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Abstract: There is growing interest in using functional foods or nutraceuticals for the 

prevention and treatment of hypertension or high blood pressure. Although numerous 

preventive and therapeutic pharmacological interventions are available on the market, 

unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, 

most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE), 

are often associated with significant adverse effects. Many bioactive food compounds  

have been characterized over the past decades that may contribute to the management of 

hypertension; for example, bioactive peptides derived from various food proteins with 

antihypertensive properties have gained a great deal of attention. Some of these peptides 

have exhibited potent in vivo antihypertensive activity in both animal models and human 

clinical trials. This review provides an overview about the complex pathophysiology of 

hypertension and demonstrates the potential roles of food derived bioactive peptides  

as viable interventions targeting specific pathways involved in this disease process.  

This review offers a comprehensive guide for understanding and utilizing the molecular 

mechanisms of antihypertensive actions of food protein derived peptides. 
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1. Introduction 

Cardiovascular diseases account for approximately one third of the total deaths, totaling ~17 million 

annually worldwide [1]. Hypertension, the persistent elevation of blood pressure over 140/90 mm Hg 

(systolic/diastolic blood pressure, respectively), is considered one of the key risk factors for the 

development of cardiovascular diseases (CVD). Hypertension is often termed as “silent killer” affecting 

1 billion people worldwide, and causes up to 9 million deaths every year [1]. In Canada, almost 6 million 

people (about 1 in every 5 adults), are affected by this condition [2]. Hypertension rarely presents with 

early symptoms, and even if diagnosed early, it is often treated inadequately [3,4]. Nevertheless, 

hypertension is a significant risk factor for atherosclerosis and hence predisposes to coronary heart 

disease, cerebrovascular disease, and renal disease [5–9]. In addition to tremendous health burden, 

treatment and prevention of hypertension are also associated with substantial socioeconomic consequences. 

The estimated costs for treating hypertension and related diseases were $156 billion in the USA  

in 2011 [10]. Pharmacological anti-hypertensive drugs are often associated with significant adverse 

side effects such as headache, dry cough, etc. [11,12]. Consequently, many patients still have their 

blood pressure poorly controlled and remain at increased risk for its complications even when treated 

with existing drugs [13,14]. Therefore, novel, cost-effective and efficient therapeutic strategies are 

urgently required for better management of hypertension. 

It is well recognized that diet plays an important role in human health. Epidemiological studies have 

suggested that food habit or dietary choice can affect the prevalence of chronic diseases such as 

cardiovascular disease, obesity, and diabetes [15–17]. Diet manipulation studies such as dietary approaches 

to stop hypertension (DASH) suggest that adoption of a healthy diet (rich in fruits and vegetables) 

could lower high blood pressure [18,19]. Similarly, compounds like dietary sodium (present in table 

salt) and dietary potassium also have a great impact on blood pressure and associated vascular  

diseases [20–22]. Moreover, various clinical studies have demonstrated that macronutrients (protein, 

fat, and carbohydrate) can play key role in the management of high blood pressure. The optimal 

macronutrient intake to prevent heart disease (OmniHeart) trials demonstrated that partial replacement 

of carbohydrate with either protein or with monounsaturated fat could reduce high blood pressure, and 

the risk of coronary heart disease [23–25]. Indeed, food proteins also contain active peptide fragments 

encrypted within their structure that can exert beneficial effects on human health above and beyond 

their expected nutritional value. These active peptide fragments, known as bioactive peptides, can be 

released from their parent proteins by gastrointestinal digestion, fermentation, or food processing [26]. 

Food derived bioactive peptides have vast potential for applications as functional foods and nutraceuticals 

for the prevention and management of hypertension.  

Among many types of food derived bioactive peptides, peptides with antihypertensive activity have 

received the most significant attention due to the persistence of hypertension and its associated 

complications even with pharmacological interventions [27–29]. These peptides target mainly at inhibiting 

angiotensin I converting enzyme (ACE), an enzyme playing a crucial role through renin angiotensin 

system (RAS) for the regulation of blood pressure and electrolyte balance in human body [7,30,31]. 

Peptides with anti-oxidant, anti-inflammatory, opioid receptor binding activities might also exhibit 

anti-hypertensive activity [32,33]. However correlation between in vitro and in vivo antihypertensive 

activities appears to be weak [29,32,34–38]. To develop effective antihypertensive peptides, it is important 
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to understand the complex pathophysiology of hypertension and the potential targets where these bioactive 

peptides may exert their specific antihypertensive actions. The potential mechanisms of action of many 

food-derived peptides with antihypertensive activity have been previously reviewed [28,29,39–42]. 

However, limited information is available regarding the multiple functional roles of these peptides on 

various pathways involved in developing persistent hypertension. 

Therefore, this particular review provides an overview about the complex pathophysiology of 

hypertension and highlights potential molecular targets of food derived peptides that may mediate the 

in vivo antihypertensive effects. Identification of these molecular targets can facilitate the use of food 

derived bioactive peptides as a novel therapeutics for the prevention and management of hypertension. 

2. Pathophysiology of Hypertension 

Hypertension develops from a complex interaction of genetic and environmental factors although 

more than 90% of cases do not have a clear etiology [43,44]. Previous research has identified major 

contributing factors: (i) increased sympathetic nervous system activity; (ii) increased levels of long term 

high sodium intake, inadequate dietary intake of potassium and calcium; (iii) altered renin secretion 

related to elevated activity of the RAS; (iv) increased activity of ACE resulting over production of 

angiotensin II (Ang II) and deactivation of kallikrein kinin-system (KKS); (v) endothelial dysfunctions 

and deficiencies of vasodilators including reduced nitric oxide (NO) bioavailability; (vi) abnormalities 

in vessel resistance due to vascular inflammation, increased activity of vascular growth factors and 

altered cellular ion channel [45–49]. Although all of the above factors clearly contribute to the pathogenesis 

of hypertension, the hyperactivity of the RAS, endothelial dysfunction, enhanced activation of sympathetic 

nervous system and structural abnormalities in resistance vessels play critical roles in the development 

and progression of this disease [49–51]. 

