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Abstract 

 

Energy-saving is a key element of Smart Grid. By encouraging consumers to 

moderate their energy demands, utilities can make more efficient use of their 

generation assets, and reduce total fuel consumption. For this purpose, we must 

provide homeowners with appliance energy consumption data, without requiring 

sensors on each appliance. This means that energy consumption from the house 

main feeder must be disaggregated into individual appliances. 

In this thesis, two novel methodologies for disaggregating household power 

consumption are evaluated. The first method is multi-label classification, which is 

used to predict appliance participation in the power signal. The second method is 

a new signature-based sequence matching algorithm. Two sets of features have 

been used. In the time domain, a delay embedding of the observed power signal is 

constructed. The second feature set is a wavelet decomposition of the power 

signal, using Haar wavelet. We evaluate our techniques and features on two 

synthetic datasets, and two households from REDD.   
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 Chapter 1

INTRODUCTION 

Currently, residential houses consume approximately 32 percent of electrical 

energy in Canada [1]. This means that, if the proposed Smart Grid initiative is to 

achieve its goal of reducing the growth in fuel consumption and emissions (with 

respect to the current trend-line), efficiencies will have to be found in the 

residential market. In a market economy, this means providing a price signal to 

consumers that encourages them to reduce or time-shift their power consumption 

during peak load periods (when energy is the most expensive). However, the 

current power metering and billing infrastructure is simply inadequate for this 

problem. Currently, the monthly bill shows only the total energy consumption of a 

home, and provides no insight into the time-of-use cost of operating the individual 

appliances in a home. Such detailed feedback would allow the consumer to plan 

their energy usage in order to reduce their monthly bill, while not suffering an 

unacceptable disruption to their daily lives. The literature indicates that such 

feedback can lead to a 10-15 percent saving in energy costs [2], or a savings of 

about $1.6 billion each year in the Canadian economy. 

 Power utilities and consumers share an interest in managing electricity 

loads and costs. From the consumer’s side, a fully transparent bill that allows 

them to examine both historical and real-time costs for using each individual 
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appliance would be a powerful tool that encourages them to reduce or time-shift 

their largest electrical loads, saving them money. (The provision of effective, 

easy-to-use tools supporting a behavior is known to promote the adoption of that 

behavior [3]. From the utilities’ side, formulating demand side management and 

demand response strategies such as changing the time-of use price schedule or 

load shedding requires detailed information about the mix of appliances in 

operation [4]. Load component details are used for both short-term and long-term 

load prediction, and help to determine when conventional and renewable 

generation asserts must be added to the power grid [5].  

While some modern appliances are equipped to communicate with utilities 

(by receiving and displaying a signal when electricity prices are high, responding 

to a load-shedding command, etc.) older ones have no such capabilities. Thus, the 

electricity consumption for an appliance must be inferred by monitoring the 

appliance’s instantaneous energy use, and relating it to a time signal (thus 

obtaining the load profile and time-of-use cost). Traditionally, this monitoring 

would be accomplished by placing a sensor in the electrical circuit servicing the 

appliance. This is an expensive and invasive process, which is unlikely to achieve 

widespread adoption in North America due to privacy concerns. The alternative is 

for a utility to monitor the electricity load for a home from the public distribution 

box, and disaggregate this signal into the individual appliance loads. This well-

known problem is referred to as Non-Intrusive Load Monitoring (NILM). Current 

approaches to NILM may be divided into signature-based and inductive learning 

techniques. The former require a database of appliance power signals, from which 
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a signature is extracted for each appliance; the latter do not require such a 

database, but offer very limited accuracy. What is needed for practical NILM is a 

technique that requires little to no database assembly, and is highly accurate. 

 Two novel load decomposition techniques for NILM are proposed in this 

thesis: two different multi-label classification methods (both with and without an 

initial clustering step), and a waveform matching method which uses dynamic 

time warping. These approaches are furthermore evaluated in both the time and 

wavelet domains. All of these combinations are evaluated on two simulated 

datasets with different scenarios, and two real homes drawn from the Reference 

Energy Disaggregation Dataset (REDD) [6]. 

 The remainder of this thesis is organized as follows. In Chapter 2, we 

review the existing literature on the NILM problem, and offer a new taxonomy of 

the field. We then review essential background on feature extraction and data 

mining in time series and signals in Chapter 3. In Chapter 4, we discuss our 

experimental methodology, and we present our experimental results in Chapter 5. 

We offer a summary and discussion of future work in Chapter 6.  
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 Chapter 2

LITERATURE REVIEW 

The technique of non-intrusive load monitoring was first developed by G. Hart in 

the 1980s [7]. Hart treated the NILM problem as a communication system in 

which the appliances are transmitters and their signatures are codes; the goal of 

NILM is then to design a decoder for these messages. In Hart’s original work, the 

signatures were the height of rising and falling edges in the power waveform. He 

proposed both a supervised classification method, as well as a clustering method 

in the P-Q plane. 

 

Figure 1 Normalized P-Q signature space [7] 

Home appliances are categorized into three groups [7]: single state 

appliances (ON/OFF), multi state (Finite State Machine), and continuously 

varying. Figure 2 shows three types of appliances models [8]. 
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Figure 2 Different type of appliances [8] 

 

Single state appliances have a pair of identical ON/OFF edges and a constant 

power level. Most appliances, such as a kettle, toaster, and microwave are single 

state. Multi-state appliances have a set of discrete states and edges. Many heavy 

appliances including dryer, washing machines and furnace are multi state. Multi-

state appliances have a unique sequence of operation, creating a set of changes in 

the power waveform. For example a clothes washer, in a fixed pattern, follows the 

following operating modes: water-fill, immerse, rinse, drainage, and spin-dry [8]. 

A stove is a typical multistate appliance with repetitive pulses (i.e. repeated duty 

cycles) to avoid overheating [9]. A furnace is another multi-state appliance which 

has a fixed sequence heating pattern. In a cycle, a pattern such as 0, 230 W, 560 

W, 340 W, 0 is observed. Furnace heating cycles may change according to the 

environment temperature.  

Continuously varying appliances usually have a pair of different ON and OFF 

edges, and power consumption between the edges gradually varies. Refrigerators 

and freezers are continuous varying appliances [7]. In continuous varying 

appliances there is a power demand variation between the rising and falling edges.  
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 After Hart’s seminal paper, numerous investigations have attempted to 

improve upon his results, and NILM is now accepted as an important facet of 

Smart Grid technology. The main difference between published NILM methods is 

the machine learning algorithms and features that they have used for appliance 

identification. Classification methods such as Support vector machine (SVM), k-

nearest neighbor (k-NN), and clustering methods such as k-means are commonly 

applied for NILM. Active power, reactive power, harmonics, current and voltage 

transients, duty cycles, and/or combinations thereof are commonly used as 

features.  

2.1 A Taxonomy of NILM Research   

There is now a significant literature on NILM, using a variety of approaches. In 

order to organize this review, we have developed a new taxonomy of the field of 

NILM research. Our review defines the “NILM field” as the set of papers citing 

Hart’s seminal work, and which propose and evaluate a new NILM technique. We 

classify articles by the machine learning algorithm and feature extraction 

technique employed. We found that these two categorizations were the most 

useful in distinguishing between different strands of NILM research.  

 Machine learning algorithms are either supervised or unsupervised. 

Supervised learning methods require a known set of input and output data for 

each class label to build a prediction model for new unknown data. Thus, 

supervised NILM methods require initial appliance features to train the algorithm. 
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This initial information is collected by recording appliance features with the help 

of the customer [8] or installing extra sub-meters inside the home [60].  

 In contrast, unsupervised learning algorithms discover regularities in 

measured data, and groups data points based on their common properties 

(proximity in feature space). The main benefit of unsupervised methods is that 

they do not need the same initial information for training; however, the accuracy 

of unsupervised methods is generally lower than supervised methods. In some 

investigations, clustering has been used to extract appliance features to build a 

database of appliances for classification purpose [52, 53, 66, 67]. Clustering has 

also been used to detect appliances from observations. Clustering distinguish 

between all individual appliances because their features are similar for some 

appliances; therefore in some applications they have been used to detect groups of 

similar appliances instead of a single appliance [57]. Statistical methods such as 

Hidden Markov models are also unsupervised methods [60, 62-64, 68]. 
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 Appliance features are extracted in two ways: Event based or waveform 

based. If features are just recorded when significant variation is happening in the 

signal, the collected features are called event based. Changes in active and 

reactive power magnitude [8] and transients in current and voltage [40] are good 

examples of event-based features. Most published NILM research employs event 

based features. The general framework of these investigations is to detect changes 

in measured signals and then identify the source of the event through a machine 

learning algorithm [8].  

 Machine learning algorithms are grouped into parametric and non-

parametric models. A parametric model assumes that the data has a type 

of probability distribution with a finite number of parameters [14-17], and 

“fitting” the model consists of determining the parameter values for which the 

model best matches the training data. Non-parametric models, on the other hand, 

do not assume a probability distribution a priori; the model is instead induced 

from the data. Most pattern recognition and classification methods (e.g. k-nearest 

neighbor (k-NN) [18-25], neural networks [26-32], support vector machines 

(SVM) [33-35] and database matching algorithm [39-43]) are non-parametric.  

 Waveform-based features essentially treat the power waveform as a time 

series; the NILM problem is then a particular time-series classification problem. 

Time series classification algorithms can be categorized into three groups as 

follows: 

 Distance-based classification 

 Feature-based classification 
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 Model-based classification 

Distance and feature-based classification both work with the actual time series 

data [47-49]. Feature based methods such as [8] split the signal into small 

sequences or windows and then extract features  to classify each sequence, while 

distance based methods use raw sequences directly. Model based methods, on the 

other hand, convert time-series data into statistical and probabilistic models such 

as Hidden Markov Models [60, 62-64, 68]. Using Hidden Markov Model (HMM), 

data sequence is modeled as a Markov chain; HMM learns probability of 

transition from one state to another state in the Markov chain. Each state 

represents one or mixture of appliances. Having new test sequence, a sequence of 

states is predicted using Viterbi algorithm in order to have most similarity 

between reconstructed signal using predicted states and the test signal. Knowing 

the corresponding state of each data point, they will get labels which means 

identifying the appliances. 

Furthermore, within all three groups, there are two possible approaches for 

developing a classification algorithm. The first approach is to design a whole new 

algorithm that works with a raw time series, usually by creating a new distance 

measure for sequential data. The other approach is to design a transformation that 

turns sequential data into a set of feature vectors (e.g. lagged inputs). These 

feature vectors can then be passed to any standard machine-learning algorithm.  

Conventional classification algorithms that work with sequential data 

usually require a distance metric between two sequences. The selection of a 

distance (similarity) measure plays a significant role in the quality of the 
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classification algorithm [69]. Euclidean distance is a widely adopted 

measurement; it requires the two series in comparison to be of equal length [70, 

71]. In additions it is sensitive to distortions in time. Distortion in the time axis is 

common in applications such as speech recognition where speech rates are not 

constant [72]. Similar problems have been noted in applications such as web logs 

and biomedical data [73]. Some researchers have tried to overcome the time 

distortion by pre-processing the acquired signal, however such approaches are not 

practical in most cases [74].  Thus, elastic similarity measures such as Dynamic 

Time Warping (DTW) have been employed. [71] describes DTW as a non-linear 

mapping between two unequal sequences where the distance between them is the 

minimum one among possible distances. Although many researchers [75, 76] 

agree that DTW solves many of the problems of the Euclidean distance, its 

computational inefficiency limits its adoption [77]. DTW is calculated using 

dynamic programming, hence has a quadratic time complexity (O(n*m)) where m 

and n are length of two sequences.  In a similarity search task (e.g. case based 

reasoning or signature matching), a new unknown sequence or section of a longer 

time series called a query sequence is compared with existing archive sequences 

in the database in order to find the most similar sequence.  

An NILM technique based on Dynamic Time Warping (DTW) is proposed 

in [78]. Power measurements are processed to extract two features, namely total 

energy consumption and the number of rising edges in overlapped windows. 

Measured features for each window are compared to the reference set in order to 

find out the identity of the connected loads. Evaluation results for the proposed 
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method in [78] are not published. 

