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Abstract

In this thesis, we design approximation algorithms for a variety of problems

in Network Design. The first problem we consider is the DIRECTED STEINER

TREE (DST) problem where we want to find a cheapest way of connecting a

subset of nodes (terminal nodes) from a root node in a directed network. We

give the first logarithmic approximation algorithm for DST on planar graphs.

Another restriction of DST we consider is to quasi-bipartite instances on

planar graphs. In these instances the underlying graph is planar and no two

non-terminal nodes are adjacent. Here we get the first constant factor ap-

proximation. We further extend this result to a more general family of graphs

called minor-free graphs. Our approach is based on a non-standard primal-

dual framework and also bounds the integrality gap of the classical linear

programming (LP) relaxation for DST.

The third problem we study is a variant of the TRAVELING SALESMAN

problem (TSP), one the most famous problem in combinatorial optimization.

In TSP, we are given a set of cities, the task is to find a minimum cost tour

(closed walk) visiting all the cities. We initiate the study of generalization of

TSP, where we are interested in tours that respect some given degree bounds,

i.e., a feasible tour must not pass through a location more than a given bound.

We further generalize this problem to the setting where we only need to visit

a subset of locations in the network. It is easy to see unless P = NP, we

cannot hope for an algorithm that does not violate the degree bounds at all.
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On the other hand, the problems we consider are a generalization of TSP,

therefore approximating the cost factor better than the approximation factor

for TSP is a very challenging problem. In this thesis, we study the trade-offs

between the cost of the tour and the degree violation of the nodes in the tour.

We develop LP-based rounding algorithms for these TSP variants which in

turn bound the integrality gap of a natural LP relaxations for these problems.
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Preface

In this thesis, three results based on three different publications are presented.

All three results are joint work with my supervisor Zachary Friggstad.
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Müeller, and Michael Buro for being on my examining committee.

My PhD experience would not be nearly as complete as it was without

my fellow swimming club friends. It is a long list of people in the club who

made my life in Edmonton more enjoyable even in harsh winters. It was a

pleasure to swim with all you amazing teammates.

Finally and most importantly, I thank my parents and my brother for life-

time of support and the encouragement to pursue anything of interest. I

would not be here today without my brother for making me interested in

math and science in the first place.

v



Contents

1 Introduction 1
1.1 Outline and contributions of this thesis . . . . . . . . . . . . . 6

2 Preliminaries 11
2.1 Notation and terminology . . . . . . . . . . . . . . . . . . . . . 11
2.2 Linear programming . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Arborescences and primal-dual algorithms . . . . . . . . . . . 17
2.4 Laminar families . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Steiner trees and iterative rounding . . . . . . . . . . . . . . . . 21
2.6 Y-joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 The splitting-off procedure . . . . . . . . . . . . . . . . . . . . . 25

3 Planar Directed Steiner Tree 27
3.1 Introduction and outline . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Notation and some basic facts . . . . . . . . . . . . . . . . . . . 30
3.3 Planar DST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Warm-up: An overview of a quasi-polynomial time ap-
proximation . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 The polynomial time algorithm . . . . . . . . . . . . . . 36
3.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Multi-rooted planar DST . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Proof of Theorem 11 . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Proof of Theorem 12 . . . . . . . . . . . . . . . . . . . . 47

4 Planar Quasi-bipartite Directed Steiner Tree 52
4.1 Introduction and outline . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Notation and some basic facts . . . . . . . . . . . . . . . . . . . 57
4.3 Standard primal-dual algorithm and a bad example . . . . . . 59
4.4 Our primal-dual algorithm . . . . . . . . . . . . . . . . . . . . 61
4.5 The analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.1 Counting the number of antenna edges in an iteration . 68
4.5.2 Counting the number of killer edges in an iteration . . 69
4.5.3 Counting the number of expansion edges in an iteration 70
4.5.4 Putting everything together . . . . . . . . . . . . . . . . 84

4.6 NP-hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Bounded-Degree Traveling Salesman Problem 88
5.1 Overview and the basics . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Bounded-Degree TSP (Warm Up!) . . . . . . . . . . . . . . . . 93
5.3 Bounded-Degree Subset TSP . . . . . . . . . . . . . . . . . . . . 94

vi



5.3.1 Proof of Theorem 67 . . . . . . . . . . . . . . . . . . . . 98
5.3.2 Proof of Theorem 68 . . . . . . . . . . . . . . . . . . . . 101
5.3.3 Proof of Lemma 70 . . . . . . . . . . . . . . . . . . . . . 102

5.4 Proof of integrality of (BD-Y-join LP) . . . . . . . . . . . . . . 108

6 Conclusion 115
6.1 DIRECTED STEINER TREE . . . . . . . . . . . . . . . . . . . . . 115
6.2 BOUNDED-DEGREE TRAVELING SALESMAN . . . . . . . . . . . 117

References 119

vii



List of Figures

1.1 In (a) we are given an instance of DST where the terminal
nodes are depicted with squares, and the edge costs are shown
next to the edges. In (b), green edges form a feasible solution
for the DST instance in (a). . . . . . . . . . . . . . . . . . . . . . 2

1.2 In (a) we are given a road network with edge costs shown next
to the edges. If we are interested only in a minimum cost tour
(like in TSP) then the green edges in (b) is such solution with
cost 8. Now suppose we are given degree bounds 2 on all the
vertices and our tour must respect these bounds. Then, the
solution in (b) is not feasible for this instance of BDTSP. In (c)
we show a tour of cost 11 that respects all the degree bounds. 5

1.3 In (a) we are given a planar MR-DST instance with three roots
shown in red. In (b) we show the resulting single rooted DST
instance obtained from the reduction discussed before. Note
that this graph is isomorphic to K3,3 (i.e., complete bipartite
graph with three nodes on each side) which is not planar. . . . 8

2.1 Primal-dual algorithm for ARBORESCENCE. . . . . . . . . . . . 20
2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 An example of Y-join. The set Y is indicated by large (blue)

vertices. A Y-join is indicated by red dashed edges in (b). . . . 24
2.4 (a) shows the original graph and (b) shows the resulting graph

after splitting-off (su, sv) pair. . . . . . . . . . . . . . . . . . . . 26

3.1 Throughout, squares are terminals and circles are Steiner nodes
or the root node r. In (a) the separator is shown with dashed
edges and solid vertices. The weakly connected components
of G \ T are shown as circles denoted by C1 and C2. Note that
we did not show any edge directed from C1 or C2 into the sep-
arator because we can safely remove these edges. In (b) the
subinstances IC1 and IC2 induced by (G, T, C1, C2) are depicted.
In (c), the solutions for each subinstances are shown. Finally,
(d) shows how to merge the solutions in (c) to get a solution
for the original instance. Note that leaf nodes are not necessar-
ily terminals. One could prune them as a post-processing step,
but that is not required by our algorithm. . . . . . . . . . . . . 35

viii



3.2 A depiction of the multi-rooted separator in an instance with
R = 5 roots. The solid edges (thick and thin) are the branch-
ings Ai for i = 1, . . . , R. The dashed edges are F′. After apply-
ing Theorem 13 to this tree (in the undirected sense), we get
three vertices depicted as u, v, w. The marked vertices, as in
the proof of Lemma 22, are u, v, w and the endpoints of thick
dashed edges. Then, the separator constructed in the lemma
contains dipaths from the root node to the marked vertices in
each Ai plus the thick dashed edges. . . . . . . . . . . . . . . . 45

4.1 This is an example to show why a standard primal-dual algo-
rithm fails. The square vertices are terminals. The downward
blue edges (i.e., (wi, zi−1)’s for 2 ≤ i ≤ k) have cost 1, the up-
ward blue edges (i.e., (zi, wi)’s for 1 ≤ i ≤ k) have cost 0. The
cost of the black edges are shown in the picture. Note any fea-
sible solution contains all the blue edges and the cost of an op-
timal solution is k + 1. However, the total dual variables that
are grown using a standard primal-dual algorithm is 2 (both
the bottom and top moats raises their dual variable to 1 and
stop growing). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Above is a part of a graph at the beginning of iteration ℓ in
the algorithm. Fℓ denotes the set F at this iteration. The circles
are SCCs in (V, Fℓ). Blue circles are inside some active moats
shown with ellipses. The black dots s and s′ are Steiner nodes.
The black edges and the zigzag paths are in Fℓ. The edges e, e′,
and e′′ have not been purchased yet (i.e., e, e′, e′′ /∈ Fℓ). Since CA
is a subset of an active moat namely A ∪ B ∪ {s} with respect
to Fℓ ∪{e}, e is an expansion edge with respect to A. However,
e is a killer edge with respect to A′ and e′′ is a killer edge with
respect to A. Finally, e′ is a killer edge with respect to A′ (and
A′′) because there is a Fℓ ∪{e′}-path from CA to CA′ (and CA′′),
therefore CA′ (and CA′′) cannot be inside an active moat with
respect to Fℓ ∪{e′}. . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 (a) shows part of the subgraph Fℓ ∪F of G, in particular, the
SCCs of (V, Fℓ) are shown with circles but the nodes inside
SCCs are not shown for simplicity. The blue SCCs are inside
some active moats shown with dashed ellipses. Contracting all
the SCCs result in the graph H discussed before. Black edges
are in Fℓ, blue edges are in F \ Fℓ, and green edges are in Fℓ

Exp.
In (b), we have a shortest path arborescence rooted at r where
the cost of edges is one if it is green and zero otherwise. Note
that e is a bad expansion edge with respect to this arborescence.
In (c), we show how to construct an arborescence using cut-
and-paste procedure so that every expansion edge is a good
expansion edge in the resulting arborescence. . . . . . . . . . . 73

ix



4.4 The left picture shows the subgraph Fℓ ∪F. The SCCs of (V, Fℓ)
is shown with circles and the blue ones are inside some active
moats shown with dashed ellipses at iteration ℓ. Zigzag paths
and black edges are in Fℓ, blue edges are in F \ Fℓ, and green
edges are in Fℓ

Exp. The right picture shows Haux constructed
from Fℓ ∪F. The red edges are the auxiliary edges. . . . . . . . 75

5.1 This is the graph G = (V, E) that shows the (4
3 ,+2) integrality

gap of the natural LP for BDTSP (BDTSP-LP). All vertices are
terminals, the cost of blue edges is zero and the cost of black
edges is 1. The LP value on blue edges are 1

2 , and 1 on all the
other edges. Also bv = 2 for all v ∈ V. Note that the cost of
the LP is 3 · k and satisfies all the degree bounds. However, in
any integer solution we must cross one of the path of length k
at least twice. Therefore, any integer solution will violate the
degree constraint by at least an additive factor of 2 and its cost
is at least 4 · k which give the desired integrality gap. . . . . . 90

5.2 Let Y = {u, v} and degree bound for all three vertices is 1.
Note w /∈ Y but bw = 1. Then, the optimal Y-join is the edge
uv with cost M. However, setting 1

2 on all the edges is a fea-
sible solution for (BD-Y-join LP) with cost M

2 . Therefore, the
integrality gap of (BD-Y-join LP) is at least as bad as 2. . . . . 108

x



Chapter 1

Introduction

Network design is one of the most fundamental area in combinatorial opti-

mization due to its contribution to both theory and practice. From the prac-

tical side, network design has applications in VLSI chip design, traffic and

telecommunication networks, to name but a few. From the theory side, the

study of network design contributed to the development of many algorith-

mic ideas, e.g. the iterative rounding techniques and primal-dual framework

in the past three decades.

A typical problem in network design deals with a (directed or undirected)

graph G = (V, E) with non-negative edge costs and one seeks a subgraph of

G with certain graph properties while minimizing the total cost of edges in

the subgraph. Many graph properties are determined by connectivity re-

quirements. For example, a connectivity requirement may be that the out-

put subgraph must contain a path between two given nodes s and t which

becomes the SHORTEST PATH problem, or in a directed graph we might be

interested in a cheapest spanning subgraph rooted at a vertex r such that

every vertex is reachable from r in this subgraph which is known as the AR-

BORESCENCE problem. The decision versions of both of these problems are

in complexity class P, i.e., polynomial time decidable.

One of the classical problems in network design is to find a cheapest way

of connecting a designated subset of vertices in a (directed or undirected)

network. More formally, in the DIRECTED STEINER TREE problem (DST) we

are given a directed graph G = (V, E), a root node r ∈ V, non-negative edge
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Figure 1.1: In (a) we are given an instance of DST where the terminal nodes
are depicted with squares, and the edge costs are shown next to the edges. In
(b), green edges form a feasible solution for the DST instance in (a).

costs ce ≥ 0 for all e ∈ E, and a set of terminal nodes X ⊆ V \ {r}. The goal is

to find a cheapest subgraph (i.e., the total cost of the edges in the subgraph)

such that there is a dipath from r to every x ∈ X in the subgraph. The nodes

in V \ ({r} ∪ X) are called Steiner nodes. DST becomes the ARBORESCENCE

problem when X = V. Throughout we let n := |V| and k := |X|. See Figure

1.1 for an example.

One key aspect of DST lies in the fact that it generalizes many other im-

portant problems, e.g. UNDIRECTED STEINER TREE, SET COVER, and GROUP

STEINER TREE. This generalization comes at the cost of being notoriously

hard problem, i.e., it is known that the problem is NP-hard [39]. For this rea-

son, a large effort has been put toward designing approximation algorithms for

DST.

An α-approximation algorithm (α ≥ 1) for a minimization problem com-

putes a solution of cost at most α times the cost of an optimal solution in

polynomial time in the size of the input unless stated otherwise.

Not only is DST NP-hard, but it cannot be approximated within

O(log2−ε n) for any ε > 0 unless NP ⊆ ZTIME (npolylog (n)) [35] (i.e., ev-

ery problem in NP admits a probabilistic algorithm whose expected running

time is npolylog (n), where n is the size of the input, with zero error probability).

The best upper bound known is from more than two decades ago [11] who
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gave a O(kε)-approximation for any constant ε > 0. The same paper [11]

also showed a O(log3 k)-approximation in O(npolylog(k)) time (a.k.a. quasi-

polynomial time). This was recently improved by Grandoni, Laekhanukit

and Li [32], who gave a quasi-polynomial time O(
log2 k

log log k )-approximation

factor for DST. They also provided a matching lower bound in that no

asymptotically-better approximation is possible even for quasi-polynomial

time algorithms under more refined complexity theoretic assumptions.

The undirected version of DST (i.e., UNDIRECTED STEINER TREE) is better

understood. In this problem, the graph is undirected and there is no root

node. The goal is to find a cheapest subgraph (in this case a tree) that connects

all the terminal nodes. A series of papers steadily improved over the simple

2-approximation [40], [59], [62], [72] culminating in a ln 4+ ε for any constant

ε > 0 [7]. Bern and Plassmann [5] showed that unless P = NP there is no

approximation factor better than 96
95 for UNDIRECTED STEINER TREE.

Studying the complexity of network design problems on restricted met-

rics such as planar graphs and more generally, graphs that exclude a fixed

minor has been a fruitful research direction. Garey and Johnson [27] showed

the UNDIRECTED STEINER TREE problem is NP-hard even on planar graphs.

