects a characteristic

timescale over which the seismicity r(t), resulting from the injection, tends to

the background seismicity rate r0 (Norbeck and Rubinstein, 2018). The ā is a

friction parameter that represents the direct velocity strengthening magnitude,

and it is obtained through laboratory experiments (Segall and Lu, 2015).

Equation 4.6 can be solved numerically using an explicit Runge-Kutta

method with adaptive time-stepping, and embedded error estimates (Norbeck

and Rubinstein, 2018). For the purpose of this study, we use ode45 in MAT-

LAB to integrate the ordinary differential equation, as used by Segall and Lu

(2015). However, in order to solve this ordinary differential equation, a model

to describe the changes in the Coulomb stressing rate ṡ is required.

Norbeck and Rubinstein (2018) assume that the changes in the Coulomb

stressing rates ṡ are approximately equivalent to the pressurization rate ṗ, then

ṡ ' ṗ. The pressurization rate ṗ in response to injection is moderated by the

compressibility of the system (Horne, 1995):

ṗ =
Q(t)

V φβ
, (4.10)

where Q(t) is the injection rate per time unit, V is the reservoir bulk volume,

φ is the rock porosity, and β is the total reservoir compressibility, obtained in
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laboratory experiments. These reservoir parameters are assumed unchanged

for the entire stimulated reservoir, evidently resulting in a oversimplification of

the reservoir properties. By solving equation 4.10, we can model the Coulomb

stressing rate ṡ necessary to solve equation 4.6, and finally obtain the parameter

R(t), which ultimately reflects the change in the a-value. Re-arranging equation

4.7, we have:

r(t) = r0R(t). (4.11)

The background seimicity rate r0 can be re-written using the notation

from Reyes Canales and Van der Baan (2019), where the rate of earthquakes

λ(Mmin ≤ m < Mmax) for a magnitude range m = [Mmin,Mmax] is given by:

λ(Mmin ≤ m < Mmax) = P (Mmin ≤ m < Mmax)N(Mmin ≤ m ≤Mmax),

(4.12)

where Mmin and Mmax are the minimum and maximum magnitudes considered,

respectively. The total expected number of earthquakes N(Mmin ≤ m ≤Mmax)

is given by:

N(Mmin ≤ m ≤Mmax) = 10a−bMmin − 10a−bMmax . (4.13)

In this equation, a and b are the parameters defined by the Gutenberg-

Richter distribution (Gutenberg and Richter, 1944). Finally, the probability of

occurrence P (Mmin ≤ m < Mmax) is given by:

P (Mmin ≤ m < Mmax) = FM(Mmin)− FM(Mmax), (4.14)

where FM(m) denotes the cumulative distribution function for magnitude m,

and is defined by:

FM(m) =
1− 10−b(m−Mmin)

1− 10−b(Mmax−Mmin)
. (4.15)

Subsequently, the background seimicity rate r0 in the magnitude range m =

[Mmin,Mmax] is equivalent to:

r0 = λ(Mmin ≤ m ≤Mmax). (4.16)
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Then, the seismicity rate resulting from the injections r(t), eq. 4.11, can be

rewritten as:

r(t) = λ(Mmin ≤ m ≤Mmax)R(t). (4.17)

The parameter λ(Mmin ≤ m ≤ Mmax) can be expressed in terms of the

probabilities P (Mmin ≤ m ≤ Mmax) and number of earthquakes N(Mmin ≤
m ≤Mmax) for the magnitude range m = [Mmin,Mmax]:

r(t) = P (Mmin ≤ m ≤Mmax)∗

N(Mmin ≤ m ≤Mmax)R(t).
(4.18)

Then, we can develop the expression N(Mmin ≤ m ≤ Mmax)R(t), taking

into account the parameter R(t):

N(Mmin ≤ m ≤Mmax)R(t) = R(t)10a−bMmin

−R(t)10a−bMmax .
(4.19)

Then, by applying properties of logarithms, we have:

N(Mmin ≤ m ≤Mmax)R(t) = 10log(R(t))+a−bMmin

− 10log(R(t))+a−bMmax .
(4.20)

It turns out that log(R(t)) is simply added to the background a-value,

resulting in a new, time-dependent a′(t)-value:

a′(t) = log(R(t)) + a. (4.21)

In other words, the a′(t)-value can be estimated by knowing the R(t) pa-

rameter, which depends on the injection rates and other stress and tectonic

parameters from the site, as well as the background a-value. Thus, the GR

magnitude-frequency distribution for the Hydromechanical Nucleation model

becomes:

log(N) = log(R(t)) + a− bm = a′(t)− bm. (4.22)
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The Hydromechanical Nucleation model has been applied in different in-

duced seismicity cases, including seismicity related to salt-water injection in

Oklahoma (Norbeck and Rubinstein, 2018). Both the Seismogenic Index and

the Hydromechanical model rely on constant b-values and time-dependent a-

values. In other words, the assumption of constant b-values can result in differ-

ences between the forecast and actual seismicity, even if the predicted a-values

are reasonable.

4.2.2 Generation of synthetic ground motion catalogs

using the Monte Carlo simulation method

Reyes Canales and Van der Baan (2019) derive analytical expressions for the

seismic hazard analysis of non-stationary seismic sources. Some of these ex-

pressions include the rate of exceedance λexc(m ≥ mj; t), and the probability

P [N = n; ta, tb] of n occurrences happening in a time interval ∆t = tb− ta. For

a non-stationary source, the rate of exceedance λexc(m ≥ mj; t) is defined as

(Reyes Canales and Van der Baan, 2019):

λexc(m ≥ mj; t) = P (mj ≤ m ≤Mmax; t)N(Mmin ≤ m ≤Mmax; t), (4.23)

where P (mj ≤ m ≤Mmax; t) is the time-varying probability of occurrence of a

magnitude m occurring in the range m = [mj,Mmax], and is defined as:

P (mj ≤ m ≤Mmax; t) = FM(Mmax; t)− FM(mj; t). (4.24)

On the other hand, for a non-stationary source, the probability P [N =

n; ta, tb] of n occurrences happening in a time interval ∆t = tb − ta is given by:

P [N = n; ta, tb] =
mn
λ(ta, tb)(tb − ta)ne−mλ(ta,tb)(tb−ta)

n!
, (4.25)

where mλ(ta, tb) is the mean of the time-varying rate of occurrence λ(t) in the
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time interval t = [ta, tb], defined as (Sigman, 2013):

mλ(ta, tb) =

∫ tb
ta
λ(s)ds

(tb − ta)
, (4.26)

where, λ(t) could be equivalent to the rate of earthquakes λ(Mmin ≤ m <

Mmax) for a magnitude range m = [Mmin,Mmax], eq.4.12. Equation eq.4.19 is

known as the non-stationary Poisson distribution.

Likewise, we can obtain similar expressions for ground motion values in

the context of non-stationary seismicity. An essential expression in the seismic

hazard analysis is the rate of exceeding a ground motion λ(gm ≥ gmj; t), which

in the context of non-stationary seismic sources is given by (Baker, 2008, 2013):

λ(gm ≥ gmj; t) = λ(Mmin ≤ m ≤Mmax, t)∗∫ Mmax

Mmin

∫ r

0

P (gm > gmj | m, r)∗

fm(m, t)fR(r)drdm,

(4.27)

where P (gm > gmj | m, r) is the probability to exceed a ground motion gmj

in a time t, given a magnitude m and distance r. This probability is given

by the Ground Motion Prediction Equations (GMPEs), which require as input

the magnitude and distance of the event in order to predict the ground motion.

fm(m, t) is the probability density function (PDF) of the magnitudes, and fR(r)

is the PDF of the distance. Notice that the time-dependency in the rate of

exceeding a ground motion λ(gm ≥ gmj; t) is given by the time-dependency in

the rate of earthquakes λ(Mmin ≤ m ≤Mmax, t) and magnitude PDF fm(m, t),

consequence of time-dependent GR parameters described by Reyes Canales

and Van der Baan (2019). The plot of the rate of exceedance as a function of

ground motions is also known as the seismic hazard curve (Baker, 2008, 2013).

Like the rate of exceeding a ground motion λ(gm ≥ gmj; t) might change

over time, the mean rate of exceeding a ground motion mλ(gm ≥ gmj; ta, tb)

in a time interval t = [ta, tb], is an useful expression in the hazard analysis for

non-stationary sources:
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mλ(gm ≥ gmj; ta, tb) =

∫ tb
ta
λ(gm ≥ gmj; s)ds

(tb − ta)
. (4.28)

However, solving analytically these expressions can be rather complicated.

Fortunately, the Monte Carlo simulation method can easily obtain numerical

results for these expressions (Musson, 2000; Assatourians and Atkinson, 2013).

First, a synthetic earthquake catalog has to be generated. This method-

ology has been described in Reyes Canales and Van der Baan (2019). The

generation of synthetic earthquake catalogs can be summarized in two main

steps: (1) Simulation of a temporal point process to obtain arrival times for a

single realization; (2) Simulation of earthquake magnitudes m (Musson, 2000;

Assatourians and Atkinson, 2013; Reyes Canales and Van der Baan, 2019). To

generate arrival times for a single realization, a Monte Carlo sampling is per-

formed to the inverse cumulative distribution function (CDF) of the Poisson

distribution with rate λ. In this step, the earthquake recurrence λ is defined

by the GR parameters, and the average number of samples in one realization is

given by the recurrence rates and the period of time to simulate. To generate

magnitudes for each time arrival, another Monte Carlo sampling is performed

to the inverse CDF of the GR recurrence law. Consequently, each pair of time

arrivals and magnitudes represent a synthetic event. Finally, the location of

these synthetic events is assumed to be uniformly random distributed within

the seismic source area.

The synthetic earthquake catalogs could be given by either stationary or

non-stationary seismicity rates. Then, the distance between a given site and the

location of a synthetic event is calculated. Given the distance and magnitude

of the synthetic events, we use a set of GMPEs to estimate the corresponding

ground motion at one site for that event. We repeat this process for all synthetic

events, resulting in a catalog of ground motions. In order to count for the

aleatoric variability in the ground motions, a random number drawn from the

standard normal distribution is multiplied by the sigma value (variability of

the GMPE model) and added to the log of the ground motions (Assatourians

and Atkinson, 2013).

Finally, from these ground motion catalogs, we can obtain statistical results
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for the hazard analysis. For instance, the mean rate of exceeding a ground

motionmλ(gm ≥ gmj; ta, tb) is given by counting all the ground motions greater

than gmj, and dividing this count by the time duration of the simulations

(tb − ta) and the number of realizations Nr of the synthetic catalog:

mλ(gm ≥ gmj; ta, tb) =
N(gm≥gmj)

Nr(tb − ta)
, (4.29)

where N(gm≥gmj) is the number of events with a ground motion greater than

gmj.

Notice that the ground motion predictions in a non-stationary seismicity

case depend on the variable seismicity rates as well as the time interval (tb− ta)
to evaluate.

In the case of the ground motion analysis, it is possible to relate the

probability P [N > 0; ta, tb] of at least one event to exceed a ground motion

gm in a time interval [ta, tb] to a mean rate of exceeding a ground motion

mλ(gm ≥ gmj; ta, tb):

mλ,exc(gm ≥ gmj; ta, tb) =
− ln(1− P [N > 0; ta, tb])

tb − ta
. (4.30)

This is useful since the probability P [N > 0; ta, tb] is often provided in

seismic hazard analyses. For instance, using equation 4.30, the 1% probability

to reach or exceed a given ground motion in 1 year is equivalent to the mean rate

of exceeding a ground motion mλ(gm ≥ gmj; ta, tb) of 0.01. This expression is

valid for stationary and non-stationary sequences, however, for non-stationary

sources, the time interval [ta, tb] has to be identical for both quantities.

Other useful results in the seismic hazard analysis are the seismic hazard

maps (Baker, 2008; Assatourians and Atkinson, 2013). These maps describe

the probability of reaching or exceeding a ground motion in a period of time.

A seismic hazard map is built by calculating first the seismic hazard curves

at different sites. Then, a common mean rate of exceeding a ground motion

mλ(gm ≥ gmj; ta, tb) is defined for all seismic curves, and the related ground

motion is selected. This yields a ground motion value for each considered site,

which in turn can be interpolated to generate a seismic hazard map. Figure

4.1 shows a sketch of the methodology for the generation of synthetic ground
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Figure 4.1: Sketch of the methodology for the generation of synthetic ground
motion catalogs, seismic hazard curves, and seismic hazard maps. (A) Calcu-
late all distances between a given site and the location of the synthetic events
(Source-to-site distance). (B) Given the distances and magnitudes of the syn-
thetic events, we use the GMPEs to estimate the corresponding ground mo-
tions at one site. (C) Seismic hazard curves (Rate of exceedance as a function
of ground motions) from ground motion catalogs. (D) Seismic hazard curves
calculated at different sites. (E) Define a common rate of exceedance level
and obtain the corresponding ground motion for each seismic hazard curve.
(F) Knowing the ground motion at each site, it is possible to build a seismic
hazard map.

motion catalogs, seismic hazard curves, and seismic hazard maps.

4.3 Implementation

1. Forecasting GR parameters based on physics-based models: We

rely on the Seismogenic Index and the Hydromechanical Nucleation model

to forecast the GR parameters associated with induced earthquakes and,

therefore, forecast the seismic hazard.

In the case of the Seismogenic Index, once the induced seismic activ-
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ity has started, we can calculate the GR parameters from the recorded

earthquake catalog and reported injected volumes. There are different

methodologies to calculate GR parameters from an earthquake catalog,

including the maximum likelihood method (MLM, Aki (1965), Wiemer

and Wyss (1997)). We calculate the total volume injected Qc(t), and

by knowing the corresponding cumulative ac-value, we can use equation

4.4 to obtain the Seismogenic Index value. Assuming a constant b-value

and Seismogenic Index, and knowing the future injections plans Qc(t), we

use equation 4.6 to calculate the future cumulative a′c(t)- value. While

the injection plans and induced seismicity continues, we can regularly

re-calculate the GR parameters and Seismogenic Index to improve the

seismic hazard predictions. This is especially important, considering that

the assumption of constant GR parameters might not be appropriate.

For the Hydromechanical Nucleation model, we first calculate the pres-

surization rate ṗ (eq. 4.10), using the catalog of injection rate per time

unit Q(t) and the required reservoir parameters. Then, assuming that the

Coulomb stressing rate is approximate to the pressurization rate, ṡ ' ṗ,

we solve equation 4.10 to obtain R(t). Finally, by using 4.21, we add

the log(R(t)) to the background a-value in order to obtain the a′(t)-value

resulting from the injection rates. In theory, we could make a forecast

of the GR parameters even before the start of the injection. However,

we require some unknown parameters at the site such as the background

stressing rates, the effective normal stress, and the total perturbed reser-

voir volume. In practice, the parameters are calibrated in order to fit the

model prediction with the induced seismicity pattern. Then, by knowing

future injection plans, we could have more reliable forecasts from this

calibrated model.

2. Generation of synthetic earthquake catalogs: Once the GR pa-

rameters have been defined, we proceed to generate synthetic earthquake

catalogs. A description of the Monte Carlo simulation for the generation

of synthetic earthquake catalogs has been done by Reyes Canales and Van

der Baan (2019). For the generation of synthetic earthquake catalogs, we

require the GR parameters and uncertainties to calculate seismicity rates
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(can be stationary or non-stationary), define a source area, the duration

of induced catalogs, the number of realizations Nr, and define the range of

magnitudes to simulate m = [Mmin,Mmax]. From these catalogs we can

obtain useful statistics for the hazard analysis, including the mean annual

rate of earthquakes mλ(mj ≤ m < mj+1; ta, tb), the mean annual rate of

exceedance mλ,exc(m ≥ mj; ta, tb), and the probability of n occurrences

for a magnitude range.

3. Generation of synthetic ground motion catalogs: Once the syn-

thetic earthquake catalogs have been simulated, we proceed to generate

synthetic ground motion catalogs. First, we calculate the source-to-site

distances. Then, together with the magnitudes of each synthetic events,

we use the GMPEs to estimate the corresponding ground motion for each

event, resulting in a catalog of ground motions. From these synthetic

ground motion catalogs, we can obtain useful statistics for the hazard

analysis, including the seismic hazard curves (Equation 4.29) and seis-

mic hazard maps. In the case of multiple GMPEs, PSHA uses the logic

tree approach, which gives a weight to each set of GMPEs (Assatourians

and Atkinson, 2013). We split proportionally the synthetic earthquake

catalog based on the weight of each GMPEs. Next, we calculate the

ground motions for each synthetic event using the corresponding GMPE,

resulting in a ground motion catalog per branch.

4.4 Horn River Basin case

To evaluate the Seismogenic Index and the Hydromechanical Nucleation models

for the forecasting of seismic hazard, we apply these methods in one area with

recent induced seismicity: the Horn River Basin, Northeast BC. Previous stud-

ies (Reyes Canales and Van der Baan, 2019) have shown how the seismic hazard

change over time in response to the inclusion of injection-induced earthquakes.

In this study, we compare the hazard given by actual earthquake catalogs (Ob-

servations) with the hazard provided by physics-based models (Predictions).

This comparison is made in terms of the number of forecasted earthquakes in
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a magnitude range, GR predictions, and predicted ground motions.

4.4.1 Area of study and data

Several studies have been made in the Horn River Basin due to the significant

increase of seismicity related to the hydraulic fracturing activities conducted

between Dec. 2006 and Dec.2011 (BC Oil and Gas Commission, 2012; Farahbod

et al., 2015a,b). The detected seismicity in the area was very low before 2006,

but with a significant increase since Dec. 2006, particularly between 2010 and

2011 in line with increasing injection rates. The target reservoirs were the

shale plays related to the Muswa-Otter Park and Evie Formations. Figure 4.2

(A) shows the location of the seismic events from the Farahbod et al. (2015b)

catalog.

To calculate the Seismogenic Index index in the area, we use the earthquake

catalog from Farahbod et al. (2015b), which contains induced earthquakes in

the Horn River Basin. This earthquake catalog consists of 338 events recorded

between Dec. 2006 and Dec. 2011, with magnitudes ranging between m = 1.0

and m = 3.6. We also require catalogs of injected volumes for both the Seis-

mogenic Index and the Hydromechanical Nucleation model. For the injected

volumes, we use the catalog from Farahbod et al. (2015a), which contains the

volumes injected per month at the Horn River basin between Dec. 2006 and

Dec. 2011. Figure 4.2 (B) shows the injected volumes per month at the Horn

River Basin from Dec. 2006 up to Dec. 2011 (Farahbod et al., 2015a).

4.4.2 Forecasting seismic hazard using the Seismogenic

Index

To calculate the Seismogenic Index and study the temporal evolution of the

GR during the period of induced seismicity, we define a time window starting

in Dec. 2006 with a moving endpoint. The earthquakes in that time window

are selected to calculate the GR parameters, which are then assigned to the

endpoint of that time window. This process is repeated by moving the endpoint

of the time window one month ahead every time, until the end of the catalog
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Figure 4.2: (A) Location of the seismic events (yellow dots) using the catalog
from Farahbod et al. (2015b). The blue square indicates the seismic source
area used in this study. The polygons in the picture represent some of the
natural sources defined by the 2015 seismic-hazard model of Canada (Halchuk
et al., 2014). FTH: Foothills, ROCN: Rocky Mountain fold/thrust belt north,
MKM: Mackenzie Mountains, SCCWHC: Stable cratonic core western Canada
(H model). (B) Monthly injection rates in the Horn River Basin. Notice the
substantial increase in the injection volumes after Dec. 2009. From Farahbod
et al. (2015a).

