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Abstract

The Hodge conjecture can be formulated in terms of Algebraic Cycles

Groups. That is, Hodge conjecture state that every Hodge class on X is

algebraic. This tells us that is worthwhile to explore the complexity of

the Algebraic Cycle Groups. On the other hand, it turns out that we

can study algebraic Cycles from the point of view of K-theory and vice

versa. The aim of thesis is to explore the complexity of Algebraic cycle

groups and K-theoretic invariants and to build bridges between K-theory

and Algebraic cycles. We will use the methods developed to capture

arithmetic invariants.
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1 Preliminaries

1.1 Sheaves

Given a topological space X. There are several situations where the open subsets

of X have some kind of algebraic structure. In fact, all manifolds admit such

a structure. We will touch upon this later when we introduce locally ringed

spaces. In such scenarios, we would like to capture invariants using the algebraic

structure associated to the open sets; In a universal fashion, that is linking local

data to global data. In this section we will introduce the notion of sheaves and

examples, and use that to define a scheme.

To introduce sheaves, we need to introduce pre-sheaves. Intuitively, a

pre-sheave is a gadget which associates to an open set an algebraic object, in

a such way that such a structure forms a tower. The top of the tower is the

lowest open set and as we go down we have bigger open sets. Formally we have

the following definition. In all that follows below we shall fix a topological space

X.

Definition 1.1. Fix a ring K. A presheaf S is given by the following datum:

• For each open set U ⊂ X there is a K-module S(U)

• If V ⊂ U , there exists K −module morphism

pV,U : S(U)→ S(V ).

satisfying the following conditions:
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– pU,U = idS,

– If W ⊂ V ⊂ U , then pW,U = pW,V ◦ pV,U .

If we have two pre-sheaves S1 and S2, then morphisms of sheaves is just the

most natural way of preserving both algebraic and topogical structures. That

is, for each open sets V ⊂ U ⊂ X, the following diagram commutes:

S1(U)

pV,U

��

// S2(U)

rV,U

��
S1(V ) // S2(V )

In order for pre-sheaves to be useful we will need the notion of sheaves.

Sheaves tells us how to pass from local to global data and vice versa.

Definition 1.2. A presheaf S is a sheaf if additionally it satsifies the following

extra datum:

• (How to glue) If si ∈ S(Ui) and if Ui ∩ Uj 6= ∅ we have that the following

is satisfied:

pUi∩Uj ,Ui
(si) = pUi∩Uj ,Uj

(sj).

for all i, then there exists an s ∈ S(U) such that pUUi
(s) = si.

• (Local morphism) If s, t ∈ S(U) and pUi,U (s) = pUi,U (t) for all i, then

s = t.

Morphisms of sheaves is the morphisms of the presheaf associated to
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them. We will work mainly with two specialized sheaves. Viz., locally free

sheaves and coherent sheaves, as those will give us the machinery of homological

algebra that we will need for the rest of the paper. The following defininition is

taken from [43].

Definition 1.3. Let R be a sheaf of commutative rings over a topological space

X.

• Define Rp, for p ≥ 0, by the presheaf

U 7→ Rp(U) = R(U)
⊕

. . .R(U).

Here we take the direct sum p-times. Rp, so defined, is clearly a sheaf of

R-modules and is called the direct sum of R.

• IfM is a sheaf of R-modules such thatM' Rp for some p ≥ 0, thenM

is said to be a free sheaf of modules.

• if M is a sheaf of R-modules such that each x ∈ X has a neighborhood

U such thatM|U is free, thenM is said to be locally free.

A natural question that might arise is that the definition of sheaves re-

sembles the definition of vector bundles over a topological space X. It is true that

the notions of locally free sheaves and vector bundles over connected topological

space X are precisely the same. Formally, we have the following statement:

Proposition 1.1. Fix a connected topological space X. The category of locally

free sheaves and the category of vector bundles over X are the same.
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We will not prove the statement above, but the proof is very simple.

One remark is in order though, the reason we require that the topological space

X is connected is in order to have constant rank as we vary across sections.

Sometimes, we would like to work with sheaves that are a little more

general than locally free sheaves. But, still be able to apply homological algebra

machinery. For this, we need the notion of coherent sheaves.

Definition 1.4. Suppose we equip X with a sheaf of rings O. A sheaf F is

coherent if it satisfies the following conditions:

• Each point x ∈ X has a neighborhood Ux such that there is a surjective

sheaf morphism:

On|Ux → FUx .

• The surjective map defined above has a finitely generated kernel.

1.2 Locally ringed spaces and Schemes

In analytic geometry we model things locally as Euclidean spaces. Such model

only detects analytic structure. In order to detect an algebraic structure asso-

ciated to the topological space we will define schemes. Before defining schemes,

we will motivate things a little more to see why varieties fails to detect certain

things and why we need this general notion of schemes.

One of the main things that varieties fails to capture is the notion

of having more than one point associated to the fibers of an x shape. More

precisely, if we look at the variety given by V (x2− y2) (figure given below). We
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Figure 1

taken from Wolfram-Alpha

can see that if we project along the x-coordinate and look at the fibre above 0,

then that is only 1 point above x = 0. In order to capture the geometry sharper,

we would like to have the fibre above x = 0 come from two distinct points.
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Another important reason is we want to define algebraic geometry

without relying on being embeded in some space. If we recall the notion of

manifolds, they are defined extrinically.

One final reason why we would want to work with schemes is because

we would like to do geometry over rings such as Z.

Definition 1.5. If X is given a sheaf of rings O, then X is called a structure

sheaf. X is called a locally ringed space if the stalks OX,x over each x ∈ X forms

a local ring. That is, the stalk OX,x = limx∈UOX(U) is a local ring. Here the

direct limit it taken with respect to the maps pU,V and inclusions.

Let us see couple of simple examples of locally ringed spaces before we

proceed:

• Suppose we consider X = C. Define sheaf of rings O on X as follows: For

each open set U ⊂ X, O(U) is the ring of complex continuous functions

ψ : U → C.

• Suppose X is a general complex manifold, and O(U) is the ring of holo-

morphic functions ψ : U → C.

It is easy to see that the stalks at each x ∈ X are local rings, where

the maximal ideals at x is given by the functions which vanish at x.

Note that any manifold (Smooth, analytic, and complex) is a locally

ringed space. The maximal ideal is given by the set of functions which vanish
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at x. From this perspective, we will see that schemes are generalizations of

manifolds.

In order to define a scheme, we need something which plays the role

of Euclidean sets from manifold theory. For this, we need to define the notion

of affine schemes.

Suppose we fix a ring R. Let X = Spec(R). Recall that the following

set form a basis for the space:

Df = {P ∈ Spec(R) : f /∈ P}.

Construct a sheaf O on X by defining O(Df ) = Rf . Recall, Rf is the

localization with respect to the multiplicative set {1, f, f2, f3, . . .}. Moreover,

for a point x ∈ Spec(R), the stalk at x is given by OX,x = Rx.

(Spec(R),O) forms a locally ringed space, which is called affine scheme.

Affine schemes are the atoms of schemes in the same way as Euclidean spaces

are the atoms of abstract manifolds.

Let us see what we mean by locally isomorphic to affine schemes. First,

let us define the notion of morphisms in the category of locally ringed spaces.

Definition 1.6. Suppose we have two locally ringed spaces (X,OX) and (Y,OY ).

A morphism between them is something which respects set structure, topologi-

cal structure, and algebraic structure. More precisely, it is given by the following

datum:

• A continuous map ψ : X → Y .
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• For each open set V ⊂ Y , a homomorphism map

ψU : OY (U)→ OX(ψ
−1(U)).

such that the map defined above is a sheaf mapping, i.e it commutes with

the restriction mapping.

• For each x ∈ X, the map ψx : O(Y,ψ(x)) → O(X,x) maps maximal ideal to

maximal ideal.

Finally, we are ready to define schemes. Note, that the isomorphism

below is in the category of locally ringed spaces.

Definition 1.7. A scheme (X,O) is a locally ringed space, which is locally an

affine scheme. That is, there exists an open covering {Uα}α∈I of X such that

each of the open set Uα are isomorphic to an affine scheme (Spec(Rα),O). We

will assume that schemes are integral scheme of finite type over an algebraically

closed field K.

Definition 1.8. A morphism between schemes is just morphisms in the cate-

gory of locally ringed spaces defined above.

2 Chow Group and algebraic cycles

We will follow similar expositions as [9] and [10]. Just as homology and homo-

topy theory is a functor from topological spaces to groups. It is possible to do
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the same thing for schemes in order to capture invariants for such objects and

to do intersection theory. It turns out that such an invariant forms a homology

theory for schemes called Chow groups.

In this section, we will discuss Chow groups, algebraic cycles, and

properties of such objects. In particular functorial properties. In what follows

we will assume that our schemes are Noetherian, i.e admits open covering by

open affine subsets Spec(Ri) such that Ri is Noetherian ring. Varieties are

reduced irreducible subschemes of X, and subvarieties are closed subschemes,

which is itself a variety.

In ancient geometry people studied the shape of intersections of ge-

ometrical objects. Intersection theory studies intersections of schemes, i.e it

studies the intersection of two closed subschemes of a scheme X. In order to be

able to do intersection theory systematically we will work with algebraic cycles.

Definition 2.1. Suppose X is a scheme. We form a group of algebraic cycles

on X by considering the free Abelian group of subvarieties of X. Such group is

denoted by Z(X). A cycle α ∈ Z(X) can be written as ΣiniYi where Yi is a

subvariety of X and of course the sum above is finite.

Note, that to each subvariety Y ⊂ X we can associate the cycle gen-

erated by it and is denoted by (Y ). Namely, if Y ⊂ X is a subvariety, then we

look at Y1, . . . , Ys the irreducible components of the reduced scheme Yred. Then,

because the Noetherian condition each local ring OY,Yi
has finite composition

series. So, if we write li for the length, then we can define the cycle associated

to Y as
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(Y ) := ΣiliYi.

Therefore, we can see that algebraic cycles are approximations of Schemes.

We will later see how we can approximate Chow group using K-theory.

The group defined above is very large. Also, we don’t have intersection

theory. In order to fix those issues we will have to mod out by an appropriate

equivalence relation. There is two ways to do this. One is clear for people who

think more geometrically, and is conceptually clear. The other one is algebraic,

we will present both definitions here.

