
Mutable Object State for Object�Oriented Logic Programming�

A Survey

Technical Report TR ������

Vladimir Alexievy

Department of Computing Science� University of Alberta

��� GSB� Edmonton� Alberta T�G �H�

email� vladimir�cs�ualberta�ca

�� August ����

Abstract

One of the most di�cult problems on the way to an integration of Object�Oriented and Logic
Programming is the modeling of changeable object state �i�e� object dynamics	 in a particular
logic in order not to forfeit the declarative nature of LP
 Classical logic is largely unsuitable
for such a task� because it adopts a general �both temporally and spatially	� Platonic notion of
validity� whereas object state changes over time and is local to an object
 This paper presents the
problem and surveys the state�of�the�art approaches to its solution� as well as some emerging�
promising new approaches
 The paper tries to relate the di�erent approaches� to evaluate their
merits and de�ciencies and to identify promising directions for development

Keywords� Object�Oriented Logic Programming� mutable object state� survey

� The Problem� Dynamics of Objects

From the research literature on integration of Object�Oriented Programming �OOP� and Logic Pro�
gramming �LP� one gets the impression that the most obstinate di�culty on the way to such an
integration is the following problem� how to represent �model adequately� state change in a declar�
ative and logically sound way	 On the other hand
 the structural aspects of OOP �encapsulation

classes
 inheritance
 polymorphism and aggregation� can be accommodated in the LP paradigm
with relative ease	 Representation of state �object dynamics� and representation of structurisa�
tion �object statics� are largely orthogonal
 but in some cases they interfere with each other	 So
notwithstanding that the emphasis of this paper is on mutable state �for a general survey of OOLP
see the one by Davison ����
 in some cases I discuss static aspects as well	

Classical logic emerged from studies in the foundations of mathematics
 and thus it is designed
to reason about static things� relations
 functions etc	 Correspondingly predicate calculus adopts
a notion of truth which is�

�Available by anonymous FTP from ftp�cs�ualberta�ca� pub�TechReports�TR������state�ps�Z or pub�

oolog�state�ps�Z� Comments and corrections are most welcome�
ySupported by a University of Alberta PhD Scholarship�

�

� Global� all the consequences of a logic theory are �conceptually� known to hold �this is named
logical omniscience�	

� Eternal �universal in time�� a formula is either true or false
 independent on the time it is
evaluated	 Furthermore
 the same holds for terms �data items�� a logic variable �as e�g� in
Prolog�
 once bound
 cannot take on another value �except on backtracking�	 The property
that a formula or a part of it always has the same meaning
 no matter where and when it is
evaluated
 is called referential transparency 	

To the opposite
 object encapsulation and the dynamics of objects make object state�

� Local� the state of an object is its private property and no other object have access to it
except by asking the owner using message passing	

� Time�dependent� in a system which should be able to model the dynamic world
 object state
changes over time	

This renders classical logic unsuitable for state change representation	 There are a number of
proposals for a logic of action and change
 but none of them has ever become the core of a database
or a logic programming system	 On the other hand
 classical predicate calculus is the foundation
of queries in Relational and Deductive Databases and of Logic Programming
 both in theory and
in practice	

In addition to this general unsuitability of classical logic for the modeling of dynamic systems

there is a number of other �side� problems with the representation of change in LP which are
better understood in the context of the respective approaches they appear in and are covered in the
respective sections below	 The following problem however is su�ciently general to be mentioned
here� object�orientation is often used to implement open
 highly interactive systems which do some
input �perception�
 then some computation
 then some output �actuation� and so on in a loop	
Therefore those are reactive systems	 Even if not open to the external world
 a large object�oriented
system consists of a large number of component objects and their interactions 	 Examples of such
systems are user interfaces
 operating systems
 simulations
 communication software
 industrial
control and robotics applications
 etc	 To the contrary
 LP�based programs are transformational

in the sense that they get some inputs and produce �a set of� corresponding outputs which make
a certain I�O relation true �one of the strengths of LP is that one can �exibly apply inputs� the
program is like a black box with bidirectional pins which can serve as both inputs and outputs
according to demand�	

A complex object has a correspondingly large state information� an object in an OOLP program
should store a number of its previous states for backtracking purposes	 It is a very subtle matter
to determine the exact amount of backtracking information �state history� to be stored between
message sends	 For example Conery in ���
 p	��� writes� �Is there an operation analogous to cut
that commits the system to a new object state and allows us to discard the history of some objects�
How will this interact with the top�level user dialog�� The question is even more complex if there
are more stimulus sources than a single user	

A sample proposal for the solution of this problem
 which I deem impractical is as follows ����
upon a message send a logical deduction process is initiated during the course of which every object
computes its new state
 but does not commit updates and responds to queries with its old state	
After that a special noti�cation is broadcasted globally and all objects move to their new computed

�

states	 In other words
 during the deduction process the database is �frozen� and moves to a new
state synchronously
 all at once	 This convention greatly simpli�es the logical semantics
 but con�
tradicts the very spirit of a distributed system of autonomous objects and introduces an unneeded
distinction between �deduction� and �update�� also it is not clear what entity the programmer
should �authorize� to broadcast the global �move to the new state� message and how this message
will reach all its recipients	

The survey attempts to explicate the relations �sometimes even unintentional� which exist
among the di�erent proposals	 The emphasis in this survey is on e�cient implementation of state
change
 one which would be suitable for the lowest fundamental level of a general OOLP language	
The following approaches are covered in the sections below� Assert�Retract
 Declarative Database
Updates and Transaction Logic
 Modal and Dynamic Logics
 Perpetual Objects
 Logical Objects
and Linear Objects
 Linear Logic
 Rewriting Logic and MaudeLog	

� Assert�Retract� Non�Logical State Change

This section discusses a �cover under the carpet� approach to our problem
 namely the approach of
not addressing the problem at all	 This approach is rather wide�spread in early integration proposals
like the one by Zaniolo ���
 and in proposals which treat objects as encapsulated labeled collections
of clauses �local theories� like McCabe�s L�O ��� �class templates� or Ishikawa and Tokoro�s
Orient��K ���
 �� �an object�based OOLP language�	 In the last two languages mentioned
 an
assignment operator is introduced for convenience and e�ciency
 but the logical semantics is the
same as for assert�retract	 Bancilhon in ��
 p	�� talks about �clean queries and dirty updates�
and argues that since all known systems which have a clear ��x�point� semantics do have a semantics
only for queries but not for updates
 we should accept this as a matter of fact and treat updates
as destructive assignments	

Many of these approaches are based on the destructive modi�cation of the logic program through
the assert and retract operators of Prolog which insert and delete a clause from the program
respectively	 There are many problems with assert�retract which motivate e�g� Warren ���
to talk about �The evils of assert� and which make programming using these operators a rather
non�declarative e�ort�

� They depend on the sequential execution of the literals in a goal �which is peculiar to Pro�
log�
 thus they do not respect the commutativity of logical conjunction	

� Theory change involves higher�order notions
 which however with assert�retract remain
hidden and implicit	 Metalanguage �in which Prolog programs are written� and object�level
language �in which Prolog talks about real�world objects� are mixed in a non�disciplined
way	 Since no distinction is made between the name of a formula �the argument of assert�retract�
and the formula itself
 this leads to strange e�ects such as�

�� assert�p�X���

means �Assert that for all X
 p�X� holds� �a universally quanti�ed assertion�
 whereas

�� p�X��

�

means �Does there exist an X such that p�X� holds� �an existentially quanti�ed query�	

� assert and retract do not undo their e�ects on backtracking
 leaving an unwanted �residue�
in the database	 This makes it hard to use them for transaction programming where the
changes should only be committed in the case when the transaction succeeds	

There are Prologs featuring fully backtrackable assert�retract
 e�g� Object�Prolog
���	 In SicstusProlog one can implement backtrackable assert�retract using a builtin
meta�predicate undo�� whose term argument is executed on backtracking	�	 For example
backtrackable retract will be�

b�retract�X� ��

retract�X��

undo�assert�X���

Another problem �which however is not inherent to assert�retract� is that changes are done
globally to the database and are not encapsulated in a local part pertaining to a single object	

Although this approach is completely unsatisfactory
 there are surprisingly many commercial
OOLP systems which adopt it	 This can be seen as a challenge to the academia to provide better
techniques for modeling object state	 For example the vendors of BIM�Prolog say something
to the e�ect that ��� �We could not use ine�ective approaches based on maintaining complete
histories of object states and we just could not wait for something better to develop�	

� Declarative Database Updates� Transaction Logic

One of the fundamental problems in the area of Deductive Databases is� how to incorporate new
knowledge in the database
 preserving the consistency of the updated database �declarative database
updates�	 The issue of dynamic DB updates becomes even more important with the development
of Deductive and Object�Oriented Databases because of the inherent dynamic nature of objects	
A lot of research has been performed in this area and one would expect that most of this research
should be relevant to our problem	 However
 there are two potential misunderstandings which
render most of the research inapplicable to our case�

� There is a di�erence between updating a declarative �deductive� database and updating a
conventional or object�oriented database in a declarative way	 The former is relevant in the
area of Deductive Databases and it is the harder problem of the two
 because it may involve
updating general logic theories and therefore the whole suite of non�monotonic problems
 etc	
The latter is more relevant to conventional OOP and to mergers of OOP and LP
 because
usually object attributes �the dynamic parts of an object� are simple data terms and�or
atomic formul�	 So the majority of the work in DB updates is too general to be applicable
to OOLP� one would not like to deal with non�monotonicity issues for a simple change of an
attribute which should be done very e�ciently	

� There is a big di�erence between updating a database and revising it ���	 The former
means changing the database in order to re�ect a change in the real world
 the latter means

�As pointed to me by Bernhard Pfahringer

�

incorporating newly acquired knowledge about a static world	 The di�erence is that revision
involves reassessment of the possibility of each of the models of the old theory
 because some
of them may turn out to be impossible in the light of the new knowledge� whereas update
can never change the set of possible worlds of the old theory
 it merely moves the system to a
new set of possible worlds	 For example
 an inconsistent theory can never be made consistent
using update ���
 which is not the case if revision is used	 Technically this involves a revision
of the Alchourron�G�ardenfors�Makinson �AGM� rationality postulates for update operators	
Informally
 it means that the non�monotonicity issues involved are quite di�erent for revision
and for update
 generally being simpler for update�	 Although many of the works are declared
to be devoted to database updates
 in fact most of them actually deal with revision	

With this precautions in mind
 I turn now to a brief review of the declarative updates �eld	�

Typical approaches which I deem impractical for the problem in hand include� allowing only
additions but not deletions
 with newer knowledge overruling inconsistent older knowledge ����
maintaining a complete history of the database
 as in the object�oriented version of Kowalski�s
Event Calculus ���
 �� developed by Kesim and Sergot ���
 etc	

Two simple concepts predominate in the work in this �eld	 One is the application of modal logic
and the possible worlds semantics� changing a logical theory leads to a new �set of� model�s� for
the changed theory	 Another is the concept of closeness � the changed database should maximally
resemble the old one
 involving minimal change	 Two variations are possible here� closeness can
be interpreted in either a syntactic �minimal change of the set of formul��
 or a semantic sense
�minimal change of the set of possible worlds�	 The work of Winslett ���
 �� is foundational in the
sense that she �rst gave a generally accepted formalization of the notion of minimal change	

Fagin
 Ullman
 Vardi and Kuper ���
 �� has done some early work on updating databases
with integrity constraints and the related problem of view updates � given a �possibly non�injective�
mapping of the database state �a view�
 map an update of this view back to an update of the
basic stored facts	 An elementary �under a particular de�nition� update of a view may turn to be
non�elementary for the stored database	 Usually a number of views will be needed to disambiguate
how to perform a basic update	

Abiteboul and Vianu �� developed a number of declarative languages for database updates and
obtained some results on expressiveness and complexity
 but they were only concerned with the
end result of executing an update
 and not with the execution process itself	 There are syntactic
restrictions on the ways transactions can be constructed from simpler ones
 and no transaction
�subroutines� are allowed	

Chen ��� developed a calculus and an equivalent algebra for specifying and executing updates
�restricted to insertion and deletion of single tuples�
 much in the tradition established for explo�
ration of query languages	

A work which stands out with its very di�erent approach to the problem is Transaction Logic
�T R� of Bonner and Kifer ���	 They opt not to deal with the whole spectrum of non�monotonicity
issues related to database updates and assume that a transition base of elementary updates
 specify�
ing the set of possible transitions for each update
 is given beforehand �usually through an algorithm
which can enumerate it�	 In this way T R manages to be both very general �di�erent models of
updates can be accommodated in it�
 modular �a particular model of updates can easily be plugged

�Caveat� The paper is far from comprehensive in this respect� For more comprehensive surveys see ��� or ����

�

in�
 and at the same time have a sound semantics �all the di�cult non�monotonicity issues are
encapsulated in the transition base and do not spoil the rest of the semantics�	 The formul� of T R
are database transactions built up from elementary updates which may succeed or fail
 and T R fo�
cuses on their compositional properties	 T R interprets all the classical logic connectives in terms of
composition of transactions �e�g� conjunction constrains two transactions so that they both should
run along the same execution path
 disjunction corresponds to non�deterministic choice
 etc	�
 and
in addition introduces serial conjunction
 denoted �
 which composes two transactions sequentially
and its dual �under the de Morgan laws� serial disjunction
 denoted �	 Also
 left and right serial
implications are de�ned

�� �
def
� � � ��

�� �
def
� �� � �

which mean �Whenever � happens
 it must be immediately preceded �resp	 followed� by ��	 In
T R the di�erence between a transaction and a query is blurred
 because a successful transaction
may both do some changes to the database and bind some logic variables
 thus returning an
answer	 This is corresponds well to the practice in LP
 and is important for modeling methods
in OOP where a method can both return a value and have side e�ects	 Also
 both hypothetical
reasoning and committed transactions are possible in T R	 Other features which are important
for database programming
 like non�deterministic and bulk updates
 non�deterministic sampling

static and dynamic integrity constraints on transaction execution
 etc	
 are also provided for	

A major advantage of ��� is that it develops a sound and complete proof theory of the Horn
fragment of T R which is suitable for Logic Programming	 It turned out that it is awkward to
formulate the proof theory of full T R in T R itself
 so a general logic of state change ��� is being
designed for this purpose	 The proof theory can both reason about transaction execution and
actually perform this execution	 Two dual proof systems are presented
 for normal execution and
for reverse execution �it is assumed that for every elementary update the transition base
 given the
current state
 can compute both the successor state�s� and the predecessor state�s��	 These two
proof systems are pro�tably linked together for hypothetical reasoning ��What would happen if
such and such update is performed��	

A shortcoming of T R is that its model theory is somewhat complex� truth is de�ned on paths
over states
 each state being a set of possible worlds	 Nevertheless
 by focusing in the right problem
�the properties of combining updates into transactions
 not the properties of updates themselves�

T R presents a rich and computationally meaningful framework for updates	

In summary
 some of the approaches in this area seem too �heavy�weight� and concerned with
reasoning about updates instead of per se performing updates to be useful for an e�cient implemen�
tation at the lowest
 fundamental level of a general OOLP language	 Nevertheless these results are
important to consider if a language closely tied with a Deductive and Object�Oriented Databases
�resp	 a database programming language�
 is seeked	

� Modal and Dynamic Logics

There is a number of logics of action developed either in the Arti�cial Intelligence community
or for providing a formal semantics of the execution of imperative programs	 Those developed
for AI applications �e�g� planning� are usually too general and cumbersome to be the basis of an

�

OOLP system
 either because they represent actions as nested terms and reason explicitly about
the current global state of the world �e�g� McCarthy�s Situation Calculus and McCarty�s Logic
of Action�
 or because they focus on the temporal side of actions �e�g� Allen�s logic of temporal
intervals�	

A number of formalisms for semantics of imperative programs stems from Modal Logic and
Kripke�s possible worlds approach	 One of the �rst was Floyd�Hoare�s program logic	 Then comes
Pratt�s Process Logic ���
 ��	 Here I describe Dynamic Logic ��� and its use for the semantics of
object state change	

The language of Dynamic Logic consists of two kinds of expressions� formul� �� �� � � � and
programs �� �� � � � �programs are deemed non�deterministic�	 Formul� are constructed from simpler
formul� by the usual logic connectives
 and in addition from a formula and a program by a couple
of dual operators ��� and h�i� which correspond to the usual modal operators �necessarily� ��
and �possibly� ��	 �In fact Dynamic Logic can be seen as a kind of multi�modal logic
 where
modalities are formed by programs	� The semantics of these operators is de�ned as follows� if � is
a formula
 � is a program and w is the current program state �world�
 then

w j� ��� i� w� j� � for every successor w� of w
w j� h�i� i� there exist a successor w� of w such that w� j� �

Here �w� is successor of w� means that the program � leads �or may lead
 if it is actually non�
deterministic� from the state w to the state w�	 Correspondingly
 in �� ���
 the formul� � and
� are Dijkstra�style pre� and postconditions of � respectively	

Programs are constructed from elementary programs much like regular expressions using the
following forms�

�� � sequential composition
� j � non�deterministic choice
�� in�nite iteration �Kleene star�

The iteration construct �� means �execute � zero or more times�	 The set of elementary programs
usually consists of

x �� e assignment of a term to a variable
�� test of a program�free formula

The test �� succeeds when � is true without changing the current state �the test is side�e�ect free�

and aborts the program if � is false �i�e�
 there are no possible successor worlds�	

Non�determinism turns out to be very useful
 because e�g� an if�then�else construct can be
de�ned as

if ��� �� ��
def
� ������ j ����� ��

Sometimes Context�Free Dynamic Logic is considered �instead of Regular DL�
 where the lan�
guage of DL is enriched with variables for programs �program names�
 programs are formed from
elementary ones using a context�free grammar
 and thus �mutual� recursion can be expressed	