Like other signals, a power waveform can also be transformed to the 

frequency domain. Any signal can be expressed as the sum of a (possibly infinite) 

collection of sinusoidal functions using the Fourier transform. The advantage of 

frequency-domain analysis is that the coefficients of the Fourier transform (the 

weights of each frequency in the summation, which are treated as features) often 

expose important relationships in the data, which lead to a superior classification 

result. While this information was also present in the time domain, it would have 

been implicit and difficult for machine learning algorithms to detect. The main 

disadvantage of the Fourier transform is that it has only frequency resolution and 

no time resolution. This means that the Fourier transform allows us to determine 

all the frequencies present in a signal, but the temporal relationship between those 

frequencies is lost. To overcome this problem several solutions have been 

developed to represent a signal in the time and frequency domain at the same 

time. In time-frequency joint representations the idea is to cut the signal of 

interest into several parts and then analyze each part separately in order to have 

information about the temporal relationship between different frequency 

components [79]. Wavelet transforms are one of the best-known examples.  

Wavelet transform for NILM Application is used to analyze transient 

signal which have high frequency resolution, it appears during state changes in 

some appliances. For example, discrete wavelet transform coefficients [28] or the 

energy of the coefficients [80] have been extracted as transient features from 

measured current waveforms. However, the high frequency transient features 
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extracted from the wavelet transform are not constant across repeated appliance 

use, so it has been used rarely. The application of wavelet for dimensionality 

reduction in NILM has not been previously explored; the existing literature in 

dimensionality reduction for NILM applies different methods such as PCA [81]. 

2.2 NILM as a Multi-Label Classification Problem 

In machine learning, “classification” algorithms usually refers to single-label 

classification, in which a set of instances are each associated with a unique class 

label drawn from a set of discrete class labels L. The classification problem is 

termed binary when L contains two classes or multi-class when there are more 

than two classes. We can generalize the idea of classification by allowing an 

instance to have more than one label, giving us the category of multi-label 

classification algorithms. As with single-class algorithms, the goal of multi-label 

classification is learning to predict class labels from a set of instances where each 

instance could belong to one or more classes. 

Multi-label classification was initially developed for automatic text 

categorization and medical diagnosis. However, a number of other prediction 

tasks can also be conveniently described as multi-label problems, drawing more 

research attention to this area [82]. For example, a text document that talks about 

scientific contributions in medical science can belong to both a science and a 

health category; genes may have multiple functionalities (i.e. be associated with 

multiple diseases diseases) [83, 84]; an image that captures a field and fall colored 
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trees can belong to both field and fall foliage categories [85, 86]; a movie can 

simultaneously belong to action, crime, thriller, and drama categories [87]; an 

email message can be tagged as both work and research project [88, 89]. Clearly, 

traditional binary and multi-class problems both can be posed as specific cases of 

the multi-label problem [90]. 

A multi-label classification method has been used to identify some high-

power appliances in [91]. Power consumption value at each sample instant, and 

changes in power consumption in sliding windows were extracted from the power 

waveform of a house, and the goal was to disaggregate three specific appliances 

from the power signal.  In general, NILM can reasonably be considered a multi-

label problem. At each sample instant, the power signal is always associated with 

a mixture of appliances; thus, if the class labels are the appliances active for a 

given sample instant, NILM is clearly a multi-label problem. Suppose there are n 

appliances inside the home,  a t  is a n-component label vector for each moment 

which describes the state of the i-th appliance at time t [7]: 

 

 
1

0
i

if appliance i is ON at time t
a t

if appliance i is OFF at time t


 


 (1) 

The label vector describes the power consumption of individual appliances. The 

relation between total electric load and its components at each moment is: 

   
1

n

i i

i

P t a P t


  (2) 

where  iP t  is power consumption of appliance i at time t and  P t  is home total 



15 

  

power consumption at time t. For example, Figure 4 depicts a sample power 

signal with two appliances whose power waveforms are mixed at some points.  

 

 

Figure 4 Sample power waveform demand measured from a real home 

 

Each appliance has its own specific features. Levels of active and reactive power, 

duty cycle, harmonic frequencies and level, and the number of rising or falling 

edges are just some of the features that can be discriminative for an appliance 

[92]. However, as with all pattern recognition approaches, we cannot guarantee 

that appliances will be perfectly separated a priori; we must evaluate each dataset 

empirically. Appliance features are not fixed and they have some fluctuations, but 

most of the times any deviations are small and the overall shape of the power 

waveform is preserved. Power waveforms for some of the main appliances in 

REDD [6] are shown in Table 1.  
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Table 1 Sample appliance waveform 
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 Chapter 3

BACKGROUND 

In this chapter, we review key concepts in time-series and wavelet analysis, multi-

label classification, clustering, and dynamic time warping.  

3.1 Delay Coordinate Embedding 

A dynamical system consists of a state space and rules to evolve from one state to 

another one. The state space describes the system at any given time and contains 

all the necessary information to predict the future evolution of the system .[39]  

For a deterministic system, knowing the current state completely determines the 

future states of the system. Assuming the system is dissipative, over time the 

system state will converge to a specific subset of states, known as an attractor 

(alternatively, the system can evolve away from that subset, in which case it is 

termed a repellor) [94].  

 In a time series, the state of the underlying system that generated the time 

series cannot be measured directly; even basic parameters such as the number of 

dimensions are unknown. A time series is only a sequence of scalar 

measurements; it is a projection of a d-dimensional dynamical system into a 

univariate sequence. In order to forecast the evolution of a time series, we need to 

reverse this projection (or at least find a mapping that is equivalent to doing so). 
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This process is called state space reconstruction, and one of the most widely used 

approaches is the delay coordinate embedding. 

 The fundamental concept of the delay state space reconstruction is to 

embed the univariate time series sequence into a multi-dimensional time-lagged 

state space with appropriate time delay τ and embedding dimension m. In other 

words, we concatenate the current observation with a number of past observations 

into a vector (this is known as the lagged input representation). According to 

Takens’ delay embedding theorem, if the number of lags is sufficient (the state 

vector large enough), then this delay vector is equivalent to the actual state vector 

of the system.  

 Takens’ delay embedding theorem was published in 1981 [95]. The 

theorem claims that for a d-dimension dynamical system, almost every smooth 

function such as a delay-coordinate map with dimension m (: d m )  is one-to-

one if m>2d and if, for a sampling interval τ, the system has no periodic orbits of 

period τ or 2τ, and at most finitely many periodic orbits of period kτ for k >2. 

Therefore if the number of reconstructed dimensions is large enough, such model 

captures all the relevant dynamics and state space specifications[95]. In the 

Takens theory, d is the number of dimension of the phase space containing the 

attractor which can be much larger than the attractor dimension [93]. Authors in 

[94] generalised the theorem where reconstruction of state space just requires to 

satisfy the condition m>2dF where dF is the dimension of attractor in phase space. 

 Figure 5 shows a simple example of a 2-dimensional delay embedding of a 

univariate time series. Since we assume that the underlying system is 
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deterministic, if we know the current delay vector, we should be able to predict 

the next vector on the delay-space trajectory, thereby forecasting the evolution of 

the time series. One of the important implications of this is that the independent 

delay vectors each contain sufficient information to predict the next 

observation(s) in the time series, allowing us to use any standard machine 

learning algorithm for forecasting them.    

 

 

(Xn-τ ,Xn) (Xn+τ ) (Xm-τ ,Xm)

(Xm+τ )

 

Figure 5 State space trajectory in a 2-D plane. This figure shows a sample case 

where future point on a trajectory is predicted with delay coordinate embedding 

for two different points n and m using a two-dimensional delay vector with time 

delay τ  

 

For time series S which is a single dimensional vector of length M: 

 1 2, ,..., ,...,m MS S S S S  (3) 
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the delay reconstruction will construct a family of new vectors, in the form 

n n-(m-1) n-(m-2) n- nS  = (S  , S  , . . . , S  , S ) 1 n N      (4) 

where m is the number of dimensions. The time delay τ determines whether we 

select consecutive observations, every second observation, every third, etc. The 

number of delay vectors N is given by: 

 1N M m     (5) 

For example if M= 100, m=3, and τ=5 then N= (100-2*5) =90. After delay 

reconstruction we have the set of vectors: 
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 (6) 

 

 The main challenge in delay coordinate embedding is to find the correct 

number of dimensions and time delay. As mentioned above, the reconstructed 

space must have dimensionality greater than twice the original state space, but 

there is no constructive method for determining what that original dimensionality 

is. As for the time delay, every possible value is mathematically equivalent to 

every other one for an infinite time series. However, for real-world finite time 

series, the choice of the time delay has a significant practical effect on forecasting 
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outcomes. A small time delay makes elements of the delay vector redundant, 

while on other the other hand large time delays make them almost uncorrelated. 

Several methods have been proposed for determining a time delay and number of 

dimensions [96]. In this research, the time-delayed mutual information method is 

used to determine the time delay, and the method of false nearest neighbors is 

used to choose the number of dimensions.  

3.1.1 Mutual Information 

Autocorrelation is a statistic function which describes the similarity between 

observations as a function of the time lag [97].  The definition of the 

autocorrelation, ( )R  , of time lag   is:  

 

  
2

( )
t tE X X

R
 




     (7) 

 where μ and σ are mean and variance of data respectively and E is the expected 

value operator. In order to approximate the delay value with more information for 

delay coordinate embedding, in principle the lags equal to  is the best choice 

where the autocorrelation function is zero. [93] However, autocorrelation only 

treats the linear dependence of the time series and it does not consider the 

nonlinearity appropriately, it may find an incorrect value for the delay.[98] 

Therefore, it is advocated that look for the minimum of the mutual information. 

[93] 
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Mutual information is a concept from Shannon’s theory of information entropy, 

which we will briefly review. Consider a system X with NX possible states (i.e. a 

discrete system). If a measurement is performed on X, it will yield one of the 

possible values x1… xNX, each one with corresponding probability p(xi). The 

amount of information gained from a measurement yielding one particular value 

xi is given by the entropy H(X) of the system [99]:  

 

  i i

1

( ) log ( )
XN

i

H X p x p x


   (8) 

Entropy in essence describes the quantity of surprise one would feel upon taking a 

measurement of the system [100]. Suppose that the event X=xk occurs with 

probability pk=1, which therefore requires that pi=0 for all i≠k. In such situation, 

there is no "surprise" and therefore no "information" is conveyed by occurrence 

of the event X=xk, since we know what the message must be. If, on the other hand, 

the various discrete levels were to occur with different probabilities and, in 

particular, if the pk is low, then there is more "surprise" and therefore 

"information" when X takes the value xk rather than another value xi with higher 

probability pi, i≠k.[101] For a completely determined system, there is only one 

outcome which occurs with probability of one and therefore its entropy is zero 

and measurement providing no new information. 

 The joint entropy H(X, Y) of two discrete systems X and Y is defined as: 
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  i j i j

1 1

, ( , ) logp( , )
X YN N

i j

H X Y p x y x y
 

   (9) 

where i j( , )p x y  denotes the joint probability that X is in state xi and Y is in state 

yj. NX and NY are the number of possible states. In general, the joint entropy can be 

expressed in terms of the conditional entropy H(X|Y) 

 

   (X | Y Y),H X H H Y   (10) 

  

with H(X|Y) being defined as 

 

 
1 1

( | Y) ( | ),
X YN N

i j i j

i j

H X p x y log p x y
 

  (11) 

  

The mutual information I (X, Y) between the systems X and Y is then defined as 

 

     

     

 ,Y X Y

X,Y

X

X

I X H H

H H HY

 

  
 (12) 

  

Given a time series s(t), t=1,…,N, let us consider X as the value of the time series 

at s(t+ τ), and Y as the time lagged value of the same time series, s(t), with  

being the time delay parameter from Section 3.1. By definition, the entropy H(X) 

is the uncertainty about the time series value X before observation of the time 
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series time lagged value Y, and the conditional differential entropy ( | Y)H X  is 

the uncertainty about the time series value X after the observation of the time 

series time lagged value Y. The difference  X (X | Y)H H is therefore the 

uncertainty about the time series value X that is resolved by observing the system 

time lagged value Y [101]. In other words, this is the information we already 

possess about the value of s(t + τ) if we know s(t) [93].  

 A different approach to the mutual information is given by Kullback [102] 

who considers two probability density functions as the possible descriptors of the 

underlying distribution of the input vector X instead of multidimensional vectors 

X and Y. The Kullback entropy K(p|p0) between two probability distributions p 

and p0 is: 

 

0 0
 |  ( )  i

i

i i

p
K p p p log

p
  (13) 

  

The Kullback entropy can be interpreted as the information gain when replacing 

an initial probability distribution 
0
ip  by a final distribution ip . Therefore K(p|p0) 

establishes a measure of the distance between the distributions p0 and p. 

However, the Kullback entropy is not symmetric and thus not a distance in the 

mathematical sense. 