Recall, in homotopy theory, we say two paths are equivalent if we can

interpolate between them, i.e have the following picture:
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Figure 2

taken from Wikipedia

We will define equivalence of cycles in similar fashion. The following

definition is taken [9].

Definition 2.2. Two cycles α1 and α2 are rationally equivalent if there is family

of cycles interpolating between them. That is, if we have a cycle ψ in P1 ×X

whose restriction on the fibers {t0} × X and {t1} × X are α1 and α2. More

precisely, Let R(X) ⊂ Z(X) be the subgroup generated by the following formal

difference

(ψ ∩ ({t0} ×X))− (ψ ∩ ({t1} ×X)).

Where t0, t1 ∈ P1 and ψ is a subvariety of P1×Xnot contained in any

fiber {t} × X. Then two cycles α1 and α2 are rationally equivalence if their

difference is in Rat(X), and two subschemes are rationally equivalent if their

associated cycles are equivalent.

Definition 2.3. The Chow group A(X) of X is the following quotient:

A(X) = Z(X)/Rat(X).
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It is easy to see that A(X) is graded by dimension. That is, we have

the following proposition:

Proposition 2.1. If X is a scheme then the Chow group of X is graded by

dimension. Formally we have:

A(X) =
⊕
k≥1

Ak(X).

Now, that we have defined the geometrical definition of Chow group.

Let us define the algebraic version:

Let us first recall the definition of divisor function and rational equiv-

alence to zero.

Definition 2.4. Suppose that V is a n + 1 subvariety of X and f is a rational

function on V. That is, ψ ∈ R(V )×. Then the divisor associated to f is defined

as:

[ψ] = ΣiordUi(ψ)[U ].

Where the sum is taken over all subvarieties of V of codimesion 1.

Recall that ordU (ψ) is the order of the function f along the subvariety U, defined

by the local ring OV,W

Definition 2.5. An algebraic cycle α on X is rationally equivalent to zero, if

we have subvarieties U1, . . . , Un of X and rational functions ψi for each Ui such

12



that

α = Σk
i=1[ψi].

Then we can define the Chow group in similar fashion, but here we get

the grading for free.

Definition 2.6. The Chow group of k-cycles on X is defined as the quotient of

algebraic k-cycles by algebraic k cycles that is equivalent to zero. Then we have

A∗(X) =
⊕
k≥1

Ak(X).

Note, it is easy to see the equivalence between the two notions defining

rational equivalence. Given a rational function ψ : V → P1, then if we look at

the graph of ψ, it is a cycle in V × P1; moreover, the difference over the fibers

of 0 and ∞ is ord(ψ). Thus, we get that one inclusion.

The other inclusion is has simliar line of reasoning. Given a cycle

W ⊂ X × P1 whose fibers are α0 − α∞, then if we project on the X axis. That

will determine a rational function ψ on W such that ord(ψ) = [α0]− [α∞].

2.1 Examples of Chow group and rational equivalence

First of all, let us try to digest what it means to be rationally equivalent. Ratio-

nal equivalence can be thought of as a very rigid homotopy between algebraic

cycles. Using this intuition can get us little far in computing simple examples

of Chow group. Recall, that any two path in Rn are homotopic to each. It is

natural to ask the question what about two points in An. Given any two points
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p1 and p2 ∈ An, then we can connect them by a line, so any two points are

rationally equivalent.

A hyper surface is defined by the zeroes of a polynomial function. That

is, we can think of it as a map φ : An → K. In fact, we can think of φ as a

map φ : An → P1. We can see that the fiber over {∞} is empty. Therefore, any

hyper surface is actually rationally equivalent to the empty set. We can think

of this as throwing the hyper surface away to infinity.

The first real example of Chow group is that of affine space. We have

the following proposition which we shall prove. The idea is that we will show

that any irreducible subvariety can be thrown away to infinity. That is, there is

only one generator. We will make this more formal in the proof. The way we

do this intuitively is that we project along arrows until we meet the irreducible

subvariety. See figure below:
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Figure 3

taken from [8]

Proposition 2.2. A(An) ∼= Z[An]

Proof: We will show that any proper subvariety V ⊂ An is rationally equivalent

to the empty set. Since V is a proper subvariety, so we may choose specific

coordinate z1, . . . , zn such that 0 /∈ V . Consider the following family V ⊂

An × (A1 − {0}) defined as

V = {(z, t) : z
t
∈W} = V ({f(z

t
) : f(z) vanishes on V}).

Geometrically, the fiber above t is just the stretching of V by a factor

of 1
t . If we take the closure of V , then we will get a family in An × P1. If

we look at the fiber above t = 1, then we will see that is precisely V. Since

0 /∈ V , there exists a polynomial function g(z) that vanishes on V and has a

non-zero constant term. Then, setting F (t, z) = g( zt ), which is a function on

(A1 − {0})× An that can be extended to regular function on (P1 − {0})× An.
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Hence we can see that the fiber above ∞ is the empty set. Thus, we proved

that any proper subvariety V is rationally equivalent to ∅. �

In fact, we can prove that for any open non-empty subset U ⊂ An we

have A(U) ∼= Z[U ]. To do that we will need the following proposition:

Proposition 2.3. Let X be a scheme.

• If X1,X2 are closed subschemes of X, then there is a right exact sequence

A(X1 ∩X2)→ A(X1)
⊕

A(X2)→ A(X1 ∪X2)→ 0.

• If Y ⊂ X is a closed subscheme and U = X − Y is its complement, then

the inclusion and restriction maps of cycles gives a right exact sequence:

A(Y )→ A(X)→ A(U)→ 0.

If X is smooth, then the map A(X)→ A(U) is a ring homomorphism.

Now, we are ready to prove that for open non-empty subset U ⊂ An

we have A(U) ∼= Z[U ]. Setting Y = X − U . Then, we have the following exact

sequence from the proposition above:

A(Y )→ A(An)→ A(U)→ 0.

Thus, the map A(An) → A(U) is surjective. Therefore, we get the

proposition. That is, we have A(U) ∼= Z[U ].
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2.2 Push forwards and Pull-backs

Recall, in homotopy and homology theory for topology. The fundamental group

and homology are both functorial. Given a map between topological spaces:

f : X → Y.

This will induces a map:

πn(f) : πn(X,x)→ πn(Y, f(x)).

It is natural to ask the question if the same holds for Chow groups.

Unfortunately, the situation for varieties is a little more restrictive. We will

have to assume certain properties in order to get functorial properties. First,

we will discuss push forwards, then present a way of integrating 0-cycles using

push forwards. We will also see why we require the maps to be proper (to be

defined below).

In a topological category, we know that continuous maps sends com-

pact sets to compact sets. It is not necessarily true that inverse image of a

compact set is a compact set under a continuous map. If a continuous map

holds such a property, then it is said to be proper. The analogue in the cate-

gory of schemes is proper morphism of scheme. In fact, we will see at the end

of this subsection why we require proper morphism of schemes.

Let φ : X → Y be a proper morphism of schemes. Given a subvariety

U , φ(U) is a subvariety of Y, whose dimension is less than Y, as one would

expect. We could define the pushforward to be just φ(U), but in order to take

17



care of multiplicity we will have to add an extra component. If we look at the

figure 8 (figure below), then the self-intersection should be associated to two

points not one.
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Figure 4

Drawn picture

Definition 2.7. Suppose that X and Y are schemes and φ : X → Y is a proper

morphism between them. Let U be a subvariety, then define

φ∗(U) =


mult(φV )[φ(V )] if dim(φ(V )) = dim(V ),

0 otherwise.

where mult(φV ) = [k(V ) : k(φ(V ))].

Since an algebraic cycle is linear combination of subvarieties, so we can

extend φ∗ to a morphism between algebraic cycles on X and on Y. That is, we

get the following extension φ∗ : Z(X) → Z(Y ). Does this descend on the level

of Chow group ? The answer is yes as the following theorem states:

Theorem 2.1. Let φ : X → Y be a proper morphism of schemes. If β is a cycle

in X rationally equivalent to zero, then φ(β) is a cycle in Y, which is rationally

equivalent to zero.

From the theorem above, we get an induced morphism on the level of

Chow group that we will also denote by φ∗. We have the following morphism:

φ∗ : Ak(X)→ Ak(Y ).
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Let us recall, a scheme over Y is just a scheme X equipped with a fixed

proper morphism ψ : X → Y . We call such ψ the structure map. Suppose that

we take Y = Spec(k). Also, recall that A0(S) = Z[S] ∼= Z. Suppose that X is a

scheme over Y and ψ : X → Y is the structure map. Then, from the theorem

above we get the following morphism:

ψ∗ : A0(X)→ A0(S) ∼= Z.

We can extend this morphism to the whole Chow group group by

setting ψ∗(Ak) = 0 ∀ k ≥ 0. By abuse of notation we will call such an

extension ψ∗. Thus, we get the following map:

∫
X

:= ψ∗ : A∗X → Z.

We can ask the question if properness is necessary in order to define

push-forwards. Suppose we consider A1, i.e the affine line. Then, we have

seen earlier that any point in the affine is rationally equivalent to zero, however

its push forward is not rationally equivalent to zero. Therefore, we get that

properness is a necessary condition for push-forwards.

2.3 Pull-backs of algebraic cycles and Affine bundles

Recall that given any continuous map f : X → Y . Any differential form on Y

can be pulled back to a differential form on X. We would like to have similar

property for algebraic cycles. In this section, we will discuss the similar notion

in algebraic geometry; moreoever, we shall use the ideas that we will develop
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in this subsection to give another way of computing the Chow group of affine

space in the next chapter.

First, let us recall what we mean by a morphism having relative di-

mension n. Suppose that ψ : X → Y is a flat morphism of schemes. Then, ψ

has relative dimension n, if for any subvariety V dim(ψ−1(V )) = dim(V ) + n.

In order to get nice functorial properties we shall assume that any morphism of

schemes ψ : X → Y is flat. Then, for any closed subvariety V ⊂ Y of dimension

m, we have:

ψ∗(V ) = (ψ−1(V )).

Recall, here that ψ−1(V ) is inverse image of scheme and (ψ−1(V )) is

the associated algebraic cycle associated to subscheme ψ−1(V ).

The above map extends linearly to all algebraic cycles, i.e we get the

following map which we will also denote by ψ∗ on the level of algebraic cycles.

ψ∗ : Zd(Y )→ Zd+n(X).