Typical axioms for Dynamic Logic include

�x �� e� � �fx�eg
���� � �� �

��� �� � �����
�� j �� � ��� � ���

�

and the axioms of Modal Logic	
Although Dynamic Logic has been designed from the very beginning as a logic of imperative

programs and state change
 there is relatively small number of attempts to use it for the description
of object state dynamics	 In the work of Meyer and Wieringa ���
 ��
 Dynamic Logic is combined
with Abstract Data Types and Order�Sorted Logic in a formal speci�cation system called Concep�
tual Model Speci�cation Language	 ADTs �see also Section �� are used to formalize structured
object values
 whereas DL captures object dynamics	 The connection between the two relies heav�
ily on the use of object identi�ers	 A similar series of works by Jungclaus
 Saake
 Sernadas and
Hartmann ���
 ��
 �� emphasizes dynamic aspects of object interaction and develops a language
called Oblog�	 Burandt ��� in his diploma thesis has started work in the same direction	

Similar work using multi�modal �but not dynamic� logic is one of Fari nas del Cerro and Herzig
���	 They use modalities of the form ASSUME	p
 where p is a literal �propositional formula or its
negation�	 This modality performs a transition to a world which is the same as the current one

except that the literal p is true in the new world	 However their approach is too simplistic!only
literal assertions�deletions are allowed
 and the database is assumed complete
 so that assuming
�p amounts to deleting p!and their logic collapses to conventional propositional calculus	 �This
work may also be considered under Section � on database updates	�

Warren ��� and Manchanda ���
 �� in his thesis develop a theory of database updates in pure
Prolog
 based on modal logic and the two operators assume and forget
 which are similar to
assert and retract
 but have a clear logical semantics	 The language Object�Prolog ��� devel�
oped in Hungary also features fully�backtrackable assert�retract	 ObjVProlog of Malenfant

Lapalme and Vaucher ��� uses a similar approach	

Uustalu ��� proposes a two�dimensional modal logic which models uniformly two phenomena�
overriding inheritance along the object hierarchy dimension and state change along the time di�
mension	 Objects inherit the non�overridden part of their behavior from their ancestors in the
inheritance hierarchy
 much in the same way as they inherit the non�changed parts of their state
from the previous instant in time	

A major problem with utilising Dynamic Logic for mutable object state is that it is designed to
reason about programs and changes
 not to actually execute them
 or serve as the basis of an Object�
Oriented Logic Programming system	 In DL
 programs and logical formul� are two disparate types
of entities
 whereas in Logic Programming programs are formul�
 with computation equated to
proof search	 Also
 in Object�Oriented Programming
 queries �methods to return some information�
and transactions �methods to perform some changes� can be freely mixed in methods which both
return information and have side e�ects	 So it is not by chance that the attempts to use DL for
OOLP has come from the formal speci�cation community and not from the logic programming
community	 Also
 there are quite a few LP systems implementing modal logic ���
 ��
 and they
are more theorem provers than programming systems	

� Perpetual Objects� Exploiting the Dynamics of Proofs

As was mentioned in the introductory section
 the notion of truth in classical logic is global and
static	 However there is a dynamic component in a LP or automated proof system� the proof
process itself	 A proof develops over time
 and its �conceptually parallel� branching subproofs are
spatially separated	 Therefore
 it is possible to represent objects as perpetually reappearing �by
recursively calling themselves� predicates
 bearing the object state in their argument terms	

�

There is a whole family of OOLP languages based on concurrent versions of Prolog and the
fore�mentioned paradigm	 Concurrency �at least coroutine�based pseudo�concurrency� is needed in
order to capture the simultaneous development of a number of objects	 �But see Section � for two
approaches achieving the same e�ect which do not rely on concurrency	� JosSome early ideas are
proposed in Kahn�s Intermission ���
 Hewitt and Agha�s Actors also in�uenced this approach	
The seminal paper is by Shapiro and Takeuchi ��� and later languages areMandala ���
 Vulcan
���
 ��
 ��
 Polka ���
 ��
 A�UM ���
 ��	 The base language of the Fifth Generation Computer
Systems project ESP ���
 ��
 �� can also be counted here	 A good introduction to these ideas is
���	

The mechanics of modeling OO notions in this paradigm is as follows ����

�	 Objects are represented by perpetual predicates �proof processes�	 In order to persist between
message sends
 the object has to explicitly reinstate itself by making a recursive call	

�	 Object state is represented by the arguments of the object predicate	 State change is achieved
by substituting in the recursive call values di�ering from the input parameters of the message
send	

�	 One of the arguments of the predicate is a message stream to the object
 represented as a
lazy list �one whose tail can be undetermined�	 After handling a message
 the object passes
the rest of the stream to itself�

object �State� 	mesg � StreamRest
� ��

change �State� NewState�� object �NewState� StreamRest��

�	 The object process is activated when a message is received �the head of the stream is bound�

and after handling the message the process is suspended	 Technically this means that the
recursive call is not pursued immediately
 but is postponed until �the head of� StreamRest
gets determined� and also that no backtracking information is stored for this call �that is
 tail
recursion elimination is being done�	 In committed�choice languages the clause body is being
split into a guard and body proper� Head �� Guard � Body
 and after the guard is satis�ed

execution commits to this clause by forgetting all other choice points �� is called the commit
operator�	 So our earlier example becomes

object �State� 	mesg��Param� � StreamRest� ��

this�is�the�correct�method� �mesg� Param� �

change� �State� NewState�� object �NewState� StreamRest��

object �State� 	mesg��Param� � StreamRest� ��

this�is�the�correct�method� �mesg� Param� �

change� �State� NewState�� object �NewState� StreamRest��

�	 If an object cannot handle a message
 it delegates it to its superobject �an acquaintance held
in one of the predicate parameters�
 similar to the Actors paradigm and Self class�less
prototype objects	

�	 A message is responded to either by sending a dedicated message in the opposite direction or
by binding a place�holder �result� variable built�in the message term	 This way the sender

�

does not have to wait until the message is responded to
 but can continue execution until the
result is needed
 at which point it will be suspended if the result is not bound yet	

A problem with this approach is that the semantics of Concurrent Prolog and other
committed�choice languages is very di�erent from the semantics of Prolog �some authors even
go as far as to call Concurrent Prolog an �impure dialect� of Prolog�	 The �potential� non�
determinism of Prolog�s Selection Rule �which clause to try next in order to achieve the current
goal� is a kind of �don�t know� non�determinism and does not a�ect the declarative semantics of
the program because backtracking tries all applicable clauses in turn �unless cut is used�	 However
in committed�choice languages after a guard is satis�ed the execution commits to the corresponding
clause and the execution of all other clauses is abandoned	 Therefore it is an essential fact that
the guards are tested before the body of the clause is executed
 and so the commutativity of logical
conjunction is not respected	 Furthermore
 the programmer should ensure that it does not matter
which of the eligible clauses will be committed to ��don�t care� non�determinism�	

The fore�mentioned problem
 although making programming in Concurrent Prolog a less
declarative e�ort than one would like it to be
 has a bright side� it makes the programming of
reactive systems �as described in Section �� possible
 because the search tree is pruned early and
not all possible answers to the stimulus are computed
 but only the ones relevant to the current
state �of course
 this can be achieved in conventional Prolog
 but it will involve extensive use of
cut�	

Another problem is that all the arguments of the predicate �attributes of the object� are to be
passed to the reinstating recursive call
 even if only a small part of them are changed �similarly
to the frame problem in AI�	 It is possible to overcome this by packaging all attributes in an
Abstract Data Type entity which is only capable of performing elementary attribute updates
 but
this introduces another level of indirection and thus
 ine�ciency	

Another problem is that this approach does not model very well the structurisation �static�
aspects of OOP	 In order to achieve incremental �default� programming �specifying only the methods
which specialize an object from its corresponding superobject�
 the programmer has to maintain
in the subobject a pointer to its superobject and call the superobject explicitly	 It would be fair
to say that this approach achieves delegation only
 but not inheritance	 Therefore
 plainly applied

this approach is rather low�level	 Some higher�level languages �e�g� Vulcan and A�UM� are
implemented as preprocessors which translate them to an underlying concurrent LP language
 or
as specialized interpreters
 which perform delegation automatically	 But even if these languages are
more convenient
 they are somewhat ine�cient compared to convenient OOP languages like C""
or Smalltalk
 because the representation of an object is not a record formed by appending the
specializing attributes of the object to the record of the superobject
 but rather a chain of partial
records connected by delegation links	 So in order to use an inherited attribute
 a method in the
object has to ask its superobject explicitly	 Also
 since a self pointer pointing to the object is not
passed automatically upon delegation
 polymorphism is problematical	 Namely
 if the superobject
needs to call a polymorphic method in the object
 an explicit passing of self is to be arranged by
the programmer	 This also creates a proliferation of processes corresponding to partial objects and
complicates the message patterns between them	

