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Abstract

Little is known about Vertex Operator Algebras (VOAs) which are neither semi-simple nor
rational, and most of the work on such VOAs has been focused around specific examples such as
the Singlet VOA W(2,2r —1). In this thesis, the relationship between subcategories of the mod-
ule categories of the Singlet VOA and the unrolled restricted quantum group associated to s((2),
Uf (sI(2)) at 2r-th root of unity ¢ = e™/" with r > 2 is studied. A family of deformable mod-
ules X, is used to efficiently compute open Hopf Links for Uf (s1(2)) and particular (1, 1)-tangle
invariants colored with projective modules of Uf (sl2). These tangle invariants are extensions of
the Alexander invariants defined by Murakami. It is also shown that normalized modified traces
of open Hopf links for U;{ (s1(2))-modules correspond exactly with the asymptotic quantum

dimensions for certain W(2, 2r — 1)-modules.
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1 Introduction

1.1 Motivation

A conformal field theory (CFT) is a quantum field theory invariant under conformal transfor-
mations, essentially, a quantum field theory with added symmetry. This added symmetry makes
many problems in CF'T exactly solvable in two dimensions unlike most quantum field theories. Con-
formal field theory plays a significant role in string theory as well as statistical mechanics in the
study of higher order phase transitions. Vertex operator algebras (VOAs) were first introduced by
Richard Borcherds [34] in an attempt to formalize CFT. They provide a mathematical formulation
of the symmetry algebras for conformal field theory, called chiral algebras, and provide a rigorous
mathematical approach to string theory and two-dimensional conformal field theory. VOAs have
found applications to many other areas of mathematics such as Lie theory, algebraic geometry,
topology, and modular forms, and have played an important role in connecting seemingly distant
areas of mathematics. One such example is given by monstrous moonshine, a term used by John
Conway and Simon Norton [35] in 1979 to describe the unexpected connections between modular
forms and the monster group. The conjectures of Conway and Norton were proven by Richard
Borcherds [40] in 1992 using the monster VOA constructed by Igor Frenkel, James Lepowsky, and
Arne Meurman [36].

Much of the study of vertex operator algebras has been focused on VOAs which are Cs-
cofinite or rational. It is known that the representation category of a rational and Cs-cofinite
(regular) VOA is semi-simple, and also modular and ribbon given some weak assumptions [11,12].
In this case, the VOA also carries three coinciding actions of the modular group: one on the linear
span of torus one point functions, a categorical action given by twists and Hopf links, and an
action diagonalizing fusion rules (this is only a S-matrix). Cs-cofinite VOAs have representation
categories with only finitely many isomorphism classes of simple objects. Clearly, it is desirable
to extend our understanding to those VOAs which have infinitely many simple objects. However,
once we drop the Ca-cofiniteness assumption, our VOAs become much more difficult to understand
because their representation categories are so large. One approach to this problem has been to
restrict ourselves to a smaller, more manageable subcategory. It was shown in [16] by Huang,
Lepowsky, and Zhang that if all objects in an abelian subcategory C of generalized V-modules for
a VOA V are C-cofinite with some additional requirements, then C is braided and monoidal. One
of the fundamental results for modularity of rational VOAs was given by Zhu in [23], where it was
shown that characters are closed under modular transformations. This property and the action
of the modular group on the space of one-point functions on the torus can both be preserved for
irrational Cy-cofinite VOAs given some additional assumptions [24]. Furthermore, if the category
of modules for a Cs-cofinite VOA is ribbon, then there is also an action of the modular group in
the category [15,25].



VOAs which are rational and Co-cofinite (regular) are fairly well understood through modu-
larity of characters and the automorphicity of chiral blocks, as well as the categorical interpretation
of VOA modules. These concepts are connected through the Verlinde formula which relates fusion
product coefficients in the category of modules to the dimensions of chiral blocks. We noted above
that all modules of a regular VOA are completely reducible and that there are only finitely many
inequivalent simple modules. Let My = V, My, ..., M,, denote the inequivalent simple modules for

a regular VOA V. Then, there exists a tensor product satisfying

k=0

For any 7 € H (the upper half of the complex plane) and v € V, the 1-point function Fyy, is defined
as
Fu, (1,0) == trMi(o(v)qLO_i),

where o(v) is the zero mode of the field associated to v. When v = 1, F}y, is called the character

of M; and is denoted ch[M;](7). The modular S-transformation 7 — —1/7 defines a matrix SX by
Fy (—1/7,0) =71% ZSXFM (1,v)

This matrix and the tensor coefficients are related through the Verlinde formula [11,41,42]:

=0 0¢

The Verlinde formula is one of the deepest results for regular VOAs and has been studied by
many authors. It is natural to wonder if one could prove results for irrational non Cs-cofinite
VOAs analogous to existing results for rational and Cs-cofinite VOAs, and in particular, if there
is a generalization of the Verlinde formula. For Cs-cofinite VOAs some progress has been made
by T. Creutzig and T. Gannon on the case of the triplet VOA in [39]. Logarithmic Hopf link
invariants of U,(s[(2)) were shown to give a Verlinde formula for certain structure coefficients for
the tensor ring, which together with some additional information completely determines the tensor
ring. The modular S-matrix of the triplet vertex algebra is compared to the logarithmic Hopf link
invariants and are found to be in agreement, and a comparison of Jordan blocks with open Hopf
link operators of the triplet VOA is drawn. We would like to perform a similar analysis for VOAs
which are not Cs-cofinite. Little is known about the general theory of irrational non Cs-cofinite
VOAs, and most of the work on such VOAs has been on developing and understanding specific
examples, with a particularly nice choice of example being the singlet VOA W(2,2r — 1). The
singlet is a desirable choice for the study of irrational non Cs-cofinite VOAs as all of its irreducible
modules are C}-cofinite [38], and has been studied by many authors [2,4,5,31,32,33].



The characters of irrational non Cs-cofinite VOAs are not closed under the modular S-transformation,
so we cannot construct the matrix SX as we did for regular VOAs. Instead, we will use quantities

called regularized quantum dimensions. The quantum dimension of a regular VOA is defined to be

e p X
adim{X]:= lim o)

Applying this to X = M;, we see that
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where ¢ = €>™7 tends to zero as tau tends to ico. It is conjectured that there exists an M, with

dominating conformal dimension among the M;, which gives
qdim[M;] = S/ S,

So the quantum dimensions are closely related to the matrix SX for regular VOAs, and although we
cannot construct SX for irrational non Cs-cofinite VOAs, we can construct “regularized” quantum

dimensions, which we expect to play the role of SX in the irrational non Cs-cofinite setting.

This thesis studies primarily the category C of finite dimensional highest weight modules for the
unrolled restricted quantum group of sl(2), Uf (s1(2)), and its connections to the singlet VOA. The
quantum group UqH (s[(2)) is the associative algebra over C with five generators {E, F, K, K~!, H}

and relations

K—-K!
KK'=K'K=1 KE=¢EK, KF=q?’FK, [E,F]=——1,
q—q
HK*' = K*'H, [H,E] = 2F, [H,F] = —2F,E" = F" = 0.

with additional coalgebra structure. It is conjectured that some subcategory of the representation

category of the singlet is (at least) monoidally equivalent to C, so we hope to use Uf (sl(2)) as a



toy model to better understand the singlet. In this thesis, we motivate this conjecture and provide
a new approach to obtaining the tensor structure of C which will be more useful when trying to
understand the singlet (and perhaps more sophisticated quantum groups). Constantino, Geer, and
Patureau-Mirand determined the tensor ring structure of C in [1] through the use of characters and
other more direct means. They then used this to determine the open Hopf links. For regular VOAsS,
the Verlinde formula follows as a direct consequence of open Hopf links being representations of
the tensor ring of modules. However, the tensor structure of the category of modules for the singlet
is difficult to determine. We hope to use Uf (s[(2)) as a toy model for the singlet, so it is natural
to wonder if we could determine the open Hopf links without prior knowledge of tensor product

decompositions for modules, and we will show that this is indeed possible.

It has been shown previously in examples that modular-like properties of characters [2,27-30]
and their quantum dimensions [2,31] relate to the fusion ring of the singlet and other vertex (super)
algebras. In particular, the asymptotic quantum dimensions of characters relate to representations
of the tensor ring of modules for the singlet, and it was conjectured that these quantum dimensions
should have a categorical interpretation. We provide this interpretation via Hopf link invariants of
Uf (sI(2)). This also gives a new interpretation from the perspective of quantum topology of the

Jacobi variable introduced in [2] as a regularization parameter for the classical false theta functions.

1.2 Results

The proof of the Verlinde formula for regular VOAs from Hopf links requires the identity
Sy/S%, = S5 1)

where Sfjo is the closed Hopf link colored with the simple modules M;, M; for a regular VOA. The
primary results of this paper are to motivate the conjecture that some subcategory of the category
of modules of W(2,2r — 1) is monoidally equivalent and to the category C of finite dimensional
weight modules of Uf(s[(Q)) and to generalize equation (1), to improve upon existing techniques
for computing Hopf link invariants for C, and to extend Murakami’s definition of Alexander In-
variant given in [8]. The first is done by constructing a map between simple modules of Uf (s1(2))
and W(2,2r — 1), and giving a comparison of normalized open Hopf link invariants for C and the
regularized quantum dimensions for modules of W(2,2r — 1). We show that the ring generated
by normalized Hopf link invariants is identical to the ring generated by the regularized quantum

dimensions and hence is isomorphic to the Verlinde algebra of characters for W(2, 2r —1) as follows:

The most important classes of modules in C are:
e n+1 dimensional simple modules S,, with n € {0,..,r — 1}.

e r-dimensional modules V,, with o € C.



e 2r-dimensional projective indecomposable modules P; with i € {0,..,r — 1}.

e 1-dimensional modules (Cg with ¢ € Z.

These modules are important because they appear in the classification of finite dimensional weight

modules as shown by Constantino, Geer, and Patureau-Mirand [1]:

e Every simple module in C is isomorphic to S, ® CE for some n € {0,...,r — 1} and £ € Z or
V, for some o € C — rZ.

e The module P; is projective and indecomposable, and any projective indecomposable weight

module with integer highest weight (¢ 4 1)r — 4 — 2 is isomorphic to P; @ CI.

A general classification for irreducible modules of the singlet VOA is not currently known, but the

Z>o-graded irreducible modules fall into one of two families:

e An uncountable family of typical modules F), A € C with X # —%\/ﬁ + S\/;—i for any t € Z
and 1 < s <r.

e A countable family of atypical modules M; , witht € Z and 1 <s <r —1.

We first note that the endomorphism ring of P; ® (CZHT is two dimensional and spanned by {id, z; ¢},
and that ® p, ;e €End(P; @ CFJ).

Theorem 1.

1. Let « € (C—Z)UrZ. Then the map ¢ : Vo — Fagr—1,5; ® Cg = My_1 i1 between simple
Var

modules in Uf(s[(?)) and W(2,2r — 1), respectively, is a bijection and a morphism of rings

up to equality of characters.

2. Lete € S(k,j+1+p(k+1)), then

tpecH (q’X,Pj@Cg © Tje)

qdim[p(X) ] =
tPj@CZ ((bSo,Pj@(Cg © xjae)
and if Re(e) > 0 then
oty (B
adim () 7] = el PX0e)

v (Pseva)

Here, tx is a modified trace on the ideal of projective modules (see sections 2.1, 4.3). The Verlinde
algebra of characters for W(2,2r — 1) and the normalized Hopf links for Uf (sl(2)) capture a great
deal of information about the representation categories of W(2,2r — 1) and Uf (s1(2)) respectively,

so their equivalence tells us that these categories should be the same or very similar. The equality



of regularized quantum dimensions and normalized traces of Hopf links is the irreducible non Cs-

cofinite analogue of equation (1).

The second result is shown by deriving an isomorphism which allows us to determine the action of
Hopf links on projective indecomposable modules from their action on simple modules. We associate
to Uf (sl(2)) a positive integer parameter r. For each fixed choice of this parameter, the ideal of
projective modules in C is generated by r-dimensional simple modules V,, with a € (CUrZ) — 7Z
and 2r-dimensional projective indecomposable modules P; ® (Cg with i € {0,...,r — 1} and ¢ € Z.
In a manner similar to the ideas of Murakami and Nagatomo [19,20], one can define a family of
modules X, with € € (—1, 1) such that

X = { Viticritr+e ® Voaitryorre ife#0
P,oCH ife=0

So the projective indecomposable modules can be thought of as the limit of a direct sum of simple

modules. From this, and other considerations, we find our main result:

Proposition 1. Let Z be a weight module in C. Then, the Hopf link CI)Z,PZ@(Cf = (IZIdPZ,®(C£I +bzx;

s given by:

az = 11_% (2)\Z7V1+i—7‘+ﬁr+e - /\Z7V—1—i+r+er+e)

bZ = lim

—(A . -A .
=0 [1 + Z] [E] ( Z7V7171+r+2r+e Z7V1+177'+Zr+e)

where Az 14i—rttrte aNdAZ Vv .\, .. are the constants by which®zyv, .. andPgzy . ., ..

act respectively.

