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Abstract

Thread Level Speculation(TLS) is a hardware/software technique that guarantees correct parallel execution
of loops even in the presence of dependence and has potential to lead to performance gains through the
parallelization of loops that cannot be proven to be free of dependencies at compile time. However, given
the overhead of TLS execution, the selection of loops to be speculated is important to avoid performance
degradation. Data-dependence profiling is often used to find out if the may dependencies reported by the
static analysis of a compiler materialize at runtime. A cost analysis may conclude that some loops with a
lower probability of dependence should be speculatively parallelized. This report addressed the question as
to whether a loops’ dependence behaviour changes when the input to the program changes — a study of
57 different benchmarks indicates that it usually does not change. Then the report describes SpecEval, a
new automatic speculative parallelization framework that uses single-input data-dependence profiles to find
speculation candidates in the SPEC2006 and PolyBench/C benchmarks. This report also presents the first
performance evaluation of TLS implementation in IBM’s BlueGene/Q supercomputer and shows that the
performance of TLS is affected by several factors, including: number and coverage of speculated loops, miss-
speculation overhead due to function calls in a speculated loop, L1 cache miss rate and dynamic instruction
path length affects.



0.1 Introduction

Existing auto-parallelizers must follow a conservative approach and generate sequential code for loops with
potential dependencies. These auto-parallelization frameworks can only parallelize a loop when the compiler
can prove, using compile-time and/or run-time techniques, that the parallel execution of the loop will not
affect the correctness of the program. This constraint often restricts the maximum parallelism that can be
extracted from loops. A parallelizing framework uses the result from a compile-time/run-time dependence
analysis to make a decision about parallelizing a loop so that all executions of the program are correct.
Dependence-analyses check whether the same address may be referenced (loaded from or stored into) by
different iterations of a loop. If two different iterations of the loop access the same memory address, the loop
contains a loop-carried dependence and it is not parallelized.

Many existing static dependence analyses can be used by a parallelizing compiler to determine which
loops are candidates for parallelization. If the compiler cannot determine, at compile time, whether there
will be a dependence at run-time, data-dependence profiling can be used to predict the actual occurrence
of dependencies at run-time [1, 2]. Data-dependence profiling records the memory addresses accessed by
possibly dependent load/store instructions for all may-dependencies. This run-time dependencies for a
training run of the program is saved to a profile file and the number of actual dependencies recorded —
hopefully for multiple runs with different data inputs — is used to predict the materialization of such
dependencies in future runs of the same program. A parallelization that relies on data-dependence profiling
must execute the parallel code speculatively. The speculative execution provide a safe fall-back execution
path for the runs in which profile-based predictions of absence of dependence turn out to be incorrect. Until
recently, there were limited options for this fall-back path. Examples include the fall-back code for advanced
loads in the Intel IA64 architecture and software solutions based on a combination of complier-generated
code and runtime functionality. Recently, however, hardware-supported thread-level speculation became a
reality, thus offering the potential for an easier-to-implement and more efficient fall-back path [3].

An interesting research question is whether this new fall-back path may lead to more opportunities for
parallelization. For example, when a static dependence analysis, relying on imprecise alias information,
reports that a load-store pair may be dependent at run time the loop still can be executed in parallel if
either the dependence does not actually materialize during run-time, or if there is a guarantee that the
parallel execution of the loop will not affect the correctness of the program when the dependence does occur
at run time.

Thus, two important question are in front of us. (1) How effectively can the TLS support be used to
improve the performance of standard benchmarks? (2) Do data-dependence profiling predictions vary with
the set of inputs used for the profiling runs? Past work has suggested that, for widely used sets of benchmarks,
the dependence behaviour does not change with the data input [4, 5, 6]. This result is confirmed by our own
study described in this report and it is great news because it indicates that, for a wide class of applications,
an accurate data-dependence prediction can be made based on a single profiling run that executes the loop
of interest. However, past proposals to use this invariability did not provide a safety net to ensure that
all possible runs of the program would produce the correct result. One of the main contributions of this
report is to combine this simpler data-dependence profiling prediction with TLS to provide a framework for
speculative parallelization.

Using the TLS-enabled IBM’s BlueGene/Q supercomputer as an experimental platform, this research
makes the following contribution:

• A description of SpecEval, a new automatic speculative parallelization framework that combines LLVM
with the IBM bgxlc r compiler to evaluate the performance of TLS in the BG/Q. SpecEval uses single-
input data-dependence profile to find loops that are candidates for speculation in the SPEC2006 and
PolyBench/C benchmarks.

• A detailed study using 57 benchmarks that confirms the previous claim that loop-dependence behaviour
does not change based on program input.

• The first study of the performance impact of TLS when applied along with the existing auto-parallelizers
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of the bgxlc r compiler (SIMDizer and OpenMP parallelizer).

• A detailed study of different factors that impact the speculative execution of loops in the BG/Q.