2.1. Renin Angiotensin System (RAS) 

Physiologically, RAS is one of the important pathways for regulating blood pressure and vascular 

tone in human body [52,53]. The RAS pathway is initiated in the kidney with the proteolytic conversion 

of angiotensinogen to angiotensin I (Ang I) by renin. Ang I is an inactive decapeptide which can be 

converted into a vasoconstrictive octapeptide, Ang II, by the action of ACE. Ang II can be further 

cleaved by angiotensin converting enzyme 2 (ACE-2), to form angiotensin 1–7 (Ang1–7), then the  

G-protein-coupled receptor (GPCR)-Mas acts as an Ang1–7 receptor and initiates a counter-regulatory 

role by opposing Ang II induced vasoconstriction [7,54]. In addition, ACE-2 can also cleave a single 

amino acid from Ang I, producing inactive angiotensin 1–9 (Ang1–9). Ang II is an important regulator 

of fluid and sodium balance and also participates in cellular growth and remodeling [52,55]. 
Ang II acts through two main receptors, angiotensin type 1 (AT1) and type 2 (AT2) receptors [30,53] 

(Figure 1). Binding to AT1 receptor causes vasoconstriction in vascular smooth muscle cells  

(VSMC). It also stimulates release of aldosterone to increase water and salt retention in the kidney, 

hypertropic growth of cardiomyocytes, and collagen synthesis of cardiac fibroblasts resulting in 

cardiac remodeling. In pathogenic conditions involving tissue remodeling and vascular inflammation,  

AT1 receptor is up regulated [56–58]. On the other hand, AT2 receptor presents in both endothelial  

and VSMC mediates vasodilation upon activation, releases NO, and inhibits cell growth [59]. Therefore,  
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AT1 receptor mediates actions with potentially harmful consequences, whereas AT2 receptor, mediated 

actions exhibits protective effects against hypertension [53,60] (Figure 1). 

Alternatively, ACE also actively participates in the KKS. Activation of ACE inactivates bradykinin, 

a potent vasodilator. Bradykinin acts through two different receptors, type 1 (B1) and type 2 (B2).  

Both receptors induce NO generation in endothelial cells [61,62]. In addition, B2 receptors also activate 

phospholipase A2 that releases arachidonic acid, which leads to the formation of several vasodilators 

including prostacyclin [30,31,53,63]. 

Though RAS is widespread in the body, the main source of renin is the juxtaglomerular apparatus 

of the kidney, while that of ACE is abundantly present cell surface of endothelial cells, especially in 

the lungs [64,65]. However, there is increasing evidence supporting an important role of local RAS, such 

as in the microvasculature of kidney, heart, and arterial tree, in the regulation of blood pressure [30,55,66]. 

 

Figure 1. Renin-angiotensin system and kallikrein kinin system to regulate of blood pressure. 

Angiotensin I (Ang I), Angiotensin II (Ang II), Angiotensin converting enzyme (ACE), 

Angiotensin converting enzyme 2 (ACE 2), Angiotensin receptor 1 (AT1), Angiotensin 

receptor 2 (AT2), Bradykinin receptor 1 (B1), Bradykinin receptor 2 (B2), Nitric oxide (NO), 

Prostaglandins 2 (PgI2). Figure 1 modified from [63]. 

2.2. Endothelial Dysfunction 

Endothelial cells (EC) play important physiological functions in regulation of the vascular homeostasis 

or vascular balance under normal conditions. Impairment of normal vasorelaxant EC responses results 

in endothelium dysfunction. Endothelial dysfunction often disturbs the vascular function and creates  
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a vascular imbalance that is responsible for various cardiovascular diseases including hypertension. 

Endothelial cells produce a number of vasoactive substances, including NO and endothelin (ET-1).  

NO the key vasodilator, and ET-1 a potent vasoconstrictor, are vital mediators of endothelial functions. 

An imbalance between these two factors is a feature of endothelial dysfunction. 

NO initiates and maintains vasodilation through a cascade of biological events after diffusing through 

cell membrane [59]. NO is generated in endothelial cells by nitric oxide synthase (NOS) in a two-step 

five-electron oxidation of the terminal guanidine nitrogen of L-arginine, generating L-citrulline as  

a by-product. Three isoforms of NOS have been characterized: endothelial NOS (eNOS), neuronal NOS 

(nNOS) and inducible NOS (iNOS) [67]. Both eNOS and nNOS are present in the normal vascular 

endothelium [68,69]. After diffusion from endothelial to vascular smooth muscle cells, NO causes 

vasodilation [69] primarily by activating soluble guanylyl cyclase (sGC) and increasing intracellular 

concentration of cyclic guanosine-monophosphate [70] (Figure 2). Acute NOS inhibition results in 

vasoconstriction and reduction in peripheral blood flow [64]. These hemodynamic alterations are 

entirely reversible with administration of NO donors, such as glyceryl trinitrate (GTN) or sodium 

nitroprusside (SNP) [71], suggesting that the continuous presence of NO is required to prevent 

vasoconstriction. In addition, NO also affects cell metabolism, and inhibits mitochondrial respiration 

and ATP synthesis [59]. 

It has been suggested that NO bioavailability can be reduced in the presence of excessive reactive 

oxygen species (ROS) such as superoxide anion (O2
−). Ang II enhances the formation of superoxide  

in endothelial cells by activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. 

Superoxide readily reacts with NO to form peroxynitrite (ONOO−). Peroxynitrite is a strong oxidant, 

causing damage to cell membrane while leads to cell death and/or inflammation [72] (Figure 2). 

Excessive formation of O2
− also modifies tetrahydrobiopterin (BH4) a cofactor for NOS [64]. In the 

absence of this cofactor, NOS can become uncoupled and paradoxically generated O2
− instead of  

NO [58]. Decreased bioactivity of NO could switch the cellular signaling from NO-mediated cellular 

processes to oxidant-mediated redox signaling, stimulating pro-inflammatory pathways, and ultimately 

leading to vascular remodeling and resulting in increased blood pressure [73]. 

In contrast to NO, circulating endothelins have vasoconstrictory properties. Three isoforms for 

endothelins (ET-1, ET-2, and ET-3) have been characterized but ET-1 is the dominant form and actively 

modulates vascular functions [74]. ET-1 is synthesized predominantly in endothelial cells and also in 

vascular smooth muscle cells [74]. Its precursor, preproET-1 (ppET-1) is a functionally inactive peptide 

which is sequentially cleaved by cellular enzymes and ultimately produces the vasoactive ET-1.  