 

0 0( | ) ( | )K p p K p p  (14) 
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 The Kullback entropy K(p|p0) is always greater than or equal to zero and 

vanishes if and only if the distributions p and p0 are identical [103].  

The mutual information between a pair of vectors X and Y representation in terms 

of Kullback-Leiber is: 

 

   
 

   1 1

,
, , y log

X YN N

i j

P x y
I X Y P x

P x P y 

 
   

 
  (15) 

In using mutual information to determine a time delay , we sum the mutual 

information between s(t+) and s(t) for all t and a fixed , and repeat for an 

arbitrary number of values of . We then plot the sum of mutual information 

against , and search for a minimum. [93] recommends that the first minimum of 

the plot (the extremum with the lowest value of ) be used, rather than searching 

for the global minimum. This point retains the greatest correlation between 

consecutive delay vectors, while also representing a minimum in the redundancy 

within them [93]. 

3.1.2 False Nearest Neighbor 

If there is enough information in the delay vector to predict the future output, then 

two delay vectors which are nearest neighbors in the delay space should have 

similar one-step ahead evolutions. On the other hand, if there are not enough 

terms present in the delay vector to recreate the dynamics of the system, then 
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there can be some neighbor vectors in the delay space which have very different 

evolutions. Since they are close in the delay space only because of projection into 

a space the representation of dynamics of the system is incomplete and topology 

of the system is not preserved. It is expected that the number of false neighbors 

will drop to minimum when the dimension of the delay vector is large enough to 

allow accurate prediction of future outputs. Thus, detecting such false nearest 

neighbors is a good criterion for determining if a given dimensionality is 

sufficient for a delay embedding of a given time series. We therefore search for 

delay vectors which are close in the delay space with vastly different outputs are 

considered as “false neighbors.”  

In order to determine whether neighbors are true or false, false nearest neighbor 

test has been defined. This test goal is to determine whether the distance between 

future outputs of time delay vectors is larger than the distance between time delay 

vectors which are close in the delay space [93]. For each point of the time series, 

take its closest neighbor in m dimensions, compute the ratio of the distances 

between two future points in (m + 1) dimensions and m dimensions vectors. If 

this ratio is larger than a threshold, the neighbor is false. 

 

i+1 j+1

i

i j

S -S
R =

S -S
 (16) 

 

The test calculates this ratio for all objects in time series and then calculates the 

percentage of points in the data set which have false nearest neighbors. The 
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algorithm will continue by increasing number of dimensions until the percentage 

of false nearest neighbor waveform is smooth and drops to acceptable small 

number. If the percentage of false neighbors is large, then the delay vector must 

increase to include more delayed terms.  

3.2 Discrete Wavelet Transform 

High dimensionality is a big problem in time series data mining because time 

series values have a lot of redundancy, which increases the complexity of the 

resulting models, and may make them less accurate. One solution is reducing the 

dimensionality of data with feature extraction which maps the original space into 

a new (lower-dimensional) feature space. The objective of feature extraction is to 

characterize the object and to map useful data to a new space suitable for the 

application of pattern recognition techniques [104]. When feature extraction 

compresses the time series, completeness and effectiveness of data should be 

preserved. For example the Euclidean distance as a similarity measure in the 

reduced dimensional space should be less than or equal to the Euclidean distance 

between the two original time sequences.  

 A time series in pattern space is showed by a vector with length of m. 

1 2, ,..., mX x x x   

In feature extraction only features that are necessary for recognition process 

retained and pattern recognition method only implements on a vastly reduced 

feature space. [105]. The feature vector can be represented with smaller 
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dimension by: 

' ' '
1 2' , ,..., xrX x x r m    

 Fast Fourier transform (FFT) is a method for efficiently computing the 

discrete Fourier transform (DFT) of a time series. For a sequence of N numbers

0 1, ,..., Nx x x , the FFT coefficients sequence 0 1, ,....X X  can be calculated using: 

 

1
2 /

0

N
i kn N

k n

n

X x e 






  (17) 

 FFT transforms time series into frequency space and provide frequency features 

but using FFT time localization of frequency components is not possible. It fails 

to detect the step changes in the signal and gives just an overall view on available 

frequencies in the signal. FFT is not sufficient for appliance pattern identification 

because for appliances energy consumption calculations from it is required to find 

time of use of each appliance in power signal. Therefore Discrete Wavelet 

Transformation is proposed which represents data in a time-frequency feature 

domain. 

Discrete Wavelet Transformation (DWT) is a tool to map the sequences in 

time domain to a new feature space. DWT has the multi-resolution and time-

frequency localization property. It analyzes the signal at different frequency bands 

with different resolutions; it decomposes the signal into a coarse approximation 

and detail information in different level of decomposition. In wavelet analysis, 

approximation coefficients are the high-scale, low-frequency components of the 

signal, while detail coefficients are low-scale, high-frequency components.  
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 DWT yields a high dimensional feature vector that generally causes an 

increase in the complexity of a classifier. Further, the classification performance 

resulting from using all the original wavelet coefficients is poor when judged 

either by computation cost or classification accuracy. Dimensionality reduction is 

thus a required extension of this data transformation before applying a classifier. 

For this domain, dimensionality reduction is accomplished by selecting certain 

coefficients to retain, and discarding the others. This potentially makes the 

classifier algorithm both faster and more accurate, as the discarded coefficients 

are principally noise. The problem is how to select these coefficients. If we know 

in what frequencies the desired information is available, we can select the proper 

level of detail or approximation coefficients with the desired resolution; otherwise 

(which is usually the case), we must select coefficients based on heuristic criteria. 

There are two main categories to for wavelet feature selection: supervised and 

unsupervised method [106]. 

 Unsupervised feature selection methods, independent of time series 

classes and categories, try to find the optimum set of coefficients with maximum 

similarity to the original data while minimizing the number of coefficients.  

Supervised features extraction evaluates the performance of methods based on 

class separability. Good quality class separation means having classification 

accuracy as high as possible with maximum separation between classes and 

minimum data variation inside each class.  

 Using the first few DWT coefficients and discarding the rest is the 

simplest method for DWT feature selection. First DWT coefficients tend to have 
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higher standard deviations, contain more of the signal energy, and carry more 

information [107]. A better metric for feature selection is to evaluate how similar 

different coefficient sequences in different decomposition levels are to the 

original signal by measuring how much energy from the original signal is 

preserved after the dimension reduction to one of these sequences. Although 

increasing the decomposition level reduces the data dimensionality more, this also 

usually decreases the similarity to the original sequence. The best wavelet 

decomposition level is the highest decomposition level where the retained signal 

energy of coefficients is over a threshold (e.g. 95%). This potentially reduces the 

dimensionality of data without severely distorting it [108].  

 The signal energy content of a signal provides a quantitative measure for 

signals. The amount of energy contained in a signal x(t) is expressed as: 

 

2

x(t)E ( )x t dt   
(18) 

The energy content of a signal can be calculated from the signal’s wavelet 

coefficients due to Parseval's theorem [109]. DWT coefficients 
n
jx  quantify the 

amount of energy associated with level of decomposition, n. The total amount of 

energy contained in the signal is equal to the sum of the energy in all coefficients. 

Since the energy content of each sequence of the signal is related to its properties 

it presents a unique feature for the system [106]. Energy in each level of 

decomposition, n, is calculated as: 

 



31 

  

 
2

1

nM
n n

j

j

E x



  (19) 

where Mn coefficients are available in the level. The difference between the 

original time series and its extracted features is equal to the sum of the energy of 

all removed wavelet coefficients [106].  

 The Haar wavelet is the simplest wavelet transform, it is a series of 

averaging and differencing operations on a discrete time function. Haar wavelets 

are popular because of their simplicity, interpretable output and capability to 

preserve shape of the power waveform. The wavelet is defined as [110]: 

1 0.5 0

(u) 1 0 0.5

0

Haar

u

u

otherwise

   


   



  (20) 

It is not a continuous wavelet, so cannot smoothly follow a continuous signal, 

although this characteristic is beneficial when studying signals with sharp 

transitions. Moreover, it is a two element wide wavelet, which reduces its 

resolution. Coefficients of the first level of decomposition are obtained by taking 

the difference and average of two consecutive values. For example, for a sequence 

with 4 data points a1,a 2,a 3,a 4 , the detail and approximate coefficients are 

 
1

(a1 a 2), (a 3 a 4)
2

   and  
1

(a1 a 2), (a 3 a 4)
2

  , respectively. In this first 

level, the transform does not reflect the relation between all data points, e.g., there 

is no information showing relation of a2 and a3. Haar wavelet is widely used in 

areas such as time series analysis, stream data mining and data bases because of 
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characteristics such as speed, memory efficiency, and ease of computation [111-

114].  

3.3 Multi-label Classification 

Multi-label classification associates each instance in a dataset with a set of labels. 

This obviously means that ordinary classification algorithms cannot be used 

directly for multi-label classification. The two main approaches to creating multi-

label classifiers are  problem transformation and algorithm adaptation [115]. We 

will review method from each category: RAkEL is a problem transformation 

method, and MLkNN is an algorithm adaptation method. 

3.3.1 RAkEL 

Problem transformation is a strategy in multi-label classification which divides a 

multi-label dataset into either one or more single label subsets, constructs a 

classifier for each data subset with a conventional classification technique, and 

consequently assembles all classifiers to build a multi-label classifier [115]. The 

Label Power set (LP) is a problem transformation method which considers each 

element of the power set of labels in a dataset as a new label, and trains a single-

label classifier on the LP labels. While this is conceptually simple, LP 

classification commonly suffers from having a large number of label subsets, 

most of which are rarely encountered in the dataset [116]. 

 RAkEL (RAndom k-labELsets), is an improved version of LP problem 
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transformation. RAkEL constructs an ensemble of LP classifiers with small 

random subset of the LP labels. The RAkEL algorithm iteratively and without 

replacement selects a set of labels with size k and constructs an LP classifier 

model. If L is the number of labels, the maximum number of classifiers L
k
 is

L

k

 
 
 

. For classification of a new instance, each LP model provides binary decisions 

for each label in the corresponding k-label set. RAkEL averages the zero one 

predictions of each model per considered label, and assigns that label to the 

instance if the average mark is greater than a threshold [117]. The size of the label 

sets and the decision threshold are user-defined parameters. RAkEL is 

implemented as a meta-classifier in the Mulan plug-in for the WEKA data-mining 

environment; any of WEKA’s conventional classifiers can be used as the base 

classifier in the ensemble. We will use C4.5 decision trees, support vector 

machines, and Naïve Bayes classifiers in our experiments.  

3.3.2 MLkNN 

Another strategy for multi-label classifications is algorithm adaptation. Algorithm 

adaptation, as its name implies, refers to methods that extend specific learning 

algorithms such as k-nearest neighbors to handle multi-label problems. MLkNN is 

a multi-label learning approach derived from the popular k-Nearest Neighbor 

(kNN) algorithm [90].  MLkNN approach finds the label set for a given test 

instance using maximum a posteriori (MAP) [118], based on prior and posterior 

probabilities of each k nearest neighbor instances. For each instance, MLkNN first 
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identifies its k nearest neighbors in the training set and then determines the 

probability of each label with the following MAP principle: 

 

 
 ( )

0,1

arg max Pt b Ci
b

Z H E  




  (21) 

 

tZ 
 is predicted label set for instance t, 1H 

 and 0H 
 are the events that t has label 

λ and does not have label λ, respectively, iE
is the event that exactly j instances 

of k nearest neighbor of test instance t has label λ, and ( )Ci  is the membership 

vector that counts the number of neighbors of t belonging to class λ. Using Bayes’ 

rule this can be re-written as: 

 

 
  ( )

0,1

arg max Pt b Ci b
b

Z H E H   




  (22) 

 

 where  P bH   is prior probabilities and  ( )Ci bE H 
 is posteriori probability. All 

these prior and posterior probabilities can be directly estimated from the training 

data [90]. 

3.4 Clustering 

Unsupervised clustering groups instances in a dataset to have maximum similarity 

inside the clusters and minimal similarity between them, where similarity is 
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usually defined as proximity in feature space. The goal of clustering is to find 

hidden categories without using any category labels. Statistically, a hidden 

category can be a probability distribution over the dataset; mathematically, it can 

be represented by a probability density function. Expectation Maximization (EM) 

is a probabilistic clustering algorithm.  