Borradaile et al. [6] gave the first polynomial time approximation scheme (PTAS)

for UNDIRECTED STEINER TREE on planar graphs and more generally [4] ob-

tained a PTAS for STEINER FOREST on graphs of bounded-genus. Intuitively,

graphs with bounded-genus can be drawn without edges crossing each other

on a sphere with bounded number of handles (e.g., planar graphs can be

drawn on sphere with no handles). A PTAS is a (1 + ε)-approximation al-

gorithm with running time being polynomial for any constant ε > 0. Very

recently, Cohen-Addad [13] presented a quasi-polynomial time approximation

scheme (QPTAS) for UNDIRECTED STEINER TREE on minor-free graphs (this

family for example contains planar graphs and bounded-genus graphs). A

QPTAS is a (1 + ε)-approximation whose running time is nO(polylog n) for any

constant ε > 0. In this sense, we know it is “easier” to approximate UNDI-

RECTED STEINER TREE on planar graphs than in general graphs. However,

3



this distinction was not clear in the directed setting. The first two chapters of

this thesis address this distinction.

Question 1. In what settings (e.g., what family of graphs), is DST easier to approx-

imate than in general graphs?

Another example of network design problems, probably the most famous

problem in combinatorial optimization, is the TRAVELING SALESMAN prob-

lem (TSP). Given a set of cities in a road network represented by a graph,

the task is to find a minimum cost tour (closed walk) visiting all cities.

This problem has various practical applications from logistics to genome se-

quencing. TSP hosts a wide variety of algorithmic techniques including the

Christofides-Serdyukov algorithm [12], [65] from 1976 to a more complex im-

provement by Karlin, Klein, and Oveis Gharan [38] from 2021.

In classic TSP, a minimum cost tour may pass through a location many

times. However, in coming up with a travel plan on a road network, there

are other factors to consider besides the cost. For example, one might prefer

to go on a longer trip to avoid busy intersections or narrow junctions or at

least limit the number of times they pass through busy locations. Another

reason could be that a disruptive big truck prefers to avoid narrow intersec-

tions as much as possible. This motivates us to generalize TSP in the follow-

ing way. We are given an undirected graph G = (V, E), non-negative edge

costs ce ≥ 0 for all e ∈ E (not necessarily forming a metric), and even integer

degree bounds bv for all v ∈ V. The goal is to find a minimum cost tour that

passes through v at most bv
2 times for all v ∈ V (i.e., the number of edges in-

cident to v in the tour is at most bv). We call this problem BOUNDED-DEGREE

TRAVELING SALESMAN problem (BDTSP). See Figure 1.2 for an example.

In real-world applications, TSP problems are often concerned with visit-

ing a subset of nodes of some larger graph. Thus, we consider the BOUNDED-

DEGREE SUBSET TRAVELING SALESMAN problem (BDSTSP) in which we are

given an undirected graph G = (V, E) with edge costs ce ≥ 0 for all e ∈ E, a

subset of terminals X ⊆ V to visit (|X| ≥ 2), and even integer bounds bv ≥ 0

4
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Figure 1.2: In (a) we are given a road network with edge costs shown next to
the edges. If we are interested only in a minimum cost tour (like in TSP) then
the green edges in (b) is such solution with cost 8. Now suppose we are given
degree bounds 2 on all the vertices and our tour must respect these bounds.
Then, the solution in (b) is not feasible for this instance of BDTSP. In (c) we
show a tour of cost 11 that respects all the degree bounds.
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for all nodes v ∈ V. The goal is to find a minimum cost tour Q spanning

all terminals such that dQ(v) ≤ bv (i.e., the number of edges in the multiset

Q incident to v is at most bv). Note that this is a generalization of BDTSP

(i.e., X = V). Without these degree bounds, the problem is equivalent to TSP,

e.g. by considering the metric completion of the underlying graph and then

restricting it to X.

Finding special subgraphs whose vertices satisfy some degree bounds has

been an active research area in computer science and operations research,

e.g., BOUNDED-DEGREE SPANNING TREES [29], [66], BOUNDED-DEGREE

STEINER NETWORKS [47], [49], [50], [54], BOUNDED-DEGREE ELEMENT-

CONNECTIVITY and BOUNDED-DEGREE VERTEX-CONNECTIVITY [26], [43].

However, to the best of our knowledge, BDTSP has not been previously con-

sidered. In Chapter 5, we study the following question:

Question 2. What could one hope to achieve for BOUNDED-DEGREE SUBSET

TRAVELING SALESMAN in terms of algorithm design with provable guarantees?

1.1 Outline and contributions of this thesis

In Chapter 2 we introduce some basic notation and briefly summarize well-

known facts from combinatorial optimization that we will use in later parts

of this thesis.

Chapter 3. In this chapter, we study the first question posed above.

More precisely, we present an O(log k)-approximation for DST on pla-

nar graphs. Given the hardness result for DST on general graphs (i.e.,

DST cannot be approximated within O(log2−ε n) for any ε > 0 unless

NP ⊆ ZTIME (npolylog (n)) [35]), this shows DST is easier to approxi-

mate on planar graphs than in general graphs. We use Thorup’s sep-

arator result [68] for planar graphs. This separator paired with a sim-

ple aggressive guessing of the optimal value leads to an easy O(log k)-

approximation in quasi-polynomial time. Then, we show that one

6



could be smarter in the guessing part and reduce the running time to

polynomial. These results appeared in [25].

Our results here trivially extend to the node-weighted instances of DST

where the Steiner nodes have non-negative cost. This is an extension of

DST because we can subdivide an edge with a Steiner node of the same

cost. Thus, in general graphs, node-weighted instances of DST reduces

to the edge-weighted instances. However, this reduction does not pre-

serve planarity. Here we show our approach also yields an O(log k)-

approximation for node-weighted instances of DST.

Another generalization that we consider is multi-rooted instances where

instead of one root, we are given multiple roots and a feasible solution

is a subgraph such that every terminal node is reachable from a root

node. In general graphs, there is an easy reduction from multi-rooted

instances to the single rooted instance: add an auxiliary node r∗ and ori-

ent an edge of cost zero from r∗ to all the original roots. However, like

before this reduction does not preserve planarity, see Figure 1.3. For

this generalization, we give two approximation algorithms: first one

is a polynomial time approximation algorithm whose approximation

factor depends on the number of roots, more specifically, the approx-

imation factor is O(R + log k), where R is the number of roots. The

second algorithm recovers the same approximation factor as in the sin-

gle rooted case (i.e., O(log k)); however, the running time is exponential

in the number of roots and log k. When R = polylog k, the second al-

gorithm recovers the same approximation factor as in the single rooted

case in quasi-polynomial time.

Chapter 4. In this chapter we continue our study of Question 1. An-

other well-studied setting in UNDIRECTED STEINER TREE and DST is

quasi-bipartite instances. These are instances where there is no edge

between any two Steiner nodes (i.e., V \ (X ∪ {r}) is an independent

set in the input graph).

7



r1 r2 r3

(a)

r∗

r1 r2 r3

(b)

Figure 1.3: In (a) we are given a planar MR-DST instance with three roots
shown in red. In (b) we show the resulting single rooted DST instance ob-
tained from the reduction discussed before. Note that this graph is isomor-
phic to K3,3 (i.e., complete bipartite graph with three nodes on each side)
which is not planar.

Quasi-bipartite instances were first studied in UNDIRECTED STEINER

TREE setting by Rajagopalan and Vazirani [60]. Feldmann et al. [19]

studied UNDIRECTED STEINER TREE on graphs that do not have an

edge-induced claw on Steiner vertices, i.e., no Steiner vertex with

three Steiner neighbours, and presented a faster ln(4)-approximation

than the algorithm of [7]. Currently, the best approximation in quasi-

bipartite instances of UNDIRECTED STEINER TREE is 73
60 -approximation

[30].

Hibi and Fujito [36] presented an O(log |X|)-approximation algorithm

for quasi-bipartite instances of DST. Assuming P ̸= NP, this result

asymptotically matches the lower bound (1 − o(1)) · ln |X| for any

ε > 0; this lower bound comes from the hardness of SET COVER [15],

[18] and the fact that quasi-bipartite DST generalizes the SET COVER

problem.

Our contribution here is an O(1)-approximation for quasi-bipartite DST

on graphs excluding a fixed minor (e.g. planar graphs). We also show

this problem is NP-hard. The results in this chapter are published in

[23].

Our technique is based on a well-known framework in algorithm de-

sign called primal-dual algorithms. However, we show the generic

8



primal-dual framework used in past work is not enough. We overcome

this difficulty by highlighting different roles for edges in connecting the

terminals to the root. For some edges, we maintain two “slacks”: while

raising dual variables, these two slacks for an edge may be filled at

different rates (depending on the edge’s role for the various dual vari-

ables being raised) and we purchase the edge when one of its slacks

is exhausted. Furthermore, unlike the analysis of standard primal-dual

algorithms where the charging scheme is usually more local (i.e., charg-

ing the cost of purchased edges to the dual variables that are “close

by”), we need to employ a more global charging scheme. Our approach

also provides an O(1) upper bound on the integrality gap of the natural

cut-based relaxation for graphs that exclude a fixed minor.

Chapter 5. In this chapter, we address Question 2. We need the fol-

lowing notation to discuss our results. An (α,+d)-approximation algo-

rithm for BDSTSP, outputs a tour whose cost is at most α times the value

of an optimal tour and violates the degree bound by an additive factor

of d (i.e. the degree of the tour at v will be at most bv + d). All of our

results are based on LP rounding and therefore bound the integrality of

the respected LPs.

We begin by noting that the integrality gap of a natural LP for BDTSP

is (4
3 ,+2), i.e., any tour has cost at least 4/3 times the LP optimum and

any tour violates the degree bound of at least one vertex by at least

+2. Furthermore, we cannot hope for any approximation algorithm

that outputs a tour of cost at most α times the optimal cost (for any

α) with no violation in the degree bounds as otherwise it decides the

HAMILTONIAN CYCLE problem which is known to be NP-complete.

Motivated by these observations, we investigate the trade-offs between

the cost of the tour and degree violation of vertices in the tour.

The general framework achieving our approximation algorithms are

similar to Wolsey’s analysis [70] of the Christofides-Serdyukov al-

9



gorithm for TSP. In particular, almost the same approach leads

to a (3
2 ,+4)-approximation for BDTSP. For BDSTSP, Wolsey’s tech-

nique does not work readily. However, we show a simple (5
3 ,+4)-

approximation which is reminiscent of the work on the TRAVELING

SALESMAN PATH problem [3]. In all the above algorithms, we use a re-

sult of Lau and Singh [49] on BOUNDED-DEGREE STEINER NETWORKS

as a black-box.

In order to improve the cost factor, we first augment the natural LP

for BDSTSP with non-trivial constraints asserting the degree of Steiner

cuts should be at least the degree of any Steiner node in the cut. Then,

we modify the iterative rounding algorithm of [49] using splitting off

techniques by Mader [55] to obtain a more “structured” Steiner tree.

Namely, some Steiner nodes are designated dangerous because they

have low fractional degree in our LP solution: our modification ensures

dangerous nodes will have even degree in the resulting tree. Finally,

we show how this Steiner tree helps us to obtained a better bounded-

degree Y-join to fix the degree parity of odd-degree vertices. Overall we

get (13
8 ,+6) and (3

2 ,+8) approximation factors for BDSTSP. The results

in this chapter appeared in [24].

10



Chapter 2

Preliminaries

The purpose of this chapter is to introduce some notation and classic re-

sults in combinatorial optimization used throughout this thesis. Apart from

the first section that discusses the notation, the rest of this chapter may be

skipped depending on the familiarity of the reader with the subjects.

2.1 Notation and terminology

We define the following three classes of algorithms based on their running

time as a function of the input size n := |I|:

• Polynomial time: the running time is O(nc) for some constant c > 0.

• Quasi-polynomial time: the running time is nO(logc n) for some constant

c > 0.

• Exponential time: the running time is O(2nc
) for some constant c ≥ 1.

An algorithm for a minimization (resp. maximization) problem is said to

be an α-approximation algorithm for α ≥ 1 (resp. α ≤ 1) if for every in-

stance I of the problem, it outputs a solution whose value is at most α · optI

(resp. at least α · optI) where optI is the optimum value of instance I, and

runs in polynomial time in |I| unless stated otherwise. We sometimes drop

the subscript if the instance is clear from the context. The running time of an

approximation algorithm is assumed to be polynomial in the size of the input

unless stated otherwise. For the rest of the discussion here we only consider
11



minimization problems; however, the definition for maximization versions

are similar. A polynomial time approximation scheme (PTAS) for a mini-

mization problem is a (1 + ε)-approximation algorithm whose running time

is polynomial for any constant ε > 0. A quasi-polynomial time approxima-

tion scheme (QPTAS) for a minimization problem, is a (1+ ε)-approximation

algorithm whose running time is quasi-polynomial for any constant ε > 0.

We denote a graph with a tuple G = (V, E), where V is the vertex set and E

is the edge multi-set. An edge between u and v is denoted by e = (u, v) where

in directed graphs (digraphs for short) this means the edge is oriented from

u to v. For brevity, in undirected graphs we denote an edge with endpoints

u and v by uv. We will make it clear when we are discussing a directed or

undirected graph.

Graphs discussed in this thesis are multi-graphs, i.e., there could be mul-

tiple edges between two endpoints (parallel edges) but no self-edges (loops),

unless stated otherwise. For a (sub)graph H, we denote by V(H) the vertex

set of H and E(H) the edge set of H. Given a subset S ⊆ V, denote by E[S]

the set of edges in E with both endpoints in S.

Let G = (V, E) be a directed graph. We say G is strongly connected if for

any pair of vertices u, v ∈ V there are directed path (dipaths for short) from

u to v and vice-versa in G. We say a set S ⊆ V is a strongly connected com-

ponent (SCC) of G if (S, E[S]) is strongly connected graph and S is inclusion-

wise maximal (i.e., there is no set V ⊇ T ⊃ S such that (T, E[T]) is strongly

connected). We can view F ⊆ E as a subgraph of G where the vertex set is

V(F), i.e., all the endpoints of edges in F, and the edge set is F. So F ⊆ E is

an SCC if (V(F), F) is a strongly connected graph.

Fix a graph G = (V, E). By contraction of an edge e = (u, v), denoted

by G/e, we mean identification of u and v, i.e., replacing u and v by a new

vertex w adjacent to all the former neighbours (adjacent vertices) of u and v.

We delete all the loops but keep all the parallel edges created in this process.

Suppose (u, z) is an edge, then we say the corresponding edge of (w, z) in the

original graph is (u, z). Let H be a subgraph of G. We denote by G/H the

12



resulting graph obtained by contracting all the edges in H and denote G \ H

the resulting graph by removing H from G, i.e., removing all the vertices in

V(H) and edges incident to those vertices.

A graph H is a minor of a graph G if it can be obtained by repeatedly

deleting vertices, deleting edges, and contracting edges of G. We say G has

an H-minor if there is a minor of G that is isomorphic to H and we say G

is H-minor free otherwise. A family of graphs is H-minor free if each graph

in the family is H-minor free. For example, it is known that planar graphs

is a family of graphs that is K5-minor free and K3,3-minor free, where K5 is

a complete graph on 5 vertices and K3,3 is a complete bipartite graph with 3

vertices on each side [46], [69].