Furin-like proteases cleave ppET-1 to generate a 39 amino acid peptide (38 amino acids in humans) 

called big-ET-1 (bET-1). Under normal physiological conditions, endothelin-converting enzyme (ECE) 

converts big endothelin (bET-1) to ET-1, whereas current evidence suggests ET-1 can be produced 

from bET-1 through several other proteolytic digestions involving matrix metalloproteinases (MMPs), 

and neutral endopeptidase (NEP). ET-1 exerts its functions by binding to G protein-coupled ET receptors, 

endothelin receptor A (ETA) and endothelin receptor B [75]. ETA receptors are located within the VSMC, 

whereas ETB receptors are located both on vascular endothelium, as well as, on VSMC. Binding with 

ETA and ETB receptors in vascular smooth muscle ET-1 exerts vasoconstriction. Alternatively, ET-1 

binding to ETB receptors in the endothelium results in vasodilation through increased NO and prostacyclin 

synthesis [74]. The interplay between NO and ET-1 is important in numerous pathophysiological 
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conditions [76]. The reduction in NO bioavailability is associated with increased ET-1 expression. 

Similarly, NO antagonizes the ET-1 pathway via several different mechanisms [75]. These relationships 

suggest an intimate link between these two mediators to maintain a delicate balance in endothelial 

function [74]. ET-1 also stimulates the release of pro-inflammatory cytokine such as interleukin (IL)-1, 

and IL-8. Factors like Ang II, thrombin, and inflammatory cytokines (tumor necrosis factor-α, IL-1, 

IL-2) can modulate the expression of ET-1 in endothelial cells by enhancing the gene expression of 

ppET-1. Therefore reduced bioavailability of NO and excessive production of Ang II can directly induce 

endothelial dysfunction and subsequent increase in blood pressure. 

 

Figure 2. Endothelial dysfunction and blood pressure regulation. Angiotensin converting 

enzyme (ACE) converts angiotensin I (Ang I) to angiotensin II (Ang II), Ang II binds with 

angiotensin receptor 1 (AT1) on endothelium cells as well as vascular smooth muscle cells, 

then AT1 receptor increases calcium ion (Ca2+) concentration in vascular smooth muscle 

cells (VSMC) and exerts vasoconstriction. In endothelium cells activation of AT1 receptor 

increases the production of bET-1 (big endothelin-1). Endothelin-Converting Enzyme (ECE) 

converts bET-1 to endothelin-1 (ET-1) and exerts vasoconstriction by activating endothelin 

A/B receptors (ETA/B) in the VSMC. In contrast, activation of ETB receptor in endothelium 

cells mediates vasodilatory effects via release of nitric oxide (NO) by activating endothelial 

nitric oxide synthase (eNOS). ACE also converts Bradykinin (Bk) into inactive peptides. 

Bk binds with bradykinin receptor (B1/2) and activates eNOS, which converts L-Arginine to 

L-Citrulline and produces NO. NO exerts vasodilation by activating cyclic guanosine 

monophosphate (cGMP) by inhibiting the concentration of Ca2+ in VSM. In endothelium 

cells Ang II produces superoxide (O2
−) which scavenges NO and produces peroxynitrite 

(ONOO−), exerts vasoconstriction effect by limiting the supply of NO to the VSM. Signaling 

pathways illustrated with solid line arrows are representing vasoconstriction and with 

compound line arrows are representation vasodilation network. Figure 2 modified from [71]. 
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2.3. Sympathetic Nervous System 

The sympathetic nervous system is a part of the autonomic nervous response system that can be 

activated by environmental stress. Increased sympathetic nervous system activity can cause both arteriolar 

constriction and arteriolar dilation [77]. Thus, the autonomous nervous system contributes to the 

development and maintenance of hypertension through stimulation of cardiac output in heart, fluid 

retention in kidney and increased vascular resistance in peripheral vasculature [77]. 

Sympathetic nervous system stimulates the release of catecholamines (norepinephrine and epinephrine) 

from postganglionic neurons [78]. The release of catecholamines activates the hypertrophic growth of 

cardiomyocytes [79]. Simultaneously, catecholamine release increases the activity of β-adrenoceptors 

while decreases the activity of α-adrenoceptors, which in turn results in the conversion of pro-renin to 

the active form of renin [79]. The release of renin subsequently activates RAS and results in increased 

blood pressure through the production of Ang II (Figure 3). Ang IAng II also amplifies the response of 

the sympathetic nervous system by a peripheral mechanism, that is, pre-synaptic facilitatory modulation 

of norepinephrine release [77,78]. Additionally, ROS and ET-1 may also stimulate the sympathetic 

activity and its effects on the vasculature [78,80]. Thus increased sympathetic activity is associated 

with the development of hypertension. 

 

Figure 3. Regulation of blood pressure through autonomic nervous system. Increased 

sympathetic nervous system stimulates the release of cathecholamines from post ganglionic 

neurons. Cathecholamines increases the hypertrophic growth of cardiomyocytes and release 

more renin in adrenal cortex. Increase production renin over activates renin angiotensin system 

(RAS) and produces more Angiotensin-II (Ang II). Hypertrophic growth of cardiomyocytes 

and increase production of Ang II results in vasoconstriction. In addition, Ang II production 

increases ET-1 (Endothelin-1) and ROS (reactive oxygen species) production and directly 

affect the over activity of sympathetic nervous system. 
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2.4. Vascular Remodeling 

Vascular remodeling contributes to increased peripheral resistance, alterations in vessel structures, 

development of hypertension, and the consequent end organ damage during hypertension [6,48]. 

Hypertension associated with structural changes in the vessels has been called as remodeling. Vascular 

remodeling is an active process and involves changes in cellular processes, such as cell growth,  

cell migration, cell death, and degradation/synthesis of extracellular matrix [48,81]. Remodeling of 

vessels increases peripheral resistance in pre-capillary vessels including arterioles and small arteries 

(lumen diameters < 300 µm). These structural changes of the vessels reduce the lumen diameter and 

increase the media-to-lumen ratio (M/L) and ultimately, increase both vascular reactivity and peripheral 

resistance [48]. 

Vascular inflammation can induce endothelial dysfunction, which ultimately results in vascular 

remodeling. Under resting conditions, EC prevent leukocyte adhesion but local overproduction of  

Ang II can initiate the expression of adhesion molecules on endothelial cells which results in adhesion 

of leukocyte to the inner arterial wall in a stepwise manner, known as leukocyte recruitment [82]. 

Subsequently Ang II can also induce oxidative stress resulting in excessive production of ROS. ROS, 

in turn, stimulates the production of cytokines such as tumor necrosis factor-α (TNF-α), IL-1β etc. [83]. 

TNF-α activates the phosphorylation of nuclear transcription factor-κB (NF-κB), which leads to  

the expression of adhesion molecules (ICAM-1, intercellular adhesion molecule-1; VCAM-1,  

vascular cell adhesion molecule-1), and the release of monocyte chemotactic protein-1 (MCP-1).  

The over-expression, of these molecules then recruits the leukocytes (monocytes and macrophages)  

to the site of inflammation [82]. Over-expressed inflammatory response together with the oxidized 

lipid molecules forms plaques in the interstitial space between endothelial and vascular smooth 

muscle. Formation of plaque directly contributes to vascular remodeling, increases blood pressure and 

initiates atherosclerosis. 

Matrix metalloproteinases (MMP) are zinc (Zn) and calcium (Ca) dependent proteolytic enzymes 

that degrade extracellular matrix proteins [84]. Several different MMPs are present in the vasculature 

and their synthesis is induced by cytokines and cell to cell-matrix interactions. An increasing body of 

scientific evidence demonstrates that uncontrolled proteolytic process is one of the key mechanisms for 

the development of hypertension and MMP play a crucial role in this process [84,85]. In Ang II-induced 

hypertension, MMP are responsible for elevated blood pressure and tissue fibrosis [85]. Acute release 

of MMP2 cleaves the sarcomere proteins (titin, troponin I and myosin light chain-I) that can impair 

cardiomyocyte contractility [86,87]. Similarly, MMP-7 is one of the major inducing factors for endothelial 

dysfunction. MMP-7 also promotes GPCR agonist (i.e., Ang II) induced vasoconstriction through 

epidermal growth factors (EGF) and subsequently increases the blood pressure and cardiovascular 

hypertrophy [88]. Thus MMP with accessory signaling molecules can modulate cell-cell interaction, 

release of cytokine, and chemokines, which ultimately propagate the vascular inflammatory response. 

Apart from the pathways described above, there are other factors such as sodium/water excretion, 

adrenal steroids, etc. that also contribute to the development of high blood pressure. Interestingly,  

one or more component of each distinctive pathway can modulate or activate another pathway and  

thus create a complex cycle for the development of hypertension (Figure 4). The pathophysiologic 

mechanisms that lead to blood pressure elevation are so complex that anti-hypertensive treatment 
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based on a single pathway is rarely feasible (ACE inhibitors may be an exception, although Ang II 

involves both RAS and pro-inflammatory pathways); [89]. Current pharmacological treatment approaches 

for treating hypertension are very much selective, which may explain the inadequacy in palliation of 

hypertension and adverse side effects. Food protein-derived peptides have been widely studied for 

controlling elevated blood pressure, but it is essential to understand their effects on the pathogenic 

mechanisms and the interplay between different molecules to develop these as novel therapeutic agents. 

 

Figure 4. Pathophysiology of hypertension—a vicious cycle. Renin angiotensin system 

(RAS), endothelial dysfunction, vascular remodeling, and activity of sympathetic nervous 

system are correlated with each other. Enhanced RAS activity leads to over production of 

angiotensin II (Ang II) which accelerates endothelial dysfunction. Ang II induced endothelial 

dysfunction results in vasoconstriction as well up regulates the activity of transcription 

factors (such as NF-κB, nuclear factor κB), promoting vascular inflammation. Vascular 

inflammation up regulates the expression of leukocyte adhesion molecules such as  

ICAM-1 (Intercellular adhesion molecule 1), VCAM-1 (Vascular adhesion molecule-1)  

as well as inflammatory cytokines like TNF-α (Tumor necrosis factor-α) and IL-1β 

(Interleukin-1β). Similarly, during endothelial dysfunction over expression of ET-1 

(Endothelin-1) and increased levels of ROS such as superoxide (O2
−) can directly increase 

the sympathetic nervous system. Finally, increased sympathetic nervous system increases 

renin production which eventually activates RAS. 

3. Antihypertensive Peptides from Food Proteins—Mechanisms of Action 

Food protein-derived peptides exhibit antihypertensive effects through various mechanisms. A majority 

of food protein-derived antihypertensive peptides have been initially identified as ACE inhibitors  

using in vitro methods. Peptides with ACE inhibitory properties were isolated first from snake 

(Bothrops jararaca) venom [90,91]. This work encouraged several subsequent investigations to look 
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for food protein derived peptides as antihypertensive alternatives. Earlier studies have identified 

several ACE-inhibiting peptides from both plant (especially soybean) and animal sources (milk, fish 

and egg proteins) [27,92–95]. Given the complexity of blood pressure regulation, it is important to 

understand the mechanism of action of a peptide in order to develop functional foods or nutraceuticals 

for the prevention and management of hypertension. The following sub-sections briefly describe  

the effect of food-derived bioactive peptides on modulating RAS function, ameliorating endothelial 

dysfunction, modulating sympathetic nervous system, and vascular inflammation. 

3.1. Antihypertensive Peptides Modulating RAS Function 

ACE inhibition is the main mechanism by which peptides can modulate RAS function and exert 

antihypertensive effects. A number of in vivo studies performed in animals and/or humans have 

demonstrated that various food-derived peptides could significantly reduce blood pressure through 

ACE inhibition upon either intravenous or oral administration [93–100]. Milk protein derived peptides 

are known for their antihypertensive activity. The release of antihypertensive peptides from milk 

protein has been achieved through two different approaches: hydrolysis of milk protein by proteolytic 

enzymes and fermentation of milk. One of the first peptides identified from tryptic digestion of  

αs1-casein, FFVAPFPGVFGK, could significantly reduce both systolic blood pressure (SBP by  

34 mmHg) and plasma ACE activity at a dose of 100 mg/kg BW in spontaneously hypertensive rats [38]. 

MKP, another peptide identified from the tryptic digest of bovine casein has also shown antihypertensive 

effect in SHRs. The crude hydrolysate containing only 0.053% of MKP significantly reduced the SBP 

by 40 mmHg at a dose of 100 mg/kg BW 2 h after administration, whereas the purified peptide MKP 

exhibited a maximum SBP reduction of 45 mmHg 8 h after administration in SHR. Both preparations 

also exhibited ACE inhibitory properties [101]. Three peptides, IAK, YAKPVA, and WQVLPNAVPAK 

from αs1-casein produced by combined action of pepsin, chymotrypsin, and trypsin showed a significant 

decrease in both SBP and diastolic blood pressure (DBP) in SHR with doses of 4, 6, and 7 mg/kg BW, 

respectively [99]. The authors determined that the ACE inhibitory property of these peptides was 

responsible for the observed antihypertensive effect [99]. Two tripeptides, VPP and IPP, produced 

from milk fermentation with a combination of Lactobacillus helveticus and Saccharomyces cerevisiae, 

were the well-known antihypertensive peptides from milk [102,103]. Single oral administration of 

VPP and IPP at a dose of 0.6 and 0.3 mg/Kg BW could significantly reduce SBP by 32 and 28 mmHg, 

respectively [104]. SHRs fed with fermented milk containing these peptides demonstrate significant 

decreases in serum ACE activity and BP [104]. 

