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Abstract

This thesis focuses on the power allocation during the channel training process for

three cooperative relay networks: a one-way single-relay network, a one-way multi-

relay network and a two-way single-relay network. For these three networks, under

the amplify-and-forward (AF) scheme, we investigate the power allocation problem

during the channel training process for the destination or both terminals in the case

of the two-way single-relay network to estimate the global channel state information

(CSI) of the whole network. Linear minimum-mean-square-error (LMMSE) estima-

tion is adopted. The mean-square-error (MSE) of the channel estimation and the

outage probability (OP) of the network with channel estimation error are derived.

Closed-form solutions for the power allocation problems based on MSE minimiza-

tion and OP minimization are obtained. Our simulation results demonstrate that

the proposed MSE-based and OP-based power allocation schemes are superior to

even power allocation.
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Chapter 1

Introduction

Wireless communication is the exchange of information between two or more nodes

that are not connected by electrical conductors. It has undergone a remarkable de-

velopment in the communication industry, since the first analog cellular telephone

system deployed in Chicago in 1983. Wireless communication has drawn great at-

tention of the public and the media. Currently, from the report of the International

Telecommunication Union, there are 6.8 billion cell phone users with the world

population of 7.1 billion. And this number is growing. The international telecom-

munication union predicts that there will be more than 7 billion users in early 2014.

The report also pointed out that more than a third of the world’s population use

the Internet. Many people indicated that they could not imagine the life without

their cellphones, which have become part of everyday life. Indeed, the wireless com-

munication revolution has become a great help for the development of the world.

There are plenty of applications of wireless communication technology for education,

health care, government, banking, environment and business. Many new applica-

tions and products have changed the way people work and play, including automated

factories, video conference system, online games, smart phones, and laptops. With

the huge market demand of wireless systems, we can tell that there is a bright future

for wireless applications in household, personal products and the larger worldwide

networking infrastructure. However, there are still many problems that remain to be

solved to make current research ideas of future wireless communication applications

realities.
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In this chapter, we will discuss the details of wireless channel and channel mod-

els. Presented next is the introduction of cooperative network, including relay-

ing strategies, one-way relay network, two-way relay network, and relay selection.

Further, we will explain channel estimation and introduce two channel estimators:

the minimum-mean-square-error (MMSE) estimator and the linear-minimum-mean-

square-error (LMMSE) estimator. Then there is the discussion of existing literature

on channel estimation in cooperative relay network. In addition, we will also elabo-

rate the motivations and contributions of this thesis. Lastly, we explain the outline

of this thesis.

1.1 Wireless Channel

Wireless channel refers to the medium between the source antenna and the destina-

tion antenna. We can obtain the information of the received signal from that of the

transmitted signal if we have a model of the channel.

The power of the transmitted signal experiences a reduction as it propagates

through space. We call the reduction path-loss. Path-loss can be represented by

a path-loss exponent, which is normally in the range of 2 to 4. Theoretically, the

path-loss exponent is 2 for propagation in free-space. In practice, the power falls off

more quickly in relatively lossy environments.

In reality, there are objects such as buildings and trees between the source and

the destination or around the paths between them. In this situation, the transmitted

signal experiences a loss through absorption, reflection, scattering, and diffraction.

We call this effect shadowing.

The transmitted signal may also travel along many different paths to a destina-

tion simultaneously. In this situation, these signals from different paths combine at

the destination, which may result in constructive or destructive interference, increas-

ing or decreasing the signal power at the destination. We call this effect multi-path.

All these effects cause channel fading. A deep fade is caused by strong destructive

interference. Fading is often modeled as a random process. Mathematically, fading

is usually modeled as a time-varying random change in the amplitude and phase of
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the transmitted signal.

Here we introduce several types of wireless fading channels in Table 1.1. The

velocity of a moving reflectors relative to the source can cause a shift in the frequency

of the signal transmitted along each path. We call this Doppler shift. Thus, signals

from different paths can have different Doppler shifts. The Doppler spread Ds is

the difference in Doppler shifts between different signal components contributing to

a single fading channel tap. The coherence time Tc of the channel is related to the

Doppler spread with the following relationship:

Tc =
1

4Ds
. (1.1)

Channels with a large Doppler spread have a short coherence time.

Slow Fading

Slow fading occurs when the coherence time Tc of the channel is much larger than

the delay constraint of the channel. Slow fading can be caused by shadowing. For

slow fading, the amplitude and phase change of the signal imposed by the channel

can be considered roughly as a constant over the period of use.

Fast Fading

Fast fading occurs when the coherence time Tc of the channel is much smaller than

the delay constraint of the channel. For fast fading, the amplitude and phase change

of the signal imposed by the channel varies considerably over the period of use.

On the other hand, the transmitted signal traveling in different paths reach the

destination using different time. The delay spread Td is the difference between the

longest and shortest propagation time in different paths. The coherence bandwidth

Wc of the channel is related to the delay spread with the following relationship:

Wc =
1

2Td
. (1.2)

Flat Fading

Flat fading occurs when the coherence bandwidth Wc of the channel is much larger

than the bandwidth W of the signal. For flat fading, all frequency components of

3



Types of channel Characteristic

Slow fading Tc ≫ delay constraint

Fast fading Tc ≪ delay constraint

Flat fading Wc ≫ W

Frequency-selective fading Wc ≪ W

Table 1.1: The types and defining characteristics of wireless channels.

the signal will experience the same magnitude of fading.

Frequency-Selective Fading

Frequency-selective fading occurs when the coherence bandwidth Wc of the channel

is much smaller than the bandwidth W of the signal. For frequency-selective fading,

different frequency components of the signal will experience uncorrelated fading.

In this thesis, we consider flat fading and slow fading channel following Rayleigh

distribution. Rayleigh distribution is a very reasonable model when there is no dom-

inant propagation and there are many small reflectors that scatter the signal during

its travel. It is employed primarily for its simplicity in typical cellular situations

with a relatively small number of reflectors. With Rayleigh fading, the envelope of

the channel response will follow the Rayleigh probability density function:

PX(x) =
2x

Ω
e−x2/Ω, x ≥ 0, (1.3)

where Ω = E(X2). The phase of the channel response is uniformly distributed.

Another representation is that the real and imaginary parts of the channel response

are independent and identically distributed zero-mean Gaussian processes. In other

words, the channel response follows a circularly symmetric complex Gaussian distri-

bution. We denote the circularly symmetric complex Gaussian distribution whose

mean is m and whose variance is σ2 as CN (m,σ2). Let N (0, σ2) denotes the real

Gaussian distribution with zero-mean and variance σ2. Thus the channel response

can be represented as

h = x+ jy, (1.4)

where j =
√
−1. x and y are independent and follow N (0, σ2/2), equivalently,

h ∼ CN (0, σ2)
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1.2 Cooperative Relay Network

Cooperative communication promises significant performance improvements in the

coverage, capacity, and transmission reliability [1] of wireless communication sys-

tems. A conventional single hop system only considers the direct transmission,

which means that the destination node decodes the information only based on the

signal from the source while regarding the signals from other nodes as interference.

In cooperative communication, nodes in a network other than the transmitter can

help relaying the signals. The destination combines the direct signal and the relayed

signal to achieve improved performance.

The simplest cooperative relay network consists of three nodes: one source node,

one destination node, and one relay node supporting the communication between

the source node and the destination node. A general relay network can have multiple

relays.

1.2.1 One-Way and Two-Way Relay Network

In a one-way relay network, the communication is unidirectional, from the source

to the destination. The data communication usually takes two steps. In the first

step, the source node sends out signal to the relay nodes. In the second step, the

relay nodes broadcast a version of the received signal to the destination node. Two

one-way relay network models are considered in this thesis, the one-way single-relay

network and the one-way multi-relay network. In Fig. 1.1, a one-way network with

two relays is shown.

In a two-way relay network, the communication is bidirectional, where two ter-

minals exchange information via the help of intermediate relays [2]. The data trans-

mission takes two steps. In the first step, two terminals send out signals to the relays.

In the second step, the relays broadcast a version of the received signals to both

the terminals. In this thesis, we consider a two-way single-relay network as shown

in Fig. 1.2. By allowing both terminals concurrently sending information to each

other, a two-way relay network can recover the spectral efficiency loss caused by the

half-duplex mode of relays. The two-way relay network has attracted considerable

5



Relays

Source Destination

Fig. 1.1: One-way two-relay network.

Relay

Terminal 1 Terminal 2

Fig. 1.2: Two-way single-relay network.

attention [2] in the last decade due to its efficient and practical importance.

1.2.2 Relaying Strategies

Major relaying strategies include amplify-and-forward (AF), decode-and-forward

(DF), and compress-and-forward (CF). In AF relaying, the relay nodes amplify

the received signal from the source node and forward the amplified signal to the

destination node. There are fixed gain and variable gain amplification factors at

relays [3, 4]. The amplification factor is a constant for fixed gain relays. It requires

the knowledge of the average power received by the relays. For variable gain relays,

the amplification factor requires the instantaneous channel knowledge [5]. Fixed
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gain relays are simpler and easier to implement. In DF relaying, the relay nodes de-

code the information from the source node and in case of correct decoding, forward

re-encoded signal to the destination node. The CF strategy allows the relay nodes

to quantize the received signal from the source node and forward encoded versions

of the quantized signal to the destination node without decoding the signal.

1.2.3 Relay Selection

In dense wireless networks, there are typically many relays between the source and

the destination, where relay selection has attracted considerable attention [6–8].

Relay selection is a low complexity and low overhead strategy since it avoids the

need of synchronization among relays.

Next we will introduce some single relay selection schemes [9, 10]. The widely

used ones are: best relay selection, nearest neighbor selection, best worse channel

selection, and best harmonic mean selection. [11, 12] proposed the nearest neighbor

selection, in which the relay lies nearest to the base station is selected. For dual-

hop protocols, each relay has two channels, denote the channel from the source

to the relay as h1 and the channel from the relay to the destination as h2. As

introduced in [12, 13], the best worse channel selection is to select the relay whose

worse channel, min(|h1|, |h2|), is the best. In [13, 14], the best harmonic mean

selection was proposed, in which the relay with the largest harmonic mean (|h1|−2+

|h2|−2)−1 cooperates. In [6–8, 15], the best relay selection was proposed, where the

relay that provides the best received signal-to-noise ratio (SNR) will be selected to

forward information. Best relay selection was shown to achieve full diversity order

[15] and has advantage in spectral efficiency compared with schemes where relays

transmit in orthogonal channels [16]. Best relay selection is used in Chapter 3 of

this thesis. In [15], the authors generalized the idea of multi-relay selection allowing

more than one relay to cooperate. All the mentioned works are for one-way relay

network. Relay selection for two-way relay network were investigated in [17–19].
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1.3 Channel Estimation

In wireless communication, channel state information (CSI) refers to properties of

a communication link from the source to the destination. It describes the combined

propagation effect of all elements, for example, diffraction, refraction, path-loss tro-

pospheric and ionospheric scintillation, and rain attenuation. When CSI is available,

wireless communication can be designed to be adaptive to current channel condi-

tions for the best performance. In reality, CSI is obtained via a training process and

estimation at the destination. And estimated CSI is always subject to error.