Another problem is that the is�a and part�of hierarchies are mixed�up� both require that the
object holds pointers to its parts�superobjects and both rely on explicit delegation	 This has both
bad methodological implications and causes ine�ciency	 In Smalltalk the parts of an object are
represented by pointers in its record �unless they are atomic non�object entities
 like numbers�
 but

��

in C"" one has the option to either have pointers to the subparts
 or package the part objects
themselves in the record	

This approach models relatively well the short�term aspects of state
 but is not that good at
modeling long�term aspects	 For example
 it is not quite clear how to integrate it with an Object�
Oriented Database
 short of using completely disparate object representations in the short�term
and long�term memories	

The inconvenience that the programmer should write explicit code in order to conform to the
object�oriented style has a reverse side� it is possible �and even not very hard� to program very
�exible and varied patterns of communication and delegation
 which would be hard if a commit�
ment is made to speci�c patterns in the language itself	 For example an object may have a number
of message streams �ports� and not only one� one�to�many broadcasting is easy and many�to�one
communication is possible by introducing special stream�merging components or a generalization
of streams called channels	 The reader will see a similar phenomenon!ine�ciency and�or incon�
venience
 but on the other side great �exibility!in other approaches as well �Section ��	

Notwithstanding its de�ciencies
 this approach is an easy�to�implement integration of completely
separate ideas which are �tted very well together	

	 Logical Objects and Linear Objects� Multiple Heads

It turns out that the salient feature exploited by the perpetual objects approach �covered in the
previous section� is not concurrency itself
 but the ability to pursue more than one goal simulta�
neously
 thus modeling the simultaneous development of more than one object	 Concurrency �or
coroutine�based pseudo�concurrency� is only a means to this end� there are other ways to achieve
it	 One of them is to extend Prolog by allowing many heads in a clause and�or disjunctive goals	
In order to avoid the combinatorial explosion of the search space
 restrictions should be imposed
on the way these additional heads are pursued	

This section describes two proposals which
 although stemming from di�erent grounds and
having di�erent formal justi�cations
 nevertheless end up in a quite similar form	

Logical Objects was proposed by Conery ���
 ��
 �� in ����	 It introduces a new kind of
literals!object literals!whose arguments carry the object state �similarly to Section ��	 However
the thread of control is not programmed as a message stream held by the object
 but more in the
spirit of conventional Prolog using �normal� literals �Conery calls them procedure literals�	 If the
current goal contains an object literal
 it is not pursued independently
 but is �consumed� only in
conjunction with other procedure literals	 �An exception to this rule is that when the goal consists
of object literal�s� only
 they are executed by themselves
 which corresponds to some ��nalizing�
actions with the object�s�� destroying them or checking their integrity	�

A program clause is allowed to have in its head
 in addition to one procedure literal
 zero or
more �but usually � or �� object literals	 Since the head is deemed a conjunction of literals
 these
are not really clauses anymore �which are disjunctions of literals�	 However this does not change
the inference method drastically �it is very similar to normal binary resolution�
 because an object
literal is only pursued together with a procedure literal	 Thus the proof that some object exists is
constructed in parallel with the proof that it has certain properties	

In order for a clause to �re
 all its heads are to be matched in the set of goals
 then these goals
are consumed and the clause is executed	

��

object�ID�State�� mesg ��

change�State�NewState�� object�ID�NewState��

�contrast this with the example in Section ��	 The merit of this approach is that is does not
depend on a Concurrent Prolog implementation� the language Hoops described in ��� is
normal backtracking Prolog	 Object state in the Concurrent Prolog approach is held in a
suspended �waiting for a message� process
 while in this approach the object literals in the goal
are suspended ��pushed back� in the set of goals� until a suitable procedure literal is available	
Therefore suspending here is performed globally
 in only one place	

If there are no object literals in the head of a clause
 but there is some in the body
 a new
object is created	 Deletion of objects is modeled by having an object literal in the head
 but no
object literal in the body	 Object literals usually bear an OID used to distinguish among separate
instances of the same class	 If there are two object literals with the same ID in the head and in the
body
 this corresponds to state change	

new�stack�ID� �� generate�id�ID�� stack�ID�	
�� creation

push�ID�X�� stack�ID�S� �� stack�ID�	X�S
�� update

pop�ID�X�� stack�ID�	X�S
� �� stack�ID�S�� update

top�ID�X�� stack�ID�	X�S
� �� stack�ID�	X�S
�� pure query

delete�ID�� stack�ID���� destruction

Conery does not develop any inheritance mechanisms in his original proposal
 he only observes
that �The Logical Objects approach does not hinder the implementation of inheritance�	 A
later implementation in Andorra at SICS ��� proves him right	 �Andorra is a concurrent LP
language
 but it does not use commitment� a choice point is delayed until su�cient information to
make the choice is available	� If the object A inherits from the object B
 then A consists of two
object literals with the same ID
 one for the base object B and one for the additional attributes of
A	 An example adapted from ��� follows� assume that we have an account object and we extend
it to a tax�account object which also knows about tax deductions and accumulates the current
deductions D	

��� new�tax�account�ID� �� new�account�ID�� tax�account�ID����

��� tax�account�ID�D�� spend�ID�X� ��

��� spend�ID�X��

��� deduction�X�D��� tax�account�ID�D�D���

What appears to be a misplaced recursive call in ��� is in fact a call to the overridden method in the
superclass	 The following mechanism accomplishes this� when the head of the clause ��� is matched
in the set of goals
 the literal tax�account�ID�D� is consumed	 Therefore the predicate call ���
cannot match again the same clause ���
 because no corresponding object literal is present	 This
calls the supermethod and upon return from it
 the needed additional computation is performed
and the tax�account is re�established	 However this technique is order� and implementation�
dependent
 because the application of a clause should be non�atomic	 Furthermore
 Conery and
Haridi does not explain how is the more speci�c method chosen for execution in the �rst place
 if
the literal account needed for the execution of the more general �super�� method has also been
present	 This inheritance mechanism �as well as this problem� is very similar to the one used in
Linear Objects �see below�
 which has been developed earlier	

��

There is an e�ciency problem with this approach� the concept of message sending in Logical
Objects is quite far from message passing in traditional object�oriented languages	 A sender does
not really send the message to the receiver
 it rather includes receiver�s ID in it and then �posts�
the message to a global blackboard�like structure �the set of goals�
 from where the receiver picks
it using pattern matching	 Conery and Haridi in ��� mention �Pattern Matched Object Selection�
�PMOS� and argue that it simpli�es programming �compared to the Concurrent Prolog ap�
proach�
 because no explicit communication patterns are to be established
 no streams are to be
connected etc	 Although this observation is true
 PMOS has bad in�uence on e�ciency
 because a
general pattern matcher �e�g� of the kind of RETE� is to be employed	 Object IDs in Logical Ob�
jects are not machine�oriented e�ective address�like entities �currently they are simply integers�

and they cannot be� during the processing of every message the object is consumed and then re�
created again
 and it would be impossible to notify all objects who reference it about this �change
of address�	 Smalltalk has a similar problem �objects may be moved during garbage collection�

which is solved using two redirection levels	 However even if this is applied here
 the problem with
the distribution of the object over a number of partial records �corresponding to incrementally
extending the object during its specialization� remains	 The unstructured blackboard�like global
object space reappears in Maude �see Section ��
 and the fragmented object records and the lack
of �real� OIDs is even worse in Linear Objects �see below�	

Linear Objects of Andreoli and Pareschi ��
 �
 � goes one step further than Logical Ob�
jects� not only is an object separated from its message stream
 but the object literal itself is split
into small pieces each bearing only one attribute or a few related attributes	

Note� the Linear Objects system
 which is based on Linear Logic
 probably belongs to
Section �
 but I wanted to emphasize its similarity to Logical Objects	 In any case
 it cannot
be fully understood without reading the section on Linear Logic	 More papers are available as
technical reports from the European Computer industry Research Center �ECRC� in Germany	

This �ner granularity allows methods to specify and carry�over only the �essential� attributes
of the object� the ones which are either changed by the method or are inputs to the method	 It
also allows the system to �infer� is�a relations automatically� an object A is�a B i� the multiset
of attributes of A is a superset of those of B	 This justi�es Andreoli and Pareschi in saying that
Linear Objects have �built�in inheritance�	 For example all the methods for point below �e�g�
clause ���� also apply to a subclass �colored point�	 In the methods of the specialized class �e�g�
����
 one does not have to mention and carry�over attributes from the base class �e�g� x�X� and
y�Y��
 unless they are really needed	

��� point � x�X� � y�Y� � move�X��Y�� �� point � x�X�� � y�Y���

��� point � color�C� � set�color�C�� �� point � color�C���

The new connective � in the clauses above is the multiplicative disjunction of Linear Logic �see
Section ��	 It is used as the �glue� which ties the part of an object together	 The other connective
�which is allowed in clause bodies
 but not in clause heads� is �� additive conjunction	 It aggregates
objects and messages into larger entities called contexts
 and at the same time separates objects
from one another and does not allow parts of di�erent objects to mix together �� binds stronger
than ��	 The connective �� which divides the head of a clause �method� from its body is linear
implication	