3.4.1 EM Clustering 

Assume that we have a dataset D containing n instances, for which we will build k 

clusters. Each cluster Cj  1 j k   is associated with a probability ( )jP C that an 

arbitrary instance is in that cluster [119]. The probability density function and 

probability of each cluster are unknowns to be determined. The observed objects 

in the dataset are the mixture of instances from multiple probabilistic clusters 

[119]. The mixture model assumes data has been generated independently; the 

clustering algorithm uses the probability of each cluster and probability density 

function of that cluster to calculate the probability of belonging to each cluster 

and makes a final decision based on comparing probability of object in different 

clusters.  

 Consider a set of k probabilistic clusters, C1…Ck with probability density 

function of 1( ),..., ( )kP x C P x C and probability of 1( ),..., ( )kP C P C . The 

probability that instance x is generated by the set of clusters is: 
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k

j=1

P x ( ) ( )j jP C P x C  (23) 

 

For n independent instances in dataset D the marginal likelihood function is: 

 

   
n n

1i=1 i=1

P D P ( ) ( )
k

j i

j

x P C P x Cj


     (24) 

 

Our clustering algorithm will maximize the total likelihood of the dataset. 

Although the best estimate can be achieved by solving the log-likelihood 

equations, solutions of the likelihood equations cannot be obtained analytically in 

most circumstances. To make the problem computationally feasible, we assume 

that the probability density function is a parameterized distribution, and use an 

iterative suboptimal approach to approximate clusters. Let us assume D is a 

random vector which results from a parameterized family. The goal is to find θ 

such that P(D|θ) is a maximum. This is known as the Maximum Likelihood (ML) 

estimate for θ. In order to estimate θ, it is typical to introduce the likelihood 

function defined as: 

 

   
n n n

1 1i=1 i=1 i=1

P D P ( ) ( , ) ( ) ( )
k k

j j j

j j

x P C P x C P C P x   
 

       (25) 

 

Consequently the task of clustering analysis here is to infer a set of parameters, θ, 

to maximize likelihood function. It is common to show the log-likelihood 
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function: 

 

   
n

1i=1

log log ( ) ( )
k

j

j

L D P D P C P x  


    (26) 

 

Expectation maximization clustering approximates the maximum likelihood of 

parameters in statistical models. This method starts with initial parameters and 

iteratively improves the output until no more improvement can be seen. This 

algorithm has two steps: 

The expectation step (E-step): 

 Assign objects to clusters according to the current parameters. 

The maximization step (M-step): 

 Find new parameters to maximize expected likelihood in probabilistic model. 

3.5 Similarity Search 

Algorithms that work with time series data commonly compute the distance 

between pairs of time series as a basis for classification or clustering [120]. 

Euclidean distance, or its extension or modification is commonly used for this 

purpose. A similarity search based on Euclidean distance maps two sequences 

with length n, into points in an n-dimensional space and computes the Euclidean 

distance between those points. For two sequences X=(x1,x2,…,xn), and 

Y=(y1,y2,…,yn)the  Euclidean distance is defined as [121] : 
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 Dynamic time warping (DTW) is a robust similarity (or dissimilarity) 

measure for time series which can match similar waveforms even if their 

signatures are shifted, stretched or compressed on the time axis. DTW does not 

obey the triangular inequality and thus provides approximate similarity [122].  

 According to the application either Euclidean distance or DTW can be 

used to detect similar sequences. Since in NILM the duration of the appliances 

waveform is not fixed, even a small time variation confounds the Euclidean 

distance metric. Dynamic time warping is the proper method in this thesis to 

match the detected segments to the available database for NILM. 

3.6 Dynamic Time Warping 

Dynamic Time Warping (DTW) is a search algorithm which is capable of flexible 

matching between sequences. DTW is capable of measuring distance between 

sequences of different lengths, as well as sequences of the same length. Euclidean 

distance between two sequences is a special case of DTW where the two 

sequences have same length [123]. DTW is useful for matching sequences where 

one sequence is a shifted or extended version of another sequence. 

For two time series Q and C with length n and m respectively where: 

 

Q = q1,q2…qi…qn  
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C = c1,c2…cj…cm 

 

To find DTW similarity an n-by-m cost matrix, P, is constructed. Each element of 

the constructed cost matrix, (i
th

, j
th

) corresponds to the distance cost between two 

points qi and cj [124]. The distance measure between time series elements can be 

Euclidean distance    
2

, i jP i j q c  or other methods such as Manhattan distance

 , i jP i j q c  .  

There are exponentially many warping paths W which connect starting and 

ending point of data, in the form of : 

 

W = w1, w2, …,wi,…,wK  max(m, n) < K < m+n-1 

 

where K is length of the warping path, m and n are length of two compared 

sequences and wi is warping path element in cost matrix. However the final 

solution of the algorithm is the warping path between Q and C with minimum 

overall cost given the cost matrix P. The total cost of a warping path DTW (Q, C) 

between Q and C is defined as: 

 

 
1

( , ) min
K

k

k

DTW Q C P w


  
  

  
  (28) 

The path with minimum overall cost would run along a “valley” of low costs 

within the cost matrix [123]. Figure 6 demonstrates an example of DTW matching 
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between two sequences of refrigerator with different length. This figure shows the 

warping path in cost matrix which has minimum overall cost. 

    

 

Figure 6 Example of Dynamic Time Warping 

 

The warping path is typically subject to several constraints and shall satisfy the 

following conditions [124]: 

 Boundary Conditions: w1 = (1, 1) and wK = (m, n). The warping path has 

to start and finish in diagonally opposite corner cells of the cost matrix. 
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 Monotonicity Condition: Given wi=(a,b) and wi-1=(a',b') where a–a' > 0 

and b-b' > 0. The points in W must be monotonically ordered with respect 

to time. 

 

Dynamic programming is used to find minimum warping path between two 

sequences [125]. It constructs a new matrix D, which is referred to as the 

accumulated cost matrix. Its elements are based on the following recurrence 

relation which defines the cumulative distance,  ,i j , for each point as: 

 

           ,    1, 1  ,  1,  ,,  , 1i jd q c min i j i ji ij j          (29) 

 

The cumulative distance is the sum of the distance between current elements and 

the minimum of the cumulative distances of the neighboring points. The dynamic 

programming algorithm fills the matrix with cumulative distances as the 

computation proceeds. After constructing the cumulative distance matrix, the 

optimal warping path can be found by tracing backward in the matrix and 

choosing the cells with the lowest cumulative distance [125]. 
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 Chapter 4

METHODOLOGY 

4.1 Datasets 

To explore the proposed methods, they are evaluated on both simulated and real-

world datasets. Simulated datasets are built using available data from 

measurements of real appliances. Our real-world datasets consist of two houses 

tracked in the REDD dataset.  

4.1.1 Simulated Datasets 

Two simulated datasets have been generated in order to test the proposed methods 

in different scenarios. The power waveforms of several houses are currently being 

monitored by the PDS lab at the University of Alberta. These measured data have 

been used to build two simulated datasets with software developed by another 

student in the PDS group. These datasets contain two appliances: refrigerator and 

microwave. To provide a practical situation for the test, background power 

including random appliances and noise has been added to the generated datasets. 

The main difference between these two datasets is the volume of background 

power. Dataset 1 consists of two simulated appliances added to a real home power 

waveform. Dataset 2 has less background power; it contains vampire energy, 

small disturbances and noise. Simulated power signals are produced for six 
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independent days. 

 Dataset 2 is a simple case which simulates the situation where there are a 

few appliances in a home and appliances are not mixed very much. The objective 

in dataset 1, the other hand, is to detect two specific appliances from a mixture of 

appliances while ignoring others by labeling them as unknown or not important. 

Dataset 1 simulates the situation where labels are not available for all of the 

appliances, and we only intend to disaggregate a few specific, important 

appliances. 

4.1.2 REDD: The Reference Energy Disaggregation Dataset 

In REDD both whole household and circuit/device power consumption are 

collected from real houses in the Boston area in the USA. Circuit/device level 

energy consumption data allow us to label the power waveform with the 

appliances in use. We are then able to train and test supervised learning 

algorithms on this data. Labels are assigned to the power signal in any sample 

instant where the power consumption is greater than 10W. This dataset is 

available at http://redd.csail.mit.edu [6]. 

4.2 Delay Embedding 

We employ the time-delayed mutual information and false-nearest-neighbor 

techniques of Section 3.3 to determine the time delay and dimensionality, 

respectively, for a delay embedding for each of our datasets [93]. Both 

http://redd.csail.mit.edu/
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techniques, and the final construction of the delay vectors, was performed using 

the TISEAN software package [126]. The output is a matrix with each row being 

one delay vector. For NILM, we then have to add labels for each row indicating 

what appliances are active at that sample instant. Elements in the label vector 

represent each appliance, and are set to 1 if that appliance in ON at that sample 

instant. An example of a delay matrix and the corresponding label matrix (for two 

appliances) with corresponding labels is shown below. 

( 1)

1 1 1 ( 1)

( 1)

1 1

0 1

0 0

n n n m

n n n m

n k n k n k m

Delay matrix Lables

S S S

S S S

S S S

 

 

 

  

     

     

 
 
 
 
   

The power waveforms of a refrigerator within one of the houses monitored by the 

PDS lab are highlighted in Figure 7. The general waveform of the refrigerator is 

fixed; however its mixture with other appliances could cause a vertical shift in its 

location, or produce a combined waveform with a different shape.  

 

Figure 7 Home Appliance Waveform, Refrigerator features are highlighted 
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4.2.1 Delay embedding parameter selection 

Delay embedding parameters should be chosen separately for each dataset. In the 

following sections its parameters have been selected for available datasets. 

4.2.1.1 Delay embedding parameters in simulated datasets 

Figure 8 shows the mutual information plot for simulated dataset 1. The first 

minimum of mutual information curve for dataset 1 is at 35 seconds. Two curves 

has been plotted which show mutual information for active and reactive power. 

Sometimes active and reactive power mutual information curves have different 

shapes and different minimum values. In this case, since all appliances have 

active power, the delay parameter is selected based on the active power curve.  

 

 

Figure 8 Mutual Information, Dataset 1, τ=35s 
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 Mutual information for dataset 2 gradually decreases with increasing delay 

and has no minimum as shown in Figure 9. There are not many power waveform 

changes in this dataset, and low uncertainty in the data. We therefore choose a 

time delay of 1 second for dataset 2.  

 

 

Figure 9 Mutual Information, Dataset 2, τ=1s 

 

 Figure 10 shows the FNN plot for dataset 1. Changes in false nearest 

neighbor curves are small after m= 16; therefore we use a 16-dimensional 

embedding for this dataset.  
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Figure 10 False Nearest Neighbor ratio, Dataset 1, m=16 

 

The dataset 2 FNN curve reaches zero at m=8 in Figure 11, therefore for dataset 2 

at least 8 dimensions are required to reconstruct the state space.  

 

 

Figure 11 False Nearest Neighbor Dataset 2, m=8 
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 After creating the delay vectors, appliance labels are assigned to the 

reconstructed delay vectors. The first column of the label vector represents the 

refrigerator and the second column represents the microwave, and the third 

represents unknown appliances in the background (this label is always 1 since 

there is always background power in the signals).  

4.2.1.2 Delay embedding parameters in REDD   

In REDD [6] numerous gaps in the data occur, so only continuous sequences of 

points have been used to reconstruct delay space.  We then combine the delay 

vectors from these sequences, as they represent the same house. Two houses have 

been used in this research to validate the proposed methods: house 3 and house 1. 

For REDD house 3, mutual information and false nearest neighbor methods 

indicate that the best time delay is 95s, and 18 dimensions are required (see 

Figure 12and Figure 13).  
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Figure 12 Mutual information, House 3, τ=95s 

 

 

Figure 13 False nearest neighbor ratio, House 3, m=18 

 

 For REDD house 1, the data has only active power and reactive power 

information is not available. For this dataset mutual information and false nearest 
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Figure 14 Mutual information, House 1, τ=32s 

 

 

 

Figure 15 False nearest neighbor ratio, House 1, m=8 
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4.3 Discrete Wavelet Feature extraction 

The measured power signal in a home depending on sampling time has different 

size, for instance there are 86400 data points in one day data measured with 

sampling time of 1 sec. If the reactive power has also measured then the size of 

data points will be doubled. This large number of data points shows the 

importance of dimensionality reduction. In selecting our wavelet coefficients, we 

wish to use the highest decomposition level which preserves at least 95% of the 

signal energy.  

 As simulated datasets, dataset 1 and 2 contain the same appliance 

waveform, so one test is enough to select the wavelet decomposition level for 

both. Table 2 show the energy preserved in each level of decomposition. 

