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Abstract

Dynamically-typed languages running on Virtual Machines (VMs) are com-

monly used, but the lack of explicit type information poses a challenge to

producing efficient code. In general, without type annotations, it is impossible

to statically infer an object’s type to determine which methods to invoke or

how properties are accessed. Inline caches (ICs) are a widely adopted technique

to improve the performance of dynamically-typed languages. ICs store machine

code stubs at the bytecode level to enable fast-path execution for previously

seen types. However, highly polymorphic sites require a large number of fast

paths, leading to more frequent code generation and a higher runtime cost to

select the correct fast path for an incoming type. Therefore, implementations

often set a limit on the number of IC fast paths for a bytecode. Once this

limit is reached, type-specialized fast paths are forgotten and instead, the IC

executes a type-generic routine.

The central goal of this thesis is to investigate and evaluate alternative

techniques to handle high degrees of polymorphism in operations that use

inline caches. This thesis introduces Stub Folding, a technique that increases

the efficiency of highly polymorphic ICs. Stub Folding allows certain ICs to

retain type-specialized fast paths that would otherwise be lost, enabling higher

code coverage for compiler optimizations and accelerating lower execution tiers.

An implementation of Stub Folding in the SpiderMonkey JavaScript engine

achieves up to 25% improvement on complex applications within the JetStream

2.1 benchmark suite compared to SpiderMonkey’s previous approach. This
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thesis also explores techniques inspired by hardware caching policies, namely

Least Recently Used (LRU) and Least Frequently Used (LFU) replacement

policies. An evaluation indicates that LRU and LFU policies accelerate some

programs but do not reliably increase program efficiency across a range of

benchmarks.
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If this were not deliberate, it would be called a compiler “bug.” Since it is

deliberate, it should be called a “Trojan horse.”

– Ken Thompson, Reflections on Trusting Trust, 1984.
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Chapter 1

Introduction

Compared to statically-typed languages such as C, C++, and Rust, dynamically-

typed languages like JavaScript and Python provide greater ease of use and

flexibility, leading to decreased development times and simpler algorithmic devel-

opment [22], [32]. However, these benefits are accompanied by a higher runtime

cost to appropriately handle types dynamically [9], [32]. Thus, dynamically-

typed language implementations have long sought to achieve the higher per-

formance that is achieved for statically-typed languages while maintaining

ease-of-use and expressiveness [3], [6], [7], [9], [32]. Dynamic compilation tech-

niques enable language Virtual Machines (VMs) to optimize and compile code

at runtime. One of the most important of these techniques for dynamically-

typed languages is inline caching. Inline caches (ICs) accelerate execution at

a bytecode level by providing native-code fast execution paths specialized to

observed bytecode-operand types [5]–[7], [9], [15]. When Just-in-Time (JIT)

compiling functions, if only a single type is observed at a given bytecode

operation — a property load, for example — the fast path stored in the IC

is inlined into the compiled function, providing very efficient execution for

hot, type-stable, code paths. However, polymorphism is a difficult problem for

ICs to handle. A bytecode with many observed types requires a large number

of fast paths, leading to more frequent code generation and preventing the

compiler from inlining the fast paths into optimized functions.

Dynamically-typed language implementations typically deal with polymor-

phism by setting a low limit on the number of type-specialized fast paths
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stored in an IC. This limit is often arbitrarily chosen, and, when it is exceeded,

all the type information accumulated for that IC is lost. For example, in

SpiderMonkey [30], ICs have a maximum of six type-specialized fast paths. If a

property-load operation that has seen six types of objects is given a new type

of object, the VM removes the fast paths and instead selects a slower, generic

VM routine to compute the result of the bytecode.

The central goal of this thesis is to investigate and evaluate alternative

techniques to handle high degrees of polymorphism in operations that use inline

caches. The main technique, Stub Folding, is motivated by the observation

that, in some cases, the fast paths in highly polymorphic ICs share the same

code, only differing in the data that they operate on. For highly polymorphic

operations, Stub Folding uses code analysis to determine if an IC can retain

type-specialized fast-path information by combining all fast paths into one

instruction stream and thereby increasing the likelihood of fast-path inlining.

Two other techniques investigate the suitability of applying cache replacement

policies, such as Least Recently Used to reorder IC fast paths and Least

Frequently Used to remove fast paths that are used infrequently.

This thesis’ main contributions are presented in Chapter 5 and include:

• Stub Folding, a novel approach to handling polymorphic inline caches that

consolidates type-specialized fast paths into a unified instruction stream and

improves runtime performance by facilitating efficient IC code inlining.

• A Stub Folding implementation in the SpiderMonkey (SM) JavaScript engine

and an evaluation compared to SM’s previous approach.

• An evaluation of the viability of cache replacement policies for reordering

and eliminating underutilized fast paths in polymorphic inline caches.

Additionally, Chapter 3 of the thesis provides a detailed overview of the

Inline Caching schemes in modern dynamically-typed language implementa-

tions with a focus on the three main JavaScript engines in SpiderMonkey [30],

JavaScriptCore [17], and V8 [33]. Chapter 4 further contextualizes SpiderMon-

key’s existing approach to inline caching by discussing CacheIR, an Intermediate

Representation (IR) specialized for inline caches, and evaluating WarpBuilder,

the type specializing tiered execution architecture enabled by CacheIR’s design.
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Chapter 2

Dynamically-Typed Languages,
Speculative Compilation, and
Polymorphism

This chapter discusses dynamically-typed languages and their type systems,

the challenges posed by polymorphic operations, and how dynamically-typed

language virtual machines use speculative compilation techniques to accelerate

program execution.

2.1 Dynamic Typing

Languages1 like SELF, Smalltalk-80, JS, and Python support many dynamic

features such as modifying objects at run time by adding or deleting properties

and evaluating a string variable as code. In many cases, allowing such dynamism

means that static types are not known ahead of time before program execution.

Simply, dynamic typing is the process by which a language virtual machine

enforces type safety at run time rather than through ahead-of-time type checks.

To illustrate this concept, Figure 2.1 shows a trivial snippet of Rust code

contrasted with a snippet of JS code that updates a score field 2 on an object.

Rust is statically typed. Listing (a) in Figure 2.1 shows how much infor-

mation the Rust compiler has access to and can statically enforce at compile

time. From the update score function signature and body, the Rust compiler

1In the context of this thesis, languages, also refers to their implementation, not solely
their specification.

2In JavaScript fields are called properties.
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Static Typing: Rust

1 fn update -score(o: &mut Obj , v: i32) -> i32 {

2 o.score = o.score + v;

3 o.score

4 }

(a)

Dynamic Typing: JavaScript

1 function updateScore(o, v) {

2 o.score = o.score + v;

3 return o.score;

4 }

(b)

Figure 2.1: Static vs. dynamic typing.

observes the following: (a) o must be of type &mut Obj; (b) v must be an

integer of type i32; (c) score must be stored at a consistent offset from the

base of o’s memory and be of type i32; and (d) the function must return a

value of type i32. The Rust compiler enforces these invariants at compile

time, generating compile-time errors if any of them are violated, and rejecting

the code. For example, raising an error if a &mut String-typed variable is

passed instead of a &mut Obj-typed variable. By enforcing these invariants, the

compiler generates performant code without the need for runtime type checks.

In Listing (b), the JavaScript source code looks similar to the Rust source

code but there are a few noteworthy details: First, the types of o and v are

unknown; Second, the type of o.score is unknown and could anything including

a method, a null variable, or undefined; Third, since o’s type is unknown, the

offset at which to access score from o is unknown and need not be consistent

between types. For these reasons, dynamically-typed languages are often
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initially interpreted to handle a diverse set of incoming cases at runtime. In

Listing (b), though it may not be semantically what the programmer meant

to do, this function could legally receive a String-typed variable for o and a

Floating-point-typed variable for v. This action is well-defined in JS and

produces a concatenation of Strings, first converting v to a String and then

appending it to the value of o.score. Since the objects themselves and their

properties are also dynamic, storing an Integer to o.score at one point in the

program, then storing a String at another point is completely valid.

The properties of languages that use dynamic typing make it difficult to

generate efficient code for functions like updateScore without observing the

flow of types at runtime; a compiler no longer has a set of invariants that will

not be violated like in statically-typed languages.

Section 2.2 discusses how speculative compilation is used to infer types for

dynamically-typed languages to produce efficient specialized code.

2.1.1 Prototype-Based Object Models

Though generally elided from programmers’ mental models, dynamically-typed

languages still need an extensively defined internal type system and object

model. Many dynamically-typed language implementations for object-oriented

languages have adopted a prototype-based object model similar to SELF. In

prototype-based languages, the object and inheritance model relies on creating

objects by cloning and extending other objects as opposed to constructing

objects through class definitions as is common in other languages supporting

Object-Oriented Programming (OOP) like Java and C#. Terminology varies

between implementations but the idea remains the same. Each object has

a property slot that holds a pointer to a prototype object. When creating

an object, the prototype property slot is filled in with the object used for

instantiation. Since prototypes are themselves objects, each one has its own

prototype. The links between an object and its prototypes define a prototype

chain.
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obj: o

shape

slot 0: 25

Shape 1

'x'

prototype

Object

shape

...

obj: p

shape

slot 0: 10

obj: p

shape

slot 0: 25

Shape 2

'x'

'y'

prototypeslot 1: 15

o = {x: 25}

p = {x: 10}

p.y = 15

Figure 2.2: Example relationships between objects and shapes.

Type Systems via Object Shapes

In prototype-based languages, objects have: (a) a shape that describes the

layout of the object in memory; and (b) slots that hold actual values. The

shape of an object maps property-name strings to the corresponding slots

where the properties can be found within the object. Objects that have the

same mapping share the same shape. Shapes are immutable, meaning when a

property is added to an object, a new shape must be associated with the object.

If an existing shape matches the new mapping, it is associated with the object;

otherwise, a new shape representing the correct set and order of properties is

created and associated with the object. Because shapes are immutable, objects

with the same shape can be handled similarly and operate under the same

assumptions.

Figure 2.2 contextualizes the relationship between objects and shapes.

Initially, object o is created with one property x. Creating o constructs a new

shape that maps the property name x to the objects slot 0. Creating object

p with an x property uses the same shape mapping as o. When property y is

added to p later, the shape associated with p is changed to a newly constructed

6



shape that represents the mapping of x to slot 0 and the mapping of y to

slot 1.

As discussed in Section 2.2, prototype-based object models are useful

abstractions for representing types in dynamically-typed languages that can be

leveraged to produce efficient code.

2.1.2 Polymorphic Operations

Line 2 in Listing (b) of Figure 2.2 consists of three operations: (1) a property

load in o.score on the right-hand side; (2) a plus operator in +; and (3) a

property store in the = operator.

Each of these operations is potentially polymorphic. (1) and (3) are po-

tentially polymorphic in the number of types of o at runtime; how o.score is

loaded from and stored to depends on the type of o. (2) is polymorphic in the

number of combinations of types of o.score and v. For example, if o.score is

an integer and v is a string, + is a concatenation, if they are both numbers, it

is an addition.

For each of these polymorphic operations, the runtime types of o and v

determine which code should be generated for the function. The highlighted

operations are potentially polymorphic because updateScore could observe

only a single type for o.score and a single type for v during runtime.