There are a number of methods to estimate the CSI parameters. For Bayesian

estimation methods, CSI parameters are viewed as random with a specified proba-

bility distribution. A loss function is employed to express the cost of estimating x

as x̂. The estimation is obtained via the minimization of the loss function. When

the mean-square-error (MSE) is used as the loss function, we obtain the class of

MMSE estimators. With the Gaussian observation model, MMSE estimators are

linear and thus easy to implement. But for non-Gaussian case, the structure of

the MMSE estimator can be complicated. Sometimes, the MMSE estimation can

be intractable. In this case, we can retain the MMSE criterion but constrain the

estimator to be linear. Thus, the obtained estimator is the LMMSE estimator.

In what follows, we introduce results on MMSE and LMMSE estimations, which

will be used in later chapters.

1.3.1 MMSE Estimation

First, we will introduce some notation to help the formulation of MMSE estimation.

Let Y ∈ R
n be the observations in function of the value x ∈ R

m from the parameter

vector X to be estimated. Then the MMSE estimator is

x̂MMSE = E{X|Y = y}, (1.5)

which is the conditional mean of X given Y = y. The MSE of the MMSE estimator

is

MSE(x̂MMSE) = trace{KE}, (1.6)
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where the error covariance matrix KE is given by

KE = E{[X− E(X|Y)][X− E(X|Y)]T }. (1.7)

The trace of an n× n square matrix A is defined to be the sum of the elements on

the main diagonal of A.

1.3.2 LMMSE Estimation

The LMMSE estimator is the estimator achieving minimum MSE among all esti-

mators of a linear form. Using the same notation as that in Subsection 1.3.1, the

LMMSE estimate [20] is

x̂LMMSE = E{X}+ CXYC−1
YY

(y − E{Y}), (1.8)

where CXY is the cross-correlation of X and Y, and CYY is the auto-correlation of

Y. The MSE on x̂LMMSE is

MSE(x̂LMMSE) = CXX − CXYC−1
YY

CYX. (1.9)

where CXX is the auto-correlation of X.

1.4 Literature on Channel Estimation in Cooperative

Relay Network

Cooperative communication promises significant performance improvements in the

coverage, capacity, and transmission reliability [1] of wireless communication sys-

tems. There are a lot of work proposing cooperative schemes and analyzing their

performance, e.g., [15, 21–39]. Most of these aforementioned work needed CSI for

either transmission or reception, or both. Thus training design and channel estima-

tion are important research problem for cooperative network.

In recent years, there are many work on the designs of the training and channel

estimation schemes, as well as the analysis of the impact of CSI error for cooperative

relay networks, e.g., [28, 30, 40–54, 54–60]. In [40–43], relay networks with DF were

considered; while [28, 30, 44–54, 54–60] were on relay networks with AF.
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Among these papers, [28, 30, 45, 49, 50, 52, 60] studied one-way single-relay

network with single or multiple antennas. In [45], the authors proposed algorithms

to compute the optimal source pilot matrix and the optimal relay pilot matrix.

[28] formulated a capacity lower bound for the dual-hop wireless relay channel with

channel estimation. In [52], the channel estimations in a relay network with multiple

transmit and receive antennas, including the estimation of the end-to-end channel

matrix and the individual estimation of the transmitter-relay channels and the relay-

receiver channels were investigated. In [30], the authors investigated the error rate

performance with imperfect channel estimation. In [49], both the end-to-end chan-

nel estimation and the individual source-to-relay and relay-to-destination channel

estimation methods were investigated. [50] studied the optimal pilot symbol spacing

and derived the bit error rate for the relay network with fast-fading channels.

[44, 46–48, 55] were on one-way multi-relay network. [44] developed cost-effective

algorithms for adaptive joint power allocation, and estimation of the parameters of

the receiver and the channels. In [46], schemes for the estimation of the end-to-end

channel coefficients were proposed. The optimal training sequences and precoding

matrices were also derived. In [48], for the general multiple-input and multiple-

output (MIMO) relay networks, schemes for the receiver to estimate the individual

source-to-relay and relay-to-destination channels were proposed. The requirement

on the training time for full diversity in data transmission with mismatched max-

imum likelihood (ML) decoding was also derived. In [47], both mismatched and

matched decodings for multi-relay MIMO networks with CSI estimation error were

investigated. [55] was on the channel estimation over doubly-selective channels.

[51, 53, 54, 57–59] were on two-way relay network. In [54], for a multiple-relay

network, the authors investigated the impact of CSI estimation error on the perfor-

mance, in the sense of OP and bit error rate. [51, 53, 57–59] studied the training

and channel estimation schemes for two-way single-relay network. [53] proposed a

channel training algorithm based on the least square principle, and a method to

design the optimal training sequences based on minimization of the MSE. In [57],

channel estimation schemes and training designs based on Bayesian Cramér-Rao
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bound were investigated. [51] proposed a new channel estimator based on the min-

imization of average SNR, and designed the optimal training sequence by resorting

to Cramér-Rao lower bound.

1.4.1 Power Allocation in Training for Cooperative Relay Network

All these aforementioned work focused on the training design and the effect of chan-

nel estimation error on network performance, while assuming fixed training powers

at the relays or the source. In this subsection, we review the literature on training

power allocation for cooperative relay network.

For one-way single-relay network, the power allocation was considered in [56, 61–

63]. In [61] and [62], the authors focused on the end-to-end channel estimation.

Based on the maximization of the average received SNR at the destination node,

[61] investigated the joint power allocation between the training and the data trans-

mission periods, and between the source and the relay for both the training and

the data transmission periods, under a total power constraint. [62] investigated a

similar power allocation problem but in terms of maximizing a mutual information

lower bound. [56, 64] studied the estimation of the individual source-to-relay chan-

nel and relay-to-destination channel. In [64], the authors investigated the power

allocation between the estimation of the source-to-relay channel and the relay-to-

destination channel at the relay during training, while the source power was fixed.

Both the minimization of the MSE of the source-to-relay channel estimation and the

maximization of the average effective SNR were considered. [63] was on the end-to-

end channel estimation for fixed gain relays and individual channel estimation for

variable gain relays. The power allocation was between the training and the data

transmission, and between the source and the relay.

[58, 59] investigated the power allocation for two-way single-relay network. In

[58, 59], for the end-to-end channel estimation, the authors investigated the joint

power allocation between data-transmission and training and between the two ter-

minals and the relay. [58] aimed at minimizing an OP upper bound, while [59]

aimed at maximizing an average sum-rate lower bound, minimizing the MSE, and
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minimizing the Bayesian Cramér-Rao lower bound.

1.5 Thesis Motivations and Contributions

This thesis is on the power allocation problem during channel training and estima-

tion for AF relay network. The motivations are as follows.

In early studies of cooperative relay communication, perfect CSI is usually as-

sumed to be available. In reality, as explained in Section 1.3, CSI is obtained via

training and estimation. Estimated CSI is always subject to error, which degrades

communication performance. Thus it becomes important to have quality training

designs and channel estimation schemes to optimize the whole network performance.

We focus on the power allocation problem in the training process of cooperative

relay network. Intelligent power allocation schemes can enhance the performance

substantially. A dynamic power allocation scheme can take full advantage of the

channel diversity among users and thus can make the best use of limited resources.

The training power allocation problem starts to attract considerable attention in

recent years. Currently, there are limited results of power allocation as explained in

Subsection 1.4.1. And all the aforementioned work assumed fixed training powers

at the relays or the source. Many problems are open. In this thesis, we consider the

power allocation between the source and the relay, and between different channel

estimation stages.

For the channel estimation, different to [61] and [62], where the end-to-end

channel estimation was investigated, we focus on the estimation of the individual

source-to-relay channel and relay-to-destination channel. The reasons of estimating

individual channels instead of end-to-end ones are two-fold. First, the equivalent

end-to-end channel values are concatenations of the individual channels. We can

always calculate estimates of the end-to-end channels with estimates of individual

channels. Second, the structure and values of the end-to-end channels are different

for different protocols used in data transmission (e.g., relay/antenna selection, beam-

forming, distributed space-time coding). It also changes with other designs such as

relay power amplification factor and precoding. Thus, if there is a change in the
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protocol, with end-to-end channel estimates, training needs to be conducted again.

With individual channel estimates, however, the end-to-end channel estimates can

be calculated and there is no need to repeat the training.

This thesis studies power allocation during channel training for three AF network

scenarios. The main contributions are detailed as follow. For a one-way single-relay

network, we study the power allocation between the training of different channels

and between the source and the relay during the training of the source-to-relay

channel. For a one-way multi-relay network, we study the power allocation among

all the relay paths, between the training of different channels for every relay path,

and between the source and every relay during the training of the source-to-relay

channel. For a two-way single-relay network, we study the power allocation between

the relay-training stage and the terminal-training stage, and between the terminals

and the relay during the terminal-training stage. For all three network scenarios,

we use the total MSE of channel estimations and the outage probability (OP) of the

network as the design objectives. For the high power regime, closed-form analytical

solutions for the training power allocation are derived. Simulation results on the

MSE and the OP are demonstrated to show the superiority of the proposed schemes

to an even power allocation.

1.6 Thesis Outline

This thesis is organized as follows. Chapter 1 provides the background of wireless

channel, cooperative relay network, channel estimations, related literature, as well

as the motivations, contributions, and outline of the thesis. Chapter 2 is on the

training power allocation for a one-way single-relay network. Chapter 3 is on the

training power allocation for a one-way multi-relay network. Chapter 4 is on the

training power allocation for a two-way single-relay network. Chapter 5 gives the

conclusions of the thesis and proposes several possible future work.
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Chapter 2

Power Allocation in Training for

One-Way Single-Relay Network

2.1 Introduction

In this chapter, we consider a one-way single-relay network under AF protocol and

study the power allocation problem during the training of the individual source-to-

relay and relay-to-destination channels. This includes two parts: 1) the power alloca-

tion between the training of the source-to-relay channel and the relay-to-destination

channel, and 2) in the training of the source-to-relay channel, the power allocation

between the source transmission and the relay transmission. Two objective func-

tions, the total MSE of estimations of all individual channels and the OP of the

whole network, are considered. Simulation results show performance improvement

of the proposed schemes over even power allocation.

In what follows, we clarify the difference of our work to existing ones [56, 62, 65].

While in [62, 65], estimations of the end-to-end channels were investigated, we work

on the estimation of the individual source-to-relay and relay-to-destination channels.

Compared with [56], our work is different in the following aspects. First, the power

allocation problem is different. While [56] worked on the allocation between the

training and data transmission periods for a fixed relay power, we work on the

allocation between the training of the two channels and between the source and the

relay during the estimation of source-to-relay channel. Second, we consider both

OP and total MSE, while in [56] only the OP was studied. Further, we provide
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Fig. 2.1: One-way single-relay network model.

analytical solutions to the power allocation problems for the high power regime.

The rest of this chapter is organized as follows. The system model and channel

estimation scheme are explained in Section 2.2. In Section 2.3, a closed-form power

allocation is derived based on the minimization of the total MSE of the estima-

tions. In Section 2.4, we derived another closed-form power allocation based on the

minimization of the OP of the network under channel estimation error. Simulation

results are shown in Section 2.5. Finally, concluding remarks are given in Section

2.6.

2.2 System Model and Training Scheme

The one-way single-relay AF network model is shown in Fig. 2.1. Each node is

equipped with one antenna. Denote the channel from the source to the relay as f

and that from the relay to the destination as g. There is no direct link between the

source and the destination. f and g have the distribution CN (0, σ2
f ) and CN (0, σ2

g),

respectively.

2.2.1 Training and LMMSE Estimators

The channel training and estimation problem is to estimate the individual channel

coefficients f and g at the destination. The training period is divided into two

stages: first the training of g and then the training of f .