Figure 4.3: Evolution of the (A) Seismogenic Index, and (B) b-value at the
Horn River Basin, using the earthquake catalog from Farahbod et al. (2015b)
and injection rates from Farahbod et al. (2015a). (C) Monthly number of
earthquakes with magnitude M ≥ 2.5 given by the observed seismicity (green
bars) and the Seismogenic Index predictions (red line).
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(Dec. 2011).

To calculate the GR parameters, we use only the earthquakes with magni-

tude equal or bigger than the magnitude of completeness (Mc) estimated for

the Horn River Basin. According to Farahbod et al. (2015b), the magnitude of

completeness equals Mc = 2.4 for the induced events in the Horn River Basin

between Dec. 2006 and Dec. 2011. To estimate the b-values, we use a modified

version of MLM (Aki (1965), Wiemer and Wyss (1997)), that accounts for the

magnitude binning. The cumulative ac-values are calculated from the b-values

and the number of earthquakes N larger than Mc = 2.4 in the catalog, using

equation 4.1. The uncertainties in the GR parameters are also included. This

is done by adding or subtracting the errors estimated for the b-values, and then

using the N number of earthquakes from the catalog and eq. 4.1, to calculate

the a-values. This results in 3 curves: middle, upper, and lower curves. For

the estimations of the error in the b-values, we use the method described by

Shi and Bolt (1982).

To calculate the seismogenic index at the endpoint of a time window, we

calculate the total volume injected Qc(t) up to that time, and by knowing the

corresponding cumulative ac-value, we use equation 4.4 to obtain the Seismo-

genic Index value. We repeat this process for each endpoint. Figure 4.3 shows

(A) the temporal evolution of the Seismogenic Index, and (B) the b-value at the

Horn River Basin, using the time window methodology with moving endpoint.

The first test consists in evaluating the accuracy of this method to predict

seismic rates for monthly earthquakes rates with magnitude M ≥ 2.5. Using

equation 4.3, we calculate the number of earthquakes with M ≥ 2.5 per month,

given the estimated Seismogenic Index value and the monthly injection rates.

Figure 4.3 (C) shows the monthly number of earthquakes M ≥ 2.5, using a

Seismogenic Index of −1.82 and a b-value of 1.25. These values correspond to

December 2010, when both parameters reach a more stable behavior (see fig-

ures 4.3 (A) and (B)). By comparing the predictions with the observed number

of earthquakes, we found that the predictions follow the changing seismicity

patterns. Furthermore, the total number of observed earthquakes M ≥ 2.5

between Dec. 2006 and Dec 2011 was 121 events, in comparison with the 92.24

predicted events by the seismogenic Index. The most remarkable difference is
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related to the underestimation of events in Dec. 2011. The Seismogenic Index

predicted 4 events, but there were 32 events in that month. With the exception

of this anomaly, the model predicts a reasonable number of earthquakes per

month. If the events from December 2011 are not included in the analysis, the

seismogenic index model predicts 88 events M ≥ 2.5, which is very similar to

the 89 observed events from December 2006 up to November 2011. The cor-

relation coefficient between the predicted and observed number of earthquakes

M ≥ 2.5 is 0.51; however, the correlation coefficient increases to 0.60 if the

events from December 2011 are not included.

The second test consists in evaluating how accurate are the Seismogenic In-

dex predictions for specific magnitude ranges. We compare the annual magnitude-

frequency distributions given by the GR parameters from the observed seismic-

ity and the Seismogenic Index, as well as the probable number of earthquakes

in a magnitude range derived from these GR parameters. We assume that

the b-value and Seismogenic Index of one year are given by the b-value and

Seismogenic Index from the last month of the previous year. The rationale

behind this is to select the most up-to-date b-value available. On the other

hand, the cumulative a′c(t)- value will be given by adding the log of the future

total volume to inject log(Qc(t)), and the Seismogenic Index Σ, see equation

4.6. For instance, we assume that the b-value and Seismogenic Index for 2011

are b = 1.25 and SI = 1.82, which are the parameters for Dec. 2010 (See

figure 4.3). Also, knowing that the log of the total volume to inject in 2011 is

log(Qc(t)) = 6.54, we have a forecasted cumulative a′c(t) = 4.71 for 2011. Since

the time duration of the forecast is one year, cumulative and annual a-values

are equivalent.

We compare the GR parameters given by the predictions and the GR pa-

rameters from observed seismicity. To calculate the GR parameters per year

from the observed seismicity, we first split the earthquake catalog into individ-

ual years. Then, by using a magnitude of completeness Mc = 2.4, we apply the

MLM (Aki (1965), Wiemer and Wyss (1997)) and equation 4.1 to estimate the

a-and b-values for each year. Again, for the estimations of the b-values error,

we use the method described by Shi and Bolt (1982). Figure 4.4 (left column)

shows a comparison between the GR parameters predicted by the Seismogenic

68



Figure 4.4: The column on the left shows a comparison between the GR pa-
rameters predicted by the Seismogenic Index (red line) and the GR parameters
of the recorded seismicity (blue line, MLM fitting) for the years 2008, 2009,
2010, and 2011. The upper and lower curves in the annual rate of exceedance
λexc(m ≥ mj; t) vs. magnitude plot, shows the uncertainty of the GR pa-
rameter estimation. The column on the right shows the probable number of
earthquakes, P [N = n; ta, tb] of n, in the range m = [2.5, 3.6], for the years
2008, 2009, 2010 and 2011, given by the GR parameters of the Seismogenic In-
dex (red line, prediction) and the observed earthquake catalog (blue line, MLM
fitting). The light red and blue curves are the probability distributions given
by the upper and lower GR curves. MLM=Maximum Likelihood method.
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Index and the GR parameters given by the observed seismicity for the years

2008, 2009, 2010 and 2011. We observe that there is a mismatch between the

GR parameters from the predictions and the actual seismicity. This mismatch

is larger in 2008 and 2010, as a consequence of uncertain GR parameters due

to the small amount of initially observed events (2008), and a sudden change in

the b-value (2010). For the year 2011 the a-values are very similar, a = 4.70 for

the observed seismicity and a = 4.71 for the predictions. However, a change in

the b-value from b = 1.25 to b = 1.15 causes the mismatch of observed versus

predicted magnitude-frequency distributions in the year 2011.

Finally, we compare the probability P [N = n; ta, tb] of n occurrences in a

time interval ∆t = tb − ta using the observed and predicted GR parameters,

eq 4.25. Figure 4.4 (right column) shows the probable number of earthquakes

in the range m = [2.5, 3.6], for the years 2008, 2009, 2010 and 2011, given by

the GR parameters of the Seismogenic Index and the observed seismicity. We

also include the distributions resulting from the upper and lower GR curves

to count for the uncertainty. The largest mismatch between the observed and

predicted number of events is observed for the years 2008 and 2010, where we

had the largest difference between GR parameters. E.g. for the year 2010,

the most likely number of predicted events in the range m = [2.5, 3.6] is 165,

which contrasts with the 26 events estimated by the observed GR parameters

and the recorded 29 events in the catalog. On the other hand, for the year

2011, the mismatch is reduced, as a consequence of similar GR parameters.

E.g. for the year 2011, the most likely number of predicted events in the

range m = [2.5, 3.6] is 38, which contrasts with the 60 events estimated by the

observed GR parameters and the recorded 70 events in the catalog.

4.4.3 Forecasting seismic hazard using the Hydrome-

chanical Nucleation model

The Hydromechanical Nucleation model requires multiple parameters that are

unknown for the Horn River Basin. As a first approach, we use similar pa-

rameters to those described by Norbeck and Rubinstein (2018) in Oklahoma,

with modifications to get a better fit between predictions and observed number
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Figure 4.5: Evolution of the (A) R(t) parameter, and (B) a-value (monthly) at
the Horn River Basin, given by the Hydromechanical Nucleation approach. (C)
Comparison between the monthly number of earthquakes larger than m ≥ 2.5,
given by the observed seismicity and the Hydromechanical Nucleation model.

of earthquakes per month. For the Hydromechanical Nucleation model in the

Horn River Basin we assume the following parameters: Background stressing

rate ṡ0 = 0.5×10−3MPa.yr−1, direct effect parameter ā = 0.0065, effective nor-

mal stress at seismogenic depth σ̄ = 20MPa, average porosity for the Muskwa-

Otter Park and Evie Formations φ = 0.05 (BC Oil and Gas Commission, 2012,

2014), total reservoir compressibility β = 3.2 × 10−10Pa−1, average thickness

for the Muskwa-Otter Park, Evie Formations h = 175m (BC Oil and Gas

Commission, 2012, 2014), approximate area of the reservoir A = 6000km2. We

should notice that perform a sensitivity analysis to determine which reservoir

property has a higher impact on the estimation of the number of earthquakes.

We found that the total reservoir volume, defined by the area and the thickness

of the reservoir, has a substantial impact on the expected earthquake rates.

For the background GR parameters, we assume a b-value of 0.86± 0.23, as

described by the 2015 national seismic-hazard model of Canada (Halchuk et al.,

2014) for the Foothills area, which contains the Horn River Basin. Based on

the number of earthquakes identified between July 2002-July 2003 in the study

made by Farahbod et al. (2015b), we assume N = 1.58 earthquakes larger than

m = 2.4 per year. Using equation 4.1, with b = 0.86, we get an a-value for the

background seismicity of a = 2.26. By re-scaling the a-values described by the

2015 national seismic-hazard model of Canada (Halchuk et al., 2014) for the
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Foothills area, we get a considerable bias in the predictions. We think that the

a-value given by the seismic-hazard model of Canada may be underestimated

in this area due to the lack of seismometers prior to 2002.

Once the parameters for the Hydromechanical Nucleation model have been

defined for the Horn River Basin, we proceed to calculate the pressurization rate

ṗ, eq. 4.10, using the catalog of injected volumes per month, figure 4.2. Then,

assuming that the Coulomb stressing rate is approximate to the pressurization

rate, ṡ ' ṗ, we solve equation 4.10 to obtain R(t), which is the ratio between the

seismicity rate resulting from the injections r(t), and the background seismicity

rate r0. Finally, by using 4.21, we add the log(R(t)) to the background a-value

in order to obtain the a′(t)-value resulting from the injection rates. Figure 4.5

shows (A) the evolution of the R(t) parameter, and (B) the monthly a-value

at the Horn River Basin, predicted by the Hydromechanical Nucleation model.

To obtain the annual a′(t)-values, we simply add the equivalent N0 of these

a′(t)-values and return back by applying log. The uncertainties in the GR

parameters are also included by adding and subtracting the errors estimated

for the b-values.

For the first test, we calculate the number of earthquakes with M ≥ 2.5 per

month, see figure 4.3 (C). This is done by knowing the monthly a′(t)-values

given by the Hydromechanical Nucleation approach, eq. 4.21. Contrary to the

Seismogenic Index model, the Hydromechanical Nucleation approach tends to

overestimate the number of events. The total number of observed earthquakes

M ≥ 2.5 between Dec. 2006 and Dec 2011 was 121 events, in comparison with

the 189 predicted events by the Hydromechanical Nucleation approach. On the

other hand, the predictions follow the changing seismicity patterns, although

the changes in the seismicity rates are relatively smooth. The peak in the model

replicates the high seismicity in late 2011. The correlation coefficient between

predicted and observed number of earthquakes M ≥ 2.5 is 0.55. It increases to

0.56 if the events from December 2011 are not included.

For the second test, we compare the annual magnitude-frequency distri-

butions given by the GR parameters from the observed seismicity and the

Hydromechanical Nucleation approach. We should clarify that the b-value for

the prediction is assumed constant, and the only parameter that changes is
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Figure 4.6: The column on the left shows a comparison between the GR pa-
rameters predicted by the Hydromechanical approach (red line) and the GR
parameters of the recorded seismicity (blue line, MLM fitting), for the years
2008, 2009, 2010 and 2011. The upper and lower curves in the annual rate of
exceedance λexc(m ≥ mj; t) vs. magnitude plot, shows the uncertainty of the
GR parameter estimation. The column on the right shows the probable number
of earthquakes, P [N = n; ta, tb] of n, in the range m = [2.5, 3.6], for the years
2008, 2009, 2010 and 2011, given by the GR parameters of the Hydromechan-
ical approach (red line) and the observed earthquake catalog (blue line, MLM
fitting). The light red and blue curves are the probability distribution given
by the upper and lower GR curves. MLM=Maximum Likelihood Method.
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the a′(t)-value obtained from the R(t) parameter. Figure 4.6 (Left column)

shows a comparison between the GR parameters given by the Hydromechani-

cal Nucleation model and the GR parameters of the observed seismicity for the

years 2008, 2009, 2010 and 2011. We equally observe that there is a mismatch

between the GR parameters from the prediction and the actual seismicity. For

instance, for the year 2008, we assume b = 0.86, and predict a = 2.26, whereas

the GR parameters for the seismicity in that year were b = 1.88 and a = 5.53.

The assumption of b = 0.86 is based on the 2015 national seismic-hazard model

of Canada (Halchuk et al., 2014) for the Foothills area.

Finally, as the most stringent test, we compare the probability P [N =

n; ta, tb] of n occurrences in a time interval ∆t = tb − ta using the observed

and predicted GR parameters, eq 4.25. Figure 4.6 (Right column) shows the

probable number of earthquakes in the range m = [2.5, 3.6], for the years 2008,

2009, 2010 and 2011, given by the GR parameters of the Hydromechanical

Nucleation model and the observed seismicity. Notice that our predictions rely

on unchanged b-values, and this might not be appropriate in reality. Even small

changes can lead to biased predictions, in some cases overestimating (2011)

or underestimating the number of earthquakes (years 2008, 2009, 2010). For

instance, for the year 2011, we assume b = 0.86 and predict a = 4.22 resulting

in 118 earthquakes in the range m = [2.5, 3.6]. However, the GR parameters in

the actual seismicity were b = 1.15 and b = 4.70, resulting in 60 earthquakes

in the range m = [2.5, 3.6].

To summarize, the Hydromechanical Nucleation model predicted 189 events

M ≥ 2.5 between December 2006 and December 2011 in the first test. In

comparison, the Seismogenic Index predicted 92.24 events M ≥ 2.5 in the

same period of time. Overall, the correlation coefficient was slightly higher for

the Hydromechanical Nucleation approach rather than the Seismogenic Index,

0.56 versus 0.51. However, if December 2011 is not included in the calculations,

the Seismogenic Index shows a higher correlation, 0.60. For the second test,

the GR parameters forecasted by the Hydromechanical Nucleation approach in

2011 were b = 0.86 and a = 4.22, resulting in 118 earthquakes in the range m =

[2.5, 3.6]. On the other hand, the GR parameters forecasted by the Seismogenic

Index in 2011 were b = 1.2 and a = 4.70, resulting in 38 earthquakes in the
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range m = [2.5, 3.6]. Opposite trends are found for other years. For the

second test, both models under- or overestimated the number of earthquakes

for specific magnitude ranges.

4.4.4 Ground motion predictions

In the previous section, we showed that the physics-based models could lead to

biased forecasts of magnitude-frequency distribution for this specific case study.

However, we proceed to develop a full PSHA with these forecasted GR param-

eters to show the impact of incorrect predictions in the PSHA final products,

particularly the seismic hazard curves and maps. Once the GR parameters per

year have been estimated for the predictive models and the observed seismicity,

we proceed to generate synthetic earthquake catalogs using the Monte Carlo

Simulation method. We compute independent simulations for each model (Seis-

mogenic Index, Hydromechanical Nucleation, and observed seismicity), for the

years 2008, 2009, 2010, 2011. Each simulation comprises Nr = 10, 000 real-

izations with a time duration of 1 year. We consider a magnitude bin size

of Mbin = 0.1, and a minimum and maximum magnitude of Mmin=2.5, and

Mmax=5.0, respectively, based on the range of magnitude earthquakes recorded

in the catalog. To account for the uncertainties in the GR parameters, we sim-

ulate each weighted set of a-and b-values (w = 0.68 for the middle curve and

w = 0.16 for the lower and upper curves) and then combine all simulations to

obtain a unique catalog. For the source area, we define a square that covers

all the events from the seismic catalog, see figure 4.2. We assume a spatially

uniform random distribution of synthetic earthquakes.

To generate synthetic ground motion catalogs, we calculate source-to-site

distances and use the GMPEs. For the Horn River Basin case, we use the

GMPEs proposed by Atkinson et al. (2015) for induced events (A15 GMPEs).

The A15 GMPEs are a modification of the GMPEs proposed by Atkinson

(2015), which were designed for small-to-moderate events at short hypocentral

distances. From the synthetic ground motion catalogs, we calculate the seismic

hazard curves (equation 4.29) at the center of the source area, which is the

location with higher expected ground motions.
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Figure 4.7: Seismic hazard curves (rate of exceedance λ(gm ≥ gmj; t) as a
function of ground motions) for the years (A) 2008, (B) 2009, (C) 2010, and (D)
2011 given by the Seismogenic Index forecast (red line), the Hydromechanical
approach forecast (green line) and the observed seismicity (blue line, MLM
fitting), for one location at the center of the seismic source area. The likelihood
occurrence 1% in 1 year is indicated in the plot. MLM= Maximum Likelihood
method.
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Figure 4.8: Seismic hazard maps for the years 2008 (first row from top to
bottom) and 2009 (second row) given by the Seimogenic Index (SI), the Hy-
dromechanical Nucleation model (Hydro) and the observed seismicity (MLM
fitting). These maps show the 1% probability to reach or exceed a given ground
motion in 1 year. The peak ground acceleration values (Value at the center
of the figure) represents the maximum predicted acceleration. The red square
represents the seismic source area.

Figure 4.9: Seismic hazard maps for the years 2010 (first row from top to
bottom) and 2011 (second row) given by the Seimogenic Index, the Hydrome-
chanical Nucleation model (Hydro), and the observed seismicity (MLM fitting).
These maps show the 1% probability to reach or exceed a given ground motion
in 1 year. The red square represents the seismic source area.
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Figure 4.7 shows the Seismic hazard curves (Rate of exceedance as a func-

tion of ground motions) for the years (A) 2008, (B) 2009, (C) 2010, and (D)

2011 given by the Seismogenic Index and the Hydromechanical Nucleation pre-

dictions, as well the actual observed seismicity (MLM fitting). The likelihood

of 1% in 1 year (equation 4.30) is indicated in the plot. The likelihood of

1% in 1 year was used by Petersen et al. (2016), Petersen et al. (2017), and

Petersen et al. (2018) in their short-term seismic hazard forecast, including

induced seismicity in central and eastern USA. Like different GR parameters

lead to different seismicity rates, we also expect differences in the ground mo-

tion predictions given by the predictive models and the observed seismicity.

For instance, for the year 2008, both models overestimate the hazard. For

2008 there is a 1% probability in 1 year to reach a peak ground acceleration

(PGA)) of 72.41 cm/s2, 47.56 cm/s2, and 24.20 cm/s2 according to the Seis-

mogenic Index, Hydromechanical Nucleation model and observed seismicity

models, respectively. On the other hand, for the year 2011, the Hydromechan-

ical Nucleation model overestimates the hazard, and the Seismogenic Index

underestimates it. For the year 2011, there is a 1% probability in 1 year to

reach a peak ground acceleration (PGA)) of 219.69 cm/s2, 740.13 cm/s2, and

340.10 cm/s2 according to the Seismogenic Index, Hydromechanical Nucleation

model and observed seismicity models, respectively.

To build the seismic hazard maps, we calculate the seismic hazard curves

at different locations and then select the ground motions from a common rate

of exceedance. Figures 4.8 and 4.9 show the Seismic hazard maps for the years

2008, 2009, 2010 and 2011 at the Horn River Basin given by the Seimogenic

Index, the Hydromechanical approach and the observed seismicity (MLM fit-

ting) models. These maps show the 1% probability to reach or exceed a given

ground motion in 1 year. As mentioned before, having biased GR predictions

lead to biased synthetic earthquake catalogs and ground motion predictions.