There are three terms commonly used to denote the degree of polymorphism

for potentially polymorphic operations. A particular operator, at a particular

point throughout program execution, may be: (i) Monomorphic: where only

one case has been observed; (ii) Polymorphic: where more than one but

less than N cases have been observed; (iii) Megamoprhic: where N or more

cases have been observed. A case here describes a set of operand types to an

operation. Different cases need to be handled differently by the VM to produce

the correct behavior.
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Interpreter Compiler Optimizing Compiler

Bailout

Figure 2.3: Example of langauge VM tiered execution architecture.

2.2 Speculative Compilation

Speculative compilers help address the challenges posed in Section 2.1. At a high

level, speculative compilers use profiling to make assumptions about program

behavior and infer types dynamically to generate more performant fast-path

code. Because the type of inference is based only on assumptions, speculative

compilers also need to correctly handle the cases where the assumptions do

not hold. Therefore, in speculatively compiled code, the speculated fast path

is guarded by a condition based on the inferred types of the variables used in

the fast path.

As an example, consider Listing (b) in Figure 2.1. If after several invocations,

updateScore observes one type for o where o.score is an integer and v is an

integer, a language VM can speculate that the types have stabilized – they are

unlikely to change – and generate type specialized code for integer addition,

guarded by checking the types of o and v.

2.2.1 Tiered Execution

In dynamically-typed languages, the flow of types through functions needs

to be observed at runtime before speculating on the state of type stability.

Languages virtual machines typically employ tiered execution models that

progressively exploit profiling information to drive speculative Just-In-Time

(JIT) compilation decisions. Figure 2.3 shows a common abstract architecture

for tiered execution.

The discussion in Section 2.1 highlights the need for dynamically-typed-

language virtual machines to be flexible and robust. Initial program execution

begins with interpretation. Interpreters execute a single bytecode operation

at a time and are flexible and robust to dynamicity. Because the interpreter
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does not have the executing bytecode’s surrounding context, it appropriately

deals with changes in bytecode operand types. Interpreters also have quick

start-up times. Compared to compilers, interpreters do not require a distinct

compilation step before executing; interpreters can begin executing lines of

code immediately. However, due to the interpreter not having context around

the executing bytecodes, it is inefficient for an interpreter to frequently execute

functions or traces that exhibit type stability.

To counter this, the next execution tier for language VMs is a compilation

step. During interpretation, the VM collects profiling information such as

the number of invocations of a function and its argument types. With this

information, the compiler compiles the function with the appropriate type

checks and replaces interpreter execution with a specialized fast path.

Language VMs try to balance the costs of compilation time with the benefit

of executing the compiled code. The first compilation step typically trades

execution time for compilation speed by foregoing expensive optimizations.

Once the VM is confident enough that types for a hot function have stabilized,

it will compile the function again with an optimization pipeline that mirrors a

typical pipeline for statically-typed languages. Because both of the compilers

are operating on type-inference assumptions rather than certainty, the compiled

function bodies need a way out if they observe an unexpected type. In Figure 2.3

this is represented by the arcs labeled bailout. A bailout3 represents the path

taken if a condition guarding a compiled fast path fails; the speculation was

incorrect, and the executing compiled code must transfer execution back to the

interpreter to ensure that the code is handled correctly. When a bailout occurs,

it signifies that the code that was speculatively compiled is unable to handle

all observed types. Therefore, the compiled function is typically discarded and

the interpreter resumes collecting more refined type profiles.

Tiered execution environments ensure that programs have quick start-up

times while being able to dynamically produce high-quality specialized code

based on type feedback.

3Bailouts are also referred to as deoptimization or on-stack-replacement (OSR).
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2.2.2 Inline Caching

An important technique used to accelerate dynamically-typed program ex-

ecution in VMs is inline caching. Inline caching was first proposed by L.

Peter Deutsch and Allan M. Schiffman in the Smalltalk-80 system to improve

the performance of method invocation on dynamically-typed objects [9]. In

Smalltalk-80, the expression o.x invokes method x on a receiver object o, and

depending on o’s runtime type, different methods named x could be called [13].

Initially, the call is bound to the default method-lookup routine, which serves

as the fallback case. When the lookup routine resolves an address, it overwrites

the fallback address, providing a fast path for the observed object’s type. On

subsequent evaluations of the same expression, the receiver object’s type is

compared to the cached type corresponding to the fast path, and the fast path

is taken if the types match; otherwise, the fallback path is taken, and the call

site is re-bound to the newly resolved method address. However, this inline

caching scheme has limitations since it only provides a fast path for a single

type for each static expression o.x.

In contrast, languages such as SELF have more frequent polymorphic

method invocations, and Polymorphic Inline Caches (PICs) were introduced by

Urz Hölzle, Craig Chambers, and David Ungar to accelerate the operation sites

that observe more than one type [7], [15]. Instead of directly embedding the

resolved method address into the native code, the system embeds the address

of a native code stub that guards on previously observed types and executes

the corresponding method. If no guards pass, the fallback path is invoked and

a new fast path is appended within the stub.

Modern dynamically-typed language implementations such as SpiderMon-

key [30], V8 [33], and JavaScriptCore (JSC) [17] JS engines that are discussed

in detail in Chapter 3 use a variation of this PIC technique [34].

In addition to being used to directly accelerate operations, inline caches

serve as a very valuable collection of type information by monitoring the

types given to an operation. Following the insight from the work by Hölzle

et. al. [15], dynamically-typed language VMs take advantage of the type

10



information provided by PICs to enable the speculative compilation of hot

functions that exhibit function-wide type stability.
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Chapter 3

Inline Caching in
Dynamically-Typed Languages

This chapter discusses in detail the inline caching mechanisms in dynamically-

typed language implementations with a focus on JavaScript engines. The end of

the chapter provides an alternative view of inline caching in purely interpreted

environments, using Python 3.11 [23] as a case study.

3.1 The JavaScript Object Models

As a prototype-based language, JS has an object and inheritance model that

follows closely to the description in Subsection 2.1.1. The base prototype of all

objects created is the Object prototype, a special object whose own prototype

is set to null, which defines common, built-in behavior for all JS objects1. In

JS, the prototype chain terminates when a prototype slot is null. Figure 3.1

shows an example of JS-object prototyping.

JS objects contain properties that can be changed, added, and deleted freely

1It is possible to create an object that doesn’t inherit any of this behavior with
Object.create(null). This is uncommon but worth mentioning.

obj: o

shape

slot 0: 3

slot 1: 7

Shape 1

'x'

'y'

prototype

obj: p

shape

slot 0: 5

Shape q

'radius'

prototype

nullObject

shape

...

Object
Shape
...

prototype

Figure 3.1: JS object model.
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at runtime. The in-memory representation of objects differs depending on the

implementation; these details will be discussed in the following sections.

3.1.1 Shapes or Hidden Classes or Maps

As mentioned in the Chapter 2, the main feature enabling ICs is the presence

of shapes. In Figure 3.1, the integrity of the prototype chain of objects is

maintained through intermediate shape representations holding the property

mappings of slots in the object and the pointer to the prototype. This indirec-

tion allows for the same shape to be shared amongst objects with the same

mapping and same prototype, reducing memory — as opposed to having a

per object mapping — and enabling the IC scheme. Adding properties to an

object changes its shape, and the prototype of an object is implied by the

shape; objects with the same properties at the same offsets but with different

prototypes have different shapes.

The terms shape, hidden class, and map have all historically been used to

refer to this idea. In this thesis, shape is consistently used to avoid using the

overloaded map, and the somewhat misleading and unintuitive hidden class

terminologies.

3.2 SpiderMonkey

SpiderMonkey is the open-source production JavaScript engine developed

mainly by Mozilla [30]. The architecture of SpiderMonkey has and will continue

to evolve; the description below outlines the state of SpiderMonkey in the

Firefox 111 release.

3.2.1 Execution Tiers

In SpiderMonkey, JavaScript source code is compiled Just-In-Time (JIT) into

a collection of scripts that correspond to executable bodies such as functions,

closures, modules, or eval statements. Initially, the scripts are compiled to

bytecode, but may gain additional representations as they transition between

different execution engines:

13



Interpreter

Baseline Interpreter

Baseline Compiler

Warp Compiler

10 Executions

1500 Executions

100 Executions

Bailout

Figure 3.2: SM execution tiers and transition conditions.

Interpreter: For a script’s initial invocations, SpiderMonkey employs a

single-bytecode interpreter.

Baseline Interpreter: The next tier, the Baseline Interpreter, starts collect-

ing bytecode operand-type information by utilizing ICs for supported bytecode

operations.

Baseline: Then, a script may be compiled by the Baseline compiler, a JIT

compiler that stitches together native code sequences for bytecodes. For

IC-supported operations, Baseline emits a call to the compiled IC code.

Warp and Ion: For performance-critical scripts, SpiderMonkey employs

Ion, a type-specializing and speculative compiler that generates executable

code optimized to the type information stored within ICs. In the case of a

speculation failure, Ion-compiled code will bailout to the Baseline Interpreter

tier to collect more refined profiling data.

3.2.2 SpiderMonkey’s Inline Caches

In SpiderMonkey, ICs operate at a bytecode level such that each supported

bytecode site gets its own IC. All ICs are PICs; each IC is a linked list of
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Stub Code*
Stub IR*
next* Fallback

Routine

Stub Fields
Stub Code*
Stub IR*
next*

Stub Fields
Stub Code*
Stub IR*
next*

Stub Fields

Figure 3.3: Inline Cache structures in SpiderMonkey.

stub structures. There are two types of stub data structures: specialized stubs

and fallback stubs. They both contain pointers to associated machine code –

the stub code – and a counter variable keeping track of how many times the

stub has been entered. Specialized stubs hold IC information for each distinct

case observed at an IC-supported bytecode site including associated metadata

such as a pointer to the stub’s IR and the data on which the stub operates –

the stub fields. Fallback stubs contain the ICs state and their stub code calls

the associated fallback handler with the necessary logic to produce a result

for the bytecode and the ability to attach new stubs to the stub chain. Each

IC-supported bytecode site is initialized with a fallback stub corresponding

to the bytecode operation. Figure 3.3 shows a high-level overview of these

structures.

Inline-Cache States

There are four2 states in SM in which ICs can exist, each coarsely characterizing

the observed type history for a given IC:

Unlinked: if no stubs have been attached other than the fallback stub,

suggesting the code path has yet to be visited.

Specialized: if 1 to N specialized stubs have been attached, suggesting a

monomorphic or low-degree polymorphic site.

Megamorphic: if more than N specialized stub attachments would be

needed to handle all the observed cases, suggesting a high-degree polymorphic

site.

2Three in the source code, but the unlinked state is handled differently in certain parts of
the engine so it is included separately here.
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of failures-to-attach that the stub chain will tolerate; when that is hit, the

stub chain transitions to Generic mode to avoid wasting further resources

on attempting to attach new stubs. Figure 3.4 displays the IC states and

directional transition conditions between states.

Megamorphic Property Access Operations

For property lookup operations, Megamorphic stubs rely on a typical software

cache – the Megamoprhic Cache – that maps the hash of a (shape, property

key) pair to the property in the object. The Megamorphic Cache is a global

cache that has 1024 entries. It is a single-level cache that handles collisions by

overwriting previous entries. Megamorphic stubs call a VM function that

performs a cache lookup on the Megamorphic Cache. If there is a cache hit

such that the shape of the incoming object is the same as the cached object, it

returns the correct offset into the object to access a given property.

CacheIR

In 2016, the SM team rehauled the IC infrastructure by developing a novel

IR for ICs called CacheIR [20]. CacheIR is a simple bytecode specialized for

compiling IC stubs. CacheIR gives a useful abstraction that enables inline cache

code sharing and speculative compilation by lowering the IR in optimizing

compiler tiers. Chapter 4 provides a detailed description of CacheIR and the

virtual machine architecture it enables.

3.3 JavaScriptCore

JavaScriptCore (JSC) is the open-source production JavaScript engine devel-

oped mainly by Apple for the WebKit browser engine [17]. The description

below outlines the state of JSC in the WebKit 173 release.

3.3.1 Execution Tiers

JSC uses a register-based bytecode as the source of truth throughout all

execution tiers.
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Figure 3.5: JSC execution tiers.

LLInt: LLInt — or Low-Level Interpreter — is the initial execution tier. It

executes the program by interpreting one bytecode at a time and collects

bytecode operand type information that is used in the higher tiers.

Baseline: Once LLInt has collected enough type information for a function,

it is compiled using the Baseline JIT. Baseline is a template JIT compiler

that compiles entire functions at a time. Each bytecode is compiled into a

predefined sequence of instructions.

DFG: DFG (for data flow graph) is a JIT tier that performs speculations

based on the profiling data collected through LLInt and Baseline. DFG

converts bytecodes into an internal IR called DFG IR that allows for inter-

bytecode reasoning to enable compiler optimizations. A primary goal of

DFG is maintaining low compilation times, at the cost of generating sub-

optimal code. Because of this, DFG does not perform more robust but time-

consuming optimizations such as global register allocation, escape analysis,

loop optimizations, and any optimization that relies on an Static Single

Assignment (SSA) IR. When a speculation fails, DFG can bail out to either

LLInt or Baseline to resume execution with fewer assumptions.

FTL: FTL — or Faster Than Light — is the top-tier optimizing compiler,

maximizing throughput at the cost of increased compilation times. FTL

builds on the pipeline and infrastructure of DFG by reusing many of DFG’s
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optimizations while also opting into the aforementioned time-consuming

optimization that DFG does not perform. In addition to DFG IR, FTL also

uses DFG SSA IR, B3 IR, and Assembly IR. When a speculation fails, FTL

can also bail out to either LLInt or Baseline.

3.3.2 JavaScriptCore’s Inline Caches

LLInt uses inline caches for property accesses by caching a shape and property

offset as metadata on the property access operation. The cached shape and

property offset are updated each time the operation encounters an object

with a new shape. Unlike SpiderMonkey, which relies on creating IC chains

consisting of distinct stubs to handle polymorphism, JSC’s Baseline ICs rely

on a technique called repatching. Repatching is also the technique used in the

classic inline caching implementations from the work on SELF [7], [15] and

Smalltalk-80 [9], as discussed in Subsection 2.2.2. With repatching, Baseline

allocates slabs of memory to hold machine code for each IC. Each IC slab

is initially an unconditional jump instruction to the VM routine—the slow

path—followed by a sequence of no-op instructions. When Baseline observes

type information for an IC-supported operation, it generates type-specialized

code guarded by the observed types and a fallback path with the jump to the

slow path. That code is stored in the slab for the IC, overwriting the initial

jump to the slow path and no-op instructions. Whenever a new set of types is

observed, the existing code is updated to handle the new case.

JavaScriptCore’s inline caches use data structures to: (i) store the object

shapes observed by each property access operation, and (ii) indicate whether

the IC is polymorphic or megamorphic.

DFG’s ICs also employ repatching, but DFG ICs rely on profiling informa-

tion collected in ICs from LLInt and Baseline. DFG checks if the LLInt IC and

the Baseline IC have the same monomorphic case. If they do, DFG represents

the IC as an inline sequence of DFG IR operations to enable context-aware

reasoning about ICs, such as guard elisions between inlined ICs. If the degree

of polymorphism reported by Baseline is below a set threshold, DFG also

represents the IC as a sequence of inline DFG IR operations that handle low
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Figure 3.6: V8 execution tiers.

degrees of polymorphism. Otherwise, if the degree of polymorphism is below

the maximum-polymorphic-case threshold, DFG reinitializes a fresh IC slab to

continue collecting refined profiling data.

FTL generates internal IR and machine code based on IC analysis from

LLInt, Baseline, and DFG ICs. If an IC is already inlined in DFG IR (i.e.,

monomorphic) or low-degree polymorphic represented by a DFG IC, FTL

treats the DFG IR operations corresponding to the IC the same as any other

sequence of DFG IR, lowering the operations to equivalent B3 IR nodes.

Megamorphic Property Access Operations

For operations that exceed the maximum-polymorphic-case threshold, Baseline,

DFG, and FTL create an IC that uses a Megmamorphic Cache similar to

SpiderMonkey. The execution engine repatches the inline cache to call a VM

function that performs a cache lookup on the Megamorphic Cache. Unlike

SpiderMonkey, JSC’s Megamorphic Cache is multi-level and has a more sophis-

ticated cache collision mechanism. There are two cache levels, primary and

secondary. When a property access maps to a primary cache entry, JSC moves

the property access currently mapped in the primary cache to the secondary

cache.

3.4 V8

V8 is the open-source production JavaScript engine developed mainly by Google

for the Chromium browser engine [33]. The description below outlines the state

of V8 in the 10.0 release.

20



3.4.1 Execution Tiers

Ignition: Ignition is an interpreter that is responsible for lowering JS source

to bytecode and interpreting a single bytecode at a time. Ignition profiles

the program during execution and stores type information for operations like

property accesses and binary arithmetic and uses inline caches to accelerate

interpretation.

TurboFan: For hot functions, V8’s optimizing compiler, TurboFan, consumes

the bytecode and type information for the inline caches and speculatively

generates type-specialized and highly-optimized code.

V8’s tiering structure, as shown Figure 3.6, is significantly simpler than

JSC and SM. Despite this simplicity, V8 is a very high-performance JavaScript

engine and is used in the popular Node.js [10] backend. The differences in

tiering structure between engines highlight the flexibility and freedom in VM

design for languages that use speculative compilation.

3.4.2 V8’s Inline Caches

The main component of V8’s inline caches is a data structure called a Feedback

Vector. For each function, Ignition creates an entry in a corresponding Feedback

Vector for each IC-supported bytecode operation. For example, a Feedback

Vector entry can correspond to an IC for a property access, call, or a binary

arithmetic operation. The Feedback Vector entry keeps track of the state of

the IC, which is either: (i) Uninitialized; (ii) Monomorphic; (iii) Polymorphic;

or (iv) Megamorphic. Additionally, each Feedback Vector entry also contains

data corresponding to an observed set of operands. For example, an entry for a

monomorphic property access IC includes the shape of the object and the offset

of the property on the object. Ignition uses a precompiled set of routines that

correspond to each IC-supported operation. Each of these routines operates on

the Feedback Vector entry to compute the result of the IC-supported operation.

When compiling a function, TurboFan exploits the information in the functions

Feedback Vector to generate highly-specialized machine code.
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Megamorphic Property Access Operations

Similar to JSC, megamorphic property access operations in V8 use a multi-

level Megamorphic Cache. However, V8’s cache maps property access keys to

handlers used to compute the access rather than to property offsets. When

a Feedback Vector entry indicates that a property-access IC is megamorphic,

Ignition envokes a Megamorphic Cache lookup. On a cache miss, the new

property access is inserted into the cache. If there is a collision, the primary

cache’s existing entry is moved to the secondary cache, overwriting the secondary

cache entry. Cache hits return the handle to compute the appropriate property

access.

3.5 Interpreter-Only Inline Caching with

Python 3.11

With the release of the CPython implementation of Python 3.11 in late 2022 [23],

an IC scheme known as Quickening became widely available to accelerate

interpretation. Unlike SELF and JavaScript implementations, CPython is

purely interpreted and ships without any kind of dynamic translation engine

or JIT compiler. Therefore, for inline caching to be useful, it must not rely on

compilation of native code at run-time.

Quickening is a technique used in language VMs to specialize VM function

dispatch with respect to the operand types of a bytecode. Performing inline

caching with Quickening was initially presented in the work by Brunthaler [5],

providing an implementation in Python as a proof-of-concept. Take the example

of a + b, in Python, like in JavaScript, the types of a and b may change during

execution. Rather than compiling a specialized machine code stub akin to

Deutsch and Schiffman [9], the default VM call to perform a slower + operation

on generic inputs is replaced by a specialized VM function that expects the

operands to be of the same types as a and b. After specialization, the VM

will dispatch to the quickened version of the function as long as the types stay

consistent. If the observed types change, an alternative quickened function

replaces the previous one; therefore, Quickening is a type of monomorphic
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inline cache.

Quickening was introduced as part of what the CPython group is calling a

Specializing Adaptive Interpreter in PEP 659 [26]. Operations that are candi-

dates for Quickening include calls, attribute loads from objects, attribute loads

from the global namespace, and binary arithmetic. Each Quickening candidate

operation has a family of functions that are shipped with the interpreter. Each

member in the family contains a function specialized for certain input operand

types. Quickening has substantial performance implications, consistently pro-

viding speedups of 10% to 60% over disabling the optimization. Moreover, the

architecture of Quickening for purely interpreted dynamically-typed language

implementations is validated by its inclusion in CPython.

23



Chapter 4

The Benefits of a Structured
Representation for Inline Caches

Most software stacks that support inline caching use low-level, often ad-hoc, IC

data structures for code generation. This chapter discusses CacheIR, a design

for inline caching built entirely around an intermediate representation (IR)

which: (i) simplifies the development of ICs by raising the abstraction level;

and (ii) enables reusing compiled native code through IR matching techniques.

Moreover, this chapter describes WarpBuilder, a novel design for a Just-in-Time

compiler front-end that directly generates type-specialized code by lowering the

CacheIR contained in ICs; and Trial Inlining, an extension to the inline-caching

system that allows for context-sensitive inlining of context-sensitive ICs. The

combination of CacheIR and WarpBuilder have been powerful performance

tools for the SpiderMonkey team, and have been key in providing improved

performance with less security risk.

CacheIR was designed and implemented by the SpiderMonkey development

team at Mozilla and open-source contributors to the SpiderMonkey project.

The purpose of this chapter is to provide a detailed view into a modern inline

caching design and evaluate WarpBuilder by comparing it to SpiderMonkey’s

previous design.
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1 GuardToObject InputId0 --> ObjId0

2 GuardShape ObjId0 , Field0

3 LoadFixedSlotResult , ObjId0 , 8

4 ReturnFromIC

5 --Stub Fields ---

6 Field0: Shape 0xabcdef0123

Figure 4.1: An example of CacheIR for an object property read: obj.prop

4.1 A Linear Bytecode for Inline Caches

CacheIR is a simply typed bytecode specialized for compiling inline caches.

CacheIR bytecode is ’linear’ in that it has only two control-flow primitives:

• Guards: Instructions that verify a stub invariant, preventing the execu-

tion of the stub if the guard does not hold.

• Return: A single bytecode that returns from the IC stub code.

Containing no other control flow instructions, the intermediate representa-

tion of an inline cache in the CacheIR is akin to an extended basic block [21].