Similarly to a probelm in Conery�s proposal
 it is not clear how exactly the most speci�c method

��

�overriding a method in a superclass� is chosen for execution	 There is one more kind of implication�
�� �linear implication combined with the modality of course� which speci�es that the method is
applicable only if the literals in the goal exactly match the literals in the clause head �and are not
simply a superset�
 but Andreoli and Pareschi do not use it for this purpose	

Linear Objects are well suited for concurrent programming
 because additive disjunction
introduces a kind of OR�parallelism
 dual to the usual AND�parallelism of goals in a clause	 Andreoli
and Pareschi compare these to the internal distribution of tasks in an organization and the external
co�operation among organizations	 �In fact Linear Objects uses message streams
 but this was
of no importance for the examples ��� and ����	

The problem of Logical Objects that an object�message pair is to be pattern�matched to its
corresponding method reappears here
 but it is even worse
 because the granularity is �ner	 This
�ner granularity enables great �exibility
 but one has to pay for it	 Andreoli and Pareschi have
used partial evaluation techniques to diminish this problem� probably the experience gained from
the Self language will be useful here	

An �intuitive� criticism of Linear Objects is that such ��nely crushed� objects do not seem
very well encapsulated
 their only �capsule� is the surrounding pair of � connectives	 This leads
to bad consequences
 e�g� all the attributes of an object have to be mentioned for a destruction or
a copy operation
 thus every object should have its own such operation	 In a conventional OOP
language the compiler takes care of this	 Also
 a method in Linear Objects does not belong to
a distinguished class explicitly by the program� its owner is only determined at runtime by the set
of object literals which the method lists in its head	

In a summary
 Logical Objects and Linear Objects are re�nements of the objects�as�
processes approach �Section �� overcoming many of its de�ciencies
 mainly in the structurisation
and inheritance aspects	 However deduction in them heavily uses pattern matching of object�
message pairs to methods
 which may be a source of ine�ciency	 Also
 �real� object identi�ers
are impossible in these approaches	 Linear Objects are �rmly founded in Linear Logic and thus
have a sound and well�understood semantics	

 Linear Logic� Resources Rather Than Truth Values

Linear Logic has been proposed by Jean�Yves Girard in ���� ��� and since then has received the
attention of many computer scientists �see e�g� �� for some developments and �� for a survey�	
The reason for this is that unlike classical logic
 Linear Logic regards propositions as resources
which are consumed and produced during the inference process
 and not as universally valid �or
universally false� assertions	 This is why Linear Logic is called �resource�aware� and why it is
useful in many areas of computer science which deal with resources	 Classical logic treats the proof
process only as a device to achieve some conclusions
 whereas in Linear Logic the proof process
is a ��rst class citizen� and is no less important then the conclusions themselves	 This is why it
is useful to describe and program �concurrent� processes 	 �Of course
 classical logic has rich and
substantial proof theory
 but it is outside the logic	�

There are many ways to explain why Linear Logic
 but one of the most natural ways is to look
at it as restrictions on the allowed proofs in order to make them more constructive ��	 A proof
in classical logic contains many redundancies which increase the space of proofs a lot and make
searching for proofs hard	 These include various non�essential choices �permutations of parts of the

��

proof� and
 worse of all
 dead�ends!subproofs of propositions which are then simply thrown away	
Linear Logic gets rid of these using two approaches�

� Every proposition should be used once and exactly once during the proof �resource�awareness�	
The sequents of Linear Logic are not sets of formul�
 but multisets	 Linear Logic does not
have the usual �structural� rules of classical logic�

�Weakening
# 	 $

#�% 	 $
�Contraction

#�%�% 	 $

#�% 	 $

which allow one to reuse or throw away formul��# and $ denote multisets of formul�
 % and
& denote individual formul��	 �But a formula may be preceded by the modal exponential
operator �of course� ' or its dual �why not� �
 in which case it can be used any number of
times	�

� Linear Logic uses special syntactic devices in order to explicate the intended proof of a formula	
In other words
 the syntax guides the proof ��
 p	�� �	

The idea of syntax�directed proof search leads to splitting conjunction and disjunction into two
forms
 additive and multiplicative�

additive multiplicative

conjunction � �
disjunction � (
 �

These new connectives are not idempotent �e�g� %�%
� %�
 unlike the classical connectives
�e�g� % � % � %�
 so a formula cannot be duplicated or disposed of arbitrarily	 This makes it
possible to di�erentiate between two intended uses of the connectives which are mixed in classical
inference rule systems	 Each of the linear connectives have one corresponding inference rule
 for
conjunctions�

��
	 #�% 	 #�&

	 #�%�&
��

	 #�% 	 $�&

	 #�$�%�&

�both of these rules would be allowed for � in classic logic�	 Analogously for disjunctions�

��
	 #�%

	 #�%� &
�(

	 #�%�&

	 #�%(&

Linear Logic is complicated compared to classical logic	 Not only it has more connectives
 but
they are also non�functional
 which means that truth tables cannot be used	 For example the linear
negation �� of a propositional letter � is not reducible to �
 in a sense it is independent of it	 Full
propositional linear logic is undecidable �classical propositional calculus is decidable� it is a special
case of propositional linear calculus with every formula preceded by '�	 The complexity results for
fragments of Linear Logic are also not very encouraging� for example the multiplicative fragment
��(which corresponds to Horn clause programming
 is np�complete ���
 ��	

During goal�directed proof search inference rules are used backwards �the conclusion is given
and we are searching for the premises�	 The speci�c proof�theoretic properties of Linear Logic
justify that one can apply initially only the four pure logic rules listed above until the goal is split

��

to atoms
 and use the logic program only afterwards	 This simpli�es greatly the proof construction
process	

Andreoli and Pareschi use in Linear Objects the connectives (and � and employ the speci�c
property of inference rule �� that the �context� # is duplicated in the two premises for �object
cloning�	

Linear Logic has been applied in various areas of computing science
 from encoding Petri Nets in
logic to optimizing functional languages by controlling interference between expressions	 There is a
relatively small but growing number of attempts to use it for logic programming� ��
 ��
 ��
 ��
 ��	
I believe that it can be used more �locally� to deal with mutable object state
 not in the particular
style of Linear Objects
 in order to avoid the global blackboard space
 to avoid splitting objects
into such small pieces
 and to achieve an OOLP language more faithful to traditional OOP	

� Rewriting Logic� Free Object Reductions

In ���� Jos)e Meseguer proposed a logical theory of concurrent objects ���
 �� based on his ear�
lier joint work with Joseph Goguen on Abstract Data Types and the OBJ family of equational
languages	 He de�nes Rewriting Logic and a language for declarative concurrent object�oriented
programming called Maude	 Later ���
 �� he develops a theory of general logics based on Cate�
gory Theory in order to formalize the notion of a Logic Programming Language and a methodology
of integration of such languages by mapping them to a richer logic which encompasses them all	
�Meseguer calls �Logic Programming Language� any declarative in nature programming language
and what traditionally is called LP he names �Relational Programming�	� He proposes Rewriting
Logic as such an encompassing logic and using it integrates rigorously the functional
 relational
and object�oriented paradigms	 In this work he extends Maude to a language called MaudeLog
which includes Horn clause programming	 Some aspects of the paper ��� are rather technical
 but
overall it is very clear and enlightening	

Meseguer argues that declarativeness is only one of the advantages of LP
 and another no less
important is its suitability for concurrent programming � logical axioms bear no inherent order
or sequence
 so their application can be performed in parallel	 However Horn logic �and more
generally classical logic� are not suited well for dynamic computations
 because they are based
on a Platonic
 static notion of truth and they deal with static objects� functions
 relations
 etc	
This makes traditional LP languages awkward for concurrent programming and even for sequential
object�oriented �state�oriented� programming and therefore unsuitable for large programming tasks	

Rewriting Logic is very similar to �order�sorted� equational logic
 but in addition to equations
one can specify rewriting rules
 which di�er from equations in that they work only in one direction
�the corresponding relation is transitive but not symmetric�	 An example is

��� eq d � q�q�q�q �

��� rl d �� q q q q �

Here d stands for �a dollar�
 q stands for �a quarter�
 the equation ��� speci�es that a dollar equals
four quarters
 and the rewrite rule ��� may specify the behavior of a change machine which can
break a dollar into four quarters
 but not the other way around	 Lets add the appropriate declara�
tions in order�sorted logic �assuming that the sort Nat is imported from some library module��

��� sorts Cents Purse �

��

��� subsort Cents � Nat �

��� subsort Cents � Purse �

��� ops d q � �� Cents �

��� op ��� � Cents Cents �� Cents

	assoc comm id� �
�

��� op �� � Purse Purse �� Purse

	assoc comm id� null
�

Here ��� declares the sorts Cents for an amount of money and Purse for a set of coins
 ��� declares
that Cents is a subsort �specialization� of Nat
 similarly ��� says that a single coin makes a purse	
Line ��� declares d and q as constants of sort Cents �zeroary functions returning Cents�	 Line ���
declares the operation Plus which adds two amounts of Cents and is associative �this justi�es the
absence of parentheses in ����
 commutative and with � as its identity element	 The two underlines
� around the � declare it as a binary in�x operation	 Line ��� declares an empty�syntax operation
�there is nothing between the two �� which again is associative
 commutative and with identity
element null �null is what stays between the d�s on the right�hand side of ���� just nothing�	
The operation in ��� is simply multiset union �denoted by juxtaposition of elements� which takes
two Purses and combines them into a bigger Purse	 Now it becomes clear that the sort Purse

denotes a multiset �bag� that is
 duplicates are allowed� and not just a plain set
 because the union
operation is not idempotent	

Note� Semantically the two operations ��� and ��� are rather di�erent� the former takes two
elements and forms their sum
 while the latter keeps the two elements distinct and only puts them
into an aggregate	 We may de�ne a function which sums all the coins of a purse�

��� op amount � Purse �� Cents �

���� vars P� P� � Purse �

���� eq amount�null� � � �

���� eq amount�P� P�� � amount�P�� � amount�P�� �

but once two amounts of Cents are summed
 it is impossible to recover the coin distribution of the
result	

In Maude an object is represented as a term

hO � C j a� � v�� � � � � an � vni

where O is the object identi�er
 a term of sort OID� C is the object class� a�� � � � � an are the object
attributes and v�� � � � � vn are their values �the object state�	 Messages are represented similarly as
terms bearing the identity of the receiver and other relevant information	 These message parameters
are �injected� in the message term by corresponding message constructor functions
 e�g��

���� msgs credit debit � OID Nat �� Message �

���� msg transfer�from�to� � Nat OID OID �� Message �

Line ���� gets a receiver�s OID and an amount and constructs a Message for the corresponding
operation	 Line ���� declares a ternary mix��x operation which constructs a message to transfer a
Nat amount of money from one account to another	 For type�checking purposes it probably would
be better to declare the object parameters of these functions not simply as OID
 but as speci�c

��

object classes
 e�g� Account�OID	 There is no problem to have separate OID types for every class
and a preprocessor which does this automatically has been implemented for Maude	

The technical device of an Associative Commutative operation with Identity �ACI�operation�
is used in Rewriting Logic to represent collections of distributed objects and the messages �ow�
ing between them	 The ACI operation binds these entities into an object space �con�guration of
distributed objects��

���� subsorts Object Message � Configuration �

���� op �� � Configuration Configuration �� Configuration

	assoc comm id� null
 �

When an object needs to communicate with another object
 it simply posts a message to this global
space	 Then this message interacts with the receiver as governed by the appropriated rewrite rules�
the left part of a rule is matched against the message and �part of� the state variables of the receiver
and then the message is �usually� consumed �rewritten to null� and the receiver�s state changed	
Also
 another message can be generated during this process and sent to some other object	

Unlike e�g� Smalltalk
 where a method always belongs to a particular class and every message
should have a designated receiver �so � " � is interpreted as the message "� sent to the object �

which is rather unnatural�
 in Maude this need not be so	 The message transfer�from�to� has
two receivers in the sense that the corresponding method �rewrite rule� should be able to locate
both objects ���� and �����

���� rl

���� transfer A from X to Y

���� � X � Account � bal� XB �

���� � Y � Account � bal� YB �

���� ��

���� � X � Account � bal� XB�A �

���� � Y � Account � bal� YB�A �

���� if XB �� A �

�of course
 this can be written more compactly�	 This rule says �If the entities ����
 ���� and
���� are simultaneously present
 they can be rewritten to ���� and ����
 provided ���� holds�
�so we have Conditional Rewriting Logic here�	 Please note that ���� is not a �method name�
 it
is an entity which should be present in the Configuration for this rewrite rule to �re
 just like the
two receiver objects ���� and ����	

Formally the di�erence between equations and rewrite rules is not that big� the former work
in both directions �symmetric�
 whereas the latter work in only one direction	 Actually in the
operational sense they are almost the same
 because one usually uses equations unidirectionally�
to rewrite function calls with the corresponding function de�nitions in order to obtain a particular
canonic form	 However the underlying logical semantics are rather di�erent
 the unidirectional
nature of rewriting rules corresponding to the unidirectional �ow of time in an evolving distributed
system	

Adding relational programming �going from Maude to MaudeLog� is not hard� it is well
known that Prolog goal�directed deduction can be thought of as rewriting the current set of
goals using the program clauses as rewriting rules until the empty goal is reached	 Logic variables
can be modelled by allowing variables in the rewriting rules
 and non�determinism �with which

��

Prolog deals by backtracking� is accounted for by the non�deterministic nature of rewrite �there
may be many rules which match the current con�guration�	 �A similar in spirit work by Debart ���
demonstrates clearly the power of equational rewriting techniques by implementing multi�modal
logic programming through a translation of modal formul� to many�sorted equational formul�	�
For example the Prolog program

grandparent�X�Z� �� parent�X�Y�� parent�Y�Z��

parent�peter�paul��

parent�mary�paul��

is translated to the Maude module

mod FAMILY is

extending PROLOG �

sort People �

ops peter paul mary � �� People �

ops parent grandparent � People People �� Bool �

vars X Y Z � People �

rl parent�X�Y�� parent�Y�Z� �� grandparent�X�Z��

rl true �� parent�peter�paul� �

rl true �� parent�mary�paul� �

endm

The module PROLOG imported by FAMILY de�nes the sort Bool and the ACI operation ��� �

Bool Bool �� Bool �conjunction� with identity true	 Then we may ask the system whether it can
perform the rewrite true �� grandparent�X�paul�	

This theory seems rigorous
 general and elegant� many of the di�cult problems of multiparadigm
programming �including the problem of mutable state� simply do not appear in it	 The main
criticism to it is that its e�cient implementation does not seem easy	 For one thing
 rewriting
should be done modulo the ACI rules	 Formally speaking
 this means that we will have to rewrite
not simply terms
 but equivalence classes of terms under the ACI relation	 Informally this means
that a powerful enough matching algorithm should be used so that it can e�ciently try all possible
permutations of the entities in the con�guration �e�g� the three entities ����
 ���� and ���� above
should be thought of as unordered�	 For some recent work on AC� and ACI�rewriting see ���
 ��
 ��	

Another problem is that a rewriting rule should mention and carry to the other side all of the
state of an object
 even the attributes which do not a�ect and are not a�ected by the rule �in ����

we have assumed that the only attribute of Account is bal�	 This can be avoided using partial
matching �with placeholder don�t�care variables� inside the structure of the object
 e�g�

���� rl transfer A from X to Y � X � Account � bal� XB� RestX �

���� � Y � Account � bal� YB� RestY �

���� �� � X � Account � bal� XB�A� RestX �

���� � Y � Account � bal� YB�A� RestY � if XB �� A �

�Here the operation � inside the object structure should also be ACI	 Of course
 the addition of
don�t�cares better be done automatically	� However
 this makes the job of the pattern matcher ever
harder	 There was a similar problem in Logical Objects �Section ��	

��

Although each individual object is well�structured
 the con�guration of objects is very much
like a blackboard �the same like in Logical Objects� and is to be accessed globally by some
interpreter which detects ready�to�interact object�message pairs	 The natural way to avoid this
huge global space is to allow objects to have subobjects as components �aggregation�
 which is not
provided for in Maude	

In conclusion
 Rewriting Logic is a marvelous device which integrates in a very simple and
natural manner paradigms which were traditionally hard to reconcile� functional
 object�oriented

relational and concurrent programming	 It �only� remains to implement it e�ciently	

� Conclusions

Of the huge variety of di�erent proposals to accommodate state change in Logic Programming
 a
couple of approaches stand out as most promising �of course
 this selection is highly subjective��

� Traditional but revitalized approaches
 as evidenced by Transaction Logic �Section ��	 Here
the important point is a shift of the emphasis from the controversial non�monotonic issues
of elementary updates to the compositional properties of transactions built up from such
updates and the possibility to really program such transactions	

� Approaches based on Linear Logic �Section ��
 whose resource�awareness makes it suitable
for reasoning about concurrency and locality
 and whose constructive in nature proof search
makes it suitable for logic programming	 I believe that
 despite Andreoli and Pareschi�s
numerous �and excellent'� works
 Linear Logic has not been utilized in full in this area yet	

� Ways to implement Rewriting Logic �Section �� e�ciently
 which would make the three major
programming paradigms available in a well�integrated framework and would expose unex�
pected synergism between them	

In any case
 it should be concluded that despite numerous e�orts
 no generally accepted solution
to this problem exists yet and there is a large area for research	

References

�� S	 Abiteboul	 Updates� A new frontier	 In Second Intl� Conf� on Database Theory
 pages �*��

����	

�� S	 Abiteboul and V	 Vianu	 Procedural and declarative database update languages	 In Prin�
ciples of Database Systems �PODS�		�
 pages ���*���	 ACM SIGACT�SIGMOD�SIGART