For instance, for the year 2010, the Hydromechanical Nucleation model over-

estimates the hazard, and the Seismogenic Index underestimates it. In 2010,

there is a 1% probability in 1 year to reach a peak ground acceleration (PGA)

of 219.99 cm/s2, 288.70 cm/s2, and 265.19 cm/s2 at the central location of

the source area, according to the Seismogenic Index, the Hydromechanical Nu-
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cleation model, and the observed seismicity, respectively. On the other hand,

for the year 2009, both models underestimate the hazard. In 2009, there is a

1% probability in 1 year to reach a peak ground acceleration (PGA) of 43.9

cm/s2, 53.04 cm/s2, and 68.7 cm/s2 at the central location of the source area,

according to the Seismogenic Index, the Hydromechanical Nucleation model,

and the observed seismicity, respectively.

4.5 Discussion

For the first test, both methods predict earthquake rates similar to the observed

induced seismicity in the Horn River basin (number of earthquakes exceeding

a certain magnitude per month). They are able to describe the changes in

the overall seismicity patterns, in line with the anthropogenic activities. In the

case of the Seismogenic Index, this model predicted 92.24 earthquakes M ≥ 2.5

between Dec. 2006 and Dec 2011. On the other hand, the Hydromechanical

Nucleation approach predicted 189 earthquakes M ≥ 2.5 in the same period of

time. In contrast, 121 earthquakes with M ≥ 2.5 were recorded in the Horn

River basin. For the first test, the correlation coefficient between observed and

forecasted event rates was slightly higher for the Hydromechanical Nucleation

(0.56) approach versus the Seismogenic Index (0.51).

For the second test, both models make inaccurate predictions for specific

magnitude ranges (annual magnitude frequency distributions), resulting in an

under- or overestimation of the hazard. For both models, predictions can

be incorrect (under- or overestimation), and there is no consistency between

both predictions, despite usage of the same input data. For instance, in the

case of the Seismogenic Index, the most likely number of events in the range

m = [2.5, 3.6] for the year 2011 was 38, which underestimates the 60 events

given by the observed GR parameters. On the other hand, the most likely

number of events in the range m = [2.5, 3.6] for the year 2009 was 21, which

overestimates the 8 earthquakes given by the observed parameters. The same

situation is observed in the predictions given by the Hydromechanical Nucle-

ation approach. The most likely number of events in the range m = [2.5, 3.6] for

the year 2011 was 118, overestimating the 60 events given by the observed GR
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parameters. On the other hand, the most likely number of events in the range

m = [2.5, 3.6] predicted for the year 2010 was 2, and the estimated number

of earthquakes given by the observed parameters was 8. Both methods pre-

dict monthly rates with reasonable accuracy (test 1), but they struggle when

forecasting magnitude-frequency distributions. The latter are the foundations

for the largest-magnitude seismicity rates, having a significant impact on the

PSHA estimations. Clearly, this study is a single evaluation of both predictive

methods, and more case histories are needed to verify their robustness and

accuracy.

One of the reasons why the predicted magnitude-frequency distributions

are less precise is the assumption of constant b-values. A potential approach to

include temporal variations in b-values due to industrial activities is to explore

observed correlations between b-values and changes in stress. For instance,

some studies (Scholz, 2015; Amitrano, 2003; Goebel et al., 2013) have found

that the b-values are anticorrelated to the differential stress σ1−σ3, that is, the

difference between the maximum σ1 and minimum σ1 principal stress. Such

systematic correlations have also been found in numerical studies (Amitrano,

2003; Van der Baan and Chorney, 2019). Furthermore, Van der Baan and

Chorney (2019) also observed a decrease in b-value when approaching peak

stress during a simulated triaxial deformation test. This pattern is also seen in

laboratory experiments (Meredith et al., 1990). A potential avenue to predict

changes in b-values due to industrial activities involving fluid injection or de-

pletion is thus to combine the Seimogenic Index, and Hydromechanical Nucle-

ation approaches with geomechanical models to compute changes in differential

and absolute stress due to volumetric changes and the anticipated change in b-

values. Some potential geomechanical models are described in Segall (1989) and

Segall and Lu (2015). Furthermore, the geomechanical modeling performed by

Segall (1989) found changes in the b-values between injection and postinjection

stages.

A decrease in b-values is indicative of progressive internal damage, the preva-

lence of shear events, and the activation of faults that could cause large events.

On the other hand, large b-values indicate tensile failure, opening, and clos-

ing of fractures characterized by a relatively large number of small-magnitude
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events (Van der Baan and Chorney, 2019). For long-term hazard analysis, mi-

nor, short-lived changes in the b-value might not be that relevant because these

values are averaged out over long time frames (e.g., 50 years). However, for

short-term seismic hazard forecast, these changes in the b-value become more

relevant.

4.6 Conclusion

We apply two methodologies, the Seismogenic Index and the Hydromechanical

Nucleation model, in order to forecast the magnitude-frequency parameters re-

lated to fluid-injection seismicity at the Horn River Basin. For the first test, we

compare the predicted number of earthquakes exceeding a certain magnitude

per month with the observed number of earthquakes. Both methods predict

earthquake rates similar to the observed induced seismicity in the Horn River

basin. They are able to describe the changes in the overall seismicity patterns

within a reasonable level. For the second test, both models make inaccurate

predictions for specific magnitude ranges (annual magnitude frequency distri-

butions), resulting in an under- or overestimation of the hazard but often with

contradicting forecasts, despite using shared observations. The predictions tend

to either underestimate or overestimate the seismic hazard, mainly due to the

assumption of stationary b-values. Even if the predictions of a-values are rea-

sonable, changes in the b-value can considerably change the annual prediction

of magnitude-frequency distributions, which is one of the most critical factors

to precisely determine the seismic hazard analysis. As expected, having bi-

ased magnitude-frequency distributions leads to biased synthetic earthquake

catalogs and ground motion predictions. Previous studies have shown that the

b-values are anticorrelated to differential stress. Furthermore, b-values show

a decrease when approaching peak stress, reaching the lowest b-value when a

mainshock occurs. Therefore, future physics-based models should be able to

model changes in the b-values, based on operational and Geomechanical prop-

erties.
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Chapter 5

Seismicity declustering and

implications for seismic hazard

analysis 1

5.1 Introduction

Seismicity declustering is a widely used method in seismology, in particular for

seismic hazard assessment and in earthquake prediction model (Van Stiphout

et al., 2012; Petersen et al., 2016, 2017, 2018). It consists of classifying the

events from an earthquake catalog into foreshock, mainshock and aftershock

sequences (Van Stiphout et al., 2012). Some of the most common declustering

methods (Gardner and Knopoff, 1974; Reasenberg, 1985) are based on the

identification of mainshocks considering their magnitude and spatio-temporal

distribution.

Seismicity declustering was initially used to shown that the mainshock se-

quences follow a temporal stationary Poisson distribution (Gardner and Knopoff,

1974; Marzocchi and Taroni, 2014). In other words, mainshock events are ran-

domly distributed in time. Declustering thus produces a catalog of mainshocks

that follow a Poisson distribution, which in turn is the underlying distribution

1Paper submitted to Journal of Geophysical Research.
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assumed by most Probabilistic Seismic Hazard (PSHA) approaches (Cornell,

1968; Baker, 2008). Currently, the main rationale behind seismicity declus-

tering is to differentiate between two groups of seismic sequences with clearly

different characteristics. On the one hand, the background or mainshock events

are a consequence of tectonic loading, and they are considered temporally in-

dependent. On the other hand, aftershocks are consequence of a parent event,

either a mainshock or another triggered event, and they are temporally depen-

dent on the precursor event (Van Stiphout et al., 2012).

Time-dependency might not be the only difference between mainshock and

aftershock sequences. Some studies suggest different b-values between main-

shock (declustered) and complete (non-declustered) earthquake catalogs (Utsu,

1966; Suyehiro and Sekiya, 1972). In contrast, other authors suggest that the

observed difference is not statistically significant (Knopoff et al., 1982), it is

simply a statistical artifact (Lombardi, 2003), or it might depend on the per-

formed declustering method (Teng and Baker, 2019). Furthermore, some haz-

ard studies do not apply seismicity declustering as it might reduce the hazard

by excluding a large number of small-to-medium magnitude-size earthquakes

(Atkinson et al., 2015; Langenbruch and Zoback, 2016; Ghofrani et al., 2019).

If mainshocks and aftershocks have different b-values, then this is likely to

impact the hazard assessment, because generally a single b-value is assumed

within a source region. Hazard predictions often most heavily depend on the

magnitude-frequency distribution of the largest earthquakes, since these ac-

count for the largest ground motion. Once a b-value is determined, it is used to

extrapolate occurrence rates to earthquake magnitudes that may not be well

represented within the observed catalog. As a consequence, if aftershocks and

mainshocks have different b-values, then using an averaged b-value may lead

to biased hazard assessments. It is important to mention that different declus-

tering methods might lead to different b-values for the mainshock sequence, as

shown in the study implemented by Teng and Baker (2019) in Oklahoma. How-

ever, the purpose of this study is not to investigate which declustering method

is most appropriate, but rather to show when declustering is recommended

for the correct estimation of recurrence statistics for large events. Our final

objective is to investigate if separating mainshocks and aftershocks leads to
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more accurate hazard assessments. It would ultimately lead to more accurate

estimates of the b-value for the largest magnitude events rendering a triage into

Poissonian earthquake sequences of secondary importance.

We use synthetic earthquake catalogs based on the Epidemic-Type After-

shock Sequence (ETAS) methodology to determine the hazard implications of

temporally declustering an earthquake catalog. From these synthetic catalogs,

we obtain declustered (mainshock) and non-declustered (complete) earthquake

catalogs, and study the impact of excluding aftershocks in the hazard analysis.

We also allow a difference in b-values between the background and aftershock

sequences in order to replicate more accurately the observed seismicity in some

induced seismicity examples. We set the basis of when it is appropriate to

temporally declustering an earthquake catalog based on the hazard estima-

tions and we show that the Poisson statistics are still useful for the seismic

hazard analysis, even if aftershock sequences are not removed. We apply the

analysis strategy to a recent case of induced seismicity: Oklahoma, USA. We

compare the hazard estimations given by declustered and non-declustered cat-

alogs using both observed and simulated earthquake sequences. Finally, we end

with general recommendations on the pros and cons of declustering for hazard

assessment.

5.2 Theory

5.2.1 Simulation of earthquake catalogs following the

Epidemic-Type Aftershock Sequence (ETAS) method-

ology

The Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, 1988, 1998;

Utsu et al., 1995; Zhuang et al., 2012), sometimes referred to as Epistemic-Type

Aftershock Sequence, is a self-exciting point process in which every event can

produce offspring of events. The model includes the background activity and

the aftershock events produced by a parent event (either a background or an

aftershock event). The rate of occurrence λ(t) at time t is given by (Ogata,
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1988, 1998; Utsu et al., 1995):

λ(t) = µ+
∑
ti<t

g(t− ti), (5.1)

where µ is the background constant seismicity rate, which is assumed to follow

a temporal Poisson distribution. On the other hand, g(t − ti) is the rate of

activity at time t triggered by an event mi at time ti, and is given by:

g(t− ti) = K
eα(mi−Mmin)

(t− ti + c)p
, (5.2)

where Mmin is the minimum magnitude considered. Only events larger or equal

than Mmin are included in the data set. The parameters K, α, c and p are

constants common to all aftershock sequences. Keα(mi−Mmin) is referred to as

the expected number of events triggered from an event of magnitude mi, where

K and α are constants (Zhuang et al., 2002). The parameters c and p are

constants that describe the rate of decay given by the modified Omori’s law

(Omori, 1894; Utsu, 1961). The second term in eq. 5.1 represents the addition

of all the rates of earthquakes from the aftershock activity, at a given time t.

There are two main methodologies to simulate an ETAS process: the thin-

ning method and the branching process method (Zhuang and Touati, 2015).

For the purpose of this study, we use the branching process method to simulate

the ETAS model. This method consists of two main steps: (1) generation of

the synthetic earthquake catalogs for the background seismicity, assuming a

Poisson process (µ, eq. 5.1); (2) generation of the aftershock catalog, where

each background event results in a cascade of directly-triggered aftershocks,

aftershocks of those aftershocks, etc.

Simulation of the stationary background process

For the background seismicity rates, we will use expressions that are functions

of the Gutenberg-Richter (GR) parameters, a- and b-values (Gutenberg and

Richter, 1944). To obtain the background rate of earthquakes µ(Mmin ≤ m <

Mmax) in the range m = [Mmin,Mmax), we multiply the probability of occur-

rence P (Mmin ≤ m < Mmax), by the total expected number of earthquakes

85



N(Mmin ≤ m ≤Mmax), resulting in (Reyes Canales and Van der Baan, 2019):

µ(Mmin ≤ m < Mmax) = P (Mmin ≤ m < Mmax)N(Mmin ≤ m ≤Mmax),

(5.3)

where Mmax is the maximum expected magnitude. The total expected number

of earthquakes N(Mmin ≤ m ≤Mmax) is given by:

N(Mmin ≤ m ≤Mmax) = 10ab−bbMmin − 10ab−bbMmax . (5.4)

In this equation, ab and bb are the parameters defined by the GR distribution

(Gutenberg and Richter, 1944) for the background seismicity. Finally, the

probability of occurrence P (Mmin ≤ m < Mmax) is given by:

P (Mmin ≤ m < Mmax) = FM(Mmin)− FM(Mmax), (5.5)

where FM(m) denotes the cumulative distribution function for magnitude m,

and is defined by:

FM(m) =
1− 10−bb(m−Mmin)

1− 10−bb(Mmax−Mmin)
. (5.6)

Once the rate of earthquakes for the background seismicity µ has been

defined, we proceed to simulate the synthetic earthquake catalogs by using the

Monte-Carlo simulation methodology described by Reyes Canales and Van der

Baan (2019).

Algorithm 1: Simulation of event times for the background seismicity,

assuming a stationary Poisson process with rate µ(Mmin ≤ m < Mmax) (eq.

5.3) between times tstart and tend (Zhuang and Touati, 2015; Reyes Canales and

Van der Baan, 2019):

1. Set t = tstart, Pp = 0.

2. Generate r.

3. t = t+ −ln(r)
µ(Mmin≤m<Mmax)

. If t ≥ tend, then stop.

4. Set Pp = Pp + 1 and set tP = t.
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5. Go to step 2.

The variable r is a random number obtained from a uniform distribution

between [0,1], tP is the vector that contains the desired arrival times and Pp the

number of arrival times. Once we have generated the Pp arrival times in the

time period [tstart, tend], we sample the GR distributions. For the generation

of magnitudes m, we apply Monte Carlo sampling to the inverse cumulative

distribution function (CDF) of the GR distribution (Zhuang and Touati, 2015):

m =
− ln(r)

bb ln(10)
+Mmin. (5.7)

During the sampling, any m > Mmax is excluded (Truncated GR distribu-

tion), and the sampling is repeated until we get P values with m ≤Mmax. Fi-

nally, a synthetic earthquake catalog for the background events B = [(tp,mp) :

p = 1, 2, ..., Pp] has been generated.

Simulation of the triggered events and branching process algorithm

There are multiple expressions to describe the rate of earthquakes triggered

from a parent event, including Ogata’s intensity rate (Ogata, 1988, 1998),

Zhuang’s conditional intensity form (Zhuang et al., 2002) and Harte’s normal-

ization rate (Harte, 2013). In this study , we will use the Harte’s normalization

rate to describe the decaying seismicity rate that follows an earthquake (Harte,

2013):

ν(t) =
Keα(mi−Mmin)(

t
c

+ 1

)p , (5.8)

where K, α, c and p are the ETAS parameters described previously. In order

to simulate the triggered events associated to an event of magnitude mi, we

use a Monte Carlo simulation methodology assuming a non-stationary Poisson

process (Zhuang and Touati, 2015; Reyes Canales and Van der Baan, 2019).

Algorithm 2: Simulation of event times for triggered events, assuming

a non-stationary Poisson process with rate ν(t) between times t0 and tmax

(Zhuang and Touati, 2015; Reyes Canales and Van der Baan, 2019):
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1. Consider ν∗ such that ν∗ ≥ max(ν(t)).

2. Set t = t0, Pa = 0.

3. Generate r.

4. t = t+ −ln(r)
ν∗

. If t ≥ tmax, then stop.

5. Generate r.

6. If r ≤ ν(t)/ν∗, then set Pa = Pa + 1 and set tP = t.

7. Go back to step 3.

In this case, r is a random number obtained from a uniform distribution

between [0,1], t0 is assumed to be the time for the parent event mi, and tmax

the maximum time for the aftershock generation. Again, for the generation

of magnitudes m, we apply Monte Carlo sampling to the inverse cumulative

distribution function (CDF) of the GR distribution (eq. 5.7), considering that

the sampling is done with the ba-value of the aftershock sequence.

In order to simulate a full ETAS branching process, we generate first the

background catalog, as shown in Algorithm 1. Then, we generate the after-

shocks of the background earthquakes, followed by the aftershocks of the after-

shock, etc... in a loop that finishes when no more events larger than Mmin are

generated.

Algorithm 3: Simulating ETAS as a branching process (Modified from

Zhuang and Touati (2015)):

1. Generate the background catalog B(p) = [(tp,mp) : p = 1, 2, ..., Pp] as a

stationary Poisson process, for a time period t = [tstart, tend] and back-

ground rate µ(Mmin ≤ m < Mmax). See Algorithm 1.

2. Set p = 1.

3. Define magnitudes M = mp and time T = tp. If p > Pp, stop.

4. Generate the first offspring G(0) = [(ti,mi) : i = 1, 2, ..., L] for the back-

ground event p, with magnitude M = mp and time T = tp. The event

88



time ti is generated from a non-stationary Poisson simulation, with in-

tensity rate ν(t), see Algorithm 2. The magnitude mi is generated by

applying Monte Carlo sampling to the inverse cumulative distribution

function (CDF) of the GR distribution (eq. 5.7), using ba.

5. Set l = 0.

6. For each event i, namely (ti,mi), in the catalog G(l), simulate its Ni
(l) off-

spring, that is, Oi
(l) = [(tk

(i),mk
(i)) : i = 1, 2, ..., Ni

(l)]. Again, the event

time tk
(i) is generated from a non-stationary Poisson simulation, with

intensity rate ν(t), see Algorithm 2. The magnitude mk
(i) is generated

by applying Monte Carlo sampling to the inverse cumulative distribution

function (CDF) of the GR distribution (eq. 5.7), using ba.

7. Set G(l+1) = ∪i∈G(l)Oi
(l). ∪ refers to the union symbol.

8. Remove all events with occurrence times are larger than tend from G(l+1).

9. IfG(l+1) is not empty, let l = l+1 and go to step 6. Else return ∪j=0lG
(l+1).

10. Make A(p) = ∪j=0lG
(l+1), then make p = p+ 1 and go back to step 3.

Finally, a complete catalog of events has been generated, with the variable

B(p) containing the background earthquakes, and A(p) the aftershock events.

The complete catalog C is the combination of both the Background catalog B

and the Aftershock catalog A(p). The process can be repeated Nr times in order

to generate multiple realizations, which are going to describe the variability of

the process. Notice that the simulated ETAS model has no history of events

before time tstart, which might cause an underestimation in the number of

earthquakes at the beginning of the simulation. To prevent this problem, a

longer catalog than required can be simulated and then the early part of the

simulation is neglected (Zhuang and Touati, 2015).

