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Abstract

In batch policy evaluation the goal is to predict the value of a policy given some

historical data. A specific example, which motivated the approach pursued in this

thesis, is to predict the probability of putting a natural wildfire out given some spe-

cific configuration of dispatched resources, such as helicopters, planes, trucks, and

firefighters of various kinds. The general structure of problems like this is that the

more resources are deployed, the higher success rate we expect to see: the response

is a monotone function of the resources dispatched. In this thesis, we investigate

the question of what are the best ways of estimating success probabilities of poli-

cies in problems that exhibit such a monotone structure. In particular, viewing the

problem as a multiobjective optimization problem where the optimization variables

are parameters describing the estimators and the objectives correspond to different

problem-instances (in the wildfire application these correspond to different conditions

under which the fire may happen), we propose various ways of optimizing estimation

accuracy. More specifically, when resource levels are discrete and one-dimensional (or

totally ordered) and focusing on minimum variance point estimation and unbiased

estimators, it is found that natural optimization objectives lead to convex optimiza-

tion problems that can be solved efficiently. One of the main contributions of the

thesis is the careful experimental comparison of the various optimization objectives

with Monte-Carlo simulations. As a second main contribution, a similar investigation

is carried out for comparing alternative strategies that produce interval estimates.
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Chapter 1

Introduction

1.1 Motivation

Albreta province is full of forest resources. Wildfire is one of the biggest threats in

Alberta. The recent wildfires in California costs over 12 billion US dollars in 2020

[1]. Wildfires can be very expensive to fight and sometimes fires can result in the

tragic loss of human life. The average damage and suppression cost of a fire could

easily be more than ten thousand dollars, and sometimes it costs billions of dollars [2].

Effective suppression will quickly limit and arrest fire spread, thereby eliminating the

potential for fire-caused damages and negative impacts in surrounding areas. When

a new wildfire is reported, suppression resources such as airtankers, helicopters, and

firefighters are dispatched. There has been some research on dispatching decisions

[2–4], with limited applications. Initial attack (IA) is the set of actions taken by

resources that are first to arrive at a fire [2]. The thesis is motivated by our another

project, whose goal is to optimize wildfire dispatch decisions to maximize IA success

while using limited resources. In wildfire application, it is nearly impossible in prac-

tice to perform experiments to evaluate the effectiveness of different combinations

of suppression resources, since the consequences for real wildfires can be severe. A

potential remedy to this is to use previously collected historical data to evaluate and

compare success probabilities of IA policies. How to do this effectively and efficiently

is the focus of research on off-policy evaluation (OPE). OPE is widely used in Com-
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puting Science and various applications. Some of the basic methods for evaluating a

new policy using historical data have emerged [5–7].

In this thesis we consider a special case of this problem. Consider the problem for

wildfire dispatch decisions. The dispatch decisions represent the number of resources

to send. There is a higher probability for the fires to be contained as we send more

resources: the success probability is monotone in the resources we send. We model

this problem by introducing the notion of critical levels, which is defined as the level

of resources that guarantees success. When we send the number of resources above

or equal to that critical level, say 2 helicopters, we get a positive outcome. Based on

limited information from fire reports, there could be many possibilities for the critical

level of resources required: the critical level of resources could be hard to predict.

In this thesis, we assume that the critical level is a random variable. To evaluate a

new dispatching policy and to find the best one, we can utilize historical wildfire data

containing dispatch decisions, and suppression outcomes.

1.2 Related Work

The literature on OPE is enormous, but they are more general. None of them men-

tioned here considered the monotone response case, which is the most important

difference distinguishing this work from literature. Thomas and Brunskill proposed

finding an estimator minimizing the mean squared error (MSE) [6]. This paper is

similar to our study, which is also optimizing estimators. The difference is that,

we are optimizing the variance of an unbiased estimator instead of MSE and we fo-

cus strongly on the structure of our problem. They used the weighted importance

sampling (IS) estimator as a baseline and introduced several enhancements. They

proposed several new OPE estimators and showed empirical results that they outper-

form existing estimators. They did empirical studies for the estimators. In addition

to empirical results, we also show that our estimators are provably optimal for the

problem we consider. Another paper by Thomas et al. in 2015 presented a technique
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that can evaluate a policy without executing it based on a lower confidence bound of

the value of the policy to be evaluated [7]. The ability to compute a tight confidence

bound comes from a novel adaptation of an existing concentration inequality to make

it particularly well suited for evaluation. They performed experiments for digital

marketing applications using real data. In my thesis, we also compute confidence

intervals for our estimators.

Kato and Kaneko, in their 2020 preprint, considered OPE for contextual bandits

when the logging policy (aka. behavior policy) evolves over time [5]. OPE in gen-

eral, including this thesis, estimates the value of an evaluation policy using samples

obtained under a fixed behavior policy. The cited paper proposes an estimator based

on an idea of a “generalized method of moments” technique. Both of this paper and

my thesis have independent and identically distributed (i.i.d.) data. In my thesis, we

are optimizing variance instead of reward. Also, the bandit problem does not have

monotonicity, because the reward is not monotone in actions and there is no order

between actions.

To the best of our knowledge, there is no past work applying off-policy estimation

to wildfire data. Although we motivate this work from wildfire application, this thesis

is limited to development of off-policy estimators under monotone response, and appli-

cation of the proposed estimators to wildfire data remains in future work. One of the

previous research in wildfire is about IA decisions. There are two sequential decision-

making stages for IA: the strategic stage at which decisions regarding the deployment

of resources to operations bases are made, and the tactical-operational stage at which

decisions regarding dispatching of resources to fire locations are made. Ntaimo et

al formulated and implemented a two-stage standard response model (SRM) for wild-

fire initial attack planning [2]. The goal of the paper is to contain as many fires as

possible at minimal pre-suppression costs plus expected suppression costs. To min-

imize the expense, they made several SRM based on simulations of historical data.

They use confidence interval (CI) for various sample sizes to compare the total ex-
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pense. They used a fire simulator to link dispatched resources to the outcome whereas

our approach is data-driven.

Kourtz first coined a dynamic programming (DP) framework for dispatching fire

forces in 1988 [3]. The paper considered the dispatching problem when resources

are distributed among different places. The paper proposed a DP structure regarding

minimizing the dispatching money cost for different time stages. He solved a knapsack

formulation using DP to determine a set of resources that minimizes the cost and is

enough to suppress the fire. Another paper by R.Wiitala which extends from Kourtz’s

paper by considering multiple time periods, discussed another dynamic programming

based approach that offers a recursive algorithm for finding the most efficient dispatch

of available suppression resources to a fire [4]. The way Wiitala solves the dispatching

problem in each time period is similar to Kourtz’s. They formulate the problem as

that of minimizing the total cost, including suppression cost, mop-up cost and resource

loss. Both of these two papers used either experts’ opinion or a model for the fire line

to represent the relationship between resources and suppression success whereas we

use a data-driven approach.

1.3 Objectives and Contributions

In this thesis, our goal is to find a low variance unbiased estimator of the performance

of a target policy using data generated by a logging policy that is potentially different

from the target policy. In particular, we study the problem focused on a decision-

maker who needs to choose one action out of k choices. Let [k] = {1, . . . , k} be the

set of available actions. If the agent chooses a, then the outcome is 1(a ≥ A∗), where

A∗ is unknown to the agent, called critical level. The goal of the agent is to choose an

action that is greater or equal to the unknown critical level. We consider the critical

level as a random variable from an unknown distribution P . The agent has access

to i.i.d. data of the form {Ai,1(Ai ≥ A∗
i )}, where the distribution of A∗

i is P and

the distribution of Ai is πl, which is known and Ai and A∗
i are independent of each
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other. We propose various unbiased estimators of E[1(A ≥ A∗)] where A, A∗ are

independent, A follows πl. A key challenge is the fact that estimators have different

variances depending on the unknown critical level distribution.

The main contributions of this thesis come in three parts:

• We propose several unbiased estimators that optimize different objectives re-

lated to variance and show that they can be efficiently computed by solving

convex optimization problems.

• We thoroughly compare the estimators empirically.

• We empirically evaluate several methods to obtain confidence intervals that

capture the target value E[1(A ≥ A∗)] with high probability.

1.4 Thesis Outline

The rest of this document is organized as follows. Chapter 2 discusses the proposed

off-policy estimators. Chapter 3 discusses the point estimation experimental results

and the comparison of estimators. Chapter 4 compares several techniques to construct

confidence intervals. Chapter 5 summarizes our work in this thesis and provides

insights into future work.
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Chapter 2

Estimators

In this section, we define our point-estimators. We first introduce the notation we

will use. The agent makes decisions based on a data set as described earlier. An

observation consists of an action taken and its corresponding outcome. Since the

data is a sequence of n i.i.d. random variables, our estimator will take the form of the

average of estimates produced on the individual observation pairs. The variance of

such an estimator is the variance of the estimate based on a single observation decided

by n. Hence, it suffices to consider the problem when there is only one data-point.

We emphasize that the critical level is not observed in the logged data. We assume

that the action in the data were chosen following πl : [k] → [0, 1], which is known,

where
∑︁

a∈[k] πl(a) = 1, we call πl the logging policy.

We aim to evaluate another policy πt : [k] → [0, 1], called the target policy which

is also part of the input. When the critical value is a∗, the value V π
a∗ of a policy π is

given as:

V π
a∗ =

∑︂
a≥a∗

π(a), (2.1)

which is the probability of success of π. If p is the probability mass function of the

random critical level A∗, then the value of a policy π is:

V π
p =

∑︂
a∗∈[k]

p(a∗)V π
a∗ .

An estimator of the value of a target policy based on a single observation assigns a

real number to the observation. As such, it takes the form f : [k] × {0, 1} → R.
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When an action a was taken in the logged data, our estimate of the value of πt is

f(a, 1) if the outcome was a success, and f(a, 0) if it was a failure. In order for f to

be unbiased f must satisfy:∑︂
a∈[k]

πl(a)f(a, 1(a ≥ a∗)) = V πt
a∗ for a∗ ∈ [k]. (2.2)

Any estimator that satisfies this equation is an unbiased estimator: the estimated

value equals the true value no matter the critical level distribution. There are in-

finitely many unbiased estimators, since we can modify f(a, 1(a ≥ a∗)) term without

changing the value of the left hand side of the equation (2.2). For an estimator f

when the critical level distribution is p, its variance is given as:

V arp(f) =
∑︂
a∈[k]

∑︂
a∗∈[k]

πl(a)p(a
∗)[f(a, 1(a ≥ a∗))− V πt

p ]2. (2.3)

The variance depends on the unknown critical level distribution. We will introduce

several unbiased estimators which optimize variance in different ways. Let us first

review the IS estimator which we consider a baseline.

IS is a general technique in statistics for estimating properties of a distribution,

while only having samples generated from a different distribution than the distribution

of interest [8]. With our notation, the IS estimator takes the form

f(a, 1) =
πt(a)

πl(a)
, f(a, 0) = 0. (2.4)

Clearly, this satisfies the unbiasedness condition (2.2). In what follows, we let U

denote the set of functions f that satisfy (2.2).

2.1 Minimax Variance Estimator

Consider an unbiased estimator minimizing the worst-case variance, obtained by solv-

ing the following problem: Define ∆k−1 as the k-dimensional probability simplex, and

solve

min
f∈U

max
p∈∆k−1

V arp(f). (2.5)
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Let A denote the random variable representing the action taken by the logging policy.

If f is feasible for (2.5), then we have EAEA∗ [f(A, 1(A ≥ A∗))] = V πt
p , where A∗ p,

A πl. Thus, for any f that is feasible for (2.5),

V arp(f) = EAEA∗ [(f(A, 1(A ≥ A∗))− V πt
p )2]

= EAEA∗ [[f(A, 1(A ≥ A∗))]2]− 2V πt
p EAEA∗ [f(A, 1(A ≥ A∗))] + (V πt

p )2

= EAEA∗ [[f(A, 1(A ≥ A∗))]2]− (V πt
p )2. (2.6)

Let us introduce new notations to write (2.5) in a compact form. For any policy π,

we will re-use π to denote its k-dimensional vector representation. We re-use p in the

same way. Let F (2) be the k×k matrix whose entries are given as F
(2)
a,a∗ = [f(a, 1(a ≥

a∗))]2. Finally, let T be the k × k matrix with Ta,a∗ = 1(a ≥ a∗). Then, (2.6) can be

written as:

V arp(f) = EAEA∗ [[f(A, 1(A ≥ A∗))]2]− (V πt
p )2

= π⊺
l F

(2)p− (π⊺
t Tp)

2.

Thus, the inner problem of (2.5) can be written as

min
p∈∆k−1

(π⊺
t Tp)

2 − π⊺
l F

(2)p (2.7)

which is minimizing a convex quadratic function on the k-dimensional unit simplex.

It is a convex problem and can be solved efficiently.

Proposition 1 The minimax problem in (2.5) can be reformulated as a minimization

problem as follows: let α and µ be the variables in R, F be the k × k matrix whose

entries are given as F = f(a, 1(a ≥ a∗)). Then (2.5) is equivalent to

(P) min
f,α,µ

α2 + µ (2.8)

s.t. µe⊺ ≥ π⊺
l F

(2) − 2απ⊺
t T, (2.9)

π⊺
l F = π⊺

t T. (2.10)
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(See Appendix A.1 for the proof of this proposition.)

By solving this problem, we can get the Minimax (MM) estimator which minimizes

worst-case variance.

2.2 Regret Against the IS Estimator

We find another unbiased estimator which minimizes the worst-case regret against

the IS estimator. We will call this the “Regret against IS” (RIS) estimator. Let fIS

be the weights for IS from equation (2.4). The RIS estimator is defined by

min
f∈U

max
p∈∆k−1

(V arp(f)− V arp(fIS)). (2.11)

We know rewriting this minimax problem is a more convenient form. For this, let

matrix S be a k×k matrix that represents the weights of the IS estimator, Sa,a∗ =
πt(a)
πl(a)

if a ≥ a∗ and zero otherwise. With this, (2.11) becomes:

min
f∈U

max
p∈∆k−1

π⊺
l F

(2)p− π⊺
l S

(2)p. (2.12)

The inner problem of (2.12) is:

min
p∈∆k−1

π⊺
l S

(2)p− π⊺
l F

(2)p. (2.13)

Since the inner problem is a linear program we have strong duality. Therefore, the

primal linear program and dual linear program have the same optimal values [9]. The

dual of (2.13) is

max
λ∈Rk,µ∈R

−µ

s.t. µe⊺ − λ⊺ = π⊺
l F

(2) − π⊺
l S

(2),

λ ≥ 0.
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Therefore, problem (2.12) can be written as a minimization problem:

min
f,λ,µ

µ

s.t. µe⊺ − λ⊺ = π⊺
l F

(2) − π⊺
l S

(2),

λ ≥ 0,

π⊺
l F = π⊺

l T.

Eliminating λ gives:

min
f,µ

µ (2.14)

s.t. µe⊺ ≥ π⊺
l F

(2) − π⊺
l S

(2), (2.15)

π⊺
l F = π⊺

l T. (2.16)

By solving this problem, we can get the RIS estimator which minimizes the worst-case

regret against the IS estimator.

2.3 Minimax Regret Estimator

The variance of any estimator depends on the unknown critical level distribution, and

we want to find an unbiased estimator that has low variance. Thus, our estimation

problem can be viewed as a multi-objective optimization problem where each possible

critical level distribution defines a dimension in the objective space. In this section, we

introduce an estimator that is Pareto optimal for this multi-objective optimization

problem. Let F = R[k]×{0,1} be the set of all real-valued functions with domain

[k]× {0, 1}. For f ∈ F , define V arf : ∆k−1 → R as the function

V arf (p) = π⊺
l F

(2)p− (π⊺
t Tp)

2, p ∈ ∆k−1 , (2.17)

where ∆k−1 is the k-dimensional probability simplex. Let Vk denote the set of all

such functions and V (p) is equivalent to V ar(p). We equip this set with the usual

partial ordering of functions: for V, V ′ ∈ Vk we write that V ≤ V ′ if V (p) ≤ V ′(p)

10



holds for all p ∈ ∆k−1. We also define V ⪇ V ′ to mean that V ≤ V ′ and V ̸= V ′

(which implies that for some p ∈ ∆k−1, V (p) < V ′(p)). In this case we say that

V dominates V ′, or, alternatively, that V ′ is dominated by V . We are interested in

finding the Pareto-optimal points of Vk, i.e., those V ∗ ∈ Vk that are not dominated

by any other points in Vk (and the corresponding function f). Note that finding the

Pareto optimal points belong to the topic of multi-objective optimization if we view

each p ∈ ∆k−1 as defining an “objective”. Unlike in most of the literature on multi-

objective optimization, our multi-objective optimization problem has (uncountably)

infinitely many objectives.

We define the reference-point based achievement scalarizing function (RPASF) for

a reference point, z̄ ∈ Vk. The RPASF: Vk → R of z̄ ∈ Vk is defined via

sz̄(V ) = sup
p∈∆k−1

(︁
V (p)− z̄(p)

)︁
+ ρ

∫︂
∆k−1

(︁
V (p)− z̄(p)

)︁
dp , (2.18)

where ρ > 0.

Proposition 2 The function sz̄ is strongly increasing, that is, for any V, Ṽ ∈ Vk,

V ⪇ Ṽ implies that sz̄(V ) < sz̄(Ṽ ) . (2.19)

Proof. We have

sz̄(V ) = sup
p∈∆k−1

(︁
V (p)− z̄(p)

)︁
+ ρ

∫︂
∆k−1

(︁
V (p)− z̄(p)

)︁
dp

≤ sz̄(Ṽ ) + ρ

∫︂
∆k−1

(︁
V (p)− Ṽ (p)) dp

< sz̄(Ṽ ) ,

where the last inequality follows because
∫︁
∆k−1

(︁
V (p) − Ṽ (p)) dp < 0. Using the

previous proposition, a slight generalization of Theorem 3.5.4 of [10], gives that the

solutions of

min
f

sz̄(Vf ) (2.20)

s.t. Vf ∈ Vk
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are Pareto optimal.

For completeness the generalized theorem is as follows. While the original the-

orem was stated for multicriteria optimization with finitely many objectives. The

generalization is as follows:

Theorem 3 (Theorem 3.5.4 of [10]) If s : V → R is a strongly increasing achieve-

ment function then any minimizer of s is Pareto-optimal.

(See Appendix A.2 for the proof of this theorem.)

The generalization allows any number of objectives. We study the following version

of (2.20): consider

min
f∈U

[︃
max

p∈∆k−1
(Vf (p)− V ∗(p)) + ρ

∫︂
∆k−1

(Vf (p)− V ∗(p))dp

]︃
, (2.21)

where V ∗(p) = minf∈U Vf (p) which is the minimum variance that can be achieved by

an unbiased estimator for a critical level distribution p. Here, ρ is a small positive

number. The above maximum is the worst-case regret of f against V ∗(p), so the above

problem is interpreted as finding an estimator that minimizes the worst regret plus

a regularization term. Note that there may not exist an f such that V ∗(p) = Vf (p)

for all p ∈ ∆k−1. Because of Proposition 2 and Theorem 3, the solution of (2.21) is

Pareto optimal. We study the above problem step-by-step, first V ∗(p).

Let f = [f⊺
0 , f

⊺
1 ]

⊺, where f0a = f(a, 0) and f1a = f(a, 1) for a ∈ [k]. In this section,

we will analyze the problem of minimizing the variance for a given critical level

distribution p, that is, minf∈U π⊺
l F

(2)p − π⊺
t Tp. As the second term of the objective

function does not depend on f , we analyze the following instead:

min
f∈U

π⊺
l F

(2)p. (2.22)

Let A ∈ Rk×2k, where for a, a′ ∈ [k], Aa,a′ = 0 if a ≤ a′, πl(a
′) otherwise; and

Aa,k+a′ = 0 if a > a′, πl(a
′) otherwise. Then, we have U = {f ∈ R2k : Af = T ⊺πt}.

Among the entries of f , f0k = f(k, 0) is not well-defined because when we take the

12



action k, the outcome cannot be zero due to the problem formulation. Thus, we fix

f0k = 0 and re-define U by adding this constraint.

Using matrix algebra, we can show that the nullspace of A can be represented as

{Bz : z ∈ Rk−1}, where B ∈ R2k×(k−1) is defined as follows:

B =

⎡⎢⎢⎢⎢⎢⎢⎣
Ik−1

0

Ik−1

πl̄

⎤⎥⎥⎥⎥⎥⎥⎦
and (πl̄)a = −πl(a)/πl(k) for a ∈ [k−1]. Therefore, the feasible region U = {f̄+Bz :

z ∈ Rk−1} for any f̄ ∈ U . Now let us represent the objective function (2.22) using

the vector notation f . Let q0(a) =
∑︁

a∗>a p(a
∗) and q1(a) =

∑︁
a∗≤a p(a

∗). Then, the

objective function is

π⊺
l F

(2)p =
∑︂
a

πl(a)
[︁
q0(a)f

2
0a + q1(a)f

2
1a

]︁
= f⊺Df,

where D is a 2k × 2k diagonal matrix defined as

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

πl(1)q0(1)
. . .

πl(k)q0(k)

πl(1)q1(1)
. . .

πl(k)q1(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, (2.22) is written as

min
z∈Rk−1

g(z), (2.23)

where g(z) = (f̄ +Bz)⊺D(f̄ +Bz). The Hessian of g is computed as

∇2g(z) = 2B⊺DB = 2diag(πl(1), . . . , πl(k − 1)) + 2πl(k)πl̄πl̄
⊺. (2.24)

Assuming πl(a) > 0 for any a ∈ [k] (similar to the positivity assumption [11]), we

have that the Hessian is positive definite, and thus, g is strongly convex. Thus, the

13



solution of (2.23) is obtained by ∇g(z∗) = 2B⊺D(f̄ +Bz∗) = 0, and thus,

z∗ = −(B⊺DB)−1B⊺Df̄. (2.25)

We have that (2.22) is

min
f∈U

π⊺
l F

(2)p = min
z

g(z) = g(z∗) = (f̄ +Bz∗)⊺D(f̄ +Bz∗)

= f̄
⊺
Df̄ + 2f̄

⊺
DBz∗ + (z∗)⊺B⊺DBz∗

= f̄
⊺
Df̄ − f̄

⊺
DB(B⊺DB)−1B⊺Df̄.

Now let us study the following problem computing the maximum regret:

max
p∈∆k−1

(Vf (p)− V ∗(p)). (2.26)

Now we consider f ∈ U to be fixed. We know that there exists z such that f = f̄+Bz.

We have

Vf (p)− V ∗(p) = π⊺
l F

(2)p− π⊺
t Tp− g(z∗) + π⊺

t Tp

= (f̄ +Bz)⊺D(f̄ +Bz)− f̄
⊺
Df̄ + f̄

⊺
DB(B⊺DB)−1B⊺Df̄

= 2f̄
⊺
DBz + z⊺B⊺DBz + f̄

⊺
DB(B⊺DB)−1B⊺Df̄

= ||(B⊺DB)1/2z + (B⊺DB)−1/2B⊺Df̄ ||22

= ||(B⊺DB)−1/2(B⊺DBz +B⊺Df̄)||22

= ||(B⊺DB)−1/2B⊺D(Bz + f̄)||22 = ||(B⊺DB)−1/2B⊺Df ||22.

From (2.24), we know that B⊺DB depends only on the logging policy πl. Also, B
⊺Df

is a vector in Rk−1 whose ath entry is πl(a)(f0a−f1a)q0(a)+πl(a)f1a−f1kπl(a). Thus,

the expression in the 2-norm of the above equation is linear in p, so for a matrix

C ∈ R(k−1)×(k−1) and d ∈ Rk−1, it can be written as Vf (p) − V ∗(p) = ||Cp + d||22.

Therefore, the problem (2.26) is written as

max
p∈∆k−1

||Cp+ d||22. (2.27)
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The above problem is a maximization of a convex function: such problems cannot be

solved efficiently in general. However, its feasible region allows an efficient solution

method as shown by the next proposition.

Proposition 4 The problem (2.26) has an optimal solution at a vertex of the (k−1)-

dimensional unit simplex.

(See Appendix A.3 for the proof of this proposition.)

By the proposition, we can solve (2.26) by comparing the k vertices of the unit

simplex. In general, the number of vertices of a polytope can be exponential in

dimension, but for (2.26), the above proposition renders a tractable solution method

because the (k − 1)-dimensional unit simplex has only k vertices.

We tackle the problem (2.21) based on the results. We know that we can solve the

inner maximization of (2.21) for a given f by comparing Vf (pa) − V ∗(pa) where pa

for a = 1, . . . , k are the k vertices of the unit simplex, i.e., the k unit vectors. Also,

we know that

Vf (p)− V ∗(p) = ||(B⊺DB)−1/2B⊺Df ||22.

From (2.24), we have

B⊺DB = diag(πl(1), . . . , πl(k − 1)) + πl(k)πl̄πl̄
⊺. (2.28)

Let Πl = diag(πl(1), . . . , πl(k − 1)). By the Sherman-Morrison formula, we also have

(B⊺DB)−1 = Π−1
l −

Π−1
l πl(k)πl̄πl̄

⊺Π−1
l

1 + πl(k)πl̄
⊺Π−1

l πl̄

= Π−1
l −

ee⊺

πl(k)

1− πl̄
⊺e

= Π−1
l −

ee⊺

πl(k)

1 + 1−πl(k)
πl(k)

= Π−1
l − ee⊺,

where e is the (k−1)-dimensional one vector. Note that (B⊺DB)−1/2 does not depend

on either p or f . By definition, B is independent of p and f , too. D is independent
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of f , but depends on p. Let Da denote the diagonal matrix D where p = pa. Then,

Vf (pa)− V ∗(pa) = ||(Π−1
l − ee⊺)1/2B⊺Daf ||22.

In the integral term of (2.21), V ∗(p) does not depend on f and thus it can be

omitted in the minimization. Also, in Vf (p) = π⊺
l F

(2)p − π⊺
t Tp, the second term is

irrelevant of f so can be omitted, too. In addition, we have∫︂
∆k−1

π⊺
l F

(2)pdp = cπ⊺
l F

(2)e = cf⊺D̄f,

for some constant c, where e is the k-dimensional one vector and D̄ is a 2k × 2k

diagonal matrix whose ath diagonal entry is (k−a)πl(a) and (k+a)th diagonal entry

is aπl(a) for a ∈ [k] (i.e., D̄ is defined similarly as D but with e in place of p).

Therefore, (2.21) is written as

min
f∈U

[︃
max

i=1,...,k
||(Π−1

l − ee⊺)1/2B⊺Daf ||22 + ρ′f⊺D̄f

]︃
,

where ρ′ = cρ. This is equivalent to

min
f∈R2k,t∈R

t+ ρ′f⊺D̄f (2.29)

s.t. t ≥ ||(Π−1
l − ee⊺)1/2B⊺Daf ||22 for a = 1, . . . , k (2.30)

Af = T ⊺πt, (2.31)

which is a quadratically constrained quadratic program and convex. Therefore, the

minimax regret (MMR) estimator can be obtained efficiently by solving the above

convex optimization problem. The estimator is unbiased and Pareto optimal in vari-

ance in the sense explained at the beginning of this section.
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Chapter 3

Experimental Result

3.1 Experimental Design

In this section, we explain our experiment setting, starting at the policies and weights.

We assume that there are 10 actions, so k = 10. There are eleven logging and eleven

target policies sharing the same distribution as shown in Figure 3.1. We will use

the identifiers for policies shown on the figure. In particular, there is a uniform

distribution, as well as ten unimodal distributions centered at each action. The

growth rate of those distributions are linear. Except the uniform distribution, the

other k distributions are symmetrical to each other. The kth distribution is the

reversal of the (11 − k)Th distribution from 1 to 10 (for example, policy 1 is the

reversal of policy 10). The minimum probability for an action is set to 1% for every

policy.

id = 8 id = 9 id = 10

id = 4 id = 5 id = 6 id = 7

id = 0 id = 1 id = 2 id = 3

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
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0.10

0.15

0.00
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0.15
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0.15

a

p

Figure 3.1: Policies
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(a) f(a, 0) weights for the MM estimator
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(b) f(a, 1) weights for the MM estimator

Figure 3.2: Weights for the MM estimator
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Figure 3.3: f(a, 1) weights for the IS estimator

3.2 Estimator Weights

The purpose of this section is to show and compare the weights for the estimators.

We want to investigate the patterns for the weights. For each pair of logging policy

and target policy, we show the values (weights) for f(a,0) and f(a,1) for every possible

observation based on actions and outcomes.

After solving the problem of equations (2.8) - (2.10), we obtain the weights of

the MM estimator for every pair of logging and target policies. Figure 3.2 shows the

weights of the MM estimator. Figure 3.2a shows the weights f(a, 0); Figure 3.2b shows

the weights f(a, 1). Both sub-figures are organized into a matrix where a particular

cell shows the weights corresponding to a particular combination of logging (columns)

and target (rows) policies. The green color in Figure 3.2 means positive values and

orange color means negative values. When the action a is 10, the outcome of a ≥ a∗

would always be 1. The case of f(10, 0) would never happen, since there is no value of

a∗ satisfying 10 < a∗. So there are only 9 values for the f(a, 0) weights to obtain. For
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Figure 3.4: Weights for the RIS estimator
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f(a, 1) weights (Figure 3.2b), the values are all positive. For f(a, 0) weights (Figure

3.2a), the majority of weights are negative. Whenever the f(a, 1) weights get a larger

positive value, the corresponding f(a, 0) will also be a more negative value.

For the IS method, the results are shown in Figure 3.3. All of the f(a, 0) weights are

zero by the definition (see Equation (2.4)). The f(a, 1) weights (Figure 3.3) showed

a reversal pattern on top right and bottom left, since the logging and target policies

are reversal to each other.

The RIS estimator weights are shown in Figure 3.4. The f(a, 1) weights (Fig-

ure 3.4b) are all positive which is the same as the other two estimators. And the

patterns are similar to the other two estimators. For the MM estimators previously

presented, f(a, 1) has high positive values when the corresponding f(a, 0) takes very

small negative values. However, for the RIS estimator, we do not observe the pattern.

After obtaining the weights of the estimators, we can use those weights to compute

the variance for different critical level distributions (see Equation 2.3). In the next

section 3.3, we will discuss the variance comparisons of the MM, IS and RIS estima-

tors. In section 3.4, we will compare the MMR estimator with others (MM, IS and

RIS).

3.3 Variance Comparisons Results

Since the estimators we introduced in Chapter 2 are all unbiased, a natural way of

comparing them is comparing their variances. However, their variance depends on the

unknown critical level distribution. Thus, we compare the estimators using varying

critical level distributions. We also compute the worst-case critical level distributions

for each estimator (MM, IS and RIS) based on various logging-target policies pairs.

Based on the worst cast critical level distributions, we can plot the worst-case variance

graph based on the variance formula (2.3). Since the MM estimator guarantees the

best worst-case variance, the MM estimator should outperform others when they both

use the worst-case critical level distribution.
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Figure 3.5: Heatmaps of worst-case variance for the various estimators
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Figure 3.6: Critical Level Distributions

The Heatmaps of worst-case variance for the estimators are shown in Figure 3.5.

Yellow is high variance (bad) and black is low variance (good). As before, the rows

correspond to the various target policies and the columns correspond to the various

logging policies. Figure 3.5a shows a heatmap of logarithm of the worst-case variance
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of the MM estimator. The variance is low when around the diagonal, otherwise the

variance is high. Figure 3.5b and 3.5c show the heatmaps of logarithm of the worst-

case variance of the RIS and IS estimators. We can see there are differences in terms

of worst-case variance between the estimators. Comparing the heatmaps does not

clearly show the difference between the estimators. In each subsection below, we will

use tables to show the comparison of the variance for each pair of estimators by using

various critical level distributions.

3.3.1 IS vs RIS

Figure 3.6, are the 10 fixed kernel critical level distributions with density 1. We

call it H1 critical level distributions. We use 4 critical level distributions in total to

compare the pair of estimators, the worst-case of the first estimator, the worst-case

of the second estimator, 11-fixed distributions which is the same as our 11 policies

(Figure 3.1), and the H1 critical level distributions 3.6.

Table 3.1 shows the variance comparison for IS and RIS estimators. The first col-

umn listed the critical level distributions we use to compare two estimators. There are

4 different critical level distribution combinations. First, we compare their variance

when they are both using their worst-case critical level distributions. There are only

1× 11× 11 = 121 scenarios since there is only one worst critical level distribution for

each logging-target policy pair. Second, they are both using the worst critical level

distributions for the first estimator (again 121 scenarios). Third, they are both using

the worst critical level distributions for the second estimator (121 scenarios). Fourth,

they are both using 11 fixed policy distributions as their critical level distributions

(11 × 11 × 11 = 1331 scenarios). Mean difference is calculated by the average over

different scenarios of logging policies, target policies and critical level distributions,

and it is the variance difference (Variance(IS) - Variance(RIS)) for each specific cut-

off. For each specific case, ρ value is calculated by the variance difference divided

by the maximum of the two variances. We determined the cutoff values of ρ to be
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IS vs RIS

Critical Level
Distribution

Cutoff Percentage Mean Difference

ρ ≥ 10% 38.8% 1.17

ρ ≥ 25% 32.2% 1.39

ρ ≥ 50% 23.1% 1.80

Worst Case IS vs ρ ≥ 75% 9.1% 2.44

Worst Case RIS ρ ≤ −10% 0 NA

ρ ≤ −25% 0 NA

ρ ≤ −50% 0 NA

ρ ≤ −75% 0 NA

ρ ≥ 10% 38.8% 1.19

ρ ≥ 25% 33.1% 1.37

ρ ≥ 50% 25.6% 1.66

Both Using Worst ρ ≥ 75% 9.9% 2.31

Case IS ρ ≤ −10% 0 NA

ρ ≤ −25% 0 NA

ρ ≤ −50% 0 NA

ρ ≤ −75% 0 NA

ρ ≥ 10% 38.8% 1.14

ρ ≥ 25% 31.4% 1.39

ρ ≥ 50% 22.3% 1.82

Both Using Worst ρ ≥ 75% 8.3% 2.59

Case RIS ρ ≤ −10% 0 NA

ρ ≤ −25% 0 NA

ρ ≤ −50% 0 NA

ρ ≤ −75% 0 NA

ρ ≥ 10% 37.7% 1.16

ρ ≥ 25% 34.0% 1.27

ρ ≥ 50% 25.5% 1.61

Both Using 11 ρ ≥ 75% 8.3% 2.21

fixed (policy) ρ ≤ −10% 0 NA

ρ ≤ −25% 0 NA

ρ ≤ −50% 0 NA

ρ ≤ −75% 0 NA

Table 3.1: Variance Comparison for IS and RIS (Cutoff)

10%, 25%, 50%, 75%, -10%, -25%, -50% and -75%. If rho is positive, then it means

RIS is better. The percentage is calculated by the number of the scenarios that reach

the cutoff, then divided by the total number of scenarios. “NA” appears in the mean
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IS vs RIS

Critical Level
Distribution

Comparing
Items

All Cases L1-5, T6-10 L6-10,T1-5

Worst vs IS ≥ RIS 98.3% 100% 92%

Worst IS ≤ RIS 1.65% 0% 8%

Mean difference 0.46 1.81 0

Mean ρ 21.8% 59.7% 0%

Worst IS IS ≥ RIS 98.3% 100% 92%

IS ≤ RIS 1.65% 0% 8%

Mean difference 0.46 1.82 0

Mean ρ 22.9% 59.8% 0%

Worst RIS IS ≥ RIS 98.3% 100% 92%

IS ≤ RIS 1.65% 0% 8%

Mean difference 0.45 1.81 0

Mean ρ 20.9% 59.7% 0%

11 fixed IS ≥ RIS 98.6% 100% 95.64%

IS ≤ RIS 1% 0% 4.36%

Mean difference 0.44 1.76 0

Mean ρ 23.0% 62.2% 0%

Table 3.2: Variance Comparison for IS and RIS (Scenarios)

difference column when there is no such case. Since RIS tries to minimize the variance

difference against IS, there is not a single case in which IS performs 10% better than

RIS estimator. Overall, the RIS performs better than the IS estimator.

In Table 3.1, all results are aggregated over all logging and target policies. We also

analyzed for what kind of combinations of logging and target policies one estimator is

better than the other. Table 3.2 shows the comparison for general scenarios as well as

two corner scenarios. The critical level distributions on the first column are the same

as Table 3.1, but the name is shorter (for example Worst vs Worst means Worst Case
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IS vs RIS

Critical Level Distri-
bution

Cutoff Percentage Mean Difference

ρ ≥ 10% 42.9% 1.03

ρ ≥ 25% 36.1% 1.21

ρ ≥ 50% 28.8% 1.80

H1 10 fixed ρ ≥ 75% 14.4% 1.97

Distributions ρ ≤ −10% 0 NA

ρ ≤ −25% 0 NA

ρ ≤ −50% 0 NA

ρ ≤ −75% 0 NA

ρ ≥ 10% 40.4% 1.05

ρ ≥ 25% 34.6% 1.22

ρ ≥ 50% 28.6% 1.41

H1 5 of 10 fixed ρ ≥ 75% 14.4% 1.83

Distributions (1-5) ρ ≤ −10% 0 NA

ρ ≤ −25% 0 NA

ρ ≤ −50% 0 NA

ρ ≤ −75% 0 NA

ρ ≥ 10% 45.4% 1.01

ρ ≥ 25% 31.4% 1.20

ρ ≥ 50% 22.3% 1.50

H1 5 of 10 fixed ρ ≥ 75% 14.4% 2.12

Distributions (6-10) ρ ≤ −10% 0 NA

ρ ≤ −25% 0 NA

ρ ≤ −50% 0 NA

ρ ≤ −75% 0 NA

Table 3.3: Variance Comparison for IS and RIS - H1 (Cutoff)

IS vs Worse Case RIS). Unlike the previous table, this one shows the percentage of

scenarios for which one estimator is better than the other. The percentage calculated
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IS vs RIS

Critical Level
Distribution

Comparing
Items

All Cases L1-5, T6-10 L6-10,T1-5 L1-5, T1-5 L6-10, T6-10 Diagonal

10 fixed H1 IS ≥ RIS 95.8% 100% 82% 100% 100% 100%

IS ≤ RIS 4% 0% 8% 0% 0% 0%

Mean difference 0.44 1.76 0 0.01 0.1 0

Mean ρ 21.8% 59.7% 0% 6% 25% 0%

5 fixed H1 IS ≥ RIS 97.8% 100% 91.2% 100% 100% 100%

(1-5) IS ≤ RIS 2% 0% 8.8% 0% 0% 0%

Mean difference 0.43 1.73 0 0.01 0.08 0

Mean ρ 25% 63% 0% 3% 28% 0%

5 fixed H1 IS ≥ RIS 93.8% 100% 72.8% 100% 100% 100%

(6-10) IS ≤ RIS 6% 0% 27.2% 0% 0% 0%

Mean difference 0.45 1.79 0 0.01 0.12 0

Mean ρ 27% 68% 0% 9% 23% 0%

Table 3.4: Variance Comparison for IS and RIS - H1 (Scenarios)

by the number of scenarios of variance for one estimator is either greater or smaller

than the other, divided by the total scenarios in the corresponding scenario. For

example, for the first row, the 98.3% means for all the scenarios that the IS estimator

has greater variance compared to RIS (RIS is better). “L” and “T” in the table

means the logging policy ID and target policy IS. So, “L1-5, T6-10” are the top

left scenarios in Figure 3.5 and “L6-10, T1-5” are the bottom right scenarios. The

result indicates that the RIS estimator outperforms IS over 98% of all the scenarios

(10×11×11 = 1210 scenarios) in general in terms of variance. For top left scenarios,

RIS completely beats IS for all the scenarios.

Additionally, we analyzed for what kind of critical level distributions one estimator

is better than the other. Since the H1 critical level distribution does not include

uniform distribution and the critical level distribution is more concentrated, we use

H1 critical level distributions to do the following analysis. Table 3.3 shows the result

of comparing IS and RIS using H1 critical level distributions. There are three parts

in total: using all 10 H1 critical level distributions (Figure 3.6) as well as only half of

the H1 critical level distributions, H1(1-5) or h1(6-10), with all the combinations for

logging policies and target policies. H1(1-5) means the 5 critical level distributions
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from 1 to 5 in Figure 3.6. The structure of table 3.3 is similar to table 3.1.

IS vs MM

Critical Level
Distribution

Cutoff Percentage Mean Difference

ρ ≥ 10% 83.5% 1.11

ρ ≥ 25% 68.6% 1.33

ρ ≥ 50% 50.4% 1.73

Worst Case IS vs ρ ≥ 75% 21.5% 2.35

Worst Case MM ρ ≤ −10% 0 NA

ρ ≤ −25% 0 NA

ρ ≤ −50% 0 NA

ρ ≤ −75% 0 NA

ρ ≥ 10% 85.1% 1.16

ρ ≥ 25% 74.4% 1.32

ρ ≥ 50% 56.2% 1.69

Both Using Worst ρ ≥ 75% 22.3% 2.3

Case IS ρ ≤ −10% 0 NA

ρ ≤ −25% 0 NA

ρ ≤ −50% 0 NA

ρ ≤ −75% 0 NA

ρ ≥ 10% 53.7% 1.14

ρ ≥ 25% 39.7% 1.39

ρ ≥ 50% 28.1% 1.82

Both Using Worst ρ ≥ 75% 19% 2.59

Case MM ρ ≤ −10% 9.1% -0.08

ρ ≤ −25% 3.3% -0.15

ρ ≤ −50% 0 NA

ρ ≤ −75% 0 NA

ρ ≥ 10% 48.7% 1.08

ρ ≥ 25% 39.8% 1.31

ρ ≥ 50% 30.1% 1.69

Both Using 11 ρ ≥ 75% 20.7% 2.25

fixed (policy) ρ ≤ −10% 32.2% -0.29

ρ ≤ −25% 24.5% -0.37

ρ ≤ −50% 17.9% -0.46

ρ ≤ −75% 13.2% -0.54

Table 3.5: Variance Comparison for IS and MM (Cutoff)
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Table 3.4 is similar to 3.2, but it has more columns. The diagonal column includes

the scenarios when the target policies are the same as logging policies. We also

considered near diagonal scenarios in table 3.4 which are bottom left (“L1-5, T1-

5”) and top right (“L6-10, T6-10”) part in Figure 3.5. In general, the RIS still

outperforms IS estimator. However, for bottom right scenarios which indicated by

the column “L6-10, T1-5”, IS and RIS estimators can perform similarly. For that

specific case, the average for the mean difference of variance and ρ are almost 0.

3.3.2 IS vs MM

IS vs MM

Critical Level
Distribution

Comparing
Items

All Cases L1-5, T6-10 L6-10,T1-5

Worst vs IS ≥ MM 100% 100% 100%

Worst IS ≤ MM 0% 0% 0%

Mean difference 0.93 2.29 1.52

Mean ρ 47% 80.4% 58.5%

Worst IS IS ≥ MM 98.3% 100% 92%

IS ≤ MM 0% 0% 0%

Mean difference 0.99 2.30 1.74

Mean ρ 22.9% 59.8% 0%

Worst MM IS ≥ MM 78.5% 100% 80%

IS ≤ MM 21.5% 0% 20%

Mean difference 0.52 2.05 0.1

Mean ρ 26.7% 77.2% 6.6%

11 fixed IS ≥ MM 60% 100% 12.4%

IS ≤ MM 40% 0% 87.6%

Mean difference 0.43 2.14 -0.37

Mean ρ 14.7% 80% -41%

Table 3.6: Variance Comparison for IS and MM (Scenarios)
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IS vs MM

Critical Level Distri-
bution

Cutoff Percentage Mean Difference

ρ ≥ 10% 54.4% 1.04

ρ ≥ 25% 47.9% 1.2

ρ ≥ 50% 37.2% 1.5

H1 10 fixed ρ ≥ 75% 22.7% 2.09

Distributions ρ ≤ −10% 33.7% -0.3

ρ ≤ −25% 28% -0.31

ρ ≤ −50% 20.7% -0.42

ρ ≤ −75% 13.3% -0.49

ρ ≥ 10% 62.4% 0.99

ρ ≥ 25% 56.6% 1.10

ρ ≥ 50% 43.6% 1.40

H1 5 of 10 fixed ρ ≥ 75% 24.4% 2.03

Distributions (1-5) ρ ≤ −10% 25.2% -0.21

ρ ≤ −25% 18.4% -0.21

ρ ≤ −50% 10.4% -0.33

ρ ≤ −75% 3.6% -0.37

ρ ≥ 10% 46.4% 1.09

ρ ≥ 25% 39.2% 1.30

ρ ≥ 50% 30.8% 1.61

H1 5 of 10 fixed ρ ≥ 75% 21% 2.15

Distributions (6-10) ρ ≤ −10% 42.2% -0.38

ρ ≤ −25% 37.6% -0.42

ρ ≤ −50% 31% -0.5

ρ ≤ −75% 23% -0.62

Table 3.7: Variance Comparison for IS and MM - H1 (Cutoff)

We use the same comparing method for critical level distributions to compare the

MM estimator and the IS estimator. Table 3.5 and 3.6 shows the variance comparison
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IS vs MM

Critical Level
Distribution

Comparing
Items

All Cases L1-5, T6-10 L6-10,T1-5 L1-5, T1-5 L6-10, T6-10 Diagonal

10 fixed H1 IS ≥ MM 61% 100% 24% 56% 63% 64%

IS ≤ MM 39% 0% 76% 44% 37% 36%

Mean difference 0.44 2.12 -0.31 0.01 0.1 0.01

Mean ρ 13.3% 82% -47% -2% 18% -1%

5 fixed H1 IS ≥ MM 67.6% 100% 48% 58% 59% 28%

(1-5) IS ≤ MM 32% 0% 52% 42% 41% 72%

Mean difference 0.54 2.2 0.03 0.03 0.08 -0.01

Mean ρ 27.4% 86% -5% 6% 17% -16%

5 fixed H1 IS ≥ MM 54% 100% 0% 54% 67% 100%

(6-10) IS ≤ MM 46% 0% 100% 46% 33% 0%

Mean difference 0.34 2.05 -0.64 -0.01 0.11 0.02

Mean ρ -0.8% 79% -90% -11% 18% 15%

Table 3.8: Variance Comparison for IS and MM - H1 (Scenarios)

for IS and MM estimators. The results in Tables 3.5 and 3.6 are obtained in the same

way as in Tables 3.1 and 3.2, respectively. The results showed that in general, MM has

lower variance than IS. Even for some scenarios when IS has lower variance against

MM estimator, the average difference is not big.

Based on the comparison for H1 critical level distributions in table 3.7 and 3.8, we

can see the variance differences for various scenarios. For most scenarios, MM esti-

mator has either similar or lower variance compared to IS estimator. The differences

in Table 3.7 are not as big as those in Table 3.3 which compared IS and RIS. How-

ever, for the case indicated by the column “L6-10, T1-5” in Table 3.8, IS estimator

outperforms MM estimator on average.

3.3.3 RIS vs MM

Now we know that RIS and MM estimators both outperform IS in general. Then

we use the same technique to compare the RIS and the MM estimators. Table 3.9

shows the variance comparison for RIS and MM estimators using the same method

as Table 3.1. If ρ > 0, the MM estimator is better. The MM estimator completely

outperforms RIS whenever they are both using their worst-case critical level distri-
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RIS vs MM

Critical Level Dis-
tribution

Cutoff Percentage Mean Difference

ρ ≥ 10% 75.2% 0.62

ρ ≥ 25% 68.6% 0.84

ρ ≥ 50% 50.4% 1.2

Worst Case RIS vs ρ ≥ 75% 0 NA

Worst Case MM ρ ≤ −10% 0 NA

ρ ≤ −25% 0 NA

ρ ≤ −50% 0 NA

ρ ≤ −75% 0 NA

ρ ≥ 10% 77.7% 0.68

ρ ≥ 25% 58.7% 0.88

ρ ≥ 50% 39.7% 1.22

Both Using Worst ρ ≥ 75% 0 NA

Case RIS ρ ≤ −10% 0 NA

ρ ≤ −25% 0 NA

ρ ≤ −50% 0 NA

ρ ≤ −75% 0 NA

ρ ≥ 10% 39.7% 0.21

ρ ≥ 25% 21.5% 0.32

ρ ≥ 50% 0 NA

Both Using Worst ρ ≥ 75% 0 NA

Case MM ρ ≤ −10% 11.6% -0.08

ρ ≤ −25% 4.1% -0.16

ρ ≤ −50% 1.7% -0.16

ρ ≤ −75% 0 NA

ρ ≥ 10% 35.5% 0.26

ρ ≥ 25% 24.4% 0.35

ρ ≥ 50% 10% 0.53

Both Using 11 ρ ≥ 75% 0 NA

fixed (policy) ρ ≤ −10% 38.5% -0.26

ρ ≤ −25% 27.1% -0.34

ρ ≤ −50% 18.8% -0.45

ρ ≤ −75% 13.9% -0.53

Table 3.9: Variance Comparison for RIS and MM (Cutoff)

bution, since MM estimator guarantees minimum worst-case variance. However, for

the 11 fixed distributions, those two estimators showed a similar performance. For

32



RIS vs MM

Critical Level
Distribution

Comparing
Items

All Cases L1-5, T6-10 L6-10,T1-5

Worst vs RIS ≥ MM 100% 100% 100%

Worst RIS ≤ MM 0% 0% 0%

Mean difference 0.47 0.48 1.52

Mean ρ 32.9% 57.41% 58.52%

Worst RIS RIS ≥ MM 100% 100% 100%

RIS ≤ MM 0% 0% 0%

Mean difference 0.53 0.5 1.74

Mean ρ 26.7% 77.2% 6.6%

Worst MM RIS ≥ MM 70.2% 100% 80%

RIS ≤ MM 29.8% 0% 20%

Mean difference 0.08 0.29 0.1

Mean ρ 9.63% 38.9% 6.6%

11 fixed RIS ≥ MM 51% 100% 12.4%

RIS ≤ MM 49% 0% 87.6%

Mean difference -0.01 0.38 -0.37

Mean ρ -1.9% 47.2% -40.9%

Table 3.10: Variance Comparison for RIS and MM (Scenarios)

13.9% scenarios, the variance of MM is worse than RIS. Table 3.10 shows the vari-

ance comparison by scenarios. Generally, for scenarios “L1-5, T6-10”, MM estimator

perform better.

Then we use H1 critical level distributions in Table 3.11 and Table 3.12 to get more

detailed information. In general, the RIS and the MM estimators perform similar on

average. The performance of the RIS and the MM are various for different critical level

distributions and logging policy - target policy pairs. When critical level distribution

is heavier on left (H1(1-5)), the MM estimator perform better on average. On the
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RIS vs MM

Critical Level Distri-
bution

Cutoff Percentage Mean Difference

ρ ≥ 10% 40.2% 0.27

ρ ≥ 25% 32% 0.33

ρ ≥ 50% 17.5% 0.42

H1 10 fixed ρ ≥ 75% 0 NA

Distributions ρ ≤ −10% 41.5% -0.26

ρ ≤ −25% 33% -0.31

ρ ≤ −50% 23% -0.42

ρ ≤ −75% 15% -0.46

ρ ≥ 10% 51.4% 0.34

ρ ≥ 25% 45% 0.38

ρ ≥ 50% 29% 0.5

H1 5 of 10 fixed ρ ≥ 75% 0 NA

Distributions (1-5) ρ ≤ −10% 33% -0.18

ρ ≤ −25% 24.4% -0.23

ρ ≤ −50% 14% -0.33

ρ ≤ −75% 5.4% -0.31

ρ ≥ 10% 29% 0.19

ρ ≥ 25% 19% 0.27

ρ ≥ 50% 5.8% 0.34

H1 5 of 10 fixed ρ ≥ 75% 0 NA

Distributions (6-10) ρ ≤ −10% 50% -0.33

ρ ≤ −25% 41.6% -0.40

ρ ≤ −50% 32.6% -0.51

ρ ≤ −75% 24.6% -0.6

Table 3.11: Variance Comparison for RIS and MM - H1 (Cutoff)

other hand, when critical level distribution is heavier on right (H1(6-10)), the RIS

estimator perform better on average. The MM estimator perform better on “L1-5,
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RIS vs MM

Critical Level
Distribution

Comparing
Items

All Cases L1-5, T6-10 L6-10,T1-5 L1-5, T1-5 L6-10, T6-10 Diagonal

10 fixed H1 RIS ≥ MM 49.7% 91.6% 24% 49% 33% 64%

RIS ≤ MM 50% 8.3% 76% 51% 67% 36%

Mean difference 0 0.36 -0.31 0.00 0.0 0.01

Mean ρ -6% 45.4% -47.4% -6% -11% -1%

5 fixed H1 RIS ≥ MM 67.6% 100% 48% 58% 59% 28%

(1-5) RIS ≤ MM 32% 0% 52% 42% 41% 72%

Mean difference 0.54 2.2 0.03 0.03 0.08 -0.01

Mean ρ 27.4% 86% -5% 6% 17% -16%

5 fixed H1 RIS ≥ MM 41.2% 83.2% 0% 44% 43% 100%

(6-10) RIS ≤ MM 59% 16.8% 100% 56% 57% 0%

Mean difference -0.1 0.26 -0.64 -0.02 -0.01 0.02

Mean ρ -22% 30% -89.8% -16% -5% 15%

Table 3.12: Variance Comparison for RIS and MM - H1 (Scenarios)

T6-10” and the RIS perform better on “L6-10, T1-5” logging policy - target policy

pairs on average. The two estimators shows a similar performance near diagonal

(“L1-5, T1-5”, “L6-10, T6-10”, “Diagonal”). Overall, there is no clear evidence for

one estimator is better than another between MM and RIS.

3.3.4 MM vs MMR and RIS vs MMR

In this subsection, we compare the MMR estimator with the MM estimator and the

RIS estimator. First, we compare the MM estimator to MMR estimator using H1

critical level distribution. Table 3.13 and 3.14 shows the detailed comparison result

between the MM estimator and the MMR estimator. Table 3.13 and 3.14 are similar

to 3.3 and 3.4. Positive difference and ρ means the MMR estimator is better. The

result shows MMR outperforms MM on average. The result also shows there are

not many differences whether the critical level distribution is concentrated on left

(H1(1-5)) or right (H1(6-10)).

Table 3.15 and 3.16 shows the comparison result for the RIS estimator and MMR

estimator. Again, positive value means the MMR estimator is better. The comparison

between the RIS estimator and MMR estimator is quite similar to the comparison
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MM vs MMR

Critical Level Distri-
bution

Cutoff Percentage Mean Difference

ρ ≥ 10% 63.8% 0.08

ρ ≥ 25% 36.6% 0.09

ρ ≥ 50% 6% 0.11

H1 10 fixed ρ ≥ 75% 0 NA

Distributions ρ ≤ −10% 12.7% -0.04

ρ ≤ −25% 7.5% -0.05

ρ ≤ −50% 2.1% -0.06

ρ ≤ −75% 0 NA

ρ ≥ 10% 63.6% 0.07

ρ ≥ 25% 34.5% 0.09

ρ ≥ 50% 5.7% 0.13

H1 5 of 10 fixed ρ ≥ 75% 0 NA

Distributions (1-5) ρ ≤ −10% 15.4% -0.04

ρ ≤ −25% 8.4% -0.05

ρ ≤ −50% 2.1% -0.05

ρ ≤ −75% 0 NA

ρ ≥ 10% 64% 0.08

ρ ≥ 25% 38.7% 0.09

ρ ≥ 50% 6.8% 0.10

H1 5 of 10 fixed ρ ≥ 75% 0 NA

Distributions (6-10) ρ ≤ −10% 10.1% -0.04

ρ ≤ −25% 6.6% -0.05

ρ ≤ −50% 2.1% -0.06

ρ ≤ −75% 0 NA

Table 3.13: Variance Comparison for MM and MMR - H1 (Cutoff)

between RIS estimator and MM estimator (Table 3.11 and 3.12). The RIs estimator

is better on average when the critical level is concentrated on right (H1(6-10)) and
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MM vs MMR

Critical Level
Distribution

Comparing
Items

All Cases L1-5, T6-10 L6-10,T1-5 L1-5, T1-5 L6-10, T6-10 Diagonal

10 fixed H1 MM ≥ MMR 80.5% 84.3% 89.3% 75.6% 73.3% 66.3%

MM ≤ MMR 19% 16% 11% 24% 27% 33%

Mean difference 0.05 0.04 0.06 0.05 0.04 0.04

Mean ρ 16% 13.4% 13.4% 21.2% 16.5% 14.3%

5 fixed H1 MM ≥ MMR 77.7% 93.3% 78.7% 84.8% 58.9% 60%

(1-5) MM ≤ MMR 22% 7% 21% 15% 41% 40%

Mean difference 0.05 0.04 0.06 0.08 0.02 0.04

Mean ρ 14% 14% 10% 33% 6% 11%

5 fixed H1 MM ≥ MMR 83.3% 75.3% 100% 66.4% 87.8% 72.7%

(6-10) MM ≤ MMR 17% 25% 0% 34% 12% 27%

Mean difference 0.05 0.05 0.07 0.03 0.06 0.05

Mean ρ 17% 12% 16.8% 10% 27% 17%

Table 3.14: Variance Comparison for MM and MMR - H1 (Scenarios)

L6-10,T1-5. On average, the MMR estimator is better than the RIS estimator.

We have seen the result shows the MMR estimator outperforms the MM estimator

and the RIS estimator. Since both the MM estimator and the RIS estimator outper-

form the IS estimator, we can say that the MMR estimator is the best estimator in

terms of average variance over the four estimators (MMR, IS, RIS, MM).

3.3.5 Combined Results

After the comparison of the four estimators: IS, RIS, MM and MMR. We know that

in general, the RIS and MM outperform IS. The MMR estimator outperforms both

the MM estimator and RIS estimator. The MM estimator guarantees the best worst-

case variance. Table 3.17, shows the combined comparison for each pair of estimators

using H1 fixed critical level distributions. The estimator name in the table shows

which estimator is better for the corresponding case. The percentage in parentheses

shows the percentage of scenarios in which the estimator beats the others in terms of

variance.
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RIS vs MMR

Critical Level Distri-
bution

Cutoff Percentage Mean Difference

ρ ≥ 10% 57.9% 0.26

ρ ≥ 25% 51.1% 0.29

ρ ≥ 50% 29.8% 0.41

H1 10 fixed ρ ≥ 75% 0 NA

Distributions ρ ≤ −10% 33.4% -0.29

ρ ≤ −25% 30.2% -0.32

ρ ≤ −50% 22.4% -0.40

ρ ≤ −75% 13.8% -0.52

ρ ≥ 10% 68.0% 0.31

ρ ≥ 25% 60.6% 0.34

ρ ≥ 50% 39.8% 0.44

H1 5 of 10 fixed ρ ≥ 75% 0 NA

Distributions (1-5) ρ ≤ −10% 23.3% -0.24

ρ ≤ −25% 20% -0.27

ρ ≤ −50% 12.4% -0.35

ρ ≤ −75% 5.1% -0.43

ρ ≥ 10% 47.8% 0.20

ρ ≥ 25% 41.5% 0.22

ρ ≥ 50% 19.8% 0.36

H1 5 of 10 fixed ρ ≥ 75% 0 NA

Distributions (6-10) ρ ≤ −10% 43.6% -0.33

ρ ≤ −25% 40.3% -0.35

ρ ≤ −50% 32.6% -0.42

ρ ≤ −75% 22.5% -0.54

Table 3.15: Variance Comparison for RIS and MMR - H1 (Cutoff)
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RIS vs MMR

Critical Level
Distribution

Comparing
Items

All Cases L1-5, T6-10 L6-10,T1-5 L1-5, T1-5 L6-10, T6-10 Diagonal

10 fixed H1 RIS ≥ MMR 62.3% 86% 24.6% 70% 68.9% 70%

RIS ≤ MMR 38% 14% 75% 30% 11% 30%

Mean difference 0.05 0.35 -0.24 0.05 0.05 0.05

Mean ρ 6% 45.2% -45.3% 16% 11% 16%

5 fixed H1 RIS ≥ MMR 73.1% 100% 44% 86.4% 65.6% 60%

(1-5) RIS ≤ MMR 27% 0% 56% 14% 34% 40%

Mean difference 0.16 0.44 0.03 0.09 0.06 0.03

Mean ρ 22% 63% -12% 36% 7% 2%

5 fixed H1 RIS ≥ MMR 51.7% 72% 5% 53.6% 72% 80%

(6-10) RIS ≤ MMR 48% 18% 95% 46% 28% 20%

Mean difference -0.05 0.25 -0.51 0.01 0.05 0.07

Mean ρ -9.4% 27% -78.8% -4.2% 14.6% 29%

Table 3.16: Variance Comparison for RIS and MMR - H1 (Scenarios)

3.4 Comparing Regret Variance Against the Best

Variance

In this section, we introduce the experimental results for the MMR estimator along

with comparisons. The MMR estimator aim to minimize the worst case regret against

the best variance (V ∗) for each critical level distribution. The MMR estimator should

have the smallest difference compared to V ∗ in the worst-case. Then we use an

experiment to compare the regret of variance against V ∗ for the MMR and other

estimators. For logging and target policies, we use the same 11 distributions as

before (Figure 3.1). We are also using the H1 critical level distributions (Figure 3.6).

We generate the histogram of the regret variance for each of the four estimators with

all the combinations of logging policies, target policies and critical level distributions.

Figure 3.7 shows the distributions of the regret variance for each estimator. All the

regret are computed by subtracting the variance of target estimator by the fixed V ∗.

By subtracting the regret, we get the actual variance difference for each estimator.

The x-Axis is the regret of the variance and the y-Axis is the percentage value for each

range of regret value. The value on x-Axis is the upper-bound for each range, and

the range is 0.25. For example, the bar at 0.5 means the regret from 0.25 to 0.5. The
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Variance Comparisons

IS vs MM H1 (1-5) H1(6-10)

L1-5, T1-5 MM(58%) MM(54%)

L1-5, T6-10 MM(100%) MM(100%)

L6-10, T1-5 50-50 IS(100%)

L6-10, T6-10 MM(59%) MM(67%)

Diagonal IS(72%) MM(100%)

IS vs RIS H1 (1-5) H1(6-10)

L1-5, T1-5 RIS(100%) RIS(100%)

L1-5, T6-10 RIS(100%) RIS(100%)

L6-10, T1-5 RIS(91%) RIS(72%)

L6-10, T6-10 RIS(100%) RIS(100%)

Diagonal RIS(100%) RIS(100%)

RIS vs MM H1 (1-5) H1(6-10)

L1-5, T1-5 MM(54%) RIS(56%)

L1-5, T6-10 MM(100%) MM(83%)

L6-10, T1-5 50-50 RIS(100%)

L6-10, T6-10 RIS(77%) RIS(57%)

Diagonal RIS(72%) MM(100%)

MM vs MMR H1 (1-5) H1(6-10)

L1-5, T1-5 MMR(84%) MMR(66%)

L1-5, T6-10 MMR(93%) MMR(75%)

L6-10, T1-5 MMR(79%) MMR(100%)

L6-10, T6-10 MMR(59%) MMR(88%)

Diagonal MMR(60%) MMR(73%)

RIS vs MMR H1 (1-5) H1(6-10)

L1-5, T1-5 MMR(86%) MMR(54%)

L1-5, T6-10 MMR(100%) MMR(72%)

L6-10, T1-5 RIS(56%) RIS(95%)

L6-10, T6-10 MMR(66%) MMR(72%)

Diagonal MMR(60%) MMR(80%)

Table 3.17: Variance Comparison Conclusion - H1

mode of the regret for all four estimators are at 0.25-0.5 range. The MMR method

has the thinnest tail. For the tail part (regret > 0.5), MMR has smallest percentage
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(d) V (RIS) - V ∗

Figure 3.7: Regret Variance for Estimators Against V ∗

22%; RIS has percentage of 27%; MM has percentage of 28%; IS has worst tail of

41%.

Variance Difference for MMR vs Others (IS, RIS and MM)

MMR vs Others Minimum Average Maximum Range(Max - Min)

V (MMR)-V (MM) -0.26 -0.05 0.18 0.44

V (MMR)-V (RIS) -0.93 -0.05 1.02 1.95

V (MMR)-V (IS) -1.75 -0.24 1.02 2.77

Table 3.18: Variance Comparison Conclusion for MMR Against Others - H1

In table 3.18, the minimum, average, maximum and range are calculated based on

1210 scenarios using H1 critical level distribution, 11 target policies and 11 logging

policies. As can be seen from Table 3.18, the average variance differences between
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the MMR estimator and others are all negative. So, the MMR estimator gets the

smallest variance on average. The MM estimator gets the smallest range for the

variance difference.

3.5 Conclusion

From section 3.3 and section 3.4, we showed that the MMR has the lowest average

variance compared to IS, RIS and MM. So, in general, the MMR is the best estimator

in terms of average variance. MM estimator is slightly worse than MMR in terms

of average variance but MM is the second best estimator compared to MMR and it

guarantees the minimum worst-case variance. So, both the MM and MMR estimator

could be useful depending on whether we want to minimize the worst variance or

average variance.
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Chapter 4

Confidence Intervals

So far, we have studied only point estimates of the values of target policies. Those

point estimators involve uncertainty because they are based on a limited amount of

observed data. Evaluating uncertainty is critical in high-stakes applications such as

wildfire. If we do not account for the uncertainty, there may be a high risk that the

derived decisions will not perform well in practice. In this chapter, we estimate CIs

for the performance estimates to further study the uncertainties of the MM and MMR

estimator.

We first describe our simulation experiment in Section 4.1. We use four method for

estimating CIs. We did CI estimations based on two estimators: MM and MMR. We

analyze the coverages of the CIs for different methods and estimators. The results in

Section 4.2 shows the CI coverages for the estimation are dependent on the variance

for the estimator.

4.1 Experimental Design

Our simulation experiment involves multiple iterations. Each iteration uses a dif-

ferent seed value and in each iteration sampled observations are simulated for each

combination of logging policy and critical level distribution. Then, we obtain a set of

observations (action - outcome pair) for each combination of logging policy and criti-

cal level distribution based on the actions and critical values. If the action is greater
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or equal to the critical value, the outcome is 1, otherwise the outcome is 0. We use

the simulated observations from each combination of logging policy and critical level

distribution to estimate the performance of a target policy. We use the eleven logging

policies and eleven target policies, shown in Figure 3.1, as well as ten H1 critical

level distributions shown in Figure 3.6. In total, there are 1210 scenarios. We use

the f(a, 1) and f(a, 0) vectors of the estimator for each combination of logging and

target policy, and we use it to calculate an estimate for the target policy value.

We compute CIs for the value of the target policy based on these sample observa-

tions. We use four different methods for estimating CIs. We have sampled observa-

tions of size n. Then we compute the estimator for each sample and then take the

mean of the estimated target values from the sampled observations. The formula for

getting confidence bounds for central limit theorem (CLT) method is:

x̄± z∗s,

where the sample mean is x̄ with sample standard deviation s. Here z∗ is the upper

0.05/2 critical value for the standard normal distribution. The interval bounds for

student-t distribution (T method) is calculated by:

x̄± t

√︃
s2

n
,

where t is the upper 0.05/2 critical value of t-distribution with n − 1 degrees of

freedom.

Algorithm 1 Pseudo algorithm for getting r0
initialize: n (number of observations), α = 0.05
if method == F then

Q←Percent point function of F(1− α, df1 = 1, df2 = n− 1)
end
if method == Chi then

Q←Percent point function of chi-square(1− α, df = 1)
end
r0 = exp(-Q/2)

For Chi and F methods, we use Owen’s Empirical Likelihood(EL) confidence region
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for the expectation of target policy value of the Chi and F distribution with 95%

confidence level [12]. EL is a non-parametric maximum likelihood approach that

does not assume any parametric distribution for the estimate. r0 ∈ R is an important

parameter to get CI for Chi and F method. For Chi and F methods, we get the lower

bound by solving the following problem:

min
w∈Rn

V ⊺w (4.1)

s.t.
n∑︂

i=1

log(nwi) ≥ log(r0), (4.2)

w ≥ 0, (4.3)
n∑︂

i=1

wi = 1. (4.4)

The upper bound is computed by maximizing (4.1), where V is the target policy value

vector with length n, w is an n-dimensional vector variable, and r0 was calculated by

Algorithm 1. After solving this problem, we take the objective value and make it the

lower or upper bound.

For each combination of logging policy, critical level distribution, and target policy,

we repeat the process of generating data and computing CIs M times, where M is

the number of iterations. In each iteration we generate a simulated data set of size

n using the logging policy and the critical level distribution. We compute the four

types of CIs. We also compute the true value of the target policy and then see if the

CIs contain the true value. Then we calculate the average coverage over M iteration

for the 1210 (11 logging policy, 11 target policy and 10 critical level distribution)

scenarios.

4.2 Experimental Results

4.2.1 CI with 30 Observations (MM)

We obtain n = 30 observations for each logging policy, target policy and critical

level distribution. Then we calculate CIs by the four methods. For each of the 1210
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CI Analysis for 30 Observations(MM)

Estimation Method Minimum Coverage Average Coverage

CLT 0.64 0.91

T 0.64 0.92

Chi 0.61 0.92

F 0.62 0.93

Table 4.1: CI Analysis for 30 Observations, with 250 Iterations

scenarios, we repeat it M = 250 times. We evaluate the four confidence intervals

on simulated data by observing how many CIs contain the true value. The coverage

for a single scenario in one iteration is either 0 or 1. Table 4.1 shows the results.

The results show the average coverage over the 1210 scenarios is around 92%, with

a minimum coverage around 60%. Chi-square and F methods have a slightly higher

average coverage compared to CLT and T. The coverage for a single scenario in one

iteration is either 0 or 1 and The coverage of each scenario is the mean coverage

over 250 iterations (250 binary numbers). Most of the small coverage scenarios are

distributed at L1-5, T1-5 and the H1(10) critical level distribution.
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Figure 4.1: Distribution of the estimate for scenario (low coverage with 30 Observation
250 iteration)
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We want to further analyze the low coverage scenarios to find out what the cause is.

We plotted a histogram (Figure 4.1) for one of the lowest coverage scenarios (L1, T1,

H1(10)). The plot shows the distribution of the estimated values for 400 iterations of

the MM estimator. Then, we did D’Agostino and Pearson’s normality test. The null

hypothesis for the normality test is: the distribution of those 400 data points come

from a normal distribution. The test shows that the null hypothesis of normality is

rejected which indicates the distribution is not normal. In the next section, we run

the same simulation using more observations and more iterations.

4.2.2 CI with 100 Observations (MM)

CI Analysis for 100 Observations(MM)

Estimation Method Minimum Coverage Average Coverage

CLT 0.80 0.93

T 0.80 0.94

Chi 0.81 0.94

F 0.82 0.94

Table 4.2: CI Analysis for 100 Observations, with 400 Iterations

In this section we use the same simulation procedure as in Section 4.2.1. We

increase the number of observations in each iteration to 100 and increase the number

of iterations to 400. The logging policies, target policies and critical level distributions

stay the same. The overall average coverage for CLT and T distributions are around

93.5% and for Chi and F distributions are around 94%. The minimum coverage of

all four distributions are now around 80%. Compared to the previous experiment,

the minimum coverage is increased when we increase the number of observations.

The histogram of the scenario “L7, T1, H1(9)” which has the lowest coverage is

shown in Figure 4.2. We did the normality test on the distributions for 9 out of the

1210 scenarios which had low coverage. Then we obtained the result that the null

hypothesis cannot be rejected. On the other hand, we also tested normality for the
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Figure 4.2: Distribution of the estimate for scenario (low coverage with 100 Observa-
tion 400 iteration)

scenarios with high coverage. The histogram for one of the highest coverage scenarios
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Figure 4.3: Distribution of the estimate for scenario (high coverage with 100 Obser-
vation 400 iteration)

“L6, T5, H1(10)” is shown in Figure 4.3. The normality test results for the high

coverage scenarios also show a failure to reject the null hypothesis.
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For each scenario, we run multiple iterations. So we have an empirical distribution

of the estimated values. Then we computed the empirical variance and compared

it to the true variance computed by the formula (2.3). The scatter plot (Figure
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Figure 4.4: Simulation Variance vs Variance by Formula

4.4) of variance by formula and variance by the simulation shows a strong positive

correlation, which is expected. Each point in the scatter plot is one of the 1210

scenarios.

After that, we tried to find out the relationship between variance and the coverage.

We generated scatter plots showing the empirical variance against coverage for all four

methods in Figure 4.5. As can be seen from the scatter plots, coverage and variance

have a negative Pearson’s correlation. For CLT (Figure 4.5a) and T (Figure 4.5b)

methods, the correlation coefficient is about -0.48. When variance is below 0.5, the

correlation is weak which is around -0.01; when variance is above 0.5, the correlation

is stronger, around -0.49. For Chi (Figure 4.5c) and F (Figure 4.5d) methods, the

correlation coefficient is about -0.60. When variance is below 0.5, the correlation is

weak which is around -0.10; when variance is above 0.5, the correlation is stronger,

around -0.62.

49



0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
variance by 400 instance

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

co
ve

ra
ge

(a) Variance vs Coverage CLT
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(b) Variance vs Coverage T
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(c) Variance vs Coverage Chi
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(d) Variance vs Coverage F

Figure 4.5: Variance against Coverage for different CIs.

4.2.3 CI with 100 Observations (MMR)

CI Analysis for 100 Observations(MMR)

Estimation Method Minimum Coverage Average Coverage

CLT 0.76 0.94

T 0.77 0.94

Chi 0.78 0.94

F 0.78 0.94

Table 4.3: CI Analysis for 100 Observations, with 400 Iterations

In this section we analyze the uncertainty of the MMR estimator. We ran the

same simulation using 100 observations and 400 iterations as in the previous section.

Table 4.3 shows the minimum coverage and average coverage over the 1210 scenarios.

Compared to the CIs of MM estimator, that of MMR estimator has higher average
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Figure 4.6: Distribution of the estimate for scenario (low coverage with 100 Observa-
tion 400 iteration)
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Figure 4.7: Distribution of the estimate for scenario (high coverage with 100 Obser-
vation 400 iteration)

coverages and lower minimum coverages. The histograms of a low coverage scenario

“L6, T1, H1(2)” and a high coverage scenario “L4, T6, H1(1)” are shown in Figures

4.6 and 4.7. The normality test shows that they both fail to reject the null hypothesis.
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Figure 4.8: Simulation Variance vs Variance by Formula (MMR)
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(b) Variance vs Coverage T
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(c) Variance vs Coverage Chi
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(d) Variance vs Coverage F

Figure 4.9: Variance against Coverage for different CIs.
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Figure 4.8 shows the scatter plot between the empirical variance and the variance by

formula (2.3). It shows a strong positive correlation with the correlation coefficient

0.98. Then, we generated scatter plots showing the relationship between variance and

coverage. Figure 4.9 shows four scatter plots of empirical variance against coverage.

The negative correlations are stronger compared to the results of the MM estimator.

The correlation for CLT (Figure 4.9a) and T method (Figure 4.9b) are around -0.64

and the correlation for Chi (Figure 4.9c) and F (Figure 4.9d) are around -0.75.

4.3 Conclusions

In this section, we computed the CIs for the MM estimator and the MMR estimator

using four methods. The average coverages are above 93% when we have enough

samples for all of the four methods and the two estimators we used; and the minimum

coverages are above 76%. The CIs for the MMR estimator has higher average coverage

as well as lower minimum coverage compared to the MM estimator. The result also

shows there is a negative correlation between variance and coverage. The MMR

estimator has lower average variance compated to the MM estimator (Section 4.2)

which explains why the MMR estimator has higher average coverage. There is a

stronger negative correlation between variance and coverage when the variance is

high.

We have used 4 methods for CIs: CLT, T, Chi and F. The F and Chi methods

performed better which has the higher average coverage for both of the MM and

MMR estimators when we have 100 sample observations. The F and Chi methods

are EL approaches and EL is a non-parametric method that does not assume any

distribution for the data. It can therefore perform better than parametric methods

when the distribution of the data is different from an assumed parametric distribution.

The other two methods have nearly the same performance in terms of the average

coverage. The normality test failed to reject the null hypothesis when we had 100

observations. The parametric estimators CLT and T of CIs that assume a normal
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distribution, therefore, also perform well.
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Chapter 5

Conclusions, & Future Work

5.1 Conclusions

We have studied batch policy evaluation in the presence of monotone responses, which

is the first time in literature to the best of our knowledge. In summary, we have

found multiple unbiased estimators for off-policy evaluation. The estimators are MM

which minimizes the worst-case variance, IS which is our baseline estimator using the

Important Sampling technique, RIS which minimizing the worst-case regret against

IS, and MMR which minimizing the worst regret against V ∗, the best variance for

each critical level distribution. We have used both point estimation and CI to evaluate

the estimators. The results have shown that the MMR, MM and RIS estimators have

lower variance compared to the IS estimator. MM estimator guarantees the smallest

worst-case variance and almost as good as MMR Estimator. MMR estimator gets the

smallest overall variance. Although we have not applied to the real historical data

yet, the estimators we found could be useful for similar applications. This led us to

some future work.

5.2 Future Work

Our current study is limited only to the four estimators. There are some future

works we can work on. On the one hand, we can further optimize the estimator.

There are infinitely many unbiased estimators. We can pursue to find more of them
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and determine the best one using different criteria. We can also analyze CIs for other

estimators. In addition, we can try to combine some of the estimators to create a more

general estimator that performs well in most of the scenarios. On the other hand, we

can apply the theory and estimators we developed to real fire data instead of using

simulated observations. Besides, making an application for dispatch prediction would

be the final goal of the wildfire project. In the practice of wildfire operations, we have

multiple resources. We can also consider multi-dimensional action space.
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Appendix A: Proposition and
Theorem Proof

A.1 Proposition 1 Proof

Proof. We prove the proposition by converting the inner problem to its dual. The
Lagrangian of the inner problem is:

Linner(p, λ, µ) = (π⊺
t Tp)

2 − π⊺
l F

(2)p− λ⊺p+ µ(e⊺p− 1)

= (π⊺
t Tp)

2 + (µe⊺ − λ⊺ − π⊺
l F

(2))p− µ,

where λ ∈ Rk and µ ∈ R. The KKT condition is

∇pL
inner(p, λ, µ) = 2(T ⊺πtπ

⊺
t T )p− (F (2))⊺πl − λ+ µe = 0,

e⊺p = 1, p ≥ 0,

λ ≥ 0

λipi = 0 for i ∈ [k].

Since the inner problem (2.7) is convex and has only linear constraints, the KKT
condition is necessary and sufficient for an optimal solution [9]. Also, (2.7) and its
Lagrangian dual satisfy strong duality.

Now we derive the Lagrangian dual. Let ginner(λ, µ) = infp L
inner(p, λ, µ). The

minimizer p in the infimum must satisfy the first equation of the KKT condition.
Note that in the first equation, the first term (T ⊺πtπ

⊺
t T )p is a constant multiple of

T ⊺πt. Thus, only when (F (2))⊺πl+λ−µe is a constant multiple of T ⊺πt, the equation
has a solution, and thus, g(λ, µ) is well defined. If (F (2))⊺πl + λ − µe = 2αT ⊺πt for
some α ∈ R, then the first equation of the KKT condition reduces to 2π⊺

t Tp−2α = 0,
or π⊺

t Tp = α. Thus, for a minimizer p of Linner(p, λ, µ), we have

Linner(p, λ, µ) = (π⊺
t Tp)

2 + (µe⊺ − λ⊺ − π⊺
l F

(2))p− µ = −α2 − µ.

Recall that the Lagrangian dual of (2.7) is defined as maxλ≥0,µ g
inner(λ, µ). By a

change of variable λ = 2αT ⊺πt − (F (2))⊺πl + µe, the Lagrangian dual can be written
as

minα2 + µ s.t. 2αT ⊺πt + µe ≥ (F (2))⊺πl .

Therefore, (2.5) can be written as a minimization problem:

(P) min
f,α,µ

α2 + µ

s.t. µe⊺ ≥ π⊺
l F

(2) − 2απ⊺
t T

π⊺
l F = π⊺

t T,
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A.2 Theorem 3 Proof

Proof. Let z∗ ∈ V be a minimizer of s. Let us suppose that it is not Pareto
optimal. In this case, there exists a z ∈ V such that z ≤ z∗ and also for some p ∈ D,
z(p) < z∗(p). Because s is strongly increasing, we know that s(z) < s(z∗), which
contradicts the assumption that z∗ minimizes s. Thus z∗ is Pareto optimal.

A.3 Proposition 4 Proof

Proof. Suppose that (2.26) does not have an optimal solution that is a vertex. Let

p∗ be an optimal solution. Since ∆k−1 is convex, p∗ =
∑︁k

a=1 λap
a, where p1, . . . , pk are

vertices of the unit simplex and λ1, . . . , λk are nonnegative weights that sum up to one.
Because the objective function is convex, we have ||Cp∗ + d||22 ≤

∑︁k
a=1 λa||Cpa + d||22.

However, this contradicts the assumption that ||Cp∗ + d||22 > ||Cpa + d||22 for a ∈ [k].
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