Apart from milk, fish protein derived peptides have also been shown to exhibit antihypertensive 

effect through ACE inhibition. Three peptides LKP, IKP, and IWH identified from hydrolysate of 

dried bonito have been shown to significantly reduce SBP in SHR animals [29,105]. Another peptide 

LKPNM, also identified from bonito hydrolysate, was found to exert a longer-term effect on SHRs 

than LKP. The authors identified LKPNM as a “pro-drug” type ACE inhibitor, which could serve as  

a precursor to the actual ACE inhibitor released upon gastrointestinal proteolysis [105]. 

Egg protein ovalbumin derived peptide YPI reduces blood pressure by 30 mm Hg after a single oral 

administration to SHRs and its actions were likely mediated through ACE inhibition [94]. A study 

from our own research group identified a potent ACE inhibitory tri-peptide IRW from thermolysin-pepsin 
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hydrolysate of egg white protein ovotransferrin [106]. In SHRs, IRW significantly reduced SBP by  

40 mmHg after 18 days of treatment at a dose of 15 mg/kg BW while concomitantly decreased plasma 

Ang II levels, likely through ACE inhibition [97]. 

AT1, the Ang II receptor, is one of the targets to modulate increased RAS activity. In addition  

to inhibition of ACE, AT1 receptor blockade is considered as an effective therapy for hypertensive 

patients [107]. Moreover, it is a useful alternative approach for the patients sensitive to side effects of 

ACE inhibitors [107]. Similarly, renin is a key regulator of RAS; therefore inhibition of renin could 

also alter RAS activation. Milk lactoferrin derived peptides RRWQWR, LIWKL, and RPYL significantly 

reduced blood pressure in SHRs and were also found to reduce Ang II induced vasoconstriction in 

isolated rabbit carotid arterial segments [108]. Among these three peptides, RPYL showed the maximum 

effect, and demonstrated inhibition of Ang II binding to AT1 receptors [109]. Recently, egg protein 

derived peptide RVPSL has been shown to significantly decrease SBP by 25 mmHg after 4 weeks of 

treatment at a dose of 50 mg/Kg BW. The mRNA levels of renin, ACE, and AT1 receptor in kidney 

and serum level of AngII and renin were all significantly decreased by RVPSL treatment [109]. 

Results from these studies suggest that food derived bioactive peptides can indeed act upon the AT1 

receptor and/or act as a renin or ACE inhibitors to exert their in vivo antihypertensive effects [109]. 

Likewise, renin inhibition is also a crucial mechanism of controlling blood pressure by reducing  

the formation of Ang II. Glycyl histidinyl serine (GHS), a peptide isolated from pepsin, pancreatin 

digestion of rapeseed protein exhibited both ACE and renin inhibitory activity and oral administration 

of this peptide (30 mg/kg BW) reduces blood pressure in SHR 6 h after administration [110]. 

Interestingly in a different study, Ehlers et al. had demonstrated that the vasorelaxation effect of  

IPP may be mediated though ACE-2, Ang1–7, and Mas axis. In an ex vivo experiment the authors 

demonstrated that the administration of IPP can produce more Ang1–7 and exert vasorelaxation activity 

on Mas receptor possibly through modulation of ACE-2 [111]. Similarly, study from our group  

has found that IRW treatment could increase the gene expression of ACE-2 in mesenteric artery 

(unpublished data), which may further convert Ang II to Ang1–7 and exerts vasodilation. Thus activation 

of ACE-2 through peptide treatment could exert beneficial effect for the prevention of hypertension. 

Peptides previously identified as ACE inhibitors though in vitro method could actually exhibit various 

effects on the RAS and thus reduce blood pressure. 

3.2. Antihypertensive Peptides Ameliorating Endothelial Dysfunction 

Increased production of vasoconstrictory/pro-inflammatory mediators like ET-1 and superoxide 

(O2
−) decreases the bioactivity of vasodilatory NO resulting in endothelial dysfunction. Food protein 

derived antihypertensive peptides have been shown to improve endothelial functions and cause 

vasodilation. The three main mechanisms by which food derived antihypertensive peptides modulate 

endothelial function are increased production of vasodilatory factors (i.e., NO and prostaglandins), 

reduced production of vasoconstriction factors (i.e., ET-1), and increased anti-oxidant activity. 

Egg protein ovalbumin derived peptide RADHP could significantly reduce blood pressure by 28 mmHg 

after a single oral administration in SHR animals [112]. RADHP also exhibited a dose-dependent 

relaxation in an isolated SHR mesenteric artery. However, the removal of endothelium from mesenteric 

artery was associated with disappearance of the relaxation effect, suggesting endothelium-dependent 
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vasodilator activity of RADHP [113]. Moreover, pretreatment with N-nitro-L-arginine methyl ester  

(L-NAME), a NOS inhibitor, inhibited the RADHP mediated vasodilation; while pretreatment with 

superoxide dismutase (SOD), a radical scavenger, did not alter RADHPF induced vasodilation, suggesting 

that the vasodilatiory effect was unlikely to be caused by scavenging (O2
−), but possibly resultant from 

stimulating NO production [114]. Four other peptides, YRGGLEPI, YR, ESI, and NF from egg protein 

ovalbumin have also demonstrated in vivo antihypertensive effect in SHRs [94,115]; their actual 

mechanisms of action remain unknown. However, it was evident that these antihypertensive effects 

were independent of ACE inhibition, as in an isolated mesenteric artery experiment vasorelaxation 

activity of these peptides were blocked by the treatment of NO inhibitor L-NAME and cyclooxygenase 

inhibitor indomethacin [29,115]. In addition to their ACE inhibitory effects, VPP and IPP also 

demonstrate the capability to improve vascular endothelial dysfunction. Yamaguchi et al. demonstrated 

that VPP and IPP administration could significantly increase the mRNA expression of eNOS in  

SHR [115]. Increased expression of eNOS directly correlates with enhanced production of NO and 

reduction of BP. A later study also showed that administration of VPP and IPP to cultured endothelial 

cells could significantly increase the NO production [116–118]. Results from these studies clearly 

indicate that antihypertensive peptides VPP and IPP could induce vasodilation through NO, 

independently of ACE inhibition. Results from our previous study also demonstrate that egg protein 

ovotransferrin derived peptide IRW treatment could increase the NO mediated vasodilation in 

mesenteric arteries of SHR animals, probably through increasing eNOS expression [97]. 

Increased bioavailability of NO can also improve vasodilation and reduce BP. Therefore, antioxidant 

and free radical scavenging activities could be beneficial for altering endothelial dysfunction. Milk-derived 

peptides RYLGY and AYFYPEL, obtained from bovine casein hydrolysate, have shown in vivo ACE 

inhibitory and anti-oxidant effects [118]. Oral administration of these peptides significantly reduced BP 

in SHR animals at a dosage of 5 mg/kg BW. The authors conclude that in vitro ACE inhibitory activity 

and radical scavenging activity of these peptides could potentially contribute towards reduction in 

blood pressure in SHR [118]. Therefore, the vasoprotective activity of these peptides could reduce 

blood pressure and potentially ameliorate the vascular fibrosis. Additionally, another peptide MY, derived 

from sardine muscle, exhibited antihypertensive effect by suppressing ROS generation in endothelial 

cells via induction of hemeoxygenase-1 (HO-1) and ferritin [119]. A study from our group has shown 

that the egg derived peptides IRW and IQW could significantly reduce TNF-α induced oxidative stress 

in cultured endothelial cells [120]. Moreover, oral administration of IRW could reduce oxidative stress 

in aorta and kidneys in intact SHR animals [97]. Thus, by acting as an anti-oxidant, these peptides play 

a crucial role to improve NO bioavailability and consequently modulate endothelial function and BP. 

Apart from increased bioavailability of NO, treatment of bioactive peptide can also release various 

other vasodilatory factors such as prostaglandins (PGI2). Zhao et al. identified an antihypertensive peptide 

MRW from pepsin-pancreatin digest of spinach Rubisco (Ribulose bisphosphate carboxylase/oxygenase) 

protein. Oral administration of MRW at a dose of 5 mg/Kg BW could significantly reduce the SBP by 

20 mmHg in 25 week old male SHR [121]. MRW also exhibited a dose-dependent vasodilation in  

an ex vivo study on isolated mesenteric arteries of SHRs; the relaxation effect of MRW was not  

NO-dependent, and was mediated by upregulation of PGI2 possibly through B2 receptor activation [121]. 

A similar effect was observed with RIY, a peptide derived from the rapeseed protein napin [122].  



Int. J. Mol. Sci. 2015, 16 268 

 

 

The study by Yamada et al. suggested that the antihypertensive effect of RIY in SHRs is induced 

mainly by the production of PGI2 [123]. 

The interplay between NO and ET-1 is well established in the context of endothelial dysfunction. 

The ECE plays an important role in converting inactive bET-1 to vasoactive ET-1, which subsequently 

binds to ET receptors and induces vasoconstriction. Therefore, ECE inhibitors or ET receptor agonists 

are the key targets for the antihypertensive therapy [124]. Bovine β-lactoglobulin derived peptide 

ALPMHIR was found to suppress the ET-1 activity in porcine aortic endothelial cells [125], possibly 

through ECE inhibition. In another study, eight peptides derived from lactoferricin B those  

were previously characterized as ACE inhibitors have showed significant inhibition of ECE  

activity when vasoconstriction was induced by big ET-1. Lfcin17–25 (FKCRRWQWR), LfcinB17–31 

(FKCRRWQWRMKKLGA), LfcinB17–32 (FKCRRWQWRMKKLGAP), and Lfcin19–25 (CRRWQWR), 

were the most potent among them; these peptides were shown to inhibit ECE in isolated aortic 

segments from rabbits [126]. Furthermore, in a follow up study, the same group identified two  

more ECE inhibitory peptides, GILRPY and REPYFGY, from bovine lactoferrin hydrolysate [127]. 

Interestingly, these studies also suggested that these peptides may act either as dual vasopeptidase 

inhibitors (ACE/ECE), or as specific ECE inhibitors to produce their vasorelaxant effects [127]. So far 

there is little evidence to prove the relationship between ACE and ECE inhibition [127]; therefore 

these peptides may have dual enzyme inhibitory effect, which might result in pronounced blood pressure 

reducing effects. 

Endothelial dysfunction leads to influx of calcium ion (Ca2+) in VSMC and increases vasoconstriction 

by activation of AT1 and ETA/ETB receptors (Figure 2). Therefore, blocking of calcium channel reduces 

influx of Ca2+ and results in vasodilation. Peptides derived from fish protein hydrolysate have been 

shown antihypertensive effects by blocking the Ca2+ channels [128]. VY, a peptide derived from sardine 

muscle, exhibited an antihypertensive effect in SHRs as well as in Tsukuba-Hypertensive Mouse 

(THM) at doses of 10 and 0.1 mg/g BW respectively [129,130]. A study by Tanaka et al. showed that 

the antihypertensive effect of VY is actually mediated upon the VSM and it acts as an L-type Ca2+ 

channel blocker [128]. Similar mechanism has also been proposed for the sardine-derived peptide WH 

that suppresses the extracellular Ca2+ influx by blocking the L-type Ca2+ channel blocker in human 

VSM cells [131,132]. 

3.3. Antihypertensive Peptides Modulating Sympathetic Nervous System and Controlling  

Blood Pressure 

Opioid receptors are present in the central nervous system and they are involved in the regulation of 

blood pressure through increasing the activity of the sympathetic nervous system [133]. A peptide 

(YGLF) derived from pepsin/trypsin digestion of α-lactorphin has been shown to reduce blood pressure 

in SHR by binding to opioid receptors [134]. The vasodilatory effect of YGLF is endothelial dependent 

and can be inhibited by selected eNOS inhibitors [135]. Therefore, a novel mechanism of binding to 

endothelial opioid receptors and subsequent NO release might be responsible for the vasodilatory 

effects of this peptide. 
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3.4. Antihypertensive Peptides Modulating Vascular Remodeling 

Vascular inflammation-induced peripheral resistance is a contributor to elevated blood pressure and 

associated vascular pathologies [81]. Milk-derived tripeptide VPP pretreatment could significantly decrease 

phorbol 12-myristate 13-acetate (PMA) induced monocyte adhesion to human endothelial cells [136]. 

In addition, treatment with the both VPP and IPP offered protection against the development of 

atherosclerotic plaques in the apolipoprotein E (ApoE) knockout mice through a combined action 

involving the modulation of inflammatory as well as hypertensive pathways [137]. In our laboratory, 

the egg-derived tri-peptide IRW has demonstrated antihypertensive and anti-inflammatory properties 

by controlling both the hyperactive RAS pathway as well as the inflated pro-inflammatory cytokine 

levels in SHR [97]. Increased circulating levels of proinflammatory cytokines during the hypertension 

could further contribute to endothelial dysfunction and up-regulation of leukocyte adhesion in the 

vasculature, which ultimately results in vascular remodeling. Therefore, peptides that control the 

inflammatory pathways could potentially improve the vascular pathogenesis, and hence, control vascular 

remodeling and reduce elevated blood pressure. 

To date, several food protein-derived antihypertensive peptides have been reported with a significant 

antihypertensive activity in animal studies, mostly with SHR (Table 1). Based on current available 

scientific evidences, it can be concluded that food protein-derived peptides may exert antihypertensive 

activity through multiple mechanistic pathways as follows: ACE inhibition, renin inhibition, ACE-2 

activation, AT1 receptor blocking, increase NO production, ECE inhibition, PGI2 activation, blocking 

of Ca2+ channel, opioid activity, anti-oxidant activity and anti-inflammatory activity (Figure 5). 

Different peptide sequences have different modes of action, which may be mediated through their 

structural features. Various vasodilatory mechanisms of different peptides are summarized in Table 1. 

 

Figure 5. A schematic diagram of antihypertensive mechanism of food derived peptides. 

ACE (Angiotensin-I converting enzyme), ACE 2 (Angiotensin converting enzyme 2), eNOS 

(Endothelial nitric oxide synthase), NO (Nitric oxide), ECE (Endothelin converting enzyme). 
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Table 1. Antihypertensive activity and vasodilatory mechanism of food derived bioactive 

peptides in spontaneously hypertensive rats. 

Vasodilatory 

Mechanism 
Food Protein 

Peptide 

Sequence 
Dose mg/kg BW 

SBP Decrease 

(mm Hg) 
References 

ACE inhibition Milk α-casein MKP 0.5 −30.0 [101] 

  κ-casein IAK 4.0 −20.7 [138] 

   YAKPVA 6.0 −23.1 [139] 

  β-casein IPP 0.3 −28.3 [102,117] 

   VPP 0.6 −32.1 [102,117] 

 Egg Ovotransferrin IRW 15.0 −40.0 [97,106] 

 Fish Bonito muscle LKP 2.25 −5.0 [105] 

AT1 blocker Egg Egg white protein RVPSL 50.0 −25.0 [109] 

Ca2+ channel 

blocker 
Fish Sardine Muscle VY 10.0 −18.5 [129] 

PGI2 activator Rapseed Napin RIY 7.5 −28.0 [123] 

 Spinach Rubisco MRW 5.0 −20.0 [121] 

Renin inhibition Egg Egg white protein RVPSL 50.0 −25.0 [109] 

ACE-2 

activation 
Milk β-casein IPP 0.3 −28.3 [111] 

Anti-oxidant Milk α-casein MKP 0.5 −30.0 [102] 

   RYLGY 5.0 −32.0 [139] 

   MY 10.0 −19.4 [39,119] 

Opioid-agonist Milk α-lactorphin YGLF 1.0 −23.7 [134] 

eNOS  

up-regulation 
Milk β-casein IPP 0.3 −28.3 [115] 

   VPP 0.6 −32.1 [115] 

 Egg Ovotransferrin IRW 15.0 −40.0 [97,106] 

4. Antihypertensive Effects of Food Derived Peptides—Clinical Studies 

Clinical trials are necessary to evaluate the efficacy of food protein derived bioactive peptides in 

humans. It is also important to study the pharmacokinetics for the development of nutraceuticals and/or 

functional foods from food protein derived bioactive antihypertensive peptides. Two well-known 

peptides, VPP and IPP have shown efficacy as antihypertensive agents in human clinical studies [139]. 

Oral administration of VPP and IPP incorporated in different food formulas (fermented milk, fruit 

juice) demonstrated significant decrease in blood pressure (SBP and DBP) in Japanese and Finnish 

hypertensive volunteers [140,141]. However, the oral intake of these same peptides failed to reduce BP 

in Dutch and Danish hypertensive subjects, suggesting possible differences in efficacy among different 

human populations [142]. A meta-analysis of 18 clinical trials has shown that oral administration of 

these peptides (VPP and IPP) does reduce BP in hypertensive subjects but the beneficial effect appears 

to be pronounced in Asian subjects [143]. The controversial results obtained by different studies about 

the effect of lactotripeptides in Caucasian population was addressed by Boelsma et al. in a double 

blinded placebo control trial with 70 Caucasian pre-hypertensive or stage-1 hypertensive subjects.  

The result from this study reveals that oral administration of IPP exerts clinically relevant BP reduction 
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in Caucasian subjects with stage-1 hypertension [96]. Furthermore, another study has demonstrated 

that administration of milk tri-peptides along with plant sterols can exhibit a clinically significant reduction 

in SBP as well as serum total and low density lipoprotein (LDL)-cholesterol without adverse effects  

in hypertensive, hypercholesterolemic subjects in a randomized, placebo-controlled double-blind 

intervention [144]. Results from all these studies suggested that the reduction of blood pressure has 

been observed after at least 1–2 weeks of treatment with maximum effect of 13 mm Hg for SBP and 8 mm 

Hg for DBP with a dose range of approximately 3–55 mg/day. A recent meta-analysis showed that small 

doses (2.0–10.2 mg/day) of milk casein derived tri-peptides (VPP and IPP) exhibited an overall reduction 

of SBP by 4.0 mm Hg and DBP by 1.9 mm Hg in mildly hypertensive subjects [145]. Another clinical 

trial conducted by Hirota et al. with 24 mildly hypertensive subjects showed that these two lactopeptides 

(VPP and IPP) also improves endothelial dysfunction and significantly increase hyperemia measured 

on the left upper forearm of the subjects [146]. In addition to VPP and IPP, another study showed that 

consumption of yogurt enriched with casein derived antihypertensive peptides (RYLGY and AYFYPEL) 

reduced significantly SBP by 12 mmHg after 6 weeks of intake in a normalized placebo control trial [29]. 