To estimate g, a pilot symbol is sent from the relay. Without loss of generality,

the unit symbol is used. The received symbol at the destination is

x =
√

Pgg + ng, (2.1)
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where Pg is the relay power used for the training of g. ng is the complex Gaussian

noise at the destination whose distribution follows CN (0, 1). Using the results in

Section 1.3, the LMMSE estimate of g is

ĝ =

√

Pgσ
2
g

1 + Pgσ2
g

x. (2.2)

This is also the MMSE estimation. Denote the estimation error as

△g , g − ĝ. (2.3)

△g follows the distribution CN
(

0,
σ2
g

1+Pgσ2
g

)

. Thus, from Section 1.3, we get the

MSE on g:

MSE(g) =
σ2
g

1 + Pgσ2
g

≈ 1

Pg
, (2.4)

where the approximation is valid for Pg ≫ 1.

Then to estimate f at the destination, a pilot symbol is sent from the source and

forwarded by the relay. This training stage takes two steps. Again, without loss of

generality, the unit symbol is used as the pilot. The received signal at the relay is

y1 =
√

Pf,Sf + n1, (2.5)

where Pf,S is the transmitted power of the source and n1 is the complex Gaus-

sian noise at the relay, respectively. Here we consider fixed gain relay. The relay

amplification factor is [3]

A =

√

Pf,R

1 + Pf,Sσ
2
f

. (2.6)

Thus, the received signal at the destination is

y = y1Ag + n2 =
√
αgf +

√

βgn1 + n2, (2.7)

where α ,
Pf,SPf,R

1+Pf,Sσ
2
f

and β ,
Pf,R

1+Pf,Sσ
2
f

with Pf,R the power the relay uses during this

training stage. n2 is the complex Gaussian noise at the relay and the destination.

n1 and n2 are assumed to be independent and their distribution follow CN (0, 1).

Since this training stage is after the training of g, thus the estimation ĝ is known at

the destination. From (2.3), we can rewrite (3.3) as

y =
√
αĝf + (

√
αf +

√

βn1)△g +
√

βĝn1 + n2. (2.8)
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Let n , (
√
αf +

√
βn1)△g +

√
βĝn1 + n2, which is the equivalent noise in the

observation model (2.8). Different to the traditional linear Gaussian observation

model, in (2.8), the equivalent noise term n depends on f . Also given ĝ and f , it

can be shown straightforwardly that n is non-Gaussian. Thus the model in (2.8)

is non-linear and non-Gaussian. The MMSE estimate of f is difficult to derive.

By using the results in Section 1.3, after straightforward calculations, the LMMSE

estimate of f can be calculated to be:

f̂ =
σ2
f

√
αĝ∗y

1 + (σ2
fα+ β)[|ĝ|2 +MSE(g)]

. (2.9)

Denote the estimation error of f as

△f , f − f̂ . (2.10)

By using (1.9), the MSE of the LMMSE estimation can be calculated to be

MSE(f) = σ2
f −

σ4
fα|ĝ|2

1 + (σ2
fα+ β) [|ĝ|2 +MSE(g)]

. (2.11)

2.2.2 Power Allocation Problem Statement

In this chapter, we investigate the power allocation problem for the channel training

process explained in Section 2.2.1. To help the problem formulation, we introduce

a few new notation on power. Let Pf be the total source and relay power used in

the training of f and Pt be the total power used for the overall training. Thus

Pf = Pf,S + Pf,R and Pt = Pf + Pg.

We use η to represent the percentage of power allocated to the source during the

training of f , i.e., Pf,S = ηPf . Thus the power allocated to the relay during the

training of f satisfies Pf,R = (1 − η)Pf . We use λ to indicate the power allocated

to the training of f , i.e., Pf = λPt. Thus the power used for the training of g

satisfies Pg = (1− λ)Pt. Our power allocation problem is to find the optimal η and

λ for a given total training power Pt. Two objective functions are considered in this

chapter, the total MSE of the channel estimations and the OP of the relay network

under channel estimation error.
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2.3 MSE-Based Power Allocation

In this section, we aim to derive the optimal power allocation based on the min-

imization of the total MSE of the estimations of f and g. The problem can be

represented as

argmin
λ,η

[MSE(g) +MSE(f)]

= argmin
λ

[MSE(g) + min
η

MSE(f)],
(2.12)

where the equality is because MSE(g) is independent of η.

We first try to understand the behavior of MSE(g) and MSE(f) from (2.4) and

(2.11), respectively. MSE(g) is a decreasing function of Pg and limPg→∞MSE(g) =

0. On the other hand, MSE(f) depends not only on Pf,S , Pf,R (powers of the source

and the relay during the training of f) via α and β, but also on Pg (the power of

the relay during the training of g) via MSE(g). For a fixed Pg, even for infinite Pf,S

and Pf,R, the training of f cannot be perfect. It can be shown that

lim
Pf,S ,Pf,R→∞

MSE(f) =
σ2
fMSE(g)

|ĝ|2 +MSE(g)
.

Hence, to improve the training quality of f , not only the power of the second training

stage but also the power of the first training stage must be increased. Also notice

that MSE(f) depends on ĝ, the estimation of the relay-to-destination channel. These

make the power allocation problem challenging.

We first work on the inner minimization problem of (2.11), minη MSE(f) . Define

a , |ĝ|2 +MSE(g). From (2.11) and the definition of η, we have

MSE(f) = σ2
f −

η(1− η)P 2
f |ĝ|2σf 4

(1 + σ2
fηPf )[1 + a(1− η)Pf ]

. (2.13)

By calculating the derivative of MSE(f) with respect to η and making it zero,

we have

η⋆ =

√

1 + aPf
√

1 + aPf +
√

1 + σ2
fPf

. (2.14)

Notice that (2.14) is a function of ĝ and MSE(g) via a. Thus, the optimal power

allocation for the two steps of the training of f depends on both the value and the
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quality of the estimation of g. With this η⋆, we have

MSE(f)|η=η⋆ = σ2
f

2(1 + ρ1ρ2) + Pf (σ
2
f + a) + σ2

fMSE(g)P 2
f

(1 + ρ1ρ2)2
, (2.15)

where ρ1 ,
√

1 + aPf , ρ2 ,
√

1 + σ2
fPf .

Next we consider the optimization of λ, i.e., the power allocation between the

training of f and training of g. Note that in the optimization of λ, ĝ is unknown.

Thus we should use the average value of (2.15) over ĝ. However, because of com-

plexity of the function (2.15), the average cannot be found in a tractable form. In

the following, for tractable analysis and closed-form solution, we approximate |ĝ|2

with its average value, i.e.,
Pgσ4

g

1+Pgσ2
g

(this is equivalent to using a ≈ σ2
g). In addition,

we consider the high power region, i.e., Pt ≫ 1. By only omitting the lower order

terms of Pt, we have

MSE(f)|η=η⋆ ≈
(Pt − Pf )(σg + σf )

2 + Pfσ
2
f

σ2
gPf (Pt − Pf )

. (2.16)

By using (2.16) and (2.4) in (2.12), the MSE-based power allocation problem reduces

to

argmin
λ

[

(σg + σf )
2

σ2
g

1

Pf
+

σ2
f + σ2

g

σ2
g

1

Pt − Pf

]

.

By calculating the derivative of the objective function and making it zero, we find

the optimal λ to be

λ⋆ =



1 +

√

σ2
f + σ2

g

σf + σg





−1

. (2.17)

We can derive from (2.17) that λ⋆ ≤
√
2(
√
2 − 1) ≈ 59%. This means that the

power used in the training of f is no larger than 59% of the total power.

From (2.17) we can also see that λ⋆ depends on the channel variances only. But

from (2.14), we see that η⋆ depends on not only the channel variances but also ĝ via a

(the estimation of the relay-to-destination channel). Thus, with the proposed power

allocation scheme, the powers the source and the relay used for the training of f are

actually adaptive to the channel quality. Also η⋆ shows that with a better g-channel

quality, more power should be allocated to the source. For the implementation of

the proposed scheme, a central controller is needed.
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2.4 OP-Based Power Allocation

Total MSE-based power allocation aims at the minimum variance on the channel

error. However, it is not a direct measure of the network performance. Further,

it weights the errors on the two channels MSE(f) and MSE(g) equally, which may

not be optimal. In this section, we aim to minimize the OP of the network under

channel estimation error, denoted as Pout. We use AF with fixed gain relay power

coefficient for data transmission. Let Pd,S , Pd,R be the powers used by the source

and the relay during the data transmission. The following lemma on the OP for the

high power regime is obtained.

Lemma 1: Assume that the training power and data power have the same order,

i.e., Pf,S , Pf,R, Pg, Pd,S , Pd,R ∼ P and P ≫ 1. Given the SNR-threshold γth and

MSEs of channel estimates, we have,

Pout ≈ γth

[

MSE(g)

σ2
g

+
MSE(f)

σ2
f

]

+ p+O
(

lnP

P 2

)

, (2.18)

where p = O( lnP
P ) is independent of Pf,S, Pf,R, and Pg.

Proof. First we explain some mathematical operators. x ∼ y means that x and y

are of the same order of magnitude. f(x) = O(g(x)) means that limx→∞
f(x)
g(x) = c

with c a non-zero constant. In other words, f(x) = O(g(x)) means that f(x) and

g(x) functions have the same scaling for large x.

Next we will provide the proof. The data transmissions take two steps. In the

first step, the source sends a data symbol s which has unit power. The received

signal at the relay is

r =
√

Pd,Sfs+ nd,R. (2.19)

In the second step, the relay amplifies and forwards the received signal to the des-

tination. Fixed relay gain amplification factor is used at the relay. Similar to the

derivation of (2.6). Thus the transceiver equation of the data transmission period

can be written as

y =

√

Pd,R

1 + Pd,S
rg + nd,D =

√
αdgfs+ nd, (2.20)
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where αd ,
Pd,SPd,R

1+Pd,Sσ
2
f

, βd ,
Pd,R

1+Pd,Sσ
2
f

, and

nd ,
√

βd(ĝ +△g)nd,R + nd,D,

with nd,R and nd,D the complex Gaussian noise at the relay and the destination dur-

ing data transmission, following CN (0, 1). Considering that only channel estimates

are available at the destination, using (2.3) and (2.10), we can rewrite (2.20) as

y =
√
αdĝf̂ s+ ω, (2.21)

where

ω ,
√
αd[△f(ĝ +△g) + f̂△g]s+

√

βd(ĝ +△g)nd,R + nd,D.

ωis the noise-plus-channel-error term. Recall that△g follows the distribution CN
(

0,
σ2
g

1+Pgσ2
g

)

.

Compared to ĝ, △g is a lower order term of Pt.

When the training power is high, we can neglect the lower order terms in ω,

which are
√
αd△f△gs and

√
βd△gnd,R. The received SNR can be approximated as

E(αd|ĝ|2|f̂ |2)
E(|ω|2) ≈ αd|ĝ|2|f̂ |2

E[
√
αd(△fĝ + f̂△g)s+

√
βdĝnd,R + nd,D]

=
αd|ĝ|2|f̂ |2

αdMSE(f)|ĝ|2 + αdMSE(g)|f̂ |2 + βd|ĝ|2 + 1
, γ. (2.22)

Denote Q1 , γthMSE(g) and Q2 , γth

[

MSE(f) + 1
Pd,S

]

. The OP can be calcu-

lated as

Pout = P(γ ≤ γth) ≈ P1 + P2 + P3, (2.23)

where

P1 , P(|ĝ|2 ≥ Q1 & |f̂ |2 ≤ Q2),

P2 , P(|ĝ|2 ≤ Q1 & |f̂ |2 ≥ Q2),

P3 , P

(

|ĝ|2 ≥ Q1 & Q2 ≤ |f̂ |2 ≤ γth
αd(|ĝ|2 −Q1)

+Q2

)

.