0.2 Related Work

Architecture techniques to support TLS have been extensively studied and found to be successful due to their
lower overhead. Multiscalar [7] introduced the concept of hardware-based TLS and initially used hardware
buffers called Address Resolution Buffers (ARB) [8]. Later studies relied on shared-memory cache coherence
protocols to support TLS [9, 10, 11, 12, 13, 14]. There has been proposals on software-only TLS [15, 16] and
the software solution revealed very high overhead [17, 18].

Several profiling and speculation frameworks have been proposed [2, 19, 20, 1, 21, 22]. Embla is a
data-dependence profiler that supports TLS [6]. Chen et al. propose a data-dependence profiler developed
for speculative optimizations [1]. They perform speculative Partial Redundancy Elimination (PRE) and
code scheduling using a naive profiler and the speculative support provided through the Advanced Load
Address Table (ALAT) in the Itanium processors. Wu et al. use the concept of independence windows
and dependence clustering to find opportunities for speculative parallelization [23]. The proposed profiler,
called DProf, performs iteration-grain disambiguation and differentiates between intra- and inter-iteration
dependencies. POSH is a TLS compiler that uses a simple profiling pass to discard ineffective tasks. The
criteria to select a task for TLS in POSH includes the task size, the expected squash frequency — obtained
by simulation of the parallel execution — and L2 cache misses [24]. There has been also a limit study of
TLS [25]. There has been work towards shadow memory-based approaches to speculation [26].

Previous research found that there is limited variability in the dependence behaviour of loops across
inputs for a few benchmarks [4, 5, 6]. In this study, an evaluation of a wide range of benchmarks, which
have been used to evaluate the potential of TLS confirms those findings. Earlier research proposals for
hardware/hardware+software TLS used simulation to predict the performance of such systems. To the best
of our knowledge this is the first evaluation of the actual performance of a hardware-supported TLS system.

0.3 Input Sensitivity in Data dependence Profiling

This section examines the sensitivity, to variations in the program data input, of the data-dependence pre-
diction obtained from profiling in loops from 57 different benchmarks from the SPEC2006, PolyBench/C,
Biobenchmarks and NAS benchmark suites with different inputs as listed in Table 1. Confirming the obser-
vation of previous studies [4, 5, 6], none of these benchmarks have a loop where variations on dependence
behaviour across inputs was observed. For loops that were signalled as containing may-dependencies by the
compiler, either the dependence materializes for all program inputs or it materializes for none of them. A
possible inference from this result is that the may-dependence is due to the imprecision of the static depen-
dence analysis rather than actual variations in the dependence behaviour of the program. This finding is
promising for TLS research because it indicates that costly many-input profiling is seldom required. The next
section describes an automatic speculative-parallelization framework that uses single-input data-dependence
profiling to find loops that are candidates for speculation.

0.3.1 When Data Input Affect Dependences: A Case Study

Even though applications with input-determined dependence behaviour are rare, they do existent. This
section presents a case study of such an application — the construction of a 2D-Hull — and explores the
impact of different dependence densities, resulting from different inputs, on the speedup of such applications
when TLS is used. Automatic TLS parallelizers should use a cost model that takes into account the proba-
bility distribution of dependences in the loops such applications. This case study illustrate a case where the
application data input determines this probability.
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Table 1: Benchmarks used in the input dependence behaviour study. BB = Biobenchmark
Suite Benchmark Suite benchmark Suite Benchmark Suite Benchmark

SPEC2006

lbm

PolyBench/C

2mm

NAS

BT

BB

mummer
h264ref 3mm CG protpar
hmmer gemm DC dnamove

mcf gramschmidt EP dnacomp
sjeng jacobi FT dnaml(2)

sphinx3 lu IS dnamlk
bzip2 seidel LU dnadist
milc cholesky MG dolmove

gobmk dynprog SP restml(2)
namd fdtd 2d UA kitsch

BB
gendist

BB
tigr

BB
clustalw

BB
dynprog

hmmer protdist dnapars dnapenny
dnainvar seqboot dnamlk2 dollop
dolpenny fitch neighbor

2D-Hull: The randomized incremental algorithm that builds the Convex Hull of a two-dimensional set
of points is used as an application. This algorithm, called 2D-Hull and due to Clarkson et al. [27], computes
the convex hull, i.e. the smallest enclosing polygon, of a set of points in a plan. The input to Clarkson’s
algorithm is a set of (x, y) point coordinates. The algorithm starts with a triangle composed by an initial set
of three points and adds points. If the new point lies inside the current solution, it is discarded. Otherwise, a
new convex hull is computed. Any change to the solution found so far causes a dependence that was classified
as a may dependence to become a true dependence because other successor threads may have used the old
enclosing polygon to process the points assigned to them. The probability of a dependence violation in the
2D-Hull algorithm depends on the shape of the input set. For example, if N points are distributed uniformly

on a disk, the i-th iteration has a dependence with probability in φ
(√

i
i

)
. If the points lie uniformly on a

square, the probability of a dependence is in φ
(

log i
i

)
.

This case studied used four different input sets. Each input contains 10-million points.

• Kuzmin: is an input set that follows a Gauss-Kuzmin distribution, where the density of points is
higher around the center of the distribution space.

• Square: has an uniform distribution of points inside a square.

• Disc: is an uniform distributions of points inside a disc.

• Circle: distributes all the points around a circle.

The Kuzmin input set leads to very few dependence violations because points far from the center are very
scarce. The Square input set leads to an enclosing polygon with fewer edges than the Disc input set, thus
generating fewer dependence violations. The Circle input set leads to a very large number of dependence
violations.

The different inputs affect the dependence behaviour of the main loop of the Convex hull application.
The percentage of dependence violations is 0.001% for Kuzmin, 0.005% for Square, 0.035% for Disc, and
10.4% for Circle. Figure 1 shows the effect of the dependence materialization at runtime on the percentage
change in execution time of the Oracle version of TLS with respect to the baseline described in Section 0.5.
In this version of TLS the loops in the 2d-hull were executed speculatively in parallel irrespective of the
different probabilities of dependences materialization. These loops are not automatically parallelized by the
SIMD or OpenMP parallelizer because the compiler can not prove the absence of dependence at compile
time.
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Figure 1: Percentage change in execution time for applying TLS for the 2d-hull application

This case study illustrates that in some applications, a TLS framework that takes into consideration the
correlation between the input dataset and the variability of dependence materialization will have an effect
in performance. The input-sensitive data profiling strategy described in this Section will be useful in such
cases.

0.4 SpecEval: An Automatic Speculative Parallelization Frame-
work

This section presents SpecEval, an evaluation framework for speculative parallelization that uses LLVM
passes to find may dependencies inside loops, to profile and to generate debug information so that source-
code instrumentation can be performed. SpecEval then uses bgxlc r to produce executable code from the
instrumented source code. Even though our group has access to the source code of the XL compiler for other
research initiatives, for this research such access was not possible because the goal is to produce a TLS-
enabled path in LLVM, an open-source compiler. Thus SpecEval is only an evaluation framework, rather
than a compilation solution, to assess the potential for the use of TLS in the BG/Q. A shown in Figure 2,
SpecEval has three phases:

1. Collection of profile and debug information: The first step is the compilation of the source
code to Intermediate Representation (IR) with the -g option of the LLVM compiler so that debug
information that maps executable code to source code can be collected. This debug information allows
SpecEval to determine the source-code file name and line number where each speculative loop appears
so that an speculation pragma can be inserted. Step 2 runs a dependence-analysis pass to find may
dependencies. In step 3, a newly written instrumentation pass inserts calls to functions of a newly
written library to prepare the code for profiling. Step 4 uses a newly written LLVM pass to collect the
source-code file name and line number for all loops in the program. This debug information is stored
in a file indicated as Loop log in Figure 2. Step 5 executes the instrumented IR produced at step 3
with a training input to collect the data-dependence profile.

2. Source-code instrumentation: A newly written C program takes the Loop log and the data-
dependence profile file as inputs and inserts speculative pragmas in the source code before for loops
that are found to be speculation candidates based on a heuristic. The heuristic selects a loop for
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Source	  code	  

IR	  with	  debug	  
informa5on	  

1.	  Compile	  with	  –g	  op5on	  

may-‐dependences	  

Instrumented	  IR	  for	  
profiling	  

dependence	  profile	  

5.	  Profiling	  run	  using	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  an	  input	  

Loop	  log	  

Instrumenta5on	  
Program	  

Instrumented	  source	  code	  

Op5mized	  executable	  

7.	  Test	  run	  using	  different	  input	  

3.	  Instrumenta5on	  	  
	  	  	  	  	  pass	  

4.	  Collect	  informa5on	  
for	  source	  code	  	  
instrumenta5on	   Profiling	  	  

library	  

Phase	  1	  

Phase	  2	  

Phase	  3	  

6.	  Source	  code	  instrumenta5on	  

2.	  Dependence	  analysis	  pass	  

bgxlc_r	  

Figure 2: The SpecEval Framework.

speculation if the may dependencies of the loop are predicted to not materialize, through profiling, and
the loop takes more than 1.2% of the whole program execution time. This threshold was selected em-
pirically to prevent slowdowns due to the overhead of speculating loops that represent an insignificant
portion of the program execution time. The TLS pragma — ‘#pragma speculative for ’, is used signal
to the XL compiler that the loop should be speculated. This BG/Q-specific pragma divides the total
iteration space into chunks of:

number of iterations/number of threads

Listing 1 shows a sample instrumented loop. For a given loop-nest of n-dimensions, if the pragma
is applied to multiple loop levels, bgxlc r automatically flattens the pragma to be effective on the
outermost loop.

3. Test run: The instrumented source code produced in the previous phase is compiled with the bgxlc r
compiler to produce an executable that can be run on the BG/Q.1 A different input is used in the
profiling run than the input used for the test run.

Listing 1: A for loop with the annotated speculative pragma in BlueGene/Q

#pragma s p e c u l a t i v e f o r
f o r ( i =0; i < n ; i++)

//do something

This framework leveraged the dependence analysis and the versatility of the LLVM framework [28] and
the compiler and runtime infrastructure developed by IBM to enable a first performance evaluation of the
hardware support for TLS on the BG/Q.

0.5 Experimental Results

This section evaluates the impact of applying profile-driven TLS to the SPEC2006 and PolyBench/C bench-
marks using SpecEval. The above two benchmarks are chosen because they are widely used before in the

1The r option generates thread-safe code.
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Table 2: Hardware Details of Vesta
Feature Details Feature Details

Racks 2 Rack, 1024 Node per rack L2 Cache Centrally shared, 32 MB

Node 16 PowerPC A2 Cores with 16GB RAM per node L1 Cache 16KB I/D

I/O 32 I/O Nodes Per Rack SMT 4-way SMT

Peak Performance 419.44 TF Speed 1.6 GHz

Network Topology 5D Torus Architecture 64 Bit

TLS literature [5, 29, 23]. Times reported are an average execution time from 60 runs. For all experiments,
a one sample Student’s t-test performed on the 60 execution times shows that the p-values are in the range
between 0.15-0.33 — a p-value less than or equal to 0.05 would indicate a significant variation.

Previous studies have used TLS for benchmarks with many parallel loops without regards for the nature
of potential dependencies [30, 17]. However, there is no point on applying TLS to a loop that is known
to not have dependencies — such loops should be executed in parallel rather than speculatively — or to a
loop that is known to have an actual loop-carried dependence — the speculation of such loops is certain
to fail. Therefore SpecEval only applies TLS to loops for which the compiler reported may dependence and
where no true loop-carried dependencies exist. Therefore the opportunities for TLS under such assumptions
are diminished by the quality of the dependence analysis in the compiler. SpecEval currently rely on the
loop dependence analysis in LLVM. A similar approach can be used for other compilation frameworks in the
future.
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Figure 3: Percentage change in execution time from different parallelization techniques for SPEC2006 bench-
marks over the auto-SIMDized code. The OpenMP and TLS versions use 4 threads.
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0.5.1 Effect of applying TLS with AutoSIMD and AutoOpenMP parallelizer
on the bgxlc r

The baseline for comparison is an executable generated by the bgxlc compiler from IBM at the highest level
of optimization (-O5) with auto-SIMDization. This code is generated with the following command: bgxlc

-O5 -qsimd=auto -qhot -qstrict -qprefetch.2 Figure 3 compares three compilation versions with this
baseline. AutoOpenMP is an automatically parallelized version using OpenMP and SIMDization generated
by bgxlc r by adding the option -qsmp=auto to the compilation command. AutoOpenMP+TLS is the
same code as AutoOpenMP with TLS applied by SpecEval to some loops that were not parallelized by
bgxlc because of may dependencies. The -qsmp option is modified to-qsmp=auto:speculative. Oracle
is obtained by applying TLS incrementally to candidate loops. If the application of TLS to a candidate
loop degrades performance improvement then that loop is rejected from TLS by the Oracle. Oracle uses an
heuristic that knows which loops are profitable for TLS and therefore is a limit study for the best performance
that could be obtained using TLS in SpecEval. For most applications Oracle is not a practical solution, but
in a performance evaluation study it provides valuable information to indicate how well the heuristic that
selects loops for speculation is doing.

Figure 3 indicates that there are three classes of benchmarks - benchmarks that achieve speedup with
TLS (milc, lbm, bzip2, mcf, namd, hmmer), benchmarks where performance neither improves nor degrades
(sphinx3, gobmk) and benchmarks that suffer performance degradation with TLS (h264ref, sjeng). The
superior oracle performance of mcf is explained by some loops that contain function calls that introduce
dependencies. In Section 0.6.4 an heuristic that excludes these loops from TLS results in comparable per-
formance to the oracle.

The coverage of a loop is the percentage of the total execution time of the program that can be attributed
to that loop. There is limited performance improvement when TLS is applied to cold loops due to the
speculative thread-creation overhead. bzip2, sjeng are benchmarks that contain speculative loops with
poor coverage (Table 3).

The BG/Q transactional-memory subsystem supports two modes for speculative execution: a long-
running (LR) mode and a short-running (SR) mode [3]. Only the LR mode is available for TLS at this
time. In the LR mode the L1 cache must be flushed at the start of each speculative region. As a result, a
significant number of L1 cache misses happens at the start of a speculative region leading to the increase
in L1 cache misses observed in the experimental evaluation and limiting TLS performance. In BG/Q the
hardware support for transactional memory is built on top of the hardware support for TLS — the main
distintction between TLS and TM is the need to enforce the commit order in TLS. Wang et al. describe SR
and LR in BG/Q [?].

As the results in Figure 4 indicate, amongst the PolyBench/C benchmarks, cholesky and dynprog suffer
from the flush-effect of TLS (Table 4). Although this hypothesis cannot be experimentally evaluated at the
moment, it is possible that the Short-running (SR) mode [3] would be more suitable for the speculative
execution of these benchmarks.

Events, such as saving of register context before entering a speculative region and obtaining a specula-
tive ID, account for the TLS overhead that is reflected in the increase in dynamic instruction path length.
Jacobi and seidel are two benchmarks that experience a significant path-length increase (Table 5) thus
limiting/degrading their performance. The rest of the section explains in details the different sources of the
BG/Q TLS overhead.

2By default the -O5 level turns on the automatic vectorization (SIMDization) and the various optimizations of hot loops (e.g.
loop unrolling etc.). The option -qstrict maintains the correct semantics of the program when using higher-level optimizations.
The option -qprefetch enables prefetching.
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Figure 4: Percentage change in execution time from different parallelization techniques for PolyBench/C
benchmarks over the auto-SIMDized code. The OpenMP and TLS versions use 4 threads.

0.6 Limitations to TLS Performance

The performance changes due to TLS performance is affected by the amount of time spent in speculated
loops, by the cost of misspeculation, and by changes in cache behaviour and on the instruction path length
of the programs.

0.6.1 Number of loops parallelized and their coverage

Table 3 shows the total number of loops in each benchmark, the number of loops parallelized by each of
the three different parallelization techniques — automatic OpenMP parallelization, automatic SIMDiza-
tion and speculatively parallelization, the coverage of speculatively parallelized loops in the SPEC2006 and
PolyBench/C benchmarks, and the percentage of speculative regions that are successfully committed.

The interesting benchmark in Table 3 is h264ref because it has the highest number of speculatively
parallelized loops with good coverage among all other benchmarks but still it experiences a slowdown due to
speculative execution, as seen in Figure 3. Experiments reveal that function calls from within the speculative
loop body introduce dependencies during run-time and those dependencies are not detected by the context-
insensitive dependence profiling. This type of misspeculation overhead also limits the TLS performance for
sjeng.

The performance improvement from TLS for milc is limited due to the speculative execution of loops
with poor coverage that introduces TLS thread creation overhead. An ideal TLS candidate loop will have
high coverage, ı.e. it is a hot loop, with very low probability of dependence violation. The number of loops
speculatively parallelized for lbm is small but they take a significant portion of the whole program execution
time (98%). These hot loops of lbm are good speculation candidates and are examples of cases where TLS
can be beneficial.

The PolyBench/C benchmarks 2mm and 3mm execute matrix multiplication. Their large loops can be
parallelized with OpenMP and thus are not candidates for speculation. For gemm, the speculatively parallel
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Table 3: Number of loops parallelized by OpenMP, SIMDized and speculated with the coverage of speculated
loops. Coverage is the fraction of total time spend in the speculated loops (expressed as a percentage).
Rightmost column is the percentage of speculative threads the successfully committed.

Suite Benchmarks Total OpenMP SIMDized Speculative %
# Loops # Loops # Loops # Loops Cover. Commit

SPEC2006

lbm 23 4 0 5 98 % 94 %
h264ref 1870 179 3 47 82 % 12 %
hmmer 851 105 17 30 80 % 79 %

mcf 52 9 0 12 65 % 68%
sjeng 254 9 0 16 32 % 8%

sphinx3 609 11 0 2 91 % 29%
bzip2 232 4 0 2 35 % 78%

gobmk 1265 0 0 0 0 % -
milc 421 7 2 22 33 % 79%

namd 619 9 7 25 92 % 80%

PolyBench/C

2mm 20 7 3 0 0 % -
3mm 27 10 3 0 0 % -
gemm 13 3 4 4 40 % 89%

gramschmidt 10 3 0 0 0 % -
jacobi 9 3 0 2 3 % 78%

lu 8 3 1 5 45 % 89%
seidel 7 4 0 2 3 % 70%

cholesky 9 0 0 4 10 % 79%
dynprog 9 7 0 3 18 % 82%
fdtd 2d 14 2 0 3 20 % 68%

loops have good coverage that accounts for the speedup from TLS. But for cholesky, dynprog and fdtd-2d,
the poor coverage of loops results in a TLS slow-down.

Gramschmidt does not have any speculative loops because cold loops (less than 1.2% coverage) are filtered
out by the speculation heuristic because they are not beneficial for TLS [31].

0.6.2 Misspeculation Overhead

The squashing of threads because of dependencies and the re-execution of the parallel section sequentially
imposes overhead that results in performance degradation. In the absence of an inter-procedural data-
dependence analysis, the speculation of loops with function calls is risky because the execution of the callee
may introduce dependencies that were not detected by the analysis and may thus lead to thread squashing.
The measurement of misspeculation overhead revealed that some of the benchmarks contain loops where
function calls introduce actual dependencies during run-time.

A speculative thread either commits successfully or end in an non-committed state — in which case
cache-line versions associated with the thread are discarded.

The se print stats function from the speculation.h header file in the BG/Q runtime system is used to col-
lect various statistics for a speculative region including the number of successfully committed/non-committed
threads.

The percentage of successfully committed threads is a good proxy measurement for the misspeculation
overhead. Ideally a benchmark that can benefit from TLS should have a high percentage of successful
completion of speculative threads.

Table 3 also shows the percentage of speculative threads committed for the
SPEC2006 and PolyBench/C benchmarks. The best TLS performance, in terms of successful thread comple-
tion, is in lbm. For sjeng and h264ref the percentage is much lower, giving an indication of a huge amount
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of wasted computation that causes their slowdown. Closer investigation of these benchmarks reveals that
most of the loops speculatively parallelized contain function calls that introduce new dependencies during
run-time. Though h264ref has a high number of loops speculatively parallelized (Table 3), the presence of
dependence resulted from the function calls inside the loops accounts for the slowdown. Mcf, hmmer, milc,
namd and bzip2 also suffer from this phenomenon.

Among the PolyBench/C benchmarks, gemm and lu have a high percentage of speculative thread comple-
tion that accounts for their speedup. For four of the benchmarks - jacobi, seidel, cholesky and dynprog

there is a high percentage of thread completion but still these benchmarks experience slowdown.
Experiments show that cholesky and dynprog suffer from an increase in L1 cache misses, likely caused by

the LR-mode cache flush, while jacobi and seidel suffer from a significant increase in dynamic instruction
path length. These two benchmarks contain loops that have low iteration counts.

Two approaches can be used to overcome the misspeculation overhead due to function calls:

• Conservative Approach: The compiler conservatively does not allow loops with function calls to be
executed in parallel regardless of whether the function call changes the dependence behaviour of the
loop. This heuristic might miss parallelization opportunities where the function call is harmless.

• Precise Approach: A more sophisticated inter-procedural dependence analysis technique is used to
decide whether the function call introduces new dependencies during run-time.

The performance effect of adopting the conservative approach on the SPEC2006 benchmarks is evaluated in
the following section.

0.6.3 TLS Startup Overhead on the BG/Q

Starting a TLS region on the BG/Q requires operating system actions, primarily to setup threads with a
special virtual-memory structure. Knowing the cost of the setup process is important to understanding the
profitability of speculating the execution of a loop. Profitable use of TLS generally requires choosing an
speculative region of code that is large enough to amortize these overheads yet small enough to have a low
conflict probability. A separate set of experiments measure the TLS startup overhead. In these experiments,
a simple loop with independent iterations is executed many times: sometimes sequentially, sometimes in
parallel using OpenMP, and sometimes speculatively in parallel using TLS. The test was constructed so that
the iteration count and the iteration independence could not be determined at compile time. Furthermore,
the ordering of loop executions using OpenMP and TLS were permuted to search for any ’switching penalty’
between the two methods, but none was found. Cycle counts for each loop execution were obtained from
the processor’s time-base register. The serial loop executed in the range of 174 to 228 cycles. As shown in
Figure 6, the two parallel methods, while similar to each other, exhibit a complex distribution of execution
cycle counts. We were unable to determine the cause of the distribution’s complexity, but one thing is
clear: starting an OpenMP or TLS region on the BG/Q takes many hundreds of thousands of cycles, and
sometimes nearly an order of magnitude more. Even though the timings are highly variable, they were also
deterministic. This relatively large overhead associated with TLS region startup explains the success of
heuristics, such as those used in this work, that limit the use of TLS to high-coverage loops.

0.6.4 Preventing Speculation of Loops with Side-Effect Function Calls

Allowing speculative execution of loops with function calls for h264ref and sjeng introduces misspeculation
overhead that results in performance degradation. Function calls inside speculated loop bodies in these
benchmarks introduce dependencies across iterations at run time. The static dependence analysis in LLVM
is currently unable to detect these dependencies. An inter-procedural dependence analysis based on profiling
information is not yet available.

This section studies the performance effect of preventing the speculative execution of loops with function
calls that may have side effects.
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Figure 5: Percentage change in execution time of SPEC2006 benchmarks over auto-SIMDized code after
filtering speculative execution of loops with function calls.

The results in Figure 5 indicate that preventing speculative execution of loops with function calls changes
the performance degradation of h264ref and sjeng into performance gains. The percentage of successfully
committed threads jumps up from 12% to 96% for h264ref and from 8% to 97% for sjeng. Using this
approach, a 32% change is achieved for hmmer because hmmer contains some loops where new dependencies
are introduced at run-time due to function calls. Also the performance of mcf comes close to the performance
of the oracle version. Performance does not degrade for any of these benchmarks, thus indicating that there
are no loops in these benchmarks that are both hot and that have function calls that affect the run-time
dependencies.

The performance of the PolyBench/C benchmarks does not change when this approach is used. Most
PolyBench/C benchmarks are kernel benchmarks and the loops inside them do not contain function calls.
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Figure 6: Distribution of the number of cycles required to execute a single iteration of a simple loop with
TLS and OpenMP.
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0.6.5 L1 Cache Miss Rate

One of the most dominant run-time overhead in the BG/Q TLS is caused by the loss of L1 cache support
due to the L1 flush needed for the bookkeeping of speculative state in L2. Though the L2 and L1P buffer
load latencies are 13x and 5x higher than the L1 load latency, the L1 miss rate both for the sequential and
parallel versions of the code gives an idea about the performance gain or loss for the benchmarks.

The Hardware Performance Monitor (HPM) library of the BG/Q is used to collect the L1 miss statistics.
Table 4 gives the L1 cache hit rate for the sequential version and the three parallel versions of the SPEC2006
and PolyBench/C benchmarks.

Table 4: L1 Cache hit rate (percentage) for the sequential and three parallel versions of the SPEC2006 and
PolyBench/C benchmarks.

Suite Benchmark Sequential SIMD AutoOMP Speculative

SPEC2006

lbm 95 94 94 93
h264ref 96 95 95 94
hmmer 98 97 97 95

mcf 92 92 95 95
sjeng 96 96 95 90

sphinx3 96 96 95 95
bzip2 95 95 95 97

gobmk 97 97 97 97
milc 95 97 97 98

namd 96 98 97 98

PolyBench/C

2mm 98 98 99 99
3mm 98 98 99 99
gemm 98 96 98 98

gramschmidt 97 97 97 97
jacobi 97 97 97 97

lu 96 96 95 96
seidel 98 97 98 98

cholesky 98 98 96 88
dynprog 97 96 97 90
fdtd 2d 98 98 98 98

The speculative execution of sjeng results in a high L1 miss rate. This high miss rate is the effect of
flushing the L1 cache before entering the TLS region in the LR mode. Apart from the function calls that
introduce data-dependencies, the high L1 miss rate affects the performance for sjeng.

Similar effect can be seen for the two PolyBench/C benchmarks - cholesky and dynprog. Though these
two benchmarks have a high percentage of successful completion of speculative threads as seen in Table 3,
the speculative execution of the selected loops affects the cache performance due to locality of data between
threads. The cost of bringing the data again after flushing the cache accounts for the slowdown in these
benchmarks.

For jacobi and seidel benchmarks, though the speculative execution of the loops result in better cache
utilization, the benchmarks experience a slowdown. The reason for this slowdown is the increase in instruction
path length.3 The two benchmarks fdtd-2d and gobmk do not experience any change in cache utilization
for the three parallelization techniques (automatic OpenMP, SIMDization and speculative parallelization),
because there are no parallelizable loops.

3The instruction path length is the total number of instructions executed by an application.
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0.6.6 Increase in Instruction Path Length

Automatic OpenMP and speculative parallelization insert calls to OpenMP and TLS run-time functions,
respectively, into the parallelized loops. Code is also inserted for saving the consistent system state so that
the system can be rolled back to a previous state in case of a dependence violation and thread squashing.
Table 5 shows the effect of TLS on code growth.

Table 5: Percentages of dynamic instruction-path-length increase of the three parallel versions of the
SPEC2006 and PolyBench/C benchmarks with respect to their sequential version.

Suite Benchmark SIMD AutoOMP Speculative

SPEC2006

lbm .03 % .25 % 26 %
h264ref .6 % 15 % 56 %
hmmer 10 % 35 % 37 %

mcf 0 % 12 % 23 %
sjeng 0 % 0 % 45 %

sphinx3 0 % 18 % 19 %
bzip2 0 % 2 % 3 %

gobmk 0 % 0 % 0 %
milc 0.9 % 12 % 23 %

namd 1 % 12 % 25 %

PolyBench/C

2mm 13 % 45 % 45 %
3mm 13 % 46 % 46 %
gemm 11% 45% 45 %

gramschmidt 0 % 46 % 46%
jacobi 0 % 95% 112 %

lu 1 % 12 % 13 %
seidel 0.02 % 98 % 123 %

cholesky 0 % 0 % 99 %
dynprog 0 % 0 % 75 %
fdtd 2d 0 % 0 % 79 %

The code growth for the PolyBench/C benchmarks is higher than for the SPEC2006 benchmarks because
loops constitute a major portion of the PolyBench/C benchmarks and therefore the parallelization of these
loops affects the code size more significantly. For SPEC2006 benchmarks the code growth is relatively
smaller, the highest being for the speculative parallelization of h264ref where a large number of loops are
speculatively parallelized (Table 3).

As seen in Table 5, jacobi and seidel experience a significant code growth that explains their slowdown.
Benchmarks such as cholesky, dynprog and
fdtd 2d also suffer code growth due to the presence of loops with poor coverage (see Table 3). Loops
whose speculation leads to non-trivial code growth should be only judiciously speculated.

0.7 Performance Trends

As technology scales, the number of cores that can be integrated onto a processor increases. Thus, it is
important to understand whether TLS can efficiently utilize all the available cores. In this section, the
scalability of TLS performance is studied for the SPEC2006 and PolyBench/C benchmarks by comparing
the speedup achieved using 2 to 64 threads. The results of this study are shown in Figure 7.

As seen in the figure, lbm, sphinx3, namd and h264ref contain a number of loops with good coverage.
Therefore, these benchmarks show some scalability with the increasing number of threads.

Mcf is a benchmark that scales up to 32 threads due to cache prefetching [29]. The performance of
milc scales up to 8 threads. For hmmer and sjeng, the performance improvement for TLS is negligible in
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Figure 7: Scalability of speculatively parallelized versions of the SPEC2006 benchmarks.

all configurations. While the reasons for the lack of scalability differ from benchmark to benchmark, it is
obvious that the amount of parallelism is limited. There is also very little performance change with increasing
number of threads.

0.7.1 Using Clauses with the Basic TLS Pragma

All the experiments discussed so far use the basic TLS pragma available for TLS on the BG/Q. But the
bgxlc r compiler offers many OpenMP-like clauses that can be used to optimize the performance of the
speculative loop [32]. These clauses offer more flexibility in the following two aspects:

• Scoping of variables: The clauses default, shared, private, firstprivate and lastprivate give the option
to specify the scope of the variables used inside the loop.

• Work Distribution: The clauses num threads and schedule give the option to change number of
threads and distribution of work among threads.

This case study illustrates the use of specific clauses on the lbm and h264ref benchmarks. These benchmarks
are chosen because lbm has loops that are suitable for TLS execution and h264ref has the highest number of
speculatively parallelized loops. Clauses are manually added to pragmas to study their performance effects.
This manual instrumentation allowed the parallelization of more loops.

This study also investigates the impact of different work distribution strategies on the TLS performance
for the speculatively parallelized loops for the two benchmarks. The performance evaluation indicates that
the scoping of variables results in negligible performance variations for these two benchmarks (improvements
of .05 % and .01 % respectively for lbm and h264ref), and that the different work distribution strategies do
not change the performance at all.

But still the question remains whether there will be any significant performance change for other bench-
marks due to the modification of the basic pragma. Previous work mentions that finding the best-suited
(OpenMP) pragma automatically in loops is non-trivial and needs programmer’s support [4, 33]. One
approach for automatic modification of the pragmas for work sharing is to use machine-learning tech-
niques [4, 33]. Auto-scoping of variables is still not supported in bgxlc r. Techniques used by the Oracle’s
Solaris compiler can be explored for auto-scoping [34].
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0.8 Lessons Learned

The introduction posed some important research questions regarding the use of TLS to improve performance.
This study is limited to standard benchmarks that were not designed with the idea of exploiting TLS in mind
and is limited to the first implementation of TLS commercial available. Nonetheless, it has indicated that
obtaining significant performance gains from TLS alone may be harder than previously thought. The overall
performance gains reported appear underwhelming and would discourage the use of TLS if significant effort
would be required by the final user. However, the good news is that, given that the machinery to support
TLS is already implemented in the hardware, once the compilation and run-time system support is in place,
deploying TLS to an application requires minimum effort. The confirmation that for the majority of the
applications the materialization of may-dependences is independent of the program input — and therefore
the realization that a single profiling run would be sufficient to determine which may-dependences can be
safely speculated — makes the use of TLS even simpler.

A second lesson learned is that, even though the cost for starting a TLS region is similar to the cost of
starting an OpenMP region, both of them can be high. An interesting direction for future improvement,
which requires access to the IBM proprietary software stack, would be to identify which portion of this
overhead is due to the hardware and to the software and to try to improve the software stack to reduce this
cost.

0.9 Conclusion

This research connected the dependence analysis in one compiler (LLVM) and the support for TLS in another
(bgxlc r) to create a new automatic speculative parallelization framework, SpecEval, that allowed for an early
evaluation of the performance effects of TLS on the BlueGene/Q supercomputer. This evaluation found that
many factors must be taken into consideration when selecting candidate loops for speculation. These factors
include: number and coverage of speculative loops, misspeculation overhead due to function calls inside the
loop body, increase in L1 cache misses and dynamic instruction path length increase.

The evaluation, using benchmarks from the SPEC2006 and PolyBench/C suites, found that benchmarks
that have loops with good coverage and without dependence violation, such as lbm, are well suited for TLS.
But the widespread use of TLS in benchmarks that contain function calls with side effects will require more
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sophisticated inter-procedural dependence analysis in the compiler.
This research was originally motivated by the idea that information obtained from profiling is expected

to vary according to the program input used for profiling [35]. Thus, it was pleasant to confirm earlier
claims that, in practice, loops’ dependence behaviour does not change based on inputs on a wide range of
benchmarks. Though we presented the performance study of a benchmark (2d-hull) that has loops with
varied dependence behaviour across inputs, but existence of similar applications is not known to us. Based
on this finding, single input data-dependence profiles could be used to find the speculation candidate loops
in this study. Also the study in this report focused ion the SPEC2006 and PolyBench/C benchmarks mainly
because both of these benchmarks have been used extensively in previous studies of TLS. Our investigation
confirmed that variations of may-dependence do not occur in either suite. This is an important finding and
we argue that TLS is necessary to ensure that the speculation used by the compiler is safe.
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