Often the graphs we consider come with edge costs ce ≥ 0 for all e ∈ E.

For a subset of edges F ⊆ E, the cost of F is defined as costc(F) := ∑
e∈F

ce.

Similarly, for a vector x ∈ RE (i.e., an |E|-dimensional vector with real value

coordinates and the each coordinate corresponds to an edge in E) we define

x(F) := ∑
e∈F

xe and costc(x) := ∑
e∈E

ce · xe for any F ⊆ E. If the edge cost c

is clear from the context, we may drop the subscripts in costc(.). To keep

the notation light, for a subgraph H we may use cost(H) or x(H) instead of

cost(E(H)) and x(E(H)), respectively.

The degree of a vertex v in an undirected (sub)graph H is the number of

edges in H (with multiplicity) whose one endpoint is v and denoted by dH(v).

Given subset of edges F, we define odd(F) := {v ∈ V : dH(v) is odd}. An

undirected graph G = (V, E) is Eulerian if dG(v) is even for all v ∈ V.

For a U ⊆ V we define

δG(U) := {e ∈ E : exactly one endpoint of e is in U}

to be the set of edges in the cut corresponding to U. We say U is a s, t-cut

if |U ∩ {s, t}| = 1.

If G is directed, then for U ⊆ V we define

δin
G (U) := {(v, u) ∈ E : u ∈ U, v /∈ U}

13



to be the set of incoming edges of U. Similarly, the set of outgoing edges of

U is defines as δout
G (U) := δin(V \U). We define δin

G (v) := δin
G ({v}) and write

|δin
G (v)| as the indegree of v. We omit the subscript above if the underlying

graph is clear from the context.

Let F ⊆ E, then the characteristic vector of F, χ(F) is an |E|-dimensional

vector whose coordinates correspond to E and the e-th coordinate is 1 if e ∈ F

and zero otherwise. Let F be a multi-subset of E (so there could be multi-

ple occurrences of an element in E), then the incident vector of F is an |E|-
dimensional vector where its e-th coordinate is equal the number of occur-

rences of e in F.

An arborescence in a directed graph G = (V, E) rooted at r ∈ V is a

spanning subgraph with |V| − 1 edges and indegree of every vertex in V \ {r}
is exactly one and indegree of r is zero.

2.2 Linear programming

In linear programming (LP), we are given a matrix A ∈ Rm×n, vectors b ∈ Rm

and c ∈ Rn. The goal is to find x ∈ Rn
≥0 such that Ax ≥ b and cTx is

minimized. We formulate this problem as follows:

minimize: cTx (Primal-LP)

subject to: Ax ≥ b (2.1)

x ≥ 0

The polyhedron P := {x ∈ Rn : Ax ≥ b, x ≥ 0} is the set of feasible

solutions for (Primal-LP). If A and b are rational, then P is called rational

polyhedron. A bounded polyhedron is called polytope. We say x ∈ P is an

extreme point of P if there does not exist a non-zero vector y ∈ Rn such that

x + y, x − y ∈ P. A polyhedron P is integral if every extreme point of P is

integral.

There are different forms in which an LP can be represented. However,

all these forms are equivalent to the form we consider above.
14



Khachiyan [42] proved linear programs can be solved in polynomial time

in the size of the input for rational A, b, and c. Here “solve” means either

the algorithm finds an optimum solution, or declares it is infinite, or outputs

the feasible region is empty. This result requires the LP to be given explic-

itly. Khachiyan’s algorithm is often referred to as ellipsoid method. Later

Grötschel, Lovász, and Schrijver [33] showed that for the ellipsoid method to

work it is “sufficient”1 if the feasible region, P, is given only implicitly via a

separation oracle. A separation oracle for a convex set P, receives a vector

y ∈ Qn and either decides y ∈ P or finds a vector a ∈ Qn such that aTx < aTy

for all x ∈ P.

Often in applications of linear programs in algorithm design, we need to

compute an optimal solution that is an extreme point of the LP. Grötschel,

Lovász, and Schrijver [33] showed this is doable in polynomial time given a

separation oracle. Again this result uses some mild assumptions that hold

for all the problems we consider in this thesis.

The following is an important property of extreme points of a polyhedron.

Lemma 1 (Rank Lemma [48]). Let P = {x ∈ Rn : Ax ≥ b, x ≥ 0} be

a polyhedron and let x be an extreme point of P such that xi > 0 for each 1 ≤
i ≤ n. Then, any maximal number of linearly independent rows ai’s of A with

corresponding tight constraints (i.e., aT
i x = bi) equals the number of variables (i.e.,

n).

LP duality

The dual of (Primal-LP) is

maximize: bTy (Dual-LP)

subject to: ATy ≤ c

y ≥ 0

1With some reasonable assumptions such as the feasible region is a rational polytope, we
have a bound on the bit complexity of the vertices of the polytope, and knowing a point in
the interior of the polytope. The LP relaxation for combinatorial problems usually satisfy
these conditions.
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We have the following relations between (Primal-LP) and (Dual-LP) that

can be found in any combinatorial optimization textbook, e.g. [45].

Theorem 2. Let A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. Then, we have

• (Weak duality) For any x ∈ Rn feasible for (Primal-LP) and any y ∈ Rm

feasible for (Dual-LP) we have bTy ≤ cTx.

• (Strong duality) If (Primal-LP) is feasible and bounded so is (Dual-LP) and

both LPs have the same optimal value.

LP relaxations

Given an optimization problem whose feasible solutions can be represented

by incident vectors (e.g. the incident vector could indicate whether an edge is

in the solution or not by having 0 or 1 in the corresponding entry), we say an

LP is a relaxation for this problem if the incident vector of feasible solutions

of I (an instance of the problem) are feasible solutions of the LP with the

same cost. For example, consider the ARBORESCENCE problem, where we

are given a directed graph G = (V, E), a root node r ∈ V, and edge costs

ce ≥ 0 for all e ∈ E. The goal is to find an arborescence with minimum cost.

The following is an LP relaxation for this problem.

minimize: ∑
e∈E

ce · xe (Arb LP)

subject to: x(δin(S)) ≥ 1 ∀∅ ̸= S ⊆ V \ {r}

x ≥ 0

Note that the optimum value of a relaxation for an instance I (of a mini-

mization problem) is at most optI , the optimal value of the instance I. We say

an LP is integral if it has an integral optimal solution (i.e., all the coordinates

of the vector is integers). For example, the result discussed in the next section

shows (Arb LP) is integral.

Integrality gap

16



Consider a minimization problem with an LP relaxation. Let I be an instance

of this problem and let LPI be the optimum value of the LP relaxation for

instance I. The integrality gap of this LP is define as

sup
I

optI
LPI

.

We note that sometimes the integrality gap depends on the size, n, of the

input, e.g. log n,
√

n. So the integrality gap could be a function of the input

size.

The importance of this notion lies in the fact that it gives a conditional

lower bound for the approximability of the underlying problem using the

LP relaxation. More precisely, if the integrality gap of an LP relaxation for a

problem is β, then we cannot get better than β-approximation for the problem

by rounding a solution of this relaxation to an integral one.

2.3 Arborescences and primal-dual algorithms

As we discussed in the introduction, one of the tools we use in this thesis is

the primal-dual framework. In this approach one simultaneously builds an ap-

proximate solution for the problem and a feasible (fractional) solution for the

dual of an LP relaxation of the problem. We demonstrate this approach with

proof sketches of the analysis in more details on the ARBORESCENCE problem

(defined in the previous section). We demonstrate Edmonds’ algorithm [16]2

for ARBORESCENCE here because this algorithm captures the generic primal-

dual framework that is used in many combinatorial optimization problems,

see [31] for many such examples. Furthermore, this algorithm is a starting

point in our algorithm for quasi-bipartite DST on planar graphs, see Chapter

4.

We consider (Arb LP) as a relaxation for the ARBORESCENCE problem.

The dual of this relaxation is define as follows.
2With slight modification where in [16] the active dual variables are raised one at the time

but the way we present it here is all the active dual variables are raised at the same time. The
latter approach works as well. The reason we present it like this is because it is more aligned
with the generic primal-dual framework.
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minimize: ∑
∅ ̸=S⊆V\{r}

yS (Arb-dual LP)

subject to: ∑
S:e∈δin(S)

yS ≤ ce ∀e ∈ E (2.2)

y ≥ 0

Note that in any feasible solution for ARBORESCENCE, for every subset of

vertices S that separates a terminal node from the root node, there must be at

least one edge entering S. At each iteration of the primal-dual algorithm, we

have a “partial” solution for the instance meaning there are some sets that

violate the mentioned property and we would like to extend this partial so-

lution to a feasible solution. This motivates the following definition: given a

subset of edges F ⊆ E, we say a set ∅ ̸= S ⊆ V \ {r} is violated if δin
F (S) = ∅.

We call a minimal (inclusion-wise) violated set, an active set (or sometimes

also called active moat). For example, when F = ∅ then every singleton {v}
is an active set for all v ∈ V \ {r}.

Algorithm 1 Primal-dual algorithm for ARBORESCENCE

Input: Directed graph G = (V, E), a root node r ∈ V, and edge cost ce ≥ 0
for all e ∈ E.
Output: An Arborescence rooted at r.

F ← ∅.
ℓ← 0
Growing phase:
A, initially, is the set to all singletons {v}’s for v ∈ V \ {r}.
while A ̸= ∅ do
ℓ← ℓ+ 1
Increase the dual variables corresponding to all the active moats until
for some edge eℓ we have ∑

S:eℓ∈δin(S)
yS = ceℓ . Add eℓ to F and update A

based on the updated set F.
Deletion phase:
F ← F.
for i from ℓ to 0 do

if F \ {ei} is an arborescence then
F ← F \ {ei}.

return F.
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Algorithm 1 falls into the following framework. Increase all the dual

variables corresponding to active moats uniformly until a dual constraint be-

comes tight. Then, add the “object” (here objects are edges), corresponding

to the tight constraint, to the solution. And at the end, we delete “redundent”

edges in the reverse order they have been purchased. Many existing primal-

dual algorithms in the literature use this framework and because of this we

refer to Algorithm 1, the standard primal-dual algorithm.

Example 3. Let us show how Algorithm 1 works on an example. In Figure 2.1(a) we

are given an instance of the ARBORESCENCE problem. Active moats are shown in

blue. The moats that become inactive are depicted in red, and green edges are the ones

the algorithm adds them to F. Letters in parenthesis refer to the subfigures in Figure

2.1. In (b), all the singleton vertices are active and we raise their corresponding

dual variables to 1. Then, the active moats {u}, {v}, {w} become inactive because

there are edges of cost 1 entering them. The algorithm adds these edges to F, this is

shown in (c). Next, the only active moat, {z}, raises its dual variable from 1 to 2 and

the edge (w, z) will be added to F. Now, {z} becomes inactive but we have a new

SCC {v, w, z} that is violated. This process continues until there is no active moat,

see figures (d)-(f). Finally, edges (z, v) and (v, u) get deleted in the reverse delete

process. The final arborescence output by the algorithm is shown in (g).

One can show that Algorithm 1 outputs an optimal arborescence. The

high-level idea behind the analysis is as follows. Fix an iteration ℓ. One

can view the growth phase of the algorithm as active moats raising dollars

until we have for some edge (u, v), the sum of all the dollars in each moat

that contains v is equal to the cost of (u, v). Then, we can purchase (u, v).

The following are the steps one could take to show Algorithm 1 outputs an

optimal arborescence. Fix an iteration ℓ.

(i) One can show every active moat at iteration ℓ is an SCC (i.e., strongly

connected component).

(ii) The number of edges in the final solution (after deletion phase) entering

an active moat A at iteration ℓ is exactly 1. This is guaranteed by the
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Figure 2.1: Primal-dual algorithm for ARBORESCENCE.
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deletion phase and property (i).

(iii) Property (ii) ensures every dollar raised by active moat A at iteration ℓ

goes toward the cost of the edge in F entering A in this iteration. Since

there is only one edge entering A, there is no double charging.

(iv) Property (iii) ensures the dual raised in total is enough to pay for every

edge that is bought and we can write

∑
e∈F

ce = ∑
S⊆V

yS ≤ opt,

where the last inequality follows from the weak duality (see Theorem

2).

2.4 Laminar families

Let A and B be subsets of a common set. We say A and B are crossing if all

sets A∩ B, A \ B, B \ A are non-empty, and call them non-crossing otherwise.

Definition 4 (Laminar family). Let V be a finite set and let L be a family of subsets

of V. We say L is laminar if any pair of sets in L are non-crossing.

A laminar family L defines naturally a forest L (see Figure 2.2): each node

of L corresponds to a set in L, and there is an edge from set A to set B if A

is the smallest set containing B. A is called the parent of B and B is called the

child of A. A node with no parent is called root node.

The following is a simple known fact about any laminar family that will

be useful and its proof can be found, for example, in Chapter 4 of [48].

Lemma 5. Let V be a finite set and L be a laminar family of non-empty subsets of

V. Then, |L| ≤ 2 · |V| − 1.

2.5 Steiner trees and iterative rounding

In the UNDIRECTED STEINER TREE problem (or just STEINER TREE for short),

we are given an undirected graph G = (V, E) with edge costs ce ≥ 0 for
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all e ∈ E and a collection of terminals X ⊆ V. The nodes in V \ X are

called Steiner nodes. The goal is to find a minimum cost tree F ⊆ E span-

ning X. Note that in the case of X = V this problem becomes MINIMUM

COST SPANNING TREE, and if X = {s, t} then it turns to the st-SHORTEST

PATH problem which in both cases can be solved efficiently. However, in

general, the STEINER TREE problem cannot be approximated better than 96
95

unless P = NP [5]. A series of papers steadily improved over the simple 2-

approximation [40], [59], [62], [72] culminating in a (ln 4 + ε)-approximation

for any constant ε > 0 [7]. There is a natural LP relaxation for this problem:

minimize: ∑
e∈E

ce · xe (ST LP)

subject to: x(δ(S)) ≥ 1 ∀S ̸= X, S ∩ X ̸= ∅

x ≥ 0

In a seminal paper [37], Jain showed the integrality gap of the above LP is

at most 2. Actually he showed the integrality gap of 2 for a more general op-

timization problems. To prove this he developed an iterative rounding scheme

where he showed in an extreme point solution of (ST LP) there is a variable

xe ≥ 1
2 . This suggests the following recursive algorithm. Start with T = ∅.

Find an extreme point x of (ST LP). Pick an edge e with xe ≥ 1
2 and add it to

T. Delete e from the graph and update the LP by removing all the constraints

for all cuts that contains exactly one endpoint of e and repeat.

One can generalize STEINER TREE by augmenting it with degree bounds.
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In the BOUNDED-DEGREE STEINER TREE problem (BD-Steiner-TP), in addi-

tion to the input of STEINER TREE, we are given degree bounds bv ≥ 0 for all

v ∈ W ⊆ V. The goal is to find a minimum cost tree T that spans the termi-

nals and dT(v) ≤ bv for all v ∈ W. A natural relaxation for this problem is

given in (BD-ST LP). Lau and Singh [49] extended Jain’s iterative rounding

technique to this problem and showed the following.

