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Abstract

Classical models of generie black hole interiors have made progress in unrav-
elling the nature of the internal geometry up to the onset of singular behavior at the
inner (Caneliy) hosizon. At this lightlike hypersurface. which corresponds to infi-
nite external advanced time, the “Coulomb compouent™ |W,) of the Weyl curvature

diverges exponentially with advanced time.

As classical curvatures rise, quantum effects become significant. The way in
which the evolution is influenced by quantumn effects is investigated. The geometry
near the Cauehy horizon singularity is nearly conformally flat. alowing a detailed
analysis of semiclassical effects using a linearised stress-energy tensor for confor-
mally coupled fields. The results suggest that vacumn polarization efects initially
reinforee the classical growth of curvature. At sufficiently late times, however. the
results predict damping of the classical approach to a singularity. Unfortunately
this damping ¢ccurs too late to be of any practical importance. Thus it seems
that quantun gravity will be needed to completely understand the end stages of

gravitational collapse.



Preface

The results in this thesis were obtained during a number of collaborative
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course suffers from my personal bias, and as such. some of the opinions expressed

may not be shared by all those who were involved in the work.
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“Quantum cffects in black hole interiors™, Phys. Rev. Letters 70, 1041 -
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wum polarisation and the: black hole singularity” , Class. Quantum Grav.

10, 497-503 (1993).
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Conventions

We follow the sign conventions of Misner, Thorne and Wheeler [21] through-

out the thesis. Specifically the metrie signature is — + ++, the curvature tensors

are defined as

_ m - o ¢
R“un.‘i = Ou ru.i - 0JFH + rgoru.i - rfvﬁr“

vox va

Rl/,’i = R“Un,”

where I s the Christoffel symbol.

ao

We will also use units in which G = ¢ = # = 1 unless it is necessary to restore

one or more of thews for clarity (e.g. chapters 5 and G).



CHAPTER 1

Introduction

When Einstein 1] published his vacuum field equations in 1915 he had already
derived from them the advance of the perihelion of Mercury using a difficult per-
turbative approach. The following vear Karl Schwarzschild [2] discovered the exact
solution to the ficld equations representing the external gravitational ficld of a static,
spherically symnmnetric body. This solution allows a very simple derivation of the per-
ihelion advance. In a letter to Schwarzscehild, who was then serving 1 the German

army, Einstein wrote [3]:

I have read your paper with the utmost interest. [ had not expected
that one could formmlate the exact solution of the problem in sueh a
siimple way. T liked very much your mathematical treatment of the snb-
Jeet. Next Thursday I shall present the work to the Academy with a few

words of explanation.

Thus black hole physics was born only mouths after General Relativity itself. The
Schwarzschild solution has since provided us with a great deal of information about

black holes.

During the following forty vears advances in the relativistic theory of massive
stars were rather slow. In 1931 it was noted, by Chandrasekhar [4] and indepen-

dently by Landau [5], that there was an upper limit to the mass which a cold star



could have and coutinue to support itself against Newtonian gravity. Both Edding-
ton and Landau realized that any star above the Chandrasekhar limit would, upon
using all of its nuclear fuel, contract dramatically producing an object from which
light could not even escape [5, 6. However, there was great reluctance to accept
that this could oceur in nature. Einstein himself was vehemently opposed to the
idea of stellar collapse, and in 1939 he constructed model solutions to his field equa-
tions which showed that stationary configurations of matter with mass M must have
a radius R > 2GM /¢? [7]. That same year however, Oppenheimer and Volkoff [8]
completed caleulations showing that there was an upper limit to the mass of a star in
General Relativity too. In subsequent work with Hartland Snyder [9]. Oppenheimer
went on to examine the gravitational collapse of a massive star which produces a

black hole. This work now serves as the paradigi of gravitational collapse.

It was during the 1960°s and early 1970°s that most of our present knowledge
of black holes was obtained. Advances in the understanding of classical processes
involved in gravitational collapse were dramatic. A series of theorems (see chapter
12 of [10] for a review) established the uniqueness of stationary black holes, show-
ing that their only external attributes were mass, angular momentum and electric
charge; Wheeler used the graphic phrase “black holes have no hair” to summarize
these results. New global methods were employed to prove the singularity theo-

rems [11, 12] and to derive other properties of black holes [12].

Then, in 1974, Hawking announced the dramatic result that black holes were
not so black after all [13]. They emit radiation with a thermal spectrum by quantum
mechanical processes. Suddenly there was a glimpse of a new era in black hole theory
and a future unification of gravitation and quantum mechanics. Since then the
investigation of quantum effects in the strong gravitational fields around black holes

has been pursued with great vigour (see {14] and references therein); however our



understanding of the eryptic clues that these investigations supply about quantum

gravity is sadly lacking.

The inevitability of a singularity inside a classical black hole was proved by
Penrose under certain reasonable physical conditions [11]. In the last decade we
have learned a great deal about the type of singularity to be expected in generic
black hole interiors. With the carly observation of the instability of the Canchy
horizon, in charged and rotating black holes, by Penrose [15]. and the subsequent
work on linear perturbations in the fixed background geometries [16], it became elear
that known exact black hole solutions are not valid deep inside the black hole core.
Hiscock [17]. Poisson and Isracl [18], Ori [19, 20] and others have now hrought us a
better understanding of the classical end-state of gravitational collapse. The type
of singularity discovered by Poisson and Israel {18} has been ealled a mass-inflation
singularity. This thesis summarizes some further investigations of the black hole
core. with an emphasis on quantum effects obtaining in the vicinity of mass-inflation

singularitics.

This chapter reviews some background iu black hole physies which is necded
to put the remaining chapters in perspective. The picture of black hole forma-
tion due to gravitational collapse is outlined in the next section by reviewing the
Oppenheimer-Suyder collapse seenario and then proceeding to discuss the more gen-
eral situation. The classical picture breaks down near singularities and on long time
scales where quantum effects become important. Some comments are made on the
importance of such effects in black hole theory. The: chapter ends with an outline

of the thesis.



1.1 Black hole formation

Spherical collapse

The gravitational collapse of a spherically symmetric star, which produces a black
hole, was first considered by Oppenheimer and Snyder [9] in 1939. Their work was

poorly understood, however, going unnoticed for a long time.

For simplicity they examined the collapse of a spherical ball of dust. That
is, the internal pressures and internal physics of the star were neglected. This
assumption. which may appear unjustified at first sight. leads to a qualitatively
correct picture of gravitational collapse (see [21] section 32.7) although this was not

realized until fong after their original work.

Since there is no pressure. the matter particles in the star follow geodesics
of the spacetime: they are subject only to the gravitational force. Making one
further assumption, that the radiation outside of the star is negligible, the external
gravitational ficld is uniquely determined, by virtue of Birkhoff's theorem [21], to

e the Schwarzschild solution:

ds? = — fdf® + f~Vdi? 4 12002 f=1-=. (1.1)

m denotes the total mass of the star and dQ? is the line element on the unit sphere.

To understand the process of collapse it is only necessary to study the motion
of the stellar surface located at r = R(7) where 7 is the proper time along the
timelike geodesic it follows. The equation of motion of this surface is simply

- 2m .
RP=—-(1-== 2 .
( R)+E , (1.2)

where E' is a constant and a dot represents differentiation with respect to proper

time. Integrating this equation shows that a star can collapse to R = 2m, the



gravitational radius of the system, in a finite proper time. In fact. onee it reaches
this radius the surface of the star must continue to B = 0. The time of free-fall, as
measured by an ohserver on the surface of the star, from the gravitational radius to

the origin is approximately one day for a star of ~ 10100 ..

Thus. the star collapses to zero radius in a finite proper time. For an ex-
ternal observer things appear different. however. A long way from the black hole
t is the proper time along an observer's path. The motion of the stellar surface
parameterized by this time

2 : .
dr =(1_£ﬁ)[13‘-’—1+:)'1 . (1.3)
ot R R
reveals an interesting fact. As the star's surface approaches the gravitational radius
dR/dt — 0. In fact it takes an infinite amount of time. f. for the star to reach
R = 2m. An external observer therefore sees the star approach asymptotically to

this surface.

This can be better understood in terms of light signals emitted from the
star (sce Fig. 1.1). As the star collapses, light emitted from the surface experiences

an increasing gravitational ficld which tends to focus it. The closer the star is to

r = 2m the longer it takes for the cmitted light to reach a distant observer O, In
particular the light which is emitted at the gravitational radius » = 2m takes an

infinite amount of time to reach O. All subsequent light signals are foenssed so

strongly that they actually move towards » = 0. Therefore the external observer
can have no knowledge of what happens to the star after it passes ¥ = 2w this

surface is therefore referred to as the black hole cwent horizon.

It is important to realize that the event horizou has uo invariant local signif-
icance. It is a global construct, being the inner boundary of the causal past of an

observer who remains outside of the black hole for an infinite time.



r=2m

zug:.z

Star i 77

Figure 1.1: Gravitational collapse of a spherical star to black hole. The event horizon
is labelled r = 2m in this diagram. Outgoing lightrays are shown leaving the surface
of the star and reaching the external observer O. Those emitted after the star passes
through the event horizon actually hit » = 0

Thus we have two complementary views of gravitational collapse: for an
external observer, the star appears asymptotically to approach the surface r = 2m
and never collapses further. Note that light from the star will be exponentially
redshifted as its surface approaches r = 2m, making it quickly invisible to the
external observer using optical devices. However the star actually passes, completely
uninhibited, through the event horizon and reaches r = 0 where the curvature
diverges. (In the Schwarzschild solution the Kretschmann invariant R,g,sR°P7 =

48m?/r% - 0o asr — 0.)

This picture remains qualitatively unchanged when the internal pressures of



the star are non-zero (page 854 of [21]). Of course. no astrophysical collapse is
expected to be spherically svinmetric, so does the picture survive the inclusion of

aspliericities?
Spherical collapse with perturbations

During the 1960°s many people argued that since black holes were exactly spherical
they would not form in nature, however it gradually became elear that this was not
true. An understanding of this fact was first achieved by numerical integration of

the equations governing small verturbations of a spherical black hole [22, 23].

—ay an

As the star collapses it radiates, by gravitational and other means, but cer-
tainly not fast enough to remove all the asphericities hefore it erosses the event
horizon. Therefore one might think that an external observer should sce a dirty
blick hole which is not exactly spherical. This is not the case. The method by
which the black hole sheds this excess haggage was first elucidated in the work of

Price [23].

In general the gravitational potential outside a black hole will scatter radi-
ation which is present. Price roted that long wavelength radiation emitted from
close to the black hole horizon (2m < v < 3m) is completely backseattered by the
gravitational ficld and disappears down the black hole. Moreover, ontgoing radi-
ation emitted from close to the event horizon is redshifted by a very large factor
as it moves to larger radii. Therefore information about the dirt on the black hole
horizon which propagates outwards will become infinitely redshifted and is therefore
completely backscattered down the black hole. It turns out that this bhackscattered
radiation also interferes destructively with ontgeing radiation, leading to a cleansing

of the horizon and a Schwarzschild exterior at late times.

It might seen that the radiation that escaped from the collapsing star at

=1



carlier times (before it passed » = 3m) would simply escape to infinity. This is not
the casc though. It also gets seattered by the gravitational potential, leading to a
diffusion of the radiation by a sequence of scatterings in the exterior of the black
hole (see Guudlach et al [24] for a lucid exposition of this fact). Thus one finds
a radiative tail of gravitatioual waves which decays with an inverse power law in
external time. Along the c¢vent horizon of the black hole the stress-energy of the
perturbations behaves like
o

F ~ 3 Pl )41 (1.4)
=2

in ters of amultipole expausion where ¢ is external advanced time. This fact is

important for the mass inflation scenario [18] (sce chapter 3).
General asphericities

Powerful global teehniques {12] have been applied to prove that singularities cannot
be avoided onee a trapped suwrface” forms in collapsing matter [11]. Unfortunately
these results tell us nothing about the nature of the singularities which are encoun-
tered, nor do they tell us whether an event. horizon will seal them off from external

observers (i.e. if a black hole forms or not).

Penrose [25] has conjectured that any spacetime singularity will be sur-
rounded by an event horizon - calling this phenomenon cosmic censorship. The
proof of this conjecture remains clusive today. Indeed there is a mounting body
of counter-examples [26] which severely constrain attempts to formulate the con-
Jecture as a mathematical theorem. Most of these naked singularities are regarded
as unrealistic, however they do suggest that only some quite limited form of cos-

mic censorship may be true (c.g. Thorne’s hoop conjecture). Due to the great

“A trapped surface T is a closed, spacelike two surface with the property that the two systems
of null geodesics which meet T orthogonally converge locally in the future directions



difficulty of this problem recent work has tended to focus cither on the search for
counter-examples, or on the derivation of conditions fi v the existence of trapped

surfaces [27].

An interesting departure from these approaches ha. been given by Isracl [28].
He suggests that we may try to avoid the issues of singularities (itially) and ask
when a trapped surface will necessarily lead to the formation of an event horizon.
In fact he managed to prove a very beautiful theoreny which states (roughly) that *
a trapped 2-surface can be extended to a 3-evlinder that is and remains spacelike at
least as long as it remains regular, thus it acts as a permanent one-way membrane
for causal cffects™. Such results bolster our belief in cosmic censorship, amd it is

generally taken as a working hypothesis.
Collapse with rotation and/or charge

The presence of rotation and/or charge in a collapsing star has a dramatic of-
fect on the internal geometry of the black holes which forin. The “no hair” the-
orcws [10] prove that the only stationary electrovae black holes mst belong to the
Kerr-Newmann family. In view of our understanding of spherical coilapse with per-
turbations we expect that the external gravitational field of a rotating black hole
will settle down to a member of this family at late times. These solutions have a
timelike singularity and suggest the possibility of travelling through the black hole
into other universes. Since it is so difficult to analyse collapse with rotation, the
Reissner-Nordstrom solution (which is the unique spherically symmetric electrovae
solution of General Relativity [29]) is sometimes used as a model in which to test
certain hypotheses, since these solutions have a similar causal structure to that of

Kerr.

Gravitational collapse of charged dust was first considered by Novikov [30]



and by de la Cruz and Israel {31]. Their work shows that the gravitational collapse
proceeds, in 1ts external aspects, as it does in the uncharged case. The surface of
the collapsing material reaches its gravitational radius in a finite proper time and an
cevent horizon foris which seals off the subsequent evolution froin external observers.
The éifference is that the contraction of the matter halts at some minimum radius
(inside the event horizon), and then the dust begins to re-expand. In fact the
evolution continues and the body emerges into anotlier asymptotic region which is
identical to. but distinet frony, the one in which the collapse began. In so doing
the matter has passed into a region of unpredictability. The future boundary of the
domnain of dependence for Cauchy data posed on the surface ¥ is a null hypersurface

the Caucliy harizon  bevond which the evolution can no louger be uniquely
determined. In particular, inforipation can come out of the timelike singularity at
r = 0 and affeet the evolution in a completely unknown manner. Even to construct
the analytically continued spacetime in Fig. 3.1 requires the assumption that nothing
escapes from the <ingularity. and that the spacetime is vacuum (except for the

clectrie field) in this region.

The Cauchy horizon is a highly pathological surface: small time-dependent
perturbations originating outside the black hole undergo an infinite gravitational
blueshift as they evolve towards the Cauchy horizon. This blueshift of infalling
radiation gave the first indications that these solutions. which so well describe the
exterior geometry at Jate times. may not describe the generic internal structure.
Penrose [15] pointed this ont some twenty five years ago. and since then linear
perturbations have been analysed in detail [16]. The divergence of the measured
enecigy density of the perturbations at the Cauchy horizon led to the conjecture
that a scalar curvature singularity would form once back-reaction was accounted

for.
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Since a generic collapse will almost certainly involve some rotation. an inter
esting problem is to understand what will be the structure inside the event horizon
of such a black hole. This is the primary motivation for current mvestigations of
black hole internal structure [17]-[20].{32]-[34]. So far most of the analysis has been
restricted to spherical symmetry where perturbations are modelled by lightlike dust
or a scalar ficld. A first attcinpt by Hiscock to understand the internal geometry of
2 charged black hole with an influx of lightlike particles showed that an observer-
dependent singularity was present along the Cauchy horizon. Poisson and Isracl {18]
inncluded an outgoing flux of material across the Cauchy horizon and construeted a
solution in which there is a null singularity. characterized by the divergence of the
mass-function. along the Cauchiy horizon. An outline of this work, which provides
the launchpad for my contributions, is presented i chapter 3. Poisson and Isracl
also argted that the physics behind their analysis is sufficiently general to beliove
that similar results should hold for generie collapse. Further detailed ealeulations
scem to support this speculation that the singularity inside a generie black hole is

nall [20. 33].

1.2 Quantum gravitational collapse

The discussion up to this point has bheen entirely classical, ignoring the fact that
matter (and ultimately the gravitational field) is governed by quantum mechanies.
This idealization should indeed be justified during the early stages of gravitational
collapse of a macroscopic star (with mass ~ Af_ or greater). However it will break
down near classical singularities and on timescales of order 107 (M /M) s where M
is the mass of the collapsed body. Although there is no complete theory of quantum

gravity as yet, a great deal of useful informnation has been obtained by studying the

11



Lehavior of guantum matter in classical curved backgrounds.

In the absence of external fields tire Minkowski vacuum is stable, in the sense
that virtual particles are constantly being created and annihilated yet this process
never produces real particles. In a sufficiently strong or rapidly varyving gravitational
field this is no longer true; real particles can be created out of the “vacuum™. Thus,

the notion of a no particle state is ambiguous in a curved background.

In the late sixties, Parker and others [36] realized the significance of the
instability of the vacuum and began to discuss particle creation in the early universe.
Around the same time Marko: and Frolov [37] studied Schwinger pair production
near charged black holes. while Zeldovich and later Starobinsky [38] began to study
quantum cffeets around rotating black holes. Thev found that ingoing modes of
the quantum ficld get amplified by the energy of rotation of the black hole and the
scattered modes having a larger amplitude contain an increased number of quanta
in the field. In fact they also predicted that this would occur even if there were
no incoming field quanta. This process (which is the quantum mechanical analogue
of superradiance) leads to a decrease in the angular momentum of the black hole.
The event horizon area continues to inerease during this process in accordance with

Hawking’s arca theorem [12].

Hawking subsequently made the revolutionary discovery that quantum parti-
cle ereation can also occur in static black hole spacetimes such as Schwarzschild [13].
His calculation showed that a black hole creates and emits particles as though it
were a black body with temperature

hw

2xck’

(1.5)

where & = ¢'/4GA/ is the surface gravity of the black hole, and k is Boltzmann'’s



constant. This remarkable discovery means that spatial inhomogeneities of the grav-
itational field can be converted into real quantum particles and may thus decrease
in size. In pasticular when the particle production is allowed to affect the geonetry,
this leads to a picture of a black hole which decreases its mass by quantum emission

of particles.

Particle production is not the only manifestation of the effects of quantum
fields in curved spacetime. The presence of the gravitational field may also polarize
the vacuum. Thus. even in the absence of particle creation. there may be contribu-
tions to physical observabics (e.g. (T,,,.) for the quantum field) which depend on the

properties of the gravitational field.

The problem of the cffect of vacuum polarization and particle production on
the gravitational field is generally termed (semi-classical) backreaction. We will dis-
cuss this and the main steps in clevating flat space quantun field theory to a curved
manifold in chapter 2. The main goal of this thesis is to summarize some investiga-
tions of quantum effects in regions where, classically, curvatures approach arbitrarily
large values, the hope being that vacumn polarization and particle produetion might

damp the classical growth of curvature.

1.3 Outline of thesis

The material in chapters 4 through 7 relies heavily on previous work hoth in quan-
tum field theory in curved spaces and in black hole theory. It therefore seemed
necessary to include some introductory chapters to provide sufficient background

for the reader.
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Quantum fields in curved spacetime

The quantization of a scalar field in an arbitrary background is discussed, paying
particular attention to the ambiguity in the choice of vacuum state for the field.
Unlike Minkowski space, where we usually single out the Poincaré invariant vacuum
state since all inertial observers will agree on it, there is no general physical principle
in a spacetime without symmetry to decide on one particular vacuum over another.
Following this we outline the general problem of regularization of the stress-energy
tensor for the quantum field. The classical stress-energy tensor of a conformally
ivartant ficld is traceless, however an important feature of regularization is the
appearance of an anomalous trace for such fields. We outline an argument (due
to Duff [39]) which suggests the inevitability of the anomalous trace. Using a two-
dimensional example we then discuss some important aspects of quantum fields in
black hole backgrounds. The chapter ends with a discussion of semi-classical gravity,
outlining some problems which are usunally encountered and describing a resolution

which has been suggested by Simon [40].
Mass inflation inside charged black holes

The global structure of Reissner-Nordstrom black holes is discussed. The inner
(Canchy) horizon is unstable due to an infinite gravitational blueshift of infalling
radiation. Such radiation will always be present due to the radiative tail of the grav-
itational collapse to form the black hole. A preliminary attempt to understand how
perturbations might alter the internal structure of the black hole was undertaken by
Hiscock [17]. We summarize his results here. The remainder of the chapter outlines
the important aspects of the Poisson-Isracl [18] analysis of the Cauchy horizon sin-
gularity which results when the Hiscock model is generalized to include an outflux

of material across the Cauchy horizon.
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Quantum stress-energy tensor in linearized gravity

In order to investigate the effects of quantum matter on the geometry near to mass-
inflation singularities we need to calculate the renormalized stress-energy tensor,
Due to a fortunate collection of circumstances the spacetime inside the black hole
may be treated as nearly conformally flat. In this chapter we therefore calculate the
regularized stress-energ,; tensor for a scalar field in a nearly conformally flat space-
time. The results we obtain are in agreement with previous work by Horowitz [41].
who used general arguments to derive the stress-energy tensor to linear order in per-
turbations from flat space. Campos and Verdaguer [?] have independently obtained

the result for nearly conformally flat geometries which is presented in section 4.4,
Semi-classical effects in mass inflation

Ori [19. 20] has constructed an exact mass-inflation solution in which quantum
effects can be examined in detail. We first present his solution and then show
that it can be cast (approximately) in a conformally flat form, thus allowing us to
use the results of chapter 4. The stress-energy tensor involves an integral over the
past lightcone of the point of evaluation. This integral gives the leading behavior
in the stress tensor as the mass-inflation singularity is approached. Onee this is
evaluated we obtain semi-classical corrections to the spacetime. Interpretation of
the results is somewhat hampered by the appearance of the regularization seale in
a logarithm, which changes the sign of the leading corrections at some stage during
the evolution. Arguments are advanced which suggest. that an intensification of the
classical growti of curvature occurs up to the time when curvatures approach Planck
values. However the sign change hints that quantum corrections may ultimately act

to keep curvatures bounded as the Cauchy horizon is approached.