This proposition allows us to determine the action of the Hopf link ®z _ for any weight module
Z € C on the projective indecomposable modules from its action on the simple V. The action of
Hopf links on simple modules is easy to find as they act as scalars on them. Hence, we do not need

to know the tensor structure of C at all, a classification of its modules is sufficient.

The proof of the above proposition can be adapted to extend the definition of Murakami’s Alexan-
der invariant T) in [8]. This invariant is a framed version of the invariant defined in [7], and is
constructed by assigning the braiding, twist, and duality morphisms to ribbon graphs in the usual
way, and coloring the graph with the typical Uf (s1(2))-modules V,,. We show that this definition
can be extended to allow the ribbon graphs to be colored with the projective indecomposable mod-
ules P, ® (Cg as follows:



Theorem 2. The colored (1,1)-ribbon graph TP,L@(Cf satisfies

tPi®(CZ (TP¢®(CZHT) = ll_% (tV1+¢7T+zT+E (T1+i—r+€r+5) + tVflﬂ;THHE (T—l—i—r+ér+e))

and

TP@®CZ = aIsz(X)(CZ + bl’i}[r
with coefficients

a = lim A7 —— (T1—i—rttr+e) — 1 Wisiritrte (T1imrtorte)
=0 d (V717i+r+ér+e) =0 d (V1+ifr+€r+e)

and

b= lim -1 (tv—l—i—r+ér+e (Tflfifvdrhﬂ) . tV1+i—r+lr+e (T1+ir+fr+e)>
=0 [1 + i[e] d(Voi—itrierie) d(Vitiorierie)

_ r <dtv/\ (TA)‘ _d ty, (TA)’ )

27Ti{1 + Z} d\ d(V)\) A=lr+r—i—1 d\ d(V)\> A=i+i—r+or '

2 Braided Tensor Categories

We will first recall the definition of a braided tensor category. Our main references for this section
are [9] and [10]. A category C is a collection of objects Ob(C), and of morphisms Hom(C) such that
for any morphism f € Hom(C), there are associated objects s(f) and t(f) called the source and
target of f respectively, and we use the notation f : s(f) — t(f). A category is equipped with a
composition operation f o g which is defined whenever s(f) = t(g). We require that the operation
be associative and that for any V' € Ob(C), there is a morphism Idy : V' — V such that foldy = f
and Idy og = g whenever f € Hom(V, W), g € Hom(U, V) for any U, W € Ob(C). An isomorphism
in a category is, as usual, a morphism f : U — V such that there exists a morphism g : V — U

satisfying f og = Idy and go f = Idy.

A tensor product on a category C is an operation ® : C x C — C such that
e For every pair of objects U,V € Ob(C), there is an associated object U ® V' € Ob(C).

e For every pair of morphisms f : Uy — Vi,g : Uy — Vh, there is an associated morphism
feg:heVi— Uy V.

e For every additional pair of morphisms f': Vi — Wy, 4" : Vo — Wh, we have
(ff®g)o(feg =(fof)®(dog).

e For every pair of objects U,V € Ob(C), the identity morphism satisfies Idygy = Idy @ Idy .



An associativity constraint a for a tensor product is a family of isomorphisms assigning an isomor-
phism apyw : (UV)@W — U ® (V ® W) to each triple of objects U, V,W € Ob(C) such that

the diagram

UeV)eW 2 Us (Ve W)
J(f®g)®h lf®(g®h)
UeoV)eW — UV W)
u'\v'\w

commutes for any morphisms f, g, h. The associativity constraint is said to satisfy the pentagon
axiom if for every collection of objects U, V, W, X € Ob(C), the diagram

ay,v,w®Idx

(UV)eW)e X (U V)eoW)e X

ayeVv,Ww,X

ay,vew,x UeV)e (WeX)

%X

U (VeW)X) ——— U (Ve (W X))

Idy®av,w,x

commutes. Let I € Ob(C) be the unit object in C. Then, a left unit constraint / in C is a natural
family of isomorphisms assigning to each object U an isomorphism lyy : I ® U — U such that for

any morphisms f: U — V| the diagram

IoU YU

1d1®fl lf

IoV Y v

commutes. Right unit constraints are defined similarly. The associativity, left, and right constraints

satisfy the triangle axiom if the diagram

UV Ly Uo(IV)
TU@% ‘%X)lv
UeVv

commutes for every pair of object U,V € Ob(C). Then, a tensor (or monoidal) category is a cat-
egory C equipped with a tensor product, associativity constraint satisfying the pentagon axiom,
and left and right unit constraints satisfying the triangle axiom. The category is said to be strict
if the associativity and unit constraints are the identity map. Strictness may sound like a very
strong condition for a monoidal category, but it is not. Mac Lane’s coherence theorem (see [9] for
proof) states that for every monoidal category, there exists an equivalent strict monoidal category.

It is important to note that this is not true in general for categories with additional structure. The



definition of a monoidal category can be extended to that of a braided tensor category by requiring

that C also carries a braiding which is defined as follows:

A commutativity constraint is a family of isomorphisms cyy : U ® V. — V ® U for each pair of
objects U,V € Ob(C) such that

U1®V1MV1®U1

lf ®g Jg®f

CU5, Vo

Uy @ Vo —= Vo ® Uy

commutes for any morphisms f : Uy — Usa, g : Vi — V2. A braiding is a commutativity constraint

which also satisfies the Hexagon Axiom, which is the commutativity of the following diagrams:

Uea(VeaW) ———— (VeoW)aU

CU,VQW
/ W
ay,v,w
(U®V)®W V®(W®U)

CUQV,W _
Aw.u,v
U ((VeW) WelU)eV

Uao(WeV) —— = (UaW)eV

1
Au,w,v

A twist in a tensor category is a family of morphisms 6 = {0y : V' — V'} such that

Ougv = cvu o cyy o (O ® Oy).

and for any morphism f : U — V, we have 0y o f = fofy. If for a given V € C there is an

associated object V* and “duality morphisms”
coezvzll—>V®V*, @V:V*®V—>]l.

satisfying the commutative diagrams:



coe%v ®idy

Vi gy Vev)eV

lidv av,v*,vl

Vm‘/@]l P V®(V ®V)
Vv f—fel Vrel idy + ®coevy Ve (V ® V*)

. —1
l’dv* Jav*,v,v*

* * * *
|4 to7o7 1oV = a—— (V*eV)eV

which are equivalent to the relations

(idy ® 67‘/) oay,y+y o (coevy ®idy) = idy,

(e_\>/v & idv*) o a‘_,i A (idv* & COezv) = idy~,

then V* is said to be left dual to V. If such a dual exists for every V' € C then C is called left rigid.

The duality morphisms are said to be compatible with the braiding and twist if the relation

(0\/ (%9 idv*) o COQ%V = (idv &® GV*) o coevy .

holds for all objects V' in C. This compatibility ensures some nice properties for the category
including a canonical isomorphism (V*)* ~ V. Any category with this property is called pivotal.

A category is called right rigid if it yields “right duality morphisms” given by

Soovy 1= (Idy+- ® Oy) o cyy= o coevy € Hom(1,V*® V),
&y =&y ocyy o (By @ Idy-) € Hom(V @ V* 1).

which satisfy the diagrams

vV vvR1 Vel idy @&evy Ve (V* Q V)
J’Zdv a\_/,lV*,VJV
Vm]l@‘/ Sy midy (V®V*)®V

10



e le@ﬁ 1oV Eoevy Qidy Ve V)eV*

l’idv* JCLV*YV’V*

Vg VOl e Ve (Ve V)

which are equivalent to the relations

(&/’V ®idy) o a’;’}V*,V o (idy ® EEOGVV) = idy,
(idy+ @ &) 0 ays v+ o ((oevy @ idy+) = idy-.

A category is called rigid if it is both left and right rigid. A braided tensor category with twist and
compatible duality is called ribbon.

2.1 Traces and Hopf Links

We will now construct the key objects of this thesis, the open Hopf links. The definitions in this
subsection are taken from [1] and [37]. An ideal of C is a subcategory Z which absorbs products

and is closed under retracts. That is,

elfUcZandV el thenU®V € 1.
elfUcZand a:V — U, B:U — V morphisms such that §o«a = Idy, then V € 7.

Definition 1. For any U,V € C and any f € End(U ® V'), we define the left and right partial trace
on End(V) and End(U) respectively as

ptr, (f) = (&y @ Idy) o (Idy+ @ f) o (§evy @ Idy) € End(V),
ptrg(f) = (Idy ® &;V) o(f®Idy~)o (Idy ® coevy) € End(U).

A modified trace on Z is a family of linear functions indexed by the objects V in 7

{tv : End(V) — 1}

11



such that

e If U eZ and V € C then for any f € End(U ®@ V),

tugv (f) = tu(ptrg(f))
o If U,V € T then for any morphisms f: V — U and g : U — V we have,

tv(go f) =tu(fog)

The main focus of this paper will be on Hopf links:

Definition 2. If U,V € C, then the generalized Hopf link ®;y € End(V) is defined as
Oy = ptrg(cuy o cvy) = (Idy @ &) o ((cuy © evy) ® Idy+) o (Idy ® coedy)

where cyy is the braiding.

2.2 Ribbon Graphs and Graphical Calculus

In this section we review ribbon graphs and methods for constructing categorical morphisms from
them. This is necessary for the construction of the Alexander invariant given by Murakami in [8].
Our primary references for this section are [9] and [10]. We begin by defining the fundamental
constituents of a ribbon graph: bands, annuli, and coupons. A band is an embedding in R? of the
square [0, 1] x [0, 1], an annulus is an embedding of the cylinder S; X [0, 1], and a coupon is a band
with a distinguished base. The image of the interval {3} x [0, 1] in a band is called the core of the
band and the image of Sy X {%} in an annulus is called the core of the annulus. Bands and annuli
are called directed if their cores are oriented, and the orientation of the core is referred to as its

direction.

Definition 3. Let m and n be nonnegative integers. Then a ribbon graph T of type (n,m) in R3
is an oriented surface ¥ embedded in R? x [0, 1] which can be decomposed into a finite union of

bands, coupons, and annuli such that:

e Y meets the planes R? x {0} and R? x {1} orthogonal along the line segments which are bases

for certain bands in X:
{[i — (1/10),i+ (1/10)] x {0} x {0}]i = 1,...,n},

{5 = (1/10),5 + (1/10)] x {0} x {1}|j =1, ..., m}.

e All other bases of bands which are not in the above line segments are along coupons and the

bands, coupons, and annuli are otherwise disjoint.

e The bands and annuli of ¥ are directed.

12



A ribbon graph is called homogeneous if in any neighbourhood of the above line segments the
attached band is oriented upwards. A simple example of a (1,1)-ribbon graph containing bands,

annuli, and a coupon is the graph

1

up

For the sake of simplicity, from this point on we neglect to draw the width of bands and the

boundary. Some examples of important ribbon graphs are crossings

e X e X

and curves
NNV E
U 1§} N al

There is a way to represent morphisms in a category by ”coloring” ribbon graphs with objects
and morphisms. Let C be a strict tensor category. Then a morphism f : U — V is represented

graphically as

[ ]

U

By labeling the arrows with U, V' we are said to be coloring the bands with the objects U, V' € Ob(C),
and the coupon with the morphism f. When the crossings and curves are colored with objects U, V,
we denote them by X,}ry, Xiv, Uy, (UU, Ny, ﬁU. These ribbon graphs are important because the
category of homogeneous ribbon graphs is generated by these six graphs and some relations between
them (see [21]). Here, a ribbon graph is called homogeneous if the intersection points of bands with

the boundaries have the same orientation. For example, the band with one twist
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is not homogeneous, but the band with two twists

is homogeneous. The composition of two morphisms g1 : U = V, g2 : V. — W and tensor product

of morphisms f; : Uy — Vi, fo : Uy — Vo are represented as

W w Vi | | |Va
(o0 ] = | [hel]= 0 [
U U Uy | U Uy |\

and a morphism on tensor products, f: U; ® ---®@ Uy, = V1 ® --- ® V,, can be represented as

{/’1®...®Vn Vl Vn

| f | or | f |

U1® - ®Up Ui ... |Un

If C is a braided tensor category with braiding cy,1, then we represent the braiding by the crossing

graphs X;:,V and XE,V:
Ko X
cuyv \ cuv /
U

U \4 \Y%

The invertibility of the braiding is then represented as

CE,IV ocyy = ldygy =cyyo 0\7,1(]
> <
N\ /

U A% U A% U \Y%

and if f; : Uy — Vi1 and fo : Uy — V5 are morphisms, then the naturality of the braiding is given
by
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Cvi,Vp © (fl & f2) = (f2 ® fl) © CUy,Us
Voo Wi Voo N

A

N\

:
N

Uy U, Uy U

The graphs for the left and right duality morphisms by, dis, by;, d;, are represented graphically by

Uy, ﬁU, Ny, and ﬁU:

by by dy dyy

and the twist is represented as

ﬂtpy
U

An appropriately colored (n,[)-ribbon graph can be reduced to a (n—1,]—1) ribbon graph through
the action of the partial trace functions described in section 3.1. The right partial trace acts on a
colored ribbon graph by joining the right-most ends, and the left partial trace acts by joining the
left-most ends. For example, the Hopf link is defined in section 3.1 as @y = ptrg(cy,w o cw v ).
Graphically, this is represented as

Cv,w © Cwv Syw = ptrR(CV,W o Cmv)

N

ptrp

— OV
\ |
W

W Vv

Colored ribbon graphs will be used to construct Murakami’s Alexander invariants defined in [8].