Each IC has a single entry point, has multiple exit points through guard failure

paths and the return operation. Once the execution passes all the guards, and

all instructions in the IC execute once in order.

CacheIR bytecodes operate on typed Operands, which are either input

values or the return value of a CacheIR bytecode operation. The number of

implicit input operands in the CacheIR for an IC is determined by the arity of

the bytecode to which the IC is attached. For an IC attached to a bytecode

that produces a value, the CacheIR has an output operand for that value as

well. In addition to operands, CacheIR stubs have stub fields, which are values

associated with and used within the stub. For Baseline ICs, stub fields facilitate

the sharing of native code for stubs that are identical except for offsets and

pointer values, and simplify the process of integrating stubs into the garbage

collector.
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Figure 4.1 shows an example of a CacheIR illustrating guards, operations,

and stub fields. The GuardToObject op is an example of a guarded cast; either

the input is of Object type, producing a new Object typed operand, or the

guard condition fails and control is given to the next stub. The GuardShape op

tests if the object-operand’s shape matches the shape stored in the stub field.

LoadFixedSlotResult loads a value out of the fixed slot at offset 8 in the

object1, placing the result into the implicit result register (hence the Result

suffix).

Currently, SpiderMonkey’s CacheIR has more than 300 CacheIR instruc-

tions, including 64 guard conditions, covering a large number of behaviors

inside the engine. Moreover, the IR’s simplicity enables a straightforward

implementation path to add support for further operations.

4.1.1 Generation of CacheIR

CacheIR is generated in the fallback path for an IC miss. While details vary

gently, the fallback handler logic generally operates as follows: (i) compute

the result for the current operation; (ii) invoke the appropriate CacheIR IR

Generator — this generator analyses the input values, opcode, and resulting

value, and uses a simple hand-crafted pattern matching code to instantiate

a matching sequence of CacheIR operations that handle the input values;

(iii) generate native code from the sequence of CacheIR operations; (iv) attach

the resulting stub to the front of the IC chain.

Raised Abstraction == Higher Productivity

Language runtime development must focus on performance improvement. Some-

times a performance cliff can be eliminated by designing the engine to generate

specialized code for specific cases. SpiderMonkey, for example, often generates

specialized code by adding support for a specific case in the inline cache genera-

tor. For instance, consider an illustrative example: Assume that a performance

analysis determines that an important site often performs arithmetic with null.

1This slot was determined during the generation of this cache and is correct because of
the shape guard previous.
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Such operations are unexpected and thus are not handled by the default IC

generation policy. CacheIR simplifies the process of inserting an IC to generate

specialized code for the execution of operations such as a + b where either a

or b is null, leading to performance improvement in this example.

Adding such support often only requires a modification to the existing Binary

Arithmetic CacheIR generator2 that adds a case to emit the correct CacheIR, as

shown in Figure 4.2. The general-shape CacheIR generation pattern matches on

the actual results that the fallback stub observed when running the operation

(lines 2-9), and then generates CacheIR that provides a fast path for the specific

observed case (lines 17-21). In some cases, correct handling may require adding

a CacheIR operation. In SpiderMonkey, adding a CacheIR operation requires

a modification of an operator description file, and code generation for that

operation through a platform-independent MacroAssembler.

By adding support to the CacheIR generator, we’ve also added support for

specializing this operation to Warp, assuming the CacheIR operations are all

successfully handled by Warp.

Working with CacheIR raises productivity for writing ICs in other ways as

well. CacheIR has a simple register allocator to allow managing values inside

of caches. Furthermore, CacheIR also automatically creates the failure paths

required to restore the input registers to their original values on failure allowing

every stub in the IC chain to start from the same state.

Using an Intermediate Representation for inline caches also eases the devel-

opment of tooling to analyze the behaviour of inline caches, since a structured

machine-independent representation is appreciably easier to investigate than

generated native machine code.

Stub Generation Policies: Avoiding Pathological Outcomes

Each IC chain has some associated state: the number of stubs attached, and a

mode. There are three modes, coarsely characterizing observed type history for

an IC chain:

2Used for infix binary operations.
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1 AttachDecision BinaryArithIRGenerator :: tryAttachNullInt () {

2 // Only Handle Add

3 if (op_ != JSOp::Add) {

4 return AttachDecision :: NoAction;

5 }

6 // Only handle LHS null RHS int32.

7 if (!lhs_.isNull () || !rhs_.isInt32 ()) {

8 return AttachDecision :: NoAction;

9 }

10
11 ValOperandId lhsId(writer.setInputOperandId (0));

12 ValOperandId rhsId(writer.setInputOperandId (1));

13
14 // null + int32rhs = int32rhs

15 writer.guardIsNull(lhsId);

16 Int32OperandId rhsIntId = writer.guardToInt32(rhsId);

17 writer.Int32Result(rhsIntId);

18 writer.returnFromIC ();

19 }

Figure 4.2: A simplified fictional example of the CacheIR generation process
for a null + int opportunity

1. Specialized: In this mode, the CacheIR generators attempt to create

stubs that are tightly specialized to the observed values, but can only

handle specific, tightly guarded cases. For example, a specialized stub

for a property read has a guard on the receiver being an object and a

guard on the object’s shape (as in Figure 4.1).

2. Megamorphic: In this mode, the CacheIR generators create stubs that

are not as type specialized as Specialized stubs. Often this involves

creating a stub that calls a routine in the VM runtime, which is slower

than a Specialized stub, but still faster than interpretation. For a

property read, Megamorphic stubs guard on the receiver being an

object before calling a VM routine to produce the result via a lookup in

a global property cache.

3. Generic: In this mode, stub attachment is disallowed, and a call to a VM

runtime routine will simply provide the result value without attempting
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to attach a stub.

Each IC chain is initially Specialized, from which point it may either

(i) remain Specialized, (ii) transition to Megamorphic, or (iii) transition

directly to Generic. When the IC chain transitions from one mode to

another, it discards all the currently attached stubs other than the fallback

stub. As shown in Figure 3.4, an IC chain transitions from Specialized to

Megamorphic when it exceeds the maximum number of attached stubs that

are allowed for a specialized IC chain. The goal of this limit is to prevent

the creation of long chains of stubs that may cause high overhead to traverse.

Each IC chain also keeps track of the number of times a fallback stub has been

reached and failed to attach a stub. Failure to attach any stub can happen

because JavaScript is an extremely dynamic language with a large number of

possible behaviors, many of which are effectively never seen in practice. As a

result optimization effort is typically focused on observed patterns, which can

lead to rare combinations of operations having no IC developed for them. In

addition, there is a maximum number of failures-to-attach that the stub chain

will tolerate; when that is hit, the stub chain transitions to Generic mode to

avoid wasting further resources on attempting to attach new stubs.

4.1.2 Compilation of CacheIR into Native code

SpiderMonkey has two CacheIR compilers: one compiler shared by Baseline

Interpreter and Baseline, called the Baseline CacheIR Compiler, and one

specialized to Ion — SpiderMonkey’s top-tier compiler used only for the hottest

scripts — called the Ion CacheIR Compiler. The two compilers share a

considerable amount of engine code but are specialized to the required calling

convention of the target IC system. Each compiler also adopts a different policy

for the handling of Stub Fields.

The Baseline CacheIR compiler handles stub fields by generating native

code that loads the values out of the stub metadata. The Ion CacheIR compiler

adopts a policy of directly embedding stub field values in the IC stub code.

Field-value embedding makes Ion IC stub code ineligible for sharing but requires
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less indirection, and thus Ion ICs ultimately execute faster than Baseline ICs.

The Baseline CacheIR compiler’s approach is slightly less performant than

Ion’s approach but has the benefit that caches with the same CacheIR that

differ only in the values of their stub fields can share native code. Stub code

sharing dramatically reduces the amount of native code required by Baseline

ICs, saving memory and the time required to generate native code when stubs

can be shared. Furthermore, stub code sharing also avoids a major cost of

dynamic code generation which is the page table manipulation required to

mark pages as executable at runtime.

Both CacheIR compilers use a simple register allocator to track where each

operand is during execution — in a register, in a stack slot, on the language

stack, etc. This register allocator can provide extra registers to caches where

required. If a guard fails, the IC needs to restore the input registers to their

original values, allowing the next stub in the chain to start in a known state.

The register allocator has the information that it needs to generate these failure

paths automatically. Failure paths are shared between guard instructions if

the register state has not changed between the guards.

4.1.3 Dynamic Specialization Without Dynamic
Allocation of Executable Pages

JIT Compilers require the ability to write to pages marked executable. This is

sometimes prohibited by platforms (often to improve security), and as such

SpiderMonkey, if run on one of these platforms, must necessarily limit itself

to the interpreter. CacheIR provides a potential road forward to maintain a

specializing IC system that does not rely on writing new code. Since Spider-

Monkey’s IC scheme already supports sharing native code for stubs which have

the same CacheIR, pre-compiling native code for the N most common stubs

and shipping them with the engine binary would provide the speedups of inline

caching, without the requirement for writing executable code at runtime3.

3In SpiderMonkey this would also require pre-compiling the Baseline Interpreter, as it is
only the Baseline Interpreter and higher tiers that can attach IC stubs

31



4.2 WarpBuilder: Consuming CacheIR

Directly as Type Feedback

WarpBuilder, a front-end for the Ion Compiler, converts bytecodes into MIR

and was built around the insight that CacheIR provides an excellent source of

type information for an optimizing compiler.

It replaces a component called IonBuilder, which used a hybrid Type

Inference (TI) system, proposed by Hackett et al., that uses both static-

analysis and runtime-collected type information to infer facts about object

types and shapes [14]. The TI system allows for complicated reasoning about

objects and nested property accesses. However, its power came at a cost: Type

Inference consumed memory to power optimizations which could only occur

once functions made it to top-tier compilation, but an even larger cost was the

engineering costs associated with TI.

To be sound, the TI system needed information to be correctly propagated

throughout the engine, which meant that TI code was necessary for many parts

of the engine. Moreover, any failure to properly maintain type data could lead

to security problems because the Ion optimizing compiler would consult the TI

system and use the provided invariants to elide checks that would otherwise be

necessary. This was particularly pernicious because erroneous handling of a

value in one place could be exploitable by code very far away, as a result of the

poisoning of the global analysis.

In WarpBuilder, type data is exclusively sourced from the inline caches

generated as part of lower-tier executions, and the consumption of that type

data is local to the MIR for a particular bytecode. WarpBuilder precisely

builds specialized code by directly compiling the CacheIR for an eligible stub

to MIR, converting guard failures to bailouts. With this compilation strategy,

the MIR code is immediately specialized to the observed types in the program,

and those type checks are directly made visible to the Ion optimizer, which

is able to re-order them, and eliminate redundancy to further optimize the

code. Furthermore, more complex ICs with complicated guard conditions do

not then require more complicated analysis glue code in WarpBuilder to take
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advantage of stored types – so long as Warp is able to compiler the CacheIR

instructions, the guards are built correctly and automatically every time.

Compared to IonBuilder it is an appreciably simpler approach, eliminating

the requirement for globally correct reasoning, and limiting the scope of impact

for erroneous code. Moreover, using CacheIR for ICs in lower tiers is a perfor-

mance optimization that provides direct value, whereas tracking TI information

is pure overhead before tiering up to the Ion compiler. Therefore, WarpBuilder

also provides improvement over IonBuilder on memory consumption, startup

time, and flat code profiles

4.2.1 The Compilation Pipeline

The WarpBuilder compilation process is split into three phases:

Phase 1: Snapshot Building

At the start of top-tier compilation a WarpOracle creates a snapshot of informa-

tion, including the CacheIR stub information for the script. The WarpBuilder

uses this snapshot to generate MIR.

Adopting this snapshot-generation process allows the remainder of the

Warp compilation to be executed in a different thread from the main thread.

This latency optimization is important because the main thread performance

is extremely performance-sensitive in a production JS engine.

Phase 2: MIR Generation

In a separate thread, the WarpBuilder uses the bytecode and the WarpSnapshot,

to create MIR. During this phase, when a bytecode that supports ICs is

encountered, Warp can do one of the following:

1. If the IC has multiple active stubs, Warp emits code that constructs and

uses an Ion IC chain.

2. If the IC has only a single stub attached, or has only a single active stub

at the front of the IC chain, then Warp lowers4 that stub’s CacheIR to

4This step is referred to as transpilation in the source code.
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MIR and inline.

3. If no IC stubs are attached, Warp generates an unconditional bailout, thus

enabling speculative dead code elimination while maintaining appropriate

handling if that speculation is false.

Stub lowering is the relatively straightforward process of converting the

sequence of CacheIR ops in the stub into equivalent MIR nodes. Rather than

jumping to another implementation or stub, Guard instructions are lowered

such that guard failure results in a bailout, and execution will continue in the

baseline interpreter.

Previous work used inline caches to drive optimization by taking advantage

of the insight that inline caches capture exactly the set of runtime observed

types at a particular bytecode [16]. However, unlike previous work that simply

refined types using the data contained in ICs, SpiderMonkey lowers CacheIR

and generates specialized code in Warp without the engineering cost of writing,

yet again, type-specialization code for the Ion Compiler, thus allowing for direct

fast-path code generation. Because lowering CacheIR to MIR is a mechanical

translation, Warp also does not need to understand source language level

semantics; single CacheIR operations are lowered individually to a predictable

MIR node. A lowering pipeline for a CacheIR operation is also reused between

different kinds of ICs. For example, for a GuardShape CacheIR operation, the

pipeline needs to be defined once then it can be used in any operation backed

by an IC that needs to guard an object’s shape.

Phase 3: Optimization and Code Generation

The MIR is then optimized by the Ion optimizer, lowered into LIR, then

compiled into native code.

4.2.2 Trial Inlining

True monomorphism is highly desirable because it allows for tightly specialized

code generation and it provides a reasonable basis for making type-based

assumptions in the compilation pipeline. ICs must reflect, as accurately as
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1 function adder(a,b) {

2 return a+b;

3 }

4
5 function strings () {

6 var str = "";

7 for (var o of ["a","b","c"]) {

8 str += adder(o,",");

9 }

10 return str;

11 }

12
13 function numbers () {

14 var n = 0;

15 for (var o of [1,2,3]) {

16 n += adder(2,o);

17 }

18 return n;

19 }

Figure 4.4: An example of local monomorphism: the Add op within adder

may operate either on strings on integers; however, within each call context
the types that reach the Add are monomorphic.

possible, the expected set of types during Warp compilation because type

specialization is handled by IC analysis. An obvious challenge is how to handle

the inlining of functions that may be polymorphic across the program, but

monomorphic in a particular call context (see Figure 4.4).

To handle this case, the SpiderMonkey team developed Trial Inlining. Trial

Inlining allows the Baseline compiled code to associate distinct sets of ICs to

distinct call sites that call the same function. After trial inlining, each set of

ICs collects type information local to the call site that the set is associated

with. Therefore, if Warp inlines that call, it can create type-specialized code

for that call site, handily exploiting local monomorphism. Trial inlining can

nest within another trial inlining, further specializing code of calls within the

Trial Inlined calls5.

5To avoid unbounded memory consumption, however, nesting is limited to a maximum
inlining depth of 4.
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4.3 CacheIR and WarpBuilder Evaluation

An evaluation of a point in the design space of dynamic language compilation is

necessarily partially empirical and partially subjective. In this section, CacheIR

and Warp are evaluated on a number of dimensions to support that: (i) CacheIR

is a useful abstraction for developing inline caching systems; and (ii) CacheIR

creates the conditions for a JIT compiler that has a simple, high-level design

that nevertheless provides excellent performance. .

4.3.1 Benchmarks, Hardware, and Software

Data presented in this section was collected from a machine that runs Fedora

36 (Kernel 5.18.11-200) and is equipped with an Intel i5 12400 16 GiB of DDR4

memory. Moreover, this section uses Speedometer 2.1 – Speedometer – and

JetStream 2.1 – JetStream – benchmark suites to evaluate performance,

Speedometer as a proxy for real-world workloads, and the AreWeSlimYet

(AWSY) [2] tp6 benchmark to evaluate memory consumption.

Speedometer contains 16 subtests, all of which are To-Do list appli-

cations written in different popular JavaScript frameworks like React, React

with Redux, Ember.js, Backbone.js, AngularJS, Vue.js, jQuery, Preact, Inferno,

and Flight. These frameworks are ubiquitously used in Web development and

Speedometer is meant to reflect real-world Web-App workloads by conduct-

ing operations on a To-Do list both synchronously and asynchronously. To

characterize performance, Speedometer computes a final score:

6000

geomean(medians) ∗ correctionFactor
(4.1)

where medians is the set containing a value for each subtest, computed by the

median run time in milliseconds across all iterations; and correctionFactor is

a scalar value used to scale down the final score. Faster subtest run times —

smaller geometric mean values — increase the final score.

JetStream contains 64 subtests evaluating computationally intensive

workloads.6 On each invocation of JetStream, each subtest runs for 120

6A full list is found here: https://browserbench.org/JetStream2.1/in-depth.html
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iterations and computes a score value:

subScore i =
5000

time i
(4.2)

where time i is the time in milliseconds to complete the ith iteration. Jet-

Stream computes a single score across all iterations for each subtest B:

scoreB = geomean(firstIteration
B
,worstFourB, averageB) (4.3)

where firstIteration
B

is subScore0; worstFourB is the arithmetic mean of the

lowest four subScore values; and average
B

is the arithmetic mean across all

iterations. To characterize overall performance, JetStream computes a final

score:

geomean(scores) (4.4)

where scores is the set containing the scoreB values for each subtest.

AreWeSlimYet is a project maintained by Mozilla to track memory usage

across Firefox builds. The tp6 test automates opening browser tabs and loading

popular Web pages to simulate common user behavior. AWSY collects memory

usage statistics that discriminate between sources of memory consumption.

This evaluation focuses on the memory usage attributed to the SpiderMonkey

JavaScript engine. Each memory usage value is the geometric mean across all

iterations – in this evaluation 15 – of an AWSY run.

4.3.2 Experimental Methodology

The results presented throughout this section use Mozilla’s mach tool with

the raptor subcommand to collect benchmark metrics for Speedometer,

JetStream, and the awsy-test subcommand to collect metrics for AWSY.

Each data point in the figures represents the metrics described above computed

from 15 mach invocations for both Speedometer and JetStream.

4.3.3 Execution Engines, Inline Caches and their Impact
on Performance

Figure 4.5 examines the performance contribution of various execution engines

on Speedometer and JetStream. The speedup factor of each tier is
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calculated over the lowest tier in the engine, the C++ Interpreter, which is

a simple interpreter loop and has no support for inline caching. Enabling

higher optimizing tiers leads to better performance for both benchmark suites.

At the Baseline Interpreter tier, Speedometer and JetStream observe a

1.63× and 1.95× improvement respectively, directly as a result of the CacheIR

system. By exploiting and refining CacheIR information collected in the

Baseline Interpreter, the Baseline Compiler further increases performance by

1.5× and 1.75×. Finally, when Warp specializes and optimizes native code by

lowering the CacheIR, it increases performance by another 13% and 2×.

To show the value of CacheIR to each tier, Figure 4.5 provides three

synthetic tiers where CacheIR’s contribution to each tier was removed. The *

in the Baseline Interpreter* and Baseline Compiler* tiers indicate that CacheIR

is disabled engine-wide. The † represents that only lowering CacheIR in Warp

is disabled – in this synthetic tier, Warp compiled function bodies generate

inline caches powered by CacheIR but are devoid of type information provided

by CacheIR lowering.

The results highlight how much the design of SpiderMonkey leans on the

CacheIR system: CacheIR is the most important vector by which performance

is gained within the engine. Without inline caching the Baseline Interpreter

is strictly overhead as it spends enough time jumping between JIT and C++

code that it is slower than the C++ interpreter in both benchmarks. The

Baseline Compiler, which should derive some benefit from the reduction of

dispatch overhead shows relatively little benefit over the Baseline Interpreter

for very similar reasons.

The disparity between Warp’s ability to improve benchmark performance on

JetStream and Speedometer reflects that a compiler’s ability to improve

performance is workload dependent. JetStream has computationally intense

kernels which benefit from fine-grained, top-tier optimizations and observes

a 2× improvement over the Baseline Compiler. Anh et al. observed that

top-tier compilers improve the performance of real-world code much less than

computational kernels would suggest [1]. As Speedometer was designed

to better reflect the flatter profiles of real-world code, Warp’s results on
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1 GuardNonDoubleType inputId 0, type Bool

2 LoadOperandResult inputId 0

3 ReturnFromIC

Figure 4.6: First most common CacheIR sequence: Converting a Boolean
stored variable to a boolean result.

Speedometer concur with Anh et al.’s observation, providing a more modest

speedup of around 13% over Baseline Compiler.

4.3.4 CacheIR: Simplifying IC Development and Enabling
Stub Code Sharing

CacheIR makes it easier to develop inline caches for Firefox and can handle a

diverse number of cases with relative ease. As a result, running Speedometer

and JetStream generates 437 and 531 distinct CacheIR strings respectively,

each covering a different case observed in the benchmark run. These are

437 and 531 specialization cases whose CacheIR strings can be forwarded to

Warp and lowered throughout the compilation pipeline, massively reducing

the complexity of the compiler design required to achieve excellent JavaScript

performance.

The diversity of cases covered also helps explain the magnitude of increase

provided by CacheIR for Baseline Interpreter performance in Figure 4.5. Since

CacheIR models optimized code paths for a large number of diverse cases,

it greatly improves performance even without traditional JIT compilation.

This is one of the major strengths of the CacheIR design – since covering a

new important case with an inline cache is both performant and easy, the

SpiderMonkey team has managed to cover a broad range of cases, improving

the performance of every tier above the C++ interpreter with one action.

In addition to CacheIR providing a modular IR to share with higher-

tier compilers, it also enables native stub code sharing by mapping CacheIR

sequences to native stub code. In the Baseline tiers, each CacheIR sequence
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Table 4.1: Top ten CacheIR sequences for Baseline ICs with respect to the
number of occurrences when running Speedometer. As examples, Figures 4.6
and 4.7 display the two most common sequences. Note: Scripted in this context
means a JavaScript function backed by bytecode, as opposed to Native, which
would be a JavaScript function backed by C++.

Operation Occurrences

ToBool(Boolean) 57554
Scripted function dispatch 46264
Load from an object’s fixed slot 42629
Load from an object’s dynamic slot 28899
Load from a prototype’s dynamic slot 26911
Store to an object’s fixed slot 15487
Null value check 14933
Integer comparison 12820
ToBool(Object) 12464
Get global name 11139

is compiled to native code once, then each IC stub with the same CacheIR

sequence holds a pointer to the compiled code. Table 4.1 illustrates the

occurrence count for the top 10 most common CacheIR sequences for Baseline

IC stubs in Speedometer. The first and second most common sequences are

shown in the listings in Figure 4.6 and Figure 4.7. Native code corresponding

to the CacheIR sequences in these listings is shared between 57, 554 and 42, 692

Baseline IC stubs, respectively. By eliminating redundant code compilation

for different ICs, CacheIR’s design significantly reduces the memory footprint

required to support the inline caching system (Section 4.3.5).

4.3.5 WarpBuilder: Exceeding IonBuilder Performance

This section presents a performance evaluation from Firefox 83, the release

where WarpBuilder was enabled by default. Firefox 83 is used as a baseline

to show what a relatively unoptimized, proof-of-concept version of Warp is

capable of delivering. Furthermore, it was the last release where a runtime

switch was available to toggle between the old IonBuilder compiler frontend

(and associated Type Inference system) and the WarpBuilder frontend with

the Type Inference system disabled.
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1 LoadArgumentDynamicSlot resultId 1, argcId 0,

2 slotIndex 1

3 GuardToObject inputId 1

4 GuardSpecificFunction funId 1,

5 expectedOffset 0,

6 nargsAndFlagsOffset 8

7 CallScriptedFunction calleeId 1, argcId 0,

8 flags ,

9 argcFixed N

10 ReturnFromIC

Figure 4.7: Second most common CacheIR sequence: Calling a specific Scripted
function.

Memory Consumption

As part of the design of WarpBuilder, there are two major sources of potential

memory savings: (i) removing the need to track and store global type inference

to support the TI system in IonBuilder, as discussed in Section 4.2; and

(ii) stub code sharing, discussed in Section 4.1.2, meaning that Baseline stubs

with identical CacheIR can share native code. Due to the reasons mentioned

above, enabling WarpBuilder reduces memory consumption to 0.91× that of

IonBuilder for the AWSY tp6 test suite running on Firefox 83.

Benchmark Performance Evolution

Since the release of Firefox 83, further engineering and tuning have greatly

improved the WarpBuilder system. To characterize these improvements, this

evaluation contrasts the performance results of Firefox 83 and Firefox 111 in

Figure 4.8 on Speedometer and JetStream.

For Speedometer running on Firefox 83, enabling WarpBuilder improves

the score to 1.15× that of IonBuilder. The improvements on Speedometer are

mostly because building Warp around the CacheIR system reduces source code

and computation throughout the engine that was previously required to track

the global type inference data used by IonBuilder. IonBuilder requires that all

functions track type information that is only useful in very hot functions. With
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websites. Nevertheless, WarpBuilder’s state as of Firefox 111 improves the

JetStream score by 1.10× over IonBuilder. WarpBuilder’s performance is

regained through developing and applying new inline caches via the CacheIR

system and expanding the support for compiler optimizations that had yet to

be implemented using the CacheIR-based system instead of the Type-Inference-

based system.

4.4 Concluding Remarks

This chapter discusses CacheIR, an IC design centered around an IR that

simplifies IC development and enables the reuse of compiled native code

through IR matching. This chapter also describes and evaluates WarpBuilder,

the current JIT compiler front-end used in the SpiderMonkey JavaScript engine

that generates specialized code by lowering CacheIR. In SpiderMonkey, the

combination of CacheIR and WarpBuilder has proven to be a beneficial design

by significantly improving performance across optimization tiers.
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Chapter 5

Retaining Type Specialization to
Increase the Efficiency of Highly
Polymorphic Inline Caches

This chapter addresses the central goal of this thesis and provides an inves-

tigation and evaluation of alternative techniques to handle high degrees of

polymorphism in operations that use inline caches. The main technique, Stub

Folding, is motivated by the observation that, in some cases, the fast paths in

highly polymorphic ICs share the same code, only differing in the data that they

operate on. For highly polymorphic operations, Stub Folding uses code analysis

to determine if an IC can retain type-specialized fast-path information by

combining all fast paths into one instruction stream and thereby increasing the

likelihood of fast-path inlining. Two other techniques investigate the suitability

of applying cache replacement policies, such as Least Recently Used to reorder

IC fast paths and Least Frequently Used to remove fast paths that are used

infrequently.

This chapter’s main contributions are the following:

• Stub Folding, a novel approach to handling polymorphic inline caches that

consolidates type-specialized fast paths into a unified instruction stream and

improves runtime performance by facilitating efficient IC code inlining.

• A Stub Folding implementation in the SpiderMonkey (SM) JavaScript engine

and an evaluation compared to SM’s previous approach.

• An evaluation of the viability of cache replacement policies for reordering
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and eliminating underutilized fast paths in polymorphic inline caches.

An evaluation of Stub Folding in the SpiderMonkey JavaScript engine achieves

up to 25% improvement on complex applications within the JetStream 2.1

benchmark suite compared to SpiderMonkey’s previous approach. An evalua-

tion indicates that LRU and LFU policies accelerate some programs but do

not reliably increase program efficiency across a range of benchmarks.

5.1 Stub Folding

The first technique that this chapter introduces is Stub Folding, an analysis that

identifies similarities between cases in a polymorphic inline cache and generates

a single code stub. After presenting definitions and the notation used to discuss

the analysis (Section 5.1.1), Section 5.1.2 walks through the motivation for the

Stub Folding transformation: certain highly polymorphic operation sites that

use ICs execute the similar code for each observed type. Then, Section 5.1.3

formalizes the Stub Folding analysis, aimed at identifying stubs that can be

folded based on the aforementioned observation, and transformation which

folds the identified stubs and updates them when new folding opportunities

arise. Lastly, Section 5.1.4 lists the expected benefits, later confirmed through

experimental results (Section 5.3.3).

5.1.1 The States of an Inline Cache

A Stub is a representation of a type-specialized fast path for a given operation.

An IC refers to a chain of one or more Stubs. Code is the native machine code

associated with a Stub. Data encodes Stub information — such as object

shapes and offsets to their properties — that are accessed by Code during

execution. IR is the intermediate representation that is optimized and used to

generate a Stub’s Code.

There are four states that an IC can be in: (i) Unlinked: no types have been

observed and the IC invokes a fallback routine. (ii) Monomorphic: a single spe-

cialized Stub is required effectively handle all observed types. (iii) Polymorphic:

only up to K Stubs are required to effectively handle all observed types.
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1 // Different shape , same slot

2 a = {t:1}

3 b = {t:2, u:4}

4 c = {t:8, u:16, v:32}

5
6 // Different shape , different slot

7 d = {x:1}

8 e = {y:2, x:4}

9 f = {z:8, y:16, x:32}

10
11 sum = 0

12 for (o of [a,b,c]) {

13 sum += o.t

14 }

15 for (o of [d,e,f]) {

16 sum += o.x

17 }

Figure 5.2: Running example.

From an inline caching perspective, allowing objects to dynamically gain

properties has implications in the code that is generated for the same static

expression. For a property load, o.v, v could be stored in both fixed slots and

dynamic slots depending on the Shapes of the objects represented by o at

run time. When compiling for a Stub, the handler code performs a property

lookup, determines if the property is in a fixed or dynamic slot, then generates

appropriate Code to load the property from the correct location.

For certain Megamorphic ICs, the Code is equivalent for every Stub and

only a subset of the fields in Data differ. As an example, in Figure 5.2 o.t on

line 13 and o.x on line 16 each access a property from three different objects.

Since each object has a different shape, each of these expressions would have an

IC with three Stubs; one for each observed object type. If the Polymorphic

limit for a number of Stubs in an IC is two, the VM would employ a slower

fallback mechanism to handle all three cases for each expression. However, at

each expression, because each property is in a fixed slot for all objects accessed,

the Code for each Stub is equivalent. For o.t, the only difference between the

fast paths contained in each Stub is the object Shape held in the Data. For
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o.x, fast paths differ in both object Shape and property Offset. In such cases,

rather than falling back to a slower method to handle megamorphism, it can

be more beneficial for the engine to treat the collection of Stubs as one logical

Stub, thereby retaining fast path execution and enabling inlining. Stub Folding

provides a Code and Data analysis to identify such cases and generate a new

Stub accordingly.

In addition to the simplified situations described in Figure 5.2, one of

the most common applications of Stub Folding is accessing a shared property

stored on a prototype object from a set of distinctly-shaped base objects. These

situations are similar to the o.t access in Figure 5.2, where the only difference

between the fast paths contained in each Stub is the object Shape held in the

Data, but instead of accessing the property directly from the base object, it is

accessed from the prototype.

5.1.3 Identifying Opportunities and Verifying Legality
Conditions

Stub Folding requires that the code executed be equivalent and that the data

manipulated be similar. This section explains: (i) when and how an IC invokes

the analysis required to create a FoldedStub; and (ii) the congruence analysis

required for updating an existing FoldedStub to handle a new case.

Code Equivalence and Data Similarity

If an IC receives an incoming case that cannot be handled appropriately by

any existing Stub, it invokes a fallback mechanism. When this occurs from a

Megamorphic-candidate IC, the VM calls a routine to identify applicable cases

for Stub Folding.

This routine takes the Megamorphic-candidate IC as input. As a running

example, this section uses line 16 from Figure 5.2 with a Polymorphic limit of

two Stubs before transitioning to Megamorphic. Two conditions need to be

met for the analysis to consider legal to fold the given IC:

1. All Stubs have the same Code sequence.

2. All Stubs have the same Data, except for (i) a single Shape used in a
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Shape Guard and (ii) for property loads or stores, a subsequent Offset

value specifying the property offset from the beginning of the containing

memory region.

To simplify testing Code equivalence across Stubs, equivalence is determined

based on the associated IR rather than the native machine code directly. The

analysis verifies the first and second conditions by maintaining a copy of the

first Stub and iterating over all Stubs in the IC. The beginning of each iteration

of the analysis determines Code equivalence between Stubs by comparing the

IR of the first Stub — IR0 — with the IR of the subsequent Stubs. For Stubi

processed in the ith iteration, if IRi fails the equivalence check, the analysis exits

early and does not apply the transformation. Once IRi equivalence is verified,

the analysis walks through Datai to ensure that condition 2 holds. Initially, the

goal is to verify that there are at most two data fields — a Shape and an Offset

— in the Datai that differ from Data0. The first differing field must be of the

Shape type. If any field differs that is not of type Shape, then the analysis

exits early and does not apply the transformation. Once the analysis identifies

a differing Shape, it saves the Shape value into a ShapesList and records its

location within Data (ShapeLocation). Figure 5.3 shows the representation

of the IR and Data for each Stub. In this case, the analysis determines that

the IR is consistent across all Stubs, verifying the first condition. The first

differing field between the Data is a Shape and thus ShapesList contains the

shapes for f, e, and d, and ShapeLocation is 0.

The remaining fields in Datai must be equivalent to Data0 except for,

potentially, an Offset value that corresponds to the offset required to access

a property for a given Shape. The analysis locates and saves the location

of Offset within Data — OffsetsLocation. Once identified, the analysis

begins collecting all of the Offset values into an OffsetsList. For Figure 5.3,

the analysis collects the Offsets 2, 1, and 0 into OffsetsList and sets

OffsetsLocation to 1.

The analysis walks through the IR, mapping IR operations with the fields

in Data that they operate on. The analysis exits early and does not apply

the transformation in two situations: (1) Data[ShapeLocation] is not used
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IR0

ShapeGuard shapeOf(o) Data0[0]

%r=FixedPropertyAccess Data0[1]

return %r

IR1

ShapeGuard shapeOf(o) Data1[0]

%r=FixedPropertyAccess Data1[1]

return %r

IR2

ShapeGuard shapeOf(o) Data2[0]

%r=FixedPropertyAccess Data2[1]

return %r

Data0

shapeOf(f)

2

Data1

shapeOf(e)

1

Data2

shapeOf(d)

0

0:

1:

0:

1:

0:

1:

Figure 5.3: Running example (line 16 of Figure 5.2) before Stub Folding.

by a ShapeGuard operation; or (2) Data[OffsetsLocation] is not used by a

PropertyAccess operation In Figure 5.3, Data[0] is used by a ShapeGuard

and Data[1] is used by a FixedPropertyAccess, thus the analysis verifies the

second condition.

When both conditions are met, the generation of a new FoldedStub creates

a new IR by copying and modifying the previous IR. The identified ShapeGuard

operation is replaced with a MultipleShapeGuard operation. If the Offsets in

OffsetsList are not all identical, the associated PropertyAccess operation

is replaced with a MultiplePropertyAccess operation. Similarly, Data is

copied and modified to create the FoldedStub’s Data. At the ShapeLocation,

a pointer to the ShapesList replaces a single Shape value. If the Offsets in

OffsetsList are not all identical, a pointer to the OffsetsList replaces a

single Offset value at the OffsetsLocation. The compiler uses IR to generate

Code that operates on the new Data. Finally, the single FoldedStub replaces

all of the Stubs in the IC. Figure 5.4 shows the FoldedStub for the running

example. The MultipleShapeGuard operation now guards within a list of

Shapes. The operation compares the incoming Shape with each Shape in
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IRFolded

%L=MultipleShapeGuard shapeOf(o) Data0[0]

%r=MultipleFixedPropertyAccess %L Data0[1]

return %r

Data0

ShapesList

OffsetsList

0:

1:

[ shapeOf(f), shapeOf(e), shapeOf(d) ]

[ 2, 1, 0 ]

Figure 5.4: Running example (line 16 of Figure 5.2) after Stub Folding.

the ShapesList. If the operation finds a match, it returns the index of the

matching element. The MultipleFixedPropertyAccess operation consumes

the index to retrieve the corresponding Offset from OffsetsList. With the

correct Offset, the FoldedStub retrieves and returns the appropriate property

value.

Congruence Analysis and Folded-Stub Updating

When an IC with a FoldedStub invokes a fallback mechanism because all the

Stubs fail to handle an incoming case, the VM calls a routine to determine if

a new case could be added to the FoldedStub.

Given an IC with a single FoldedStub and the IR and Data of the unhan-

dled case, the analysis walks through the FoldedStub’s IR and the unhandled

case’s IR simultaneously, verifying congruence in IR operations. Two IRs

are congruent if all IR operations, other than the MultipleShapeGuard and

MultiplePropertyAccess, are equivalent. These operations are only consid-

ered congruent, respectively, to a ShapeGuard and the appropriate kind of

PropertyAccess operations (i.e. an access from either a fixed slot or from a

dynamic slot) from an unhandled case’s IR. When there is full congruence, the

analysis appends the unhandled case’s Shape to the FoldedStub’s ShapesList

and, if there is a MultiplePropertyAccess, the Offset to the OffsetsList.

Adding support for a new case in a FoldedStub does not require compiling the

Code.
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If the IR operations are not congruent, the FoldedStub is not updated and

the VM instead creates a new Stub and places it at the beginning of the IC.

5.1.4 Stub-Folding Potential Benefits

There are three potential benefits of applying Stub Folding: (i) the number

of Stubs permitted in an IC before it transitions into a Megamorphic state

is often arbitrarily chosen, and applied to all ICs — Stub Folding provides

continued fast-path support at operation sites that are fixed-case polymorphic

but exceed that arbitrary limit; (ii) Stub Folding retains data and IC information

local to an IC to reduce pressure on the alternative fallback methods, which

are often a global cache lookup for property loads that suffer from frequent

evictions; (iii) Stub Folding Polymorphic or Megamorphic ICs to be treated

as a Monomorphic IC allowing, in a tiered execution environment, for greater

optimizations in the JIT pipeline such as inlining Code into an optimized

function body. The Code of Monomorphic ICs is often inlined into the function

due to speculative type stability. Inlining Polymorphic ICs is less common

because they contain multiple distinct code sequences. Adding a new case to

such ICs would require the function to be recompiled to account for the newly

added case. Stub Folding allows the compiler to inline a single code sequence

into the hot function, providing fast-path execution for a larger number of

cases. Moreover, since FoldedStubs can be updated without recompilation,

adding a previously unhandled case to a FoldedStub maintains the validity of

the compiled function.

There are, however, cases where a function with a FoldedStub would need

to be recompiled. If, for example, the congruence analysis determines that an

unhandled case is not congruent with the FoldedStub, the function would need

to bail out to a lower tier so that it can be recompiled without the FoldedStub.

In such cases, an alternative fallback mechanism, such as the global cache

lookup mentioned previously, may be more appropriate.
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5.2 Strategies Inspired by Cache-Replacement

Policies

This chapter also explores two alternative policies for handling polymorphic

inline caching that are inspired by the replacement policies found in hardware

and software caches.

5.2.1 Least Recently Used Policy

The problem of handling many stubs in an IC is analogous to the problem of

having too many entries that must be kept in a set in a hardware cache. When

capacity is limited, a replacement policy is needed. Least-Recently Used is a

classic replacement policy that keeps track of the recency of access to each of

the entries currently in the cache and, when one must be replaced, it selects

the one that has not been recently referenced for eviction. When a lookup into

the cache is performed sequentially, a design variation may use the recency of

access to order the lookup such that the ones referenced recently are checked

first.

LRU in ICs

One way to apply these ideas to an IC design is reordering the Stubs in the IC

each time that a Stub is used. The reordering ensures that the most recently

used Stub is always checked first and the search through the IC follows the

recency of use. This technique may incur an overhead of reordering Stubs in

each access to the IC, thus an evaluation of this idea must measure the benefit

of finding a Stub sooner versus the cost of Stub reordering. When executing a

bytecode with an IC, the technique records which Stub successfully handled

the incoming case and moves the Stub to the front of the IC. The next time the

program executes that bytecode, the most recently successful Stub is checked

first. This technique maintains a recency ordering – the recency property – for

the IC based on cache hits. LRU can also be used as an actual replacement

policy in an IC design: when an IC is about to transition to a Megamorphic

state: (i) remove the least recently used Stub (the last Stub in the IC), and

54



(ii) keep the IC in a Polymorphic state.

Based on this idea two techniques are investigated:

LRU Eviction: Combines recency ordering with the IC LRU replacement

policy. The IC never transitions to a Megamorphic state and always retains

at most k Stubs.

LRU No Eviction Applies only recency ordering. The IC may transition to

a Megamorphic state but while in Polymorphic state it maintains the recency

property of the IC.

5.2.2 Removing Inactive Stubs

This technique is a Stub-activity-based analysis that targets reducing the

number of unnecessary Megamorphic ICs. The analysis aims to detect and

react to phase changes in the program, which can affect the set of objects seen

at an operation site. Removing Inactive Stubs is inspired by the cache Least

Frequently Used policies.

LFU in ICs

This analysis is run on a Megamorphic-candidate IC, one which has the limit of

Polymorphic cases but hits the fallback routine. The algorithm is as follows:

1. For each Stub in a Megamorphic-candidate IC, calculate the hit count,

hc.

2. If the hc < k, where k is a tunable parameter, remove the Stub from the

IC.

3. If the resulting IC has greater than m Stubs, transition to a Megamorphic

state, otherwise, remain in a Polymorphic state.

By removing Stubs that have a hc below the threshold, this analysis aims

to preserve the type-specialized fast paths for the most frequently executed

cases. This analysis ensures that the set of Stubs in an IC adapts to the current

set of types that an operation site observes. In the evaluation for Removing

Incative Stubs, k = 1 and m = 4.
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5.3 Evaluation: Stub Folding Improves Per-

formance, Other Techniques’ Results are

Mixed

This subsection evaluates Stub Folding, LRU Eviction, LRU No Eviction, and

Removing Inactive Stubs. Results indicate that: (i) Stub Folding accelerates a

diverse collection of programs, (ii) LRU- and LFU-based policies do not reliably

increase program efficiency and can lead to drastic degradation.

5.3.1 Benchmarks, Hardware, and Software

This subsection presents data collected from the Speedometer 2.1 [29] and the

JetStream 2.1 [18] benchmark suites running on a machine equipped with an

Intel i5 12400 with 16 GiB of DDR4 memory that runs Fedora 36 (Kernel 5.18.11-

200). Speedometer and JetStream are major benchmark suites frequently

used to evaluate modern browsers’ JavaScript engines such as SpiderMonkey,

JavaScriptCore, and V8.

Speedometer 2.1 contains 16 subtests, all of which are To-Do list applica-

tions written in different popular JavaScript frameworks such as React, React

with Redux, Ember.js, Backbone.js, AngularJS, Vue.js, jQuery, Preact, Inferno,

and Flight. These frameworks are ubiquitously used in Web development and

Speedometer is meant to reflect real-world Web-App workloads by conducting

operations on a To-Do list — adding items, deleting items, and completing

items — both synchronously and asynchronously. Speedometer data points are

the median run time in milliseconds across all iterations.

JetStream 2.1 contains 64 subtests evaluating computationally intensive

workloads.1 On each invocation of JetStream, each subtest runs for 120

iterations and computes a score value:

subScore =
5000

mean(time)
(5.1)

where mean(time) is the mean time, measured in milliseconds, taken across all

iterations of a subtest; and the 5000 is a magic2 number used to normalize the

1A full list is found here: https://browserbench.org/JetStream2.1/in-depth.html
2This decision was made by the authors of JetStream 2.1.
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resulting score value to ensure higher scores correspond to faster run time.

5.3.2 Experimental Methodology

The results presented in Sections 5.3.3, 5.3.4, and 5.3.5 use Mozilla’s mach tool

with the raptor subcommand to collect benchmark metrics for Speedometer

and JetStream. For baseline measurements, each evaluation uses a version

of Firefox 109.0.13. Each technique is implemented in a child patch from the

baseline revision.

Each data point in the figures represents the metrics described above

computed from 15 mach invocations for both Speedometer and JetStream. For

JetStream, each of the 15 invocations produces 120 iterations, therefore, the

data points are calculated by taking the arithmetic mean across all iterations –

15 × 120 – then using Equation 5.1 to compute the final score. In all figures,

higher percentages correspond to performance improvement over baseline for

the evaluated method. The ordering of subtests on the x-axis of the figures

differ from one another. Subtests are ordered from lowest performing to highest

performing for each evaluated technique. The figures only include subtests

whose baseline metric and evaluated technique metric have non-overlapping

95% confidence intervals. Note, that the error bars are omitted from the graphs

because the variation is minimal. Lastly, hardware counters were collected with

the Linux perf tool.

5.3.3 Stub Folding Evaluation

Figure 5.5 and Figure 5.6 present the effects of Stub Folding on JetStream

and Speedometer, respectively. For JetStream, the subtests that benefit the

most from Stub Folding are parser applications. Babel, babel-wtb, and

acorn-wtb are parsers for JavaScript and rely heavily on polymorphic object

hierarchies. Stub Folding excels in these cases because an operation may observe

many types that access a property from a common prototype object. Stub

Folding recognizes that the code generated to access the prototype’s property

3Revision bc4345d1f736.
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Chapter 6

Related Work

6.1 A Unifying Abstraction for Inline Caches

According to Deutsch and Schiffman, the key result behind their Smalltalk-80

implementation is Dynamic Change of Representation [9]. Under this rubric,

JIT compilation (dynamic translation in their terminology) and Inline Caching

are different representations of method dispatch. They introduce a one-entry

IC, generated by their JIT compiler, that initially unlinked and is then patched

with generated native code containing an updated target. They also discuss

inlining small methods for commonly used selectors such as +. In a sense, the

generated CacheIR for a particular bytecode is an inlined and type-specialized

version of a selector, a dynamic change of representation similar to Deutsch

and Schiffman’s system. However, Deutsch and Schiffman do not describe

a unifying mechanism underlying their inline caching. Thus, in their design,

optimizations are implemented by hand.

Polymorphic Inline Caches (PICs) were first described in the context of the

SELF language by Hölzle et al. [15]. The main idea of their PIC scheme is to

provide a mechanism wherein, for polymorphic call sites, instead of overwriting

the call site directly with the address of a single resolved method, a machine-

code stub is created, and the address of the stub is used inline. Their work

is foundational for PIC support in modern language systems; the underlying

system outlined in this paper is a clear reflection of the ideas presented by

Hölzle et al. However, unlike CacheIR, Hölzle et al. scheme does not rely on a

specialized IR to create IC stubs. The presence and architecture of CacheIR in
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SpiderMonkey enables high levels of native stub code sharing that is contingent

on an equality check of the IR itself. This code sharing leads to less frequent

stub compilation and greater memory efficiency to drive inline caches.

In later work, within the context of the SELF language, Hölzle et al.

describe the use of ICs and PICs to drive compilation decisions in the runtime

system [16]. The insight is that the SELF PIC scheme could be used as a type-

information collector in addition to accelerating operation sites. By leveraging

this type information, they speculatively compile hot functions with potentially

stabilized types. CacheIR builds greatly upon this insight and enables IC

stub code structure to be reached throughout the entire compilation pipeline.

CacheIR is used as a shared source of truth in the engine, having prevalent use

from the Baseline Interpreter through to the optimizing Ion compiler providing

an efficient means for stub-code lowering.

LIL [12] is an architecture-independent language for writing Virtual Machine

stubs. Compared to CacheIR, LIL has a much broader set of responsibilities —

it covers many assembly-code stub responsibilities, such as object allocation

and garbage-collector barriers — and thus supports arithmetic operations,

conditional control flow, multiple calling conventions and more. LIL is a

mechanism for replacing assembly-written stubs, but it does not appear that

LIL is tightly connected to their IC infrastructure.

The linear intermediate representation CacheIR uses is akin to a trace, from

a tracing JIT compiler, such as TraceMonkey or PyPy [4], [11]. Traces have

very similar side exit mechanisms, also called guards where a precondition

is required to proceed further into the trace. However, unlike in a tracing

JIT the failure of a guard in CacheIR simply starts execution again at the

beginning of the next stub. Unlike a fully developed tracing JIT, CacheIR is

constructed incrementally by program developers rather than derived directly

from execution. This is because CacheIR operates at a sub-bytecode granularity,

and as such there is no infrastructure to collect traces automatically.

Wuthinger et al. [35] introduce Truffle, a framework that provides a modular,

unified infrastructure and architecture for building dynamic languages VMs.

Their architecture enables node rewriting on an AST to specialize execution at
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runtime. To enable specialization, Truffle supports polymorphic inline caching

by expanding a node representing an IC-supported operation to multiple nodes

each specialized to an observed type. Similar to IC stubs in SpiderMonkey,

Truffle’s IC nodes are chained, connected by an edge representing the failure

path for the preceding node. However, the IC scheme in Truffle is more akin

to Quickening [5]; rather than backing an IC with dynamically compiled stub

code, a generic VM call is replaced with a specialized VM call. Thus, unlike

WarpBuilder and CacheIR, no abstraction within Truffle and Graal enables

native code sharing between ICs. An independently developed idea similar to

Trial Inlining, called Polyvariance, exists in the JSC JavaScript engine powering

WebKit [28]. The goal of both Trial Inlining and Polyvariance is to use ICs to

specialize polymorphic operations on a per-call-site basis. Polyvariance works

by inlining small functions when tiering up from the JCS Baseline compiler

to the next-tier DFG compiler. These inlined functions have unlinked ICs

associated with DFG. If DFG detects that an IC fast path is taken through

the inlined function, it fills in the unlinked ICs, thus enabling more specialized

code generation in the next, highest-tier compiler. Polyvariance differs from

Trial Inlining in a few notable ways. First, Trial Inlining is an intermediate

step between Baseline and Warp whereas Polyvariance is applied later in JSC’s

JIT pipeline. Thus, SpiderMonkey’s Baseline compiler can detect some of the

benefits of Trial Inlining and preemptively collect more precise profiling data

before tiering up. Second, due to SpiderMonkey’s IC architecture, Trial Inlining

specializes in moderately deep nestings of call sites whereas Polyvariance is a

one-level-deep inlining strategy. Third, Trial Inlining does not inline, in the

sense of function inlining, until tiering up to Warp. Instead, Trial Inlining

creates a specialized set of ICs for a call site, leaving the actual function inlining

decision to Warp.

CacheIR has further utility not discussed in this thesis. Cachet is a domain-

specific language intended to help build a formally verified JIT compiler [27].

In their prototype implementation, they build a CacheIR compiler for Cachet

to help on the road to formal verification for the SpiderMonkey JIT compilers.
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6.2 Techniques for Highly Polymorphic Inline

Caches

In the seminal PIC paper, Hölzle et al. [15] select ten as the maximum number

of type-specialized fast paths for an operation site, before considering the site

to be megamorphic. Ten were selected based on the rarity of exceeding ten

types of objects at an operation site in the evaluated SELF programs. However,

their work suggests a few future directions for more sophisticated mechanisms

to manage polymorphism in inline caches. Based on these suggestions, the

present study implements and evaluates an analysis based on hit frequency for

removing fast paths that are no longer active. Other suggestions like improving

linear search to find the correct fast path implementation remain unstudied.

Ahn et al. [1] identify the challenges that JavaScript implementations

face when dealing with types and propose a type system that decouples the

prototype pointer from an object’s type. They posit that type stability is

hindered by including the pointer to the object’s prototype in the object’s

shape encoding. While their experiments show a reduction in execution time,

removing the prototype pointer from shapes eliminates the opportunity for

other optimizations that rely on the shape implying the prototype.

Serrano et al. [24] extend a polymorphic inline caching strategy with a

technique based on virtual tables (vtables) from statically typed language

implementations like C++. Their technique builds a shape-associated vtable

at runtime. Each vtable contains an entry for every property access site in

the program and each entry contains the offset needed to access the property

for that shape. Because objects of each shape are unlikely to be seen at each

operation site, the vtables can be very sparse, consuming unnecessary memory.

Shape data structures are altered to contain a pointer to the associated vtable,

using more memory to encode each shape. Unlike Stub Folding, Ahn et al.’s

and Serrano et al.’s work requires fundamentally altering shape encoding.

Another work by Serrano et al. [25], extends an inline caching scheme

to accelerate property accesses with dynamic property names and thereby

accelerate property accesses on proxy objects. To accelerate property accesses
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with dynamic property names, they propose adding a cache to string values

encoding the names rather than an inline cache associated with the access

operation. Strings are altered to contain a cache that saves the object shape

whose property is accessed by the name and the property slot index needed

to access the property. Proxy objects in JavaScript do not have properties

themselves but can define traps on reads and writes to another object. Proxy

traps generally access properties of proxied objects with dynamic property

names and the previous solution accelerates these cases. Again, this technique

relies on increasing the size of primitive string encoding. Moreover, proxy

objects are used relatively rarely in real-world workloads, and their solutions

do not accelerate property accesses more generally.

To reduce JavaScript start-up time, Choi et al. [8] present a system to reuse

ICs between program invocations. Reusable inline caching (RIC) links the

objects used at property access sites from an initial program run to subsequent

runs and pre-populates the access sites with appropriate handler code. RIC

reduces library start-up time by 17% on average by avoiding initial IC misses

on subsequent execution of library code. Unlike Stub Folding, RIC does not

explicitly propose techniques targeting highly polymorphic access sites.

Milojković et al. [19] propose inline-cache type inference (ICTI), a heuristic

approach to improve the precision of static type inference systems with dynamic

feedback from inline caches. In their Smalltalk implementation, a static type

analysis produces a list of inferred receiver types for operation sites. Over mul-

tiple program runs, ICTI gleans receiver-type frequency information from ICs

and orders the lists of receiver types accordingly. The static analyzer presents

the ordered list of receiver types to the developer to help them understand the

behaviour of their program more precisely. ICTI mines information from PICs

for programmer productivity rather than targeting program efficiency.
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Chapter 7

Conclusion

This thesis presents Stub Folding, a novel approach to handling polymorphic

inline caches based on fast-path-code equivalence, and a comparative eval-

uation of Stub Folding and SpiderMonkey’s previous inline-caching scheme.

The performance results presented in Chapter 5 of this thesis indicate that

Stub Folding has merit either as an alternative to the previous inline-caching

solution or as a mechanism that can be used in conjunction with the previous

approach to handle polymorphic inline caches in dynamically-typed language

implementations. This thesis also evaluates two strategies inspired by hardware

caching policies. An evaluation of two variations of a Least Recently Used

approach suggests that reordering inline cache fast paths based on recency is

highly successful in certain cases, but can lead to degradation if not handled

correctly. Moreover, an analysis that evicts inline-cache fast paths based on

a hit-count frequency does not reliably increase program efficiency for the

evaluated benchmark programs. These results demonstrate that there is not

any one-size-fits-all approach to increase the efficiency of highly polymorphic

inline caches.

Additionally, this thesis discusses modern inline caching schemes in the

context of JavaScript engines, specifically focusing on CacheIR, an IC design

centered around an intermediate representation (IR) that simplifies IC develop-

ment and enables the reuse of compiled native code through IR matching. This

thesis evaluates WarpBuilder, the current JIT compiler front-end used in the

SpiderMonkey JavaScript engine that generates specialized code by lowering
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CacheIR. The evaluation exemplifies that the combination of CacheIR and

WarpBuilder has proven to be a beneficial design that significantly increases

the efficiency of executing dynamically-typed programs in SpiderMonkey. This

result demonstrates the efficacy of thoughtfully designing dynamically-typed

language virtual machines around inline caches.
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