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Abstract

Single series forecasting (SSF) is the forecasting of a

single time series based on the current and past wvalues of

the series only. It 1is implemented for process control
using a process model, a forecaster a..d a controller. The
difference, or resadlel r(k), between the actual process

output y(k) and the uodel cucput y(k) is fed back through
the fore'aster‘to the cor*roller. Based on the present and
past values of r(X) crity, the forecaster generates forecasts
£(k+\), where B is ndb;legs than the process plus sampling
delays. Any controller ,aay be used. However, since the
process model is already available, a predictive controller
is recommended because it generates tha appropriate control
action at time k to compensate for the forecasted error at

time k+X.

SSF was investigated as a means:
1) to improve the performance of both conventional and
modern control techniques, and
1 2) to provide: insight into- the structure and
performance of techniques such as Internal Model

Control (IMC) as proposed by Garcia and Morari.

It has been shown that, given perfeét forecasting, SSF
can result in perfect control :even with the presence of
unmeasured disturbances. If the available process model is
_ not perfect, ;hen SSF helps to compensate for both

unmeasured disturbances and modelling errors.



The quality of control usihg SSF depends on the quality
of the forecast and hence deteriorates in the presence of
large amounts of random noise and/or strong nonlinearities.
Furthermore, a perfgct_predictive conﬁroller will compensate
for .the effecf of a disturbance in X.time intervals when 2\
equals the’sampling plus process delays: Thué, “the best
that SSF can do when combined with a perfgét predictive
controller is to achieve compensation at time k rather than
k+X. The praCtical' justificétion for actual SSF

applications is therefore limited.

Comparison of the SSF approach with other classical and
moderr. control techniques doés, however, provide some
important insights. |
1) XClassical proportional plus derivative feedback control

can be intérpreted as proportional control based on SSF
of the control error or process output.

2) IMC can be . interpreted as an SSF system that uses the
current value of the residual r(k) as an estimate of the
future wvalue r(k+)X). Futhermore, the design rule that
the IMC controller should approach the inverse of the
process model is readily seen as being equivalent to the
classical design ob§ervatiqn that perfect control is
approached as the feedback gain approaches infinity.
(There are of ~course  stability and performance
limitations with most practical systems.)

3) IMC can be interpreted as a classical feédforward scheme

based on therorecasted (estimated) disturbance rather

vi
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than the actua! measured value.

-~ Simulations results also showed that SSF could improve
the performance of adaptive control techniques, such as the

Adaptive' Predictive Coritrol System (APCS), which use the

.magnitude of the estimation error as a criterion for

switching identification on and off and have no explicit
identification of the noise term. During the periods that
the adaptive parameter estimation is turned off, SSF is used

to model the structure of the .residual (disturbances plus

modelling error) and augment the predictive control action.

This second level of control can be justified on the basis
that it prevents unnecessary corruption of the process I/0

model by unmeasured disturbances and can reduce the control’

error.
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1. Introduction

1.1 Introduction

In chemical process control, process lags and time
delays present .a challenging problem to most control
techniques. Conventional feedback control is still the most
popular control technique despite the vast development in
modern control techniques, but it performs pé@flyi for
systems with large time delays. W

Predictive control techniques have been developed to
address this probelm. An example of an early development is
the Smith Predictor. Modérn control techniques such as the
Self Tuning Regulator (STR), Adaptive Predictive Control
System (APCS) and Internal Model Control (IMC) are all
predictive in nature. Control action is determined based on
the prediction of the process output by an input /output
(I/0) model.

It is obvioué that the use of a perfect I/0 model for
prediction can improve control in the presence of process
lags and time delays. However, non—idéaiities such. as
modellihg errors and unmeasufed disturbances generally
degrade the performance. Unmeasured disturbances cannot be
detected until their effects appear in the output of the
process. In order to compensate for unmeasured aisturbanceé
befbre they affect the process output, some fofm of
forecasting.of their effects on the output is necessary. An

estimate of the current disturbance effect can be obtained



from the difference between the measured process output and
the predicted output from the I1/0 model. Based on the
current and past values of this estimate, future values of
the disturbance can be obtained using Single series
forecasting (SSF). The work in this thesis 1is devoted to
investigating this use of SSF for compensating unmeaspred

disturbances.

1.2 Objectives of the Thesis

The overall objective of the thesis is to invesfigate
the use of SSF in process éontrol. The original interest of
this project was to imprbve the control performance of
adaptive control techniques by SSF. The scope was later
expanded to . include 1Internal Model Control (IMC) and
conventional fee@back and feedforward control. Conventional
control techniques have been included because some of their
fundamental principles can be used to interpret IMC and to
introduce the use of SSF for process control. |

The specific objectives of this thesis are:

1) to  investigate the use of SSF as a means to improve the
performance of both conventional., and modern control
techniques, and

2) to gain 1insight into the structure and performance of
techniques such as Internal Modern Control (IMC) as

. proposed by Garcia and Morari (1982).



Since time sgries forecasting is a fairly well
established area, the primary concern in the first objective
is the wviability of wusing SSF with existing control
techniques rather than bthe relative merits of different
forecasting methods. Perfect forecasting is assumed in many
cases.to establish the best improvemént obtainable from SSF.
Then a linear forecaster or an autoregressive forecaster is

used to establish a more realistic case.

1.3 Structure of the Thesis
L] .
The contents of the seven chapters of this thesis have

been arranged to .give the readers a logical view of the

development of the work on SSF. Following the introduction

of the objectives of the thesis in Chapter One, Chapter Two
explains the concept of SSF and presents some common
forecasting methods. Readers who have prior exposure to SSF
will be able to omit Chapter Two or use it as a review.

The main results of the thesis are presented in
Chapters Three to Five according to the various control
teéhnidues which have been studied. For each .control
technique, a description of the technique is giyen followed
by an analysis or an interpretation of the technique. Then

the use of SSF with the control technique or the relation of

SSF with it is examined. Finally, some numerical examples

are given to illustrate the ideas presented.



The control structure for implementing SSF is'
introduced from a feedforward control point of view in
Chapter Three. This structure serves as a reference for the
use of SSF with IMC and APCS iH'Chapters Four and Five
respectively. Also in Chapter Three, some fundaﬁental
principles of convéntional feedback and feedforward control
are presented explicitly as concepts for the purpose of easy
reference by Chapter Four in the interpretation of the IMC
structure.  The ,thesis 1is deliberately structured to
emphasize that many of the features of "advanced" control
schemes such as IMC follow ‘directly from a sound
understanding of classical feedback and feedforward control.

Chapter Six confains an application of SSF on a
simulated double effect evporator as a realistic evaluation
of SSF. Chapter Seven presents conclusions from the}results&
in the previous chapters and recommends ideas for future

work.



2. Single Series Forecasting (SSF)

2.1 Introduction .

The'technique of single series forecasting (SSF)  has
been used extensively in economics, business, engineering
and many other areas. The purpose of this chapter is to
explain briefly the concept of SSF and‘present some simple
- forecasting methods. Special emphasis has been placed on
the differences between SSF and prediction using an
input/output (I/O) model. This chapter is intended for

readers with no prior-knowledge of SSF.

2.2 Concept of SSF

SSF is the forecasting of a single time series based on
knowledge of the current and past values of the series only.
To illustrate the idea of éSF, consider a measured discrete
time variable r(k) as plOtteé in Figure 2.1, At a certain
sampling instant k, it is required to forecast the future
values © of r. ‘Assuming the factors affecting r are either
unknown or unmeasured, the only information aQailable\for
the forecast .are the current and past vaiues of r.
Therefore, estimates of the fﬁture values, r, have to be

generated by SSF.
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Figure 2.1 Illustration of Single Series Forecasting

The term "forecaéting" is used here to distinquish SSF
frbm "prediction™ wusing an I/Q model. An I/0 model
represents a functional relationship between two variables -
the input and the outpdt. If the model is accuraﬁe and
there is no other factor affecting the oﬁtput, perfect
_prediction can be obtained knowing the current and past
input and output values. THerefore, SSF and I/0 model
prediction are different in terms of the inforhétioh they
use'for prediction.

To uge SSF, it 1is obvious that the time series must
héve some deterministic structure since it is impossible to

accurately forecast a random variable. The guality of the
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forecast depends on the dynamics of the time series, the

lead time of the forecast, and the type of forecasting

method - used. The tYpe of forecasting method used will be

~determined by the requirements of the individual

application. Some common forecasting methods will be

presented in the following section.

2.3 Forecasting Methods

The pfoblém to be solved hefe is to forecast futufé
values of a'tim¢ series using the current and past values'éfl
the series only. Many methods based on different'app:oaches
are available. Three commonly used methods will Ee

presented in the this section.

1) Forecasting using current value

There is actually no real forecasting done in this

method because it uses the current measured -value as the

fonecaéted value. For a one-step ahead forecast,
E(k+1) = r(k) | (2.1)

This method is satisfactory if the time series. changes
slowly. It can also be used as a conservative approach for

time series containing a large amount of noise.



2) Linear extrapolation
This method makes wuse of the first derivative of the
time series at the current value to calculate the future

values. The equation for a one-step ahead forecast is

dr :
E(k+1) = r(k) + — At . (2.2)
dt . ,

where At ='sampling time \

™

ad
The derivative can -be calculated by the Newton's

a
,

backward difference formula. For example, the-two—point

formula and the three—point formula are given as follows.

T - ”df cr(k) - r(k-1)

Two points:  — = (2.3a). -
v dt | ) At
dr 3r(k) - 4r(k-1) + r(k-2)
Three points: — = = ‘ (2.3b)
dt 2At

- In general, the use of two or three points is
sufficient for calculatlng the first derlvatlvep‘ |

The advantage of this method is that the computatlon is
simple and the {extrapolatlon is accurate for time series
without sharp chahges in the values. The <disadvantage :is .
that it is easily confused by noise. It is also notégood

. f
for long term forecasting.. In general, only | forecasts for

one or two sampling periods ahead are reliable.
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3) Forecasting using an auto-regressive equation
In this method, a general MA-step ahead forecast is

given by the 3ﬁto—reg§essive (AR) equation.

"v’
-

E(AA) = ayr (k) + agr(k=1) + ... + anr(k-n+1) (2.4)
o

The coefficients ay, @z, ..., .an may or mayAnot be
known. 1If they are unknéwn, they have to be identif&ed
either off4line' or on-line. Then the equation can be:us~d
to calculate the forecasted-values.

TO 'use -tﬂé AR equation for disturbances whose nature
generally changes with tiﬁe, the coefficients have td be
identified on-line by a parameter identification algqrithm.
If the time series has a structure, the AR equation canJ b§
interpreted as a model for the series. The coefficients
will get closer to the true values as the . identification
process continues. If the coefficients cénverge to the
correct values, the forecast will be perfect. However, it
is possibleb td obfain‘ accuratei forecast withoutv usinéi
‘accurate coefficients. The primary‘ objective is to have
accurate forecasting rather than accurate coeéefficients.

There are many on-line parameter id;ntif;cation

algorithms .available. Two of them will be described here

becau: of their simplicity anefiast convergence;
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a. Recursive least square algorithm

-

The time series of the variable r is assumed to be

described by the equation

r(k) = ®(k-1) 6 | (2.5)
where |

6 = [ oy a7 vuv an i)

é(k-yi = [ r(k-1) r(kgz) .. r(k-n) 1 Ny

’

The recursive least square algorithm, e.g. Astrom and

Eykhoff (1971), is given by

6(k) = 8(k-1) + K(k=-1)[r(k)-®(k=1)8(k-1)] (2.6)
K(k-1) = P(k-1)®*(k-1)[1+®(k-1)P(k-1)d'(k-1)]"" (2.7)
1
P(k) = —{P(k—g)—x(k—1)
[1+®(k-1)P(k=1)®  (k-1) K ' (&-1) (2.8)

B is the exponential forgetting factor whose value is

chosen as 0.9 < < 1. P(k) is the covariance matrix.

~b. APCS projection algorithm
« The Adaptive Predictive Control System (APCS) was
proposed‘ by = Martin-Sanchez (1976). The recursive
identification algorithm, also known as a projection or a

gradient search algorithm, used by APCS is



Vi (k)®(k-1)[r(k)-®(k-1)8(k-1)]
(k) = 6(k-1)+ (2.9)
' 1#92 (k)P (k-1)d* (k-1)

»

v(k) 1is a scalar which is  used for turning
identification on and off. A more detailed definition of
v(k) will be given in Chapter Five.

Forecasting with ah AR equation requires much more
computation effort than linear extrapolation. However, it
has the advantage that if the time series has a slowly time

varying structure, the AR equation can model it and provide

accurate forecasts.



3. SSF and Conventional Feedback and Feedforward Control

3.1 Introduction ‘

" The conventional E;;dback and fecdforward control
systems are the oldest -and still tr2 mnst -ommon control
systems used in chgmical process contrc!. Their structures
are very simple and the theories behind them are well
understood. The purpose of this chapter is not to propose
any new théory about these conventional control systems, but
rather to identify some of the concepts used by them. These
concepts will be shown to be intrinsic in more advanced
control systems such as the Internal Model Control discussed
in later chapters. The presentation 1is based on an
gntuitive,.prac;ical approach such as would be obtained by
experience‘ with these control systems. Another purpose of
this chapter is to explore the relationship of SSF with
these traditional control -systems. It will be shown that
the proportional-derivative feedback controller can be
interpreted as a proportional controller with a linear
forecaster. In addition, the feedforward control concept

has been extended in a scheme which wuses SSF for

compensating unmeasured disturbances.



3.2 SSF and Conventional Feedback Control .

3.2.1 Description of the Feedback Control System

The block diagram

of a

conventional PID feedback

control system is shown in Figure 3.1.

The block diagram

has been simplified by omitting the measurement device and

the final control element since their dynamics are typically

negligible-and/or incorporated in the process model.

¢
DISTURBANCE
+
£ u + y
* Pib PROCESS —>
SETPOINT X CONTROLLER [ INPUT OUTPUT
Figure 3.1  Block Diagram of a Conventional Feedback

Control System

The printiple of feedback control is the feedback of

the output variable to calculate the control error, e, which

forms the input to an "error driven"™ controlier.
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€ =y, - Yy (3.1)

The control error can arise from two sources: setpoint
changes and disturbances. . Servo control refers to
eliminating the-control error arising from setpoint changes.
Regulatory control refers to eliminating the control error
arising from distUrbances. Since the error—dfiven feedback
controller does not distinguish the source that gives rise
to the control error, it cannot distinguish between servo
and regulatory control.

CONTROLLER MODES

The conventional PID feedback controller has three
modes - of control action: proportional, integral and’
derivative. Mathematically, the controller output in the

continuous time domain is given by:

1 d
u{t) = Kc [e(t) + - Je(t)dt + 74—e(t)] o (3.2)
T, dt

Thg sihplest feedback controller has only the
proportional mode. The problem with it' is that it leaves
offset in the output. The integral mode is added primarily
to elihinate this offset. However, 1t also makes the
response more oscillatory. The dérivative mode is added to

speed up the response of the system.
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Equation (3.2) represents the theoretical PID feedback
controller., In practice, there are many variations. One
variation which is of interest to this study Es where the
derivative mode acts on the process_output instead of the
control error. ILn practice, this is doneh to avoid a
"derivative kick" which is a sudden change in the controller
output, when there is a sudden change in the setpoint. The

equation is

' i d
ult) = Kc [e(t) + - Je(t)dt + 7,—y(t)] (3.3)
~ dt

CLOSED LOOP TRANSFER FUNCTION

The closed loop transfer function of the system in

Figure 3.1 is given by:

v

| Ge Gp | Gd
Yy = ys ¥ £ (3.4)
1 + Gc Gp 1 + Gc Gp

The setpoint y, and disturbance £ are the two inputs to
the closéd4loop system. The transfer function between y and
y. determines the dynamics of servo controi, while the
transfer function between y and { determines the dynamics of
regulatory -control. Since the two transfer functions are

different, the dynamics in servo and regulatory control are
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different. Therefore, the use of a singie controller in the’
feedback control system may not-guarantee good performance
in both cases. There may be advantage in separating the two

controllers.

~CONCEPT 3.1 Servo control and regulatory control
generally have different closed loop dynamics, it
would be better to have separate servo and

regulatory controllers.

From equation (3.4), perfect control can be defined as

requiring

Gc Gp , A
= 1 (3.5a)
1 + Gc Gp '
and -
Gd
=0 ' (3.5b)
1 + Gec Gp

This is’ possible when the gain of the controller is
very high or iﬁfinite. Hence, perfect feedback control can
be obtained with an infinite gain controller.

However, the gain of a feedback controller 1is wusually
lihited by stability constraints. According to the Bode
criterion, a stable loop requires that |GeGp| <. 1 at the
crossover frequency i.e. when the phase angle is -180°,

‘Therefore, the controller gain is constrained and perfect -
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control in the sense of equation (3.5) is not always

possible.

CONCEPT 3.2 Perfect feedback servo and. regulatory
cont ol can be approached by using a high gain
controller provided that the high gain is within

e st-hility constraints,

3.2.2 Interpreting Proportional-Derivative Control as’SSF

One characteristic of feedback control is that it is
remedial i.e. it corrects for error which is already present
in the output. For systems which contain time delay or
measurement lag, feedback control is not very good beqéuse
the control action alwéys lags behind the disturbance and
tends to overcompensate. All discrete digital control
systems have at least one period of inherent time delay due
to sampling. The approach used to control time-delayed
system is to have some form of prediction. .In this section,
it will bé shown that the proportional-deri?ative controller
contains a form of forecasting. |

Consider \the structure of- a proportional-derivative
controller in a discrete system (Figure  3.2). The

controller can be considered as composed of two parts: a



s
S

€L ' . .
"forecaster and a controller. The forecaster is given by

da
(1 + 74 —) €e(t) (3.6)
at
FORECASTER CONTROLLER

e(k) L ulk)
Figure 3.2 Structure of a Proportional-Derivative
) Controller
o
For the special case where 7, = nx*At, the expression

forecasts e(k) exactly n sampling intervals ahead using the

slope of e(k). -

(1 + nxAt —) e(k) =
: dt

m>

(k+n) o (3.7)
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The controller is a proportional controller with gain
Kc which acts on the forecasted error ¢(k+n) and equation
(3.7) is equivalent to the equétion of a 1linear forecaster
as given by equation (2.2). " Therefore, the
proportional-derivative controller can be interpreted as
containing a linear forecaster of the control error. a
one-step ahead forecaster .is néeded to compensate for »the
inherent sampling delay in discrete control system (Jacobson
' (1970) and Moore (1969)). Forecasting ahead for more than

one step can be used to compensate for delays and/or process

lags.

CONCEPT 3.3 The proportional-derivative controllem
in Figure 3.2 can be interpreted as a proport ijonal
controller with a linear'for'ecaster* on the control |

error,

Consider now the feedback controller described by
equation (3.3) where the derivative mode acts on the process
output rather than the control error. A block diagram of
the.control system with a proportional-derivative controller

is shown in Figure 3.3.
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*

DISTURBANCE

FEEDBACK CONTROLLER

PROCESS | >

1.+73i1
dt

Figure 3.3 A Re-structuring of the PD Feedback
Control System

The controller in the feedback path is the same PD
feedback controller as that in Figure 3.2. The only
difference is that the input to the controller is the
process output y. Therefore, followiné the same argument
for the feedback controller ‘in Figure 3;2, it can be shown
that the feedback controller in Figure 3.3 can bel
interpreted as containing a linear forecaster on thé output

since

d .
(1 + 7,—) y(k) = §(k+1) for 74 = At (3.8)
dt . .
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The controller gain Kc acts on the forecasted process

output y(k+1),

CONCEPT 3.4 The proportional-derivative controller
in Figure 3.3 can be interpreted as a proport ional
controller with linear forecasting bf the process

output.

Another feature in Figure 3.3 is that there are fwo
controllers in the system. The one in the ‘"setpoint path"
can be régarded as the servo controller and the one {n the .
"feedback path". can be regaéded as ;hé regulatory
controller. As mentioned previously, the dynamics in ser;o
control can be quite different from that bin,\regulatbry
control. Therefore, with this separation, it is pbssible fo
design - different ~servo and regulatory contfoilers" if
justified by improved performaﬁce. The implementation of}

two controllers is easily done in computer control system

since all that is reguired is software.

3.3 SSF and Feedforward Control

3.3.1 Description of Feedforward Control
Feedforward control is used primarily to compensate for

a disturbance before it upsets the process. The block
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diagram of a conventional feedforward control system 1is

shown in Figure 3.4.

‘ ¢

. R T T g -——-

' Gx Gd I

I I

I |
y:\q““ ' +X Iy
—t Ge Gp \

l | |

L ————————— L e e e 1

FF + FB\CONTROLLER PROCESS
]
Figure 3.4 Block Diagram of a Feédforward»pontrolj,,ﬁ“
I y

System e T v

The disturbance that affects the process is measured as

it enters ;he process.  Based on this measurement, the
feedforward ‘contfollér generates appropriate control action
to compensate for the effect of the d{;tufbance so- that. the
output is' not afféctedd” Note that a key feature of
feedforward'control is derived from the fact that the
‘disturbance is  known and corrective action is ;akén before
\ . -
its effect propagates through the process to affect the
outputl This time advantage gives the controller time to

take action to compensate for the effect of the disturbance.

~
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CONCEPT 3. 5 Feedfonwand control makes use of -the

tlme advantage fnom knowing the dlstunbance and

taklng cornectlve action befone its effect

It d

pnopagates thnough the process. i

] The objective of the feedforward controller can be

described by the following eQuation.

£ Gd + ¢t Gx Gp = 0. ‘ o (3.9)

-

From equation (3.9), the structure of the perfect

. ‘4
feedforward controller is obviously

o

-
G4 |
- GX = -~ —— (3.10)
Gp

The controller works on the principle of cancellation
of transfer functions. qu perfect control, i.e.-exact
cen&éﬁlation, the disturbance and process transfer functions -
mLst benknown'exact%y.

CONCEPT 3.6 In;éonventional feedforward control ,
the perfect controller transfer Ffunction is a
product of the load transfer Funétﬁon ‘and the

inverse of the process transfer function.
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The combination of Gd and Gp to form Gx often resulto
in simplification in the structure of the feedforward
controller. For example, 'consider a first order process

with a first order disturbance tranfer function.

Kp .

Gp = ————————T— , (3.11a)
T, & + /
Kd "
Gd = (3.11b)
T2 S + 1
I1f 7, = r,, then -
Kd ¢ .
Gx = - —— = - Kx (3.12)
Kp

The feedforward controller is simplified to a

1

'proportional controllér.

Note that the peffect feedforward cont;STQpr requires
the inversion qf the process transfer function.. This could
be a problem if the process transfer function Contaihs hsome
non-invertible parts such as a time delay or unstable zeros.
One solution is to find an approximate inverse for the
;process which neglecté these non-invertible parts. In
practice, most feedforward controllers are. proportional

controllers or have simple -"lead-lag" type dynamic

compensation,

S
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3.3.2 Feedforward Control Using SSF

The disadvantage of conventional feedforward control is
that it 1is designed only to compensate for measured
disturbances. However, some of 1its principles can be
applied to compensate for wunmeasured disturbances if
estimates of these disturbances’ can be obtained. It will be
shown in the following how.SSF can be us;d' as part of a
schéme to compensate for unmeasured disturbances in a

feedforward manner.

Figure 3.5 shows a block diagram of the control system
to be desc;ibed. The first step in the control scheme is to
obtain an estimate of the’effect,of ﬁhe unknown disturbance
on the curre?t output. This is achieved by intro@ucing a
‘procer model which estimates the process output at every
sampling instant. Not much will be said ébout" the process
model at this point except that its function is, given
values of the process input variables, to Aestimate) the
process output as accurately as possible. The type of model
used is not of concerﬁ here.

The difference between the actual output and the

estimated output is the estimation error or residual r(k).

r(k) = y(k) - $(k) o (3.13)

If the model is exact, the residual is equal to " the

~ -

effect of the unknown disturbances y,(k). If the model is

not exact, the estimation error will contain some modelling
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error as well as the disturbance. Note that in the ideal
case, the residual 1is an estimate of the unmeasured

disturbances.

CONCEPT 3.7 A residual can be generated by
subtracting the predicted output from the measured
output. This residual is an estimate of

disturbances and/or modelling error.

In order not to complicate the discussion for the time
being, it will be assumed that the model is exact and
r(k) = y.(k). | .

It is not sufficient just to know the effect of the
unknown disturbances in the current output. Fér feedforward
control, the time advantage in knowing the future
disturbances (CONCEPT 3.5) must be provided. This 1is
achieved by introducing a forecaster which forecasts the
future residual r(k+X) based on the past values r(k),
r(k-1), ... . The type of forecasting technique used is also
not of concern here. It may be any one of those meﬁtioned
in Chépter Two. The main criteria for the choice of the
forecaster are accuracy and computational effort.

CONCEPT 3.8 The time advantage required Ffor

feedforward control can be generated 'by

forecasting the estimated disturbances.
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The contréller design is analogbus to the feedforward
controller described in-the previous section. Given the
estimated disturbances, the controller that will generate
the exact compensatory action is a predictive controller.

Its form is

GX = —— , ‘ | (3.14)

Since the input to this controller is y, rather than ¢,
Gd is not present in 'equation (3.14). The minus sign which
was in equation (3.10) but not in (3.14) has been
incorporated in the summing junction in Figure 3.5.

This controller also works on the principle of
cancellation of transfer functions. For perfect control,

the process transfer function must be known exactly i.e.

Gm = Gp.

CONCEPT 3.9 Perfect feedforward control based on
estimated disturbances requires the use of an
exact process model for prediction of the process

output and an exact inveﬁse for the controller.

The controller design determines how far ahead the
forecaster has to estimate. This is actually related to the
time delay of the process. Assume that the process contains

a time delay of X sampling periods including the unit delay
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due to sampling. When the process transfer function is
inverted to form the controller, the -delay becomes a
prediction. Therefore, the forecaster has to estimate A
sampling periods ahead to provide the disturbance estimate
for the controller.

In the 1inversion of the process transfer function, a
problem is encountered if the process. transfer function
contains unstable zeros. The controller will be unstable if
the inversion is done. Therefore, the above controller
design 1is restricted to stable-inverse processes only. - For
process with unstable zeros, an approximate inverse may be
used by inverting only the stable and invertible part of the
process. This problem will be addressed again in Chapter
Four in the discussion of IMC.

A simulation example will be given in the following as
an illustration for the system in Figure 3.5. Consider a

first order process described by the discrete ARMA equation.

y(k) = 0.8y(k-1) + 0.6u(k-1) + £(k) + 0.5t(k-1) (3.15)

3

The effect of the disturbance on the output is vy, (k)

and is assumed to be
Yx(k) = E(k) + 0.5¢((k-1) (3.16)

Assuming the disturbance 1is unknown, the best 1/0

process model is
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y(k) = 0.8y(k-1) + 0.6u(k-1) (3.17)

Two forms of one-step ahead forecasters are considered
here. The first one is a linear forecaster described by the

following equation
t(k+1) = r(k) + (r(k) - r(k-1)) (3.18)

The second one is an adaptive autoregressive forecaster

of the form
E(k+1) = a,r(k) + azr(k-1) + asr(k-2) (3.19)

The parameters a;, a, and a5 are identified on-line by
a parameter estimation scheme.

The same process model (equation (3.17)) has been used
to design both Gc and Gx as per Figure 3.5. The controller
output is derived from equation (3.7) by replacing y(k) with

Yy (k+1)-£(k+1).
u(k) = [y, (k+1) - £(k+1) - 0.8y(k)] / 0.6 (3.20)

In the simulations (Figure 3.6 to 3.11), the proéess
was initially at steady state and an arbitrar& disturbance
sequence was introdﬁced. The process was first simulated
under feedback control wusing well-tuned controllers in

Figure 3.6 and 3.7, In Fiqure 3.6, a proportional
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controller was wused with a gain of 1.7. 1In Figure 3.7, a
proportional-derivative controller of the type ' shown in
Figure 3.2 was used and an improvement in - control
performance was obtained.  This improvement can be
attributed to the inherent forecasting of the
proportional-derivative controller which tends to offset the
process lag,

In Figure 3.8 to 3.11, the process was under the.
control of the propdsed feedforward control system in Fiqure’
3.5. The process model was perfect as given by equation
(3.17) while the contfoller was an inverse model controller
as-given by equation (3.20). Figure 3.8 shows the system
response for the case of perfect forecasting of the
disturbance effect, the process output is not affected at
all. This is“the best and ideal case. No forecaster was
‘used in Figure 3.9gand there was no compensatjon for the
disturbances. . This is the worst case for the system which
is under inverse model control. |

Figure 3.10 and 3.11 show the fesponse of the system
under more realistic conditions. The linear forecaster of
equation (3.18) was used in Figure 3.10. An adaptive
autoregressive forecaster (equation (3.19)) was wused in
Figure 3.11. The parameters in the adaptive forecaster were
identified by%the projection algorithm used in the Adaptive
Predictive Control System. In this simple example, the

linear and adaptive forecasters appear to give similar

control performance which is better than that given by the

14
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proportional feedback <controller in Figure 3.6. However,
~the input seqﬁence for the adaptive forecaster 1is smoother
than that of the linear one. |
‘ The response of the proportional-derivative -¢ontroller
}Figure 3.7) is different from that of the SSF syé%em with a
linear foreéaster. ~ The reason is - that the
proportional-derivative controller u§es a proportional
controller whereas the- SSF  system uses a predictive
controller.

This simulation example shows that the use of SSF can

improve control performance with respect to disturbance

compensation.
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3.3.3 Comparison of Conventional FF and SSF FF Control
SSF ., has_ been proposed fog the compensation of
unmeasuréd aisturbances. It 1s a modification of the 1idga
. of conventional feedforward control. The differences
between cohventional FF control and SSF FF control are

summarized in the following table.

Conventional FF FF using SSF
1. compensates for 1. compensates for estimated
measured disturbances residuals, e.g. unmeasured
only ‘ | disturbances and modelling
" errors "
2. measures disturbances 2. estimates disturbances
difectly as they | based on measured process
enter process | v output and estimated output

generated from a process

model
3. has an inherent tiﬁe' 3. needs to extrapolate
advan?ége by measuring sd control action u(k)
disturbancés.as they can cbmpensate for y. (k)
enter the process
4, peffect controll;r is 4. perfect controller is
Gx = - Cd / Gp _ Gx =1/ Gp

(note minus sign in summing

¢ c junction in Figure 3.5)
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The implementation of conventional FF control requires
hardware for the measurement of the disturbances. On the
other hand, the implementation of SSF FF control in a
computer control system requires computer software only.
Thergfore, any computer control system can add. feedforward
" control using SSF instead of measurement ﬁardware. However,
the performance of SSF FF depends on the quality of the
process model and the forecast. The availability of a qgood
process model and forecaster 1is, therefore, a ma jor

‘consideration in using SSF FF.

3.4 Conclusions

CONVENTIONAL FEEDBACK CONTROL

1) Proportional-derivative control can be interpreted as

proportional control with a linear forecaster.

2) Forecasting of the output signal can improve control
performance when a system contains time delay due to
sampling and/or process lags.

3) Perfect contr01 -in feedback systems can, in theory, be
achieved by an infinte gain controller. However, this
is impractical becaus; the gain is limited by contraints
imposed by stability requiremenﬁs and’ physical
realizability. |

4) Separation of servo aﬁd regulatory.control functions may
lead to better control, |

P
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FEEDFORWARD CONTROL BASED ON ESTIMATED DISTURBANCES

1)

2)

A control structure which consists of a process model, a
forecaster and an inverse model controller has been
shown to be capable of compensating unmeasured
disturbances in a feedforward manner. Simulation.
results show improvement in performance of the SSF
system over conventionél feedback control.

Perfect feedforward control is achieved by the use of an
exact model inverse controller. Tﬁe principle behind it
1s the cancellation of process transfer function i.e.
Gc Gp = 1 and hence Gc = Gp~'.

Feedforward control using SSF can be implemented as part
of the control calculation- in. any computer control
system. It does not require the éddition of hardware to
measuce the disturbances. All that is required for

implementation is computer softwa-e.



4. SSF and Internal Model Control (IMC)

4.1 IﬁfgéduCtion

Internai Model Control (IMC) was proposed by Garcia and
Morari (1982) as an attempt to unify several different
control schemes (Smith Predictor, Inferential Control, Model
Algorithmic Control, Dynamic Matrix Control, etc.). The
interest in formulating IMC is partly aroused by the success
of the two control schemes developed in industry: Model
Algorithmic Control (MAC) and Dynamic Matrix Control (DMC).
They were developed on a héuristic basis and have shown
exce;lent verformance in industrial appli—-ations.

MAC was developed in France by Richalet et al (1978)
and its theory was extended by Mehra et al (1980). DMC was

presented by Cutler and Ramaker (1980) of Shell Oil in the

United States. A constrained multivariable version of DMC

was applied to a catalytic qracking unit by Prett and
Gillete (1980). o o

The other work which stimulated the proposal of IMC is
the ‘inferential control structure proposed by Brosilow
(1979). In a study of the classical Smith Predictor and
inferential control, Brosilow proposed the Inferential Smith
Predictor structure together with a .set of controller design
procedures. The IMC structure can be cohsideréd. as an
extension of this Inferential Smith Predictor structure

which can also be rhown to include MAC and DMC as particular

cases.
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The purpose of this chapter is two fold. The first one
1s to interpret the IMC structure according to the concepts
of feedback and feedforward control as summarized in Chapter
Three. The second one is to investigate the incorporation
of SSF in the IMC étructure. Simulation examples are
presented to 1illustrate the properties of the modified

 system.

4.2 Description of Internal Model Control (IMC)
BASIC IMC STRUCTURE ‘

According to Garcia and Morari '(1982), the IMC
structure can be described in three levels of complexity.
-The first level is the basic IMC structure ‘which is shown in
Figure 4.1, |

The basic IMC structure is obtained from a conventional
feedback control structure by adding and subtracting an
output, ym, as shown in Figure 4.1. It is equivalent to a
conventional fieedback structure since the two  paths
incofporating Gm cancel out. Theoretically, the 1IMC
structure does not impose any restriction on the type of
process model used. 1In practice, an impulse response model

is often used.
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d(z)

Figure 4.1 Basic IMC Structure
O
In Figure 4.1, Gec(z) 1is the IMC controller. It is
related to .the conventional‘feedback controller C(z) by the

following equation.

C(z)
Ge(z) = ‘ (4.1)
1 + Gm(z)C(z) ' .

The claimed advantage of the IMC structure over the
conventional feedback control structﬁre is that Gc(z) is
easier to design than C(z). This is because ﬁhe‘desigh
procedure for Gc(z) can be easily established from the IMC

structure. Moreover, robustness can be included as a design
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objective in a very explicit manner. This is partly due to

the special form of the feedback signal d(z).
- d(z) = [ 1 + (Gp(z)-Gm(z))Gec(z) 1-'d(z) (4.2)

If the model is perfect, the feedback signal d(z) is
equal to the disturbance d(z). If the model is not perfect,
d(z) will contain some information about ¢the model-process
mismatch. By modifying d(z) appropriately, robustness can
be obtained.

The following transfer functions can be obtained for

the structure in Figure 4.1,

Ge(z) -
u(z) = : (y.(2)-a(z)) (4.3)
1 + Ge(z)[Gp(z)-Gm(z)]
' Gp(z)Gc(z)
y(z) = d(z)+ (y.(z)-d(z)) (4.4).

1 + Gc(z)[Gp(z)-Gm(z) ]

TN
O

Equation (4.4) indicates that perfect control réquires

1
Ge(z) = — (4.5)
Gm(z)

Because Gc(z) has to be stable, Gm(z) is factorized

into two parts. ~

Gm(z) = Gm,(z) Gm.(z) . (4.6)
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Gm,(z) contains the non-invertible part (time delay and
unstable zeros) and Gm.(z) contains the invertible part.
According to Garcia and Morari (1982), from optimal control
theory and assuming Gm(z) = Gp(z) and Gp(z) is stable, the
controller that minimizes the sum of the square of control

errors 1is

Ge(z) = ——— (4.7)
Gm_.(z)

COMPLETE IMC STRUCTURE

It has been shown in equaﬁion (4.5) that the IMC
controller 1is an inverse model controller; If the inverse
is exact; the controller gives perfect control. Howevef,
Vefy often the exact 1inverse cannot be obtained and an
approximate inverse has to be used. This brings up the need
for additional - featgres for the 'IMC structure which
- corresponds to the second level of complexity in the IMC

structure. Figure 4.2 shows the complete IMC structure.
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g R(z) —z@— ce) 2 Gpia)

Gm(z)
d(z)
F(z)
Figure 4.2 Complete IMC Structure s
A filter has been added in the feedback path. Its

function 1is to account ‘for the model-process mismatch
reflected in the feedback gignal d(z). It can - also
compensate for certain‘types of disturbance dynamics. The
characteristic equation with reference to equation (4.4) “is

changed to
qc;‘(z) + F(z)[Gp(z)-Gm(z)] = 0 (4.8)

For a given model-process mismatch, F(z) can be
designed to ensure stability i.e. equation (4.8) has stable

roots.
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Another feature 1in the compiete IMC structure is the
reference model R(z) for the setpoint. Jt provides a
reference trajectory wﬁich has certain desired dynamics. It
can also desensitize the process with respect to modelling
'iﬁaccuracies by "shaping" the desired value, y;, seén by/fhe
controller, Gc.

In summary, the IMC controller design procedure for the
. 1deal case involves -zlecting an inverse contrpller ‘which
gives perfect control.. However, if an inverse.controller is
not feasible, an approximate inverse model controller is
used and a fiLter is added to improve robustness. Finally,
a’reference model can be added to reduce sensitivity to

modelling inaccuracies.

IMC WITH PREDICTIVE CONTROLLER

The third level of complexity  in the IMC structure
involves the design of a predictive controller. This is one
of the ways of obtaining an approximate inverse of the
model. This approach has been found to possess many
desiréble properties. The formulation of the predictive
controller is given as follows.

The prediétive control strategy considers a desired

output trajectory y.(k) over a horizon of P sampling times

into the future. Then the sequence of control actions u(k),.

u(k+1),; ..., u(k+P-1), where k 1is the current sampling .-

‘instant, is .calculated so that the predicted output

y(k+i|k), i=1, ..., P, follows yelk+i), i=1, ..., P, as

~

[



43

closeiy as possible. The prediction is calculated by the
model using the inputs up to k+i-r-1, where r is the pure
‘time delay, and oﬁtput up to k. If the process model, whic

is used for the prediction and the control calculation, 1is
not exact, the process output will deviate from the desired
trajectory. Therefor=, it is preferable to implement only
the present input u(k) and to resolve the problem again at
k+1 with -the measured output y(k+1) as the new starting
point. Figure 4.3 1illustrates one step 1in this moving

horizon problem.

Past Future

u(k)
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At each sampling instant k, the - following geheral

problem is solved. ‘

P o
Z ovi? [yalktr+i)-g(k+r+i|k)]? + B, 2u(k+i-1)? (4.9)
i=1 -

min u(k), u(k+1), ..., u(k+M-1)

subject to

§(k+7|k) = ym(k+7) + d(k+7|k)
= hyulk=1)+h;u(k=-2) + ... + h,u(k-n)+d(k*7|k)
u(k+M=1) = u(k+M) = ... = u(k+p-1) |

B:i* =0 for i > M

where - P ié the horizon (P 2 1)

ya(k+7r+i) is the desired trajectory

v:? are time.varying weights on the output error

'ﬁiz are time varying weights on Fhe inpu#

M is the input suppression parameter which
specifies the number of intervals into the
future during which u(k) is allowed to vary

y(k+7|k) is the predicted output

Ym(k+7) is the output of the internal model

d(k+r|5) is the predicted disturbance.

\

' k)

The simplest prediction of the disturbance is to set it

L

equal to the residual at the present time.



d(k+7|k)

a(k) =

= d(k) * for all k > k

~

~

\
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(4.10a)

(4.10b)

M, P, 7v:., B, are the ~tuning ‘parameter§ of the

algorithm, 'They have a direct influence on _stability . and

/’/f dynamic response.

[

2

The complete IMC structure with predictive controller

is shown in Figure 4.4. Details on the cdmpdtation of the

‘control law were presented by'Garcia and Morari (1982).

OFFSET
COMPENSATOR

SETPOINT

PREDICTOR

L4

Figure 4.

PREDICTVE | u(z)
CONTROLLER PROCESS
INTERNAL
MODEL
OFFSET
JCOMPENSATOR

4 IMC Structure with Predictive Controller



52

4.3 Discussion of IMC

Garc@éﬁénd Morari (1982) showed that the I, " structure

is reiéféd' to Optimal Control, the Smith Predictor,
¥Inferential Control, Model Algorithmiq Control and Dynamic
Matrix Controlf\:Ln,thin(section, the IMC structure will be
interpreted vacco;ding to the concepts of feedback aﬁd
'feedforward control as summafizeé inhChapter'Three. The
issues of accuracy and invertibility of -the process‘ model
will also be explored by examining the filter, reference

model and predictive controller,in the IMC structure,
. 5 SN : s

P v oy
- LW «v,%«
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4.3.1 Feedback Interpretation of MC

[

'The first step in the IMC controllé'ﬂ'design is to

o : » N\,
select * a controller which gives perfect control. It has

been determined from equation (4.4) that the perfect 'IMC
controller is the inverse of the process model. In order to-
understand how the inverse model controller achieves perfect

control, the equivaleice .0of the relationship between the
' ‘ ' - -

feedback control system and the IMC stricture will be

examined.

Equation (4.1) gives the"-relationship between the
Y

feedback contféller C(z) and the IMC controller Gc(z). The

equation can be re-arranged into the following form.’

- Ge(z)
C(z) = I : (4.11)

1 - Gm(z)Gec(z)
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Substituting “ the perfect IMC controller,
Ge(z) = Gm~'(z), into the ‘equation, the denominator of the
expression becomes zero and C(z, becomes infinite.

Therefore, the IMC inverse model controller is equivalent to
an einfinite gain feedback controller. Perfect control in
IMC, as iﬁ_ﬁeﬁdba k controi, is achieved on - - the basis of
infinite gain (Concept 3.2).

An alternate way of obtaining the same result is
tPrough the block diagram. -Figqure 4.5 shows an eqguivalent

. wd,
IMC structure which is drawn differghtly'from'Figure 4.1,

u(z)
Gc . Gp

Gm

i Ly
o

. < .
AT . ’ ,‘ '«' . s._q_ t"

Flgure 4.5 +An Equ1valent Form of the IMC Controllgg

HQZJ
R
The IMC structure of Figure 4.5 becomes a conventlonal

- ~

feedback control structure if the p051t1ve feedback loop 1s

2]

~-

..,,
<
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included in the controller block. Using the perfect IMC
controller, Gc = Gm™', the positive feedback loop becomes an
infinite\ gain controller in a feedback control structure.
Therefore, from a structural point of view, IMC is
equivalent to feedback con;roi ipd perfect control is
achieved through the principle of infinite gain.

In a feedback system, the use of high gain is limited
by stability and performance considerations and perfect
control may not be attained wunder such restrictions.
Similarly, the IMC inverse mo@el controller can only attain
perfect coﬁtrol when the model is perfect and the inversé
model controller is realizable. The reason for this 1is as
follows.

For discrete systems, there is at least one sampling

_period of time delay. Thérefore, the IMC inverse model

controller will contain at least o.e period of prediction.
This means that the controller input, y4 - @, must be known
at least one period of time ahead. The setpoint y, can be
specified’ ahead  of - time. However, i%ﬁ‘the model is
imperféct, the;feedbaék signal q will contain model-process
mismatch and disturbances.. Future -values of 4 éannot be

known since “the model-prc-=2ss mismatch is dependent on the

current process 'input which needs to be ‘calculated using

‘future values ¥af 4. Therefore, erfect control is
, o p

impossible yith' an  imperfect model. In addition,

QQ- . . i - .
realizability of the perfect controller requires that the

process be minimum phase.
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.
Since future values of d are required in the control

calculations, they are approximated by the current value of
d in the IMC structure. This approximation represents a
deviation from the ideal condition of perfect control. The
extent of this deviation depends on:‘tﬁe mohel—process
mismatch contribution to the feedback signal. " The
contribution of the mismatch decreases as the process model
becomes more accurate. When the process model 1is perfect,
the feedback signal 4 contains disturbances only. For the
case of no disturbance, the controller input is equal to the
setpoint which 1is knownfeXaQtly and perfect servo control
can bevobtained. * When 'diﬁﬁurbances are- present, perfect
regulatory control can only be obtained if the disturbances

can be forecasted accurately. Hence the interest  in

combining SSF with IMC.

4.3;2 Feedforward Interpretation of IMC
An  alternate ihterpretation of IMC 1is based on the
feedforward control structure using SSF (Flgure 3.5). This
‘erprttatlon is approprlate for explalnlng the need for a
periect process model and more4%§%curately reflects the
.1gn philosophy of IMC. hﬁ%*?_
The IMC structure '(Figure' 4.1) s similar to the 
‘estimated feedforward control structure (Floﬂ?e 3w 5) Both
of them make use of a. process model to generate“%E@;re51®yal

signal which 1is sent to the controller 'fg%?’ perfect
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control, the contrc'ler h:s to be equal to the inverse of a

perfect process mode.. T* has been shown that perfect

control in ' feedforward control is achieved through

cancellation of transfer functions (Concept 3.9). Because
. e

of the similarity in structure between IMC and feedforward
control, perfect control in IMC can also bé interpreted as.
being achieQed through cancél&étion. ‘This is a more
appropriate interpretation than the feedback interpretafion
when the process model is perfect since fhe feedbéck signal
is equal to the disturbance and the system is effectively
open loop. It shouldwbe noted that the forecaster present
in the feedforward control structure is not obvious in the
IMC structure. However, some form of prediction is implicit
in the inverse mbdel controller,

The IMC structure can be interpreted as being designed.
for open loop‘feedforward control using the inverse of a
perfect process model' as the controller and an estimated
disturbance d(z) (which is equal to d(z) when the process
model 1is | perfect). A per'féct mode] Pemoveé the'pr'oblem of
instabil ity arising from the feedback control structure.
The perfect proceSs model is also used to generate the

residual signal which is used for regulatory control in a

feedforward manner. This is the ideal IMC design
philosophy.  When the model "'is  imperfect and/or
non—invértible, thén_féedback is present, instabfiity could
result and other féatures -such as _the filter, reference
model and pfedictive controller-§§giheééssaﬁy. |

>
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4.3.3 Filter and Referenee Model

The filter and the reference model can be considered as
part of the controller in IMC. When the filter and the
reference model have the same transfer function, they can be
combined with the controller to form an equ1valent system
with only one control block The advantage 'of separating
part of the controller out to form the reference model in
the setpoint path and the f%lter in the feedbaek path is to
provide a means to have different servo and regulatory
controllers. The reason for it has been discussed in
Chapter Three (Concept 3:1). ;

The fungtion of ghe reference model is to generate a
reference”trajeétory from a’given setpoint for the system to
track. A reference traﬁectory can ofeen be made more
appropriate than an external setpoint because it usually
requires less extreme control effort to track and it may
possess certain opfiﬁal .characterisfics. In addition, it
can desensitize a system i.e. make the system respond
slower.

The filter, on the other hand, can be used in a number

ef ways. The first use of the filter proposed in the IMC is
to compensate for the model process mlsmatch From equation
(4.8), it\ can be seen that the filter can be designed to
ensure stability and shape the dynamic response .ef the

f%r a given model process mismatch. Brosilow (1979)

sy st
has discussed the use of a filter to compensate for

modelling errors in time delay, process gain and process
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time constant using the example of a first order process.
He showed that a first order lag filter with an
appropriately chosen time constant wiil provide satisfactory
compensation in most cases.

The filter «can also be used to compensate for certain
classes of disturbances. A typﬁcal example 1is that of a
low-pass fi}ter which is.used to filter out high frequency
‘disturbances Oor noise. This use 1is very important in
providing smooth measurement data to the predictive
controller.

The filter can also be interpreted éé generating a
reference trajectory for- the disturbance signal in the

>

feedback path for regulatory control. This helps to reduce

extreme ‘excursions in the process input. It slows down the

response of the system and improves. robustness.

4.3.4 IMC Predictive Controller : 42;2
The perfect IMC controller fé{van inverse model
controller. Therefore, the invertibility of the model is
very important. in the controller design. For models'whiéh_
contain non-invertible parts, an approximate inverse has to
be wused. There are L two ways of obtaining an approximate
inverse of the model. The first one 1is to invert the
invertible part and approximate the non-invertible part.
The second one is to approximate the inverse of the whole

model. The predictive controller in IMC inverts the process
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model wusing the second method. With appropriate choice of
the tuning parameters, the inverse can be made exact or
approximate. The objective in the controller design is to
find a stable inverse.of the model which gives good control
performance. The physical significance of the tuning
pérameters and  their effeéts | on the controller
characteristics have been discussed by Garcia and Morari

(1982).

4.4 SSF and IMC

4.4.1 Description and Interptetatibn

The fMC structure requires the use of an inverse model
confroller.' in discrete control systems, an inverse model
controller implies that some form of prediction is inherent.
In the IMC structure, thié prediction\requirement means thé@,ﬁ,

future values of the controPler input, i.e. setpoint and

feedack signal, are required for the control calculations.

.
2

To simplify the disqussion, " the model is assumed Eo bev
perfect 'so that the -feedback .signal is équal to the
disturbanée; |

Consider the IMC structure with predictive congroller
in .Figgre 4.4, The need for future'setpoints does not
present any problem since they ére simply assumed té' bé
specified bx‘ the éperator, However, wvalues of_ future

?
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disturbances have to be generated by some means. The
predictive controller bropoged by Garcia and Morari (1982)
uses "the present disturbance in the place of the futdre
disturbance (Equation (4.10)). There is no forecasting done
to obtain the future disturbances.

From anqther point of view, this can be interpreted as
being equivalent to the first forecasting method described
-~ in Section 2.3. It uses the currént value as the forecast.
This ‘is justified if the diéturbance is stochastic and
therefore difficult.to forecast. However, 1in cases where
the disturbance has some structure, it is often po;siblé to
forecast future values with a reasonable degree of accuracy
by using information from'the pasilvalﬁes. This is exactly
_the idea of the SSF. It fits in gLe IMC structure and is
used to forecast future disturbance values based on the past
values.‘ Figure 4.6 shows é schematic diagram of an IMC
structure with SSF.

The forecaster can be intérpreted as part of the
A'invérse» model controller in this context. It is added to
make the inverse model closer to the exact inverse. The
inverse model‘ controller His then made up of three blocks: .

. N -
‘controller, filter .and forecaster. Conceptdally,~ the
“functions of the three blocks can be separated. Thé'cqntrol
block contains the-inverse of the invertiblé part of the
model. The forecaster contains the inverse oftthe time

delay of the model. ng filter contains a _reference model

which generates a refefg%ce trajectory for better control.
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Another interpretation of the forecaster is that it is

a model of the wunknown disturbances since it generates
férecasts of future diﬁturbances. This is particﬁlarly
appropriate 1if an adaptive AR forecaster 1is used. The
accuracy of the fo;ecasts depends on the forecaster
structﬁre and parameters. When there is doubt about the
forecastedl disturbance, the controller may want to
compensate for only parﬁ of the disturbance. This idea is
similar to the concept of "relaxation factor" in nume}ical
methods. In this case, the filter, which cbntains a
reference model, can function as the "relaxation factor".
By proper choice of the filter, good coptrol can be obtained
even if the forecaster,doés not forgc;st very'accurately.
Intuitively,ithe forecaster will”férééést well when the
disturbance is well structured and has slow ~ dyngmics
relative to those of the proCeSs. It will forecast poorly
when the diéturﬁance has fast dynamics and no structure. 1In
Qiew of this, another wuse of the filter block will be to
filter out éhe fast and—random disturbances or noise. A low
pass filter is well suited( for this function. Then the
forecaster can work on-the slow filtered disturbances. In
caseé. where the'process model fs a low order épproximafion
of the high order process, the modélling errors ' which ére
the fast modes of the process will be‘part of the feedback
signal. Since the important brocess dynamics are Jenerally
.slow, the low pass filter can also filter out errors due to

these fast modes. When the filter block 1is a low pass



63

.

filter, then for purposes of interpretation, the order of

the forecaster and the filter should be reversed in
| .

Figure 4.¢,

4.4.2 Iliustrative Examples
/

&'simulation example will be given to 1illustrate <the

use of SSF in IMC and to explore some of the properties of

4
Rt

'tﬁ€*SYStem. A second order process without a process delay

is wused 1in the example. The discrete transfer function of

the process is

y(z) 0.158z""' + 0.101z"? :
- » . (e.12)
u(z) -3 - 1.03z"' + 0,289z-° . S

\ v’/ﬁh; o '
et |
4//Th€(8th order impulse respdnse truncated model is

o

y(k) = 0.158u(k-1) + 0.264u(k-2) + 0.226u(k-3)
+ 0.156u(k-4) + 0.096u(k-5) + 0.053u(k-6)
+ 0.027u(k-7) + 0.013u(k-8) . (4.13)
‘ .
The following set of parameters are used for the IMC

predictive ‘controller 1in all the cases and the input

suppression parameter M is set individually in each case.

P=N=8 ‘ (4.14a)
Y1 = Y2 T «ee = yg = 1 (4.14b) -
B =82 = ... = Bg =0 (4.14c)

)
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Two forecasting techniques are studied. The linear

forecaster as given by the equation
t(k+1) = r(k) + (r(k) - r(k-1)) ~(4.15)
and the AR forecaster:

t(k+1) = a,r(k) + ar(k-1) + asr(k-2) "ﬁw (4.16)
/"‘I’ ’ l ‘
wﬁere a1; a, and a; are identiffed_,on—line by the APCS
projection algorithm (Equation (2.9)). For the simulations
in'Eig%%es 4.7 to 4.10, the process 1is subject to a
disturbance sequenée which consists of four . types‘ of
disturbances: ramp, exponential decay, sinusoid and step,,.A
"

perfect process model is used for prediction and cont%bl
calculations. The input suppression parameter M forx the
controller is set to be equal toN. For this particular
case where P=M;N,Vthé number éf'unknowns is eqﬁal to the
number of equatiocns. An exact‘solution, rather than a least
squére solution, is obtainéd and thg cont;oller.ié'an exact -
inverse of the 'process. Control action is calculated‘at
e&ery sampling instant. 1In cases where SSF !is used, a
one—sgep ah®ad forecast of the residual is caiculqted and
used as the value for all the future residuals. The reason

“for this will be explained later. "
v Figuré 4.7 shgws the pirc ~ss response under IMC'coﬂtrpl

with- no SSF. A cc stant cffset is present during the ramp

hd
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disturbance. This indicates that IMC contains some form of

dntegral control action. Figure 4.8 shows the response of
perfect control as a result of using a perfect forecaster.

Note that the forecast need only be perfect for”the one-step

ahead residual and not for the future ones. In the control~-

calculation, an exact solution is obtained due to P=M=N,
With control action being unconstrained, any setpoint change

can be accomplished in one step.- Since the calculation is

- done at  every sampling instant, only the one-step ahead .

3,

forecast of the residual is important. The . future values
has no effect on the implemented control action. This is

wﬁy only a one-step ahead forecast is calculated.

R
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The linear forecaster of equation (4.15) is wused in
‘Figure ﬁ}Sfand the AR forecaster of equation (4.16) is uscad
in Figure“4.10. Comparing Figure 4.7, with Figures 4.9 and

’

4.10 shows"that ‘the additién of SSF in IMC does 1mproveh

regulatory control performance for smooth dlsturbances. SSF

{70

helps to eliminate  the offset during the ramp disturbance
and the non-linear disturbances. However, aslexpected, the
forecasters do . not help in \the case of the step

-disturbances. -Comparing the llnear foreCasterv and the AR

forecaster, the linear forecastef seems to be superlor in

v
/

performance-for the smooth dlsturbance in* this example.
However, it gives rise to.a more osc1llatory input sequence

and is very poor . for step d;f

ak\ Stnce n01se is an 1ntegral part of most measurement

51gnals the followi 51mulat10ns w111 help to explore the
W

ueffect of noise on the functlonallty -of SSF. A noisy

v

‘disturbance sequence is generated by adding random'foise to

the smooth disturbance sequence used previously. ~ The

R

conditions for the jprocess model, controller”and forecaster~

are all the same as the previous cases. Figure 4.11 shows

t%e process response under'IMC with no SSF. Flgures Y312

i “

and’ .13 show the cases where the llnear forecaster and the

AR forecaster are used respect1vely A qu1ck compar1son ofl

& \‘ .
the three flgures. seems to show that there 1s no obv1ou5~

advantage 1n u51ng SSF for noisy 51gnals and that the 1nput
: Y

seguence ‘Bg becomefvmore osc1llatory in cases with Ss¥.

. \y.u- /‘;;

Howeverlyarl' ,comparlson—ibf. the outpu§ s1gga1 in
o : Ty " - T . e 3
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Figures 4.11 and 4.13 shows that the output in Figure 4,13

is randomly distributed around zero whereas the output in

ngure 4.11 has certain trendsﬁ‘possibly caused

disturbances. - Therefore, the use of SSF helps the

- to compensate for disturbance which has a trend even

~ it may be noisy.

by the
process

though

Y ~

A common solution to the noisy measurement signals 1is

DNLIEEN . ¢

*to use a low pass filter. The equation is

'Simulation -for the prev1ous three cases are
with the addltlon of a low pass filter (a =;:O.3)
system. The results are shownlln_Flgurgni4.#4 to'4.
filter seems to do very little in improvi;g‘ the/
performance but it does help to reduce the osc1ll
the 1nput sequence con51derab1y No attempt was
optlmlze the value of the filter constant a.

' In summary, 1t has been demonstratgd through si

examples that SSF can be used to improve dis

compensaton for IMC. The AR forecaster is better t

"linear~ fOrecaster in ai environment wlth n01sy 519

low pass flltEr should be used to fllter, the n01sy,

before is 1s used by the forecaster

RO

Ew
=

(4.17)

repeated
in the
1?1; The
'controi

atlon in,

made to

mulation
turbance
han“ the
nals.; A

'J’ aN

51gnal



72

- ~--— DESARED |
° | —— MEASURED - \

QUTPUT .y

INPUT .

»
>
’_ .
O .
w
e
L
W :_ ,
W
=)
=
m - A
o v ‘
x -
3 v
2 B
U) @ U g
o ‘@
o .

T

0 20 40 60 o 80 . 100
. SAMPLING PERIOD

AR

: .

T T o o 4
L aurel 4 i : R | X !
——Flgure’ 4.-ti—€Compensation of Noisy Distyitbance Using . g
o el TIMC e T SRR e
. {??? o« B o " ° .“ “ \
el €, 4 .l S-
Tla . - )_,}.
~ N R Y t




.
P
..\
«
e
- iy

2
2 i
Figure
a~
.
CY =
. X v -
L0 ;/1 o
. =

BUTPUT,y

INPUT ,u

DISTURBANCE EFFECT.,y,

4,12 'Caom;;"e'nsé‘tion ,of: Noisy Disturbance Using . &
= . #IMC Wwith Linear. SSF g ' e

73

w --~- DES!IRED
o : , —— MERSYRED

(¢

b)
(Y

1.0
L

5

0

S )
0. 20 40. 60 80 100 d

4 - ¥ SAMPLING PERIOD o

. Ui % - R
. ) - .
[ w e . e )
7 o - . . 3
. .. : : SN
. " -
-~ . N R
= ¢ .



pa

e
o - ---- DESIRED -
o , —— MEASURED
o .
}_
oo
, & o7 Na h ’
D .
o
w
& ¥
[ - *
fJ Py " ’Jb
~7 A@f'_' ’T’
ol
LY.
- O
'_-.
o
Q.. w
=5
. [ -
i R
- T T
[ >: o .
——~1 I '
r@"" ~J X o .V;T ’ —— RCTUARL
(NP 'd?, . ---- FORECASTED
. Rira
L /
W
RE)
z
@
.
o
o
—
w
o
. - T z T T R
o 20 40 60 80 100
. SAMPLING PERIOD,,
S : ' S
“"'Figure 4.13 Compensation of Noisy Disturbance Using
S IMC with AR SSF A "



4

/~¥§gsr

INPUT . u
5

URBANCE EFFECT,y,
0

OUTPUT .y

0

-0.

1.0
i

.5

1

0.0

)
- ¢

1

)
—

---- DESIRED
—— MEASURED

T

20

.
40

1
60

- SRAHPLINGPERIOD

Figure 4,14 Cohpgnsation of Noisy Disturbance

IMC with Filter -(a=0.3)

&

n
— ¢

NE
(Y

Using

"

75

Ay



INPUTS 0

1.0
1 5
(Y

DISTURBANCE EFFECT,y,
P'U’ﬁk 0.5

---- DESIRED
—— MERASURED

) -
¢

0
Iy

—— ACTUAL .
--~- FORECASTED .

Figure 4.15

T

20 40 60 80 100
SAMPLING PERIOQD
' 5

Compensation of Noisy Disturbance Using

IMC with Filter («=0.3) and Linear SSF 2

.

[y

76

=3

-

¥

:';i : T

T



77

° T | ---- DESIRED
e - —— MHEASURED

RN «
gl L
. w
../.7._" o 7

|
\

~0.5

IRPUT U ©

by B
- {C
b) Bl

‘Iv O
7. y .
q —— ACTUAL
1o : --—- FORECASTED

. & -

0.5

DISTURBANCE EFFECT,y, &
0.0

) 4

‘ 0 20 40 | s0 80 100
o SAMPLING PERIOD o

,
[

Figure 4.16 Compensation of Néisy Di'sturbanc,g Using “ing
S IMC with Filter (a=0.3) and AR SSF o

T
f




78

4.§ Conclusions

1)

2)

- 3)

In the feedback interpretation of the IMC structure, the

design rule that the IMC controller should ~~oach the -
inverse of the process model is readi s being
equivalent to the classical design o. on that

perfect control 1is approached as the feedback gain
approaches infinity. The use of high gain for perfect

conérol in ﬁeedback control is restrlcted by staglllty

- and performance considerations. Slmllarly, the inverse

model” controller 1in IMC has the additional requirement

of a perfect model in order to provide perfect controll

as a classical feedforward

IMC can

. k3 - .
control the  ‘forecasted disturbance
rather VRS actual 'measUred” value, Thi's

Je function and form of
the controller) the filter and the reference model

IMC can be fnterpreted as\an SSF system that uses the

current value of, the residual ‘as an estimate of the
future value The use of other forecastlng methods can

therefore be Seen as an attempt-to provide more accurate‘

forecasts.

Simulation examples show. that the addi i

AR SSF to IMC improves its ébility“-'-

unmeasured disturbances. :However the advantage gainéd

\

is thatjthe d1sturbanCes wllI be compensated k sampl1ng

,perlods‘earl1er where A equals the sampllng plus process

’delays.. Moreover,' the ! 1mprovement is ea511y destroyed

Wl . S

.

o
1 L
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which introduces uncertainty into

.

by stochastic noise

Therefore, the practicalljustification
T

of using SSF, with IMC is limited. = S
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5. SSF and the Adaptive Predictive Control System (APCS)

5.1 Introduction

The APCS is a multivariable adaptive control system for
the control.of linear, time-invariant processés with unknown
parameters and shbject to “bounded" stochastic hoise and
unmeasuted disturbancgs. The ' basic theory of APCS was
published by Martin-Sanchez in 1976 based .on the work of his
doctoral thesis in 1974, An extensioﬁ of the results to
handle multivariable processes with time-delays was included
in an US patent on APCS filed by Martin—Sanche% in 1977. In‘
these early works, the stability -of APCS was based on
Popov's hyperstability criterion (1963). A,new proof of
éonvergence and glbbal stability for-APCS was reported by
Martin-Sanchez, Shah and Fisher (1984); The.new result
involves the modification of the original adaptive mechanism
to ‘include a-criterion for turning pa;éﬁetef identification
on and off.. This result has been further extended to cover
time-delayed systems bylMartin-Sanchez (1984).

The strength of an adaptive controller comes from its
ability to ada-t its parameters continuously so aé to
" improve control performance. The feature of élopping
identification in APCS, though . providing some distinct
advantages, does raise doubts since the —advantages of
adaption are absent when the identification is off. This
will be of particuler concern if the criterion of stopping

identification is not chosen appropriately. The incentive

80
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-

to improve the control performance of APGS was the original
motivation for » work of this thesis. The solution is to
make use of the escimation error or residuai in the control
calculation.

The purpose of this chapter is to investigate the use
of SSF on the estimation error in APCS for compensating
unmeasured disturbances and/or modz21ling error ‘during the
period when APCS parameter identification is off,
Simulation examples‘will be used as illustration§ for the

ideas presented in this chapter.

5.2 Description of APCS ‘
The Adaptive Predictive Coné;ol System is a‘globally
stable control system for multivaéiable, stablé-invérse,
time-invariant processes with pure time delays and in the
presence of bounded unmeasured diéturbances'plus process and
measurement noise. The following is a brief description of
the control . system for, the case of single-input
-single-output proc=sses. Fig. 5.1 shows a schematié diagram

of the system to be described.
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Consider the single-input single-output process in
Figure 5.1. Assuming there is no measured disturbances, the

procesé can be represented by a discrete ARMA model
Yt(k) = eo‘x’t(k_d‘]) + 91Ux(k“d"1) + E(k) ' (5-’1)
where

d, " (k-d-1) = [ v,(k-d-1) ye(k-d-2)
u;(k-d~2) u, (k=d-3) ... ] (5.2)
¢.(k-d-1) is a vector of past actual values of the
process output, vy,, and the control inputs, u,. The
dimension of ¢, depends on the assumed process model order,
d is an integer which represents the pure time delay éf the
process. (k) }represents the. eifect of unmeasured
disturbances on the 'process‘ output at the kth sampling
instant.»Go and 6, are unknown vectors qf ;rocess parametersl
of appropriate dimension. | .
Because of heasurement errors and noise, the measured

process variables are tdifferent from the actual values.

Therefore,

yelk) + n, (k) (5.3)

y (k)
u(k)

u, (k) + ny(k) ' , (5.¢)
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The corresponding measured ¢ vector becomes

\

(k) = &, (k) + ng(k) ' (5.5)

Substitution of equations (5.3) to (5.5) into equation

(5.1) gives the final form of the process model.
y(k) = 6 x(k=d-1) + A(k) =~ - : (5.6)
where -

6 = [ 6, 6, 1 = process parameter vector
XU (k-87) = [ $t(k-d-1) u(k-d-1) 1 = process 1/0 vector
ny*(k=d-1) = [ ng'(k-d-1) ny'(k-d-1) 1 = noise vector

A(k) = n, (k) -6 n,(k-d-1) + £(k) = perturbation term

The one step ahead prediction of the " process output
g(k[k-1), based on the estimation at time k-1 of the process

parameters vector 6(k-1), is given by
Y

§(k]k=1) = 8(k-1) x(k-d-1) o = (5.7)

The corresponding prediction error or estimation error

is

. |
e(k]k=-1) = y(k) - %(k|k-1) (5.8)
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The estimated parameter vector 1is updated by 1t e
following recursive algorithm at - every sampling instant

depending on the value of y(k). .

v (k)x(k-d~-1)e(k|k-1)
: (5.9)

B(k) = 8(k-1) +
T+ (k) x ' (k-d-1)x(k-d-1)

The scalar y(K) provides a basis for turning parameter

adaption on and off. The definition of y(k) is given as

fcllows. _

a)‘¢2(h) = 6 : and only if . }
le(k|k=1)1 < A,"(Y1,4,,k) € 28, < o (5.10)
whefe ;

: : 2+2y12x ' (k-d-1)x(k-d-1)
L4'(Y1,84,k) = A, (5.11)
2+Y12x (k-d-1)x(k-d-1)

with 0 < y1? <=, A, 2 A, = max la(k) ]
O<k<e

A, is an estimate of a constant .ﬁpper bound on the
absolute value of the perturbati&n term A(k) fof all k.
Om is the minimum value of this upper bound.

B) Y1t < Yr(k) S ¥, (k) S Yn* < = if and only if
le(kk=T)] > 8" (¥1,8,,k) 2 A, ' o (5.12)
where y4(k) is defined as follows:
i) va?(k) = ypn? if le(k|k=1)| > 84" (Y, B4, K) (5.13)

where
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, 242y x (" -d-1)x(k-d-1)
A" (Ym, Ay, k) = Ay (5.14)
2+Ym?x ' (k-d-1)x(k-d-1)

ii) |
20 Jeikik-")]-A,)

\bdz(k) ="—-j - -
(2Ad"[e(hlk—1}J2 x*"(k-d-1)x(k-d-1)

(5.15)

if Ag" (b1,84, k1 < felkfk~1)] < 84" (Y, By, k)

r

-

The calculation of ¢ (k) reduires an operator—specigied
parameter A, which is defined above. The definition of y(k)
is closely related to the proof_&f stability,which is gqiven
by Martin-Sanchez et .al (1987), |

The prediction at time k of the process output at time

k+d+1, ?(k+d+1lk), is given by
Flea+1]k) = 0(k)x(k) = 8o(k)®(k) + 8,(k)ulk)  (5.16)

The control input wu(k) is computed to make the
predicted output "§(k+d+1|k) equal to the desired output

Yo (k+d+1). Therefore,
ulk) = 0,71 (k) [ ya(k+a+1) = 8o(k)&(k). ] (5.17)

In order to gquarantee a finite control input u(k),
§:(k) must be non-zero. Martin-Sanchez et al (1984) have
shown that 6,(k) can be made non-zero by an appropriate

choice of y(k).
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The contrql error 1is aefined.as

e(k) = y(k) - y, (k) . (5.18)

iquations (5.1) to (5.18) -describe ‘a basic APCS
algorithm.  In Fig. 5.1, the general formulation of APCS
also includes a "driver block". It can be interpreted as an
extension ctd ‘the graditional - concept of the "reference
model". ‘At each sampling instant, the driver block
generates from the operator-specified setpoint y, a desired
process output ys. for a future .sampling instant. This
desired process .output Y« belongs to a desired process'
output trajectory that satiéfies ,a specified‘ performance

&riterion. The driver block'provides a means to enable the

control élgorithm to handle non-minimum _phase systems and

variabfe time-delayed process.
As a summary, the characteristfcé of the APCS are
listed as follows.

1) It wuses an ARMA process modei\‘which is iaentified
on-line.

2) It makes use of an 1/0 process model to calculate
control action. such that the predicted output is equal
to the desired output.

3) It ﬁas a criterion fbr "stopping parameter adaption.
This . requires an opgratbr—épecified parameter which is

an estimate of the upper bound of the perturbation term.

4) Global stability is established for multivariable,
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stable—invefsé, time-invariant processes with pufe time

delays and subject to bounded disturbances.

5) .t .contains a driver block‘which generates a desired -

Moutput from an operator-specified setpoint, the current
bParameter estimates, and in some cases an objeétive

function and/or design method.

AN r

5.3 Discussion of APCS |
The basic.control algorithm of APCS is quite similar'tg
.the Self Tuning. Regulator (§TR),proposed_ by Astrom et al
(1973). However, it possesses several advantages over the
- STR. 'The first advantage of APCS is the guarantee of glpbal
stability. Since the identification ~algorithm :in- most
adaptive control systems is a highly nonlinear algorithm,
the proof of stability is very difficu}t; For STR, it .can
only be shown that the algorifhm will converge in most
cases. In contrast, global stability has bgen proved: for
APCS. | \

The second advantage'»of APCS is the criterion for
turning. parameter identification on and off. This n&ﬁ only
saves ¢omputétion. time, but also avoids. problem 1like
estimator windup which is coﬁmon in STR. The third

advantage of APCS is that the assumption it makes about the
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~unknown disturbénces is very general. Most of the ofher
adaptive c~ntrol ' algorithms = impose more  restrictive
assumptions on the disturbance or noise dynamics. ¥

The APCS also ﬁas some weaknesség. The following
discussion will focus on two problems associéted with the
APCS adaptive algorithm .and the .féaturg of stopping

parameter identification. Impli;ations from these problems
1]

and solutions to them will also be discussed.

5.3.1 APCS Adaptive Algorithm .

The APCS adaptive algorithm is .a fairly simple
algorithm to implement and lthe' prediction §(k+A[k)
calculated using the estimated model cdnverges rapidly to
the true wvalue. However, the fcgnvergence of" the model
parameters can be quite slow. This is due to the. form of
the adaptive algorlthm (equation (5.9)) as expla1ned by Song
(1983). all the parameters adapt wlth the same gain which
is the*{estlmatlon error. The direction for adaption for
each parameter depends on the sign of the elements in the.
vector. x(k d—1) This is different from the recursive least
square algorlthm which éllows the parameters to adapt in
different directions and with different gains because of the
‘covariance'mgtfix. This slow parameter convergence is not a
bréblem if the model 1s used for prediction since accurate
prediction- does not require accurate parameters.’ However,

it becomes a problem when the process model is used to
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calculate control action. 1In equation_(5.11),'the parameter
6, acts like an overall’gain and affects ditectl& the value/
of the control action calcﬁlated. .If 6, is small and close
to zero, even a slight change in its value will 'affect the
vcontrol action significantly. This may lead to erratic
control action’ which ls undesirable in most cases,
Therefoie; the accuracy of 6, 1is very important. One
, solutlon to resolve thia ‘practical problem is to first
1dent1fy 6. accurately off-line and then use it as a known

parameter in the'process model.

5.3.2 Oa/Off Feature for.Identification

An adaptive control algorithm works by constantly
adapting' the parameters of the system SO as to m1n1mlze the
error, between® the output and theﬁ setp01nt.. When the
.parameters are not . being adapted?pthe controller is fixed

\ s -

and it loses its ablllty to xmprove its performance at a.

certain operating ,condl

/?&g to maintain the level of

performance when the opes t1ng ’ondltlon changes.

-4 \\.. - ST \\W
In APCS, the parame&efs of the process model are being
S '
adapted unt{l the estlmatlon error is smaller than A,'. A4,

is a function of Ay, which is an estimate of the upper bound
of the absolute value of the perturbation term. In essence,
APCS will stop parameter 1dent1f1cat1on ‘when it is not sure

whether the estimation error is due to modelllng error or

dlsturbances. ThlS feature provides the advantage that the

3



4the output to: w1th1n Ay' of the setp01nt Therefore the

model parameters will notfbe corrupted by the disturbances

and the model will represent the  true  input-output

relationship of the process. ' ' » s
However, since the control error is equal to the

estimation error, it means that APCS w1ll only try to bring

choice of A, dlctates the ultlmate performance level of the

~ (] .

”;Mcontrol algorithm. 1In practice, since the magnltude'of the’

disturbances 4is unknown, A, has to be estimated. 1In order

s

to guarantee stability, the choice'of A, has to'be lenlent

This results in degradation of ‘the control performance.

[

The estimation error contalns '1nformat;on about the

unmeasured disturbances and modelling error. When the

identification is on, this information-is‘htilized since the
estimation error is used in the. adaptlve algorlthm to update
the I1/0 model parameters. When 1dent1f1cat10n is off, the
estimation error 1s_n?} used and the-;nformation it contains
is wasteq., Thereforen an obvious improvement to APCS is to

)

make use of the -estimation error ;for control when the
identification is off. Two cases will be deséribed :inffthe
following paragraghs to show potential improvement\through
using the ‘estimation error for control _when the
identification is off. .

Consider the first case where a process is 'subject to -

some unmeasured dlsturbances and a non-zero Ay is chosen for

‘the 1dent1f1cat10n algorlthm.“- Assume, thatd when the

iqentification - stops, the model is perfect and the

4
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estimation-oerror i's equal to the dlsturbances Since the -
estlmatlon error is not used when the 1dent1f1catlon is off,

1nformat10n about the dlsturbances is only fed back to the
controller ' through the use x of measured process output
Qalues.o Compensation of -the disturbances is s}ow and
requires that the controller contains 1nherent integral

action. Alternately, by feeding the estimation error back

i

‘to  the. controller, ‘more direct control action can be

generated and the_disturbances cen’be compensated faster.
Consider the second case where a non-zero A, is used
but for a whiie' there is no dlsturbancg'affectlng the
system. Ident1f1catlon stops when the . estlmatlon error is
smaller than A,' but the process model is not petfeot.
Theoreticaiiy, identification should beballowed to continue.
However, A, :cannot,be made zero'beéause the disturbance is
unknown. Therefore, the modelling error is left
uncorrected. An offset will be present in the output. By
making use of the estimation error or residual in the:
control algorithm to adjust the'control action, the offset“
can be eliminated'even though. the ,modelling' error is not

corrected.

l

~—
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5.4‘SSF and APCS

5.4.1 Description

It has been explained in the previous ‘section that the
control performance of APCS <can be improvea, when the
ideﬁéification is off, by making use of the estimation
error. This section w1ll describe how the estimation error
.can be used and how SSF fits in this addltlonal feature for
APCS.

Depending -on the accuracy of the process model, the
estimation error contains unmeasured disturbances and/or
modelling error. This error 1is already present in the
process output. If the value of the error is used ‘directly
‘by the controller, the control action, whose effect will be
telt some time in the future, will be correcting the current
error at a future time. ‘What is really needed is the value

of the future:error so that the effect“of the current

)
¥

céntrol. action can be chos;n to minimf%e wiﬁh the future
errof Therefore,_lnstead of feedlng the estimation error
directly’ back to the controller its present and past values
‘are used »in SSF to forecast a future error for the
controller.

Recalling the feedfgfward contrél‘ system based on
estimated " disturbance in Chapter Three, the_sitﬁation is
similar here fbr APCS. SSF can be usedytd forecast future
" values of the estimation error based oh the current ahd past

values. The general form of the forecasting equation is
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e(k+d+1) = f(e(k), e(k-1), ...) o (5.19)

The forecasted value can be used by the APCS controller
which is already an inverse model controller. Therefore,

equation (5.17) is modified to

U(k) = 8,7' (k) [ya(k+d+1) - &(k+d+1) - 90<k>q><k>]</5<'20)‘
The modified APCS structure with SSF ié/;howh’{ﬁ Figure
5.2. The forecaster is designed to be used wpen//the APCS

o .
identification is off. When the APCS identification is on,

" the forecaster has to be turned off SO thaﬁ it will not

~

affect thé identification. 1In order to provide a "' impless"
on/off switching of the forecaster, the forecasted value ‘is
muiﬁiplied by a switching factor to switch the forecaster on
and off gradually. The switching factor w which lies in the
range of 0 to 1, is défined'by the following equations.
Swifching on : w = w;t v(1-w) (5.21a)
Switching off : w = (1-y)w ) (5;21b)

where 7y is a parameter which determines the

rate of switching and 0 < y < 1

0% 0 means .no switching action

04 ! means bang-bang switching

With the switching feature for SSF, the identification
and contrdl action of the basic APCS 1is not affected,
Therefore, the stability proof of APCS is maintained and the

modified APCS (with SSF) is also stable.
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Before proceediﬁg with some simulation éxamples of SSF,
an alternative to the second level of control by SSF will be
discussed. The alternative‘ is to allow parameter
identification to run at all time. This approaéh is found
in ﬁost\adaptive control .schemes which do not have on/off
switching for parameter identification.

The disadvantage of this alternative is that the
process model parameters could be corrupted if the residual
error is due mainly to disturbances. Consider the situation
where an accurate set of model parameters have been
- obtained. 1If identification is allowed to continue and some
new disturbances come in, the parameters w 11 be corrupted
while the disturbances are being com-ensaced for. If a
setpoint change is required at this point, the respoﬁse will
be poorer with the corrupted set of parameters. Moreover,
if this alternative is adoptgd’\{gr\APCS, the COnditions

required for the stability prgbf;\yill not - be met and
i \

\

stability is not guaranteed. | ’

Therefore, the use gf SSF to prdéide a second level of
control can reduce the control error\hnd prevent unnecessary.’
corruption of the process 1/0 model by unmeasured

disturbances.

5.4.2 Illustrative Examples
Some simulation examples will be given to illustrate

‘the use of SSF in APCS and to explore some of the prope%ties



97

of -the system. The second order process which has been used
in Chapter Four will be used again. The process can be

described by the following ARMA equation.

y(k) =  1.030 y(k-1) - 0.289 y(k-2)
+ 0.158 u(k-1) + 0.101 u(k-2) (5.22)°

A second order ARMA model as described by the following

equation is used by APCS.
y(k) = a1y(k—1)+azy(k-2)+b,u(k-1)+b2u(k-2) (5.23)

The following cases have been examined via simulation
studies. |
1) In the first/case,‘the AP model has perfect parameters
and no identificafion takes place. The process is.
.subject to a noise-free disturbance sequence; This 'is
the first case describéd in Section 5.3.2, Figure 5.3
shows the response of the‘system under APCS ;onfrol. In
Figures 5.4 and 5.5, @ linear forecaster ahd an AR
forecaster were added respectively. xThe figures show
thaf.APCS performs poorly in c§mpensating\for unmeasured
disturbances and the addition of SSF \iqproves the
control performance significantly. \\
2) In the second case, \Ehe AP model paramé;ers are
considered to havé converged wunder certain gperat4“‘

conditions but they are not equal to thé\_ L

parameters. A setpoint change is introduced. " The A, is
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non-zero but there is no unmeasured disturbance. Figure
5.6 shows the fesponse of the system under APCS control.
A steady state offset is present because of the

imperfect parameters and a non-zero Ay, Figure 5.7

-shows the addition of SSF helps to remove the steady .

state offset.

In real applications, the model parameters are generally
not equal to the true parameters and there are
unmeasured disturbances. In this case, tﬁe simulation
was done with an imperfect AP model to compare the
performance'of APCS with and without SSF for regulatory
contrel A noise-free disturbance sequence is used for
F1gures 5.8 and 5.9 while a n01sy dlsturbance sequence
is used for Figures 5.10 and 5.11. The .results show
that the modelling error does degrade the control
performance of APCS. The addition of AR SSF helps to
compensate for both disturbance and modelling error.

Moreover, the noise has no significant effect on the

performanze of the AR SSF.
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5 Conclusions

Adaptivye control systems, vsuch as APCS, use the
magnitude of the estimation error as a criterion for
switching ‘identification on and off to prevent the
disturbances from corrupting the identificaton of the
trﬁe input-output relationship of the proceés. However,
this criterion also has the disadvantage of nbt
utilizing the information in the estimation error when
the identification is off.

The addition of SSF tg adaptive control systems such as
APCS provides a second level of control when
fdentificatién is suspended. SSF generates future

values of the residual for the controller to provide

additional control action to compensate for unmeasured

disturbances and/or modelling errors. The second level
of control also helps to prevent unnecessary corruption
of the process I/0 model.

When SSF is used with APCS, it p}ovides the advantage

 that the stability proof of APCS is maintained since the

forecasting is done when APCS identification is off.

'Simulation results confirm the improvement expected from

the second level of control based on SSF. Modelling
. . |

errors degrade the performance of APCS but can be

compensated for by SSF. The performance of the AR

forecaster is not significantly affected by the presence

"of noise and is therefore recommended for use over other

forecasters.

&



6. Application of SSF

6.1 Introduction

In the previous chapters, the idea of using 3SF as a
means to compensate for wunmeasured disturbances has been
introduced.k2QUmerical examples were ﬁsed to illustrate - the
concepts presented. In this chapter, SSF i§ applied to a
simulated double effect evaporator in order to study its
practical usefullness in a more realistic application. SSF
is applied as an improvement to APCS for the compensation of
unmeasured disturbances. The performance is cohpared to

that of the conventional. feedback control and the basic

APCS,

6.2 The Evaporator

6.2.1 Descgibtion of the Equiﬁment

The evaporator Qhose model is used in the simulatgoﬁ
studies 1is the double effect pilot plant evaporator in the
Department of Chemical Engineering, University of Alber a.
The e&porator has. been described in detail by Eﬁshér*and
Seborg (1976) .and 1its schematic diagram 1is shown in
Figure 6.1, |

The first effect of the evapc.ator 1is a nétural

circulation calandria type unit - with thirty-two 18 inch

109
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long, 3/4 inch OD tubes. It is heated by process steam.
The second effect is a forced circulation long tube unit
with three 6 feet long, 1 inch "oD tubes. It is operated
under vacuum and is heated by the overhead vapor from the
first effect.

The évgﬁaraton is fully equipped with  industrial
electronic \instrgmentation and is interfaced to an HP/1000
computer via a LSI—11'microcomputér in the Data Acquisition,
Control and Simulation (DACS) Centre of thé Department of
Chemical Engineering at the University of Alberta.
Therefore, - evaluation of advanced control techniques can be
easily carried out on the evaporator.

The primary controlled variable of the evaporator 1is
the product concentration, C,, from the second effect. It
is controlled by manipulating the steam flow rate, S. Other
impoftant controlled variables “are the first effect holdup,
W,, and the second effect holdup, W,. They are controlled
by manlpulatlng the first effect boﬁtom flow rate, B,, and
the second effect bottom flow ratg, Bz, respectively. When
the evaporator is wused as a single—ihput—single—outpﬁt
System the C./S loop is used and the other loops are closed

by conventlonal feedback control. e \

6.2.2 Evaporator Model
Several models have been developed for the double

effect evporator in previous studies Newell (1971); Wilson
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(1974). They range from a tenth—qrder nonlinear mo@el to a
\ first order transfer function model. ‘The evporator model
\used in this work is the fifth order nonlinear model
aeveloped by Newell (1971). The modeI) consists of five
ordinary différential equations and a  set of algebraic

equations. The equations are given as follows.
Steam chest
S X\, = UA, (T,-T,) (6.1)

First effect

o

aw,

- = F - B1 - O] . V4 , (6.2)
. dt
| ac, |
W1 —_— = F (Co'Cy) + O1C1 ' (6.3)
‘dt
dh, '
W, — = F (ho—h1) - O1(HV|_h|) + Q1 - L'l (6.4) .
dt 4
where
Q+ = U,A, (T,-T,) \ : - (6.5)
01 = (Q2+Lz) / (HV1-hCz) | ) (6.6)
Qz = UA, (T,-T,;) . ' (6.7)
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Second effect

/—‘

aw,
= B1 - Bz - Oz (6-8)
dt .
ac, ‘ . .
W, = B,(C,-C;) + 0,C, (6.9)
dt
where
. dh,
O; (Hv,-h,+ Cz) = Q; ~ L, + B,(h,;-h,)
oC,
. oh,
+. B,(C,-C,) (6.10)
aC,
Some property relations are
Hv = 0.4Tv + 1066,0 (6.11)
hc = Tv - 32.0 (6.12)

hsol = Tsol (1 - 0.16Csol) - 32.1 (6.13)

A FORTRAN evaporator simulation program was written

based on the above equations. The differential equations

were solved by the Fourth order Runge-Kutta Method with a

simulation interval of 0;1'minute. Steady state operating
data for the evapfrator were. obtained from Wilson's thesis

(1974) and are tabulated in Appendix A.
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3 Practical Considerations
In applying APCS with SSF to a real process or a model
e, there are many practical considerations in the
nentacion. The following discussion will address these
cnr - ~ns in the application of APCS with SSF to the

doi.'-1¢« effecc evar. ator model.

1) Process model order

APCS reguires an ARMA process model whose parameters
are identified on-line. The order of the model should
theoretically match the order of the process. However, in
pra&tice, a8 low order model 'is usually sufficfent as an
approximation. For the evaporator, a second orde;‘model is

used. The equation of the model is
y(k) = a;y(k=-1) + a,y(k-2) + biu(k=-1) + byu(k-2) (6.14)

There is considerable modelling error as can be seen by
comparing equation (6.14) 'vgrsus equations (6.1) through
v(6.13). Note that one of the purposes for using SSF is to

help compensate for modelling errors.

2) Initial parameters

The choice of the initial pérameters for the model is
critical to the performance of;}the control algorithm. A
discussion on tﬁe choice of initial parameters for APCS has

been given by Song (1983). 1In the following application, a
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o

set of identified parameters from Song's doctoral thesis
(1983) were chosen. They were used as starting values in a
period of parameter identification which yielded a more
accurate set of parameters for use as initial parameters in
the simulation studies.
3) Scaling of variables

The evaporator model generates values in absolute
engineering units. If the wvariables used in the process

model are in engineering units, the magnitude of the model

‘parameters may vary greatly and computational problems may

result. Therefore, the inpﬁt and output variables have to
be normalized. 1In this case, the normalization is based on

the steady state values.

4) Sampling interval

The choice of sampling interval for adaptive control
systems should relate to the time constant of the_process.
For the»evapqrator, the sampling interval should be about 3
to 4 mgé;tes. However, the actual evaporator is usually run
with a sampling interval of 64 seconds. Therefore, a

sampling interval of 1 minute is used for the simulation

studies.

5). AR forecaster order
Theoretically, the order of the AR forecaster should

match the order of the residual series. However, since only



116

short term forecasts are made, a third order AR forecaster
is used to reduce the computational effort. The form of the

AR forecaster is
f'(k+1) = d,r(k) + azr(k"f) + aar(k_Z) (6-15)

6) Initial parameters for the AR forecaster

The choice of the initial parameters for the AR
forecaster affects the' accuracy of the forecast. Using
engineering judgment, the initial parameters have been
chosen so that the AR forecéster is initialized to use the
current value as its forecast. This is a good approximation

and provides reliability for the SSF. The parameters are

a, = 1

7) Identificatoh élgorithm for the AR forecaster

Many parameter identification algorithms are available
for on-line identification. The APCS projection aigorithm
(equatioh (2.9)) has been chosen because of its simplicity

and the author's familiarity with it.
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~

6.4 Simulation Results

‘The performance of conventional feedback control\ APCS
and APCS with SSF was studied. The evaporator was supject
. to a néisy disturbance sequence in the feed flow rate.} The
control objective for the éysteh was to maintain the product-
concentratipn at the setpoint value.

Figure 6.2 shows the case fqr a well tuned feedback .PI
controller (Kc = 200, Ky = 0.1). 'The'control action is not .
sufficient to keep the output at the setpoint. %hg product
concentration deviates from the ~setpoirit due to the feed
disturbance. Figure 6.3 -shows the pérformancé of a well
tuned feedback PID coﬁtroller (Kc = 300, K, = 0.15,
Ky = 0.3). The addition‘of. the dé;iyative ‘mode ihproves
control since it provides anticipatory a;tioh (é.f. Chapter
Three). However, the product concentration still .deviates
from the setpoint slightly. h '

Figure 6.4 shows the performance of APCS.. Since the
identification ié off, the contfolle; parameters are fixed
and the controller cannot compensate for the varying
disturbaﬁces. ) Figure 6.5 shows the case where SSF has been
added to APCS. SSF provides additional éontrol action when
APCS idenfificafion is off. The disturbances were
compensated and there is significant improvement in the
output response.

Comparing the four cases in Figures 6.2 to 6.5, it can

be concluded that khe concept of SSF,_whether applied in

conjunction with a predictive controller (APCS) or a
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non-predictive controller (feedback control), can be used to
.imprové a control system's performance in/ disturbance
compensation and/or in accommodating modeiling errors.
However, the practical justification will varY‘iQ individual
cases and' the advantages gained will have to .be.\evaluated‘

relative to cost and overall system performance.



7. Conclusions

7.1 Conclusions

The conclusions resulting from this study can be

divided into two categories:

A1)

A2)

A3)

A) those relating to the performance of SSF, and
B) 1insights gained by comparing other classical and

modern control techniques with SSF.

SSF can result in perfect control if . the process I1/0

‘model and the forecast are perfect. However, the

quality of control deteriorates due to factors such as

large amounts of random noise, strong nonlinearities,

which make forecasting difficult.

The forecaster should be able to predict the future

values of the residual time series \ sampling perlods
1nto the future where A is the sum of the sampling plus

process delays. Autoregressive forecasters of oderate

order provided better performance in the imulared
studies than simple lineér extrapolati or the
assumption that r(k+X) = r(k),

Since a process I/0 model is requiréd  for the

implementation of SSF and since a moBel based (e.qg.

predictive) -controller gives, in general, better

performance than, éay, a PID controller, the base case

for comparing the advantages of SSF should assume the

123
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use of a predictive controller.

Several simulated runs showed that SoF helped to
compensate'for unmeasured disfurbances and/or modeliing
errors. However, when used with a perfect predictive
controller, the best that SSF can do is provide
compensation for the effect of a disturbance at time k
rather than i periods later. Thus 1its practical
usefulness is limited.

The addition“of SSF to adaptive control systems such as
APCS, which uses the magnitude of the estimation error
as a criterion for switching identification on and off,
provides a second level of control. When
identification is stopped to'prevent the I/O model from
being corrugted-by the disturbances, the second level
of control comes in to provide short term compensation
fdr unmeasured disturbances and/or modelling errors
based on information of the residual. :

When sz is used Qith APCS, it provides the advantage
that tHe stability proof of APCS is maintained since

the forécasting is done when APCS identification is

off.

ST \

Classical proportional plus derivative feedback control
can be interpreted as SSF of y(k) in conjunction with a

proportional controller.
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Froh the equivalence relationship of the feedback
control structure and the IMC structure, the design
rule that the IMC controller should approach the
inverse of the process model is readily seen as being
equivalent to the classical design observation that
perféét control is approached as the feedback gain
approaches infinity. (Tﬁere ére of course stability

and performance limitations with most  practical

systems.)

IMC can pe interpreted as an SSF sysﬁém that uses the
current value of the residual r(k) as an estimate of
the future wvalue: r(k+X). This implies that IMC can
also be interpreted as a classical feedforward scheme

based on the forecasted (estimated) disturbance rather

than the actual measured value.

7.2 Recommendations °

1)

The primary concern in this thesis 1is to " investigate
the idea of uéing SSF to improve control. The issues
involved in the implementation of - SSF, such as the
choice of proces; model, forecaster-and controller,

have not been addressed in. detail and are proposed fdr

.future-work.
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Extension of the use of SSF in multi-input mﬁlti—output
(MIMO) systems is recommended for investigation.
Experimental evaluation of SSF should provide results
for verification of the conclusions drawn Yfrom
simulations in this thesis. '

The interpretation of the forecaster as a disturbance
model suggests a possible reiationship with the

Internal Model Principle by Wonham. Future work can

\

also be done in this area.
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Appendix A : Steady State Operating Data for the Evaporator

Tﬁe following steady state operating data for the
double effect evaporator were taken from Wilson's thesis

(1974) and listed in.SI units.

Ts steam‘temperature 177.8 C
Twl First effect tube wéll temperature 108.3 C
Wi First effect-hoidup 20,64 kg
C1  First effect concentration 4.59 % glycol
H1 First effect enthalpy ' 440.1 kJ/kg
Tw2 Second.effect tube wall temperature 82.6 C
w2 Second effect holdup , 18.82 kg
Cc2 Second effect concentration . 10.11 % glycol
H2 Second effect enthalpy , 311.9 kJ/kg
Tw3 Condenser tube wall temperature 42.2 c |
S Steam flow : '0.0151 kg/s
B1 First effect bottom flow# | 0.0263 kg/s

- B2 Sécond effect bottom flow X + 0.0120 kg/s
F. Feed flow _ | , ‘0.0378 kg/s
CF  Feed concentration 3.2 % glycol
HF  Feed enthalpy ‘ | 364.9 kJ/kg
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Appendix B : Data for simulation examples of Chapter 3

General déta :
-

0.8y (k-1) '+ 0.6u(k-1) + £(k) + 0.5 (k-1)

 Process : y(k)
Constant setpoint : y, = 3.0

Simulation time : 100 sémpling periods

Process subject to random disturbanees

Predictive controller : wu(k) = [y,(k+1)-f(k+1)-O:éy(k)j/O.G
Linear SSF : £(k+1) = r(k) + (r(k) - r(k-1))

AR SSF : t£(k+1) = a,r(k) + a,r(k-1) + a3 {k-2)

‘Initial values : «; = 1.0
ap, = 0.0
a; = 0.0

Identification ¢ APCS adaptive algorithm
Cases and‘specific data :
1. Feedback controller
Figure 3.6 Proportional controller
« Kc = 1.7
Figure 3.7 Prbportional-derivative controller

Kc = 1.7 ’ Kd = 1.0 . h

2. Predictive control%er with and without SSF
Figure 3.8 Perfect SSF
Figure 3;9 No SSF
Figure 3.10 Linear SSF

Figure 3.11 AR SSF
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Appendix C : Data for simulation examples of Chapter 4

General data :

‘Process : y(k)

Constant setpoint

Tuning parameters

Y
Simulation time :

Linear SSF 2 ok

v

AR SSF : ' £(k+1)

Initial

Identif

(

0.158u(k-1) + 0.264u(k-2) + 0.226u(k-3)
+ 0,156u(k-4) + 0.096u(k-5) + 0.053u(k-6)
+ 0.027u(k-7) + 0.013u(k-8)
HER = 0.0

: P=1M=28

[
—h

Y = Y2 = L. =y

B, = B2 = ... Be

[}
o

100 sampling periods
#+19 = (k) + (r(k) - r(k-1))

= ayr(k) + apr(k-1). + ayr(k-2) "

valuésﬁ: a; = 1.0
@, = 0.0
a; = 0.0 o -

ication : APCS adaptive algorithm

o

Cases and specific data :

1. Compensation of noise-free' disturbances

Figure 4.7
Figure 4.8
Figure 4.9

Figure 4.10

IMC
IMC with Perfect SSF
IMC with Linear SSF

IMC with AR SSF

-
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Compensation
Figure 4.11
Figure 4.12

Figure 13

Compensation

Filter :

AFigure 4.14

Figure 4.15

Figure 4.16

F(z) =

of noisy disturbances

I1MC |

IMC with’Linear SSF

IMC with AR SSF ,
2!

of noisyAdisturBances Qith“fﬁlter

1—'a

IMC

IMC with Linear SSF

"IMC with AR SSF

™,
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Appendix D : Data for simulation examples of Chapter 5

General data

1.030 y(k-1) .- 0.289 y(k-2)
+ 0.158 u(k=-1) + 0.101 u(k-2)

Process : y(k)
Constant setpoint : y, = 1.0
Simulation time : 100 sampling periods

Linear SSF : f£(k+1) = r(k) + (r(k)‘; r(k—1))‘

AR SSF : £(k+1) = a,r(k) + a;r(k-1) + asp{k-2)

InitialAvalues : ay = 1.0 "
a2'= O-O
03'= 0.0

Identification : APCS adaptive algorithm

Cases and specific data

1. Compensation of noise-free disturbances with perfect
model

Figure 5.3 APCS
Figure 5.4  APCS with Linear SSF

Pigure 5.5 APCS with AR SSF

2. Setpoint trackidg with' imperfect model
Setpoint change :° 1.0 to 1.3
Figure 5.6 APCS

Figufe 5.7 APCS with AR SSF
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Compensation.of  noise-free disturbances with imperfect
model

Figure 5.8 APCS

Figure 5.9 APCS with AR SSF

Compensation of noisy disturbances with imperfect model
Figure 5.10 APCS

Figure 5.11 APCS with AR SSF



Appendix E : Data for simulation examples of Chapter 6

General data :

Process : b5th order nonlinear‘evporator model

Simulation time : 120 minutes

Process subject to feed disturbances

AR SSF f(k+1) = a,r(k) + ar(k-1) + a,r(k-2)
Initial values : a, = 1.0
a; = 0.0
az; = 0.0

Identification : . APCS adaptive algorithm

Cases and specific data :

1.

Feedback control
Figure 6.2 Proportional-integral controller

Kc=200 K;=0.1

Figure 6.3 Proportional-integral-derivative controller

Ke=300 K|=0.15 Kd=0.3

APCS with and without SSF

ts

Figure 6.4 ~APCS

Figure 6.5 APCS with AR SSF
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