Recall that limPg→∞MSE(g) = 0. Thus when Pg ≫ 1, we can approximate f̂ as

Gaussian following the distribution CN (0,MSE(f)). Then the probability density
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function of |ĝ|2 and |f̂ |2 are

f|ĝ|2(x) =
1

MSE(g)
e

−x
MSE(g) , (2.24)

f|f̂ |2(y) =
1

MSE(f)
e

−y

MSE(f) , (2.25)

respectively. By using (2.24) and (2.25), P1 can be calculated as

P(|ĝ|2 ≥ Q1 & |f̂ |2 ≤ Q2) ≈
∫ ∞

Q1

∫ Q2

0
f|ĝ|2(x)f|f̂ |2(y)dxdy

≈ e
−

Q1
σ2
g (1− e

−
Q2
σ2
f ) +O

(

1

P 2

)

.

Using the same mathematical manipulation, we can show that

P2 ≈ e
−

Q2
σ2
f (1− e

−
Q1
σ2
g ) +O

(

1

P 2

)

,

P3 ≈ e
−

Q1
σ2
g
−

Q2
σ2
f (1− c) +O

(

1

P 2

)

,

where c ,
√

4γth
αdσ2

gσ
2
f

K1

(

√

4γth
αdσ2

gσ
2
f

)

and K1(·) is the modified Bessel function of the

second kind. Thus,

Pout ≈ e
−

Q1
σ2
g + e

−
Q2
σ2
f − (1+c)e

−
Q1
σ2
g
−

Q2
σ2
f +O

(

1

P 2

)

. (2.26)

When Pd,R ≫ 1, we have c = 1 + q + O
(

lnPd,R

P 2
d,R

)

, where q = O(
lnPd,R

Pd,R
). By using

this in (2.26), (3.30) can be obtained.

With Lemma 2, the OP minimization problem becomes

argmin
λ

[

σ2
fMSE(g) + σ2

g argmin
η

MSE(f)

]

. (2.27)

The inner minimization problem is the same as that in Section 2.3, hence we

have the same optimal solution η⋆ in (2.14). For the optimization of λ, by using

(2.16) and (2.4) in (2.27), the problem reduces to

argmin
λ

[

(σg + σf )
2

Pf
+

2σ2
f

Pt − Pf

]

.

By calculating the derivative of the objective function and making it zero, we find

the optimal λ to be

λ+ =

(

1 +

√
2σf

σf + σg

)−1

. (2.28)
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We can see from (2.28) that λ+ >
√
2 − 1 ≈ 41%, which says that the power

allocated to the training of f is always no less than 41%. Also. when σ2
f increases,

less power should be allocated to the training of f , while when σ2
g increases, more

power should be allocated to the training of f .

2.5 Simulation Results and Discussions

In this section, we compare the proposed power allocation schemes with an even

power allocation where Pf,S = Pf,R = Pf/2 and Pg = Pf/2 = Pt/3, i.e., η = 1/2

and λ = 2/3. In this even power allocation, the powers allocated to the source and

the relay during the training of f and that allocated to the training of g are the

same. To capture the effect of pass-loss, we model σ2
f = ( φ

dSR
)τ and σ2

g = ( φ
dRD

)τ

where τ is the path-loss exponent and φ is a constant. dSR, dRD, and dSD are the

distances between the source and the relay, the relay and the destination, and the

source and the destination, respectively. Here we introduce a parameter µ to relate

dSR and dSD as dSR = µdSD. Thus σ2
f = ( φ

µdSD
)τ and σ2

g = [ φ
(1−µ)dSD

]τ . In our

simulations, we assume τ = 3 and φ/dSD = 1.

Fig. 2.2 shows the total MSE in the logarithmic scale. The training power is set

to be Pt = 20dB. When the relay is closer to the source, we can see that the MSE-

based scheme is slightly better than the OP-based one and both proposed schemes

are superior to the even power allocation. When the relay is closer to the destination,

the gap between MSE-based scheme and the even power allocation scheme becomes

larger. For µ = 0.1, the total MSE reduces by about 24.2% with the proposed MSE-

based scheme. For µ = 0.9, the total MSE improvement of the proposed MSE-based

scheme is about of 26.1%. The total MSE performance improves when µ increases.

This indicates that we have better channel estimation quality as the relay is closer

to the destination. The proposed OP-based power allocation is superior to even

power allocation for small µ but inferior for large µ.

Fig. 2.3 and Fig. 2.4 show the network OP for different µ and Pt. We set

γth = 0.1 and Pd,S = Pd,R = 20dB. In Fig. 2.3, we have training power Pt =

20dB. From Fig. 2.3, we see that performance improvement of 24.5% and 33.3%
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Fig. 2.2: Total MSE of channel estimations for one-way single-relay network where
Pt = 20dB.

over the even power allocation are obtained with the proposed OP-based power

allocation for µ = 0.1 and µ = 0.9, respectively. MSE-based and OP-based schemes

have comparable performance for small µ. But as µ is closer to 1, the OP-based

scheme is significantly better. The figure also shows that the OP improves when

µ increases. This is due to the better channel estimation quality as the relay is

closer to the destination. Fig. 2.4 shows that the OP improves as the total training

power Pt increases. This is because with higher training power, the effect of channel

estimation error is less significant. When the relay is closer to the destination node

(µ is larger), the advantage of the OP-based scheme is more prominent.

2.6 Conclusions

In this chapter, we investigated the power allocation during training for a one-

way single-relay network, which included the power allocation between the training

of different channels and between the source and the relay during the training of

the source-to-relay channel. For the high power regime, analytical solutions for the

power allocation based on the minimization of the total MSE and the OP were found.
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Fig. 2.3: Outage probability for different relay locations for one-way single-relay
network where Pt = 20dB.

Simulations on the MSE and the OP were demonstrated to show the superiority of

the proposed schemes to even power allocation.
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Chapter 3

Power Allocation in Training for

One-Way Multi-Relay Network

3.1 Introduction

In this chapter, we consider a one-way multi-relay AF network and study the power

allocation problem during the training of the individual source-to-relay and relay-to-

destination channels. This includes three parts: 1) the power allocation among the

training of channels on different relay paths, 2) for each relay path, the power alloca-

tion between the training of the source-to-relay channel and the relay-to-destination

channel, and 3) in the training of the source-to-relay channel, the power alloca-

tion between the source transmission and the relay transmission. Two objective

functions, the total MSE of estimations of all individual channels and the OP of

the whole network, are considered. Simulation results of the proposed schemes are

shown and compared to even power allocation.

In what follows, we clarify the difference of our work to existing ones [56, 61–

64]. First of all, we consider networks with multiple relays, while [56, 61–64] were

on single relay networks. Different to [61] and [62], where the end-to-end channel

estimation was investigated, we focus on the estimation of the individual source-to-

relay channel and relay-to-destination channel. In addition, our objective functions

in the power allocation are different to those in [61, 62]. Compared with [56, 63, 64],

we consider different system model and power allocation problem. [56] worked on

the power allocation between the training and the data transmission at the source
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for a fixed relay power, [64] studied the power allocation between the estimation of

different channels at the relay for a fixed source power, [63] worked on the power

allocation between the training and the data transmission, and between the source

and the relay. Our work is on the joint power allocation among the relay paths, be-

tween the two channels of each relay path, and between the source transmission and

the relay transmission. Besides, [63] considered variable relay gain while our work

considers fixed relay gain. Moreover, we provide closed-form analytical solutions to

the power allocation problems.

The rest of the chapter is organized as follows. The system model, training

scheme and the power allocation problem are described in Section 3.2. The MSE-

based power allocation and the OP-based power allocation are investigated in Sec-

tion 3.3 and Section 3.4, respectively. Simulation results are shown and discussed

in Section 3.5. Concluding remarks are given in Section 3.6.

3.2 System Model and Training Scheme

RN

R1

Ri
fN

f1

fi

gN

g1

gi
Source Destination

Relays

S D

...
...

...

...
...

...

Fig. 3.1: One-way multi-relay network model.

We consider a one-way multi-relay network where there are one source node S,

one destination node D, and N (N ≥ 2) relay nodes R1, R2, · · · , RN . The network

model is depicted in Fig. 3.1. Each node is equipped with single antenna which

can be used for both transmission and reception. Denote the channel between S
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and the ith relay as fi and that between the ith relay and D as gi. Both gi and fi

are independent zero-mean complex Gaussian random variables with variance σ2
g,i

and σ2
f,i, respectively. Thus, the channels are assumed to be independent Rayleigh

flat-fading. There is no direct link between the source and the destination due to

large path-loss.

3.2.1 Training Scheme

In this subsection, we demonstrate the training scheme for the estimation of the

individual channels at the receiver. Since all channels are independent, we consider

the training and estimation of channels on different relay paths separately and se-

quentially. In other words, the training of g1, f1 is conducted first, followed by the

training of g2, f2, so on so forth, and finally the training of gN , fN . Without loss of

generality, in what follows, we elaborate the training of gi, fi. The procedure follows

our work in Chapter 2. It contains two stages.

The first stage is for the training of gi, which takes 1 time slots. Relay i sends

a training symbol to the destination. Without loss of generality, we use the unit

symbol as the training symbol. The received symbol at the destination is

xi =
√

Pg,igi + ng, (3.1)

where Pg,i is the power the ith relay uses for the training of gi and ng is the noise

at the destination whose distribution follows CN (0, 1).

The second stage is for the training of fi, which takes 2 time slots. A two-step

cooperative strategy is used, where first the source sends the unit symbol to Relay

i, then Relay i amplifies and forwards its received signal with fixed-gain relay power

coefficient explained in Section 2.2.1. Denote the power used at the source and

Relay i for the training of fi as PS,i and PR,i, respectively. Define

αi ,
PS,iPR,i

1 + PS,iσ2
f,i

and βi ,
PR,i

1 + PS,iσ2
f,i

. (3.2)

The same as the description in Chapter 2, the received symbol at the destination is

yi =
√
αigifi +

√

βigini + nf , (3.3)

29



where ni and nf are the noises at the ith relay and the destination respectively,

following the distribution CN (0, 1).

Denote the total transmission power used for the training of fi as Pf,i. We have

Pf,i = PS,i + PR,i.

Denote the total transmission power used for the training of channels related to

Relay i (fi and gi) as Pi. We have

Pi = Pf,i + Pg,i.

If the total power used in the overall training process is Pt. We have

Pt =

N
∑

i=1

Pi.

We illustrate the training scheme and the power used for each training step in

Fig. 3.2.

............

...

...

Relay 1 Relay N

1st Stage1st Stage 2nd Stage2nd Stage

Pg,1 PS,1 PR,1 Pg,N PS,N PR,N

Pf,1 Pf,N

Pt

Fig. 3.2: Training scheme and power for one-way multi-relay network.

3.2.2 LMMSE Estimators

In this subsection, we explain the LMMSE estimates of the individual channel coef-

ficients fi and gi (i = 1, · · · , N) at the destination. Again, without loss of generality,

we elaborate the estimations of fi and gi.
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First for gi, from (3.1), similarly to Chapter 2, we get the LMMSE estimate as

ĝi =

√

Pg,iσ
2
g,i

1 + Pg,iσ2
g,i

xi. (3.4)

Since the observation model in (3.1) is linear and Gaussian, (3.4) is also the MMSE

estimation of gi. Denote the estimation error as △gi , gi − ĝi. △gi follows the

distribution CN
(

0,
σ2
g,i

1+Pg,iσ2
g,i

)

. The MSE on gi is:

MSE(gi) =
σ2
g,i

1 + Pg,iσ2
g,i

≈ 1

Pg,i
, (3.5)

where the approximation is under the condition Pg,i ≫ 1.

To estimate fi, we use the observation yi in (3.3). Notice that gi is unknown

and only the estimation ĝi is known at the destination. We rewrite (3.3) as

yi =
√
αiĝifi + (

√
αifi +

√

βini)△gi +
√

βiĝini + nf . (3.6)

Let

wi , (
√
αifi +

√

βini)△gi +
√

βiĝini + nf ,

which is the equivalent noise in the observation model in (3.6). The MMSE estimate

of fi is intractable due to the unknown distribution of wi. Using the results in

Subsection1.3.2, after straightforward calculations, the LMMSE estimate of fi is:

f̂i =
σ2
f,i

√
αiĝi

∗yi

1 + (σ2
f,iαi + βi)[|ĝi|2 +MSE(gi)]

. (3.7)

Denote the estimation error as △fi , fi − f̂i. By using (1.9), the MSE on fi is:

MSE(fi) = σ2
f,i −

σ4
f,iαi|ĝi|2

1 + (σ2
f,iαi + βi)[|ĝi|2 +MSE(gi)]

. (3.8)

3.2.3 Power Allocation Problem Statement

We investigate the power allocation problem during the channel training process for

a given total training power. This includes the power allocation among different

relay paths, and for each relay path, the power allocation between the training of

the relay-to-destination channel and the training of the source-to-relay channel, and
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for the source-to-relay channel training, the power allocation between the source

transmission and the relay transmission.

To help the problem formulation, we introduce a few new notation on power.

Recall that Pt is the total training power and Pi is the training power for the ith

relay path. Define θi such that

Pi = θiPt and
N
∑

i=1

θi = 1. (3.9)

Thus θi is the percentage of power allocated to the ith relay path. Recall that for

the ith relay path, Pg,i is the power for the training of gi and Pf,i is the power for

the training of fi. Define λi such that

Pf,i = λiPi and Pg,i = (1− λi)Pi. (3.10)

Thus λi is the percentage of power allocated for the training of fi. Recall that PS,i

and PR,i are the source power and relay power used for the training of fi. Define ηi

such that

PS,i = ηiPf,i and PR,i = (1− ηi)Pf,i. (3.11)

Thus ηi is the percentage of power allocated to the source in the two-step training

of fi. The notation and relationship for the training power of each training stages

and steps are also represented in Fig. 3.2.

Under an overall training power constraint Pt, our power allocation problem is to

derive the optimal θi, λi and ηi. This joint power allocation problem is challenging

due to the complex nature of multi-relay networks. There are conflicts among the

relays and among different channels for training power. Further, due to the two-step

transmission, the performance of the source-to-relay channel estimate depends on

the estimate of the relay-to-destination channel. From (3.8) and (3.2), we can see

that MSE(fi) is a function of not only PS,i, PR,i (the power used in the training of

fi), but also MSE(gi) and |ĝi|. In addition, MSE(fi) depends on ĝi, the estimation

value of gi.

In the following two sections, we propose closed-form solutions for the power

allocation based on two objective functions: the total MSE of the LMMSE estimates
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of all channels and the OP of the network with channel estimation error. For

tractable analysis, we consider the high power region only, i.e., Pt ≫ 1.

3.3 MSE-Based Power Allocation

In this section, we use the total MSE of all channel estimates as the criterion for

the power allocation.

3.3.1 MSE-Based Power Allocation Solution

The total MSE on all channels is

MSEtotal =
N
∑

i=1

[MSE(gi) +MSE(fi)]. (3.12)

Our power allocation problem can be represented as

arg min
θi,λi,ηi

N
∑

i=1

[MSE(gi) +MSE(fi)] = argmin
θi

N
∑

i=1

min
λi

[MSE(gi) + min
ηi

MSE(fi)],(3.13)

where the equality is because MSE(gi) is independent of ηi.

There are three layers of optimization. First, we solve the optimization of ηi.

The problem is minηi MSE(fi). By using (3.11), (3.5), and (3.2) in (3.8), we have

MSE(fi) = σ2
f,i −

ηi(1− ηi)P
2
f,i|ĝi|2σ4

f,i

(1 + σ2
f,iηiPf,i)[1 +

(

|ĝi|2 + P−1
g,i

)

(1− ηi)Pf,i]
. (3.14)

By calculating the derivative of MSE(fi) with respect to ηi and making it zero, the

optimal ηi can be found to be:

η∗i =

√

1 +
(

|ĝi|2 + P−1
g,i

)

Pf,i

√

1 +
(

|ĝi|2 + P−1
g,i

)

Pf,i +
√

1 + σ2
f,iPf,i

. (3.15)

Now, we consider the optimization of λi. The problem is

argmin
λi

[MSE(gi) + min
ηi

MSE(fi)]

= argmin
λi

[MSE(gi) +MSE(fi)|η=η∗ ] . (3.16)

Define

ρ1,i ,

√

1 +
(

|ĝi|2 + P−1
g,i

)

Pf,i =
√

1 + λi[(1− λi)−1 + |ĝi|2Pi],

ρ2,i ,
√

1 + σ2
f,iPf,i =

√

1 + σ2
f,iλiPi.
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By using the optimal ηi in (3.15) and the definition of λi in (3.10), we can show

with straightforward calculations from (3.14) that

MSE(fi)|ηi=η∗i
=σ2

f,i

[

2

1+ρ1,iρ2,i
+
λiPi[σ

2
f,i+|ĝi|2+(1−λi)

−1P−1
i ] + σ2

f,iλ
2
i (1−λi)

−1Pi

(1+ρ1,iρ2,i)2

]

.(3.17)

Recall that λi represents the power allocation between the training of fi and gi

for the ith relay path. Its optimization is before the training of gi, so the value

of ĝi is not available in the optimization of λi. Thus, we should use the average

value of (3.17) over ĝi in the objective function in (3.16). However, because of the

complexity of the function, the average cannot be found in a tractable form. In the

following, for tractable analysis and closed-form solution, we approximate |ĝi|2 with

its average value, i.e., |ĝi|2 ≈ E{|ĝi|2} =
Pg,iσ

4
g,i

1+Pg,iσ2
g,i

. Using this approximation and

also considering the high power region (Pi ≫ 1), we have

ρ1,i ≈
√

1 + σ2
g,iλiPi,

|ĝi|2 + (1− λi)
−1P−1

i ≈ σ2
g,i.

Then, (3.17) is approximated as

MSE(fi)|ηi=η∗i
(3.18)

≈ σ2
f,i







2

1 +
√

1 + σ2
g,iλiPi

√

1 + σ2
f,iλiPi

+
λiPi(σ

2
g,i + σ2

f,i) + σ2
f,iλ

2
i (1− λi)

−1Pi
(

1 +
√

1 + σ2
g,iλiPi

√

1 + σ2
f,iλiPi

)2







=
1

σ2
g,iPi

[

(σf,i + σg,i)
2

λi
+

σ2
f,i

1− λi

]

+O
(

1

P 2
i

)

. (3.19)

Thus using (3.5) and (3.19), we have

MSE(fi)|ηi=η∗i
+MSE(gi) ≈

1

σ2
g,iPi

[

(σf,i + σg,i)
2

λi
+

σ2
f,i + σ2

g,i

1− λi

]

+O
(

1

P 2
i

)

.(3.20)

Define

hi(λi) ,

[

(σf,i + σg,i)
2

λi
+

σ2
f,i + σ2

g,i

1− λi

]

. (3.21)

The λi optimization problem in (3.16) can thus be approximated as argminλi
hi(λi).

By calculating the derivative of the objective function and making it zero, the op-

timal λi is

λ∗
i =



1 +

√

σ2
f,i + σ2

g,i

σg,i + σf,i





−1

. (3.22)
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By using the optimal solution λ∗
i in (3.21), we have

hi(λ
∗
i ) =

(

1 + σf,iσ
−1
g,i +

√

1 + σ2
f,iσ

−2
g,i

)2

P−1
i . (3.23)

Finally, as the last step, we solve the optimization of θi. Notice that with the

approximation mentioned above, from (3.13), the optimization problem becomes

argmin
θi

N
∑

i=1

hi(λ
∗
i ), subject to

N
∑

i=1

θi = 1. (3.24)

Since the objective function is a monotonic function of each θi and the constraint is

linear in θi, (3.24) is a convex optimization problem. Thus we can use the method of

Lagrange multipliers to find the global optimal. We introduce a Lagrange multiplier

z, and the Lagrange function is defined as

Λ1(θ1, · · · , θN , z) ,
N
∑

i=1

[

(σg,i + σf,i) +
√

σ2
f,i + σ2

g,i

]2

σ2
g,iθi

+ z

(

N
∑

i=1

θi − 1

)

.(3.25)

By calculating the gradient of (3.25) and making them zero, the optimal θi can be

derived to be

θ∗i =
1 + σf,iσ

−1
g,i +

√

1 + σ2
f,iσ

−2
g,i

∑N
i=1

(

1 + σf,iσ
−1
g,i +

√

1 + σ2
f,iσ

−2
g,i

) . (3.26)

To sum-up, the proposed power allocation solution is specified by (3.15), (3.22),

and (3.26).

3.3.2 Discussions

One possible implementation of this power allocation is as follows. For a given

fixed training power Pt. The nodes (source, relays, and destination) in the network

calculate the power allocated to the training of the channels on each relay path

P1, · · · , PN from (3.9) using the optimal θ∗i provided in (3.26). Notice that θ∗i

depends on the channel variances only. In wireless communication, the variance

of a channel does not change or change significantly slower than the instantaneous

channel value. Thus, it is easy for the nodes in a network to know the values of the

channel variances. Then the source and the ith Relay calculate the powers allocated

to the training of gi and the training of fi, as from (3.10) using the optimal λ∗
i in
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(3.22). Notice that similar to θ∗i , λ
∗
i also depends on the channel variances only.

Then Relay i uses power Pg,i to conduct the training of gi and the receiver obtains

the channel estimate ĝi. The receiver then calculate the optimal η∗i from (3.15) and

broadcasts it back to the source and Relay i. The source and Relay i can then

calculate the power Pg,i and Pf,i to use in the two-step training of fi from (3.11).

To implement the power allocation between the source and the relay in the

training fi, we need 1) to conduct the training of gi first; and 2) to use the receiver

as the master controller and feedback the power coefficients. This is because η∗

depends on ĝi, the instantaneous relay-to-destination channel estimate.

The proposed power allocation solution is adaptive to the channel variances.

In the training of the source-to-relay channels, the powers are also adaptive to

the estimates of the relay-to-destination channels. Thus, the proposed design can

achieve better performance as will be seen in the simulation section. However, to

implement the design, feedback from the receiver is needed, which causes extra

overhead.

3.4 OP-Based Power Allocation

The MSE-based power allocation scheme proposed in this section aims at the mini-

mum total variance of the channel estimation error. However, total MSE does not

directly depict the performance of the network, e.g., the throughput or the accu-

racy of the data transmission. In addition, in the total MSE formula, the MSE

of all channels, MSE(fi),MSE(gi), i = 1, · · · , N are weighted equally, which may

not be optimal for relay network performance. These motivate the OP-based power

allocation.

In this section, we consider the OP of the network, denoted as Pout, and use it as

the objective function in the training power allocation problem. The OP depends on

not only the CSI precision, but also the data-transmission protocol. In this work, we

choose the best relay selection (Section 1.2.3) for the data-transmission, where the

relay that provides the best received SNR will be selected to forward information.

In [66], the effect of feedback delay and channel estimation errors were investigated
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for relay selection with DF. For two-way relay networks with relay selection, the

impact of channel estimation error on the performance was studied in [67]. In this

work, we consider the OP under channel estimation error with relay selection.

The best relay selection scheme under channel estimation error is as follows.

First, the source sends out a data symbol s which has unit power. Then given the

channel estimates, the relay with the highest received SNR is selected to forward

using fixed gain power coefficient. Denote the power the source and the ith relay

use for data-transmission as QS,i and QR,i, respectively. Let

αdi ,
QS,iQR,i

1 +QS,iσ2
f,i

, βdi ,
QR,i

1 +QS,iσ2
f,i

.

If the ith relay is selected, using the results in Chapter 2, the transceiver equation

is

yd,i =
√
αdiĝif̂is+ νi, (3.27)

where

νi ,
√
αdi[△fi(ĝi +△gi) + f̂i△gi]s+

√

βdi(ĝi +△gi)ndi + nd.

νi is the noise-plus-channel-error term. ndi and nd are the noises at the ith re-

lay and the destination, following CN (0, 1). Recall that △gi follows the distribution

CN
(

0,
σ2
g,i

1+Pg,iσ2
g,i

)

. Compared to ĝi, △gi is a lower order term of Pt. When the train-

ing power is high, we can neglect the lower order terms in vi which are
√
αdi△fi△gis

and
√
βdi△gindi. The received SNR via the ith relay path can be approximated as

E(αdi|ĝi|2|f̂i|2)
E(|νi|2)

≈ αdi|ĝi|2|f̂i|2
E[
√
αdi(△fiĝi + f̂i△gi)s+

√
βdiĝindi + nd]

=
αdi|ĝi|2|f̂i|2

[αdiMSE(fi) + βdi]|ĝi|2 + αdiMSE(gi)|f̂i|2 + 1
, γi. (3.28)

The relay with the highest γi is chosen for information forwarding. The received

SNR after relay selection is:

γ = max
i

{γi}. (3.29)

We have proved that the following lemma on the OP of best relay selection under

channel estimation error.
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Lemma 2: Assume that all powers have the same order, i.e., Pt, QS,i, QR,i ∼ P

and P ≫ 1. Assume that the MSEs of the channel estimations for fi and gi are

MSE(fi) and MSE(gi), which are fixed values. With the SNR-threshold γth, the

outage probability of the network is

Pout = γNth

N
∏

i=1

(

MSE(gi)

σ2
g,i

+
MSE(fi)

σ2
f,i

+ Ti

)

+O
(

lnP

PN

)

, (3.30)

where

Ti ,
1

QS,iσ2
f,i

+
1

QR,iσ2
g,i

(

1− 2γ − ln
γth

QR,iσ2
g,i

)

.

with γ the Euler-Mascheroni Constant.

Proof. From (3.28) we can see that γi is a function of |ĝi| and |f̂i|, which has the

same structure as the SNR in [68]. Also, when the training power is high, f̂i can be

approximated to be Gaussian. By using Theorem 1 in [68], the CDF of γi is:

Fγi(γth) = 1− e
−γth

(

MSE(fi)

σ2
f,i

+
MSE(gi)

σ2
g,i

+
βdi

αdiσ
2
f,i

)

√

4γth
αdiσ

2
g,iσ

2
f,i

K1

(
√

4γth
αdiσ

2
g,iσ

2
f,i

)

,(3.31)

where K1(·) is the modified Bessel function of the 2nd kind. When QR,i ≫ 1, we

have

√

4γth
αdiσ

2
g,iσ

2
f,i

K1

(
√

4γth
αdiσ

2
g,iσ

2
f,i

)

= 1− γth
QR,iσ2

g,i

(

1− 2γ − ln
γth

QR,iσ2
g,i

)

+O
(

lnQR,i

Q2
R,i

)

,

from which we can represent (3.31) as

Fγi(γth) = γth

(

MSE(fi)

σ2
f,i

+
MSE(gi)

σ2
g,i

+ Ti

)

+O
(

lnP

P 2

)

. (3.32)

From the received SNR formula in (3.29), the OP can be calculated as:

Pout = P[γ ≤ γth] =
N
∏

i=1

Fγi(γth). (3.33)

After straightforward mathematical manipulation, (3.30) can be acquired.

The OP-based power allocation problem is to find θi, λi and ηi that minimize

the OP in (3.30). It is noteworthy that in the total MSE optimization, as shown in

(3.12), the sum-MSE of every relay path and the MSEs of the two channels on every
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path have the same weighting. With the OP optimization, from (3.30), we can see

that the MSEs of different relay paths and channels have different weights based on

the channel variances, σ2
g,i and σ2

g,i.

For high power range, we can ignore the lower order term of P to obtain the

OP-based power allocation problem as follows:

arg min
θi,λi,ηi

N
∏

i=1

(

MSE(gi)

σ2
g,i

+
MSE(fi)

σ2
f,i

+ Ti

)

= argmin
θi

N
∏

i=1

[

argmin
λi

(

MSE(gi)

σ2
g,i

+ argmin
ηi

MSE(fi)

σ2
f,i

)

+ Ti

]

, (3.34)

where the equality is because MSE(gi) is independent of ηi and Ti is independent of

the training powers Pi, Pg,i, PS,i and PR,i.

Similar to the derivations in Section 3.3, there are three layers of optimization.

First, we solve the optimization of ηi: argminηi MSE(fi), which is the same as that

in Section 3.3. Thus the optimal solution η∗i is given in (3.15).

Next, we solve the second layer optimization of λi in (3.34), the problem is

argmin
λi

(

MSE(gi)

σ2
g,i

+
MSE(fi)|ηi=η∗i

σ2
f,i

)

. (3.35)

We consider the same approximation as that in Section 3.3. Similarly from (3.19)

and (3.5), we have

MSE(gi)

σ2
g,i

+
MSE(fi)|ηi=η∗i

σ2
f,i

≈ (σg,i + σf,i)
2

λiPi
+

2σ2
f,i

(1− λi)Pi
, h̃i(λ).

The problem in (3.35) reduces to

argmin
λi

h̃i(λ).

By calculating the derivative of the objective function and making it zero, the op-

timal λi is

λ+
i =

(

1 +

√
2σf,i

σf,i + σg,i

)−1

. (3.36)

Finally, we solve the optimization of θi. For the very high power regime, lnP ≫

1, with the optimal λ+
i in (3.36), we have

h̃i(λ
+) =

(σg,i + σf,i +
√
2σf,i)

2

σ2
g,iσ

2
f,iθiPt

+ Ti
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and

N
∏

i=1

h̃i(λ
+) =

N
∏

i=1

(

(σg,i + σf,i +
√
2σf,i)

2

σ2
g,iσ

2
f,iθiPt

+ Ti

)

=

N
∑

i=1

(σg,i + σf,i +
√
2σf,i)

2
∏N

j=1,j 6=i Tj

σ2
g,iσ

2
f,iθiPt

+O
(

lnN−2 P

PN

)

. (3.37)

The first term in (3.37) scales as O
(

lnN−1 P
PN

)

. Thus, after omitting the lower order

term of P , the θi optimization reduces to

argmin
θi

N
∑

i=1

(σg,i + σf,i +
√
2σf,i)

2
∏N

j=1,j 6=i Tj

σ2
g,iσ

2
f,iθiPt

, subject to
N
∑

i=1

θi = 1. (3.38)

It is obvious that the objective function is a monotonic function, and the constraint

is linear in θi. Thus we use the same method in Section 3.3 to obtain the optimal

θi as

θ+i =
[σ−1

f,i + (1 +
√
2)σ−1

g,i ]
∏N

j=1,j 6=i (Tj)
1/2

∑N
i=1 {[σ−1

f,i + (1 +
√
2)σ−1

g,i ]
∏N

j=1,j 6=i (Tj)1/2}
. (3.39)

To sum-up, the solution of the OP-based training power allocation is specified

by (3.15), (3.36), and (3.39).

For the OP-based power allocation scheme, we get the same optimal solution

ηi as that for the MSE-based scheme, but for different optimal λi and θi solutions.

From (3.36), we can see that λ+
i depends on the channel variances only. When

σ2
f,i increases or σ

2
g,i decreases, less power should be allocated to the training of fi,

and vice versa. From (3.39), we can see that θ+i depends on not only the channel

variances but also the data transmission power and SNR-threshold via Tj . To im-

plement the power allocation, the same procedure as explained in Section 3.3.2 can

be used.

3.5 Simulation Results and Discussions

In this section, we show the simulation results. The total MSE of all channel esti-

mations and the OP of the network under channel estimation error are simulated.

We compare the two proposed schemes, MSE-based power allocation and OP-based

power allocation, with an even power allocation, where PS,i = PR,i = Pg,i = Pi/3
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Fig. 3.3: Total MSE for different training power values for one-way networks with
2, 3, and 4 relays.

and Pi = Pt/N , i.e., θi = 1/N , λi = 2/3, and ηi = 1/2. With this power allocation,

the transmission powers for every training step and every node are the same. Similar

as that in Chapter 2, we use µi to represent the location of the ith relay for the ith

path. We assume the path-loss exponent τ = 2 and φ/dSD = 1. Thus σ2
f,i = ( 1

µi
)2

and σ2
g,i = ( 1

1−µi
)2

Fig. 3.3 shows the total MSE in the logarithmic scale versus the training power

for networks with N = 2, 3 and 4. Power P in Fig. 3.3 means the average training

power for every transmission. In other words, Pt = 3NP . We use P instead of Pt for

the horizontal axis because when N is large, with the same Pt, the power allocated

to each step decreases, which may result in misleading MSE comparison. We draw

the total MSEs for the power range 10-32dB. In this simulation, the locations of

the relays are random, where µi are generated as a uniform random variable on

(0, 1). From Fig. 3.3, we can see that both proposed schemes achieve lower MSEs

than the even power allocation, while the MSE-based scheme has lower total MSE

than the OP-based scheme for N = 3, 4. For N = 2, the OP-based scheme has

the largest MSE, while the MSE-based scheme has the lowest MSE. The figure also
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shows that the total MSE reduces when training power increases. We also observe

that the gap between the MSE-based scheme and the even scheme becomes larger

when training power increases. For N = 4, the improvements of the MSE-based

scheme over even power allocation are about 68.4% and 73.5% at P = 20dB and

P = 30dB, respectively. In addition, the MSE increase when N increases, which is

because there are more channels and the total MSE is the summation of errors of

all channels.
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Fig. 3.4: Total MSE for different relay locations for one-way networks with 2 and 3
relays where P = 15dB.

Fig. 3.4 shows the total MSE in the logarithmic scale for different relay locations,

determined by the parameter µ. We fix P = 15dB and study networks with N = 2

and N = 3. We consider fixed network topology and assume that all relays are close

to each other with the same µ value. In Fig. 3.4, we can see that when the relays

are closer to the source (small µ), the MSE-based and the OP-based schemes have

comparable performance and both outperform the even power allocation. When the

relays are closer to the destination (large µ), the MSE-based scheme is superior to

both the even and OP-based schemes. For N = 3, the total MSE reduction of the

proposed MSE-based scheme over even power allocation is about 16.5% and 16.2%
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at µ = 0.2 and µ = 0.9, respectively. The total MSE performance improves when µ

increases which indicates that channel estimation quality gets better as the relays

are closer to the destination.

2 3 4 5 6 7 8 9 10
10

−1

10
0

N (Number of relays)

A
v
e

ra
g

e
 M

S
E

 p
e

r 
C

h
a

n
n

e
l

 

 

Even power allocation
MSE−based
OP−based

Fig. 3.5: Average MSE per channel for different relay numbers where P = 15dB
and µ = 0.2.

Fig. 3.5 shows the average MSE per channel versus the number of relays for a

fixed average training power per transmission where P = 15dB. In this simulation,

we consider fixed relay location and let µ = 0.2. The average MSE per channel is

defined as the total MSE divided by number of channels. We can see that both

proposed schemes outperform even power allocation, while the MSE-based scheme

is slightly better than the OP-based scheme. We can also see that the average MSE

decreases when there are more relays.

In Figs. 3.6-3.8, we show the OP of different relay networks with relay selection

and channel estimation error. The SNR threshold is set to be γth = 0.5 and the

data powers are set as QS,i = QR,i = 15dB.

Fig. 3.6 shows the network OP for different average training power per trans-

mission for networks with N = 2, 3 and 4. From Fig. 3.6, we can see that the

proposed OP-based scheme performs much better than the MSE-based scheme and
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Fig. 3.6: Outage probability for different training power values for one-way networks
with 2, 3, and 4 relays.

the even power scheme. The advantage of the OP-based scheme over the other two

gets bigger when the training power increases. For N = 4, the improvement of

the proposed OP-based scheme over the even power allocation is about 57.5% and

60.3% at P = 6 dB and P = 12dB, respectively. The figure also shows that the OP

decreases when the training power increases because with higher power, we have

better training quality.

Fig. 3.7 shows the OP versus relay location for networks with N = 2, 3. We

consider fixed network topology where the relays are located close to each other and

have same µ value. Also, we set P = 15dB. In Fig. 3.7, both proposed schemes are

superior to the even power allocation scheme. When the relays are closer to the

source or the destination, the gap between the OP-based scheme and even power

allocation scheme becomes larger. For N = 3, we see that the OP-based scheme is

about 41% and 34.6% better obtained at µ = 0.1 and µ = 0.9, respectively. For

small µ, the OP-based scheme is slightly superior to the MSE-based scheme. The

figure also reveals that OP performance improves when µ increases. This is due to

better relay-to-destination channel estimation quality when the relays are closer to
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Fig. 3.7: Outage probability for different relay locations for one-way networks with
2 and 3 relays where P = 15dB.

the destination, which also infers better source-to-relay channel estimation quality.

Fig. 3.8 shows the OP for different numbers of relays for a fixed average power

P = 10dB per transmission and a fixed µ = 0.9. We can see from Fig. 3.8 that

the OP performance improves when the number of relay increases. The OP-based

power allocation is largely better than the other two schemes, while the even power

allocation performs the worst. With more relays, the gap between the OP-based

scheme and the even power allocation becomes larger.

3.6 Conclusions

In this chapter, we investigated the power allocation during the training process for

a one-way multi-relay AF network. The power allocation was among all the relay

paths, between the training of different channels for every relay path, and between

the source and every relay during the training of the source-to-relay channel. Using

the total MSE and the OP as the design objectives, we derived closed-form analytical

solutions for the training power allocation in the high power regime. Simulation

results on the MSE and the OP were demonstrated to show the superiority of the
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Fig. 3.8: Outage probability for different relay numbers where P = 10dB and µ =
0.9.

proposed schemes to an even power allocation.
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Chapter 4

Power Allocation in Training for

Two-Way Single-Relay Network

4.1 Introduction

Chapter 2 and Chapter 3 are both on one-way relay network. Since two-way relay

network can recover the spectral efficiency loss caused by the half-duplex mode of

relays, in this chapter, we consider a two-way single-relay network. We investigate

the power allocation problem during the channel training process for both terminals

to estimate the global CSI of the whole network. This includes the power allocations

between different training steps and among different nodes. The LMMSE channel

estimates are adopted. Two power allocation schemes are proposed: a MSE based

scheme and an OP based scheme. Our simulation results demonstrate that the

proposed power allocations are superior to even power allocation.

Now we clarify the difference of our work to existing literature. Different to

[58, 59], we study the estimation of the individual channels between either terminal

and the relay. Our work is different to [60] not only in the power allocation problem

but also in the objective functions. We consider both the MSE and the OP. Further,

we consider channels with different variances.

The rest of the chapter is organized as follows. Section 4.2 describes the system

model, training scheme, channel estimation rules, and the power allocation problem.

In Section 4.3, we investigate the MSE of the channel estimations and propose an

MSE-based power allocation. In Section 4.4, we investigate the OP of the network
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with CSI error, and propose an OP-based power allocation. Section 4.5 shows

simulation results. Section 4.6 concludes the paper.

4.2 System Model and Training Scheme

We consider a two-way single-relay network, where two terminals T1 and T2 exchange

information through a relay R. The network model can be seen from Fig. 4.1. Each

node has one antenna which can be used for both transmission and reception. Denote

the channel between T1 and the relay as g and that between T2 and the relay as f .

Both g and f are independent zero-mean complex Gaussian random variables with

variance σ2
g and σ2

f , respectively. There is no direct link between the two terminals.

We assume that the channel reciprocity holds, which means the channel estimate

of the uplink direction can directly be utilized for the downlink. For i = 1, 2, the

estimations of f and g at Ti are denoted as fi and gi, respectively. Their MSEs are

denoted as MSE(fi) and MSE(gi).

T1 T2Rg
f

Fig. 4.1: Two-way single-relay network model.

4.2.1 Training and LMMSE Estimators

The training goal is for both terminals T1 and T2 to obtain estimates of both channel

coefficients f and g. Without loss of generality, we only look into T1 while results

of T2 can be obtained similarly. A two-stage training scheme is used, including the

relay-training stage and the terminal-training stage.
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In the relay-training stage, the relay sends a training symbol to T1 and T2.

Without loss of generality, we use the unit symbol. The received signal at T1 is

x1 =
√

P1g + n1,

where P1 is the power the relay uses in this step and n1 is the noise at T1, following

CN (0, 1). Using the results from Section 1.3, the LMMSE estimate of g at T1 is

thus

g1 =

√
P1σ

2
g

1 + P1σ2
g

x1, (4.1)

which is also the MMSE estimate. Denote the estimation error as

△g1 , g − g1, (4.2)

which follows CN (0,MSE(g1)), where

MSE(g1) =
σ2
g

1 + P1σ2
g

≈ 1

P1
, (4.3)

The approximation is valid when P1 ≫ 1.

The terminal-training stage takes 2 steps. First, T1 and T2 send the unit symbol

to the relay at the same time. Let the power used by each terminal for terminal-

training stage be P2,T , the received signal at the relay is

r =
√

P2,T g +
√

P2,T f + nR. (4.4)

Second, the relay amplifies and forwards its received signal to T1 and T2 with a

fixed-gain relay amplification factor as explained in Section 2.2.1. Let the power

used by the relay for this step be P2,R. The received symbol at T1 is

y1 = r

√

P2,R

1 + P2,T (σ2
g + σ2

f )
g + n2

=
√
αg2 +

√
αgf +

√

βgnR + n2, (4.5)

where

α ,
P2,TP2,R

1 + P2,T (σ2
g + σ2

f )
, β ,

P2,R

1 + P2,T (σ2
g + σ2

f )
.
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nR and n2 are noises at the relay and T1. They are independent and follow CN (0, 1).

In reality, since T1 only knows g1, its estimation of g, it uses g1 in the self-interference

cancellation. By using (4.2), we can obtain

ỹ1 = y1 −
√
αg21 =

√
αg1f + n, (4.6)

where

n ,
√
α△g1f +

√

β(△g1 + g1)nR +
√
α(△g21 + 2g1△g1) + n2.

n is the equivalent noise in the observation model (4.6), containing both the noise

and the channel estimation error terms.

An estimate of f needs to be obtained at T1 based on ỹ1. The MMSE estimate of

f is intractable due to the unknown distribution of n, thus we resort to the LMMSE

estimate. Using the results in Section 1.3, after straightforward calculations, the

LMMSE estimate is obtained as

f1 =
σ2
f

√
αg∗1 ỹ1

1 + (σ2
fα+ β)ag + 2αMSE(g1)(ag + |g1|2)

, (4.7)

where ag , |g1|2 +MSE(g1). The MSE of this channel estimation can be calculated

to be

MSE(f1) = σ2
f −

σ4
fα|g1|2

1 + (σ2
fα+ β)ag + 2αMSE(g1)(ag + |g1|2)

. (4.8)

Similarly, we can obtain estimates of the channels at T2 (f2 and g2). Their MSEs

are as follows:

MSE(f2) =
σ2
f

1 + P1σ2
f

≈ 1

P1
, (4.9)

MSE(g2) = σ2
g −

σ4
gα|f2|2

1 + (σ2
gα+ β)af + 2αMSE(f2)(af + |f2|2)

, (4.10)

where af , |f2|2 +MSE(f2).

4.2.2 Power Allocation Problem Statement

In this chapter, we investigate the power allocation problem during the training for

the two-way single-relay network. Let Pt be the total power used for training and

P2 be the total power the terminals and the relay use in the terminal-training stage.
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Thus Pt = P1 + P2 and P2 = 2P2,T + P2,R. Let λ be the percentage of the total

training power used in the terminal-training stage. We have

P2 = λPt, P1 = (1− λ)Pt. (4.11)

For the terminal-training stage, let η be the fraction of the power allocated to each

terminal. We have

P2,T = ηP2, P2,R = (1− 2η)P2. (4.12)

The power allocation problem is thus to find the optimal η and λ for an arbitrary

training power Pt. We consider two objective functions: the total MSE of the

channel estimations and the OP of the relay network.

4.3 MSE-Based Power Allocation

In this section, we investigate the total MSE of all channel estimations and propose

an MSE-based power allocation.

The total MSE of all channel estimations is as follows:

MSEtotal = MSE(g1) +MSE(f1) +MSE(g2) +MSE(f2).

The goal is to design λ and η, defined in (4.11) and (4.12), to minimize the MSEtotal.

For the tractability of analysis, we only consider the high power region, i.e., Pt ≫ 1.

Notice that MSE(g1) and MSE(f2) are independent of η. For an arbitrarily λ, the

optimization of η that minimizes MSEtotal is as follows:

min
η∈[0,1]

(MSE(f1) +MSE(g2)).

Recall that △g1 follows the distribution CN (0,MSE(g1)). Compared to g1, △g1 is

a lower order term of Pt ≫ 1. When the training power is high, we can neglect the

lower order terms in agMSE(g1) which is MSE(g1)
2. By using (4.12) in (4.8) and

(4.10) and calculating the derivative of (MSE(f1) + MSE(g2)) to η and making it

zero, the optimal η can be obtained as (lower order terms of Pt are omitted):

η∗ =



2 +

√

(σ2
f + σ2

g)(|g1|2 + |f2|2)
|g1|2|f2|2





−1

. (4.13)
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Now we consider the optimization of λ. By using (4.3), (4.8)-(4.10) in MSEtotal

and also the optimal η in (4.13), via straightforward calculations, we have

MSEtotal =MSE(g1) +MSE(f2) + [MSE(f1) +MSE(g2)]η=η∗

≈ 10

P1
+

(

|g1|2 + |f2|2
)

[

2
√

|g1|2|f2|2 +
√

(|g1|2 + |f2|2)σ2
]

P2|g1|2|f2|2
, (4.14)

where σ2 , σ2
f + σ2

g . Similar to the previous chapters, for tractable closed-form

solution, we replace |g1|2 and |f2|2 with their average values in (4.14), then the

following MSE-based objective function is obtained:

h1(P1, P2) ,
10

P1
+

1

P2

σ2(σg + σf )
2

σ2
fσ

2
g

. (4.15)

By using (4.11) in (4.15) and solving ∂h1
∂λ = 0, we obtain the following solution of λ:

λ∗ =



1 +

√

√

√

√

10σ2
gσ

2
f

(σ2
g + σ2

f )(σg + σf )2





−1

. (4.16)

From (4.16) we can see that λ∗ depends on the channel variances only. But from

(4.13), we see that η∗ depends on not only the channel variances but also g1 and f2.

Thus, similar to the results in Chapters 2 and 3, the training powers of the nodes

in the terminal-training stage actually adapt to the channel quality.

4.4 OP-Based Power Allocation

The power allocation derived in the previous section weights MSEs of all channels

equally is neither a direct network performance measure nor be optimal. In this

section, we work on the OP, denoted as Pout. We use AF with fixed gain relay

power coefficient for the data transmission. Let Pd,T , Pd,R be the powers used by

either terminal and the relay. Again, we only consider the high power region, i.e.,

Pt ≫ 1. The following lemma on the OP is acquired.

Lemma 3: Assume that all powers have the same order, i.e., Pt, Pd,T , Pd,R ∼ P

and P ≫ 1. Given the SNR-threshold γth and MSEs of channel estimates, the OP
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of the two-way single-relay network is:

Pout = p+ γth

[

MSE(g1)

(

1

σ2
g

+
4

σ2
f

)

+MSE(f2)

(

1

σ2
f

+
4

σ2
g

)]

+γth

(

MSE(f1)

σ2
f

+
MSE(g2)

σ2
g

)

+O
(

lnP

P 2

)

, (4.17)

where p = O( lnP
P ) is independent of P1, P2,T and P2,R.

Proof. For the data-transmission, let

αd ,
Pd,TPd,R

1 + Pd,Tσ2
, βd ,

Pd,R

1 + Pd,Tσ2
.

By similar derivations to those in Section 4.2.1, after self-interference cancellation,

T1 gets

ỹ1 =
√
αdg1f1s+ ω1,

where s is the data symbol with unit power. Then the noise-plus-channel-error term

is

ω1 ,
√
αd[△f1(g1 +△g1) + f1△g1 + 2g1△g1 +△g1

2]s+
√

βd(g1 +△g1)nd,R + n3.

where nd,R and n3 are independent noises at the relay and T1, respectively, follow-

ing CN (0, 1). After omitting lower order terms of P (
√
αd△f1△g1,

√
αd△g1

2 and
√
βd△g1nd,R), the SNR at T1 is

E(αd|g1|2|f1|2)
E(|ω1|2)

≈ αd|g1|2|f1|2
E[
√
αd[△f1(g1 +△g1) + f1△g1 + 2g1△g1 +△g1

2]s+
√
βd(g1 +△g1)nd,R + n3]

≈ αd|g1|2|f1|2
c1|g1|2 + αdMSE(g1)|f1|2 + 1

, γ1 (4.18)

where c1 , αd(MSE(f1)+4MSE(g1))+βd. f1 is approximately Gaussian for P1 ≫ 1.

By using the result from [69] and [70], we get the CDF of γ1:

Fγ1(x) = 1− e
−

xc1
αd

(

1

σ2
f

+
αdMSE(g1)

c1σ
2
g

)

c, (4.19)

where c ,
√

4x
αdσ2

gσ
2
f

K1

(

√

4x
αdσ2

gσ
2
f

)

. Similarly let c2 , αd(MSE(g2) + 4MSE(f2)) +

βd. The CDF of the SNR at T2, γ2, is

Fγ2(x) = 1− e
−

xc2
αd

(

1

σ2
g
+

αdMSE(f2)

c2σ
2
f

)

c, (4.20)
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The OP can be calculated as

Pout = P[min(γ1, γ2) ≤ γth]

= 1− [1− Fγ1(γth)][1− Fγ2(γth)]

= 1− e
−γth

(

c1
αdσ

2
f

+
MSE(g1)

σ2
g

+
c2

αdσ
2
g
+

MSE(f2)

σ2
f

)

c2. (4.21)

When Pd,R ≫ 1, c = 1 + q + O
(

lnPd,R

P 2
d,R

)

, where q = O
(

lnPd,R

Pd,R

)

. By using this in

(4.21), (4.17) can be acquired.

The goal of the OP-based power allocation is to design λ and η to minimize the

OP in (4.17). Similar to the derivations in Section 4.3, notice that MSE(g1) and

MSE(f2) are independent of η. For an arbitrarily given λ, the optimization of η

that minimizes the OP is as follows:

argmin
η

(σ2
gMSE(f1) + σ2

fMSE(g2)). (4.22)

We use (4.8), (4.10), and (4.12) in (4.22) and neglect lower order terms of Pt. By

calculating the derivative of the objective function and making it zero, the optimal

η is obtained as:

η+ =
1

2



1 +

√

σ2
f |g1|2 + σ2

g |f2|2
2|g1|2|f2|2





−1

. (4.23)

For the optimization of λ, by using (4.23), (4.3), (4.8)-(4.10) in (4.17), and

replacing |f2|2 and |g1|2 with their mean values, we have the following objective

function from the OP formula:

h2(P1, P2) ,
σ2
fσ

2
g(2σ

2P1 + 4σ2
gPt)

P2P1σ2
fσ

2
g + 2σ2P1 + 4σ2

gPt
+

σ2
fσ

2
g(2σ

2P1 + 4σ2
fPt)

P2P1σ2
fσ

2
g + 2σ2P1 + 4σ2

fPt
+

5σ2

P1
.(4.24)

By using (4.11) in (4.24) and solving dh2
dλ = 0, we obtain the following solution of λ:

λ+ =



1 +

√

√

√

√

9P 2
t σ

4
gσ

4
f + 20Ptσ2σ2

gσ
2
f + 10σ4

2Ptσ2
gσ

2
f





−1

. (4.25)

4.5 Simulation Results and Discussions

In this section, we compare the two proposed power allocation schemes with an even

power allocation where P2,T = P2,R = P2/3 and P1 = P2 = Pt/2, i.e., η = 1/3 and
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Fig. 4.2: Total MSE for different training power values for two-way single-relay
network.

λ = 1/2. It means that the relay-training stage and the terminal-training stage use

the same power, and each terminal and the relay use the same power during the

terminal-training stage. Denote dT1T2 as the distance between T1 and T2. Similar

as that in Chapter 2, we use the parameter µ to represent the location of the relay.

In th simulations, we assume the path-loss exponent is 2 and φ/dT1T2=1. Thus

σ2
g = ( 1µ)

2 and σ2
f = ( 1

(1−µ))
2.

Fig. 4.2 shows the total MSE versus µ in the logarithmic scale for different

training powers. Due to the symmetry of the two terminals, we only show the

range µ ∈ [0, 0.5]. We can see that both proposed schemes outperform even power

allocation; while the MSE-based scheme is slightly superior to the OP-based scheme.

For Pt = 20dB, the total MSE improvements of the proposed MSE-based power

allocation over even power allocation are about 27.2% and 15.3% for µ = 0.2 and

µ = 0.4, respectively. The total MSE reduces when µ increases up to 0.5, indicating

that better channel estimates can be obtained as the relay is closer to the midpoint.

Fig. 4.3 shows the network OP with γth = 0.1 for different training powers. The

powers used in data-transmission are fixed as Pd,T = Pd,R = 10dB. From Fig. 4.3, we
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Fig. 4.3: Outage probability for different training power values for two-way single-
relay network.

can see that the OP-based scheme performs much better than even power allocation

for all values of µ. For µ = 0.4, the outage probability reduces by about 13%

and 10.5% with the proposed OP-based scheme for Pt = 20dB and Pt = 30dB,

respectively. The OP-based and MSE-based schemes have comparable performance

for a wide range of µ. But when Pt = 20dB and µ < 0.15, the former performs

noticeably better. Fig. 4.3 also shows that the OP decreases when µ gets closer to

0.5.

4.6 Conclusions

In this chapter, a two-step training scheme for a two-way single-relay AF network

is proposed. We investigate the power allocations between the relay-training step

and the terminal-training step, and between the terminals and the relay. For the

high power regime, we study the total MSE of channel estimations and network

OP, from which power allocation solutions are derived in closed-form. Simulation

results illustrate that the proposed power allocations perform better than even power

allocation in both the MSE and the OP.
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Chapter 5

Conclusions and Future Work

In this chapter, we give the conclusions of the thesis and propose possible future

work.

5.1 Conclusions

This thesis has investigated the power allocation problem during the channel training

process for AF relay networks. Three network scenarios are considered: the one-way

single-relay network, the one-way multi-relay network, and the two-way single-relay

network.

For a one-way single-relay network, the power allocation is between the training

of source-to-relay channel and relay-to-destination channel, and between the source

and the relay during the training of the source-to-relay channel.

For a one-way multi-relay network, the power allocation is among all the re-

lay paths, between the training of source-to-relay channel and relay-to-destination

channel for every relay path, and between the source and every relay during the

training of the source-to-relay channel.

For a two-way single-relay network, the power allocation is between the relay-

training step and the terminal-training step, and between the terminals and the

relay.

For all three network scenarios, with the aid of high SNR approximations, closed-

form analytical solutions are found for the power allocation based on the minimiza-

tion of the total MSE of channel estimations and the network OP. Simulation results
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on the MSE and the OP are demonstrated to show the superiority of the proposed

schemes to an even power allocation.

The proposed power allocation schemes with closed-form analytical solutions can

help increase the performance of cooperative relay network.

5.2 Future Work

A few future research directions have been recognized to extend the studies in this

thesis.

In Chapter 2, during the data transmission, it is assumed that the relay forwards

the received signal using AF relaying with a fixed gain amplification factor. It is

interesting and also challenging to study the case with another relaying method: AF

relaying with a variable gain amplification factor. Then the power allocation prob-

lem with the OP of the network as the objective function will be more complicated.

But the solution may achieve better network performance since the variable gain

relays can achieve better performance with a design adjustable to the instantaneous

channel knowledge.

In Chapter 3, for the OP-based power allocation, we choose the best relay selec-

tion for the data-transmission, where the relay that provides the best received SNR

is selected to forward information. In [15] the idea of relay selection was generalized

to allow more than one relay to cooperate. And it has been shown that the SNR-

optimal multiple relay selection perform much better than the corresponding single

relay selection methods. Thus it is interesting and also challenging to employ the

multiple relay selection scheme in our study and to investigate the training power

allocation strategies.

In Chapter 4, only a single-relay network has been considered. We can extend

the single-relay network to the more general multi-relay network. In addition, the

training power allocation and relay selection can be jointly carried out.
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