����	

�� S	 Abramsky	 Computational interpretations of linear logic	 Theoretical Comput� Sci�
 �����*
��
 ����	 Earlier version appeared as Imperial College Technical Report DOC �����
 Oct	 ����	

�� V	 Alexiev	 Applications of linear logic to computation� An overview	 Technical Report
TR��*��
 University of Alberta
 Dec	 ����	 Submitted to Bulletin of the IGPL	

��

�� J	�M	 Andreoli and R	 Pareschi	 Logic programming with sequent systems� A linear logic
approach	 In P	 Schroeder�Heister
 editor
 Intl� Workshop on Extensions of Logic Programming

number ��� in LNAI
 pages �*��
 T�ubingen
 Germany
 ����	

�� J	�M	 Andreoli and R	 Pareschi	 Linear objects� Logical processes with built�in inheritance	
In D	 Warren and P	 Szeredi
 editors
 Intl� Conf� on Logic Programming �ICLP�
��
 pages
���*���
 Jerusalem
 Israel
 June ����	 MIT Press	

�� J	�M	 Andreoli and R	 Pareschi	 LO and behold' Concurrent Structured Processes	 In ECOOP�
OOPSLA�
�
 Ottawa
 Ontario
 ����	 �SIGPLAN Notices
 ���������*��
 Oct	 �����	

�� J	�M	 Andreoli and R	 Pareschi	 Linear objects� Logical processes with built�in inheritance	
New Generation Computing
 ����������*���
 ����	

�� F	 Banchilon	 A logic programming�object�oriented cocktail	 SIGMOD Record
 ��������*��

Sept	 ����	

��� A	 Bonner and M	 Kifer	 Transaction logic programming �or
 a logic of procedural and
declarative knowledge�	 In Intl� Conf� on Logic Programming �ICLP�
��
 pages ���*
���
 Budapest
 Hungary
 ����	 The full papewr is available as University of Toronto
Technical Report CSRI����
 April ���� �revised �� May ����� from csri�toronto�edu�

csri�technical�reports�����report�ps	

��� A	 Bonner and M	 Kifer	 A general logic of state change	 Technical report
 Computer Systems
Research Institute
 University of Toronto
 ����	 In preparation	

��� A	 Burandt	 Equivalence of Denotational Semantics and Conditions of Standard Models in the
Dynamic Logic	 Diploma thesis
 University of Karlsruhe
 ����	

��� W	 Chen	 Declarative speci�cation and evaluation of database updates	 In C	 Delobel
 M	 Kifer

and Y	 Masunaga
 editors
 Deductive and Object�Oriented Databases �DOOD�
�
 number ���
in LNCS
 pages ���*���
 Munich
 Germany
 Dec	 ����	

��� T	 Chikayama	 ESP*Extended Self�contained Prolog*as a preliminary kernel language of
Fifth Generation computers	 New Generation Computing
 ����*��
 ����	

��� T	 Chikayama	 Unique features of ESP	 In International Conference on Fifth Generation
Computer Systems
 pages ���*���
 Tokyo
 Nov	 ����	

��� J	 Conery and S	 Haridi	 Eudorra� and object�oriented Andorra	 Position paper on the
ICLP��� Workshop on OOLP
 June ����	

��� J	 S	 Conery	 HOOPS� an object�oriented Prolog	 Technical report
 University of Oregon

����	

��� J	 S	 Conery	 Object�oriented programming with First�Order Predicate Calculus	 Technical
Report CIS�TR������
 University of Oregon
 Aug	 ����	

��� J	 S	 Conery	 Logical objects	 In R	 A	 Kowalski and K	 A	 Bowen
 editors
 Fifth International
Conference and Symposium on Logic Programming
 pages ���*���
 ����	

��

��� A	 Davison	 Polka� a Parlog object�oriented language	 Technical report
 DOC
 Imperial
College
 London
 ����	

��� A	 Davison	 From Parlog to Polka in two easy steps	 In J	 Maluszy)nski and M	 Wirsing

editors
 Third International Symposium on Programming Language Implementation and Logic
Programming� PLILP�

 number ��� in LNCS
 pages ���*���	 Springer�Verlag
 ����	

��� A	 Davison	 A survey of logic programming�based object�oriented languages	 Technical Report
����
 University of Melbourne
 Jan	 ����	 Fourth revision� �rst published April ����	

��� F	 Debart
 P	 Enjalbert
 and M	 Lescot	 Multi�modal logic programming using equational and
order�sorted logic	 In H	 Kirchner and W	 Wechler
 editors
 Algebraic and Logic Programming
�ALP�
��
 number ��� in LNCS
 pages ��*��
 Nancy
 France
 Oct	 ����	 Springer�Verlag	

��� A	 Doman	 Object�Prolog� Dynamic object�oriented representation of knowledge	 In
T	 Henson
 editor
 SCS Multiconference on Arti�cial Intelligence and Simulation� The Di�
versity of Applications
 pages ��*��
 San Diego
 CA
 Feb	 ����	

��� R	 Fagin
 G	 Kuper
 J	 Ullman
 and M	 Vardi	 Updating logical databases	 In P	 Kanellakis

editor
 Advances in Computing Research
 volume �
 pages �*��	 Plenum Press
 ����	

��� R	 Fagin
 J	 Ullman
 and M	 Vardi	 On the semantics of updates in databases	 In Principles
of Database Systems �PODS�	��
 pages ���*���
 Atlanta
 GA
 Mar	 ����	 ACM SIGACT�
SIGMOD�SIGART	

��� L	 Fari nas del Cerro	 MoLog� A system that extends Prolog with modal logic	 New
Generation Computing
 �������*��
 ����	

��� L	 Fari nas del Cerro and A	 Herzig	 An automated modal logic of elementary changes	 In
P	 Smets
 E	 Mamdani
 D	 Dubois
 and H	 Prade
 editors
 Non�Standard Logics for Automated
Reasoning
 pages ��*��	 Academic Press
 ����	

��� L	 Fari nas del Cerro and A	 Herzig	 Deterministic modal logic for automated deduction	 In
L	 Aiello
 editor
 European Conference on Arti�cial Intelligence �ECAI�
��
 pages ���*���

Stokholm
 Sweden
 Aug	 ����	

��� K	 Furukawa
 A	 Takeuchi
 S	 Kunifuji
 H	 Yasukawa
 M	 Ohki
 and K	 Ueda	 Mandala� A
logic based knowledge programming system	 In International Conference on Fifth Generation
Computer Systems
 Tokyo
 Nov	 ����	

��� P	�J	 Gailly and J	�L	 Binot	 The BIM�Probe experiment	 Position paper on the ICLP���
Workshop on OOLP
 June ����	

��� J	�Y	 Girard	 Linear logic	 Theoretical Comput� Sci�
 ����*���
 ����	

��� D	 Harel	 First�Order Dynamic Logic
 volume �� of LNCS	 Springer�Verlag
 ����	

��� D	 Harel
 D	 Kozen
 and R	 Parikh	 Process logic� Expressiveness
 decidability
 completeness	
Journal of Computer and System Sciences
 ���������*���
 Oct	 ����	

��

��� J	 Harland and D	 Pym	 The uniform proof�theoretic foundation of linear logic programming
�extended abstract�	 In V	 Saraswat and K	 Ueda
 editors
 Intl� Symposium on Logic Program�
ming �SLP�
�
 pages ���*���
 ����	 The full paper is available as University of Edinburgh
Technical Report ECS�LFCS�������
 Nov	 ����	

��� M	 Henz	 Term rewriting in associative commutative theories with identities	 Master�s thesis

State University of New York at Stony Brook
 Dec	 ����	 Available by anonymous FTP from
duck�dfki�uni�sb�de� pub�papers�MT�Henz�ps�Z	

��� J	 Hodas and D	 Miller	 Logic programming in a fragment of intuitionistic linear logic �extended
abstract�	 In Logic in Computer Science �LICS�
�
 pages ��*��
 Amsterdam
 July ����	 IEEE
Computer Society Press	 Full paper to appear in Journal of Information and Computation
����
 available from ftp�cis�upenn�edu� pub�papers�miller�ic���dvi�Z	

��� Y	 Ishikawa and M	 Tokoro	 Concurrent object�oriented knowledge representation language
Orient���K� Its features and implementation	 In OOPSLA�	�
 Portland
 OR
 Sept	 ����	

��� Y	 Ishikawa and M	 Tokoro	 Orient���K� A language with multiple paradigms in the ob�
ject framework	 In Nineteenth Annual Hawaii International Conference on System Sciences

volume II� Software Track
 Honolulu
 HI
 Jan	 ����	

��� R	 Iwanaga and O	 Nakazawa	 Development of the object�oriented logic programming language
CESP	 Oki Technical Review
 ����������*��
 Nov	 ����	

��� R	 Jungclaus	 Logic�Based Modeling of Dynamic Object Systems	 PhD thesis
 Technical Uni�
versity Braunschweig
 Germany
 ����	

��� R	 Jungclaus
 G	 Saake
 T	 Hartmann
 and C	 Sernadas	 Object�oriented speci�cation of infor�
mation systems� The Troll language	 Technical Report Informatik�Bericht �����
 Technical
University Braunschweig
 Germany
 ����	