Theorem 6 (Theorem 1.1 in [49]). There exists a polynomial time algorithm for

BD-Steiner-TP which given an extreme point x∗ of (BD-ST LP), returns a Steiner

tree T of cost at most 2 · cost(x∗) and dT(v) ≤ bv + 3 for all v ∈W.

The following is an immediate consequence of the above theorem.

Corollary 7. Let x be any feasible solution to (BD-ST LP). Then, in polynomial

time, one could get a Steiner tree T of cost at most 2 · cost(x) and dT(v) ≤ bv + 3

for all v ∈W.

Proof. Let x∗ be an optimal extreme point solution for (BD-ST LP) and then

apply Theorem 6 and noticing that cost(x) ≤ cost(x∗). As stated in the linear

programming section, there is a polynomial time algorithm that computes an

optimal extreme point solution given a separation oracle. One can design a

polynomial time separation oracle for (BD-ST LP), see the discussion below.

So overall the running time of the algorithm is polynomial.

minimize: ∑
e∈E

ce · xe (BD-ST LP)

subject to: x(δ(v)) ≤ bv ∀v ∈W

x(δ(S)) ≥ 1 ∀S ̸= X, S ∩ X ̸= ∅

x ≥ 0

Although (BD-ST LP) has exponentially many constraints, there is an

easy separation oracle for these constraints. Therefore, it can be solved via

ellipsoid method with running time polynomial in the number of variables.
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The separation oracle is as follows: given a vector x ∈ R
|E|
≥0, find a set S∗ in

G with minimum x(δ(S∗)), this is the MINIMUM-CUT problem which can be

solved in polynomial time, for example, see Chapter 8 in [45]. If the minimum

cut is less than one, then the incident vector corresponding to δ(S∗) forms a

separating hyperplane otherwise every cut has value at least 1, hence x is a

feasible solution for (BD-ST LP).

2.6 Y-joins

Let G = (V, E) be an undirected graph and let F ⊆ E be a multi-set of edges.

Recall odd(F) is the set of vertices in V whose degree with respect to F is odd.

Definition 8 (Y-join). Let G = (V, E) be an undirected graph and Y ⊆ V with

even cardinality. Then, J ⊆ E is a Y-join if odd(J) = Y3.

(a) (b)

Figure 2.3: An example of Y-join. The set Y is indicated by large (blue) ver-
tices. A Y-join is indicated by red dashed edges in (b).

An undirected graph G contains a Y-join if and only if every connected

component of G contains an even number of elements of Y (for a proof of this

fact, see T-join section in [45]). Given edge costs on G, the Y-JOIN problem

is to find a Y-join of minimum cost. Edmonds and Johnson [17] showed that

the feasible region of the following LP relaxation of Y-JOIN is integral.

3In the combinatorial optimization literature, this concept is referred to as T-join. How-
ever, since we use T for trees throughout this thesis, we adopt Y-join notation instead.
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minimize: ∑
e∈E

ce · xe (Y-join LP)

subject to: x(δ(S)) ≥ 1 ∀S ⊆ V s.t. |S ∩Y| is odd (2.3)

x ≥ 0

For subsets S where |S ∩ Y| is odd, we say S is a Y-odd set and the con-

straints corresponding to these subsets are called odd-cut constraints, i.e., the

constraints in (2.3). There is a separation oracle for this LP and so it can be

solved in polynomial time, for example, see Section 12.3 in [45].

One can show that in an extreme point x of (Y-join LP), there is always

an edge e = (u, v) whose x-value is either 0 or 1 (the proof is similar to the

same fact about matching polytope given in [48]). This suggests the follow-

ing simple iterative algorithm. Start with J = ∅. If xe = 0, then remove e

and remove all the constraints corresponding to set S that contains e in the

cut. Then, recursively solve the Y-join problem in the residual graph and the

updated LP. And if xe = 1, then add e to J, delete e from the graph and recur-

sively solve the (Y∆{u, v})-join problem in the residual graph. This is given

as an exercise in Chapter 9 of [48], where A∆B := (A \ B) ∪ (B \ A) is the

symmetric difference of A and B.

Just like STEINER TREE, we can generalize Y-JOIN to include degree

bounds. A natural LP relaxation for this generalization is to take (Y-join LP)

and add degree constraints to it. A less known fact in combinatorial opti-

mization is that this LP is integral under the condition that degree bounds

for vertices in Y are odd and even otherwise. We talk more about this in

Chapter 5 where we use this fact.

2.7 The splitting-off procedure

Fix an undirected multi-graph G = (V, E). We say edge e is a cut-edge if

there is a set S such that δ(S) = {e}. We denote the minimum cardinality of

a u, v-cut by λG(u, v). We say a pair of edges (su, sv) is a splittable pair if in
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G′ =
(
V, (E \ {su, sv}) ∪ {uv}

)
, we have λG(u, v) = λG′(u, v) for all u, v ∈

V \ {s}. In other words, removing su, sv and adding an edge between u and

v preserves the minimum u, v-cut value for all u, v ∈ V \ {s}. This process

is called splitting-off pair (su, sv). The following is a classical splitting-off

result by Mader.

Theorem 9 (Mader [20], [55]). Let G = (V, E) be a connected graph and let s ∈ V

be an even degree vertex. Assume there is no cut-edge incident to s. Then, there is a

splittable pair (su, sv) for some u, v (possibly u = v) adjacent to s.

When we remove all the splittable pairs so that there is no incident edge to

s, we say we completely split-off s. Since after applying Mader’s theorem, the

conditions of the theorem still holds for s, one can repeatedly apply Mader’s

theorem to completely split-off s while preserving the local connectivities be-

tween any pair of vertices in V.

s

u
v

(a)

s

u
v

(b)

Figure 2.4: (a) shows the original graph and (b) shows the resulting graph
after splitting-off (su, sv) pair.
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Chapter 3

Planar Directed Steiner Tree

In this chapter, we study Question 1 posed in the introduction. We show DST

on planar graphs is easier to approximate than in general graphs by giving

an O(log k)-approximation for DST on planar graphs. Since DST on general

graphs does not have an approximation factor better than O(log2−ε n) for

any ε > 0 unless NP ⊆ ZTIME (npolylog (n)) [35], where ZTIME(t) is the class

of problems that can be solved by probabilistic algorithms whose expected

running time is t with zero error probability. This makes a clear distinction

between the complexity of DST on planar graph and general graphs.

3.1 Introduction and outline

Let us first recall the definition of the DIRECTED STEINER TREE (DST) prob-

lem. We are given a directed graph G = (V, E) with edge costs ce ≥ 0 for all

e ∈ E, a root node r, and a collection of terminals X ⊆ V \ {r}. The nodes

in V \ (X ∪ {r}) are called Steiner nodes. The goal is to find a minimum cost

subset F ⊆ E such that there is an r− t directed path (dipath for short) using

only edges in F for every terminal t ∈ X. Note any feasible solution that is

inclusion-wise minimal must be an arborescence rooted at r. Recall the def-

inition of arborescence from Section 2.1. Throughout, we let n := |V| and

k := |X|.
Building on a height-reduction technique of Calinescu [8] and Zelikovsky

[71], Charikar et al. give a recursive greedy algorithm that currently provides

27



the best approximation for DST which is an O(kε)-approximation for any con-

stant ε > 0 [11] and also an O(log3 k)-approximation in O(npolylog(k)) time

(quasi-polynomial time). The latter was recently improved by Grandoni,

Laekhanukit, and Li [32], who give a quasi-polynomial time O(
log2 k

log log k )-

approximation factor for DST. They also provide a matching lower bound

in that no asymptotically-better approximation is possible even for quasi-

polynomial time algorithms, unless either the PROJECTION GAMES CONJEC-

TURE fails to hold or NP ⊆ ZPTIME(2nδ
) for some 0 < δ < 1.

Ghuge and Nagarajan [28] studied a variant of DST called the SUB-

MODULAR TREE ORIENTEERING problem and presented an O(
log |X|

log log |X| )-

approximation in quasi-polynomial time which yields the same approxima-

tion guarantee as in [32] for DST.

It is known that UNDIRECTED STEINER TREE on planar graphs is NP-

hard [27], and since DST is a generalization of UNDIRECTED STEINER TREE,

DST on planar graphs is NP-hard as well. Prior to our work in this chapter,

there was no concrete result for DST on planar graphs. It is worth noting that

Demaine, Hajiaghayi, and Klein [14] show that if one takes a standard flow-

based relaxation for DST in planar graphs and further constrains the flows

to be “non-crossing”, then the solution can be rounded to a feasible DST so-

lution while losing only a constant factor in the cost. However, the resulting

relaxation is non-convex and, to date, we do not know how to compute a

low-cost, non-crossing flow in polynomial time for DST instances on planar

graphs.

Our approach is based on the planar separators presented by Thorup [68]1

which states given an undirected graph G with n vertices, one can find a

“well-structured” subgraph F such that each connected component of G \ F

has at most n
2 vertices. Well-structured separators are useful in enabling

divide-and-conquer approach for some problems, such as MAXIMUM INDE-

PENDENT SET and PEBBLING [53]. We note that our approach was inspired by

a recent work of Cohen-Addad [13] who uses similar separator to design QP-

1As stated in [68] this separator theorem was implicitly proved in [52].
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TASes for k-MST and UNDIRECTED STEINER TREE on planar graphs. He also

develops a new separator to deal with these problems in minor-free graphs.

We show the separator theorem of Thorup can be used to obtain a simple

logarithmic approximation algorithm for planar DST.

Theorem 10. There is a O(log k)-approximation for planar DIRECTED STEINER

TREE where k is the number of terminals.

We remark that it is trivial to generalize our algorithm to the node-

weighted setting of DST in planar graphs. That is, to instances where Steiner

nodes v ∈ V \ (X ∪ {r}) have costs cv ≥ 0 and the goal is to find the cheapest

S of Steiner nodes such that the graph G[{r} ∪X ∪ S] contains an r− t dipath

for each t ∈ X. Clearly, node-weighted DST generalizes edge-weighted DST

even in planar graphs settings since we can subdivide an edge with cost ce

and include this cost on the new node. In general graphs, edge-weighted DST

generalizes node-weighted DST because a node v with cost cv can be turned

into two nodes v+, v− connected by an edge (v+, v−) with cost cv; edges en-

tering v now enter v+ and edges exiting v now exit v−. But this operation

does not preserve planarity, and it is easy to find examples where this results

in a non-planar graph.

We can extend our result to the multi-rooted case. In MULTI-ROOTED DI-

RECTED STEINER TREE (MR-DST), instead of one root, we are given multiple

roots r1, . . . , rR and the set of terminals X ⊆ V \ {r1, . . . , rR}. The goal here is

to find a minimum cost F ⊆ E such that every terminal is reachable from one

of the roots using only edges in F.

Note that MR-DST on general graphs is equivalent to DST by adding an

auxiliary root node r and adding edges (r, ri) for 1 ≤ i ≤ R with zero cost.

However, this reduction does not preserve planarity. We provide two ap-

proximation factors for MR-DST. We obtain our results for MR-DST by con-

structing a “well-structured” separator for the multi-rooted case.

Theorem 11. There is a polynomial time O(R + log k)-approximation algorithm

for planar MULTI-ROOTED DIRECTED STEINER TREE, where R is the number of
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roots and k is the number of terminals.

Theorem 12. There is an O(log k)-approximation for planar MULTI-ROOTED DI-

RECTED STEINER TREE with running time nO(R·log k).

We note if R = polylog k, then the second result recovers the O(log k)-

approximation factor for the single rooted case albeit the running time is

quasi-polynomial.

3.2 Notation and some basic facts

In this section, we recall some notation from Preliminaries chapter and some

facts that will be used later in the chapter.

For convenience, we allow our input graphs to contain multiple directed

edges between two nodes. All directed paths (dipath for short) are simple.

Fix a digraph G = (V, E) with edge costs ce ≥ 0 for all e ∈ E. We identify

a dipath P by its corresponding sequence vertices, i.e., P = v1, . . . , va where

(vi, vi+1) ∈ E for all 1 ≤ i ≤ a− 1, and we say P is a v1 − va-dipath. The start

and end vertices of P are v1 and va, respectively. For a subgraph H of G, recall

the cost of a H is costc(H) := ∑
e∈E(H)

ce.

We say a vertex v is reachable from u if there is a dipath from u to v. We

denote by dc(u, v) the cost of a shortest dipath from u to v, in particular,

dc(u, u) = 0. The diameter of a digraph is defined as the maximum dc(u, v)

for all u ̸= v where v is reachable from u. For both dc(.) and costc(.) we drop

the subscript c if the edge costs is clear from the context. For a subset S ⊆ V

and a vertex v, we define d(S, v) := min
u∈S
{d(u, v)}.

Recall G[S] is the induced subgraph of G on the subset of vertices S. A

weakly connected component of G is a connected component of the undirected

graph obtained from G by ignoring the orientation of the edges. The indegree

of a vertex v with respect to F ⊆ E is the number of edges in F oriented

towards v.

A branching T = (VT, ET) rooted at r in G, is a (not necessarily spanning)

subgraph of G such that r ∈ VT and T is a directed tree oriented away from
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r. Note arborescences are branchings that span all the vertices. A breadth

first search (BFS) branching BG rooted at r is a branching including all nodes

reachable from r where the dipath from r to any vertex v on BG is a shortest

dipath from r to v according to metric dc(., .).

For two disjoint subsets of vertices S, T ⊆ V denote by δ(S, T) the set of

edges with one endpoint in S and the other endpoint in T (regardless of the

orientation).

Our algorithm is based on planar separators described by Thorup [68].

Theorem 13 (Lemma 2.3 in [68]). Let G = (V, E) be a connected and undirected

planar graph with non-negative vertex weights, and let T be a spanning tree rooted

at a vertex r ∈ V. In linear time, one can find three vertices v1, v2, and v3 such that

the union of vertices on paths Pi between r and vi in V(T) for i = 1, 2, 3 forms a

separator of G, i.e., every connected component of G \ (P1 ∪ P2 ∪ P3) has at most

half the weight of G, where the weight of a subset of vertices is the sum of the weights

of vertices in the subset.

An immediate consequence of the above result is that given a directed

graph and a spanning BFS branching rooted at r instead of a spanning tree,

one can obtain a separator consisting of three shortest dipaths each starting

at r.

Corollary 14 (Directed separator). Let G = (V, E) be a planar digraph with edge

costs ce ≥ 0 for all e ∈ E, and non-negative vertex weights such that every vertex

v ∈ V is reachable from r. Given a vertex r ∈ V, in polynomial time, we can

find three shortest dipaths P1, P2, and P3 each starting at r such that every weakly

connected component of G \ (P1 ∪ P2 ∪ P3) has at most half the weight of G.

Consider an instance I of DST (or MR-DST in general). Throughout this

chapter, we create subinstances from I by contracting a subset of edges F in G.

Whenever, we create a subinstance I′ we let the edge cost for the subinstance

to be the natural restriction of c to G/F, i.e., if e is in both E(G) and E(G/F)

then e has cost ce in I′ and if e is in E(G/F) but not in E(G), then its cost
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in I′ is set to be the cost of the corresponding edge in E(G), see 2.1 for the

definition of “corresponding edge”.

Let I =
(
G = (V, E), c, {r1, . . . , rR}, X

)
be an instance of MR-DST on pla-

nar graphs where G is a planar digraph, ce ≥ 0 for all e ∈ E is the edge costs,

{r1, . . . , rR} are the roots, and X ⊆ V \ {r1, . . . , rR} is the set of terminals. By

losing a small factor in the approximation guarantee, one can assume in an in-

stance of MR-DST that all the costs are positive integers and d
(
{r1, . . . , rR}, v

)
is polynomially bounded by n for all v ∈ V. The proof is standard but we

include it for completeness.

Lemma 15 (Polynomial bounded distances). For any constant ε > 0, if there is

an α-approximation for MR-DST instances in planar graphs where all edges have

positive integer costs and dc(r, v) ≤ |X|·|V|
ε + |V| for each v ∈ V, then there is an

(α · (1 + ε))-approximation for general instances of MR-DST in planar graphs.

Proof. Let ∆ := maxt∈X

{
d
(
{r1, . . . , rR}, t

)}
, i.e., ∆ is the maximum distance

from any root to a terminal. Let optI be the optimal value of instance I. Then,

∆ ≤ optI ≤ k · ∆.

If ∆ = 0, then optI = 0 and the collection of all shortest dipaths from the

roots to the terminals is a solution of cost 0. So we assume ∆ > 0.

We can safely remove any edge e having ce > k · ∆ and any Steiner node

v (along with its incident edges) having d({r1, . . . , rR}, v) > k · ∆ since no

optimal solution of I uses e or v. Since we have only deleted elements of G,

it remains planar.

Define a new edge costs c′e := ⌈ce · n
ε·∆⌉ and form the instance I′ =

(G, c′, {r1, . . . , rR}, X). Note for any shortest dipath P starting at root ri, we

have

costc′(P) ≤ ∑
e∈P

c′e ≤ ∑
e∈P

(ce ·
n

ε · ∆ + 1) ≤ costc(P) · n
ε · ∆ + n ≤ n · k

ε
+ n,

where the last inequality follows because all the distances from the root have

length at most k · ∆. So the length of all shortest dipaths starting at r in I′ are

bounded by O(n2

ε ).
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Let optI′ be the optimal value of instance I′. A similar calculation as before

shows optI′ ≤
n

ε·∆ · optI +n.

Let F be an α-approximate solution for I′. Then, we have

costc(F) ≤ ε · ∆
n
· costc′(F)

≤ ε · ∆
n
· α · optI′

≤ ε · ∆
n
· α · ( n

ε · ∆ · optI +n)

≤ α · optI +α · ε · ∆

≤ α · (1 + ε) · optI ,

where the first inequality follows because c′e ≥ ce · n
ε·∆ and the last inequality

holds because optI ≥ ∆.

3.3 Planar DST

In this section we prove Theorem 10. Fix an instance I =
(
G = (V, E), c, r, X

)
of DST on planar graphs that satisfies the assumptions in Lemma 15 for, say,

ε = 1/2. Let n := |V| and k := |X|. Furthermore, fix an optimal solution OPT

for this instance and let opt denote its cost. So the distance of every vertex

from r is at most O(n · k).
Our algorithm recursively constructs smaller subinstances based on a

branching (as a separator) and disjoint subsets of vertices (as the weakly con-

nected components after removing the separator). The following is a more

formal definition of these subinstances.

Definition 16 (Induced subinstances). Let I = (G = (V, E), c, r, X) be an in-

stance of DST on planar graphs. Let T be a branching rooted at r, and let C1, . . . , Ch

be the weakly connected components of G \ T. The subinstances of DST induced by

tuple (G, T, C1, . . . , Ch) are defined as follows. Let Gcontract be the graph obtained

from G by contracting T into singleton vertex r. For each Ci where 1 ≤ i ≤ h we

construct instance ICi :=
(
GCi , c, r, Ci ∩ X

)
where GCi := Gcontract[Ci ∪ {r}]. See

Figure 3.1.
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Given solutions F1,F2, . . . ,Fh for the subinstances induced by

(G, T, C1, . . . , Ch), one can naturally consider the corresponding subset

of edges of E(T) ∪ F1 ∪ F2 ∪ . . . ∪ Fh in G and it is easy to see this forms a

feasible solution for instance I. We formalize this in the next lemma.

Lemma 17 (Merged solution). Consider the subinstances ICi for 1 ≤ i ≤ h as

defined in Definition 16. Let FCi be a solution for ICi . Let F ⊆ E(G) be the

corresponding edges of E(T) ∪ (
⋃h

i=1FCi) in G. Then, F is a feasible solution for

instance I and furthermore cost(F ) = cost(T) +
h
∑

i=1
cost(FCi). See Figure 3.1 for

an example.

Proof. The furthermore part is obvious so we prove that F is feasible for I.

Consider a terminal node t ∈ Ci. Since Fi is feasible for ICi , then there is a

dipath P from r to t. Let (r, v) be the first edge on P and let (u, v) be the

corresponding edge to (r, v) in E(G). Then, we must have u ∈ V(T) as

δ(Ci, Cj) = ∅ for all 1 ≤ i ̸= j ≤ h. So we can go from r to u in T, then

take the edge (u, v) and then go from v to t in FCi . Since all these edges are

present in F and t is an arbitrary terminal, F is a feasible solution for I.

We first present a high-level idea of a simple O(log k)-approximation that

runs in quasi-polynomial time and then with a little extra work, we can make

it run in polynomial time with a small loss in the approximation guarantee.

3.3.1 Warm-up: An overview of a quasi-polynomial time ap-
proximation

The algorithm is simple. Fix an optimal solution OPT with cost opt. First

guess opt. Note by Lemma 15, opt is polynomial in n and integral so there

are polynomially many guesses. Then, we remove all vertices such that their

distance from r is more than our guessed value (this is the preprocessing

step). For the purpose of separating into subinstances with balanced weight,

we let the weight of each terminal to be 1 and the rest of vertices have zero

weight. Apply Corollary 14 and let P1, P2, and P3 be the resulting shortest di-

paths each starting at r. Note that cost(Pi) ≤ opt for i = 1, 2, 3 because of the
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<latexit sha1_base64="lOW4B7OynRqK5A1HY5HygBgOnW4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMdCLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53nlBpHstHM03Qj+hI8pAzaqz00Bh4g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNWPMzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqndTvb6/rtRreRxFOINzuAQPbqEOd9CEFjAYwTO8wpsjnBfn3flYthacfOYU/sD5/AG6z41q</latexit>

C1

<latexit sha1_base64="C4ZFy+kIuSw3Yds5nqVH40Q8O48=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY4kXDxilEcCGzI7NDBhdnYzM2tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2AmmjYXfeUKleSQfzSxGP6RjyUecUWOlh8agMiiW3LK7BNkkXkZKkKE5KH71hxFLQpSGCap1z3Nj46dUGc4Ezgv9RGNM2ZSOsWeppCFqP12eOidXVhmSUaRsSUOW6u+JlIZaz8LAdobUTPS6txD/83qJGdX8lMs4MSjZatEoEcREZPE3GXKFzIiZJZQpbm8lbEIVZcamU7AheOsvb5J2pezdlKv31VK9lsWRhwu4hGvw4BbqcAdNaAGDMTzDK7w5wnlx3p2PVWvOyWbO4Q+czx+8U41r</latexit>

C2

<latexit sha1_base64="lOW4B7OynRqK5A1HY5HygBgOnW4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMdCLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53nlBpHstHM03Qj+hI8pAzaqz00Bh4g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNWPMzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqndTvb6/rtRreRxFOINzuAQPbqEOd9CEFjAYwTO8wpsjnBfn3flYthacfOYU/sD5/AG6z41q</latexit>

C1
<latexit sha1_base64="C4ZFy+kIuSw3Yds5nqVH40Q8O48=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY4kXDxilEcCGzI7NDBhdnYzM2tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2AmmjYXfeUKleSQfzSxGP6RjyUecUWOlh8agMiiW3LK7BNkkXkZKkKE5KH71hxFLQpSGCap1z3Nj46dUGc4Ezgv9RGNM2ZSOsWeppCFqP12eOidXVhmSUaRsSUOW6u+JlIZaz8LAdobUTPS6txD/83qJGdX8lMs4MSjZatEoEcREZPE3GXKFzIiZJZQpbm8lbEIVZcamU7AheOsvb5J2pezdlKv31VK9lsWRhwu4hGvw4BbqcAdNaAGDMTzDK7w5wnlx3p2PVWvOyWbO4Q+czx+8U41r</latexit>

C2

<latexit sha1_base64="RFhIse+geX5fEOT0XBVaFnnjMlE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBw0mM5A==</latexit>a
<latexit sha1_base64="WbjOqWGUu6YMogqMdBIn23mRkDg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTfW6eV2p1/I4inAG53AJHtxCHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDxM2M5Q==</latexit>

b <latexit sha1_base64="/z6pg4UKRgIP4DXO/+3T2pokOgM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxlGM5g==</latexit>c
<latexit sha1_base64="b6Gm6+maAvyxQ3K5INYxbZr1faQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lspu3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5EPOqLFSMxyUK27VXYCsEy8nFcjRGJS/+mHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVVCMoyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNcOan3GZpAYlWy4apoKYmMy/JiFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9m+p187pSr+VxFOEMzuESPLiFOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHx9WM5w==</latexit>

d
<latexit sha1_base64="OG91mP62lW4yCydMtsRVHNhzecM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipiYNyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRD8FZfXiftq6p3U71uXlfqtTyOIpzBOVyCB7dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyVmM6A==</latexit>e

<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r
<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r

<latexit sha1_base64="lOW4B7OynRqK5A1HY5HygBgOnW4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMdCLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53nlBpHstHM03Qj+hI8pAzaqz00Bh4g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNWPMzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqndTvb6/rtRreRxFOINzuAQPbqEOd9CEFjAYwTO8wpsjnBfn3flYthacfOYU/sD5/AG6z41q</latexit>

C1
<latexit sha1_base64="C4ZFy+kIuSw3Yds5nqVH40Q8O48=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY4kXDxilEcCGzI7NDBhdnYzM2tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2AmmjYXfeUKleSQfzSxGP6RjyUecUWOlh8agMiiW3LK7BNkkXkZKkKE5KH71hxFLQpSGCap1z3Nj46dUGc4Ezgv9RGNM2ZSOsWeppCFqP12eOidXVhmSUaRsSUOW6u+JlIZaz8LAdobUTPS6txD/83qJGdX8lMs4MSjZatEoEcREZPE3GXKFzIiZJZQpbm8lbEIVZcamU7AheOsvb5J2pezdlKv31VK9lsWRhwu4hGvw4BbqcAdNaAGDMTzDK7w5wnlx3p2PVWvOyWbO4Q+czx+8U41r</latexit>

C2

<latexit sha1_base64="WbjOqWGUu6YMogqMdBIn23mRkDg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTfW6eV2p1/I4inAG53AJHtxCHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDxM2M5Q==</latexit>

b
<latexit sha1_base64="/z6pg4UKRgIP4DXO/+3T2pokOgM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxlGM5g==</latexit>c

<latexit sha1_base64="OG91mP62lW4yCydMtsRVHNhzecM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipiYNyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRD8FZfXiftq6p3U71uXlfqtTyOIpzBOVyCB7dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyVmM6A==</latexit>e

<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r
<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r

<latexit sha1_base64="WbjOqWGUu6YMogqMdBIn23mRkDg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTfW6eV2p1/I4inAG53AJHtxCHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDxM2M5Q==</latexit>

b
<latexit sha1_base64="/z6pg4UKRgIP4DXO/+3T2pokOgM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxlGM5g==</latexit>c

<latexit sha1_base64="OG91mP62lW4yCydMtsRVHNhzecM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipiYNyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRD8FZfXiftq6p3U71uXlfqtTyOIpzBOVyCB7dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyVmM6A==</latexit>e
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(a) (b)

(c) (d)

Figure 3.1: Throughout, squares are terminals and circles are Steiner nodes
or the root node r. In (a) the separator is shown with dashed edges and solid
vertices. The weakly connected components of G \ T are shown as circles
denoted by C1 and C2. Note that we did not show any edge directed from
C1 or C2 into the separator because we can safely remove these edges. In
(b) the subinstances IC1 and IC2 induced by (G, T, C1, C2) are depicted. In
(c), the solutions for each subinstances are shown. Finally, (d) shows how to
merge the solutions in (c) to get a solution for the original instance. Note that
leaf nodes are not necessarily terminals. One could prune them as a post-
processing step, but that is not required by our algorithm.
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preprocessing step. Let T := P1 ∪ P2 ∪ P3, then T is a branching rooted at r.

Let Ci for 1 ≤ i ≤ h be the weakly connected components of G \ T. Note that

|T ∩ Ci| ≤ k
2 for all i’s. Then, we recursively solve the subinstances induced

by (G, T, C1, . . . , Ch) (see Definition 16), and finally return the corresponding

solution of E(T) ∪ ⋃h
i=1FCi in G. When the number of terminals in a subin-

stance becomes one, we can solve the problem exactly by finding the shortest

dipath between the root and the only terminal.

Note that each recursive call reduces the number of terminals by half and

each recursive call spawn up to k many subinstances. Furthermore, The guess

work for each instance is polynomial in n. So the total number of recursive

calls is bounded by nO(log k). Since each time we apply the separator result

on an instance I, we buy a branching (union of up to three dipaths) of cost

at most 3 · opt, and since the total cost of optimal solutions across all of the

resulting subinstances ICi is at most opt, a simple induction on the number

of terminals shows the final cost is within (3 · log k + 1) · opt. A slight im-

provement of the running time can be made by guessing opt within a con-

stant factor (thus only making O(log n) guesses since all distances are inte-

gers bounded by a polynomial in n), but the size of the recursion tree would

still be O(log n)O(log k) which is still not quite polynomial.

In the next section, we show how to avoid the above aggressive guess-

ing which gives us the polynomial running time. We remark there are some

similarities between our algorithm with the one presented in [28] for quasi-

polynomial time algorithm for SUBMODULAR TREE ORIENTEERING in the

sense that both need to guess some value (in our case opt and in their case

the budget) for the subproblems and performing this guess naively is too

slow. However, the approaches to overcoming this barrier are different.

3.3.2 The polynomial time algorithm

The idea here is similar to the quasi-polynomial time algorithm; however, in-

stead of guessing the diameter of an optimal arborescence for each instance,

we keep an estimate of it. Our recursive algorithm tries two different re-
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cursive calls: (1) divide the current estimate by half and recur, or (2) buy a

separator and divide the instance into smaller instances and recur on these

instances using the current estimate as the current estimate passed to each

smaller instance.

The rationale behind this idea is that if the estimate is close to the opti-

mal value, then our separator is “cheap” compared to optimal value so (2)

is “good progress” otherwise we make the estimate smaller so (1) is “good

progress”. The key idea here that leads to polynomial time is that we do not

“reset” our guess for the optimal solution cost in each recursive call since we

know that if our guess is correct for the current instance, then it is an upper

bound for the optimal solution cost in each subinstance.

As we mentioned at the beginning, the algorithm is recursive. The input

to the algorithm is a tuple (I, õpt) where õpt is an estimate of opt. The algo-

rithm computes two solutions and takes the better of the two. One solution is

by a recursive call to (I, õpt
2 ) and the other one is obtained by applying Corol-

lary 14 to get smaller subinstances, and solve each subinstance recursively,

and merge the solutions as described in Lemma 17. See Algorithm 2 for the

pseudocode.

By Lemma 15, we can assume the edge costs are positive integers; hence,

opt ≥ 1. So if õpt < 1, then the output of DST(I, õpt) is infeasible. The

algorithm will terminate since each recursive call either halves õpt or halves

the number of terminals.

3.3.3 Analysis

In this section, we analyze the cost and the running time of Algorithm 2.

Lemma 18 (Cost and running time). Consider an instance I =
(
G =

(V, E), c, r, X
)

and a pair (I, õpt). Let ℓ and O be non-negative integers such that

|X| ≤ 2ℓ and õpt ≤ 2O. If õpt ≥ opt where opt is the optimal value of I, then

DST(I, õpt) returns a solution with cost at most (6 · ℓ+ 1) · opt. Furthermore, the

total number of recursive calls made by DST(I, õpt) and its subsequent recursive

calls is at most |X| · 22·ℓ+O.
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Algorithm 2 DST(I, õpt)

Input: I :=
(
G = (V, E), c, r, X

)
and an estimate õpt.

Output: A feasible solution for instance I or output infeasi-
ble.

if õpt < 1 or d(r, t) > õpt for some terminal t ∈ X then
return infeasible

else if |X| = 1 then
Let F be the shortest dipath from r to the only terminal in X.

else
F1 ← DST(I, õpt

2 ), if F1 is infeasible solution then set cost(F1)← ∞.
Remove all vertices v with d(r, v) > õpt. {This is the preprocessing
step.}
Apply Corollary 14 to obtain a branching T consists of up to 3 shortest
dipaths starting at r. Let C1, . . . , Ch be the weakly connected components
of G \ T. Let ICi be the i-th subinstance induced by (G, T, C1, . . . , Ch) for
i = 1, . . . , h.
for i = 1, . . . , h do
F ′i ← DST(ICi , õpt)

F2 ← E(T) ∪ (
h⋃

i=1
F ′i ), if any F ′i is infeasible then set cost(F2)← ∞.

if both cost(F1) and cost(F2) are ∞ then
return infeasible

F ← arg min{cost(F1), cost(F2)}
return F .
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Proof. First we analyze the cost of the output solution. If ℓ = 0 then we solve

I exactly so the statement holds. So for the rest of the proof we assume ℓ ≥ 1.

We proceed by induction on ℓ+ O ≥ 1.

We assume õpt ≤ 2 · opt, otherwise we have cost(DST(I, õpt)) ≤
cost(DST(I, õpt

2 )) ≤ (6 · ℓ + 1) · opt by induction where the last inequality

holds because log õpt
2 ≤ log(õpt)− 1.

Let F be the solution returned by DST(I, õpt). Since cost(F ) ≤ cost(F2),

it suffices to prove cost(F2) ≤ (6 · ℓ+ 1) · opt. Let F ′i = DST(ICi , õpt) for i =

1, . . . , h be the solutions constructed recursively for the subinstances. Note

that each ICi for i = 1 . . . , h has at most 2ℓ−1 terminals and optICi
≤ õpt where

optICi
is the optimal value of ICi . By the induction hypothesis, we conclude

cost(F ′i ) ≤ (6 · (ℓ− 1) + 1) · optICi
≤ 6 · ℓ · optICi

, f or i = 1, . . . , h (3.1)

Note that T is the union of up to three shortest dipaths and because of

the preprocessing step, each shortest dipath starting at r has cost at most

õpt ≤ 2 · opt. So the following holds:

cost(T) ≤ 3 · õpt ≤ 6 · opt . (3.2)

Combining (3.1) and (3.2) we get:

cost(F ) = cost(T) +
h

∑
i=1

cost(F ′i )

≤ cost(T) +
h

∑
i=1

6 · ℓ · optICi

≤ 6 · opt+6 · ℓ ·
h

∑
i=1

optICi

≤ 6 · opt+6 · ℓ · opt

= (6 · ℓ+ 1) · opt,

where the first equality follows from Lemma 17, the first and the second in-

equalities follow from (3.1) and (3.2), respectively, and finally the last inequal-
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ity follows from the fact that
h
∑

i=1
optICi

≤ opt as the restriction of OPT on each

GCi is a feasible solution for ICi and GCi ’s are edge-disjoint.

Next, we analyze the number of recursive calls R(ℓ,O) in DST(I, õpt).

We prove by induction on ℓ + O that R(ℓ,O) ≤ |X| · 22·ℓ+O. If ℓ = 0, then

there is no recursive call. So suppose ℓ ≥ 1. Let Xi := |X ∩ Ci| ≤ |X|
2 be the

number of terminals in subinstance ICi and let ℓi be the smallest integer where

|Xi| ≤ 2ℓi . Since the number of terminals in the subinstances are halved, we

have ℓi ≤ ℓ− 1 for all 1 ≤ i ≤ h. So we can write

R(ℓ,O) = 1 + R(ℓ,O− 1) +
h

∑
i=1

R(ℓi,O)

≤ 1 + |X| · 22·ℓ+O−1 +
h

∑
i=1
|Xi| · 22·ℓi+O

≤ 1 + |X| · 22·ℓ+O−1 + 22(ℓ−1)+O ·
h

∑
i=1
|Xi|

≤ 1 + |X| · 22·ℓ+O−1 + 22·ℓ+O−2 · |X|

= 1 + |X| · 22·ℓ+O−1 + (22·ℓ+O−1 − 22·ℓ+O−2) · |X|

= 1 + |X| · 22·ℓ+O − |X| · 22·ℓ+O−2

≤ |X| · 22·ℓ+O,

where the first inequality follows from the induction hypothesis, the second

inequality comes from the fact that ℓi ≤ ℓ − 1, the third inequality holds

because
h
∑

i=1
|Xi| ≤ |X|, and the last inequality follows from the fact that |X| ≥

1 and ℓ ≥ 1.

Proof of Theorem 10. By Lemma 15, we can assume all the shortest dipaths

starting at the root are bounded by poly(n, ε) by losing a (1 + ε) multiplica-

tive factor in the approximation guarantee for any ε > 0. So we assume

properties of Lemma 15 holds for the rest of the proof.

Let ∆ be the maximum distance from the root to any terminal. Let õpt :=

k · ∆ ≤ poly(n). We find a solution by calling DST(I, õpt). Applying Lemma

18 with õpt := k · ∆, ℓ := ⌈log k⌉ ≤ log k + 1 and O := ⌈log õpt⌉ guarantees

the solution has cost at most (6 · (log k + 1) + 1) · opt.
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For the running time of Algorithm 2, we have by Lemma 18 that the num-

ber of recursive calls is at most k · 22·ℓ+O = O(k4 · ∆). So the total number of

recursive calls is poly(n) (recall k · ∆ = poly(n)). The running time within

each recursive call is also bounded by poly(n) so the algorithm runs in poly-

nomial time.

3.4 Multi-rooted planar DST

The algorithm for the multi-rooted case is similar to Algorithm 2. Recall, the

goal is to find a minimum cost F ⊆ E such that every terminal is reachable

from one of the roots in F. Note we are not requiring that all the roots to be

in F.

To design an algorithm for multi-rooted instances, we need analogous

versions of the separator, how we define the subinstances, and how we merge

the solutions of smaller subinstances to get a solution for the original in-

stance.

We start by a generalization of branching in the single rooted case to mul-

tiple roots.

Definition 19 (Multi-rooted branching). Given a digraph G = (V, E), R vertices

r1, . . . , rR designated as roots. We say a subgraph T of G is a multi-rooted branching

if it satisfies the following properties:

1. There are vertex-disjoint branchings Ti1 , . . . , Tiq rooted at ri1 , . . . , riq , respec-

tively, and a subset of edges F ⊆ E \
(⋃q

j=1 E(Tij)
)
, where the endpoints of

each edge in F belong to
⋃q

j=1 V(Tij), such that T = F ∪ (
⋃q

j=1 Tiq).

2. T is weakly connected and has no cycle (in the undirected sense).

If a multi-rooted branching T covers all the vertices in G, then we say T is a multi-

rooted arborescence for G. See Figure 3.2 for an example.

Fix an instance I = (G, c, {r1, . . . , rR}, X) of MR-DST on planar graphs.

Next, we present subinstances induced by a multi-rooted branching and
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bunch of disjoint subsets analogous to Definition 16. Intuitively, given a

multi-rooted branching T, and each weakly connected component C of G \ T,

we create a subinstance IC as follows: contract T into a vertex rT and remove

all vertices except rT and vertices in C. The edge cost is the restriction of the

original edge cost to this graph, the roots are rT and all the roots in C, and the

terminals are the original terminal nodes in C. We denote this subinstance

by IC :=

(
GC, c, {rT} ∪

(
C ∩

(
{r1, . . . , rR} \ {rp1 , . . . , rpq}

))
, C ∩ X

)
where

GC := Gcontract[C ∪ {rT}].

Definition 20 (Induced subinstances, multi-rooted). Let T = F ∪ (
⋃q

j=1 Tpj)

be a multi-rooted branching in G where Tpj is a branching rooted at rpj for 1 ≤ j ≤
q. In addition, let C1, . . . , Ch be the weakly connected components of G \ T. The

subinstances of multi-rooted DST induced by tuple (G, T, C1, . . . , Ch) are defined as

follows: let Gcontract be the graph obtained from G by contracting T into a singleton

vertex called rT. For each Ci where 1 ≤ i ≤ h we construct instance ICi as explained

before.

The following is analogous to Lemma 17 for merging solution in the

multi-rooted case.

Lemma 21 (Merged solutions, multi-rooted). Let T = F∪ (⋃q
j=1 Tpj) be a multi-

rooted branching in G. Consider the subinstances ICi for 1 ≤ i ≤ h as defined in

Definition 20, and let FCi be a solution for ICi . Let F ⊆ E(G) be the corresponding

edges in (E(T) \ F) ∪ (
⋃h

i=1FCi). Then, F is a feasible solution for instance I and

furthermore cost(F ) = cost(T \ F) +
h
∑

i=1
cost(FCi).

Proof. The furthermore part follows directly from the definition of F . We

prove F is feasible for I.

Consider a terminal t. If t ∈ V(T), then t ∈ V(Tpj) for some 1 ≤ j ≤ q

(recall the vertices in T is the union of the vertices in all the branchings Tpj ’s)

so t is reachable from rpj , the root of Tpj , in F . Suppose t ∈ Ci for some

1 ≤ i ≤ h. If t is reachable from a root other than rT in FCi then we are

done because the same dipath exists in F . So we suppose not and let P be
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the dipath in FCi from rT to t. Let (u, v) be the corresponding edge to (rT, v)

in G. Note that u ∈ V(Tpj) for some 1 ≤ j ≤ q because δ(Cs, Cs′) = ∅

for 1 ≤ s ̸= s′ ≤ h. Hence, t is reachable from rpj , the root of Tpj , in F as

E(Tpj) ⊆ F .

Finally, we present our separator for the multi-rooted case.

Lemma 22 (A structured separator, multi-rooted). Let A1, . . . , AR be a vertex-

disjoint branchings rooted at r1, . . . , rR in G, respectively. There is a multi-rooted

branching T = F ∪ (
R⋃

i=1
Ti), where Ti could possibly be empty (i.e., with no vertices)

such that the following hold:

(a) Ti is either empty or is a subtree of Ai rooted at ri that consists of the union of

up to four dipaths each starting at ri.

(b) Let C1, · · · , Ch be the weakly connected components of G \ T. Then, each

subinstance ICi induced by (G, T, C1, . . . , Ch) has at most |X|2 terminals for

1 ≤ i ≤ h.

(c) Let Fi be a solution to subinstance ICi for 1 ≤ i ≤ h. Then, the corresponding

solution (E(T) \ F)∪ (
h⋃

i=1
Fi) in G is feasible for I with cost exactly cost(T \

F) +
h
∑

i=1
cost(Fi).

Proof. Figure 3.2 helps to visualize this proof.

Since G is weakly connected, there is a subset of edges F′ in G such that

T′ := F′ ∪ (
⋃R

i=1 Ai) is a multi-rooted arborescence of G (spans all the ver-

tices) and the endpoints of edges in F are in
R⋃

i=1
V(Ai). Make T′ rooted at

an arbitrarily chosen root, say r1. Apply Theorem 13 with terminal vertices

having weight 1 and the rest of vertices having weight 0, and T′ as the span-

ning tree (in the undirected sense). This gives three paths P1, P2, and P3 in T′

each with starting vertex r1 such that every weakly connected component Ci

of G \ (P1 ∪ P2 ∪ P3) has at most |X|2 terminals for 1 ≤ i ≤ h. Note, these three

paths do not necessarily follow the directions of the edges.
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Fix Ai for some 1 ≤ i ≤ R and a path Pj := (r1 = v1), v2, . . . , vN for

1 ≤ j ≤ 3. Let a and b (possibly a = b) be the smallest and the largest

indices, respectively, such that va and vb are in V(Ai). We claim the subpath

P[a,b] := va, va+1, . . . , vb is a subgraph of Ai. Suppose not, so there must be two

indices a ≤ a′ < b′ ≤ b such that va′ , vb′ ∈ V(Ai) and va′+1, va′+2, . . . , vb′−1 /∈
V(Ai). Let Pa′

Ai
and Pb′

Ai
be the paths from ri to a′ and b′ in V(Ai), respectively.

So Pa′
Ai
∪ Pb′

Ai
∪ P[a′,b′] forms a cycle in T′, a contradiction. Furthermore, for

j = 1, 2, 3 let vj be the closest vertex to r1 on Pj (in terms of edge hops) that is

in Ai as well (if exists). Then, v1 = v2 = v3 as otherwise we have a cycle in T′

because all Pj’s start at r1.

For each 1 ≤ i ≤ R and 1 ≤ j ≤ 3, we mark the nodes with smallest and

largest indices in Pj that are in Ai. We proved above, that the number of these

marked vertices in each Ai is at most 4. Furthermore, (P1 ∪ P2 ∪ P3) ∩ Ai is a

subgraph of the union of dipaths from ri to each marked vertices in Ai for all

1 ≤ i ≤ h.

We construct our multi-rooted branching T as follows: let Ti be the union

of (up to four) shortest dipaths from ri to the marked vertices in Ai. Let

F := E
(

P1 ∪ P2 ∪ P3
)
\ (⋃R

i=1 E(Ti)) which is the subset of edges whose end-

points are in different V(Ai)’s, i.e., F ⊆ F′. Let T := F ∪ (
⋃R

i=1 Ti). Note that

for Ai’s with no marked vertices, Ti is empty (with no vertices not even ri).

Since T is a multi-rooted branching that contains P1 ∪ P2 ∪ P3 as a subgraph,

every weakly connected components of G \ T has at most |X|2 terminals. This

finishes the proof of parts (a) and (b).

Property (c) follows from Lemma 21 and the fact that the conditions in

Lemma 21 are satisfied.

In the statement of Lemma 22 we did not specify what are the arbores-

cences Ai’s rooted at ri. We construct two different such arborescences which

one proves Theorem 11 and the other proves Theorem 12.
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Figure 3.2: A depiction of the multi-rooted separator in an instance with
R = 5 roots. The solid edges (thick and thin) are the branchings Ai for
i = 1, . . . , R. The dashed edges are F′. After applying Theorem 13 to this
tree (in the undirected sense), we get three vertices depicted as u, v, w. The
marked vertices, as in the proof of Lemma 22, are u, v, w and the endpoints of
thick dashed edges. Then, the separator constructed in the lemma contains
dipaths from the root node to the marked vertices in each Ai plus the thick
dashed edges.

3.4.1 Proof of Theorem 11

In order to prove Theorem 11, we utilizes our separator result, Lemma 22.

However, in order to do that we need to specify how to construct the ar-

borescences Ai’s in the statement of the lemma. We do this in the following

way.

Given an instance I with roots r1, . . . , rR, temporarily add an auxiliary

node r and add edges (r, ri) for all 1 ≤ i ≤ R with zero cost (it might destroy

the planarity). Run a shortest path algorithm as usual rooted at r. Then,

remove r and all the edges incident to r. The result is a vertex-disjoint BFS

branching A1, A2, . . . , AR rooted at r1, . . . , rR. Note that for every v ∈ V(Ai),

v is closest to ri than any other roots, i.e., the dipath from ri to v has cost

d
(
{r1, . . . , rR}, v

)
.

The algorithm for the multi-rooted version is the same as Algorithm 2

with the following two tweaks: (1) in the preprocessing step we remove all

the vertices v where d
(
{r1, . . . , rR}, v

)
> õpt, and (2) instead of Corollary 14

we apply Lemma 22 with above constructed Ai’s to obtain the subinstances.
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Next, we analyze the cost and the running time of this algorithm.

Lemma 23 (Cost and running time, multi-rooted). Consider an instance I =(
G = (V, E), w, {r1, . . . , rR}, X

)
and a pair (I, õpt). Let ℓ and O be non-negative

integers such that |X| ≤ 2ℓ and õpt ≤ 2O. If õpt ≥ opt where opt is the optimal

value of I, then DST(I, õpt) returns a solution of cost at most
(
8 · (R+ ℓ)+ 1

)
· opt

and the number of recursive calls is at most |X| · 22·ℓ+O.

Proof. The proof of the number of recursive calls is exactly the same as in

the proof of Lemma 18. So we turn to proving the bound on the cost of the

returned solution.

The proof is by induction on R + ℓ+ O. As in the proof of Lemma 18, we

only need to focus on the case that õpt ≤ 2 · opt and show that cost(F2) ≤(
8 · (R + ℓ) + 1

)
· opt.

Let T = F∪ (
R⋃

i=1
Ti) be the separator obtained from Lemma 22. Suppose T

contains R′ many of the roots. Then, exactly R′ many of Ti’s are non-empty.

By Lemma 22 (a) and the fact that Ai’s are BFS branchings, we have that

each non-empty Ti is consists of up to four shortest dipaths rooted at ri so

cost(Ti) ≤ 4 · õpt because of the preprocessing step plus the fact that õpt ≤
2 · opt, we conclude

cost(T \ F) ≤ 8 · R′ · opt . (3.3)

Since T contains R′ many roots, each subinstance ICi induced by

(G, T, C1, . . . , Ch) has at most R − R′ + 1 many roots for 1 ≤ i ≤ h. Fur-

thermore, by Lemma 22 (b) each ICi ’s has at most |X|2 ≤ 2ℓ−1 many terminals.

So by induction hypothesis, for i = 1, . . . , h we have

cost(FCi) ≤
(

8 ·
(
(R−R′+ 1)+ ℓ− 1

)
+ 1
)
·optICi

≤
(
8 · (R−R′+ ℓ)+ 1

)
·optICi

.

(3.4)

Using Lemma 22 (c), the bounds in (3.3) and (3.4) we have
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cost(F ) ≤ cost(T \ F) +
h

∑
i=1

cost(FICi
)

≤ 8 · R′ · opt+
(
8 · (R− R′ + ℓ) + 1

)
·

h

∑
i=1

optICi

≤ 8 · R′ · opt+
(
8 · (R− R′ + ℓ) + 1

)
· opt

=
(
8 · (R + ℓ) + 1

)
· opt,

where the third inequality follows from the fact that
h
∑

i=1
optICi

≤ opt as the

restriction of OPT on each GCi is a feasible solution for ICi and GCi ’s are edge-

disjoint..

Proof of Theorem 11. Note both of the tweaks in Algorithm 2 are imple-

mentable in polynomial time. The proof has exactly the same structure as

in the proof of Theorem 10 with the difference that we use Lemma 23 here

instead of Lemma 18.

3.4.2 Proof of Theorem 12

The proof is similar to the proof of Theorem 11. First we need to specify how

do we construct the branching Ai’s in the statement of Lemma 22.

Fix an optimal solution OPT with cost opt. By Lemma 15, we have opt ≤
2 · n4 (substituting 1

n for ε). For each 1 ≤ i ≤ R, let A∗i be the branching rooted

at ri in OPT. Note A∗i could consists of only ri. Let Bi be our guess for the

budget (cost) of A∗i for each 1 ≤ i ≤ R. Note for each Bi, there are at most

2 · n4 possibilities. We construct the required branching Ai’s for Lemma 22 as

follows.

Preprocessing step: given budgets B1, . . . , BR, we only keep vertices that are

reachable from ri within distance Bi for some 1 ≤ i ≤ R and remove the

vertex otherwise. With abuse of notation we denote the resulting graph by

G = (V, E) again.

Next, we assign each vertex in V (after preprocessing step) to a unique

root node.
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Φ : V \ {r1, . . . , rR} → {1, . . . , R}

Φ(v) := arg max
1≤i≤R

{Bi − d(ri, v)},

in the case of tie, Φ chooses the lower index. We define Φ−1(i) := {v ∈
V : Φ(v) = i}. The important property of this mapping is as follows.

Lemma 24. For each 1 ≤ i ≤ R, there is a BFS branching rooted at ri in G[{ri} ∪
Φ−1(i)] where the metric on G[{ri} ∪ Φ−1(i)] is based on the restriction of edge

cost c to edges in E[{ri} ∪Φ−1(i)].

Proof. It suffices to prove if Φ(v) = i then every internal node of any shortest

dipath from ri to v is mapped to i under Φ as well. Let P be a shortest dipath

from ri to v. Consider an arbitrary internal vertex u on P. Note that P[ri,u] is a

shortest dipath from ri to u and similarly P[u,v] is a shortest dipath from u to

v. Since Φ(v) = i, for any 1 ≤ j ̸= i ≤ R we can write

Bj − d(rj, u)− d(u, v) ≤ Bj − d(rj, v) ≤ Bi − d(ri, v) = Bi − d(ri, u)− d(u, v)

⇒ Bj − d(rj, u) ≤ Bi − d(ri, v),

where the first inequality holds because of triangle inequality and the second

inequality holds because Φ(v) = i. Note that if the inequalities above hold

with equality then it must be that i < j since Φ(v) = i. Therefore, Φ(u) = i.

Therefore, a shortest dipath from ri to a vertex in Φ−1(i) lies completely

in G[{ri} ∪Φ−1(i)], as desired.

Now we are ready to construct the branchings Ai’s to use in Lemma 22.

For each i, let Ai be the BFS branching in G[{ri} ∪Φ−1(i)] whose existence is

guaranteed by Lemma 24.

We assume after preprocessing step above, the graph is weakly connected,

otherwise the algorithm below can be applied to each weakly connected com-

ponents separately.
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Here we present the idea behind the algorithm and why it proves The-

orem 12. For each i, guess Bi (i.e., the cost of A∗i in OPT). Assume, we

guessed Bi’s correctly. Then, we construct the branchings Ai’s based on Bi’s

as described above and apply Lemma 22 to get smaller subinstances (i.e.,

the number of terminals are halved in each subinstance). However, note

that ∑
i

Bi = opt for the correct guess; hence the cost of the separator is

O(
R
∑

i=1
Bi) = O(opt). So we paid O(opt) and reduce the instance to smaller

subinstances. This happens O(log k) many times and hence the O(log k)-

approximation. It is easy to show that the running time is nO(R·log k). See

Algorithm 3 for a pseudocode.

Algorithm 3 MR−DST(I)
Input: An instance of MR−DST I :=

(
G = (V, E), c, r1, . . . , rR, X

)
.

Output: A feasible solution F for instance I or output infeasi-
ble.

if |X| = 1 then
Let F be the shortest dipath from {r1 . . . , rR} to the only terminal in X.

for all R-tuple (B1, . . . , BR) where Bi ∈ [0, 2 · n4] is an integer do
FB1,...,BR ← ∅. {FB1,...,BR will be the solution for I given the guess Bi’s as
the cost of A∗i ’s in OPT.}
if a terminal node is removed in the preprocessing step then

cost(FB1,...,BR)← ∞.
else

Apply Lemma 22 with arborescences Ai’s constructed using Bi’s as
described above to obtain subinstances ICi ’s.
For all subinstances ICi let F ′i ← MR−DST(ICi).
if for any subinstance ICi , F ′i is infeasible then

cost(FB1...,BR)← ∞.
else

LetFB1...,BR be the solution for I obtained by combining the solutions
of the subinstances and the separator according to Lemma 22 part
(c).

if for all R-tuple (B1, . . . , BR), cost(FB1,...,BR) is ∞ then
return infeasible.

else
F ← arg min

(B1,...,BR)

{cost(FB1,...,BR)}

return F .
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We analyze Algorithm 3 which in turn proves Theorem 12.

Proof of Theorem 12. First we show the guaranteed cost factor mentioned in

the theorem.

Fix OPT and its cost opt. Since we take the minimum cost solution over

all possibilities of the R-tuples B1, . . . , BR, in the following we assume Bi is

exactly the cost of the branching A∗i rooted at ri in OPT. Note that
R
∑

i=1
Bi =

opt. In order to bound the cost of F output by Algorithm 3, we need to

bound the cost of the separator constructed in Lemma 22. Recall, each Ai is

a branching rooted at ri whose diameter is at most Bi. Also part (a) of the

lemma says the separator consists of up to four dipath rooted at ri in Ai for

all 1 ≤ i ≤ R. So overall, the cost of the separator is at most 4 ·
R
∑

i=1
Bi = 4 · opt.

Let F ′i be the solution for the subinstance ICi .

We prove cost(F ) ≤ 4 · opt by induction on k, the number of terminals.

Note that for k = 1 we solve this instance exactly so the base case holds.

cost(F ) ≤ 4 · opt+∑
i

cost(F ′i )

≤ 4 · opt+4 ·∑
i

log
k
2
· optICi

≤ 4 · opt+4 · (log k− 1) · opt

= 4 · log k · opt,

where the first inequality follows from part (c) in Lemma 22, the second in-

equality holds because the number of terminals is halved in each subinstance

together with the induction hypothesis, and finally the last inequality follows

from the fact that the subinstances ICi ’s are disjoint so ∑
i

optICi
≤ opt.

Next, we bound the running time of the algorithm. Let ℓ be an integer

such that |X| ≤ 2ℓ and let f (ℓ) be the number of recursive calls in the algo-

rithm when the number of terminals is at most 2ℓ, the number of vertices is

at most n, and the number of roots is at most R. By induction on ℓ, we prove

f (ℓ) ≤ n8·R·ℓ. If ℓ = 0 so when we have one terminal, then we solve the

problem exactly with no recursive call. So the base case holds. Since we have
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at least two terminals, we assume n ≥ 2 in the following.

f (ℓ) ≤ 1 + ∑
R−tuples (B1,...,BR)

∑
i

f (ℓ− 1)

≤ 1 + n6·R · n · n8·R·ℓ−8·R

= 1 + n8·R·ℓ+1−2·R

≤ 1 + n8·R·ℓ−R

≤ n8·R·ℓ,

where the second sum in the first expression is over all the subinstance cre-

ated given a tuple (B1, . . . , BR) which is at most n. The second inequality fol-

lows from the fact that the number of R-tuples is at most (1 + 2 · n4)R ≤ n6·R

for n ≥ 2 and the induction hypothesis. The third inequality follows because

R ≥ 1, and the last inequality holds because n ≥ 2.

Setting ℓ := ⌈k⌉ and the fact the running time within each recursive is

bounded by polynomial in n, we have the desired running time of nO(R·log k).

We remark the same idea mentioned in the warm-up section to reduce

the running time of the proposed algorithm slightly, works here as well by

losing a bit in the approximation factor. More precisely, we can round up the

cost of each branching in OPT to the closest power of 1 + ε for any ε > 0.

Then, the number of R-tuples to check is at most O(logR
1+ε n). So the running

time will be (log n)O(R·log k), and the approximation factor will be at most

4(1 + ε) · (log k + 1).
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Chapter 4

Planar Quasi-bipartite Directed
Steiner Tree

In the last chapter we saw an O(log k)-approximation for DST on planar

graphs. In this chapter, we further restrict ourselves to quasi-bipartite in-

stances of DST on planar graphs and more generally graphs excluding a fixed

minor, and show a constant factor approximation for these instances.

4.1 Introduction and outline

Another well-studied special case of UNDIRECTED STEINER TREE, besides

planar instances, is quasi-bipartite instances where no two Steiner nodes are

connected by an edge (i.e., V \ (X ∪ {r}) is an independent set). Quasi-

bipartite instances were first studied by Rajagopalan and Vazirani [60] in or-

der to study the bidirected-cut relaxation of the UNDIRECTED STEINER TREE

problem: this is exactly (Primal-LP) where we regard both directions of an

undirected edge as separate entities. Feldmann et al. [19] studied UNDI-

RECTED STEINER TREE on graphs that do not have an edge-induced claw

on Steiner vertices, i.e., no Steiner vertex with three Steiner neighbours, and

presented a faster ln(4)-approximation than the algorithm of [7]. Currently,

the best approximation in quasi-bipartite instances of UNDIRECTED STEINER

TREE is 73
60 -approximation [30].

Naturally, researchers have considered quasi-bipartite instances of DST.

Hibi and Fujito [36] presented an O(log |X|)-approximation algorithm for
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this case. Assuming P ̸= NP, this result asymptotically matches the lower

bound (1− o(1)) · ln |X|; this lower bound comes from the hardness of SET

COVER [15], [18] and the fact that quasi-bipartite DST generalizes the SET

COVER problem. Friggstad, Könemann, and Shadravan [22] showed the in-

tegrality gap of (Primal-LP) is also O(log |X|) by a primal-dual algorithm

and again this matches the lower bound on the integrality gap of this LP up

to a constant.

More recently, Chan et al. [10] studied the K-CONNECTED DST prob-

lem on quasi-bipartite instances in which the goal is to find a minimum cost

subgraph H such that there are k edge-disjoint paths (in H) from r to each

terminal in X. They gave an upper bound of O(log |X| · log k) on the inte-

grality gap of the standard cut-based LP (put k instead of 1 in the RHS of

the constraints in (Primal-LP)) by presenting a polynomial time randomized

rounding algorithm.