3 The Singlet VOA

In this section we will recall the definition and elementary facts about VOAs and the singlet as

they are described in [17] and [2] respectively.



3.1 Vertex Operator Algebras

Given a ring R, we denote by R[z], R[[z]], and R((z)) the space of formal R-valued polynomials,

Taylor series, and Laurent series respectively. That is,
n .
R[z]:{z ; z|r¢€R,n€Z+}
{Z Tz |7“Z c R}

{ ‘zi]rieR,mEZJF}
i=—m

Let V' be a complex vector space, and End(V') the collection of linear operators f : V — V. The

= Z Aiz_i

1€EZL

formal power series

with coefficients A; € End(V) is called a field if for all v € V', A(z)v is a Laurent series, so

2)v = Z A;(v)z7 € V((2)).
1€EZ
This is equivalent to stating that for all v € V| A,v = 0 for sufficiently large n(v). A Z-graded
oo
vector space is a vector space V such that V = @ V; where each Vj is itself a vector space. A

i=0
linear operator f € End(V) on a graded vector space V is said to be homogeneous of degree m if

f(Vin) C Vi for all n € Z4, and we denote the degree by degf. A field A(z) is then said to be

homogeneous of conformal dimension m if each operator A; is homogeneous of degree m — i.

Definition 4. Two fields A(z) and B(w) are said to be local iff there exists an N € Z, such that

Equivalently, (see [17]) requiring that for every v € V and ¢ € V*, the Laurent series

P(A)Bw) =Y | D e(Ai(B;(v)="" | w™

i€Zy \jE€L,

P(B)AR)) = 3 | 3 @B (Aiw)w | =

JEZ4 \i€Z4
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are expansions in C((z))((w)) and C((w))((z)) respectively of the same element

fv#? € C[[zaw“[zilvwilv (Z - w)il]'

o
Definition 5. A vertex operator algebra (VOA) is a Z,-graded vector space V = € V; where
i=0
dimV; < oo for each i € Z, equipped with the following objects:

e A distinguished vector |0) € V} called the vacuum vector.
e A linear operator T': V — V of degree 1 called the translation operator.

e A linear operator Y (—,z) : V — EndV[[z*!]] which sends each element v € V;, to a field of

conformal dimension m: Y (v,2) = Y vz " !

ne”L

with degv(,) = —n+m — 1.

These objects are subject to the following constraints:
e For any v € V, we have Y (v, 2)|0) € V[[z]] where Y (v, 2)|0)|,=0 = v and Y (|0), z) = Idy.
e Foranyv eV, [T,Y (v,2)] = 0,Y (v, z) and T|0) = 0.
e All fields Y (v, z) are local with respect to each other.

Let b denote the Heisenberg Lie algebra, so h has vector space basis given by a central element c

and b, with n € Z. The commutation relations for h are given by
[c,by] =0 for all n € Z and [by,, by,] = 1n0p4m,0C.

Let F)\ denote the usual Fock space of charge A. As a vector space F) is the C-span of polynomials
in variables {b_1,b_9,...} and b acts on F)\ by by = A, b, for n < 0 acts by multiplication, c acts as
the scalar A\, and b,, for n > 0 acts as /\n%.

Let p > 2 be a positive integer and let V) be the lattice vertex algebra (see [17]) associated to the
lattice L = /2pZ.
V= & Fu

AEV/2pZ
Let €7 denote the usual fields for lattice VOAs:

bn _ bn _
e = szvboeznp (—72 P ”) exp (—72 7 ”) ,

n<0 n>0

where S, is the shift operator F) — F)i,. If €7 has Fourier expansion e”(z) = Y ejz~ "1, define
ne”L

_./2 ~
the “screening operator” Q= €y \/; The singlet VOA is then defined to be Kerpg @, which we
will denote by W(2,2p — 1).
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3.2 Representations of W(2,2p — 1)

Let ooy = /2p, a— = —/2/p, ap = oy + o, and o, 5 = —’”;21\/2p+ ;’72717. If we assume r € Z and
1 < 5 < p, then when s = p, the W(2,2r — 1)-module Fy,,  is irreducible as seen in [4]. For each
F,, , where s # p we can associate an irreducible submodule M, ; := soc(F,, ,) which is defined to
be the socle of Fy, ..

A full classification of W(2,2p — 1)-modules is not known, but a classification for irreducible Zx>-
graded modules was given in [5]. A Z>¢-graded W(2,2r — 1)-module is called typical if it is also
irreducible as a Virasoro module, and atypical if not. The irreducible F)\ are typical while the M, ,

are atypical.

The regularized characters of these modules given by a parameter € are defined as

(A—a0/2)?/2
chlFS(7) = 6271'6()\—010/2)2
[ )\]( ) 77(7-)

ch[Mg)(r) =Y ch[FS , () —ch[Fs , , 1(7).
n=0

Given the terms

€ _ 2me(A—p) ,—2miAp
S)\+a0/27u+o¢0/2 =¢ € )

€ — —2me(L (r—1)ayp) mi(r—1)atp sin(wsa_ (N + 16))
S(r.s) a0 2 € : € sin(mag (u + ie€))

the Verlinde algebra of characters Vy, is then defined (in [2]) to be the algebra whose vector space
structure is generated by the characters ch[V¢] with V' = Fy, M, s and whose product is defined to
be

S¢ S5 o
ch[Vy] x ch[Vy] ::/ Wch[ﬂi]du dp.
2 \R (L1),p

It was shown in [2] that this integral is well defined for V' = F), M, s and that the product for these

modules is given by
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p—1
ch[F§] x ch[FS] = > " ch[Fyypiia_]s

=0
s
Ch[M;,s} X Ch[F/i] = Z Ch[Fﬁ—l-aT’l]?
l=—s+2
l+s=0 mod 2
min{s+s'—1,p}
Ch[M7f7s] X Ch[M;’,s’] - Z Ch[Mﬁ—&—r’—l,l]
I=|s—s'|+1
I+s+s'=1 mod 2
s+s'—1
Y (M) ch[ME gy ]+ RIME )
l=p+1

l+s+s'=1 mod 2

The regularized asymptotic quantum dimensions are defined to be

X = g X))
adim[X] = T, ch[M¢ |](7)

As in [31], we introduce

B ::—min{ \/%—Im(e) ‘mGZ—TZ}.

For Re(e) > B!, the regularized asymptotic dimensions are given by

p—1

: 2A—ap STN(—Tay €0) 22— -1
qdim[Fy] = ;"0 —————— = ¢ E "
sin(ma_ei)
l=—p+1
l4+p=1 mod 2
sin(mwsa_ei) =
. —(r—1 - —(r—1 1
qdlm[M,iS] =q. (r=Day 277072 q (r=1ay E qe".
sin(ma_et)
l=—s+1
l+s=1 mod 2

For Re(e) < B/, we have qdim[F§] = 0, and for € € S(k,m), k € Z, m = 0,...,2r — 1, we have

t—1)sin(mms/r)

—1)ym( i if m+#0,r,
qdim[ME,] = (=1) sin(mm/r)
’ (_1)(m+1)(t_1)+%(s_l)w if m=0,r,
sin(7/r)
where 9 1 I ( ) 2 1
m — m(e m+

19



The algebra of regularized quantum dimensions Q is defined to be the algebra whose vector space
structure is generated by the regularized quantum dimensions of typical and atypical modules with
point-wise multiplication. It was shown in [2] that Vg, and Q are isomorphic. We will see that
the normalized Hopf link invariants for Uf (s1(2)) are exactly the regularized quantum dimensions
for W(2,2r — 1). The normalized Hopf link invariants determine much of the structure of the
representation category for Uf(ﬁ[(?)) and it is conjectured ([2]) that Vg, also determines much
of the monoidal structure of the representation category of W(2,2r — 1), strongly suggesting that
Uf (s1(2)) should make a good toy model for understanding representations of the singlet VOA.

4 The Unrolled Restricted Quantum Group of sl(2) and its Rep-
resentation Theory
We construct and review the unrolled restricted quantum group of sl(2), Uf (sl(2)), as in [1]. Let

r > 2 be a positive integer and ¢ = e € C a2rth root of unity. For any x € C, we fix the notation

P _ iz} _
{z}=¢"—q ", |[z]= ar and {z}!={z}{x - 1}...{1}.

4.1 Defining Uf (s1(2))

Let Uy(s1(2)) be the associative algebra over C with generators K, K1, E, F, and relations

K—-K!

KK'=K'K=1, KE=¢EK, KF=q?FK, [EF]= .
q—q

We can define a counit € : Uy(sl(2)) — C, coproduct A : Uy(sl(2)) — U,(sl(2)) ® U,y(sl(2)), and
antipode S : Uy(sl(2)) — Uy(sl(2)) on Ugy(sl(2)) by

A(K) =K@ K, e(K) =1, S(K)=K™,
A(E)=1®E+EQ®K, e(E) =0, S(E)=—-EK™,
AF)=K'9F+F®1, e(F) =0, S(F) = —KF.

This gives U,(sl(2)) the structure of a Hopf algebra. We define the unrolled quantum group of
5((2), U;I(ﬁ[(Q)), by extending U,(s[(2)) through the addition of a fifth generator H with relations
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HK*' = K*'H, [H,E] = 2E, [H,F] = —2F.

We extend the coproduct, counit, and antipode to this algebra by defining

AH)=H®1l+1®H, oH)=0, S(H)=—H.

The unrolled restricted quantum group Uf(s[(Q)) is then obtained from Uf (sl(2)) by quotienting
out the relations E" = F" = 0.

4.2 Representation theory'ofz7f(5ﬁ2))

We will now define the representation category of ﬁf (s1(2)) which we are interested in. Our main

reference for this section is [1].

For any finite dimensional Uf (sl(2))-module V, an eigenvalue A € C of H is called a weight of V'
and its associated eigenspace is called a weight space. Any v € V' in the eigenspace of A (Hv = \v)
is called a weight vector of weight A. V is called a weight module if it is a direct sum of its weight
spaces (H acts semi-simply) and the element K € Uf(s[(Z)) acts as ¢ on V (Kv = ¢/V). Let C
be the category of finite dimensional weight Uf (s1(2))-modules.

C is a ribbon category: If V is an object in C with basis {v1,...,v,}, then V has the natural dual
vector space V* = Homc(V,C) with basis {v], ..., v} }, and the left duality morphisms are

coevy :C VeV and ey: VeV —oC

where coev(1) = > v; @ v}, and &v(f ® w) = f(w). Let vy, ..,v, denote a basis for a module V,

n
and let v = ) A;u; an element in V. Then,
j=1

n
(Zdv ® g/’v) ocayy*y o (COG%V & Zdv)(l ® ’U) = (Zdv ® a)/\/) cayy*yv Z('UZ & U:) X v

(2

=D D ui®Avi(v)

i=1 j=1

n
:Z)\ivi®1:v®1.
=1
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and if f = E Ajvj, then
j=

(&y ®idy+) 0 ayt . o (idy+ @ Goevy)(f ® 1) = (Vy @idy+) o ayt e > f & (v @)

i=1
= Z Z Ajvj(vi) @ vf

i=1 j=1

n
=> Nuiel=1af.

j=1

Which shows that C is left rigid. The braiding and twist were defined in [3] by Ohtsuki as follows:

For each pair of objects V, W in C one can define an R-matrix operator on V' ® W as

H®H/QZ {{1}}' n(n—1) /2En ® F™ (2)

where ¢7®H/2 (vRw) = ¢ /2y @ w for weight vectors v, w with weights A, and \,. The braiding
on C is then given by a collection of maps cy.w : VW — W®V where cyw (v@w) = 7(R(v®@w))
where 7 is the regular flip map w ® v — v ® w. Ohtsuki defined an operator on each V € C as

0= K"~ 12 { }' n(nfl)/QS(Fn)qu2/2En. (3)

The twist 6y : V — V was then defined as the operator v — #~'v. C also admits compatible right
duality morphisms

VeV sC,  &Sywef) =K,
(oevy :C = VF @V, oev(l):ZKr_l‘/'i@v;‘.
i
Showing C is right dual is identical to the proof for left duality.l The quantum dimension, qdim (V)
of an object v € C is defined to be qdim(V') = i vf(K'"v;). Notice that this is the constant by
which &y o coety acts on C. =
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4.3 Classification of simple and projective UqH(sl(Z))-modules

A classification of simple and projective Uf(s[(?))—modules was given in [1] as follows: for any
n € {0,...,r — 1} let S,, be the simple highest weight n + 1 dimensional module of weight n with

basis {so, ..., $n} and action

Fsi=siy1, FEsi=/[i|[n+1—i]si_1, Hs;=(n—2i)s;, Esyg=Fs,=0.