Homogeneous mass inflation

Continuing the investigation of the black hole core we re-examine a classical model
of the black hole interior which was first proposed by Page and Ori [42]. The model
continmies to assume a decaying influx of classical radiation (modelled by a lightlike
influx of particles) and also includes outgoing lightlike dust, however we restrict the
gravitational field to be homogencous as r — 0. An approximate solution is pre-
sented and it is argued that such solutions may e gepresentative of behavior at small
radii. We tLen go on to examine quantum effects in the neighborheod of the mass-
inflation singularity (which is spacelike in this model). Unambiguous predictions
of intensification of the classical growth of curvature are obtained for the particu-
lar case which is investigated. It is further argned that our model should capture
the leading effects even though the general homogeneous solutions are somewhat

different.
Nomn-spherical considerations

This chapter provides a progress report on one approach to the extension of current
ideas on mass inflation to the case of non-spherical collapse. Very near to the Cauchy
horizon of the black hole it is possible to obtain an asyvmptotic solution which is based
only on the assumption that the singularity starts from finite “radius”. This solution
indicates that the Cauchy horizon singularity can remain null in the presence of non-
spherical perturbations, with shear remaining bounded until the radius goes to zero.
The leading divergences also suggest that the Cauchy horizon has a shock-wave type
of structure. There are some technical points which must however be checked before

this work is complete.
Conclusions

This short chapter attempts to give a coherent summary of the new results which
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have been presented in this thesis. The overall picture which cmerges from the
ivestigations of semi-classical effects is that quantum gravity will be needed in order
to understaud whether and how singularities are avoided inside black holes. Initial
indications in chapter & do however suggest that vacuum polarization may tend to
keep curvatures bounded in the neighborhood of the Cauchy horizon. Unfortunately,
this is just at the boundary of validity of the approximations used. Finally we

comment on some open problems associated with black hole interiors.
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CHAPTER 2

Quantum fields in curved spacetimes

The exact methods used to investigate particle creation and vacuum polarization in
curved spacetimes vary greatly, however they all fall under one general title: quantum
Jield theory in curved spacetinne. In this chapter a brief outline of the standard
geueralization of flat space quantun field theory to an arbitrary background is given.
This is in no way a complete account of the suhject  More detail can be found
in the excellent reviews of Gibbons [43] and DeWitt [44]. while more pedagogical

treatments are given in Birrell and Davies [45] and Fulling [46].

Gibbous lists the following constituents of a field theory on an arbitrary
background: (1) A Hilbert space. H: (2) A classical spacetime: (3) A set of field
operators {d}: (4) Wave equations satisfied by the fields (linear for non-interacting
ficlds. which is all we consider here); (5) Commutation relations satisfied by the field
operators: (6) Rules for constructing a Fock basis for H; (7) Regularization schemes

which render formally divergent non-linear expressions in the fields finite.

In this thesis we always assume that the background spacetime is a continuous
manifold. Explicit calculations in this thesis are only performed for the scalar field

case (when the conclusions continue to hold for fields of other spins it is indicated

explicitly).
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2.1 Scalar field quantization

The action for a scalar field in n-dimensions is written as

l . 2 Y M
S = —5 (" VuoV,o+ m2® + EROY) (2.1)
where (...} = fd"x/=g(...). ¥V is the covariant derivative with respect to g, and
m is the mass of the field. There is also a coupling to the curvature where g is a
dimensionless constant and R is the Riced scalar. Variation of this action vields the

wave equation

2w y e ) .
gV NV,0o—mmo~ERp = 0. (2.2
Omne particular value of the coupling constant is of great interest to us, & = (n —

2)/n(n = 1). for which the wave equation is invariant under rescaling of the metrice
provided i = 0 and the scalar field transforms in a very simple way. Specifically,

under the transformation e = Gpuee = SZ"’(.:')_(/,,,,, the wave equation hecomes
"'V, V.,o—-E&Ro =0, (2.3)
provided o(r) = Q2="/2(1)o(r).

Before proceeding to the field quantization it is worthwhile to point. ont
another important property of ¢assical fields which are conformally invariant. The

stress-energy teusor of the field is given by

s 285 (2.4
V=904, ’

and In particular for a massless conformaily coupled field the trace of this quantity

1s zero. This is important because it turns out that the regularization of the stress-
energy tensor in curved space breaks the conformal invariance and leads to the

appearance of an anomalous trace. (We will learn more about this later).
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Quantization

The field is decomposed with respect to a complete orthonormal set of modes u;(x)
as
olr) = Z aui(r) + a:-‘u:(.'r) . (2.5)
1
The quantization of the theory proceeds as in flat space by adopting the commuta-
tion relations

a;.all =&, [aia;] =0 (1},ui~ =0. (2.6)
J J J J

Now the construction of the Fock space can go alicad as usual. We first construct

the state whicl is annihilated by all a;, denoted |0):
a;]0) =0. (2.7)

The entire Fock basis is then built up by the action on |0) with a! according to the

rule exemplified by
(g D)2 aly " (al)s |0) = [ng, ny) (2.8)

In particular the number of “particles™ associated with a given mode u; in a given

i

state [ny, ..o np.00) s the expectation value of the operator ajaj:

<7l|.....IIJ....l(l;-(lj [y, .oon .. 0) = nj . (2.9)

In Minkowski space there is a unique vacuum state singled out for all inertial ob-
servers. This is done by requiring that the state should be invariant under the action
of the Poincaré group. Thus since this is the empty or no particle state in one in-
ertial frame, it will also be empty in any other inertial frame. All inertial observers

agree on the vacuum |0).

In an arbitrary spacetime there may be no such state. Not having any general

guiding principle to choose a particular set of modes we can just as well decompose
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Using the identities

2g,.. & 2
S U d'r\y/—gC = (n—4)(C+ §C11f). (2.26)

/_g ‘5!];“» .
2g;ul é

—_ d"r/—-q9gG = (n—-41)G, 2.27
e ] T (=) (=20

which were obtained by Duff [39], we find that

)
(M)],ca=AG+B (C + %Dh’) . (2.28)

This is exactly the trace anomaly which is so well known for conformally invariant
fields in curved backgrounds. The precuw values of 4 and B have been determined
for fields of different spins [45]; it should be noted that for spin-1 fields dimensional
regularization gives different values of these coefficients than other regularization
schemes (e.g. zeta function, or point splitting).

Conformal anomaly in two dimensions

Although the work in the following chapters considers only four dimensional prob-
lems, it is worth pointing out the result analogous to (2.28) in two dimecnsions. For
two-dimensional fields the effective action when analytically continued to n dimen-
sions has a pole at n = 2. Arguments similar to those outlined above imply that

the only possible counterterm which is compatible with conformal invariance is

/d":z:\/?g R. (2.29)

Before regularization the stress-encrgy tensor is traceless. Duff [39] once again notes
that

alln—?
7N -2

Fdiv =

29, 6 ;
— d"z/=gR = (n - 2)RR, 2.30
=T / V=g ( ) (2.30)

and so the trace of the two dimensional stress-energy tensor also acquires an anoma-
lous contribution:

29, 6

(T) = \/"q%—qg'g—(rm+rdin), (2.31)
$ v

= alR. (2.32)

The value of the constant a is determined by explicit calculation; for a scalar field
a = (24n)"'.
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2.2 Stress-energy tensor for quantum fields

In this seetion we briefly outline some of the important features associated with the
regularization of the stress-energy tensor for a quantum field in a curved background.
The discussion is heuristie and ignores many technical issues (the reader is referred
to [45, 46] for the details). Attention is mainly focussed on conformally invariant

fields.

The stress-cnergy tensor is bilinear in the quantized field and as such contains
divergences. Many different ways have been proposed to remove these [43, 46}, so
one might wonder which of these procedures is correct. Wald [47] has suggested a
set of axioms which the regularized stress tensor should satisfy. These axioms are

widely accepted as reasonable properties to demand. thus T,.. should be:
. ) ¢ reg

I. Covariantly conserved:
2. Causal:
3. Give the standard results for “off-diagonal™ matrix clements:

4. Reproduce standard results in flat spacetime.

Indeed using these axioms Wald proved that (T;,,,)”_g is unique up to the addition
of a local conserved tensor. Thus any regularization procedure which produces a

result satisfyving these conditions may be regarded as correct.

In this thesis we generally consider the calculation of (T,,,,)reg as part of the
wider dynamical problem of semi-classical gravity. This approximation to quantum
gravity treats the gravitational field as unquantized (specifically one assumes that

a continmous background manifold exists) allowing the curvature to respond to the



gunantum matter through the generalized ticld equations:
- ~efiss . O
G = 87 (T +(Tou),.,) - (2.15)
One approach to obtaining the regularized stress-cnergy tensor is to look for the
g 8 8]

cffective action T, which generates it according to

2 o0,

\/-————[(s(/;lv = (Tl“’)"'.‘l ) (210)

Consider the generating functional Z[J] defined by

(out| in), = 'V = /’D[c)] expli(S + (Jo))] . (2.17)

where the path integral is over all fields which are negative frequency in the past
when J = 0. More generally setting J = 0 and varving Z[0] with respect to g, we
find
2 oZ[0]  (out| T |in) (2.18)
V=4 8. {out) my st

The vacuum persistence amplitude (out| in), is a standard object in at space quat-

tum field theory. Its calculation i curved space can proceed via the usual pertur-
bative expansion in powers of h. The terms in this series will generally contain
the metric and its derivatives through the curvature. We will always truneate the

calculation at first order - the so called one-loop approximation®.

We will now discuss dimensional regularization of the one loop [terms only
of o(h)] effective action for conformally invariant ficlds. The presentation closely

follows that of Duff [39].
Conformally invariant fields in four dimensions

The technique of dimensional regularization can be successfully applied to the of-
| ]

fective action in curved spacetime [45, 46]. Starting from a conformally invariant

“For free fields this is all there is.
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field theory in four dimensions. we analyvtically continue it and the spacetime to n
dimnensions. The one-loop effective action 1s generally a non-local functional of the
spacetime curvature. It is also a function of the dimensionality of the background

spacetime containing a simple pole at n = 4. Write

F=(n—41)"! / d"r/=gG(n). (2.19)

where G(n) contains the metric. its derivatives (in combinations like RZ, R(InO)R
ete.) and is a function of #. Introducing a countertermn I'y;. which also has a pole
at = 4 with residue such that it cancels the divergences in T, we obtain the
regularized effective action

rr.,, = ryu + r,[“. . (2..20)

Sinee the oniginal field theory was conformally invariant g, should ouly con-
tain quantities which are conformally invariant or total divergences in four dimen-
sions [39]. Dufl’ therefore argues that the only possibility (on dimensional grounds)
is

n—-1

r,. = /%_—4/(1“.,-\/—,,(.4 G+BC). (2.21)
G = Ru..R" —4R, R + R*. (2.22)
C = RuasR" = 2R, R* 4+ <R (2.23)

Notice that g 1s a parameter with the dimensions of mass (aud is related to the
ultraviolet cutoft in the usual perturbation theory): 4 and B are constants which
must be determined by explicit calculation; ¢ is the Gauss-Bonnet combination

which is a total divergence in four dimensions, anud C is the square of the Weyl

tensor in four dimensions.

The trace of the regularized stress-energy tensor obtained by varying (2.20)
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is

(T) _ 2.‘1}11' ‘Srn’y — 2.‘1;41- (‘\.rm + ‘srax‘n-) (-) )4)
vV —4 (\y;u' v 4 ‘S.‘/;u' ‘\.‘hu' ’ -

This quantity is finite at n = 4 (once the constants A and 12 have been appropriately

chosen). Specifically we already know from (2.4) that

2‘1;:1' ("[‘nt
—— =0. 12.25)
V=98 |, _,
Using the identities
;2”—""——6—/(1".-\»(,0 = (n—N(C+ gDII’) (2.26)
v—4 by;u' ’ i 3 ) T
29 ——6 /«I“ =96 = (n—-1G (2.27)
v —4g ‘S.‘l,u‘ . T B
which were obtained by Duff [39]. we find that
2 _
(T),_,=AG+D (C + §DR) . (2.28)

This is exactly the trace anomaly which is so well known for conformally invariant
fields in curved backgrounds. The precise values of A and 3 have been determined
for fields of differcut spius [45]: it should be noted that for spin-1 fields dimensional
regularization gives different values of these coefficients than other regularization

schemes (e.g. zeta fuction. or point splitting).
Conformal anomaly in two dimensions

Althougli the work in the following chapters considers only four dimensional prob-
lems. it is worth pointing out the result analogous to (2.28) in two dimensions. For
two-dimensional ficlds the effective action when analyvtically continned to n dinge -
sions has a pole at n = 2. Arguments similar to those outlined above imply that
the only possible connterterin which is compatible with conformal invarianes is

a Iln—'l

K = —*2- ll".'l'\/—y It. (22,
" —
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Before regularization the stress-energy tensor is traceless. Duff [39] once again notes

that

20, 6 / .
d"z/[—yR = (n - 2)R.. (2.30)
V=964

and so the trace of the two dinensional stress-energy tensor also acquires an anoma-

lous contribution:

29, 6
(T> = \/(J_i_qéq (rn: + Fdil') ! (2.31)
9 CYpe
= all. (2.32)

The value of the constaut ¢ is determined by explicit calculation; for a scalar field

a = (247)"".

In two dinsensions this result, in combination with covariant conservation, is
sufficient to completely determine the entire stress-cnergy tensor [48] (unfortunately
the same is not true in four dimensions except in circumstances of high symmetry).

We will now discuss quantum effects in two-dimensional black hole spacetimes.

2.3 Quantum effects in black hole spacetimes

Consider a two-dimensional spacetime
] 2 - r
ds® = —e“PdUdV . (2.33)

It has Ricci scalar R = 8¢700y-0p: p and hence the trace anomaly is (T') = 8ae~2Pdy,dy p
where a = (247)7! for a scalar field. Demanding that the regularized stress-energy

tensor 1s conserved and has the trace (2.32) implies that

(Tie) = 2a(0Ep—(Qup)’) +9-(U), (2:34)
(Tiv) = 2a(08p—(8p)) +9+(V), (2.35)
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while
(I‘l\) = -?,(IOyOy[) . (2.30)
The two arbitrary functions ¢, (17) and ¢_ (U") reflect the freedom to choose boundary

conditions.

To make the discussion more concrete let us consider the two dimensional

scction of the Schwarzschild spacetime given by

ds? = il’é"'—;fdc’d\' . (2.37)
where
f=1=2m/r. UVo= P — v f2m) . (2.38)

The coordinates are shown in figure 2.3: they eower the entire spacetime, specifically
17" = 0 on the past black hole horizon and U = 0 on the future sheet. Comparing

(2.37) and (2.33) we find that the stress-energy tensor is

Dy ed gl 1 1 S .
(Tie) = 8mal 2e=rim (3 2 ) + g (U). (2.39)
g e —pram 1 B ) ,
(T‘.‘.) = 8m-al 2=rf2m (:l_ + i]ﬁ -+ ,“-: ) -+ ([4.(‘ ). (2.4“)
32amt _, . .
(]}7") = ’._1-—(’ /2 . (241)

As mentioned above there are three important boundary conditions which corre-

spond to taking the expectation value of T,,, with respect to different states.
The Boulware vacuum

Placing the restriction on the stress-cnergy that it should be zero in the asymptotic
region as r — o< (both for large U and for large V'), we find that the free functions

in (2.39) and (2.40) arc given by

(1 n

TR 9-U) = ~5= - (2.42)

g+(V) =

XV
-1



Figure 2.1: A two-dimensional Schwarzschild black hole. The coordinates are shown
in order to make the discussion in the text clear
This is the vacuum state which an observer at fixed radius would experience. Thus

we have chosen positive frequency with respect to the static time.

It is, however, a rather pathological state for black holes (as might be ex-
pected since an observer can only stay at a fixed radius outside of the black hole).

Consider the value of the stress-energy tensor on the future event horizon of the

black hole,

a

T; ~ ———— —y — 2.

as U — 0. In fact (Tvyv) behaves in an identical way on the past horizon V = 0.

Thus this state is appropriate to describe physics outside a static spherical star.
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Hartle-Hawking state

This is the state which is appropriate to a free-falling observer in this spacetime. The
positife frequency states have been chosen with respect to the coordinates U and V'
(which are regular on the event horizon). The Hartle-Hawking state is defined by
setting g, = 0 = ¢g_. It is straighforward to check that that the expectation value
of the stress-cnergy tensor in this state is finite everywhere in the spacetime except

atr=0.

At infinity it is no longer zero however. Considering for example V' — oo we
. AT o2 .
find (Ti:¢) = a/2U72. which corresponds to a thermal outflux from the black hole
with temperature (4. 2z74)7 ! In order to see this we consider the energy density

of the outflux as measured by an observer at infinity:

L4

(Tp) u vy = m (2.44)

A similar result holds when U — —oc. giving a thermal influx at the same tempera-
ture. Thus the Hartle-Hawking state mayv be interpreted as a black hole in thermal
equilibrium with a heat bath.

Unruh vacuum

The boundary conditions are that the state should correspond to the vacuum in the
asymptotic region when U = —o¢, and that the stress-energy tensor be regular on

the future event horizon (U = 0) of the black hole. These two requirements fix the

functions
9+ (V) = —2{',2 . g-(U')=0. (2.45)
Clearly this state will also lead to a divergence on the past horizon (V. = 0) of

the black hole as the Boulware vacuum did. However this state is appropriate to

describe gravitational collapse since the past horizon does not exist in this case (see
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Fig. 1.1).

Examining the stress tensor at large r once again reveals the thermal outflux
of Hawking radiation to future infinity. This is the quantum state in which we would

like to estimate the stress-energy tensor in the later chapters.

This discussion can casily be generalized to charged black holes for which the

same three states exist.

2.4 Backreaction and semi-classical gravity

A successful quantum theory of pure gravity (in four dimensions) may be expected
to have the cffeet {49]. at moderate curvatures, of modifying the Einstein-Hilbert

Lagrangian by terins guadratic in curvature,

167 L = 1P R+ o Cl Ly + 1 R, (2.46)

(g}

By including the matter action we can obtain a semiclassical theory of gravity with

cffective field equations
G + h(aA,,. + 31,.) = Tp + 1 {(T,,) + O(FF) (2.47)

which is correct to order fi. These equations are obtained perturbatively by the loop
expansion method (asymptotic expansion in powers of h). The tensors A, and I,
are given in equations (4.81) and (4.82) respectively, T, is the stress-energy tensor
of the classical matter and hi (T,,.) is the one loop contribution from the quantum
matter fields which are present. The guantum stress-energy tensor will contain
powers and derivatives of curvature, it will also contain state dependent (usually

non-local) terms with their explicit form depending on the background geometry. It
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is these effective ficld equations which we will use later to investigate semi-classical

effects inside black holes.

In general. as can be seen by looking at the tensors A and 1., these
equations contain second derivatives of curvature meaning that they involve fourth
derivatives of the metric. Thus although the terms of O(h) are supposed ounly to
induce small corrections to the classical Einstein equations, they alter the structure
of the equations dramatically by the introduction of higher derivative terms. Con-
sequently there will be an accompanying increase in the number of solutions which
arise, many of the new ones being unphysical since they will not be perturbatively
expaundable in powers of i {40, 51]. A particularly important example of this prob-
lem was elucidated in the work of Horowitz, and Hartle [41, 50]. They considered
solutions to the effective equations (2.47) for lincarized perturbations about flat
space. Some of the solutions strongly suggest that Minkowski space is unstable to
vacuum fluctuations. however, these are exactly the ones which are non-analytic in

h.

To make this discussion more concrete we consider a simple example which

demonstrates the problem. Schematically the effective equations can be written as
g = =g+ hg™ + OWF) (2.48)

where a prime represents a derivative with respect to some parameter 1, say, with
the dimensions of length. and w has the dimensions of inverse length. Then the

exact solution to the classical equatious (h = 0) is
g = ;e 4 cpem! (2.49)

where c¢; and ¢, are constants. Clearly tliis solution is oscillatory and remains regular
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for all t. Now let us consider a sample solution of the fourth order equations

1+V1+44h

g = e 4 et where Agp = BT — (2.50)
1

It is easy to sce that this solution blows up as t — zFoc. furthermore it does not
reduce to the classical solution (2.49) as we let h — 0. Thus the small correction

term in the equations has completely changed the nature of the solution.

So how can one avoid this problem? One method is to obtain all the solutions
to the effective field equations and then to exclude (by hand) those which are not
expandable in powers of . On the other hand Simon [10] has advocated the self-
consistent method of solving the effective equations which renmoves all the spurious
solutions which are introduced by the higher derivatives. The application of his
method is casily demonstrated using equation (2.48). Firstly multiply (2.48) by A

to obtain what we call a perturbative constraint
hg" = —hatg + O(h?) . (2.51)
This clearly iimplies that
hg"' = —hPg" + O(R?) . (2.52)
Substituting this into cquation (2.48) we obtain the reduced equation
" = (=2 + hut)g + O?) . (2.53)

This method eliminates the iigher derivatives and leads to a reduced equation with
solutions which are manifestly perturbative in h. The generalization of the method

to the effective field equations (2.47) is straightforward.

Analogously. multiplyving (2.47) by . we obtain a first order perturbative

constraint

G, = 8xh {7, + O{I?) (2.54)
} ¢
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from which it follows that

hR = —SxhT + O(h7) . (2.55)
and that
hR,, = 8=h (T; - %T) +Oh?). (2.56)

Thus we have expressed the curvature in terms of the stress-cnergy of the classi-
cal matter (which is usually constructed only from the metric without derivatives).
Substituting these expressions into the order h terms in (2.47) vields a set of equa-
tions which involve only second derivatives of the metrie. In this way one obtains
sccond order differential equations for the semiclassical theory in which solutions
are automatically analytic in i, The self-consistent method is adopted thronghout

the thesis.

With these preliminaries out of the way we can proceed to the discussion of

black hole interiors.
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CHAPTER 3

Mass inflation inside charged black holes

The instability of the Cauchy horizon inside Reissner-Nordstrom black holes has
been investigated by many authors [15, 16]. In this chapter we summarise what is
currently known about this instability and discuss the work of Hiscock [17], Poisson
and Israel (18] and Ori [19] on the problem of the backreaction of perturbations near

the Cauchy horizon.

The structure of the Reissuer-Nordstrom solution is discussed in section 3.1,
paving particular attention to the behaviour of timelike geodesics inside the event
horizon. It is shown that an observer can pass through the black hole without

cncountering a singularity along his path.

A typical perturbing field ¥ decays in advanced time (which is infinite at the
Cauchy horizon) according to an inverse power law, & ~ =" where n is a positive
integer depending on the multipole order of the perturbation [23]. However, a
measurcment of the field’s rate of variation by a free-falling observer crossing the

Cauchy horizon vields the infinite result
U u” Ui~ e (3.1)

where u is the four velocity of the observer (the dot denotes differentiation with
respect to proper tinme) and ;5 = (m? — €2)!/2/2? denotes the surface gravity of the
inner horizon, m is the mass of the black hole, e its charge and r; = m — (m?2 — 2)1/2

is the inner horizon radius. The same observer measures a flux of energy given
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essentially by the square of equation (3.1) which is even more divergent. Usiug a

test field of lightlike dust we demonstrate this instability in section 3.2

-

The mechanism of this instability is the large blueshift occurring near to the
Cauchy horizon. For reasonable observers residing outside the hole, & 2~ 1, so that
they require an infinite proper time to reach future null infinity (¢ = o). Internal
observers requite only a finite praper time to reach the Cauchy horizon, which implies
that ¢ will diverge as v — ac. As equation (3.1) shows. this divergence wins over
the time decay of the perturbations and, as a result, the Cauchy horizon is said to

be unstable.

The presence of this divergent flux also suggests that the backreaction of pér-
turbations on the geometry will generate nnbounded curvature along the Cauchy
horizon. A preliminary investigation of the backreaction by Hiscock [17] showed
that an observer-dependent singularity did form. The Hiscock modid makes use of
an exact solution of the Einstein field equations with null dust as a source. This
medel is presented in section 3.3 and it is shown that the singularity which forms
along the Cauchy horizon is characterized by the divergence of eurvature in a par-
allel propagated orthonormal frame. This type of non-scalar curvature singularity
is generally believed to be unstable, in the sense that slight perturbations will pro-
duce a scalar curvature singularity in its place. For charged, spherical black holes
Poisson and Israel [18] have shown that a scalar curvature stngularity forms at the
Cauchy horizon when the above influx is accompanied by an outflux emitted from
the collapsing star. Since they found the singularity to be characterized by a diverg-
ing mass function. they called it a rmass-inflation singularity. We give a detailed

discussion of the Poisson-Isracl [18] scenario in section 3.4.

An exact solution, modelling the outflux as a thin shell of lightlike matter,
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was used by Ori to examine the nature of the mass-inflation singularity in some
detail [19]. He showed that an observer, who falls into the black hole, experiences
finite tidal distortion at this singularity since the curvature is an integrable function

of the observer’s proper time.

For completeness the Ori model [19] limit of the presented solution is therefore
taken in section 3.5. It is then casy to obtain the relationship between proper time,
along a timelike geodesic, and advanced time near to the singularity. Using this it is
shown that an extended object undergoes only finite distortion up to the moment it
crosses the Canchy horizon. For this reason Ori suggested that the spacetime may
he continued beyond the mass-inflation singularity. This is difficult to believe since
there seems to be no (classical) mechanism which can drive curvatures back down to
finite values hevond the Canchy horizon. Herman and Hiscock [33] have argued that
the question is not really relevant since anything approaching the Cauchy horizon

will probably be “fried™ by the ingoing blueshifted radiation.

3.1 The Reissner-Nordstrom solution

The unique spherically symmetrie, charged black hole solutiou of the Einstein field
cquations is the Reissner-Nordstrom solution. Using an advanced time coordinate

it has the line element
ds? = de(2dr — fdv) 4 r2d0? f=1=-2m/r+¢e*/r2. (3.2)

It is a static solution with timelike Killing vector €2 = 91 /0v outside the black hole.
The global structure is different to that of Schwarzschild due to the presence of the
charge. The Killing vector becomes null on two stationary lightlike hypersurfaces:

the black hole event horizon »r = », and the inner (Canchy) horizon » = r; determined
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by solving the quadratic f = 0. where the roots satisfv 0 < 1, < re. The surface
gravity is constant on cach of the horizons being determined by the slope of [ at

that horizon. it is

1 . 4
Ko =5 |0, fl,-... nef{ie}. (3.3)
Timelike geodesics

An analysis of timelike geodesies in this spacetime gives us some idea of the intrigue-
ing global structure of this spacetine. The equation of a radial timelike geodesic

can be reduced to

bl

2= K- f. (3.1)

Let us suppose the energy satisties |E] > 1, although a similar analvsis can be done
for the other cases. The right hand side of (3.4) can become zero at a finite radial

value

—i + \/1112 + (E? —1)¢?
h = : . 3.5
't (E-’—]) < (3.5)

Therefore an observer who falls into the black hole decelerates until he reaches the

finite radius 1, at which he comes to rest. Subseguently the same observer moves
in the direction of iucreasing r and can return to arbitrarily large radii in a finite
proper time. Thus it seems that it is possible to fall into a charged black hole, to
avoid hitting the curvature singularity at » = 0 and to return to large radii again (sce
Fig. 3.1). Clearly this is very different to the behavior of geodesies in Sewharzsehild

spacetime (sce section 1.1 in the Introdnetion).
Analytic continuation past the Killing Horizons

The system of coordinates (v, r) is singular on the ingoing sheet of the inner horizon:
both r aud ¢ are constant there (v is actually infinite). They are also singular on

the past event horizon. It is possible. however. to construct coordinates which are
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regular on cach of these horizons in turn. As an example we do this for the inner

black hole horizon. Introduce the coordinate

n=22 / drff—uv. (3.6)

which is infinite on the outgoing sheet of the inner horizon. Moreover the coordinates
(u.¢) cover the region between the event and inner horizons (see Fig. 3.1). In terms

of new coordinates (U, V) defined by

Vo= —emhr (3.7)

U = —e™™v, (3.8)

L

the e element (3.2) takes the form

ds® = A,T(f—i_ AU dY + r2dQO?

In order to see that the metrie is indeed regular on the inner horizon combine (3.6).
(3.7) and (3.8) to get

UV =(r—r))G(r). (3.10)
where G(r) is a function which has a non-zero value at r = r,. Since we can write

f= ("“"“?2"_r‘) (3.11)

¥

it 18 casy to see that the metric component g3+ — (constamt) # 0 as 1 — ;. To
analytically continue through the horizon, simply allow U and 17 to assume positive
values. These coordinates then cover the entire black hole interior from the event
horizon, r = r, . down to the singularity at » = 0 - thev are Kruskal coordinates for
the inner horizon. One may analytically extend the spacetime through the other
horizons in a similar manner. thus exhibiting the global structure of the manifold

[see Fig. 3.1].
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Figure 3.1: Analytically extended Reissner-Nordstrom spacetime. EH is the event
liorizon r = r. and CH is the Cauchy horizon. A timelike observer follows the

trajectory v originatingin our universe at O and continueing through the black hole
to another asymptotic region.

3.2 Cauchy horizon instability

The instability of the Cauchy horizon of a Reissner-Nordstrom black hole is a direct
consequence of the global structure of the spacetime manifold. The ingoing sheet of
the inner horizon is the “continuation” of future null infinity (Z+) inside of the black
hole. An external observer requires an infinite amount of time to recach Z+, however
an observer who falls into the black hole requires only a finite amount of time to
reach the Cauchy horizon. This observer will therefore sce the entire history of the

external universe flash quickly by. In particular the ratio of the proper time for an
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external observer to that of an internal observer will diverge as v — oo implying
that ingoing radiation will undergo an infinite gravitational blueshift at the Cauchy
horizon. I a realistic situation an influx of radiation will always be present in the
form of the radiative tail of the gravitational collapse which formed the black hole.

We now examine a simple model of the gravitational perturbations[17, 18].

Superposed on the Reissner-Nordstrom background., we consider an influx of

test radiation described by the stress-energy tensor

L(v) :
7::.3 = -1"['21“1'd (3.12)
and characterized by the huninosity function L(v): the vector I, = —d,v is tangent

to ingoing radial null geodesics. We imagine radiation abutting the v = oc surface
(see Fig. 3.2) and place restrictions on L(r) by requiring that a radially free-falling
observer in the exterior of the black hole measures the decaving radiative influx

predicied by Price (23], Thus we write the luminosity function (as ¢ — oc)
L{v)y =-~(r;0)77 (3.13)
where p 2> 12 s an integer and 5 is a dimensionless constant.

To see that the Cauchy horizon is unstable, consider a radially free-falling

observer in the vicinity of the Cauchy horizon who measures the energy density

Pobe = Lot u? = T,..0% for the influx of radiation. Normalizing the observer’s four

velocity so that e, = —1 we can write, using (3.4).
—2|F
I~ ———fl—l , (3.14)

as ¢ — 0 and f — 0. It can also be shown that near to the Cauchy horizon

[~ =270 (3.15)

40



y
.y

4

[ 4.7

\

Figure 3.2: A portion of the Recissner-Nordstrém spacetime, with infalling null ra-
diation abutting the v = oo surface. The system of coordinates (v,7) covers the
region below the v = oo line, and becomes singular on that line. Shown are the
singularity (r = 0), the Cauchy horizon (r = 7;), the black hole horizon (r =7.),
and the asymptotic future null infinity.

along the observer’s path. Thus © =~ |E|e** diverges at the Cauchy horizon, indi-

cating that the observer requires only a finite proper time to reach v = 0o. Conse-

guently, the observed energy density is

2

E -
Pobs = ;’7(7(&;1’)—”62“' (3.16)

from which we conclude that the energy density of the influx, as measured by a
free-falling observer crossing the Cauchy horizon, will diverge as v — oo indicating

an instability of that horizon as Penrose [15) pointed out.

3.3 Charged Vaidya solutions

Since an instability of the Cauchy horizon has been established, what is the effect

of the divergent influx on the geometry? There exists an exact solution of the
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Einstein field equations with a stress-energy of the form (3.12). Hiscock [17] made
a preliminary study of the backreaction of perturbations on the geometry using this
solution. His results are sumnarized below.

ey

presence of the null dust simply makes the mass in (3.2) a function of

advanced - ne . so that it satisfies

), (3.17)

de
Therefore, enforcing the the inverse power law decav (3.13) on the influx the mass
of the black hole

Ill(l') = ) — m(f{;l’)-"+l (3.18)

mereases to the value my as ¢ — oc. At first sight it secms that the radiation
has not changed the geometry in any significant way. There continue to be two
apparent horizons in the spacetinge. The outgoing sheets of these horizons are
no longer mull. however the Cauchy horizon persists being located at ¢ = oc and
ri = =i — 2. Of course it is the curvature. not the metric. which is important.

Sinee this solution includes material which streams along the Cauchy horizon,

one expects that the curvature as measured by a free-falling observer will diverge

there. Consider an orthonormal frame

oy = (£.5,0,0) = u®, (3.19)
ety = (8.6 —7,0,0). (3.20)
¢y = (0.0,r710), (3.21)
¢y = (0.0.0.(rsin@)7 1), (3.22)

where «® is the observer’s 4-velocity, and a dot represents differentiation with re-

spect to proper time. It is straightforward to calculate the projected components of
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curvature in this frame. The three non-trivial components are

1

" 1
S0 + 3]+ 47 L ) (3.23)

Rmumu‘)(m = &un ("m'

where a,c € {0.1}. B.D € {2.3}. nju = diag(—1.,1) and I, is the two-dimensional
matrix with all its entries equal to unity. As expected they diverge like the measured
energy deusity (3.16) as the Cauchy horizon is approached. Despite this fact, it is
possible to check that all the second order algebraic curvature scalars are bounded

on the Cauchy horizon.

Can any curvature scalar diverge at the Cauchy horizon of this solution”
For an influx given by (3.13). it scems not. In the coordinate system (e, r) the
components of the metric and its inverse are bounded above and below (by zero) at
the Cauchy horizon. In fact these components are C~ at the Cauchy horizon. Sinee
an arbitrary curvature scalar is constructed from the metrie and its derivatives, it

is clear that all scalars must be bounded there also.

A simgularity at which projected components of curvature diverge while
scalars remain bounded has been called an intermediate, or whimper singularity
by Ellis and King [52]. Detailed studies indicate that such singularities are gener-
ally unstable and exist only in circumstances of high sviunetry [53]. It is therefore
expected that a slight perturbation will induce a catastrophic plunge into a scalar
curvature singularity. In this spherically syinmetrie case we now show that the in-
clusion of some outgoing null dust (proposed by Poisson and Israel [18]) is suflicient

to completely destabilize the Cauchy horizon.
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3.4 Backreaction of Spherical perturbations

Our aim, in this section. is to construct an approximate solution which includes
backreaction of perturbations (modelled by a lightlike influx and outflux) on the
geometry and in this way to examine the Cauchy horizon singularity in detail. The

general arguiment follows Poisson and Israel [18].

It is couvenient to use mull coordinates on the “radial™ two spaces so that the
spherical line element is
2
M

ds- = —i(]ll(ll‘ + 12dO? . (3.24)
.,

where F = F(u.v) and r = r(u. r). and the coordinates are such that u is a retarded
time and ¢ an advanced time. The stress-energy tensor for a radial electromagnetic
tield is

E," = [dzrt diag(—1.-1.1,1) (3.25)

where ¢ is the charge on the black liole. Poisson and Israel used crossflowing null
dust to model the perturbations of the geometry., arguing that the large blueshift
near to the Cauehy horizon should make the Isaacson [54] effective stress energy
desciption valid for the ingoing radiation. They also pointed out that the nature of
the ontflux is not important. its only purposc is to initiate the contraction of the

Canchy horizon. The stress-cnergy tensor is
rr;ul = /)inlulu + PouwtT 0L, . (326)

where I, = —=0,0 and n, = —J,u arc radial null vectors pointing inwards and
outwards respectively, and. g, and p,,, represent the energy densities of the inward

and outward fluxes. Each term of (3.26) is independently conserved so that

_ Li"(l‘) _ Loul(u) -
Hin = 4771_-_, . Pour = _4—7‘__,_,— . (3‘2‘)
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The functions L, (¢) and Lo, () are to be determined by the boundary conditions,
however. it is important to note that they have no direct operational meaning since
they depend on the parametrization of the null coordinates.

The field equations can now be written as a pair of non-linear hyperbolie

-.)

wave equations for = and In F

(e = F(E/2=1)/r, (3.28)
(In F) .

F(1 =3c/r%) /(2% . (3.29)

subjeet to the constraints

("2).0'1 %(’.2).1- = _2Li"(l‘) * (‘53“)
('.2).'“: - %("2).:: = '_21‘('"'( uj. (3.31 )

A comma denotes partial differentiation. Characteristic initial data for these -

tions is supplied along null rayvs v = uy and ¢ = ¢,.

Imagine that the inflow is turned on at a finite advanced time ¢ = gy and
the outflow is turned on at u = uqy. In the pure inflow (outflow) regime the solntion
Is an ingoing (outgoing) Vaidya-Reissner-Nordstrém spacetime with mass funetion
m(e)[in(u)]. The structure of the spacetime with cross-flow is shown in the Penrose

diagram of Fig. 3.4.

We choose ¢ to be standard advanced time far from the black hole, thus
¢ = oc at the Cauchy horizon. We also use a convenient parametrization of the null
coordinate u such that

Flu,vg)=r,, (3.32)

where 7; is the radius of the static portion of the Cauchy horizon for w < wugy. It is

now easy to obtain the behaviour of the radius along o = uy by solving the equations
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Figure 3.3: The structure of the spacetime, with crossflowing null dust. EH is the
cvent horizon and CH is the Cauchy horizon. The lines u = ug and v = vy at which
the fluxes are switched on are also shown.

for a radial null geodesic in the Vaidya spacetime. A first integral of the geodesic

equations is

dr_f 1 2m(v) €2
where m(v) is given by (3.18). This has the asymptotic solution
= 0 Y —pt] _ a1
Tlycuy = 75 + oy s 1)(h,v) 1+ (p— 1))+ ] (3.34)

as v — co. Now to determine F'(ug, v) we substitute (3.34) into the constraint (3.30)

to obtain (as v — o0)
(InF), >~ —«;, (3.35)
which implies that
F(up,v) ~ rie™"v . (3.36)

Along the characteristic line v = vp, the only remaining free datum is the radius of

the two-sphere which must satisfy
(7‘2).uu = -2Lout(u) . (337)
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The behaviour of L, («) is not important so we simply assume that it is analytic

in a neighbourhood of4 uy.

For a given Loy (u) equations (3.32) and (3.34)-(3.37) complete the specifica-
tion of the characteristic initial data. We can now proceed to tind an approximate

solution to the field equations.

It is crucial to obtain a serviceable approximation to the function F(u, )

near to the Cauchy horizon, to this end we formally integrate (3.29) to

F=rigi(u)g(e)exp l/‘/ .(lu'(ll" F -
2 Juotro (",)')

The functions gy (u) and gu(¢) are determined by the initial data along the null rayvs

v = vy and u = uy. With the parametrization of the null coordinates defined by

(332) we set !]](ll) = 1 and !I‘_’( ) = 75,

In order to proceed, we must estimate the behavior of the integral in (3.38).
It 1s expected that thi major contribution to this integral should come from near
to the Cauchy horizon since ¢ = oc there. However, at least initially, we expect
r(u,v) to be a well Lehaved function with the slow contraction of ingoing unll rays
governed primarily by the outflux from the collapsing star. Thus we conclude that

a good approximation to this metric coefficient is

F o~y e e e? o (3.39)
where
o ,.‘2 _ 3(,2 )
Flu)= ™" N e | (0 — uy) (3.40)
28,1

near to v = oc.
With this ausatz we can rewrite the constraints (3.30) and (3.31) as

("2).1111 - -F.u(rz).u = —2[40”!(") . (311}

("2).mv + #y ("2).1' = _2Lil|(") - (3’2}
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According to (3.39) we see that F(u. ) goes to zero very rapidly near to the Cauchy

horizon. Equation (3.28) can therefore be approximated by
(r*) wr = 0 (3.43)

which gives the solution 1? o>~ R, () + R, (u). Substituting this into (3.41) and
(3.42), and using the huninosity function defined in (3.13) we obtain the approximate

solution

2 > 2“,’ —p41 u F u —F" ” " ’
Pt st 2 e /e Low(u")du"| du’ + ... (3.44)
WP — o uq

Provided we limit our analysis to small (v — uy) the above approximation for F(u, v)
should be sufficient. It is worthwhile to notice that it can be separated into a function
of « times a function of . In particular by rescaling the coordinates we could make

F constant on the Cauchy horizon.

It should also be noted that

" b
/('A
Jugp .

when u — uy is small. Thus as stated above the contraction of the ingoing lightrays

/’""-P'Lmn(u")(lu"] du' ~ /" [/" Loul(u")(lu"] du’ + ... (3.43)

gy

ncar the Cauchy horizon is governed primarily by the outflux from the star.

3.4.1 The mass function

For a sphierically symimetrie system it is possible to introduce a geometrically defined

mass function mi (") via the gradient of the area of the two spheres:

S . (3.46)

where Voindicates the four dimensional covariant derivative. At infinity it cor-

responds to the ADM mass (sce for example page 293 of {10]). Furthermore,
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it is equivalent to Hawking's quasi-local mass [53]. It also acquires operational
meaning in the spherically svimetric case since it determines the Weyl curvature

[Us| = (rm = 2/r) /.

Using (3.28), (3.31) and (3.46) it is easy to show that the mass function
m(ax?®) satisfies

. . 2 P N e LTS
m, = -Lm(;)F(" ).u ~ I("\xl) ¢ ./ L(,,,,(u)c'_'r(]ll ) (3‘47)

r

Thus the mass in the crossiow region (v > ug and ¢ > 1)
ki —p K . - .
miu.e) o~ 7-(1',1;,-1‘) Pemat /L‘,,,,w’)v Fdu , (3.-48)
L) .
inflates to infinity exponentially in advanced time ¢, This is the result obtained by

Poisson and Isracl (equation (4.17) in [18]).

3.5 The strength of the mass inflation singular-

ity

The strength of the mass-inflation singularity is best discussed in terms of a sunple
model of a black hole interior considered by Ori [19]. He replaced the continnous
outflux by a delta function source at ¢ = w,. This has the advantage that the
spacetime continues to be deseribed by an ingoing Vaidya solution for u > gy, In
this region the mass function does not approach a finite asymptotic value, rather it

inflates to infinity on the Cauchy horizon.

Writing Lou(u) = a é(u — ug) in {3.44) and (3.48) the line element of Ori’s

solution 1s
. 2ri0t ey >
ds? ~ — -,—————(111,(1'1; + 1r2d0)? (3.49)
,
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where
e 4 (K 0) TP — 2a(u — uy). (3.50)
The mass function (3.48) is

m(r) o~ il (F0)7Pe™" L (3.51)

il

for u > wuy, in complete agreement with [19).

Although there is a scalar curvature singularity in this model at the Cauchy
horizon, Ori suggested that the tidal distortion of extended objects approaching the
stugularity is physically more relevant as a means of determining the strength of
the singularity. Thus a singularity is weak (according to Ori) if an extended object

nudergoes only finite tidal distortion all the way up to the singularity.

The tidal forces experienced by an observer are proportional to the projected
compornents of curvature in an orthonormal frame {ef,,} parallel propagated along
his path (see for example [21] page 860). Choosing u® = €y = (u.?,0,0) as the

timelike vector, we have

2F
—uar=1. (3.52)

!
where a dot represents diferentiation with respect to the observers proper time 7.

The geodesic equations and tais first integral imply that
. DRSL4 -
>~ k() as © — oc ., (3.53)

which is casily integrated. If we choose 7 = 0 on the Cauchy horizon the relation

hetween it and tlse advanced time is
T o~ const X ¢~ ™" as v — o< . (3.54)

Assuming that internal stresses of the body can be neglected to a first approximation,

the tidal distortion is given by twice integrating the projected curvature. From

30



equation (3.23) it is casy to see that the leading terms in the tidal forees are

l-m ' SRS — o
—.—.(,Q(r)' ~ w7 (N )77 (3.55)

R~

)2
Integrating this function twice with respect to 7 gives a bounded quantiy as 7 — (),

indicating that the singularity is weak according to the definition above,

In fact using 7 as a coordinate the metric can be recast in the form

Y '21‘,("F vy
ds® >~ ————dudr + r=d)- (3.56)
,
where
Y " 24
N mnu(u,r)]"'*' — 2a{u — uy) . (3.57)

~{

s the metric and its inverse are hounded at the Cauchy horizon and Vv =4 is non-
zero there. It s this fact that led Ori to suggest that spacetime might be continued

beyoud the mass-inflation singularity [19).

3.6 Conclusion

In this chapter we have presented a detailed analysis of the Canchy horizon instabil-
ity for Reissner-Nordstrém black holes. In the test field approximation. where a null
dust was used to model perturbations on the fixed backgronnd. it was shown that
the Cauchy horizon is unstable due to an infinite gravitational blueshift of mfalling
radiation. This was first pointed ont by Penrose [15] some twenty five years ago,

and linearized perturbations have been analysed by many anthors [16].

An approximate solution to the Einstein field equations coupled to eross-
flowing null dust was also presceuted. As pointed out by Poisson and Israel [18] it

indicates that the mass function diverges exponentially in external advanced time,
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whircli is infinite on the Cancliy horizon. Unlike the Hiscock model [17]. where no
scalar curvature diverges. the presence of a continuous outflux Ly, (L) means that
the Kretschmann invariant diverges like the locally measured energy density

Loy (u)Lin(v)

3
Ty

R g R~ 1620w F ) (3.58)

As pointed out by Ori [19]. the presence of the outflux from the star does not enhance
the singularity enongh to cause infinite tidal distortion of an observer reaching the
Cauchy horizon. Ori’s conclusion that spacetiine can perhaps be continued beyvond
the mass-inflation singularity has srirred some debate [33. 32]. In any case it is
difficult 1o ~ce how the infinite -urvature might be contained in a thin layer at the

Cauchy horizon followed by a region of bounded curvature.

The discussion in this chapter has been limited to spherical svmmetry. Pois-
sonand Isracl [18] argued that the presence of asphericities should not significantly
change the mass-inflation seenario. Indeed. asvmptotic and perturbative analy-
ses [19] of the singularity inside more realistic black holes suggest that this should

be the case. Further investigation of aspherical models of black hole interiors is cur-

rently under way [36]. and a progress report on this work is presented in chapter 7.
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CHAPTER 4

Quantum stress-energy tensor in linearised

gravity

The general problem of caleulating the stress-energy tensor for quantum fiells in
a curved background is immensely difficult. Unless the spacetime contains a high
degree of symmetry it is usually impossible to obtain exact results [45]0 In this
chapter we present a derivation of an approximate stress-cnergy tensor for a sealar
field in a nearly flat background and in any confornmally related spacetime, We
will use these results in the next chapter to investigate guantuin effects near mass-

inflation singularities.

AMuch work has been done in the past along these lines [57]0 Iu fact the result
obtained here has already been derived by Horowitz, [41] using a very ditferent ap-
proach. He starts from an axiomatic standpoint . listing a nnmber of hasic properties
which any caudidate for the stress-energy tensor of a quantum field should satisfy.
The axioms are those suggested by Wald [47]. For weak gravitational fields he then
invokes some general properties of Poincard invariant distributions in Minkowski
space which single out a nnigque candidate for the linearised stress-energy tensor of
an arbitrary quantumn field. Later Hartle and Horowitz [50] caleulated the lead-
g quantum corrections fo the gravitational actjon coupled to N scalar fields. and

argued that it was a candidate for a semi-classical theory to gravity.
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In the cosmological setting. it is now well known that the stress-energy ten-
sor for a conformally coupled field can be obtained from the conservation law and
the trace anomaly alone in a conformally flat geomnetry [45]. However the early uni-
verse probably was not exactly isotropic and homogeneous Therefore many authors
have attempted to invoke quantum cffects to damp out anisotropies and inhomo-
geneities [61]. Most of this work is limited to the case of small anisotropies [58],
althongh an exeeption is the work of Parker and Hu [G0], who used a combina-
tion of analytic and numerical methods to analyse more general anisotropies. The
techniques nsed to perform these caleulations vary greatly. from adiabatic approx-
itnations [GO} to perturbatively evaluating the modes [62] to the use of functional
wethods [59]. The most efficient of the approaches seems to be that of Hartle and
Hu [59]. based on the effective action and background field method. Unfortunately.
there is a shortcoming. The usual effective action generates matrix elements between
the e and out states, and thus gives complex results in general. Even more frustrat-
ing is that this approach generates results which are acausal. To evaluate a matrix
clement at a given spacetime point requires performing an integral over the causal
future and past of the point of interest. This is particularly disturbing when one
wishes to consider tlie backreaction of the quantum fields on the geometry, meaning
that in-ont matrix elements do not lend themselves to straightforward interpreta-
tion. It would therefore seem preferable to use a formalism with the advantages of
the standard effective action, but which would generate expectation values which

are physically relevant.

Such a formalismy does in fact exist. It was developed by Schwinger [63],
Keldysh [64] and others. Its adaptation to eured spacetime was undertaken by

Jordan [65] who showed that it generates real and causal results to two loop order.



Further usc has been made of it by Calzetta and Hu [66] to study anisot ropy dis-
sipation in the ecarly universe. Their results are in gualitative agreement with the
earlier investigations. The curved spacetime formalism has been furthe: . coioped

by Paz [67].

Since this method is not in widespread use at the present tins section 4.1 is
devoted to an exposition for flat space ficld theories. The presentatic o ciosely follows
that of Calzetta and Hu [66]. In section 4.2 the formalism is applied to calculate
the in-in effective action for a scalar field in the presence of a weak gravitational
ficld. Divergences whichh arise are controlled using the standard methods of dimen-
sional regularization [68]. and the renormalization procedure is discussed in section
4.3. Finally we obtain the in-in expectation value of the renormalized st Iess-energy
tensor for a scalar field. The iu-state is the vacuum associated with the flat space
background field theory. The result for conformally related spacetimes is then casily
obtained. Campos and Verdaguer [69] have independently derived the same result
and applied it to discuss quantum effeets in the spacetime of a cosmic string. A

brief discussion . " the range of validity of the results is given in the conclusion.

4.1 Closed-time-path functional formalism

As mentioned in the introduction there exists a fanctional formalism which can
be used to caleulate in-in expectation values. Since it is not, as yet, a standard
rechmique we will summarize it in this section. The presentation follows elosely

Calzetta and Hu [66] with some help from Ramond [70).

Cousider an interacting scalar ficld theory in flat space described by the

1]
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action
1 1 1 2.2 4
S=—(=9,0M0+ =" +V(0)). (4.1)
2 2
where we have used the notation {...) == f d*r. Let us suppose that the interaction
1s adiabatically turned off in the asymptotic past and future. so that the field the-
ory may be regarded as free in these regions. The vacuum to vacuum persistence

amplitude is defined as
(outliny , := Ml = /'D[o] exp [(S, + (J&))] . (4.2)

where J() 1s an arbitrary c-ummber source. The boundary conditions in the path
integral have heen made explicit by the inclusion of an /e term in the action, as
indicated by the subseript ¢. The out vacuum, |out). and the in vacuum. [in),
coincide with the free field vacua in the asymptotic regions where the interactions

are turned off. In particular the Heisenberg states evolve in time according to
H
li10) 44y = Texp [I/ (If’/(l"x.](x.,t')o(x.t")] [n) (4.3)
-0

where T means temporal ordering. The vacuum persistence amplitude therefore

generates time-ordered matrix elements between the in and out states:

& .
T [y .. ole ) lin) = (=i)" izl 4.4
(ot Tletrn) . oteallin) = (=) g e ()
Now cousider the classical field
&Z|J
(:)(.l(,l') = —6%—] . (4.5)
The in-out effective action is the Legendre transform of Z.)
Cloa] = Z[1] = (Jo) . (4.6)
where we have now assumed that (4.3) is invertible as
8T [6q] -~
J(r) = ———==, 4.
(.r) Fon (4.7)



I'oa] is an action which gives (4.7) as the effective cquations governing the evolution

of 0. It entails all the quantum corrections to the field theory (4.1).

We wish to construet the functional which generates expectation values with
respect to |/n) rather than matrix elements. This formalisim has been developed
Ly Kektysh [63] and Schwinger [64]. Introduce two sources J*(r) and J=(r) and
consider the quantity

PREAVAAY =g-(in| in),, . (4.8)
Instead of letting the én vacuum evolve only in the presence of a single source and
comparing the result with the out vacuum in the future, one considers the in vacuum
evolving independently in the presence of two different sources and compares the

results some time in the future. we may rewrite (4.8) as

g+ - . hH r .
e FTITE /'D[L'] (¢} T exp [—i/ dt /:l"xJ" r,’:] |4}
~ . ! |
x (| T exp [i / dt /(l“xJ'+ r.")] [ire) | (-1.9)

where T is anti-temporal ordering, and |¢*) is a complete orthonormal basis at 1.
It is now ecasy to see that Z[J*. J7] generates expectation values such as.
Sntm izl g7
Oy T (e ()L e ()
= (in] T{o(r) ... olr, NT {ol) o oolal)] Jin) (1.10)

(_I')Il—'”l

This generating functional also has a path integral representation

PRV / De* Do exp [i( S [o¥] + (Tret) —Sife] - (rao7) )] -
(4.11)
The boundary conditions for this path integral are manifest by the explicit identifi-

cation of S, [o*] with (4.1) and

] 1 7] . _ . ’ LS
S/ |eo7] = —-<§I/""0;,o_0",o_ + Q('”- +e)(om )+ Ve )> . (14.12)
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That is the path integral is over all ficlds ¢ which are F-frequency in the infinite

past (t — —>2) and which coincide at t = ¢,

We can now construct the in-in effective action by analogy with (4.6). Clas-

sical fields are defined by

‘ 6Z[J+,J7] o 6Z[J*,J7]
oh(r) = 7 CGalr)= i e (4.13)
If J* = J- = .J then ¢} = ¢ = ¢@q is the expectation value of the Heisenberg

ficld with respect to the state which evolved from the in state in the presence of the

source J.o Assuming that (4.13) is invertible define the in-in effective action by

Plod-on) = Z[T*. ) = (Jrof) + (Je5) - (4.14)

The equations of motion for ¢ are therefore

oT[oh. o -
__[_L'i___‘_L] =F.J*. (4.15)
AO('I
Jordan [65] has shown that these equations are both real and causal to two loop
order. In particular we recover the equation of motion for the expectation value

VARAN S

&+ = (in]olx) [in) = ou(x) (4.16)

Jr=d-=0
when JY =07 = 0 in (4.15).

As usual exact calculations of the effective action are generally impossible,
s0 it is important that the usual perturbative and background field methods apply

here. It must simply be kept in mind that the fields 0% and ¢~ are linked by common
pl ) A

boundary conditions on t =1t,.

For a free field theory [V = 0 in (4.1)] the path integral becomes Gaussian

and can be performed using the standard techniques [70]:

HEPTIT) —exp [,.% <_] G J"'> ,.:] ) (4.17)
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Here we have introduced the notation J = (J*. —=.J7), (.. )" means transpose and
G(x.2’) is a matrix-valued kernel with eatries G4, (. 2") and G__(x.") which are
symmetric and Gy _ (o, 2') = G_, (' ). This kernel is determined by the boundary
conditions on the classical fields (4.13) which were stated following equation (4.12).

Notice that &, = (0F.67) satisties the equation of motion
L®=J (-1.18)

where L is the diagonal operator
O; — m? + ie 0 ,

L = . (-1.19)

0 — (O — m* — ie)
Oy 1s the Hat space D'Alembertian. The solution which satisfies the boundary
conditions - that & (o71) contains only negative (positive) frequencies as # — —ac

and that off — o and 9,0y — 9,07 ast — t;  is sinply

d! = <GJ"'>JJ (-1.20)
where
, FAVTIEE VAN
G(r,a0") = A- N ) (-1.21)
B AY))
The Feynman. Dyson aud positive and negative frequency Wightman functions are
(l“p e 9 . A
FAYTIE— PEOR 4 — ie) (4.22)
(1“ 1 u 2 oy | DX
Ly = — /( )“ I 24 m?+e) (14.23)
(4
At = 27 (-;w APTA(E + )0 -V (4.24)
l”
A~ = -277;/(_'27’)1 b2+ )" (4.25)

For interacting fields we can adopt the background field method. In particular

the one-loop cffective action can be obtained by expanding about some elassical field
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configuration and using the saddle point approximation to obtain
i -
Tt o) = S[ef] - Sleg] — 5 ndet L r (4.26)

The operator L is given by
)| A

&(S.[o*] = Scle])
5 Db Db "

La, = (4.27)

where a,b € {+.—}. In general. care must be taken to correctly incorporate the

boundary conditions following (4.19).

The generalization to curved backgrounds follows that of the in-out approach.
The effective action is a functional of the metric e and the matter fields ¢. In
this case we consider the gravitational and matter fields to evolve in the presence
of two independent sources as in the flat space case, thus T' = Tg*. ¢+ ¢97.07].
The bonudary conditions on the background fields are the same as in flat space,
although oo mnst deal with the decomposition into positive and negative frequency
modes with great care. In general, there may exist no unique decomposition of this
kind [43]. The in-in expectation value of the stress tensor is obtained by varyving
with respect to gFand then setting 9h = g and ot =67

8Tyt 0 g™, 0]
ogt,

(i) T |in) = 2
g:-u'—-g;u:yuv
¢o+=d)" =¢

This technigue will now be applied to a scalar field in both nearly flat, and

nearly conformally flat spacetime. Both of these cases allow unambiguous imposition

of the boundary conditions since a global momentum representation of the fields

exists on the background (conformally) flat spacetimes. This defines the usual flat

space vacuum as the in state. It also singles out the conformal vacuum in the

cosmological case [45, 46].
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4.2 Effective action

In this section we use the CTP formalism to obtain an expression for the expectation
value of the renormalised effective action in a nearly flat spacetime.
We begin with a spacetime which can be naturally separated into a flat picce
and something which we will assume is small:
2 4 .
ds® = gaada®da? = (1,4 + Yoz )dar"dr?, (1.29)
Ultimately we want to calculate the renormalised stress-energy tensor to linear order
I 743 for a scalar field on this background. The effective action must therefore be
calculated to second order. since a variation (necessary to obtain the stress tensor)

will reduce the order by one.

The action for a massless sealar field is written

1 1 , , - .
S; = -3(.(/"'"V“(1)V_,1(;) + ENRGT). (1.30)
where the notation is now (...) = [d' /G (...). When there is more than one

variable we will indicate this by adding subseripts to the closing bracket. Integrating,

by parts. and assmning that surface terms can be discarded, this can be rewritten

as
1, o .
Sy = 2(000 - £R6). (131)
where O = ¢V, V4. Now using the fact that
1 1, 1
= 149+ 9" = 77"+ .. 1.32
VvV + 57 + g g7 + ( )
gn;i — ,Inﬁ _ ﬁ"u/'i + .,‘nn,_/a;'i + ... (433)
we can write
DCJ — Df ¢ _ (’/""’0,.0;1 + 7'/’0/,)(;) + (0” [F/”nﬂ/”/’aﬂ]
1 1t/ 1 2 (7%} l 3 : <
—4—[60( Tpv I, ) + —2'011( ) )]/, 0/} - 5(011 I) 1 ! 0;‘1)(,/1 + ... (4"4)
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Here Op = 90,04, 7 = 5", and a vector 77 = 9,47 — 17°78,~ has been intro-

duced.
Varying the action (4.31) with respect to ¢ gives the wave equation for ¢
O¢ — ERG = 0, (4.33)
which can casily be expanded in powers of 5,43. The result is
Oro+ (V4 v@ 4 e =0, (4.36)

where

"(H)z D(")—E_R("). (437)

D) s the contribution (4.34) with *#" powers of 4 and R is the corresponding

term in the expansion of the Ricei scalar.

The one loop in-in effective action is given formally by (4.26) as

I'= -—%lu det(L™1) (4.38)
where
Oy — &Ry + e 0
L= (+) — LRy + o | ) (4.39)
0 —(B) — &R~y ~ i)

Iu particular denoting L™! by G we have
LG = é(a — 2a")I (4.40)

where Tis the 2 x 2 unit matrix. In the absence of any gravitational perturbation

G = G" given by (4.21)-(4.25).

The idea is to perturbatively evaluate G for the operator L in (4.39) using

the flat space counterpart as a zeroth order approximation. In this way we also have
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a clear handle on the quantum state for which we are evaluating expectation values.
Write
L=LW4yvWOovyv>d,y (-1.41)

using notation such that the diagonal matrices V™) contain all terms of order n in
12, and L is the corresponding flat space operator (4.19) with m = 0. This allows
us to formally write the solution to (4.40) as

G = G'-GYVI v 4 @G

= G'-G(V VR 4 )G+ GVING'"VIIG + L (442)

Using the operator identity det M = exp[Trin M] we can rewrite (1.38) as
]
I' = ——;)—TrlnG . (41.-13)
Inserting (4.42) and further expanding the result gives

r = éTr[V_‘F”A,.-+Vf)A,,-]-&Tr[VL”A,.-VL”A,.-] (1.44)

; .
—;Tr[V,‘,_”A*V_(_”A_] + ( terms which will not contribute to 8/4gt )

It is important to remember that 4, and 5 should not be put equal until after the

calculation is complete and the variation has been taken.

Expression (4.44) contains divergent terms which must be regularized. 1In
this chapter we use dimensional regularisation to carry this out. First the geonietry
and field theory are continued to n dimensions where the above expressions are
finite. Then expanding the results about four dimensions we find a pole at n = 4.
To cancel this divergence we add a counterterm comprising an integral of a local
polynomial of curvature. The coefficients in this polynomial also have poles at n = 4

with residues that exactly cancel the divergences.
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Beginning with the terms whick sve linear in 4, insert the flat space Feynmann

. . . Co met ) . .
Green function Ay (4.22) into (/255 VY A p+ VI A ], We then obtain expres-
sions proportioual to fd"p p.p(p* —i€)™", fed"p p(p® —i€) ! and [d"p (p2 — €)™
These quantities vanish identically when they are regularised [68] so that the ef-

fective action contains no contributions from these tadpole graphs. We will now

consider each of the remaining termns in turn.

The ++ graph
The first non-trivial teri -—-(i/-l)Tr[VL“A,:VL‘)Al.-] 1s the same as for the in-out
formalism. The evaluation proceeds along the lines described by Hartle and Hu [59).

Denoting 1 = —(1'/4)Tr[Vi”A,»VL”A,.-] we first expaund this to nine terms

whicl can he treated separately. Thus

1—;—3;"17; (4.45)
where

Ty = (34(0)0,0, D ple ') 487 ()L 0y Ap(a.) Yoo o, (4.46)
Ty = (5(0)0, Dp(a 2 ) 18170 Dp(a' ) Y. (4.47)
Ty = &(R{"(r) Ape ')Ri”(::-’m,.-(.r'. ") Vot 2 (4.48)
Ti = (34(0)80,00 Apa,a’) 75 ()l Dla’ ) Y po (4.49)
i = &4(20)0,0, Ap(a, ') RUN!) Ap(a', 2) Yo o, (4.50)
Ts = (2500, Ap(a. ") 3322 )L D (' ) Yo o, (4.51)
T: = &350 Ap(ae, )RV (") A p(a’ 1) Yo o, (4.52)
Lo = ER{() Ap(ar,a’) 125208 A p(a’ ) Yoo s (4.53)
Ty = &R Dp(a )15 Dp(a’ o) Yo s (4.54)
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Since all of these integrals are evaluated in the same manner. 1 will stmply
demonstrate the method for T and state the result at the end. Using the tlat space

expression for Ap(r.a’) we have

T o= ()T Y () e e (-1.50)
" rde s RV S B
())(J ) _/(( P (().—(; enPaklr-arh {1'1' s [(P- _ ’()(q_ . '()} 1}1.50)

Substituting ¢ = p — ¢ and relabelling as ¢ we get

h

(2) d"q d"p o s -l

T (. 2"y = - /(._")"f’"'( ) /( o) {peps—p. i} [(l" =1 )[p —q]" - “)]
(-1.57)

The integrals over p can now be done (using the standard results [GS] which are

sutnmarized in appendix B) and reducing (4.57) to

~ (9 ]”(1 . ' . 1 n l
T(-_ .‘~‘_ nl.(.l-.r ) ) » 20 . — I .
vy (2 A ),. e i(n —1) it Al —1) 2 l

(-1.08)
It is of crucial importance that one first expands all the guantities about 0 = -
before taking the limit, as will now become apparent. Ahout n = 4
I "= —o4m)? [ ! + —e(1) + ;111(112 ~ )+ O(n — ) (-1.59)
n—4 2 2
where ¢(a) = d/de(InT(r)). Thus
T ") = i = {.l'/,,,in + 0,,("),4} (—-—1—~—h(.r =)+ H (e~ .r')\}
3(47)2 L2 n—4 /
+1§T“%"7‘; (=0 + 0.0a) b — 4" (1.64)
where
HY(r - 2a') = %./(—g—;:_—()l-;("""“""l) {'l/l'(l) + In(g® — i()} . (1.61)

The operator acting on the second Dirac delta funetion in (4.60) arose from a term

of O(n—4) multiplying a pole term in ;. It is such contributions to [ which COUSpIre



to give the trace anomaly for conformally coupled massless fields. Finally we can

combine these results as

- : r 1 ‘ ’
7, = i(:s(-mzr'<~,:(y-)—,;1(.,-'){'l%,,u;,:],+auaj]( 6(1‘—1‘)+H+(r—x))

n—4
+(—1; [-'/u."lDf + aua.'i] o(r — J»") }> (4.62)

rr'

At this stage the pole term. proportional to (n — 4)7 ! is already apparent.

The same procedure can be used to isolate the divergences in the other terms.

After a rather long caleulation one obtains

. _,,<[ (45 ()3 )T O 4 42 (1000 050,80, — 245 (x) ()9, 0a Dy )

.ot 1 8 . "y +/ .. g
h ED(JJ )] {(II - -l E—j) ‘S(’ - )+H (41 - )}>.‘r.r'

2 (¢ ] L1
+1(';z‘-'(.'—£ 3G)<D(""'){11—46('_"‘”1 1)}>n

2 — 60& [ '
—(2880=-)" ’(—I—ITSQH<D(.I'.J' Yy &l — )>

(1.63)

where a = (192077)7 1 all the operators (e.g. Oy, 8,. ... ) act only on the variable

@ and

D(aw. 2"y = (',:"(.r) — 1/”"‘,+(.r))( o a') — I,"”]“,_,,(.r'))O,,c'),,('),,(?(7 . (4.64)

s unwicldy expression can be made a little more manageable by inserting the
appropriate curvatures corres;sonding to the operators in (4.63). Using the results
i appeudix B we have

20, 2 £ 1] _ (11-608
+ (R, (10(,, — )= {3 ¢ 36} - 1‘2(28807r2))

—-— -y 1 1 ’ =4
+ 15 {% —¢? —G} <R.,(.‘I')H+(.‘1‘ — )Ry ))”, ] (4.65)



where the svmbol = indicates that the result only holds to second order in Yo
For a conformally coupled massless ficld the non-loeal contribution involving the
Ricei scalar vaunishes, since £/3 — & = 1/36 in this case. The residue of the pole
at (n — 4)7! also becomes proportional simply to the square of the Weyl tensor as
shown in [45. 39]. It is also noteworthy that there is no divergence proportional
to the Gauss-Bonnet Lagrangian. as would generally be expected [39]. because it

vanishes to second order in curvature.

The + graph

The new term which is not present in the in-out approach is the +  graph. I

1> this term which makes the equations real and causal [65]. Onece again we will

demonstrate the evaluation of this graph by cousidering ouly oue contribution. The

others follow in a similar manner. Write
/' (1 ] . ) .
J o= -5 [yt vta (')
(I"p d"q == ,,/ o
= </ ,) )" .)ﬁ)" (l »X ) { ( ")’Iu’ld + "F»f (.l')l],. + {1‘)( 4 |}

x {—’,'_'"(.:")p,,/),, + i',-'f(.l")/;,, + & ;} L’)(p,q)> (-1.66)

where O(p.q) = 8(g2 (=" )0(2)0(p"). This expands o nine terms as in the + 4

Ciase,

As an example consider the sammple terim

) l" I" 4 4 ! .-
I, = £_</(;_(;" /’(( I’ PRI A IE ;R*»(‘,.)”H(_l. )C)(I'ﬂ ,/)> . (1.G7)

._“

Introducing the new variable j) = ¢ — p and then relabelling it as p

Ill ,,'
h=¢ </(2 I)I" TIROR )/(( Oy - ’l-,’l)>< ey
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To carry out the integration over g it is convenient to consider two cases: (i) The
vector p spacelike and (ii) g tinelike. The result Las a step discontinuity at p null

s that this case need not be considered.

{1} p spacelike: Choose the axes in g-space such that p% = 0. The integrand then

contains the product 8(—¢%)0(¢") and therefore the iutegral over ¢ is identically zero.

(i1) p-timelike: Choosing the rest frame of p to define the ¢¥ axis, we have p =

(17.0.0,0). Now introducing hyperspherical coordinates on the spatial sections

" , "=240"-1diq|dq°
[Lrog—yy = [T o, g (a0
J(27) ) (27)"
Using the identity
2 2 é(q” +1a)) -
s(lal* = ("))e(¢") = 7, (4.70)
fa 2|q|

the integration over ¢V is casily performed to give
doe ! w—3 0\2 5,0 0
[ [ Alallal"= ) + 2 1aDe(—1° - lal)
_ (7‘.)11—-1/‘_’ |1)0ln—~'1
C(n —1/7H)(2=x) 272

There are no poles when this expression is expanded about n = 4. Therefore

0(—p°) . (4.71)

£
g = -
LT A(2n)8

>
)

i ) , >
/ D pime=s g () R_()0(—p2)0(—p0) . (1.

(27‘—)11

=1
N

The other terms can be evalnated in a similar manuer (using the results in ap-

pendix B) and alwayvs producing finite terms as n — 4. The re-alt is

I3 —a{CE L (VH (- O

ra

2 & > 1 . ’ . -
+ T {—; - & - 3_6} <R+(.r)H (¥ —2")R_(x )>Tr, , {4.73)
where we have introduced the notation
1" ) , o
H(r — 2y =27 [ eimte=9(_p2)0(—1) . (4.74)

(‘27‘-)11
For a conformally coupled scalar field the term involving the Ricci scalar is not

present. just as the corresponding term disappeared for the ++ graph.
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4.3 Renormalization of the effective action

The effective action, valid to second order in the perturbation from fat space, 18
I'=1T1+.J where T and J are given by (1.65) and (4.73) respectively. It contains
a pole at » = 4. In order to remove this we introduce a counterterm which is
constructed from a polynomial of curvature. It is a purely local quantity in which
the cocfficients are proportional to {(n — 4)~

o= S (A (B R ) 4 B (L) O

ot

where A, B and € are coctlicients chosen to exactly cancel the divergences in 1. Fhe

parameter A is arbitrary and has the dimensions of length. Examining (1.65) we

find that B = (19207?)7!, as determined previously by many authors [37. 39 D).
»

The coefficient C = —(872)"H{&/3 — €2 — 1/3G} depends on the curvatinre cou ling,
< 1 1

and vauishes for the conformal case.

As mentioned carlier the Ganss-Bonnet combination, which is multiplied by
A above. vanishes to second order in the perturbation. Thus it is not possible to
determine the value of A unless the perturbation expansion is carried to higher

order. Such a calculation is not done here,

Adding the countertermn S, to I' we obtain the renormalised effective action

which is free of divergences

Fn" é ”<C"T'"1’(J') H(-':\)('T - ')'.,) ("{:J_Ib( ) - C" f’b( r ) II ( r—.r )('““ h( Na )>

4
1(: {g - &% - } <I?+(1 ) ]l()‘)( =" YRV -~ RY ) H (e = 2"y 1Y (.r')>
11 = GOE 9, .
—TQ(_'BS_éaﬁ_Z)<R+(' )> (1/())
where
1 1" o Y L -
Hoy =3 (';"r{)ln Ot A = )] (1.77)
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Note that the arbitrariness of A has been used to absorh some local terms in C 5,5
The Ricei squared term st be treated with soine care however. since the non-local
contribution disappears in the € — 1/6 couformal coupling limit. I have therefore

chosen to keep this explicit i (4.76).

We can now proceed to evaluate the stress-energy tensor, remembering that

we must not set gt = g7 until after the variation.

4.4 The stress-energy tensor

In this section we show how to derive an expression for the stress tensor for a
massless scalar field which is valid to linear order in a perturbation from flat space.
The result obtained is in agreement with that derived by Horowitz [41] using only
the Wald axioms [47] and the Poincaré invariance of the flat background. Similar
results have also been obtained by Barvinsky and Vilkovisky within the framework

of their covariant perturbation formalisin [71].

For a conformally coupled fickd we use a result due to Page [72] to obtain the
stress tensor in a spacetime whiel is related to the nearly flat one by an arbitrary
cortformal transformation. This result has recently been derived independently by

Campos and Verdagner [G9].
Perturbations from flat space

Before obtaining the stress-energy tensor from the effective action {4.76) I wish to
clarifv the method used to obtain the variation of the non-local terms. In general

the exact nature of the distribution is reguired to determine hhow to vary a quantity

0



like

<I?’(.r)H\.r..:")R“(.r')> . (4.78)

r
In particular. one needs to know the explicit dependence on the metrie in the distri-
bution H(r..r') aud also its density weight. These details are nnnecessary in present
circumstances since the result has only been derived to secoud order. Thus, upon
variation, it produces a quantity valid onlyv through lincar order, while ambiguitios
arising from the density weight of the distribution arve entirely second order effects.
The linearized results of variations of the quantities of interest are given explicitly

m appendix B.

The stress tensor is given by the variation

(0|7 |0) SRR (1.79)
= /-—_’I4 h_’/..,f '14‘_‘_”;.' AT
explicitly
11 — 60
ojT )y = < AYTH (= > et ny LU
OToy = a(] A=), (288072
1 (e ., 1
—5m3 € g (=) .80
s,—'-'{: : 2c}< le=), G5
where = is now taken to mean equality to linear order. Here the tensors A% and
17 are the luearised variations of €2, and ? respectively:
.2 1
Aos = 3H..i SR+ 3l 401 (1.81)
]n,i = 21{.41;1 - 2’/4.,‘fo[? . ('1.82)
The distribution Hy is the same as that given by Horowitz [41]:
. I"q ll’(.l'—l"j 2 N 2 b Y L2 L0
H, = - [lu(q —t6) + Iu A+ 270 = p* )0 (~ ")
2n)
" : o ,
= - / q et [ln |2 A2 | + imt™ (q)] (1.53)
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where 87 (q) = —0(—q?) sgu(q") and the sccond term is obtained using the identity

In(g* A2 —2e) = ln |2 2| — iwh(—q*) [73].
1

Observe that choosing £ = 1/6 (corresponding to conformal coupling) and

taking the trace of (4.80) we obtain

(0|T,,"*|0) = (2880=2)"'0O,R (4.84)
which is the ouly part of the trace anomaly that survives to linear order [43].
Perturbations from conformally flat space

In the next chapter we will approximate a black hole interior by an inhomogeneous
and anisotropic cosmological model to investigate quantum cffects near to mass-
inflation singularities. In fact. it turns out that we can consider the deviations from
conformal flatness to be small. Therefore we now obtain the stress-energy tensor
for conformally coupled fields in a spacetime with small deviations from conformal

Hatness,
Cousilor a spacetime of the form
ds® = O ([1js + Yau] dr"da?) = Q%ds? . (4.85)

Applving Page’s result [72] for the conformal transformation of the stress-energy

tensor (6.33) 1o ((1.80) gives
OITPJ0) = a0 {<.-I“,,f1,\(.l' - .r')> -8 (T, Q) d}
1 )
- E(-2880n-)—‘1~,,. (4.86)
)

Ouly terms which contribute to linear order have been retained. and barred tensors

are evaluated in the nearly flat metrice ds°.

-1
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4.5 Conclusion

In this chapter the closed time path formalism[63]-{67] has been used to caleulaie
an expression for the renormalized stress-energy tensor of massless sealar tields to
linear order in perturbations from a flat background. This result is in agreement
with that derived by Horowitz [41] using very different methods. In particular it is
seen that the non-local term is given by an integral over a logarithmic form-factor.

The coordinate representation is not derived here.

In the special case of conformal coupling we conld use the result of Page [72]
to obtain an expression for the renormalized stress-energy tensor in the case of per-
turbations form conformal flatness, This result was recently derived independently

by Campos aud Verdaguer [69).

Although the validity of these expressions is elearly limited by the pequire-
ment that the perturbations should be sl a reminder of the more precise meaning,
of this statement is important. In obtain: b vesalits ((1.80) and (1.86) all terms
non-linear in ~ have been neglected. When e cereral formns of these terms are

investigated one finds that the requircinent o more correetly stated as
8 1 A
bwd ~ 2 1 RT
V\",>>(V,) . (‘18()

This condition is satisfied Ly the black hole interior near to the Canchy horizon as

we will see forthwitl,
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CHAPTER 5

Semi-classical effects in mass inflation

Classical models of generie black hole interiors [17]-[20]. [32]-[34] have made progress
in unravelling the nature of the internal geometry up to the onset of singular behav-
1or at the inner (Cauechy) horizon. At this lightlike hypersurface. which corresponds
to infinite external advanced time, the Weyl curvature scalar |W,] diverges exponen-
tially with advanced time. However, Ori [19] has pointed out that the divergence
is rather weak. in the sense that it is integrable. More preciscly, this means that
there exist coordinates in which the metrie and its inverse are bounded (and non-
zero) on the Cauchy horizon. The approximate solution (3.39). (3.40) and (3.44)
given in chapter 3 can be used to show this quite clearly. Using that advanced time
coordinate 17 = —¢™%" (which is closely related to the proper time along timelike
geodesies approaching the Cauchy horizon) the solution is

" . <t . . . . -
ds? =~ L grav +o2a0? (5.1)

e

17 g = A (=) - AU~ Uy)2. (5.

V]

)

where Vo— 07 on the Cauchy lhorizon. 4 and b are constants and the outflux of
stress-energy across the Canchy horizon has been taken as constant when U > Uy
and zero hefore U, Consequently, Ori has also speculated that spacetime can be
continued bevond the mass-inflation singularity [19, 20]. although it is far from clear
how the high (infinite) curvature would be confined to a thin layer at the Cauchy
Lorizon. In any case, this question is purely academic since quantum effects become

Important as curvatures rise. completely changing the nature of the spacetime.
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Although no satisfactory theory of quantum gravity is known vet, some ques-
tions can be addressed within the framework of semi-classical gravity., While curva-
tures are sub-Planckian it should be justifiable to treat spacetinie as a continuous
manifold and to ignore the luctunations of the gravitational field itself. One therefore
considers the effects of quantized matter fields by allowing the curvature to respond
to the expectation value of the quantum stress-cnergy tensor. Sinee gquantum mat-
ter may violate the energy conditions (necessary for the proof of the singularity
theorems [12]) the Lope is sometimes expresszed that curvature singularities may be

completely avoided in such a theory.

Deep inside a black hole, vacuum polarization and particle production uay
induce a tension along the evlinders » = constant and henee damp the classieal
rise of curvature. Thus the possibility of a self-reguiatory spacetime with bounded
curvature may exist [74. 5], On the other hand, it is entirely possible that the

seini-classical corrections will act to further destabilize the classical picture.

In this chapter we report on an attempt to estimate the influence of quantum
cffects on the mass inflation scenario; in particular, to examine whether vacuum
polarization and pair creation will act so as to damp the classical rise of curvature

and possibly it it to sub-Planck values.

Different ways in which the evolntion might be influenced by quantum effeets’
at the sena-classical level have bheen considered by Balbinot and Poisson [76]. The
essence of their analysis was to consider generalized Einsicin equations derived from
the action

L= 5(R+ aCrue) + Lot - (5.3)

where a’is some phenomenological coupling constant.  The Weyl squared contri-
(e .

bution was used to mimie vacuum polarization. The conelusion of their work is



that vacuun polarization can either damp or intensify the classical rise of curvature
depending on the sign of o in (5.3). It is remarkable that the results of their inves-
tigations are so closely aligned with the more detailed approach of [77]. In fact the
leading behavior is alinost identical in both cases; in the latter analysis, however,
the ambiguity derives from the regularization scale which enters the results in a

crucial nmanner.

There continues to be some debate abont the interpretation of semi-classical
pravity [78]. Most of the trouble originates from the fact that the effective equa-
tions are fourth order, unlike Einstein’s equations which are second order. so even
i regimes where quantum corrections are expected to be small one can obtain un-
physical solutions which indicate just the opposite. In order to avoid this problem
we adopt a viewpoint which has been advocated by Simon [40]. He suggests that
a self-consistent approach to semi-classical gravity only allows solutions which are
perturbative in fip as the derived equations are. He has also suggested a general
approach to ensuring that this he true (see section 2.4). A discussion of the semi-
classical equations. in the next section. shows that Simon’s prescription [40] for
solving them is equivalent to first estimating the renormalized stress-energy tensor
ou the classical background and then looking for perturbative corrections to the

metrie.

Section 5.2 therefore introduces a simple classical model of a spherical black
hole interior, due 1o Ori [19]. which appears to capture the essence of the physics
behind mass inflation.  Since this is an exact classical mass-inflation solution it
provides an excellent vehicle for the investigation of quantum effects. One obtains
qualitatively similar results using the Poisson-Israel scenario [18], which is outlined
in chapter 3. however the added complexity simply clouds the important issues. The

Ori model can be recast in a form which is conformal to a Kerr-Schild metric. In
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fact this spacetime is nearly conformally flat provided curvatures remain below the
Planck scale. allowing us to use the result of chapter 4 to approximate the quantum

stress-energy tensor in the Ori spacetime.

The stress-energy tensor for a conformally invariant massless scalar ficld con-
tains a non-local term, an integral over the past light-cone of the point where the
stress-energy 1s evaluated. This integral is evaluated in section 5.0, We then proceed
to find semi-classical corrections to the spacetime near to the Cauchy horizon. Un-
fortunately the regularization scale plavs a erucial role in the interpretation of the
results. In the conclusion arguments are presented which suggest that this renor-
malization ambiguity is of little importance and that semi-classical effects tend to
reinforce the classical singulavity up to the time when quantum gravitational degrees
of freedom become activated. Thus it seems that quantum gravity will he needed

to fully understand the final stages of gravitational collapse,

5.1 The semi-classical equations

In section 2.4 semi-classical gravity was discussed in some detail, It was explained
that this approximation to quantum gravity treats the spacetime as classical, that is
as a continuous pseudo-Ricmannian manifold. This metrie satisfies a set of effeetive
ficld equations

Gt = 87 [T + (in| T in)] (5.4)

where T2 is the stress-cnergy of classical matter and (in) T |tn) is the renormal-
ized stress-energy tensor of the quantum matter fields in the spacetime, (en) T, s fene)
includes contributions from all possible fields including the gravitons which are

treated as lincarized perturbations about the classical spacetime, lu general (En| Ty |in)



is calenlated using, the standard loop expansion of quantum field theory: one con-
structs an asviptotic series by expanding in powers of a small parameter h/L2
where Lois the radins of curvature of the background. In this chapter we counsider
cffective equations which are caleulated only to first order in this parameter. the so

called one-loop approximation. Thus we write
(in| Togliny = I {in) Ty lin) + O(R?) . (5.5)

Substituting, this into (5.4) the effective eguations are valid ouly through linear
orderin o Sinee these equations are constructed perturbatively (in powers of 1),
physically relevant solutions should also be analytic in i, To enforce this requirement
we adopt the self-consistent procedure advocated by Simon [40] in what follows (see

section2.4).
We write the spherically syimnetrie line element as
ds® = — fA2de? 4+ 2Adedr + +2d0? (5.6)

where f= 1 = 2m(r.e)/r+ /2 A = A(r.0) and dS¥2 is the line element on the
unit two sphere. The effective tield equations (5.4) and (5.5) can now be written as

a system of four coupled partial differential equations:

m' = dmxr* (T, =T) . (5.7)
o= dAwr? (T (5.8)
A .
f5 = 4= (2T, ~T). (5.9)
A2, (AN 1 o
—2a! {(—Tj—)} + (T) = (-47-’:—' — 6{-,—) +87(T—2P). (5.10)

Weuse a dot (7) to represent differentiation with respect to ¢ and a (') with respect

tor. Here T,y = T+ h(in|Toslin: . T = T." +T," and P = Ty® = To%. The



stress-energy of a classical. sphierically symmetrie electromagnetic ticld has already

heen implicitly included in the above equations.

In this chapter we continue to model the radiative tail of the gravitational

collapse using a lightlike intlux of particles. therefore

e = HO 0,0 (5.1)

dxr?
where L(¢) is given by the analysis of Price [23]. Multiplving (5.7) and (H.8)Y by h
we have the perturbative constraints (see section 2.4 for a detailed diseussion of this

approach)

2

him'y = OW7). (5.12)

hi) = h{L(e)A™") 4+ Oh?) . (5.13)
Bearing these two conditions in mind. (5.9) implies
hA') = O?). (5.1.1)

I general I (en| T, 5 [in) is coustrueted from the metric and its derivatives. Siimon's
presceription can now be applicd to equations (5.7)-(5.10) in order to ensure that
the solutions are analytic in h. Whenever h(m’) or h(A') appear in the one loop
renorimalized stress-cnergy tensor they should be set 1o zero for consistency. On the

other hand h(si) is replaced according to the rule (5.13).

In the present instance this means that the investigation of quantum effeets
ou mass-inflation can proceed by first obtaining a solution to the elassical Rinstein
field equations with null dust. then calculating the renormalized stress-energy tensor
on this background and finallv juserting it as a source in the one-loop equations
(5.7)-(5.10) to obtain semi-classical corrections to the metric. We now carry out

this procedure.
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5.2 The classical Ori model

Ori [19] hax introduced a particularly siiple model of a charged black hole interior
which seems to capture the essenee of the physies behind mass-intlation. The intlux
of gravitational waves is modelled by a radial stream of hghtlike particles. The
cutfow is treated schematically as a thin, transparent lightlike shell ¥ within and
parallel to the event horizon (Fig. 5.1). This idealization of the outflux reduces the
problem of finding a mass-intiation solution to matching two exact, charged Vaidya
solutions along the null hyvpersurface X0 A general approach to such problems has

been worked out by Barrabes and Israel [79).

The ntetrie g cach of the domeains 3o and YV, separated by M s the charged
+ . &

\aidva form for pare mflow:

() = deo(2dr — fodeyy+ 07dO7
ITH 2
o= 12 (5.15)
-, 2

The mass [0 (2 ) ] in cach region is a function of the advanced time onlyoand ¢ s
the constant charge i the black hole. We chioose the coordinate ¢ as the standand

advanced time at large radii owrside the black holes Tn particnlar. ¢ — ~ at future

pull infinity and on the Cauchy horizon (see Figo 5.1). In Vo we take the mass
function to approach the finite asvimptotic value gy, Thus the Canchy horizon is
- ) . o T . . rge
static and located at a constant radius ry = gy — \/711“, — ¢? in this region. The
advanced time parameters o, aud e_ arve unegual: they are related by noting, that
the area of two-spheres is coutinnous across the shelll Thus the equations of ¥ with

respect to the two abutting coordinate systeins are

fode, = f_de. =2dr  along ¥ (5.16)

&0)



Figure 5.1: Ori modei. Infalling radiation passes through a transparent, “outgoing”
lightlike shell € inside a charged spherical hole. EH is the event horizon, and CH
the Cauchy horizon.

The stress-cnergy tensor of the null dust in each of these regions is

L3 vy )
~(2) _ \U+
Tas' = 377 (Govs) (Osv1). (5.17)
Accordingly the only non-trivial Einstein equations are

dmi

= ()

do, LF)N(vy). (5.18)

The vector tangent to £
o« drg 2
ny=gr = (fi,l,0,0) , (5.19)
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i= lightlike tawd is therefore also normal to the shellY. The transparency of the
sheil finds mathematical expression as {77700 7] = 0 [79] where the square brackets
indicate the hunp across the shiell, exphicitdy

Lite) _Lte ) (5 00)
1z I:

Combining (5.18). (5.16) and (5.20) we can write

dr g, _ _I:z_ dm . (D.21)
di . ! dee

This is an equation for the interior mass function e, onee e (e ) s specitied. The

ansatz

m
m (e ) = my — —————— (gt Y Y

(1' —_ l )h'“

" (D22

reproduces the correct power-law devaxy dim fde < 0 " of the externally observed
eravitational wave Hhux (p=12 for quadrapole waves [23]). Here wg = (g - oYY g
is the surface gravity of the static portion of the Cauchy horizon and acis a dimen

sionless constant.,

Intearation of the foregoing, cquations to get an asviptotic (¢ -+ %) solu
tion is now straightiforward. Equation (5.16) vields

=1,y + “ )('f“l' ) e b [l “+ (Il - l)(l{"l'_ ) ! + .. l illi)ll;" M. ('—)2:{)

/n'.l-:l'n(ll —_

Substitutine this into equation (H.21) gives

dim, 1 ..
>~ Ky [] — plege ) 7+ .. ] , (H.21)
i
which has the solution
m(e_ ) >~ const x (bge_) Pttt (H.25)

Finally one uses (5.16) to obtain the relation between ey and ¢ as
— ¢, = const x expl—wge ). (5.26)
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It terns of o, the mass function therefore has the asyniptotic form
m (e, ) = mollnl(—rs/myjl P(=v,fmg)™! (vifiny —07). (5.27)

where we have set a dimensionless prefactor in (5.27) (depending on the luminosity

and initial deformation of the collapsing star) equal to umty.

We now have the exact mass-inflation solution in Vi, given by the Vaidya

geometry

ds® = dr (2dr — fodey) + r2dO7
1) ,2
foo= - (5.28)

where oy has the diverging form (5.27). It has a timelike singularity at 1 = 0 which
is intersected by aonll singnlarity along the Cauchy horizon at v = 0. The null
singnlarity is characterized by a divergence of the mass-function which is evident in

the Wevl curvature sealar (35.30).

A Vaidva geometry with metrie of the form (3.28) has the Ricel curvature

, 2 din c? - .
11’0.1 = - 3 (Onl'+)(0.1l‘+) + _1 -En.’ (0’29)
r?deg r
where oy = diag(—=1.—=1.1.1) and with /i, written simply as m from here on.

The sole non-vanishing Newman-Penrose component of the Weyvl curvature is

| 2 : -
-, = 3('””'0,:, = [m(ey) = A3 (5.30)

5.3 (U|T,;|U) in the Ori model

We aim to estimate the expectation value (U] T,3 [U) (in the Unruh state) of the
stress-cnergy for a conformally coupled massless field on the Vaidya background

(2.28) when the mass function has the classically diverging form (5.27).
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In general. finding (U} 75, 5 {U7) is a problem of notorions dithiculty [44, 16]. It
hecomes tractable in the present jnstance beeause of a number of special cireume

stances:

1. We are onlyv interested in the asyvmptotic form of (7] 75,5 [U7) near the Cauchy

horizon.

2. The singularity is relatively mild: the curvature is a diverging but iategrable

function of ¢, {19. 32].

3. The special form (5.27) of the mass function means that, of two terms contaian-
ing the same total manber of m-factors and e-derividives, the termn with the
smaller number of m-factors is dominswt: eol 0 >> oo /r?. (The ratio of
the two sides 1s “merely™ a logarithmice Tactor: however this factor doos Livome
infinite as ¢ — 07, and for ¢ = =10'" Planck times in a solar mass biack hole,

it has already grown to 1074 1)

This coujunction of circumstances permits us to treat the geometry as a linear
perturbation of conformally flat space. The ters lincar in derivatives of mi(e),
which we retain. actually dominate the neglected non-linear terms up to the time

when curvatures reach Planck values.

To nake this discussion more conerete, consider the space ds® which is con-

formally related to Ori's solution (5.28):

d5? = (-Iﬂ)— ds? =2 (i)s drde, — (-lﬂ)- foded 4+ r5dQ* . (H.31)
r r r

We will sometimes refer to this (and equivalently (5.34) below) as the conformel

metric, as opposed to the physical Vaidya metrie given by (5.28). It generates a

new Ricei curvature which is free of the strongly divergent tenms in (5.29), while
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the Weyl curvature is only wmltiplied by a factor (r/rg)” which is of order unity

in the neighborhood of the shell o0 In fact. noting that the curvature of the two
. - - 2

spheres is small on Planck seales we can approximate the line element r2d(? by a

cortesponding, flat metrie. This is made explicit via the coordinate transformation
&4 iy =g’ sind (5.32)

so thiat r2dO? = da? + dy?. In what follows it is also uscful to rescale the coordinate

r, so that it more nearly represents Planck scales. We set
5 2 o
=y ouwi=2earg/re ei=1,[r. (5.33)

where 1, is the Planck length, The conformal metrie now takes the Kerr-Schild (flat

plus lightlike) form

di7 = —dude + doe* + dy? + 2L(u. e)doe? . (5.34)
] . o " - -

L = —STI.' [u"m({') —€rguT — ("u"/-lr(,s] . (5.35)
o= (It (5.36)

Since m(e) is mmeh larger than |o] near the Cauchy horizon we we will approximate

heudm
’: —————

L(u.r . 3.37
(u.r) S (5.37)
The spacetime (5.31) is manifestly almost flat for [W,| < 5%
> 2mo 2 _
Ll = == 5 Lu ). (5.38)
reg g

Thus the approximation to the stress-energy tensor in a nearly conformally flat
spacetime should be valid also in the Ori background. This is indeed a surprising
fact since we are dealing with a region where effects of curvature are large. Therefore

it must be emphasized that the approximation scheme does break down as curvatures



approach Planck values. This is not a very severe limitation since non-perturbative
quantum gravitational effects will then be iportant, invalidating the whole senma-

classical analysis.

We can now adopt the in-vacuum expression ((£.86). This needs to he sup
plemented by a local. conserved tensor representing initial conditions appropriate
to the Unruli state for an evaporating black hole. Inside the holes this s just the
hightlike influx of negative energy that accompanies the thermal outflux to tin
ity [45. 46]. However. this remains negligible up to the moment when the elassical
curvature becomes Planckian i the black hole is larger than 100kg {32}, and it will
therefore be ignored. It s necessizs 2o pemember that our approximation is only
valid through hnear order in L{u. ) fuowever. Therefore

¢

. i) .
CTE Y m) I< Vol - /> s (e
(U T" () jU) =~ ,(I. ‘l AN =) _ ,.h.r“ N

S S (5.30)
G(2880x7)
. where
(I’(] vl a—a! B IR . . -
Hy(r —a')y= — Gy prate -ty [ln " A+ iz ('/)l . (5H.-10)

and the barred quantities are evalnated in the confonnal spacetitne (5.3:1). The
tensors A, and 1, are given by (4.81) and (-£.82) respectively, Yoo the Orlomaoddel
the Ricel scalar R = 0 so that the tensor 1, will give no contribution. "Fhus there

are only two terns to bhe evaluated using the curvatures of the conformal metrie.

5.4 Coordinate representation for H,(x — z')

For the problemn at hand it is possible to reduce the non-local term in (5.39) to a hine

integral along an ingoing and an outgoing null ray. The observation which allows us
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1o do this is that the carvature is “plane” syimmetrie with respect to r and y. Thus
woe can trivially integrate over these coordinates to produce only a two dimensional

integral. Write

I = (g YH (o = 2"),
1t ' I igla—a' 242 e ) =<
= - /rl".r gl )_/'(—;———1)7 ¢ ) [ln lg= A=) + =0 (q)] (9.41)

where ¢ is i sealar test funetion of o and ¢ only. and the integral is defined in the
background \Minkowski space with coordinates (¢, 2, z,y) [here ¢t = (v + u)/2 and
: = (¢ — u)/2]. We integrate over o and g to produce é-functions in ¢” and ¢ and

then integrate out these momenta, thus reducing (3.41) to

" / : ' 9 . - -

I = — /rlx !/(x')/(—_%_q—),_,r"q"""" [ [A2(q.a)] + in6~(q)] (5.42)
where x = (1L2). q = (¢'.¢ and q.x = —q't + ¢°z. It is convenient to introduce
coordinates with their origin at the point of evaluation x. Define

o= (P —h) e (=) U= =)= (5 —2), (5.43)
" = —=(q' —q7)/2. ¢ = —(¢"+q7)/2. (5.44)
The distribution €7 (¢) can now be rewritten as
07 (g) = B(g")B(q") — B(—q")0(—q") (5.45)
1 1 : -
= ;Z—sg'n(q“) + ;)—sg;lz((/' ). (5.46)

After a Little mianipulation the inteeral is separated into two pieces (which have
1 g

identical forms):
1= i av g0y [ it (] + Zsgn(w
= -z ./1 gl )/(.)~) ¢ (n|,w|+?sgn(u,))

+ /(n' g(o.\’)/(g:) o=V <1n|/\w'| + %sgn(u}))](:’)AT)
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Figure 5.2: Lightcone coordinates. The relation between the coordinates U and
V and the spacetime coordinates. EH is the event horizon, and CH the Cauchy
horizon.

It is actually possible to eliminate w completely from these integrals. Some care is
necessary in this procedure since H)(x — z') is a distribution, therefore the technical

details appear in appendix C.
Using equation (C.7) we reduce (5.47) to
1 oo a
I = —-2—{/;°°g(U + u,0) 30 (¥(1) —In|U/A|) 6(=U)]dlh

+ /_0;9(0, V +v) '5617 [(¥(1) = In|V/A]) 6(~V)) dv}(5.48)

Integrating by parts implies

-2

0 Jg

In|V/)| dV} . (5.49)

V=0 U=0
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where the arbitrariness of the length scale A has been used to absorh the (1) term

which is essentially a local contribution.

[t is possible to formally integrate (5.49) to a form which will be useful later.

Consider, for example, the tern

] ) N o
Int = 5 /‘_” g;L In {V/A dV. (5.50)

where I have changed the lower limit to 1, for later convenicence. The limit Vg — —oc

can of course alwavs he taken later. Making the coordinate transformation from

V= —vtoy =V 41 we can rewrite this as
Lot i dy dy - -
fnt = 2/'“ L)-'/ lllll//\l'*'(f);l]lll — yl| du . (5.51)
] 1 10 - =
= 3lu e/ M gt e) = glu, vg)] + 5_/!“] 0—3 |l — yldy . (5.52)

Finally integrating by parts

1 1S Mglu. v v — tol”
it = 5 Infe/N{gtu. ) = glu.ey)] — 3 Z [(—-——/————)) ‘v:r —I———O—l—

(4]
W

x < lul(e— o)/ = In|e /N + i <3—) ] . (5.]

i=1

where vy = Vi 4 . This expression will be used in the next section.

5.5 Semi-classical corrections

With this machinery in hand we now examine the semi-classical corrections induced
by the presence of the quantum matter. The first equations of interest are those for
the mass function. sinee it characterizes the classical singularity along the Cauchy

horizon. If quantumn effects aceelerate its growth then we can say that the singularity
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1s strengthened in the semi-classical regime. Equations (5.7) aud (5.8) read (to order

)

I, din 2xrth \ o
- = ~ — (U] T {U) . (0.0
dr de €r,
dmn, 2t .
— = —— (U7 ) (5.5D)
Jdu €&
where r is regarded as a function of « given by r = 2erg /u. and the subseript “se”

indicates the semi-classical mass function. We have also reinstated the subseript on
the classical mass g (¢) to indicate that it is the known function in (5.27). The
components of the quantum stress tensor are given by (5.39) with A7 and

evaluated in the conformal spacetime. Thas

(U T,"|U) ~ (I(%) {/4/'.:" [=Shu’ iy (Y H (= ")) + 3 (In’ln [1,2]) }.")..‘")(i)

. 4 S ) .
(U] T |UY ~ a(%) ‘/,1‘.,’ (S sin (VA = )] = 5 (mn ['—"-]) } (h.57)

-
where R = Ghuwmn is the Ricei sealar in the conformal metric. Remember that « is a
positive constant. Before cousidering the evaluation of the non-local terms in these
compounents of the stress-cnergy tensor a couple of comnzents are in order. Firstly
we have considered the influx to be turned on at some finite advanced time ng as in
Fig. 5.4. Thus iy () and all other derivatives of the mass are identically zero for
v < vo and the Jower It of integration is therefore Vi = vy — o in (5.449). Secondly
the range of integration over U is —u < U < 0 since v — () as v — ~. Therefore,

combining (5.49) aud (5.53) with these linits of integration gives

/(1'1.1" [=8he" M (O YH (0 — ")) o —dhwi (In e /M + I |u /X)) + ... (5.58)
and
/d“.l" Bl (¢"YH (o — ")) > A (I e /AL + InJu /A + ... (5.59)
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Ouly the leading terras are explicitly shown here. Inserting (5.56)-(5.59) in (5.54)
and (5.55) we readily obtain the approximate solution
)
Mo =y + °’—‘—';'~'—"—’—'/;u,;,, {ale/N +Inju/A =3 vfrgl}+ .00 (5.60)
At this point the reader shonld notice that the length scale A enters the result in a
crucial manner through the logarithin so the sign of the correction term will change
at some stage during the evolution. Further discussion of this point is postponed

to the end of this section. For now we proceed to equations (5.9) and (5.10) for the

function A(w, ).
The tangential pressures are evaluated in the same wayv as the other compo-
nents of the stress-energy (5.50) and (5.57):

Iy

4 0
P ~a <~> [——»ll.'l'n (I fe/N +Inju/A]) — 4—3— (RIn II‘/I'()‘).,“.] + ... (5.61)
-

. . ) . -~
Remembering that only terms of less than O(R7) are kept for consistency, (5.9)

ll(‘('()lll(‘.\
A ~0. (5.62)

This resnult arises due to the truncation of the stress-energy tensor at lincar order in
L{u. v} so that we are unable to obtain further information at this point. Equation
(5.62) implies that (5.10) is trivially satisfied when m. has the form (5.60). Thus

to linear order <1 is a function of ¢ alone.

5.6 Discussion

We have now seen that the quantwn corrections are of a particularly simple form

with the mass function given by (5.60) and A(u. v) effectively constant up to the
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time when curvatures become Planckinn. Although these expressions give the quan-
tum corrected solution, there is one more piece of information which is useful to
understand the etfects on the geometry, Classically the outtlux {from the star has
merely the catalvtic etfect of initiating the contraction of the Cauchy horizon. The
blueshifted influx and any outttux trom the star produces a sealar curvature sin-
gulz\'rity along the Cauchy horizon. The quantuimn outtlux, however, is potentially
much stronger. It is straightforward to use (5.39) to estimate this Hhux of quantum

material which crosses the horizon,

N

hen| T in) (D, 0) (D50) = =324 (%‘—’) Dihwm e /g ~ —mfry . (H.63)
which is of the order [Wy| times the classical onttlux. Tt therefore remains smadl up
to the time when our approximations break down and quantun gravitational effects
become mmportant. This has the important consequence that the classical pretare
of ingoing light rays contracting very slowly (on Planck seales) ander irradiation by
the star is not affected by the quantum corrections up to the time when curvatures

become Planckian (of [76))

Do the semi-classical corrections oppose the classical plunpe towards a singu-
larity? Denoting the advanced titme at which the Wevl sealar reaches Planck values

by

m(, I',

[e,] = [T ( I“/IH(,/I‘)l (5.G1)

i
it is clear from equation (5.60) that there are now two essentially different possibil-
ities:

o If A\ > |¢,]. the logarithm in (5.60) is negative as vy approaches o, and
(5.60) predicts damping of the classical growth of curvature due to quantum

effects. Examining the hehavior of the radial coordinate - along outgoing null
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ravs near to the Cauchy horizon indicates that they are defocussed by the
guantumn matter. This suggests that quantum effects might lead to a core

region with curvatures bounded from above as suggested in [74. 75].

e If. on the other hand. A € |, quantum effects would further destabilize
the elassical plinge toward a curvature singularity. The combined effects of
the quantum fluxes (5.63) and (5.56) would tend to focus both ingoing and
outgoine light ravs. However following the evolution all the way to the Cauchy
horizon {(which is. of course. way bevond our approximations) brings us back

to the first possibility of a core with bounded curvature.

Unfortunastelyv. this ambignity cannot be resolved within the present theoretical
framework. which provides no information about A [49]. The quantum theory of
massless fickds propagating on a fixed classical backgronnd has no inherent length-
weale. Somethine further can be said if one is willing to entertain an arguable

Livpothiesis about the origin of this incompleteness of the semi-classical theory [49].

A suecesstul quantum theory of the gravitational field is expected to have
the effect. ar moderate curvatures. of modifving the Einstein-Hilbert Lagrangian by

terins qu;ulx;nix‘ L curvature,
. 9 ) ] - -
165L, =1, "R+ 0,C o+ IR (5.65)

where a and ) are constants of order unity. It is precisely these coupling constants
which get renormalised 1o remove the divergences which arise during the calculation
of the quantun stress-cnergy tensor for the scalar field. Thus the effective equations

icluding the gquantum gravitational contributions are

pre

G + P(ar Ay + 310,00 = 87 {T5 4 1 (in] T in) } (5.66)
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This suggests that the incompleteness of the semi-classical theory is related to the

neglect of quantum gravitational effects.

It ix arguable that a quantum theory of massless ticlds which includes grav-
ity would become a complete theory, with the net coetlivients of A, and 1. de-
termined [49]. Suppose this is true. Then ap in (5.66) is expected to be of order
unity. and the term a4, may be interpreted as representing, effects associated with
gravitational vacuum polarization. Now. it is reasonable to expeet that, onee the
quantum gravitational degrees of freedom are activated. gravitons will have etfects

not too dishmilar from phaotons and other massless fields =0 e that

() T fin) ~ =gt (H.67)

as curvatures approach Planck values. Compartson of this and (5.08) or (5.59) now

shows that the logarithic factor should also be of order unity. that is A = |e,|.

If this conclusion is correct. (5.60) should be interpreted as an intensification
(rather than a damping) of the classical influences tending to produce acurvature
singularity at the Cauchy horizon. at least up to the time when curvatures become

Planckian.

Interestingly the sign change which occurs (due to the logarithm) wonld seem
to be in agreement with general argnments advanced by Fradbis aud Vilkovisky [80]
which suggest that «; should be negative, One way or anotis:, 1t o s clear that
the resolution of the singularity problemn lies at energy scales where perturbative
calculations break down. The change of sign of the semi-classical corrections as
this scale is approached may indicate a quantum damping of the classical growth of

curvature. however these calculations do suggest that the ultimate, guantum stage

- Although this is a plausible assumption the non-linear and non-conformal nature of the gravi-
tons may lead to important differences
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of evolution of the Black hole is inaceessible to semi-classical considerations.



CHAPTER 6

Homogeneous Mass Inflation

To date, most of the work on black hole interiors has focussed on the singularity
which forms at the Cauchy horizon. The detailed structure of the geometry in this
region of spacetime was first elucidated by Poisson and Israel [18]. As discussed in
chapter 3 they found a null singularity characterized by a divergence of the mass
function of the spherical black hole. Radiative outtlux from the collapsing, star
causes the contraction of the Cauchy horizon, whiclt is tnitially a stationary null
hypersurface (i.c. its lightlike generators have zero expansion). Thus the radins of
the Cauchy horizon decrcases with incereasing retarded time, ultimately contracting,
to zero. In tlns chapter we consider what the structure of the singularity may
be near to = 0. In the Ori model spacetime the » = 0 singualarity is thuelike,
bheing intersected by the null (mmass-inflation) singularity at infinite advanced time.
This i1s probably not representative however. In facto indications from mmmerieal
integration {81] of the field equations for a chiarged black hole perturbed by a scalar
field are that a rather large portion of the singularity is spacelile, "The mass-inflation

singularity becomes spacelike once the radius of the Cauchy horizon reaches zero.

In this chapter we consider a silple analyty model whicl may be represen-
tative of the spacetime structure in this region. The classical homogencons mass
inflation (HMI) model was first considered by Page and independently by Ori [42].
They used a two fluid stress-energy tensor to model perturbations of the imterior of

a charged black hole. and looked for solutions which were homogencous in v The



advantage of the homogeneity reguircinent is that one obtains only ordinary differ-
ential equations to solve. Althongh the system is highly non-linear, it is possible to
analvse the general sobitions in great qualitative detail [42]. In their original work,
Page and Ori considered an influx which did not decay in advanced time, and for
this reason its conclusions scemed only to have tenuous connections to the internal
physics of black Loles. It is possible. however, to show that this model is compatible

with arbitrary behaviour of the null fluids which leads us to to the interpretation

discussed in section 6.2,

In section 6.1 a classical solntion for the HMI model in the region 2 < ¢?
is presented. This partienlar solution did not explicitly appear in the work of Page
and Ori [H2]. although it is implicit therein. A brief discussion of the properties
of the solntions is then presented. In particular. it is suggested that homogeneous

solutions mayv be generie as - — (.

We o on to consider quantum effects when r < ¢?, calculating the renor-
malised stress-cnergy tensor for a conformally coupled massless scalar field on the
classical HNT hackground [82]. The expectation value is taken with respect to a
quantun state possessing the natural svmmetries of the background. This is not
the physically relevant state. which appeared empty in the infinite past when the
matter which formed the black hole was dispersed to almost zero density. This
means that particle creation effects have been neglected. however, we argue that
the domninamt terms in the stress-energy tensor should be insensitive to reasonable

changey of initial state.

Finally, the semiclassical backreaction equations are solved to find vacuum
polarisation corrections to the classical background. The correction to the mass

function diverges more strongly than in the classicai case. There continues to be



much controversy about the mecaning of semi-classical gravity, and the correct way
to solve the cffective equations. We follow the self cousistent approach advocated by
Simon [40]. This method makes the perturbative nature of the calculations explicit,
while it also avoids spurious solutions which indicate instabilities (of flat space for
example). Of course this semi-classical analysis will become invalid onee curvatures
reach Planck values. so once may ouly speculate on the existence of a singularity in

a complete theory of quantum gravity.

6.1 The HMI Background

It is most convenient to proceed from a double null formmlation of the spherieal field
equations to the homogencons problem for cross-flowing null dust. Therefore we
begin with the line clement
. 2F o e
ds? = = =—dUd\" + 72dQ, (6.1)
B

where dQ? is the line element on a unit sphere. Along, with the clectromagnetie
stress-encrgy tensor E#, = ¢ /8arfdiag(—1,-1,1,1) we include both ingoing, and

outgoing null dust with

LulV) o yeyany + B ey . (6.2)
A72 A

T.s=

The Einstein ficld equations are

v = F(E = 1)/r, (6.3)
(luF) = F(1=32r%)/02r) . (G.4)
subject to the constraints
) f-. ’ ? , .
(ro)an "7—\—(")\ = —2Li.(V), (6.5)
. Fu . . -
(ro)aee — -—F".—("z).l.' = —2L,.(l7). (6.6)



It is very important to realise that the luminosity functions [Lin(V") and Lo (U)]
have no direet operational meaning. They depend on the parametrization of the
null coordinates. We select coordinates such that Li, (V) = 1/2 = Ly, (U). So what
is the relation between Voand the standard advanced time coordinate v? Let us

consider an influx which decays with advanced time according to an inverse power

law along the event horizou {23, 24]: L(e) = const. x v~P. The relation between the

n\?
L (V") (7—)

from the transformation law for (6.2). Thus as r — oc we find 17 — 0. This relation

two coordinates is simply

const. x v " (6.7)

is important later when the structure of the homogencous solutions is considered.

Following Page and Ori [42] we restrict » and F to be independent of t =

(V' = U)/2 and Licnee to be functions only of

n= N +0)/2. (6.8)

Introduce the functions

\/—-)I:f% = —BY*r)=—2rm(r)—r* - )2, (6.9}
SF: — . (6.10)
so that
ds? = 2_,}— (—dif? + dt?) + 12d7, (6.11)
= (-:—)-) (—c"’B"dr") + g(r)dt* + e'de'“’) i (6.12)

In equation (6.9) we have introduced the local mass function m(r). The field equa-

tions (6.3) and (6.4) become

r

(Bg)"'(Byg) = %(5—_—'1'1) (6.13)
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3V By ,/r1_3 ’ J RIS .
( . +.‘/\’;I‘ = V5p 1——,_7_,— . (6.1.H)

while the two constraints reduce to a single equation for the nmass

m' = —cZgr), (6.1D)

where a prime () denotes ditferentiation with respect to o

Using (6.13) and (G.15) we can derive a master equation for the mass function.

Integrate (6.13) to
Do = o2 ox | /l‘.‘, —mr i (G.16)
g =c exp |- . e ) L ).

where a constant of integration has been set to unity. This corresponds to the

freedomn to rescale £ Substituting for ¢(r) into (6.15) implies that

m' = =) Bexp (-l /%ﬂl’") (6.17)
i r

- drm’
= —;—_7_,—]}(~x1) ( 7 (11') . (G.18)
Now. multiply by —¢2B/r?. take the logarithm and differentiate with respect to
to get ,
(BI'“') - _*ﬁi'l'_)_ (6.19)

Finally. recasting this as an integral equation (for purely aesthetic reasons) we have

2 . 1\2
' '75 Ay, (6.20)
3 . T

m

This will allow us to obtain an approximate solution to the homogencons problem

quite easily.

Counsider the region where 12 < ¢?, so that B(r) = 2m(r) r — . It is easily

verified that

m(r) = —, glr)=1. (G.21)

100



is a solution to the ficld equations in this region. Thus we have the HMI spacetime
2
ds? = -—_,[—(11'2 +dt* + CZ(IQJ], (6.22)
2
which is of a particularly simple forn.

Page and Ori [42] were able to obtain qualitative information about the
general solutions to the homogencous equations.  Their results indicate that the
mass function inflates to infinity like 1/7, as occurs in (6.21). Generically they
found that the mass funetion also contains an oscillatory part with an amplitude
which diverges as r — 0, we will connnent further on the implication of this when

we deal with guantum effects.

6.2 Properties of the homogeneous solutions

The spacetime (6.22) appears to present a very different picture of the black hole
interior than the standard mass-inflation scenario [18]. So why has the truncation
to dependence only on 5 been so brutal? Furthermore, are homogeneous solutions
likelv to be of any physical significance? The first of these questions cannot be
answered satisfactorily at present, although some comments and observations can
be made. Throughout the following discussion we will refer to Fig. 6.1 in which the

black hole interior is schematically represented.
In this diagram there are essentially three different regions, about which we
have various levels of knowledge:

1. The exterior gravitational field. including Z% and the event horizon, is quite
well understood. When a slightly aspherical star collapses to form a black hole,

the asyviptotice tield (near /i1) settles down quickly to the Reissner-Nordstrom

101



solution. The deviations from spherical symmetry remain small and in faet
die away as an inverse power of advanced (or retarded on 71) time[23, 24},
Thus the Reissner-Nordstrom spacetime is a good asvmptotic approximation
to the external gravitational field.

Significant advances in our understanding of spacetime near to the Cauchy
horizon have been made with the work of Poisson and Israel [18], Ori {19, 20]
and others. This work indicates a finite “length™ null singularity along the
Cauchy horizon. However there is a (debatably) serious drawback in these
analyses  the boundary conditions which are used always assume the existence
of a static portion of the Cauchiy horizon bhetween /4 and the retarded time
when mass-inflation oceurs. In all of these spherically synnnetriec models this
essentially forees a uull singularity to exist. since the contraction of ingoing,
null rayvs is governed only by the tranverse flux of perturbations across the
Liorizon. To avoid this problem one would like to impose houndary conditions
at the event horizon and evolve this data inwards (we carrently have no reason
to believe that this will change the mass-inflation picture).

Near to r = 0 (but awav from the Cauchy horizon) our knowledge is greatly
lacking. It is natural to assume that there will exist i spacelike singularity
in this region: this is based on the intuition that the null singularity along
the Canchy horizon should connect to a spacelike singularity once the Cauchy
horizon radius reaches zero.  Some support for this has recently appceared
in the work of Gnedin and Guedin [81]. As » — 0 it seems plausible that
spatial derivatives will hecome unimportant and the solutions tend to those of
equations (6.13)-(G.15)  the black hole core is nearly homogeneous for simall
radii. Although no formal proof of this fact yet exists, one may argue that
since future light-cones encounter less of the spacelike singularity as v — 0 the

spacetime will. at least locally, appear homogencous.,
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Figure 6.1: Schematic representation of the spacetime of a collapsing charged star

Although the spacctime (6.22) is at the unstable fixed point of these equations
it provides an analytic solution which exhibits the properties which were discussed
by Page [42]. It has a singularity only at 7 = 0. This singularity is indeed spacelike,
and so it suggests that the solution may be indicative of the general situation in
the shaded portion of the diagram. In the work of Page [42] it was shown that the
solutions of (6.13)-(6.15) would generally have no Cauchy horizon; more precisely
he showed that outgoing null geodesics would encounter an r = 0 singularity be-
fore the advanced time v became infinite. A crucial input into his result was that
L(v) = constant when v was the standard advanced time for an external observer.
As was emphasised in section 1.1 it is always possible to find a coordinate system in
which L;,(V') = constant. For the usual power law decay of infalling perturbations
the relation between the two coordinate systems is given in (6.7), where it shows
that V — 0~ on the Cauchy horizon. Now along an outgoing null geodesic in the

solution (6.22)

r = const — -\/—1——5‘/ (6.23)
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and generally as 17 — 07 we Hnd » — constant. Thus without the global solution
to allow the determination of the constant in (6.23) we can say nothing about the

presence (or not) of a Cauchy horizon.

Morcover Page [42] has shown that. for arbitrary solutions of (6.13)-(6.15).
along outgoing null geodesies = 0 is encountered at some tinite value of Vo= Vi
However it cannot be determined whether this lies before or after the Canchy horizon

withont knowing the global structure of the spacetime.

6.3 Vacuum Polarisation

Next. we wish to consider semiclassical corrections to the metrie functions, due to

thie presence of a conformally coupled massless sealar field o obeyving,
| . .
{/"'iv,.v.,(,‘) — —6”({; = (0. (6.21)

Later we will argue that our conchunions should be insensitive to the quantum state
in which we evaluate the stress-energy tensor. For now we ignore this problem and
present a derivation of the one loop stress-energy fensor in a state possessing the
natural svmmetries of the manifold: 122 x 52 The method is to caleulate the ¢-
function and effective porential for ds? = —dr? + dt? + 2d?, and then to use Page's
generalisation of a result due to Brown and Cassidy to obtain the stress energy
tensor in the physical spacetime (6.22). The ¢-function is obtained from the heat
kernel for this space (which is homogeneous) and is defined via the Mellin transform

1

- > s—1 1.~ . vy
C('“)“r(,g,/, 1=V (0, 0: 1)t (6.25)

Here

K(0.0:4) = (47 e)? 1)7 ST(20 + 1) exp[—t(12(1 + 1/2)* + 1)/12¢? (G.26)

1=0
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is the heat kernel for ds2 at o = ' = 0. After analytically continuing this ¢-function
to a meromorphic function in the complex s-plane we find

C( N .2(,2.'«—4 x> r(.'s' -+ h— 1)( )
o) = (47 ) =, F(s)kt12t

Cr(2s + 2k — 3. 1/2) (6.27)

where Cpl(z. ) is the Riemann-Hurwitz zeta function [83]. The effective potential is
formally given by V= (=1/2)[¢"(0) + log(#?)¢(0)] [45] and is now easily evaluated
using (6.27). It is

. A T >
Vo= — (-l—c?(—{ +5 111((7“/12)) \ (6.28)
~ A
Z —————l—;;Clr(Q’\‘ -3,1/2)
) 1 T
- (= 2y — = — 5.9C
20(=3.1/2) = SC=1.1/2) + 55 = 5==w(1/2). (6.29)

where gis an arbitrary mass scale, T = (144072%¢) 7! is the trace anomaly, ( (2. q)

i

ICplz )0z, and () = (r)/T(r). By performing the usual variation of the
offective action we obtain the stress tensor 1n this statice space

7(/""h\/_\ ) . ... T

_— _ _ -, T _
(T" Den = \/_ S = diag[-1. -V V" + -5‘ + —2—] (6.30)

In fact, one may evaluate the above stress-energy tensor for massless conformally
coupled ficlds of othier spins™. This simply changes the numerical values of the

T and A above. For spin-1/2 (twe-component) theory the trace anomaly is T =

A =4 (— —
1¢( 3)+60

where (g(2) is the Ricmann zeta function [83). For the Maxwell field we find T =
(1207%¢") ! and

(6.31)

> 1
kZ:; 1) 2% TCr(2k — 3,3/2)
) , 127
—4(R(—3.3/2) + ((—1,3/2) + 50 1—61. (3/2). (6.32)

“These results were communicated to me by Roberto Camporesi
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We now invoke a result due to Page [72]. He finds that the renormalised

stress-energy tensor for a conformally coupied massless fields transforns conformally

as
=it = = —SaOji 1_—' =171
T, = Q7T - 8o [V, (T Q) + SR,T™ 5. Q)
+ B[(R,TCY . = 2H" ) — QYR IT 4 = 2HY )
1 A
- =Al*. - Q7T (6.33)
0
where
© "2 1 0 3 1 32 ‘.
Hy = =RuR+ S0+ GROGR - 2B (6.34)
1 .,
Lie = 2Ry —2RR,. + (3R = 21, ), (6.35)
and, in the case of a scalar ficld, a = 12/(2%457%), 3 = —14/(2"1572), v = 8/(2"1677).

The barred teusors are evaluated in 3% = Q7 ds?, and in our case Q2 = r? /2, 1t is

now a straightforward matter to obtain (T 43),en for the metrice (6.22).

Before examining the backreaction, some comments are in order about the
quantum state in which this stress-energy tensor is evaluated. The boundary con-
ditions defining the state in which our system was prepared should appear in the
derivation of T'',. However, it is not an easy task to impose these in our case sinee
we only have an asymptotic classical solution for 72 <« 2. Instead we suggest. that
the behaviour near the singularity will be insensitive to the initial conditions. In
particular, since the singularity is spacelike, the quantum influx due to Hawking
radiation can be ignored as it will be swamped by the classical radiation (modelled
by the null dust). This certainly will not be true at late times when black hole

evaporation occurs, however we will say nothing about this phase of the evolution.

Other non-local effects can be expected to contribute to the full stress-energy

tensor as [ \/—g(curvature)?dr [84] - hehaving at most like 773, For these reasons
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we feel that the dominant behaviour is captured with our present model.

6.4 Backreaction

Simon [40] has advocated the self-consistent method (see section 2.4) of solving the

semi-classical equations

G = 85T + 1 (Tou),,, + O(R?), (6.36)

ren

where T,‘,‘,” is the stress-energy of classical matter and all the terms of O(h) are

gathered into (T,,,.) This approach makes the perturbative nature of the solutions

ren’

explicit. We therefore expand the metric in a power series in i

m(r) = mey(r) + hingy(r) + O7). (6.37)

g(r) = guylr) + hgo)(r) + O, (6.38)

where ). gy are the classical metric functions given by (6.21). Substituting
(6.37) and (6.38) into the generalised field equations and keeping only terms of less

than O(5%) we obtain the backreaction equations for the terms of O(h)

"2.‘/:” + 2’”:1) + 6“'(1) = —SWT:‘((T’O,-(,, + (Trr)rc'n)s (639)

—l'2![(1)+l'zlll:l) = —d47r{T" )ren. (6.40)

where (T, ) e is given by (6.33). As expected they are already linear in the unknown

functions my and g1. Using (6.40) to eliminate gy from equation (6.39) we obtain
20 ’ 3 1 r d t
7'-”1“) + “l"”l(l) + Gl”“) = —dxr G(T 1)1‘(11 + 2<T r)r(n + Tg(T t)ren (641)

This linear inhomogeneous ordinary differential equation for the correction to the

mass function can be easily solved once the quantuin stress tensor is inserted.
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Combining the results of the previous section we obtain

1a r 3(36¢2r® + 30c) + Ge2qr?
Tl \rc n = =1 (—) - . - . 42
(T 31 0 \} [ 3~ ] (6.42)
1a r 3(12¢%2 4 18¢1) + 62412
Trr ren — o i N 3 M N
(I'r) 3r o ()\) * [ 3rs (6-43)
(6.44)

where T, has been absorbed into the (essentially) non-local contribution containing
the logarithm. We are interested only in the effects of this quantum material as

r — 0. To leading order equation {6.41) becomes

. 1287 3¢t
r‘)m:'” + drmgy, 4 Gmgyy =~ - (6.45)

The unigque solution is

83!

,..'l

my, =~ [ecos({/15/4 Inr) + dsin J15/4 Inr)]r 372 . (6.46)

where ¢ aund d are arbitrary constants. Recalling that 3 is negative, we sce that
semi-classical effects intensifv the classical growth of the mass. The correction to
gu 18

g1y =~ constant X ™% asr — 0. (G.47)

It is interestine to notice that the solition suggests a growth in the anisotropy due
s £ 8 A

to the quantum effects.

6.5 Conclusion

In this chapter we have presented a detailed discussion of a homogeneous model [42]
of a charged black hole interior, which is perturbed by cross-flowing null dust. The
main feature is the spacelike singularity which is present, in contrast to the (by

now) standard mass-inflation scenario [18]. It was pointed ont in section 1.2 that
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such homogencous solutions are likely to be representative of solutions near to r =
0, within spherical symmetry. Having said this we must remember that (6.22) is
not the general homogeneous solution to equations (6.13)-(6.15). In fact the HMI
Lackground is at an unstable fixed point of the equations [42]. The general solutions
exhibit a highly anisotropic approach to the singularity, with violent oscillations in
the metre as + — 0. More generally, once the spherical symmetry is broken, the
approach to the spacelike singularity inside a tlack hole will be described by the

BKL [83] analysis.

It is widely believed that singularities in general relativity indicate regimes
where a quantum treatment is necessary for a correct physical description. We have
attempted a semi-classical analysis of the region near the mass inflation singularity
of the HMI model. This is only a toy model which is useful as a tool to begin our
investigations. When r? < ¢? our findings indicate that vacuum polarisation effects
intensify the classical growth of curvature, rather than having a regulating effect as
might be hoped. If this remains true in more realistic analyses, we will have to wait

for a theory of quantum gravity to be able to resolve the singularity problem.

Without doubt the most serious drawback in this work is the imposition (or
not) of boundary conditions. It may, in fact, be possible to obtain some of the
non-local terms by examining the solution for 72 > e? and matching the solutions
near r = |e|. Nevertheless, it is difficult to see how this will alter our conclusions.
One might also argue that the highly anisotropic approach to the singularity of
the general solutions will lead toycopious particle production, and so invalidate the
above analysis. Particle production is a non-local effect, however, and should not

change the leading results for the reasons mentioned at the end of section 1.3.
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CHAPTER 7

Non-spherical considerations

Thus far all of our calculations have been limited to the spherically syvimmetric
case. However. it has been argued by Poisson and Israel {18] that their analysis (as
outlined in chapter 3) should he representative of the more general situation when

asphericities are present.

A simple arguinent can be put forward to support this. When the collapsing,
star is not exactly symmetric it tends to radiate away its (quadrupole and higher)
asvietries. The external ficld settles down to a Reissner-Nordstrom black hole
with a radiative tail whicl decays according to an inverse power law [23]. But what

of the internal geometry?

The Cauchy horizon of the Reissner-Nordstrom spacetime is o null hyper-
surface that extends an infinite affine distance into the past. Between the event
Lhorizon and the Canchy horizon the radiative tail of the collapse is scattered so
that the outflux crossing the Cauchy horizon also decayvs with an inverse power law
in retarded time o (which tends to negative infinity on the event horizon) [86G, 20].
Even when the perturbations are allowed to interact with the geometry one therefore
expects that the tail of the Cauchy horizon will be determined by the background

Reissuer-Nordstrom geometry.

This chapter outlines an investigation of the Cauchy horizon singularity when

arbitrary asphericities are present [33]). The analysis is not as yet complete, however
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a qualitative picture has emerged which is in agrecment with the work of Ori [20]. For
simplicity we only consider aspherical perturbations of charged collapse, although

the analysis also applies to Kerr black holes.

A kev ingredient for mass inflation is that there exists an initially (when
1 — —oc) stationary Cauchiy horizon in the spacetime. we therefore assume this to
be true and look for an asyiuptotic solution as the singularity on the Cauchy horizon
is approached. We continue to include crossflowing null dust in the spacetime so
that it is casy to see how the analvsis fits into the spherically svmmetric case in the

appropriate linit.

Potentially the major difference between the spherical and less symmetric
situations is the presence of shear, which is known to dominate the dynamics as
a spacelike singularity is approached [83]. If the shear became very large (or un-
bounded) as the Cauchy horizon was approached, it would presumably provoke a
rapid contraction of ingoing light-rays and a spacelike singularity. As we will see

the shear actually remains bounded on the Cauchy horizon.

In section 7.1 we present the field equations for this scenario. The line element
contains only one less degree of freedom than the most general spacetime. and
Lienee leads to rather complicated equations of motion. We therefore only give
the leading terms which contribute to the asyvmptotic solution we obtain. Then
we outline the assumptions which are made, providing some motivation from the
spherical situation. Ouce this is done, it is straightforward to derive an asymptotic
solution near to the Cauchy horizon. There is a null singularity present at which
the Kretschmann invariant diverges. The leading divergences in the Weyl curvature
snggest that the solution is asyvinptotically type N. Finally we mention the technical

issues which must be addressed before this work is complete.
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7.1 The field equations

The line element which acts as our starting point is

Y 2F o o " .
ds® = —=—dv(du + Adr + Bdy) + (2 da? + 72 dg?) . (7.1)
r

where F, 4. B. r and 3 are functions of all four spacetime coordinates. This line
clement has one less degree of freedom than the most general spacetime. We feel,
however, that it is sufficient to capture the leading behaviour near to the Caunchy
horizon since inclusion of other terms appear only to modify sub-leading terms in

the equations.

It is convenient at this stage to introduce a null tetrad and to alwiays work

in terms of the projected components of curvature:

’,(l)

W= (JF/r [ AL[FIr B, (7.2)
2 = (0. V2T [V200). (7.3)
B = (0 V2 =i [VR0), (7.1)
Y= (0.0.0.F/r). (7.5)

In order to allow casy comparison with the Poisson-Isracl analysis we introducee the
stress-energy tensor of the cross-flowing null duast:

— L h J1y (1 _-
7-:1.“1 = [P, 4 + PowtC,, ‘/1 - ( ] ())

It is then casy to recover the spherically symmetrie results in the appropriate limit.
Covariant conservation determines the functions

/ Liu("- £y .l/) ) 1401:!(“~"I's '/) (7 ‘)
Ny = —————. = — ;
" darF P 4nrF

Two further restrictions also arise from the conservation equations, namely that A
and B should be independent of ¢, (We have something more to say about this

later.)
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We can now proceed to the Einstein field equatious. of which we list only the

ones which are needed to deternnine the leading behaviour of the solution:

() = F[sY)] (7.8)

(I F) o + 23,3, = F[S?)] (7.9)

2 e + (%) b+ (P )l = F [S¥] (7.10)
(I F)olr?), = (12) 0 = 203,02 = 2L, (v.r.y) + F [S] (7.11)
I F)u0? ) — (e — 2(30)° = 2Lowlu.2,y) . (7.12)

1 here are also two further equatious which are needed to estimate the behaviour of

A and B:

(O,,'D;; - %D;; + .‘J’,.'Dg) (WF ~lnr) = U,—-2V, — tl—,i — 42,7
— 2D, ('——) + AU+ 2Ds3, + 43, (17 Dar — Dy3) + F [SO7.13)

( $. Dy — ’—-'LD,) (MF —lur) = 2Dy3, — 2D, (’—7—) + U
+ 43, (7' Dyr = Du3) = 3,0 —20,Dar+ Uy (7.14)

These equations have been simplified using the notation

D, = [__1\/__ (=70, — ic?9,) - :0,,] = Dy (7.15)
<= - f (4e= = iBe) (7.16)
. 1 . -
U = — (Aue™ = iB,c?) (7.17)
Vo= - j 7 (Ane™ —iB.e?) (7.18)
o = 7‘\/_('0 A — Dy 4)+1—i(D B + D3B) (7.19)

7

Two points should be noted:

1. SIS yre complicated expressions involving the metric and its derivatives.

The idea is that we can neglect these to first approximation provided F — 0
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on the Cauchy horizon. asx it does in the spherical case. We will make this
assumption and sce that the solution does indeed satisfy this condition.

2. To recover the spherical case set F = F(u,v), r = r(u. ) and 4 and B equal

.y

to zero. The function ¥ = (% = 1)7! where o = cosl and y = o.

7.2 Asymptotic analysis

Boundary conditions

It is convenient to fix the advanced time coordinate ¢ to be the standard advanced
time for an external observer far from the black hole. Thus ¢ — o on the Canchy
horizon. The Price power-law tail of backscattered radiation [23] then fixes the
influx to be

Li(e.o.y)=Colr.y)e ™+ ... (7.20)

As the discussion in the introduction indicates we also assume that the function
r goes to a non-zero value as ¢ — oc. The physical picture is schematically rep-
resented in Fig. 7.2: initially the Cauchy horizon is a stationary null hypersurface
described asyvimptotically by the Reissner-Nordstrom solution as o — —o0. We con-
sider outgoing perturbations to be turned on at the null surface S and ask what

happeans to the future. Therefore we take

r—n

(%) = 7P [‘m(.'r-. y)+ e,y + .. ] (7.21)

S

where the ~;(x,y) are functions to be determined. This boundary condition clearly

agrees with the spherical case if 4, = constant.

Close to the Cauchy horizon we also assumne that the metrie is analytic i o

near to the outgoiug null ray S.
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Figure 7.1: Schematic representation of non-spherical black hole interior. CH is the
Cauchy horizon, S is the outgoing null ray along which boundary data is supplied
and vg is an ingoing null ray

The solution

We can now proceed to solve the equations in the asymptotic region. To do so
we assume that we can neglect the S() since F — 0 on the Cauchy horizon. This
assumption is valid along S provided we have an initially stationary Cauchy horizon.

We will call the solution obtained in this approximation the zeroth order solution.
Let us begin with (7.8) for which the zeroth order solution is
r? ~ R*(v,z,y) + R™(v,z,y), (7.22)

where R* is an arbitrary function of v, z and y, and similarly R~ an arbitrary
function of u#, r and y. These two functions are to be determined by the boundary
conditions along S and vy, respectively. The important one is Rt which has its v-

dependence given by (7.21). Specifically 72 — r?(z, y) as v — oo along S, therefore

write

1.2 —_ 1.? _ v—p+l [')‘0(.1’, y) + 7!(1"1 y) v_l

p—1 > +.. ] + R (u,z,y) (7.23)
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where R~ = 0 along S.
Now introducing the two coordinates
t:=Rt+ D", \i=RT—-RY. (7.2

into (7.10) and using the approximate solution (7.22) we can rewrite the zeroth

order equation for 3 as
Fa+t(3—3\)x0. (7.25)

Introducing the Fourier transform 3(k, 1) with respect to \ reduces this to a Bessel

equation for the Fourier transform. with the general solution

Bt k) = Cy (k) Jo(kt) + Ca()Yu(At) (7.26)

wliere Jy and Yy are Bessel functions of the first and second kind respectively. g
is well behaved for all values of the argument., whereas Yy, diverges logarithmically
as its argument goes to zero. However. on the Cauchy horizon, using, (7.23). we

have that ¢ is initially bounded away from zero and so 7 and its derivatives are also

well behaved there. This allows us to proceed with the knowledge that there is no

danger of 3 divergiug as ¢ — oc. Specihically we find that
Bo e 3070 (7.27)

as the Cauchy horizon is approached. The shear of the null generators of the Canchy

horizon (esscentially (7,) is therefore bounded initially.
We can now formally integrate (7.9) to get

F ~ gi(v.x, y)go(u,x.y)exp [—- /(l'll /ll‘l' (2,’3.,,/3‘,,)] . (7.28)

The function ¢;(e,x,y) is what we wish to determine. It mst go to zero as the

Cauchy horizon is approached if our approximations are to bhe valid. Since we now
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know 4 and 2, in principle, we can proceed to find gy(v,z,y). Inserting (7.22).

(7.20), (7.21) and (7.27) into (7.11) we obtain

-~ Cy(r.y)

(In gy)., = oy T (7.29)

The physical requirement that the energy density of the influx should be positive
gives Cy > 0, while v, < 0 since the radius decreases towards the Cauchy horizon.

Thus ¢g; goes to zero exponentially as r — oc.
91 ) A

These are the main ingredients of the asymptotic solution and we will not go
into more detail here. We sitiply mention that by furthier manipulations of (7.13)
and (7.14) we can show that Cy(.r,y)/27¢(x, v) is actually independent of 2 and y.
and also obtain some information about the functions A and B. Let us now proceed

to show that there is actually a scalar curvature singularity at ¢ = oc.

7.3 The Cauchy horizon singularity

The solution which was outlined in the previous section is sufficient to give us the
leading divergences, as we approach the Cauchy horizon, when asphericities are
present. Onee again we must emphasise that these are preliminary results, although

they are in qualitative agreement with [20)].
We estimate the leading divergence in the square of the Weyl tensor as
Cu.‘i‘,anajé = . (730)

This estimate suggests that the asymptotic form of the geometry in the nonspher-
ical case is characterised by a diverging Weyl tensor of Petrov type-N. with the
degenerate principal null vector aligued with the direction of the blueshifted energy

Hux.
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The KNretschmann invariant is given by
R2PS . IV o2 pad -
Ras e RO = ClgnaCO + 128771, 5T (7.31)

since R = 0 in the presence of ouly a null dust. In the spherical case the square
of T,3 dominates this expression with the leading divergence proportional to the
energy density of the blueshifted influx. In the aspherical situation however, we find
contributions from each term which are of the same order of magnitude. In fact
the diverging term in Cn;g.,;.C"‘*"” could be interpreted as the gravitational encrgy

streaming along the Cauchy horizon.
L. > adi) X3
R,,,,,,.,AR"'J"" x ¥; as ¢ — o0, (7.32)

which is a stronger divergence. We finish this chapter with a brief discussion of the
implication of these results, while pointing out some of the problems which must be

acldressed before the investigation is completed.

7.4 Discussion

Within spherical svimmetry since the divergences are proportional to e=Pe”t the
tidal distortion of an extended object, which reaches the Cauchy horizon, is finite.
Do asphericities enhance the singnlarity so that tidal distortion diverges along an
observer’s path which approaches the singularity”? It scems not. The tidal forees
continue to be proportional to (#;7) ¢} Ink;7|7? where 7 is the observer’s proper

time which has been normalised to be zero at the Canchy horizon.

During th discussion of the leading divergences in curvature we have ignored
one of the problems which remains to be solved. We have assumed that /3, goes

to a finite (this is fine) non-zero value (this is not clear) on the Cauchy horizon.
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Physically this is not unreasonable since we would expect any gravitational pertur-
bation which crosses that Cauchy horizon to lead to non-zero shear there, however,
the information we have obtained about the solution so far is insufficient to deter-

mine this unambiguously. Further investigation is therefore needed to confirm this

physical argument.

The sccond, and potentially more dangerous problem, is the choice of ell)
as the outgoing vector along which the null dust moves. Having already chosen
our coordinates to put the metric in the form (7.1), covariant conservation of the
null dust restricts A and B to be independent of v. This mieans that the starting
spacetime is no longer as general as we would wish. In principle one can simply
remove the assumption that the outgoing null dust is present and impose, by hand,
that the shear is non-zero to the future of S. This leads to a self-consistent picture
whicli is as deseribed above, however. it is not possible to obtain the spherically
syvimmetric mass-inflation solution in the limit. This issue will be addressed in future

work.

The qualitative picture which emerges from this analysis is in agreement with
Ori [20]. Some work is needed to complete this analysis of non-spherical effects near
to the Cauchy horizon, however the initial indications suggest that a null singularity

exists even in the presence of aspherical collapse.
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CHAPTER 8

Conclusions

Classical models of generic black hole interiors [17]-[34] have made progress in un-
ravelling the nature of the internal geometry up to the onset of singular behavior at
the inner (Cauchy) horizon. At this lightlike hvpersurface, which corvespouds to in-
finite external advanced time. the “Coulomb component™ |W,] of the Weyl curvature
diverges exponentially with advanced time. (For spherical symmetry, Wl = m/r*

in terms of the Schwarzschild local mass function )

In chapter 3 we summarized an attempt to estimate the influence of gnantum
effects on this scenario: in particular. to examine whether vacuum polarization and
pair creation will act so as to damp the classical rise of curvature and possibly
limit it to sub-Planck values. It turns out that near to the Cauchy horizon the
spacetime is well approximated by a nearly conformally flat geometry, so that it is
possible to use a result obtained in chapter 4 as an estimate for the renormalized
stress-energy teusor of a massless scalar field near to the Cauchy horizon. Solutions
of thie semi-classical equations indicate that vacuum polarization initially reinforees
the classical rise of curvature. At sufficiently late times (see section 5.6 for the
details) quantum effects will act to curb the growth of curvature near to the Canchy
horizon, however. An ambiguity enters the results through an anbitrary mass scale
during the regularization of the stress-cnergy tensor, and the exact value of this
gauntity determines when the damping occurs. Arguments were advanced which

suggest that this damping occurs only as our approximations break down. that is



as curvatures approach Planck scales. Thus. although the indications do suggest
that quantum effects will ultimately act to maintain a bounded curvature near the
Cauchy horizon. it seems a complete theory of quantum gravity may be needed to

understand whether and how singularities are avoided inside black holes.

Iuside spherically svinetrie black holes, ingoing light rays inevitably con-
tract to 7 = 0 (at least up to and including the Cauchy horizon). In chapter 6
we suggested that spatial variations of the metric are unlikely to be important as
r = 0 is approached. Based on a model proposed by Page and Ori [42]. we presented
an approximate solution [82] which has a spacelike singularity at » = 0 at which
the mass function of the black hole diverges. A brief discussion of the relevance
of this. and other. homogenecous solutions was given. However. it was pointed out
that appproximate solutions as r — 0 do not contain enough information to tell
if a4 Cancly horizon persists: one needs to coustruct the global spacetime for this
purpose. Vacuun polarization effects were also considered in the neighbourhood of
the singularity of the approximate homogencous mass inflation solution (6.22). A
semi-classical analysis predicts (unambiguously) that quantum effects intensify the
classical growth of curvature. It was also argued that this result should be fairly
robust against reasonable changes of quantum state. and is probably indicative of

semi-classical effects in the general solutions of the homogeneous equations.

Finally, in chapter 7 we sketched a generalization of the Poisson and Is-
racl [18] analysis to a spacetime with less symmetry [353]. This is very much work in
progress, however a qualitative picture has already emerged. The assumption which
is essential is that the Cauchy horizon is initially a stationary nuli hypersurface (zero
expansion of lighlike generators). Once this is imposed an asymptotic solution can
be obtained which is qualitatively similar to the spherical situation [18]. The only

major difference is that the leading divergence in the Newman-Penrose Weyl scalars

121



is no longer ¥, but rather ¥;. suggesting that the spacetime has a “shock-wave™
structure as the Cauchy horizon is approached. Some technical difficulties remain
to be resolved before this analysis is complete. The results are in qualitative agree-
ment with [20], although there are some indications that the presence of shear does
enhance the singularity enough to cause infinite tidal distortion of extended objects

which approach the singularity.

Thus it seems that we are nearing a fairly complete picture of the internal
structure of black holes. and the classical endstate of gravitational collapse. As for
the quantum gravitational effeets obtaining in the vicinity of the classical singularity.,
the investigations here suggest that a fully fledged theory of quantum gravity will

be needed to completely resolve the singularity issue in real black holes.

Interestingly it has been suggested [87] that we are at a stage where string,
theory can provide an approach to this problem. Since strings do not couple to
the metric which appears in the nsual Einstein-Hilbert action. but rather to a con-
formally related one. it is entirely possible that solutions to string theory are not
singular in the usual seuse. However it is at present unclear what is a singularity in
string theory: is it a scalar curvature singularity? If so. in which conformal frame
are divergences important? Do singularities in the dilaton mean anything? These
are open questions. Also despite some suceess at generating exact string solutions
it seems that mathematical aspects of the theory are still too poorly understood to

obtain exact realistic black-hole solutions,

Finally let me mention what I consider to be the most pressing, open question
in the study of black-hole interiors: how long is the null portion of the Cauchy
horizon singularity? This problem has recently heen bhrought up by the work of

Guedin and Guedin [81]. In their article they suggest that the Cauchy horizon
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is completely destroved once they consider the non-linear evolution of scalar field
perturbations of the black-hole interior. This claim is. perhaps, a little misleading
since the grid used in their nunerical experiments does not actually reach the Cauchy
horizon. This means that they could not see a null portion of the singularity even if
it exists. It would, however, scem important to show that a null singularity does in
fact survive the shift of boundary conditions. from a null ray crossing the Cauchy
horizon, to the event horizon; that is turning the outflux on at (or before) the event
horizon of the black hole. In my epinion, no satisfactory demonstration of this fact
Las vet been given. Further numerical work is ualikely to yield couclusive results
due to the very fact that the Cauchy horizon is the future boundary of the evolution.
This problem should he addressed and probably can be solved using some suitable

analyvtic approximations [86].
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Appendix A

Curvature and field equations in spherical

symmetry

Nlost of this thesis has been concerned with spherical syimetry. It therefore seems
useful to include a summary of geometric guantities in such spacetimes. The results

liere were obtained in this two dimensional covariant formn by Poisson and Israel [18].
The spacetime metric is written as
2 __ a b 2 2
ds™ = gadrtdr® + r=dQ (A1)

where g, is the metric on the radial two sections. 2 is a scalar funetion of ' and
d€Q? is the line element on the unit two sphere. Following Pl notation such tha
four dimensional quantities are indicated by a superseript |, while two dimensional

quantities have no superseript, the Riemann eurvature is

4 ,
R abed = nr abed ( A2 )

4 - 2 —2 ‘1 —— e .
R,,y,.” = s~ 0 R,,,:,,.d, = —I'l". (A .5)

-1R . A .!(/ 1 I A 4
voos = Tosin“O(l —r“r,) (A.4)

where (,) represents partial differentiation, and (:) is the covariant derivative asso-

ciated with ¢gg,.
The Ricel tensor is
412(1’; = Rab - 27':ab/". (A-’))

Rew = sin™20 'R, =1—(r0r+1r'r,), (A.G)
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and the Ricel scalar

N=R+201—2r0r — 1r,)/1?. (A.7)

The Einstein field equations G,,3 = 8x7T,3 can now be written down in a
convenient form. This was used in a number of places throughout the text to derive
the field equations in different coordinate systems. Introducing the scalars m(x?)

and x(z®)

grry, = fi=1-=-2m/r+ /. (A.8)

Noi= —%O,f = —(m — )12, (A.9)

the field equations can be written as

Pah + Kla, = —'47"".(1-‘(11) - .(/ubT) . (-'\'10)
R—20,5 = 8x(T —2P). (A.11)

Here T, is the two dimensional subinatrix of the stress-cnergy tensor T, 5. T = g“bTu(,
and P =T, =TY%. Therefore T, 3 is the stress-energy of all other forms of matter
which are included as source. {The uncharged case can be obtained by setting e = 0

in the above equations.)



Appendix B

Integrals and variational derivatives

n-dimensional integrals

In chapter 4 we had cause to use the

following integrals from dimensional regular-

ization. These integrals are obtained from the review article of Lichbrant [68]. The

integrals arc evaluated in the Lorentzian sector

I"
L= _'/(27

[ - q)"’]_1 =

. Defining

2 —n/2)T(n/2 - (/2 - Dy

)" (4720 (e — 2)
(13.1)
we can write the integrals we need as
n —1 ] .
/() " Un [‘] (P_([) ] = ._2-]';11!- (BZ)
. [ d"q - —p? 7 .
- N/ - = |—— 1 + —————pup.| 11 . B.3
1/( =) Ut [(1 (v —q) ] H("—l)”' 10 = l)l',/'] ! (B.3)
L d'qg Y 0l — [(n/2+41) I
=t [ Qud Y-, (P —q) = | ————puppty — ——— L | . B.4
l/.,_,_)"qlq 11 [q (I) 1)] L‘i(”—l)l)‘l‘ 1’7 8(”__1) H’oy ! ( )
d"¢ 21" [(1n/2+ 1) (n/2+2) (u/’+1)p
o) et e [ — a) 2] = A o1y e T G e
(1’2 )'.!
—H, -l ] B.7
16(n2 —1) " : (13.5)
The tensors E, G aud H are given by
E., Uy + NP+ Uyl s (B.6)
G;‘V‘)ﬂ = NHuyvlP+Pa + NoyVyulea + W] Yy + UMY LU K + Hya - P + oo 10040 1(15 ‘)
Hl“"l" 7’1“""1” + 711107’0‘1 + 7’1//7”11', . (138)
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Other momentum integrals

In the same chapter we also need the following integrals over the kernel O(p,¢) =

S(2)0(—¢")o(p*)6(1" ). Once again, defining

= [0 - g = LR (B9
we can write
[t 4,0t = a.0) = e 2s (B.10)
((,I:;),, Gt O — . q) = 1',112' - Pjg"’] (.21;)., (B.11)
/ (—,——T U o dp O — 4.q) = :"“’1"(;"” GJ'EGE,,,,ﬂ} ( 2];’)1 (B.12)
/(()l" " U U Up 4o O(p — q.q) = -1)"1):2‘(’;"1)" — IJZ:OG"U"" + é)%;—(-)H,“,pa} (% .(B.13)

Linearized variational derivatives

N . + _ . . .. . .
For the syimmetric kernels H{Y and H) we find the following variational derivatives
are needed in chapter 4:
1 &
V=gt dgt,

R&H(r = )R
= (R9()(9"0" = 0y) H(e —2')) ,  (B.14)
18
T (RS HEr — R WD)
. . ’

= ([rieya (0407 — 5487) - ST Re060] H(x — ') (B.15)

The fact that

9 >
CosC1* = 2R, R™ — SR®. (B.16)
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for variational purposes. in view of the Gauss-Bonnet identity, means that these

variational derivatives are sufficienst for the purpose of the chapter.



Appendix C

Non-local terms in linearized stress-energy

tensor

In chapter 5 we showed how to reduce the non-local integral (5.41) to

l ]W y 7
-3 [/(IL/ q(U,0) /((Zw) el (ln [Aw| + 7%(/:1( ))

+ /(I\ q(0. V7 /(;T) el (ln | Aw| + %sgn(w))] (C.1)

o
]

Here we demonstrate how to eliminate w from the integrals. Noting the identity

In || + L.;:s‘(/n(w') = lim [ln(e + iw)] (C.2)

it t

the integrals in (C.1) take the form

(Iu.«' : r
— ,— (o +iu )l o,
J = /(_27) c (o + iw) . (C.3)

The limit as ¢ — 07 is to be understood throughout the following discussion.

In order to evaluate this it is most convenient to work with a new integral

* Ao gy - n
o= [ SN siv) w<0 (C.4)
=20 it

and then to differentiate with respect to n to recover the logarithm. The integrand
of (C.4) has a pole of order n at w = io, in the positive half plane. Therefore we
integrate around a contour which closes along a semicircle at infinity in the upper

half plane. The contribution from this part of the contour vanishes provided U7 < 0.
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Making a coordinate transformation s = —(o + )" and using the residue theorem
we find
L’-— n—1

I, = 6(~U 0. ¥
I'(—n) ( ) on< (C.5)
In particular, we differentiate with respect to n and then set n = =1 to get
> dw it . . . .

/ _ f,—~c-(“+'~"' (0 + i) Tnle + il = 0(=0) [(1) = In U] . (C.6)

Now it is clear that
1= 27 g0y 2 = mpuyap e—0)ae
= =33 [ g0y o= (1) = mjU/AD o=U)]

+_/_i!/(0.\') (—ﬁ— [(e() = In|V/A]D) 0(=V)] ,1\'} A(C.T)
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