��� R	 Jungclaus
 G	 Saake
 and C	 Sernadas	 Formal speci�cation of object systems	 In S	 Abram�
sky and T	 S	 E	 Maibaum
 editors
 International Joint Conference on Theory and Practice of
Software Development �TAPSOFT�
�� Volume �� Colloquium on Combining Paradigms for
Software Development
 number ��� in LNCS
 pages ��*��
 Brighton
 UK
 Apr	 ����	 Springer�
Verlag	

��� K	 M	 Kahn	 Intermission!Actors in Prolog	 In K	 L	 Clark and S	 A	 T�arnlund
 editors

Logic Programming
 pages ���*���	 Academic Press
 ����	

��� K	 M	 Kahn	 Vulcan� Logical concurrent objects	 In E	 S	 Shapiro
 editor
 Concurrent
Prolog� Collected Papers
 volume �
 pages ���*���	 MIT Press
 ����	

��� K	 M	 Kahn	 Objects*a fresh look	 In S	 Cook
 editor
 European Conference on Object�Oriented
Programming �ECOOP�	
�
 pages ���*���
 Nothingham
 UK
 July ����	

��� K	 M	 Kahn
 E	 D	 Tribble
 M	 S	 Miller
 and D	 G	 Bobrow	 Objects in concurrent logic
programming languages	 In OOPSLA�	�
 Portland
 OR
 Sept	 ����	

��

��� K	 M	 Kahn
 E	 D	 Tribble
 M	 S	 Miller
 and D	 G	 Bobrow	 Vulcan� Logical concurrent
objects	 In B	 Shriver and P	 Wegner
 editors
 Research Directions in Object�Oriented Pro�
gramming
 pages ��*���
 Cambridge
 MA
 ����	 MIT Press	

��� M	 Kanovich	 The multiplicative fragment of linear logic is NP�complete	 ITLI Prepublication
Series X������
 University of Amsterdam
 ����	

��� M	 Kanovich	 Horn programming in linear logic is NP�complete	 In Logic in Computer Science
�LICS�
��
 pages ���*���
 Santa Cruz
 CA
 June ����	 IEEE Computer Society Press	 Also
University of Amsterdam ITLI Prepublication Series X������	

��� H	 Katsuno and A	 Mendelzon	 On the di�erence between updating a knowledge base and
revising it	 In J	 Allen
 R	 Fikes
 and E	 Sandewall
 editors
 Knowledge Representation and
Reasoning �KR�
�
 pages ���*���
 Boston
 MA
 Apr	 ����	

��� F	 Kesim and M	 Sergot	 On the evolution of objects in a logic programming framework	 In
ICOT
 editor
 Fifth Generation Computer Systems �FGCS�
��
 pages ����*����
 ����	

��� R	 kowalski	 Database updates in event calculus	 Journal of Logic Programming
 �����������*
���
 Jan	 ����	

��� R	 Kowalski and M	 Sergot	 A logic�based calculus of events	 New Generation Computing

����*��
 ����	

��� D	 Lugiez and J	 Moysset	 Complement problems and tree automata in AC�like theories	
In P	 Enjalbert
 A	 Finkel
 and K	 Wagner
 editors
 Proceedings STACS
�
 volume ��� of
Lecture Notes in Computer Science
 pages ���*���	 Springer Verlag
 Feb	 ����	 Available by
anonymous FTP from duck�dfki�uni�sb�de� pub�ccl�inria�lorraine�stacs���ps�Z	

��� J	 Malenfant
 G	 Lapalme
 and J	 Vaucher	 Coherent state changes for logic programs	 Research
report LITP ����� RXF
)Equipe mixte LITP�RXF
 Jan	 ����	

��� S	 Manchanda	 Declarative expression of deductive database updates	 In Principles of Database
Systems �PODS�	
�
 pages ��*���	 ACM SIGACT�SIGMOD�SIGART
 ����	

��� S	 Manchanda and D	 Warren	 A logic�based language for database updates	 In J	 Minker

editor
 Foundations of Logic Programming and Deductive Databases
 Los Altos
 CA
 ����	
Morgan Kaufmann Publishers	

��� F	 G	 McCabe	 Logic � Objects	 International Series in Computer Science	 Prentice�Hall
 ����	

��� J	 Meseguer	 A logical theory of concurrent objects	 In ECOOP�OOPSLA�
�
 Ottawa
 Ontario

����	 �SIGPLAN Notices
 ����������*���
 Oct	 �����	

��� J	 Meseguer	 Rewriting as a uni�ed model of concurrency	 In CONCUR�
�� Intl� Conf� on
Concurrency Theory
 number ��� in LNCS
 pages ���*���
 Amsterdam
 Aug	 ����	 Also
Technical Report SRI�CSL������
 SRI International
 Feb	 ����	

��� J	 Meseguer	 Conditional rewriting logic as a uni�ed model of concurrency	 Theoretical Com�
puter Science
 ��������*���
 ����	 Also Technical Report SRI�CSL������
 SRI International

Feb	 ����	

��

��� J	 Meseguer	 Multiparadigm logic programming	 In Third Intl� Conf� on Algebraic and Logic
Programming
 pages ���*���
 Volterra
 Italy
 Sept	 ����	

��� J	�J	 C	 Meyer and R	 J	 Wieringa	 Actor�oriented system speci�cation with dynamic logic	
In S	 Abramsky and T	 S	 E	 Maibaum
 editors
 International Joint Conference on Theory
and Practice of Software Development �TAPSOFT�
�� Volume �� Colloquium on Combining
Paradigms for Software Development
 number ��� in LNCS
 pages ���*���
 Brighton
 UK

Apr	 ����	 Springer�Verlag	

��� G	 Mints	 Resolution calculus for the �rst order linear logic	 Journal of Logic� Language and
Information
 ������*��
 ����	

��� V	 Pratt	 Process logic	 In Principles of Programming Languages �POPL��
�
 pages ��*���

Jan	 ����	

��� M	 Rusinowitch and L	 Vigneron	 Automated deduction with associative commutative op�
erators	 Research Report ����
 Institut National de Recherche en Informatique et Au�
tomatique �INRIA�
 May ����	 Available by anonymous FTP from duck�dfki�uni�sb�de�

pub�ccl�inria�lorraine� AC deduction�ps�Z	

��� D	 Sacca
 B	 Verdonk
 and D	 Vermeir	 Evolution of knowledge bases	 In A	 Pirotte
 C	 Delobel

and G	 Gottlob
 editors
 Advances in Database Technology �EDBT�
��
 number ��� in LNCS

pages ���*���
 Vienna
 Austria
 Mar	 ����	 Springer�Verlag	

��� E	 Shapiro and A	 Takeuchi	 Object�oriented programming in Concurrent Prolog	 New
Generation Computing
 ����*��
 ����	

��� T	 Tammet	 Proof strategies in linear logic	 Technical Report ��
 Programming Methodology
Group
 Chalmers University of Technology
 University of G�oteborg
 ����	 Accepted to Journal
of Automated Reasoning	 Available from ftp�cs�chalmers�se	

��� T	 Uustalu	 Combining object�oriented and logic paradigms� A modal logic programming
approach	 In O	 L	 Madsen
 editor
 European Conference on Object�Oriented Programming
�ECOOP�
��
 pages ��*���
 June ����	

��� D	 Warren	 Database updates in pure Prolog	 In Fifth Generation Computer Systems
 pages
���*���	 ICOT
 ����	

��� C	 Welsch and G	 Barth	 Reasoning objects with dynamic knowledge bases	 In J	P	Martins and
E	M	Morgado
 editors
 Fourth Portuguese Conf� on Arti�cial Intelligence �EPIA�	
�
 pages
���*���
 Lisbon
 Portugal
 Sept	 ����	

��� R	 J	 Wieringa	 A formalization of objects using equational dynamic logic	 In C	 Delobel

M	 Kifer
 and Y	 Masunaga
 editors
 Second International Congress on Deductive and Object�
Oriented Databases �DOOD�
�
 number ��� in LNCS
 pages ���*���
 Munich
 Germany
 Dec	
����	 Springer�Verlag	

��� M	 Winslett	 A model based approach to updating databases with incomplete information	
Transactions on Database Systems
 ���������*���
 ����	

��

��� M	 Winslett	 Updating Logical Databases
 volume � of Cambridge Tracts in Theoretical Com�
puter Science	 Cambridge Univerity Press
 ����	

��� K	 Yoshida and T	 Chikayama	 A�UM � stream " object " relation	 In OOPSLA�	

 New
Orleans
 LA
 ����	 �SIGPLAN Notices
 �����������
 �����	

��� K	 Yoshida and T	 Chikayama	 A�UM!a stream�based concurrent object language	 New
Generation Computing
 �����*���
 ����	

��� C	 Zaniolo	 Object�oriented programming in Prolog	 In International Symposium on Logic
Programming
 pages ���*���
 Atlantic City
 Atlanta
 Feb	 ����	

��

