17 T

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 KI1AON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1¢70, c¢. C-30, and
subsequent amendments.

395, rue Wellington
Ottawa {Ontario)

Your ke Volre rélérence

Our le Notre tétérenc?

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [l'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées & l'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA

A Transparent BIST Scheme for Detecting V-coupling Faults in RAMs

BY

Nicole Yee-Fen Sat :

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the

requirements for the degree of Master of Science.
DEPARTMENT OF ELECTRICAL ENGINEERING

Edmonton, Alberta

Fall 1995

' * l Mational Library Bibliothéque nationale
of Canada du Canada

Your lile Volre réldrence

Qur tie Notre rélérence

L'AUTEUR A ACCORDE UNE LICENCE

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa, Ontario Ottawa (Ontario)
K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN

IRREVOCAELE NON-EXCLUSIVE

LICENCE ALLOWING THE NATIONAL
LIBRAKY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-06537-5

IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

UNIVERSITY OF ALBERTA
RELEASE FORM

NAME OF AUTHOR: Nicole Yee-Fen Sat

TITLE OF THESIS: A Transparent BIST Scheme for Detecting V-coupling
Faults in RAMs

DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: 1995

Permission is hereby granted to the University of Alberta Library to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly or scientific research purposes

only.

The author reserves all other publication and other rights in association with the copyright in
the thesis, and except hereinbefore provided neither the thesis nor any substantial portion
thereof may be printed or otherwise reproduced in any material form whatever without the

author's written permission.

Nicoleﬁe-Fen Sat
204, Sungai Marong
28700 Bentong
Pahang Darulmakmur
Malaysia

Date: ?ub /7(/ 25
v

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies
and Research for acceptance, a thesis entitled A Transparent BIST Scheme for
Detecting V-coupling Faults in RAMs submitted by Nicole Yee-Fen Sat in partial
fulfillment of the requirements for the degree of Master of Science.

e [3/75°
r

Y

Dr. B. F. Cockburn, Supervisor

Dr. X. Sun, Internal Examiner

Dr. J. Hoover, External Examiner

To my parents and my sisters, for their love and support.

Abstract

A synthesizable transparent built-in self-test (BIST) scheme is developed that de-
tects single 2, 3 and 4-cell coupling faults and two types of 5-cell scrambled pattern-
sensitive faults in random-access memories (RAMs). The scheme is based on a
family of deterministic tests for detecting single V-coupling faults. where V is a
parameter that specifies one out of several possible fault types. The BIST design is
specified in VHSIC Hardware Design Language (VHDL). A complete BIST circuit
can be synthesized on the basis of two input parameters n and V', where n is the
number of 1-bit storage locations in the memory. Using the Synopsys v3.1a logic
synthesis tools, BIST circuits can be synthesized for n ranging from 8 bits to 64
Megabits, and for V' = 2,3, 4, 15 or 25. These 1 values correspond to single 2, 3,
4-cell coupling faults and two additional 5-cell scrambled pattern-sensitive faults,
respectively. The synthesized circuit produced by the Synopsys tools is saved in
Electronic Design Interchange Format (EDIF Version 2.0.0) and is imported into
the CADENCE 4.2.2 computer-aided design environment. A final layout of the
BIST circuit can then be generated using the standard cell AutoLayout tools in
CADENCE. The behavior of the resulting BIST circuits was verified by performing

Verilog simulations in CADENCE.

Acknowledgments

I would like to express my sincere thanks to my supervisor, Dr. B. F. Cockburn, for
his advice, support and encouragement throughout this project. I would also like to thank the
members of the examining committee, Dr. X. Sun and Dr. J. Hoover, for reviewing this
thesis. Special thanks to Norman Jantz and Jeremy Sewall for technical, moral and computing

support.

For financial assistance I am indebted to Telecommunications Research Laboratories and to Dr.

B. F. Cockburn.

Contents

1 Introduction

L1 Overview.o e,
1.2 Thesis Objectives and Organization
2 Background
2.1 RAM Architecture
2.I.1 BasicSRAMCell
2.1.2 BasicDRAMCell L
2.2 Memory Failures
23 Fault Models
24 Built-in Self-testo
241 Control Logic o
2.4.2 Address-generation Logic oL L.
2.4.3 Data-generation and Response-verification Logic
2.44 'lest-triggering Logic
25 Transparent BISTo o o
2.6 Logic Synthesis
3 Test Algorithms
3.1 Deterministic Tests for Detecting Single V-coupling Faults
3.2 (n,V = I)-exhaustive Codes
3.2.1 (n,2)-exhaustive Codes
3.2.2 (n,3)-exhaustive Codes
3.2.3 (n,4)-exhaustive Codes for T-neighborhoods
3.24 (n,4)-exhaustive Codes for Neighborhoods of Type 1

3.3 Transparent Near-Deterministic Tests for Detecting Single V-coupling
Faults 59
3.4 An Improved Transparent Test for Detecting Single and Multiple
V-coupling Faults, 65
3.5 Analysis of the Probability of Aliasing 73
4 Detailed Design Description 82
4.1 BIST RAM Architecture 82
42 BIST Controller 84
43 DataPath 93
43.1 Address Generator 93
4.3.2 Background Counter 94
4.3.3 Background Code Logic a9
4.3.4 Response Analyzer 105
4.3.5 Test Pattern Generator 106
5 Design Evaluation 108
5.1 Simulation Results 108
5.2 Results of Layout Experiments. 112
6 Summary and Conclusions 115
A VHDL Code 127
B Schematics 189
C Simulation Waveforms 197

i

List of Figures

n o w o

-~

18

19

Growth in DRAM Storage Capacity
RAM Architecture (one cell array)
Fully Complementary MOS Cell
Single-transistor DRAM Cell
Bathtub Curve
Example : 4-coupling Fault.
5-cell Physical Neighborhood Pattern-Sensitive Fault
Logical and Physical Neighborhoods of a 5-cell NPSF Before and
After Address Scrambling: (i) Before Address Scrambling; (i) Af-
ter Row Address Scrambling: (iii) After Row and Column Address
Scrambling. o
BIST RAM Architecture [7]
Design Flow Using Logic Synthesis
Timing Diagram Notation
4 %5 Background Matrix. L L L
Test Structure Based on the 4 x 5 Background Matrix in Figure 12.
Deterministic Test Algorithm 00 .
(8,2)-exhaustive code L
(8.3)-exhaustivecodeo
(i) Logical Neighborhood for a Scrambled Pattern-Sensitive Fault:
(ii) Corresponding Scrambled T-neighborhood
(4,3)-exhaustive Base Matrix Used in the Construction of a (16,4)-
exhaustive Code with Respect to Scrambled T-neighborhoods
Construction of a (16, 4)-exhaustive Code With Respect to Scram-

bled T-neighborhoods (Step 1)

i

30

41

20

21
22
23

24

25

26
27
28
29
30
31

33
34

35

36
37

(16,4)-exhaustive Code With Respect to Scrambled 7'-neighborhoods
44

Scrambled Physical T-Neighborhoods 46
Backgrounds Mpp = P x Pand Mpo =P xQ 51
(i) Logical Neighborhood for Scrambled Pattern-Sensitive Faults;

(i) Corresponding Scrambled Neighborhood of Type1 52
Construction of a (16, 4)-exhaustive Code With Respect to Scram-

bled Neighborhoods of Type 1 (Step 1) 54
(16,4)-exhaustive Code With Respect to Scrambled Neighborhoods

of Typel 59
5-cell Scrambled Physicai Neighborhood 56
Test Structure After Applying Step 0: ALO 60
Test Structure After Applying Step 1, ALl 61
Test Structure After Applying Step 2, AL2 61
Test Structure After Applying Step 3, AL3 62
Background Matrix for a Transparent Test 63
Near-deterministic Transparent Test based on the Background Ma-

trixinFigure 31. L oL 63
Maximum Number of Errors Observed During a March Sequence. . 66

Transparent Test with Multiple Signature Generations and Com-

PATISONS .+ & . v v v v e it e e e e e e e e e e e e e e 68

Example of a Fault that is Excited by a Background Change: (a)

‘Fault-free Case; (b) Fault that Escapes Detection; (¢) Fault-free

Case with Additional Read Operations; (d) Fault Detected by Ad-

ditional Read 69
Aliasing-free Transparent Test 69
Aliasing-free Transparent Test Algorithm 70

v

39
40
41
42
43
44

46

62

(i) The Exact and Approximate Escape Probability for Typical

RAM Sizes for V'=3; (ii) Difference Between the Exact and Ap-

proximate Escape Probability, 79
The Escape Probability for V =2,3,4, 5t and 52 80
Simplified Block Diagram of BIST RAM 83
The BIST Controller Flow Chart 85
Interface Between the BIST Controller and the Data Path 89
The BIST Controller State Diagram 90
Timing Diagram SRR)
Address Generator oL L. 93
Background Counter for V-=2and3 94
Background Counter for V=4, 95
Background Counter for V=5t 97
Background Counter for V.=5x 99
Background Code Logicfor V=3 100
Background Code Logicfor V=4 101
Background Code Logic for V.=5¢t 102
Background Code Logicfor V =52 104
Response Analyzer L L 106
Test Pattern Generator 107
BIST Circuit Schematic 109
(4,2)-exhaustive Codeo L L 110
Arca Used for BIST Overhead Approximations 113
Area Overhead 115
Test for Stuck-at Faults affecting the PASS/FATL Output 121
BIST Circuit (n =1k, V'=3) 190
BIST Controller 191

63
64
65
66

63
69

Address Generator 192

Background Counter (V' =3) 193
Background Code Logic (V. =3). 194
Response Analyzer 195
Test Pattern Generator, 196
Simulation 1: Segment 1, 198
Simulation 1: Segment 2 L L., 199
Simulation 1: Segment 3 200
Simulation 1: Segment 4 201
Simulation 1: Segment 6 L. 202
Simulation I: Segment 6 203
Sirnulation 1: { = 27500ns to ¢ = 32000ns 204
Simulation 2: Segment 1 L L 205
Simulation 2: Segment 2 L L 206
Simulation 2: Segment 3 L L. 207
Simulation 2: Segment 4 L L L L. 208
Simulation 2: Segment 5 L L L 209
Simulation 2: Segment 6 L. 210
Simulation 2: { = 27500ns to { =32000ns 211

vi

List of "Tables

I

o

S W

<t

6
7
8
9
10

Functional Faults in DRAM 12

All Possible 3-coupling FFaults Between Three Cells ¢, ¢ and ¢4. . 36

Transparent Test Length 73
BIST Controller Inputs and Qutputs 88
Background Numberfor V. =5(., ... 96
Background Numberfor V.=5z 98
BIST Area Overhcad for V = 3 and Typical Sizes of RAM 114
Arca Overhead of Some Proposed BIST RAMs 119
Typical Test Timeo o o L 120
Test Time for 16M RAM After Partitioning 120

List of Propositions

Proposition 1To o o 34
Proposition 2 oo 34
Proposition 3. ... oo o 38
Proposition 4 o o o 38
Proposition 5o o 44
Proposition 6o L 46
Proposition T o L 50
Proposition 8o L L 53
Proposition 9 55
Proposition 10. 7

vii

List of Theorems

1 Theorem I 32
2 Theorem?2 69
3 Theorem3 71
4 Theoremd, 74

viii

1 Introduction

1.1 Overview

Random-access memories (RAMs) are among the most important general classes
of VLSI devices. RAMs are a key high-volume component in computers and in
many other digital systems. With the increase in the number of computers over
the last decade, RAMs have been one of the fastest growing market segments in
the semiconductor industry. During the 1980’s, the world memory market grew at
an average compound annual rate of 23% to reach a total volume worth U.S. $15
billion [1]. RAM circuits are importént not only because of their enormous produc-
tion volume, but also because they are often “technology drivers” for leading-edge
VLSI technologies. Duc to their simple repetitive design, memories are excel-
lent candidates for manufacturers to explore and refine new fabrication techniques
[2, 3]. Consequently, many of the new generations of semiconductor technologies
are pioncered by memory designs.

The growth in the storage capacity of RAM devices has been spectacular. The
storage capacity of dynamic random access memories (DRAMs) has quadrupled
every 3 years and this trend has continued through to the current 16 Megabit
DRAM generation. If this trend continues, the manufacturing of 1 Gb DRAMs
with 0.15 g design rules will start by the year 2000, as shown in Figure 1 [4].
Hitachi and NIEC have already announced prototype | Gb RAMs at the 1995 IEEE
International Solid-State Circuits Conference [5, 6).

In order to ensure the correct functioning of RAMs, testing is required to verify
that each manufactured RAM is functioning within its specification. There are two
conflicting requirements in testing semiconductor memories. The first requirement

is to achieve the lowest possible test cost, which usually means minimizing the test

4G T T T T T 7 X

T
.x]
]

256M

64M

it

T

16M

Memory Storage (Bits)

Projected Trend

'Y
=
T

256K I l i L 1 | Il
1987 1990 1993 1996 1999 2002 2005
First Yearin Mass Production (Year)

Figure 1: Growth in DRAM Storage Capacity

time. The second requirement is to achieve high fault coverage. In order to reduce
cost, test length cannot be allowed to increase significantly. On the other hand,
high fault coverage — which determines the ultimate quality of shipped RAMs —
calls for sufficiently long tests. Therefore, we have to balance both requirements
when designing an efficient RAM test.

In conventional testing environments with external testers, test vectors are
generated and/or stored in automatic test equipment (ATE). To test a RAM,
these vectors are applied via the chip’s input/output pins. The main disadvantage
in external testing is that as memory sizes increase, applying the vectors becomes
extremely time consuming since only one location in the RAM can be accessed at

a time. Furthermore, in embedded RAMs (i.e. RAMs surrounded by other logic

circuitry), one can often not access the address, recad/write and data lines directly.
In such cases, the test data may have to be sent through serial scan chains, which
increases test time significantly (7). Alternately, the test data may have to be
propagated in several clock steps through the intervening logic.

To ease the task of designing a test algorithm, memory failures are modeled
as functional models that describe how the failures behave in the boolean domain.
These models are convenient because they are relatively independent of the mem-
ory design and technology. Idecally, a fault model should be based on the results of
experimental studies of the actual physical defects and faulty behaviors that occur
in real RAMs. Some of the models that are widely used in memory testing include
stuck-at faults, coupling faults and pattern-sensitive faults [8]. These faults will
be reviewed in detail in Chapter 2.

A memory test algorithm can be deterministic or probabilistic. Deterministic
tests guarantee 100% fault coverage over an assumed fault model. This means that
all the faults that behave in the way described by the fault model will be detected.
A probabilistic or random test which uses pseudorandom techniques is expected to
give high, but not necessarily 100% fault coverage. The advantage of probabilistic
tests is that they can be entirely independent of the fault model.

A memory is tested by observing its response to a set of test vectors. The test
vectors are applied to the memory using write operations. The output response
is obtained by reading the contents of memory cells and comparing them with
the expected values. In probabilistic testing, the output response of the RAM
under test is compressed into a binary signature which is compared to an expected
signature of a good memory (which may be the signature found using a known
good part, or the signature from a simulation model). This method of test response
compaction is called signature analysis [9]. The signature is obtained by feeding

the response of the RAM into a linear feedback shift register (LFSR). This method

3

is very efficient due to the low hardware involved. The only limitation of signature
analysis is aliasing, which can occur due to the information loss inherent in any data
compaction technique. Aliasing is the situation when the signature obtained from
a faulty memory is the same as the fault-free signature. (When aliasing occurs,
the effects of the errors have cancelled out in the signature.) However, recent work
has shown that aliasing-free signature analysis can be achieved in RAM BIST [10]
if the maximum number of errors that can be created by a fault is known ahead
of time. By examining the error patterns generated by a given class of faults, an
aliasing-free signature analyzer (or LFSR) can be designed.

Built-In Self-Test (BIST) refers to the addition of on-chip test circuitry to facil-
itate testing [8]." A BIST scheme for RAM is a scheme where the test mechanism
for testing the memory is completely contained within the chip itself. In a BIST
environment, test data can be generated en-chip thus solving the test data storage
problem. Test time is also reduced since we no longer need to transmit the test
vectors via the relatively slow 1/0 pins. In the case of embedded RAMs, BIST
enables us to bypass scan chains or intervening logic and access the RAMs directly.

Transparent BIST was first introduced in a restricted form by Koeneman in
1986 [11]. If a RAM is fault-free, the contents of the RAM after applying a (rans-
parent BIST algorithm will be the same as its initial contents. This feature makes
transparent BIST more attractive than standard BIST since it can be used for both
fabrication testing and periodic testing of a memory that is holding live data in a
running system. Nicolaidis proposed a technique which allows most test algorithms

to be transformed into transparent BIST algorithms [12]. We use a modification

! Another definition of BIST is to enhance the functionality of a logic circuit to test itself [9].
One may argue that the term Built-In Testing (BIT) is more appropriate in memory testing
since the test circuitry is used to test the memory and not itself. We will use the term BIST as

defined in [8] {i.e. the BIST circuitry does not have to test itself).

of Nicolaidis’ method in our BIST RAM scheme.

1.2 Thesis Objectives and Organization

This thesis involves the design and characterization of a synthesizable built-in self-
test scheme for detecting single 2, 3, and 4-cell coupling faults and two additional
5-cell scrambled pattern-sensitive faults in RAM.

The objective of this project is to demonstrate :

e a tool for automatically generating the logic and the layout of BIST circuits

to test for the above faults.

e a scheme that is aliasing-free for the case of single faults. In addition, the

probability of aliasing for the case of multiple faults is very low.
¢ the overhead cost of the BIST scheme in terms of area is low.

This thesis is divided into six chapters. Chapter 1 gave a brief overview of mem-
ory testing and the different kinds of RAM test. In Chapter 2, further background
aaterial is presented. Chapter 3 gives a detailed description of the structure of the
test algorithms that are implemented in our new BIST RAM scheme. An analysis
of the probability of aliasing is also given in this chapter. Chapter 4 discusses in
detail the design of the BIST RAM. In Chapter 5, we present the results of simu-
lations and layout experiments. Finally, we summarize and conclude the thesis in

Chapter 6.

2 Background

There are six sections in this chapter. In Section 2.1 the architecture and operation
of RAMs are discussed. In Section 2.2 we survey some of the failures that occur
in memories. Section 2.3 presents some of the models used to describe memory
failures. In Sections 2.4 and 2.5 we review BIST architectures and introduce the
concept of transparent BIST. Section 2.6 explains the logic synthesis process and
highlights some of the ad vantages of synthesis over conventional gate-level design

methods.

2.1 RAM Architecture

The key architectural elements of a RAM consist of one or more rectangular cell
arrays, decoder logic, sense-amplifiers and read/write logic. Figure 2 shows a
simplified general model of a RAM.

The cell array contains 2V x 2M individual storage cells. Each cell stores one
bit of information. The address, which is N + M bits long, is used to uniquely
identify each cell for reading and writing. The higher order N bits of the address
are connected to the row decoder, which selects one row of cells out of 2V possible
rows by asserting the corresponding word line signal. The lower order M bits go to
the column decoder, which selects the desired columns out, of 2 possible columns
by creating two connections to the corresponding pair(s) of bit lines for the selected
column(s) of cells. The number of columns that are sclected at a time depends
on the number of data lines in the RAM chip, that is, the number of cells that
can be accessed together during a single read or write operation. It is common to
have several cell arrays on a RAM chip. In this case, the address has additional
bits for identifying the one cell array which contains the cell to be accessed. The

advantage of having multiple cell arrays is that the effective length of the word and

M Columns

|
2
l —
9 CELL| ARRAY
x&.). []
Row R
oo S| .
address ;] . 2N Rows
One Cell (bit)
g One row
N o (word line)
™~ One column
(bit line)
N
e o 00 2M
Sense Amplifiers
Column Decoder

Datain —»{ Read/ , ,
Data out «— Write 12 M
Column address

Figure 2: RAM Architecture (one cell array)

bit lines is reduced. This will reduce the access time of the RAM by reducing the
amount of line capacitance that must be charged/discharged during the memory
operation.

Two types of RAM. static RAM (SRAM) and dynamic RAM (DRAM), will
be discussed in the following two subsections. The basic difference between the
two types of RAM is that in SRAMs, data is stored in latches while in DRAMs,
data is stored as charges on capacitors. Also, read operations in a SRAM are
non-destructive, and data is retained as long as power is applied to the memory.

In the case of a DRAM, the read operation discharges the storage capacitor and is

-1

therefore destructive with respect to any data that was stored. DRAM cells also
have to be refreshed periodically since the charge stored on the capacitors tends

to leak away with time.

2.1.1 Basic SRAM Cell

to/from other cells in the same column

vdd
nlpy [
T5 NI N2 T6

Tl Y[

from Vss to other cells
row decoder in the same row
Bit Word Line Bit
line line

to/from sensc-amplificrs and column decoder

Figure 3: Fully Complementary MOS Cell

Figure 3 shows a six transistor, fully complementary static CMOS memory cell.
Information is stored in the form of voltage levels in the latch which is formed by
two cross-coupled inverters. The latch has two stable states, 1 and 0. If the cell is
in state 1, N1 is at logic level 1 and N2 is at logic level 0. In this case, T1 and T4
are off while T2 and T3 are on. If the cell is in state 0, N1 is at logic level 0 and
N2 is at logic 1 so that T1 and T4 are on while T2 and T3 are off. The state of an

SRAM cell will stay the same as long as power is maintained across Vdd and Vss,

and the state of the cell is not changed by write operations addressed to the cell.

The memory cell array is composed of an array of SRAM cells which are ac-
cessed using a row decoder and a column decoder. Each column of cells transmits
differential data signals along a shared vertical pair of bit lines. To read an SRAM
cell, the bit and bif lines are precharged to high. (Precharging is a technique that
speeds up access time.) The row decoder asserts the word line high so that the
NMOS pass transistors T5 and T6 are on. At this time, one of the two cross-
coupled inverters in the enabled cell in the column will pull one of the bit lines
low. The different voltage levels in bit and bit is detected and amplified by a sense-
amplifier which is connected across the bit lines at the edge of the cell array. Since
the column decoder is selecting this particular sense-amplifier, the recovered data
signal is driven to the data output port of the RAM.

To write a logic value into a SRAM cell, data is driven by the powerful sense-
amplifier buffers onto the bit line while dala is driven simultancously onto the bil
line. The one word line corresponding to the addressed cell is activated by the row
decoder so that T5 and T6 are turned on. The bit line driver then forces N1 to
data while the bit line driver forces N2 to data so that the new data is stored in

the latch.

2.1.2 Basic DRAM Cell

Figure 4 shows a single-device DRAM cell which consists of an enhancement mode
select transistor Q and a storage capacitor (. The gate of the select transistor
is controlled by a word line. In DRAMs, the cells in one column share one bit
line. The plate node is common to all cells in the array and provides a reference
potential. A read operation proceeds as follows: the bit line is precharged to a

reference level, which is usually mid-way between logic high and low. The word

Bit line
l to other cells

from row decoder . in the same row
Word line

7 7

Storage node
Q 1

C

I Plate node

to/from sense-amplifiers
Figure 4: Single-transistor DRAM Cell

line is activated by the row decoder which turns the access transistor Q on. This
causes the charge stored on the capacitor to be dumped out onto the bit line. A
sense-amplifier located at one side of the cell array compares the voltage level on
the bit line with a reference voltage to determine if the DRAM cell stored a, logic
1 or a 0. This read operation is destructive since data is no longer stored in the
cell after C discharges. The earlier state of the cell is then restored in a write-
back operation. The sense-amplifier accomplishes this operation by amplifying the
voltage level on the bit line so that C is charged back to its initial level via the bit
line and the still-enabled access transistor Q. The read operation ends when the
word line signal is de-asserted.

A write operation is very similar to the write-back operation except the bit
lines are forced to the level corresponding to the externally supplied data rather
than the data originally stored in the cell. The word line is then activated by the
row decoder so that C is charged to the voltage level on the bit line. The write

operation ends when the word line signal is de-asserted.

10

2.2 Memory Failures

VLSI fabrication is a complex, multi-step process which involves growing pure sili-
con crystals, depositing photolithographic or photoresist material, aligning masks,
etching, implanting ions and oxidizing. A physical defect which can affect the func-
tionality of an IC’s can be introduced in any of these processing steps. Physical
defects are typically caused by the presence of dust particle on the silicon wafer or
the masks, mask misalignment or mask imperfections (8].

In RAMs, physical defects can occur in peripheral circuits (address decoder,
read/write logic) and in the memory cell array. Defects in the peripheral circuits
cause faults less frequently because the density of the minimum-width structures is
much smaller than the density in the cell array [13]. Also, the effects of such defects
are usually catastrophic and easily detected by any reasonable test. Consequently,
most of the research work in memory testing is focused on defects that occur in
the memory cell array. Table 1 shows a list of physical defects and failures that
can occur in RAM:s [8].

A memory failure occurs when a physical defect in the RAM causes it to behave
in a manner that violates its specification. Theory and experience have shown that
the failure rate for semiconductor devices normally follows the well-known bathtub

curve {3] (see Figure 5). There are three different periods :

e infant mortality: a period with an initial high failure rate normally due to

manufacturing defects, such as gate-oxide shorts.

e Normal life: a stable period with low failure rate (due to random failures)

representing the useful time period of device life.

o Wear out: after the normal life period, the failure rate increases rapidly due

to various aging mechanism, such as electromigration and corrosion.

11

Cell stuck
Write driver stuck
Read/write line stuck
Data line stuck
Data line open
Short between data lines
Crosstalk between data lines
Address lines stuck
Address lines open
Open decoder (no access possible)
Wrong access due to decoder fault
Multiple access due to decoder fault
Cell can be set to 0 but not to 1(or vice versa)

Pattern-sensitive interaction between cells

Table 1: Functional Faults in DRAM

Burn-in testing is used by manufacturers of RAMs to increase the reliability
of memory chips. During the burn-in period, RAM chips are subjected to high
temperature to accelerate the development of failures due to latent manufacturing
defects, i.e. to accelerate passage through the infant mortality region. At the end
of the burn-in period, the memories are tested to determine if they are faulty.
This way, the manufacturers can ensure that their customers only receive memory

devices that are at the beginning of their normal life.

12

Infant Normal life Wearout
Mortality (high reliability) fajlures

Failure Rate

Time after Fabrication

Figure 5: Bathtub Curve

2.3 Fault Models

Physical failures that occur in RAMs are often mathematically modeled at the
transistor, gate or functional levels of abstraction. A fault model can describe a
sei. of different physical faults that have the same faulty behavior. Many fault
models have been developed at the functional level. Functional fault models are
convenient because they can represent faults in many different technologies.
There are two assumptions that are commonly used in the development of RAM
fault models: the single fault assumption and the nondestructive (or fault-free)
read operations assumption. The single-fault assumption reduces the complexity
of the test procedures by assuming that at most one fault can be present in a RAM.
This assumption is justified since most tests that detect all single faults in a fault
model often also detects most multiple faults [7]. The fault-frec read assumption,
where read operations are assumed not to trigger errors, is also used for practical
reasons. Most test procedures apply a sequence of write operations and use the

read operaiions to verify the success of the write operations. Tests would be much

13

harder to design and analyze if read operations could cause errors. In the case of
SRAMs, the electrical eflects of read operations should be weaker than those of
write operations, so the assumption seems reasonable. The assumption is not as
appropriate for DRAMs, where each read is followed by a write.

The following classes of faults are widely used in memory testing:

o Stuck-al faults: a memory cell is said to be stuck-at-1 (stuck-at-0) if its

contents remain fixed at logic 1(0), irrespective of what is written to the cell.

o Coupling Faults: a pair of memory cells ¢ and £ is said to be coupled if a
write which changes the contents of cell i also causes the contents of the
second cell & to be forced to 0 or 1. There are two types of coupling faults:
an idempotent coupling faull is one in which a state transition in cell i causes
cell k to be forced to a certain value (0 or 1). An inversion coupling fault is
one which the appropriate transition in cell i causes the contents of cell k to
invert. The effects of two coupling faults can cancel out; for example, if cell
k contains a logic 1 and is coupled to both cell 7 and a third cell 7, then the
effect of a transition in cell 7, which causes cell & to go to 0 can be cancelled
by a transition in cell j which causes cell & to go back to 1. The possibility

of error cancellation increases the difficulty of detecting multiple faults.

Single coupling faults can also be defined which involve three or more cells.
The fault model for coupling faults involving V > 2 memory cells is the
V — coupling fault model [14]. A V-coupling fault behaves as follows: A
transition in one cell C; changes the content of a second cell Cy, provided
the remaining V — 2 cells C3,Cy...Cy store a specific pattern of 1’s and
0’s. Figure 6 shows an example of a 4-coupling fault involving four cells in
memory. The content of the four cells are a, b, ¢ and d, where a,b,c,d €

{0,1}. In the case of a good memory, when a write of value ¢ to cell ¢ is

14

applied, only the content of cell 7 is changed from ¢ to ¢. However, in the case
of a bad memory, when the same write operation is perforined, the content
of a second cell & is changed from d to d. However, this faulty behavior only

occurs if the remaining two cells store values a and b.

write € to cell i write € to cell i

Good Memory Bad Memory

Figure 6: Iixample : 4-coupling Fault

e Pattern-Sensitive Faults (FPSF): a memory cell is said to have a pattern-
sensitive fault il its state is altered. or changes in its state, are inhibited by

cither :

[. a pattern of 0’s and 1's in surrounding cells,

2. 0 to I and/or | to 0 transitions in surrounding cells.

As RAM density increases, the cells become physically closer. and PSFs are
expected to become the predominant faults {15]. However, testing for unrestricted
PSFs, in which the patterns can involve any n cells in the RAM, requires an O(2")
test and is therefore impractical given the sizes of n for modern memories |8, 16].

Most test algorithms for PSFs consider a subsct of PSFs called Neighborhood

Pattern Sensitive Faults (NPSFs). A neighborhood is the set of cells involved in a
particular fault. Figure 7 depicts a 5-cell neighborhood within a 6 x 6 cell array.
The base cell, labeled B, is the cell whose contents are disturbed by the fault. The
four physical neighbors of the base cell are often called N (North), E (East), W
(West), and S (South).

Cell Array

Figure 7: 5-cell Physical Neighborhood Pattern-Sensitive Fault

Tests for detecting NPSFs are difficult to construct in practice because the
mapping from cell addresses to cell locations in the memory array is not often
known. This is because RAM chips are usually designed with spare rows and
columns to improve the yield. This redundancy allows a memory to be repaired (if
necessary) by the manufacturer. Memories are repaired by disconnecting the rows
and/or columns that contain defective cells, and replacing them with spare rows
and/or columns. After a memory chip is reconfigured, physically adjacent cells
may no longer have consecutive addresses [17]. In addition to redundancy, a test
designer cannot assume that the logical and physical addresses of a memory are
identical because memory designers sometimes scramble the order of the address
lines for reasons of Jayout convenience [17]. Figure 8 shows how address scrambling

changes the physical neighborhood for a 5-cell logical neighborhood. Before address

16

scrambling, the logical neighbors of base cell B, N, £, W and S, are the same
as its physical neighbors, as shown in Figure 8(i). After the row addresses arc
scrambled, (Figure 8(ii)), thc N and S cells are no longer the physical neighbors
of B. Finally, after both the row and the column addresses are scrambled (Figure

8(iii)), none of the logical neighbors of B are still physical neighbors.

01234567 01234567
0 3 N
1 1
2 0
3 N -4 WBIE
5 S 5 S
6 2
7 6
(i)
20457136
N
W |E B

DN OANRLO—-W

(iii)
Figure 8: Logical and Physical Neighborhoods of a 5-cell NPSF Before and Af-

ter Address Scrambling: (i) Before Address Scrambling; (ii) After Row Address
Scrambling; (iii) After Row and Column Address Scrambling

Franklin and Saluja [18] observed that, even after scrambling both the row and
column addresses, the physical N and S neighbors of the base cell have the same
logical column address as the base cell, even though they are no longer the logical

N and S neighbors. Similarly, the physical W and E neighbors have the same

17

logical row address as the base cell [18]. This means that, in the absence of the
exact scrambling mapping, a test for detecting the scrambled 5-cell NPST has to
consider all possible 5-cell logical neighborhoods involving a base cell B, two other
cells in the same row as B, and two other cells in the same column as B.

Before address scrambling, the number of 5-cell neighborhoods which have to
be considered is equal to (y/n — 2)? & n. Here we assume that the memory cells
are arranged in a \/n X \/n square grid and that the cells at the edges of the grid
are not considered as potential base cells. After address scrambling, all n cells in
the memory can be base cells. For a base cell B, the N and S neighbors can be
any two cells from the remaining v/n —1 cells in the same column. Similarly, the E

and W neighbors can be any two cells from the remaining \/n — 1 cells in the same

n-—1 n—1
row as B. Therefore, there are (va) X (vn) possible combinations
2 2

of N, E, W and S neighbors for a single base cell. Since all n cells in the array
can be base cells, the number of 5-cell neighborhoods which have to be considered
is equal to 3(v/n — 1)’(y/n — 2)? = n3. Fortunately, the test times for detecting
scrambled PSFs do not grow with »® if numerous faults can be tested in parallel.

Most fault models assume that the effects of the defects in the address decoder
and read/write logic map to faults in the cell array. In other words, the general
assumption is that, when tests of the memory cell array are applied, the faults in
the decoder and read/write logic will behave as faults in the memory array [14, §].
For example, a stuck-at fault in the read/write logic will appear as a group of
memory cells with stuck-at faults. Similar arguments can be used for the decoder
faults as well. Therefore, an algorithm that detects all memory cell stuck-at faults

will also detect most decoder and read/write logic faults. We will call this third

widely used assumption the fault mapping assumption.

18

2.4 Built-in Self-test

The basic BIST RAM architecture requires the addition of four hardware blocks
to the core RAM: control logic, address-generation logic, data-generation and
response-verification logic, and test-trigger logic [7]. The block diagram of a gen-

eral BIST RAM architecture is shown in Figure 9.

Address
gencration
logic J
5 Memory
[=]
] Cell
a
> Array
TCSl Control <
Trigger .
. logic
Logic Column Decoder

Read/
Write

Data in/Data out

Data-generation

and
Response-analyzer

logic

|

Error Flag

Figure 9: BIST RAM Architecture (7]

2.4.1 Control Logic

The control logic activates a test in response to an external command and controls
the flow of the test algorithm. It can be implemented using random logic or
microcode. Randoin logic is faster and often has less area overhead than microcode-

based design [7]. However microcode is becoming more popular since it provides

19

flexibility as well as ease of implementation due to its regular structure. For large
RAMs, microcode-based control has been shown to have an area overhead which
does not exceed that of random-based logic design [19]. On the other hand, logic
synthesis makes microcode design less attractive than random logic because the
latter can be easily generated using synthesis tools. Furthermore, logic synthesis
enables random-based designs to be parameterized which essentially provides the
same flexibility as in microcode. For example, a single parameter Test can be
used to selectively generate the circuits for the random-based control logic, where
different values of T'est correspond to different test algorithms that are used in the

BIST RAM. Logic synthesis will be described further in section 2.6.

2.4.2 Address-generation Logic

Address-generation logic is used to generate the address sequence required by the
test algorithm. This is usually accomplished using counters or linear-feedback
shift registers (LFSRs). The control logic provides control signals (e.g. increment
or decrement signals for a counter) to the address-generation logic to obtain the
address sequence required by the test algorithm. LFSRs are often more arca-
efficient than counters [12]. Thus, when the address sequence is unimportant,

LFSRs are often preferred.

2.4.3 Data-generation and Response-verification Logic

The data-generation logic produces test patterns which are applied to the memory
cell array. These patterns vary according to the test algorithms.

The response of the RAM under test (the sequence of read values) can be veri-
fied by comparing against the expected response. For a given set of test patterns, a

set of expected responses can be obtained by simulating a fault-free instance of the

RAM under test. These responses can be stored in an on-chip read-only memory
(ROM), but this scheme would require too much arca overhead to be practical,
especially when testing large RAMs. The expected response can sometimes be
generated at test time using data-generation logic. This method alone cannot be
used in transparent testing, however.

An alternative method, which does not require storing the complete response
of a good RAM, is to use a data compaction technique called signature analysis.
In this method, the read values are fed into a signature analyzer which produces
a relatively short binary sequence, called a signature, by the end of the test. Th(;
signature analyzer can be an LF'SR or a multiple-input signature register (MISR)
[9]. (Feeding a bit stream into an LFSR is mathematically equivalent to polynomial
division in the binary field. The content of the LFSR after this operation is the
remainder of the polynomial division [9].) The compacted signature is compared
to a known fault-free signature, usually obtained by performing simulations on a
fault-free RAM. The result of this comparison is used to indicate if the RAM under
test is faulty. The advantage of using signature analysis is that the LFSR or the
MISR required for this kind of compaction is easy to implement. In addition, the
arca overhead introduced in this scheme is minimal compared to using a ROM.
However, signature analysis introduces an aliasing problem. Aliasing occurs when
a faulty RAM produces a response sequence which is different from that of a
fault-free RAM, but the resulting compacted sequences are identical. Aliasing is
inevitable whenever a data compaction technique is employed. For a k-bit MiSR.
the probability of aliasing usually approaches 27% [9] (assuming that { >> k where
L is the length of the information bits being compacted). Therefore, the problem
of aliasing can be reduced to acceptable levels by using a sufficient long MISR, say

k = 16.

21

2.4.4 Test-triggering Logic

All BIST RAMs have two modes of operation: a normal mode and a test mode.
In the normal mode, the BIST circuitry is de-activated and the RAM performs
normal read and write operations. In the test mode, the BIST circuitry is active
and the test algorithms are performed on the RAMs. The test mode is entered
by using overvoltages, extra package pins, or a special timing sequence (7). Using
unique timing sequences is better than overvoltages and extra package pins because
overvoltages require the generation of an additional voltage signal, while extra
package pins increase the size and cost of the RAM chip. This is of course not an

issue in embedded RAMs.

2.5 Transparent BIST

RAMs are one of the main components in many digital systems. In some appli-
cations, RAMs are tested periodically to increase the reliability of the running
systems. In such cases, the test algorithm must not destroy the contents of the
RAMs. One way of satisfying this requirement is by saving the contents of a RAM
before a test algorithm is applied. The contents can be stored in a spare chip, and
later written back to the RAM after the test is completed. However, if the RAM
is embedded in a VLSI circuit, it is often difficult to access the address, read [write
and data lines from outside the circuit. Also, saving and restoring the contents
“of an embedded RAM can become very difficult and may require another spare
RAM to be implemented in the circuit. For large RAMs this is often impractical.
Transparent BIST solvves this problem efficiently since the contents of a RAM after
a transparent BIST algorithm is applied will be the same as its initial contents if
the RAM is fault-free.

Koeneman introduced the concept of transparent BIST in 1986 [11]. He derived

22

a technique based on the linearity of signature analyzers. As noted by Nicolaidis

in {12], Koeneman'’s original method has four main drawbacks:

e This technique works only if the output response verification is performed

by linear compaction.
e Aliasing may occur where an error can be masked and thus escape detection.

o Test patterns must be composed of elementary loops which perform exactly
one read and one write operation in each cell. Most existing algorithms do

not have this particularly simple structure.

o The technique can reduce the fault coverage since it requires modification of

the test algorithm.

Nicolaidis derived a series of steps which can be used to transform most test
algorithm into a transparent BIST algorithm [12]. These steps modify an algorithm
so that when the algorithin is applied to a RAM. the data in each RAM cell is
complemented an even number of times. This ensures that if a cell is fault-free,
its value at the end of the test will be the same as its initial value.

In Section 2.4.3, we described the task of the response-verification logic in
a BIST design. Essentially, the correctness of the read values can be verified
by signature analysis, where the expected signature is determined by simulation.
This approach does not work with transparent BIST because the correct signature
depends on the unpredictable contents of the RAM before the test is applied.
Nicolaidis solves this problem by including a signature generating step as the first
phase of the transparent BIST test. In this phase, only the read operations are
applied to the RAM to compute the expected signature. In the second phase of the

test, both the read and write operations are performed and a second signature is

23

produced. Extra logic is needed to selectively invert some of the values read from
the RAM under test in the first phase so that the input to the signature analyzer
is the same as the input obtained when the second phase is applied to a fault-free
RAM. The second signature is then compared with the first signature, and the
result of this comparison indicates if the RAM is faulty. For most fault models,
Nicolaidis’ transformation does not cause a reduction in fault coverage beyon
the loss caused by the aliasing in the signature analyzer. However, aliasing-free
signature analyzers can be designed, using a further technique described in [10] if

the maximum number of errors in the response is bounded.

2.6 Logic Synthesis

The density (the number of devices) which can be integrated onto a single chip
has been increasing rapidly as VLSI technology advances. Hardware designers arc
faced with the task of designing larger and more complex logic circuits, a task
that is complicated, time consuming, and error-prone. This has resulted in a need
for design automation [20]. The goal of design automation for electronic systems
is to fully automate the transformation of a specification given at a high level of
abstraction e.g. a systems behavioral information, into a low level description,
e.g. a mask geometry which can be fabricated. Synthesis, which is the process
of translating a behavioral description of an electronic circuit into a lower level
description, usually a gate level description, of the circuit [21] plays a major role
in design automation. There are three main components involved in synthesis:
hardware description languages, the circuit design itself, and the technology used
for the implementation of that design. Hardware description languages (HDLs)
are used to specify the desired behavior of a circuit. Some of the more common

HDLs include VHDL (VHSIC hardware description language) and Verilog HDL.

24

The target technology provides information on the standard cells for programmable
modules that can be used in the design and fabrication processes. Figure 10 shows
a typical synthesis design flow. At the top level, a designer translates an idea into a
behavioral specification using HDL. This specification is the input to a behavioral
synthesis tool which produces an unoptimized logic description of the initial design.
Next, the logic description is optimized using automated heuristic-guided circuit
simplification rules and mapped to a given library of primitive logic parts in a
particular target technology. Using layout tools, the optimized logic description or
netlist is further translated into a layout description which can be fabricated.

The main advantage of synthesis is that it enables a circuit designer to work
at a higher level of abstraction. Detailed descriptions of the internal logic gates
and interconnections are not required. Instead a designer only has to provide the
functionality and the constraints of a circuit. This undoubtedly leads to shorter
circuit descriptions and therefore eases the circuit debugging and updating pro-
cesses. The result is a faster turnaround time from initial design idea to circuit
implementation,

A sccond advantage of synthesis is that it allows a designer to evaluate different
design alternatives stemming from the same initial specification. These designs can
be generated quickly. and their performance can be determined and compared.

Having tools to generate circuits automatically can often lead to more compact
and efficient circuits than the circuits obtained by implementing the design in
the traditional ways using CAD tools. For example, the initial BIST circuits 1
designed at the conventional gate-level using CADENCE were about 10% larger
in terms of arca overhead than the circuits I gencrated later using the synthesis
tool in Syropsys. As systems become increasingly complex. it will become more
and more difficult to create their design by hand since the number of objects to

be handled will too high. Synthesis tools with algorithms for optimizing the gate

25

Design Idea

Behavioral
Specification

Behavioral

Synthesis tools

Unoptimized
Logic Description

Logic

Optimization

"

Technology
Library —e Mapping

Optimized
Logic Description

1 Fhysical Design
Tools

I

Layout

T

Fabrication

Integrated Circuit

Figure 10: Design Flow Using Logic Synthesis

level description of a circuit can usually minimize the number of gates required for
a particular design [21].

The ability to parameterize a circuit design is another advantage of synthesis.
For example, a VHDL specification for a 4-bit counter is very similar to a speci-
fication for a 5-bit counter; the only difference is that in the former, the counter
increments to a maximum of 2, while the latter counts up to 2°. By parameter-

izing the counter circuit, only one VHDL description of the counter is required,

26

i.c. a behavior description of a counter that counts up to N, where N is the input
parameter of the counter circuit. The circuit designer can then synthesize different
counter circuits using the same VHDL description for a generic counter.

Using synthesis, a tool for generating BIST circuits automatically can be devel-
oped. The behavior of each of the hardware blocks in a BIST circuit: contro] logic,
address-generation logic. data-gencration and response-verification logic, and test-
trigger logic can be described using VHDL. The different blocks can then be linked
together to form the overall BIST circuit. With parameterization, each block can
be described in such a way that the width of the data path is not defined. This
will enable the BIST circuit generator to produce BIST circuits for different sizes
of RAMs and for detecting different classes of faults. A memory designer can use
such a tool to increase the reliability of his/her designs with minimal knowledge

of the details of the BIST circuits.

Q]
-

3 Test Algorithms

There are five main sections in this chapter. Section 3.1 describes the structure
of the deterministic test for detecting single V-coupling faults. In section 3.2, the
properties and the proofs of the (n,V — 1)-exhaustive code constructions used in
the deterministic tests are discussed. In section 3.3, we transform the deterministic
tests into transparent near-deterministic tests using Nicolaidis’ technique. A fur-
ther improved transparent test, which is aliasing-free for single faults, is described

in section 3.4. Section 3.5 analyzes the probability of aliasing for multiple faults.

3.1 Deterministic Tests for Detecting Single V-coupling
Faults

Cockburn proposed a family of deterministic tests for detecting single V-coupling
faults for V > 2 [22]. The structure of the tests is determined by an n x m binary
matrix, also called a background matriz, where n is the number of words in the
RAM under test and m is the number of backgrounds used in the test. Timing

diagrams will be used to describe the structure of these deterministic tests.

w :(0 —1 transition) w é (1 —0 transition)
Initial
; i i
value is 0 T \ p \
\ l ettt e .. Logical 1
Cell i S . Logicai 0
time

Figure 11: Timing Diagram Notation

Consider the timing diagram in Figure 11. The bold-line waveform shows the

28

content of a memory cell 7 over time. A read operation is denoted by a vertical
line. When the content of the cell is zero, the vertical line indicates a read with
the expected value 0; this is denoted symbolically by 5. When the content of cell
¢ is 1, the vertical line denotes a read with the expected value 1, denoted . A
write operation which changes the content of the cell from 0 to 1, denoted by w?,
is shown as a 0 — 1 transition. Finally, a write that changes cell 7 from 1 to 0, wi,
is shown as a 1 — 0 transition.

Background Number

........... 01234

0:00111
Cell address 1.01011

i2: 01101

~N3i01110 .

P N
cell address = 3, background number = 0

Figure 12: 4 x 5 Background Matrix.

Figure 12 shows a background matrix with n = 4 and m = 5. Each column in
the matrix is a background that is loaded into the RAM. The background number
is used to indicate the current background (matrix column). The row pointer is
the cell address. For every background. each memory cell has a present bit value,
£, and a next bit value, N. In the example shown in Figure 12, the cell address is
cqual to 3 and the background number is equal to 0. The corresponding P bit for
cell 3 is the bit in the fourth row and the first column, which is equal to 0. The
N bit is the bit in the same row as P but in the next column, i.e. background
number + 1. This column is called the next background. In this example N is

equal to 1. Similarly, if the background number is equal to 3, and the cell address

29

is equal to 2, the P bit is 0, and the N bit is 1.

The corresponding timing diagram for the test generated from the 4 x 5 back-
ground matrix in Figure 12 is shown in Figure 13. In this example, the RAM under
test has four cells since n is equal to 4. There are ﬁve regular sequences of read
and write operations which are called marches. In Figure 13, the marches are la-
beled March 1, March 2, ..., March 5. Each march corresponds to operations that
are applied with respect to one background in the background matrix, i.e. March
1 corresponds to background number = 0, March 2 corresponds to background

number = 1, and so on.

sl N]

g N | N | I Ny [l

e 1MLl [y STy 1

1
i 1 i
SR | — [t [y —
¥ ¥ 1 T
l J | |1 I | |]
March 1 March 2 March 3 March 4 March §

Figure 13: Test Structure Based on the 4 x 5 Background Matrix in Figure 12.

At the beginning of the test, the background number is set to 0, indicating
that the current background is now equal to the first column in the background
matrix. Note that the cells are assumed to contain either 0 or 1 at the beginning
of the test. The RAM under test is then initialized (i.e. written) according to
this background. In this example, since the first column is the all-zero column,
all the cells in the 4 x 1 RAM are written to zero, in ascending address order.
The ascending address order is denoted symbolically by the {} symbol. Therefore
the initialization step can be written as ff (wp). Next. a f} (row;rjwo) march is
performed. In this march, each memory cell is first read and verified to be the

expected value 0. The cell is then written with the complementary value 1, read

30

again with the expected value being 1, and finally written back with the original
value 0. This march operation is shown as March 1 in Figure 13.

Once the first march is completed, the memory has to be loaded according to
the next background. In this case, the next background is the second column in the
background matrix. This background change is achieved using a minimum number
of operations by comparing the current background with the next background as

follows:

e if the P bit of a cell is the same as the N bit, no operation is performed on

that cell. The address is incremented to the next memory cell.

o if the P bit of a cell is different from the N bit, the cell is read with the
expected value equal to P, and then written with the complementary value
P (which is also equal to N). As with the first case, the address is then

incremented to the next cell.

These steps are applied to all the memory cells in ascending address order.
(Any other arbitrary address order could in fact be used.) In the example in
Figure 13, since the P bit and the N bit for cell 0 are both equal to 0 (see Figure
12), no read or write operations are required. The P bit and the N bit for cell
I however, are not the same. In this case. cell 1 is read with the expected value
P =0, and written with the complement value P = 1. Cells 2 and 3 also undergo
the same transition.

At the end of the background change, the background number is incremented
to point to the sccond column so that the second background is now the current
background. A f} (rpwprpwp) march is then applied to memory in ascending order,
where the P bits now correspond to the bits of the second background. This march
operation is labeled as March 2 in Figure 13. These march and background change

steps arc repeated until all m backgrounds have been applied to the RAM.

31

At the end of the test, all the cells are read again, with the expected values
equal to the P bits of the last column in the background matrix.
Pseudo-code for Cockburn’s algorithm is given in Figure 14.

const n; /* number of RAM cells */
const m; /* number of backgrounds in background matrix */
const BGM[n,m); /* n x m background matrix */
type address =0 ... (n-1); bit = (0,1), bg_position =0, ...m — 1
var a: address; bg_num: bg-position; P, N : bit: last_dbgr : boolean:
begin
/* load first background into RAM */
fora:=0ton-1do
P = BGM[a,0}; w};
endfor;
/* consider cach background */
bg.num = 0,
last.dbgr := falsc;
repeat
/¥ ascending 7pwprpwp march */
fore:=0ton-1do
P := BGM[abg_num]; rpwhriwh:
endfor;
if bgnum =m — 1 then
/¥ have reached last. background */
last.dbgr := true;
else
/* load next background into RAM */
fora:=0ton—-1do
P := BGM[a.bg_num];
N = BGM[a bg_-num + 1];
if P # N then r}; wh: endif:
endfor;
bgnum = bg.num + 1;
endif;
until last_dbgr:
[* read cach cell one last time */
fore:=0ton-1do
P := BGMa,m — 1): p;
endfor;
end;

Figure 14: Deterministic Test Algorithm

A central theorem, which is proved in [22], is as follows:

Theorem 1: Cockburn’s test detects all single V-coupling faults if the underlying

code is (n, V — 1)-exhaustive.
Proof: Refer to [22] for the full proof. Informally, the argument has two steps.

32

First, the fact that the background matrix is an (n, V' — 1)-exhaustive code
guarantees that any single V-coupling fault will be excited at least once.
Therefore, if a fault is present, an error is guaranteed to appear at least
once. The second step shows that if an error is produced, it is guaranteed to

be detected by a read operation. The theorem follows from the two steps. O

The properties of an (n, V' — 1)-exhaustive code will be discussed in the following

section.

3.2 (n,V —1)-exhaustive Codes

Consider an n x m binary matrix A. The rows of A form an (n. 1" = 1)-exhaustive

code if:
1. V-1 <n, and

2. for all possible projections of matrix A onto 1 — 1 rows. all 2°=1) possible

binary (V' — 1)-tuples appear as column vectors.

3.2.1 (n,2)-exhaustive Codes

IFigure 15 shows an example of an (8,2)-exhaustive code [22].

This code can be divided into four fields: the first field is an all-zero column.
The second field is a logy(n)-bit wide binary count-up sequence from 0 to n — 1. In
the (8,2)-exhaustive code example in Figure 15, the count-up sequence is log,(8) =
3 bits wide, and goes from 000 up to 111. The third field is an all-one column. The
last field consists of the binary representation of the number of zeros in the second
field. In Figure 15, the entry in the fourth field for the first row is 11 corresponding
to the three zeros in the binary number 000. Similarly, the entry for the second

row is 10 because the binary number 001 in the second field contains two zeros.

33

All-zero cow 3 bit count-up sequence

010 0 0}1(1 1
00 0 1{1[1 0
0j0 1 0f[1f1 0
0(0 1 1;1/0 1
0|1 00110
0(101]1/01
01t 1 0/1{0 1
0ft 1 1[{1j0 0

/AN

All-one column Number of zeroes in
the count-up sequence

Figure 15: (8,2)-exhaustive code

The length of the code is the total number of bits in each row. In this example,
the length of the (8,2)-exhaustive code is 7. The following proposition is readily

verified from the code definition.

Proposition 1 The length of an (n,2)-exhaustive code with the structure de-

scribed is equal to 2 + [log_n] + [log,([log, n] + 1)].
Proposition 2: The code illustrated in Figure 15 is (n, 2)-exhaustive.

Proof: We have to show that for any two rows in the matrix, all 2% possible
binary 2-tuples 00, 01, 10 and 11 appears as column vectors. The first ficld
guarantees that any two rows will have the 00 tuple. Similarly, the third
field provides the 11 tuple. To show that any two rows will have both the
01 and 10 tuples, consider two arbitrary rows = and y, where 2 < y. Let the
binary number b, be the entry in the second field for z, and let b, be the
corresponding entry for y. Since b, < b,, there must exist a bit position ¢ in
bz and b, where b;(¢) = 0 and b,(¢) = 1; otherwise we reach a contradiction

with the assumption that = < y.

34

To show that any two rows will have the 10 tuple, let w; be the entry in the
fourth field for z, and let w, be the corresponding entry for y. We have to

consider three cases:

Case 1: (w; > wy) Since w, > wy, there must exist a bit position j where

wz(j) = 1 and wy(j) = 0.

Case 2: (w; = w,) Since w; = wy, b, contains the same number of ones
and zeros as b,. Since b, # by, b, cannot have ones in exactly the same
bit pesitions where b, has ones. Therefore, there must be at least one

bit position j where b.(j) = 1 and b,(j) = 0.

Case 3: (w; < w,) Since wr < w,, there are more zeros in b, than in b,.
Therefore, there must be at least one bit position j where b:-(j) =1 and

by(j)=0. O

In order to show that this code will detect all single 3-coupling faults in an n x 1
RAM, we will ennmerate all the possible 3-coupling faults that can occur. Table 2
lists all the 3-coupling faults that can occur involving three arbitrary cells, ¢, ¢
and ¢3. Fault 1 refers to an idempotent 3-coupling fault where a write operation
that changes the content of ¢; from 0 to I (denoted by 1 cy) also forces ¢; to 1,
when ¢3 contains a 0. Fault 1b is similar to Fault la except that c3 contains a
I thus an error can occur in ¢, only if ¢5 = 1. Faults 2a and 2b are idempotent
3-coupling faults where a 0 to | transition in ¢; forces ¢; to 0. The analogous
3-coupling faults that are caused by | ¢ are Faults 3, 3b, 4a and 4b.

To detect all the single 3-coupling faults in Table 2, the rows of the background
matrix used in the deterministic test described in Section 3.1 will have to form
an (n,2)-exhaustive code. This means that any two rows out of n rows in the

matrix will have all four possible 2-bit binary patterns as column vectors. Since

35

Fault la | 1 ¢ =t c,c3=0
Fault 16 [t et =21, =1
Fault 2a | t ¢ =) ¢, 3 =0
Fault 26 |1 ¢; =)l e, 3 =1
Fault3a [l ¢t T ¢, 3 =0
Fault 3b | l ¢ =1 ¢, c3 =1
Fault 4a | | ¢ =] 3,3 =0
Fault 4b | L ¢; =) co, 3 =11

Table 2: All Possible 3-coupling Faults Between Three Cells ¢;, ¢; and cj.

all the columns in the matrix are test vectors that are loaded into the RAM under
test, any two cells in the n x 1 RAM will go through all the possible (22) joint
states (00,01,10,11). Referring to Table 2, the two cells that are relevant here are
those denoted by ¢; and ¢3. Two conditions must be satisfied for an error to be
induced in cell ¢;: (1) Cells c; and c3 must contain two particular values; (2) When
cells ¢; and ¢; contains those values, cell ¢; is written in the appropriate direction
and the contents of ¢; are changed. Condition (1) is met in the test because an
(n,2)-exhaustive code guarantees that cells c; and ¢; will go through all possible
states, which means sometime during the test, the cells will contain the “right”
values at least once. Condition (2) is satisfied because a f} (rywsrsws) march is
performed for each background, which means that when cells ¢, and ¢; contain
the required values, cell ¢; is guaranteed to undergo both 1 and |, one of which is
the appropriate transition that triggers the fault. Note that the states that (c,, c3)
goes through do not necessarily have to be in the order 00, 01, 10, 11.

36

3.2.2 (n,3)-exhaustive Codes
first half

All-zero column 3 bit count-up sequence

complement of the first half

albc db®cbddcad

0f000|0: 0:0/{1 111 111
0j0o01f0: 1 i1]|1110100
0{010/1: 0:1]1101010
0/011ft: 1 0|1 100001
0{100 1. 1:01[1011001
0{101{1:0:11]1010010
0j110[/0:1:1{1001100
0/111/0: 001000 111

column b xor column ¢ column ¢ xor column d
column b xor column d

Figure 16: (8, 3)-exhaustive code

An casily-generated (8, 3)-exhaustive code is shown in Figure 16. This type of
(1, 3)-exhaustive code is divided into two halves. There are three fields in the first
half. Similar to the (n,2)-exhaustive code, the first field is an all-zero column and
the second field is a logy(n)-bits wide binary ascending sequence. The third field
is obtained by performing exclusive-OR operations on all possible combinations of
two bit positions from the second field. In the example in Figure 16, there are
three bits (or columns) in the second field labeled b, ¢ and d. In this case, there
are3C, = 2—?%; = 3 combinations of two rows that can be XOR-ed together; namely,

b®c, b®dand c@d. The second half of the code is obtained by taking the logical

37

complement of all the entries in the first half.

The following proposition is readily verified from the code definition.

Proposition 3: The length of an (n,3)-exhaustive code with the structure de-

scribed above is equal to 2 + [log,n] + [log, n]2.
Proposition 4: The code illustrated in Figure 16 is (n, 3)-exhaustive.

Proof: To prove this proposition, we must prove that any three arbitrary rows
from the code will have 22 = 8 distinct 3-bit tuples. Let b, b, and b, be
the corresponding entries in the second field for three rows z, y, and z. The
first column guarantees one distinct tuple, i.e. the 000 tuple. Next, we will
prove that the second field has at least two distinct tuples, b,(2)b,(?)b,(7) and
bz(7)by(7)b-(7), where ¢ and j are two distinct bit positions in b,, b, and b.,
and b,(2)by(2)b2(z) # b2(7)by(7)b2(7)-

Since b; # by, there must be a position ¢ where b,(z) # b,(i). Let T be the

3-bit tuple b;(2)by(z)b.(7). Since b.(z) # b,(2), we can write T' = aaz, where

a € {0,1} and z, € {0,1}. There are two cases to consider:

Case 1: (z, = a) The tuple T has the form T} = ada. In this case, b,(i) =
b.(7). Since b, # b,, there must be at least a second bit position j where
bz(j) # b.(7). Let Ty be the tuple bs(5)by(7)b:(7). Therefore Ty = bab
where b € {0,1} and z, € {0,1}. To prove that T} and T} are distinct,
assume that Ty = Ty. Then, a = b, @ = x4, and a = b which contradicts
a = b. Therefore T} and T are distinct. To show that T} # T3, assume
that Ty = Ty, then @ = b, @ = £, and a = b which contradicts a = b.

Therefore T} # Th.

Case 2: (2, = @) The tuple T has the form T} = a@a. In this case b,(:) =

b.(2). Since b, # b,, there must be at least a second bit position j where

38

by(7) # b2(j). Let T3 be the tuple by(5)b,(5)b.(j). Therefore Ty = z,bb
where b € {0,1} and «, € {0,1}. To prove that 7} and T; are distinct,
assume that Ty = T,. Then, a = x;, @ = b, and @ = b which contradicts
a = b. Therefore T} and 7 are distinct. To show that T} # T5, assume
that Ty = T, then a = &, @ = b and @ = b which contradicts @ = b.

Therefore T} # Ts.

Clearly in Case 1, T} = aaa and T, = bzyb cannot be either 000 or 111.

Similarly, in Case 2, T} = ada and 7T, = z4bb cannot be equal to 000 or 111.

At this point, we have three distinct tuples, one from the first field and two
tuples from the second field. We now show that using the two distinet tuples

from the sccond field, we obtain a third distinct tuple in the third field.

Let T, be the tuple resulting from T) 4 Ta, where @& denotes bit-wise
exclusive-OR. Assume that Tre1, = Ty. Then T; = 000 which contra-
dicts the above result that Ty # 000. Thercfore Trar, # 11, Assume
that Tyq7, = Ty. Then T3 = 111 which contradicts the above result that
Ty # 111. Therefore Ty, 1, # Th.

Assume that Ty, = T, Then Ty = 000 which contradicts the above
result that 7} # 000. Therefore Trer, # 15 Assume that Trar, = 7.
Then Ty = 111 which contradicts the above result that 7) # 111. Therefore
Tryr, # Ty

Next, we will prove that Trgr, # 000 or 111. Assume that T a7, = 000.
Then Ty = T, which contradicts the above result that T; # T,. Therefore
Trygr, # 000. Assume that Trqr, = 111. Then Ty = T; which contradicts

the above result that Ty # 7.

We have now shown that for any three rows z, y, and z, the first field contains

39

000, the second field contains two more distinct tuples, and the third contains
a fourth distinct tuple. Furthermore, none of these tuples is the complement.
of the other three. Using the four distinct tuples in the first half of the code,
we obtain four more tuples in the second half. Since we have shown that
no two distinct tuples in the first half form a complementary pair, by taking
the complement of the first half, four additional distinct tuples are obtained.
Therefore, any rows from the code in Figure 16 will have 23 distinct 3-bit

tuples, which proves that the code is (n,3)-exhaustive. O

3.2.3 (n,4)-exhaustive Codes for T-neighborhoods

In section 2.3, scrambled physical neighborhood pattern-sensitive faults (PNPSFs)
were discussed. It was observed that the effects of row and column address scram-

bling on the PNPSFs are as follows:
e The victim or base cell B can be displaced anywhere in the memory map;

e The N and S neighbors can be displaced anywhere along the same column

as B;

e The E and W neighbors can be displaced anywhere along the same row as

B.

An active scrambled PNPSF is said to be present if a transition in an aggressor
cell ¢ (can be N, E, W or S) causes the victim cell 7 (7 = B) to change to an
erroneous state when particular values are stored in the remaining cells (which we
will label as k;, k, and k3) in the neighborhood. The deterministic test described
in Section 3.1 will detect all single active scrambled PNPSFs if the underlying
background matrix is (n,4)-exhaustive with respect to scrambled T-neighborhoods.

A T-neighborhood is a set of four cells (j, k), k2 and k3) that corr.spond to a

40

standard PNPSF neighborhood. A scrambled T-neighborhood is a T'-neighborhood
in whi the cells have been scrambled. An example of the logical neighborhood
of a scrambled PNPSF is shown in Figure 17(i). The aggressor cell 7 is in the
same column as the victim cell j. The corresponding scrambled T-neighborhood
is shown in Figure 17(ii). The cells k; and k3 are in the same row as j while cell

k, is in the same column as j.

-]

-1 [&
o
E]
[] [
al

U] ()

Figure 17: (i) Logical Neighborhood for a Scrambled Pattern-Sensitive Fault; (ii)

Corresponding Scrambled T-neighborhood

We assume that the storage cells in the n x | RAM are arranged in a square
Vv x /i grid,

The following construction is due to Cockburn.

To construct an (n.4)-exhaustive code with respect to scrambled 7-neighborhoods,
a (v/n, 3)-exhaustive base matrix is used. The structure of the (\/n, 3)-exhaustive
code is as described in the previous subsection. Only the first half of the (/7. 3)-
exhaustive code is used. The fields in this code are labeled Zone I, Zone I1 and
Zone HI as shown in Figure 18.

In this example, n = 16 and thus the base matrix should be (4,3)-exhaustive.
Zone I refers to the all-zero column. Zone II is the ascending binary sequence.
Zone 'l is obtained by XOR-ing ail pairs of columns from Zone II. Two column

pointers, coll and col2, are used in the construction. We define the “product” of

coll col2

||

0|0 O 0
0]0 1 1
0 10 1
0 1 1 0

Zonc1 Zonell Zonelll

Figure 18: (4,3)-exhaustive Base Matrix Used in the Construction of a (16,4)-
exhaustive Code with Respect to Scrambled T-neighborhoods

two column vectors, coll x col2, as a matrix M where each entry of M, M(z,5) is
given by col1(z) @ col2(j). The entries of such a matrix M, when read row by row,
will form the columns of the new code, as we describe next. The columns of the

(n,4)-exhaustive code with respect to scrambled T-neighborhoods are constructed

as follows:

Code Construction 1:
Step 1:
for coll = first column to last column in Zone II do
for col2 = coll + 1 to last column in Zone III do
M = coll x col2 with coll in vertical direction and
col2 in horizontal direction
end

end

Step 2: Repeat Step 1 with coll and col2 interchanged.
Step 3: Complement all the entries in the matrices obtained in Step 1 and Step
2.

Figure 19 shows Step 1 using the base matrix in Figure 18. In this step, coll

is initialized to the first column in the base matrix while col2 is initialized to the

42

col2=2 3 4

0011 0101 0110
ofoo11 ofo101 ofo110
0[0011 ojo101 0j0110
=1 oloo11 0{0 101 ojo110
0[0011 olo101 00110
(a) (b) {c)
0101 0110
0|0t101 0j0110 0]
0[0101 ojo110 1
2 1l1o010 11001 7|4
111010 111001 0
{d) (e) Y
1
0110 ;
ofo110 0
111001 7] N=16
3 olo110 0
11001 0
{f 1
1]
0
0
1)

Figure 19: Construction of a (16.4)-exhaustive Code With Respect to Scrambled

T-neighborhoods (Step 1)

second column. The first resulting matrix M is shown in Figure 19(a). Figures
19(b), (c), (d), (e) and (f) shows the remaining XOR-matrices obtained by Step 1.
Fach matrix corresponds to a background (column) in the new code. For example.
the rows in the XOR-matrixin Figure 19(c) can be concatenated together to obtain
the fifth 16-bit background in the new code.

In Step 2, Step 1 is repeated with coll and col2 are interchanged. The XOQR-
matrices oblained in this step are the same /n x \/n matrices obtained in Step
I transposed about the main diagonal. Note that the product of the two vectors
is still performed with coll in the vertical direction and col2 in the horizontal

direction. In Step 3, the entries of the matrices obtained in Step 1 and Step 2

43

are complemented. The resulting background matrix for our example is shown in

Figure 20.

000000(00000OC 111111 111111
011111[(000001 100000 111110
101011000110 010100 111001
110100000111 001011 111000
000001011111 111110 100000
011110011110 100001 100001
101010011001 010101 100110
110101011000 001010 100111

n=16/ 1000110101011 111001 010100
0110011101010 100110 010101
1011011101101 010010 010010
110010101100 001101 010011
000111{110100 111000 001011
011000110101 100111 001010
101100110010 010011 001101
110011 (110011 001100 001100
L J | || J
Step 1 Step 2 Step 3

Figure 20: (16,4)-exhaustive Code With Respect to Scrambled T-neighborhoods

Proposition 5: Given an (n,4)-exhaustive code, Construction 1 produces a code

of length 2[log, /n 12(1 + [log, /7 1)

Proof: Each matrix corresponds to a background in the constructed code. The
length of the code is thus equal to the number of matrices that are gen-
crated. Consider the number of matrices generated in Step 1. Zone I is
one bit wide. Zone II is [log, v/n]-bit wide. Therefore the outer for loop
goes from coll = 1 to coll = 1+ [log,\/n]. Zone IlI has a length of

[log \/Hj([;ogzﬁ]—l)_ Therefore, the inner for loop goes from col2 = coll + 1

to col2 = 1+ [logy/n] + Mﬂ;ﬂm@;‘l. Let A =1+ [log,+/n] and

B=1+[log,/n]+ Il—%ﬂ%"—&ﬁ"—ll The number L, of matrices that

44

are gencrated in Step I can be written as follows:

,,.:i(i 1)

coll=1 \col2=coll+1
A
=) (B-coll)
coll=1
A A
= Z B - Z coll
coll=1 coll=1
- ap- A4+l
2
= ap- 24

I

The number of matrices generated in Step 2 is the same as L;. The number
of matrices generated in Step 3 is 2 x L;. Therefore, the total length L
of the code is equal to L = 4 x L; Substituting A = 1 + [log, /] and
B=1+/log,vnl+ &Lm(flzogz‘/m_l) into Ly, we get:

L =4(1 + [log, v 1) (1 + [log, /] + floggﬁ](féogz\/r—l’.—l) _ I&szxz/ﬂﬁ)
= 2flog, Vi 12(1 + [log, V1) ©

FFor simplicity we will prove that construction | produces (n,4)-exhaustive codes
with respect to all scrambled T-neighborhoods in two steps. We will first mod-
iy construction I so that col2 starts from coll instead of coll + 1 in the inner
for loop, and then prove that this new construction produces {n,4)-exhaustive
codes with respect to all scrambled 7-neighborhood (Proposition 6). The modi-
fied construction contains all the same backgrounds as the original construction,
plus some additional backgrounds. Afterwards we will prove that if col2 starts
from coll + 1, the codes produced are still (n,4)-exhaustive with respect to all

scrambled T-neighborhood (Proposition 7).

45

Proposition 6: The codes produced by a modified construction 1 (where col2
starts from coll instead of coll+1 in the inner for loop) are (n, 4)-exhaustive

with respect to all scrambled T-neighborhoods.

Proof: Consider an arbitrary scrambled T-neighborhood.

There are two cases to consider:

Case 1: The aggressor cell S is in the same column as the victim cell B.
(We have chosen cell S to denote the aggressor cell. The following argument
is independent of whether the aggressor cell is cell N or cell S.) Let cells W,
B and E be in columns a, b and c, respectively, where a, b and ¢ are three
distinct values in the range of 0,...,/n — 1. We assume that the cell array

is a /n x /n grid. Also let cells N and B be in rows d and e, respectively,

where d and e are two distinct values in the range 0,...,/n — 1.
Xa Xp X¢ P. Py R
Yq N; Q| [N,
Y. | Wi B E Q.| W;| B

a-bittuple=(B {, N, E;,W;) 4-bittuple=(B |, N, E;, W)

0] (i)
Figure 21: Scrambled Physical T-Neighborhoods

Consider two arbitrary backgrounds : and j where ¢ and j are two distinct
values in the range 0,...,m - 1. The scrambled T-neighborhoods after ap-
plying backgrounds ¢ and j to the memory are shown in Figure 21. (In this
figure we have shown the neighborhoods without scrambling. This is done
for simplicity. The following argument is independent of the scrambling that

may be present).

46

Using Proposition 2, any two arbitrary rows from Zone I and Zone 11 of the
base matrix have at least two distinct 2-bit tuples: the 00 tuple and the
01 tuple. Using Proposition 4, any three arbitrary rows from the (y/z,3)-
exhaustive base matrix have at least four distinct 3-bit tuples and none of
these tuples is the complement of the other three tuples. In Step ! of code
construction 1, the product of the two vectors coll and col2 is performed with
coll in the vertical direction and col2 in the horizontal direction. Therefore
the 2-bit vector coll(d)coll(e) will go through at least two distinct states.
Similarly and independently, the 3-bit vector col2(a)col2(b)col2(c) will go

through at least four distinct states.

Let Sy be the set that contains the two distinct states for coll(d)coll(e). Let
52 be the set that contains the four distinct states for col2(a)col2(b)col2(c).
Let X = X, X, Xc be the value for the 3-bit vector col2(a)col2(b)col2(c) for
background 7 and X € S5. Let ¥ = Y,Y, be the state for the 2-bit vector
coll(d)coll(c) for background i and Y € S). Similarly, let P = P, P, P. be the
value of the 3-bit vector col1(a)coll(b)coll(c) for background j and P € S,.
Lastly, let @ = Qu4Q. be the value for the 2-bit vector coll(d)coll(e) for
background j and Q € 5.

Let ¢ identify the background which must exist such that ¥ = 00. Similarly,
let 7 identify the background which must exist such that Q = 01. Variables
d and ¢ are chosen, without loss of generality, such that Q; =0 and Q. = 1.
We will prove that the 4-bit tuple BiN;E;W;, obtained from the product
X x Y of the two column vectors X and Y, is distinct from the 4-bit tuple
B;N; E;W; which is obtained from P x Q. Furthermore, we will show that

BiN;EW; # BN, E;W,.

47

Assume for a moment that B;N;E;W; = B;N;E;W;. Then,

Yoo Xy = Que P, (1
Yo&Xe = QP (
YeoX. = Q.oF (3

(

}/cﬂa)\,c = Qe@Pc

)
2)
)
4)
Assume that X, # P, implying that P, = X,. From (1)and (2), ¥; = Qg and
Y, = Q. which is a contradiction since Y;Y, = 00 # Q4Q = 01. Therefore,
Xy = P,. Using this result and equations (1) and (2) Y; = Qgand Y, = Q..
However, this is a contradiction since Y;Y, # QuQ.. Therefore, we conclude
that B; N; E;W; ;é BijEjVVj.
Next we will show that B;N;E;W; # B;N;E;W;. Assume for a moment that
BiN,'E,'VV,' = BijEjo. Then,

19Xy = Qud Py (5)
YeoXs = Q.05 (6)
YoX, = Q.0F (7)
YYoX = Q.0F (8)

Assume that X, # P, implying P, = X,. From (5) and (6), ¥; = Q, and
Ye = Q. which is a contradiction since Y;Y, # Q4Q.. Therefore, X, = P,.
Using this result and equations (5) and (6), Y; = Q4 and Y, = Q,. However,
this is a contradiction since Y;Y, # Q.Q.. Therefore, we conclude that
B;N;E;W,; # _BJ—N]W Using the similar arguments, it can be shown that
the 4-bit tuple obtained from X x Y is also distinct from the tuple obtained
from P x @) where X # P and X # P.

48

We have proved that the 4-bit tuple obtained from the product of two vec-
tors, X x Y is distinct from the 4-bit tuple obtained from the product of
two vectors, P x () when at least one member in the product is distinct
from the corresponding member in the second product, i.e. either Y # Q
and Y # @, or X £ Por X # P. We have also shown that the 2-bit
vector roll(d)coll(e) will go through at least the 00 and 01 states and that
the 3-bit vector col2(a)col2(b)col2(c) will go through at least four distinct
states. Therefore, in Step 1 of the code construction, any 4-cell scrambled
T-neighborhoods where the aggressor cell is in the same column as B, will

go through 4 x 2 = 8 distinct states.

Case 2: The aggressor cell is in the same row as the victim cell B.

In Step 2, coll and col2 are interchanged. Using similar arguments as the
ones in Case 1, any 3-bit tuple from coll will go through at least four distinct
states and any 2-bit tuple from col2 will go through at least two distinct
states. Therefore, any scrambled neighborhood where the aggressor cell is
in the same row as the victim cell B will go through at least eight distinct
states.

In Step I, we omit the matrices obtained when col2 < coll since they will be
generated in Step 2. For example, the matrix M = coll x col2 obtained when
coll = second column and col2 = first column in Step 2 is the same as the
matrix M = coll x col2 obtained when col2 = first column and coll=second
column. Therefore, the col2 pointer does not have to start from the first

column. It can start from col2 = coll.

We have shown that in both cases, any 4-cell scrambled T-neighborhoods
will go through at least eight distinct states and none of these states is the

complement of the remaining seven states. Therefore in Step 3, when we

49

take the complement of all the entries in the XOR-matrices that are found in
Step 1, the 4-cell scrambled T-neighborhoods will go through the remaining
8 states. Therefore any 4-cell scrambled T neighborhood will go through 21
states, which proves that the codes generated by the modified construction

1 are (n,4)-exhaustive with respect to scrambled T-neighborhoods. O

Proposition 7: Code construction 1 produces (n,4)-exhaustive codes with re-

spect to all scrambled 7" “s0ds .
Proof: Consider an arbitrary - !\ "neighborhood. We first consider the
case where the trigg..cing <« 5 is in the same column as the base cell B.

Let cells N and B be in rows d and e, where d and e are two distinct values

in the range 0,...,/n—1. We assume that the cell array is a \/n x \/n grid.

To prove that code construction 1 produces (n,4)-exhaustive codes with re-
spect to all scrambled T-neighborhoods, we have to show that by removing
the XOR matrices M obtained when coll = col2, we do not remove the
only instance of any of the 2% possible states for the 4-cell scrambled 7-
neighborhoods. Let P denote coll and col2 when they are both identical.
Consider Mpp = P x P. It must be true that P is a column in Zones I or 1]
of the base inatrix. Assume that a particular NW BE neighborhood occurs
in Mpp. It can be seen from Figure 22 that the same neighborhood will
occur in at least one other background or matrix Mpg = @ x P if the 2-bit
tuple P(d)P(e) is equal to the 2-bit tuple @(d)Q(e). We will prove that there
exists at least one other column @ where P # @ and P(d)P(e) = Q(d)Q(e).

Since P is from Zones I or Zones II (i.e. from a (y/n,2)-exhaustive code),
then it must be true that Q is from Zones I, I or III (i.e. from s (\/n,3)-

exhaustive code) in either Step 1 or Step 2 of construction 1. Let “a” be an

30

P{d)P(e} = Q(d)Qle)
P(d) N Qfd) N
Ple) W|[BJ|E q Qfe) WIBIE
Mep Meg

Figure 22: Backgrounds Mpp = P x P and Mpg = P x

appropriate boolean value. Therefore, both of the 3-bit patterns aP(d)P(e)
and @P(d)P(e) must be present in Zones I, I1 or 111, where a can occur in any
of the remaining \/n — 2 rows in the XOR-matrices other than rows d and e.
Since both patterns cannot be present in P alone, then we conclude that there
must be one other column @ where P # Q and P(d)P(e) = Q(d)Q(e). We
have thus shown that there exists a neighborhood in Mpg which is identical

to the neighborhood in Mpp, and P # Q.

Due to the symmetry of the constructed matrices about the main diagonal,
the same arguments can be used for the case when the triggering cell is in

the same row as B.

We have now shown that the scrambled T-neighborhoods that are present in
the matrices M = coll x col2, where coll = col2, are guaranteed to be present
in at least one other background where coll # col2. Therefore, by removing
the XOR matrices M obtained from coll x col2 when coll = col2, we do not
remove any of the 2* possible states for the 4-cell scrambled T-neighborhoods,
and hence code construction 1 produces (n, 4)-exhaustive codes with respect

to all scrambled T-neighborhoods. O

al

3.2.4 (n,4)-exhaustive Codes for Neighborhoods of Type 1

A passive scrambled PNPSF is said to be present if the content of the victim
cell j (j = B) cannot be changed by write operations addressed to cell 7 when a
particular pattern of values is stored in the N, E, W and S cells in the scrambled
neighborhood [23]. A static scrambled PNPSF is said to be present if the state of
the victim cell B is forced to a particular value, 0 or 1, when a particular pattern
of values is present in the N, E, W and S cells in the scrambled neighborhood
[23]. The deterministic test described in Section 3.1 will detect all single static
and passive scrambled PNPSFs if the underlying background matrix is (n,4)-
exhaustive with respect to neighborhoods of type 1. A neighborhood of type 1
is a set of four cells (N, E, W and S) that correspond to a standard PNPSF
neighborhood. A scrambled neighborhood of type 1 is a neighborhood of type 1 in
which all the cells of the neighborhood have been scrambled. An example of the
logical neighborhood of a scrainbled PNPSF is shown in Figure 23(i). The victim
cell B has two neighbors in the same column, and two neighb¢=s in the same row.

The corresponding scrambled neighborhood of type 1 is shown in Figure 23(ii).

5] 3]

[&] =]

(0] (n)

Figure 23: (i) Logical Neighborhood for Scrambled Pattern-Sensitive Faults; (ii)
Corresponding Scrambled Neighborhood of Type 1

The storage cells in the n x 1 RAM are again assumed to be arranged in a
square \/n X \/n grid.

92

Similar to the codes for scrambled 7-neighborhoods, a (v/11, 3)-exhaustive base
matrix is used to construct an (n,4)-exhaustive code with respect to scrambled
neighborhoods of type 1. This construction is also due to Cockburn. The ficlds
in the base matrix are again labeled Zone I, Zone I1 and Zone 1 (see Figure 18).

The construction process is as follows:

Code Construction 2:
Step 1:
for coll = first column to last column in Zone 111 do
for col2 = first column to last column in Zone 111 do
M = coll x col2 with coll in vertical direction
and col: in horizontal direction
end

end

Step 2: Complement all entries in the XOR-matrices found in Step 1.

Figure 24 shows the XOR matrices for Step 1 obtained from using the base
matrix in Figure 18. In this step, both coll and col2 are initialized to the first
column in the hase matrix. The first XOR matrix which is formed is shown in
Figure 24(a). Similr to the case for T-neighborhood, the entry in the XOR-
matrix M(coll, col2) is obtained from the coll-th and col2-th columns of the base
matrix. Step 1is repeated again in Step 2, but all the entries in the NOR-matricos

arc complemented. The resulting background matrix is shown in Figure 25.

Proposition 8: Given an (n,4)-exhaustive code, construction 2 produces a code

5} n o n)12
of length 2(1 + [82'2\/—)] + Mz(zx/_)])2,

Proof: The outer for loop goes from coll = 1 to coll = 1+{'g, \/ﬂ+m’52 ‘/;]ﬂ?gz‘/’ﬂ").
Similarly, the inner loop goes from col2 = 1 t¢ col2 = 1 + [log, n] +

53

col2=1 2 3 4

0000 0011 6101 0110
oloooo| ofoo11] of~101] ofo110
wli=] ©/0000] 0]0011 olo101 olo110
oloooo|! ojoo11] olo101]| olot11o0
0jooo0o0| o|loo11(o|lo101| olo11o0
0000 0011 0101 0110
oloooo| ofoo11] ofo101] olo11o0

, 0/0000| 0/0011| T0101| o0f0110
11111 141100 1(1010f{ 11001
11111 if1100] 1/1010] 1/1001
0000 0011 0101 0110
oloooo| ofoo11] ofot101] ofo110
11111 11100 1{1010{ 1l1001

3 oloooo| ojooi1| olo1o1]| olo110
11111 1M1100] 11010] 11001
0000 0011 0101 0110
oloooo| ofoo11] ofo1o01]| olo110
ARIERERE 1M1100| 11010 1i1ro01
11111 1l1100| 110190 1[1001
0j0000| of0011| o00101] o0lo110

Figure 24: Construction of a (16,4)-exhaustive Code With Respect to Scrambled
Neighborhoods of Type 1 (Step 1)

-1 s . .
logy v/n .l,og ~—. Therefore the number L; of matrices generated in Step
1 is:

Ll — (1+|—]082\/77]+ [log2\/—ﬁ]([1:g2\/7ﬂ—l))2

<

The number of matrices generated in Step 2 is also L,. Therefore, the length

L of the code is:

[log, v/n]([log, Vvn] —1)

2

L = 2(1+[log,vn] +)?

54

!

i

0000000000000000
001100110011001 1
010101010101010 1
0110011001100110
0000000019111 111
0011001111001100
0101010110101010
0110011010011001
0000131:900001111
00111100001114¢00
010%40100%011010
1911010010:101001
Iooor.111f1110000
106:21150011000011
[010.:01010100101

!01‘10100110010110
e

EERREEEREERRRER
1100110011001100
1010101010101010
100110011001100 1
1111111100000000
110011000011001 1
101010100¢010101
1001100101100110
1 1111000011110000
' 110000111100%01 1
1010010110107 101
1001011010010110
1111006000001111
1100001100111100
1010010101011010
1001011001101001

{]

L |

Step 1

Step 2

Figure 25: (16,4)-exhaustive Code With Respect to Scrambled Neighborhoods of

Type |
= 21 + [log, V| + Il()g.{)\/m'* _ ﬂogi\/’ﬂ)2

l') 2

&

Proposition 9: Construction 2 produces (n.41)-exhaustive codes with respect to

all scrambled neighborhoods of Type 1.

Proof: Consider an arbitrary scrambled neighborh:od of type 1. Lot the W, B
and I cells be in columans a, b and ¢, respectively, where a. b and ¢ are three
distinct values in the range 0,...,\/n — 1. We assume that the cell array is
a /i x \/n grid. The N aud S cells are also in column b since they must be
in the same column as cell B. Also, let the NV, B and S cells be in rows d, e

and [, respectively, where d, e and f are three distinct values in the range

35

0,...,v/n — 1. Consider two arbitrary backgrounds i and j where 7 and j

Xa Xp X¢ Pa Py P
v, In, o [N,
ANEE o, |w |8 [

5-bit tuple = (N i E| Wl S, B') 5-bit (upte = (N j El W] Sl B')

0] i)
Figure 26: 5-cell Scrambled Physical Neighborhood

are two distinct values in the range 0,...,m — 1. The 5-cell neighborhoods
after applying backgrounds ¢ and j to the memory are shown in Figure 26.
(In this figure we have again shown the neighborhood without scrambling
for simplicity. The following argument is independent of the scrambling that

may be present.)

Using Proposition 4, a base matrix which is the first half of a (\/n,3)-
exhaustive code has at least four distinct 3-bit tuples and none of these tuples
is the complement of the other three tuples. In Step 1 of code construction
2, the product of two vectors coll and col2 is performed with coll in the ver-
tical direction and col2 in the vertical direction. Therefore, the 3-bit vector
col2(a)col2(b)col2(c) will go through at least four distinct states. Simii-riy,
the coll(d)coll(e)coll(f) vector will go through at least four dizinct states.

Let 5 be the set that contains the four distinct states for col1(d)col1(e)col1(f).
Let S, be the set that contains the four distinct states for col2(a)col2(b)col2(c).
Let X = X, XX, be the state for the 3-bit vector col2(a)col2(b)col2(c) for
background i and X € S,. Let Y = Y;Y.Y; be the state for the 3-bit
vector coll(d)coll(e)coll(f) for background i and Y € §). Similarly, let
P = P, B, P, be the value for the 3-bit vector col2(a)col2(b)c0/2(c) for back-

56

ground j and P € 5. Lastly, let Q = Q4Q.Q; be the value for the 3-bit
tuple coll(d)col1(e)coll(f) for background j and Q € 5,.

Let 7 identify the background which must exist such that Y is a distinct tuple
in S). Similarly, let j identify the background which must exist such that
@ is a distinct tuple in Sy and @ # Y. Then it must be true that ¥ # Q
according to Proposition 4. We will prove that the 5-cell neighborhood N,
L;, Wi, S; and B, obtained from the product of the two column vectors
X x'Y, is distinct from the 5-cell neighborhood Nj;, £;, W;, S; and B;,
which is obtained from P x Q. Furthermore, we will show that the 5-bit
tuple N; E;W;S; B; # N, E,W;5;B;.

Assume for a moment that N;E;W.S;B; = N;;W;S;B;. Then,

XodYs = P&Qq (9)
Xo®Y., = PaQ, (10)
XedYy = BaQy (11)
X. @Y. = P,2Q. (12)
XY, = PsQ. (13)

Assume that Xy # P, implying that P, = X;. From (9), (10) and (11), Qq =
Y., Q. =Y, and Q; = Y} which is a contradiction since YaYeYr # Q4Q.Q.
Therefore, Xy = P,. Using this result and equations (9), (10) and (11), ¥y =
Qu4, Yo = Q. and Y; = Q. However, this is a contradiction since YaYeYs #
QuQ:Qy. Therefore, we conclude that N;E;W;S;B; # N;L;W;S;B;.

Next we will show that N;E;W,;S;B; # N;E;W;5,B;. Assume for a moment
that N;E;W;S;B; = N,;E;1¥;S,B;. Then,

XYy = BoQa (14)

57

Xp®Ye = PBDQ. (15)
X.ioY, = P,oQy (16)
X.0Y. = PoQ. (17)
X.oY. = Peq, (18)

Assume that X, # P, implying that P, = X,. From (14), (15) and (16), Q, =
Ys, Qe = Y. and Q; = Y} which is a contradiction since Y,;Y,Y; # Q4Q:Q.
Therefore, X, = B;. Using this result and equations (14), (15) and (16), Y; =
Qa, Y. = Q. and Y; = Q. However, this is = contradiction since YaYeY, #
QaQ.Qs. Therefore, we conclude that N;E:W;S;B; # N,E;W;S;B;. Using
similar arguments, it can be shown that the 5-bit tuple obtained from X x Y

is also distinct from the tuple obtained from P x @ when X # P and X # P.

We have proved that the 5-bit tuple obtained from the product of two vectors,
X x Y, is distinct from the 5-bit tuple obtained from the product of two
vectors, P x (), where at least one member in the product is distinct from
the corresponding member in the second product, i.e. either Y # @Q and
Y #Q,0or X # P and X # P. We have also shown that the 3-bit vectors
col2(a)col2(b)col2(c) and col1(d)coll(e)coll(f) will independently go through
at least four distinct states. Therefore, in Step ! of Construction 2, any 5-cell
scrambled neighborhoods of type I will go through 4 x 4 = 16 distinct states.
Since we have shown that N;E;W;S;B; # W when either Y # Q
and Y # @Q, or X # P and X # P, by taking the complement of all the
entries in XOR-matrices found in Step 1, the 5-cell scrambled neighborhoods
of type 1 will zo through the remaining 16 states. Taking the complement of
the backgr:+:nds from Step 1 is precisely what occurs in Step 2. Therefore
any scrambled 5-cells neighi.orhood will go through 2° states, which proves

that the code is (n,4)-exhaustive with respect to scrambled neighborhoods

58

of Type 1. O

3.3 Transparent Near-Deterministic Tests for Detecting Sin-
gle V-coupling Faults

In this M.Sc. project, the deterministic tests described in Section 3.1 were trans-
formed into transparent near-deterministic tests using the technique described by
Nicolaidis in [12]. This transformation consists of five steps which essentially ensure
that each memory cell is complemented an even number of times. In a fauli-free
RAM, this procedure guarantees that the contents of the RAM after test appli-
cation will be the same as the initial contents. Using the example in Figure 13,
we will show how this 106-op~ration long deterministic test is transformed into a
transpare ., test. The deterministic test can be divided into four kinds of subseg-
ments. The first type is the f} (wp) initialization sequence. The second type is
a ft (rewyrgwy) march. The third type is the background change I (rpuy). The
second and third types are repeated until all the backgrounds in the background
matrix have been applied to the RAM under test. The [carth type is the f ()
march at the end of the test. The four subsegment types will be labeled Init, S1,
52, and S3.

Nicolaidis’ transformation from a regular deterministic test to a transparent

near-deterministic test has four steps as follows:

Step 0: If the first operation in a subsegment type is a write operation. then add

a read operation at the beginning of the subsegment type.

The first and only operation in the Init sequence is a wy. Therefore, a read op-
eration is inserted before the wy operation. The S1, S2 and S3 sequences each

start with read operations and therefore do not need to be transformed. The in-

termediate algorithm ALO obtained after applying Step 0 is shown in Figure 27.

wl

on L L

e L L
o L

Figure 27: Test Structure After Applying Step 0: ALO

Step 1: Ii the initial algorithm includes an initialization sequence and if this se-
quence is useless for fault excitation, then delete this sequrnce from the

algorithm ALO.

In our example, the initialization sequence is not required for fault excitation
because this sequence is used only to initialize the RAM into a known state. Single
V-coupling faults are triggered because the (n,V — 1)-exhaustive background ma-
trix guarantees that the V — 1 cells involved in the fault will undergo all possible
2V-! states. By removing the initialization sequence, we do not remove any of
the possible 2¥~! states. Therefore the sequence can be deleted from AL0. The
resulting algorithm ALI1, is shown in Figure 28. In this example, we will assume
that cells 0, 1, 2 and 3 initially contain 1, 1, 0, and 0, respectively.

The next step is to transform the march sequences S1 and background changes

S2.

Step 2: Let a be the expected data of the first read operation to a cell ¢ in ALI
and let b be the expected data of the first read operation to cell 7z in ALO.

If @ == b, then change the data of all write operations in AL1 to be equal to

60

st
Figure 28: Test Struriure After Applying Step 1, AL]

the complement of the data of the corresponding write operations in ALQ.
Similarly. change the expected data of the all the read operations (except
the first read) in ALI to be equal to the complement of the expecied data

of the corresponding read operations in ALO.

w1 |
™ |
S e T T T Ty
SN e T T W11

Figure 29: Test Structure After Applying Step 2, AL2

Applying Step 2 to the ALl example in Figure 28, we obtain AL2 shown in
Figure 29. We will use cell 0 to further explain this transformation step. In ALL,
the first read operation in March 1 is ry. This means that « = 1. In ALO, the
first read operation is 79 and therefore, b = 0. Since a = b we transformed the
data of all of the read and write operations addressed to cell 0 in AL1, to the
complement of the data of the corresponding read and write operations to cell 0 in

ALO. Essentially, the waveform for cell 0 starting at the first write operation has

61

been flipped upside down. Cell | undergoes similar transformation. The waveforms
for cells 2 and 3 are not transformed because the data of the first read for both
cells in ALI are equal to 0, which is the same as the data of the first read to the

cells in ALQ.

Step 3: If the last value written into a cell is equal to the complement of its initial
value, then include a read and write complement pair of operations to that
cell in a final background change sequence. This step will restore the contents

of the RAM under test.

L g 1 NS S Ny
G /S | [|y N R
1 | S 1 1
] /A /NN | N

Figure 30: Test Structure After Applying Step 3, AL3

Figure 30 shows the algorithm A L3 obtained after applying Step 3 to AL2 from
Figure 29. Note that a 7wj; sequence has been added to cell 0 at the end of March
5. Similar operations arc performed for cell 1 and cell 2.

Step 3 is equivalent to adding a new column to the end of the corresponding
background matrix. The new augmented matrix is shown in Figure 31. The
additional column has to be the same as the first column in the matrix. This is
because the entries in the first column actually denote the initial contents of the
memory. Adding the final column ensures that the final background change will

restore the content of the RAM. No f} (rywzrsws) march need be associated with

62

this last background because this march operation will not trigger any new faults
not already triggered in the first background.

Background Number
/

6'1234
oloo1110
010110
Celladdress {2{ 01 1910

\“3 011100

!

Same as Column 0

Figure 31: Background Matrix for a Transparent Test

Step 4: 'To obtain a signature, prefix a signature prediction phase to AL3. In this

phase, perform only the read operations extracted from AL3.

Applying this step to the example in Figure 30 results in the transparent test

shown in Figure 32,

e e 6 TR N | NN
Rt 1 (OO s 1 s (N 1 S —l
L L 1 FOUON e W
cna Ll L 1 S R

-

o~
N

Phase t Phase 2

Figure 32: Near-deterministic Transparent. Test based on the Background Matrix

in Figure 31

In the first phase, only the read operations are performed. Since the content
of the memory is not changed in this phase, some of the values that are read may
have to be complemented before being injected into the signature analyzer so that
signatures calculated in phases I and 2 will be the same. The data obtained by a

read has to be complemented if the corresponding read data in the second phase

63

is the inverse of the initial contents of the RAM. The signature obtained in the
first phase is assumed to be the fault-free signature (a consequence of the fault-free
read assumption). In the second phase, both the read and the write operations
are performed. The read values are again injected into a signature analyzer to
compute a second signature. This second signature is then compared with the
fault-free signature to determine if the RAM is faulty: if the signatures are equal
then the RAM is considered to be fault-free.

The fault coverage for the near-deterministic test is the same as the fault cover-
age for the deterministic test. This is because Nicolaidis’ transformation technique
does not reduce the fault coverage if the fault model used in the original test has

the followii.z symmetry property [12]:

Symmetry Property: Consider a fault model F' and cornsider an arbitrary fault.
f € F which involves the states sy, 2, ..., sg1 of some cells Cy, C, ..., C,
and the transitions txi41, k142, ..., tkipkz of some cells Ciyqy, Cri42s <+ - s
Cri+ke. Fault model F' is symmetric if, for all f € F, the fanlts which are
derived from f by inverting any collection of the states sy, sg, s and
any collection of the transitions {xit1, tk142, ..., tkrer2 of the above cells,

also belong to F.

This symmetry property basically states that if a symmetrical fault model includes
a fault that results a cell being forced to a faulty state b, then thn fault model must
include a similar fault that forces the same cell to a faulty state b. Also, if a fault
involving an 1 transition in a cell is included in a fault model, then the same
model must include a similar fault which involves a | transition in the cell. For
instance, if a fault model includes the 2-coupling fault 1 ¢ = j but does not
include 1 ¢ =7 j, then the symmetry property does not hold for that fault model.

Similarly, if 1 ¢ ={ j is in a symmetrical fault model, then the model must also

64

includea | 7 =] j. The single V-coupling fault model used in the deterministic test,
has this property because we consider both 1 and | transitions in the aggressor cell
and also both state 0 and state 1 in the victim cell and surrounding neighborhood
cells. In fact, most of the common fault models used in RAM testing satisfy the

symmetry property.

3.4 An Improved Transparent Test for Detecting Single
and Multiple V-coupling Faults

A transparent test constructed using Nicolaidis’ transformation is vulnerable 1o
the typically small but finite possibility of aliasing. This is the sitnation where a
faulty RAM produces a response sequence that is different from hat of a fault-
free RAM, but the resulting compacted signatures are identical. Therefore, cven
though the fault coverage is not reduced by this transformation prior to response
compression, a fault in the RAM may escape detection if aliasing occurs. The
probability of aliasing can be greatly reduced if, instead of comparing two signa-
tures once, different signature pairs are computed and compared many times when
the test is applied. In this section we describe an improved iransparent test that
exploits this effect.

We will use a technique desceribed in [10] to reduce the probability of aliasing.
In this technique, a signature analyzer can be designed to be aliasing-free if the
number of crroneous entries injected into the signature analyzer is bounded to
some relatively small value. For instance, an LFSR with primitive characteristic
polynomial of degree [log,(n +)] + 2 will have zero probability of aliasing if at
most two erroneous entries are injected into the LFSR. Note that n here is the
number of bits in the RAM under test. Therefore, to achieve guaranteed detection

of single V-coupling faults, the transparent BIST test described in the previous

section has to be modified so that a signature comparison is performed after an
interval that could possibly introduce no more than two errors.

The next step is to find out how many errors can occur in a march operation
and in a background change operation. We will consider the march operation first.
In the worst case, two errors can be injected into the signature analyzer. This is
the case where a cell at a lower address triggers a fault in a cell at a higher address

during a march operation. As an example consider two cells 7 and j where cell

|L’_r l

Celli l oo Celli i
i .
oy 170

Cellj

1 < 7.

Cellj

errors

(a) Fault-free case (b) Double errors

Figure 33: Maximum Number of Errors Observed During a March Sequence

Figure 33(a) shows the march sequence for cell 7 and cell j it the fault-free case.
The two read operations for cell j are 17, followed by a r. Figure 33(h) shows the
effect of a coupling fault where a 0 to 1 transition in cell 7 which causes cell § to
change erroneously from 0 to 1. The two reads for cell j are 1{ followed by a 7.
In the presence of the fault, both values read from cell j are erroncous.

Alternatively, we can find the maximum number of errors that can be caused
by a single fault by counting the number of read operations that are performed
to each cell in the RAM. If a single fault affects a memory cell, it can cause at
most two errors during a march sequence because the cell is read twice during

that march. Using the same arguments, at most one error is introduced during

66

» background change because each cell is read once. Using the above results, a
signature comparison has to be performed at the end of a march and another
cornparison is required at the end of a background change. A single signature
comparison cannot be used for a march and a background change because this
would leave open the possibility of three errors and thus aliasing.

The improved transparent test is first of all divided into segments, where cach
segment corresponds to a background in the background matrix. Each segment has
two phases: phase I and phase 2. Phase | is the signature generating phase where
only the read operations extracted from phase 2 are performed. Phase 2 is the
actual test phase where both the read and write operations based on a background
are performed. In phase 1, the signature analyzer (SA4) is first of all cleared. Next,
the read operations are applied and the corresponding data values are injected into
the SA. After the read operations extracted from the corresponding (rpre,)
march in phase 2 have been applied. the resulting content of the SA is stored as
Signature 1. The SA then continues on and reads in the data from the reraining
reads extracted from the backyionnd chavge. The content of the LFSR at the and
of this process is stored as Signature 2.

At the start of phase 2, the SA is again cleared to the all-zero state. The
march sequence is then applied to the RAM. Upon the completion of the march,
the current #iate of the SA is compared with Signature 1. Nest, the background
change is performed. At the end of this operation. the SA is compared with
Signature 2. When this modification is applicd to the transparent test iy Figure
32, we obtain the improved transparent test shown in Figure 34.

Some faults may still escape detection by this iniproved test. For example, if
a cell at a higher address j triggers a fault a cell at a lower address i during a
background change, it will not be detected since cell ¢ will not be rewd again in

that segment, as shown in Figure 35.
. g

67

Segment 1 Seg 2 Segment 3 Segmani 4 Segment 5

N PR ey B N SO O S T
e T L W | T
con LM i
T e e e e 3 M B T

—
Signaiure 1

- Compare with Compare with
Signalure 2 Signalure1 Signatwe 2

Figure 34: Transpareut Test with Multiple Signature Generations and C. npar-

Isons

In this example hoth cell 7 and cell j are written by tiie background change.
Figure 35(bj shows that cell 7 is not read again: in the current segment after the
fault has occurred. This means that the two signatures al the end of this segment
are identical and the fault cannot be detected in this segment. Since the sic ature
analyzer is cleared at the beginning of the next schﬁent;, this error it fmation is
lost and the fault may escape detection. To overcome this problem, we insert a
read march at the end of each segment. It can be seen from Figures 35(c) and | 1
that the additional read operation will detect the fault. This addition will increase
the number of read operations during the background change and the final f; {rp)
march to a maximum of two. This means there can be al most two errors during
this period and thercfore the signature aralyzer will still be aliasing-free for single
faults. The final aliasing-free transparent test obtained by inserting a vead march
at the end of cach segment of the test in Figure 34 is shown in Figure 36. It
contains 196 operations. Recall that the original test in Figure 13 contains 106
operations.

The pseudo-code for the aliasing-free transparent test is given in Figure 37.
Note that the dimension of the background matrix BGM is » x {m + 1) even

though there are only m backgrounds because of the addition of a final column

68

(a) Fault-f~ (c) Fauii-free case
additional read detects fault

. } N
Tolli IL] Celli Il_Jr I

L

o S
Cellj ‘jf Cellj j }
- . |

(b) Fault Escapes Detection (d) Fault Cutecied

Figure 35: Fxample of a Fault that is lxcited by a Background ¢‘hange: (2) Fault-
free Case; (b) Fault tha! Escapes Detection: (¢) Fault-frec Case with Additional

Read Operations; (d) Fault Detected by Additional Read

that 1s used to restore the contents of the memor v. Wi use ¢ to denote the data

returned by the first read operation in cach segment.

Theorem 2: 'T'he test shown in Figure 36 is transparent and detects all single
V-coupling faults if matrix BGM is an (n.1" — 1 exhaustive code and the

first and last columns of BGM are identical.
Proof: Ve first show that the test is transparent. Cells can be written .t only

Sogment 1 Segment 2 Segment 3 Segment 4 Segment 5

- PR e L T e g e e I T e L S ntat. Attt P

UL LA 3 S S A W AN S
e T T A T B A Y TR o
con JLLL T R b e
cas_|[1] ,unf I ‘“IT‘*'II R I B S TR o T S ' W R W

Signature 2 Compai with Compa:e wih
Signature Signaiure 2

Figure 36: Aliasing-free Transparent Test

69

const n; /* number of RAM cells */
const m; /* number of backgrounds in background matrix */
const BGM[n,m + 1}; /* n x (m + 1) background matrix */
type address = 0 ... (n-1); bit = {0,1), bg_position = 0, ...m;
var a: address; bg_num: bg._position: P, N, ¢: bit; last.dbgr, set_fail: boolean:
var SA: LFSR; R1, R2: rcg;
begin
bg_num = (;
repeat
/* Phase 1 */
SA = 0; /* clear signature analyzes * /
fora:=0ton—-1do
re; Ty [* reads extracted from rowsrao. march */
endfor;
R1 = SA; [* store signature 1 */
fos a:=0ton—1 do /*reads from backgr vl cb. " o %/
P := BGM|a,bg.num}; N := BGM[a,:: v - 1}
if P # N then 1; endif;
endfor;
for a:= 0 to n — 1 do /*read all cells ai the end of a segment */
P := B:kl[a,bg-num}; N := BGMfu,bg num + iJ;
P Py
c-'ndfo(x{');l ®
It? =: S4; [store signature Z */
SA = (; [* clear signature analyzer */
/¥ Phase 2 */
fora:=0ton-1do
/¥ L1*/ rewirtwg; [* ascending rawer.av, mareh */
endfor;
if (SA # R1) then sct_fail := true; endif:
for a := 0 to n — 1 do /* hackground change */
P := BGM(a,bg_num]; N := BGM[a,bg_num + 11;
J* L2 */ if P # N then 7¢; w?; endif:
endfor:;
for a := 0 to n — 1 do /* read all cells at the end if a segment. */
P := BGiia,bgnum); N := BGM(a,bg nur. + 1];
7'::1(3
en {'oi?;l oy
if (SA # R2) then set_fail := truc; endif;
if bg_num = m — 1 then /* have reached last background */
last_dbgr := true;
else
bg_num ;= bgnum + 1;
endif;
until last_dbgr,
end;

Figure 37: Aliasing-free Transparent Test Algorithm

70

lines L1 and L2 of the test algorithin (see FFigure 37). The two writes from
line L1 do not lesve a cell complemented. The ‘write irom line 2 does
complement, the content of a cell if P # N. Bui, bes ause the first and last
columns of the BGM are identical, the situation [3 N will be encountered
an even numbr: of times for each row of BGM (and for cach cell of the RAM).
Therefore applying the test to a RAM complements the content of each cell

an even number of times, and so the test is transparent.

At most two errors are injected into the SA during a march sequence because
two read operations are performed during the march. From the result in [10],
the signature obtained during this march sequence cannot be aliased. At
most one error s injected into the SA during a background change because a
maximum of one read is performed on a memorv cell du, g the background
change. At most one error is injected into the SA during the final (rp)
march at the end of a segment because cach cell is read once during this
march. From [10}. the signature computed during a background change and
the final ft (rp) march cannot be aliased [10]. Therefore. the test is aliasing-
free for single V-coupling faults. From Theorem 1, the deterministic test
in Figure 13 detects all single V-coupling faults. The fault coverage is not
reduced by Nicolaidis’s transformation because the single V-coupling fault
model is symmetricai. Since test is aliasing-frec. the test in Figure 36 detects
all single V-coupling faults. Therefore the test is transparent and detects all

single V-coupling faults. O

Theorem 3: The test shown in Figure 36 has an expected length of 9.5mn where
m is the number of backgrounds in the background matrix and n is the

number of bits in the RAM.

Proof: Assume the entries in the background matrix are random. Consider the
number of read operations addressed to each cell in phase 1 of a segment. In
this phase, only the read operations extracted from phase 2 are performed.
There are two reads extracted from the march sequence. Consider the number
of reads extracted from the background change. If the P bit and N bit of
a cell are different, then the cell is read once. If the P bit is equal to the
N bit, then no read operations are appited to the cell. If the entries of the
background :::atrix are random, then the probabilii: that P bit # N bit is
3. Finally, all the cells are read again at the end of phase 1. Therefore, the
number of operations per cell in phase 1 of a segment is equal to 24141 =35

operations.

Cossider the number of read and write operations performed on a cell in
nhesc 2 of a segment. The f} (rywgrjw,) march sequence has 4 operations.
A el is read once and written ~nce if its P bit is not equal to its N bit.
Fiirally, all cells are read again at the end of phase 2. Therefore, the number

of operations in phase 2 of a segment is equal to 4+(,1—, x2)-+1 = 6 operations.

The number of segments is equal to the number of backgrounds in a back-
ground matrix, m. Therefore, each cell undergoes (3.5 + 6)m = 9.5m op-
erations. There are n cells in the RAM, so the length of the test is 9.5mn.

O

‘able 3 shows the length of the transparent test for V = 2, 3, and 4-coupling
faults. V = 5¢ refers to a PNPSF with respect to the scrambled T-neighborhoods
while V' = 5z refers to a PNPSF with respect to scrambled neighborhoods of type
1. When V = 2 the test construction uses a trivial (n, 1)-exhausti'e code where

each codeword is 01.

72

|4 Code Length, m Proposition | Test Length Order
2 2 - O(n)

3 | [logyn] + [log,([logy n] + 1)1 -2 1 O(n log, n)

4 [iogy n]? + [logy n] +2 ' 3 O(n(log, n)?)

50| 2flog ATH(1 + log; 1) 5 O(n(log, n)?)
5z 2(&52-(%TIIE + ﬂg—’-ﬁzﬁﬁ)—l +1)? 8 O(n(log, n)*,

Table 3: Transparent Test Length

3.5 Analysis of the Probability of Aiasing

In the previous subsection, we noted that the transparent BIST scheme detects
all single V-coupling faults if an LFSR with a characteristic primitive polynomial
of degrec [logy(n + 1)1 -+ 2 is used :. the signature analyzer. Howcver, if there
is more than one single V'—coupling rault present in the RAM under test, then
there is the possibility that these faults will not be vetected. Faults can escape
detection if they arc triggered in the one or more of the same segments. Consider
the case where two single V —coupling faults are present. If the same background
that triggers a fault in a memory cell also triggers a second fault in another cell,
the maximum number of errors that can occur during the march sequence is four,
i.e. two errors for the first cell and two errors for the second cell (refer to Figure
33 which shows how the errors occur for one cell). The LFSR described above
is aliasing-free for at most two errors at a time, therefore two faults might cause
wliasing and thus escape detection. The probability that two faults will not be
detected in the proposed transparent scheme is called the escape probability.
Consider two fauits A and B. Let X be the set of backgrounds that detect
fault A and Y i the set of backgrounds that detect icult B. Faults A and B may

escape detection if X =Y, i.e. if the same backgrounds that detect fault A are
also the only backgrounds that detects fault B. If X # Y, then there exist one or
more backgrounds that detect A but not B, or vice versa. This means that in one
or more segments in the transparent test, one of the faults A or B will be triggered,
but not the other. Therefore the number of errors in these segments is no more
than two, which eliminates the possibility of aliasing in those segments; thus the
fault will be “etected. Detection of the second fault is not necessary because an
error flag will be set when the first fault is detected, indicating that the RAM is
faulty.
Theorem 4: The escape probability EP for two single V —coupling faults A and
B is as follows:

p= (20 —1)mpTimvon m—<2v}:“ ! [(2v—-,l_ 1)th (”

11 \ 1
Pr_of: The entries of the background matrix are assumed to be random. Let
Ta be the (V — 1)-bit tuple that allows fault A to be detected and let T be
the (V — 1)-bit tuple that allows fault B to be detected. In order to establish
the size of this probability we have to consider the number of backgrounds in the
(n, V)-exhaustive code that can contain both T4 and T5. Since the Lackground
matrix is (n, V)-exhaustive, then any combination of V — 1 rows will have all 2V~!
binary (V — 1)-tuples as column vectors. Since there are 2V~ distinct tuples, any
particular (V — 1)-tuple can occur at most m — (2V-! — 1) times. Therefore, 74
and Tg can each occur at most m — (2! — 1) times. Faults A and B may escape
detection if T4 and Tg only occur in the same backgrounds. Therefore, the escape
probability EP is the sum of the probability that T} is in exactly i backgrounds
and the probability that Tg only occurs in the same 7 backgrounds, for i = 1, 2,
ce,m—(2Y1 - 1),
The escape probability is thus given by the following sum:

74

EP = (Probability of only 1 background detecting fault A) x (probability
that the same background is the only backgrennd that detects fault B)
+(Probability of only 2 backgrounds detecting fault 4) x (probability
that those 2 backgrounds are the only backgrounds i 1 detect fault B)
+(Probability of only 3 backgrounds detecting fault A) x (probability
that those 3 backgrounds are the only backgrounds that detect fault B)
+

+(Probability of only 7 backgrounds detecting fault A) x (probability
that those ¢ backgrounds are the only backgrounds that detect fault B)

+

+(Probability of only m — [2V~" — 1} backgrounds detecting fault 4) x
(probability that those m — [2~! — 1] backgrounds are the only backgrounds

that detect fault B)

Consider the i-th term in the above summation. There are two events to consider.
The first cvent (Event 1) is “only i backgrounds detect fault A”. The probability
Py for Event 1 is given by:

Py = Probability that i backgrounds detect fault A x Probability that m — ¢

m
backgrounds do not otect fault A x

l

m
The term is present because in this event, the i backgrounds can be
1

any colemns from the background matrix. Since there are m backgrounds in the

75

matrix, then there are m) possible combinations of ¢ backgrounds out of m.
i

The probability that ¢ backgrounds detects fault A is equal to (Probability that
a background detects fault A)'. The probability P4 that a background wil} detect
fault A is the probability that T4 occurs in « backgrcind. Since there are 2V-!
distinct (V' — 1)-bit tuples, then Py is s

The probability that m — ¢ backgrounds do not detect fault A is (Probabil-
ity that a background does not detect fault A)™~, where the probability that a
background does not detect fault A is 1- Py =1 ~ 55 = %‘—’-
Therefore, P, = (5-%_7)"(%;1—71)'""' n.z
The second event (Event 2) is “the szmi«". ¢ backgrounds are the only back-

grounds that detect fault B”. The probability P; for Event 2 is similar to P,

m

except that in this case, we omit the (| term because in Event 1. the set of 4
i

baciigrounds has been chosen. P; is given by:

P; = Probability that the i known backgronnds detect fault B x Probability

that the m — 7 remaining backgrounds do not detect fault B

= (PB)i X (1 — Pg)m_i,

where Pp is the probability that a background deiects fault B. Pg is equal to

the probability that T occurs in a background and therefore, Pg = P, = Lt

Substituting Pp into the equation for P, we obtain: P = (3)i("z;’_,“')™,

Therefore the i-th term of EP can be expressed as:

]

1 { 2V_1 ‘_1 m—i m]. i 2V_l —1 me—1
EP"'_'(QV-I)(2V—1) (.) X(QV—I)(2V-—1)

76

Summing over all possible values of 7, the escape probability #.7 is:

m=(2Y-1-1) 1 2% 2‘/_1_1 2m-2 m
EPo= X (2V—') (V1) i
2V—1 -1 2m m"(zv-l-l) 1 i m

= —_— —_— O
T e |

Proposition 10: An upper bound on EP is:

2V-l_] 2m l m
27] [(1+(2V"—1)2) —1]‘

Proof: We can approximate EP using the Binomial Theorem. The Binomial

EP <

theorem states that for each natural number c:

b2

(1+:)°=Zci(f ‘

=0t 1

Thus
AY

(l+z)°—l=gf\;):"

This theorem cannot be applied directly to £P becaw. the upper limit of the

) o) m
summation, m — (2V=!' = 1) is different from the m in . In order to use

)
the closed form result, the upper limit of the summation is set to m instead of

m —2Y=' — 1. This approximation of EP, EPyppror. is slightly higher that the

actual escape probability. Therefore,

ap [oV=1 _]*" o] Yiom
b[< i 2V-I (QV—] - 1)2 .

i=1 1
-2"_1 -1 %2m] m
<5 trmmmm) - o

Example: Thr exact escape probability for V = 3 is:

(:)
9, =32 .
(IE) > T(m,q)

1=1

BP(V=3) = (" ¥ ()

?

| m
where T'(m,i) = (3)* () Using the Binomial Theorem, EP(V = 3) can be

written as:
9 T 1.,
EP(V=3) = (E)m (1+§)"‘—1—T(m,m)—T(m,m—1)—T(7n,m——2)]
% [I - S mmn — D1,
9 .. [10 i, 1 m m(m -1
— —\m —_Zym _ (Mm-S g }P
G |G -1-@ gyt T

The approximation of the escape probability for V = 3 (using the w},+ hound

from Proposition 10) is given as:

EPoror(V =3) = (1 [(1455)" = 1]

- @ [(5) -]

For V = 3, the number m of backgrounds as a function of RAM size n is
[log, n1+[logy([log, n]+1)]+2 according to Proposition 1. Figure 38(i) shows £ P
and EP,pproz for V = 3. The two probabilities agree with very small diflerences.
The differences in EP and E Pypyyo for V = 3 is shown in Figure 38(it).

From Figure 38(ii), the EPypproz(V = 3) is higher than EP(V = 3) by about

5% 107% for RAM size n = 1M.

78

-l
o
]
2]
pid

{
F-y

-
(o]

1
[¢)]

Escape Probability
o

-8
10] L L S 1 1
O 16 256 4K 64K M 16M 256M
Memory Size in Bits
M
10° Y v .
x
-0
10 x < -
x
107'%f- *
= x
g ¥ x
g107° x p
a x
w
—_— x
§ 1072} x . R
E‘ b3
w
RT " x b
x
x
=
107} *]
*
'o“o i Fi i J L i
s} 16 256 4K 64K ™M 16M 256M
Memory Size in Bits
(ii)

X
o

exact
approximation

Figare 38: (i) The Exact and Approximate Escape Probability for Typical RAM

Sizes for V=3; (ii) Difference Between the Exact and Approximate Escape Prob-

ability

Figure 39 shows the probability that the crrors caused by two single V-coupling
faults (V = 2, 3, 4, 5t and 5x) will escape detection because of aliasing (£ Poppror)

for typical RAM sizes. The escape probabilities are very small. For a 1M RAM,

X =2
=3
. . x V=4
3
> o + + V=5t
2107 . - :] |o wv=s5x
[} : .
S +
o
o
8. 0
21077 °
107991
; 0
10'250 1 1 I 1 1 i
0 16 2586 4K 64K ™ 16M 256M

Memory Size in Bits

Figure 39: The Escape Probability for V =2, 3, 4, 5t and 5z

-~ .cape probabilities are 0.1875, 3 x 107® and 6 x 107 for two single 2, 3 and
4 woevding faults, respectively. Note that vhe curves for V = 5t and V = 5+ are
different in Figure 39. This is becanse the codes for V = 5z require many more
backgrounds than the codes for V' = 5¢. The probability that two faults will not be
detected is reduced even more by the finite probability of aliasing due to the LFSR.
The signature analyzer used in the transparent BIST scheme is an LFSR with a
characteristic primitive polynomial of degree [log,(n + 1)] + 2. The probability of

aliasing for this LF'SR is approximately equal to 2-(1'0&:(»+11+2) Therefore, when

80

two single 3-coupling faults are present in & 1A/ RAM. ihe probability of aliasing

for the transparent BIST RAM, Pin=1a1v=3) is approximately:

1)(71=]h1 V=3) = 2—([lug3(|1\'l+l)]+2) x 3 x]O—G

s 1.4 x 10712

ty

4 Detailed Design Description

In this chapter, the BIST RAM design is presented in detail. An carlier version
of this design is described in [24]. The current design will be presented in [25].
The overall BIST RAM architecture, which consists of the n x 1 RAM, the BIST
centroller and the Data Path, is described in Section 4.1. This section also dis-
cusses the BIST RAM operation and the interface between the BIST RAM and
the external environment. The detaiied descriptions of the BIS'T controller and

the data path are given in Sections 4.2 and 4.3, respectively.

4.1 BIST RAM Architecture

The BIST RAM consists of three key architectural elements: the n x 1 RAM, the
BIST Controller and the Data Path. Iigure 40 shows the block diagram of the
BIST RAM.

The n x I RAM has a read input, a write input. a (log, n)-bit wide address
bus input and a I-bit-wide bi-directional data bus. The BIST controller is a state
machine that controls the RAM and the data path when the self-test is applied.
The data path has five major hardware blocks: address generator. background
counter, background code logic, response analvzer and test pattern generator.

The BIST RAM has two operating modes: normal mode and self-test mode
(A more appropriate name fo- the self-test mode is “BIST mode™ since the BIST
circuitry itself is not being tested). When the BIST RAM is in normal mode, the
BIST « -enitry is de-activated and the n x 1 RAM performs normal read and write
operations as requested by the external environment. In the self-test mode. the
RAM is isolated from the external environment and the transparent test is applied
to the RAM under the direction of the BIST controller.

The BIST RAM interfaces with the external environment via five signals:

o
1S

Data Path

log,n logon
Y

addr o+ e Address
. Generator
ADDR| :
? WV

r Background
} Code P=N
nx : .
Logic
W —] RAM
logzmﬂ\ dhgr
Background
Counter
: Test
WRITE : Pattern
‘ Generator
READ
START_BIST BIST
BIST_BUSY Controller
BIST_DONE
; Rr.sponse
BIST_ACK : Analyser
—_———3 :)
PASS / FAIL ,

Figure 40: Simplified Block Diagram of BIST RAM

START_BIST, BIST_BUSY, BIST_DONE, BIST_-ACK and PASS/FAIL. When
START_BIST signal is asserted high, the BIST RAM goes into self-test mode and
performs the transparent test. The BIST_BUSY output is used to indicate that the
self-test is executing. The BIST_DONE output is asserted high when the transpar-
ent test is completed. If no fault is detected during the test, the PASS/FAIL output
will remain high; otherwise, this output will be set to low. The BIST_DONE sig-
nal will remain asserted high until the BIST RAM receives the BIST_ACK from
the external environment. When the asserted BIST_.ACK signal is received, the
BIST BUSY and BIST.DONE signals are de-asserted and the BIST RAM returns
to normal mode.

Three multiplexers are used to isolate the RAM during self-test mode. The

83

BIST_BUSY signal is used to control the multiplexers since BIST_BUSY is set
to 0 in the normal mode and is set to 1 in the self-test mode. Therefore when
BIST_BUSY = 0 the multiplexers select the externally supplied inputs addr, r and
w to be sent to the RAM. When BIST.BUSY = 1, the multiplexers select the
ADDR, READ and WRI'TE signals generated internally by the BIST controller.
The VHDL descriptions and the schematics for the BIST RAM are included
in Appendix A and Appendix B, respectively. The BIST controller and data path

are described in detail in the next two subsections.

4.2 BIST Controller

In this project, a few alternate designs that implement the BIST scheme were
considered before the final design was chosen. One of the alternatives that was
studied is a design that enables both the P bits and the N bits to be generated
using one common circuit. In our final design, we cliose to use two separate circuits
for generating the P and the N bits. We have thus traded-ofl the reduction in arca
overhead in the alternate design for shorter test times in the final design. This is
because we would have to add one extra state in our BIST controller to execute the
background change operations. The extra state is required because the common
circuit can only generate one of the two bits at a time. Using two separate circuits
for the PP and N bits enables both bits to be generated in parallel. which leads to
shorter test times in the final design.

The BIST controller implements the transparent test algorithm by sending
control signals to the RAM and the hardware blocks in the data path. IMigure
41 shows the flowchart for the BIST controller. The rectangular boxes represent
controller states. Signals listed in a box are asserted during the corresponding

state. The rounded boxes represent conditional states. These conditional states

84

System
YS! Lﬁesel

WRITE
BIST_BUSY
NEXT_ADDR

NEXT_ADDR

N

S6

WRITE
NEXT_ADDR
BIST _BUSY

S7 READ
NEXT_ADDR
BIST_BUSY

S8 NEXT_DBGR
go CLRSIG BIST_BUSY

BIST_BUSY

LPHASE2

Figure 41: The BIST Controller Flow Chart
85

are removed in the final design where they are changed to conditional outputs.
The diamonds give decision conditions for the next state transitions. Table 4 and
Figure 42 list the control and status signals connected to the BIST controller.
The CRESET signal is the local reset output. (The overline indicates an active
low signal.) This output is used to clear all the non-RAM flip-flops in the BIST
RAM. In each segment of the transparent test, the PHASE2 Jatch is cleared in
phase 1 and set in phase 2. In the flowchart, this flag is used to bypass all the write
opcrations during phase 1. The LAST_ADDR signal from the data path is used to
indicate if the last cell address has been reached during either the f} (rpwprpwp)
march or a background change sequence. The LAST_DBGR signal is asserted if the
last background has been loaded into the RAM. If the P bit for a cell is the same
as its N bit, the P=N signal is asserted. This signal is used to determine if cells
contents have to be changed during a a background change. The PASS signal from
the data path indicates if the two signatures computed during phase 2 of a segment
arc the same as Signatureé 1 and Signature 2 generated in phase 1 of the same
scgment. If one or both of the signatures differ from the corresponding signatures
obtained in phase 1, then the PASS signal is cleared by the response analyzer. The
SET.FAIL output from the controller is then used to clear the PASS/FAIL latch,
i.c. if PASS = 0, then SET_FAIL is asserted which in turns clear the PASS/FAIL
latch to 0. This is done to ensure that the external PASS/FAIL output of the BIST

RAM will stay cleared (i.c. FAIL active) throughout the remainder of the test even

if no further faults are detected in subsequent segments. Note that PASS/FAIL
1s set to 1 initially by the controller reset output CRESET. Therefore, if the two

signatures computed in phase 2 are identical to Signature 1 and Signature 2 for

all the test segments, the PASS/FAIL latch will remain set at the end of the test,
indicating that the RAM has passed the test. Note also that the transparent test

does not stop after the first fault is detected but continues on to the end. This

86

way only the contents of the faulty cells may be destroyed while the contents of
the remaining cells are restored at the end of the test.

The BIST controller READ and WRITE outputs are asserted according to the
corresponding read and write operations in the transparent test algorithm. The
NEXT_ADDR signal is used to increment the address pointer for the f} marches
and background changes. The NEXT_DBGR signal is used to increment the back-
ground number. LOADREGI and LOADREG?2 are control signals that are as-
serted during phase 1 of a test segment. When LOADREGI is asserted, the con-
tent of the signature analyzer is stored in a register as Signature 1. Similarly,
LOADREG2 is used to store Signature 2. The CLRSIG output is used to clear
the signature analyzer at the end of phase 1 and phase 2. Note that the signature
analyzer is not cleared after Signature 1 is stored. Two outputs from the controller
are used to control the PHASE2 latch. LPHASE2 is asserted at the end of phase
1 to set PHASE2 to 1. CLRPHASE2 is asserted at the end of phase 2 to clear the
latch.

The state diagram obtained from the flow chart is shown in Figure 43. The
circles in the diagram represent states. The signals listed (in italics) beside a circle
are asserted during the corresponding state. The signals are asserted as soon as
the BIST controller enters the state and it is de-asserted when the controller exits
that state. For example, the timing diagram for the WRITE signal asserted during
state S2 is shown in Figure 44. The WRITE signal remains high for at least onc
clock period and the RAM can response to this signal during the period.

The arcs in the state diagram represent state transitions and the signals listed
on the arcs are the conditions for the state transitions. The conditional states
in the flow chart have been removed and the signals that are asserted in these
states have been transformed into conditional outputs. For example, in state S3

output LOADREGI is asserted if PHASE2 = 0 and LAST_ADDR = 1. In the

87

Input

Description

START BIST
BIST-ACK
PHASE2
LAST_.ADDR
LAST_DBGR
P=N

BIST enable signal from external environment

BIST acknowledge signal from external environment
equal to 0 in phase 1; equal to | in phase 2

equal to 1 if last address in RAM has reached

equal to 1 if last background has been applied to RAM

equal to 1 if the P and N bits are the same

PASS equal to 1 if the signatures computed in phase 2 arc
the same the signatures computed in phase 1

Output Description

READ BIST controller read signal

WRITE BIST controller write signal

BIST_BUSY
BIST_-DONE
CRESET

NEXT_ADDR
NEXT.DBGR

LOADREG]I
LOADREG?2
CLRSIG
LPHASIE2
CLRPHASE2
SET_FAIL
STATE

asserted when BIST routine is executing
asserted when BIST routine has completed
BIST controller reset

increment address signal

increment background number signal
load register 1 signal

load register 2 signal

resct signature analyzer signal

set PHASE?2 latch signal

clear PHASE? latch signal

set PASS/TFAIL latch

BIST controller current state

Table 4: BIST Controller Inputs and Outputs

88

NEXT ADOR
ogon ADGA (o RAH)
LAST ADOR ADORESS
ALAST_ADDR GENERATOR
ADORA % fogyn
BACKGAOUND
.
A CODE
AP 106K
nacn* ogym
NEXT_DBGR
BACKGROUND
LAST_DBGR cowTER
gnsm
)y T BiSt
{10 RAN) CONTROLLER READ
WRIE
ST RESPONSE
CLRSIG NALYZER
LADREG!
LOADREG?
PASS
TEST PATIERN | DATA {lotom RAM)
WRITE GENERATOR |, {
CLAPHASE?
LPHASE2 FHASEZ.
LATCH
PHASE2
| SELFAL___ | eassFAL |
WATCH
I ST

Figure 42: Interface Between the BIST Controller and the Data Path

state diagram design, both the BIST controller and the data path are synchronized
to the same (falling) clock edge. This approach is used to increase the operating
speed of the BIST scheme because both the controller and datapath operate in
parallel. Since the controller and the data path are clocked with the same edge,
the unlatched outputs from some of the hardware blocks in the data path are used
immediately to decide next state transitions for some of the states in the state
diagram. These “early” outputs are the AP=N and ALAST_ADDR signals, which
are the unlatched variants of the P=N and LAST_ADDR.

There are eleven states in the BIST controller’s state diagram, as shown in

89

SYSTEM RESET

— ———_\
START_BISTC -

CRESET

CLRSIG
e BIST_BUSY
LPHASE2 = PHASE2

CILRPHASE2=PHASE?

£ -
BIST_BUSY
SET_FAIL = PASS & LAST_ADDR

PHASE24LAST_AODR
+(P=N)&TAST_ADDR

BIST_BUSY

T_ADDR & PH,
NEXT_ADDR NEXT_DBGR

LOADREG? = PHASE? & ALAST_ADDR ~ SET_FAIL = PASS
BIST_BUSY

Iigure 43: The BIST Controller State Diagram

Figure 43, After power-on, the BIS T controller is initialized te state SO. This is
assumed to be done by a system reset signal. SO corresponds to the normal mode
of the BIST RAM. The BIST RAM behaves like a normal RAM in this state and
it responds to the external addr, r, and w system inputs. In SO the BIST controller
reset output, CRESET, is asserted. This signal is used to clear all the non-RAM
flip-flops in the BIST RAM (except for the flip-flops for the state variables, which

themselves are cleared by the system reset). The BIST controller will stay in

PR S A
STATE X s2 X

WRITE l

Data on the data bus is written
into RAM during this time

Figure 44: Timing Diagram

S0 until the START _BIST input is asserted by the external environment. When
this signal is high, the BIST controller enters state S1 and begins executing the
transparent test.

States S1, S2, S3 and S4 generate the f} (rywjrsw,) march sequence. States
S5 and S6 generate the background change sequence and S7 generates the f (1)
march. In state S8, the background number is incremented and the SET_FAIL
output is asserted if the signature computed during the background change sc-
quence and the {} () march differs from Signature 2. (The signature computed
during the {} (rywyrsws) march is compared to Signature 1 in 54.) State 59 is used
to set or clear the PHASE2 latch, depending on the whether the test is at the end
of phase 1 or phase 2. The signature analyzer is also cleared in State 9. In states
S1,S2, ..., S9 the BIST_BUSY system output is asserted and the RAM is isolated
by the multiplexers from the external environment.

In phase 1, the PHASE2 latch is cleared. During this phase, only states SI,
S$3, S5, S7 and S9 are traversed. S1 and S3 generate the rcad operations extracted
from the {} (rywgrgws) march. S5 generates the reads from the background change
sequences. S7 generates the f} (rp) march. S9 corresponds to the end of phase 1,
where the PHASE? latch is set and the signature analyzer is cleared. The BIST

controller executes states S1 and S3 until the last address is reached, i.e. a!l the

91

read operations from the ft (rpwpryws) march in a test segment have been applied.
The LOADREG] signal is then asserted to store the signature computed during
this period as Signature 1. Similarly, the LOADREG2 signal is asserted to store
Signature 2 when the reads from the background change and the f (r,) march are
completed. The BIST controller then enters S9 where the signature analyzer is
cleared using the CLRSIG signal. The PHASE2 latch is also set in S9 by asserting
the LPHASE2 signal so that the phase 2 of the test segment will be executed.

In phase 2, the BIST controller exccutes the ff (ryw;rywy) march in states
S1, S2, S3 and S4. When this march is completed, the content of the signature
analyzer is compared with Signature 1. If they differ, the SET_FAIL signal is
asserted. Next, the background change sequence is applied to the RAM by states
S5 and S6, followed by the final {f (rp) march in S7. The BIST controller then
enters S8 where the content of the signature analyzer is compared to Signature
2. The SET_IFAIL signal is again asserted if the signatures are different. At the
same time, the background counter is incremented by asserting the NEXT_DBGR
signal. Next, the BIST controller enters S9 and clears the PHASE2 latch and
signature analyzer. Finally, the BIST controller returns to S to apply phase 1 for
the next test segment.

When all test segments have been applied to the RAM. the BIST controller
enters S10 and asserts the BIST_DONE system output and de-asserts BIST_BUSY'.
The BIST controller remains in this state until the system input BIST_ACK is
asserted by the external environment. The controller then returns to SO and the
BIST RAM goes back to normal mode.

The VHDL code specifying the behavior of the BIST controller appears on

pages 142 to 147 in Appendix A.

4.3 Data Path

The data path consists of the address generator, the background counter, the
background code logic, the response analyzer, and the test pattern generator. Each

hardware block will be discussed in detail in the next five subsections.

4.83.1 Address Generator

The address generator consists of a (log, n)-bit Up-Counter, a Last Address de-
tector and a D flip-flop with enable for latching the LAST_ADDR signal. The
block diagram of the address generator is shown in Figure 45. The system clocx

{log ;n)-bit Up-Counter

NEXT_ADDR
.
EN
Increment A N ", | ADDR(toRAM)
By 1 log o0 Rec @ iogan
Legic ~+D
: }) , ADDRA
10g,n
92" pLAST_ADDR
}
Last EN
L Address D LAST_ADDR
Logic [0, ORI
CLK| |

CRESET

Figure 45: Address Generator

input provides the CLK signal to the flip-flops. The CRESET signal comes from
the BIST controller. The (log, n)-bit wide address bus ADDR is used to uniquely
identify a bit in the » x 1 RAM. The ADDRA address bus is the asynchronous
counter outputs used by the BIST controller. ADDRA is equal to ADDR + 1
(mod n). The NEXT_ADDR signal acts as the counter enable input, i.e. when

93

NEXT_ADDR =1, ADDR is mcremented at the next falling clock edge by as-
signing ADDR to the current value of ADDRA. The ADDRA bus is fed into the
Last Address Logic, which asserts ALAST_ADDR when the last value of ADDRA
is reached in the count sequence, i.e. when ADDRA = n — 1. The D flip-flop
latches the ALAST_ADDR output to produce the LAST_ADDR output. Both the
LAST_ADDR and ALAST_ADDR outputs are required by the BIST controller.

4.3.2 Background Counter

In this section, four different background counter designs will be described. The

first design is the background counter for V' = 2 and 3 shown in Figure 46.

' |

NEXT_DBGR ~"EN (log ;m)-bit |
— T
CLK — Up-Counter]F‘ CRESE

log ,m DBGR
O —

i
r

;o Last

{Background | LAST.DBGR
' Logic

Figure 46: Background Counter for V' = 2 and 3

The background counter consists of a (log,)m-bit Up-Counter and a block called
“Last Background Logic™. The NEXT_.DBGR input enables the counter. The
DBGR output from the counter is the background number which is used to select
one background out of the m possible backgrounds as the current background. The
Last Background Logic asserts the LAST_DBGR signal if the last background has
been reached, i.c. when DBGR = m — 1 (Note: DBGR counts from 0 to m — 1).

The biock diagram of the background counter for V' = 4 is shown in Figure 47.

The background number consists of two fields: DBGR (multiple bits) and DBGRC

94

(one bit). The CRESET signal clears both the DBGR and DBGRC outputs to
0. The background counter is enabled if the NEXT_DBGR input is asserted. The
DBGR output from the (log, 3)-bit up-counter increments one step through the
range 0 to 3 — 1. When the DBGR output is at the maximum value Z — 1 and
NEXT_DBGR is asserted, the next falling clock edge sets the DBGRC output to
1 while the DBGR output goes back to 0. The DBGR output then will again
increment in single steps through the range 0 to 3+ — 1. The LAST_DBGR output
is asserted when DBGRC = | and DBGR = % — 1. The corresponding two fields
in the next background number are ADBGRC and ADBGR, where ADBGRC and
ADBGR are the unlatched variants of DBGRC and DBGR respectively. The next

background number is used for selecting the next background when determining

the N bit values in the corresponding (n,3)-exhaustive background matrix.

NEXT_DBGR — ENfog,m2it | CAESET
CLK -4 > Up-Counter
fog ;m2 l log pm2
I +
Sel/Clr
DBGRC p» _AD
—~D Logc 8GR
l ADBGRC }Nen Background Number
DBGR
L DBGRC] Background Number
l \ LAST_DBGR
Last R
Background
logic

Figure 47: Background Counter for V =4

The background number for V = 5¢ has lour fields: DBGRI1, DBGR2, DB-
GRT and DBGRC as listed in Table 5. The DBGRI field is log,(1 + log, /n +
'ﬂhﬁ('—;&—‘@'—ﬂ) bits wide and increments from 0 to log, /n + & ‘/’TQ‘;& Vi-l)
The DBGR2 field is log, (1 + log, v/n) bits wide and increments from 0 to log, v/n.
Both the DBGRT and DBGRC fields are 1-bit wide. The background number

95

IField Width Range
DBGRI | log,(1 + log, /n + 220zl g | Jog, /i + Reev/illoniz))
DBGR2 log,(1 + log, /1) 0.1, ...logy /1
DBGRT I 0,1
DBGRC I 0.1
Table 5: Background Number for V' = 5t
increments as follows:
for DBGRC =0 to |
for DBGRT =0 to |
for DBGR2 = 0 to log,
for DBGRI = 0 to log, /n + Leayfilloe /i-1)
background number = | DBGRC | DBGRT | DBGR2 | DBGRI1
end
end
end
end

The block diagram of the background counter for V' =

5t is shown in Fig-

wre 48, The CRESET input is used to clear all four fields to 0. NEXT_DBGR

is the background counter enable input. The block labeled “Set/Clr DBGRT

Logic™ toggles the DBGRT output from 0 to 1 or from 1 to 0 when DBGRI

and DBGR2 have reached their maximum values. Similarly, the Set/Clr DBGRC
Logic toggles the DBGRC output when DBGRT is equal to 1 and both DBGR1
and DBGR2 have reached their maximum values. The LAST_DBGR output is
asserted when DBGRC = 1, DBGRT = I, DBGR2 = log, /2 and DBGRI =

96

log, v/n + 22231 ADBGRI, ADBR2, ADBGRT and ADBGRC are the
unlatched variants of DBGR1, DBGR2, DBGRT and DBGRC, respectively. These
outputs select the next background that is used for determining the N bit values

in the background matrix.

NEXT_DBGR EN (iog ,a)-bit b CRESET
CLK -> Up-Counter
log 28
£ log ,/n (log,Jn-1
v a= 1+log /i+ ig.il(_:g_z_n__)
1EN (log ;b)-bit b= 14109,/
> Up-Counter
log 2b
]
Llen SeVClr
DBGRT
-OP Logic
Y ¥
o |
P ADBGRI1_]
D> Logic
ADBGR2
ADBGRT Next Background Number
ADBGRC
] —
DBGR1_
DBGR2
DBGRT Background Number
DBGRC
Last
Background LAST_DBGR
Logic

Figure 48: Background Counter for V = 5t

The three fields in the background number for V = 52 (DBGRI1, DBGR2
and DBGRC) are listed in Table 6. The DBGR1 and DBGR2 fields are log,(1 +
log, /n+ <& ‘/’_’(';52 v¥=1)) bits wide and increment independently from 0 to log, v/n+

97

Field Width Range

DBGRI | log,(1 + log, \/ﬁ-i- log, ﬁ(l;gz \/7_1—1)) 0,1,....log, \/ﬁ-{- Jogs, ﬁugg, Va-1)
DBGR? | log,(1 + log, \/n + 2l /i=1)) g 1. log, \/; + ‘282 /Allos /=)
DBGRC 1 0.1

Table 6: Background Number for V = 52

'352‘/’_‘—“;'5@. The DBGRC output is 1 bit wide.

The background number increments as follows:

for DBGRC =0 to |
for DBGR2 = 0 to log, /7 + & ‘ﬁ(k;gz Vi-l)
for DBGRI = 0 to log, /7 + <& ‘/'—‘(';“2 Vu-l)
background number = | DBGRC | DBGR2 | DBGRI1

end
end

end

Figure 49 shows the block diagram of the background counter for V' = 5z. The
Set/Clr DBGRC Logic toggles the DBGRC output when DBGR1 and DBGR? are
both equal to log, /n+ 282 ﬁ“;& Yi=U The LAST_DBGR output is asserted when
DBGRC = 1 and both DBGR!I and DBGR2 are equal to log, \/n+ <& ‘/'_‘“‘;gz nol)
ADBGRI, ADBG2 and ADBGRC are the unlatched variants of DBGR1, DBGR2
and DBGRC, respectively.

In all four background counter designs, the background number rolls over to
the first value after reaching the maximum values. Therefore when the background
number is equal to the last background number, the next background number will

be equal to the first background. This ensures that after the last background has

98

NEXT_DBGR I - EN (log ,a }-bit CRESET
CLK > Up-Counter
kg ;2
log ,/n (log,/n -1
a=t+og zﬁl*—nggz-n‘—)
EN (log,a)it
> Up-Counter
log 22
]
Lien Set/Cir
DBGRAT - -
-CP Logic
ADBGA1]
ADBGR2 _ | Newt Background Number
ADBGRC
DBGR1.]
. DBGR2._ | Background Number
DBGRC
Last
Background LAST_DBGR
Logic

Figure 49: Background Counter for V = 5a

been applied to the memory, the final background change compares the P bits in
the final background and the N bits in the first background to restore the original

contents of the memory and ensures that the test is transparent.

4.3.3 Background Code Logic

The background code logic for V = 3 shown in Figure 50 generates the (n,2)-
exhaustive code described in section 3.2.1. The ADDRA input is the unlatched
address bus from the address generator circuit. The background number DBGR
comes from the background counter. AP and AN are the P and N bits correspond-
ing to the unlatched ADDRA. The “Sumzero Logic” block counts the number of

zeros in the ADDRA bus. Note that this is similar to Berger codes that are com-

99

DBGR

logam
0_LsB
ADDRA '092°
AP=N
1 —
T NEXT_ADDR
] !
VN D
AN -
LSBIN _,/M Q PN
. - e
CLK
| [
SUMZERO
tosc ['
mme et S / CRESET

Figure 50: Background Code Logic for V' =3

monly used for error detection. However, the Sumzero Logic block cannot be used
as a Berger code checker because the synthesized circuit for the Sumzero block may
not, necessary be totally self-checking. A (log, 1+ log,(log, n+ 1)+ 2)-input multi-
plexer is used to select the P bit based on the DBGR input. There are four sets of
inputs to the multiplexer corresponding to the four fields in the (n.2)-exhaustive
code. The first set is a 1-bit wide 0 input corresponding to the all-zero column in
the code. The second set is the ADDRA input. The third set is a 1 input. The
output of the Sumzero Logic is connected to the fourth set of multiplexer inputs.
The N bit is generated using a similar multiplexer but with all the inputs rotated
down by one bit. i.e. the first set of inputs for the N bit multiplexer is ADDRA
instead of a 0 input. The outputs of the multiplexers. AP and AN. are compared
using an exclusive-NOR gate to produce the AP=N output. The AP=N signal is
fed into a D flip-flop which generates the P=N signal.

[Migure 51 shows the background code logic used to generate the (n, 3)-exhaustive
code described in section 3.2.2. Two multiplexers are used to select two single bits

which are fed into a 3-input XOR gate that produces the AP bit. The third in-

100

ADDRA 1

0gzn
D_AP
All Pairs [~

Generator ||

AP=N

L

NEXT_ADDR

EN
ADBGR)D: D
al-P=N

fogan(logon-1) | log,m L

2 0__.] ADBGRC CLK T

Dﬂ

0
.,

Figure 51: Background Code Logic for V =4

put to the XOR gate is the DBGRC input. In Section 4.3.2, we have shown that
DBGRC = 0 for the first & backgrounds, and DBGRC = 1 for the last Z back-
grounds. Therefore, when DBGRC = 0, the background code logic generates the
AP bits in the first half of the code, and when DBGRC = 1 the second half of the
code (which is equal to the complement of the first half) is generated. There are
three sets of inputs to the multiplexers corresponding to the three fields in one half
of the (n, 3)-exhaustive code. Similar to the background code logic for V = 3, the
first set of inputs contains only the 0 input. The second set of inputs for the first
multiplexer is the address bus ADDRA. The corresponding input to the second
multiplexer is set to 0 so that when DBGRC = 0, i.e. in the first half, the AP bit
is selected from the ADDRA bus; when DBGRC = 1, the AP bit is selected from
the complement values of the bits in the ADDRA bus.

The “All Pairs Generator” block contains connections to all pair of lines in

101

the address ADDRA. There are two outputs from this block corresponding to the
left and the right members of the address pairs. Each one of the outputs is a
l‘iﬂ’—"—('”?gz"—‘ll-bit wide bus. One output bus is connected to the third set of inputs
to the first multiplexer. Similarly, the other output bus is connected to the second
multiplexer. The third set of inputs generates the AP bits for the third field in
the (n,3)-exhaustive code by XOR-ing all the pairs of bits from the address bus
ADDRA. The circuit for generating the AN bits is similar to the circuit for the
AP bits, but the next background number fields, ADBGRC and ADBGR, are used
instead of DBGRC and DBGR.

ADDRA(O10 Ji0g ,n - 1)
(Column Address)

1
ADDFIA(2 Iogzn -ilolog N

{Row Address)
DBGRT-—-- __,,,_\{ 9 / ADBGAT __
ColRow ADDR IRowlCol ADDR CoVRow ADDR Rew/Col ADDR

[
1 1 . 1 . 1 .
DBGR1 2 BackgroundLogic | pggR2 5 Background Logic | ApGRG1 3 Background Logic ADBGES 5 Background Logic
% for ves % forve3 " forvsa for v=3
{Zones 1, 1l and 1) {Zones 1 and It} {Zones 1, Il and Iy (Zones | and 11} |

|

DBGRC ‘—_—"m_m ADBGRC et

? AP AN]

AP=N
NEXT_ADDR
o EN
P=
Q=" N
CLK ——g
S|

Figure 52: Background Code Logic for V = 5¢

The background code logic for V' = 5t shown in Figure 52 generates the (n,4)-

exhaustive code with respect to the scrambled T-neighborhoods described in sec-

102

tion 3.2.3. This code is used for detecting single active scrambled PNPSFs in an
nx 1 RAM where the storage cells are assumed to be arranged in a square \/n x \/n
grid. The row address is composed of the higher order k’—gzﬂ bits of the address bus
ADDRA, while the column address consists of the lower order k’—g,}ﬁ bits in AD-
DRA. The block labeled “3Background Logic for V = 4 refers to the background
code logic that generates the first half of the corresponding (1/n,3)-exhaustive
code. This half corresponds to Zone I, Zone II and Zone III (refer to Figure 18).
The background code logic for generating this code is a slight modification of the
circuit in Figure 51. The DBGRC signal is removed since only the first half code
is required. The “Background Logic for V = 3” block refers to the background
code logic that generates the first half of the corresponding (1/n, 2)-exhaustive code
(Zone I and Zone II). The background logic in Figure 50 is modified by removing
the Sumzero Logic block to obtain this logic.

In section 3.2.3, the construction process for the (n,4)-exhaustive code with
respect to T neighborhoods was described. The backgrounds obtained in Step 1
are generated by inputting the column address into the 3Background Logic for
V = 4 circuit to produce a (1/n,3)-exhaustive code. At the same time, the row
address is input into the : Background Logic for V = 3 circuit to produce a (v/n, 2)-
exhaustive code. DBGRT and DBGRC are set to 0 in Step 1. DBGRI selects
an output bit in the (y/n,3)-exhaustive code and DBGR2 selects an output bit
from the (\/n,2)-exhaustive code. The output bits from the two circuits are fed
into a 3-input XOR gate. Since DBGRC is equal to 0, the AP bit is equal to
the XOR of the two outputs from the 1Background Logic for V' = 4 circuit and
the 1Background Logic for V' = 3 circuit. The matrices obtained in Step 2 are
generated by setting DBGRT to 1. In this case, the row address and the column
address are interchanged so that the row address goes into the 1Background Logic

for V = 4 while the column address goes into the 1Background Logic for V = 3.

103

DBGRC is set to | to produce the matrices in Step 3 since the backgronnds in Step
3 are identical to the complement of the backgrounds obtained in Step 1 and Step
2. The circuit for generating the AN bits is similar to the circuit for the AP bits
except the next background number (ADBGRC, ADBGRT, ADBGR2, ADBGR1)
is used in place of (DBGRC, DBGRT, DBGR2, DBGRI1).

ADDRA(OI0 Sty 0+ 1)
{Column Address)

ADDHA(% log,n- 11okg n)
{Row Address)

1 . 1 1 1
DBGR1 5 Background Logic | pgGA2 3 Background Logic | ApGAGH] Background Logic ADBGR; 3 Backs aund Logic
2 for v=4 > for V=4 j for v=4 for v=4

|
|
I

DBGRC _tl ADBGAC __—ﬂj
| ap - AN ;
Tg‘
/
?,
; AP:=N
| NEXT_ADOR
| i
EN
0 PN
P NN 2 N
(o7 gu—

Figure 53: Background Clode Logic for V = 5z

The background code logic for V' = 5z shown in Figure 53 is used to gencrate
the (n,4)-exhaustive code with respect to the scrambled neighborhoods of type 1.
The background code logic is similar to the one for V' = 5t except that in this
case, both the row and column addresses are input into two separate circuits that
generate two sets of bits from a (\/n, 3)-exhaustive code. DBGR1 and DBGR2
are used to select a bit out of each set. The output bits from the two circuits are

then XOR-ed together with DBGRC. When DBGRC is 0, the background code

104

logic produces the backgrounds obtained in Step 1 of the code construction process
(described in section 3.2.4). When DBGRC is equal to 1, the backgrounds in Step

2 are generated.

4.3.4 Response Analyzer

The block diagram for the response analyzer is shown in Figure 54. The response
analyzer consists of an LFRS, two registers, a comparator, two multiplexers and
a block labeled “Read Bit Flipper”. Data from the RAM data bus is fed into the
Read Bit Flipper and one of the multiplexers. In phase 1, the PHASE2 input
is equal to 0, and the multiplexer selects the output from the Read Bit Flipper
to sent to the LFSR. The Read Bit Flipper determines which bits have to be
complemented before being input into the LFSR in this phase. Therefore, this
block ensures that in the fault-free scenario, the signatures obtained in phase |
will be the same as the ones in phase 2. In phase 2, the PHASE2 input is equal to
1, and the data from the RAM is sent directly to the LFSR. The enable input of
the LFSR is connected toc the READ input from the BIST controller so that the
LFSR is only active during read operations. The CLRSIG input is used to clear
the LFSR at the end of phase 1 and phase 2. The LOADREG! and LOADREG2
inputs are used to enable Register 1 and Register 2. The output of the LFSR is
input into the comparator. A multiplexer is used to select the source of the second
input to the comparator. If the current state is S8, the output of the Register
2, Signature 2 is selected. Therefore, the comparator compares the content of
the LFSR with Signature 2. If the current state is not equal to S8, Signature 1
is selected as the input to the comparator. The PASS output is set to 1 if the
signatures are identical.

In section 3.5, we have shown that the transparent BIST scheme detects all sin-

105

DATA

Read Bit
Flipper

PHASE2 (l) ;

{,/ :1] CLASIG
T C];I
CLK g _och LFSR clr P *—- CHESET

LOADREG1 en W—en __LOADREG2

> Register 1 e-8-+C] Register 2
L S e i
other S8 __STATE
\ states Z
l T

A B
Comparator
L AB

PASS

Figure 54: Response Analvzer

gle V-coupling faults if an LFSR with characteristic polynomial of degree [log,(n +
1)]+2 is used as the signature analyzer. Four different LFSRs are designed to sat-
isfy this requirement. The VHDL description for the response analyzer is written
in such a way so that an LIFSR of degree 16 is instantiated for n < 16383 (16383
= 16K - 1). For (16K —1) < n < (256K —=1). an LFSR of degree 20 is instantiated.
Similarly, LFSRs of degree 25 and 30 are instantiated for (256K —1) < n < (8M—1)

and (8M —~ 1) < n < (64M), respectively.

106

4.3.5 Test Pattern Generator

Figure 55 shows the block diagram for the test pattern generator. The test pattern
generator produces the data that is written into the RAM during the phase 2 of
each test segment. The data from the RAM data bus is inverted because, in the
transparent test algorithm, a memory cell is always written with the complement
of the previously read data. A D flip-flop is used to store the inverted data and the
BIST controller READ output is used to enable this flip flop, i.e. a new data bit is
latched into the flip-flop every time a READ operation is executed. The output of
the flip-flop is fed into a tri-state bufler. The buffer enable input is connected to
the BIST controller WRITE signal so that the data in the flip-flop is driven onto

the bi-directional data bus during a write operation.

READ WRITE
EN DATA
D
I |
CLK >
Tri-state
T butfer
CRESET

Figure 55: Test Pattern Generator

107

5 Design Evaluation

Section 5.1 of this chapter presents the results obtained from the logic simulations
using the Verilog Logic Simulator in CADENCE 4.2.2. The cost of the BIST

scheme in terms of area overhead and test time is discussed in section 5.2.

5.1 Simulation Results

The VHDL description of the BIST circuit is included in Appendix A. This de-
scription is input into the synthesis tools in Synopsys v3.1a, which then generates
optimized BIST circuits using the CMOS4S technology. Complete BIST circuits
can be synthesized based on only two input parameters n and V', where n is the
RAM size and V correspond to the faults to be tested. V=2, 3, 4, 15 or 25 cor-
respond to single 2, 3, 4-coupling faults, scrambled active pattern sensitive faults
and static or passive scrambled pattern sensitive faults, respectively. The BIST cir-
cuits produced by Synopsys are translated into EDIF output specifications, which
in turn are imported into CADENCE 4.2.2 Design Framework I environment using
the EDIFIN translator. The circuit schematics in Design Framework II are then
verified using the Verilog Logic Simulator. An example of the top-level schematic
of the BIST circuit for n =4 and V' = 3 is shown in Figure 56.

In this section, we discuss the results of two simulations for the BIST cir-
cuit shown in Figure 56. The first simulation uses a fault-free 4-cell RAM; the
output waveforms are shown in Figures 68 to 74 in Appendix C. There are four
inputs: the system clock CLK, the system reset CLR, the START.BIST input
and the BIST_ACK input. The circuit outputs are BIST_BUSY, BIST_DONE and
PASS/FAIL. The BIST controller READ and WRITE outputs are shown to indi-
cate the type of operations that are performed on the RAM during the application

of the self-test. Note that the first eight operations in Figure 68 are two reads to

108

BiSTACK [

4 ADDRESS<@>
) ADDRESS< 1>
=]
- § BIST_DONE
e s . , - BIST_BUSY
12 : | I= % PASSFAIL
] v] FE -
&

Background

BIST Controtler

O
—
x
,__, T
Background
Counter
illE

1111

=
|

CR P

START_BIST

“jl rﬂ WRITE

¢ . = HIEIER:
o *%‘;
o P rero
DATA ® —9
L 4 . g

Figure 56: BIST Circuit Schematic

cach of cells 0, 1, 2, and 3. Similarly, the ADDR output is shown to indicate which
cell is being accessed. The contents of the 4-ccll RAM, MEM<0>, MEM<1>,
MEM<2> and MEM<3> are also shown. In Figure 68 the initial contents of cells
0, 1, 2 and 3 arc the values 0, 1, 1, and 0, respectively. The system clock is set
at 10 MHz. At time {=100ns, the active low system reset signal CLR is asserted
to 0. This signal initializes the BIST controller to state SO, where the non-RAM
flip-flops in the BIST circuit are cleared using the BIST controller CRESET. This
includes the flip-flops for the READ, WRITE, BIST_BUSY, BIST_.DONE, and the
ADDR bus. At the same time the PASS/FAIL output is set to 1, indicating PASS

109

since no faults have been detected yet. In this simulation, we use the CLR signal
to initialize the contents of the RAM to 0, 1, 1, 0. In a real BIST RAM, the
content of the RAM would not be initialized at this stage. The CLR input is set
back to 1 (i.e. de-asserted) at ¢t=200ns. At 1=300ns the START.BIST input is
asserted to activate the self-test routine. The BIST RAM enters the test mode
al the next negative clock edge at {=400ns and BIST_BUSY is asserted. At this
time the READ signal is asserted to produce the first read operation at ADDR 0
in phase 1 of segment 1. The READ signal remains high at the next clock period
indicating that cell MEM<0> is read again. This read operation corresponds to
the second read operation extracted from the first (rywgrzwy) march element that
is applied to MEM<0>. At the next negative clock edge, ADDR is incremented to
1 while the READ signal remains asserted for two clock periods, indicating that
cell MEM<1> is being read twice. The double read operations are repeated for
cells MEM<2> and MEM<3>.

Once the read operations extracted from the { (rywjrzws) march have been ap-
plied to the RAM, the corresponding read operations from the background change
are performed. The (4,2)-exhaustive background matrix for n =4 and V = 3 is
shown in Figure 57. Since the P bit and the N bit for cell MEM<0> are the same
in the first background, no read operation is performed on this cell and the ADDR
is incremented to 1. Similarly, no read operation is applied to cell MEM<1>. Both
cells MEM<2> and MEM<3> are read since their P bits are not the same as their

N bits.

oOj000110
11001101
21010101
3{011100

Figure 57: (4,2)-exhaustive Code

110

Next, starting at t=1600ns, all the cells are read once in ascending address
order. These read operations correspond to the final {} () at end of phase 1 in
segment 1. The next clock period (2000ns to 2100 ns) is used to clear the signature
analyzer and set the PHASE2 latch.

Phase 2 of segment 1 starts at t=2100ns with a read operation to cell MEM<0>.
In the next three clock periods, MEM<0> is written to 1, read a second time and
then written back to zero. The same (rywgrsws) operations are applied in turn to
cells MEM<1>, MEM<2> and MEM<3>, where the b values for the three cells
are 1, 1 and 0, respectively. Next, the background change operations are executed
beginning at t=3700ns. No background operations are applied to cells MEM<0>
and MEM<1> and the two clock periods from ¢=3700 to {=3900ns are used to
increment the address ADDR to 2. The read signal is then asserted indicating
that cell MEM<2> is read. This is followed by a write operation which changes
the content of MEM<2> from 1 to 0. Cell MEM<3> undergoes similar operations
except that its contents is changed from 0 to 1. The {} () march is then applied
to all the cells. Once this march is complete, two clock periods from ¢=4700 to
{=4900 are used to increment the background number (state S8 in state diagram),
and then clear the signature analyzer and set the PHASE2 latch (state S9). The
operations of the next test segment are now applied to the RAM.

The last test segment in this first simulation finished at time =27500 (as shown
in Figure 74). At this time, the BIST_BUSY is de-asserted while the BIST_DONE
is asserted. Since, a fault-free RAM is used in the simulation, no faults were
detected and the PASS/FAIL signal remains high at this time. (Note that a
stuck-at fault that keeps the PASS/FAIL line high can be detected using the two
additional input signals; one to force the PASS/FAIL line to low and the other to
force it to high.) The BIST_DONE signal stayed high until the BIST.ACK signal
is received at time ¢t=28500ns. At the next negative clock edge, the BIST_.DONE

111

is de-asserted and the BIST RAM returns to normal mode. Note that the test is
transparent because the contents of the RAM at the end of the test are the same
as the initial contents.

The second simulation is performed using a faulty RAM. The RAM is assumed
to have a 3-coupling fault where an JMEM<2> causes |MEM<3> when MEM<0>
contains a 1. The output waveforms for this simulations are shown in Figure 75
to 81 in Appendix C. For the 3-coupling fault to be triggered, MEM<0>MEM<3>
= 11, and MEM<2> has to be written from 1 to 0. This event first occurs in
segment 3 (Figure 77) during the background change from background number
2 to background number 3 (column 3 to column 4 in the background matrix in
Figure 57). Since the initial content of MEM<2> is equal to 1, all the 0 entries in
the background matrix for MEM<2> correspond to the initial value 1. Therefore,
when MEM<2> undergoes a background change with its P bit equal to 0 and
its N bit equal to 1, the content of the cell actually changes from 1 to 0. Since
MEM<0>MEM<3> = 11 at the time, the | MEM<2> causes the 3-coupling fault
to be triggered. The content of the signature analyzer is compared with Signature
2 at t=13700ns and the PASS/FAIL is set to 0. Note that the fault is triggered

again during the f (rpwyrzwy) in segment 5 (Figure 79).

5.2 Results of Layout Experiments

Using the AutoLayout tools in CADENCE 4.2.2, the layouts of the BIST circuits
were produced using BNR’s CMOS4S technology with 1.2um design rules. The
RAM circuit has been omitted and only the area occupied by the BIST circuitry
was measured. We ignored the area occupied by the input and output pads in
the area measurements because in the BIST scheme, both the BIST circuit and

the RAM are contained in the same chip (see Figure 58). The BIST circuit area

112

measurements are used to estimate the area overhead costs of the BIST scheme.
Table 7 lists the area occupied by the PIST circuits, the arca of the RAM and the
percentage of area overhead for V = 3 and different RAM sizes. The information
on the RAM area is obtained from the Proceedings of the IEEE International
Solid State Circuits Conference. The percentage of area overhead is calculated as

BIST area
RAM area X 100%

Input/Output/
Pads Y

Area for overhead
measurements

Figure 58: Area Used for BIST Overhead Approximations

Figure 59 shows the BIST circuit area overhead for V = 3, 4, 51 and 5z. The
area overhead decreases rapidly as the RAM size increases. This is because the
increase in the size of the BIST circuit is relatively slow compared to the increase
in the size of the memory circuit. For example, the BIST controller circuit is
independent of the RAM size, and therefore its size does not increase with the
increase in RAM size. Also we only require one additional bit in the address bus
when the memory size is doubled. Therefore the address generator will increase by
an additional flip-flop and a few logic gates while the number of memory cells in the

RAM is doubled. The area overheads for V = 4 are higher than the ones for V =3

113

RAM size | RAM arca | BIST arca | % overhead
(nx1) (mmn?) (mm?)
64k 10.0.3 2.1370 21.16%
256k 40.39 2.2839 5.65%
1M 161.56 2.3802 1.47%
4M 646.24 2.4806 0.38%
16M 2584.96 2.6369 0.10%

Table 7: BIST Arca Overhead for | =3 and Typical Sizes of RAM

because the background code logic for V' = 4 is more complex than the background
code logic for V' = 3. Also, the background counter circuit for V = 4 is slightly
bigger than the circuit for V' = 3. Note that the rest of the BIST circuits for V = 4
(address generator, BIST controller, response analyzer and test pattern generator)
are identical to the circuits for V' = 3. The area overheads for V' = 4 is higher
than the overhcads for V' = 5¢ and V' = 5x. This is because the background code
logic for V' = 4 requires 1 + log, n + '—%Zﬂ’fﬂ"—”-input multiplexers (see Figure
50). The background code logics for V' = 5t and V' = 5r however. only require
I + %log2 n + Iog';"("l‘liig—z";l)—inputs multiplexers. For example, when n is equal
to IM, the background code logic for V' = 4 will require 211-input multiplexers
while the background code logics for V' = 5¢ and V' = 5r only contain 56-input

multiplexers.

114

% Area Overhead

10"

~1

10

+ ™ X O

V=3

V=5t
V=56x

256K M

Memory Size in Bils

Figure 59: Area Overhead

6 Summary and Conclusions

In this thesis, a tool for automatically generating BIST circuits was presented
which can be used for detecting single V-coupling faults in embedded RAMs. The
BIST circuits implement a transparent self-test that can be used for detecting

single 2, 3 and 4-coupling faults, as well as active, passive and static scrambled

5-cell NPSFs.

Chapter 2 presented background material in memory testing and circuit syn-
thesis. In Chapter 3, we developed a BIST scheme based on the deterministic
test for detecting single V-coupling faults proposed in [22]. The structure of the
deterministic test was described in section 3.1. A background matrix is used for
generating the test patterns to be applied to the RAM under test. To detect

all single V-coupling faults, the rows of the background matrix have to form an

115

(n,V = I)-exhaustive code. Descriptions of casily generated (n, V' — [)-exhaustive
codes for V= 3, 4, 5t and 5z were presented. A technique described in [12] is used
to transform the deterministic test into a transparent test. The technique essen-
tially ensures that when the transparent test is applied to a RAM, each cell in the
RAM is complemented an even number of times. Therefore, the content of each
cell will be the same as its initial content if no fault is detected in the RAM. Also,
the response of the RAM is compacted using signature analysis, where an LFSR is
used as the signature analyzer. Signature analysis is an efficient and low-cost data
compaction technique. However, like any other data compaction methods, signa-
ture analysis is vulnerable to the possibility of aliasing. Aliasing occurs when a
faulty RAM produces a response sequence that is different from that of a fault-free
RAM, but the resulting compacted binary sequences or signatures are identical.

In order to reduce the probability of aliasing, we used the technique described in
[10]. This technique modifies the transparent test to obtain an aliasing-free BIST
scheme if no more than two errors are crcated at a time. The test is modified
so that, instead of comparing two signatures once, different signature pairs are
computed and compared many times. The resulting aliasing-free test is divided
into segments where each segment corresponds to a background in the background
matrix. Four signatures are computed in cach test segment, two in the signature
generating phase (phase 1) and two during the application of the test (phase 2). A
signature comparison is performed after an interval that could possibly introduce
no more that two errors as a result of one fault. If multiple faults occur in the
RAM, the probability that these faults will escape detection was still found to be
very low. For example, the probability that two single 3-coupling faults present in
a IM RAM will not be detected is in the order of 10~!2,

In Chapter 4, the BIST RAM design was presented in detail. The BIST RAM

has two operating modes: normal mode and self-test mode. In normal mode, the

116

n x 1 RAM under test performs normal read and write operations requested by the
external environment. In self-test mode, the RAM is isolated from the external
environment and the transparent test is applied to the RAM. The BIST RAM is
divided into three main blocks: the n x 1 RAM, the BIST controller and the data
path. The circuit implementation and functionality of the BIST controller and
the data path blocks were described in detail in sections 4.2 and 4.3. The VHDL
descriptions for the BIST circuitry are included in Appendix A.

BIST circuits can be automatically generated using the synthesis tools in Syn-
opsys and the layout tools in CADENCE 4.2.2. The synthesizable transparent
BIST scheme has only two input parameters, n and V. Parameter n is the size of
the RAM under test. V corresponds to the type of fault to be detected. Chapter 5
presented the results from simulations and layout experiments. Two logic simula-
tions using the Verilog Logic simulator in Cadence 4.2.2 were analyzed. The first
simulation was performed on synthesized BIST circuits withn =4 and V = 3. We
used a fault-free 4 x 1 RAM in this simulation to verify the BIST scheme. The sec-
ond simulation was performed using the same BIST circuit but with a faulty RAM
which contains a 3-coupling fault. We showed that the fault was detected and
that the PASS/FAIL output was set to low indicating that the RAM was faulty.
In Section 5.2, the BIST circuit design was evaluated in terms of the percentage
of area overhead. For a IM RAM, the area overhead for V=3, 4, 5¢ and 5z were
estimated to be 1.47%, 7.5%, 1.96% and 3.24%, respectively. It is worth noting
here that the overhead can be further reduced if the RAM under test is partitioned
into many equally-sized subarrays, as is the case in large commodity DRAMs . In
such a situation the subarrays could be tested in parallel and could share one copy
of much of the BIST circuits. Each subarray would only need its own copy of
the test pattern generator and the read bit flipper (in the response analyzer). A

Multiple-Input Signature Register (M /SR) could be used as the common signa-

117

ture analyzer that is shared by all the subarrays. In phase 1 of a test segment, the
inputs to the MISR could consist of the outputs from the read bit flipper wkich
are XOR-ed together. In phase 2, the data bits from the subarrays could be XOR-
ed together and fed in to the MISR. For example, we would require 32 copies of
the test pattern generator and the read bit flipper circuit to test 32 subarrays in
parallel. The 32 output bits from the read bit flipper could be XOR-ed together
to form a 16-bit output that could be fed into the MISR. Similarly, the 32 data
bits could be XOR-ed together to form the 16-bit input to the MISR in phase 2
of a test segment. However we can only have at most one fault in the RAM for
the scheme to be aliasing-free since the signature analyzer is common to all the
subarrays. But we have already shown that even if multiple faults occur in the
RAM, the probability that the faults will not be detected was found to be very
low.

Table 8 lists the overhead required some of the BIST RAMs that have been
proposed in literature (7, 26, 27, 28, 29, 30]. We use the acronyms SAF, CF
and NPSF to represent stuck-at faults, 2-cell coupling faults and neighborhood
pattern-sensitive faults, respectively.

It is difficult to compare our BIST RAM scheme with the BIST RAM schemes
listed in Table 8 since the fault coverage is different in each scheme [7]. Generally
the area overhead of our BIST scheme is acceptable especially for RAM sizes
n > 4M. TFor instance, the overhead for our scheme is < 1% (V' = 3, 5¢ and 5z)
for n = 4M, which is the same as the overhead reported for the CMOS dynamic
RAM with BIST scheme. However, our scheme has better fault coverage since the
CMOS dynamic RAM with BIST which implements the well-known checkerboard
test [7] does not detect all stuck-at faults. In addition to single 2, 3, and 4-coupling
faults, as well as active, passive and static scrambled 5-cell pattern-sensitive faults,

our BIST RAM scheme also detects the simple stuck-at faults.

118

Implementation Faults Detected Overhead

On-chip compact test scheme {26} SAFs, CFs 1.21% (n=64K)
5-cell static NPSFs | 0.09% (n=1M)

Parallel test using signature analyzer SAFs, some CF's 0.4% (n=256K)
[27]

Parallel test for VLSI memories [28] SAFs, some CFs < 1% (n=2M)

Parallel test for pattern-sensitive faults | static & dynamic | 0.4% (n=256K)

[29] 9-cell NPSFs
CMOS dynamic RAM with BIST some SAFs (does not | < 1% (n=4M)
[30] detect decoder faults)

Table 8: Area Overhead of Some Proposed BIST RAMs

Table 9 lists the typical test time assuming a RAM cycle time of 100 ns.

Note that the test times also can be reduced by a factor of & if the RAM is
partitioned into k > 1 equally-sized subarrays that could be tested in parallel. Test
times typically should be under one minute. The mimimun values for £ required in
order to reduce the test times for 16M RAM:s to less than one minute is tabulated
in Table 10. It can be seen that the BIST RAM scheme can test a 16M RAM for
static and passive scrambled pattern-sensitive faults in approximately 31.6 seconds
if the RAM is partitioned into 4096 4K subarrays.

Another advantage of our BIST RAM is that the scheme does not require
any modification to the decoder, read/write logic, sense amplifier circuits, or the
memory cell array. In the BIST RAM normal mode the performance penalty due
to the additional multiplexers, which appear in the path from the address, read

and write inputs from the external environment to the RAM, is negligible.

119

V Test Time
n=1M | n = 16M
2 26s 419 s
3 35.4 s 9.4 min
4 | 9.2 min 2.4 hr
5t | 48.1 min | 12.8 hr
5z | 23 hrs | 36.0 hr

Table 9: Typical Test Time

V | Number of Subarrays &

Subarray Size

Test Time

2 | No partitioning required

3 16

4 256
91/ 1024
S 4096

IM
64K
16K
4K

41.9 s
35.3 s
34.1s
45.0 s
31.6s

Table 10: Test Time for 16M RAM After Partitioning

The BIST RAM scheme is vulnerable to stuck-at high faults that affect the
PASS/FATL output. In the presence of these faults, the PASS/FATL output would
always indicate that a RAM has passed the BIST routine even if faults were de-
tected. One possible solution is to test for stuck-at faults that can occur along
the signal path from the comparator output (in the response analyzer) to the
PASS/FAIL output to the external environment using an XOR gate (see Figure
60). An additional input Test_PF is used vo toggle the PASS input into the BIST
Controller. Test_PF could then be used to deliberately make the self-test indicate

120

a failure. If PASS=0, then SET_FAIL will be asserted which in turn would clear
the PASS/FAIL latch. If PASS=1, then SET_PASS will be asserted to set the
PASS/FAIL output to high.

Response Analyzer

Comparator

PASS (Test_PF

BIST

Controller

SET_FAIL e _
= PASSIFAIL PASSIFAIL
SET_PASS Lateh [~

Figure 60: Test for Stuck-at Faults affecting the PASS/FAIL Output

As far as future work is concerned, it would be interesting to modify the BIST
RAM design to detect single V-coupling faults in n x K RAMs. We would assume
that V-coupling faults could involve cells from different k-bit words as well as mul-
tiple cells within the same words, in any combination. The rows of the background
matrix used in this case would have to form an (n x k,V — 1)-exhaustive code.
The (rywjrzws) march element would be applied to each bit in a word. Instead of
comparing a single P bit with a single N bit during a background change, the P
bits for all the k cells in a word would be compared to the corresponding N bits for
the k cells in the same word. This is due to the fact that in a n x £k RAM, a read
or write operation involves k cells. Therefore, all the P bits and the N bits for a
word in the RAM would have to collected before a background change is applied
to the word. One possible approach would be to have an additional state in the

BIST controller in which the P and N bits for the k cells in a word could be stored

121

in a register. The address counter would have to be modified so that it consists
of two counters, a word counter and a bit counter. The word counter would point
to the current memory word, while the bit counter would point to the current bit
in the word. The LAST_BIT status signal would be used to indicate if £ number
of P or N bits have been collected. The P and N bits are generated in parallel
and stored in two shift registers. The BIST controller would stay in this additional
state until the LAST_BIT signal is asserted. The background logic would assert
the P = N signal only if the P bits for all k cells in a word are the same as the N
bits for the RAM word. The two shift registers would provide the test pattern to
be applied to the word during the background change.

A further open problem is to design an easily-generated (n, 4)-exhaustive code.
This code could be used for detecting single 5-coupling faults involving any five cells
in the memory. One advantage of using such a code is that no assumptions would
have to be made regarding the logical to physical mapping of the cell addresses
and therefore this code could be used for testing all possible 5-cell pattern sensitive

faults. However, the test times for such a code would be expected to be very long.

References

[1] B. Prince, Semiconductor Memories. Chichester, U.K.: John Wiley Sons,

1991.

[2] J. Robert J. Feugate and S. M. Mclntyre, Introduction to VLSI Testing. En-
glewood Cliffs, New Jersey, U.S.A.: Prentice Hall, 1988.

[3] B.Prince and G. Due-Gundersen, Semiconductor Memories. Chichester, U.K.:

John Wiley Sons, 1983.

[4] K. Tsukamoto and H. Morimoto, “Process and Device Technologies for
Subhalf-Micron LSI Memory,” IEICE Transactions on Electronics, vol. 77-
C, pp. 1343-1349, August 1994,

[5]) M. Horiguchi et al., “An Experimental 220Mhz 1Gb DRAM,” in Proceedings
1995 IEEE International Solid-State Circuits Conference, pp. 252-253, 1995.

[6] T. Sugibayashi et al., “A 1Gb DRAM for File Applications,” in Proceedings
1995 IEEFE International Solid-State Circuits Conference, pp. 254-255, 1995.

[7] M. Franklin and K. K. Saluja, “Built-in Self-Testing of Random-Access Mem-
ories,” IEEF Computer, vol. 23, pp. 17-26, October 1990.

[8] A. J. van der Goor, Testing Semiconductor Memories: Theory and Practice.

Chichester, U.K.: John Wiley Sons, 1992.

[9] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing
and Testable Design. New York, N.Y., U.S.A.: Computer Science Press, 1990.

[10] V. N. Yarmolik, M. Nicolaidis, and O. Kebichi, “Aliasing-Free Signature
Analysis for RAM BIST,” in Proceedings 1994 International Test Conference,
pp. 368-377, 1994.

123

[11]

[12]

[13]

(1]

15

[16)

[17]

[15]

B. Koeneman in Proceedings 1986 IEEL Design for Testability Workshop,
(Vail, Colorado, 11.S.A), Apr. 26 - May 2 1986.

M. Nicolaidis, “Transparent BIST for RAMs,” in Proceedings 1992 Intcrna-
tional Test Conference, (Baltimore, MD, U.S.A.), pp. 598-607, Sept. 20-24
1992. IEEE Comp. Soc., Washington. 1992.

H. D. Oberle, M. Maue, and P. Muhmenthaler. “Enhanced Fault Modeling
for DRAM Test and Analysis,” in Digest of 1EEE VLSI Test Symposium,
(Atlantic City, NJ, U.S.AL), pp. 149 -154. April 1991,

R. Nair, 5. M. Thatte, and J. A. Abraham. “Efficient Algorithms for Testing
Semiconductor Random-Access Memories.”™ TEEE Transactions on Compul-

ers, vol. C-27, pp. 572-576, June 1973,

AL van de Goor aud ¢, A, Verruijt. “An Overview of Deterministic Fune-
tional RAM Chip Testing.” ACM Computing Suree ys. vol. 22, pp. 5-33, March
1990,

J. . Hayes, “Detection of Pattern Sensitive Faults in Random Access Mem-
ovies,” [EEE Transactions on Computers. vol. (=24, pp. 150157, February

1975.
AL Tuszynski, “Memory Testing,” in VLSI Testing (T. W. Williams, ed.).

Elsevier Science Publishers B.V.. Amsterdam. 1986.

M. Iranklin and K. K. Saluja. “An Algorithm to Test RAMs for Physical
Neighborhood Pattern Sensitive Faults,” in Proceedings 1991 International

Test Conference, pp. 675--684, 1991.

[19]

[20]

[21]

22

(23]

[24]

[25)

[26]

K. Kinoshita and K. K. Saluja, “Built-in Testing of Memory Using an On-
Chip Compact Testing Scheme,” IEEE Transactions on Computers, vol. 35,
pp. 862-870, October 1986.

S. Devadas, A. Ghosh, and K. Keutzer, Logic Synthesis. New York, U.S.A.:
McGraw-Hill, 1994.

R. Lipsett, C. F. Schaefer, and C. Ussery, VHDL: Hardware Description and
Designs. Boston U.S.A: Kluwer Academic Publishers, 1993.

B. F. Cockburn, “Deterministic tests for Detecting Single V-Coupling Faults
in RAMs,” Journal of Electronic Testing: Theory and Applications, vol. 5,
pp- 91-113, 1994.

K. K. Saluja and K. Kinoshita, “Test Pattern Generation for API Faults in
RAM,” IEEE Transaciions on Computers, vol. C-34, pp. 284-287, March
1985.

B. F. Cockburn and N. Y. Sat, “A Transparent Built-In Self-Test Scheme
for Detecting Single V-Coupling Faults in RAMs,” in Proceedings 1994 LI
International Workshop on Memory Technology, Design and Testing, pp. 119-
124, 1994.

B. F. Cockburn and N. Y. Sat, “Synthesized Transparent BIST for Detecting
Pattern-Sensitive Faults in RAMs.” to appear in the Proceedings of the 1995

IEEE International Test Conference.

K. K. Saluja, S. H. Sng, and K. Kinoshita, “Built-in Sel:-Testing RAM: A
Practical Alternative,” IEEE Design and Test of Computers, vol. 4, pp. 42~
51, February 1987.

125

[27] T. Sridhar, “New Parallel Test Approach for Large Memories,” in Proccedings
1985 International Test Conference, (Los Alamitos, CA, U.S.A.), pp. 162-470,
Computer Socicty Press, 1985.

[28] J. Inoue et. al., “Parallel Testing Technology for VLSI Memories,” in Pro-
ceedings 1985 Internalional Test Conference, (Los Alamitos, CA, U.S.A.),
pp. 1066-1071, Computer Society Press, 1985.

[29] P. Mazumder and J. Patel, ¢ Parallel Testing for Pattern-Sensitive Faults in
Semiconductor Random-Access Memories,” IEELE Transactions on Comput-

ers, vol. 38, pp. 394--407, March 1989.

[30] T. Ohsawa ct al, “A 60-ns 4-Mbit CMOS DRAM with Built-in Self-Test Func-
tion,” IFLE Journal of Solid-State Circuits, vol. 22, pp. 663-668. Qctober

1987.

126

A VHDL Code

127

Header_File
File: header.vhd

-- This header file contains three libraries:

-- CONVERT_TYPE contains type conversion functions not found in the standard
-- IEEE libraries

-- BTYPES contains the STATES type declaration

-- FIND_PARAMETERS contains functions to determine:

- M, width address bus

- S, number of bits to represent the number of zeros in address bus

- NUMXOR, number of pairs of address lines

- NUMDBGR, number of backgrounds

- NUMDBGRI, number of backgrounds in base matrix

- NUMDBGR?2, number of backgrounds in Zones I and II of base matrix
- LFSRDEG, the degree of LFSR

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE. MATH_REAL.all;

-- Library CONVERT_TYPE contains 3 functions:

-- INTEGER_TO_BIT_VECTOR: converts an integer to type BIT_VECTOR

-- CONVERT_TO_XO01Z: converts a BIT to X01Z (to set the output of test pattern
- generator to high impedence)

-- CONVERT_TO_BIT : converts a X01Z bit to type BIT

package CONVERT_TYPE is
function INTEGER_TO_BIT_VECTOR(X.,Y: INTEGER)
return BIT_VECTOR;
function CONVERT_TO_XO01Z(X: BIT)
return X01Z;
function CONVERT_TO_BIT(X: X012)
return BIT;
end CONVERT_TYPE;
package body CONVERT_TYPE is
function INTEGER_TO_BIT_VECTOR(X.,Y : INTEGER)
return BIT_VECTOR is
variable T : INTEGER:
variable J : BIT_VECTOR(Y-! downto 0);
variable K : UNSIGNED(Y-1 downto 0);
begin
K := CONV_UNSIGNED(X,Y);
forTin Oto Y-1 loop
if K(I)="0" then J(I) :="0";

else I(I):="I"
end if:
end loop;
return J;
end;
function CONVERT_TO_X01Z(X: BIT)
return X01Z is
begin
if X ='1l" then return ('1');
else return('0');
end if;
end;

128

function CONVERT _TO_BIT(X: X01Z)

return BIT is
begin
if X ="1" then return ('1Y);
else return('0');
end if;
end;

end CONVERT_TYPE;

-- Library BTYPES contains a type declaration for the STATES type
package BTYPES is

type STATES is (50,51,52,53,54,55,56,57,58,59,S10);

end BTYPES;

library IEEE;

use work.BTYPES.all;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

-- Library FIND_PARAMETERS contains 7 functions:

-- FIND_M returns M = log2(N); width of address bus

-- FIND_S returns S = log2(M); width of SUMZERO bus

-- FIND_NUMXOR returns NUMXOR, the number of pairs of address lines
-- FIND_NUMDBGR returns the number of backgrounds for V=2 and 3

returns 1/2 number of backgrounds for V=4

-- FIND_NUMDBGRI returns the number of backgrounds in base matrix
-- FIND_NUMDBGR?2 returns the number of backgrounds in Zones I, II-base matrix
-- FIND_LFSRDEG returns degree of LFSR, if log2(N+1)+2 <= 16, return 16

if 16 < log2(N+1)+2 <= 20, return 20
if 20 < log2(N+1)+2 <= 25, return 25
if 25 < log2(N+1)+2 <= 30, return 30

package FIND_PARAMETERS is

function FIND_M(N:INTEGER range 4 to 67108864)

return INTEGER;

function FIND_S(M:INTEGER)

return INTEGER;

function FIND_NUMXOR(M:INTEGER;V:INTEGER range 2 to 25)
return INTEGER;

function FIND_NUMDBGR(V:INTEGER range 2 to 25;M,S,NUMXOR: INTEGER)
return INTEGER:

function FIND_NUMDBGRI1(M,NUMXOR: INTEGER)

return INTEGER;

function FIND_NUMDBGR2(M,NUMXOR: INTEGER)

return INTEGER;

function FIND_LFSRDEG(N:INTEGER range 4 to 67108864)

return INTEGER;

end FIND_PARAMETERS;

package body FIND_PARAMETERS is

function FIND_M(N:INTEGER range 4 to 67108864)
return INTEGER is
variable LINTEGER;
variable M:INTEGER;
begin
if N>2and N <=4 then M :=2;
elsif N>4 and N <=8 then M :=3;
elsif N> 8 and N <= 16 then M :=4;

129

end;

elsif N> 16 and N <= 32 then M := §;

elsif N> 32 and N <= 64 thun M := 6;

elsif N> 64 and N <= 128 then M ;= 7;

elsif N > 128 and N <= 256 then M := §:

elsif N> 256 and N << 512 then M ;= 9;

elsif N > 512 and N <= 1024 then M := 10;

elsif N > 1024 and N <= 2048 then M := 11;

elsif N > 2048 and N <= 4096 then M := 12;

elsif N > 4096 and N <= 8192 then M := 13;
elsif N > 8192 and N <= 16384 then M := 14;
elsif N > 16384 and N <= 32768 then M := 15;
elsif N > 32768 and N <= 65536 then M := 16;
elsif N > 65536 and N <= 131072 then M := 17;
elsif N > 131072 and N <= 262144 then M := 18:
elsif N > 262144 and N <= 524288 then M := 19;
elsif N > 524288 and N <= 1048576 then M := 20;
elsif N > 1048576 and N <= 2097152 then M := 21;
elsif N > 2097152 and N <= 4194304 then M := 22;
elsif N > 4194304 and N <= 8388608 then M := 23;
elsif N > 8388608 and N <= 16777216 then M := 24:
elsif N > 16777216 and N <= 33554432 then M := 25:
elsif N > 33554432 then M := 26;

end if;

return M;

function FIND_S(M:INTEGER)
return INTEGER is
variable S:INTEGER;

begin

end;

ifM>=2and M <4 then S := 2;
elsiftM>=4and M <8 then S := 3;
elsifM>=8and M < 16 then S := 4:
elsif M>= 16 then S := 5:

end if;

return S;

function FIND_NUMXOR(M:INTEGER: V:INTEGER range 2 to 25)
return INTEGER is

variable NUMXOR: INTEGER:

variable X : INTEGER;

begin

end ;

if V>= 15 then
X =M/2;
clse
X =M;
end if;
NUMXOR := X*(X-1)/2;
return NUMXOR;

130

function FIND_NUMDBGR(V:INTEGER range 2 to 25;M,S,NUMXOR:INTEGER)

return INTEGER is
variable NUMDBGR:INTEGER;
begin
if V=2 then
NUMDBGR :=2;
elsif V =3 then
NUMDBGR =2 +M + S;
else
NUMDBGR :=1 + M + NUMXOR;
end if;
return NUMDBGR;
end;

function FIND_NUMDBGR1(M,NUMXOR:INTEGER)
return INTEGER is
variable NUMDBGR1:INTEGER;
begin
NUMDBGR! := M/2 + NUMXOR;
return NUMDBGR1;
end;
function FIND_NUMDBGR2(M,NUMXOR:INTEGER)
return INTEGER is
variable NUMDBGR2:INTEGER;
begin
NUMDBGR? := M/2;
return NUMDBGR?2;
end;
function FIND_LFSRDEG{N:INTEGER range 4 to 67108864)
return INTEGER is
variable LFSRDEG:INTEGER;
begin
LFSRDEG := FIND_M(N+1)+2;
if LFSRDEG <= 1¢j then
return 16;
elsif LFSRDEG <= 20 then
return 20;
elsif LFSRDEG <=25 then
return 25;
else
return 30;
end if;
end;
end FIND_PARAMETERS;

131

BIST Circuit
File: bist.vhd

-- This file contains the structural description of the BIST circuit

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use work. CONVERT_TYPE.all; -- include functions from library CONVERT_TYPE

use work.BTYPES.all; -- include type declarations from library CONVERT_TYPE
use work.FIND_PARAMETERS.all:-- include functions from library FIND_PARAMETERS

entity BIST is

generic (N: INTEGER range 4 to 67108864; V:INTEGER range 2 to 25);

-- The input parameters:

-~ N : Size of (N x 1) memory to be tested range from 8 bit to 64Mbit

-- V: Type of faults; =2 for 2-coupling fault

- V=3 for 3-coupling fault

- V=4 for 4-coupling fault

- V=15 for scrambled 5-cell NPSF with T neighborhoods

- V=25 for scrambled 5-cell NPSF with neighborhoods of Type 1

-- The input and output declarations:

port(CLK :in BIT; --system clock
CLR :in BIT; --system reset
START_BIST :in BIT;
BISTACK tin BIT;

BIST _BUSY : out BIT;
BIST_DONE : out BIT;

READ : out BIT; --BIST controller READ
WRITE : out BIT; --BIST controller WRITE
ADDR :out INTEGER range O to N-1; --BIST controller address
PASSFAIL : out BIT; --PASS/FAIL signal
DATA : inout X01Z); --bidirectional data bus

end BIST;

architecture STRUCTURE of BIST is
CONSTANT M:INTEGER = FIND_M(N);
CONSTANT S:INTEGER := FIND_S(M);
CONSTANT NUMXOR :INTEGER :=FIND_NUMXOR(M,V);
CONSTANT NUMDBGR:INTEGER := FIND_NUMDBGR(V.,M,S.NUMXOR);
CONSTANT NUMDBGR :INTEGER := FIND_NUMDBGR1(M,NUMXOR);
CONSTANT NUMDBGR2:INTEGER := FIND_NUMDBGR2(M,NUMXOR);
CONSTANT LFSRDEG :INTEGER := FIND_LFSRDEG(N);

--M = log2(N), width of address bus

--S = log2(M), number of bits to represent the nmaber of zeros in address bus

--NUMXOR = M choose 2, the number of address pairs for V=4, M/2 choose 2 for V=>5t, 5x
--NUMDBGR = number of backgrounds for V=2,3

- = 1/2 the number of backgrounds for V=4

--NUMDBGRI!1 =number of backgrounds in the base matrix(V=5t and 5x)

--NUMDBGR2 =number of backgrounds in Zones I and II of the base matrix(V=5t)
--LFSRDEG =log2(N+1)+2, degree of LFSR

-- Internal signal declarations

signal ADDRA : INTEGER range 0 to N-1; --unlatched address
signal ALAST_ADDR :BIT; --unlatched last address

132

signal LAST_ADDR : BIT; --latched last address

signal DBGR : INTEGER range 0 to NUMDBGR-1:--background number for V=2,3,4
signal DBGRC : BIT; --DBGRC for V=4

signal ADBGR : INTEGER range 0 to NUMDBGR-1; --ADBGR for V=4

signal ADBGRC : BIT; --ADBGRC for V=4

signal TDBGR1 : INTEGER range 0 to NUMDBGRI; --DBGRI1 for V=5t

signal TDBGR2 : INTEGER range 0 to NUMDBGR?2; --DBGR2 for V=5t

signal TDBGRT : BIT; --DBGRT for V=5t

signal TDBGRC : BIT; -DBGRC for V=5t

signal TADBGR1 : INTEGER range 0 to NUMDBGRI,; --ADBGR1 for V=5t

signal TADBGR2 : INTEGER range 0 to NUMDBGR2; --ADBGRI for V=5t

signal TADBGRT : BIT; --ADBGRT for V=5t

signal TADBGRC : BIT; --ADBGRC for V=5t

signal XDBGR1 : INTEGER range 0 to NUMDBGRI; --DBGR1 for V=5x

signal XDBGR2 : INTEGER range 0 to NUMDBGRI; --DBGR? for V=5x

signal XDBGRC : BIT; --DBGRC for V=5x

signal XADBGR1 : INTEGER range 0 to NUMDBGRI; --ADBGR] for V=5x

signal XADBGR2 : INTEGER range 0 to NUMDBGRI; --ADBGR2 for V=>5x

signal XADBGRC : BIT; --ADBGRC for V=5x

signal LAST_DBGR : BIT; --last background

signal APEQN : BIT; --unlatched P=N signal

signal PEQN : BIT; --latched P=N signal

signal NEXT_ADDR : BIT; --increment address signal
signal NEXT_DBGR : BIT; --increment background signal
signal LOADREG1 : BIT; --load register 1 signal

signal LOADREG2 : BIT; . --load register 2 signal

signal CLRSIG : BIT; --clear LFSR signal

signal CRESET : BIT; --BIST controller reset

signal STATE : STATES; --state variable

signal ASYNCSTATE : STATES; --next state variable

signal DB : X01Z; --internal bidirectional data bus
signal IREAD : BIT; --internal BIST controller read
signal IWRITE : BIT; --internal BIST controller write
signal PHASE2 : BIT; --PHASE?2? signal

signal LPHASE2 : BIT; --set PHASE? signal

signal CLRPHASE?2 : BIT; --clear PHASE? signal

signal PASS : BIT; --PASS signal

signal PF : BIT; --internal PASS/FAIL signal
signal FAIL : BIT; --FAIL signal

-- Components Declarations:

-- BIST CONTROLLER
component BIST_CONTROLLER
port(CLK :in BIT;
RESET tin BIT;
START_BIST :in BIT;
BISTACK tin BIT;

LAST_ADDR :in BIT;
ALAST_ADDR :in BIT;
LAST DBGR :in BIT;

PEQN tin BIT;
APEQN in BIT;
PHASE2 :in BIT;
PASS :in BIT;
LPHASE2 :out BIT;

CLRPHASE2 :out BIT;

133

READ : out BIT;
WRITE :out BIT;
BIST_BUSY T out BIT;
BIST_DONE : out BIT;
NEXT_ADDR : out BIT;
NEXT_DBGR :out BIT;
LOADREGI .out BIT;
LOADREG2 :out BIT;

CLRSIG :out BIT;
CRESET :out BIT;
FAIL :out BIT;
STATE :out STATES;

ASYNCSTATE :out STATES);
end component;

-- DATA PATH
-- Address Generator
component ADDRESS_GENERATOR
generic(N:INTEGER);
port(CLK :in Bit;
RESET 1in Bit;

NEXT_ADDR :in Bit;

ALAST_ADDR : out Bit;

LAST_ADDR :out Bit

ADDR :out INTEGER range Oto N-1;

ADDRA :out INTEGER range O to N-1);
end component;

-- Background Counter V=2,3
component BACKGROUND_COUNTER
generic(NUMDBGR:INTEGER);
port(CLK :in BIT;
RESET :in BIT;
NEXT_DBGR :in BIT;
LAST_DBGR : out BIT;
DBGR :out INTEGER range 0 to NUMDBGR-1),
end component;

-- Background Counter V=4
component BACKGROUND_COUNTER_V4
generic(NUMDBGR:INTEGER);
port(CLK :in BIT;
RESET tin BIT;
NEXT_DBGR :in BIT;
LAST_DBGR :out BIT;

DBGR :out INTEGER range 0 to NUMDBGR-1;
DBGRC :out BIT;
ADBGR :out INTEGER range 0 to NUMDBGR-1;
ADBGRC :out BIT);

end component;

134

-- Background Counter V=5t
component BACKGROUND_COUNTER_VS5T
generic(NUMDBGR:INTEGER;NUMDBGR2:INTEGER),
port(CLK tin BIT;
RESET tin BIT;
NEXT_DBGR :in BIT;
LAST_DBGR :out BIT;

DBGRI :out INTEGER range 0 to NUMDBGRI;
DBGR2 :out INTEGER range 0 to NUMDBGR?2;
DBGRT :out BIT;
DBGRC :out BIT;
ADBGRI1 :out INTEGER range 0 to NUMDBGRI;
ADBGR2 :out INTEGER range 0 to NUMDBGR?2;
ADBGRT :out BIT;
ADBGRC :out BIT);
end component;

-- Background Counter V=5x
component BACKGROUND_COUNTER_V5X
generic(NUMDBGR 1:INTEGER);
port(CLK :in BIT;
RESET tin BIT;
NEXT_DBGR :in BIT;
LAST_DBGR :out BIT;

DBGRI :out INTEGER range 0 to NUMDBGRI;
DBGR2 :out INTEGER range 0 to NUMDBGRI,;
DBGRC :out BIT; ‘
ADBGRI1 :out INTEGER range 0 to NUMDBGRI;
ADBGR2 :out INTEGER range 0 to NUMDBGRI;
ADBGRC :out BIT);

end component;

-- Background Logic V=2
component BACKGROUND_LOGIC_V2

port{APEQN rout BIT;
PEQN :out BIT)
end component;

-- Background Logic V=3
component BACKGROUND_LOGIC_V3
g0 .eric(N:INTEGER;M:INTEGER;NUMDBGR:INTEGER;S:INTEGER);

port(CLK :in BIT;
RESET tin BIT;
ADDRESS 1 in INTEGER range 0 to N-1;
DBGR :in INTEGER range 0 to NUMDBGR-1;
NEXT_ADDR :in BIT;
APEQN :out BIT;
PEQN :out BIT),

end component;

135

-~ Background Logic V=4
component BACKGROUND_LOGIC_V4
generic(NUMXOR:INTEGER;N:INTEGER;M:INTEGER:NUMDBGR:INTEGER):

port(CLK L in BIT;
RESET tin BIT;
ADDRESS tin INTEGER range 0 to N-1;
DBGR tin INTEGER range 0 to NUMDBGR-1;
DBGRC sin BIT;
ADBGR tin INTEGER range 0 to NUMDBGR-1;
ADBGRC in BIT;
NEXT_ADDR :in BIT;
PEQN :out BIT;
APEQN :out BIT);

end component;

-- Background Logic V=5t
component BACKGROUND_LOGIC_VST
generic(N:INTEGER;M:INTEGER;NUMXOR:INTEGER;NUMDBGR I INTEGER:

NUMDBGR2:INTEGER);
port(CLK 1in BIT;
RESET :in BIT:
ADDRESS :in INTEGER range 0 to N-1;
DBGRI1 rin INTEGER range 0 to NUMDBGRI:
DBGR2 tin INTEGER range 0 to NUMDBGR?2;
DBGRT tin BIT;
DBGRC :in BIT;
ADBGRI tin INTEGER range 0 to NUMDBGRI;

ADBGR?2 sin INTEGER range 0 to NUMDBGR?2;
ADBGRT in BIT;
ADBGRC tin BIT;
NEXT_ADDR :in BIT;
APEQN out BIT:
PEQN out BIT)

end component;

-- Background Logic V=5x
component BACKGROUND_LOGIC_VS5X
generic(N:INTEGER:M:INTEGER;:NUMXOR:INTEGER;NUMDBGR I:INTEGER);

end component;

port(CLK tin BIT;
RESET in BIT;
ADDRESS sin INTEGER range 0 to N-1;
DBGRI tin INTEGER range 0 to NUMDBGRI:
DBGR2 tin INTEGER range 0 to NUMDBGR1:
DBGRC in BIT;
ADBGRI in INTEGER range 0 to NUMDBGRTI:
ADBGR2 in INTEGER range 0 to NUMDBGRI.
ADBGRC in BIT;
NEXT_ADDR in BIT;
APEQN out BIT;
PEQN out BIT):

136

-- Response Analyzer

component RESPONSE_ANALYZER
generic(LFSRDEG:INTEGER);
port(CLK :in BIT;

RESET Tin BIT;
CLRSIG :in BIT:
ENABLE 1in BIT;
LOADREGHI 1in BIT;
LOADREG2 tin BIT;
B 1in BIT;
PEQN in BIT;
PHASE2 . in BIT;
STATE .in STATES;
ASYNCSTATE :in STATES;
PASS :out BIT);
end component;

-- Test Pattern Generator
component TEST_PATTERN_GENERATOR

port(CLK 1in BIT:
RESET :in BIT;
WRITE cin BIT;
READ ;in BIT;
B :in BIT;
Q :out XO0IZ);
end component;
-- Phase2 Latch
component PHASE2LATCH
port(CLR tin BIT;
CLRPHASE2 :in BiT;
EN 1 in BIT;
D 1in BIT;
Q :out BIT);
wiui coimponent;
-- PASS/FAIL Latch
component PASSLATCH
port(CLR in BIT;
EN tin BIT;
D :in BIT;
Q :out BIT);
end component;
begin
PASSFAIL <= PF;
READ <= IREAD;
WRITE <= IWRITE;
DATA <=DB;

137

BIST_CONTROL: BIST_CONTROLLER

port map(CLK => CLK,
2ESET = CLR,
- "ART_BIST => START_BIST,
h:TACK => BISTACK,

LAST_ADDR => LAST_ADDR,
ALAST_ADDR => ALAST_ADDR,
LAST_DBGR => LAST_DBGR,

PEQN = PEQN,
APEQN => APEQN,
PHASE2 => PHASE2,
PASS => PASS,
LPHASE?2 => LPHASE2,
CLRPHASE2 => CLRPHASE?2,
READ = IREAD,
WRITE => IWRITE,

BIST_BUSY => BIST_BUSY,
BIST_DONE => BIST_DONE,
NEXT_ADDR => NEXT_ADDR,
NEXT_DBGR => NEXT_DBGR,
LOADREGI => LOADREG]I,

LOADREG2 = LOADREG?2,
CLRSIG => CLRSIG,
CRESET => CRESET,
FAIL => FAIL,
STATE = STATE,

ASYNCSTATE => ASYNCSTATE);

ADDR_GEN: ADDRESS_GENERATOR

generic map(N=>N)

port map(CLK => CLK,
RESET => CRESET,
NEXT_ADDR => NEXT_ADDR,
ALAST_ADDR => ALAST_ADDR,
LAST_ADDR => LAST_ADDR,
ADDR = ADDR,
ADDRA => ADDRA);

-- Selectively generate background counter based of the value of V

SELECT_BGC:

if V <=3 generate

BG_COUNT: BACKGROUND_COUNTER

generic map(NUMDBGR=>NUMDBGR)

port map(CLK = CLK,
RESET = CRESET,
NEXT_DBGR => NEXT_DBGR,
LAST_DBGR => LAST_DBGR,
DBGR => DBGRY);

end generate;

138

SELECT_BGCV4:

if V =4 generate

BG_COUNT_V4: BACKGROUND_COUNTER_V4

generic map(NUMDBGR=>NUMDBGR)

port map(CLK => CLK,
RESET => CRESET,
NEXT_DBGR => NEXT_DBGR,
LAST_DBGR => LAST_DBGR,

DBGR => DBGR,

DBGRC => DBGRC,

ADBGR => ADBGR,

ADBGRC => ADBGRC);
end generate;

SELECT_BGCVST:
if V =15 generate
BG_COUNT_V5T: BACKGROUND_COUNTER_VS5T
generic map(NUMDBGR 1=>NUMDBGR |, NUMDBGR2=>NUMDBGR2)
port map(CLK = CLK,
RESET => CRESET,
NEXT_DBGR => NEXT_DBGR,
LAST_DBGR => LAST_DBGR,

DBGR1 => TDBGRI,
DBGR2 => TDBGR2,
DBGRT => TDBGRT,
DBGRC: => TDBGRC,
ADBGR!1 => TADBGRI,
ADBGR2 = TADBGR?2,
ADBGRT => TADBGRT,
ADBGRC => TADBGRC),
end generate;

SELECT_BGCV5X:

if V = 25 generate

BG_COUNT_V5X: BACKGROUND_COUNTER_V5X

generic map(NUMDBGR 1=>NUMDBGR1)

port map(CLK => CLK,
RESET => CRESET,
NEXT_DBGR => NEXT_DBGR,
LAST_DBGR => LAST_DBGR,

DBGRI => XDBGRI,

DBGR?2 => XDBGR?2,

DBGRC => XDBGRC,

ADBGRI => XADBGRI,

ADBGR? => XADBGR?2,

ADBGRC = XADBGRC);
end generate;

-- Selectively generate background logic based of the value of V
SELECT_BG2:
if V = 2 generate
BGLOGIC_V2: BACKGROUND_LOGIC_V2

port map(APEQN => APEQN,
PEQN => PEQN);
end generate;

139

SELECT_BG3:

if V =3 generate

BGLOGIC_V3: BACKGROUND_LOGIC_V3

generic map(N=>N, M=>M,NUMDBGR=>NUMDBGR,S$=>5)

port map(CLK => CLK,
RESET => CRESET,
ADDRESS = ADDRA,
DBGR = DBGR,
NEXT_ADDR => NEXT_ADDR,
APEQN = APEQN,
PEQN => PEQNY),

end generate;

SELECT_BG4:

if V = 4 generate

BGLOGIC_V4: BACKGROUND_LOGIC_V4

generic map(NUMXOR=>NUMXOR ,N=>N,M=>M,NUMDBGR=>NUMDBGR)

port map(CLK => CLK,
RESET => CRESET,
ADDRESS = ADDRA,
DBGR => DBGR,
DBGRC => DBGRC,
ADBGR = ADBGR,
ADBGRC = ADBGRC,
NEXT_ADDR => NEXT_ADDR,
PEQN => PEQN,
APEQN => APEQN);

end generate;

SELECT_BGST:

if V =15 generate

BGLOGIC_V5T: BACKGROUND_LOGIC_Vs5T

generic map(N=>N,M=>M,NUMXOR=>NUMXOR ,NUMDBGR 1=>NUMDBGR1
NUMDBGR2=>NUMDBGR?2)

port map(CLK => CLK,
RESET => CRESET,
ADDRESS => ADDRA,
DBGRI => TDBGRI,
DBGR2 = TDBGR2,
DBGRT => TDBGRT,
DBGRC => TDBGRC,
ADBGRI1 => TADBGRI,
ADBGR2 => TADBGR?,
ADBGRT => TADBGRT,
ADBGRC => TADBGRC,
NEXT_ADDR => NEXT_ADDR,
APEQN => APEQN,
PEQN => PEQN);

end generate;

140

SELECT_BGSX:

if V =25 generate

BGLOGIC_V5X: BACKGROUND_LOG'C_V5X

generic map(N =>N,M=>M ,NUMXOR=>NUMXOR ,NUMDBGR | =>NUMDBGR1)

port map(CLK => CLK,
RESET => CRESET,
ADDRESS = ADDRA,
DBGR1 => XDBGRI,
DBGR2 => XDBGR?2,
DBGRC => XDBGRC,
ADBGR!1 => XADBGR],
ADBGR2 => XADBGR?2,
ADBGRC = XADBGRC,
NEXT_ADDR => NEXT_ADDR,
APEQN => APEQN,
PEQN = PEQN);

end generate;

RESP_ALYZR: RESPONSE_ANALYZER
generic map(LFSRDEG=>LFSRDEG)

port map(CLK => CLK,
RESET = CRESET,
CLRSIG = CLRSIG,
ENABLE => IREAD,

LOADREGI => LOADREG],
LOADREG2 => LOADREG2,

B => CONVERT_TO_BIT(DB),
PEQN => PEQN,
PHASE2 => PHASE2?,
STATE = STATE,
ASYNCSTATE => ASYNCSTATE,
PASS => PASS);

TPG: TEST_PATTERN_GENERATOR

port map(CLK => CLK,
RESET => CRESET,
WRITE => IWRITE,
F:AD => IREAD,
B = CONVERT_TO_BIT(DB),
Q => DB);

P2FF:PHASE2LATCH

port map(CLR => CRESET,
CLRPHASE2 => CLRPHASE?2,
EN = LPHASE2,
D = PHASE2,
Q = PHASE?2);

PFF: PASSLATCH

port map(CLR => FAIL,
EN = CRESET,
D = PF,
Q => PF);

end STRUCTURE;

141

BIST Controller
File: bist_cont.vhd

use work.BTYPES.all;
entity BIST_CONTROLLER is
port(CLK :in BIT; --system clock

RESET 1 in BIT; --system reset
START_BIST :in BIT; --start BIST signal
BISTACK :in BIT; --exit BIST signal
LAST_ADDR :in BIT; --latched last address signal
ALAST_ADDR :in BIT; --unlatched last address signal
LAST_DBGR :in BIT; --latched last databackground signal
PEQN :in BIT; --latched P bit equal N bit signal
APEQN :in BIT; --unlatched P bit equal N bit signal
PHASE? :in BIT; --phase2 signal
PASS :in BIT; --Pass input from response analyzer
LPHASE? : out BIT; --set PHASE2 latch
CLRPHASE2 : out BIT; --clear PHASE?2 latch
READ : out BIT; --BIST controller read output
WRITE : out BIT; --BIST controller write output
BIST_BUSY : out BIT; --BIST_BUSY output
BIST_DONE : out BIT; --BIST_DONE output
NEXT_ADDR : out BIT; --increment address counter output
NEXT_DBGR : out BIT; --increment background counter output
LOADREG! : out BIT; --load register signal
LOADREG2 : out BIT; --load register signal
CLRSIG : out BIT; --clear signature register signal
CRESET : out BIT; --controller reset signal
FAIL : out BIT; --FAIL output to PASS/FAIL latch
STATE : out STATES; --current state of type STATES

ASYNCSTATE : out STATES); --next state
end BIST_CONTROLLER;

architecture BEHAVIORAL_DESCRIPTION of BIST_CONTROLLER is

signal ILPHASE2 : BIT; --unlatched set PHASE? signal
signal ICLRPHASE2 : BIT: --unlatched clear PHASE? signal
signal IREAD : BIT; --unlatched read signal
signal IWRITE : BIT; --unlatched write signal
signal IBIST_BUSY : BIT; --unlatched BIST_BUSY signal
signal IBIST_DONE : BIT; --unlatched BIST_DONE signal
signal INEXT_ADDR : BIT; --unlatched increment address counter signal
signal INEXT_DBGR : BIT; --unlatched increment background counter signal
signal ILOADREG! : BIT; --unlatched load register 1 signal
signal ILOADREG?2 : BIT; --unlatched load register 2 signal
signal ICLRSIG : BIT; --unlatched clear signature register signal
signal ICRESET : BIT; --unlatched BIST controller reset
signal IFAIL : BIT; --unlatched FAIL signal
signal ISTATE : STATES; --internal current state variable
signal ASTATE : STATES: --internal next state variable
begin
STATE <= ISTATE;
ASYNCSTATE <= ASTATE;
P_FSM : process(ISTATE,START_BIST,BISTACK,ALAST_ADDR,LAST_ADDR,LAST_DBGR,
PEQN,APEQN,PHASE?2)
begin

142

case ISTATE is
when SO => if START_BIST ="1" then --SO branch condition

ASTATE <= S1; --assign next state to S|
else
ASTATE <= S0; --assign next state to SO
end if;
when S1 => if PHASE2 ="'1' then
ASTATE <= S2;
else
ASTATE <= S3;
end if;

when 82 => ASTATE <=S3;
when 83 => if PHASE2 ='0' and LAST_ADDR ="'1' then
ASTATE <= S5;
elsif PHASE2 ='0' and LAST_ADDR = Q' then
ASTATE <= S1;
else
ASTATE <= S4;
end if;
when 84 => if LAST_ADDR ='1' then
ASTATE <=8S5;
else
ASTATE <= S1;
end if;
when 85 => if (PHASE2 ='0'and LAST_ADDR ="'1")or
(PEQN ="'1'and LAST_ADDR ='1") then
ASTATE <= §7;
elsif (PHASE2 ='0" and LAST_ADDR ='0') or
(PEQN ="I"and LAST_ADDR ='0') then
ASTATE <= S5;
else
ASTATE <= S6;
end if;
when S6 => if LAST_ADDR ='0' then
ASTATE <= S5;
else
ASTATE <= §7;
end if;
when 87 => ifLAST_ADDR ='l"and PHASE2 ="'1' then
ASTATE <= S8;
elsif LAST_ADDR ='1' and PHASE2 ='0)' then
ASTATE <= S9;
else
ASTATE <= §7;
end if;
when S8 => if LAST_DBGR ="1"then
ASTATE <= S10;
else
ASTATE <= S9;
end if;
when S9 => ASTATE <=S1;
when S10=> if BISTACK ="1'then
ASTATE <= S0;
else
ASTATE <= S10;
end if;
end case;
end process P_FSM;

143

P_OUTPUT: process (ASTATE PHASE2,PASS. ALAST_ADDR.APEQN,LAST_ADDR)
begin
-- assign unlatched controller output values in the next state
case ASTATE is
when SO => ILPHASE2 <="'0";
ICLRPHASE2 <='0";
IREAD <="0";
IWRITE <="0}
IBIST_BUSY <='0"
IBIST_DONE <=0
INEXT_ADDR <=0
INEXT_DBGR <«="'0";
ILOADREG! <=0,
ILOADREG2 <='0%

ICLRSIG <="'0
ICRESET <="0
IFAIL <='0";

when SI => ILPHASE2 <="'0";
ICLRPHASE2 <=0
IREAD <="1"
IWRITE <=0
IBIST_BUSY <='I
IBIST_ DONE <=0
INEXT_ADDR <=0
INEXT_DBGR <=0,
ILOADREG]I <="'0";
ILOADREG2 <='0

ICLRSIG <="0}
ICRESET <="1"
IFAIL <=0,

when S2 => ILPHASE2 <="'04
ICLRPHASE2 <=0}
IREAD <="0%
IWRITE <="l;
IBIST_BUSY <='I";
IBIST_DONE <='0%
INEXT_ADDR <='0
INEXT_DBGR <="'0"%
ILOADREG! <=0}
ILOADREG2 <='0%

ICLRSIG <=0
ICRESET <="I";
IFAIL <="'0}

when S3 => ILPHASE2 <="0"
ICLRPHASE2 <«='0"
IREAD <="l"
IWRITE <=0
IBIST_BUSY <='I';
IBIST_DONE <='0';
INEXT_ADDR <= not(PHASE2);
INEXT_DBGR <=0
ILOADREGI <= not(PHASE?2) and LAST_ADDR;
ILOADREG2 <=0

ICLRSIG <='0"
ICRESET <="'l
IFAIL <="0}

144

when S4 => ILPHASE2 <="'0";
ICLRPHASE2 <='0;
IREAD <="'0"
IWRITE z="1"
IBIST_BUSY <='l
IBIST_DONE <='0";
INEXT_ADDR <='1";
INEXT_DBGR <= '0"
ILOADREG1 <=0
ILOADREG2 <='0

ICLRSIG <="0"
ICRESET <="l"
IFAIL <= not(PASS) and LAST_ADDR;

when S5 => ILPHASE2 <="0"
ICLRPHASEZ2 <=0,
IREAD <= not(APEQN);
IWRITE <="0"%
IBIST_BUSY <='1
IBIST_DONE <=0
INEXT_ADDR <= not(PHASE2) or APEQN;
INEXT_DBGR <='0
ILOADREGI <=0
ILOADREG2 <=0}

ICLRSIG <=0,
ICRESET <=
IFAIL <=0

when S6 => ILPHASE2 <="0"
ICLRPHASE2 <=0

IREAD <="0"
IWRITE <="l';
IBIST_BUSY <='l%

IBIST_DONE <=0
INEXT_ADDR <=l
INEXT_DBGR <=0
ILOADREGI <=0}
ILOADREG2 <=0

ICLRSIG <="0"
ICRESET <="l"}
IFAIL <="0";

when S7 => ILPHASE2 <="'0";
ICLRPHASE2 <='0'
IREAD <="1"
IWRITE <='0";
IBIST_BUSY <="'l%
IBIST_ DONE <='0;
INEXT_ADDR <='I";
INEXT_DBGR <='0";
ILOADREG] <=0
ILOADREG2 <=not(PHASE2) and ALAST_ADDR,;

ICLRSIG <="0";
ICRESET <=1
IFAIL <=0

145

when S8 => ILPHASE2 <="'0";
ICLRPHASE2 <=0
IREAD <='0";
IWRITE <="'0";
IBIST_BUSY <='I"
IBIST_DONE <=0
INEXT_ADDR <='0"
INEXT_DBGR <='l";
ILOADREG! <='0";
ILOADREG2 <=0

ICLRSIG <="'0";
ICRESET <="1%
IFAIL <= not(PASS);

when S9 => JLPHASE2 <= not(PHASE?);
ICLRPHASE2 <= PHASE2;
IREAD <="'0"
IWRITE <=0
IBIST_BUSY «<='I";
IBIST_DONE <='0;
INEXT_ADDR <='0'
INEXT_DBGR <='0";

ILOADREGI ='0%
ILOADREG2 <=0,
ICLRSIG <="l";
ICRESET <="l}
IFAIL <="'0

when S10 => ILPHASE2 <="'0";
ICLRPHASE2 <=0

I READ <="'0"
IWRITE <=0

IBIST_BUSY <=0,

IBIST_DONE <="'l"

INEXT_ADDR <='0';

INEXT_DBGR <='0";

ILOADREG! <='0";

ILOADREG2 <=0

ICLRSIG <="0";
ICRESET <="l";
IFAIL <=0

end case;
end process P_OUTPUT;

146

P_SYNC:process(RESET,CLK,ASTATE,ILPHASE2,ICLRPHASE2,/READ.IWRITE,IBIST_BUSY,
IBIST_DONE,INEXT_ADDR,INEXT_DBGR,ILOADREG ! ILOADKEG2,ICLRSIG,ICRESET)

begin
if RESET = '0' then --asynchronous reset
ISTATE <= S0; --reset current state to SO
LPHASE2 <=0 --reset all controller outputs to 0
CLRPHASE2 <=0
READ <="0"%
WRITE <="'0"

BIST_BUSY <='0%
BIST_ DONE <='0%
NEXT_ADDR <='0"%
NEXT_DBGR <='0
LOADREG! <="0%
LOADREG2 <='0

CLRSIG <="0"
CRESET <=0
FAIL <="0"

elsif CLK ='0" and CLK'ever! : .- --synchronize to negative clock edge
ISTATE <z --latch next state as current state
LPHASE2 < .~ -latch all controller ouputs
CGIRPHASEZ <= RE.;
READ <=
WRITE NGt

BIST BUSY <=I'r 3USY;
BIST DONE <=Ibl5i_DONE;
NEXT_ADDR <=INEXT ADDR;
NEXT_DBGR <= INEXT_DBGRK;
LOADREG! <=I1LOADREGI;
LOADREG2 <=ILOADREG2;

CLRSIG <= ICLRSIG;
CRESET <= ICRESET;
FAIL <= IFAIL;

end if;
end process P_SYNC;
end BEHAVIORAL_DESCRIPTION;

147

Address Generator
File: add_gen.vhd

entity ADDRESS_GENERATOR is

generic(N:INTEGER);
port(CLK : in Bit;
RESET :in Bit;
NEXT_ADDR :in Bit;
ALAST_ADDR : out Bit;
LAST_ADDR : out Bit;

ADDR : out INTEGER range 0 to N-1-

ADDRA

end ADDRESS_GENERATOR,;

: out INTEGER range 0 to N-1);

--N: size of RAM

--system clock

--bist controller reset
--increment address signal
--unlatched last address
--latched last address signal
--address signal (latched) counts
--from 0 to N-1

--address + | signal (unlatched)

architecture BEHAVIORAL_DESCRIPTION of ADDRESS_GENERATOR is

begin

signal IADDR : INTEGER range 0 to N-1;
signal IADDRA : INTEGER range 0 to N-1;

signal iLAST_ADDR : Bit;
signal IALAST_ADDR : Bit:

ADDR<=iADDR;
ADDRA<=iADDRA;
iIADDRA<=(IADDR+1) mod N;
ALAST_ADDR <=iALAST_ADDR;
P_LASTADDR : process (iIADDRA)
begin

if IADDRA=N-1 then

iALAST_ADDR <="1"

clse

iALLAST_ADDR <=0,

end if;
end process P_LASTADDR;

--internal ADDR signal
--internal ADDRA signal
--internal LAST_ADDR signal
--internal ALAST_ADDR signal

--address + 1

--ALAST_ADDR =1 if ADDRA =N-|

P_COUNT: process (CLK,RESETiADDR,iADDRANEXT_ADDR.IALAST_ADDR)

--synchronize to negative clock edge

LAST_ADDR <=iALAST_ADDR;

begin
if RESET = "0 then
iADDR <= 0;
LAST_ADDR <= 0}
elsif CLK='0" and CLK'EVENT then
if NEXT_ADDR ="1" then
iADDR<=iADDRA;
end if;
end if;
end process P_COUNT;

end BEHAVIORAL_DESCRIPTION;

148

Background Counter (V=2 and V=3)

File: background_counter.vhd

entity BACKGROUND_COUNTER is

generic(NUMDBGR : INTEGER); --NUMDBGR: number of backgrounds
port(CLK : in BIT; --system clock

RESET : in BIT; --bist controller reset

NEXT_DBGR : in BIT; --increment background counter signal
LAST_DBGR : out BIT; --last data background signal

DBGR : out INTEGER range 0 to NUMDBGR-1); --background number

end BACKGROUND_COUNTER;

architecture BEHAVIORAL_DESCRIPTION of BACKGROUND_COUNTER is
signal iDBGR : INTEGER range 0 to NUMDBGR-1; --internal DBGR signal
begin
DBGR<=iDBGR;
P_LLASTDBGR: process(iDBGR)
begin
if IDBGR = NUMDBGR - 1 then --last data background
LAST_DBGR <="'1";
else
LAST_DBGR <="0;
end if;
end process P_LASTDBGR;
D_COUNT: process (CLK,RESET,iDBGR,NEXT_DBGR)
begin
if RESET ='0' then --asynchronous reset
iDBGR <= 0;
elsif CLK='0"' and CLK'event then --synchronize to negative clock edge
if NEXT_DBGR ='I" then
if iDBGR = NUMDBGR - 1 then
iDBGR <=0,
else
iDBGR <= iDBGR+I;--increment background counter
end if;
end if;
end if;
end process D_COUNT;
end BEHAVIORAL_DESCRIPTION;

149

Background Counter (V=4)

File: background_counter_v4.vhd
entity BACKGROUND_COUNTER_V4 is
generic(NUMDBGR: INTEGER});
--N'JMDBGR: number of backgrounds in the first half of the background matrix

port(CLK : in BIT; --system clock

RESET :in BIT; --BIST controller reset

NEXT_DBGR :in BIT; ~-increment DBGR input

LAST_DBGR :outBIT; --last data background signal

DBGR : out INTEGER range 0 to NUMDBGR-1;

DBGRC : out BIT;

ADBGR : out INTEGER range 0 to NUMDBGR- I;--background number for N bit
ADBGRC : out BIT); --ADBGRC for N bit

end BACKGROUND_COUNTER_V4;
architecture BEHAVIORAL_DESCRIPTION of BACKGROUND_COUNTER_V4 is

signal iDBGR : INTEGER range 0 to NUMDBGR-1; --internal DBGR signal

signal iDBGRC : BIT; --internal DBGRC signal

signal iADBGR : INTEGER range 0 to NUMDBGR-1: --internal ADBGR signal

signal iADBGRC: BIT; --internal ADBGRC signal
begin

DBGR<=iDBGR;

DBGRC<=iDBGRC;

ADBGR<=iADBGR;

ADBGRC<=iADBGRC:
P_INCREMENT: process (iDBGR,iDBGRC)

begin
if iDBGR = NUMDBGR-1 then
iADBGR <=0 --rolls back to 0 after maximum
else
iADBGR <= iDBGR+1 ; --increment background number
end if;
if iDBGR = NUMDBGR-1 then
iADBGRC <= not(iDBGRC); --toggle ADBGRC
else
iADBGRC <= iDBGRC;
end if;

end process P_INCREMENT:
P_LASTDBGR: process(iDEGR,iDBGRC)
begin
if iDBCR = NI'"#£ 2 3R-1 and iDBGRC ="'1" then
LAST_DBGR <=1 --have reached last background
else
LLAST_DBGR <= 0’;
end if’
end process P_LASTDBGR:

150

D_COUNT: process (CLK,RESET,iADBGR,iADBGRC.NEXT_DBGR)

begin
if RESET = ‘0’ then -- asynchronous reset
iDBGR <=0;
iDBGRC <=0,
elsif CLK="0' and CLK'event then -- synchronize to negative clock edge
if NEXT_DBGR ="'I" then
iDBGR <=iADBGR; --latch DBGR

iDBGRC <=iADBGRC; --latch DBGRC
end if;
end if;
end process D_COUNT:
end BEHAVIORAL_DESCRIPTION;

Bagckground Counter (V=5t)

File:

background_counter_v5t.vhd

entity BACKGROUND_COUNTER_VST is

generic(NUMDBGR1 : INTEGER;NUMDBGR2:INTEGER);

-- NUMDBGR1 : number of backgrounds in Zones I and II of base matrix
-- NUMDBGR? : number of backgrounds in base matrix

port(CLK :in BIT;

RESET :in BIT;

MNEXT _DBGR :in BIT; --incremen: background number
LAST_DBGR :outBIT; --last data background signal
DBGRI : out INTEGER range. 0 to NUMDBGRKI;

DBGR?2 : out INTEGEK range 0 .o NUMDBGR?2;

DBGRT s out BIT; --tranpose matrix signal

DBGRC : cut BIT; --complement matrix signal
ADBGR! s out INTETER range 0 to NUMDBGR 1;--unlatched DBGR1
ADBGR2 :eut INTEGER range 0 to NUMDBGR2;--unlatched DBGR2
ADBGRT :eul BITS --unlatched DBGRT

ADBGRC : out BIT); --unlatched DBGRC

end BACKGRMOUND_COUNTER _V5T;

architevture BEHAVIORAL_DESCRIPTION of BACKGROUND_COUMTER_VS5T is

begin

signal iDBGR! : INTEGER range ¢ to NUMDBGRI;
signal iDBGR2 : INTEGER range 0 to NUMDBGR?2;
signal iDBGRT : BIT;
signal iDBGRC : BIT;
signal iIADBGRI1 : INTEGER range 0 to NUMDBGRI;
signal iIADBGR?2 : INTEGER range 0 to NUMDBGR?;
signal iADBGRT : BIT;
signal iADBGRC : BIT;

DBGRI1<=iDBGRI;

DBGR2<=iDBGR2;

DBGRT<=iDBGRT;

DBGRC<=iDBGRC:;

ADBGRI1<=iADBGRI;

ADBGR2<=iADBGR2;

ADBGRT<=iADBGRT;

ADBGRC<=iADBGRC;

P_INCREMENT: process (iDBGR1,iDBGR2,iDBGRT.iDBGRC,iADBGR?2)

begin

if iDBGR1 = NUMDBGRI then
iIADBGR1 <= iAD3GR241; --ADBGRI starts from DBGR2+1]

clse
iADBGR1 <= iDBGR1+1 ; -- ADBGRI1+1

end if}

it IDBGR2 = NUMDBGR2 anu -.3JBGRI = NUMDBGRI1 then
iADBGR2 <= 0; --ADBGR2 staris from 0

elsit iDBGR2 < NUMDBGR?2 and iDBGR1 = NUMDBGR! then
iADBGR2 <=iDBGR2 + 1; -- ADBGR2+1

else

iADBGR2 <= iDBGR?2;
end if;

if IDBGR2 = NUMDBGR?2 and iDBGR1 = NUMDBGRI then

iADBGRT <= not(iDBGRT); -toggle ADBGRT
eise
iADBGRT <= iDBGRT;
end if;
if IDBGRT ="1' and iDBGR2 = NUMDBGR?2 and iDBGR1 = NUMDBGRI then
iADBGRC <= not(iDBGRC); -toggle ADBGRC
else
iADBGRC <= iDBGRC:
end if;

end process INCREMENT;
P_LASTDBu«: process(iDBGR1,iDBGR2,iDBGRT,il. 13 .«C)
begin
if iDBGR1 = NUMDBGR1 and iDBGR2 = NUMDBGR? and iDBGRT ="'
and iDBGRC ="1" then
LAST_DBGR <="'1"; -- have reached last background
else
LAST_DBGR <='0;
end if;
end process P_LASTDBGR;
D_COUNT: process (CLK,RESET,iADBGR1,iADBGR2,iADBGRT,iADBGRC,NEXT_DBGR)
begin
if RESET = '0' then --asynchrounous reset
iDBGR1 <= 1;
iDBGR2 <=0;
iDBGRT <='0';
iDBGRC <="0";
elsif CLK='0' and CLK'event +::en
if NEXT_DBGR ="1' then
iDBGR1 <=iADBGRI; --latch all outputs
iDBGR2 <=iADBGR2;
iDBGRT <=iADBGRT;
iDBGRC <=iADBGRC;
end if;
end if;
cnd process D_COUNT;
eand BEHAVIORAL_DESCRIPTION;

183

Background Counter (V=5x)

File: background_counter_v5x.vhd

entity BACKGROUND_COUNTER_V5X is

generic(NUMDBGRI1 : INTEGER); --number of backgrounds in base matrix
port(CLK : in BIT;

RESET :in BIT;

NEXT_DBGR :inRIT; --increment background number
LAST_DBGR : out BIT; -- last data background signal
DBGRI1 : out INTEGER range 0 to NUMDBGRI;

DBGR2 : out INTEGER range 0 to NUMDBGRI:;

DBGRC : out BIT;

ADBGRI : out INTEGER range 0 to NUMDBGRI;

ADBGR2 : out INTEGER range 0 to NUMDBGRI;

ADBGRC : out BIT);

end BACKGROUND_COUNTER_V5X;

architecture BEHAVIORAL_DESCRIPTION of BACKGROUND_CCUNTER_V5X is
signal iDBGR! : INTEGER range 0 {o NUMDBGRI;
signal iDBGR2 : INTEGER range G to NUMDBGR1;
signal iDBGRC : BIT;
signal iADBGRI : INTEGER range 0 to NUMDBGRI;
signal iADBGR2 : INTEGER range 0 to NUMDBGRI;
signal iADBGRC : BIT;

begin
DBGR1<=iDBGRI;
DBGR2<=iDBGR2;
DBGRC<=iDBGRC;
ADBGR1<=iADBGRI;
ADBGR2<=iADBGR2;
ADBGRC<=iADBGRC;

P_INCREMENT: process (iDBGR1,iDBGR2,iDBGRC)

begin

it iDBGR1 = NUMDBGRI1 then
IADBGR1 <= 0; --ADBGRI starts from 0

else
iIADBGR1 <= iDBGRI+1] ; --ADBGR1+1

end if;

if iDBGR2 = NUMDBGRI1 and iDBGR! = NUMDBGRI then
iADBGR2 <= 0; --ADBGR2 starts from 0

elsif iDBGR2 < NUMDBGRI1 and iDBGR! = NUMDBGRI then
iADBGR2 <= iDBGR2 + I; -- ADBGR2+1

else
iADBGR2 <= iDBGR2;

end if;

if iDBGR2 = NUMDBGR1! and iDBGR| = NUMDBGR] then
iADBGRC <= not(iDBGRC); --toggle ADBGRC

else
iADBGRC <= iDBGRC(;

end if;

end process P_INCREMENT;

154

P_LASTDBGR: process(iDBGR1.iDBGR2,iDBGRC)

begin
if iDBGR1 = NUMDBGR!1 and iDBGR2 = NUMDBGR| and iDBGRC ='I" then
LAST_DBGR <="1% --have reached last background
else
LAST_DBGR <="0";
end if;

end process P_LASTDBGR;

D_COUNT: process (CLK,RESET,iADBGR1,iADBGR2,iADBGRC,NEXT. DBGR)
begin
if RESET =0’ then
iDBGRI <=0; --reset outputs to 0
iDBGR2 <= 0;
iDBGRC <='0';
elsif CLK='0" and CLK'event then
if NEXT_DBGR =1 then
iDBGR1 <=iADBGRI; --latch ouputs
iDBGR2 <=iADBGR?2;
iDBGRC <= iADBGRC;
end if;
end if;
end process D_COUNT;
end BEHAVIORAL_DESCRIPTION;

155

Background Code Logic (V=2)
File: bg2.vhd

-- Background matrix for V-2 has two columns, all-zero column and all-one column, therefore P is
-- never cqual to N

entity BACKGROUND_LOGIC_V2 is

port(APEQN : out BIT; --P=N aniput

PEQN : out BIT), --unlaiched P=N output
end BACKGROUND_LOGIC_V?2;

architecture BEHAVIORAL _DESCRIPTION of BACKGROUND_LOGIC_V2 is
begin

APEQN <='0"; --AP=N always 0

PEQN <=0 --P=N always 0
end BEHAVIORAL_DESCRIPTION;

156

Background Code Logic (V=3

File: bg3.vhd
use work. CONVERT_TYPE.all;

entity BACKGROUND_LOGIC_V3 is

generic(N:INTEGER;M:INTEGER;NUMDBGR:INTEGER;S:INTEGERY);

-- N: size of RAM

-- M: log2(N), width of address bus

-- NUMDBGR: number of backgrounds

-- S: log2(M) number of bits to represent the number of zeros in the address bits.

port(CLK :in BIT; -- system clock

RESET :in BIT; -- controller reset
ADDRESS :in INTEGER range 0 to N-1; -- address bus

DBGR : in INTEGER range 0 to NUMDBGR-1; -- background number
NEXT_ADDR :in BIT; -~ next address signal
APEQN : out BIT; -- unlatched P=N signal
PEQN : out BIT); -- latched P=N signal

end BACKGROUND_LOGIC_V3;

architecture BEHAVIORAL_DESCRIPTION of BACKGROUND_LOGIC_V3 is

begin

signal C : BIT_VECTOR(0 to NUMDBGR);
signal ADDR : BIT_VECTOR(M-1 downto Q);
signal SUMZERO: INTEGER range 0 to M;

signal SUMO : BIT_VECTOR(S-1 downto 0);

signal AN : BIT;

signal AP : BIT;

signal iApegN : Bit ;

component SUMZEROLOGIC --use SUMZEROLOGIC component
generic(M:INTEGERY);
port(ADDR : in BIT_VECTOR(M-1 downto 0);

NUMZEROS : out INTEGER range 0 to M);
end component;

ADDR <= INTEGER_TO_BIT_VECTOR(ADDRESS,M); --convert address from integer
--to bit vector

Ul: SUMZEROLQOGIC --instantiate SUMZEROLOGIC to count
--the number of zeros
generic map(M =>M) --address bus ADDR
port map (ADDR => ADDR,
NUMZEROS => SUMZERO); --return number of zeros in integer
SUMO <= INTEGER_TO_BIT_VECTOR(SUMZERO,S);--convert number of zeros to bit vector
C <='0'& ADDR & 'l' & SUMO & '0"; --concatenate the bits in the order
-- '0’,ADDR,'I',SUMZERO,'0’ into C
AP<=C(DBGR); --unlatched P bit
AN<=C(DBGR+1); --unlatched N bit
iAPEQN <= not(AP xor AN); --iApegqN =1 if AP=AN

APEQN <= iAPEQN;

157

P_DBGR: process (CLK,RESET,NEXT_ADDR,iAPEQN)

begin

if RESET = '0' then --asynchronous set
PEQN <="'I";

elsif CLK ='0" and CLK'event then --negative ciock edge
if NEXT_ADDR ="1" then

PEQN <=iAPEQN; --latch P=N

end if;

end if}

end process P_DBGR;
end Behavioral_description;

158

SUMZERO Logic

File: sumOlogic.vhd
-- use sumzero3 and sumzero? to find the number of zeros in M-bit address bus
-- output from the sumzero cells are input into a tree structure adder

entity SUMZEROLOGIC is
generic(M:INTEGER);
port(ADDR : in BIT_VECTOR(M-1 downto 0); --M-bit address
NUMZEROS : out INTEGER range 0 to M); --number of zeros
end SUMZEROLOGIC;

architecture BEHAVIORAL_DESCRIPTION of SUMZEROLOGIC is

signal TEMPZERO! : INTEGER range 0 to 3;
signal TEMPZERO2 : INTEGER range 0 to 3;
signai TEMPZERO3 : INTEGER range 0 to 3;
signal TEMPZERO4 : INTEGER range 0 to 3;
signal TEMPZEROS : INTEGER range 0 to 3;
signa!l TEMPZERO6 : INTEGER range 0 to 3;
signal TEMPZERO7 : INTEGER range 0 to 3;
signal TEMPZERO8 : INTEGER range 0 to 3;
signal TEMPZERO9 : INTEGER range 0 to 3;
signal TEMPZEROla : INTEGER range 0 to 2;
signal TEMPZERO2a : INTEGER range O to 2;
signal TEMPZERO3a : INTEGER range 0 to 2;
signal TEMPZERO4a : INTEGER range O to 2;
signal TEMPZEROS5a : INTEGER range 0 to 2;
signal TEMPZERO6a : INTEGER range 0 to 2;
signal TEMPZERO7a : INTEGER range 0 to 2;
signal TEMPZERO8a : INTEGER range O to 2;
signal TEMPZERO9a : INTEGER range 0 to 2;
component SUMZERO3

port (I:in BIT_VECTOR(2 downto 0);
Q : out INTEGER range 0 to 3);
end component;
component SUMZERO2
port{ { - in BIT_VECTOR(1 downto 0);
Q : out INTEGER range 0 to 2);
end component;
begin
M2:
if M=2 generate
Utl: SUMZERO2
port map (I => ADDR,
Q => NUMZEROS);
end generate;
M3:
if M=3 generate
Ul: SUMZERO3
port map (I =>ADDR,
Q => NUMZEROS);
end generate;
M4:
if M=4 generate
Ul: SUMZERO?2
port map (I => ADDR(1 downto 0),
Q => TEMPZEROIla);

159

U2: SUMZERO?2
port map (I => ADDR(3 downto 2),
Q => TEMPZERO2a);
NUMZEROS <= TEMPZEROIa + TEMPZERO2a;
end generate;
MS:
if M=5 generate
Ul: SUMZERQC3
port map (I => ADDR(2 downto 0),
Q => TEMPZERO!);
U2: SUMZERO2
port map (I => ADDR(4 downto 3),
Q => TEMPZERO2a);
NUMZEROS <= TEMPZERO1 + TEMPZERO23;
end generate;
Mé6:
if M=6 generate
Ul: SUMZERO3
port map (I => ADDR(2 downto 0),
Q => TEMPZERO1);
U2: SUMZERO3
port map (I => ADDR(5 downto 3),
Q => TEMPZERO2);
NUMZEROS <= TEMPZEROI + TEMPZERO2;
end generate;
M7:
if M=7 generate
Ul: SUMZERO3
port map (I => ADDR(2 downto 0).
Q => TEMPZERO!);
U2: SUMZERO2
port map (I => ADDR(4 downto 3),
Q => TEMPZERO2a);
U3: SUMZERO2
port map (I => ADDR(6 downto 5),
Q => TEMPZERO3a);
NUMZEROS <= (TEMPZERO! + TEMPZERO2a) + TEMPZERQ3a:
end generate;
M8:
if M=8 generate
Ul: SUMZERO3
port map (I => ADDR(2 downto 0),
Q => TEMPZEROI),
U2: SUMZERO3
port map (I => ADDR(5 downto 3),
Q => TEMPZERO2);
U3: SUMZERO2
port map (I => ADDR(7 downto 6),
Q => TEMPZERO3a),
NUMZEROS <= TEMPZERO! + TEMPZERO2 + TEMPZERO3a:
end generate;
M9:
if M=9 generate
Ul: SUMZERO3
port map (I => ADDR(2 downto 0),
Q => TEMPZERO1);

160

U2: SUMZERO3
port map (I => ADDR(S downto 3),
Q => TEMPZERO2);
U3: SUMZERO3
port map (I => ADDR(8 downto 6),
Q => TEMPZEROQO3);
NUMZEROS <= (TEMPZEROI + TEMPZEROQ2) + TEMPZERO3;
end generate;
M10:
if M=10 generate
Ul: SUMZERO3
port map (I => ADDR(2 downto 0),
Q => TEMPZERO1),
U2: SUMZERO3
port map (I => ADDR(S downto 3),
Q => TEMPZEROQ2);
U3: SUMZERO2
port map (I => ADDR(7 downto 6),
Q => TEMPZERO3a);
U4: SUMZERO?2
port map (I => ADDR(9 downto 8),
Q => TEMPZERO4a);
NUMZEROS <= (TEMPZERO1 + TEMPZERQ2) + (TEMPZERO3a + TEMPZERO4a);
end generate;
Mil:
if M=]1 generate
Ul: SUMZERO3
port map (I => ADDR(2 downto 0),
Q => TEMPZEROI);
U2: SUMZERO3
port map (I => ADDR(5 desvnto 3),
Q => TEMPZEKkQ2);
U3: SUMZERO3
port map (I => ADDR(8 downto 6),
Q => TEMPZERO3);
U4: SUMZERO2
port map (I => ADDR(10 downto 9),
Q => TEMPZERO4a),
NUMZEROS <= (TEMPZEROI1 + TEMPZERO2) + (TEMPZERQ3 + TEMPZERO4a);
end generate;
M12:
if M=12 generate
Ul: SUMZERO3
port map (I => ADDR(2 downto 0),
Q => TEMPZERO1),
U2: SUMZERO3
port map (I => ADDR(5 downto 3),
Q => TEMPZERO?2),
U3: SUMZERO3
port map (I => ADDR(8 downto 6),
Q => TEMPZERO3);
U4: SUMZERO3
port map (I => ADDR(11 downto 9),
Q => TEMPZERO4);
NUMZEROS <= (TEMPZERO1 + TEMPZERO2) + (TEMPZEROQO3 + TEMPZERO4);

end generate;

161

MI3:
if M=13 generate
Ul: SUMZERO3
port map (I => ADDR(2 downto 0),
Q => TEMPZERO1);
U2: SUMZERO3
port map (I => ADDR(5 downto 3),
Q => TEMPZERO?),
U3: SUMZERO3
port map (I => ADDR(8 downto 6),
Q => TEMPZERO3);
U4: SUMZERO?2
port map (I => ADDR(10 downto 9),
Q => TEMPZERO4a);
US: SUMZERO?2
port map (I => ADDR(12 downto 11),
Q => TEMPZEROSa);
NUMZEROS <= (TEMPZEROI + TEMPZERO?) + (TEMPZERO3 + TEMPZERO42) +
TEMPZEROS5a);
end generate;
Ml4:
if M=14 generate
Ul: SUMZERO3
port map (I => ADDR(2 downto 0),
Q => TEMPZERO1);
U2: SUMZERO3
port map (I => ADDR({(S downto 3),
Q => TEMPZERO2);
U3: SUMZERO3
port map (I => ADDR(8 downto 6),
Q => TEMPZERO3);
U4: SUMZERO3
port map (I => ADDR(11 downto 9).
Q => TEMPZERO4);
US: SUMZERO2
port map (I => ADDR(13 downto 12),
Q => TEMPZEROS5a);
NUMZEROS <= (TEMPZERO! + TEMPZERO2) + ((TEMPZERO3 + TEMPZERO4) +
TEMPZEROSa):
end generate;
MI15:
if M=15 generate
Ul: SUMZERO3
port map (I => ADDR(2 downto 0),
Q => TEMPZEROV1);
U2: SUMZERO3
port map ([=> ADDR(5 downto 3),
Q => TEMPZERO2);
U3: SUMZERO3
port map (I => ADDR(8 downto 6).
Q => TEMPZEROQ3);
U4: SUMZIERO3
port map (I => ADDR(11 downto 9),
Q => TEMPZERO4);

162

US: SUMZERO3
port map (I => ADDR(14 downto 12),
Q => TEMPZEROS);
NUMZEROS <= (TEMPZERO1 + TEMPZERO?2) + ((TEMPZERO3 + TEMPZERO4) +
TEMPZEROS);
end generate;
M16:
if M=16 generate
Ul: SUMZERO3
port map (I => ADDR(2 downto 0),
Q => TEMPZEROV);
U2: SUMZERO3
port map (I => ADDR(S downto 3),
Q => TEMPZERO2);
U3: SUMZERO3
port map (I => ADDR(8 downto 6),
Q => TEMPZERO3);
U4: SUMZERO3
port map (I => ADDR(11 downto 9),
Q => TEMPZERO4);
US: SUMZERO2
port map (I => ADDR(13 downto 12),
Q => TEMPZEROSa);
U6: SUMZERO2
port map { | = ADDR(15 downto 14),
Q => TEMPZERO®a); v
NUMZEROS <= (TEMPZERO1 + TEMPZERO2) + ((TEMPZERO3 + TEMPZERO4) +
(TEMPZEROS5a + TEMPZEROG6a));
end generate;
M17:
if M=17 gericrate
Ul: SUM?: 273
pey. -iap (1 => ADDR(2 downto 0),
Q => TEMPZERO1);
U2: SUMZERO3
port map (I => ADDR(S5 downto 3),
Q => TEMPZEROQ2);
U3: SUMZERO3
port map (I => ADDR(8 downto 6),
Q => TEMPZERO3);
U4: SUMZERO3
port map (I => ADDR(11 downto 9),
Q => TEMPZERO4);
US: SUMZERO3
port map (I => ADDR(14 downto 12),
Q => TEMPZEROSY);
U6: SUMZERO2
port map (I => ADDR(16 downto 15),
Q => TEMPZEROGa);
NUMZEROS <= (TEMPZERO1 + TEMPZERO2) + ((TEMPZERO3 + TEMPZERO4) +
(TEMPZEROS + TEMPZERO6a));
end generate;
M18:
if M=18 generate
Ul: SUMZERO3
port map (I => ADDR(2 downto 0),
Q => TEMPZERO1);

163

U2: SUMZERO3
port map (I => ADDR(S downto 3),
Q => TEMPZEROQO2);
U3: SUMZERO3
port map (I => ADDR(8 downto 6),
Q => TEMPZERO3);
U4: SUMZERO3
port map (1 => ADDR(1! downto 9),
Q => TEMPZERO4);
U3 SUMZTRO3
port map (1 => ADDR(14 downto 12),
Q => TEMPZEROS);
U6: SUMZERO3
port map (I => ADDR(17 dewnto 15),
Q => TEMPZERO6);
NUMZEROS <= (TEMPZEROI1 + TEMPZERO2) + (TEMPZERO3 + TEMPZERO4) +
(TEMPZEROS + TEMPZEROS®));
end generate;
MI19:
if M=19 generate
Ui: SUMZERO3
port map (I => ADDR(2 downto 0),
Q => TEMPZERO1);
U2: SUMZERUO3
port map (I => ADDR(5 downto 3).
Q => TEMPZERO2);
U3: SUMZERO3
port map (I => ADDR(8 downto 6).
Q => TEMPZERO3;
U4: SUMZERO3
port map (I => ADDR(11 downto 9),
Q => TEMPZERO4);
US: SUMZERO3
port map (I => ADDR(14 downto 12),
Q => TEMPZEROS);
U6: SUMZERO2
port map (I => ADDR(16 downto 15,
Q => TEMPZERO6a);
U7: SUMZERO2
port map ([=> ADDR(18 downto 17),
Q => TEMPZERO7a):
NUMZERDS <= ((TEMPZERO! + TEMPZERO2) + (TEMPZERO3 + TEMPZERO4)) +
((TEMPZEROS + TEMPZEROG6a) + TEMPZERO7a);
end generate;
M20:
if M=20 generate
Ul: SUMZERO3
port map (I => ADDR(2 downto 0),
Q => TEMPZERO1);
U2: SUMZERO3
port map (1 => ADDR(5 downto 3).
Q => TEMPZERQ2);
U3: SUMZERO3
port map (I => ADDR(8 downto 6),
Q => TEMPZEROQ3);
U4: SUMZERO3
port map (I => ADDR(!1 downto 9),
Q => TEMPZERO4);

164

US: SUMZERO3
port map (I => ADDR(14 downto 12).
Q => TEMPZEROS);
U6: SUMZERO3
port map (I => ADDR(17 downto 15),
Q => TEMPZEROS);
U7: SUMZERO2
port map (I => ADDR(19 downto 18),
Q => TEMPZERN7a);
NUMZEROS <= ((TEMPZERO! + TEMPZERQ2) + (TEMPZERO3 + TEMPZERO4)) +
((TEMPZEROS + TEMPZERO6) + TEMPZERO7a);
end generate;
M21:
if M=21 generate
Ul: STIMZERO3
port map (I => ADDR(2 downto 0},
Q => TEMPZERO1);
U2: SUMZERO3
port map (I=> ADDLR(S downto 3),
Q => TEMPZERO2);
U3: SUMZERO3
port map (I => ADDR(8 downto 6),
Q => TEMPZERO?3);
U4: SUMZERO3
port map (I => ADDR(11 downto 9),
Q => TEMPZERO4);
US: SUMZERO3
port map (1 => ADDR(14 downto 12),
Q => TEMPZEROS);
U6: SUMZERO3
port map (I => ADDR(17 downto 15),
Q => TEMPZEROG);
U7: SUMZERO3
port map (I => ADDR(20 downto 18),
Q => TEMPZEROQ7);
NUMZEROS <= ((TEMPZEROI + TEMPZEROZ) - { TEMPZERQ3 - TEMPZEROQ4)) +
((TEMPZEROS + TEMPZEROG6) + TEMPZERO7);
end generate;
M22:
if M=22 generate
Ul: SUMZERO3
port map (I => ADDR(2 downto 0),
Q => TEMPZEROI);
1J2: SUMZERO3
poit map (I =>- ADDR(5 downto 3),
Q => TEMPZERO?2);
U3: SUMZERO3
pori map (I => ADDR(8 downto 6),
Q => TEMPZERO3);
U4: SUMZERO3
port map (I => ADDR(11 dowato 9),
Q => TEMPZERO4),
U5: SUMZERO3
port map { I => ADDR(14 downto 12),
Q => TEMPZERQ5);
U6: SUMZERO3
port map (I => ADDR(17 downto 15),
Q => TEMPZEROQOG6):

165

U7: SUMZERO2
port map (I => ADDR(19 downto 18),
Q => TEMPZERO7a);
U8: SUMZERO2
port map (I => ADDR(21 downto 20).
¢ => TEMPZERO8a);
NUMZEROS <= ((TEMPZERO! + TEMPZERO2) + (TEMPZERO3 + TEMPZERO4)) +
((TEMPZERO* + T&:MPZERQ6) + /"EMPZERO7a + TEMPZERORa));
end generate:
M23:
if M=23 generaw
Ul: SUMZERH
port mag (1 -=> ADDR(2 downtu v),
G => T"EMP7EROL):
U2: SUMZERO3
port map (I =>ADD!" " i wnto 3),
Q => TEMPZ..R02);
U3: SUMZERO3
p .t map (I => ADDR(8 down:o 6),
Q => TEMPZERO3):
U4: SUMZERO3
port map (I => ADDR(11 downto 9).
Q => TEMPZEi"04);
US: SUMZERO3
port map (I => ADDR(14 downto 12),
Q => TEMPZEROS),
U6: SUMZER(3
port map (I => ADDR(17 downto 15).
Q => TEMPZEROG):
U7: SUMZERO3
port map (I => ADDR(20 downto 18),
Q => TEMPZERO7);
U8: SUMZERO2
pest map (1 => ADDR(22 downto 21).
Q => TEMPZEROSa);
NUMZEROS <= ((TEMPZEROI 4+ TEMPZERO2) + (TEMPZER(Q + TEMPZERO4)) +
((TEMPZEROS + TIEMPZEROS6) + (TEMFZERQO7 + TEMPZEROSa):
end generate;
M24:
if M=24 genera :
Ul: SUMZERO3
port map { I => ADDR(2 downto 0),
Q => TEMPZERO1);
U2: SUMZERO3
port map (I => ADDR(5 downto 3),
Q => TEMPZERO2),
U3: SUMZERO3
port map (I => ADDR(8 downto 6),
Q => TEMPZERO3);
U4: SUMZERO3
wort map (I => ADDR(1! downto 9),
Q => TEMPZERO4);
US: SUMZERO3
port map { I => ADDR(14 downto 12),
Q => TEMPZERO5):
U6: SUMZERO3
port map (I => ADDR(17 downto 15},
Q => TEMPZERO®);

166

U7: SUMZERO3
port map (I => ADDR(20 downto i8),
Q => TEMPZFROT);
U8: SUMZERO3
port map (1 => ADDR(23 downto 21),
Q => TEMPZEROS);
NUMZEROS <= ((TEMPZERO! + TEMPZERO?2) + (TEMPZERO3 + TEMPZERO4)) +
((TEMPZERQS5 + TEMPZERO6) + (TEMPZER U7 + TEMPZEROS)),
end gensrate;
M25:
if M=25 generate
Ul: SUMZERO3
port map (1 => ADDR(2 downto 0),
Q => TEMPZERO1}:
U2: SUMZERO3
port map (I => ADDR(S downto 3),
Q => TEMPZERO2);
U3: SUMZERO3
port map (I => ADDR(8 downto €,
Q => TEMPZERQ?3);
U4: SUMZERO3
port map (I => ADDR(11 downto 9},
Q => TEMPZERO4),
US: SUMZERO3
port map (1 => ADDR(]4 ownto 12),
Q => TEMPZEROS),
U6: SUMZERO3
port map (1 =>.ADDR(17 downto 15),
Q => TEMPZEROG);
U7: SUMZERO3
port map (I => ADDR(20 downto 18),
Q => TEMPZERO7);
U8: SUMZERO2
port map (I => ADDR(22 downto 21),
Q => TEMPZERO8a);
U9: SUMZERO2
port map (I => ADDR(24 downito 23),
(O => TEMPZERQO9a),
NUMZEROS <= ((TEMIF7ERO! + TEMPZERO2) + (TEMPZERO3 + TEMPZERO4)) +
((TEMPZEROS + TEMPZERO#' (TEMPZERO7 + TEMPZEROSa)) + TEMPZEROYa);
end generate;
M26:
if M=26 generate
Ul: SUMZERO3
nort map (I => ADDR(2 downto 0),
Q => TEMPZERO1);
U2: SUMZERO3
port map (I => ADDR(5 downto 3),
Q => TEMPZERO2);
U3: SUMZERO3
pori map { I => ADDR(8 downto 6),
Q = > TEMPZERO3):
Ud: SUMZERO3
port map (I => ADDR(11 downta 9),
Q => TEMPZERC4);
US: SUMZERG3
port map (I => ADDR(14 downto 12),
Q => TEMPZEROS),

167

U6: SUMZERO3
port map (I => ADDR(17 downto 15),
Q => TEMPZEROQG6);
U7: SUMZERO3
nort map (I => ADDR(20 downto 18),
Q => TEMPZERC(;7);
U8: SUMZERO3
port map (I => ADDR(23 downto 21),
Q => TEM! . 1:RO8);
U9: SUMZERO2
port map (I => ADDR(2S downto 22),
Q => TEMPZERQ¢%a);

NUMZEROS <= ((TEMPZEROI! + TEMPZERO2) + (TEMPZERO3 + TEMPZERO4)) +
(((TEMPZEROS + TEMPZEROS) + (TEMPZERQ7 + TEMPZEROR)) + TEMPZEROYa);
end generate;
end BEHAVIORAL_DESCRIPTION;

168

UMZERO3 and SUMZERO2

File: sumzero.vhd

-- 3-bit sumzero cell
-- output the number of zeros in the 3-bit input

entity SUMZERO3 is
port (1 : in BIT_VECTOR (2 downto 0); --3-bit input

Q : out INTEGER ranrge 0 to 3); --number of zeros
end SUMZERO3;

architecture BEHAVIORAL_DESCRIPTION of SUMZERO3 is

begin

P_SUMZ.: process(I)
begin

if I="000" then Q <=3;
elsif 1 ="+ 1" or I = "010" or I = "100" then Q <=2;
elsif I="0:1"or I="101"or I ="110" then Q <= 1;
elsif I1="111" then Q <=0;
end if;
«nd process P_SUMZ;
end BEHAVIORAL_DESCRIPTION;

-- 2-bit suenzeit ce'l
-- output ti uucaber of zeros in the 2-bit input

entity SUMZEROZ is
port (I: in BIT_VECTOR (1 downto 0); --2-bit inpu.

Q : out INTEGER range 0 to 2); --nuraber of zcros
end SUMZERO2;
architecture BEHAVIORAL_DESCRIPTION of SUMZEROQ2 is
begin
P_SUMZ: process(I)
begin

if 1 ="00" then Q <=2;
elsif I="01" or I = "10" then Q <= I;
elsif I="11"then Q <=0;
end if;
end process P_SUMZ,
end BEHAVIORAL_DESCRIPTION;

169

Background Code Logic (V=4)

File: bg4.vhd
use work. CONVERT_TYPE.all;
use work.XORCOL.all;

entity BACKGROUND_LOGIC_V4 is

generic (NUMXOR:INTEGER;N:INTEGER;M:INTEGER;NUMDBGR:INTEGER);

-- NUMXOR: number of address pairs xor-ed together

-- N: size of RAM

-- M: log2(N), width of address bus

-- NUMDBGR: number of backgrounds in the first half of background matrix

port(CLK :in BIT;

RESET : in BIT;

ADDRESS :in INTEGER range 0 to N-1;

DBGR : in INTEGER range 0 to NUMDBGR-1;

DBGRC . in BIT;

ADBGR : in INTEGER rarige 0 to NUMDBGR-1; --unlatched DBGR
ADBGRC : in BIT; --unlatciied DBGRC
NEXT_ADDR :inBIT;

PEQN : out BIT;

APEQN : out BIT);

end BACKGROUND_LOGIC_V4;
architecture BEHAVIORAL_DESCRIPTION of BACKGROUND_LOGIC_V4 is

signal C : BIT_VECTOR(0 TO NUMRBGR);
signal ADDR : BIT_VECTOR(M-1 downta 0);
signal AN : BIT;
signal AP : BIT;
signal iApegN : BIT;
begin
ADDR <= INTEGER_TO_BIT_VECTOR(ADDRESS.M); --convert address to bit vector
C(() <=0, --1st field: all-zero column
C(1 to M) <= ADLR; --2nd field: address

C(M+1 to NUMXOR + M) <= GEN_XORCOL(M,NUMXOR.ADDRY;--3rd field: xor

--all pairs of address bits
AP <= DBGRC xor C(DBGR); --unlatched P bit
AN <= ADBGRC xor C(ADBGR); --unlatched N bit

iAPEQN <= not(AP xor AN);
APEQN <=iAPEQN;
P_DBGR: process (CLK,RESET,NEXT_ADDR.iAPEGN)
begin
it RESET = '0' then --asynchronous set
PEQN <="'1";
<lsif CLK ='0" and CLK'event then
if NEXT_ADDR ="I" then
PEQN <=iAPEQN; --latched P=N
end if;
end if;
end process P_DBGR;

end BEHAVIORAL_DESCRIPTION:

170

Function GEN_XOR_COL
File: xorcol.vhd

-- Library XORCOL contains the GEN_XORCOL function
-- This functions generates the third field in an (n,3)-exhaustive code.
-~ All the pairs of address lines are xor-ed together.

package XORCOL is
function GEN_XORCOL(M,NUMXOR:INTEGER;ADDR:BIT_VECTOR)
-- M: width of address bus
-- NUMXOR: number of pairs of address lines
-- ADDR : address bus
return BIT_VECTOR;
end XGRCOL;

package body XORCL is
function GEN_XORCOL(M,NUMXOR:INTEGER;ADDR:BIT_VECTOR)
return BIT_VECTOR is
variable INDEX : INTEGER,
variable TEMP_VECTOR : BIT_VECTOR(0 toc NUMXOR-1);

begin
INDEX := NUMXOR-1;
for Iin O to M-2 loop --generates all pairs of address lines
for I in I+1 to M-1 loop
TEMP_VECTOR(INDEX) := ADDR(I) xor ADDR(J);--xor the two lines
INDEX :=INDEX - 1;
end loop:
end loop;
return TEMP_VECTOR;
end;
end XORCOL,;

171

Background Code Logic (V=5t)

Fiie: bgbi.vhd
use work. CONVERT_TYPE.all;
use work.XORCOL.all;

entity BACKGROUND_LOGIC_VS5T is
generic(N:INTEGER;M:INTEGER;NUMXOR:INTEGER;NUMDBGR I INTEGER;
NUMDBGR2:INTEGER);

-- N: size of RAM

-- M: log2(N), width of address bus

-- NUMXOR: number of pairs from 1/2 of the address lines

-- NUMDBGR 1: number of backgrounds in Zones I and Ii of base matrix

-- NUMDBGR?2: number of backgrounds in base matrix

port(CLK :in BIT;

RESET :in BIT;

ADDRESS : in INTEGER range 0 to N-1;

DBGR1 : in INTEGER range 0 to NUMDIIGRI;
DBGR2 : in INTEGER range 0 to NUMDBGR2;
DBGRT :in BIT;

DBGRC :in BIT;

ADBGRI : in INTEGER range 0 to NUMDBGR1;
ADBGR2 : in INTEGER range 0 to NUMDBGR?2,;
ADBGRT :in BIT;

ADBGRC :in BIT;

NEXT_ADDR :inBIT;

APEQN : out BIT;

PEQN : out BIT);

end BACKGROUND_LOGIC_VST;

architecture BEHAVIORAL_DESCRIPTION of is..CK.5% " ND_LOGIC_VST is

signal Pl : BIT_VECTOR(0 TO NUMDBGR 1),
signal P2 : BIT_VECTOR(0 TO NUMDBGR? },
signal N1 - BIT_VECTOR(0 TO NUMDBGRI:
signal N2 : BIT_VECiOR(0 TO NUMDBGR?2);

signal ADDR : BIT_VECTOR(M-1 downto 0);

signal ADDR1 : BIT_VECTOR(M/2-1 downto 0);
signal ADDR2 : BIT_VECTOR(M/2-1 downto 0):
signal N_ADDRI: BIT_VECTOR(M/2-{ downto 0);
signal N_ADDR2: BIT_VECTOR(M/2-1 downto 0);

signal AP : BIT;
signal AN : BIT;
signal iAPEQN : BIT;
begin
ADDR <= INTEGER_TO_BIT_VECTOR(ADDRESS . M); --convert #ddress to bit vector
P_TRANPOSE: process (DBGRT,ADDR) --transpose xor matrix for P bit
begin
if DBGRT ='0" then
ADDRI! <= ADDR(M/2 -1 downto 0); --ADDR I=column address
ADDR?2 <= ADDR(M-1 downto M/2); --ADDR2=row address
else
ADDRI1 <= ADDR(M-1 downto M/2); --ADDR 1=row address
ADDR2 <= ADDR(M/2 -1 dowuto 0); --ADDR2=column address
end if;
end process P_TRANPOSE;
P1(0) <='0"; --Zone I (1/2 (sqrt(n),3)-exhaustive code)
P1(1 to M/?2) <= ADDRI; --Zone I

172

PI{(M/2+1 to NUMXOR+M/2) <= GEN_XORCOL(M/2,NUMXOR,ADDR1); --Zone IlI
P2(iY) <="0"; --Zone I (1/2 (sqrt(n),2)-exhaustive code)
P2(i to M/2) <= ADDRZ2; --Zone 11
AP <= DBGRC xor P1(DBGR1) xor P2(DBGR?2);--unlatched P bit
N_TRANPOSE: process (ADBGRT,ADDR) --transpose xor matrix for N bit
begin
if ADBGRT ='0' then
N_ADDRI <= ADDR(M/2 -1 downto 0); --N_ADDR I=column address
N_ADDR?2 <= ADDR(M-1 downto M/2); --N_ADDR2=row address

else
N_ADDRI <= ADDR(M-1 downto M/2); --N_ADDR I=row address
N_ADDR?2 <= ADDR(M/2 -1 downto 0); --N_ADDR2=column address
end if;
end process N_TRANPOSE;
N1{0) <='0; --Zone I (172 (sqrt(n},3)-exhaustive code)
NI(1 to M/2) <= N_ADDRI; --Zone [
N1(M/2+1 to NUMXOR+M/2) <= GEN_XORCOL(M/2,NUMXOR,N_ADDRI1};--Zone 111
N2(0) <='0"; --Zone I (1/2 (sqrt(n),2)-exhaustive code)
N2(1 to M/2) <= N_ADDR2; --Zone 11

AN <= ADBGRC xor NI(ADBGR) xor N2(ADBGR?2);-- unlatched N bit
iAPEQN <= not(AP xor AN);
APEON <= iAPEQN;
P_DBGR: process(CLK,RESET,NEXT_ADDR,iAPEQN)
begin
if RESET = '0' then
PEQN <="'1";
elsif CLK ='0" and CLK'event then
if NEXT_ADDR ="'1' then
PEQN <= iAPEQN;
end if;
end if;
end process P_DBGR;
end REHAVIORAL_DESCRIPTION;

173

Background Code Logic (V=5x)

File: bg5x.vhd
use work. CONV=4t_TYPE.all;
use work. XOR=¢: ! all;

entity BACX¢ 7200 . ND_LOGIC_V5X is

generic(N:INTEGER;M:INTEGER;NUMXCR:INTEGER;NUMDBGR I INTEGER);

--N: size of RAM

--M: lcg2(N), width of address bus

--NUMXOR: nuinber of pairs from 1/2 of the address lines
--NUMDBGR : number of backgrounds in base matirx

port(CLK :in BIT;

RESET :in BIT;

ADDRESS :in INTEGER range O to N-1;

DBGRI : in INTEGER range 0 to NUMDBGRI;
DBGR2 : in INTEGER range (0 to NUMDBGRI;
DBGRC : in BIT;

ADBGRI : in INTEGER range 0 to NUMDBGRI;
ADBGR2 : in INTEGER range 0 to NUMDBGR;
ADEGRC : in BIT;

NEXT_ADDR :in BIT;

APEQN : out BIT;

PEQN : out BIT);

end BACKGROUND_LOGIC_V5X;

architecture BEHAVIORAL_DESCRIPTION of BACKGROUND_LOGIC_V5X is

begin

signal P1 : BIT_VECTOR(0 TO NUMDBGR),
signal P2 : BIT_VECTOR() TO NUMDBGX :
signal N1 : BIT_VECTOR(0 TO NUMDBGCkK i »
signal N2 : BIT_VECTOR(0 TO NUMDBGH : ;.

signal ADDR : BIT_VECTOR(M-1 downte 0);
signal ADDR! : BIT_VECTOR(M/2-1 downto 0);
signal ADDR2 : BIT_VECTOR(M/2-1 downto 0);
signal N_ADDRI : BIT_VECTOR(M/2-1 downto 0);
signal N_ADDR? : BIT_VECTOR(M/2-1 downto 0);
signal AP : BIT;

signal AN : BIT;

signal iAPEQN : BIT;

ADDR <= INTEGER_TO_BIT_VECTOR(ADDRESS.M); --convert address to bit vector

ADDRI! <= ADDR(M/2 -1 downto 0); --ADDR I=column address
ADDR?2 <= ADDR(M-1 downto M/2); -ADDR2=,,w address

P1(0) <="'0"; --Zone 1 (1/2 (sqrt(n),3)-exhaustive code)
PI(1 to M/2) <= ADDRI; --Zone 11

P1(M/2+1 to NUMXOR+M/2) <= GEN_XORCOL(M/2,NUMXOR,ADDR1);-Zone 111
P2(0) «<='0"; --Zone I (1/2 (sqrt(n),3)-exhaustive code’
P2(1 to M/2) <= ADDR2; --Zone II

P2(M/2+1 to NUMXOR+M/2) <= GEN_XORCOL(M/2,NUMXOR,ADDR2);--Zone III
AP <= DBGRC xor PI(DBGR1) xor P2(DBGR2); - unlatched P

N_ADDRI <= ADDR(M/2 -1 cownto <, --N_ADDR I=column address (for N bit)
N_ADDR?2 <= ADDR(M-1 downto M/ .\; --N_ADDR2=row address (for N bit)
N1(0) <="0"; --Zone I (1/2 (sqrt(n},3)-exhaustive code)
NI(1 to M/2) <= N_ADDR}; -Zonell

N1(M/2+1 to NUMXOR+M/2) <= GEN_XORCOL(M/2,NUMXOR ,N_ADDR);--Zone IiI

174

N2(0) <='0';
N2(1 to M/2) <= N ADDR2;
N2(M/2+1 to NUMAROR+M/2) <= GEN_XORCOL(M/2, NUMXOK,N_ADDR2);
AN = ADLURC xor NI(ADBGRI) xor N2(ADBGR?2); --unlatched N
IAPLA M o= noid AP xor AN);
APEQN <=iAP:N;
P_DBGR: process(CLK,RESET,NEXT_ADDR,iAPEQN)
begin
if RESET ='0' then
PEQN <="'1";
elsif CLK ='0" and CLK'event then
if NEXT_ADDR ="'1' then
PEQN <= iAPEQN;
end if;
end if;
enc process P_DBGR;
end BEHAVIORAL_DESCRIPTION;

175

Response Analyzer
File: resp_anlyz.vhd

use work. BTYPES.all;

entity RESPONSE_ANALYZER is
generic(LFSRDEG:INTEGER);

port(CLK :in BIT; -- system clock
RESET :in BIT; -- BIST controller reset
CLRSIG :in BIT; -~ clear LFSR input
ENABLE :in BIT; -- enable LFSR input
LOADREG! : in BIT; -- load registes | input
LOADREG2 :inBIT; -- load register 2 input
B : in BIT; -- RAM data input
PEQN :in BIT; -- P=N signal
PHASE?2 :in BIT; -- Phase2 flag
STATE 1in STATES; -- state variable
ASYNCSTATE :in STATES; -- next state variable
PASS : out BIT); -- PASS ouput

cnd RESPONSE_ANALYZER;

architecture STRUCTURE of RESPONSE_ANALYZER is

signal ALFSR_OUT : BIT_VECTOR(LFSRDEG-1 downto 0):--unlaiched LFSR output
signal LFSR_OUT : BIT_VECTOR(LFSRDEG-1 downto 0);--latched LFSR outout
signal REG_OUT] : BIT_VECTOR(LFSRDEG-1 downto 0):--reuister | content
signal REG_OUT?2 : BIT_VECTOR(LFSRDEG-1 downto 0);--register 2 content
signal COMP_IN : BIT_VECTOR(LFSRDEG-1 downte 0);--input to comparator
signal LFSR_IN : BIT; --input 1o LFSR {1 bit}
signal RB : BIT; --output frem read bit Qipper
signal PEQNBAR : BIT; -- P=N bar

component READ_BIT_FLIPPER
port(B :in BIT;
STATE :in STATES:
PEQNBAR :in BIT;
Q :out BIT);

end component;
cemponent LFSR16

port(CLK s in BIT;
RESET 1in BIT;
CLRSIG :in BIT;
EN :in BIT;
LFSR_IN :in BIT;
ALFSR s out BIT_VECTOR(15 downto 0);
LFSR :out BIT_VECTOR(15 dowato 0));

end component;
component LESR20

port(CLK :in BIT;
RESET :in BIT;
CLRSIG :in BIT;
EN :in BIT;
LFSR_IN :in BIT;
ALFSR : out BIT_VECTOR(19 downto 0);
LFSR :out BIT_VECTOR(19 downto ());
end component;

176

component LFSR25

port(CLK :in BIT;
RESET : in BIT;
CLRSIG :in BIT;
EN :in BIT;
LFSR_IN :in BIT;
ALFSR : out BIT_VECTOR(24 downto 0);
LFSR : out BIT_VECTOR(24 downi: 13));
end component;
component LFSR30
port(CLK : in BIT;
RESET :in BIT;
CLRSIG : in BIT;
EN : in BIT;
LFSR_IN :in BIT;
ALFSR : out BIT_VECTOR(29 downto 0);
LFSR : out BIT_VECTOR(29 downto 0));
end :omponent;
component REGISTERS
generic(K:INTEGERY);
port{ CLK : in BIT;
RESET :in BIT;
REG_IN :in BIT VECTOR(LFSRDEG-1 downto 0);
LOADRES :in BIT;
REG_OUT : out BIT_VECTOR(LFSRDEG-1 downto 0));
end component;
component CUNPARATOR
genenc(K:INTEGER);
port(A :in BIT_VECTOR(LFSRDEG-: I dewnto 0);
B : in BIT_VECTOR(LFSRDEG-1 downto 0);
AEQB : out BIT);
end component;

begin
PEQNBAR <= not(PE .{):
P_SELREG: process (ASYNCSTATE.REG_OUTI1,REG_OUT?2)
-- select the source of the input o the comparator
-- if next state = S8, select from register 2
-- else select from register |
begin
if ASYNCSTATE = S8 then
COMP_IN <= REG_OUT2;
COMP_IN <=REG_OUTI;
o ifs
wmacex i SELREG;
L S8 oat Jrocess (PHASE2,B,RB)
-~ select inpui tn LFSR
-- if current phase is not phase 2, select output from read bit flipper
-- else sclect RAM data
begin
if PHASE2 ='0' then
LFSR_IN <= RB;
eise
LFSR_IN <= B;
end if;
end process P_SELBIT;

177

READBITFLIPPER: READ_BIT_FLIPPER

port map(B
STATE
PEQNBAR

Q
SELECT_LFSR16:
if LFSRDEG = 16 generate
LFSR_16: LFSR16
port map(CIK
RESET
CLRSIG
EN
LFSR_IN
ALFSR
LFSR
end generate;

=>B,

=> STATE,

=~ PEQNBAR,
=>RB):

=> CLK,

=> RESET,

=> CLRSIG.,
=>ENABLE,

=> LFSR_IN,

=> ALFSR_OUT,
=> LFSR_OUT);

-- selectively generate LFSR given the LFSR degree LFSRDEG

SELECT_LFSR20:
if LFSRDEG = 20 generate
LFSR_20: LFSR20
port map(CIK
RESET
CLRSIG
EN
LFSR_IN
ALFSR
LFSR
end generatc;
SELECT_LFSR25:
if LFSRDEG = 25 generate
LLFSR_25: LFSR25
port map(CIK
RESET
CLRSIG
EN
LFS» ™
ALF.
LESR
end ornerate;
SELECT_LFSR30:
if LESRDEG = 30 generate
LFSR_30: LFSR3G
port map(CIK
RESET
CLRSIG
EN
LFSR_IN
ALFSR
LFSR
end gencrate;
REGISTERI: REGISTERS

=> Cl K,

=> RESET,

=» CT.RSIG,

=i . E,
=>1T" SN,

=> ALFSR_OUT,
= LEs_QUT);

=> CLK,

=> RESET,

=> CLRSIG,
=>ENABLE.

=> LFSR_IN.

=> ALFSR_OUT,
=> LLFSR_OUT);

=> C!I' K,

=> REDET.

=> CLRSIG,
=>ENABLE,

=> LFSR_IN,

=> ALFSR_OUT,
=> LFSR_OUT);

generic map(K=>LFSRDEG)

port map(CLK
RESET
REG_IN

LOADREG

REG_OUT

=> CLK,

=> RESET,

=> ALFSR_OUT.
=>LOADREGI,
=>REG_OUTI);

178

REGISTER2: REGISTERS
generic map{(K=>LFSRDEG)

port map(CLK => CLK,
RESET => RESET,
REG_IN => ALFSR_OUT,

LOADREG => LOADREG2,
REG_OUT =>REG_OUT2);

COMPARATORS: COMPARATOR
generic map(K=>LFSRDEG)

port map(A =>ALFSR_OUT,
B =>COMP_IN,
AeqB =>PASS);

end STRUCTURE;

LFSR (16 bit)
File: ifsr16.vhd

entity LFSRI6 is

port(CLK :in BIT; -- system clock

RESET : in BIT; -- BIST controller reset

CLRSIG :in BIT; -- clear LFSR signal

EN : in BIT; -- LFSR enable signal

LFSR_IN : in BIT; -- LFSR input, 1 bit wide

ALFSR : out BIT_VECTOR(15 downto 0); -- unlatched LFSR output

LFSR :out BIT_VECTOR(15 downto 0)); -- latched LFSR output
end LFSR16;

architecture BEHAVIORAL_DESCRIPTION of LFSR16 is
signal LFSR_OUT: BIT_VECTOR(15 downto 0);
signal ALFSR_OUT : BIT_VECTOR(15 downto 0);
begin
ALFSR <= ALFSR_OUT;
LESR <= LFSR_OUT;
ALFSR_OUT(0) <= LFSR_IN xor LFSR_OUT(15);
ALFSR_OUT(1) <= LFSR_OUT(0);
ALFSR_OUT(2) <= LFSR_OUT(1) xor LFSR_OUT(15);
ALFSR_OUT(3) <= LFSR_OUT(2) xor LFSR_OUT(15);
ALFSR_OUT(4) <= LFSR_OUT(3);
ALFSR_OUT(5) <= LFSR_OQUT(4) xor LFSR_OUT(15);
ALFSR_OUT(6) <= LFSR_OUT(5);
ALFSR_OUT(7) <= LFSR_OUT(6);
ALFSR_OUT(8) <= LFSR_OUT(7);
ALFSR_OUT(9) <= LFSR_OUT(8);
ALFSR_OUT(10) <= LFSR_OUT(9);
ALFSR_OQUT(11) <= LFSR_OUT(10);
ALFSR_CUT(12) <= LFSR_OUT(11);
ALFSR_OUT(13) <= LFSR_OUT(12);
ALFSR_OUT(14) <= LFSR_OUT(13);
ALFSR_OUT(15) <= LFSR_OUT(14);
P_LFSR: process(CLK,EN,RESET,CLRSIG,LFSR_IN,ALFSR_QUT)
begin
if (RESET ='0') or (CLRSIG ='1") then -- asynchronous reset
LFSR_OUT <= "0000000000000000";
elsif CLK ='0" and CLK'event then
if EN ="' then
LFSR_OUT <= ALFSR_OUT; -- latch LFSR output
end if;
end if;
end process P_LFSR;
end BEHAVIORAL_DESCRIPTION;

LFSR (20 bit)
File: Ifsr20.vhd

entity LFSR20 is

port(CLK :in BIT; -- system clock

RESET :in BIT; -- BIST controller reset

CLRSIG :in BIT; -- clear LFSR signal

EN :in BIT; -- LFSR enable signal

LFSR_IN :in BIT; -- LFSR input, 1 bit wide

ALFSR :out BIT_VECTOR(19 downto 0); -- unlaiched LFSR output

LFSR : out BIT_VECTOR(19 downto 0)); -- latched ILFSR output
end LFSR20;

architecture BEHAVIORAL_DESCRIPTION of LFSR20 is
signal LFSR_OUT: BIT_VECTOR(19 downto 0);
signal ALFSR_OUT : BIT_VECTOR(19 downto 0);
begin
ALFSR <= ALFSR_OUT;
LFSR <= LFSR_OUT;
ALFSR_OUT(0) <= LFSR_IN xor LFSR_QUT(19);
ALFSR_OUT(1) <= LFSR_OUT(0);
ALFSR_OUT(2) <= LFSR_OUT(1);
ALFSR_OUT(3) <= LFSR_OUT(2) xor LFSR_OUT(19);
ALFSR_OUT(4) <= LFSR_OUT(3):
ALFSR_OUT(5) <= LFSR_OUT(4):
ALFSR_OUT(6) <= LFSR_OQUT(5);
ALFSR_OUT(7) <= LFSR_OUT(6);
ALFSR_OUT(8) <= LFSR_OUT(7);
ALFSR_OUT(9) <= LFSR_OUT(8);
ALFSR_OUT(10) <= LFSR_OUT(9);
ALFSR_OUT(11) <= LFSR_OUT(10);
ALFSR_OUT(12) <= LFSR_OUT(1 1);
ALFSR_OUT(13) <= LFSR_OUT(12):
ALFSR_OUT(14) <= LFSR_OUT(13);
ALFSR_OQUT(15) <= LFSR_OUT(14);
ALFSR_OUT(16) <= LFSR_OUT(15);
ALFSR_OUT(17) <= LFSR_OUT(16):
ALFSR_OUT(18) <= LFSR_OUT(17);
ALFSR_QUT(19) <= LFSR_OUT(18):
P_LFSR: process(CLK,EN,RESET,CLRSIG,LFSR_IN.ALFSR_OUT»
begin
if (RESET ="'0") or (CLRSIG ="1") then --asynchronous reset
LFSR_OUT <= "00000000000000000000";
elsif CLK ='0" and CLK'event then
if EN ="1" then
LFSR_OUT <= ALFSR_OUT: --latch LFSR output
end if;
end if}
end process P_LFSR;
end BEHAVIORAL _DESCRIPTION;

LFSR (25 bit)
File: Ifsr25.vhd

entity LFSR25 is

port(CLK :in BIT; -- system clock

RESET 1in BIT; -- BIST controller reset

CLRSIG > in BIT; -- clear LFSR signal

EN tin BIT; -- LFSR enable signal

LFSR_IN . in BIT; -- LFSR input, 1 bit wide

ALFSR :-out BIT_VECTOR(24 downto 0); -- unlatched LFSR output

LFSR :out BIT_VECTOR(24 downto 0)); -- latched LFSR output
end LFSR25;

architecture BEHAVIORAL_DESCRIPTION of LIFSR25 is
signal LFSR_OUT: BIT_VECTOR(24 downto 0);
signal ALFSR_OUT : BIT_VECTOR(24 downto 0);

begin
ALFSR <= ALFSR_OUT;
LFSR <= LFSR_OUT;
ALFSR_OUT(#) <= LFSR_IN xor LFSR_OUT(24);
ALFSR_OUT(1) <= LFSR_OUT(0);
ALFSR_OUT(2) <= LFSR_OUT(1);
ALFSR_OUT(3) <= LFSR_OUT(2) xor LFSR_OUT(24);
ALFSR_OUT(4) <= LFSR_OUT(3);
ALFSR_OUT(S) <= LFSR_OUT(4);
ALFSR_OUT(6) <= LFSR_OUT(5);
ALFSR_OUT(7) <= LFSR_OUT(6);
ALFSR_OUT(8) <= LFSR_OUT(7);
ALFSR_OUT(9) <= LFSR_OUT(8);
ALFSR_OUT(10) <= LFSR_OUT(9);
ALFSR_OUT(11) <= LFSR_OUT(10);
ALFSR_OUT(12) <= LFSR_OUT(11);
ALFSR_OUT(13) <= LFSR_OUT(12);
ALFSR_OUT(14) <= LFSR_QUT(13);
ALFSR_OUT(15) <= LFSR_OUT(14);
ALFSR_OUT(16) <= LFSR_OUT(15);
ALFSR_OUT(17) <= LFSR_OUT(16);
ALFSR_OUT(18) <= LFSR_OUT(17);
ALFSR_OUT(19) <= LFSR_OUT(18);
ALFSR_OUT(20) <= LFSR_OUT(19);
ALFSR_OUT(21) <= LFSR_OUT(20);
ALFSR_OUT(22) <= LFSR_OUT(21);
ALFSR_OUT(23) <= LFSR_OUT(22);
ALFSR_OUT(24) <= LFSR_OUT(23);

P_LFSR: process(CLK,EN,RESET,CLRSIG,LFSR_IN,ALFSR_OUT)
begin
if (RESET ="'0") or (CLRSIG = '1') then --asynchronous reset
LFSR_OUT <= "0000000000000000000000000";
elsif CLK ='0" and CLK'event then
if EN ="'1" then
LFSR_OUT <= ALFSR_OUT; --latch LFSR output
end if;
end if;
end process P_LFSR;
end BEHAVIORAL_DESCRIPTION;

LESR_ (30 bit)
File: Ifsr30.vhd

-- 30-bit LFSR
entity LFSR30 is
port(CLK :in BIT; -- system clock
RESET :in BIT; -- BIST controller reset
CLRSIG : in BIT; -- clear LFSR signal
EN tin BIT; -- LFSR enable signal
LESR_IN :in BIT; -- LFSR input, | bit wide
ALFSR : out BIT_VECTOR(29 downto 0); -- unlatched LFSR output
LFSR :out BIT_VECTOR(29 downto 0)); -- latched LFSR output
end LFSR30;

architecture BEHAVIORAL_DESCRIPTION of LFSR30 is
signal LFSR_OUT: BIT_VECTOR(29 downto 0);
signal ALFSR_OUT : BIT_VECTOR(2Y downto 0):

begin
ALFSR <= ALFSR_OUT;
LFSR <= LFSR_OUT;
ALFSR_OUT(0) <= LFSR_IN xor LFSR_OUT(29);
ALFSR_OUT(1) <= LFSR_OUT(0) xor LFSR_QUT(29);
ALFSR_OUT(2) <= LFSR_OUT(1) xor LFSR_OUT(29):
ALFSR_OUT(3) <= LFSR_OUT(2);
ALFSR_OUT(4) <= LFSR_OUT(3);
ALFSR_OUT(5) <= LFSR_OUT(4);
ALFSR_OUT(6) <= LFSR_OQUT(5):
ALFSR_OUT(7) <= LFSR_OUT(6);
ALFSR_OUT(8) <= LFSR_OUT(7):
ALFSR_OUT(9) <= LFSR_OUT(8):
ALFSR_OUT(10) <= LFSR_OUT(9);
ALFSR_OUT(11) <= LFSR_OUT(10):
ALFSR_OUT(12) <= LFSR_OUT(11):
ALFSR_OUT(13) <= LFSR_OUT(12):
ALFSR_OUT(14) <= LFSR_QUT(13);
ALFSR_OUT(15) <= LFSR_OUT(14);
ALFSR_OUT(16) <= LFSR_QUT(15):
ALFSR_OUT(17) <= LFSR_OUT(16):
ALFSR_OUT(18) <= LFSR_OUT{(17);
ALFSR_OUT(19) <= LFSR_QUT(18);
ALFSR_OUT(20) <= LFSR_OUT(19);
ALFSR_OUT(21) <= LFSR_OUT(20);
ALFSR_OUT(22) <= LFSR_OUT(21):
ALFSR_OUT(23) <= LFSR_OUT(22) xor LFSR_OUT(29):
ALFSR_OUT(24) <= LFSR_OUT(23);
ALFSR_OUT(25) <= LFSR_OUT(24):
ALFSR_OUT(26) <= LFSR_OUT(25):
ALFSR_OUT(27) <= LFSR_OUT(26);
ALFSR_OUT(28) <= LFSR_OUT(27):
ALFSR_OUT(29) <= LFSR_OUT(28):

P_LFSR: process(CLK,EN,RESET.CLRSIG.LFSR_IN,ALFSR_OUT)
begin
if (RESET ='0") or (CLRSIG ="'1") then --asynchronous reset
LFSR_OUT <= "000000000000000000000000000000":
elsif CLK ='0" and CLK’event then
if EN ="1" then
LFSR_OUT <= ALFSR_OUT; --latch LFSR output
end if;
end if}
end process P_LFSR;
end BEHAVIORAL_DESCRIPTION;

104

Read Bit Flipper

File: readflip.vhd
-- read bit flipper

use work.BTYPES.all;
entity READ_BIT_FLIPPER is

port(B :in BIT; --from RAM data bus
STATE : in STATES: --current state
PEQNBAR :in BIT; --P=N bar

Q : out BIT); --ouput to LFSR
end READ_BIT_FLIPPER;

architecture BEHAVIORAL_DESCRIPTION of READ_BIT_FLIFPER is
begin
P_RBF: process(B,STATE,PEQNBAR)
begin
if STATE = S3 then
Q <=not B;
elsif STATE = S7 then
Q <= PEQNBAR xor B;
else
Q<=B:
end if;
end process P_RBF;
cnd BEHAVIORAL_DESCRIPTION;

K-bit Register
File: register.vhd

use work. CONVERT_TYPE.all;

entity REGISTERS is

generic(K:INTEGERY); -- number of bits in register

port(CLK : in BIT; -- system clock

RESET :in BIT; --BIST controlier reset

REG_IN : in BIT_VECTOR(¥-1 downto 0); --register input K bits wide

LOADREG :in BIT; --register load signal

REG_OUT :out BIT_VECTOR(K-1 downto 0)); --register output K bits wide
end REGISTERS;

architecture BEHAVIORAL_DESCRIPTION of REGISTERS is
signal IREG_OUT : BIT_VECTOR(K-1 downto 0); --internal register output signal
begin
REG_OUT <=IREG_OQUT;
P_REG: process(CLK,RESET,LOADREG,REG_IN,IREG_OUT)
begin
if RESET = '0' then -~ asynchronous reset
IREG_OUT <= INTEGER_TO_BIT_VECTOR(0,K);
elsif CLK = '0' and CLK'event then
if LOADREG ="1" then
IREG_OUT <=REG_IN; --load register
end if;
end if;
end process P_REG;
end BEHAVIORAL_DESCRIPTION;

K-bit Comparator

File: comparator.vhd
-- K-bit comparator

entity COMPARATOR is

generic(K:INTEGER); ~--number of bits in inputs A & B
port(A :in BIT_VECTOR(K-1 downto 0); --Input A K bit wide
B :in BIT_VECTOR(K-1 downto 0); --Input B K bit wide
AegB :out BIT); --A =B output
end COMPARATOR;
architecture BEHAVIORAL_DESCRIPTION of COMPARATOR is
begin
P_COMP: process(A,B)
begin
if A=B then
AegB <="I"; --AegB=1if A=B
else
AeqB <="0;
end if;

end process P_COMP;
end BEHAVIORAL_DESCRIPTION;

186

Test Pattern Generator
File: test_pat.vhd

-- test pattern generator

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

use work. CONVERT_TYPE.all;

entity TEST_PATTERN_GENERATOR is

port(CLK : in BIT; --system clock
RESET :in BIT; --BIST controller reset
WRITE :in BIT; --BIST controller write
READ :in BIT; --BIST controller read
B 1in BIT; --from RAM data

Q : out X012Z); --data to be written to RAM
end TEST_PATTERN_GENERATOR,;

architecture BEHAVIORAL_DESCRIPTION of TEST_PATTERN_GENERATOR is

signal R : BIT; -- D flip-flop output
begin
P_TPG : process(CLK.,RESET ,READ,WRITE,B,R)

begin

if RESET ='0' then R <= '0;
elsif CLK ='0'and CLK'event then
if READ ="1" then
R <= noyB); --load D flip-flop with B bar
end if;
end if;
if WRITE ="'1" then
Q <= CONVERT_TO_XO017Z{R);--put R into data bus
else
Q<="Z, --isolate data bus
end if;
end process P_TPG;
end BEHAVIORAL_DESCRIPTION;

1R7

PHASE2 Latch

File: phase2latch.vhd
--PHASE2 latch

entity PHASE2LATCH is

port(CLR . in BIT;
CLRPHASE2? :in BIT;
EN :in BIT;
D : in BIT;
Q : out BIT);
end PHASE2LATCH;
architecture BEHAVIORAL_DESCRIPTION of PHASE2LATCH is
begin
P_LATCH:process(CLR,EN,D,CLRPHASE2)
begin
if CLR = '0' or CLRPHASE2 ="1'then Q <='0"; --asynchronous reset
elsif EN ='1' then Q <="1"; --asynchronous set
else Q <=D;
end if;

end process P_LATCH,;
end BEHAVIORAL_DESCRIPTION;

PASS / FAIL Latch
File: passlatch.vhd

-- PASS/FAIL latch

entity PASSLATCH is

port(CLR :in BIT;
EN : in BIT;
D : in BIT;
Q : out BIT);
end PASSLATCH;
architecture BEHAVIORAL_DESCRIPTION of PASSLATCH is
begin
P_LATCH:process(CLR,EN,D)
begin
if CLR ='1' then Q <="0'; --asynchronous reset
elsif EN ='0' then Q <="I"; --asynchronous set
else Q<=D;
end if;

end process P_LATCH;
end BEHAVIORAL_DESCRIPTION;

188

B Schematics

189

ADDR<6>

I—.READ
. —»

ADDR<7>
ADDR<2>

—»
BISTACK P— l____: ADDR< 1S

ADDR<2>

ADDR<3>

ADDR<4>
) 200R<5>
P BIST_DONE

m]”]

P BisT_BUSY
PASSFAIL

ll L=

;ulll
Address Generator

PassFao
otch

BIST Controller

1]]'1

Response Analyzer

Background Code Logic
=

1]”
=11

CLK

| lIL

—) WRITE

enarotor|

2 1
cR - : i 4
START_BIST) i A00R<8>
DATA —) ADDR<9>

9 -

Tea(Patter

!

Figure 61: BIST Circuit (n = 1k, V = 3)

190

..... — e e o g —————e ASYNCSTATE < 1 >
STATE< 1>
ASYNCSTATE<@>
- e *STATE<D>
STATE<2>
ASYNCSTATE<3>
STATE<3>

NEXT_OBGR

>

b %—BIST_DONE

%j‘mmrr
o %T«BIST_BUSY

Y

PASS: %j\—fm
; e, <DsCRESET
i’ M ES =
BISTACK, = u :
LAST_DBGR!) ol |
g :_‘ o ~:3:t°'~. _le .'-k:s—n Ly
vt) o [— 2 >E>:a
%L =

= 3

S ol |

S v TRt~ L = %

_ "D;‘,“—] e .
y et (=

gy -
CLKN ﬁ 3 L] a:;_j—
RESET [E= we
START_BISTS e S RS Pa-eNEXT_ADDR
e
LAST_ADOR, |
APEON®]

D OADREG !

[l

iy
ALAST_ADDRe <DL OADREG2

CLRPHASE2

PHASE 28— LTy ﬁ-’LPHASEZ

ASYNCSTATE<2>
Figure 62: BIST Controller

191

-

=

an
U3 !
g2 i privd)
" =—gcs
mua-‘ > } 3
i
LU 1 J
2l)
» dfirhs
Ll pgee
i
L .
L U4 lI]
g2t atiroe)
po—gon n
L us? l
aTa?t dlirds]
3 jea
3
i__m' B ui1s
Ol -
st iy NT12
vs? ut2 an AD coe
= C an men2 17T
(V] iy _T_J ; afiron
st
e s
buft
2 0-1‘1‘4 4
Mml' u il nandd
o B l—
AR
=SI N i
CV] !
O
o L URg 0
. mnl »
amun2 aliros]
- s
L U185 i
nal APOR_
gmun21 difrbe 1
"
1
)
uss +
= AMIOR_rey
21 alirbe 1
} k'
L uog —
Lo v
Batedl alirts !
ry
A U100 +
a3l e
" dftros
Y
L utet
N h \ '
Sl diiets 1
B po—gcs
L7}
an r—

Figure 63: Address Generator

192

]

" 1 s
erT_DBGRr@-"fﬂ’_‘*ﬂ

RE SETop=trmm

e I

7

»DBGR<2>

LD g S [Pt

v

o 4~

»k%:f;)@: = DEGR< 3>

}@rLAST_DBGR

CLKe-

-

Fignre 64: Background Counter (17

193

= 3)

RESETe

V108

[
a2 1

vz

Rt

ADDRESS<9 > Z@’j o
5{>:-L ’D:a ~D'm :@:Eﬂ :}lﬁw
ADDRESS<7>» vt
ADDRESS< 18 ‘D..:]
ADDRESS<@>> —- e =
ADDRESS<3>» “
u“mﬂ : 13} -~
ADDRESS<4>» o I
ADDRESS<6>p- , o %
i v nendd (1 ulem
i ut ol ir—
-t "“m | " ':'2." unw XT3
ot i V Jm:}l
T o] VI8
E vial s
|
i wia ek
| ™
DBCR<@>F I - i : w:z ue: = ""m.
DBGR< 1> s Dol Vo
DBGR<2>'gl, of wape)
DBGR< 3> Bi_, P
N o] ute L
2 uts;
D) rond?] nand
wn of Vbt
NEXT_A%DR_
LK;;
ADDRESS<2>»
ADDRESS<5>i

ADDRESS<8>

Figure 65: Background Code Logic (V = 3)

194

LOADREG 1»

C
LOADRE&E.

CLRSIG»

_g_gi_ster

ENABLE,

STATEF)<E 3
TATE<

FSR|

READ BIT

FLIPPER

TAT < > |
STATE< 3

16—bit L

PHASE2»

RESETs

ASYNCSTATE<2>_

ASYNCSTATE< 1>
ASYNCSTATE<3 S

ASYNCSTATE<@>®

Figure 66: Response Analyzer

195

Register

ure

buif

1

I

[
]
=
g

1
2
&

¥
&

1

!
2

1
&

!
2

1

Comparator

*PASS

WRITE Jp—

CLK
nd!
U41
N our A V4o
inv ouF
8 P— s gmux21i
B
READ P— l
RESET p—

Figure 67: Test Pattern Generator

196

C Simulation Waveforms

197

®
--------- ' L
,]
H 1
i
: I
; !
1 v v
| i i
| i i
i
| |
!

000000600 €

Il

- O sy
s 0= 02

-

198

- -

Figure 68: Simulation 1: Segment 1

E=

4] = 0
26 = 4080)

sugal v awy

i

Ui s T T

nso

uso

250

85 o

eo

nuso

%50

eso

s o

ase

s o

aso

Hs o

<OV

<MV

<>V

<@>niw

<@1>800v/

Tv4SSYd/

s

ASng"1SI8/

weeT 19 ¢

e gyini:

158711/

Yy

Y

25

.£5.03

Figure 69: Simulation 1: Segment 2

199

C, o
2 C

uiinn

nso

so

aso

1nso

20

tso

@iso

aso

uso

25

gso

s o

150

850

<>V

<DV

<MV

<e>nv

<@12400v/

Wv3SSYd/

UBWV

sy

Asng1SIe/

3Noa1SI8/

NS/

1997 vis/

Ny

Ny

00

Figure 70: Simulation 1: Segment 3
2

FUSTH SP RSN NS AT ST ST S NG N EN) A

€8 = 0)13¢|
€81 = J08n)
supgl U awyy|

i

|
i
|

i

| A

AU

bl

as o

150

1S o

s o

80

150

aso

giso

150

aso

s o

1so

350

<MV

<Y

<nv

<@>n

<@'1>500v/

Tv4SSvd/

e

v/

ASNB 1518/

INOQTISIY/

WV IS/

15871/

¥y

»Y

£6

o503

01

Figure 71: Simulation 1: Segment 4
2

[142 L]

62C = J0sn)

ﬁ 1144 144 314 ez sez (/14 Sl o6t _ S8 . _ suat ui sl
: N L P S I R .

i as o <RIV

i

_ _ _u _ aso Iy

. ! i

_ _ i : _ |_ v - : ! a0 <«
! . i ; . : H

_ ! : i i : ! i Biso <MV

30 <8'1>u00v/

(igiplighaljipiplininti S S s R
| deﬁjbpaqgj j Iﬁl #s0 o3y

o ASNBT1sI8/

s o 3NOQTISIV | o

| _ O
"
B UUUUUUUIUUTUUUUIUUUUUU AU . -

€2
8540

02

Figure 72: Simulation 1: Segment §
2

124 = 0l3g

yiz =080
[T %2 [o 113 B3 153 _ FT—
PETTTUIED PSP Y JRrE 1 2 2 1 - N 2 FEEUS SY PO IR ST SPOT IR S GRSy L . " [T AE A
_) !
R R
) k : ' \
: “ i i
i I i i I
; m ! ! i aso <NV
H i i ! | |
| i i
{ _ * 1 T _ -
| i ! ! _ | 1S 0 <NV
i ; _ i H ! __
. . i : : : :
‘ _ H E i _ : . i : s o asm
! | ' . ' :
p 1] H ” i .
: i i r | k a0 <MV
— — ! 2 AV Ve an SIS T
! ! 4 : .
! v, ! L% fl lcxm /L/l)*[v, X “ Y, Xrl...w/,:hl.w .-\w_,,i ¢ \ 20 <@ 1>400¥/
: 150 UYaSSvd/
i
j 0 O “,
IS B R I . 50 Y
i : ;
m w “ _J _ C .
: P i] [¥so Qviy/
o o M
B H : i .
: . i N : 1350 ASNETISI8/
i _ | _ i
i “ # b ! i
_ ; . __ m W : ! 250 INOQTISIE/
i : ! ; ‘ :
1 : 1 H ; ;
_ _ i _ * ! : _. i aso ¥V1S8/
i i ! i i :
| | “ .ﬂ : w : _ u
' : ! i : : 250 1S87Y
! ;
: i i : : 1S 0 (1%
B aisiaiakainta ksl o oEn i RENEEETERENEERRENE
JES_JLE EEEEHEEFLE{E:?

03

Figure 73: Simulation 1: Segment 6
2

ni = og

08y

Py = oun)
26 St T3 SoF T3 62 T3 S8 08z 313 _ sogg waw
1 P B OOT | 2 3 . i e 2 1 . - P L PR P Y .
!]
._ _ __ M
H : i
! : i
1 ¢ i
i i
N : : oso <NV
1 " B
| H
! ;
_ _ 50 >y
i 1
. ! i | i
_ ; | i | ,_ A . s o <>mv
i ‘ | . i i i
; i i 1 i i
' : ! ; ; x50 <AV
] : i 1 ., m T *
v w m w | je _ e : ! i ¢ ® Anx 0o <@1>H00V/
! ; j 1 | ! : ;
) i ! | :
i i | ; us o WISV
i i
i ! : aso W
, :
m :
. i
m m 2iso aviy/
w i i
| s o ASNE"ISI8/
|
;
! s 0 INDQISE/
;
i _ @50 NIVISIE/
; 1
7 7
_ ! ! @50 158”10/
] ' ~ 4
. i w w _ “ m
: ' m i ! | i : s o iy
| “ m | | L “ W
AR e e L e SR] -
h ; i i | i i :
"t

32000ns

27500ns to ¢

Figure 74: Simulation 1: ¢

204

1
Ly = 043Q;

ty = But_uw

ez] suga w awy
N i .
{
i 150 <CONIV
!
i |
i |
! i a5 o <ONIN
| i
| |
: ! 150 <NV
')
! | !
_ ! eis o <@>miv
NG)
\ 80 <2 (1 >H0av/
: 250 Liews
AR A A ; i i
L E , _ . i h @30 oy
i ., : ; | : , : :
; w ,_ w ; ; i iS50 73327
i i H ' i
i : H : i i
i i i I
; i i ; s o asneTIsie/
| ! i ,m !
, i i ! i ! : |
. i i : ! ! | eso INOGTISI8/
i ! i w | i w
+ “ _ ! i M i w -
; : : 50 Vs
: |
! : :] : ! ' : ! i * .
” | i ” : . ., | N . @50 1S5 MY
- i _.l..
- : ‘ NI 50 Y
g ‘ ' .
o amnen ,1;1._: Rl e e B el el e R e B T
! - i _ ny byl R R R D .
_.._rrr(h Juul ELr__f:lf_r r:r L_Laqﬁurr.ﬂurrxr,tru[“[cc #50 ny
v " !
.7 .

05

Figure 75: Simulation 2: Segment 1
2

4]
47

« ou2g;

z 080!

[1] 29 55 25 . _ g3 W ue_.—*
1 1 1 1 ' 1
m | | : i
i 1 : : 1§ 0 eI
I
| ! !
! T
| . ; ; 15 0 <RIV
! : ~ ! :
b _ _
! ! ! : ! 250 <a>pIv
i W i
! \ : @50 <@>nIV
: i ,
i
\ 20 <@4>500%/
m
W . aso I
i
; ~ _ _
i i _ | “ aso oy
_ i :
A “ us0 WSSV
i
T
. ! NS o AsngTisie/
i
:
!
. aiso 3NOQTISIB/
! #s0 X158/
) i
~ _ M
i i #50 118”18/
i | ! .
J ! X :
. : ~ : ; ! i
; ' i . : us o Ny
: i i : : :
I _‘J_ — M _] j n i 1,. J
L { | Pt r.._ 2is 0 ny
; k d :
| . ! . B '

6

Figure 76: Simulation 2: Segment 2
20

[4y) = 0)3Q

LI = 0%n]

1

Y i 82 Sil ol [0 801 <6 S—
| Ly L | | L S Lo L P)
“] _ P _
: ! ! . faso <O>NIN
_ | | |
i ! ; i
_ ! i i ' ! 9is 0 <w
H t T T
| i ! i ! | ! !
T T
i ! ! ! a5 o <O
.] i i
N H . 1
i !
i ~ _.ll_ . 50 <@y
; ;
: —— i
X. ¢ Mf “ : _Xa /i ¢o <81 500w/
- - ; — 1 — ™
: P . !
. _I_ L P Il_lJr!]|_rl~ _r : 250 IHEW
Il_l_|l _l T I A A AN O NER : T .
:] .Il PR B S P S , - [e o3/
. ' !
_ ! i
i i 50 MY ISSvd/
m :
. : i 50 ASNE"1SIE/
. ; !
! ‘]
; i i aso INDGTISIB/
_m _
: ” 1
; ; ! m | 2so YIS/
! : | ; !
T v Y
! i | 1 _ i . }
; : : , 5o 188
M _
. ﬁ 50 a
TANANT iot riuts Eotet ol Fabad alate bale
IRERERE lm.._ .t(_[_(_ A _ L 250 e

7

Figure 77: Simulation 2: Segment 3
20

g Ul awy

s o <>V
nso <DHWV
nso <>V
uso <N
20 <B:1>¥00V/
250 v
A5 0 o3y
aso WV3SSYd/
50 ASngTISI8/
a5 o IN0OTISI/
8IS o XV 198/
aso 1SI8714vIS/
150 ny
as o Ny

<

-~

=

&

)

9]

v

N

5

» 8
3 o]
= &Q
=

&

w

fo'e)

~

o

St

=

o

=

e /3 = om0
61z = o5
sz (I3 sz [113 ez et] 261 <al _)
— Lo ! PP . ! ol BT | ! 1 1 P " 1 e v
‘ ‘ : _ _ i | ; ! #50 <MW
H m L L P !
. : : . : : ;
: _ ! — X ; ~ , @50 <MW
; . t i | — i] i ; '
v S _ " |
F _ ! _ @50 asmw
1 I .
H il
_ _ ._ , eso @M
Ce ﬂv XYY Y Y Yo a9 s
\WAWAAWAW ; 2o <@ 1>500¢
i _ . ¢ o I
‘ . _l— _ o s o oy
i i _ m m _ “ : .
T T Y T v 1 T
! | ! t ! . : { , i
! eso WSSV
: ; i 150 ASNgTISI/
M [i
“ ﬂ *
1 1 !
. ! i i 2so INOQISIE/
T
! t ! 850 XviSey/
250 IS8Ty
: . RIF ey
anrn _ : B inlstu ikl aiula R el a it Rallal p il Nel e Re s e Re i
&8 ! _J | g i P i ot ﬁ R RN
g UTTUUUTIIU U U T U U el e i iy«
K ” . ,

ny

Figure 79: Simulation 2: Segment 5

209

"z =g

" = .8,_...W

sepg wawy
250 <MY
uso <A
uso <RI
eis o <MV
30 <@4>u00v/
s o EIT
5 0 Wy
215 0 WSy
w0 AsngTise/
s o IN0O™ISIE/
s 0 NOV'198/
a5 o 1S8R/
uso 0y
gis o ny

Figure 80: Simulation 2: Segment 6

210

.iﬂlllllll'lll.lllllllllllll!l’l.l& p——
] W = g

az¢ siF air sar o5 23 852 73 2oz 522 A oA uaw
\ 3\ \ Y 3y L)) Y 3y 3y 3 3 3y 3y 3 N 3y)] - }
1 [l i + 18 1] 1 +
! 7 7 i ; ! ! {
e es0 wnw
. : | i H | : ! . i
. _ ! | i ; | i | : , ; i
, : r ! ; m ! ! : n i . . s o <@V
I N ‘ | t) [r . .
t T T T T i i
_ i b Lo S
! | : . } i f : . 150 <>AIV
+ t * " : : :
i : i | ' i i
: ' 1 j j :)
i , : : zoo <@>mw
. ! H
v - - - fﬁ/w \.
: P ; i . : % ’ - A 20 <a:>u00v/
B . t
: !
AV H 1
: #50 HEY
i : 50 ovay/
: : __ _ : w
: . i 1 1 i . | . :
i i H H H ' i H t '
i i i w | i . . w : 250 WSSV
' ! ! | i i i
7 7 i W : 7 : i ’ ; : ;)
, i : i | H ' : i i : : : : uso ASNETISE/
I _ “ A T S R B ,
i : | ! _ | . ; i | : ,
;) : i : i i , i i : : s o INOQTISI/
X . ! . . : 1 : : - . -
i i i i . ! i : « 4 ! . . i
{ ! i ! I ; : ! i _ . ; . :
i ! i : i i : ! ') -
: _ : , ! m ! i : Biso ¥V IS/
. _ . ; . “ : ; w : ‘ ” #so SET Y
H 1350 Y
TTOn ~1 _J;J ﬁn__ﬁj_lﬂcr_:ﬁ ~ BRI ::_;::; sso o
- | U L L,.L. L .CF[V.L.LL,I.E,I,.IVF.I(.[(I_(C.I.I :
|
1 184
08,70

27500ns to ¢ = 32000ns

211

Iigure 81: Simulation 2: ¢