Notice that the branching process allows the use of different b-values for

the background and aftershock sequences. Also, the setting described in Al-

gorithm 3 is particularly useful in order to distinguish the different temporal

clusters initiated by background events. In this study we make a distinction

between background events and mainshocks. A background event is generated
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by the stationary Poisson process, explained in Algorithm 1. A mainshock is

the largest event in a temporal cluster, and it could be either the background

event or one of the triggered aftershocks. Therefore, there will be a background

catalog and a mainshock catalog. More details about these two catalogs are

explained in the Implementation section. Notice as well that, by definition, the

ETAS model allows triggered events larger than the parent event, but lower

than Mmax. We do not recommend limiting the magnitude of the triggered

events, and force them to be lower than the parent event; this could have sig-

nificant consequences on the global statistics. If all offspring events are limited

to lower magnitudes, there will be a population increase of lower magnitude

events, resulting in an artificial alteration of the magnitude-frequency distribu-

tion.

For simplicity, we assume that the background seismicity is stationary.

However, it is possible to apply a non-stationary Poisson distribution, with

time-dependent GR parameters for the background seismicity as explained by

Reyes Canales and Van der Baan (2019).

5.2.2 Statistical quantities from synthetic earthquake cat-

alogs

From the synthetic earthquake catalogs, it is possible to obtain relevant statis-

tical quantities for the hazard analysis. The directly observed annual rate of

exceedance λexc(m ≥ mj) for a magnitude level, is obtained by counting the

number of events with a magnitude larger than mj and dividing by the time

duration of the synthetic earthquake catalog:

λexc(m ≥ mj) =
Nm>mj

∆t
, (5.9)

where Nm>mj is the number of earthquakes larger than mj from synthetic earth-

quake catalogs, and ∆t the duration of the catalog, in years. By calculating the

annual rate of exceedance for each realization, we will have generated a popu-

lation with a mean annual rate of exceedance mλ,exc(m ≥ mj) for a magnitude
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level, given by:

mλ,exc(m ≥ mj) =

∑Nr
i=1 λ

(i)
exc(m ≥ mj)

Nr

, (5.10)

where λ
(i)
exc(m ≥ mj) is the annual rate of exceedance for the ith realization,

and Nr the number of realizations. The standard deviation σλ,exc(m ≥ mj) for

a magnitude level is given by:

σλ,exc(m ≥ mj) =
√

1
1−Nr

∑Nr
i=1[λ

(i)
exc(m ≥ mj)−mλ,exc(m ≥ mj)]2. (5.11)

The standard deviation shows the variability of the annual rate of ex-

ceedance λexc(m ≥ mj) for a magnitude level, given a group of synthetic earth-

quake catalogs. Likewise, it is possible to calculate the GR parameters for each

realization, and study the population of â-and b̂-values given by the multiple

realizations. The mean m(â) and m(b̂) for the â and b̂-values, respectively, in a

group of synthetic earthquake catalogs, are given by:

m(â) =

∑Nr
i=1 â

(i)

Nr

, (5.12)

m(b̂) =

∑Nr
i=1 b̂

(i)

Nr

, (5.13)

where â(i) and b̂(i) are the estimated â and b̂-values for the ith realization.

In a similar way, the standard deviation σ(â) and σ(b̂) for the â and b̂-values,

respectively, are given by:

σ(â) =

√√√√ 1

1−Nr

Nr∑
i=1

[â(i) −m(â)]2, (5.14)

σ(b̂) =

√√√√ 1

1−Nr

Nr∑
i=1

[b̂(i) −m(b̂)]
2. (5.15)

From average GR parameters, we can define the annual rate of exceedance

λexc,GR(m ≥ mj) for a magnitude level. This is given by the GR distribution
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in terms of rate of exceedance (Gutenberg and Richter, 1944; Baker, 2008):

log(λexc,GR(m ≥ mj)) = m(â) −m(b̂)mj. (5.16)

Rearranging, it produces:

λexc,GR(m ≥ mj) = 10m(â)−m(b̂)mj , (5.17)

where m(â) and m(b̂) refer to the mean â and b̂-values obtained from the syn-

thetic catalog, 5.12 and 5.13.

Another useful statistical quantity is the probability P [N = n; ta, tb] of n

occurrences happening in a time interval ∆t = tb − ta, which can be estimated

by assuming a stationary Poisson process (Cornell, 1968; Baker, 2008):

P [N = n; ta, tb] =
λn(tb − ta)ne−λ(tb−ta)

n!
, (5.18)

where λ is the rate of occurrence of events per time unit. For instance, λ can

be equivalent to the annual rate of earthquakes λGR(mj ≤ m < mk) in the

magnitude range m = [mj;mk), from average GR parameters. This is defined

by:

λGR(mj ≤ m < mk) = P (mj ≤ m < mk)N(mj ≤ m ≤ mk). (5.19)

The total expected number of earthquakes N(mj ≤ m ≤ mk) in the mag-

nitude range m = [mj;mk) is given by:

N(mk ≥ m ≥ mj) = 10m(â)−m(b̂)mj − 10m(â)−m(b̂)mk . (5.20)

On the other hand, the probability of occurrence P (mj ≤ m < mk) is given

by:

P (mj ≤ m < mk) = FM(mj)− FM(mk), (5.21)

where FM(m) denotes the cumulative distribution function, eq. 5.6. Finally, by

using eq. 5.19 in eq. 5.18, we can estimate the probable number of earthquakes

92



in the magnitude range m = [mj;mk) from the mean GR parameters given by

the multiple realizations.

5.3 Implementation

In order to simulate the ETAS process described in the previous section, it is

necessary to define the GR parameters for the background seismicity (ab-and

bb-values), the ETAS parameters for the aftershock simulation (K, c, p, α), and

the ba-value for the aftershock sequence. The GR parameters can be calculated

from observed mainshock and aftershock catalogs using Maximum Likelihood

estimations (Aki, 1965; Wiemer and Wyss, 1997). The ETAS parameters can

also be calculated from complete earthquake catalogs using Maximum Likeli-

hood estimations (Ogata, 1998; Daley and Vere-Jones, 2003).

The first step of the ETAS process following the branching method consists

in simulating the background sequence, see algorithm 1. Then, the aftershock

catalog is generated by simulating all associated aftershocks triggered by a

background event, see algorithms 2 and 3. We assume that the background

events comprise almost all mainshocks. However, we can also generate a main-

shock catalog by selecting the largest magnitude in a cluster of events triggered

by a background event. Most of the time, the background event is the largest

event in the cluster, but depending on the productivity of the sequence, the

largest event (mainshock) can be one of the triggered aftershocks. Therefore,

mainshock and background catalogs are different. We quantify this difference

for some reasonable sets of ETAS parameters.

The ETAS simulation process can be repeated Nr times, generating multi-

ple realizations that describe the variability of the process. Figure 5.1 shows

a sketch of the branching process for the simulation of synthetic earthquake

catalogs. From these catalogs, we can calculate statistical quantities that are

relevant for the study of the hazard analysis: (1) the mean annual rate of ex-

ceedance mλ,exc(m ≥ mj) for a magnitude level (eq. 5.10); (2) the annual rate

of exceedance λexc,GR(m ≥ mj) (eq. 5.17) from mean â-and b̂-values (eq. 5.12

and 5.13); and (3) the probability P [N = n; ta, tb] of n occurrences happening

in a time interval ∆t = tb − ta (eq. 5.18), also from mean â-and b̂-values.
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Figure 5.1: Sketch of the branching process used to simulate synthetic earth-
quakes, following the ETAS methodology. The background catalog (Left) is
generated assuming a Poisson process. For each background earthquake, a
sequence of aftershocks (Center)) are generated, following the Epidemic-type
process. The complete catalog contains all events (Right). The x-axis (time)
is not in real scale.

The directly observed annual rate of exceedance λexc(m ≥ mj) for a mag-

nitude level (Eq.5.9), is estimated by first counting the number of events with

magnitude larger than mj in one realization, and dividing by the time duration

of the catalog. Repeating for all simulations and averaging, it results in the

mean annual rate of exceedance mλ,exc(m ≥ mj) for a magnitude level, eq.5.10.

It is directly observed from the simulations to account for the fact that the af-

tershocks may lead to nonlinear magnitude-frequency distributions. To count

for the variability, we add and subtract the standard deviation to the mean

annual rate of exceedance, mλ,exc(m ≥ mj) ± σλ,exc, eq. 5.11. This results

in a upper and lower curve. Similarly, we can apply this process to the com-

plete and mainshock catalogs, resulting in the mean annual rate of exceedance,

mλ,exc,c(m ≥ mj) and mλ,exc,m(m ≥ mj) for the complete and mainschock

catalogs, respectively. These represent the annual exceedances given by the

parameters of the underlying generating processes.

In addition, we compute an annual rate of exceedance using estimated

GR parameters, thereby assuming a linear magnitude-frequency distribution

as usually done in PSHA. The annual rate of exceedance λexc,GR(m ≥ mj)
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from mean â-and b̂-values, is obtained by estimating first the â- and b̂-values

for individual realizations using Maximum Likelihood estimations (Aki, 1965;

Wiemer and Wyss, 1997). By averaging, it results in the mean GR param-

eters m(â), m(b̂), eq. 5.12 and 5.13. These mean GR parameters m(â), m(â)

are introduced into eq.5.16 and eq. 5.17 resulting in the rate of exceedance

λexc,GR(m ≥ mj) given estimated GR parameters. To count for variability,

we can define upper and lower values for mean GR parameters, which result

from adding and substracting the standard deviation, σ(â) and σ(b̂) (Eq. 5.14

and 5.15) to the mean â- and b̂-values, resulting in m(â) ± σâ, and m(b̂) ± σb̂.
From these upper and lower values we proceed to calculate the upper and lower

annual rate of exceedance curves λexc,GR+σ(m ≥ mj) and λexc,GR−σ(m ≥ mj).

Similarly, we can define the annual rate of exceedance λexc,GR,c(m ≥ mj) and

λexc,GR,m(m ≥ mj), eq.5.16, for complete and mainshock catalogs, respectively.

In this case we require mean GR parameters for complete catalogs, m(âc) and

m(b̂c)
, and mainshock catalogs, m(âm) and m(b̂m) (Eq. 5.12 and 5.13). On the

other hand, we can define σ(âc) and σ(b̂c), as well as σ(âm) and σ(b̂c), the standard

deviations of estimated GR parameters for mainshock and complete catalogs,

respectively.

To study the hazard estimation of large events given by the estimated GR

parameters from both complete and mainshock catalogs, we calculate the prob-

ability P [N = n; ta, tb] of n occurrences in the magnitude range m = [mj;mk),

happening in a time interval ∆t = tb − ta, eq. 5.18. This is done by intro-

ducing the annual rate of earthquakes λGR,c(mj ≤ m < mk) and λGR,m(mj ≤
m < mk), for complete and mainshock catalogs, respectively, in eq. 5.18. To

estimate the annual rate of earthquakes λGR(mj ≤ m < mk) in the magnitude

range m = [mj;mk), eq. 5.19, we use the mean GR parameters for complete

(m(âc), m(b̂c)
) and mainshock (m(âm), m(b̂m)) catalogs, obtained from simula-

tions. We compare the predictions given by the mean GR from the complete

and mainshock catalogs with the actual number of events in the synthetic cat-

alogs. We can also obtain the probability of n number of events in a given

magnitude range, in a period of time, directly from synthetic earthquake cata-

logs. This is obtained by counting the number of realizations with n number of

events in a magnitude range, and then dividing by the number of realizations.
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The rationale for comparing averaged predictions using estimated GR pa-

rameters with those computed directly from the generated catalog is to test

if the assumption of a single linear magnitude-frequency distribution is appro-

priate given the different types of catalogs, that is, mainshocks only or main-

shocks plus aftershocks. We use averaged predictions to account for sampling

variances, that is, each realization may slightly deviate from the underlying

statistical process, in particular for shorter sample populations.

5.4 Synthetic Examples

In order to study the impact of including or excluding non-stationary after-

shocks in the seismic hazard analysis, we design two examples based on simu-

lation of synthetic earthquake catalogs. For the first example, we identify the

cases when declustering is appropriate, considering long and short-term seis-

micity durations. For the second example, we demonstrate that the recurrence

of earthquakes can be estimated properly, irrespective if we have a Poissonian

or a non-Poissonian process, as long as we have the appropriate GR param-

eters. Therefore, Poisson statistics are still valid, particularly for long-term

seismicity.

For the first example, we consider two sets of simulations generated fol-

lowing the ETAS branching process described previously. The first set consists

of 1,000 realizations of 50-year duration, representing a long-term seismicity

case. The second set consists of 1,000 realizations of 5-year duration, repre-

senting a short-term seismicity case. For each set, we consider two cases where

the bb-value of the background seismicity is (1) equal or (2) smaller than the

ba-value of the aftershocks. We do not consider the case that the aftershocks

have smaller b-values than the background seismicity since this leads to a large

number of aftershocks with larger magnitudes than the background events.

This breaks the assumption that the background sequence contains most of

the mainshock events and that the mainshocks have the largest magnitudes in

declustering approaches.

The ETAS parameters for these synthetic examples are defined as follows:

K = 1.5, c = 0.1, p = 1.3, α = 1.5. These values are loosely based on typical
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Figure 5.2: Results for first set of simulations (50 years), example 1. First
row: bb = ba = 1, second row: bb = 1 and ba = 2. Figures (A) and (C) show
the mean annual rate of exceedance (mλ,exc(m ≥ mj), dotted curves) directly
extracted from synthetic earthquake catalogs and the annual rate of exceedance
from estimated mean GR parameters (λexc,GR(m ≥ mj), continuous curves),
for mainshock (red) and complete (blue) catalogs. The upper and lower curves
are the mean annual rates ± standard deviation. Figures (B) and (D) show
the probability of n occurrences, P [N = n; ta, tb] of n, in the magnitude range
m = [4.5; 5.5), in 50 years, for mainshocks (red) and complete (blue) catalogs.
The blue bars show the probability of n occurrences obtained directly from the
complete catalogs. The vertical red lines show the average number of events in
the magnitude range m = [4.5; 5.5) from the synthetic complete catalogs.
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ranges found for ETAS parameters, which vary from 0.003 to 0.3 days for c,

0.9 to 1.4 for p, and 0.2 to 3.0 for α (Utsu et al., 1995). A value of K = 1.5

is selected in order to design an experiment with medium to high productivity

of aftershocks. For the case with identical b-values, we set bb = ba = 1. For

the case with different b-values, we set bb = 1 and ba = 2. Finally, for the

background seismicity, we set N0 = 40, 000, which is equivalent to ab = 4.60.

The maximum time for the aftershock generation tmax, see algorithm 2, is set

as tmax = 200 days for all parent events. Finally, the minimum and maximum

magnitudes to simulate are: Mmin = 3.0 and Mmax = 6.0. Once these pa-

rameters are defined, we proceed to simulate the background and aftershock

sequences. Then, we derive the complete and mainshock sequences for each

case.

The central dotted curves in figures 5.2(a), 5.2(c), 5.3(a) and 5.3(c) repre-

sent the directly observed mean annual rate of exceedance mλ,exc,c(m ≥ mj)

and mλ,exc,m(m ≥ mj) for the complete and mainshock catalogs, respectively,

estimated by counting events with magnitudes m ≥ mj in the simulated sam-

ples (Eq. 5.10). The upper and lower dotted curves are the mean annual rate of

exceedance plus or minus the standard deviation, mλ,exc(m ≥ mj)±σλ,exc. The

central continuous curves in figures 5.2(a), 5.2(c), 5.3(a) and 5.3(c) represent

the annual rate of exceedance from mean GR parameters, λexc,GR,c(m ≥ mj)

and λexc,GR,m(m ≥ mj), for complete and mainshock catalogs, respectively, es-

timated from simulated samples (Eq. 5.17). The upper and lower dashed curves

represent the upper and lower annual rate of exceedance curves λexc,GR+σ(m ≥
mj) and λexc,GR−σ(m ≥ mj), obtained from mean GR parameters ± standard

deviations, σ(â) and σ(b̂).

Figures 5.2 (A) and (B) show the results for the 50-year seismicity simula-

tions when bb = ba = 1, and figures 5.2 (C) and (D) show the results for the

50-year seismicity simulations when bb = 1 and ba = 2. The meanm(â) andm(b̂),

estimated by averaging â-and b̂-values over all realizations, are summarized in

table 5.1, together with standard deviations σ(â) and σ(b̂).

Figures 5.2 (B) and (D) show the probability of n occurrences in the mag-

nitude range m = [4.5; 5.5) in 50 years, for mainshock (red) and complete

(blue) catalogs. This is done by introducing the annual rate of earthquakes
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λGR,c(mj ≤ m < mk) and λGR,m(mj ≤ m < mk), for complete and mainshock

catalogs, respectively, in eq. 5.18. Again, to estimate the annual rate of earth-

quakes λGR(mj ≤ m < mk) in a magnitude range m = [mj;mk), eq. 5.19,

we use the mean GR parameters for complete (m(âc), m(b̂c)
) and mainshock

(m(âm), m(b̂m)) catalogs. The blue bars in both figures represent the probabil-

ity of n number of events in the magnitude range m = [4.5; 5.5), in a 50-year

period, obtained directly from complete synthetic catalogs. This is obtained by

counting the number of realizations with n number of events in the magnitude

range m = [4.5; 5.5), and then dividing by the number of realizations. When

bb = ba = 1, the most likely number of events is n = 78, given the mean GR

parameters of the mainshock catalog, and n = 142, given the mean GR pa-

rameters of the complete catalog. From the simulations, the average number of

events in the magnitude range m = [4.5; 5.5) is 144.17 (1441660 events within

the magnitude range m = [4.5; 5.5) in 1000 realizations, see red vertical line).

When bb = 1 and ba = 2, the most likely number of event is n = 62, given the

mean GR parameters of the mainshock catalog, and n = 38, given the mean GR

parameters of the complete catalog. From the simulations, the average number

of events in the magnitude range m = [4.5; 5.5) is 59.21 (592090 events within

the magnitude range m = [4.5; 5.5) in 1000 realizations). Notice, that the

GR parameters obtained from the mainshock simulations tend to slightly over-

predict the number of earthquakes within the magnitude range m = [4.5; 5.5).

This results from the use of non-truncated GR curves, which contrasts with

the established truncation at Mmax = 6.0 for the synthetic catalogs.

Similarly, figures 5.3 (A) and (B) show the results for the 5-year seismicity

simulations when bb = ba = 1, and figures 5.3 (C) and (D) show the results for

the 5-year seismicity simulations when bb = 1 and ba = 2. When bb = ba = 1,

the most likely number of events is n = 7, given the mean GR parameters

of the mainshock catalog, and n = 12, given the mean GR parameters of the

complete catalog. From the simulations, the average number of events in the

magnitude range m = [4.5; 5.5) is 13.41 (134070 events within the magnitude

range m = [4.5; 5.5) in 1000 realizations). When bb = 1 and ba = 2, the

most likely number of events is n = 6, given the mean GR parameters of

the mainshock catalog, and n = 3, given the mean GR parameters of the
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Table 5.1: Summary of the mean GR parameters (m(â) and m(b̂)) and stan-

dard deviations (σ(b̂) and σ(b̂)) for the two sets of simulations: 1000 synthetic
earthquake catalogs in each set, with 5 and 50 years duration for sets 1 and 2,
respectively. We show the results from both mainshock and complete simulated
catalogs.

ETAS model
5 yr sim
bb = ba

5 yr sim
bb >> ba

50 yr sim
bb = ba

50 yr sim
bb >> ba

m(âc) ± σ(âc)
(Complete)

4.94± 0.134 5.72± 0.179 4.98± 0.040 5.81± 0.054

m(b̂c)
± σ(b̂c)

(Complete)
0.99± 0.045 1.28± 0.058 0.99± 0.013 1.31± 0.018

m(âm) ± σ(âm)

(Mainshock)
4.30± 0.177 4.50± 0.20 4.28± 0.055 4.47± 0.054

m(b̂m) ± σ(b̂m)

(Mainshock)
0.90± 0.058 0.96± 0.060 0.89± 0.017 0.95± 0.019

complete catalog. From the simulations, the average number of events in the

magnitude range m = [4.5; 5.5) is 6.68 (6677 events within the magnitude range

m = [4.5; 5.5) in 1000 realizations).

In the cases where bb = ba = 1, the annual rate of exceedance curve for main-

shock catalogs do not intersect the annual rate of exceedance curve for complete

catalogs. It does consistently show lower rates for all considered magnitudes;

therefore, declustering is not recommended. On the other hand, when bb = 1

and ba = 2, the curves intersect at magnitude m = 3.7, and the annual rate of

exceedance curve for mainshock catalogs consistently shows higher values for

large magnitude events; therefore, declustering is recommended. These results

are confirmed by comparing the probability of large events given by GR pa-

rameters from complete and mainshock catalogs with the average number of

events in the synthetic catalogs. When bb = ba = 1, the mean GR parame-

ters from the complete catalogs estimate better the number of events in the

magnitude range m = [4.5; 5.5] from the synthetic catalogs. When bb = 1 and

ba = 2, the mean GR parameters from mainshock catalogs estimate better the

number of events in the magnitude range m = [4.5; 5.5) from the synthetic

catalogs. Based on these simulations, when the b-value of the complete catalog

is considerably larger than the b-value of the mainshock catalog, declustering

is an useful tool to get a better fit of the GR parameters for large events, which

100



ultimately contribute more to the seismic hazard.

The need for declustering in case of different b-values can also be seen in the

magnitude-frequency distributions which display a kink in the complete cata-

logs if the aftershocks and mainshocks have different b-values (Figures 5.2 (C)

and 5.3 (C)) but is essentially linear if both b-values are identical (Figures 5.2

(A) and 5.3 (A)). The deviation from a linear slope at the highest magnitudes

occurs because a truncated GR distribution is used.

We also compare the background and mainshock catalogs to determine how

frequent, given this particular setting, an aftershock is larger than the back-

ground event. For the short-term seismicity and when bb = ba = 1, we found

that in 17.7% of the cases there is an aftershock, from the cluster of offsprings,

with a larger magnitude than the parent background event. However, when

bb = 1 and ba = 2, we found that this likelihood reduces to 10.2%. For the

long-term seismicity, when bb = ba = 1, there is a 19.5% of probabilities to

have an aftershock larger than the background event. When bb = 1 and ba = 2,

this probability decreases to 11.6%. We notice that these likelihoods strongly

depends on both the aftershock productivity given by the ETAS parameters

and the ba-value of the aftershock sequence. Also, considering that the back-

ground and mainshock catalogs are relatively similar (from 80 % up to 95 %

of the mainshock events in the catalog are background events), we can assume

that the GR of the mainshock catalog is similar to the GR of the background

catalog.

One remarkable observation from these results is that the Poisson simula-

tions and statistics are still useful for the seismic hazard analysis of long term

seismicity. In cases when declustering is recommended, the mainshock catalog

describes better the occurrence rate of large events. Because the mainshocks

are generated with a Poissonian process, all Poisson-based analytical statistics

such as the annual rate of exceedance, eq.5.9, are applicable. In cases where

declustering is not recommended, the complete catalog does not follow a Pois-

son distribution because of the presence of non-stationary aftershock sequences

as modeled by the ETAS process. Nonetheless, analytic expressions based on

Poissonian statistics, such as the probability of n occurrences within a certain

magnitude range, eq.5.18, still produce representative predictions.
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Figure 5.3: Results for second set of simulations (5 years), example 1. First
row: bb = ba = 1, second row: bb = 1 and ba = 2. Figures (A) and (C) show
the mean annual rate of exceedance (mλ,exc(m ≥ mj), dotted curves) directly
extracted from synthetic earthquake catalogs and the annual rate of exceedance
from estimated mean GR parameters (λexc,GR(m ≥ mj), continuous curves),
for mainshock (red) and complete (blue) catalogs. The upper and lower curves
are the mean annual rates ± standard deviation. Figures (B) and (D) show
the probability of n occurrences, P [N = n; ta, tb] of n, in the magnitude range
m = [4.5; 5.5), in 5 years, for mainshocks (red) and complete (blue) catalogs.
The blue bars show the probability of n occurrences obtained directly from the
complete catalogs. The vertical red lines show the average number of events in
the magnitude range m = [4.5; 5.5) from the synthetic complete catalogs.
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To exemplify this point, we design a second example where we compare

the hazard statistics given by ETAS and stationary Poisson simulations. First,

we simulate 1000 realizations of 1 and 50 years duration, following the ETAS

process (ETAS catalog). The ETAS parameters are identical to previous sim-

ulations, with same GR parameters for the background process. Then, we

simulate 1000 realizations of 1 and 50 years duration, but assuming a station-

ary Poisson process (Mainshock Poissonian, MP catalog). The GR parameters

of the MP catalog are b = 0.99 and a = 4.98, which are identical to the average

GR parameters obtained from the 50-year synthetic ETAS catalogs.

The central dotted curves in figures 5.4(a) and 5.4(c) represent the mean

annual rate of exceedance mλ,exc(m ≥ mj) obtained from the complete ETAS

(blue) and MP (red) catalogs. The upper and lower dotted curves are the

mean annual rate of exceedance ± standard deviation. The central continuous

curves represent the annual rate of exceedance from the mean GR parameters,

λexc,GR(m ≥ mj) for the complete ETAS (blue) and MP (red) catalogs. The

upper and lower dashed curves represent the upper and lower annual rate of

exceedance curves λexc,GR+σ(m ≥ mj) and λexc,GR−σ(m ≥ mj). For the 1-year

case, the mean GR parameters (m(â) and m(b̂)) and standard deviations (σ(â)

and σ(b̂)) are â = 5.08 ± 0.35 and b̂ = 1.05 ± 0.12 for the MP catalog, and

â = 5.010 ± 0.36 and b̂ = 1.03 ± 0.14 for the ETAS catalog. Likewise, for the

50-year case, the mean GR parameters (m(â) and m(b̂)) and standard deviations

(σ(â) and σ(b̂)), are â = 4.97 ± 0.039 and b̂ = 0.99 ± 0.013 for the MP catalog,

and â = 4.98± 0.040 and b̂ = 0.99± 0.013 for the ETAS catalog.

Figure 5.4 (B) and (D) show the probability of n occurrences in the mag-

nitude range m = [4.5; 5.5), in 1 and 50 years, for MP (red) and ETAS (blue)

catalogs. The blue bars in both figures represent the probability distribution

of n events obtained directly from complete synthetic catalogs. For the 1-year

simulation case, the most likely number of events is n = 2, using the mean GR

parameters obtained from both MP and ETAS catalogs. From the simulations,

the average number of events in the magnitude range m = [4.5; 5.5) is 2.19

(2187 events within the magnitude range m = [4.5; 5.5) in 1000 realizations,

see red vertical line). For the 50-year simulation case, the most likely number

of events is n = 146 and 142, using the mean GR parameters obtained from
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Figure 5.4: Comparison between results from MP and ETAS simulations. First
row: 1-year simulation, second row: 50-year simulation. Figures (A) and (C)
show the mean annual rate of exceedance (mλ,exc(m ≥ mj), dotted curves)
from synthetic earthquake catalogs, and the annual rate of exceedance from
estimated mean GR parameters (λexc,GR(m ≥ mj), continuous curves), for MP
simulations (red) and ETAS simulations (blue). Figures (B) and (D) show
the probability of n occurrences, P [N = n; ta, tb] of n, in the magnitude range
m = [4.5; 5.5) in 1 and 50 years, for MP simulations (red) and ETAS simu-
lations (blue). The blue bars show the probability of n occurrences obtained
directly from the complete catalogs. The vertical red lines represents the av-
erage number of events in the magnitude range m = [4.5; 5.5) in the synthetic
complete catalogs.
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both MP and ETAS catalogs, respectively. From the simulations, the average

number of events in the magnitude range m = [4.5; 5.5) is 144.17 (1441660

events within the magnitude range m = [4.5; 5.5) in 1000 realizations, see red

vertical line).

From these results, it is clear that both models show similar hazard results.

The only remarkable difference is the larger variability in the annual rate of

exceedance from the ETAS simulations during the 1-year simulations. There-

fore, for long-term seimicity, assuming a stationary Poisson process is still valid,

which is particularly useful considering the longer time required to run ETAS

simulations and the complex parameter estimation techniques that the ETAS

model needs. Note however that we assumed stationary parameters for both

the Poisson and ETAS processes. This is not valid for predicting the hazard as-

sociated with human-induced seismicity which is a non-stationary process and

thus requires time-dependent GR parameters as described by (Reyes Canales

and Van der Baan, 2019). ETAS is still a very useful tool for short-term seis-

micity hazard analyses, especially to estimate the hazard of the aftershocks

triggered by a major tectonic event.

5.5 Application to a recent case of induced

seismicity: Oklahoma, USA

The recent increase, peak and decline of the seismic activity in Oklahoma has

been one of the most studied cases of induced seismicity worldwide (Ellsworth,

2013; Van der Baan and Calixto, 2017; Langenbruch and Zoback, 2016). The

seismic activity in Oklahoma has been associated to large volumes of salt-water

injection in the Arbuckle formation (Van der Baan and Calixto, 2017). The

injection rates were stable prior to January 2012, then there was a considerable

increased that peaked in January 2015. After that, the injection rates in the

Arbuckle formation have declined until recent times. The number of induced

earthquakes also followed a similar pattern of increase, peak and decline, with a

9 months lag with respect to the injection volumes (Langenbruch and Zoback,

2016; Van der Baan and Calixto, 2017).
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In this study, we use the declustered and non-declustered earthquake cat-

alogs for the 2017 Central and Eastern U.S. short-term seismic hazard model

(Petersen et al., 2017). From this catalog, we only take the seismicity in Ok-

lahoma between January 2009 and December 2016. The number of events

in the non-declustered (complete) catalog is 21781, in the magnitude range

m = [1.28; 5.59]. For the declustered catalog there are 814 events, in the mag-

nitude range m = [2.55; 5.59]. The chosen algorithm to perform the decluster-

ing was the Gardner and Knopoff (1974) method, and the magnitudes in these

catalogs are local magnitudes ml. The largest induced-related earthquakes that

have occurred in Oklahoma are the Prague mw = 5.6 (ml = 5.59) in Novem-

ber 2011, the Fairview mw = 5.1 (ml = 5) in February 2016, and the Pawnee

mw = 5.8 (ml = 5.55) in September 2016 (Van der Baan and Calixto, 2017;

Langenbruch and Zoback, 2016). Figure 5.5 shows the location of earthquakes

in Oklahoma with magnitudes m ≥ 2.7 from declustered and complete cata-

logs, as well as the cumulative number of earthquakes, from January 2009 until

December 2016.

We apply the ETAS branching process simulation to the Oklahoma data,

in order to assess the impact of including or excluding aftershock sequences in

the hazard analysis. As a first approach, we assume stationary synthetic earth-

quake catalogs, as well as stationary GR and ETAS parameters, even though

the induced seismicity in Oklahoma shows a clear non-stationarity pattern.

However, these estimated parameters will represent the average non-stationary

rates between 2009 and 2016. The rationale for doing this is that estimations

of non-stationary ETAS parameters is beyond the scope of this article.

5.5.1 Estimation of the GR and ETAS parameters

In order to estimate the GR and ETAS parameters, we use the non-declustered

and declustered earthquake catalogs for the 2017 Central and Eastern U.S.

short-term seismic hazard model (Petersen et al., 2017). For our purposes, we

will use the seismicity covering Oklahoma, from January 2009 until December

2016. Petersen et al. (2016), Petersen et al. (2017), and Petersen et al. (2018)

apply the Gardner and Knopoff (1974) declustering method. It is important
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Figure 5.5: (A) Location of earthquakes with magnitude m ≥ 2.7 from declus-
tered (red) and complete (blue) catalogs. (B) Cumulative number of earth-
quakes in Oklahoma with magnitudes m ≥ 2.7, using declustered (red) and
complete (blue) catalogs, from Jan. 2009 until Dec. 2016

to mention that different declustering methods might lead to different GR pa-

rameters, as shown by Teng and Baker (2019). However, the Gardner and

Knopoff (1974) declustering method is the standard declustering methodology

performed by the United State Geological Survey (USGS), and the resulting

b-value (b = 1.0) from the mainshock catalog fits reasonably well the observed

distribution of large events (M ≥ 4.5).

We first estimated the GR parameters from the non-declustered (complete)

catalog, using Maximum Likelihood estimations (MLM) (Aki, 1965; Wiemer

and Wyss, 1997). For the error estimations of the b-value we use the method

described by (Shi and Bolt, 1982). We acknowledge that using a different mag-

nitude of completeness (Mc) may lead to different estimations of b-values (Ak-

inci et al., 2018). However, we are confident with the magnitude of completeness

value used in this analysis, Mc = 2.7, which has been supported by multiple

studies in Oklahoma (Petersen et al., 2016; Teng and Baker, 2019). The ac-

and bc-values from the complete catalog equal ac = 7.392 and bc = 1.596, re-

spectively, with a b-value error of 0.015, see figure 5.6 (A). We also estimate

the GR parameters from the declustered (mainshock) catalog, using MLM. The

am- and bm-values from the declustered catalog equal am = 4.62 and bm = 1.00,

respectively, with a b-value error of 0.035, see figure 5.6 (A).
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Figure 5.6: (A) Estimation of the GR parameters in Oklahoma, using the MLM,
for declustered and non-declustered catalogs in Oklahoma (2009-2016). The
upper and lower curves represent the b-value ± error. Notice the very different
slopes for the declustered and non-declustered catalogs. The dots represents
the annual rate of exceedance per magnitude level for declustered (red) and
Non-declustered (blue) catalogs. (B) Estimation of the ETAS parameters in
Oklahoma, using MLM. The orange curve represents the cumulative number of
events m ≥ 3.5 and the blue line shows the fitted model from estimated ETAS
parameters.
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For the first simulation approach, we assume that the b-values of the back-

ground and aftershock sequences are equal to the b-value of the complete cata-

log, bb = ba = bc = 1.596. To keep the same number of mainshock events with

m ≥ 3.5, we set ab = 6.60 for the mainshock sequence. For the second sim-

ulation approach, we assume that the a-value and b-values of the background

sequence are identical to the a-value and b-value of the observed declustered

catalog (mainshock), that is ab = am = 4.60 and bb = bm = 1.0. On the other

hand, for the b-value of the aftershock sequence, we estimate ba = 1.66, which

is obtained by applying MLM to the residual aftershock sequence resulting

from the declustering methodology. The minimum and maximum magnitudes

to simulate are: Mmin = 2.7 and Mmax = 6.0. We choose a relatively low

Mmax in order to compare the simulations with the actual number of observed

large earthquakes (The largest event in the catalog is M = 5.6). However, we

acknowledge that a higher Mmax might be appropriate.

We use MLM for the estimation of ETAS parameters ((Ogata, 1998; Daley

and Vere-Jones, 2003), R. Shcherbakov, pers. comm., 2019). To get stable

results, we use a Mmin,ETAS = 3.5 for the ETAS parametrization. The temporal

interval used for the curve fitting is defined as: tstart = 1500 and tend = 2800

days, which correspond to February 2013 and January 2016, respectively. The

estimated ETAS parameters for the induced seismicity in Oklahoma are: c =

0.0204, p = 0.8780, α = 1.36 and µ = 0.0304, see figure 5.6 (B). For a better

adjustment with observed seismicity, we set the productivity of the aftershock

sequence to K = 1.70. As before we use the GR parameters to obtain the

annual rate of the mainshocks, instead of using the background seismicity from

the ETAS process. Both rates agree within a 15% margin of difference. The

maximum time for the aftershock generation is set at tmax = 200 days for all

parent events. In this example, we do not consider necessary going beyond

tmax > 200 days because we would be increasing the computational cost to

obtain similar global statistical results.
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5.5.2 Hazard Analysis from ETAS simulations and ob-

served seismicity

In order study the impact of including or excluding aftershocks in the seismic

hazard analysis in Oklahoma, we consider two sets of simulations. For the first

set of simulations, we assume the same b-value for the mainshock and after-

shock sequences bm = ba = 1.596. For the second set of simulations, we assume

a different b-value between the mainshock and aftershock sequences bm = 1.0

and ba = 1.66. Each set consists of 10 realizations with a duration of 9 years

each. However, the first year is neglected (8 years to analyze) due to the under-

estimation of events caused by the lack of history before tstart. As mentioned

before, the simulations assume stationary GR and ETAS parameters.

The central dotted curves in figures 5.7(A) and 5.7(B) represent the mean

annual rate of exceedance mλ,exc,c(m ≥ mj) and mλ,exc,m(m ≥ mj) for the

complete and mainshock catalogs, respectively, estimated by counting events

with magnitudes m ≥ mj in the simulated samples. The upper and lower dot-

ted curves are the mean annual rate of exceedance plus or minus the standard

deviation, mλ,exc(m ≥ mj) ± σλ,exc. The central continuous curves in figures

5.7(A) and 5.7(B) represent the annual rate of exceedance from the mean GR

parameters, λexc,GR,c(m ≥ mj) and λexc,GR,m(m ≥ mj), for complete and main-

shock catalogs, respectively, estimated from the simulations. The upper and

lower dashed curves represent the upper and lower annual rate of exceedance

curves λexc,GR+σ(m ≥ mj) and λexc,GR−σ(m ≥ mj), obtained from the mean

GR parameters ± their standard deviations, σ(â) and σ(b̂).

Figure 5.7 (A) shows the results for the first set of simulations. The mean

a- and b-values for the complete and mainshock catalogs are: m(ac) = 6.95 and

m(bc) = 1.57 for the complete catalog, and m(am) = 5.49 and m(bm) = 1.34,

for the mainshock catalog. Figure 5.7 (A) show the results for the second set

of simulations. The mean a- and b-values for the complete and mainshock

catalogs are: m(ac) = 7.32 and m(bc) = 1.62 for the complete catalog, and

m(am) = 4.55 and m(bm) = 0.98, for the mainshock catalog. Finally, for a bet-

ter comparison between the simulations and observed seismicity, we plot again

the annual rate of exceedance from observed declustered and non-declustered
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catalogs in Oklahoma, see figure 5.7 (C). The reason why we assume bm = ba

for the first set of simulation, is to confirm if it is still reasonable to simu-

late mainshock and complete catalogs using the same b-value through all the

simulation. However, the only way we could replicate the clear intersection

in the magnitude-frequency plot between GR from mainshock and complete

catalogs is by considering different b-values between mainshock and aftershock

sequences.

The second row of figure 5.7 shows the probability of n occurrences in the

magnitude range m = [5.0; 6.0), given by the sets of simulations and observed

seismicity. When bm = ba = 1.596, the most likely number of events are n = 0

and n = 1, given the mean GR parameters of the simulated mainshock and

complete catalogs, respectively. When bm = 1.0 and ba = 1.66 the most likely

number of events are n = 3 and n = 1, given the mean GR parameters of the

simulated mainshock and complete catalogs, respectively. Finally, using the

GR parameters of the observed seismicity, the most likely number of events

are n = 3 and n = 2, given the GR parameters of the mainshock catalog and

complete catalog, respectively. 3 earthquakes with local magnitude m ≥ 5 in

Oklahoma occurred between 2009 and 2016 (Petersen et al., 2017).

Figure 5.7 thus show that the declustering is advisable for a more represen-

tative hazard assessment in Oklahoma because the b-value of the aftershocks

and mainshocks is different, leading to a non-linear magnitude-frequency dis-

tribution. The GR parameters estimated for the complete (non-declustered)

catalog yield a lower likelihood of an m ≥ 5 event occurring than if the GR

parameters are estimated from the declustered catalog (Fig. 5.7 F).