According to the results, the level four coefficients have been selected as our 

wavelet-domain features. This means the amount of data to be process has been 

reduced by a factor of 16.  

 As dataset 1 includes more than just the two registered appliances, high 

level of decomposition destroy other appliances waveform shapes and make 

identification complicated, especially when the appliances are mixed together.  

Therefore, based on experienced on other datasets with more appliances, level 

three has been chosen for this dataset. 
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Table 2 Preserved energy on Haar wavelet decomposition levels in simulated 

dataset 

Decomposition Level Refrigerator Microwave 

1 100.0% 100.0% 

2 99.2% 99.4% 

3 98.9% 99.1% 

4 97.4% 97.3% 

5 96.2% 94.6% 

6 94.3% 93.2% 

7 93.4% 80.7% 

8 94.7% 73.0% 

 

 

Table 3 shows the signal energy preserved for each decomposition level of Haar 

wavelets for each appliance in House 3 of the REDD dataset. After examining the 

table, we have selected the third decomposition level as being the best balance of 

dimensionality reduction and retained energy. Only the Bath GFI outlet (wall 

plug) shows less than 95% of the signal energy being retained.at this level.  
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Table 3 Preserved energy on Haar wavelet decomposition level in REDD, house 3 

Decomposition 

Level 

Electronics Furnace Washer Microwave Bath GFI Kitchen Outlet 

1 99.6% 100% 99.9% 99.4% 99.8% 99.7% 

2 99.0% 100% 98.9% 99.0% 99.7% 99.5% 

3 96.5% 99.6% 96.1% 98.5% 94.6% 96.4% 

4 95.3% 99.1% 92.8% 93.2% 91.3% 94.2% 

5 86.1% 98.8% 88.9% 90.5% 84.7% 89.5% 

6 81.2% 98.0% 86.7% 89.1% 81.3% 87.2% 

7 60.9% 95.4% 66.9% 54.1% 55.0% 56.2% 

8 46.9% 94.4% 53.4% 34.2% 36.8% 43.3% 

 

Table 4 shows the signal energy preserved for each decomposition level of Haar 

wavelets for each appliance in House 1 of the REDD dataset. Only one appliance 

drops below 95% retained signal energy at level 3, but that one is the oven – a 

high-draw appliance with short, frequent duty cycles when in use. It seems unwise 

to allow this appliance to have less than 95% retained energy, and so we select 

decomposition level 2 for this dataset.  
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Table 4 Preserved energy on Haar wavelet decomposition level in REDD, house 1 

Decomposition 

Level 

Oven Refrigerator Light Microwave Bath GFI Outlet Washer 

1 99.8% 100.0% 100.0% 99.9% 99.9% 99.9% 100.0% 

2 97.8% 99.9% 99.9% 99.8% 99.8% 99.9% 99.9% 

3 94.5% 99.7% 99.7% 98.5% 99.3% 99.6% 99.5% 

4 92.6% 99.3% 99.6% 97.7% 98.1% 99.5% 99.4% 

5 90.7% 99.1% 98.7% 94.6% 97.0% 97.3% 98.4% 

6 89.7% 98.9% 98.0% 93.1% 94.2% 96.0% 98.0% 

7 49.1% 94.7% 93.7% 75.4% 83.4% 86.7% 92.7% 

8 28.9% 86.7% 91.7% 69.2% 62.5% 67.8% 81.5% 

 

4.4 Multi-label classification 

For our multi-label classification experiments, we divide the data into equal 

halves, chronologically order. The earlier half is our training dataset (in which we 

will conduct classifier parameter exploration), and the latter half is our testing 

dataset (used for test after we have found the best parameterization of our 

algorithm on the training set). Once that the best parameters of the classifier is 

found, we will train the classifier on the entire training set, and then evaluate it on 

the test set.  
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4.4.1 Evaluation of Multi-label Classification 

Multi-label classification requires different evaluation measures than those used 

in traditional single-label classification [127]. Some of them are based on the 

average differences of the actual and the predicted sets of labels over all test 

examples, but others decompose the evaluation process into separate evaluations 

for each label and subsequently average over all labels.  

 Evaluation measures can be calculated using one of two averaging 

operations, called macro-averaging and micro-averaging. Considering a single 

label evaluation measure for each label, macro-averaging is the average of 

evaluation measures calculated for each class individually. It shows the ability of 

a classifier to behave well on all categories even those with a small number of 

examples [128]. 

 

 
1

1
, , ,

L

macroM M tp fp tn fn
L

   


   (30) 

 

where L is number of labels and tp, fp, tn and fn are true positive, false positive, 

true negative and false negative respectively. 

Micro-averaging combines TP, TN, FP, and FN for examples across all categories 

into one contingency matrix. It can reflect better classification rates for large 

classes at the expense of worse results for small ones [128]. 
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     (31) 

 

where M is an evaluation measurement method such as F-measure and accuracy 

which has been used in this thesis. Precision and recall are proper evaluation 

parameters for appliance identification. Precision can be seen as a measure of 

exactness, whereas recall is a measure of completeness. However both of them are 

not the best at the same time and there is a trade of between them that higher 

recall is equal to lower precision, it makes comparison and parameter selection 

hard, therefore F-measure which combines precision and recall results is used. 

4.5 Clustering 

We evaluate the impact of clustering to improve performance of multi-label 

classification on NILM problem in this research. The idea is to use clustering 

method to split data into smaller (and hopefully more homogenous) groups, and 

then train a multi-label classifier on each cluster. The ideal case is when the 

clustering method assigns just one appliance to each cluster. The basic assumption 

in clustering is that two objects belong to the same cluster if they are very similar 

to each other. If each cluster contains only one of the appliances then the 

clustering would be the final solution for appliance identification and the method 

would be unsupervised. However, in multi-label problems the accuracy of 

clustering drops as the basic assumption becomes less valid due to the high 



57 

  

dimensionality and sparseness of data [129]. Therefore, appliances cannot usually 

be disaggregated purely by clustering. Instead, we are attempting to create an 

ensemble of local models to improve our classification accuracy.  

 To cluster the data, we use the EM clustering algorithm, as implemented 

in WEKA.  After learning EM method with training part of the data, on each 

cluster one multi-label classifier implemented with the same training data. Labels 

are ignored in clustering but are necessary to train the classifier. In testing, each 

new object is assigned to one of the existing clusters and then the local classifier 

predicts its appliance labels. Figure 16 shows the multi-label classification idea 

along with clustering to detect appliances features. 

 The number of clusters in EM clustering is a user defined parameter. To 

have optimum number of clusters for better classification performance and to 

study the effect of increasing number of clusters on classification output, number 

of clusters has manually tweaked. Although classification of data can be done 

individually without clustering, we expect clustering to improve our classification 

accuracy. 
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Figure 16 proposed Multi-label classification method along with clustering 

4.6 Similarity Search  

Most NILM methods are based on supervised classification. However, the 

characteristics of power time series such as high dimensionality, high feature 

correlation, large amounts of fluctuations, and mixture of features have caused 

conventional machine learning algorithms to not work well to solve the 
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identification problem. The multi-label classification method we have proposed 

needs a considerable amount of training data with labels for all appliances, which 

in practice is difficult and expensive. Therefore we propose a second method that 

does not need labels for all data points and has an easier training procedure. The 

focus of the proposed method is on developing a similarity measure for NILM. 

This method needs to be robust to time scale and location variations of appliance 

signatures in the measured power signal.  

 The objective of the similarity search method is finding the most similar 

match of a measured candidate sequence to a set of known sequence of appliances 

in the database. This is achieved by sequentially scanning and comparing each 

and every candidate to the database query to find the most-similar sequence. To 

make this solution more practical, the dimensionality of the power signal has been 

reduced with the discrete wavelet transform (using Haar wavelets). 

 

The proposed similarity search method proceeds as follows:  

 First, execute the discrete wavelet transform over the query sequence.  

 Detect and mark events in the power sequence. Changes and events in the 

power signal show change in behaviors of appliances e.g. turning an 

appliance ON.  

 Divide the power time series into smaller power segments. Detected 

events in the signal are the basis for this division. Each segment is a 

candidate for appliances inside the home. 

 Find the best match of each segment with registered appliances in the  
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database using similarity search.  

 Assign the label of that best match to that segment, if the similarity is 

greater than a predefined threshold.  

 

Figure 17 summarizes the proposed method. In the following sections the detail of 

each part of the proposed method are introduced. 
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Figure 17 Similarity search method procedure  
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4.6.1 Dimensionality Reduction using Haar Wavelets 

Figure 18 depicts the power signal before and after the wavelet decomposition 

and dimensionality reduction. The shape of the waveforms is almost completely 

preserved whereas the number of data points has decreased. Normalization factor 

of coefficients in this level is  
3

2  times that of the original signal. This constant 

multiplier is for all available data including power signal and database objects, 

and thus makes no problem in appliances identification process. 

 

 

(a) 

 

(b) 

Figure 18 Wavelet effect on shape of signal, (a) One day REDD power signal 

before transformation; (b) level 3 Haar coefficients of (a); 

 

4.6.2 Edge Detection 
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is a sequence of wavelet coefficients with smaller length than original power 

signal. The objective is to optimize the search space for appliance disaggregation 

from the whole time series to small sequences; each sequence is a candidate to be 

a specific appliance. Dividing data into smaller segments is based on the events 

inside the data. 

 An event in the power sequence means a change in behavior of an 

appliance. When turning ON an appliance, the power level in the waveform 

increases and a rising edge appears in the signal, in contrast when turning it OFF 

the power level decreases and a falling edge appears in the signal. Edges in the 

power signal can also be created by multi-state appliances, when there is a change 

in the operating state of the appliance while it is working.  

 There are different edge detection methods for signals [130]. Most of these 

methods are based on detecting a variation in a signal when comparing each point 

with its neighbors. In this project wavelet high frequency coefficients are used to 

detect edges in power sequence. Wavelet coefficients are available due to wavelet 

dimension reduction and new calculations are not required. Haar detail 

coefficients have the same locality properties as approximation coefficients so the 

time of change in detail coefficients corresponds to the time of change in 

approximation coefficients. 

 Detail coefficients show non-zero rapid changes just when there is an 

event in the signal. Therefore detail coefficients determine the time of event, type 

of event and edge size. Figure 19 shows a sample case where the location and 
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type of event (rising/falling) can be determined with Haar wavelet detail 

coefficients. Edge detection with wavelet transform application in NILM is novel.  

 

(a)

(b)

 

Figure 19 Sample Approximate coefficients and related detail coefficients which 

determine events in waveform (a) Approximation coefficients sequence (b) Detail 

Coefficients which have value at edge locations 

 

 To detect a change with discrete wavelet transform, the wavelet has to be 

sufficiently regular without discontinuity. Haar wavelet is not sufficiently regular 

for this analysis and some of the changes in signals would be missed. To solve the 

regularity problem of Haar wavelet, the length of the detail filter (high pass filter) 

is modified. A Haar wavelet with optimal length of the high pass filter would 

reflect all the edges in high frequency coefficients via local maxima. The high 

frequency filter is up-sampled by adding zeroes between each filter coefficient to 

increases the filter length from two to four terms and double the frequency 
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response [131]. Approximation coefficients remain unchanged and all changes 

would appear in the detail coefficients.  

If the nonzero value of detail coefficient is greater than a threshold corresponding 

to the minimum edge height of appliances in database, the location is flagged as 

an event and then the sequence is segmented. 

4.6.3 Coefficients sequence Segmentation 

In order to make event based segments when a rising edge is detected in the 

power signal, the waveform is recorded until detecting a falling edge. Single state 

and continuously varying appliances have a pair of ON/OFF edges in each time of 

use; one segment with a pair of rising/falling events is enough to contain all 

features of these appliances. However, any number of unrelated edges may be 

present in the segment due to the instantaneous appliance mixture. To be 

confident that whole features of an appliance are collected in the segment, 

segments with more than one falling edge (e.g. two falling edge) have also been 

considered for appliance matching. In this situation the assumption is that the 

starting and ending edges of the segment are related and edges between them 

belong to other appliances and appeared because of simultaneous usage.  

 Another challenge is multi-state appliances, which have more than two 

edges. Selecting more than one falling edge is required for detecting this type of 

appliances. To make the problem more accessible for multi-state appliances, the 

method records more edges in an event segment. Therefore the method considers 

more than one candidate segment for each rising edge. The number of candidates 
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segment for each rising edge depends on number of edges in multi-label 

appliances. The distance between recognized segments and database will decide 

which candidate segment is really an appliance or it is just a part of waveform that 

is not related to any specific appliance. 

4.6.4 Segment Modification 

Segment modification simplifies appliance matching for single state and 

continues varying appliances when they are mixed with other appliances. 

Appliance mixtures occur when there are edge(s) between the related rising and 

falling edge.  (Multi-state appliances are exempt from this step because they 

naturally have more than a single pair of edges.) For the segments that have the 

possibility to be multi-state appliance (i.e. their initial rising edge is similar to that 

of a multi-state appliance in the database), we keep a copy of the segment 

unchanged, and then proceed with segment modification.  

 If assume that only first and last power level changes in the candidate 

segment are related to each other, any unrelated rising or falling edges and their 

related values can be removed from the segment. Table 5 shows different 

scenarios when two appliances with a pair of edges can mix together and how 

their waveforms are modified. For example, when an appliance is working and 

another appliance start working the first scenario will happen. If the first falling 

edge becomes candidate to match the rising edge, there would be one extra 

unrelated rising edge and unrelated features start with the rising edge between 

events. The power demand can be reduced from the time of the extra rising edge 
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until we reach the falling edge which is close in value to that rising edge. 

 More complicated scenarios may happen especially when a repetitive 

appliance mixes with another appliance, or more than two large appliances work 

simultaneously; in such cases only the large appliance with higher power 

consumption is detectable. When talking about simplifying a mixture of 

appliances, the small appliances are not included in these procedures. Small 

appliances with small rising/falling edges are ignored in edge detection because 

their contribution to the overall classification error is small.  

 Vampire energy (appliances in standby mode) is another problem which 

causes offsets and vertical shifts in appliance waveforms, leading to errors in 

similarity measurement. In order to remove background energy effects, data in 

each segment undergoes a uniform downward vertical shift that reduces the 

minimum observed power demand in the segment to zero. This should remove the 

appliance signature distortion caused by vampire energy.  

imin{S }new i
iS S   (32) 

Modified segments with different lengths and numbers of events provide 

an opportunity to assign more than one label on each data point. Therefore the 

problem can be solved like a multi-label problem, it means for example in 

scenarios 1 and 2 in Table 5 the common region between two appliances will have 

labels for both appliances.  
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Table 5 Different Scenarios for single state appliances mixture and how to extract 

features 

# Two Appliances Appliance Mixture waveform Extracted Waveform 

1 

   

2 

   

3 
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4 

   

 

4.6.5 Database 

One of the main issues in similarity search is to have a strong and generic 

database. If each appliance waveform in the database is general enough, database 

objects will have close similarity to all similar appliances in the dataset. The 

priority in building a database is to minimize redundancy as much as possible to 

reduce search time; however, all modes of operation of each appliance must also 

be stored in the database. It is not possible to have an ideal database in practice 

with exact similarity to all candidates, so we should relax the identification 

threshold to include all the cases; however it should be little to do not add much 

false identification. To prepare a signature database, appliance waveforms are 

collected ahead of time before implementing the method.  

 Collecting data for supervised methods is one of the challenges in 

nonintrusive load monitoring problem. Depends on the identification method, 

information about appliance waveform should be collected. Power consumption 

data for individual appliances can be collected by installing sub-meters inside the 
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home on each device or on circuits. Even temporarily installing sub-meters inside 

a house makes the method intrusive and defeats the whole purpose of NILM 

methods. Installing sub-meters is also quite costly, and thus cannot be done on a 

large scale.  

 Building a reference database is easier, but still requires customer help to 

determine the time of use of each appliance to extract appliance features from 

recorded power demand. However, without customer help registration is 

impossible. If the registration process of an appliance failed due to some reasons 

such as there being mixture of appliances during the registration process, it will be 

difficult to convince the customer to register the appliance again. For appliances 

such as clothes washer, we must also wait until customer uses the appliance, 

which may create a long delay. Another problem is registering automatic 

appliances such as refrigerators which do not have an ON/OFF switch. These 

automatic appliances can be registered and added to the database by signal 

experts.  

 The database for the synthetic datasets in this project has been built 

manually from the available appliance information. The database for REDD has 

been built using sub-meter measurements for each appliance/circuit, which are 

available in REDD. The number of repetitions of each appliance in the database is 

once the same as MIT research in [60]. 

4.6.6 Similarity measurement 

The main step in similarity search method is finding the distance of the candidate 
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segments from waveforms in the reference database. Each query segment is 

compared against stored sequences in the database, and the sequence with the 

minimum distance to the query segment is identified. The distance between 

waveforms is measured with dynamic time warping. 

4.6.7 Decision Making 

After identifying the stored segment with minimum distance to the query 

segment, the label of that matched segment is applied to the query segment – but 

only if the distance is smaller than a predetermined threshold. This threshold is 

used to cut down on the false positives, e.g. when a query segment only represents 

a part of the power waveform of an appliance. Figure 20 shows the database 

search and decision making procedure. 
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Figure 20 Sequence matching procedure 

DTW is an efficient tool to identify appliances for matching with database, 

however when using DTW for similarity measure, the length of the sequences 
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cannot be used as a feature in identification procedure. The time duration of 

appliance usage would ignored because the warping path length varies between 

max(m, n) and m+n-1 and does not reveal the length of the waveforms.  

 Time duration of an appliance is, however, an important distinguishing 

feature, especially for those that have a routine operation and changes in their 

duration are small. To add the effect of duration back into our similarity metric, 

the difference in lengths between matched segments has been added as a penalty 

factor to the calculated distance. The penalty factor is high for change in duration 

of fix length appliances. The penalty factor function and related constants, as well 

as the decision threshold, are calculated heuristically from the available training 

data. 

 To identify features of appliances two measured signals are available: 

active power, and reactive power. These signals have been used separately for 

similarity comparison if available and then their results (distance) have been 

added. Decision about assigning label has been made based on the sum of both 

distances. Reactive power is especially important to distinguish between 

appliances which absorb reactive power and those that do not; for example 

resistive appliances only have active power and motor driven appliances have 

significant reactive power. 

4.6.8 Iterative Detection 

The objective of NILM is to detect all appliances in the measured power signal. 

However when a big appliance is mixed with other appliances, the signatures of 
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the small appliances can be overwhelmed by the bigger appliance and are not 

recognizable. It is one of the challenges in NILM: detecting big appliances is 

easily achievable but small appliances are often missed. The mixture of a single 

state appliance with an appliance with repetitive narrow pulses is another example 

of appliance mixture; it has been shown in Table 6. Repetitive waveforms could 

hide the single state appliance from detection. 

If two or more appliances are mixed together and their features are not 

distinguishable, then the identification methods could not identify any of them. 

Preprocessing the segments before similarity search is one of the suggestion in 

this research which helps when two single state appliance are mixed together. 

 

Table 6 Mixture of single appliance with pulsive appliances 

Two Appliance Mixture of waveforms 

  

 

The proposed idea is to remove appliance features when they are recognized in 

identification process. Removing properly detected appliance features provides 

the chance to detect underling appliance features. The idea is to repeat the 
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identification process after removing detected appliances. In each identification 

step the dataset would be sparser than the previous step and fewer appliances 

exist. It would improve the overall performance of identification methods. The 

success of the iteration depends on performance of similarity search method, 

which should be able to assign right label on separated segments with minimum 

false positives and false negatives. There is no specific way to determine the 

number of iterations needed. For our simulated datasets which have just two 

appliances and the background power is unknown iteration is not applied, but for 

REDD the identification is repeated once after removing the detected appliances. 

4.7 Energy Error 

In addition to the standard measures of classification accuracy (true & false-

positive rates, F-measure, etc.), the NILM field also employs an additional 

measure called the energy error. The idea is to measure how closely the energy 

consumption of an appliance matches the energy consumption assigned to that 

appliance by a NILM technique. Clearly, a smaller energy error indicates a more 

accurate identification method.  

 The energy error calculation is different for each proposed method. In 

multi-label classification, labels are assigned to each data point and each point 

could have several labels. The problem is how to determine the share of each 

label on energy consumption in each point. As the detailed energy consumption of 

each appliance is available, the average energy of each data point has been 
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calculated. Multiplying the number of labels in average energy consumption each 

appliance give us approximate energy consumption of each appliance in test data.  

,i ave i iP P N    (33) 

 

where Pi is total energy consumption of appliance i, Pave,i is its average power 

consumption, and Ni is number of detected appliance label i. 

In the similarity search method, labels are assigned to each section of the signal. 

Adding up energy consumption of sequences with same label is the method used 

to calculate total energy consumption of each appliance. Energy consumption of 

each segment is equal to the area under its associated curve. Each sequence is just 

related to one specific appliance. 

 In the literature, the relative energy error is most commonly used to 

evaluate the performance of NILM methods on the REDD dataset. The available 

sub-meter data has been used as a ground-truth for error calculation. Relative 

energy error is given by: 

 

predicted acutal

actual

E E
error

E


  (34)  
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 Chapter 5

EXPERIMENTAL RESULTS  

In this chapter we present our experimental results and evaluate NILM methods 

we have proposed. We contrast our various multi-label classification techniques 

against each other, as well as the similarity search method introduced in Chapter 

4, and (in the case of the REDD datasets) the existing literature.  

5.1 Evaluation on Simulated Datasets  

5.1.1 Dataset 1 

Table 7 shows the evaluation results of implementing multi-label classification on 

dataset 1 in the time domain. From Table 7, it can be understood that the best 

results in time domain are achieved when MLkNN is used.  

 

Table 7  Evaluation result of multi-label classification in time domain on dataset 1  

 Accuracy micro F-measure Macro F-measure 

RAkEL 0.742 0.501 0.520 

MLkNN 0.788 0.541 0.619 

 

The results of Multi-label classification when the used features are wavelet 

coefficients are shown in Table 8. Comparing the results with Table 7 shows that 
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there is no improvement in classification performance when the data are 

transformed to the wavelet domain. Therefore between these two feature sets for 

this dataset, delay vectors are the best feature for MLkNN. 

 

Table 8  Evaluation results of multi-label classification in wavelet domain on 

dataset 1,  

 

Accuracy micro F-measure Macro F-measure 

RAkEL 0.796 0.133 0.412 

MLkNN 0.747 0.470 0.587 

 

The results of the similarity search on dataset 1 are presented in Table 9. 

The method appears to essentially match the performance of the time-domain 

MLkNN classifier.  

 

Table 9  Evaluation results of Similarity Search on dataset 1 

Dataset 1 micro F-measure Macro F-measure 

Similarity Search 0.611 0.602 

 

5.1.2 Dataset 2 

Dataset 2 has less background power compared to dataset 1, and thus we expect 

the results on this dataset to be superior for all techniques. Results from the time-
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domain multi-label classifiers on dataset 2 are presented in Table 10; RAkEL 

appears to have performed better on this dataset.  

  

Table 10 Evaluation of multi-label classification in time domain on dataset 2 

 Accuracy micro F-measure Macro F-measure 

RAkEL 0.957 0.890 0.873 

MLkNN 0.813 0.649 0.540 

 

The results for the wavelet-domain multi-label classifiers are presented in 

Table 11. In this dataset, the wavelet-domain classifiers were superior, and the 

wavelet-domain RAkEL was the best of the four.  

 

Table 11 Evaluation results of multi-label classification in wavelet domain on 

dataset 2, 

 Accuracy micro F-measure Macro F-measure 

RAkEL 0.995 0.996 0.931 

MLkNN 0.936 0.857 0.717 

 

The similarity search method results are presented in Table 12. Similarity 

search performed better than time-domain multi-label classification, however it is 

not better than multi-label classification in the wavelet domain.  
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Table 12 Evaluation results of Similarity Search on dataset 2,  

Dataset 2 micro F-measure Macro F-measure 

Similarity Search 0.921 0.925 

 

Overall, the performance of all methods on dataset 2 (which is a mixture of 

two appliances) is good. For dataset 1, which is mixture of many appliances with 

only two of them labelled, the methods make many more errors. Both wavelet-

domain and time-domain classifiers have been superior to the other on one of the 

datasets, and the similarity search has always been better than at least one of 

them. At this point, we cannot rule out any of our methods, and so we will 

proceed with an experimental evaluation of all three on the REDD dataset.  

5.2 Evaluation on REDD 

House 1 and house 3 have been selected for the tests because data are collected 

for a longer period of time for these houses. While the collection periods and 

appliances in the houses are different, we feel the most important difference is 

that both active and reactive power can be determined for house 3, while only 

active power is available for house 1. (The house 3 data includes current and 

voltage measurements that are used to calculate reactive power.) 
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5.2.1 REDD, House 3 

 Evaluations of the time- and wavelet-domain multi-label classification methods 

on REDD house 3 are shown in Table 13 and Table 14, respectively. The 

evaluations show that there is not much difference in values when using either 

RAkEL or MLkNN. The performance of the classification methods is by some 

measures superior in the wavelet domain and by others superior in the time 

domain. It is impossible to select one as the best method just from these overall 

results. 

 

Table 13 Evaluation results of Multi-label classification in Time domain on 

REDD, house 3 

 Accuracy micro F-measure Macro  F-measure 

RAkEL 0.922 0.923 0.492 

MLkNN 0.915 0.921 0.471 

 

 

Table 14 Evaluation results of Multi-label classification in Wavelet domain on 

REDD, house 3 

 Accuracy micro F-measure Macro F-measure 

RAkEL 0.96 0.959 0.455 

MLkNN 0.951 0.943  0.472 
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Our similarity search results are presented in Table 15. Again, different 

measures give quite different results in the overall evaluation, with similarity 

search being superior to all others on the macro-averaged F-measure. These 

mixed results indicate that we need to examine the classification results in more 

detail. We will examine results for each individual appliance in Section 5.4. 

 

Table 15 Evaluation results of Similarity Search on REDD House 3 

REDD 3 micro F-measure Macro F-measure 

Similarity Search 0.50 0.541 

 

5.2.2 REDD, House 1 

The proposed identification methods have been tested on seven appliances in 

House 1 of REDD. This is the only one of our datasets that lacks reactive power 

measurements, which made appliance detection more challenging. The results in 

Table 16 and Table 17 show the overall performance of multi-label classification 

in the time domain and wavelet domain, respectively. From the results, it can be 

concluded that MLkNN classification in time domain has better performance 

among multi-label classification methods. 
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Table 16 Evaluation results of Multi-label classification in Time domain on 

REDD House 1 

 Accuracy micro F-measure Macro F-measure 

RAkEL 0.495 0.587 0.393 

MLkNN 0.788 0.776 0.619 

  

 

Table 17 Evaluation results of Multi-label classification in Wavelet on REDD, 

House 1 

 Accuracy micro F-measure Macro F-measure 

RAkEL 0.606 0.763 0.430 

MLkNN 0.652 0.597 0.524 

 

The performance of our similarity search method has also been tested on 

house 1; these results are shown in Table 18. Comparing the results shows that 

MLkNN classification in time domain has better performance in this house.  

 

Table 18 Evaluation results of Similarity Search on REDD, House 1  

REDD 1 micro F-measure Macro F-measure 

Similarity Search 0.397 0.502 

 

As the overall results for REDD shows, the performance of the proposed 

methods on real datasets is very different and complicated. It is even hard to 
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select one method as the best one for a dataset because different evaluation 

measures yield different conclusions. Again, it seems necessary to investigate our 

results in greater depth. However, we will first inquire whether creating local 

models based on a cluster analysis would significantly improve these results.  

5.3 Clustering based Classification 

Impact of clustering to improve performance of multi-label classification has been 

evaluated in NILM problem. The idea is to use a clustering method to split data 

into small groups with (hopefully) similar appliances within the groups, and then 

build a local model for each cluster. In this section the performance of EM 

clustering along with multi-label classification in the time domain is evaluated on 

our four datasets.  

Table 19 shows our evaluation of the proposed clustering method on 

dataset 1 when the number of clusters varies from 2 to 15. From Table 19, it can 

be understood that the best result on dataset 1 is gained when MLkNN has been 

applied on 11 clusters. 
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Table 19 Evaluation results of multi-label classification on dataset 1 

 RAkEL MLkNN 

Cluster # Accuracy m. F-measure M. F-measure Accuracy m. F-measure M. F-measure 

2 0.742 0.463 0.468 0.770 0.481 0.537 

3 0.729 0.447 0.481 0.784 0.516 0.558 

4 0.727 0.415 0.453 0.783 0.517 0.560 

5 0.737 0.446 0.504 0.782 0.504 0.541 

6 0.748 0.451 0.507 0.790 0.513 0.543 

7 0.738 0.451 0.473 0.785 0.506 0.524 

8 0.747 0.446 0.483 0.787 0.506 0.526 

9 0.746 0.450 0.498 0.789 0.505 0.529 

10 0.7612 0.48526 0.51375 0.787 0.504 0.531 

11 0.745 0.432 0.483 0.79477 0.51484 0.53189 

12 0.742 0.432 0.457 0.791 0.506 0.508 

13 0.749 0.425 0.449 0.789 0.503 0.507 

14 0.754 0.430 0.471 0.790 0.506 0.505 

15 0.737 0.406 0.474 0.789 0.505 0.505 

 

However, when we compare the clustering output with the results of the 

methods without clustering in the previous section, clustering does not uniformly 

improve the results for all measures. Once again, the results are mixed.  
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Table 20 Evaluation results of multi-label classification on dataset 2 

 RAkEL MLkNN 

Cluster # Accuracy m. F-measure M. F-measure Accuracy m. F-measure M. F-measure 

2 0.912 0.810 0.849 0.729 0.555 0.520 

3 0.944 0.869 0.875 0.728 0.545 0.544 

4 0.936 0.853 0.869 0.724 0.557 0.513 

5 0.911 0.807 0.831 0.758 0.542 0.511 

 

Evaluation results of clustering on dataset 2 in Table 20 show that RAkEL 

has the best results on 3 clusters. However, these results are inferior to the results 

obtained without clustering.  

The results for REDD house 3 are shown in Table 21. Results demonstrate 

that when training multi-label classifier in each cluster, the best results are 

obtained when there are just 5 groups. There is no difference in using RAkEL and 

MLkNN on this dataset and both of them have similar performances. Comparing 

the results with Table 13 shows that clustering has again not improved the 

performance of our methods.  
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Table 21 Evaluation results of classification method on House 3, REDD 

 RAkEL MLkNN 

Cluster # Accuracy 

micro 

F-measure 

Macro 

F-measure 

Accuracy 

micro 

F-measure 

Macro 

F-measure 

5 0.908 0.911 0.442 0.905 0.909 0.412 

10 0.846 0.865 0.395 0.827 0.853 0.358 

15 0.826 0.849 0.337 0.853 0.870 0.352 

20 0.812 0.841 0.326 0.876 0.884 0.348 

25 0.824 0.848 0.3690 0.864 0.877 0.340 

30 0.791 0.824 0.320 0.872 0.882 0.369 

35 0.879 0.876 0.353 0.887 0.881 0.352 

40 0.898 0.901 0.399 0.897 0.894 0.402 

45 0.895 0.894 0.348 0.901 0.902 0.410 

50 0.865 0.877 0.373 0.884 0.892 0.406 

55 0.897 0.896 0.386 0.897 0.895 0.366 

60 0.897 0.895 0.366 0.905 0.905 0.404 

65 0.902 0.903 0.377 0.904 0.902 0.359 

70 0.887 0.887 0.352 0.884 0.890 0.366 

75 0.855 0.870 0.335 0.860 0.865 0.318 

80 0.892 0.888 0.342 0.904 0.899 0.377 

85 0.885 0.890 0.355 0.897 0.893 0.375 

90 0.897 0.899 0.362 0.903 0.903 0.412 

95 0.894 0.888 0.386 0.880 0.877 0.381 

100 0.849 0.866 0.308 0.883 0.892 0.385 
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Table 22 shows the evaluation of multi-label classification along with 

clustering on REDD, house 1. Again, there is no improvement in results when 

using clustering. 
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Table 22 Evaluation multi-label classification along with clustering on REDD, 

House 1 

 RAkEL MLkNN 

Cluster # Accuracy 

micro  

F-measure 

Macro  

F-measure 

Accuracy 

micro  

F-measure 

Macro  

F-measure 

5 0.744 0.807 0.510 0.726 0.733 0.554 

10 0.741 0.793 0.508 0.740 0.758 0.559 

15 0.735 0.790 0.588 0.756 0.768 0.570 

20 0.733 0.788 0.574 0.756 0.746 0.571 

25 0.734 0.787 0.562 0.748 0.774 0.570 

30 0.745 0.804 0.569 0.752 0.761 0.573 

35 0.739 0.738 0.517 0.763 0.764 0.557 

40 0.748 0.804 0.585 0.757 0.766 0.576 

45 0.733 0.786 0.549 0.764 0.753 0.571 

50 0.743 0.794 0.608 0.764 0.766 0.572 

55 0.739 0.789 0.598 0.759 0.772 0.557 

60 0.751 0.804 0.602 0.767 0.787 0.566 

65 0.746 0.796 0.578 0.763 0.747 0.554 

70 0.746 0.796 0.605 0.763 0.748 0.557 

75 0.754 0.808 0.584 0.762 0.762 0.547 

80 0.743 0.742 0.550 0.762 0.747 0.528 

85 0.753 0.753 0.568 0.761 0.745 0.553 

90 0.750 0.745 0.567 0.760 0.742 0.528 

95 0.752 0.752 0.575 0.763 0.745 0.554 

100 0.747 0.738 0.560 0.759 0.741 0.537 
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5.4 Evaluation of the proposed methods on each appliance 

In this section, for better understanding of the proposed methods’ performance, 

we analyze our experimental results at the level of individual appliances. We are 

interested in determining which methods accurately detect more appliances, and 

especially the large appliances that consume the most power.  

5.4.1 Simulated Datasets 

Dataset 1 and 2 have just two registered appliances: Refrigerator and microwave. 

The performance of our methods on the refrigerator and microwave in dataset 1 

has been shown in Table 23 and Table 24, respectively. It can be seen that the 

similarity search has better overall performance. Although RAkEL is the best 

algorithm in detecting the microwave in wavelet domain, it failed in detecting the 

refrigerator.  

  

Table 23 Performance of identification methods for detecting Refrigerator in 

Dataset 1  

Features Delay Embedding Wavelet 

 

Method RAkEL MLkNN RAkEL MLkNN Similarity Search 

Precision 0.43 0.49 0 0.4 0.79 

Recall 0.6 0.56 0 0.5 0.54 

F-Measure 0.5 0.52 0 0.44 0.64 

Specificity 0.8 0.86 1 0.81 0.89 
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Table 24 Performance of identification methods for detecting Microwave in 

Dataset 1 

Features Delay Embedding Wavelet 

 

Method RAkEL MLkNN RAkEL MLkNN Similarity Search 

Precision 0.43 0.72 1 0.71 0.63 

Recall 0.72 0.71 0.7 0.75 0.79 

F-Measure 0.54 0.71 0.82 0.73 0.7 

Specificity 0.98 0.99 1 0.99 1 

 

Our appliance-level results for dataset 2 in are presented in Table 25 and 

Table 26.  For this dataset, RAkEL classification in the wavelet domain is the best 

overall.  

 

Table 25 Performance of identification methods for detecting Refrigerator in 

Dataset 2 

Features Delay Embedding Wavelet 

 

Method RAkEL MLkNN RAkEL MLkNN Similarity Search 

Precision 0.88 0.63 0.99 1.0 0.95 

Recall 0.91 0.97 1.0 1.0 0.9 

F-Measure 0.89 0.77 1.0 1.0 0.93 

Specificity 0.97 0.87 1.0 1.0 0.98 
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Table 26 Performance of identification methods for detecting Microwave in 

Dataset 2 

Features Delay Embedding Wavelet 

 

Method RAkEL MLkNN RAkEL MLkNN Similarity Search 

Precision 1.0 0.13 1.0 0.19 0.83 

Recall 0.72 0.85 0.75 0.81 0.95 

F-Measure 0.84 0.23 0.85 0.31 0.89 

Specificity 1.0 0.9 1.0 0.94 1.0 

 

5.4.2 REDD, House 3 

To analyze the proposed methods, the performance of the time-domain classifiers, 

wavelet-domain classifiers, and similarity search for each appliance in REDD, 

house 3 is been shown in Table 27, Table 28, and Table 29, respectively. 
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Table 27 Multi label classification performance on REDD, House 3 in Time 

Domain 

 RAkEL MLkNN 

 Precision Recall F-measure Specificity Precision Recall F-measure Specificity 

Electronics 1.0 1.0 1.0 0 1.0 1.0 1.0 0 

Furnace 0.001 0.308 0.001 0.989 0 0 0 0.997 

Washer dryer 0.997 0.902 0.947 1.0 0.998 0.981 0.989 1.0 

Microwave 0.921 0.237 0.377 1.0 0.612 0.645 0.628 0.998 

Bath GFI 0.468 0.947 0.627 0.992 0.294 0.802 0.430 0.986 

Kitchen outlet 0.733 0.009 0.017 1.0 0.587 0.075 0.133 0.996 

 

 

Table 28 Multi label classification performance on REDD, House 3 in Wavelet 

domain 

 RAkEL MLkNN 

 
Precision Recall F-measure Specificity Precision Recall F-measure Specificity 

Electronics  1.0 1.0 1.0 0 1.0 1.0 1.0 0 

Furnace 0 0 0 1.0 0 0 0 0.99 

Washer/Dryer  0.94 1.0 0.97 1.0 0.99 0.96 0.98 1.0 

Microwave 0 0 0 1.0 0.08 0.71 0.15 0.96 

Bath GFI  0.62 0.98 0.76 1.0 0.44 0.89 0.59 0.99 

Kitchen Outlet  0 0 0 1.0 0.85 0.06 0.12 1.0 
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Table 29 DTW Similarity search result on REDD, House 3 

Appliance Precision Recall F-measure Specificity 

Electronics  0.155 0.848 0.261 1.0 

Furnace 0.866 0.659 0.748 1.0 

Washer/Dryer  0.962 0.855 0.905 0.971 

Microwave 0.877 0.798 0.835 0.909 

Bath GFI  0.80 0.163 0.27 0.983 

Kitchen Outlet  0.232 0.22 0.226 0.969 

 

As is obvious, performance of the methods for different appliances is 

different and it is hard to select one method as the best method. From the overall 

results in Section 5.2, macro f-measure of similarity search method which is the 

average of each appliance f-measure is better than other methods but its micro f-

measure is not the best. Exploring the appliances in detail indicates the reason. 