For any a € C, let V,, be the r-dimensional highest weight Uf(s[@))—modules of highest weight

a+r — 1 whose action is defined on a basis {vg, ..., v,—1} as

Ev; = [i][i — a]vi—1, Fv;=vi41, Hvi=(a+r—1-2i)v;, FEvg= Fv,_; =0.

V, is called typical if o € C := (C—=7Z)UrZ and atypical otherwise. Notice that the typical V,, are
simple since any element v; in the basis generates the entire module through the action of £ and

F. If V, is atypical, however, then we have a = rm + k for some m € Z and 1 < k <r — 1. Then,

Ev, = —[k][k — (rm + k)|vg—1 = [k][rm]vg—1 = 0.

Since {rm} = ¢"™ — ¢ = (—=1)™ — (—=1)"™ = 0. So, when V,, is atypical, it contains a simple

submodule generated by the basis elements {vg, vgi1, ..., Vr—1}.

For any ¢ € Z, let Cy,. be the one dimensional module on which F, F' act as zero and H acts as fr.

Then, we have the following proposition (proven in [1]):

Proposition 2. e The typical V,, (o € C) are projective in, C.
e FEvery simple module in C is isomorphic to S, ® Cy,. for some n € {0,....7 — 1} and £ € Z or V,

for some o € C.

Note that in [38], we consider an enlargement of the category C and the typical V,, are no longer
projective in this larger category. For any i € {0,...,r — 2}, let P; be the 2r-dimensional vector
space over C with basis

. —H
{wi o wh o owH oWl wE s wEy o wE o wP L w® ). Then P is a well defined U, (s1(2))-

module ([1]) with action

S

R _ H _ R L _ i+l H
ATES Ew;", w; = Fw;' g, w2,y =F"w
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wil = Frw/! and WS, = Fhwd for k € {0, ..., i},
L

R k. R L k :
WZ+2+2]€ = E WZ+2 and W’L+2 = F Wj—'f' fOI“ k: 6 {O, ...,j},
HwiE = kwyY, Kwy = qkwf for X €e {L,R, H, S},
Ewy = wi,,, Fw\ =wj_, for X € {H, S, L},
H L L S R S s L
FwZ; =wZ; o, EwZ; o =w?2;, Ewy, 5 ;= Ewy = Fw2; = Fwi 9 5. =0,
H H S s .18
EwiZop = =i kWi Zok—1) T Wi_a(k—1) Ewg o = 71 kWi _o,—1)5
R R L L
Fwiloior = =7 kWi ot 2(k—1)) EwWZi 9 op = =VikWZ; o o(k—1)s

where Y m = Ynn—m+1 = [m][n —m + 1]. The following proposition was proven in [1]:

Proposition 3. The module P; is projective and indecomposable, and any projective indecomposable
weight module with integer highest weight ((4+1)r—i—2 is isomorphic to Pi®(Cg. The endomorphism
ring of P; ® CZHr is two dimensional and we denote its basis {Id,x;} where the action of z;¢ on
P; @ CIT is determined by z; (W @v) = w? @ v.

It was shown in [1] that there exists a modified trace {ty : End(V) — C}yepro; on the ideal of
projective modules, denoted Proj, in C. This trace is unique up to scalar multiples. In particular,
there is a trace which acts as ty(f) = (=1)""'(f) on any element f € End(Vj) where (f) is the

scalar by which f acts on Vy. The modified quantum dimension is defined as
d : Ob(Proj) — C d(V) =ty (Idy).
It was shown in [1] that for any typical V,,, we have

{a}

S ) SV (03
d(V,) = (-1) H{aw_j} (—1) " ral
7j=1

4.4 Characters and Tensor Decompositions

We define the character of a weight module V' € C to be
x(V) = _dim(V ()2
where z € C and V() is the A-eigenspace under the action of H. Characters record the eigenspace

structure of a module. Since all of the modules in C are direct sums of their eigenspaces, the

classification of projective modules above shows that projective modules are isomorphic if their
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characters agree, which provides a nice method for determining tensor decompositions for projective

modules. Let

zk — z_k

k. = A4 b8 D =2 =
Z—Z

Then, if « € C and i € {0,...,7 — 1} we have

X(Va) = 2z, x(8i) = [i + 1z, and x(P) = (U770 4+ 20 ).

Proposition 4. The complete list of tensor decompositions of isomorphism classes is the following:

Fori,j €{0,...,m}, we have

¢ it+j
b S ifit+j<r
l=b|i*2j\
Si®Si =19 oraiy r—1
b S o b P oifi+g>r
I=|i—j| 1=2r—2—i—j
L by 2 by 2

where "by 27 here means we only count every second term in the sum. If a,8 € C such that

a+ 8 €7 then

r—1

Va ® VB = @ VO&-‘rﬂ-‘rl'

l=1-r
by 2

When oo+ 8 =n € Z, set n =i+ kr with i € {0,...,r —1} and k € Z. If « € C we have

0 r—1
Va®vnfa: @ B@Cg D @ Pl®(cgﬂ+1)r
l=r—1—1

l=r—i
by -2 by 2

and if « € C —Z, then we have

VkT®SiZV()®S@'®(Cg,,
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r—1
where Vo @ S; = @  P. The tensor decompositions for products of the projective P; are

l=r—1—1
by 2
min(i+j,r—1) r—1 r—1
ros-| @ nle| ® nle| @ |
1=|i—j| 1=24—2—i—j I=r+i—j
by 2 by 2 by 2

PeP=(ClocCl)e (P®S 2 ;) ®2Pes;),

r—1
VweP=| @ cfech)opn|a @ 2P,
I=j+1 l=r—1—j
by 2 by 2

where we assume the index on the P; to be in {0,...,r — 2} while the index on the S; are in

{0,...,7 — 1}. Finally, we have

2(r—1) 2(r—1)
Va@Pi= P Vasjr @ P Varjt-

1=0 1=0

by 2 by 2

Proof. All of these identities except for S; ® S; can be derived from their characters since every

other product is projective. We only provide proofs for identities which are not given in [1].

X(Va © Vi) = 2492 = 29727704 2y 1),
= (T T T ) [,
0
— ST Gy | e+ 2L
It

0
= 3 xmech) | +xVhesiech, ).

l=r—1—1i
by -2

If a = kr, we have x(Vir ® S;) = 2¥[r].[i + 1], = x(Vo ® S; ® CH) and if 8 € C — Z then
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X(Vp 59 = #li+ 12l = 30 2 = 3 x(Vaw).

Hence, for a € C and n =i + kr with i € {0,...,7 — 1} and k € Z we have

0 r—1
Va®Vn—a: @ B@CkHr D @ B®C5[c+1)r
l=r—1—1 l=r—i
by -2 by 2

and for a« € C — Z, then we have

Va & S’L = @ Va+l7
l=—1i

by 2
Vie ® S =Vo® 8; @ CH.

We can determine the product V,, ® P; for a € C — Z from its character:

X(Va ® Pj) = ZQ[T]Z(Zrilij + Zlﬂ;r)[r]z

_ (Zafj + Zafj+2 4o+ Zozfj+2(r71))[r]z + (ZoHrj + za+jf2 + .+ Za+j72(r71))[r]z

2(r—1) 2(r—1)
= X(Va—]-i-l) =+ Z X(Va-i-j—l)'
=0 =0
by 2 by 2

4.5 Hopf Link Computations

In this section we will construct the open Hopf links associated to C as was done in [1]. We will see
that the method used to construct the open Hopf links on projective modules requires knowledge
of the tensor ring structure. We will introduce later a new method for computing these Hopf links

without using the tensor ring. Recall the Hopf links from definition 2:
(I)U,V = ptI‘R(CUJ/ o CV,U) = (Idv () WU) o ((CU,V o CV,U) & IdU*) o (Idv X coe U)-

Proposition 5. Leti,j € {0,...,7 —2} and o, 5 € C= (C\Z)UrZ. Then, we have the following:
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(_1)7‘—1,r, o q(r—l—i)a + q—(r—l—i)a
® =t q*’Id P = (1) trgte Id
Vs,V d(Va) q Vo Pi®(CZ,Va ( ) rq d(va) Vi s
i1+ 1) . e o
(I)Si®CZ,Va - qreaWIdVa, (I)Va,Pj®(CZ = (_1)T(Z+1)+€+qufar(q(r j=De 4 q (r—j 1)04)!%,767

(1) DG L= 90 (DG (DG Y,

PpocH pect = q 50

oy
(_1)i(€+1)+(j+€7‘+1—r)€’ ‘ ‘
(psi@C?T’Pj@Cg - {] + 1} {(Z + 1)<j + 1)}Ide®CZ

(_1)i(€+1)+(j+€7‘+1—r)€’

- G+

((H{E+2)G+ 1} = @+ 2){i(G + Dz

Proof. This proposition is a modification of Lemma 6.7 in [1] and the proof here will follow theirs

closely adjusting it only where necessary.

Let VW € C and w € W a highest weight vector of weight . Let {vp,...,vs} be a basis for V' and
A, the weight of vg. Then,

Sy (w) = (Idw @ &oy) o (cvw @ Idy+) o (cwy © Idy+) o (Idw @ coedy)(w)
— kZS:O(IdW ® %V) o (cyw ® Idy~) o (ewy ® Idy+)(w ® vy @ vy,)
_ kj:_oudw @ v o (r(R(r(R(w & )))) @ 1)
= Zs:(IdW ® evy) o (¢ (w ® vg) ® vf)
k=0
3 dw 0 ) o (@ (w v @ 1))
k=0
_ zs: M @ g1

k=0

— (iq()\—l-l—’r‘))\k)w
k=0

Define for any v € C, ¥, : Z[z] - C by ¥, (2°) = ¢”*. Then, one sees that @y (w) =
Uri1—r(x(V))w. When W is simple we then have

Pyw = Uar1—(x(V) Idw (4)
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by Schur’s Lemma. Since o € CV,is typical, hence simple, we can compute the Hopf links on V,

directly.
2 — 2T {ra} (=)=t
P — U, (x(VeDIdy. = U, 22— \Idy = “T¢Prdy, =2 ¢*PId
Vi,Va (x(Vs))Idv, <Z Z_Z_1> Vo = gy @ v = gy v
i+l —(i+1) 1
By = Va(e(S)Idy, = o =2 gy, = W0 Dad g
(2 y— 1 {a}

L _ . ZT _ Z—T’
Pp v, = Vo (x(P)Idy, =V, ((ZT Ttz T+1+1)Z_Z_1)Idva

(r—-1—i)a + —(r—-1-i)«a
= (-1 r—1,.4 q I
(=) ETA) v,

(I)CZ,VQ — ‘I’a(X(ZKT))IdVQ _ qrza[dva.

For any X,Y,Z € C we have ®xgy,z = ®x z o Py z so this proves the proposition for (I)Va,Vaa

Pg,9ch v, and Ppgen v, -

Lr?

The endomorphism ring of P; ® (Cg is two dimensional so any endomorphism of P; ® (Cg, has the
form aldp gen + by for some a,b € C. So to determine P, pocn it is enough to find a and b.

Wf ®veEP® (CZHT is a highest weight vector, so

P, pecH (W}g ®v) = ‘I’j+£r+1—r(X(Sl))W3s ®uv= (¢t q_(jMTH_T)W}g Qv

= (=) (g + q—(j“))wf ®v.

Hence, a = (—1)1(g7t! 4+ ¢~U+D). S) has a basis {sg, s1} where Esg = 0, Es; = s, Fso = s1,
Fsy =0, and Hs; = (—1)%s;. Recall that cv,w = T o R where 7 is the flip map and E?=F%2=0
on Sy so R=¢H®H/2(Id® Id+ (¢ — ¢"')E ® F) here. For some X,Y € P; ® Cl, we have

H i+er)/2 H
Csy,PeCH © Cpigch s, (W) @0 & so) = Csl,pj®<cg(q(j+ 25y @ wl @ v
+ (q _ qfl)qérf(j+€r+2)/281 ® W;{+2 Q 1))
= ("Wl @ v so+ (a— ¢ )2 W @ v @ so) + X @1

= (D)W @veso+(a—q )¢ W @v@s)) + X ® s
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H —(j+¢ H
€5y, PeCH © ch®ngsl(wj ®V®s) = csl’pj@)(cg(q (+r)/2 ) @ w; ®v)
= (q—(j—&—fr)wf XUV 81) +Y ®sg
= (—l)zq_jwf Qv ® s +Y & sp.

Hence,

= {dpgcn © &) 0 ((¢s, peci © Cppct 5 @ Idsy) o (Idp gen @ coevs, ) (wj! ® v)

H
= (ldp,gcn ® &) o0 ((cs,,pect © Cpgci s, (W) ©v @ s0)) @ s5)

10C,
= (D" (@] ®v+ (g —q)’a7 W @ 0) @ 5K o) + X @ (K1 s)
+ (=Dl Wl @v@si(K'7s1) + Y @ sT(K' " s0)

= (_1)£+1q(qu§f Qv+ (q— q—1)2q71sz ® ) + (_1)€+1quflwfl Qv

= (—1)£+1(qj+1 + qufl)wf Qv+ (—1)”1((; . qfl)zsz ® .

) ) i1 _g—(i+1))2
For the sake of consistency with [1], we rescale x;, by a constant % so, we have a =

(D)Y@ ¢ Y and b = (1) (¢t —q=U+D)2, The S; are classified up to isomorphism by
their characters, so we obtain the relation S1 ® S; = S;11 @ S;—1 from their characters. Therefore,

we have

CI)Sl,Pj®(C£§ 0 (I)Si,Pj®(Cg = (I)51®S¢,Pj®(CZ = @Si+1,Pj®(Cg + <I>Si,1,Pj®(CZ'

This gives the recurrence relation

(I)S¢+1,Pj®(cg = (a + bxjve)q)si,Pj®(CZ B (I)S¢717Pj®<cg

whose solution
(1) . o . . »
Pg, pect = W({(Z DG+ D} +ae(@{@+2)G+ D} = @+ 2){i(G + 1))

can be found by induction. Since S,_1 = V, we have (PVO,P]'@(CZ, = (—1)rFDHIHorg, . As
projective modules are classified up to isomorphism by their characters, we have the isomorphism
of modules

Vo®Sr—ic1=Vo®S,—i3® P

Hence, we obtain the relation
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Cp poct = Py pect © (Ps,,  pect — Ps, ;. peck)
(—1)iltH D+ gy o : .
TS, {r =G+ ={0r—i=2)G+ D})aje

= (_1)i(13+1)+j+1Qr(q(r—i—l)(j-ﬁ-l) + q—(r—i—l)(j+1))xje

(1) (DG 4 (DG

To complete the proof for ®p o -u PjeC, We need only compute ®cu PjeCH and take the appro-
i o r ol r

priate compositions of Hopf links:

@(CH

el

H
poct (W ©v) = (ldpgen ©@ g’cgr) o ((cen

o

H
peclCrechch ) ®Iden:) o (Wi ©v®@w @ w’)

H
= (Idp,pcn @ g’q{) ° ((chr,Pancgcpj@Cg,(cgr)(Wj ®vRw)®w")

(Idp,gep @ & ¢y ) o (@7 (W] @0 @ w) © ")

(j-l—Zr)Z’r(WJH ® ’U) & qﬂ’T(l—T)

q(j—l—ﬁr)Z’T(WJH ®v) ® w*(Kl_’"w)
(

— _1)(j+€7‘+1—r)€’wfl Q0.
Notice that the weight of any vector w;-X ®veP® (CeHr differs from the weight of wf ® v by a
multiple of 2, so the exponent of —1 does not see this difference. Hence, we have

(I)(CH (_1)(j+€r+1—r)

_ Z’I
H pech = dp,ech -

We delay the proof of @y, PeCH until after the following corollary.

Corollary 1. The modified trace of the Hopf links are given by:

r—1 Mar{(i + 1)0&}
T ey

tv (v vn) = (1) 'rg”, v (Psecn v,) = (=1)

tpect (®y, pect) = v (Ppect v,) = (=) gt (g g e,
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(_1)(i+7’+1)[+(j+€7‘+1—r)€’+i+j+1 2T(q(i+1)(j+1) + q—(i—l-l)(j—l—l))

tpect (®pecy P;®CH ) ;

o'

(_1)(i+r+1)Z+(j+ér+1—r)f’+i+j+1(Z-+ 1)(q(i+1)(j+1) +q—(i+1)(j+1))’

tpect (®s,ec P;®C{L )

oy
(_1)(i+r+1)£+(j+£r+1—r)e’+i+j+1 {(Z + 1)(j + 1)}
{1 +1}

tpoct (Ps,ecH pock ©Tj0)

o’
Proof. The Hopf links on V, are easy to compute:
(=) 'r -1
ty (P — ) T aeB (Idy ) = (—1) " Lrg®P

rlo {(Z + 1)0} r—1_rla 7"{(2 + 1)04}

v (Ps,ect v,) =4 Ttva(fdva) =(-1)""¢q “hal
-1 r—lqrfar r—1—i)a —(r—1-i)a
v, (Ppect v,) = (<)i(Va)(q( e g TN A(1,).

To compute the trace of the Hopf links on P; ® (Cg, we need to understand how the modified trace
acts on the identity and x;,. Using the decomposition derived for V5 ® S; in Proposition 4, one
easily obtains the following isomorphism:

Vo®S—j10CHl~Vy®S,_;_30Cil © P;oCH.

Using the properties of the modified trace given in definition 1, we see that the modified trace of

the identities of these modules yields the relation

d(P; ® Cfl) = d(Vp)(qdim(S,—;j—1 ® Cfl) — qdim(S,_;_3 ® C{l))

where
qdim(S,, ® CH) = Z(Si ® o) (K1 "s; ®v) = Z g (= 2iHr)(1=1)
=0 i=0
_ e =n) 1 e 1}
=q =(-1) )
{1} {1}
Hence,
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d(P; @ Cff) = d(Vp)(qdim(S,—;—1 @ Cf}) — qdim(S, ;-3 ® C}}))
1)t —r)+r—j— . —r)+r—j— .
e (O L B
_ (_1)6(17r)+j((qr*jfl + qrfjfB 4.+ qf(rfjfl)) N (qrfjf3 +.. 4+ qf(rfjf3)))
(_1)£(1—7")+j+1(qj+1 —i—q_(jﬂ)).

Now, tp ocn ((I)Vo,Pj®(Ce’{) = tVo(q)Pje@CfT,Vo) gives the relation
4 L+j -1
2(—1) DIy o () = 2r(~1)

Hence, tp i (zj0) = (—=1)%r+D+7+1 We can now compute the Hopf links on the P;@CH modules
using Proposition 5:
e (@pacy pysc) = (- EFDFGHIHT gy (G 4 gmGHDUED)_g)rs1) 1

o

(_1)(i+7‘+1)€+(j+€r+1—7')é’+i+j+12T(q(i+1)(j+1) + q—(z‘+1)(j-s-1))7

(_1)i(€+1)+(j+€r+1—r)é’

tpect (Psect pect) = TR, {(G+1)(j + D)} (=1) At (it 4 g=(FD)
(_1)i(z+1)+(j+er+1—r)z’ P
+ G+ 1) (i{(i+2)( + 1} = (+2){i( + HDHDTTIHE

(_1)(i+T+1)€+(j+€7‘+1—r)€’+i+j+1

- — (G 06+ D)+ + {6+ 20+ D} - (+2G + D)

_ (_1)(i+7’+1)€+(j+€r+1—r)Z’+i+j+1(i + 1)(q(i+1)(j+1) + q—(i—i-l)(j—i—l)),

where the last equality is found by expanding the brackets and simplifying. The last trace is
computed using the fact that .sz ;=0

(1) (Grers1—rye LG+ DG + 1)}
tPj®Cg(¢Si®CH PjeCH © Tjg) = (,1)2( +1)+(j+br+1-7) 1) tPj®(CZ(xj7€))

o'

= (= 1)L+ i+ {G+1D)(E+1)}
{j+1}
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To find @y, PjoCH = ald Pech + bxj o we first compute the action of this Hopf link on the highest
weight vector w;-q Qvek® (Cg of weight j + #r:

Py, piocH (W) ®@v) =T 1 (X(Va))W) @ v =g

(GHr+1-r) {T(j +0r+1— T)} -0
{j+br+1—-r} '

So, we must have a = 0. We can now solve for b using the symmetry property of the modified trace

and the value of ty, (® Pz-®<C£I,Va) computed above.

(_1)T—1qréa7~(q(r—j—1)a + q—(r—j—l)a) = tPj®Cg(q)Va,Pj®<cZ) — tPj®<cZ(b$j,€) _ b(_l)e(r+1)+j+1

Hence, (I)Vij@Cg = (_1)T(Z+1)+€+jqréar(q(r—j—l)a + q—(r—j—l)a)xj7g.

5 Results

Proposition 6. We have for any o € {1,...,r — 1} the short exact sequences of modules

H
0— V;—l—i—l—h - P ® (Cér — Vvl—l—i—r—&—f?" —0

0—=5_-1-a® C{i —Vatrer = Sa—1 ® Cgﬂ)r —0

and corresponding identities of Hopf links for the projective modules X = V,, P; ® (Cg:

(Dva+€r7X = (DST717Q®CZ7X + ®Sa*1®cg+l)r’x7

CI)PZ-(X)(CZ,X - q)vr—l—i+lr7X + (I)V1+i—r+er,X‘

Proof. V414 is atypical so it contains a highest weight submodule generated by standard basis
vector v, with basis {vg,...,v,—1}. This submodule has dimension r — « and highest weight r —
1 — « + ¢r so it isomorphic to S,_1_4 ® (CeHT. The quotient module V¢ / < v, > has dimension
a and highest weight o — 1+ (¢ 4 1)r so it is isomorphic to Sp—1 ® Cgﬂ)r. We therefore have the
short exact sequence

0= 5 _1-a® Cg — Va—i—ZT — Sa-1® Cg—i—l)r —0

The element W;S ®uv e P ®(Cg generates a highest weight submodule of dimension i+ 1 and highest
weight ¢+£r hence is isomorphic to the submodule < v,_;_; > of V,._1_; 14 as both of these modules
are isomorphic to S; ® (Cg . So there is an isomorphism ;5 <K U1 > < wf’ ® v >. We can ex-
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tend this to an injective homomorphism of V,._1_; 4. by definingamap ¢ : V,_1_; 14 — B; ®(CKHT by

f+r®v :n=20
-1
P(vn) = ¢ (1 H’m W @0 s0<n<r—1—i
s=0
o(vn) n>r—1—1

and extending linearly over sums, where we have set j = r — 2 — ¢ for simplicity. This map is
clearly bijective and linear so we need only show it is a module morphism for n < r —1 —14¢. When

n <r—1—1 we have

¢(Hvp) = (2r =2 =i+ lr — 2n)d(vn H Vg—sH Wy o @ 0) = Ho(vn),
o(Fvp) = ¢(vp41) = (-1 n+1 H Vij—s f—&-r 2(n+1) @ v) H Vj.j—sF ]—H" on @) = Fé(vp).
s=0

To show that ¢ commutes with the action of E we first note the identity
il —r+1+i—br]= (1) r—n—1—dn] = ()T~ (n = D]l] = (~=1)F 5,01y

Hence,
d)(Evn) = [n] [n —r+1l+4+i— ET]d’(”n 1 H Yi,5— s ’Yj,jf(nfl)(wf-w_Q(n—l) ® U)

H Vjj—st +r on @) = Ed(vy,).

This shows that V,,_1_;4x, can be embedded in P; ® (Cg by ¢. By a similar argument, one can see
that P; ® (CeHr/Qb(V;“—l—i—&—Zr) 2 Vi4i—rter which proves the second short exact sequence. The Hopf

link identities are proven by direct computation using Proposition 5:

—1 Tﬁlr —1-9)a i—r)a
(-1) zm(q(r 1—i) _I_q(1+ ))

¢Vr717i+2ruva + (I)Vl+ifv‘+£'rava - ®PZ®CZ,VQ d(Va> q
1

"™ r ro r—1—i)a —(r—1—i)«
B e O B R S R
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rlo

q . ro . r—1—i)a
Csect v, T Ps, i 29CH ) Va Qv i i Va = (o} ({(ZJF Da} +¢"*{(r —i—a} — ¢ {7“04})
rlo
_4g ; . (r—1—d)a/ ra —ra
= 1 _ 1 — _
fa7 (G4 Da} = (i D} =gt 0 =)
rlo
_ q (r—1—d)a/ ra —ra
oy (@ )
rla
_ 4 —(i+1)a —(i+1)
(o} (4 ) =0

By expanding (pvr—l—i+l’r7 PeCH + P PyeCH > We obtain

Vl+i—r+€’r7 J

q
( 1)r(€+1 +€+]rq (14+i—r+l'r )(

( 1)r(€+1)+k+jrq7‘€(r 1— z+€’7")( (r+7+1)(r—1— z+€r)+q (r+7+1)(r—1— H—Z'T))

xj7€
(r+j+1)(A+i—r+L'r )+q (r+j+1)(A+i—r+L'r ))

+

q
(G+1)(r—1— z—l—fr)_l_q—(j—‘rl r—1— H—fr)

z‘j?Z
= (- 1>£+g+€(1+z+é’ r)+14i+Lr "r(q

GG+1) (14— r+€r)+q (G+1)(1+i—r+£'r) )

+

(— 1)e+y+£ (1+i+0'r )+1+i+£’rr(q

1)€+g+z (1+i+L'r )+1+i+e/r+(g+1)(z/+1)T(q(]+1)(1+z) +q (J+1)(1+z))xﬂ

+

(=
)R T A LA T D D) (D A+ AR )P
= (=

1)z(€+1)+€’(r+1+j+£r)2T(q(j+1)(1+i) _l_qf(j+1)(1+i))x

9

— YPRCH ,PeCH-

Recall that the Hopf links on P; ® (CH have the form al dP gt + bxje. The coefficient of

the identity of ®y, wstrrpyoch is zero and the coefficient of the identity for &g «®CH P,@CH +
(I)S 1®(C P ®(CH IS
a— ' +1)r’ r
(_1)(7"7lfa)(€+1)+(j+€r+lfr)€’ - (_1)(afl)(Z+1)+(j+€r+lfr)(€’+1) -
(_1)(7"71fa)(Z+1)+(j+£r+1fr)€’+j+1{ (G+1)} (_1)(70471)(Z+1)+(j+€r+1fr)(€’+1){ o)
= - . alg+1);— . a() +
{j+1} {j+1}
(_1)(rflfa)(€+1)+(j+€r+1fr)€’+j+1 . .
- " (fali+ D} = {ali + 1}) =0.

(Note that « is an integer in this computation)

So, @, ecH PjoCH +®s, ocH

g PjeCH = bz, and we also have the identity:

-
' +1)r VayerrPi
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(_1)(7‘71701)(€+1)+(j+€7‘+1+1”)€l . .
G+ 1 (r=1-a){r+1-a)+ 1} = +1-a){(r—1-a)(j+1)}

(_1)(afl)(€+1)+(j+€r+1+7‘)(£’+1)

+ G+ 1 (&= D{(e+ 1[G+ 1)} = (a+D{(a =1 +1)})

(_1)(r—l—a)(€+1)+(j+€r+1+r)£’+j+1

B G0 (r—1—a){l—a)i+ 1} = (r+1—a){(-1—a)(j + 1)}

(_1)(r—a—l)(£+1)+(j+€r+1+r)£’+j+1

+ G+ (= D{la+ D+ 1)} = (@+{la -1 +1)})

(_1)(r—l—a)(€+1)+(j+€r+1+r)£’+j+1

= G r{la+ D@+ —{la=1D(E+1})

= (—1) (=L)AL L, (qa(j+1) i q—a(j+1)) '

The left hand side of this equation is the constant coefficient for z;, in &g «®CH PiocH T

and the right hand side is the constant coefficient for z;, in @y,

(I)Sa 1®CH oyt Py @CH -

@' +1)r

This shows that b = 0 and completes the proof.

The equations

0_>V;’ 1— i—l—ZT_)P'@(Cg_)Vvl—i—i r+€7“_>0

O—>Sr 1— OC®C£T_>VQ+ZT_>SO5 1®C(£+1) =0

describe the structure P, ® (CKHT and V. respectively in terms of simpler modules. It is easy to

see from the definition that P; ® (Cg has Loewy diagram as in Figure 1:

S, @CH
/ \ V1+2'+(571)7'
R@CEHT Sr12®cg+l r12®(c Dr
\ / Vi—iciter
S; @ CH

Figure 1: Loewy diagram of P; ® (Cg

Proposition 7. The tensor ring of projective weight modules is determined up to isomorphism by
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Vo (Pv,va)

the modified traces of Hopf links and the isomorphism is given by ¢ : V — V)

Proof. ¢ is bijective and clearly preserves the additive structure as the trace is linear and ®y gy, =
Pyy, + Pwy,. So, ¢ is an isomorphism if we have ¢(V @ W) = ¢(V)p(W) for any weight modules
V,W. This is equivalent to

tv, (Pvv, ) tv, (Pwv,)
d(Va) '

Vi is simple so the Hopf links act as scalars and there exist Ay, Ayr € C such that @y, = Ay Idy,

tv, (Pvew,v,) =

and @y, = Awldy,. Hence,

tv, (Pvewv,) = tv, (Pvy, o Pwy,) = tv, AvAw ldy,)

= AvAwty, (Idy,)
tyv (I dy )
= Ay A\ —= o
Yy (Tdy,)
v, AvIdy, )ty (Awldy,)

d(Va)

— tVa ((I)V,Va )tVa (CI)W,Va)

d(Va)
which completes the proof. =

5.1 Comparison

Proposition 8. Let o € C. Then the map ¢ : Vo — Fa+\F1 , Si®(Cg = Mi_¢ ;41 extended linearly
2r

over direct sums for o € C is a morphism up to equality of characters.

Proof. We can compute the relations using the tensor decompositions computed in Proposition 4:

r—1 r—1 r
chlp(Va®@ Va)l = Y chlp(Vaysn)l = Y, ch Fa+ﬂ+k+r—1]
k=1-—r k=1—r - Var
k+r=1 mod 2 k+r=1 mod 2

r—1 r
= E Ch Fa+r 1+,8+7‘ 1+k+17'r
k1 —r L V2r V2r Var

k+r=1 mod 2

r—1
= Zch [Fa+r1+ﬁ+r—1 21 :|
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Ch[@((*gz ® CéHr) ® Va)] = Z Ch[@(VaJrZrJrl)]

l=—1
[+i=0 mod 2

i -
e Z Ch Fa+ér+l+r1:|
L Ver

l=—1

[4+i=0 mod 2
i+1 r
- E Ch FO(+T1+[\/;+l1]
—(i+1)+2 V2r V2 o Ver
[4+i=0 mod 2

h[Ml gz+1] x ch |:Fa\+/;71:|

= ch[(S; ® C}))] x chlp(Va)]-

The Hopf link identities @y, , x = Ps, _nect xtPs, ecH . x and Ppoct x = PV e X T

(e+1)r
Py, yier,x motivate the definition

(P ®@CiH) = o(Vic1-irer) ® e (Vigiorier)
= (S ® C) & ¢(Sr—i—2 ® Clf11,) ® o(Sr—2-: @ C{{_yy,) & (ST © Cff)
=Mi_pit1 D Mypr_i—1 D Mo_pr_i— 1O Mi_p;it1.

It is easy to see using Proposition 4, the fact that S,_; is projective, and projective modules being

classified by characters that

S ifj=0
S1®Sj:{5j+1@5j_1 if1<j<r—-2
P2 ifj=r—1

IijO, then Ch[¢(Sl®SO)] = Ch[MLQ] = Ch[MlyQ] XCh[MLl] = Ch[(p(sl)] XCh[(p(S{))]. If 1 < j < T—2,

then we have

chlp(S1 ® Cff ® S; ® Cff,)] = chlp(Sj—1 ® Cfl,p,) ® ¢(Sj+1 © Cllypn,)]
ch[Mi_(eyer) ] + ch[Mi_(o1er) 2]
ch[Mi_g1] x ch[Mi_p ji1]

chlp(S1 ® Ciy)] x chlip(S; ® Cy)].

[
[
[
[
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The more general case chp(9; ® CHL @ S; @ CH )] = chlp(S; @ CH)] x ch[p(S; @ CH )] then follows

inductively using the equation S1 ® S; ® S; = (Sit1 ® 5;) @ (Si—1 ® 55).
O

Proposition 9. The quantum dimensions of the typical and atypical modules for the singlet vertex

algebra are in agreement with the modified traces of their corresponding Uf(slg) modules in the

following sense:

7o tve (Pvy,vi) e v (Pg, et v,)
qdim[F 72, ] = I gaim ) =
v ta(Psva) tva (Psoava)
tpect (Ps,oct pect ©Tjl)
qdim[M7_pr ;44 e for Re(e) < 0)
tp,ach (P, paci © L))
Proof. The proof follows directly by computation:
i 2 i 22
o i o Br—1 e—7r QT\/?Z ™ QT‘ml
qdlm[Fﬁ,l] ¢ Var P o) ( R R )
Var (ei VrVar! e Vr Var )
77‘_7106 (6—7\';&7‘ _ eﬂ'ZT‘OéT)
=e " —Tix Tio
(e7r —er)
_ o {710‘}
{a}
tvoz ((bv,ﬁvva)
tVa ((I)Soya)
i o (o TUTDE SRR ()RR
éﬁfza( f f\/ﬁ )
qdlm[Ml\/?]+l] = eﬂ— T\/ﬁ 2 —ia ;2 \/5*104 32
(e "vivear' —"vrvar')
—r(j+1)ia T(+1)ia
_ —Tr&'a(e T . —€ ’ " )
(7 =)

_elGsal
{a}
_ v, (q’sje@(cg,va)
tv, (Psyev.)

40



For Re(e) <0,

tpect (Psect pack ©Tjt)

= (1) DG {G+1)(G+1)}
{7+1}
— (—1)lterne {G+D)(G+1+rl+1))}
{j+1+r(+1)}

tPj®(Cg((I)So,Pj®CZ © x]7£)

= qdim[M7_p ;4]

with e € S(4,j + 147l +1)).

5.2 Hopf Links

Recall that the Hopf links on the simple V,, are given by

]‘)T_lr «Q rla {(7’ + 1)a}
(EVZ%VO& = d(Va) q ﬁIdVa ®S ®(CM,VQ {O[} IdVa
(r—1—i)a —(r—-1-i)a
r— réa 4 +4q
Cpecy, = (—1) g STUA Idy,

Theorem 3. Lete € (—%,1),i€{0,....,r —2} and let £ € Z. Denote by X, the module with vector
space basis {Wh o o, WE 4 o, WE, ), Wfl awH WS Wl

S Ry wh o i} and action given
by

VVEF2 = (_1)KEV'/1'H7 VVEi—Q - FWH@? FVVEQ—Z = V'/zg + [1 + Z][e]WF,

WiIiZk = Frw’ and Wf_gk ZFszS for k € {0,...,i},
VVEi_Q_Qk = FkWE,L',Q and WR

R oo = (CDMERWE,  for ke {0,...,r —2—i},

Hw) = (k+0r+eawy,  Kwy = (=)' wy,

Wi
EWIIj ( ) k42> FWI? = Wli(—%
Fw®; = [1+1d][ewh,;_,, Ew;

for X € {L, H,S, R},

for X € {L,S, H},
=2(-1)"*1 +i”€]Wﬁ2’ Ew_, ;= FWL+2 9r =0

2r—
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Ewri oy =2(=D) i+ 1w + (D)W, Ewh; y o = (=D)L +i+ K]k - E]WEZ‘—2+2(1¢—1)’

—7— —1 —

Fwig op = —[1+i+k][k+¢ WE&-2+2(k—1)7

Ewly, = @1 +i—k+ €k —[1+i—k][k— 5])(_1)8‘/"52@—1) + (_1)4"'?—2(1%1)’
Bw gy = (2 +i—k[k—e —[1+i—k+¢ [k])(_l)EWiS—Q(k—l) +2(-1)* 1+ PP o1

Vitiorvor+e ® Vo itryorre if€#0

Then, X, =
P,®CH ife=0

Proof. Let € € (—%, %) — {0}. Let {xo,...,2r—1} denote the standard basis for Vi ;_,1¢1c and

{0, .--syr—1} the standard basis for V_1_;1,14-+. Define a new basis

L L L H H .S S R R
{Wi+2—2r7 Wit q—2ps oy Wi 0y Wgy ooy WiT s Wy oo, W, Wit 9y s Wor_o it for Vi rior i e®Vo1 ivriorie

by

wiLyp, = 2z, — Yr—1—itk; Wy gy, = —2[1 +d)[exk + yr_1—ish,

)

2[1 + ][]

k
-1
L R ,
Wi g op = 2T14itk; Witoyok = M+l (H[l + i+ s|[—s — 6]) Yr—2—i—k-
s=0

We will first prove the statement for ¢ # 0. Recall that the action on the standard basis element

v € V, is given by
Hu, = (a+7—1—2k)vg, Evy, = [K]|[k — o]vg_1, Fup = vgq.

By direct computation, we obtain the following:

1 [r—1—d][—lr — €]
Ew! =2F2g— ———Fy,_1_; = — _o_
Wz -750 2[1+Z][€] yT‘ 1—2 2[1+Z][€] yr 2—1
1
= 5(—1)@7«—2—2' = (—1)'wil,,
H 1 L
FwZ, =2Fz; — Fyr_1 =2zi41 = w2, o,

2[1 + 1] [¢]

1 1 1

wi + [+ d)[ew! = —2[1 + d][e]xo + yr—1—i + 2[L +4][€]T0 — =Yr—1—i = ~Yr—1—i = = Fyr_o_1 = Fwﬁg-

2 2 2

Hence, we have shown wf, = (=1)*Ewf, wl, , = Fw!, and Fwl, = w¥ + [1 + i][eJw/. Tt is

42



casily seen that Fwit = wiX , for all X € {L, S, H} and that

1 k '
Ewfig o = M+l (sl;lo[l i+ s][—s — E]) Eyr o ik

. k
—lr=2—i— k-1 -k —fr—¢ (H[l +i+ s)[—s— 6]) Yr—2—i—(k+1)
s=0

2[1 +1][€]
_(_1)g k+1
= m <H[1 +i+s][—s— 6]) Yr—2—i—(k+1) = (_1)£Wﬁ2+2(k+1)
s=0

R _ 0 R N R _ ke ok wh k WS k. S
so Ewfl = (=1)'wf,,, which gives wi, , = (-1)*E*wl, wi, = Ffwl w?, = FFw?, and

L _ kgL
W o op = FFWZ .
H acts on a standard basis vector vy € V,, by Hvp = (o +r — 1 — 2k)vy, so we have

Hrp=0Q4i—r+br+e+r—1-2k)x, = (i — 2k + lr + €)xg,
Hyr e =(-1—i+r+lr+e+tr—1-20r—1—i+k)yr—1—ipr = (i = 2k +lr + €)yr—1—itk,
Hriyivp=Q4i—r+lr+e+r—1—-2(1+i+k))r1pipr = (=1 — 2 =2k + lr + €)T14i+k,
=(-l—it+r+lr+e+r—1-2(r—1—i—(k+1)Y_1—i—(kt1)
= (i +2+ 2k +0r + €)Yr_1—i—(kt1)-

Hyr—l—z (k+1)

From this, it immediately follows that

HwH,, = (i — 2k + tr + ewi

Hw? o = (i — 2k + br + e)w? o,
Hwh, o oy =(—i—2—2k+tr+ewl, 5 o,
HwE o op = (i + 242k + br + )Wl 5 o,

and K acts as ¢, so we have shown that HwX = (k + {r + e)w;¥ and Kw; = ¢Fortewt =

(=Dfg*rewX for all X € {L,H,S,R}. It is easy to see that Ewl_, , = Fwl, , = 0 as
Fx,._1 = Eyg=0. We also have
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FwS, = —2[1 +i][e|Fai + Fyr_1 = —2[1 +i[ezisr = —[1 + d][eJw”,_,,

(2

Ew? = —2[1 +i][e]Exg + Ey,—1—; = [L+d][—br — e|yr—a—; = 2(—=1) 1 +i][wlis,

2

EwE, o oy =2Fxi i =200+ i+k[r+k—0r —€aiy, = (-1 1+ i+ k| [k — e]wfmﬂ(,H),

k
Fwil oo = 2[1;12][6] <H[1 +i+s][—s — 6]) Yr—1—i—k
s=0

, k-1
_ —[1 +21[1++kg][[;]k — ¢ <H[1 +i+ s][—s — 6]) Yr—2—i—(k—1)
s=0

= —[L+ i+ K[k + w5 001

—1)! (=2[1 + i)[elai + g1 + 411 + el — yr1)

(=1 (w2 + 2[1 +i][w!) = (
2(—1)*[1 + i[e)x; = 2[1 +4][0r + e|z; = EwE,_,.

From the definition of Wf{ 95 and Wf_% it is easy to show that

1 S
ar = wl g + WWFWW

Yr—1—itk = 2W5 o + 2[1 + d][elwf .

From this, we find

[14i—k][k—lr —¢€

Ewl, =2Ex;, — Eyr_i_ivk =2kl +i—k+lr + €lxp_1 —

Yr—2—i+k

21+ i 21+
= 201+ = ko D) (W + i)
[L+i— K[k =

o 2[1 + Z] [6] (_1)£ <2WZ’S_2(k_1) + 2[1 + ’L] [6]W£2(k—1)>

= 2kl +i—k+e —[14+i—Kk][k—¢) (-1)%{{2(,%1)

KL+ —k+e —[L+i— K]k —
! ( [+l ) (Ut
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BEw} g, = =2[1+ ][] Bz + By, 1-iv
= o1+ )[R+ i — k+ O+ a1+ (10— K[k — b — g s i1
= 201 I+ e D) (w4 g )
[+ = K = (=1 (2w gy + 201+ il g )
— @+ i— Kk — € —[1+i -k +€[K]) (D)W o
2L+l (L4 — K[k — € — [L+i — k + €l[K]) (~1)w/ .

However, by expanding the brackets we get the identity
kl[l+i—k+e€e —[14+i—Ek|]k—¢€ =141
Hence, the above equations give

wWior = K[ +i—k+e—[1+i—k[[k—¢]) (_1)€Wz‘l—£2(k—1) + (_1)£Wz$—2(k—1)7
Wy = L +i— K[k — el = [1+i—k+€e[k]) (=)W 541y + 2= 1+ [ w51y,

as desired. This proves that X. = Vi viprie ® Voi_iirierre when € # 0. As € — 0, it is easy to
see that the action on Xy is exactly the action on P; ® (Cg (see [1]) by identifying Wi( € Xo with
wf Qv eEP® (an. Hence, we have shown

X, — v'1+24r+€r+e 2 VflfiJrrJrErJre if € 7é 0
‘ P ocCH ife=0

Corollary 2. The action of the twist on P; ® CZHT s given by aldpj®q; + bx; o where

f(jJrZr)(rflf%(jJrEr))

{1)? N () (r—1— 1 (1
h= — —(r—1-7)g Jt+er)(r 5 (G+er)

Proof. The twist acts as the inverse of

a=q
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H = K1 — {1}2n n(n—l)/QS ol —H2/2En
= Z W‘] (F")q
n=0

which acts as K ’"ilq*HQ/ 2 on highest weight vectors. Endomorphisms act on simple modules by
scalars, so it is enough to determine the scalar by which 6 acts on the highest weight vector in
a simple module. So, 0 acts on Vit riprye and Voi_jipyprie as gr=DU+er+e) g=(+r+€)%/2 54
g(r=D@r=2=j+lr+e) = (2r—2—j+lr+)*/2 yogpectively. These values agree in the limit € — 0 since
q(rfl)(2rf2fj+£r)q7(2r727j+€7")2/2 _ q(2r727j+fr)(rflf%(2r727j+€1")) _ qf%(2r727j+€r)(fj+€r)

1

_ g R @D () _ (=1t (=72

_ j—tr —j+lr —(L52—jer+1E202) _ j+or —j—tr —(L524jer+ 10202
= (1) g q(2y Jlr+3 )_(_1)J g7 q(QJ Jlr+5€r2)

= DG+ G2

Note that

q(r—l)(j+Zr+e)q—(j+€r+e)2/2 _ q(j—l—ér—&-e)(r—l—%(j—i—(r—i—e)7
q(r—l)(Qr—Q—j+Zr+e)q—(2r—2—j+ér+6)2/2 _ q(j—ﬂr—e)(r—l—(j—fr—e)/2).

So, if we denote the action of § on P; ® CH by a'ldp gen +b'xjy then we have

o = lim (200G gGotr=O0-1-Gtr-0/2)
e—0

— <2q(j+ir)(7‘—1—(j+fr)/2) _ q(j+fr)(7’—1—(j+lr)/2)> — ) (r=1=5 (j+r))

q

and

-1
b = lim

(q(j*fT*E)(Tflf(J'*ZT*E)/2) _
e—0[1 + j][€]

q(j+€r+e) (r—1—(5+4r+e€)/2) )

We can compute b’ using L’Hopitals rule.

The derivative of the numerator is

Ing <(1" —1—(j—tr—e)/2) - %(j —lr — e)) gu=tr=a)r=1=(=tr=)/2)

+lnq<r—1—(j+€r+e)/2)—2

Lo+ 6)> JUH 140 /2)

46



which gives
21116](7" —1- j)q(j+€T)(rflf%(j+€r))

when evaluated at zero. The derivative of the denominator evaluated at zero is 247 Ing, so

{1}
Y = {{11}2,} (r =1 — j)qUHnE=1=3G+r),
J

If we denote the twist as ald pect + bx;, then since it is the inverse of 6, we have

ldp gen = (aIde®(Cg +bxjy) 0 (a'Ide®(CZ + V) = aa’[dpj®(cg + (ab’ + a'b)z; .

Hence, aa’ =1 and ab' + a’b=0. So, a = a'~' = q_(jMT)(T_l_%(er)) and

2
b —dlal — — a2 — _{{1} }(T L1 g U1
1+

Lemma 1. lim AX, = Alim X, VAe€ UqH(sl(Q))

e—a E—a
Proof. The lemma holds for E, F, H, and K by construction of X, and hence holds for all polyno-
mials in F, F, H, and K. ]

Corollary 3. The partial trace commutes with limits over functions in End(X.).

Proof. The partial trace acts on elements of End(X.) as a polynomial in E, F,H, and K with
complex coefficients hence commutes with limits by the Lemma. O

Proposition 10. lim d(X.) = d(Xp)

e—0

Proof. Set A =1+ i — r, then we have

1% d(X.) = 11_{% d(Vaierte ® Vorperte) = l%(d(v)\+2r+e) +d(Vorterte))

1L fim {N+1lr+¢€} {=A+lr+€}
= (=1 '] ({T(A—i—ﬂr—i-e)} {r(—/\+€r+e)})

(1)L iy ((q)\+e — g OFD) (A — (AT g (gmAFE — (A (grA+e) q—r(A+E)> |

e—0

(qr()\Jre) _ qfr()\+e))(qr(f)\+e) _ qfr(f)\Jre))
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The derivative of the numerator of the fraction evaluated at zero is given by

g ((¢* + a7 (@™ = a™) +7(¢* = g (a™ + ™))
+ Ing ((q‘A + M@ =g+ =)@+ q‘”))
=Ing (2(* +a N =™+ 2+ N -+ - Q‘A))

2111(]((])‘ + qf)\>(qr)\ . qfr/\) —0.

Where we have used the fact that ¢" = ¢~". The derivative of the denominator evaluated at zero

is given by
Ing (T(qM g™ =) +r(@ =)@+ q”)) = 2rlng(¢"™* + ¢ ™) (¢ — ¢ ") = 0.

So, we apply L’Hopitals a second time and after simplifying we obtain a numerator of
8r(—1)H77 (¢ 4 ¢~ (477 "and a denominator of 8r2. Hence,

_ (_1)@(7‘71)+i+1(q2’+1 + qfifl)

e—0 87‘2

_1\1+i—r(  1+i—r —(1+i—r)
limd(X,) = (—1){r—D+r-1, (87“( DT 4 g )>

= d(P).

O

Proposition 11. Let Z be a weight module in C. Then, the Hopf link QDZ,PZ@C? = aZIdPZ-@(Cf +

bz, is given by:

az = lg% (2)\szl+i—r+5r+e - )\Zuv—l—i+7‘+f7‘+e)

-1

by = hmm(/\Z,V_1—i+r+h+e - )\Z7V1+i—r+er+e)

e—0

where Az 1vi—rytrie and Az yv_ .., ., .. arethe constants by which®zy, , ., . and®zy .. ., .

act respectively. That is,

)\Zvvl+i—r+ﬁr+e - \I}1+i*1“+€7"+6 (X(Z))

AZvv—l—’L'+T+ZT+e = \Ilf 1—i+r+br+e (X(Z))

Proof. Denote by Az, the constant by which ®zy, acts, and let ac = 2,b. = Q[ﬁ%}k]’ c=b"ld=
1 as in the proposition. By construction, lim._, Czx.@CH = CzpecH and lim._,q CX@(cng =

CReCH Z since the action on X, converges to the action on P; in the limit € — 0. Let {z,, ..., x,—1}
denote the standard basis for V14;_4e and {yo, ..., yr—1—;} the standard basis for V_1_;;,+. and let

WiH = aexo + beyr—1—; and Wis = ccxg + deyr—1—; as in the proposition above. Then WiH generates
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X, and if v is the basis element for Cg, then WZH RV = aeTg ® U+ beyr—1—; v generates X ® (Cg.

Hence, by Corollary

: H 1 H
lim &z x, (Wi’ ®v) = lim Pirr(Ccz x et © Cx.ocH z) (Wi @)
_ H _ H
= ptrR(Cz,Pl@(cg ° CH@CZ,Z)(Wi ®v) =Pz p(w; ).

: _ H _ S L S _ H Fici
Notice that x¢g = dew; bewy and y,_1-; = acw; — cew;’. We can now compute the coefficients
a,b of (I)Z,Pi = azfdpi + bzxi’oi

®zp (W] @v) = lim @ (w! ®v) = lim ® (aezo ® v+ b Q)

Z,P;\W; v) = egl(l) Z,X.oCH Wi v) = eg% Z,X.@CH \del0 &V eYr—1—i QU

= lLE% (ae)\Z:V1+ifr+€r+e'fL‘0 ® v + b€>\Z7V717i+r+k'r+5yT717i ® U)

. H S S H
= 15% (G/G)\szl+7lfr+é7‘+e (dEWi - bEWi ) v+ bﬁ)‘Z,V71ﬂ‘+r+e (aewi — CeW; ) ® v)
1 H
- l%(aﬁde)\zvvlﬁ»ifr«l»é'r#»e - bECE)\Z»VflfiJﬁT«l»ZrJﬁe)W’L‘ ® v

S
+ aﬁbé/\Z,V,171+r+gT+5 - aébe)\Z,V1+i,T+g,,.+€)Wi ® v

. H H
- 1141)1’(1) 2)\Z»Vl+i7r+£r+e - A27V7171+T+ZT+5)W7; ® v
1

S
m()‘Z,VﬂerHrﬁ - )\Zvvl+i7'r+lr+e)wi ®v.

Vitirier+e and V_q iy pr 1 are simple, so

)‘Z,V1+¢7r+£r+e = \I]1+i—T+ET+€(X(Z))a
)\Z,V,1,i+’,«+[,,-+6 = \I]—l—Z+T‘+£7‘+€(X(Z>)

O

Corollary 4. The Hopf links (I)Z7Pj®<cf with Z € S;, Vo, P; are given by (I)Z,Pj@)(cf = aZIde@)(CgI +

bzx; . where

)i+ (i —rttr) {G+D(E+1)}

—auy =0 _(_
ap; av, ’ a’Sl'@(C?T ( {] 4 1} ’
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and

i)+ (14j—rpery L+ 2)+ D} = @+ 2){iG + 1)}
7+ 12{7 + 1} ’

bsi(g)(cl{,ﬂ =(-1)

(_1)r(£+1)+€+]’

by = @ R T,
(_1)i(£+1)+£’(1+j—r+€r) ; ) i .
bracy, = G 2@ O ),

Proof. For Z € {S;, P;,V,}, we have

H O (14j—r+0
)\C?r’vlﬂ'*ﬁ%rn% - llerj*TJrfrJre(X(C[/r)) = (_1) (tj—rt 7"+€)7

AcH (_1)€’(—1—j+r+2r+e)

el

H
Vol jirttrie \Il—l—j-i-r—&-ﬁr-i-s(X(Cé’r)) =

9

{i+1)(1+j—r+br+e}
{I+j—r+lr+e}
_ (_1)i(£+1){(i+ D(1+j+¢€)}
{1+j+¢€} ’

ASi7V1+j—T+ZT+E = \I/1+jfr+€r+e(X(Si)> =

{(i+1)(~1—j+r+Llr+e)}
{-1—j4+r+0r+¢}
_ (=it {i+1)(-1-j+¢e}
{-1—-j+¢€ 7~

ASiVorigrrorre = Yot—jarierte(X(8i)) =

(1+j—r+Llr+e)a {T(l +j—r+br+ 6)}
{1+j+r+tr+et’
_ (1mitrtroa {r(-1—j4+r+br+e}
{(-1—j+r+br4e ’

AVOHV1+j7r+Zr+e = \Ijl+j—r+€r+e(X(Va)) =49

>\Va Vo l—itrterte \IJ_l_j+r+£T+€ (X(VO‘ ) )

)‘Pi7V1+j7r+er+e = \I’l-&-j—r-&-ér-i-e(X(Pi))

(r—i=1)(j=rr+e) | (1) (14 =r+re) {rd+j—r+br+e}
{1+j—r+br+e’

= (q

AP, Vol jirierie U jrttrte (x(P%))

(r=i=1)(Agbrbrte) | o (Limr)(-1=jtr ) {fr(=1—gj+r+br+ 6)}‘
{-1—j+r+tr+e}

=(q
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{r(+j—r+er)t _ {r(=1—j+rter)} _ 0, and

Clearly, ay, = ap, = 0 since e —"" e

Y _ 1+ DG+ 1)}
as; = lg% (2/\Si7V1+i—r+h+e - )\Siav—l—i+r+£r+e) = (_1)1( ) {] T 1} .

By L’Hopitals rule, we can compute the other terms:

_ (—UWHH&<{@+1x—1—j+d}_{@+&x1+j+eﬂ)
o0 [+ 1][e] {-1-j+¢€} {1+j+¢€}
(_1)i(£+1)+1

0 [J+1[{-1—j+e{l+j+e}

({(z +1)(-1—j+e)H{1+j+¢€}
—{GE+1)A+j+e){-1—-4 +e}>.

The term in brackets can be expanded as
(qf(i+1)(1+jfe) o q(i+1)(1+jfe))(q1+j+e) o qflfjfe) - (q(1+i)(1+j+6) - q7(1+i)(1+j+6))(q717j+6 - q1+j*€)

_ qfi(j+l)q(i+2)e . q(i+2)(j+1)qﬂ'e . qf(i+2)(j+1)qie + qi(j+1)qf(i+2)e

_ gD g 4De y (— (2 (1) gmie 4 ((+2)(HD) gie _ (—i(i+1) g (i+2)e

whose derivative evaluated at ¢ = 0 is 2lng(i{(i +2)(j + 1)} — (i + 2){i(y + 1)})

1 , .
[e{-1—j+e{l+j+e = m(cf — ) (g% — PUHD — 720D g 72

1 j —2(y € —€ € j —€ —2(y —€ —3e
whose derivative evaluated at ¢ = 0 is
1 2 {j+1}°
—— (4 — 242D — 2720y = _9Ing .
{1} {1}
So,
bs:(_Umﬂﬂﬂ%+%0+1ﬂ—%%+ﬁﬁu+lﬂ

[+ 12{j + 1}
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Similarly, we find:

(_1)r(€+1)+€+j
[ +1]2
(_1)z‘(é+1)
RS

Tqu‘a(q(r—l—j)oz + q—(r—l—j)a)

9

2T(q(i+1)(j+l) + q*(iJrl)(jJrl)).

It is easy to show that acm = (—1)Z/(1+j_r+h)fdpj®cf and ber = 0, so the proposition follows
o T o

from ®yoy pocr = Py pect © Py peck -
]

5.3 Alexander Invariants

Let L be a be a (n,n)-ribbon graph colored by modules in C such that the bands at the i — th
intersections are colored by the same module, and at least one of the colors is colored by a simple
V. Let T be the (1,1)-ribbon graph obtained by closing the other ends through the action of the

left and right partial trace. Then the re-normalized Reshetikhin-Turaev link invariant (see [6]) is
F'(L) := ty, (T)).

Note that we are identifying T with the corresponding morphism obtained by identifying tangles
with combinations of the braiding, duality morphisms, and twist as described in section 3.2. These
invariants were shown to coincide with Murakami’s Alexander invariants described in [8]. We now
show that these results can be extended to any projective module, not just the simple V). Let
L be constructed as above but with at least one of the colors being P; ® CIZ, and let T PoCH be
the colored (1, 1)-ribbon graph obtained by closing the other ends, and let T\ be the ribbon graph
obtained by re-coloring the open P; ® Cg—colored band with V). Then,

Theorem 4. The colored (1, 1)-ribbon graph Tpgcn satisfies

tPi®(CZ (TP¢®(CZ) = lg% (tV1+¢7T+er+e (Thti—rttrre) + BV i rtrte (T—l—i—T+fT+€))

and

with coefficients

a = lim tV71717T+£T+6 (T—l—i—r+ﬁr+6) — 1 tV1+'Lf’r+£r+e (T1+i—7’+fr+6)
=0 d(V_1_itritric) €0 d(Vigiryerie)
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and

b — hm _1 <tv_1_i_7‘+er+( (T717i77'+£’r‘+6) . tV1+i_T+gT+E <T1+Z’I“+ET‘+E))
=0 [1 + ][] d(Voi—itrterte) d(Vitirttrre)
d ty, (Ty)

_ r d ty, (T)) ‘ _d ’
27Ti{1+i} d\ d(V,\) A=lr+r—i—1 d\ d(V)\> A=iti—r+er )

Before proving this theorem, we remark that this result nicely relates to the work of Murakami and
Nagatomo on logarithmic link invariants for different quantum groups [8],[19],[20]. We also note
that

T _ tVA (T)\)

= ——"51dy,.
A d (V) Vi

Proof. For the first statement, we use the identity lin% Vivicratrae DV sairitrie = P® (Cg which
€e—

gives

tP1®(CZ (TPZ®CZ> = 1141;% TV1+i7T+Zr+e@Vf177L+7‘+l'r+5 (TV1+7:77‘+27‘+6@V7177L+7‘+l’r+6)

where we pulled the limit out of the function using the fact that limits commute with the partial
trace and the action of Uf (s1(2)). The relation follows since coloring with the direct sum of two

objects X @Y amounts to computing the sum of the individually colored components

txey Txey) =tx (Tx) +ty (Ty).

For the second statement, since WZH generates P; ® Cg , it is enough to find the action of T° P,oCH

H . . H . .
on w;". For this we compute the action of Ty, , ,.&v_ i ;i . o0 W; and then take the limit
H
K3

—2[1 + i][¢], and d. = 1 are as in the construction of X.. Notice that

€ to zero. Recall that we have w!* = a.zg + beyr—1-; and W'ZS = cexg + deyr—1—i Where g, Yr_1_4,

1
a£:27b€:_m766:
Ty = dgwiH — bewg9 and yp_1_; = aew;9 — cewfl. We can now compute the action of TPi®<Cf£ on WZHZ

TR;@(C% (Wfl) = TH@CZ (1% Qo + beyr—l—i) = li% (aeTlJrifrJrfrJre (5[50) + 0T 1 iyritrte (yr—l—i))

tv, .. Tiaie
— lim (ae Vitiorttrte ( 1+ r+€r+6) (dewfq . bve)+
=0 d(Vigi—rterse)

(A7 (T 1—irierie)
b —1—i—r+lr+e a WS —c WH .
‘ d(V—l—i+r+€r+e) ( o o )

It follows that

a = lim < o, tV1+i—r+Zr+e (T1+ifr+€r+e) — b, etv—l—i—r+Z7‘+5 (Tlir+€r+6)>
d(Vigirierie) d(Voiivrierse)
1 <2 tVl+i—r+Zr+e (T1+ifr+€r+e> _ tV—l—i—r+£r+e (Tlir+£r+e)>
=0 d (Vigtizrtorte) d (Voi—ipritrte)
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and

b= —lim <aeb Witiorrerte (Typizrtrve) — ache bVo1 isrpore (Tlir+£r+e)>
=0 d (V1+i7r+€r+e) d (V717i+7"+fr+e)
— lim 1 (tvl+i—r+lr+e (T1+i*T+€T+6) . tv_l—i—r+1€r+e (TliT‘+fT+6)) '
=0 [1 + Z] [6] d (V1+i77’+€r+€) d (V7171’+7~+gr+6)
Evaluating the limits (using L’Hopital’s rule for b) give the result. O

6 Future Work

There is a family of non Cs-cofinite W-algebras denoted W%(Q), where » > 2 and @ is the root
lattice of a simply-laced simple Lie algebra g. This family is a generalization of the singlet VOA
M(r). The representation categories for these WW-algebras are expected to have connections to
representation categories of certain unrolled quantum groups Ug (g) at a 2r-th root of unity. These
quantum groups have tensor structure much more complicated than that of Uf(ﬁ[@)) so direct
methods for computing the tensor ring are difficult to manage. The Hopf link point of view provides
a different approach to understanding these representation categories. In particular, this point of
view may be of value to the study of Uz (s1(3)) where the tensor ring, and even module classifications

are unknown.
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