Human clinical trials with pea protein hydrolysate also showed significant decrease in SBP by 5–7 mm 

Hg after 2 weeks treatment, but the smaller number (n = 7) used in this study is obviously not enough 

to judge the efficacy of the hydrolysate [147]. Similarly, sardine muscle derived di-peptide (VY) was 

used for human clinical trials. A randomized double-blind placebo control trials with 29 hypertensive 

subjects have demonstrated decrease in SBP and DBP by 9.3 and 5.2 mmHg, respectively, after 4 weeks 

of treatment [148]. However the clinical impact is controversial due to the small number of heterogeneous 

subjects in the trials [39]. Another trial involving 63 hypertensive subjects have shown that consumption 

of a vegetable drink containing VY could significantly reduce the blood pressure in high and mild 

hypertensive subjects, without any adverse side effects [149]. The third clinical study showed that  

a single oral administration of VY could significantly increase the plasma VY level, indicating the 

absorption of peptide in the blood stream. However no marked decrease in blood pressure was observed 

with the increased plasma VY level, indicating that VY did not exhibit an acute anti-hypertensive 

effect after oral ingestion and a longer-term treatment was likely necessary for the clinical benefits [150]. 

Various animal studies showed BP reduction by 20–40 mmHg using food protein derived bioactive 

peptides [29,99,115,118]; however, studies on human subjects were limited and the extent of blood 

pressure reduction was much less, mostly by 2–12 mmHg [142,143,151]. It should be noted that most 

animal studies were performed in a specific model of hypertension (such as SHR) where all animals 

had the same particular pathophysiology but the human subjects were likely to have different etiology 

underlying their clinical hypertension. In addition, animal studies use specific strains of animals while 

a group of human subjects in a clinical study are likely to have diverse racial and genetic backgrounds, 

which might complicate the efficacy of bioactive peptides. Indeed racial and genetic factors are  

known to modulate the development of hypertension [152,153]. Moreover, pharmacokinetics and 

pharmacodynamics of these food-derived bioactive peptides could be different in rodents and humans 

further complicating the efficacy of bioactive peptides. Therefore, more clinical studies engaging  

the volunteers from various ethnicities are required to establish the efficacy of food derived bioactive 

peptides as clinically relevant antihypertensive agents (Table 2). 
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Table 2. Human clinical trials of food protein derived antihypertensive peptides. 

Active 

Peptide 
Administered Product Study Description Dose/Day 

Duration 

(Weeks) 
SBP Decrease (mmHg) References 

VPP and IPP 

Fermented milk 

Double-blinded placebo-controlled 

randomized trial, 46 men with  

high-normal blood pressure. 

150 mL (3.0 mg VPP and 

2.25 mg IPP/100 g) 
21 −5.2 mm Hg [144] 

Evolus® (fermented milk 

flavored with fruit juice) 

Placebo-controlled randomized trial,  

42 subjects with mild hypertension. 
160 g 4 −6.7 mm Hg [143] 

Low-fat yoghurt drinks 

Randomized double-blind  

placebo-controlled trial, 135 hypertensive 

subjects (male/female: 88/47). 

200 mL (5.8 mg VPP and 

5.4 mg IPP) 
8 

No significant difference in blood 

pressure between the treatment 

and placebo controlled group 

[145] 

Milk protein hydrolysate 

Placebo control, double blinded, 

crossover including 70  

Caucasian subjects. 

2-tablets/day (each tablet 

contains 7.5 mg IPP) 
4 

−4.0 mm Hg in SBP (significant 

reduction) No change in DBP 
[97] 

Fruit Juice fortified with 

Lacto tri-peptides 

Randomized double blinded,  

52 (men:women = 29:21) mildly 

hypertensive patients. 

25 mL/day (3.0 mg of  

VPP and IPP) 
6 −5.0 mm Hg in SBP [154] 

A lacto spread  

contained VPP, IPP and 

plant sterols 

Randomised, placebo-controlled  

double-blind intervention,  

104 hypertensive,  

hypercholesterolemic subjects. 

20 g/day (containing  

4.2 mg of VPP and IPP; 

2 g of plant sterols) 

10 

−4.1 mm Hg in SBP, No change 

in DBP and significantly reduce 

plasma LDL cholesterol 

[147] 

RYLGY and 

AYFYPEL) 
Casein hydrolysate Normalized placebo control trial. 

20 mL/day (5.5 mg of 

RYLGY and AYFYPEL) 
6 −12 mm Hg in SBP [29] 

VY 

A beverage  

enriched with sardine 

muscle hydrolysate 

Randomized placebo-controlled trial,  

29 subjects with mild hypertension. 
2 × 100 mL (6 mg VY) 4 −9.3 mm Hg [151] 

A vegetable drink 

Randomized placebo-controlled trial,  

63 subjects (male/female: 51/12) with 

mild hypertension. 

195 g (0.5 g VY) 13 −7.6 mm Hg [152] 
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5. General Conclusions 

There is a tremendous global interest in promoting the use of food proteins/peptides as novel 

alternatives for present pharmaceutical therapeutics in the treatment and prevention of high blood 

pressure. In addition to exerting in vivo efficacy as the antihypertensive agent, food protein derived 

bioactive peptides can interact with the various blood pressure regulatory pathways, indicating  

their potential roles in controlling other pathologies related to the cardiovascular system, which  

may represent the advantage of using bioactive peptides as functional food/nutraceutical ingredients. 

However for many peptides, the actual mechanisms of action are not fully elucidated. Therefore, 

further research is required to identify the molecular targets of peptide action, which is important to 

establish the health promoting effects of these bioactive peptides. In this context, the use of advanced 

biochemical technologies such as proteomics, RNA sequencing, computational study with molecular 

docking and gene functional analysis are important to unlock the molecular mechanisms. Various clinical 

studies involving volunteers from different ethnic groups are also required to evaluate the ultimate 

efficacy and the pharmacokinetics of the active peptides. Furthermore, the safety of these bioactive 

peptides should also be evaluated before commercialization. Concomitant long-term research is also 

required to study the adverse or toxic effects associated with these active peptides. The translation of 

food derived bioactive peptide for human health improvements is an exciting scientific challenge,  

but simultaneously offers the opportunity for successful commercial applications. Lastly, various food 

materials with high protein content as well as the byproducts of the food processing industries could be 

used as a raw material for the industrial production of pharmaceutical grade bioactive peptides that 

may result in reduction in the production cost and also provides a sustainable and effective way of handling 

waste materials. 
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