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Abstract

Two examples of Normed Division Domains are examined.

The first example leads to graceful graphs and, in particular,
graceful trees. A survey of results concerning the Graceful Tree
Conjecture is given. Four approaches are presented:

(1) Construction of large graceful trees using smaller ones;

(i1) Assigning labels to particular vertices;

(iii) Establishing well-characterized classes of graceful trees;

(iv) Obtaining graceful trees by moving pairs of leaves of a

given graceful tree.

A Computer-generated example, suggests that further progress
may be made in the first approach. I developed some software
that led me to believe that the last approach is very powerful.

The second example concerns the problem of tiling rectan-
gular boards with polyominoes. Complete solution is given for

polyominoes with up to 5 squares.
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Chapter 0

Introduction

0.1 Normed Division Domains.

In his paper (see [17]) of 1978, Solomon W. Golomb introduced
the notion of a normed division domain. It is a structure that
is just enough to define divisibility, primes, greatest common
divisor, least common multiple and some other notions of ele-
mentary number theory in a sensible way.

Definition 1.1. A triple (S, <|, N) is called a Normed Divi-
sion Domain (NDD) if:

(i) (S, <|) is a partially ordered set;

(ii) NV is a mapping from S to the set of non-negative integers;

(iii) if @,b € S and a<|b, then N(a)|N(b).

(iv) if e € S and N(e) = 1, then e<|a holds for alle € S.

The function N is called a “norm” for S. N is not neces-
sarily a norm in the full sense. We do not require addition or
multiplication by scalars to be defined in S.

If a,b € S and a<|b, then we say that a divides b. If e € S
and N(e) = 1, then e is called a unit in S.!

The following definitions are analogous to those in elementary
number theory.

1We do not require uniqueness of the unit element.



Definition 1.2. Let D = (S, <|, N) be an NDD. An element
p € S is said to be prime in D if N(p) > 1 and there do not
exist non-unit elements @ € S with a<|p and N(a) # N(p).

Definition 1.3. Let D = (S, <|, N) be an NDD and a, b be
elements of S. An element d of S is said to be a greatest common
divisor of a and b if d<|a, b and N(c) < N(d) for any c € S such
that c<|a,b.

Definition 1.4. Let D = (S, <|, N) be an NDD and a, b be
elements of S. An element m of S is said to be a least common
multiple of a and b if a,b<|m and N(c) > N(m) for any c € S
such that a,b<|c.

In this thesis, we consider two examples of NDD'’s, both aris-
ing from graph theory.

0.2 Graphs with the E-norm.

We use standard terminology in graph theory (see, for example,
[34]). Let S be the set of all finite, simple, connected, undirected
graphs. For G € S, we define the norm N(G) as the number of
edges in G. This is called the E-norm for the set S.

To form an NDD, we define a partial order on S that imitates
divisibility. Let G, H be graphs in S. We say that H divides
G and write H<|G if G can be decomposed into edge-disjoint
isomorphic copies of H, that is, if G can be covered completely
by copies of H such that every edge of G is covered by an edge of
exactly one copy of H. A vertex, on the other hand, can appear
in several copies of H. Below is a simple example:



c
Copies of H: d v b

® ®
Figure 0.1.1: Illustration of divisibility for the E-norm.

The following question is a natural one to ask: “Given graphs
G,H in S, can we tell whether H divides G or not?” This
question seems difficult in general. The following special case
has not been resolved:

Conjecture 2.1. (Ringel, 1963) The complete graph on
2n + 1 vertices is divisible by every tree on n + 1 vertices.

We now introduce an apparently unrelated notion:

Definition 2.2. A tree on n vertices is said to be graceful if
its vertices can be assigned numbers from 0 to n—1 (in a one-to-
one manner) such that if we label the edges with the absolute
differences of the numbers assigned to the end-vertices of the
edges, then all the edges will have different numbers from 1 to
n— 1.

The following is called the Graceful Tree Conjecture (GTC).




Conjecture 2.3. (see [20]) All trees are graceful.

It is remarkable how easily and elegantly Ringel’s conjecture
follows from the GTC. Suppose that all trees are graceful. Let
n be a positive integer and a let T,,;; be a tree on n + 1 vertices
together with the numbering of its vertices that shows that this
tree is graceful. We show how to decompose the clique K,y
into 2n + 1 copies of T,,;. Choose n + 1 consecutive vertices
of the clique and number them from 0 to n. Mark the edge
between two vertices u and v bold if and only if the vertices
with numbers assigned to u and v are adjacent in T;,;,. The

picture below shows this for n=4 and a gracefully labeled tree
T5 on the left.

4 0
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Figure 0.1.2: Ringel’s Conjecture follows from the GTC.

By our construction, we mark bold exactly one edge of each
of the lengths 1,2, ... ,n (the length of an edge is the distance
between vertices that this edge connects in the chordless cycle
formed by the vertices of K>,4+) and edges connecting consecu-
tive vertices). Now we shift our n + 1 chosen vertices by one
position clockwise and perform the same procedure. Evidently,
after doing this 2n + 1 times, we will have all edges of K2n+1
marked bold, which completes the proof.



In the first chapter of this thesis, we give the rigorous def-
inition of a graceful graph together with some general results
about them and survey the main approaches to the GTC.

0.3 Graphs with the V-norm

Again, let S be the set of all finite, simple, connected, undirected
graphs. For G € S, we now define the norm N(G) as the number
of vertices in G. This is called the V-norm for the set S.

To form an NDD, we define a partial order on S that imitates
divisibility. Let G, H be graphs in S. We say that H divides
G and write H<|G if G can be decomposed into vertex-disjoint
isomorphic copies of H, that is, if G can be covered by copies of
H such that every vertex of G is covered by a vertex of exactly
one copy of H. Note that not every edge of G has to be an edge
of any copy of H. Below is a simple example:

®
G: H: o
®
2
1 2 4 6
Copies of H: \/.
5 )
b 8 9

Figure 0.2.1: Illustration of divisibility for the V-norm.
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This divisibility problem, like the one in the preceding sub-
section, seems difficult in general.

We consider the special class of graphs, where vertices are
lattice points and the edges have unit length. We ask whether a
rectangular graph, such as G below, is divisible by an arbitrary
graph in this class.

®
¢ —r
G H: oo
@- Y —  J
L
*——@ ® ®
@ @ ®
® *——@
Copies of H:

o o

[ L ®

Figure 0.2.2: The kinds of dividends and divisors that we
consider.

It is more convenient to represent such graphs as figures
formed of unit squares connected “edge to edge.” Such a fig-
ure is called a polyomino. The example in Figure 0.2.2 is then
represented as follows:



Board: Polyomino:

Figure 0.2.3: The introductory example of tiling with
polyominoes.

The problem that we will be concerned with in Chapter 2
is: “Given a rectangular board, is it possible to tile it with a
particular polyomino consisting of up to 5 squares?”



Chapter 1

Graceful Trees

1.1 Introduction

In this chapter, we study the class of graceful trees. In the
introductory chapter, we showed that Ringel’s conjecture follows
from the Graceful Tree Conjecture. This chapter mainly deals
with results that may lead us closer to the ultimate resolution
of this famous conjecture.

In the rest of Section 1, we give the definition of a more gen-
eral class called graceful graphs, and some of the general results
about them.

In Section 2, we examine a number of ways of building large
graceful trees from smaller ones.

In the beginning of Section 3, our concern shifts from the
trees themselves to trying to find out how a graceful labeling
of a tree should (or may) look like. We also look at some well-
characterized classes of trees that have been shown to be grace-
ful. The proof of gracefulness for some of those classes uses the
labeling technique in the beginning of the section.

In Section 4, we study a very powerful method for obtaining
graceful trees together with graceful labelings. As an illustration
of this method, we describe the proof of gracefulness of trees of
diameter 4 and derive a proof of gracefulness of a family of trees



of diameter 5.
In Section 5, we make some concluding remarks.

We denote a finite simple undirected connected graph by
G = (V, E), where V is the set of vertices of G and F is the
set of edges. Also, denote |V| by n and denote |E| by m. That
is, n will always stand for the number of vertices and m will
stand for the number of edges in the graph.

Definition 1.1. A mapping 8 : V — Z* U {0} is said to be
a labeling if it is one-to-one. Such a mapping induces another
mapping which is defined on the set of edges E as follows: for
an edge uv € F, let 6(uv) = |0(u) — 0(v)]-

Remark. It will always be clear from the context which @ is
meant, so no confusion is possible.

Definition 1.2. A labeling 0 is said to be graceful if
0(V) c {0,1,...,m} and 0(E) = {1,2,... ,m}. A graph with
such a labeling is said to be graceful.

There is also a stronger version of gracefulness.

Definition 1.3. A labeling 6 is said to be strongly graceful
and have strength k if it is graceful and there is an integer k&
such that for every edge uv € E either 8(u) < k < 6(v) or
0(v) < k < 0(u) holds. A graph G with such a labeling is said
to be strongly graceful. Whenever we refer to a labeling with a
strength, it is understood that the labeling is strongly graceful.

Remark. 1t is clear from the latter definition that all strongly
graceful graphs are graceful.

Results about gracefulness are useful in advanced areas of
modern high technology (see [2] for an example).

Historically, both classes were introduced by Aleksander Rosa
in 1966 (see [29]) and became a popular topic of research after
the paper by Solomon Golomb (see [16]) in 1972.!

1The terminology that is used in this thesis is different from what Rosa and Golomb
use in the referenced papers. Instead, the terminology of more recent papers is adopted.




Here are some almost trivial observations.

Lemma 1.4. If @ is a graceful labeling of G, then there are
vertices u,v € V(G) with 6(uv) = 0 and 8(v) = m. Moreover,
uv € E(G).

Proof. The lemma follows from the fact that, by the def-
inition of a graceful labeling, there has to be an edge in G
labeled m.

]

Lemma 1.5. Not all graceful graphs are strongly graceful.
Proof. A smallest counterexample is the cycle K3 (triangle).
Two labels are forced by the previous lemma. Any of the two
assignments for the third vertex give us a graceful labeling which
is not strongly graceful.
u

Here is an important necessary condition for a graph to be
strongly graceful. We show later that this condition is not suf-
ficient.

Lemma 1.6. (see [29]) If G is strongly graceful, then it is
bipartite.

Proof. Let 0 be a graceful labeling of G with strength k. We
merely divide the vertex set V of G into two sets, call them X
and Y. A vertex v € V belongs to X if (V) < k; otherwise,
wehaveveY. Thus XNY =0 and XUY = V. It follows
from the definition of a strongly graceful labeling that X is an
independent set, and so is Y.

Quoting an unpublished result of Erdés, Gallian (see [14])
states that although most graphs are not graceful, most graphs
that have some sort of regularity of structure are graceful. In

10



fact, negative results (those proving that some classes of graphs
are not graceful) are quite rare.

We now look at some general results about graceful graphs.

The next two theorems appeared in the first paper on the
subject by Rosa. They are still the most general proved state-
ments in the area. The first of these theorems also reappeared
in the work by Golomb and we give his proof here.

Theorem 1.7. (see [29, 16]) If G is an Eulerian graph with

m edges and m is congruent to either 1 or 2 modulo 4, then it
is impossible to label G gracefully.
Proof. Assume to the contrary that a graceful labeling € of such
an Eulerian graph exists. Let (v;,vs,... ,Vm4+1 = vp) be a trail
in G such that every edge of G is listed among v;v;;, exactly
once, where ¢ ranges over 1,2,... ,m. We claim that the sum of
labels of edges of this trail is even. In fact, we have

D 16(w) = 8(vir)l = D (6(v:) — O(visn))
=1 i=1

0(v1) — 6(vm+1)
0(mod 2)

Thus the sum of all labels of the edges of G is even.
Now we will obtain a contradiction by proving that the same

sum must be odd. Since 8 is graceful, we have:
m

> 10(w) ~ O(vir) =14+2+... +m= _"l(_"_lz_*_‘_ll
i=1

which is obviously odd if m = 4k + 1 or m = 4k + 2 for some
non-negative integer k.
This contradiction completes the proof.

Right after the above theorem Rosa presents another result
with a proof, which, with minor alterations, became a template

11



for many proofs in the area of graceful labelings. We would like
to show such a proof with all the details.

Theorem 1.8.(see [29]) A chordless cycle C, is strongly
graceful if and only if n = 0(mod 4). If n = 3(mod 4), then
C, can be labeled gracefully.

Proof. While the necessity part of the statement follows from
Theorem 1.7 and Lemma 1.6, the sufficiency part is shown by
giving explicit labelings.

Denote the vertices of C,, by vy, vs, ... ,vpn.

Suppose that n = 0(mod 4). The example below shows how
we could label our graph for n = 8.

Figure 1.1.1: Labeling C, strongly gracefully for
n = 0(mod 4).

In general, we define

=1 if 4 is odd,
f(vi)=q n—3+1 ifiisevenand i < 3,
n—z if i is even and ¢ > 3.

It is evident that, for any 1 < i < n, we have 0 < 6(v;) < n.
Let £ = 5 — 1. Note that % ranges over

0,1,...,k

12



for odd ¢. Also, n — 5 ranges over

k+1,k+2,... ,-371’3—1

for even i > 7, while n — § + 1 ranges over

3n 3n
—+1,—+2,...,
4+ ,4+ n

for even ¢ < 7. Hence @ is a labeling of C,, with the desired
range.
Now, for even ¢ > 3, except for (v,v1) = (n - 3) -0 =3,
we have
1 —2
2

O(Uivi_1)=(n—%)—( y=n—i+l

and ) )
i i
O(vivin))=(n—z)—(z)=n—1.
(vvier) = (1= 5) = () =~

Thus 6(v;v;+1) and 6O(vyv;—;) range over the edge labels
,2,...,5.
For even i < 5 we have

o(vivi—l) = (n - % + 1) _ (i -2

2

)=n—i+2

and i
i
2
Thus 6(v;viy1) and O(v;v;—;) range over the edge labels
s+1L,3+2,...,n

Thus 0 is graceful. Also, @ has strength k; this is easy to see.

Thus the proof for the case when n = 0(mod 4) is complete.

Now, suppose that n = 3(mod 4). The example below shows
how we could label our graph for n = 7.

O(vivie)) = (n — = + 1) — (%) =n—i+1l

13



Vg V4

Vs
Figure 1.1.2: Labeling C, gracefully for n = 3(mod 4).

We define

b

+1-—% if 7 is even,
O(v;) = St if ¢ is odd and i < 231,
H if 4 is odd and ¢ > 251

The proof that 6 is graceful is similar to the proof in the
previous case.

One can see that the gracefulness of a graph G does not
imply the same property about G’s induced subgraphs. As a
counterexample, let G be a chordless cycle Cs. By Theorem 1.7
we know that G is not graceful. However, G is an induced

subgraph of the graph shown below together with its graceful
labeling.

6 2
$ 0 4
S
Figure 1.1.3: A subgraph of a graceful graph need not be
graceful.
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Once we have gained some vision of the problem of graceful-
ness for graphs in general, let us go to the main subject of this
chapter of the thesis.

For trees, the definition of gracefulness can be stated more
concisely as follows. Let T be a tree on n vertices. A labeling 6
of the vertices of T is graceful if the n — 1 edges of T are labeled
1,2,...,n — 1 under 6.

Probably everyone (who ever gets to knowing the notion of
graceful graphs) knows the construction of the proof of the fol-
lowing theorem, whose format has definitely influenced all the
subsequent terminology of the subject.

Definition 1.9. A tree T is called a caterpillar if removal of
all its leaves leaves a path. This path is called the backbone of
the caterpillar.

Theorem 1.10.(see [29]) All caterpillars are strongly grace-

ful.
Proof. We draw vertices of the two independent sets of the
given caterpillar on the left and the right side as follows. Start
by drawing the backbone (the sides alternate starting from the
left). After that, for each vertex of the backbone, we draw its
leaf-neighbors on the opposite side so that edges do not cross.

Label vertices consecutively — start with 0 at the top vertex
on the left side, go down increasing the vertex labels each time
by 1. Then proceed to the right side going from the bottom
vertex up.

It follows that the edges get consecutive labels starting from
1 at the bottom edge.

m

Ezample: Here is a demonstration of the above theorem.

15



17
16
15
14
13
12
11
10

00~ OO N W~ O

Figure 1.1.4: Graceful labeling for caterpillars.

The left part shows a tree on 18 vertices, while the right part
shows its graceful labeling with strength k£ = 8.

It is logical to give the negative counterpart of Theorem 1.10
here. In Section 4, we will prove that all trees of diameter 4
are graceful. From Theorem 1.10, we know that caterpillars of
diameter 4 are strongly graceful. Our next theorem verifies that
there are no other strongly graceful trees of diameter 4. This
result is very important and will be used in the sections to follow.

We prove a useful lemma first.

Lemma 1.11. (see [20]) Let T be a caterpillar of diameter

4 and let @ be its strongly graceful labeling. Suppose that z is
the center vertex? of T. Then 6(z) # 0.
Proof. If T is a path on five vertices, then the only graceful
labeling (up to symmetry) with the center vertex labeled 0 is
shown below. It is easy to see that this labeling is not strongly
graceful.

2Note that a tree of an even diameter d has a unique center vertex, i.e. a unique vertex
whose distance to any other given vertex of the tree is at most %.
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Figure 1.1.5: The only graceful labeling of Ps; with the center
vertex labeled 0.

Now, assume that T is not a path. Then we can represent it
as follows.

P 4
5] 9
X v
Py a9,
rl r2 ry

Figure 1.1.6: Canonical representation of non-path
caterpillars of diameter 4.

Assume to the contrary that 8(z) = 0. Let k be the strength
of 0. Since 8 is strongly graceful, 8(u), 8(v) and all of 6(r;) are
greater than k. It then follows that all of 8(p;) and 6(g;) are not
greater than k. Therefore, the only edges with labels greater
than k are the ones incident on z.

Suppose that 8(q;) = 1. Then we must have (v) = k + 1.
Let j be the smallest positive integer such that 6(g;) # j for any
t. Then all the labels

(k-l-l)—(j—l),(k-l-l)—(j—2),...,(k+1)-—1,

that is, all the edge labels from k — j + 2 to k, appear among
the labels of the edges vq;. Then all the edge labels of up; must

17



be less than & — j + 2. On the other hand, we have 0(p) = j
for some I. Hence 6(pju) = 0(u) — j < k — j + 2, which implies
6(u) < k + 2, which is impossible, since we know that 8(u) > k
and 6(v) = k + 1. This contradiction completes the proof.

Theorem 1.12. (see [20]) No non-caterpillar tree T of di-
ameter 4 has a strongly graceful labeling.
Proof. First we agree on the following convenient way of repre-
senting a given tree T of diameter 4. We align the set of vertices
of T in 4 columns. The second column consists of the center
vertex only, denoted ag. In the first column are the leaves of T
that are adjacent to ag. In the third column are the non-leaf
neighbors of ayg. Denote them by a,as,... ,a,, such that ver-
tices with even degrees (i.e. with odd numbers of leaf-neighbors)
have labels with lower indices than vertices with odd degrees.
In the fourth column, we have all the leaf-neighbors of vertices
from the third column. We assign double indices to these ver-
tices. Thus any tree of degree 4 is drawn as on the picture
below.

18



ay

Cp+1 @p

Figure 1.1.7: Canonical representation of trees of diameter 4.

Assume to the contrary that T is the smallest (in the num-
ber of edges) non-caterpillar tree of diameter 4 that admits a
strongly graceful labeling. Let 8 be a strongly graceful labeling
of T with strength k. Let T' be the subtree of T that we get
by removing all the leaves of T together with the edges incident
upon these leaves.

We consider the edge h of T with (h) = m. There are two
cases.

Case 1. Assume that h € E(T"). So, suppose that h = aga1.

19



We can assume that 8(ag) = n — 1 and 6(a,) = 0°. Then all the
labels from O to k appear among 6(a;) (¢ > 1). Therefore, aga;
get all the edge labels from m — k to m.

Suppose by symmetry that 8(az) = n — 2. We must have

f(a;) = k. Let j be the largest positive integer such that
f(aze) # j for any 1 < a < l;. Assume then, without loss
of generality, that 0(a3;) = j. We know that 8(a3) < k — 1.
Therefore, 8(azas;) = 0(az) —0(az) > j—(k—-1)=j5—-k+1,
which is a contradiction, since a vertex with the label 7 + 1
appears among the neighbors of as.
Case 2. We now assume that h € E(T)\E(T'). Suppose
that h = yz, where y is a leaf. Assume that 6(y) = m and
6(z) = 0*. Consider the tree T" with V(T") = V(T)\{y} and
E(T") = E(T)\{yz}. Then the labeling 6" defined on V(T") by
6" (v) = 6(v) is obviously a strongly graceful labeling of T" with
the same strength k as the strength of 8. By the minimality of
T, T” must be a caterpillar; also, z = a; for some ¢ < p. We can
get a strongly graceful labeling of T” where z is labeled n — 25.
But then we can obtain still a new tree T"” similarly as we ob-
tained 7" from T, which leads us to a strongly graceful labeling
of that tree with ag labeled 0, which contradicts Lemma 1.9.

Thus the proof is complete.

1.2 Some constructions.

All the papers surveyed in this section are characterized by
building a larger graceful tree (or a family of graceful trees)
using other graceful (and/or strongly graceful) trees.

3We are running a little bit ahead here. That this assumption does not lead to loss of
generality will be proved in the next Section, see Lemma 2.1.

4See the preceding footnote.

5See the preceding footnote.
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We proceed in chronological order. Some of the results de-
scribed below are proper generalizations of the constructions
described earlier in the section, by which their authors were in-
spired.

We preface the main discussion of this section by several use-
ful lemmas which we will also use in other sections.

Lemma 2.1. (see [30]) Let T be a graceful tree on n vertices
and let 6 be a graceful labeling of T. Then the labeling 8 defined
by 6(v) = n — 1 — 0(v) for every v € V(T) is also graceful. If 9
has strength k, then @ has the same strength.

Proof. It is easy to see that 8(V(T)) = 6(V(T)) and that
for all edges uv of T we have 8(uv) = 8(uv).

Lemma 2.2. (see [30]) Let T be a strongly graceful tree and
let 8 be a labeling for T with strength k. Then the labeling 6
defined by

s v | k—0(v) if 6(v) <k,
o(v) = { n—(8(v) — k) if 8(v) > k

for every v € V(T') also has strength k.
Proof. It is easy to see that 6(V(T)) = 6(V(T)) and that
for all edges uv of T we have 6O(uv) = n — 0(uv).

Remark: The labeling 0 is called the complementary labeling
for 6. The labeling 6 is called the reverse labeling for . In the

®The notation introduced in the two lemmas is kept throughout this part of the thesis;
so, § and @ will stand for the complementary labeling and the reverse labeling for 8
respectively.
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proof of Lemma 2.2, we define 8 by taking the “complementary”
labeling in each of the independent sets of our tree.

The following observation is due to D.Sheppard, in 1976.

Lemma 2.3. (see [32]) Let T be a strongly graceful tree. If
6 is a labeling for T with strength k and uv € E(T) is the edge
with 8(uv) = 1, then k = min{0(u),0(v)}.

1.2.1 The “Canonical Amalgamation” construction.

One of the first constructions was due to C. Huang, A. Kotzig
and A. Rosa.

Theorem 2.4. (see [20]) Let Ty and T> be graceful trees
and let 6; and 0, be their respective graceful labelings. Let
v} € V(T1) and v; € V(T3) be such that 8;(v}) = 62(v3) = 0. If
0> has strength k, then the tree T obtained from 77 and T» by
identifying v] and vj is graceful. If, in addition, 6, has strength
k', then 0 has strength k' + k.

Proof. We define a labeling # on V(T') as follows. For a vertex
v € V(T), let 6 be determined by

0,(v) + k if ve V(TY),
(v) = { 6y(v) if v € V(T3) and 62(v) < k,
0,(v) + |V(T)| - 1 if v € V(T3) and 05(v) > k.

First we show that 6(vi) = 6(v3). We have:
O(vy) =61(v}) +k=0+k=k

and .
O(v3) = 02(v3) =k —02(v3) =k —-0=k.

Also, 8 is trivially a labeling for T and edges of T} keep their
original labels while labels of T; grow by |V (T1)|—1, which means
that edges of T get all the labels from 1 to |V (T})| + |V (T2)| — 1.
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Suppose now that 6; has strength k’. Note that the set of
edge labels of T) is not changed by our construction. Hence
the edge labeled 1 stays in 7}. By Lemma 2.3 and since all the
vertex labels of T} are raised by k, the proof is complete.

The construction in Theorem 2.4 is called the Canonical
Amalgamation construction.”

Let us give another very useful construction which is very
similar to the one just described and has the same preconditions.

Theorem 2.5.8 Let T} and T, be graceful trees and let 6,
and 8, be their respective graceful labelings. Let v € V(T1) and’
vy € V(T») be such that 6,(vy) = 62(v3) = 0. If 6, has strength
k, then the tree T obtained from T} and 7> by adding the edge
viv} is graceful. If, in addition, 6; in the above theorem has
strength k’, then 6 has strength ¥’ + k + 1.
Proof. We define a labeling 8 on V(T) as follows. For a vertex
v € V(T), let 0 be determined by

?l(v)+k+l if v e V(Th),
0(v) = { 62(v) if v € V(T3) and 6>(v) <k,
6x(v) + |V (Th)| if v € V(T3) and 62(v) > k.

@ is trivially a labeling. Edges of T; keep labels
1,2,..., IV(Tl)l -1 AlSO,

O(vivy) = (B:1(v]) +k+1) —6y(v)
= [V(T)l-1+k+1-k
= V()|

"The term comes from [7].

8This result is mentioned in [7], but we have not seen it stated explicitly in any of the
early papers.
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Finally, we increased labels of all the edges of T> by |V (T})|. So,
0 is graceful.

The case where 6; has strength k£’ can be handled as in The-
orem 2.4.

Ezample: Consider the trees T} and T with labelings as fol-
lows:

(T1,01) : 5

The complementary labeling for 6, and the reverse labeling for
0> are as follows:
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(Tl,al) . 1

(T3, 6,)

This is strongly graceful with £ = 3
(recall Lemma 2.3)

From Theorem 2.4 we get:

(T,6) : 8

25



From Theorem 2.5 we get:

(T,0):

Figure 1.2.1: Examples of amalgamation-like constructions.

The next result is not used anywhere else in this section, but
its usefulness will be justified in the next one, where it will be
used to prove that all “banana trees” are graceful.

Theorem 2.6. (see [8]) Let T} and T3 be graceful trees and
let 6, and 6, be their respective graceful labelings. Suppose that
0, has strength k. Consider the disjoint union of T} and T and
define a labeling 6 on this union as follows:

01(‘0) +k+1 ifve V(T]),
O(v) = { 62(v) if v € V(T3) and 62(v) <k,
6:(v) + |V(Th)] if v € V(T3) and 02(v) > k.
Then the tree T obtained from the union of T; and T; by adding
an edge between any vertices u € V(T}) and v € V(T3) with
|8(u) — 8(v)| = |V(T1)| is graceful. Suppose in addition that 6,
has strength k’. If 6;(v) < k and 6,(u) > k', or 62(v) > k and
6,(u) < k', then the resulting labeling has strength k' + k + 1.

Proof. The argument is similar to that in the proof of
Theorem 2.5. We omit the details.
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Remark: This theorem generalizes Theorem 2.5. It produces
more graceful trees.

FEzample: Consider the trees Ty and T> with labelings as fol-
lows:

(T, 0h): 5

~
&3
S
S’
Ce
e
We
Ne

< .
0 6 1

- -~

e e - - -

Figure 1.2.2: Another amalgamation-like construction.

Pick any (one) dashed connection to get a gracefully labeled
tree. We see that one of those connections has the center vertex
of Ty (which is a path on 5 vertices) as its end-point. This
connection cannot be obtained via Theorem 2.5. In the next
section, we will prove that the center vertex of the path on 5
vertices cannot be assigned the label 0 in any strongly graceful
labeling.
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1.2.2 The “Garland” construction.

The following construction® is due to K.M. Koh, D.G. Rogers
and T.Tan.

Assume that T is a graceful tree on n vertices and 8 is its
graceful labeling. Let w € V(T) be such that 8(w) = n — 1.
For any positive integer p, we will use p isomorphic copies of T
to construct a larger graceful tree T*. Denote the copies of T
by Ty, Ty, . .. ,Tp. Also, let w; be the vertex corresponding to w
in T;, where ¢ is from 1 to p. We construct T* by taking a new
vertex, call it wp, and making it adjacent to all of wy, ws, ... ,w,.

Ezample: Let n = 7 and p = 4. Let the graceful tree T be as
follows:

The following is the corresponding tree T together with its

graceful labeling, which is obtained according to the proof of
Theorem 2.7.

9This and the next constructions were not given names in the original sources. The
names here are given by us for convenience.
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25 24 18 17 n 10 4 3

Figure 1.2.3: Example of the garland construction.

Theorem 2.7.(see [25]) Let T be a tree on n vertices and let
6 be a graceful labeling of T with §(w) = n—1, where w € V(T).
Then for each integer p > 1 there exists a graceful labeling 6*
for the tree T* as described above, such that *(wp) = pn.
Proof. Let p be given. We define 6* as follows. Let *(wo) = pn.
Further, let v be a vertex of T and let v;!° be its image in the
copy T; of T, where 1 < i < p. Set

6 (v;) = in—1-0(v) if dist(v, w) is even,
Y7l (p+1—-d)n—1-6(v) if dist(v,w) is odd.

We first verify that 8* is a labeling. The range is easily seen to
be from O to pn. Assume to the contrary that 6*(u;) = 6*(v;),
where either u # v or ¢ # j (or both). The definition of 6*
implies that 6*(u;) = 6(u)(mod n) and 6*(v;) = 6(v)(mod n).
Therefore u # v is ruled out. However, ©v = v leads us to
conclusion that either both dist(u,w) and dist(v,w) are even
or both of them are odd, which easily implies ¢ = j. So, 6* is
shown to be a labeling.

We now verify that 6* is graceful. We see that edges wow;
get labels that are multiples of n.

19Unless specified otherwise, v; will have this meaning throughout the proof.
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Consider the copies T; and T of T, where ¢ + j = p+ 1 and
2i < p— 1. Let uv be an edge in T such that dist(u,w) is even.
We claim that either

6* (u;v;) = (p+i—2i)n+0(uv) and 0*(u;jv;) = (p+i—2t)n—0(uv),
or '
0*(u;v;) = (p+i—2i)n—0(uv) and 0*(u;v;) = (p+i—2i)n+6(uv).
We have:
0°(wivi) = 10%(wi) — 0% (vs)|
lin —1-6(u)] - [(p+1-i)n—-1-6(v)]|

|(2¢ — p— 1)n + 68(v) — O(u)|
= |(p—2i+ 1)n+ 6(u) — 6(v)|

and

0" (ujv;) = |(2(p—i+1)—p—1)n+6(v) —6(u)|
= |(p—2i + 1)n + 6(v) — O(u)|.

Our claim follows from the two possible cases:
f(v) > 0(u) and 6(u) > 6(v).
Hence, the edges of T; and T; get labels
(p—2i+1)ntl,(p—2i+1)nt2,... ,(p—-2i+1)nt(n—1),

which makes it easy to see that 6* is graceful. The proof is
complete.
]

1.2.3 The “Attachment” construction.

The same authors are responsible for the following construction.
Again, let p be a positive integer and Th, T3, ... ,T, be isomor-
phic copies of a graceful tree T on n vertices. Let 8 be a graceful
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labeling of T and let w be a vertex of T with f(w) = n — 1. Let
wy, ws, . .. ,wp be the vertices corresponding to w in respective
copies of T. We construct the tree T* by simply identifying ver-
tices wy, wo, ... ,wp, thus making them one vertex (call it wyg)
in T*. By the following theorem, K.M. Koh, D.G. Rogers, and
T.Tan assert that the resulting tree T is graceful if the original
tree and its graceful labeling satisfy a special condition.
Theorem 2.8.(see [26]) Let T be a graceful tree and 6 be
its graceful labeling. Let w be a vertex in T with 8(w) =n — 1.
If {8(v)lv € N(w)} C {0} U {(n — 1) — 0(v)|v € N(w)} (where
N(w) is the neighborhood of w in T'), then there exists a graceful
labeling 6* on T™.
Proof. We define a labeling 8* on T* as follows. First set
6*(wp) = p(n — 1). Again, let v be a vertex of T and let v; be
its image in the copy T; of T, where 1 <7 < p. Set

9 (v:) — (p—1i)(n — 1)+ 6(v) if dist(v,w) is even,
(ve) = { (= 1)(n — 1) + 6(v) if dist(v,w) is odd.

The technique used in the proof of Theorem 2.7 can be ap-
plied again to show that 8* is a labeling.

We form two sets: I - the set of labels of the edges of T*
incident upon wyp, J - the set of labels of all edges of T* whose
endpoints are distinct from wy.

The labels in I are in the same residue class modulo n — 1
as the corresponding labels of T'. Also, the labels in J are cal-
culated as in the proof of Theorem 2.7. It follows that if the
prerequisite of the theorem is satisfied then 6* is graceful.

Note that the last theorem properly generalizes the construc-
tion of Theorem 2.7. To demonstrate that, we will use the
last theorem to build the tree as we built in the example for
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Theorem 2.7. Let us take the tree T from that example and
consider its complementary labeling. We then append an edge
to the vertex numbered 0 using Theorem 2.5. The resulting tree
is as follows:

Figure 1.2.4: A sample tree to see that the attachment
construction generalizes the garland construction.

We use the new tree as the initial tree T for the last theorem,
since this tree trivially satisfies the condition of theorem (the
only vertex adjacent to the vertex marked n — 1 is labeled 0).
So, we can take 4 copies of our tree and glue them at w. Thus
we get the exact construction of the example for Theorem 2.7.

1.2.4 The A-construction.

This is yet another construction of K.M. Koh, D.G. Rogers,
and T.Tan. Unlike the two described earlier, this construction
uses two graceful trees to construct a larger graceful tree. The
construction goes as follows. Let T and T?® be two graceful
trees with n; and ny vertices respectively. Choose arbitrarily a
vertex v* of T@. Let T}, Tb, . . . , T,, be isomorphic copies of T@,
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Let {w;,ws, ... ,wy, } be the set of vertices of T(M . We construct
the new tree denoted by TWAT®@ as follows. Take 7)) and to
each w; attach T; by identifying the vertex corresponding to v*
in T; with w;.

As an example of such a construction consider the trees 7'(!)
and T® as follows:

un 2
T) . wy W1 T) .
Vigy g

Our next theorem guarantees that the following tree is grace-
ful (the tree is drawn with the labeling provided in the proof of
the theorem).

14=0‘(w1)
7 x
2=0(w2) 161 8 = 0°(w4)
. 29 1 } 3
26 =8(ws) 9892 0=0%(ws) 92N
U 1 D
/ 1 U]
24 18 19

Figure 1.2.5: Example of the A-construction.
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Theorem 2.9. (see [26]) Let T(V and T? be graceful trees
with n; and ny vertices respectively; also, let 8, and 6, be their
respective graceful labelings. Then there exists a graceful label-
ing 6* of the tree T AT?) as described above.

Proof. We define 6* as follows. Let v; be the image of some
vertex v € V(T?) in T;, where ¢ ranges from 1 to n,. Then we
set

6" (v;) = { 6y (w;)ns + 02(v) if dist(v,v*) is even
' (mq — 61(w;i) — 1)ng + 02(v) if dist(v,v*) is odd
Once this labeling is found, all we have to do is to verify that
it works. Namely, the labelling 6, is used to label w;’s so that
0*(w;) = 62(v*)(mod ny) for all i. All the edge labels from 1
to nyny — 1 are split into groups of consecutive labels and those
groups are assigned to the edges of the copies of T in the
manner that we are familiar with from Theorem 2.7.

Corollary 2.10. In the setting of the theorem, suppose that
w; and w; are two distinct vertices of T(! that form an edge.
Let v be any vertex of T® and let v; and v; be the images of
v in the corresponding copies of T(®). Then it is straightforward
to check that |0*(v;) — 6*(v;)| = |6* (wi) — 6" (wj)|.

Corollary 2.11. If w; and w; are two distinct vertices of TV
that form an edge, then '0*(w;) — 0*(w;)| = no|01(w;) — 61(w;)]-

1.2.5 The generalized A-construction.

This construction, as well as the next one, is a logical continua-
tion of the constructions described above. It is due to M. Burzio
and G. Ferrarese (see [6]). Using Corollary 2.10, we modify the
A-construction by allowing the copies of T® corresponding to
adjacent vertices of T(1) to be connected by any (one) edge whose
end points are copies of the same vertex of T(?.
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1.2.6 The A,;-construction.

Unlike the two previous constructions, where all the vertices of
one tree had to be substituted by a copy of the other tree, the
construction being presented allows one special vertex of T(V) to
remain itself.

We have two graceful trees T(!)) and T® with graceful label-
ings 6, and 5 respectively. Let v* be a fixed vertex in T and
V(TW) = {wy,ws,...,wy,,} be the vertex set of T() (also, T
has ny vertices). Let w € V(T(W) with 6;(w) = n; — 1 and
consider the disjoint union of trees T — 411

The authors of [6] came up with the generalized

A-construction for this case, which looks as follows. Let v and v

be vertices of T with 92(1<J) = 0 and 92(1>)) = ny — 1. We define
a labeling 8 on T® as follows: for v € V(T?) we set

6(v) = O2(v) if dist(g, v*) is even,
Bx(v) if dist(g, v*) is odd.

Since v is necessarily an edge in T® (recall Lemma 1.4),
dist(1<1, v*) and dist(1>), v*) always have different parity. Also, the
above labeling is graceful for T7® by Lemma 2.1.

Although the A-construction is formally defined for two trees,
we can apply it in the obvious way to T() — w and T®
to obtain a disjoint union of trees with (n; — 1)ne vertices:
G = (TW — w)AT®. Recall that by Theorem 2.9 a labeling of
this union is defined by

6 (v;) = 01(w;)ng + 02(v) ) if dist(v, v*) is even,
v (ny — 01(w,-) - 2)112 + 92(’0) if dist(v, v‘) is odd,

where v; is the copy of v € V(T®?) in the i** copy of T?.

1This short and intuitive notation means that we consider all the vertices in
V(T)\{w} and all the edges {uv : uv € E(T")) and u,v € V(TW)\{w}.
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It follows from Theorem 2.9 and from Corollary 2.11 that
with this labeling the edges of G get all the different labels from
1 to na(n;—1)—1 except the labels n3|6; (w) —6; (wy; )|, where wy,
are the neighbors of w in T()). Therefore, we build G into a tree
as follows. Let 'l<)k and Zk be the copies of v and v respectively
in the k** copy of T®). We add a vertex u to the vertex set of
G and make this new vertex adjacent to 1<)k if # = 0, and we
make this vertex adjacent to t>)k otherwise. The resulting graph
is clearly a tree. We denote this tree by TMA ,T@).

Theorem 2.12. (see [6]) The mapping 6., defined by
0+1(v) = 6*(v) for each v in G and 0,4(u) = (n; — 1)ns is a
graceful labeling for TVA ,,T?).

Proof. We merely compute that 6,,(u 1<)k) = ny|6) (w) — Oy (wi)]

in the case 8 = 0, and 6., (u 'I>Jk) = ny|0)(w) — 6,(wi)| otherwise,
which completes the proof.

The following special case is remarkable from two points of
view. First, it applies the construction from two graceful trees
to modify a given graceful tree. Second, it is one of the very few
results that allows a given graceful tree to grow while preserving
gracefulness.

Theorem 2.13. (see [6]) The subdivision graph of a graceful
tree is graceful.
Proof. Let T(!) be the original graceful tree and let T® be
the tree consisting of two vertices and the edge between them.
Naturally (recall the construction above), one of the vertices of

T® is named 1<1, while the other one is named v. Fix v* =v
and obtain the tree T(WA,;T®, which represents the subdivi-
sion graph of T() and, hence, of the original tree, and which is
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graceful by Theorem 2.12 and the generalized A-construction.

1.2.7 A construction using the matrix representation
of graceful and strongly graceful trees.

The construction that we are going to present in this section is
due to Thom Grace (see [18]). This construction, in some sense,
fills a blank space. Namely, one of the most commonly used
and most efficient tools of describing any kind of a graph (and a
tree, in particular) is the adjacency matrix. Yet, there are very
few (if any except this one) results in the area of graceful graphs
that use the adjacency matrix for their construction or to prove
results about gracefulness.

We will start with an observation, which is obvious from the
definitions, but is very useful nevertheless.

Theorem 2.14. Let T be a tree on n vertices. T is graceful
if and only if there is a labeling 6 of vertices of T such that each
diagonal? (except the principal one) of the adjacency matrix A
of T under this labeling contains exactly one 1. Also, if such
labeling 6 has strength k, then the adjacency matrix A under 6
can be represented as follows:

0 X
= (%)
where X is a (k + 1) x (n — k — 1) submatrix.

It is now easy to describe the construction by Thom Grace.
Let T be a graceful tree and let 8 be a graceful labeling for
T. Let V(T) = {vo,v1,-.- ,Un-1} be the set of vertices of T

12Here and everywhere further in this section, when we say “diagonal,” we mean “down
diagonal.”
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and assume for simplicity that we assign names to vertices so
that 8(v;) = ¢. Let Ty, Th,...,Th—1 be strongly graceful trees
with same number of vertices (but not necessarily the number of
vertices in T'). Furthermore, let 89,6, . .. ,0,_; be the respective
labelings for the trees above with the same strength, say k. We
construct a tree T* by attaching to the vertex v; of T' the vertex
u of T; with 6;(u) = |V(T;)| — 1, where ¢ ranges from 1 to n.
Theorem 2.15. (see [18]) The tree T* built as constructed
above is graceful.
Proof. Consider the following permutation of numbers from 1

to n'3: 11 e s
(i) = { (in -1) - |5 if i is odd,
5—1 if 7 is even
fori=1,2,...,n.
Let A; be the adjacency matrix for T;. Let X; be the subma-
trix for A; as described in Theorem 2.14. We set

Y = Xr) ifiis odd
t X?;(i) if 1 is even,

where ¢ runs from 1 to n. We aim to construct an adjacency
matrix A* of T* which contains exactly one 1 on each diagonal
except the principle one. That would be sufficient by Theorem
2.14.

We start out by putting Y;’s into M starting from the upper
right corner.

We consider an example.

13This very important point is not pronounced in the original paper. Therefore, We
consider it important to emphasize it here.
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T1=T3I

T0=T2:, - A0=A2= B 1

) 1
1| 1

Figure 1.2.6: Trees to demonstrate the construction that uses
the matrix representation.

In our example, k = 2 (recall Lemma 2.3) and n = 4. There-
fore, we have: Y} = X3, Y2 = X7, Y3 = X,, Yy = XF. This
takes care for the right upper part of the adjacency matrix of
the resulting tree. Also, Yz = X7, Y7 = Xo, Y5 = XT Ys =Xy

So, after we put all the Y;’s, we get the following matrix:
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01 23 4 56 7 8 9 1011 1213 14 1516 17 1819

LA LS L]
) ) ' |
1 L A
' ] ' '
' ' ) d 1
T T L] T
t ' ] ' N
: ' 1] 1
' ' ' [
' ' [ 1 1 \] ¢ et
J oy Ly
e R S B P S R Y e - = - - - - - -—— - -
. S .
' [ 1 '
' . ] d v |
T s T T v o
' iy ] J '
'Y ¥ 2 l n' 1
' | ] ' T .
1 s ' l ] '
T 2 L] L] LE
1 2 B 1 ' 1 | o°
1 Brd L 1
08
0 i e Bt .. I s B i A1-tH4--Peg--F-1--[-{®]*°
¥ ¥ —
* ' [} 2N ] 1
A = I |l . 2 1 o
] [ ' [ =S
[ B | [ [
T L T 1]
' [} ' [ -
hY 2 l -l 2 1 Lad
A ' [} ' [
AN i 1 [ ' v |
L4 T L
- - rF - F-{ef-4--F-{--BR--F-{--F-[®=
Iy I
\\ ' ] ] ' —
il ] ' [ RV
] v ) L] —
111 [ ' s
1 1 1 . L
\ 1 [ ) ' e ' —
y ' ] ' 'S5y 1
LE LS LI ~:vk. L] —
' [ ' e I
! 1 " N D ?. oo
141-tF44--} -=b-d--}F-4 L - 4--}+-4--} R RN R W vy

Figure 1.2.7: Obtaining the adjacency matrix of a bigger
graceful tree.

It is clear that every diagonal except the main one and the
ones marked by lines contain exactly one 1. Thus we only have
to put a 1 to each of the marked diagonals. We have to do it in
a manner that preserves the edges of T'.

So, we look at the points of intersection of columns contain-
ing the last columns of each Y; for odd ¢ and rows containing
the last rows of each Y; for even i. Those rows and columns are
drawn as dashed lines on the above picture. The points of inter-
section are drawn as filled circles and squares. Now, if we look
at these points as correspondent to the positions in A, then, by
putting 1’s to repeat the pattern in A, we complete A*. For our
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example, we put 1’s corresponding to the pairs: (4,19), (9,19)
and (14, 19).
Here is the resulting tree for our example:

Figure 1.2.8: A graceful tree obtained with the construction
that uses the adjacency matrix.

The labeling that we have got is a graceful labeling of the
announced tree T, thus the proof is complete.

1.2.8 A further example.

Consider the following tree on n = 19 vertices.

4 r

Figure 1.2.9: A tree of diameter 5.
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We would like to obtain a graceful labeling of this tree. We
note that the tree can be regarded as two trees joined by an edge
(the long horizontal edge on the picture). We will refer to these
subtrees as left and right. The left one has n; = 10 vertices and
the right one has n» = 9 vertices. We also fix their roots: r; and
ro respectively.

The right subtree is strongly graceful as a caterpillar by The-
orem 1.10. The left subtree has diameter 4 and it is not a cater-
pillar; hence it is not strongly graceful by Theorem 1.12.

We will show that we cannot get a graceful labeling of our
tree by Theorem 2.6 using its left and right subtrees.

We claim that the root of the left subtree cannot be labeled
3 in any graceful labeling of that subtree.

Assume to the contrary that we can label r; with 3 and com-
plete a graceful labeling. Then since we have to get edge-labels
8 and 9, the placement of the vertex-labels 0, 1 and 9 is forced
as follows.

0 1

Figure 1.2.10: Illustration of the proof of a property of all
graceful labelings of the left subtree of the tree in Figure 1.2.9.

However, there is no way we can get the edge-label 7 now.
Thus the contradiction is obtained and the statement of our
claim is verified.
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As an exhaustive computer search showed!!, the only graceful
labelings of the right subtree are as follows.

[~
(B ]
IS
w
-}
—
w
v
9
&
~

-
~
oo
~
w
b=
-

$a

[~
(V3]
w
~

-
~
w
w
-3
~
-

2 3 5 6 7

Figure 1.2.11: Graceful labelings of the right subtree of the
tree in Figure 1.2.9.

The labelings marked with “X” are not strongly graceful.
Thus we can have r; labeled either 3 or 5 in a strongly graceful
labeling. The corresponding strengths (recall Lemma 2.3) are
k=6and k = 1.

Now, if we try to build our big tree using Theorem 2.6, then
the vertex r2 will be labeled in the resulting tree with either 3
or 5 + n;, that is, it will be labeled either 3 or 15. We need
to connect the two subtrees with the edge labeled n,, that is,

" The code is available from www.cs.ualberta.ca/~goldenbe
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with the edge labeled 10. Therefore, r; has to be labeled either
13 or 5. Now, let the original label of r; in the left subtree
be 6;(r;). Then either 13 = 6,(r1) + k + 1, where k = 6, or

= 0,(r1) + k+ 1, where k = 1. One leads to 6y(r1) = 6; the
other leads to 6,(r;) = 3. Both are impossible.

This finishes the proof that we cannot get our tree by Theo-
rem 2.6.

Using a heuristic computer search, the following labeling of
our tree on 19 vertices was obtained.

2 35 6 1 4 7 11 8 15 12 9
Figure 1.2.12: A graceful labeling for the tree in Figure 1.2.9.

Besides gracefulness, the above labeling has two nice proper-
ties:

(i) The “center edge” has the maximal edge-label. Such a
labeling is called m-edge-centered (the term is introduced in [7-

(i) The edges of the right subtree have all the labels from 1

to 8; the edges of the left subtree have all the labels from 9 to
17.

It would be interesting to find conditions for two graceful

trees such that some construction would give us a labeling with
property (ii). Such a construction may lead to some new results.
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1.3 Assigning particular labels and some well
characterized classes of graceful trees.

In this section, we will survey some attempts to answer the
question: “Given a tree, where can we assign a particular label so
that it is possible to extend it into a graceful labeling?” We will
show that answering this question can help us establish results
on gracefulness. Also, some well known results about specific
classes of graceful trees are described.

A remarkable result on this topic is due to Aleksander Rosa.

Theorem 3.1. (see [30]) Let T be a path on n vertices. Let
v be any fixed vertex of T If n # 5, then there exists a strongly
graceful labeling 0 of T with 6(v) = 0.

Proof.
Let m = n—1 be the number of edges in T'. Also, let us denote
the vertices of T' by vy, v, . .. , vn, so v;v;4 are the edges, where

t ranges from 1 to m.

We first show that if 8 is a labeling of T' with strength k, then
the following two statements hold:

(i) If m is even (say, m = 2q), then either 8(v,) < ¢ and
O(v,) < q, or 8(v1) > q and 6(v,) > q. In this case, either
6(v1)+6(v,) = qand g = k, or 8(v1) +60(v,) =3gand g =k —1,
respectively.

(ii) If m is odd (say, m = 2¢q—1), then §(v;) < g and 8(v,) > ¢
or visa versa and k = ¢ — 1; in this case, 6(v,;) — 6(v1) = q or
0(v1) — 0(v,) = q respectively.

Assume for now that 8(v,) and 6(v,) are less than k. Then
let us consider the set X of all vertices of T such that for every
z € X we have f(z) > ¢q and the set Y containing all the rest
vertices except v, and v,.
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Y

Figure 1.3.1: Making use of independent sets of a path.

Then by the definition of graceful labeling we have the fol-
lowing system of equations:

{ S eex 0(2) + ey ) +6(v1) +0(va) =0+ 1+2+...+m
2) ex 0(z) - 2zer 0(y) —O(v1) —O(vn) =1+2+...+m

After multiplying the first equation by 2 and adding the re-
sulting equation to the second one, we have:

B(v)) +0(va) =3D _i—4)_ 6(x)
i=1 zeX
Since 8(X) = {q + 1,9 + 2,...,2q}, we get that
6(vy) + 0(v,) = q, which is exactly what we wanted to show.
If 8(v,) and 8(v,,) are greater than or equal to k, the argument

is essentially the same. This completes the proof of (i). The
proof of (ii) is similar.

We now prove the theorem. Denote the edge v;v;4+1 by e;. We
denote a strongly graceful labeling of T by &, if 6} (e;) =n — 1.
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Assume for now that m is odd, so m = 2¢—1. Then taking in
consideration the symmetry of a path with respect to its center
edge and the complementary labeling introduced in Section 1.2,
it is enough to show the following statement.

(iii) Strongly graceful labelings 6},63 ... ,09! exist if q is
even and that 8} ,63 ... 69-2 69-! exist if q is odd.

We will use simultaneous induction on ¢ to prove this and
the following statement.

(iv) For every pair of positive integers whose difference is ¢
there exists a strongly graceful labeling of T' such that the end
vertices of T get those two numbers as labels.

We first assert that (iii) and (iv) hold true for ¢ = 1,2,3. We
will only consider g = 3.

For (iii), the following diagram exhibits the labelings 6}.

0 5 l 4 2 3
. ® L g 2 - ®

For (iv), 0 and 3 are the labels of the end-vertices of 8}. By
Lemma 2.1, the complementary labeling puts 2 and 5 on the
end-vertices: Finally, 1 and 4 are the labels of the end-vertices
in the following diagram:

Figure 1.3.2: Justification of existence of certain graceful
labelings for Fs.

Now, we perform the induction step. So, assume that the two

statements hold for ¢ — 1. Rosa gives the following explicit way
to obtain 03;_11:
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g — 1 edges q — 2 edges
2 n-2 1 n-10 n q—l?; q—2q+lq—3‘-

Figure 1.3.3: A strongly graceful labeling of P, with
(g — 1)* edge labeled m, for even g greater than 3.

Note that strength of the labeling in Figure 1.3.3 is ¢ — 1
(recall Lemma 2.3). The reverse labeling leads to 67,.

Taking this into account, we only have to prove tlllat there
exist strongly graceful labelings 0%,,_1,0%‘,_1, - ,9;2,[’%21_1—1. So,
we choose an odd number s between 1 and [9—;—1_[ —1 (say, s = 2t—
1) and find 63, _, corresponding to this number. By (iv), we know
that for a path on 2q — 2t vertices (call them wy, ws, . . . , waq-2:;
the edges are w;wis;) there exists a strongly graceful labeling
(call it 8;) with 6;(w1) = ¢ — 1, 61(wyg-2¢) =t — 1, and strength
q — t. We easily obtain the desired strongly graceful labeling of
the path on 2¢ — 1 edges by Theorem 2.6:

2t — 1 edges 2q — 2t — 1 edges

qH—1 gt qrt-2q-t+l ¢+l ¢2 q g-lgr2t-1 t-1
*——eo—o—o *—o——0o—0—0—0—0 —0—9

Figure 1.3.4: A strongly graceful labeling of P>, with the
desired (but not (g — 1)**) odd-positioned edge labeled m, for ¢
greater than 3.
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The picture above clearly gives us the labeling where the sth
edge is formed by vertices with labels ¢ and ¢ — 1. Hence it
suffices to consider the edge complementary labeling to finish
the proof for (iii) (assuming that (iv) holds). So, we are only
left to finish the inductive proof for (iv). However, (iv) follows
from (g +t — 1) — (¢t — 1) = q. Since s was arbitrary, g+¢t—1 and
t — 1 represent all conceivable pairs of numbers whose difference
is q.

If m is even, the argument is essentially the same.

Corollary 3.2. The only graceful labeling (up to symmetry)
of the path on 5 vertices with the center vertex labeled 0 was
shown in the proof of Lemma 1.9. Therefore, any vertex of any
path may be assigned the label 0 under some graceful labeling.

Remark. For the sake of being complete here, we have to say
that the only other paper that we found dealing with graceful
labelings of paths is [13]. The authors of that paper came up
with a method to enumerate all the graceful labelings of a given
path, such that the end vertex is labeled 1. They also came up
with a simple recursion for the number of such labelings.

We are in the position now to demonstrate how knowledge
about labeling of particular vertices is applicable to resolve the
question of gracefulness for some classes of trees.

The gracefulness of trees with maximum vertex degree 3 is
still an open question. Following the spirit of the proof of the
above theorem, one might try to prove the result by induction.
Hence let us perform the base step of the induction by proving
that all trees with exactly one vertex of degree 3 are graceful.
This is equivalent to proving of the following theorem:
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Theorem 3.3. (see [20]) Any of the leaves can be labeled 0
in some graceful labeling of a tree with at most 3 leaves.
Proof. The only non-trivial case is when a tree has exactly 3
leaf-vertices. Such a tree looks as follows:

Up

(1

N

Figure 1.3.5: Canonical representation of a tree with at most
three leaves.

Let us utilize the result by Aleksander Rosa proved abovel!®.
We apply the theorem to the path connecting the leaf-vertices
w and z. By the theorem, this path can be assigned a graceful
labeling, call it @', such that the “center” vertex c of our tree
gets the label 0, that is, (c) = 0. Let the remaining tail have
p vertices: vy,vs, ... ,Vp and suppose that we want to label v,
with the label 0. We do it by labeling the path vy,v2,...,0p
strongly gracefully with strength k and v; labeled k + 1 (we can
achieve that by labeling v, with either 0 or p — 1 depending on
the parity of p). We complete the proof using Theorem 2.6 and
possibly Lemma 2.1.

]

15 After We came up with this application, we found out that it was published in [20].
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Corollary 3.4. A tree T with 3 end-vertices is strongly
graceful, unless the distance between every pair of leaves in this
tree is 5 (i.e. unless all the “tails” have length 2) .

Proof. The statement follows from theorems 3.1 and 3.3., and
from Corollary 3.2.
.

Let us follow the authors of [20] and explore the next logical
step — proving that all the trees with at most two vertices of
degree 3 are graceful. In fact, a stronger result is proved in the
paper.

Theorem 3.5. (see [20]) All trees with at most 4 end-vertices
are graceful.

Proof. Let T be a tree with exactly 4 end-vertices. There are
two possible cases.

(i) T has a vertex of degree 4. Then if at least one of the
tails of T has length not equal to 2, then we easily complete the
proof using the results that have already been discussed in this
section and Theorem 2.4. If all the tails have length 2, then we
provide a graceful labeling as follows:

TS
T4
o

®

- ® ®
2 6 3

~Ne

8

o]

Figure 1.3.6: Graceful labeling of an exceptional tree with at
most four leaves.
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(i) T has exactly 2 vertices of degree 3. The tree looks as
follows:

e N

Figure 1.3.7: Canonical representation of a tree with two
vertices of degree 3.

Now, if there is a tail (either incident upon w or incident
upon z) with length not equal to 2, then we can complete the
proof using the results that have been previously discussed in
this section and Theorem 2.4.

Otherwise, the matters are more complicated. The authors
of [20] came up with labelings depending on the equivalence
class modulo 4 to which m (the number of edges of T') belongs.
We give the pictorial representation for theses labelings below.
From left to right, k is a positive integer such that m = 4k,
m=4k+1, m=4k+2orm =4k + 3.
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2K %+2] 2%
k+1 2-1 2%+3 | 2k-1
k+2 2k-2 2%+4 | 2k-2
2K-3 2k+5 | 2k-3
2K-4e; 2k+6 | 2k-4

2k-5—; 2k+7 | 2k-5

Figure 1.3.8: Graceful labelings for the exceptional cases for
trees with at most four leaves.

This survey of important ideas in the area of the Graceful
Tree Conjecture would not be complete without showing some
classes of trees that were only recently proved to be graceful.
One of the most important and recent papers establishing such

results was written by Wen-Chin Chen, Hsueh-I Li and Yeong-
Nan Yeh.
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Theorem 2.6 of Section 2.1 will be our main tool for the rest
of this section.

Definition 3.6. Consider a tree T consisting of a distin-
guished vertez that is joined by an edge to a leaf of each of the
star trees Sy, Ss,...,5; for some fixed positive integer !, where

an i** star S; has exactly i — 1 edges. Then T is said to be a
banana tree.

This example shows a banana tree (with [ = 5) labeled grace-

fully with strength 4. The labeling is obtained as in the proof
of the next theorem.

Figure 1.3.9: Graceful labeling for the banana tree with 5
branches.

Theorem 3.7. (see [8]) All banana trees are strongly grace-
ful.
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Proof. We proceed by induction on I. On the ith step, we
will obtain a strongly graceful labeling for the case [ = 7, with
strength ¢ — 1, and the distinguished vertex labeled 0. For [ =1
the result is evident. Assume that the desired labeling is ob-
tained for l = — 1.

We use Theorem 2.6 to join the obtained strongly graceful
tree to the leaf of a gracefully labeled star tree with z — 1 edges
(with the center vertex labeled 0) that is labeled 1. In the re-
sulting tree, that vertex gets the label 1+ (¢ —2)+1 = 1. So, the
edge connecting the distinguished vertex with the mentioned leaf
gets the label ¢, which is exactly the number of vertices in our
star. Since the labeling we used for the star tree was strongly
graceful, by the last remark to Theorem 2.6, the obtained la-
beling of the resulting tree is strongly graceful with strength
0+ (i —2) + 1= (i — 1), which completes the proof.

A related class of graceful trees (see [28]) is the class of olive
trees.

Definition 3.8. An olive tree consists of a distinguished
vertex joined by an edge to an end vertex of each of the | paths
P, P, ..., P, where the i*® path has exactly ¢ — 1 edges.

Here is a class of trees, in which not every member is known
to be graceful.

Definition 3.9. A tree T is called a lobster if removal of all
its leaves leaves a caterpillar.

We already know that all paths are graceful. If we append
leaves to a given path, then the resulting tree is a caterpillar
and it is also graceful.

This already looks like an induction approach. The next step
would be to add leaves to the leaves of a given caterpillar, result-
ing in a lobster. If we can prove that all lobsters are graceful, it
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would serve as a basis for an inductive argument towards proving
the GTC.

For some reason, the conjecture that all lobsters are graceful
stands out (this is surprising because this conjecture was not in
place before the GTC was proposed). The conjecture was made
by Bermond in 1979 (see [3]) and was not proved or disproved
yet. Therefore, partial results are of interest.

As an example of a graceful subclass of lobsters, we give a
proof of gracefulness of the class of firecrackers, which was
defined in [8].

Definition 3.10. Consider a tree T comprised of a distin-
guished path, each of whose vertices is adjacent to the center
vertex of exactly cne star tree. Such a tree is called a firecracker-.

Theorem 3.11. (see [8]) All firecrackers are graceful.
Proof. Let T be a firecracker on n vertices. Let the path
component of T' consist of | — 1 edges w;w;41, where ¢ ranges
from 1 to / — 1. We consider 2 cases.

Case 1. | is even. We prove that there is a strongly grace-
ful labeling 6 of T with strength k, such that f(w;) = 1 and
0(w1) =k+2.

We proceed by induction on n. The following picture gives the
desired labeling for [ = 2.
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1 k+2

Figure 1.3.10: Graceful labeling for a firecracker with the
distinguished path of length 2.

Assume that we have the desired labeling for the casel = 1—2.
We obtain the labeling for the case | =i with the distinguished
path wyws ... w;. To do that, we split this firecracker into two,
one of which get vertices wy, we, ... ,wi-2 (and the attached star
trees), while the other one gets w;_\ and w;. By induction, we
know that the first firecracker admits a strongly graceful labeling
with w; labeled 1, and w;_2 labeled k + 2, where k; is the
strength of the labeling. Also, the second firecracker admits a
strongly graceful labeling with w;_; labeled 1, and w; labeled
ko +2, where kg is the strength of the labeling. We complete the
proof by joining the vertices v;_2 and v;_, using Theorem 2.6.
Case 2. |l is odd. We prove the gracefulness of our firecracker.
The case [ = 1 is trivial. If [ is greater than 1, then we split the
firecracker into two, such that one of the resulting firecrackers
has the parameter [ = 1 (the only vertex of its path is labeled 1
and the center vertex of its star component is labeled 0). Then
we completer the proof by applying the result of the first case
and Theorem 2.6.

n
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As an example, the following firecracker was gracefully la-
beled using the construction in the proof.

%'9 4 5 14 1!5 16 8 9 10 i1
4
l[ %0 12 2 6
1 18 3 13 7

Figure 1.3.11: A graceful firecracker on 20 vertices.

Although the next result that we cite here does not span a
class with infinite number of trees, it is still very important, since
it empirically justifies the GTC. By computation, the authors
of [1] were able to show that all trees on up to 27 vertices are
graceful.

1.4 The Transplant Lemma and related re-
sults.

In this section, we will examine a very powerful way to transform
a given tree with a graceful labeling into another tree while
preserving gracefulness.

1.4.1 The Transplant Lemma.

Lemma 4.1. (the Transplant Lemma, see [21]) Let T be a tree
and 0 be a graceful labeling for T. Also, let z, y, u, v be vertices
of T such that u, v are leaves and uz, vz are edges, where u
and v are not necessarily distinct. If 8(uz) = |0(v) — 6(y)| and
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f(vz) = |8(u) — 8(y)|, then we can obtain a new graceful tree T”
by replacing the edges uz, vz in T with the edges uy, vy. Then
0 is also a graceful labeling for T".

Proof. the set of vertices of T’ is same as the set of vertices
of T. So, 6 is a labeling for T". Also, the two constrains on 8
tell us that the set of edge labels will also be preserved by the
transformation. That is, uy will get the labels of vz and vy will
receive the label of uz in T. Thus 8 is a graceful labeling for 7".

Below is an example where u # v.

\r{ : UIOUu
5
¥ e 3 ®

Figure 1.4.1: Moving a pair of leaves using the Transplant
Lemma.

Below is an example where u = v.

Y T :
53
s ] 3

Figure 1.4.2: Moving a single leaf using the Transplant
Lemma.

= 1.}
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Remark. Note that we have either f(z) < 6(u) and
6(v) < 6(y), or 8(y) < 6(u) and 6(v) < 6(z).

A convenient way to check the hypothesis is given by the
following result.
Lemma 4.2. In the setting of Lemma 4.1.,

0(z) + 0(y) = 6(u) + 0(v).

Proof. Consider the case when 6(z) < 6(u), 8(v) < 6(y) (the
other case is similar). Then (uz) = |0(v) — 8(y)| means that

0(u) — 0(z) = 6(y) — 6(v) (*).
Similarly, from 6(vz) = |0(u) — 8(y)| means that
6(v) — 0(x) = 0(y) — O(u) (**).

By adding (*) and (**), we easily get the result. In particular,
if u = v, then we have 6(z) + 0(y) = 20(u).

In the following subsections we illustrate the power of the
Transplant Lemma.

1.4.2 Trees of diameter 4.

This subsection is devoted to a proof of the following result.

Theorem 4.3. (see [21]) Trees of diameter 4 are graceful'®.
Proof. As in the proof of Theorem 1.12, a tree of diameter 4 is
represented as follows.

16That all trees of diameter 4 are graceful was conjectured by A.Rosa in 1982 (see [29]).
C. Huang, A. Kotzig and A. Rosa (see [20]) proposed that settling this was a keystone in
proving the GTC. In 1989, the conjecture was finally proved by Zhao (see [36]). He gave
an explicit labeling for any given tree of diameter 4. The proof is entirely technical. The
proof presented here is due to Dejun Jin, Fanhong Meng and Jingong Wang (in Chinese,
see [21]).
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an

!

az2

ap+2 azl,

Figure 1.4.3: Canonical representation of a tree of diameter 4.

Here s is the number of leaf neighbors of the center vertex ag,
and p is the number of its non-leaf neighbors of ag. The degree
ofagisp+s.

Suppose we are given a tree T as above. We use the Trans-
plant Lemma to prove that T is graceful.

The general idea of the proof is to start from the n-star (where
n=|V(T)|,m=n-1= |E(T)])- It has a trivial graceful la-
beling # with the center vertex labeled 0. We then apply the
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Transplant Lemma several times until the given tree T is ob-
tained. The center vertex will serve as ag of T. The leaf labeled
n — 1 will serve as a;.

Whenever we move a vertex, the label goes with it. Instead
of saying “move the vertex with label £,” we simply say “move
label €.

Assume for now that the degree of ao is odd, i.e. that
p + s is odd. The reason for this will become clear later. Let
p+ s =2\ + 1. We consider three cases.

Let the degrees of ay,a2,... ,ap bely +1,lo+1,...,0,+1,
respectively.

Case 1. I}, 1a, ... 1, are odd.

From the n-star we apply the Transplant Lemma to move
from ag to a; the labels

,\+1,n—(A+2),A+2,n—(A+3),... A+kn—(A+k+1),

where k is the largest value for which A +k <n — (A+k+1).
Thus ap is left with exactly 2A +1 =p+s neighbors with
labels

n—11,n-2,2,n-3,... A,n—(A+1).

These vertices will serve as ay, @2, - .. ,Qp+s) respectively.

Next we move from a; to az the middle block of consecutive
labels:

h+1 h+1 h+1
A+—%—+1,A+—l—2—-+2,...,n—(/\+%-+1).

It is easy to see that the sum of the first and the last labels in
this block is n, which is equal to 1+(n—1). The same can be said
about any two labels taken symmetric about the middle of the
block. Thus the hypothesis of the Lemma 4.2 is satisfied. Also,
we had n — (2A+ 1) leaves with a,. After movingn — 2(A+ L‘%'l)
of them, we have exactly [; left with a;.
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Similar reasoning justifies moving the following labels from
as to ajz:

I +1 I +1 I +1
1E2 1+ "; 2o n—l- (At

In general, we move from ai t0 ak+1 the labels

A+

+1).

k k k
o P | - Ui o A
A izt +1,,\+-———————Z'-1 it 1+2,.,. ,n—(,\+——————§:“‘2”L 1+1)

2 2

for odd k. If k is even, we move instead

k k k
NP SLI Yimh Lo n_1-(A+ ISL 1).
2 2 2
Now, let us see why this works. Note that a,a2,...,ap are
labeled so that 6(a;) + 8(ai+1) are alternately n and n — 1. So,
when we move leaves from az to a3, the parity of the sum of the
moved pairs of labels is different from that of the pairs moved
from a, to a; and so on.
Suppose that n is even. Then since p + s is odd, the number
of leaves moved from ag to a; is even. Also, e is labeled (n — 1)
and a. is labeled 1; so, the sum of the labels of a; and a2 is
even. Hence we can move a consecutive block of an odd number
of leaves from a, to a; and leave the desired odd number of leaves
with a;. Now, the sum of the labels of a; and a3 is odd. So, we
can move an even number of leaves from a; to a3 and leave the
desired number of leaves with a3, and so on. The situation is
similar if n is odd.

Case 2. 1,1, ... ,l, are even.

We proceed as in Case 1. Start with the same n-star. and
move from ag to a; the labels

z\+1,n—(A+2),)\+2,n—(/\+3),... A+kn—A+k+1)
where k is the largest value for which A+ k <n — A+ k+1).
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Thus ag is left with exactly 2A+1 =p+s neighbors with
labels

n-11,n-22,n-3,... A,n—(A+1).

These vertices will serve as a1,a2,. .. ,Qp+s, respectively.
Now, we move leaves from a, to as. Note that now an even
number of leaves remain with a;. Move the labels

ll l[ n n l1+1
— A+ 242 .. . —=1,=+1,...,n—(A+——+1).
2+1, t5+203 L,5+L...,n (A+ 5 +1)

The labels that we move are not consecutive. Namely, we
leave the leaf with the label 5 (the middle one) with a;. It is
easy to see that the hypothesis of Lemma 1.2 is satisfied. Also,
as in the first case, exactly [} leaves remain with a,.

Now, we move the following labels from a3 to a3:

A+

I+ 1 L +1 n n I + 1
A o ==2 —41,...,n—1—(A .
A+ 2 ’ + 2 +1’ b 2 b 2+ ? ’n ( + 2 )
In general, we move from ax to ax+1 the labels
)\ 4 &is=lt g P ) L) Ay
+ 5 + 1,2+ 5 + 2, ' 5 5
n k+1 zk_ l;
A A 1= (N =il
5 gyl 1-(M+ > )
for odd k. If k is even, we move instead
Yk Yk n_k
A == A 1= 1,...,——=-—1,
+ 2 + 2 thee 2 2

n k YF Lk
— = .. — 1 — () + &=y,
2+2, n—1—(A+ 5 )

Let us see why this works.
Now, let us see why this works. Note that ay, az, - .. ,ap are
labeled so that 8(a;) + 0(ai+1) are alternately n and n — 1. So,
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when we move leaves from a3 to a3, the parity of the sum of the
moved pairs of labels is different from that of the pairs moved
from a; to as and so on.

We know that n is even. Since 8(ag) + 6(a1) = n — 1, we can
move the desired block with even number of labels from ag to
a;. Let these labels be o, +1,...,a + 23 — 1. We know that
8(a;) + 0(az) = n. Since a + (@ +28 —1) =n — 1, we cannot
move a to a;. Therefore, we leave o and o + 8 with a;. From
the rest, we move an even number of labels starting from the
pair (a+ B —1,alpha+ B +1) to a;. We havea similar situation
when we move labels from a2 to a3. The only difference is that
we leave behind the largest label in the block of labels that we
moved to a;. In general, we necessarily leave behind one label
from the boundary of the just moved block (smallest and largest
boundary alternate) and the label that is closest to the middle
in the rest of the block.

Case 3. lj, 1z, . .. 1, are odd and ly4y, lu+2, - - - , lp are even.

We start as in Case 1 and proceed according to the scheme
of the first case until we reach a,4+1. So, we have a consecutive
block of an even number of labels (namely ly+1 + lus2+-- -+
labels) at a,4+1. So, we can switch to the scheme of Case 2 and
finish the construction of T

This completes the proof for the case when p + s is odd.

Now, assume that p + s is even.

Suppose that s # 0. Set aside one vertex from the first col-
umn in our representation of T', say ap+s- We apply the described
scheme to what has remained of T. Note that according to our
scheme ag gets label 0 and we get all edges labeled from 1 to
(n — 2). So, if we give ap4s the label (n — 1), then we will get a
graceful labeling of T.

Now suppose that s = 0. Set aside one of the branches from
the right part of our picture of T'. For instance, let us set aside
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vertices ap,ap,@p2,- .. ,ap,. We apply the scheme to the re-
maining vertices (there are n — [, — 1 of them). Now, give the
label n — I, — 1 to a, and labels —1,—2,... , —p to the vertices
apl,Ap2, - - - , @pl,- After we raise all labels of the vertices of T by
p we get a graceful labeling.

This completes the proof.

.
Ezample. Consider the tree T below.

an

ay
a> a2
a2

as a3

° asy

asz

as
an

a42

@5 a3

a4
Q44

We get a graceful labeling in the following way.
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Figure 1.4.4: An example of a graceful labeling of a tree of
diameter 4.

1.4.3 Trees of diameter 5.

A natural question is: “Can we generalize the result of the above
theorem?” Although we were not able to prove gracefulness of
all trees of diameter 5, the approach used in proving Theorem
2.3 can be used for settling some particular cases.

Let the canonical representation of trees of diameter 5 be
similar to that used for trees of diameter 4 with an extra level.
Note that this can only happen within one branch, say the one
headed a,. We order the vertices ayj, a2, ... ,ay, so that the
vertices of this set with even degree have smaller indices. So,
our tree looks as follows:
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a am

Ayt s a)
L J
®

a
L J

Qy

[ ]

L ]
Ap+2

*
Qp+1 ap

a3, Aty

Figure 1.4.5: Canonical representation of a tree of diameter 5.

Theorem 4.4. Let T be a tree of diameter 5 in the canonical

representation. If all [;’s are odd, then T is graceful.
Proof. Assume for now that s = 0 and that p is odd. Also,
assume without loss of generality that a1, a12,... ,an, are or-
dered from the top down so that the vertices with odd number
of leaf-neighbors go first.

We proceed using the scheme described in the proof of the
main theorem (we ignore the leaves with triple indices so far).
Since p is odd, a, gets the label (n — 1) — |8} =n — E'-z'l Also,
a, @12, - - - ,ay, get labels

A+1L,A+2,... ,,\+l‘+1

(n—-1)—A—1,
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L -1

n-1)-A-2,...,(n-1)— A -

2 ?
wherez\z%l-.
We assign labels to aj3, a2, ... ,ay, in the following order:
h+1
A+1,(n—=1)=(A+1), A +2,(n—1) - (A+2),... , A+ 5 -1,
L+1 L+1
(n—1)— (A + "; —)a+

After we have moved leaves from a,_, to a,, we are going to
move leaves from a, to a;;. Note that the sum of labels of a,
and a;; is (n—%‘)+)\+1=(n—‘%—')+%l+l=n. Since p
is odd and [; are odd, l; + 12+ ...+ I, + 1 is even.

Now, we are going to move exactly n — (1 +lo+.. .+, +p+1)
leaves to a;;. Hence if n is even, then we move an odd number
of leaves, which is both what we want to do and what we can do
by the Transplant Lemma. Also, we move a consecutive block
of labels.

Note that 6(ay;) +6(ay(i4+1)) are alternately n and n—1. Hence
we can complete the labeling as in Theorem 4.3.

If s # 0, then we label the leaf-neighbors of ag with the largest
labels.

Suppose now that p is even. We can deal with this case just
as we did in Theorem 4.3.

|

Ezample: Let T be a tree of diameter 5 as follows:
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We get a graceful labeling of T in the following way:
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Figure 1.4.6: A class of trees of diameter 5 is graceful.

Theorem 4.5. Let T be a tree of diameter 5. If, in the
canonical representation, l; is odd and all the ly;’s are even,
then T is graceful.

Proof. The argument is similar to that of Theorem 2.4. We

omit the details.
[ ]

Note that there are no restrictions on la, I3, ... , [,.
Let us demonstrate this on the following example:



Qyy an

a;
a2

aR

a2

ag a»
@131

as !

asz2

ay32

We construct a graceful labeling in the following way:
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Figure 1.4.7: Another class of graceful trees of diameter 5.

1.4.4 Experimental demonstration of the power of the
Transplant Lemma

The “Transplant Lemma Game” starts with an n-star Tp, along
with one of its labelings 6. The ordered pair (Tp, 6p) is the only
element in level 0. The ordered pair (Tp, 8o) is placed in a reserve
list.

To construct level ! for | > 1, apply the Transplant Lemma
in every possible way to each (T, 0) in level { — 1. Let (T",6') be
obtained.

(i) If (T', ') has already appeared in an earlier level or the
reserve list, discard it.

(i) If neither (T”,') nor (T", ) has appeared anywhere, put
(T",8) in level | and append (T", &) to the reserve list.

The game ends when we have an empty level. This means
that we have generated all trees and their graceful labelings
obtainable via the Transplant Lemma from the n-star.
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The following table summarizes results of the Game for
n =4,5,6,7,8,9,10,11. The number in the third column is the
sum of the numbers of graceful labelings obtained this way (up
to complementary labeling).

Number Number Number of graceful Trees obtained by the
of vertices | of trees labelings Transplant Lemma Game

4 2 2 2

5 3 6 3

6 6 18 6

7 11 76 1

8 23 299 23

9 47 1550 47

10 106 8816 106

11 235 57833 235

Table 1: Empirical results about the Transplant Lemma.

Please see the Appendix A for discussion of the algorithmic
and implementation issues.

Remark: The first attempt in the same direction was made by
Anton Kotzig in 1984 (see [27]). He considered taking a grace-
fully labelled tree and replacing one edge with another while
preserving gracefulness. Kotzig was able to prove that this trans-
formation involving an edge with label 1 is always possible. He
also conjectured that all graceful labelings of a given tree can
be obtained from any other graceful labeling of the same tree by
applying a series of such transformations. He was able to show
by hand that his conjecture is true for trees on up to 6 vertices.
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1.5 Concluding Thoughts.

In this section, we will give a brief overview of the approaches
surveyed in this chapter and try to assess usefulness of each of
the approaches as far as proving (or disproving) of the Graceful
Tree Conjecture is concerned.

At the best of our knowledge, all trees on up to 27 vertices
are graceful(see [1]). On the other hand, in order to disprove
the conjecture, we have to:

(i) find (or simply guess) a candidate tree;
(ii) show that the candidate tree does not admit any graceful
labeling.

It is very improbable that a tree with a nice structural prop-
erty will do as a candidate; this lacking of structure excludes a
mathematical proof in (ii) above with high certainty. Further-
more, since our candidate tree must have at least 28 vertices
and because all the algorithms for exhaustive search of graceful
labelings so far run in exponentional time, a proof of the neg-
ative result by computation does not seem possible unless our
algorithm is improved by new results on assigning particular la-
bels (such a result could dramatically reduce the search space).
Thus if the GTC is not true, we have very scarce chances to
find that out for sure. Therefore, let us hope for the best and
continue looking for positive results.

The approach of the second section is interesting because it
results in constructing trees with large number of vertices, large
diameter, large maximal vertex degree, and sometimes with
all of those properties simultaneously. This gives us yet more
ground for believing in the GTC, despite the fact that graceful-
ness of trees on 28 vertices is still a conjecture. The gracefulness
of trees of diameter 5 is not proved, nor is the gracefulness of
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trees with maximal vertex degree 3. Also, some of the construc-
tions proved to be useful for an approach discussed in the third
section. Although we were not able to come up with new con-
structions, we showed a labeling with properties that suggested
that there were other constructions to look for.

Section 3 deals with two approaches.

As we mentioned before, finding conditions that restrict the
usage of particular labels for certain vertices may help us to
speed up exhaustive searches for graceful labelings. The ap-
proach was shown to be a very useful tool for establishing some
classes of graceful trees.

Proving gracefulness of infinite families of trees may eventu-
ally lead to settling the GTC. A systematic way for doing that
was started by Rosa when he proved gracefulness of paths and
caterpillars. However, the next step (lobsters) is difficult. The
union of classes of trees known to be graceful so far do not nearly
approach the class of all trees. Gracefulness of caterpillars re-
mains one of the most general results in this area.

The approach of Section 4 looks most promising. The Trans-
plant Lemma connects all the graceful trees by an invisible
thread of the simple transformation. It has already led to a
relatively simple proof of gracefulness of trees of diameter 4,
which was an open question for decades.

Our experiment suggests that the number of graceful label-
ings that we can get by applying the lemma is much larger than
the number of trees, which makes it highly probable that we can
get a graceful labeling for every tree.

Undoubtedly, the next logical step is to prove gracefulness of
trees of diameter 5. We showed that the proof of gracefulness
for trees of diameter 4 extends naturally to prove gracefulness
of a family of trees of diameter 5.
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Another approach is to come up with a rule for generating
gracefully labeled trees with the Transplant Lemma (probably,
a restricted version of the Transplant Lemma Game) and then
identify the class of trees obtained by applying such a rule.



Chapter 2

Polyomino Rectification.

2.1 Introduction

In this chapter, we explore the rectification problem, that is,
determining which rectangular boards can be tiled by a copy of
a polyomino.

The notion of polyomino has a long but unclear history. How-
ever, its defining moment was the paper by Solomon W. Golomb
in 1954 (see [15]). We repeat its definition.

Definition 1.1. A polyomino is a finite set of squares of an
infinite checkerboard, connected “edge to edge.” If a polyomino
consists of n squares, then it is said to be an n-omino.

For small n = 1,2, 3,4, 5, the n-ominoes are called monom:i-
noes, dominoes, trominoes, tetrominoes and pentominoesl re-
spectively.

The Rectification Problem can be formulated as follows:

Problem 1.2. Given a polyomino, find the dimensions of
all finite rectangular boards that can be packed (i.e. covered

completely without overlap) with copies of this polyomino.

To approach this problem, let us make some easy observations
first.

1 Pentomino is a registered trademark of Solomon W. Golomb.

86



Lemma 1.3. Suppose that an n-omino 3 is given. Let B be
any board packable by 3. Then

(i) The number of squares of B is divisible by n. In particular,
if n is prime, then B has dimensions of the form kn x m (i.e.
the length of one of the sides of B is divisible by n).

(ii) Any board B’ that can be packed by B can be packed by
B as well.

In the terminology of NDD, we say that 3 divides B if B is
packable by .

Definition 1.4. A board B packable by a polyomino S is
called prime with respect to 3 if B is not packable by any com-
bination of smaller boards which are packable by 3. Otherwise,
B is called composite with respect to .

To solve Problem 1.2 for a particular polyomino, it is sufhi-
cient to find all the prime boards for this polyomino.

In the remaining sections of this chapter, we solve Problem
1.2 for all the n-ominoes, n =1,2,...,5.

2.2 Packing rectangular boards with
monominoes, dominoes and trominoes.

There is one monomino and one domino. They are 1 x 1 and
1 x 2 rectangles respectively. Trivially, the monomino can pack
any rectangle. Also, the domino can pack any rectangle with
even number of squares, that is, any 2k x m rectangle.

There are only two trominoes as shown on the following pic-

ture. They are called the I-tromino and the V-tromino respec-
tively.
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Figure 2.2.1: The two trominoes.

The I-tromino is itself its only prime board. It can pack an
n x m board if and only if either 3|n or 3|m.

The V-tromino has two prime boards as shown below
(see [24)).

2x3

5x9

Figure 2.2.2: Packing prime boards for the V-tromino.

We have to show that there are no other primes. Suppose
that a board k x m is packable and assume, without loss of
generality, that k is divisible by 3.

If m is even, then our board is composite, since it can be
packed by the copies of 2 x 3.

Assume that m > 3 is odd. If k is even, then the first three
columns can be packed by the copies of 2x3, while the remaining
part can be packed by the copies of 3 x 2. Now, suppose that
k is odd. We certainly cannot get another prime for k = 3 or,
symmetrically, for m = 3. (by a simple case study). For k 29
and m > 5, we can place a copy of the 5 x 9 to one of the corners
of our board and pack the rest with the copies of 2 X 3.
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Hence 2x 3 and 5% 9 the only prime boards for the V-tromino.
Therefore, a k x m board is packable by this tromino if and only
if the following three conditions hold:

(1) 3 divides km;

(ii) both k and m are greater than 1;

(iii) k£ # 3 if m is odd and vice versa.

2.3 Packing rectangular boards with tetromi-
noes.

The only 5 tetrominoes are shown on the picture below. The
letters are assigned for convenience and reflect the shape of the
tetrominoes.

I L T N o

Figure 2.3.1: The five tetrominoes.

2.3.1 Packing with the N-tetromino

It is easy to see that the N-tetromino cannot pack any rectan-
gular board. Note that we have to fill all the corners somehow.
We can fill a corner only as shown below.
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Figure 2.3.2: Packing with the N-tetromino.

However, we have only one choice for filling the square marked
with the dot (this choice is shown by the dashed lines). It is
now obvious that we cannot fill the bottom row of our board.

2.3.2 Packing with the O and the /-tetrominoes

The O-tetromino is the only (and trivial) prime board with re-
spect to itself. Hence only boards 2k x 2m can be packed with
it.

The I-tetromino is the only (and trivial) prime board with
respect to itself. Hence only boards 4k x m can be packed with
it.

However, we still need a justification that a 2k x 2m board
cannot be packed by the I-tetromino if both k£ and m are odd.
This result is a special case of a theorem of de Bruijn (see [11]).
We assign a number to each square of our board. A square on
the i® row and j** column is assigned i + j(mod 4). Then our
rectangle can be split into four regions as in this example:
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Figure 2.3.3: A 2k x 2m board cannot be packed by the
I-tetromino if both £ and m are odd.

Since one of the sides of each of the regions except the right
bottom one is divisible by 4, we have an equal number of ze-
ros, ones, threes and fours in each of these three regions. This
equality does not hold in the last region. The justification we
sought follows from the fact that each I-tetromino fills exactly
one square with each of 0, 1, 2, and 3.

2.3.3 Packing with the L-tetromino

There are two prime boards for the L-tetromino, which can be
packed as shown below.

2x4 3x8
Figure 2.3.4: Prime boards for the L-tetromino.

We show that these are indeed the only two primes. The
proof is due to Klarner (see [22]).

Suppose that a k x m board is packable by the L-tetromino.
We claim that km is divisible by 8 (that this product is divisible
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by 4 is obvious). Assume, without loss of generality, that m
is even. We color the columns black and white alternatively
starting from white. The number of squares of each color is
surely even. Since each copy of our tetromino fills an odd number
of squares of each color, we have that the total number of pieces
must be even, which completes the proof of our claim, so km is
divisible by 8.

Assume, since km = 0(mod 4), that m is divisible by 4. If k&
is odd, then m is divisible by 8 and we are certain to pack our
board with our to prime boards if k > 3 (for k = 1, the board is
unpackable). If k is even, then our board is certainly composite.
Thus we have completed the proof and 2 x 4 and 3 X 8 are the
only prime boards for the L-tetromino.

Hence a k x m board can be packed with the L-tetromino if
and only if km is divisible by 8 with k,m > 2.

2.3.4 Packing with the T-tetromino

The only prime board for the T-tetromino is 4 x 4, which can
be packed as shown below.

Figure 2.3.5: Packing 4 x 4 board with the T-tetromino.

Thus only boards 4k x 4m are packable with this tetromino.
However, we still have to prove that there are no other prime
boards. The argument, due to D. Walkup (see [33]), is quite
difficult. We give a detailed exposition.
First we introduce some convenient notions.
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We restrict our attention to lattice points (a,b) where
0<a<kand 0<b<m.

A segment is a line of unit length that connects two of these
lattice points. Except for points on the boundary of the k x m
board, there are four segments leading from each of the lattice
points; those leading up or to the right are called outer segments
and those leading down or to the left are called inner segments.

By [z, y] we will understand the unit square whose left bottom
corner is the point (z,y).

We classify lattice points as follows. A lattice point (z, y) is

(i) an a-point if z = y = 0(mod 4);

(ii) a B-point if z = y = 2(mod 4).

In all the pictures in this subsection, a dot marks an a-point,
while an empty circle marks a 3-point.

Segments and lattice points on the boundaries of a T-
tetromino are called sides and corners of that tetromino respec-
tively.

Suppose that a k x m board is packable by the T-tetromino.
We prove that both k£ and m must be divisible by 4 by prov-
ing the following three propositions for the solution (which we
assumed to exist):

(i) Proposition R(j): Every outer segment of every a-point
on the line z + y = 47 is a side of a copy of the T-tetromino;

(ii) Proposition P(j): Every inner segment of every a-point
on the line z + y = 47 is a side of a copy of the T-tetromino;

(iii) Proposition Q(j): No 3-point on the line z +y = 45 — 2
is a corner of a copy of the T-tetromino.

Let us show how proving these three statements will help us
prove our main claim. Assume that m # 0(mod 4).

If m = 1(mod 4), then we consider the a-point (m —1, 0); its
outer segments are sides of some T-tetrominoes. However, the

93



only T-tetromino capable of filling the square [m —1, 0] (without
creating a dead end) has the point m — 1,2 as its corner. Now,
m — 1,2 is a B-point, which contradicts the Proposition Q(j).

If m = 2(mod 4), then we consider the 3-point (m,0); no-
tably, the square [m-1,0] is a corner of our board and thus (m, 0)
is a corner of some T-tetromino, which contradicts Q(j).

If m = 3(mod 4), then we consider the S-point (m — 1,0);
by the proposition Q(j), the tetromino that covers the square
[m — 1, 0] has to have its long boundary running from (m — 3, 0)
to (n,0). But then we have only one choice for filling the square
[n — 1, 1], which again results in contradiction with Q(j).

Thus we actually need only to prove the third proposition.
However, we prove the first two propositions concurrently to
help us prove what we want.

The proof goes by induction on j. The statement R(0) is
trivial. The statement P(j) only makes sense for j > 1. We will
show that P(1) follows from R(0). The statement Q(1) is also
not hard to see (just consider the possibilities to fill the bottom
left corner of the board).

Claim 1: R(j — 1) implies P(j) for all 7 > 1.

Assume to the contrary that j > 1 and A is an a-point on
the line £ + y = 4j whose inner segments are not segments of
any tetromino in the solution. We can assume without loss of
generality that A is an inner point of our board. We consider
the points B and C from the statement of R(j — 1) and their
outer segments (drawn bold on the following picture.
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B
Figure 2.3.6: R(j — 1) implies P(j) for all 3 > 1.

By our assumption, we have only two choices to fill the square
labeled “1”. For each of these choices, we have only one choice
to fill the square labeled “2”. This results to the picture above.
We can continue putting the forced pieces until we hit the border
of our board which is when we get the contradiction.

Claim 2: Q(j — 1), R(j — 1) and P(j) together imply Q(j)
for all j > 1. Assume to the contrary that j > 1 and Aisa
B-point on the line z + y = 4j — 2 whose and A is a corner of
some T-tetromino. We can easily get a contradiction if A is on
the boundary of our board.

Suppose that A is an inner point. We consider the point B,
for which Q(j — 1) holds and the pairs of points E, F' and C, D
for which R(5 — 1) (and P(j — 1)) and P(j) hold respectively.
Thus all the bold lines on the picture below must be segments
of some T-tetrominoes. Suppose that we make A a corner of the
T-tetromino as on the below picture (we actually do not have
many choices since we have to take care about the bold lines
afterwards). Then the only way to fill the square labeled “1”
makes the point B a corner of a tetromino, which contradicts
Q(j — 1) completes the proof of our claim.
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Figure 2.3.7: Q(j — 1), R(j — 1) and P(j) together imply
Q(j) for all 3 > 1.

Claim 3: P(j) and Q(j) together imply R(j) for all j > 1.

Again, let point A be the one to give contradiction to our
claim.

If A is on the boundary of the board, then consider points B
and C for which P(j) holds and points D and E for which Q(7)
holds. Then we must put the tetrominoes marked “1” and “2”,
and then “3”, “4”, and “5” as on the picture below. Thus we

obtain a contradiction similar to the one we had in the proof of
the first claim.

.

5

_ETE 13
i an

£

Figure 2.3.8: P(j) and Q(j) together imply R(j) for all 5 = 1
(for a point on the boundary).

Suppose that A is an inner point. We know that P(3) holds
for A and B and that Q(j) holds for the point C (see the picture
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below). Suppose for instance that the horizontal outer segment
of A (drawn dashed) is not a side of any T-tetromino in our
solution. To fill both of the squares marked “1” and not to
get into the contradiction used in the proof of the first claim,
we have to put the two tetrominoes as on the below picture.
However, this leads us to the same contradiction.

O

O a
C B I
Figure 2.3.9: P(j) and Q(j) together imply R(j) for all j > 1
(for an inner point).

2.4 Packing rectangular boards with pen-
tominoes.

There are 12 pentominoes. They are shown on the picture below
with the corresponding letters. As we will see, Problem 1.2. is
only difficult for the Y-pentomino.
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Figure 2.4.1: The twelve pentominoes.

2.4.1 Pentominoes that cannot pack any rectangular
board.

In this subsection, we prove that 8 of the 12 pentominoes cannot
pack any rectangular board. The following proof can also be
found in {10].

We proceed in the order starting from the easiest case. The
8 “forbidden” pentominoes are X, T, F, Z, U, W, N, V.

It is easy to note that the X-pentomino cannot fill any corner
and thus cannot pack any rectangle (see the picture below).
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X

Figure 2.4.2: The X-pentomino cannot pack any board.

The T, F and Z-pentomino can fill a corner in a unique way,
but, after that, the squares marked “x” cannot be filled (i.e. this

square is tnaccessible).

Figure 2.4.3: The T, F and Z-pentomino cannot pack any
board.

The U-pentomino can fill a corner in two essentially different
ways, each of which results in a dead end.

Figure 2.4.4: The U-pentomino cannot pack any board.
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The case drawn on the left is obviously impossible. In the other
case (on the right) it is not possible to fill both squares marked
with the cross (i.e. we have an “inaccessible pair’).

The W-pentomino can fill a corner in only one way (shown
on the picture below.

Figure 2.4.5: The W-pentomino cannot pack any board.

However, the position marked with the dot can now be filled
in only one way, which makes it clear that we cannot pack the
bottom edge of our board.

Similar (as for the W-pentomino) argument goes for the two
possible ways the N-pentomino can fill a corner.

Figure 2.4.6: The N-pentomino cannot pack any board.

There are actually two possibilities to fill the squares marked
with the dot, but then it is clear that we cannot pack the bottom
edge of the board.

The V-pentomino can fill a corner in 2 different ways shown
on the below diagram.
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Figure 2.4.7: The V-pentomino can fill a corner in 2 different
ways.

The case on the left results in an unaccessible pair. The case
on the right leaves only one possibility to fill the square marked
with the dot. After we use that possibility, there is again only
one possibility to fill the the square marked with the empty
circle. we end up with the following picture,

X

Figure 2.4.8: The V-pentomino cannot pack any board.

which leaves us with an unaccessible pair. Thus the
V-pentomino cannot pack any rectangular board as well.

2.4.2 Packing with the I, L and P-pentominoes.

In this subsection, we solve Problem 1.2 for the 3 pentominoes
listed in the title. We leave out the Y-pentomino for now, since
that case is the most difficult and it certainly deserves a separate

subsection. The solution that we describe in this subsection was
published in [10].
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Packing with the /-pentomino.

This case is trivial. The I-pentomino is the only prime board

with respect to itself. Hence the only packable boards have
dimensions 5k x m.

Packing with the L-pentomino.

The only two primes for this pentomino are the boards 2 x 5 and
7 x 15. These boards can be packed as follows (our solution for
the 7 x 15 case is different from the very first solution published

in [9]):

Figure 2.4.9: Prime boards for the L-pentomino.

However, we still have to prove that 7 x 15 is prime and that
there are no other primes.

Definitely, we cannot pack 7 x 15 with copies of the 2 x 5
board (by a simple parity argument). By Lemma 1.3, we need
not consider boards with the area not divisible by 5. It is clear
that we do not have other primes with dimensions 1 xm or 3 xm.
Also, all the boards 2 x m are either unpackable or composite
(i.e. can be packed with copies of 2 x 5).

We show that 5 x m boards are unpackable for odd m greater
than 3. There are three ways to fill the left most column (note
that four of the five squares in that column must be filled by
one pentomino), which result in the cases depicted below.
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Figure 2.4.10: A 5 x m board cannot be packed with copies
of the L-pentomino for odd m greater than 3.

On the left most picture, we have filled a 5 x 2 rectangle; since
m is odd, we have not accomplished anything. The other two
pictures present us with either an inaccessible square or an in-
accessible pair of squares denoted by crosses.

Since all the boards not considered so far can be packed by
the two prime boards (e.g. the 13x15 board can be put together
by placing on it 9 boards of size 2 x 5 so that the uncovered part
is 7 x 15), we have completed the proof that these two boards
are indeed the only prime ones for the L-pentomino.

Hence the packable boards are 2k x 5m and k X 5m for all
m>2,odd k > 5.

Packing with the P-pentomino.

Interestingly enough, the only prime boards are 2 x 5 and 7x 15
again. These two boards can be packed as follows (the solution
for 7 x 15 was first published in [23]):
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Figure 2.4.11: Prime boards for the P-pentomino.

By the same argument as for the L-pentominoes, it suffices to
show that 5 X n boards are not packable with the P-pentomino
when n is odd. This is due to Cibulis and Liu (see [10]).

We color squares in the rows 1, 3 and 5 of our 5xn board black
and the remaining squares white. We have a total of 3n black
squares. Assume to the contrary that the board is packable.
Then there are n copies of the P-pentomino in the solution.
Each of this copies occupies at most 3 black squares. To fill all
the black squares, we have to have each piece fill exactly 3 black
squares. Hence each piece occupies exactly 2 white squares and
they must both be in the same row. This shows that n must be
even.

Thus the set of boards packable with the P-pentomino is the
same as the set of boards packable with the L-pentomino.

2.4.3 Packing with the Y-pentomino.

The Y-pentomino is the most troublesome; it is even not clear
if this pentomino can pack any rectangular board.
We first summarize the solution in the following table.
Rows and columns of the table correspond to the dimensions
of the boards. A cross means that the board cannot be packed.

104



A circle means that the board is composite. A number in brack-
ets means that the board is prime and gives the reference to the
source where the solution? appeared for the first time. All the
larger boards beyond this table except those pertaining to the
first row of it are composite. A 5 x m board is packable for m
divisible by 10 only, 5 x 10 being the smallest packable board.
The boards 5k x m are not packable for m = 1,2,3,4,6,7,8.
The diagrams for primes are given in Appendix B.

olwlulw|miwlislwe|1r|18]19t20]21|2123]|28;25|26|27]|28
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Table 2: Summary about boards that the Y-pentomino packs.

2Some of the diagrams in Appendix B are different from those published in the ref-
erenced sources and were obtained by computer. Some details of implementation are
explained in Appendix C.
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In the reminder of this subsection, we show that our answer
is correct.

Justification of unpackability.

Let us for convenience give names to the 8 possible orientations

of the Y-pentomino depending on where the square that “sticks
out” is.

HOL HUR VUL VOR

HOR HUL VUR VOL

Figure 2.4.12: The eight orientations of the Y-pentomino.

We first show that the boards 5k X m cannot be packed for
m = 1,2,3,4,6,7,8 (i.e. that our table does not lack the first
columns).

The claim is trivial for m = 1. For m = 2,3 we get an
unaccessible pair and an unaccessible triple as follows:
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X X
X X

Figure 2.4.13: Canonical unaccessible pairs and triples.

We do not need very long “walls” to get inaccessible squares
as on the pictures above. What we really need is shown by
the bolder lines. These two situations will be referred to as the

canonical inaccessible pair and the canonical inaccesstble triple
respectively.

For m = 4, there are two possible ways to fill the left most
(i.e. the first) column.

X

X

Figure 2.4.14: A board 5k x 4 is not packable by copies of
the Y-pentomino.

Both ways leave us with canonical inaccessible pairs.
Similar argument goes for m = 7, since we again have to use
exactly one copy of VOR or VUR to fill the first column.

For m = 6, we essentially have only one way not to get into
trouble right away.
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Figure 2.4.15: A board 5k x 6 is not packable by copies of
the Y-pentomino (Step 1).

If we fill the square marked with the dot by an HUL, we will
get a canonical inaccessible square. Similarly, trying to fill that
square using VUL, then we will have to use VOR or VUR in
the fourth column, which again results in our canonical “bad”
situations. Thus the only way to proceed far enough is as shown
on the picture below.

Figure 2.4.16: A board 5k X 6 is not packable by copies of
the Y-pentomino (Step 2).

Then we must have one of the two outcomes on the picture
below.
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Figure 2.4.17: A board 5k x 6 is not packable by copies of
the Y-pentomino (Step 3).

The bold lines on the left picture have the same shape. That
means that we have not accomplished anything (we have to pack
a rectangle eventually!). On the other hand, we can to either of
the following two positions after we fill the square marked with

the dot on the right picture (and put some other forced copies
of the Y-pentomino).

Figure 2.4.18: A board 5k x 6 is not packable by copies of
the Y-pentomino (Step 4).
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Both of the above pictures show that this attempt leads nowhere
as well. Thus we are done with the case 5k x m, where m = 6.
For m = 8, we have to start as on the below picture not to

get into trouble right away.

Figure 2.4.19: A board 5k x 8 is not packable by copies of
the Y-pentomino (Step 1).

We have essentially two ways to fill the dotted square. After
putting some forced pieces, we get the following two possible

positions.
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Figure 2.4.20: A board 5k x 8 is not packable by copies of
the Y-pentomino (Step 2).

The border as in the position on the top will be dealt with in one
of the cases for the position on the bottom (this will be shown
by a matching bold line). There are two ways to fill the dotted
square in the position on the bottom not to get into trouble
right away. After putting also some forced pieces, we get the
following two positions.
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Figure 2.4.21: A board 5k x 8 is not packable by copies of
the Y-pentomino (Step 3).

The position on the top presents us with a canonical inaccessible
pair. The two ways to proceed from the position on the bottom
lead us to the situations on the diagram below.

112



Figure 2.4.22: A board 5k x 8 is not packable by copies of
the Y-pentomino (Step 4).

In the situation on the top, we are presented with the canonical
inaccessible triple. In the situation on the bottom, we repeat the
shape of the border, so we have not made any progress. This
completes the proof for m = 8.

To finish with the infinite families of unpackable boards, we
show that the 5 x m boards are only packable for m divisible by
10. We have to start as on the picture below (the shaded HUL
could have been the HU R, which would affect the next step and
result in the same situation).
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A

Figure 2.4.23: A board 5 x m is not packable by copies of the
Y -pentomino if m is not divisible by 10 (Step 1).

The two ways to fill the dotted square result in the following
situations.

Figure 2.4.24: A board 5 x m is not packable by copies of the
Y -pentomino if m is not divisible by 10 (Step 2).

The picture on the left does not leave us any choices except
for completing the 5 x 10 rectangle. The picture on the right

provides us with two ways of filling the dotted square, which
result in the following pictures.

Figure 2.4.25: A board 5 x m is not packable by copies of the
Y -pentomino if m is not divisible by 10 (Step 3).
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Any attempt to fill the dotted square on the left picture will
result in a dead end. The picture on the right leads us to com-
pleting the 5 x 10 again. This finishes our proof for m = 5.

All the crosses in our “answer-table” starting from the second
row were verified by exhaustive computer search.

Justification about the composite boards.

We have already shown that the 39 boards that were claimed to
be prime are indeed prime (this clearly follows from the negative
results proved above).

Now we show that all the circles in the table are correct and
that all the boards larger than those in the table (except for the
ones whose one side is 5) are composite as well. We move along
the columns of our table.

For 5k x 9, we know that we can pack the rectangles for
k=4,6,8,9,10,11. Now, 12 = 8+4, 13 = 9+4, ...,23 = 10+13.
Then we can get all the bigger rectangles whose one side is 9 by
appending the 20 x 9. By the very similar arguments, all the
circles inside our table are correct. Also, all the boards larger
than the ones in the table and pertaining to the columns of the
table are composite.

We now move to the columns beyond the table.

A 10 x m board is packable for m = 5,23, 24,25, 26, 27 (since
24 = 19+ 5 and 26 = 21 + 5). Thus such a board is pack-
able for all m > 23. Similarly, a 15 x m board is packable
for m = 10,19, 20, ... ,28. Thus such a board is packable for all
m > 19. Now consider a 5k x m board for k > 2,m > 28.
We can certainly pack it by 10 x m and 15 x m boards. This
completes the proof.
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Appendix A

A note on the experiment
concerning the Transplant
Lemma.

This is a brief discussion of our implementation of the Transplant
Lemma Game (see Subsection 1.4.4 for the rules)

The program has two parts:

(i) Constructing all levels of the game;

(ii) Checking that all trees appear at least once in some level.

Suppose that we have a candidate tree with a graceful labeling
and we have to decide whether we have to add it to the level
. Namely, we have to check if this tree has appeared on the
previous levels with this particular labeling. This is the place
where we thank ourselves for the decision that our tree of trees is
obtained in the breadth-first search order. The thing is that we
do not have to compare our candidate tree against trees on level
[ — 3 or above (since otherwise the tree from which we obtained
our candidate tree would appear earlier than on the level [ — 1
because it would have been obtained from our candidate tree).

To check whether or not we really obtained graceful labelings
of all trees on n vertices, we have to generate all such trees first.
Then we have to look up our tree for all of the generated trees;
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thus we need to solve the problem of tree isomorphism. The
algorithms for solving these tasks were taken from [35].

Our implementation allowed to check that the Transplant
Lemma gives graceful labelings to all trees on up to 11 vertices.
The main reason for this upper bound is that the number of
trees and labelings that we have to keep grows exponentially
and for 11 vertices our program used almost all of the available
memory. However, we can already think of improvements which
would probably allow to raise that number of vertices to 13.

In our implementation, a graceful tree was represented in
more ways than is necessary. This was done to simplify the pro-
gram. For 12 vertices and assuming that the size of integer in
the machine representation is 4 bytes, the structure that repre-
sented a single tree was 1976 bytes. Instead, we can keep only
the canonical level sequences (see [35]) and graceful labelings
of our trees, which would reduce the size per tree to 24 bytes.

Of course, this would lead to some programming difficulties but
they are solvable.
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Appendix B

Packing prime boards for the
Y -pentomino.

=t

Figure B1: Packing the 5 x 10 board with copies of the
Y -pentomino.
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Figure B2: Packing the 9 x 20 board with copies of the
Y -pentomino.
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Figure B3: Packing the 9 x 30 board with copies of the
Y -pentomino.
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Figure B4: Packing the 9 x 45 board with copies of the
Y -pentomino.
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Figure B5: Packing the 9 x 55 board with copies of the
Y -pentomino.
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Figure B6: Packing the 10 x 14 board with copies of the

Y -pentomino.
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Figure B7: Packing the 10 x 16 board with copies of the

Y -pentomino.
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Figure B8: Packing the 10 x 23 board with copies of the

Y -pentomino.
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Figure B9: Packing the 10 x 27 board with copies of the
Y -pentomino.
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Figure B10: Packing the 11 x 20 board with copies of the
Y -pentomino.
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Figure B11: Packing the 11 x 30 board with copies of the
Y -pentomino.
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Figure B12: Packing the 11 x 45 and the 11 x 35 boards'
with copies of the Y-pentomino.

1By removing the area between the bold lines or inserting more copies of this area, we
can get solutions for all the listed boards. The diagram is for the first board in the list.
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Figure B13: Packing the 12 x m boards for
m = 55,50, 60, 65, 70, 75, 80, 85, 90, 952 with copies of the
Y -pentomino.
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2See the note for 11x45.
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Figure B14: Packing the 13 x 20 board with copies of the
Y -pentomino.
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Figure B15: Packing the 13 x 30 board with copies of the
Y -pentomino.
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Figure B16: Packing the 13 x 45 and the 13 x 35 boards®
with copies of the Y-pentomino.
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Figure B17: Packing the 14 x 15 board with copies of the
Y -pentomino.
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Figure B18: Packing the 15 x 15 board with copies of the
Y -pentomino.
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Figure B19: Packing the 15 x 16 board with copies of the
Y -pentomino.
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Figure B20: Packing the 15 x 17 board with copies of the

Y -pentomino.
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Figure B21: Packing the 15 X 19 board with copies of the
Y -pentomino.
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Figure B22: Packing the 15 x 21 board with copies of the
Y -pentomino.
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Figure B23: Packing the 15 x 22 board with copies of the
Y -pentomino.
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Figure B24: Packing the 15 x 23 board with copies of the
Y -pentomino.
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Figure B25: Packing the 17 x 25 board with copies of the
Y -pentomino.
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Figure B26: Packing the 18 x 25 board with copies of the
Y -pentomino.
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Figure B27: Packing the 18 x 35 board with copies of the
Y -pentomino.
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Figure B28: Packing the 22 x 25 board with copies of the
Y -pentomino.
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Appendix C

A note on generating solutions
for prime boards for the
Y -pentomino.

In this appendix, we give a brief description of the rather sim-
ple and almost standard algorithm whose implementation in C
succeeded to get almost all the prime boards listed in Appendix
B.

We are trying to fill the given rectangular board with copies of
the Y-pentomino. The first idea that comes to mind is recursion.
This is the one that we are going to use. The recursion is going
to imitate the way one would try to fill the board should one do
it by hand.

It is natural to place the first pentomino into the left upper
corner. Where do we put the next piece? Well, two possible an-
swers are: “right next to the first pentomino” or “that depends
on the orientation of the first pentomino; we have to consider
cases.” The algorithm is based on the simplest answer to the
above question. Namely, we again put the next pentomino to
the left upper corner.

We define the left upper corner as a non-occupied square
with the minimal sum of the row and the column coordinates.
This is still not precise, since the mentioned sums are identical
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for squares on the same up-diagonals. Assume that we have
positioned the board so that the number of columns is at least
as large as the number of rows. Then we would like to “go
faster” in the horizontal direction. Hence out of two candidate
squares with identical sums of coordinates, we pick the one with
the larger column-coordinate.

Thus we fill the board in the order shown on this picture.

0 1 3 6 10 15

2 4 7 11 16

9 13 18
14 19
20

Figure C1: Ordering squares of a board for computer-aided
packing with the Y-pentomino.

We claim that there is only one way to fill the corner on each
step. To see that, let us also assign labels to the squares of the
eight possible orientations of the Y -pentominoes:
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Figure C2: Ordering squares the Y-pentomino.

Then we can only fill the corner with the square of a copy of
the Y-pentomino that is labeled 0. Note that if we could put
such a copy to fill the corner in some other way, then the square
labeled 0 of that copy would have gone to a square of the board
that should have been occupied by this step.

It is easy to find the next corner efficiently. We just follow the
labels of squares of our board in increasing order starting from
the corner that was just filled. The first non-occupied square is
the new corner.

Although the problem of covering boards with
Y -pentominoes is completely solved, improving the described
idea can be still of some interest (there are infinitely many
unsolved tiling problems and the idea might be applicable to
solving some of them).

The advantage of the diagonal approach as described above
is that the impossible configurations are found pretty quickly.
However, the process can be much improved by explicitly ap-
plying our knowledge about canonical unaccessible pairs and
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triples described in Subsection 2.5.6 of Chapter 2 and, possibly,
throwing in some other heuristics.
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