5.6 Discussion

One important discussion topic is the declustering methodology and how they

might result in different b-values for the mainshock sequence. The purpose

of this study is not to show which declustering method is most appropriate,

but rather to show when declustering might be a useful tool for the correct

estimation of recurrence characteristics for large events. We acknowledge that

different declustering methods might lead to different b-values for the main-
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Figure 5.7: First row: (A) and (B) show the mean annual rate of exceedance
(mλ,exc(m ≥ mj), dotted curves) from the synthetic catalogs and annual rate
of exceedance from the mean GR parameters (λexc,GR(m ≥ mj), continuous
curves), using the estimated parameters for the induced seismicity in Okla-
homa. We consider the same b-value for the mainshock and aftershock events
(A), or different b-values for the mainshock and aftershock sequences (B). The
upper and lower dashed curves are the mean annual rates ± their standard
deviation. The estimation of the GR parameters in Oklahoma for declustered
and non-declustered catalogs is plotted again for comparative purposes(C).
Second row: Probability of n occurrences, P [N = n; ta, tb] of n, in the mag-
nitude range m = [5.0; 6.0), in a 8-year period, given by the complete and
mainshock catalogs from (D) the mean GR parameters from the first set of
simulations (bm = ba = 1.596), (E) the mean GR parameters from the second
set of simulations (bm = 1.0 and ba = 1.66) and (F) the GR parameters from
the observed seismicity. The number of earthquakes in Oklahoma with local
magnitude larger than m ≥ 5 is n = 3 (red vertical lines).

112



shock sequence, as shown in the study implemented by Teng and Baker (2019)

in Oklahoma. One reason for obtaining different b-values is that some declus-

tering methods tend to reduce the number of earthquakes more than others.

In one extreme, we have the Gardner and Knopoff (1974) methodology, which

is one of the methods that leads to the largest reduction in earthquake num-

bers. On the other hand, we have the Reasenberg (1985) methodology, which

tends to reduce less the number of earthquakes and, in the case of Oklahoma,

keeps a similar b-value between declustered and non-declustered catalogs. One

of the advantages of the synthetic simulations shown in this study is that we

do not have to perform any declustering methodology in order to know with

complete certainty the background/mainshock sequences. Therefore, from a

theoretical point of view and without relying on any declustering method to

determine the mainshock sequence, we identify the cases when declustering

is more appropriate in order to estimate the recurrence statistics of the large

events (mainshocks).

Based on the synthetic examples when the bm-value of the mainshocks is

considerably smaller than the ba-value of the aftershock sequence, and the re-

sults from observed induced seismicity in Oklahoma, seismicity declustering is

highly recommended for the hazard analysis. It yields better estimates of the

b-value of the largest events which may not be well represented in the observed

catalog. However, declustering is inappropriate in catalogs with a small num-

ber of earthquakes or when the bb-value of the background is similar to ba-value

of the aftershock sequence, as shown in the synthetic examples. Similar find-

ings about discouraging the use of declustering methodologies are described

by Boyd (2012). They found that the inclusion of aftershocks causes ground

motions that are exceeded at probability levels of engineering interest to in-

crease by about 10 % but could be as high as 20 % if variations in aftershock

productivity are accounted. However, they perform this analysis using earth-

quake catalogs from California, where the bb-value of the background is similar

to ba-value of the aftershocks (Boyd, 2012; Teng and Baker, 2019). Note that

we are only evaluating temporal declustering. For instance, Marzocchi and Ta-

roni (2014) have shown the relevance of spatial declustering in order to avoid

underestimations in the hazard.
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One question that must be evaluated is how different should be the b-value

of the mainshocks and aftershock sequence in order to decluster or not. It would

depend on the catalog and, ultimately, the analyst. From the Oklahoma exam-

ple, the difference of b-values between complete and mainshock catalogs is 0.59,

and it is enough to advocate for declustering. Without declustering, we would

have underestimated the number of events larger than M = 4.5. It ultimately

depends on the analyst to decide which large magnitudes cannot be underesti-

mated. For instance, let us say that there is a kink in the magnitude-frequency

distribution, and the GR curves from complete and mainshock catalogs inter-

sect in a magnitude lower than a defined magnitude threshold; that would be a

clear indication that the b-values are different enough to consider declustering.

Nonetheless, the true bottleneck is not that main- and aftershocks sequences

may have different b-values, but that a single b-value is used to extrapolate

hazard predictions for large-magnitude events that may be poorly sampled in

the recorded catalogs due to limited observation periods compared with the

recurrence time of large earthquakes.

A tell-tale sign that the b-values of mainshocks and aftershocks may be

different is the appearance of kinks in the magnitude-frequency distributions

(Figures 5.2 (C), 5.3 (C), 5.6 (A), and 5.7 (B)). These are absent if the main-

shocks and aftershocks are characterized by identical b-values (Figures 5.2 (A),

5.3 (A) and 5.7 (A)). On the other hand, the suggestion of increasing b-values

for aftershock sequences has been observed in recent studies done in the Ama-

trice–Norcia (Italy) and Kumamoto (Japan) Earthquakes (Gulia and Wiemer,

2019). However, further investigation is necessary in order to understand why,

in some cases, the b-values between background and aftershock sequences may

be different, independently on the performed declustering method. This may

also lead to an enhanced understanding of the underlying earthquake physics.

5.7 Conclusions

If mainshocks and aftershocks are characterized by different b-values, decluster-

ing leads to improved hazard assessments, since it allows for better estimation

of the magnitude-frequency distribution of the largest events. Conversely, if
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mainshocks and aftershocks have similar b-values then declustering is inadmis-

sible since it eliminates larger events that contribute to the long-term hazard.

Assuming Poissonian distributions in hazard predictions does not lead to inac-

curate long-term hazard predictions, even if time-varying aftershock sequences

are present in the catalog. Short-term hazard due to aftershocks is, however,

better estimated by evaluating appropriate non-stationary models such as the

ETAS process.
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Chapter 6

Towards building seismicity

scenarios in areas susceptible to

induced earthquakes in Alberta

6.1 Introduction

The first induced seismicity cases in Alberta date back to the 1970s, related

to conventional oil and gas production (Van der Baan and Calixto, 2017).

Gas extraction at the Strachan field, Rocky Mountain House (Wetmiller, 1986;

Baranova et al., 1999), has been associated with the peaks of seismicity observed

in the late 1970s and early 1980s in that region. Since the mid-1990s, seismic

activity has been observed at the Cordel field, Brazeau River area, linked to

waste water disposal activities (Schultz et al., 2014). Even though the history

of induced seismicity in Alberta is over four decades long, induced earthquakes

have brought more attention since the recent increase in the number of seismic

events linked to the development of unconventional resources.

Since 2010 there has been an increase in the number of earthquakes in the

province of Alberta (Atkinson et al., 2016; Van der Baan and Calixto, 2017).

Most of these events are associated with the hydraulic fracturing activities in

the Duvernay Formation near Fox Creek (Schultz et al., 2015). These activities

have been linked to events as large as magnitude M = 4.8 (Alberta Geological

116



Figure 6.1: (A) Location of earthquakes in Alberta, using the catalog from
Alberta Geological Survey (2019) from Oct. 2006 until Oct. 2019. The different
induced seismicity cases are shown in circles: (1) Rocky Mountain House, (2)
Brazeau River, (3) Cardston seismicity cluster, (4) Duvernay Formation (Fox
Creek area), (5) Duvernay Formation (Red Deer area). (B) Cumulative number
of earthquakes in Alberta with magnitudes m ≥ 2.5. Notice the considerable
change in the cumulative number of earthquakes, particularly after 2013.

Survey, 2019). In March 2019, a seismic event M = 4.2 was recorded near

the city of Red Deer (Alberta Geological Survey, 2019), and it has been linked

to hydraulic fracturing operations in the area. Figure 6.1 shows a map of

the recorded events in the province of Alberta since Oct. 2006 (A) and the

equivalent cumulative number of earthquakes with magnitudes m ≥ 2.5(B).

This map includes both natural and induced events. Since Oct. 2006, more

than 275 events with magnitudes m ≥ 2.5 have been recorded by the Alberta

Geological Survey. Notice that most of the events are located near the foothills

and the Rocky Mountains, as well as areas prone to induced seismicity like the

Duvernay Formation near Fox Creek.

Unsurprisingly, these induced events have to lead to increasing concerns over

seismic hazard (Atkinson et al., 2015). Previous hazard assessments (Atkinson

et al., 2015) have shown that induced events generate hazard potentially higher

than the natural seismic hazard, especially in areas with small-to-moderate

natural background seismicity like the province of Alberta. Furthermore, the
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hazard related to future induced seismicity relies on unknown forthcoming seis-

micity patterns. As a result, it has been necessary to develop seismicity scenar-

ios that can give us insights into future seismicity patterns in areas known to

be prone to induced earthquakes. Such a scenario evaluation is the first stage

before developing a full seismic hazard analysis for induced seismicity.

In this chapter, we first present an overview of the reported induced seis-

micity cases in Alberta. Then, we propose a methodology to build seismic-

ity scenarios in areas susceptible to induced earthquakes. This methodology

consists of the following steps: (1) Use of retrospective Probabilistic Seismic

Hazard Analysis (PSHA) maps to identify areas affected by induced seismicity,

and quantitatively evaluate the temporal changes in the seismic hazard; (2)

Identify operational parameters that can act as proxies to foreseen seismicity

rates in areas prone to induced earthquakes; (3) Forecast appropriate proxies

based on projections of anthropogenic activities; (4) Building future seismicity

scenarios using forecasts of operational proxies. This type of scenario building,

based on projected operations in susceptible areas to induced seismicity, can

give us insights into future seismicity patterns. Government and industry can

evaluate the areas that will likely experience an increase or decrease of induced

events and, therefore, develop strategies based on future seismicity scenarios.

6.2 Induced seismicity cases in Alberta and

current regulatory framework

1. Rocky Mountain House: the seismic events associated with the sec-

ondary recovery of gas at the Strachan Field, near Rocky Mountain

House, is the first case of induced seismicity recorded in Alberta (Wet-

miller, 1986; Van der Baan and Calixto, 2017). Large amounts of gas were

removed at the Leduc Formation, reducing the vertical stresses and facil-

itating fault activation (Baranova et al., 1999). The seismicity started in

the mid-1970s, peaking in 1985 with 40 earthquakes larger than M > 3.0

in that year (Stern et al., 2013). The number of earthquakes recorded

in the area has decreased since then, with four earthquakes larger than
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M > 3.0 in 2011. The largest induced event had a magnitude of M = 4.0

(Stern et al., 2013).

2. Brazeau River Area: the seismic events at the Cordel Field, Brazeau

River area, have been linked to waste water disposal activities in the

Rundle Group (Schultz et al., 2014). The induced seismicity in the area

started in the mid-1990s and is still ongoing (Schultz et al., 2014). How-

ever, the annual number of events has decreased since 2006, in line with

a reduction of the volumes injected. The largest induced event had a

magnitude of M = 4.0 (Schultz et al., 2014).

3. Cardston Swarm: hydraulic fracturing activity in the Exshaw Forma-

tion near Cardston, has been linked to a swarm of events recorded be-

tween December 2011 and March 2012 (Schultz et al., 2015). More than

60 events were recorded, and the largest induced event had a magnitude

M = 3.0 (Schultz et al., 2015). The area had no previously known seismic

activity, and the timing of the operations temporally correlates with the

timing of the swarm. After the hydraulic fracturing activity was over,

no more seismic events were recorded in the area. Further studies (Gal-

loway et al., 2018) have related these induced events with the activation

of basement faults, where the earthquakes occurred.

4. Duvernay Formation: Induced seismic activity related to hydraulic

fracturing activity in the Duvernay Formation started in December 2013,

west of Fox Creek (Schultz et al., 2018). Since then, this area has be-

come one of the most seismic active regions of the province, with over

220 events larger than M > 2.5 (Schultz et al., 2017). However, most of

the events are of small magnitude, and only four earthquakes correspond

to events with magnitude larger than magnitude M = 4.0 (Alberta Geo-

logical Survey, 2019). The largest event occurred in January 2016, with

a recorded local magnitude of M = 4.8.

Schultz et al. (2017, 2018) conclude that the events were triggered by pore

pressure increases in response to hydraulic fracturing activity. They also

related these induced events with the activation of Precambrian basement

faults in the For Creek area. More recently, induced events related to
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hydraulic fracturing activities at the Duvernay Formation have also been

recorded near Red Deer (Alberta Geological Survey, 2019). In March

2019, an event M = 4.2 was recorded in this area (Alberta Geological

Survey, 2019), getting attention from the media and causing concerns in

the local population (Snowdon, 2019).

These seismic events, particularly those related to the hydraulic fracturing

operations in the Duvernay Formation, have caused increasing concerns over

induced seismic hazard (Atkinson et al., 2015). In response, the Alberta Energy

Regulator (AER) introduced a traffic light protocol as part of the monitoring

and reporting requirements to operate in specific areas known to be susceptible

to induced seismicity (Alberta Energy Regulator, 2015). The traffic light proto-

col specifies that (1) the operators do not need to change their strategies if the

magnitude of induced events are below a defined magnitude (Green light); (2)

they have to apply mitigation strategies if the magnitude of the induced events

is between a defined magnitude range (Yellow light); (3) or they have to cease

operations if there is an induced event exceeding a threshold magnitude (Red

light) (Alberta Energy Regulator, 2015; Kao et al., 2018). Three Subsurface

Orders have been mandated to limit the impact of potential induced events

from hydraulic fracturing up to date. These Sub-Surface Orders set different

traffic light protocols based on their geology and surface structures (Alberta

Energy Regulator, 2019b).

Subsurface Order no. 2 stipulates that the Duvernay operators in the Fox

Creek area must report all adjacent yellow light events (M ≥ 2.0) and imple-

ment mitigation strategies. If a red light event occurs during the operation

(M ≥ 4.0), the operator must cease the operations (Alberta Energy Regulator,

2015). Subsurface Order no. 6 defines two areas near the Brazeau dam: (1)

One area within 5 km of the Brazeau dam that prohibits hydraulic fracturing

targeting the Duvernay Formation or below; (2) a second area within 3 km

of the Brazeau Dam that prohibits hydraulic fracturing in formations above

the Duvernay Formation. Subsurface Order no. 6 also stipulates a traffic light

protocol, where operators must report all yellow light events (M ≥ 1.0) and im-

plement mitigation strategies. The operator must cease the operations if a red

light event occurs (M ≥ 2.5)(Alberta Energy Regulator, 2019b). Subsurface
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Order no. 7 prohibits hydraulic fracturing within 5 km of the Dickson Dam if

operations are targeting the Duvernay Formation or below. It also stipulates

a traffic light protocol, where yellow light events are set at M ≥ 1.0, and the

threshold for red light events is defined at M ≥ 3.0 (Alberta Energy Regulator,

2019c). Hydraulic fracturing is considerably limited in these areas defined by

Subsurface order no. 6 and 7 in order to reduced any induced seismic hazard

near a critical facility.

6.3 Building seismicity scenarios in areas sus-

ceptible to induced earthquakes in Alberta

I propose a methodology to build seismicity scenarios in areas susceptible to

induced earthquakes. First, we need to identify the areas that have experienced

considerable seismicity changes due to the emergence of induced events. To do

this, I recommend the use of retrospective PSHA maps in areas with induced

seismic activity, since they quantitatively describes the seismic hazard changes

over time. Second, we need to identify the operational parameters that can act

as proxies to foreseen seismicity changes in areas prone to induced earthquakes.

Third, projections of future anthropogenic operations are required, in partic-

ular, the operational parameters correlated to the induced seismicity. Finally,

by using the identified proxies, we can build future seismicity scenarios in areas

prone to induced seismicity.

6.3.1 Previous Probabilistic Seismic Hazard Analysis in

Alberta

PSHA for natural seismicity in Alberta: The Geological Survey of Canada

regularly updates the seismic hazard maps for all provinces in Canada, includ-

ing the province of Alberta. For the 2015 Seismic Hazard map of Canada,

The Geological Survey of Canada defines four seismic areas in Alberta based

on historical catalogs (Natural Resources Canada, 2015). The two most active

seismic source areas, the Rocky Mountain Fold/Thrust North (ROCN) and
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the Rocky Mountain Fold/Thrust South (ROCS), comprise the mountainous

southwestern section of the province. A third seismic source area, the Foothills

(FTH), links the relatively active mountainous sources with the stable cra-

ton. Finally, the Stable Cratonic Core Western Canada (SCCWHC) comprises

most of the northeastern section of the province and is characterized by low

seismicity. According to the 2015 Seismic Hazard map of Canada, there is a

probability of 2% in 50 years to reach a PGA of approximately 0.05 g for SC-

CWH (low hazard), 0.10 g for FTH and ROCN (moderate to low hazard), and

0.15 g for ROCS (moderate hazard). In this case, g refers to the gravitational

acceleration (980 cm/s2). Figure 6.2 (A) shows a simplified seismic hazard map

for the province of Alberta, in terms of low to high seismic hazard. Figure 6.2

(B) shows the areas that encompass the natural seismic sources described in

the 2015 Seismic Hazard map of Canada (Natural Resources Canada, 2015).

These seismic hazard maps are built by using historical catalogs that explic-

itly exclude induced seismicity. This is useful since it is important to charac-

terize the background seismicity previous to any anthropogenic activity. These

seismic hazard maps work as baselines for the hazard analysis of induced seis-

micity cases. However, these maps do not count for the hazard related to

induced seismicity, which in many areas has become the primary source of

hazard (e.g., Fox Creek, Alberta (Atkinson et al., 2015)). Therefore, induced

seismic sources have to be included in order to characterize the seismic hazard

in the province accurately.

PSHA including induced seismicity in Alberta: Ghofrani et al. (2019)

elaborate retrospective Probabilistic Seismic Hazard Analysis (PSHA) maps

for Alberta, including the induced seismic activity from 2011 to 2018. The

Ghofrani et al. (2019) analysis is closely related to previous studies in cen-

tral and eastern United States (Petersen et al., 2016, 2017, 2018), where they

develop a one-year hazard forecast based on catalogs with recorded induced

events. Even though these studies are limited to short-term hazard predictions,

due to the assumption of temporal stationarity, they can provide insights into

the temporal evolution of the seismic hazard.

For the retrospective seismic hazard analysis, Ghofrani et al. (2019) define

a single seismic source area namely the Western Canadian Sedimenatary Basin
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Figure 6.2: (A) Simplified seismic hazard map for the province of Alberta
(only natural seismicity). A smoothed-seismicity model has been applied for
this example. Modified from Natural Resources Canada (2015). (B) Natu-
ral seismic sources areas (red polygons) defined by Natural Resources Canada
(2015) for the province of Alberta. FTH=Foothills; ROCN= Rocky Mountain
Fold/Thrust North; ROCS=Rocky Mountain Fold/Thrust South; SCCWHC=
Stable Cratonic Core Western Canada, H model.
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Figure 6.3: 2% in 50 years seismic hazard maps pre-2011 (baseline seismic-
ity), and for the years 2011, 2013, 2015, 2017 in southern and central Alberta.
These maps include both natural and induced seismicity. Notice how the haz-
ard increases in 2013, 2015 and 2017, particularly near Fox Creek, as a result
of increasing induced events in the area. The shaded region near Turner Val-
ley corresponds to areas where the catalog is contaminated by blasts. BRZ=
Brazeau cluster; RMH= Rocky Mountain House. Modified from Ghofrani et al.
(2019).
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(WCSB). The Gutenberg-Richter (GR) parameters for this area, a-and b-values,

are originally defined by the earthquake catalogs before 2011 ( pre-2011, base-

line) and the natural seismicity models described by the 2015 Seismic Hazard

map of Canada (Natural Resources Canada, 2015). Then, the annual a-values

change depending on the increase or decrease in the number of earthquakes

M ≥ 3 per year. The catalogs used to estimate the changes in the a-value per

year, include natural and induced seismicity, as well as blasts. They estimated

a range of b-values, b = [0.75, 0.89, 1.05], and the b-value is assumed constant

over time. Ghofrani et al. (2019) also proposed a range of Mmax = [6.0, 7.5],

which is also similar to the maximum magnitude expected for natural seismicity

in the Western Canadian Sedimentary Basin (Halchuk et al., 2014).

Once the GR parameters are defined per year, Ghofrani et al. (2019) imple-

mented a Monte Carlo simulation approach for PSHA to generate the seismic

hazard maps in Alberta (Musson, 2000; Assatourians and Atkinson, 2013). The

GR parameters are assumed constant over a 50-year time-frame, in order to

get the 2 % probability in 50 years maps (figure 6.3). For the Ground Motion

Prediction Equations (GMPEs), they use a four-brach GMPE suite designed

by Atkinson (2015), for small-to-moderate earthquakes at a short hypocentral

distance. Ghofrani et al. (2019) use a smoothed-seismicity model for the dis-

tribution of synthetic events. This model considers the seismic activity density

a continuous function in space, such that earthquakes tend to be located near

clusters of previous earthquakes (Assatourians and Atkinson, 2019). There-

fore, even though it is a single source area with a set of GR parameters, the

seismicity is going to be concentrated in areas where there has been previous

seismicity, in accordance with the historical catalogs. Figure 6.3 shows the ret-

rospective seismic hazard maps for southern and central Alberta. Notice how

the seismic hazard increases in areas like Fox Creek or the Brazeau cluster, in

line with increasing induced seismicity.

These retrospective PSHA maps are appropriate to quantitatively evaluate

the temporal hazard changes in areas affected by induced earthquakes. These

hazard changes are expressed in probabilities to reach or exceed an acceleration

level in a period of time. Therefore, we can identify what areas have experi-

enced the most significant hazard change and prioritize them for the seismicity
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scenario building. However, future seismic hazard evaluations in Alberta should

consider the following aspects:

1. Blasts should be excluded from the seismic catalogs. Ghofrani et al.

(2019) recognize that these events might contaminate the seismic hazard

maps, particularly in the area west of Turner Valley (figure 6.3). Blasts

generate areas with anomalous high hazard, which do not correspond

with reality. Also, the inclusion of blasts might alter global statistics

by increasing the population of small magnitude earthquakes. This is

particularly important since a single set of GR parameters is defined for

all the WCSB seismic source areas.

2. Instead of the standard likelihood level of 2 % in 50 years used by Ghofrani

et al. (2019), we recommend the 1% likelihood level in 1 year proposed by

Petersen et al. (2016, 2017, 2018) in central and eastern United States. A

short time frame of 1 year is more appropriate for short-term seismicity,

particularly since the hazard has been calculated on an annual basis. Sta-

tionary a-and b-values over 50 years are not realistic given the variations

in the industrial activity.

3. Defining multiple seismic source areas for induced seismicity cases, in-

stead of a single seismic source area as defined by Ghofrani et al. (2019).

The use of multiple seismic source areas with unique GR parameters has

been used in the seismic hazard analysis in central and eastern United

States (Petersen et al., 2016, 2017, 2018). The new temporal source ar-

eas should have their own set of GR parameters, instead of using regional

averages and then compressing earthquakes into tight zones. Consider-

ing multiple areas is important, particularly if the induced seismic source

areas have different GR parameters, a-and b-values. If this is the case, us-

ing a single set of a-and b-values obtained from regional averages, could

result in misleading local hazard estimations. A more traditional ap-

proach should lead to a better match between observed and predicted

local seismicity.

4. A validation step is required to make sure that the predicted local seis-

micity in the Ghofrani et al. (2019) model honors the local observations.
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This validation can be done by comparing the rate of earthquakes between

predicted and observed earthquakes, particularly in locations with in-

duced seismicity. A more stringent validation should compare magnitude-

frequency distributions between local predictions and observed earth-

quakes.

6.3.2 Identifying appropriate proxies to describe seis-

micity changes in areas prone to induced seismic-

ity

Several studies (Van der Baan and Calixto, 2017; Langenbruch and Zoback,

2016; Schultz et al., 2018) have shown correlations between operational param-

eters and the number of induced events in areas prone to induced seismicity. In

some cases, both the oil production and the total volume of salt water disposed

are strongly correlated to the number of induced earthquakes. Van der Baan

and Calixto (2017) found that increased seismicity in Oklahoma has an 85 %

correlation with oil production. However, this correlation was not found in

other induced seismicity cases, including Alberta. On the other hand, (Schultz

et al., 2018) found a strong correlation between the total volume injected by

hydraulic-fracturing wells and the observed number of earthquakes in the Du-

vernay Formation near Fox Creek, Alberta. Figure 6.4 shows the logarithm of

the number of earthquakes M ≥ 1.3 versus the logarithm of the cumulative

injection volumes using all Duvernay hydraulic fracturing pads (A), and using

only seismogenic hydraulic fracturing pads (B). As expected, the correlation is

higher when only suspected seismogenic wells are considered.

If there are clear correlations between operational parameters and the num-

ber of induced earthquakes, they can be used as proxies to describe the overall

future seismicity in areas prone to induced earthquakes. These correlations

can be estimated for the different induced seismicity cases in Alberta. For in-

stance, Schultz et al. (2018) plot the logarithm of the number of earthquakes as

a function of the logarithm of the cumulative injected volume for the Fox Creek

induced seismicity area. They found a linear trend in the logarithmic domain,

and a high correlation between the cumulative injected volume and the number
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of earthquakes. This correlation can be used as a proxy to describe seismicity

changes; however, further options should be consider (e.g. production rates)

and select the operational proxies that best correlate with the observed seis-

micity. This correlation can be used as a proxy to describe seismicity changes;

however, further options should be considered and, ultimately, select the prox-

ies that best correlate with the observed seismicity.

These correlations can be estimated in areas prone to induced seismicity in

Alberta: (1) Rocky Mountain House; (2) Brazeau River; (3) Cardston area; (4)

Duvernay Formation at Fox Creek; (5) Duvernay Formation at Red Deer. The

number of induced events at the Rocky Mountain House and the Brazeau river

has declined since they peaked in 1985 and 2006, respectively. Furthermore, the

PSHA maps generated by Ghofrani et al. (2019) show a considerable reduction

in the seismic hazard, in line with the reduction of the anthropogenic activity.

For the case of the Cardston cluster, the seismicity finished once the hydraulic

fracturing activities concluded, and the seismic hazard only peaked in this

area for the year 2011 (see figure 6.3). Special attention is required in the

Fox Creek and Red Deer areas. These areas are under special regulations

(Subsurface orders no. 2 and 7), where operators are mandated to monitor

adjacent seismic activities during the operations, and follow the traffic light

protocol (Alberta Energy Regulator, 2019b,c). Currently, there are ongoing

hydraulic fracturing activities in these areas prone to induced seismicity, and,

as shown in the PSHA maps generated by Ghofrani et al. (2019), the Fox Creek

area has shown the higher since hazard in the province since 2012.

6.3.3 Estimating appropriate proxies based on future

anthropogenic activities

Correlations between operational parameters and induced seismicity can be

used to forecast future seismicity scenarios. For instance, the curves resulting

from correlations plots (see figure 6.4), can be projected into higher cumulative

injection volumes and, given a future volume to inject, obtain the equivalent

number of earthquakes. However, these correlations depend on future opera-

tional parameters, and the intensity of future operations depends on multiple
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Figure 6.4: Number of earthquakes M ≥ 1.3 versus cumulative injection vol-
umes, in (A) all Duvernay hydraulic fracturing Pads considered, and (B) only
seismogenic hydraulic fracturing pads considered. From Schultz et al. (2018).

factors, including changes in the technology of extraction of hydrocarbons, fu-

ture economic trends, and governmental decisions. Therefore, it is important

to establish correlations between operational parameters and factors that ulti-

mately lead the anthropogenic activity, like economic and technical trends. For

instance, Van der Baan and Calixto (2017) shown how the number of induced

earthquakes in Oklahoma fell in early 2016 as a consequence of the reduction

in injected volumes, which it turns to be originated by the 2015 oil price drop

and regulations from governmental authorities in Oklahoma.

Forecasting future anthropogenic activities that depend on economic or

technical trends is a challenge itself; however, multiple public and private in-

stitutions elaborate forecasts for the energy sector. For instance, the Alberta

Energy Regulator (AER) issues annual reports that provide information about

the state of reserves, supply, and demand outlook for the energy resources in

Alberta. Figure 6.5 shows the Alberta average daily production of conven-

tional crude oil by density. On the other hand, figure 6.6 shows the Alberta

average daily production and number of conventional crude oil wells placed on

total production. Notice that both trends show a rapid increase in production

and the number of horizontal wells between 2011 and 2014, which finished in

2015 as a consequence of the oil price drop. Many of these horizontal wells
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Figure 6.5: Historical and forecast average daily production of conventional
crude oil by density in Alberta. In this chart, conventional crude oil production
also includes the oil produced by hydraulic fracturing activities. From (Alberta
Energy Regulator, 2019a)

are related to the increase of hydraulic fracturing treatments. However, these

statistics show all horizontal and vertical wells in the province, and just a small

number of wells are related to induced activity (Atkinson et al., 2016).

6.3.4 Seismicity scenario evaluation, physics-based mod-

els, and seismic hazard forecasts

If quantitative correlations between human activities (e.g., number of hori-

zontal wells drilled) and operational parameters (e.g., injection volumes) are

established in areas susceptible to induced seismicity, the forecasts of human

activities can be used to build scenarios from the operational parameters. Ul-

timately, these scenarios of operational parameters will lead to future seismic-

ity scenarios, using correlations between operational parameters and induced

seismicity. For instance, we would expect a positive correlation between the

number of wells and the cumulative injected volumes. In a seismogenic area,

if the number of wells increases, the injection volumes will likely increase, and

the expected number of induced earthquakes are going to increase as well. In
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Figure 6.6: Historical and forecast average daily production and number of
conventional crude oil wells placed on total production in Alberta. In this chart,
conventional crude oil production also includes the oil produced by hydraulic
fracturing activities. From Alberta Energy Regulator (2019a)

contrast, there are cases like the Horn River Basin, where the hydraulic fractur-

ing activities stopped, and the induced events ceased shortly. In this case, the

conclusion of the hydraulic fracturing activities was related to the 2012 drop in

the gas prices (Van der Baan and Calixto, 2017). Finally, to capture better the

uncertainty in the human activity forecast, at least three scenarios should be

considered: low, medium (base), or high activity. Then, each human activity

scenario will correspond to a low, medium, or high seismic activity case.

On the other hand, the physics-based model, like the seismogenic Index

and the Hydromechanical Nucleation approach (Shapiro et al., 2010; Norbeck

and Rubinstein, 2018) can be equally used to predict seismicity related to

industrial activity. Both the seismogenic index model and the Hydromechanical

Nucleation model allow time-dependent cumulative a-values. This cumulative

a-value increases in line with the total volume injected. Therefore, and by

using the appropriate correlations, the forecasts of human activities can be

used to build scenarios of future injection volumes. Ultimately, the future

injection volumes will dictate future seismicity rates. Both models have been

used to forecast the number of earthquakes larger than M ≥ 3 per month

in Oklahoma (see figure 6.7). From our results in the Horn River Basin (see

chapter 4), we found that the physics-based model can provide insights into
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Figure 6.7: Forecasted seismicity rates (Earthquakes M ≥ 3 per month)in
Oklahoma, given by the Seismogenic Index model performed by Langenbruch
et al. (2018). The figure shows multiple forecasted seismicity rates resulting
from the Seismogenic Index model calibrated using different temporal endpoints
(Dec. 2011 - Dec. 2017). From Langenbruch et al. (2018).

the temporal evolution of the overall seismicity patterns, and it can be used

to build different seismicity scenarios as well. The decision of either using

physics-based models or correlations between operational parameters and the

number of induced events will depend on the performance of each method.

A performance evaluation of both methods should include: (1) a comparison

between predicted and observed number of earthquakes, and (2) a comparison

of correlation coefficients between predicted and observed seismicity.

These seismicity scenarios, either built using correlations with operational

parameters or physics-based models, can provide us insights into future seis-

micity patterns in areas known to be prone to induced seismicity. Government

and industry can evaluate the areas that will likely experience an increase or

decrease in induced events and, therefore, develop strategies based on future

seismicity scenarios. For instance, if the seismicity scenarios indicate a clear

increase in the number of earthquakes in areas prone to induced seismicity, it

would be prudent to improve seismic monitoring by installing more stations.

Also, operators could consider mitigation strategies beforehand in order to re-
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duce the possible increase in the number of earthquakes and associated hazard.

On the other hand, if the scenarios indicate a clear decrease in the number of

earthquakes, installing more seismological stations might not be necessary, or

a reduction could be recommended.

Building seismicity scenarios is one of the first steps to forecast seismic haz-

ard for induced seismicity. From the predicted number of earthquakes, given

by the seismicity scenarios, and by assuming a b-value, it is possible to make

predictions of the likelihood to reach large magnitude events. For instance,

after predicting the number of earthquakes in Oklahoma using a modified ver-

sion of the Seismogenic Index, (Langenbruch and Zoback, 2016) predicted the

probability to reach large magnitude events for the upcoming years. By know-

ing the changes in the a-values, they describe the changes in the number of

earthquakes, and by assuming a given b-value, they use the GR magnitude-

frequency distribution to estimate the rate of earthquakes of large magnitude

events. Then, by knowing these rates and assuming a Poisson distribution,

they predicted the probability of occurrence of large events (See chapter 3).

However, assuming a constant b-value might not be appropriate; if the b-values

change over time, the forecast of large events could be biased (See chapter 4).

Therefore, any predictions of large magnitude events based on these current

methods, should be taken cautiously.

Ultimately, once the GR parameters are more certain, particularly the b-

values, a fully PSHA for induced seismicity can be developed. The reader is

referred to the discussion section in Chapter 4, where we describe some pos-

sible strategies to predict short-term changes in the b-value by including the

evaluation of geomechanical properties. As explained before, PSHA is used by

governments and industry in applications for life and property safety, such as

developing building code requirements, deciding the security criteria for crit-

ical facilities like dams, hydroelectric plants, nuclear plants, and determining

earthquake insurance rates (Baker, 2008; Mulargia et al., 2017). Evaluating the

hazard related to induced events is critical for a proper PSHA in areas where

the anthropogenic activity is a major source of seismicity.
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6.4 Discussion

Due to the changing nature of the induced seismicity and the uncertainties

in the forecasts of human activity, I recommend the assessment of short-term

seismicity scenarios in areas susceptible to induced earthquakes in Alberta.

These seismicity scenarios can be updated annually by including revised: (1)

retrospective PSHA maps, to quantify changes in the seismic hazard; (2) corre-

lations between operational parameters and induced seismicity; (3) earthquake

catalogs to calibrate the physics-based models; (4) Expected intensity of the

human activity, and forecasts in the amount of operations. Considering long-

term seismicity scenario building is too uncertain at this point. It should be

clarified that these seismicity scenarios are built for global trends in relatively

large areas affected by induced seismicity, and they are not intended to predict

the seismicity scenarios for a particular operation. Also, successful mitigation

strategies implemented by operators can alter the validation of the past corre-

lations between operational parameters and induced seismicity. This is one of

the reasons to keep updating correlations that reflects possible improvements

in the mitigation of induced seismicity.

I also suggest annual updates of the PSHA maps. As mentioned before,

these maps can provide useful insights into the temporal evolution of the seis-

mic hazard related to anthropogenic activity. It can also provide short-term

forecasts, as proposed by Petersen et al. (2016, 2017, 2018) for 2016, 2017, and

2018 seismic hazard maps in central and eastern United States. However, one

of the problems of this model is that the forecasts are based on the seismicity

from previous years. Since the peak of seismicity in 2015-2016, the hazard

analysis for later years tends to be overestimated (Petersen et al., 2018), due

to the continuous decline in the number of induced earthquakes. It should be

noticed that the findings in chapter 5 about the necessity to perform seismicity

declustering in an earthquake catalog can be included in this analysis. How-

ever, I should mention that the application of seismicity declustering might not

be advisable due to the relatively low number of induced earthquakes in the

province of Alberta, in comparison with other cases like Oklahoma.

Other approaches should be evaluated in order to identify areas susceptible

to induced seismicity, as well as include additional proxies to describe seismicity
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changes. For instance, Pawley et al. (2018) implemented a machine-learning al-

gorithm to identify tectonic, geomechanical, and hydrological proxies suspected

to control induced seismicity. They found that the proximity to the basement,

in situ stress, proximity to fossil reef margins, lithium concentration, and rate

of natural seismicity, are the geological factors with the highest correlation to

well-activity associated with induced earthquakes. Pawley et al. (2018) also

elaborated maps showing the areas with higher seismic activation potential in

the Duvernay Formation, Alberta, based on the subsurface proxies mentioned

before. Therefore, these maps can be used to delineate the areas that may be

prone to induced earthquakes. In addition, if there are quantitative relations

between these subsurface proxies and the number of induced events, they can

be used to describe seismicity changes in areas prone to induced earthquakes.

Building seismicity scenarios is one of the first steps to fully forecast seis-

mic hazard for induced seismicity. PSHA for future induced seismicity requires

precise predictions of GR parameters. This is one of the reasons to establish

correlations between operational parameters and seismicity patterns, as well as

introduce physics-based models in the seismic hazard analysis. Both methods

can be used to generate seismicity rates that depend on human activities. How-

ever, these models are limited to short-term forecasts (from a couple of months

up to a year), due to the non-stationarity behavior of seismic parameters like

the b-value. This is perhaps one of the biggest challenges in PSHA for induced

seismicity that has to be properly addressed. Some possible strategies to pre-

dict short-term changes in the b-value include identification and evaluation of

geomechanical proxies (See discussion chapter 4). An additional limitation of

these seismicity scenarios is that the new induced seismicity areas, with no his-

torical seismicity, would be rated with low hazard. This is one of the reasons

to update the seismicity scenarios annually, and include the new areas with

induced seismicity.

6.5 Conclusions

In this chapter, I first present an overview of the reported induced seismicity

cases in Alberta. Then, I describe a methodology to build seismicity scenarios
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in areas susceptible to induced earthquakes. This methodology is based on (1)

Identifying areas that have experienced considerable seismicity changes, using

retrospective PSHA maps; (2) Identify the operational parameters that can act

as proxies to foreseen seismicity changes in areas prone to induced earthquakes;

(3) Project future anthropogenic operations, in particular, the operational pa-

rameters correlated to induced activity; (4) Build future seismicity scenarios

in areas prone to induced seismicity, using the identified proxies and projected

future anthropogenic operations. These short-term (e.g., annual) induced seis-

micity scenarios can give us insights into future seismicity patterns based on

projected operations in areas known to be prone to induced seismicity.

Government and industry can evaluate the areas that will likely experi-

ence an increase or decrease in induced events and, therefore, develop future

strategies based on seismicity scenarios. For instance, if the seismicity scenar-

ios indicate a clear increase in the number of earthquakes in areas prone to

induced seismicity, it would be necessary to improve the seismic monitoring or

design mitigation strategies to reduce the number of earthquakes and associ-

ated hazard. Building seismicity scenarios is also one of the first steps to fully

develop seismic hazard forecasts for induced seismicity. Current methods can

be used to generate seismicity rates that depend on human activities, but they

are limited due to the non-stationarity behavior of seismic parameters like the

b-value. Further studies are required in order to obtain precise predictions of

GR parameters, which is currently one of the biggest challenges in PSHA for

induced seismicity.
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Chapter 7

Conclusions and suggested

direction for future research

Due to the increase in human-induced seismicity, specially in geologically stable

basins in North America, it has been necessary to quantify the seismic hazard

related to anthropogenic activity. In this thesis, we developed a PSHA method-

ology capable of quantifying the seismic hazard related to induced seismicity.

We identify the challenges in the implementation of PSHA for induced events,

including: (1) the non-stationary behavior of the induced seismicity, (2) the es-

timation of future GR parameters for induced seismicity, (3) the debate around

applying seismicity declustering.

In chapter 3, we developed a methodology to compute synthetic earthquake

catalogs for non-stationary seismicity using Monte Carlo simulations. We also

developed the associated occurrence earthquake statistics for non-stationary

seismicity like induced seismicity. Non-stationary Gutenberg-Richter (GR) pa-

rameters are included to assess the hazard for this type of seismicity. In both

synthetic and real case examples, tests showed agreements between analytical

predictions and numerical results.

In chapter 4, we applied two methodologies to predict the GR parameters

related to injection-induced seismicity. We make a complete seismic hazard

analysis using GR parameters from physics-based models (Seismogenic Index

and Hydromechanical Nucleation approach) and the GR parameters given by
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the observed seismicity. Our preliminary results show that the predictions of

both methods follow the observed induced seismicity patterns, particularly the

increase and decrease in the monthly number of earthquakes, in line with the

anthropogenic activity. However, by comparing the annual GR parameters, the

predictions tend to either underestimate or overestimate the seismic hazard,

mainly due to the assumption of stationary b-values.

In chapter 5, we identified the cases where seismicity declustering is ad-

visable. If mainshocks and aftershocks have considerably different b-values,

declustering leads to improved hazard assessments, since it allows for better

estimations of magnitude-frequency distribution of the largest events. On the

other hand, if mainshocks and aftershocks have similar b-values, declustering is

not recommended since it eliminates large magnitude events that significantly

contribute to the seismic hazard. We also show that assuming Poissonian dis-

tributions in hazard predictions does not lead to inaccurate long-term hazard

predictions, even if time-varying aftershock sequences are present in the cata-

log.

7.1 Direction for future research

There are still multiple challenges that have to be properly addressed, including

the prediction of the maximum magnitude for induced events, or the develop-

ment of more accurate physics-based models for the estimation of earthquake

occurrence. Below, we listed some of the suggested directions for future re-

search:

1. It is necessary to improve the forecasting of GR parameters for injection-

induced earthquakes, particulary the b-value. The Seismogenic Index and

the Hydromechanical Nucleation models are useful tools for the prediction

of overall seismicity rates. However, the predicted GR parameters tend

to show biased results. One of the reasons is that both models rely on

constant b-values, which may not be appropriate for short-term seismicity.

I think that future physics-based models should allow temporal variation

of the b-values. Also, a better understanding of the stress conditions

could lead to a better hazard prediction. Some studies (Scholz, 2015;
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Amitrano, 2003; Goebel et al., 2013; Van der Baan and Chorney, 2019)

have found that the b-values are anticorrelated to differential stress σ1−σ3.
Therefore, the monitoring and modelling of geomechanical properties, like

differential stress or stress-drops, could work as a proxy to predict changes

in the b-value.

2. Another critical aspect that should be addressed is the maximum magni-

tude Mmax related to injection-induced seismicity. Different approaches

have been proposed to predict the maximum magnitude Mmax, including:

(1) geometrical approaches based on inferred dimensions of the stimulated

reservoir volume (Shapiro et al., 2011); (2) a linear relationship between

maximum seismic moment and total injected volume (McGarr, 2014);

and (3) a probabilistic approach based in seismicity rates (Van der Elst

et al., 2016). Future seismic hazard studies should evaluate different ex-

pected maximum magnitudes given by these approaches. However, it is

important to consider the geological features that limit the maximum

magnitude of the earthquakes, like the surface area of the seismogenic

faults.

3. I recommend the assessment of short-term seismicity scenarios in areas

susceptible to induced earthquakes in Alberta, as described in chapter

6. This type of scenario building, based on projected operations in areas

prone to induced seismicity, can give us insights into future seismicity

patterns. Building seismicity scenarios is one of the first steps to fully

forecast seismic hazard for induced seismicity. I also recommend the as-

sessment of retrospective annual seismic hazard analysis in areas prone to

induced earthquakes, like the province of Alberta. These annual seismic

hazard assessments can provide useful insights into the temporal evolu-

tion of the seismic hazard related to anthropogenic activity.

4. I recommend the assessment of annual seismic hazard maps in areas prone

to induced earthquakes, like the province of Alberta. These annual seis-

mic hazard assessments can provide useful insights into the temporal evo-

lution of the seismic hazard related to anthropogenic activity as well as

quantitatively evaluate the seismic hazard changes. Physics-based mod-
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els can be included in the hazard analysis; however, they should be taken

cautiously due to changes in the seismic parameters. A good strategy is to

monitor the induced seismicity continuously and detect sudden changes in

the GR parameters; thereafter, update the seismic hazard. These annual

maps can be useful tools for regulators, operators, and the general public

to evaluate the anthropogenic operations causing induced seismicity.

140



Bibliography

Aki, K., 1965, Maximum likelihood estimate of b in formula logN=a-bM and

its confidence limits: Bulletin of the Earthquake Research Institute, 43, 237–

239.

Akinci, A., M. P. Moschetti, and M. Taroni, 2018, Ensemble smoothed seismic-

ity models for the new Italian probabilistic seismic hazard map: Seismological

Research Letters, 89, 1277–1287.

Alberta Energy Regulator, 2015, Subsurface order no. 2: URL:

https://www.aer.ca/documents/orders/subsurface-orders/SO2.pdf.

——–, 2019a, ST98: Alberta Energy Outlook: https://www.aer.ca/providing-

information/data-and-reports/statistical-reports/st98.

——–, 2019b, Subsurface order no. 6: URL:

https://www.aer.ca/documents/orders/subsurface-orders/SO6.pdf.

——–, 2019c, Subsurface order no. 7: URL:

https://www.aer.ca/documents/orders/subsurface-orders/SO7.pdf.

Alberta Geological Survey, 2019, Interactive maps: Alberta Earthquakes (2006-

2019): https://ags.aer.ca/data-maps-models/interactive-maps.htm.

Amitrano, D., 2003, Brittle-ductile transition and associated seismicity: Ex-

perimental and numerical studies and relationship with the b value: Journal

of Geophysical Research: Solid Earth, 108, 1–15.

Anagnos, T., and A. S. Kiremidjian, 1988, A review of earthquake occurrence

models for seismic hazard analysis: Probabilistic Engineering Mechanics, 3,

3–11.

Assatourians, K., and G. Atkinson, 2013, EqHaz: An open-source probabilistic

seismic-hazard code based on the Monte Carlo simulation approach: Seismo-

logical Research Letters, 84, 516–524.

141



——–, 2019, Implementation of a smoothed-seismicity algorithm in Monte

Carlo PSHA software EQHAZ and implications for localization of hazard

in the Western Canada sedimentary basin: Seismological Research Letters,

90, 1407–1419.

Atkinson, G., 2015, Ground-motion prediction equation for small-to-moderate

events at short hypocentral distances, with application to induced-seismicity

hazards: Bulletin of the Seismological Society of America, 105, 981–992.

Atkinson, G., H. Ghofrani, and K. Assatourians, 2015, Impact of induced seis-

micity on the evaluation of seismic hazard: Some preliminary considerations:

Seismological Research Letters, 86, 1009–1021.

Atkinson, G. M., D. W. Eaton, H. Ghofrani, D. Walker, B. Cheadle, R. Schultz,

R. Shcherbakov, K. Tiampo, J. Gu, R. M. Harrington, Y. Liu, M. Van der

Baan, and H. Kao, 2016, Hydraulic Fracturing and Seismicity in the Western

Canada Sedimentary Basin: Seismological Research Letters, 87, 632–647.

Baker, J., 2008, An Introduction to Probabilistic Seismic Haz-

ard Analysis (PSHA): Technical report, Stanford Education.

URL: https://web.stanford.edu/˜bakerjw/Publications/Baker (2008)

Intro to PSHA v1 3.pdf.

——–, 2013, Introduction To Probabilistic Seismic Hazard Analysis: Technical

report, Stanford Education.

Baranova, V., A. Mustaqeem, and S. Bell, 1999, A model for induced seismic-

ity caused by hydrocarbon production in the Western Canada Sedimentary

Basin: Canadian Journal of Earth Sciences, 36, 47–64.

BC Oil and Gas Commission, 2012, Investigation of Observed Seismicity in the

Horn River Basin: Technical report.

——–, 2014, Horn River Basin Unconventional Shale Gas Play Atlas: Technical

report.

Bourne, S., S. Oates, J. Bommer, B. Dost, J. Van Elk, and D. Doornhof,

2015, A Monte Carlo Method for Probabilistic Hazard Assessment of Induced

Seismicity due to Conventional Natural Gas Production: Bulletin of the

Earthquake Research Institute, 105, 1721–1738.

Bourne, S., S. Oates, and J. Van Elk, 2018, in the Groningen gas field and its

implications for controlling seismic: Geophysical Journal International, 213,

142



1693–1700.

Bourne, S. J., S. J. Oates, J. Van Elk, and D. Doornhof, 2014, A seismological

model for earthquakes induced by fluid extraction from a subsurface reservoir:

Journal of Geophysical Research: Solid Earth, 119, 8991–9015.

Boyd, O., 2012, Including foreshocks and aftershocks in time-independent prob-

abilistic seismic-hazard analyses: Bulletin of the Seismological Society of

America, 102, 909–917.

Brodsky, E., and L. Lajoie, 2013, Anthropogenic seismicity rates and opera-

tional parameters at the Salton Sea Geothermal Field: Science, 341, 543–

546.

Convertito, V., N. Maercklin, N. Sharma, and A. Zollo, 2012, From induced

seismicity to direct time-dependent seismic hazard: Bulletin of the Seismo-

logical Society of America, 102, 2563–2573.

Cornell, C., 1968, Engineering seismic risk analysis: Bulletin of the Seismolog-

ical Society of America, 58, 1583–1606.

Daley, D. J., and D. Vere-Jones, 2003, An introduction to the theory of

Point processes: Volume 1: Elementary theory and methods, second edi

ed.: Springer.

Dieterich, J. H., 1994, A constitutive law for rate of earthquake production and

its application to earthquake clustering: Journal of Geophysical Research:

Solid Earth, 99, 2601–2618.

Ellsworth, W., 2013, Injection-Induced Earthquakes: Science, 341, 1–8.

Farahbod, A., H. Kao, J. F. Cassidy, and D. Walker, 2015a, How did hydraulic-

fracturing operations in the Horn River Basin change seismicity patterns in

northeastern British Columbia , Canada ?: The Leading Edge, 34, 658–663.

Farahbod, A., H. Kao, D. Walker, and J. F. Cassidy, 2015b, Investigation of

regional seismicity before and after hydraulic fracturing in the Horn River

Basin , northeast British Columbia: Canadian Journal of Earth Sciences,

112–122.

Galloway, E., T. Hauck, H. Corlett, D. Panǎ, and R. Schultz, 2018, Faults and

associated karst collapse suggest conduits for fluid flow that influence hy-

draulic fracturinginduced seismicity: Proceedings of the National Academy

of Sciences of the United States of America, 115, 10003–10012.

143



Gardner, J. K., and L. Knopoff, 1974, Is the sequence of earthquakes in south-

ern California, with aftershocks removed, Poissonian?: Bulletin of the Seis-

mological Society of America, 64, 1363–1367.

Ghofrani, H., G. Atkinson, R. Schultz, and K. Assatourians, 2019, Short-Term

Hindcasts of Seismic Hazard in the Western Canada Sedimentary Basin

Caused by Induced and Natural Earthquakes: Seismological Research Let-

ters, 90, 1420–1435.

Ghofrani, H., and G. M. Atkinson, 2016, A preliminary statistical model for

hydraulic fracture-induced seismicity in the Western Canada Sedimentary

Basin: Geophysical Research Letters, 43, 164–172.

Goebel, T. H., D. Schorlemmer, T. W. Becker, G. Dresen, and C. G. Sammis,

2013, Acoustic emissions document stress changes over many seismic cycles

in stick-slip experiments: Geophysical Research Letters, 40, 2049–2054.

Gulia, L., and S. Wiemer, 2019, Real-time discrimination of earthquake fore-

shocks and aftershocks: Nature, 574, 193–199.

Gutenberg, B., and C. Richter, 1944, Frequency of earthquakes in California:

Bulletin of the Seismological Society of America, 34, 591–610.

Halchuk, S., T. I. Allen, J. Adams, G. C. Rogers, S. Halchuk, T. I. Allen, J.

Adams, and G. C. Rogers, 2014, Fifth Generation Seismic Hazard Model

Input Files as Proposed to Produce Values for the 2015 National Building

Code of Canada: Technical report, Geological Survey of Canada.

Harte, D., 2013, Bias in fitting the ETAS model: a case study based on the

New Zeland Seimicity: Geophysical Journal International, 192, 390–412.

Hincks, T., W. Aspinall, R. Cooke, and T. Gernon, 2018, Oklahoma’s induced

seismicity strongly linked to wastewater injection depth: Science, 1255,

1251–1255.

Hornbach, M., H. Deshon, W. Ellsworth, B. Stump, C. Hayward, C. Frohlich,

H. Oldham, J. Olson, M. Magnani, C. Brokaw, and J. Luetgert, 2015, Causal

factors for seismicity near Azle , Texas: Nature Communications, 6, 1–11.

Horne, R., 1995, Modern well test analysis: A computer aided approach, 2nd

editio ed.: Palo Alto, California. Petroway, Inc.

Kao, H., R. Visser, B. Smith, and S. Venables, 2018, Performance assessment of

the induced seismicity traffic light protocol for northeastern British Columbia

144



and western Alberta: Leading Edge, 37, 117–126.

Keranen, K. M., M. Weingarten, G. Abers, B. A. Bekins, and S. Ge, 2014,

Sharp increase in central Oklahoma seismicity since 2008 induced by massive

wastewater injection: Science, 345, 448–451.

Knopoff, L., Y. Kagan, and R. Knopoff, 1982, b values for foreshocks and

aftershocks in real and simulated earthquake sequences: Bulletin of the Seis-

mological Society of America, 72, 1663–1676.

Kramer, S., 1996, Geotechnical Earthquake Engineering: Prentice Hall.

Langenbruch, C., C. Dinske, and S. A. Shapiro, 2011, Inter event times of fluid

induced earthquakes suggest their Poisson nature: Geophysical Research Let-

ters, 38, 1–6.

Langenbruch, C., M. Weingarten, and M. D. Zoback, 2018, Physics-based fore-

casting of man-made earthquake hazards in Oklahoma and Kansas: Nature

Communications, 9, 1–10.

Langenbruch, C., and M. D. Zoback, 2016, How will induced seismicity in

Oklahoma respond to decreased saltwater injection rates?: Science Advances,

3, 1–10.

Lombardi, M., 2003, The Maximum Likelihood estimator of b-value for main-

shocks: Bulletin of the Seismological Society of America, 93, 2082–2088.

Marzocchi, W., and M. Taroni, 2014, Some thoughts on declustering in prob-

abilistic seismic-hazard analysis: Bulletin of the Seismological Society of

America, 104, 1838–1845.

McGarr, A., 2014, Maximum magnitude earthquake induced by fluid injection:

Journal of Geophysical Research, 119, 1008–1019.

McGarr, A., D. Simpson, and L. Seeber, 2002, Case histories of induced and

triggered seismicity: International Geophysics, 81, 647–661.

Meredith, P., I. Main, and C. Jones, 1990, Temporal variations in seismicity

during quasi-static and dynamic rock failure: Tectonophysics, 175, 249–268.

Mulargia, F., P. B. Stark, and R. J. Geller, 2017, Why is Probabilistic Seismic

Hazard Analysis (PSHA) still used?: Physics of the Earth and Planetary

Interiors, 264, 63–75.

Musson, R., 2000, The use of Monte Carlo simulations for seismic hazard as-

sessment in the UK: Annali di Geofisica, 43, 1–9.

145



Natural Resources Canada, 2015, 2015 National Building Code of Canada

seismic hazard maps: URL: http://earthquakescanada.nrcan.gc.ca/hazard-

alea/zoning-zonage/NBCC2015maps-en.php.

Norbeck, J. H., and J. L. Rubinstein, 2018, Hydromechanical Earthquake Nu-

cleation Model Forecasts Onset, Peak, and Falling Rates of Induced Seismic-

ity in Oklahoma and Kansas: Geophysical Research Letters, 45, 2963–2975.

Ogata, Y., 1988, Statistical models for earthquake occurrences and residual

analysis for point processes: Journal of the American Statistical Association,

83, 9–27.

——–, 1998, Space-time point-process models for earthquake occurrences: An-

nals of the Institute of Statistical Mathematics, 50, 379–402.

Ogata, Y., and J. Zhuang, 2006, Space – time ETAS models and an improved

extension: Tectonophysics, Elseviver, 413, 13–23.

Omori, F., 1894, On Aftershocks of earthquakes: Journal of the College of

Science, Imperial University of Tokio, 7, 111–120.

Pawley, S., R. Schultz, T. Playter, H. Corlett, T. Shipman, S. Lyster, and T.

Hauck, 2018, The Geological Susceptibility of Induced Earthquakes in the

Duvernay Play: Geophysical Research Letters, 45, 1786–1793.

Petersen, M., C. S. Mueller, M. P. Moschetti, S. M. Hoover, A. L. Llenos,

W. L. Ellsworth, A. J. Michael, J. L. Rubinstein, A. F. McGarr, and K. S.

Rukstales, 2016, 2016 One-Year Seismic Hazard Forecast for the Central and

Eastern United States from Induced and Natural Earthquakes: USGS Open

File Report, 2016-1035, 1–50.

Petersen, M., C. S. Mueller, M. P. Moschetti, S. M. Hoover, K. S. Rukstales,

D. E. McNamara, R. A. Williams, A. M. Shumway, P. M. Powers, P. S.

Earle, A. L. Llenos, A. J. Michael, J. L. Rubinstein, J. H. Norbeck, and E. S.

Cochran, 2017, 2017 one-year seismic hazard forecast for the central and

eastern United States from induced and natural earthquakes: Seismological

Research Letters, 88, 772–783.

——–, 2018, 2018 one-year seismic hazard forecast for the central and eastern

United States from induced and natural earthquakes: Seismological Research

Letters, 89, 1049–1061.

Pollard, D., and R. Fletcher, 2005, Fundamentals of Structural Geology: Cam-

146



bridge University Press.

Reasenberg, P., 1985, Second-order moment of central California seismicity,

1969-82: Journal of Geophysical Research, 90, 5479–5495.

Reyes Canales, M., and M. Van der Baan, 2019, Including Non-stationary

Magnitude-Frequency distributions in Probabilistic Seismic Hazard Analysis:

Pure and Applied Geophysics, 176, 2299–2319.

Roche, V., M. Grob, T. Eyre, and M. Van der Baan, 2015, Statistical charac-

teristics of microseismic events and in-situ state of stress in the Horn River

Basin: Presented at the Geoconvention 2015: New Horizons.

Scholz, C. H., 1982, Scaling laws for large earthquakes: Consequences for phys-

ical models: Bulletin of the Seismological Society of America, 72, 1–14.

——–, 2015, On the stress dependence of the earthquake b value: Geophysical

Research Letters, 42, 1399–1402.

Schultz, R., G. Atkinson, D. W. Eaton, Y. J. Gu, and H. Kao, 2018, Hydraulic

fracturing volume is associated with induced earthquake productivity in the

duvernay play: Science, 359, 304–308.
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