The Electronics class is the main reason that micro f-measure of similarity search 

is much less than the classification method. The Electronics appliance/circuit is 

ON most of the time and has no unique signature most of the time, which 

confounds the similarity search; the classification methods seem more robust to 

the irregularity of this class.  

The Furnace is a distinguishable appliance in power signal but 

performance of the multi-label classifiers in this method is very low and the 

method has essentially failed in detecting this appliance. Looking into the house 3 

dataset, we found that measurements of the houses in REDD was done in the 

beginning of summer, therefore furnace rarely appears in the dataset. Furthermore 
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most of those few occurrences are in the early (training) portion of the dataset; 

during the period covered by the test set, the furnace has only been used for a few 

minutes.  

Microwave and Bath gfi are very similar to each other and their main 

difference is the reactive power of microwave. The microwave is always mixed 

with other appliances, causing the classification algorithm to identify the mixed 

appliances also as the microwave during testing. The kitchen outlet is a circuit 

level measurement which includes three different appliances all with one label. 

Having a single label for several appliances with different distribution in the 

dataset has led to a poor performance.   

5.4.3 REDD, House 1 

Performance of multi-label classification in time and wavelet domain, and the 

similarity search method on REDD, house 1 are presented in Table 30, Table 31 

and Table 32 respectively. As it was expected from overall performance of the 

proposed methods on house 1, MLkNN has better performance in appliance 

detection compared to the others, except for the microwave.  
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Table 30 Multi label classification performance on REDD House 1 in time 

domain 

 RAkEL MLkNN 

 

Precision Recall F-measure Specificity Precision Recall F-measure Specificity 

Oven 0 0 0 1.0 0.64 0.21 0.31 1.0 

Refrigerator 0.89 0.95 0.92 0.96 0.94 0.95 0.94 0.98 

Light 0.58 0.29 0.39 0.69 0.92 0.69 0.79 0.91 

Microwave 0.51 0.54 0.52 0.99 0.05 0.55 0.09 0.87 

Bath GFI 0 0 0 1.0 0.44 0.66 0.53 1.0 

Outlet 0 0 0 1.0 0.71 0.84 0.77 1.0 

Washer 0.86 0.99 0.92 1.0 0.94 0.85 0.90 1.0 

 

 

Table 31 Multi label classification performance on REDD House 1 in Wavelet 

domain 

 RAkEL MLkNN 

 

Precision Recall F-measure Specificity Precision Recall F-measure Specificity 

Oven 0.23 0.01 0.01 1.0 0.27 0.01 0.01 1.0 

Refrigerator 0.92 0.94 0.93 0.97 0.49 0.95 0.65 0.64 

Light 0.57 0.99 0.72 0.03 0.84 0.42 0.56 0.90 

Microwave 0.48 0.62 0.54 0.99 0.54 0.54 0.54 0.99 

Bath GFI 0 0 0 1.0 0.33 0.47 0.39 1.0 

Outlet 0 0 0 1.0 0.85 0.57 0.68 1.0 

Washer 0.67 0.99 0.80 0.99 0.73 0.99 0.84 1.0 
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Table 32 Similarity Search Performance on House 1 

 

Precision Recall F-measure Specificity 

Oven 0.228 0.236 0.232 0.993 

Refrigerator 0.994 0.759 0.861 0.923 

Light 0.587 0.009 0.018 0.411 

Microwave 0.680 0.523 0.591 0.995 

Bath GFI 0.981 0.222 0.362 0.997 

Outlet 0.671 0.592 0.629 0.998 

Washer 0.743 0.918 0.822 0.999 

 

 

In the simulated datasets our conclusion was that similarity search is a useful 

method, and competitive with the multi-label classifiers. However, on REDD 

house 1 we can see that MLkNN has better performance in most of the appliances. 

The main difference of this dataset with the others is lack of reactive power data 

in this dataset. It means half of the features of house 1 are missing compared to 

the other datasets. Reactive power is important especially when a resistive 

appliance without reactive power is mixed with non-resistive appliances and 

features are not distinguishable. 

5.5  Energy Error  

We now compute the energy error for the various appliances in each dataset for 

each of our proposed methods. We present the results for dataset 1 in Table 33. 
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The smallest error for Refrigerator is achieved with MLkNN in time domain and 

for Microwave with similarity search. 

 

Table 33 Energy error on Dataset 1  

 Delay Embedding Wavelet  

Energy Error RAkEL MLkNN RAkEL MLkNN Similarity Search 

Refrigerator 0.321 0.061 1.0 0.152 0.448 

Microwave 0.976 0.163 0.199 0.214 0.010 

 

Energy error results in Table 34 shows that for dataset 2 RAkEL error in 

wavelet domain is smaller than other methods though similarity search error is the 

second best method. 

 

Table 34 Energy error on Dataset 2 

  Delay Embedding Wavelet  

Energy Error RAkEL MLkNN RAkEL MLkNN Similarity Search 

Refrigerator 0.084 0.614 0.040 0.033 0.07 

Microwave 0.174 6.281 0.170 3.374 0.025 

 

Table 35 shows the energy error evaluation on house 3. It can be seen that 

best results are different for appliance to appliance and it is hard to select one 

method as the best one. However it can concluded form data that multi-label k-

NN (MLkNN) in time domain and similarity search have better results. 
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Table 35 Energy Error on REDD, House 3 

 Delay Embedding Wavelet  

Appliance RAkEL MLkNN RAkEL MLkNN Similarity Search 

Electronics  0.009 0.009 0.009 0.009 0.949 

Furnace 0.954 0.456 0.322 0.469 0.412 

Washer/Dryer  0.105 0.027 0.050 0.046 0.240 

Microwave 0.759 0.012 1.0 6.267 0.306 

Bath GFI  0.344 0.813 0.011 0.305 0.244 

Kitchen Outlet  0.983 0.824 1.000 0.898 0.634 

 

The results of house 1 are shown in Table 36. Again, it is hard to select 

one method or feature space as the best one for all appliances. Although 

performance of MLkNN on feature space for microwave is disappointing, overall 

it has better performance among the methods.  

Table 36 Energy Error on REDD, House 1 

 Delay Embedding Wavelet  

 

RAkEL MLkNN RAkEL MLkNN Similarity Search 

Oven 1.0 0.607 0.937 0.956 0.668 

Refrigerator 0.070 0.019 0.059 1.023 0.084 

Light 0.437 0.149 0.856 0.472 0.956 

Microwave 0.031 10.413 0.434 0.110 0.116 

Bath_GFI 1.00 0.443 1.0 0.510 0.684 

Outlet 1.00 0.193 1.0 0.366 0.099 

Washer 0.145 0.093 0.025 0.112 0.351 
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If an appliance has different mode of operation but only part of them which 

have high power level have been registered for similarity matching, then missing 

low power modes will appeared in point to point evaluation but will not be 

significant in energy error. These not-registered points are not important for 

energy breakdown purposes, but if the goal is control the overall demand, their 

registration is necessary.     

One important issue to validate an appliance identification method is 

defining an acceptable value (i.e. %5) for maximum error. High error in energy 

calculation will disappoint customer about the results. 

5.6 Comparison with Published Methods on REDD  

We now compare our proposed methods with the published methods that 

have been evaluated on REDD. Table 37 shows the results of implementing 

Factorial HMM to identify appliances in a home [60] AFAMAP convex 

optimization was used to estimate the appliances (states) from the model. 

Similarity search which has better performance among our evaluated method on 

REDD, house 3 is compared with FHMM. In comparison to [60] our similarity 

search is better overall.  
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Table 37  REDD, house 3 comparisons 

 Proposed Similarity matching Factorial HMM [60] 

Appliance Precision Recall F-measure Precision Recall F-measure 

Electronics  0.155 0.848 0.261 0.416 0.008 0.016 

Furnace 0.866 0.659 0.748 0.917 0.708 0.799 

Washer/Dryer  0.962 0.855 0.905 0.988 0.736 0.844 

Microwave 0.877 0.798 0.835 0.975 0.661 0.788 

Bath GFI  0.800 0.163 0.270 0.827 0.708 0.763 

Kitchen Outlet  0.232 0.220 0.226 0.452 0.16 0.236 

 

 

The method in [62] decomposes a set of appliance models into groupa of 

appliances which have overlap in power signal and then disaggregated each group 

by Viterbi algorithm. This method is evaluated on house 1 of REDD and they 

have compared the F-measure of their method with Bayesian classifier. The 

results of F-measure of their method and our proposed method are shown in Table 

38. They have implemented their method on certain appliances so just the 

common results are shown in this table. Their results are superior overall 

(although not uniformly) to our proposed methods. 
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Table 38 REDD, house 1 comparison 

Appliance 

Proposed MLkNN in time 

domain 

Bayesian method in 

[62] 

Proposed method in 

[62] 

 F-measure F-measure F-measure 

Oven 0.31 0.8 0.908 

Refrigerator 0.94 0.859 0.831 

Microwave 0.09 0.775 0.899 

Bath GFI 0.53 0.753 0.927 

Outlet 0.77 0.409 0.84 

 

 

HMM along with EM clustering and Viterbi algorithm has been used to identify a 

few appliances from REDD in [64] and [63]. Their methods are unsupervised and 

a general database has been used to label the appliances after detection. The idea 

of their research is to develop the Factorial HMM method in [60]. They have 

evaluated their method by calculating the energy consumption error. Table 39 

shows the results of the two published articles. For these three appliances RAkEL 

in time domain has better performance.  
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Table 39 Comparison of the energy error of proposed method with methods in 

[64] and [63] 

 

Proposed 

method 

Results in [64] Results in [63] 

Appliance RAkEL 

No 

training 

Aggregate 

training 

Sub -

metered 

training 

No 

training 

Aggregate 

training 

Sub-

metered 

training 

Refrigerator 0.07 0.550 0.150 0.140 0.380 0.210 0.550 

Washer/Dryer 0.145 4.280 0.280 0.240 34.690 0.550 0.710 

Microwave 0.031 0.540 0.220 0.100 0.630 0.530 0.380 
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 Chapter 6

CONCLUSION 

In this thesis two NILM methods are proposed: Multi-label classification, which 

can identify appliances at each sample instant, and a similarity matching method 

that identifies each candidate subsequence of data. Although the similarity search 

method is implemented on wavelet coefficients features, the proposed multi-label 

classification is evaluated in both time domain and wavelet domain. Feature sets 

in time domain are constructed using delay coordinate embedding. 

In future work we will further develop the similarity search method. There are 

several challenges in practical NILM applications which the proposed database 

matching method can help to solve. Developing an unsupervised method with 

dynamic time warping measure to cluster the divided segments is one possible 

means to automatically build a signature database. Close to real time load 

identification and online feedback to the customer could also be accomplished 

with the proposed method. It can define new application for NILM. We could also 

train multi-label classifiers with simulated datasets similar to the intended real-

world dataset.  
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