We would like a theorem that tells us that the map above descends on

the level of Chow group. As this would give us the required pull-back map as

in differential forms.

In fact, we get that φ∗ indeed does descend on the level of Chow group.

Theorem 2.2. Suppose that φ : X → Y is a flat morphism of relative dimension

n. If α1 is rationally equivalent to zero, then φ∗(α1) is rationally equivalent to
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0.

From the theorem above we get that given a flat morphism of relative

dimension n φ : X → Y . Then, we get an induced map on the level of Chow

group. That is, we get the following map on the level of Chow group:

φ∗ : Ai(Y )→ Ai+n(X).

Is there any other functorial properties that are satisfied by pull-backs

of algebraic cycle. Another important functorial property tells us how pull-back

and push forwards interact with each other.

Proposition 2.4. Suppose that ψ is flat and θ is a proper map of schemes.

Then, if the square below

X ′

θ′

��

ψ′
// X

θ

��
Y ′

ψ
// Y

commutes, then we have that θ′ and ψ′ inherits the properties of θ and

ψ, that is ψ′ is flat and θ′ is proper. Also, we have that flat pullback commutes

with proper push forwards on the level of cycles. That is, we have the following

condition on the level of cycles:

φ′∗ψ
′∗α = ψ∗φ∗α where α ∈ Z∗Y

′.
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Proof:

We will give the main idea of the proof the details are given in reference

[9] and [10]. Some of the details are missing in [9] and [10], which we will explain

here. First it suffices to consider the case where X and Y are varieties and θ is

surjective. The reason it suffices, is that we can base change in order to work

with surjective map and another base change to work with variety. After that,

this turns into calculation in a local ring. The details are given in reference [9]

and [10]. �

Another proposition which tells us how pull-back and push forward

interact with respect to exact sequence is the following.

Proposition 2.5. Let Y be a closed subscheme of a scheme X, and let U =

X − Y . Let i : Y → X, j : U → X be the inclusions. Then, the sequence

AkY
i∗−→ AkX

j∗−→ AkU → 0,

is exact for all k.

Proof: It is easy to check that on the level of cycles we get that the following

sequence is exact.
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ZkY
i∗−→ ZkX

j∗−→ ZkU → 0.

Therefore, if we descend on the level of Chow group, then we get that

the composition of two arrows is zero;moreover, we get exactness on the right.

Finally, now we should prove exactness in the middle. Suppose that β is a cycle

in ZkX that is inside of the kernel of j∗. That is, j∗(β) = 0. Here, it makes

sense to use the more algebraic version of rational equivalence. By definition,

we then have that β can be represented as β = Σi[ψi].

Recall each ψi is a rational function on Vi subvarieties of U. Therefore,

we get that ψi we can think of it as a rational function in the closure of each Vi

in X. Denote that function by ψi for each i. Then, we get what we want that

is, we get the following equality:

j∗(β − Σi[ψi]) = 0.

Note that the composition of two arrows is zero gives the other inclu-

sion. Therefore we are done.

�

24



2.4 Affine bundles

In this final section of the introduction to Chow group, we will talk about affine

bundles which is similar to vector bundles in the algebraic category see section

3.4. Affine bundles is a non-linear version of vector bundles see section 3.4.

Definition 2.8. An affine (E,X, π) is given by the following data:

• A scheme E.

• A scheme X.

• A morphism π : E → X that is of rank n over X.

Such that if X can be covered by open sets Uα then

π−1(U) ∼= Uα × An.

Moreover, if we restrict ourself to a fiber of π−1(Uα), then that corre-

spond to projection from Uα × An to Uα.

One might expect that the pull-back on the level of Chow group is

surjective. That is indeed the case as the following proposition states.

Proposition 2.6. Let p : E → X be an affine bundle of rank n. Then, the flat
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pull-back

p∗ : Ak(X)→ Ak+n(X),

is surjective for all k.

Proof:

see [8] and [9]

�

3 K-theory

3.1 Algebraic K-theory

Classical K-theory was developed in order to generalize linear algebra for projec-

tive R-modules. We know that every vector space has a basis, so we would like

to have the same thing for projective R-modules and vector bundles. K-theory

will be interesting, because we could do intersection theory at the level of K-

theory, and we won’t require moving lemma. Another reason is that K-theory is

related to algebraic cycles, so we could do calculations at the level of algebraic

cycles and then pass to K-theory. This provides a dictionary between K-theory

and algebraic cycles. A good introduction to K-theory is [17],[18],[20],and [38].
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3.2 Algebraic K-theory

In this section we shall develop K-theory for Abelian categories. Suppose C

is an Abelian category. Let I(C) denote free Abelian group generated by the

isomorphism classes of C. We quotient out by the relation [A1] = [A0] + [A2] if

there is a short exact sequence:

0→ A0 → A1 → A2 → 0.

We denote that group by K0(X). If we look at the category of coherent

sheaves over a scheme X. That will give an invariant for X. It turns out that

this invariant is related to algebraic cycles. We would like to also define higher

K-theory. Let us recall a few basic properties from homotopy theory. Recall,

that [X,Y ] denotes the homotopy classes of continuous maps from X to Y.

Definition 3.1. Suppose n ≥ 0 and we are working with a pointed space (X,x),

then define

πn(X,x) := [(Sn,∞), (X,x)].

Recall, that if X is path connected, then the isomorphism classes of

πn(X,x) is indepedent of x ∈ X.

Recall, that a map φ : (X,x)→ (Y, y) between two pointed topological

spaces induce a map on the level of homotopy. That is, we have the following

map:

φ̄n : πn(X,x)→ πn(Y, y).
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A natural question that might arise is that if we have isomorphism for

all n, then is it true that f is a homotopy equivalence. In general, the answer is

no. Albeit, for special kind of spaces that are built combinatorially, then it is

true.

Theorem 3.1. If φ : X → Y is a continuous of CW complexes such that

φ̄ : πn(X,x) → πn(Y, φ(x)) is isomorphism for all n ≥ 1, then φ is a homotopy

equivalence.

One last thing we will need from homotopy theory is that a long exact

sequence of homotopy maps is induced from fiberation map. That is, if we have

a fiberation map

p : E → B.

Then, that will induce a long exact sequence of homotopy groups: That

is, if we choose a base point x0 ∈ B. Let F be the fiber over x0, and i being the

inclusion mapping i : F → E. Then, we have the following long exact sequence:

. . .→ πn(F )→ πn(E)→ πn(B)→ πn−1(F )→ . . .

Given an Abelian category, there is a construction due to Quillen that

takes an Abelian category and changes into a simplicial category. Then, from

that we can apply Milnor’s geometric realization functor which constructs a

topological space, and we define the K-theory being the homotopy groups of

that topological space. First, we will define higher K-theory, then after that

we will explain the construction, and maybe give an insight for how it was

constructed. That insight is just speculative from the point of view of the
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writer of the thesis.

Definition 3.2. Suppose C is an Abelian category and let QP be the category

obtained from C by applying the Q− construction, then

Ki(C) := πi+1(BQP ).

Where BQP is Milnor’s geometric realization functor.

First, let us recall simplicial sets. Recall, in algebraic topology an

elementary way of constructing homology is to build it out of maps from ∆n

into the space X. Sometimes it is useful to consider a set with some kind of

ordering based on simplices. This is achieved through simplicial sets (see [11]

for more explanation) .

Definition 3.3. Suppose we consider the category of standard simplices for

which we denote by ∆. This has objects given by [n] = [0, 1, . . . , n] and mor-

phisms given by family of morphisms, that is we have the following family:

Hom([n], [m]) := {increasing maps [0, . . . , n]→ [0, . . . ,m]}.

Recall, as we have in algebraic Topology we have the obvious maps:

∂i : [n− 1]→ [n],
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τj : [n+ 1]→ [n].

A simplicial set is just a functor from

∆op → Sets.

Given a simplicial set it is possible to realize that geometrically by

building a topological space out of the simplicial sets. Conceptually, the way

we do this is by gluing the standard simplices through the simplicial sets.

Formally, we have the following definition which is due to Milnor.

Definition 3.4. Suppose that we have a simplicial set S, then construct the

following set

[S] = qn≥0Sn ×∆n/ ∼

The equivalence relation is the one which glues together the simplices.

We put the quotient topology on this final object [S].

If C is a category. We can define a simplicial set out of this category.

Before introducing this, let us first look at an example which might provide us

with some insight about how this is constructed.

Suppose X is a polyhedron. We would like to create some model on this

X, where somehow gives us the barycentric division of X. More generally, given

a category C we would like to construct a category that subdivides and linearize

C such that we can associate a topological structure to such a construction.
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This could be what motivated Quillen’s construction, he wanted to take the

homotopy group of a linearization of an Abelian category.

Definition 3.5. Suppose that C is a category. We define the nerve of the

category denoted by NC a simplicial set. In order to define this simplicial set

we need to know what it’s n-simplices looks like. The n-simplices of NC are the

set of n-tuples of composable morphisms in C. That is,

NCn = {Cn → Cn−1 → . . .→ C0},

Where ∂i and τi are defined in the obvious way. That is, define ∂i :

NCn−1 → NCn and τi : NCn → NCn−1 by composing two consequent maps

for 0 < i < n. If i = 0 or i = n then the last map or first map. We define τi by

repeating Ci and inserting an identity.

We shall end this subsection by Quillen’s Q- construction and impor-

tant theorem relating Quillen’s construction to classical K-theory. The con-

struction is by Quillen himself and more detailed discussion can be found in

reference [16]. In our case we will make things simpler by considering Abelian

categories instead of exact ones. The idea is that we start with an Abelian

category for which we collapse the morphisms by a specific equivalence relation.

This goes back to the idea of linearizing the category.

Definition 3.6. Suppose C is an Abelian category. We shall define a new

category QC. The objects of QC are the same objects of C. The morphisms are

31



defined as

HomQC(P,Q) = {P ← X → Q}/ ∼,

Such that the map P ← X is epimorphism and the morphism X → Q

is a monomorphism. Two morphisms P ← X → Q and P ← X ′ → Q are

related if they fit into the following commutative diagram:

P

=

��

X
p

oo

ψ

��

i // Q

=

��
P X ′

p
oo i // Q

For smooth schemes X. It turns out that we can study K-theory of

coherent sheaves using vector bundles. That is, if we consider vector bundles

over a smooth scheme X, then K-theory of that will be the same as K-theory of

coherent sheaves on X.

3.3 Introduction to Vector bundles

In this section we will study vector bundles and classify them. For our purpose

we can study K-theory of coherent sheaves by studying K-theory of vector bun-

dles. Therefore, it is worthwhile classifying vector bundles. We will head in this

direction and classify vector bundles over a paracompact space X.

In finite dimensional linear algebra it is easy to classify things. There

is only one isomorphism class per dimension. If we do linear algebra locally,

then we get more interesting objects. This turns out to be the right recipe for

doing geometry. The key ingredient for doing linear algebra locally is vector

bundles. Essentially, the problem of classifying all vector bundles is still an
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open problem. We will classify vector bundles over a paracompact space X.

Definition 3.7. A C-vector bundle (π,E,C) of rank r over an C-manifold X is

given by the following datum:

• A holomorphic surjective map π : E → X.

• Each fiber with respect to a point is a C vector space. That is,

Ex := π−1(x),

is a vector space.

• Each fiber over an open set is locally a trivial bundle. That is, if x ∈ X is

a point. Then, there exists a neighorhood Ux and a homeomorphism

hx : π−1(Ux)→ Ux × Cr,

such that hx(Ex) ⊂ {x} × Cr. Moreover, we have that the composition

below is an isomorphism:

hx
p : Ex → {p} × Cr → Cr.

An important class is that of the pull-back bundle.

Let π : E → X be a vector bundle. Let φ : X ′ → X be a continuous

map. Construct the pull-back bundle as follows:
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φ?E = {(x′, e) ∈ X ′ × E : φ(x′) = π(e)} ⊂ X ′ × E.

Equip φ?E with the subspace topology, consider the projection map

onto the first factor and call that map π′. Thus, we have constructed a new

vector bundle φ?E.

Moreover, by construction the following diagram commutes:

φ?E

π′

��

π2 // E

π

��
X ′ φ // X

example 3.1. A good visual example of the pull-back bundle is achieved with

the Möbius band. Let E be the Möbius considered as a real band over the circle

and let φ from the figure eight to circle achieved by imagining the figure eight

as the wedge of two circles. The induced bundle φ?E is then two Möbius bands

glued together at a single fiber.

The best visual way to view vector bundles is as smoothly varying

vector spaces. For each point x ∈ X in the base space, there is an associated

vector space and as we move from vector space to vector space, the family varies
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smoothly. This is precisely what condition 3 above says.

Given the data of an S vector bundle (π,E,C) of rank r. This defines

gluing data. That is, if x ∈ Uα ∩Uβ . Then, we have the following commutative

diagram:

Uα ∩ Uβ × Cr

π1
((

h−1
α // π−1(Uα ∩ Uβ)

π

��

hβ // Uα ∩ Uβ × Cr

π1
vv

Uα ∩ Uβ

From The commutative diagram above we get a smooth map gαβ as

follows:

gαβ : Uα ∩ Uβ → Glr(C).

These maps satisfies the following compatibility conditions:

• gαβgβηgηα = Ir on Uα ∩ Uβ ∩ Uη,

• gαα = Ir on Uα,

• gαβgβα = Ir.

The first condition is called Čech cocycle condition. Those maps are called tran-

sition maps. Geometrically, what is happening here is that the vector bundles

are locally trivial. Globally things are twisted and the way they are twisted is

precisely through these transition maps gαβ .
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Vector bundles are built from trivial bundles along with gluing data coming

from transition maps. Given a vector bundle we get transition maps, also the

converse is true. Suppose that to each non-empty intersection Uα∩Uβ we assign

an S-function:

gαβ : Uα ∩ Uβ → Glr(C).

Those gαβ satisfies the compatibility conditions above. Then we can

construct a S vector bundle (π,E,C) having these as the transition maps. The

way we do this as as follows:

Ē =
⋃
α

Uα × Cr.

Equip Ē with the product topology and regular manifold structure.

Then, we define an equivalence relation on Ē as follows:

(x, v) ∼ (u, s)⇐⇒x = u and s = gαβ(x)v.

Here (x, v) ∈ Uβ × Cr and (u, s) ∈ Uα × Cr.

This is well-defined equivalence relation because of the compatibility

conditions. Finally, define E = Ē/ ∼ equipped with the quotient topology and

let π : E → X be the natural map. Then, it is easy to show that E carries an S

structure and is a S vector bundle.

We will define the Universal bundle. In order to define a topology on

it we need to define Stiefel manifold.
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Definition 3.8. Define the Stiefel manifold Vn(Ck) to be the space of orthonor-

mal n-frames in Ck. This is a subspace of the product of n copies of the unit

sphere Sk−1. This is a closed subspace as one can readily verify. It is also

compact since the product of n copies of the unit sphere Sk−1 is compact.

Now we are ready to define the Universal bundle and put a topology

on it.

Definition 3.9. Define the Grassmannian manifold Gn(Ck) for nonnegative

integers n ≤ k as the collection of all n-dimensional vector subspaces of Ck.

Given w ∈ Gn(Ck), then that means it is an n-dimensional vector spaces passing

through the origin in Ck.

There is a natural surjection π : Vn(Ck)→ Gn(Ck) sending an n-frame

to the subspace it spans. We can equip Gn(Ck) with the quotient topology with

respect to this surjection.

Recall, we can define C∞ =
⋃
k≥1 Ck. Thus, doing the same thing for Grass-

mannians, we can construct the infinite Grassmannian space as Gn(C∞) =⋃
k≥1Gn(Ck). The topology we equip Gn(C∞) is the topology induced from the

inclusion maps. There is a canonical vector bundles over Gn(Ck) and Gn(C∞).

Define En as follows:

Un(Ck) = {(l, v) ∈ Gn(Ck)× Ck : v ∈ l}.

As, earlier define Un(C∞) =
⋃
k Un(Ck). Equip Un(C∞) with the
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topology induced from the inclusion maps.

Lemma 3.2. The projection map π : Un(Ck)→ Gn(Ck) given by (l, v) 7→ l, is

a vector bundle for finite and infinite k.

To classify vector bundles we will deal with the case when k is infinite.

In this case simplify the notation by writing Un(C∞) and Gn(C∞) as Un and

Gn respectively. It turns out that we can probe the geometry of vector bundles

through homotopic methods. This gives us a topological classification for vector

bundles. If we would like to also classify holomorphic vector bundles, then there

is extra work that has to be done, as we don’t have partition of unity. Please

refer to [12] for the case of classifying holomorphic vector bundles.

Theorem 3.3. For paracompact space X, the map [X,Gn]→ V ectn(X), [f ] 7→

f?Un is a bijection. Moreover, Gn is called the classifying space.

We will provide a heuristic intuition for why it is actually Gn, which is

used as the classifying space. Let us say that we know that [X,Y ] is in bijection

with V ectn(X) and we want to find out what that space Y might be. We can

think of vector bundle as assigning a vector space to each point. Therefore we

want Y to be the space of all n-dimensional vector spaces.

We shall give a sketch of the proof for this theorem. Because of the

theorem above, the bundle π : Un → Gn is called the universal bundle, as it can

be used to classify all vector bundles over paracompact base. Most topological

spaces ocuring in nature are paracompact. We have to try try hard to construct

a non paracompact topological space.

Sketch: First, we need to show that the above map is well-defined. That is, we
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want to show the following proposition:

Proposition 3.1. If f, g : X → Y are homotopic and E → Y is a vector bundle

over Y , then f?E and g?E are isomorphic.

Suppose we have a homotopy ht interpolating between f , consider the

homotopy h?tE. This contains an interpolation between f?E and g?E. We can

check then that they are isomorphic by building the isomorphism using partition

of unity.

The whole idea of the proof of the theorem depends on the following idea:

For an n-dimensional vector bundle π : E → X, an isomorphism E ∼=

f?(En) is equivalent to a map g : E → R∞ that is linear injection on each fiber.

In order to verify the above, we just consider the diagram and in one

direction if we trace through the diagram we get the required injection on each

fiber. In the other direction, we see that linear injection on each fiber defines a

map by pulling it back along the fiber.

The surjectivity of the map above comes from that we can use the

criterion above along with partition of unity in order to build the required

vector bundle.

For injectivity we use the criterion above and building the homotopy

by mimking the straight line homotopy. After that we pull it back and that will

give us that the original maps are homotopic. Thus, invoking proposition 3.1
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we get that their pull-back must be isomorphic. �
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Before, moving on to invariants that we can capture using Chow groups.

First we will note the following important relationship between cycles and K-

theory.

Theorem 3.4. There is an isomorphism between the zeroeth K-theory of X

and algebraic cycles. More explicitly, we have the following isomorphism:

ch : K0(X)⊗Q→ A(X)⊗Q.

Having understood algebraic cycles using K-theoretic methods. A nat-

ural question is if there is cycle theoretic interpretation of higher K-theory. This

led to higher Chow groups and isomorphism between higher K-theory.

4 Invariants

In this section, we will see how we can detect invariants using algebraic cycles,

in order to detect those invariants. First, we need some filtration on the level

of Chow groups. In the next few sections we will develop enough machinery

to show that such filtration exists. We will restrict to the case of X = X/C

projective algebraic manifold of dimension d for simplicity. In the next section

we will develop complexes of sheaves, sheafification, and sheaf cohomology.
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4.1 More sheaf theory

From a presheaf F we can create a sheaf associated to it. This is called sheafi-

fication. There are many ways to do this. From personal bias the best way to

do the sheafification construction is using the notion of Etale spaces. That is,

one can think of a sheaf as a special topological space where the algebraic data

are living over the fibers. We will follow Etale space theory presented in [42].

Definition 4.1. • An Etale space over a topological space X is a topological

space Y together with a continuous surjective mapping π : Y → X such

that π is a local homeomorphism.

• a section of an Etale space Y → X over an open set U ⊂ X is a continuous

map f : U → Y such that π◦f = 1U . The set of sections over U is denoted

by Γ(U, Y ).

From the above definition we can see that sections of Etale spaces form

a subsheaf of continuous sections from X to Y. We will use Etale spaces in order

to straighten out a presheaf into a sheaf. Suppose we are given a sheaf F over

a topological space X, then we can define the stalks over each x ∈ X as follows:

Fx := lim−→
x∈U

F (U).

The direct limit is taken with respect to the restriction map. It is easy

to check that using point wise operation that we will have an induced algebraic

structure on the stalks. There is a natural map from the sections of the presheaf

into the stalks defined as follows:
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rUx : F(U)→ Fx,

s 7→ sx := [s].

If we set F =
⋃
x∈X Fx. There is a natural way to put a topology on F

such that the natural π : F → F is an Etale space. For the sake of completeness

we will show how it can be done. First we define a function s for each s ∈ F(U):

s : U → F ,

s(x) = sx for each x ∈ U.

It is easy to see that π ◦ s = 1U where π : F → X defined by mapping

Fx 7→ x. Finally, define the basis for the topology of F as:

{s(U)} where U is open in X, s ∈ F(U).

It is easy to check that π : F → X is a Etale space over X. If we start

with a sheaf F and take its sheafification, then that will be a sheaf isomorphic

to F . We have the following result:

Theorem 4.1. If F is a sheaf, then

τ : F → F ,

is a sheaf isomorphism.
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Definition 4.2. Suppose that F and G are sheaves, then one can form the

quotient sheaf Q defined to be the sheaf associated(using sheafification above)

to the presheaf:

U 7→ F(U)

G(U)
.

Given a sheaf F , as we have algebraic data on the stalks, we can talk

about the notion of exact sequence of sheaves.

Definition 4.3. If A,B, and C are sheaves over X, then morphism of sheaves

A → B → C,

is said to be short exact sequence of sheaves iff the induced maps on

stalks is exact for each x ∈ X. That is,

0→ Ax → Bx → Cx → 0,

is exact for each x ∈ X. Similarly, we can define exactness at each

position of the morphism; 0 denotes the (constant) zero sheaf.

A typical example is the exponential sequence:

example 4.1. Let X be a connected complex manifold. Let O the sheaf of

holomorphic functions on X and O∗ be sheaf of nowhere holomorphic functions
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on X. Then we have the following sequence:

0→ Z→ O → O∗ → 0.

The maps defined are the ones that we would expect. It is easy to

check that the above is a short exact sequence of sheaves. This is denoted by:

0→ F → F?.

It can be checked that the category of sheaves forms an Abelian cate-

gory. Therefore, we can speak of the notion of graded sheaf. That is a graded

sheaf F∗ is a family of sheaves indexed by Z:

F∗ =
⊕
n∈Z
Fn.

A complex of sheaves is given by (F∗, d) such that d2 = 0. Finally, a

resolution of a sheaf F is completing F to an long exact sequence. That is, it

is an exact sequence of sheaves of the form:

0→ F → F0 → F1 → . . .

Recall from commutative algebra that taking hom functor is left exact.

Similar situations occur for sheaves. Suppose we have the following short exact

sequences of sheaves over X:
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0→ A→ B → C → 0.

If we take global section then we will get the following induced se-

quence:

0→ A(X)→ B(X)→ C(X).

That will be exact at every position, but not necessarily at C(X). We

would like to use homological algebra in order to extend from local picture to

global one. For that we will develop sheaf cohomology.

Definition 4.4. A sheaf F over a space X is soft if for any closed subset S ⊂ X

the restriction mapping

F(X)→ F (S),

is surjective; That is, any local section can be extended to a global

section.

Definition 4.5. Let X be a topological space. We say a presheaf of sets S is

flabby or flasque if S(X) → S(U) is surjective for all open sets U in X. It can

be shown that a flasque sheaf is soft.

Given a sheaf F we can construct a resolution of F where the resolution

of the sheaf F is made up of soft sheaves. Let S be the sheaf F given in the

form of an Etale space. That is, (S, π : S → X) is the Etale space associated

to F , which we recall is isomorphic to F . Let C0 be the sheaf if sections of S.

That is given U ⊂ X open C0(U) to be the sheaf of discontinuous sections of S
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over X, that is:

C0(U) = {f : U → S : π ◦ f = 1U}.

Then by taking quotients and splicing the short exact sequence up we

get the following long exact sequence:

0→ S → C0(S)→ C1(S)→ . . .

Taking global sections of the above sequence and taking the cohomol-

ogy of that we arrive at sheaf cohomology denoted by HSH(X, S). We will need

the following concepts for Leray spectral sequence. Essentially given a map of

topological spaces, we would like to have some way of pulling back a sheaf on

Y to one on X, and pushing forward a sheaf on X on Y.

Definition 4.6. Let f : X → Y be a continuous map of topological spaces.

For any sheaf F on X, we define the direct image sheaf f∗F on Y (f∗F)(V ) =

F(f−1(V )) for any open set V ⊂ Y . For any sheaf G on Y, we define the

inverse image sheaf f−1G on X to be the sheaf associated to the presheaf U 7→

lim−→V⊃f(U)
G(V ), where U is any open set in X, and the limit is taken over all

open sets V of y containing f(U).

4.2 Introduction to spectral sequences

In this section, we shall give an introduction to spectral sequence. Spectral

sequence provides ways to calculate cohomology using smaller pieces of it. It is
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a discrete Riemann sum. Although it provides an elegant proof for many things

in (co)homology theory, it is hard to conceptualize because it handles a lot of

data. We will treat spectral sequence in the most general setting.

A complex (K?, d) = {K0 → K1 → K2 → . . .} is a sequence of objects

in an Abelian category C with differentials

d : Kp → Kp+1,

such that d2 = 0. Given a complex we can form a graded cohomology

H?(K?) =
⊕
p≥0

Hp(K?),

where Hp(K?) is just cochains divided by coboundaries. That is,

Hp(K?) = ker({d : Kp → Kp+1})/dKp−1 = Zp/Bp.

It is known that given a subcomplex (J?, d) ⊂ (K?, d), then we get

an induced sequence in the cohomology. We would like to generalize the no-

tion of subcomplex and that long exact sequence in cohomology to something

three-dimensional, which gives pieces of information about the cohomology in

a discrete fashion. For simplicity, we assume that for p big enough we have

that the Km = 0 for all, m ≥ p. A filtered complex (F pK?, d) is a decreasing

sequence of subcomplexes:

K? = F 0K? ⊇ F 1K? ⊇ . . . ⊇ FNK? = {0}.
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Given a complex, we can induce a graded complex, which is some-

thing as smaller version of the original cohomology. That we have the following

induced graded complex:

GrK? =
⊕
p≥0

GrpK?,

GrpK? := F pK?/F p+1K?.

The filtration above also induces a filtration on the cohomology F pH?(K?)

defined as:

F pHq(K?) = F pZq/F pBq.

Therefore, we have the following associated cohomology:

GrH?(K?) =
⊕
p,q

GrpHq(K?),

GrpHq(K?) = F pHq(K?)/F p+1Hq(K?).
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Finally, we are ready to define cohomological spectral sequence.

Definition 4.7. A cohomological spectral sequence is a sequence {Er, dr}(r ≥

0) of bigraded objects in an Abelian category:

Er =
⊕
p,q≥0

Ep,qr ,

together with differentials:

dr : E
p,q
r → Ep+r,q+1−r

r d2r = 0,

such that

H?(Er) = Er+1.

Essentially with most spectral sequence as r gets big enough, then the spectral

sequence converges. That is Er = Er+1 = Er+2 = . . . for r ≥ r0 and we call the

convergent limit E∞.

We can think of spectral sequence as three-dimensional grid, where for

each r we have a plane of cohomological data. The planes are related to each

other from the fact that we build them in an inductive fashion.

A natural question if given a cohomology, does there exist a spectral
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sequence that converges to it ? The answer is given by the following proposition:

Proposition 4.1. Let K? be a filtered complex. Then there exists a spectral

sequence {Er} that converges to the cohomology as r gets big enough. More

precisely:

Ep,q0 =
F pKp+q

F p+1Kp+q
,

Ep,q1 = Hp+q(GrpK?),

Ep,q∞ = Grp(Hp+q(K?)).

Proof idea: The whole idea is based on the fact that spectral sequence is

algebraic discrete Riemann sum. Since we have already the initial term be-

ing defined, we can define the second term by using the cohomology of the

first term which is precisely Hp+q(GrpK?). We keep doing this process in-

ductively, because the complex is bounded eventually everything collapses to

Ep,q∞ = Grp(Hp+q(K?)). �
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The above spectral sequence approximate regular cohomology. A nat-

ural question if there exists a spectral sequence that approximate generalized

cohomology theory. The answer is answered by the following proposition:

Proposition 4.2. Given a generalized cohomology theory K?. Suppose that X

is a finite CW-complex. Then we can approximate the generalized cohomology

theory of X with respect to ordinary cohomology theory. That is, there is

spectral sequence {Er} taking values in ordinary cohomology theory such that:

Ep,q2 = Hp(X;Eq(pt))=⇒Ep+q(X).

Proof idea:

The proof is very similar to proposition 3.7 given the fact that we have

an induced filtration coming from CW complex structure on X. However, a slick

way to prove this from generalized spectral sequences satisfies axioms stated in

reference [7] page 56. �

example 4.2. A very easy example to show the use of Atiyah-Hirzebruch spec-

tral sequence is the calculation of K?(CPn). Recall, from elementary algebraic

topology we have:

Hp(CPk;V ) =


V if p is even,with 0 ≤ p ≤ 2k

0 otherwise.
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Therefore by hypothesis of the spectral sequence we have

Ep,q2 =


Z p, q even, 0 ≤ p ≤ 2k,

0 otherwise.

Therefore,

Ep,q2
∼= Ep,q∞ .

Thus K?(CPn) is isomorphic to its grading.

4.3 Čech cohomology

Čech cohomology provides us a way of looking at the cohomology complex of

sheaves in way to capture topological datum associated to the space. This arises

very naturally when we consider certain invariants associated to a space. One

way to study a given space is to transport pieces of it and look at how we

transported the space. We could associate an invariant to such transportation.

It turns out that invariant is related to Chow groups and this is the direction

that we will be heading towards. Hypercohomology allows us to do that. First

we need the notion of Čech cohomology with coefficients in a sheaf.

Suppose (X,F) is a sheaf on the complex manifold X. Here F is coher-

ent sheaf on X. Suppose we have an open covering U = {Uα} of X. We can define

a cohomology theory on X which depends only on the topological structure of
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X. That is a q simplex is an ordered collection of q + 1 of the covering U .

σ = (U0, . . . , Uq).

Moreover, we have that
⋂q
i=0 Ui 6= ∅ =: |σ|. A q-cochain of U is a

mapping f from q-simplex σ to F(|σ|). Set of cochains is denoted by Cq(U ,F).

There is a natural boundary operators δ : Cq(U ,F)→ Cq+1(U ,F). We can use

this boundary operator to define Čech cohomology. More explicitly, define the

coboundary operator :

δ : Cq(U ,F)→ Cq+1(U ,F),

fσ 7→ Σq+1
i=0 (−1)

ip|σ|,σi
f(σi),

σi = (U0, . . . , Ui−1, Ui+1, . . . , Uq+1).

It is easy to check that δ2 = 0. Moreover, we have the following cochain

complex:

C∗(U ,S) := C0(U ,S)→ . . .→ Cq(U ,S)→ . . .

Then Čech cohomology is the cohomology of the cochain complex

above. One of the main properties of Čech cohomology that we will use is the

following. Given B refinement of U . There is a natural group homomorphism:

ψU
B : Hq(U ,F)→ Hq(B,F),
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Hq(X,F) := lim−→
U
Hq(U ,F).

The left-hand side is sheaf cohomology defined above.

4.4 Double complexes

Definition 4.8. Double complex is given by the following (K?,?; d, δ): that is,

we are given the following datum:

• K?,? :=
⊕

p,q≥0K
p,q,

• d : Kp,? → Kp+1,?,

• δ : K?,q → K?,q+1,

• d2 = δ2 = 0,

• dδ + δd = 0.

From the last identity dδ+δd = 0, we get the associated single complex

(sK?, D = d+ δ). There is a filtration on (sK?, D) defined as:

F1
θsKn =

⊕
p+q=n,p≥θ

Kp,q,

F2
θsKn =

⊕
p+q=n,q≥θ

Kp,q.

By earlier work, we see that there is two spectral sequences {Ar} and

{Br} that converges to the single complex (sK?, D).
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We will derive two spectral sequences that will be useful for us:

Ep,q0 =
F pKp+q

F p+1Kp+q
∼= Kp,q.

Therefore, from the above computation we have:

Hp+q(F p(sK?)) ∼= Hp+q(Kp,?) ∼= Hq
δ (K

p,?).

Given A1 as above, we have a complex on it given by quotient of the

operator D. Since δ = 0 on E1 we have that:

Ep,q2
∼= Hp

d (H
q
δ (K

p,?)).

Conclusion, given a double complex (K?,?; d, δ): we have two spectral

sequences {Ar} and {Br} :

Ap,q2 = Hp
d (H

q
δ (K

p,?)),

Bp,q2 = Hp
δ (H

q
p(K

?,q)).

example 4.3. Let εkX be the sheaf of germs of C∞ complex-valued forms (see

chapter 5) on X, and EkX := H0(X,EkX). One has a Hodge decomposition

εkX =
⊕
p+q=k

Ep,qX , EkX =
⊕
p+q=k

Ep,qX .
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The complex (E•
X , d) is filtered by subcomplexes (F pE•

X , d), p ≥ 0, where

F pEkX =
⊕

i+j=k,i≥p

Ei,jX , D := d = ∂ + ∂̄.

[d2 = 0, hence by type, ∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0.] Explicitly,

F pE•
X : 0→ · · · → 0→ F pEpX

d−→ · · · d−→ F pE2d
X⋂

E•
X : E0

X
d−→ · · · d−→ Ep−1

X
d−→ EpX

d−→ · · · d−→ E2d
X

The Hodge to de Rham spectral sequence is given by

Ep,q1 := Hp+q(GrpFE
•
X)⇒ Hp+q

DR (X).

But

Hp+q(GrpFE
•
X) = Hq

∂
(Ep,•X ) =: Hp,q(X).

Degeneration at E1 is a result of the equivalence of Laplacians (
∆d

2 = ∆∂ = ∆∂).

4.5 Hypercohomology

Essentially we we apply what we constructed so far to sheaves. Suppose we

have a bounded complex of sheaves (S≥0, d). From this we have the Čech

double complex (C?(U,S?), d, δ). This induces in the same way a single complex

(sC?, D = d± δ). More explicitly,
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(sC?, D = d± δ) = (M? :=
⊕
i+j=?

Ci(U ,Sj), D = d± δ).

Definition 4.9. The k-th hypercohomology is defined to be the cohomology of

the single complex

(M? :=
⊕
i+j=?

Ci(U ,Sj)).

More explicitly,

Hk(S?) = lim−→
U
Hk(M?).

example 4.4. Leray spectral sequence. This will be useful for us when we

discuss Bloch-Beilinson filtration. Essentially the whole idea is that we will use

Leray spectral sequence in order glue fibers and pass from local to global data.

More on this in the last section of the thesis.

Let f : X → Y be a continuous map of topological spaces, and F a

sheaf on X.

Recall we defined f∗F . We will define now a spectral sequence associ-

ated to f∗F .

Let us resolve F with a flasque resolution, of A•,

0→ F → A•.
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Remark. Note that f∗A is flasque for any flasque sheaf A on X.

Furthermore because of flasqueness,

Hi(f∗A•) = Hi
SH

(
Γ(Y, f∗A•)

)
= Hi

SH

(
Γ(X,A•)

)
' Hi

SH(X,F).

See section 5.1 which explains more the above equalities. The E2-term of one

of the Grothendieck spectral sequences associated to Hi(f∗A•) is again, via

flasqueness:

Ep,q2 = Hp(X,Hq(f∗A•)) = Hp(X,Rqf∗F)⇒ Hp+q(X,F).

Keep in mind that Rqf∗F , called the Leray cohomology sheaf, is really the sheaf

associated to the presheaf:

U ⊂ Y open 7→ Hq(f−1(U),F).

• Suppose f : X → S is a smooth and proper morphism of smooth

quasiprojective varieties over C. Then it is well known, by Deligne (see [26]),

that the Leray spectral sequence

Ep,q2 = Hp(S,Rqf∗Q)⇒ Hp+q(X,Q),
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degenerates at E2. In the case where X = S × Y , this yields the Künneth

formula:

Hi(S × Y,Q) '
⊕
p+q=i

Hp(S,Q)⊗Hq(Y,Q).

4.6 Arithmetic invariants and it’s relationship to Chow

groups

Given a space X of some kind we would like an algebraic way to do calculus

on the space. One natural thing that we might do is move the space by trans-

porting small chunks of it around and capturing invariants associated to such

movements. This is made precise through the notion of Kähler differentials and

Arithmetic De Rham cohomology.

We will do this algebraically first then after that we will surgically do

it for smooth algebraic variety by using sheafification.

Definition 4.10. Let A be a ring, α : A → B an A-algebra. An A-derivation

is an A-linear map B → U that satisfies Leibniz rule:

d(fg) = fd(g) + gd(f) for all f,g ∈ B.

We way we define differential forms below is really in the same way we

do it for geometry. That is locally we have smooth functions with respect to

scalar field R. This will be precise in the definition below. The definition below

is the abstract one from the explicit construction which satisfies the universal

property below, then from that our comment will make sense.

Definition 4.11. A relative differential form is given by (Ω1
B/A, d : B → Ω1

B/A).
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That is it is given by the following datum:

• A B-module Ω1
B/A,

• A-derivation d : B → Ω1
B/A.

such that the following universal property is satisfied for any B-module

M with an derivation d′ : B → M there is a unique B-module homomorphism

f : Ω1
B/A →M such that d′ = f ◦ d.

We can construct relative differential form as follows. Let Ω1
B/A be

the elements generated by the symbols {db : b ∈ B} quotient by the submodule

generated by expression of the form:

• d(b+ b′)− d(b)− d(b′),

• d(bb′)− d(b)b′ − bd(b′),

• da.

Define ΩpB/A =
∧p

ΩB/A and Ω0
B/A := B.

Given a smooth projective space X we can define arithmetic De Rham

cohomology by gluing things using sheafification.

Definition 4.12. Let X be a smooth projective space over a field K. let k ⊂ K

be a subfield. Define the presheaf:

U ⊂ X Zariski open 7→ ΩpX(K)/k(U) = ΩpOX(U)/k∗(U).

61



Define Arithmetic De Rham cohomology to beHk
DR(X(K)/k) = Hk(Ω∗

X(K)/k).

Now are ready to define Arithmetic Gauss Manin connection. Again

here X is smooth projective defined over K. Define

FiltmΩpX(K)/k := Im(ΩmK/k ⊗K Ωp−mX(K)/k → ΩpX(K)/k).

Therefore we have:

GrmΩpX(K)/k
∼= ΩmK/k ⊗K Ωp−mX(K)/k.

We can easily see that we have the following short exact sequence:

0→ Ωm+1
K/k ⊗ Ω∗

X(K)/K → Grm+1,m−1Ω∗
X(K)/k → ΩmK/k ⊗ Ω∗

X(K)/K → 0

Passing that to hyper cohomology we get the following connecting map

∇X(K)/k : ΩmK/k ⊗H
i
DR(X(K)/K)→ Ωm+1

K/k ⊗H
i
DR(X(K)/K).

Remark. We have a filtration on Ω∗
X(K)/k given by FiltmΩX(K)/K . Computing

the E1 term of H∗
DR(X(K)/K) we get

Ep,q1 = ΩpK/k ⊗Hq(Ω∗
X(K)/K),
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with d1 = ∇X(K)/k. By Deligne ( See [25]) this degenerate at E2=⇒∇2 =

0, therefore we get flat connection. By repeating the above argument we get

∇(ΩmK/k ⊗ F
pHi

DR(X(K)/K)) ⊂ Ωm+1
K/k ⊗ F

p−1Hi
DR(X/K).

This can be understood as the arithmetic Griffiths transversality. We

will get to this important point later when we introduce Hodge theory. We will

explain more about Griffiths transversality.

4.7 Deligne Cohomology

Given a cycle [η] ∈ Ar(X). We would like to have a topological approximation

of [η]. It turns out that given [η] as specified. The fundamental class gives us

an element in H2r(X,Z(r)). It is possible that this topological approximation

fails. In that case [η] = 0 ∈ H2r(X,Z(r)), but [η] 6= 0 in Ar(X). In that case

we could try to detect the cycle using a secondary cycle class map known as the

Abel-Jacobi map.

AJ([η]) ∈ J(H2r−1(X,Z(r)).

J(H2r−1(X,Z(r)) is the complex torus. Deligne cohomology combines

both cycle class maps into a single object H2r
D (X,A(r)). It’s definition requires

all of the concepts related to spectral sequence that we have studied so far. We

will be interested in a specific filtration on Chow groups, which we will use in

order to detect arithmetic invariants. In order to have this filtration we will

need the notion of Beilinson Absolute Hodge cohomology, which is a natural
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extension of Deligne cohomology. The idea is that there will be a cycle class

map between Chow group and Beilinson absolute Hodge cohomology. We will

define Deligne cohomology below, which can be extended to Beilinson’s absolute

Hodge cohomology( see [26]).

Definition 4.13. Let A ⊂ R be a subring and r ≥ 0 an integer. We recall

the Tate twist A(r) = (2πi)r · A, and declare A(r) a pure A-Hodge structure

of weight −2r and of (pure) Hodge type (−r,−r). We introduce the Deligne

complex AD(r):

A(r)→ OX → ΩX → · · · → Ωr−1
X︸ ︷︷ ︸

=:Ω•<r
X

.

Definition 4.14. Deligne cohomology is given by the hypercohomology:

Hi
D(X,A(r)) := Hi(AD(r)).

example 4.5. When A = Z, we have a quasi-isomorphism

ZD(1) ≈ O×
X [−1],

hence

H2
D(X,Z(1)) ' H1(X,O×

X) =: Pic(X) ' A1(X).

There is a different way of defining Deligne cohomology, which is useful

for our purposes.

Definition 4.15. Let h : (A•, d) → (B•, d) be a morphism of complexes. We
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define

Cone
(
A• h−→ B•),

by the formula

[
Cone

(
A• h−→ B•)]q := Aq+1 ⊕Bq, δ(a, b) = (−da, h(a) + db).

Cone
(
A(r)⊕ F rΩ•

X
ε−l−−→ Ω•)[−1] is given by:

A(r)→ OX
d−→ ΩX

d−→ · · · d−→ Ωr−2
X

(0,d)−−−→
(
ΩrX ⊕ Ωr−1

X

)
δ−→ (Ωr+1

X ⊕ ΩrX
) δ−→ · · · δ−→ (ΩdX ⊕ Ωd−1

X

)
→ ΩdX

Using the holomorphic Poincaré lemma, one can show that the natural map

AD(r)→ Cone
(
A(r)⊕ F rΩ•

X
ε−l−−→ Ω•

X

)
[−1],

is a quasi-isomorphism.

Thus

Hk
D(X,A(r)) ' Hr

(
Cone

(
A(r)⊕ F rΩ•

X
ε−l−−→ Ω•

X

)
[−1]

)
.
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There is a cycle class map

clr,0 : Ar(X)→ H2r
D (X,Z(r)).

The details can be found in [26]. These ideas can be extended to

Beilinson Absolute Hodge cohomology [6]. Essentially the main idea of the

filtration relies on the fact that we can spread our variety over a family. After

that, we will capture pieces of the family using a cycle class map into Beilinson

Absolute Hodge cohomology. Finally, glue everything together using spectral

sequence.
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4.8 Arithmetic cycle class map

We would like to have a connection between arithmetic De Rham cohomology

and Chow groups. In order to have that we will need to define arithmetic cycle

class map. Normally, we expect to have a connection because what we did

above geometrically is that we have transported small chunks of the space using

a connection. Given such a transportation we can associate a invariant. Chow

groups provide a lot of information about the variety. We expect to also capture

this invariant inside using a commutative diagram into the Chow group. We

will build the theory required to give the idea of the proof.

Let K ⊂ C be a subfield containing Q, and consider our smooth pro-

jective variety X defined over C. Let

KMr,X = O∗
X ⊗ . . .⊗O∗

X/ < τ1 ⊗ . . .⊗ τr : τ1 + τj = 1, i 6= j >,

be the Milnor sheaf over X (this is discussed in detail in [25]). Then

we have the following result (also discussed in [25]),

Ar(X) ' Hr
Zar(X,K

M
r,X) = Hr(KMr,X → 0→ 0 . . .). (1)

where, Ar(X) is the Chow group taken with respect to co-dimension.

There is the following cycle class map:

cr,K : Ar(X/K)→ H2r(Ω∗≥r
X(K)/Q).
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The way this is determined is as follows, there is a natural map

KMr,X → Ω∗≥r
X(K)/Q[r],

{f1, . . . , fr} 7→
∧
j

dlogfj , fj ∈ O∗
X .

The above map factors through a morphism of complexes:

(KMr,X → 0→ 0→ . . .)→ Ω∗≥r
X(K)/Q[r].

Using the (1), we have the following cycle class map:

cr,K : CHr(X/K)→ H2r(Ω•≥r
X(K)/Q),

Recall, we have the connection:

∇X(K)/k : ΩmK/k ⊗H
i
DR(X(K)/K)→ Ωm+1

K/k ⊗H
i
DR(X(K)/K),

If we look at the Leray spectral sequence of H∗
DR(X(K)/K) this will

have E1 term:

Ep,q1 = ΩpK/k ⊗Hq(Ω∗
X(K)/K).

so that d1 = ∇ := ∇X(K)/k, which degenerate to E2 by Deligne.
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Similarly, there is a Leray spectral sequence associated to:

F rH2r
DR(X(K)/Q) := H2r(Ω∗≥r

X(K)/Q).

That will degenerate to E2. Therefore, that will define a Leray filtra-

tion:

F v1 H2r(Ω∗≥r
X(K)/Q).

Now we are ready to define one of the invariants we will be interested

in. Take K = C. The invariants are defined as:
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Ωv−1

K/Q ⊗ F
r−v+1H2r−v

DR (X(K)/Q)→

Ωv
K/Q ⊗ F

r−vH2r−v
DR (X(K)/Q)

→ Ωv+1

K/Q ⊗ F
r−v−1H2r−v

DR (X(K)/Q) (2)

We also have the following sequence, which is the same as above; how-

ever, we don’t consider filtration:

Ωv−1

K/Q ⊗H
2r−v
DR (X(K)/Q)→

Ωv
K/Q ⊗H

2r−v
DR (X(K)/Q)

→ Ωv+1

K/Q ⊗H
2r−v
DR (X(K)/Q) (3)
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We have two invariants coming from the sequence above. Intuitively,

those invariants measure the rigidness of X. The full story is something like this;

first, we move the space arithmetically as we developed in section 4.5, then after

that taking cohomology in 1 and 2 measure the rigidness of X.

Definition 4.16. ∇DRr,v(X(C/Q), which is the cohomology of (3) is called

the space of de Rham invariants. The space of Mumford-Griffiths invariants,

∇Jr,v(X(C)/Q) is given by the cohomology of (2).

Using a filtration of the Chow group {F v(Ar(X/C) ⊗ Q)}v≥0 we will

show that we can capture those invariants inside of the Chow group. We will

prove that such a filtration exists. That is, we will have the following commu-

tative diagrams:

(
GrvF (A

r(X))⊗Q

)

��

// ∇Jr,v(X(C)/Q)

vv
∇DRr,v(X(C/Q)

Remark. There is a natural map, which doesn’t have to be injective:

∇Jr,v(X(C)/Q)→ ∇DRr,v(X(C/Q).

The goal of the next chapter is to develop the machinery required to

prove the filtration on the Chow group. Moreover, we will give the idea of the

map from the Chow group to the space of de Rham invariants.
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5 Hodge theory

5.1 Classical Hodge theory

In this section we will start with classical Hodge theory. After that, we will go

into modern Hodge theory. We will explain a few things we didn’t explain in

details before. Let X be a projective algebraic manifold of dimension d over C.

Recall differential forms:

EkX := C valued C∞ k − forms on X.

Since X is a complex manifold. This differential forms breaks into (p,q)

decomposition. That is, we can decompose EX as:

Ekx =
⊕
p+q=k

Ep,qX , Ep,qx = Eq,pX , {. . .} = complex conjugation

Locally, this can be represented as:

Σ|I| = p,|J| = qfIJdzI ∧ dzJ ,

fIJ − C valued C∞ functions,

I = 1 ≤ i1 ≤ . . . ≤ ip ≤ d,

J = 1 ≤ j1 ≤ . . . ≤ jq ≤ d.
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We have the following operator

d : EkX → Ek+1
X .

Thus we can define a cohomology with respect to this operator called

De Rham cohomology:

Hk
DR(X,C) =

ker d : EkX → Ek+1
X

dEk−1
X

.

A natural question is if the (p,q) decomposition descends in cohomol-

ogy level. After answering this, let us divert into De Rham theorem. We can

prove it trivially using the machinery we developed. This theorem relates De

Rham cohomology and singular cohomology of X. We will give the idea of the

proof.
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Theorem 5.1 (De Rham).

Hi(X,C) ' Hi
DR(X,C).

Proof Idea: A very fast way to prove this is using sheaf theory. We developed

sheaf theory in details in the past couple of sections. It is known that whenever

X is paracompact and Hausdorff, then sheaf cohomology can be calculated using

global sections. More explicitly,

Hi
SH(X,F) = ker(Γ(X,F i)→ Γ(X,F i+1))

Im(Γ(X,F i−1)→ Γ(X,F i))
.

Here F is a sheaf on X and F → F∗ is a resolution by fine sheaf. Using

Poincaré lemma we have the following exact sequence of sheaves:

0→ CX → E0
X → E1

X → . . . ∼= CX → 0→ 0→ . . .

The understood isomorphism above is quasi-isomorphism. Recall, CX

is the sheaf of locally constant functions on X. Since we have a resolution by

fine sheaves, we get an isomorphism between De Rham cohomology and sheaf

cohomology. Now, we can use a different resolution to get an isomorphism

between sheaf cohomology and singular cohomology, concluding the proof.�

Theorem 5.2 (Hodge decomposition).

Hi
sing(X,Z)⊗Z C ' Hi

DR(X,C) =
⊕
p+q=i

Hp,q(X).

74



Proof Idea: We choose a Riemannian metric on X, after that we

define the Laplacian:

∆ = dd∗ + d∗d,

d∗ is the adjoint with respect to the Riemannian metric. By Hodge

and Weyl any cohomology class has a unique representive that is harmonic;

moreover, it lies in the kernel of ∆. After that we show that a smooth projective

variety X has a Kähler metric, because X can be embedded in projective space

which has the natural Fubini-study metric, which is Kähler. Recall that a metric

m is Kähler if it is d-closed

Any Kähler metric satisfies the Kähler identity:

∆ = 2(∂̄∂̄∗ + ∂̄∗∂̄) = 2(∂∂∗ + ∂∗∂) = 2∆∂ = 2∆∂̄ .

Therefore, a form is harmonic iff its associated (p,q) forms is harmonic.

Combining all that with extra details we get Hodge decomposition (see [13]) .�

5.2 Abstract Hodge theory

Definition 5.1. Let A ⊂ R be a subring. A A-Hodge structure (HS) of weight

N ∈ Z is given by the following datum:

• A finitely generated A-module V, and either of the following two

equivalent conditions:
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• A decomposition

VC =
⊕

p+q=N

V p,q, V p,q = V q,p,

where the line above V p,q is regular complex conjugation induced from

the second factor on the complexified space.

• A finite descending filtration

VC ⊃ . . . ⊃ F r ⊃ F r+1 ⊃ . . . ⊃ {0},

satisfying

VC = F r
⊕

FN−r+1, ∀r ∈ Z

It is easy to see that both definitions are equivalent. We would like to

equip Hodge structure HZ with extra structure that allows us to move things

around the cohomology. This will be useful for capturing the invariants.

Definition 5.2. A polarized Hodge structure of weight n consists of a Hodge

structure (HZ, Q) where Q is a quadratic form that satisfies Hodge-Riemann

Bilinear relations. viz., we have that the following relations are satisfied:

• Q(θ, φ) = (−1)nQ(φ, θ),

• Q(Hpq, Huv) = 0 if (p, q) 6= (u, v),

• ip−qQ(θ, θ) > 0 for θ ∈ Hp,q, θ 6= 0.
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Even though, the proof of Hodge decomposition relied on the fact of us

choosing a Kähler metric. Deligne showed that such choice is irrelevant. First

we need to build the category of polarizable Hodge structure. A morphism

of Hodge structure is a morphism of the underlying space which respects the

Hodge structure. More explicitly,

Definition 5.3. A morphism of Hodge structure θ : X → Y of weight i is

homomorphism of modules groups such that when taking the complexified space

we have θ(Hp,q(X)) ⊂ Hp,q(Y ).
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example 5.1. X/C smooth projective. By Hodge decomposition Hi(X,Z) is

a Z-Hodge structure of weight i.

The next example is very important, since cohomologies normally come

with a twist.

example 5.2. A(r) := (2π i)rA is an A-Hodge structure of weight -2r of pure

Hodge type (r,−r), called the Tate twist.

We would like to extend these ideas to singular varieties. Essentially

the whole idea is that we might not have Hodge structure on the grading, since

we have singularities. That doesn’t allow Hodge structure by Betti numbers;

however, once dividing out the grading we might remove the singularities and

thus have a Hodge structure.

Definition 5.4. An A-mixed Hodge structure (A − MHS) is given by the

following datum:

• A finitely generated A-module VA,

• A finite descending ”Hodge” filtration on VC = V ⊗ C,

VC ⊃ . . . ⊃ F r ⊃ F r+1 ⊃ . . . ⊃ {0}.

• An increasing ”weight” filtration on VA ⊗Q := VA ⊗Z Q,

{0} ⊂ . . . ⊂Wl−1 ⊂Wl ⊂ . . . ⊂ VA ⊗Z Q.
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Moreover, the filtrations interact in that {F r} induces a pure Hodge structure

of weight l on GrWl = Wl

Wl−1
.

We have the following result by Deligne.

Theorem 5.3 (Deligne). Let Y be a complex variety. Then Hi(Y,Z) has a

canonical and functorial Z−MHS.

In order to build the category of mixed Hodge structure, we will need

to know how the morphisms behave.

Definition 5.5. A morphism ψ : V1,A → V2,A of A-MHS is an A-linear map

that respects both filtrations. That is, we have the following behaviour:

h(WlV1,A⊗Q) ⊂WlV2,A⊗Q,

h(F rV1,C) ⊂ F rV2,C, ∀r.

Deligne showed that the category of A-MHS is an Abelian category.

Conceptually, what we are doing using this MHS, is that we are linearizing the

space in a bigraded fashion. We will use the following notation in the proof of

the filtration on the Chow group.
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Definition 5.6. Let V be an A-MHS. Define

ΓA := homA−MHS(A(0), V ),

JA = Ext1A−MHS(A(0), V ).

Finally, we will need the following concept in order to make a con-

nection to the invariants we constructed earlier. Those invariants intuitively

measure the rigidness of the space. Since our purpose is capturing those invari-

ants in the Chow group, we will have move small chunks of the Chow group in a

similar way to those invariants. This is done using variation of Hodge structure.

Recall, a local system V on a space X is a locally constant sheaf of Z modules

on X. We can equip X with an integrable connection ∇.

Definition 5.7. Let X be a complex manifold. A polarized variation of Hodge

structure of weight n over X is given by the following datum:

• A local system VZ over X of Z module of finite rank,

• A decreasing filtration F of V = OX ⊗ VZ by holomorphic subbundles,

• An integrable connection ∇ on V,

• An existence of a flat bilinear form S : VC × VC → C.

Moreover, the data above interact with each other. ∇(Fp) ⊂ F p−1 That is, we

have that Griffiths transversality is satisfied. We have an induced pure Hodge

structure of weight n on the stalks. That is for every x ∈ X, we have an induced
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Hodge structure on VZ,x.

The ideas presented above will give us a family of Hodge structures.

We would like to extend these ideas to families with singularities. This extends

to the theory of variations of mixed Hodge structures.
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5.3 Bloch Beilinson filtration and invariants

In order to show that there is a commutative diagram into the invariants we

constructed earlier, consider the following Bloch-Beilinson filtration theorem.

In what follows we will assume that K = C.

Theorem 5.4. Let X/K be a smooth projective variety of dimension d. Then

for all r, there is a filtration, depending on k ⊂ K,

Ar(XK ,Q) = F 0 ⊃ F1 ⊃ . . . ⊃ F v ⊃ . . .

which satisfies the following

• F 1 = Arhom(Xk,Q)

• F 2 ⊂ KerAJ ⊗Q : Arhom(XK ,Q)→ J(H2r−1(XK(C),Q(r))

• F v1Ar1(X,Q) •F v2Ar2(X,Q) ⊂ F v1+v2Ar1+r2(X,Q) where • is the inter-

section product.

• F v is preserved under the action of correspondences between smooth pro-

jective varieties over K.

• Let GrvF := Fv

Fv+1 and assume that the Künneth components of the diag-

onal class [∆X ] =
⊕

p+q=2d[∆X(p, q)] ∈ H2d(X × X,Q(d)) are algebraic

and defined over K. Then

∆X(2d− 2r + l, 2r − l)∗|GrvFA
r(X,Q) = δl,videntity
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• Let Dr(X) :=
⋂
v F

v, and k = Q. If Bloch-Beilinson conjecture on the

injectivity of the Abel-Jacobi map (⊗Q) holds for quasi-projective varieties

defined over Q, then Dr(X) = 0.
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Proof Idea:

Essentially the main idea is as follows. First of all, we spread the

variety over a family of varieties such that the fibers capture pieces of the original

variety. After that, we glue all the pieces together using spectral sequence in

order to pass from local to global data.

Before, proceeding let us write few an example of a spread.

example 5.3.

Y/C = Spec

{
C[x, y]

(πy2 + (
√
π + 4)x3 + ex)

}
.

S/Q = Spec

{
Q[u, v, w]

(u− v2)

}
,

Set:

YS = Spec

{
Q[x, y, u, v, w](

uy2 + (v + 4)x3 + wx, u− v2)

}

The inclusion

Q[u, v, w]

(u− v2)
⊂ Q[x, y, u, v, w](

uy2 + (v + 4)x3 + wx, u− v2)
,

defines a morphism YS → S, as varieties over Q. Let η ∈ S, be the generic

point. Then

Q(η) = Quot

(
Q[u, v, w]

(u− v2)

)
.
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Note that the embedding

Q(η) ↪→ C, (u, v, w) 7→ (π,
√
π, e), ⇒ YS,η × C = Y/C.

The mathematical details of the proof idea is as follows. Consider the

Q spread p : X → S such that p is smooth and proper. Then X is spread over

the generic point η. That is Xη ' X. Then there is a cycle class map ( refer to

[6] for the details):

Ar(X ;Q)→ HH
2r(X ,Q(r))

Recall that Ev,2r−v∞ (p) is the v piece associated to the Leray filtration

of p. There is a filtration {F vAr(X ,Q)}v≥0 such that

GrvFA
r(X ;Q) ↪→ Ev,2r−v∞ (p)

We have the following short exact sequence:

0→ Eν,2r−ν∞ (ρ)→ Eν,2r−ν∞ (ρ)→ Eν,2r−ν∞ (ρ)→ 0,

where

Eν,2r−ν∞ (ρ) = Γ(Hν(S, R2r−νρ∗Q(r))),

Eν,2r−ν∞ (ρ) =
J(W−1H

ν−1(S, R2r−νρ∗Q(r)))

Γ(Gr0WH
ν−1(S, R2r−νρ∗Q(r)))

⊂ J(Hν−1(S, R2r−νρ∗Q(r))).
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[The inclusion is a result of the following short exact sequence:

W−1H
ν−1(S, R2r−νρ∗Q(r)) ↪→W0H

ν−1(S, R2r−νρ∗Q(r)) � Gr0WH
ν−1(S, R2r−νρ∗Q(r)).]

By definition

F νAr(XK ;Q) = lim
→

U⊂S/Q

FνAr(XU ;Q), XU := ρ−1(U)

F νAr(XC;Q) = lim
→

K⊂C
F νAr(XK ;Q)

Finally, we have what we want,

GrνFA
r(XK ;Q) = lim

→
U⊂S/Q

GrνFA
r(XU ;Q),

GrνFA
r(XC;Q) = lim

→
K⊂C

GrνFA
r(XK ;Q)

�
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Finally, we could use the machinery we developed so for to prove the

following theorem.

Theorem 5.5. The following commutative diagram exists:

(
GrvF (A

r(X))⊗Q

)
−

��

// ∇Jr,v(X(C)/Q)

vv
∇DRr,v(X(C/Q)

Proof See [27]. We get the invariants from Eν,2r−ν∞ (ρ) term of the

spectral sequence.
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