For general instances of DST, methods based on linear programming have

been less successful. Zosin and Khuller [73] showed the integrality gap of

a natural flow-based LP relaxation is Ω(
√
|X|) but n, the number of ver-

tices, in this example is exponential in terms of |X|. More recently, Li and

Laekhanukit [51] provided an example showing the integrality gap of this

LP is at least polynomial in n. On the positive side, [63] shows for ℓ-layered

instances of DST that applying O(ℓ) rounds of the Lasserre hierarchy to a

slight variant of the natural flow-based LP relaxation yields a LP with inte-

grality gap O(ℓ · log |X|). This was extended to the LP-based Sherali-Adams

and Lovász-Schrijver hierarchies by [21].

We consider the cut-based relaxation (Primal-LP) for DST, which is equiv-

alent to the flow-based relaxation considered in [51], [73]; the flow-based re-

laxation is an extended formulation of (Primal-LP). Let δin(S) be the set of
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directed edges entering a set S ⊆ V,

minimize: ∑
e∈E

ce · xe (Primal-LP)

subject to: x(δin(S)) ≥ 1 ∀S ⊆ V \ {r}, S ∩ X ̸= ∅

x ≥ 0

Note that if |X| = 1 (the s,t-SHORTEST PATH problem) or X ∪ {r} = V (the

ARBORESCENCE problem), the extreme points of (Primal-LP) are integral, see

[57] and [16] respectively.

Primal-Dual techniques for Steiner tree problems

Consider the NODE-WEIGHTED STEINER TREE (NWST) problem which is

similar to undirected UNDIRECTED STEINER TREE except the cost is on the

Steiner vertices instead of edges and can also be viewed as a special case of

DST. Guha et al. [34] presented a primal-dual algorithm with approximation

guarantee of O(ln n) which is asymptotically tight since NWST also gener-

alizes set cover. Könemann, Sadeghian, and Sanità [44] gave an O(log n)-

approximation via primal-dual framework for a generalization of NWST

called NODE-WEIGHTED PRIZE COLLECTING STEINER TREE1.

Demaine, Hajiaghayi, and Klein [14] considered a generalization of

NWST, called NODE-WEIGHTED STEINER FOREST (NWSF) on planar graphs

and using the generic primal-dual framework of Goemans and Williamson

[31] (see also 2.3) they showed a 6-approximation and further they extended

their result to minor-free graphs. Later Moldenhauer [56] simplified their

analysis and showed an approximation guarantee of 3 for NWSF on planar

graphs.

An interesting, non-standard use of the primal-dual scheme is in the work

of Chakrabarty, Devanur, and Vazirani [9] for quasi-bipartite instances of

UNDIRECTED STEINER TREE. They introduced a new “simplex-embedding”

LP relaxation and their primal-dual scheme raises dual variables with differ-

ent rates. It is worth noting that although they obtain upper bound for the

1A key aspect of their algorithm is that it is also Lagrangian multiplier preserving.
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integrality gap of the so-called bidirected-cut relaxation (BCR) of quasi-bipartite

instances of UNDIRECTED STEINER TREE, the algorithm and the simplex-

embedding LP relaxation itself are valid only in the undirected setting.

Our contributions

Generally, it is difficult to effectively utilize primal-dual algorithms in di-

rected network design problems. This is true in our setting as well: we be-

gin by showing a standard primal-dual algorithm (similar to the primal-dual

algorithm for the minimum-cost arborescence problem, see Section 2.3) does

not grow sufficiently-large dual to pay for the set of edges it purchases within

any constant factor.

We overcome this difficulty by highlighting different roles for edges in

connecting the terminals to the root. For some edges, we maintain two slacks:

while raising dual variables these two slacks for an edge may be filled at dif-

ferent rates (depending on the edge’s role for the various dual variables being

raised) and we purchase the edge when one of its slacks is exhausted. Fur-

thermore, unlike the analysis of standard primal-dual algorithms where the

charging scheme is usually more local (i.e., charging the cost of purchased

edges to the dual variables that are “close by”), we need to employ a more

global charging scheme. Our approach also provides an O(1) upper bound

on the integrality gap of the natural cut-based relaxation (Primal-LP) for

graphs that exclude a fixed minor.

We summarize our results here.

Theorem 25. There is an O(r ·
√

log r)-approximation algorithm for quasi-bipartite

DST on Kr-minor free graphs. Moreover, the algorithm gives an upper bound of

O(r ·
√

log r) on the integrality gap of (Primal-LP) for such instances of DST.

Remark 26. The running time of our algorithm is O(|V|c) where c is a fixed con-

stant that is independent of r. Also, we only require that every (simple) minor of

the graph has bounded average degree to establish our approximation guarantee. In

particular, if every minor of the input (quasi-bipartite) graph has degree at most d,

then the approximation factor will be O(d).
55



Theorem 27. There is a 20-approximation algorithm for quasi-bipartite DST on

planar graphs. Moreover, the algorithm gives an upper bound of 20 on the integrality

gap of (Primal-LP) for such instances of DST.

We also verify that UNDIRECTED STEINER TREE (and, thus, DIRECTED

STEINER TREE) remains NP-hard even when restricted to quasi-bipartite, pla-

nar instances. Similar results are known, but we prove this one explicitly

since we were not able to find this precise hardness statement in any previ-

ous work.

Theorem 28. UNDIRECTED STEINER TREE instances on bipartite planar graphs

where the terminals are on one side and the Steiner nodes are on the other side is

NP-hard.

The above hardness result shows quasi-bipartite DST on planar graphs is

NP-hard as well.

The outline

In Section 4.2, we state some definition and notation where we use through-

out this chapter. In Section 4.3 we present an example that shows the most

natural primal-dual algorithm fails to prove our approximation results, this

helps the reader understand the key difficulty we need to overcome to make

a primal-dual algorithm work and motivates our more refined approach.

In Section 4.4 we present our primal-dual algorithm and in Section 4.5 we

present the analysis. The analysis contains three main subsections where in

each section we present a charging scheme. The first two charging schemes

are straightforward but the last one requires some novelty. Finally, we put all

these charging schemes together in Section 4.5.4 and prove Theorems 25 &

27. In the last section, we prove the hardness result (Theorem 28).
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4.2 Notation and some basic facts

In this chapter, graphs are simple directed graphs unless stated otherwise.

By simple we mean there are no parallel edges2. Note that we can simply

keep the cheapest edge in a group of parallel edges if the input graph is not

simple; the optimal value for DST problem does not change.

Throughout we fix a directed graph G = (V, E), edge costs ce ≥ 0 for all

e ∈ E, a root node r, a set of terminals X ⊆ V \ {r}, and there is no edge

between any two Steiner nodes. We denote the optimal value for this DST

instance by opt.

For an edge e = (u, v), we call u the tail and v the head of e. By SCCs

of F ⊆ E we mean the strongly connected components of (V, F) that con-

tain either the root node or at least one terminal node. So for example, if a

Steiner node is a singleton strongly connected component of (V, F) then we

do not refer to it as an SCC of F. Due to the quasi-bipartite property, these

are the only possible strongly connected components in the traditional sense

of (V, F) that we will not call SCCs. By height of a vertex u in tree T we mean

the number of edges between r (the root) and u in the dipath from r to u in T.

We let Tu denotes the subtree of T rooted at u.

Our discussions, the algorithm, and the analysis rely on the concept of

active sets, so we define them here.

Definition 29 (Violated set). Given any DST instance and a subset F ⊆ E, we say

S ⊆ V \ {r} where S ∩ X ̸= ∅ is a violated set with respect to F if δin
F (S) = ∅.

Definition 30 (Active set). Given any DST instance and a subset F ⊆ E, we call a

minimal violated set (no proper subset of it, is violated) an active set (or active moat)

with respect to F.

We use the following definition throughout our analysis and (implicitly)

in the algorithm.

2Two edges are parallel if their endpoints are the same and have the same orientation.
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Definition 31 (F-path). We say a dipath P is a F-path if all the edges of P belong

to F ⊆ E. We say there is a F-path from a subset of vertices to another if there is a

F-path from a vertex of the first set to a vertex of the second set.

In quasi-bipartite graphs, active moat have a rather “simple” structure.

Our algorithm will leverage the following properties.

Lemma 32. Consider a subset of edges F and let A be an active set with respect to F.

Then, A consists of exactly one SCC CA of F, and any remaining vertices in A \ CA

are Steiner nodes. Furthermore, for every Steiner node in A \ CA there are edges in

F that are oriented from the Steiner node to CA.

Proof. By definition of violated sets, A does not contain r. If A contains

only one terminal, then the first statement holds trivially. So consider two

terminals t and t′ in A. We show there is a F-path from t to t′ and vice

versa. Suppose not and, wlog, assume there is no F-path from t′ to t. Let

B := {v ∈ A : ∃F − path f rom v to t}. Note that B is a violated set and

B ⊆ A \ {t′} which violates the fact that A is a minimal violated set. There-

fore, exactly one SCC of F is in A.

Next we prove the second statement. Let s be a Steiner node (if exists) in

A \CA. If there is no edge in F oriented from s to CA, then A \ {s} is a violated

set, because the graph is quasi-bipartite and the fact that A is a violated set

itself, contradicting the fact that A is a minimal violated set.

Note that the above lemma limits the interaction between two active

moats. More precisely, two active moats can only share Steiner nodes that

lie outside of the SCCs in the moats.

Definition 33 (The SCC part of active moats). Given a set of edges F and an

active set A (with respect to F), we denote by CA the SCC (with respect to F) inside

A.

We use CA rather than CF
A because the set F will always be clear from the

context.
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Finally we recall bounds on the size of Kr-minor free graphs that we use

at the end of our analysis.

Theorem 34 (Thomason 2001 [67]). Let G = (V, E) be a Kr-minor free graph with

no parallel edges. Then, |E| ≤ O(r ·
√

log r)|V| and this bound is asymptotically

tight. The constant in the O-notation in the above theorem is at most 3 for large

enough r.

Bipartite planar graphs are K5-minor free, but we know of explicit bound

on the number of edges in planar graphs. The following is the consequence of

Euler’s formula that will be useful in our tighter analysis for quasi-bipartite,

planar graphs.

Lemma 35. Let G = (V, E) be a bipartite planar graph with no parallel edges.

Then, |E| ≤ 2 · |V|.

4.3 Standard primal-dual algorithm and a bad ex-
ample

Given a DST instance with G = (V, E) as the input graph, edge costs ce ≥ 0

for all e ∈ E, the root node r ∈ V, and X ⊆ V − {r} as the terminal set, we

define S := {S ⊊ V : r /∈ S, and S ∩ X ̸= ∅}. We consider the dual of

(Primal-LP).

maximize: ∑
S∈S

yS (Dual-LP)

subject to: ∑
S∈S :

e∈δin(S)

yS ≤ ce ∀e ∈ E

y ≥ 0

In Section 2.3, we presented the standard primal-dual algorithm that

solves the ARBORESCENCE problem on any directed graph, this algorithm

is due to Edmonds [16]. Naturally, our starting point was to investigate this

primal-dual algorithm for DST instances. We briefly explain this algorithm
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here. At the beginning we let F := ∅. Uniformly increase the dual variables

corresponding to active moats and if a dual constraint goes tight, we add

the corresponding edge to F. Update the active sets based on F (see Defini-

tion 30) and repeat this procedure. At the end, we do a reverse delete, i.e.,

we go over the edges in F in the reverse order they have been added to F

and remove it if the feasibility is preserved. Unfortunately, for DST instances

in quasi-bipartite planar graphs, there is a bad example (see Figure 4.1) that

shows the total growth of the dual variables is 2 while the optimal value is

k + 1 for arbitrarily large k. So the dual objective is not enough to pay for the

cost of the edges in F (i.e., we have to multiply the dual objective by O(k) to

be able to pay for the edges in F).

What is the issue and how can we fix it?

One way to get an O(1)-approximation is to ensure at each iteration the num-

ber of edges in the final solution whose dual constraints are losing slack at

this iteration is proportioned to the number of active moats. In the bad ex-

ample (Figure 4.1), when the bottom moat is paying toward the downward

blue edges, there are only two active moats but there are k downward blue

edges that are currently being paid for by the growing dual variables.

To avoid this issue, we consider the following idea: once the bottom ac-

tive moat grew enough so that the dual constraints corresponding to all the

downward blue edges are tight we purchase an arbitrary one of them, say

(r, zk) for our discussion here. Once the top active moat reaches z1 instead of

skipping the payment for this edge (since the dual constraint for (w2, z1) is

tight), we let the active moat pay towards this edge again by ignoring previ-

ous payments to the edge, and then we purchase it once it goes tight. Note

that now we violated the dual constraint for (w2, z1) by a multiplicative fac-

tor of 2. Do the same for all the other downward blue edges (except (r, zk)

that was purchased by the bottom moat). Now it is easy to see that we grew

enough dual objective to approximately pay for the edges that we purchased.

We make this notion precise by defining different roles for downward blue

60



a

r

b

v

w1 w2 w3 wk−2 wk−1 wk

0
0 0

0
0 0

1

0

z1 z2 z3 zk−2 zk−1 zk

k

k
1

0

0
0 0

0
0

0

Figure 4.1: This is an example to show why a standard primal-dual algo-
rithm fails. The square vertices are terminals. The downward blue edges (i.e.,
(wi, zi−1)’s for 2 ≤ i ≤ k) have cost 1, the upward blue edges (i.e., (zi, wi)’s
for 1 ≤ i ≤ k) have cost 0. The cost of the black edges are shown in the pic-
ture. Note any feasible solution contains all the blue edges and the cost of an
optimal solution is k + 1. However, the total dual variables that are grown
using a standard primal-dual algorithm is 2 (both the bottom and top moats
raises their dual variable to 1 and stop growing).

edges in the next section. In general, each edge can serve up to two roles and

has two “buckets” in which it receives payment: each moat pays towards the

appropriate bucket depending on the role that edge serves for that moat. An

edge is only purchased if one of its buckets is filled and some tie-breaking

criteria we mention below is satisfied.

4.4 Our primal-dual algorithm

As we discussed in the last section, we let the algorithm violate the dual

constraint corresponding to an edge by a factor of 2 and hence we work with

the following modified Dual-LP:
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maximize: ∑
S∈S

yS (Dual-LP-Modified)

subject to: ∑
S∈S :

e∈δin(S)

yS ≤ 2 · ce ∀e ∈ E

y ≥ 0

Note that the optimal value of (Dual-LP-Modified) is at most twice the

optimal value of (Dual-LP) because consider a feasible solution y for the for-

mer LP then y
2 is feasible for the latter LP.

Let us define the different buckets for each edge that are required for our

algorithm.

Antenna, expansion, and killer buckets

We say edge e = (u, v) is an antenna edge if u /∈ X ∪ {r} and v ∈ X, in

other words, if the tail of e is a Steiner node and the head of e is a terminal.

For every antenna edge we associate an antenna bucket with size ce. For

every non-antenna edge e, we associate two buckets, namely expansion and

killer buckets, each of size ce. The semantics of these labels will be introduced

below.

Now we, informally, describe our algorithm, see Algorithm 4 for the de-

tailed description. Recall the definition of active moats (Definition 30).

Growth phase: At the beginning of the algorithm we set F := ∅ and every

singleton terminal is an active moat. As long as there is an active moat with

respect to F do the following. Uniformly increase the dual variables corre-

sponding to the active moats. Let e /∈ F be an antenna edge with its head in

an active moat, then the active moat pays towards the antenna bucket of e.

Now suppose e = (u, v) /∈ F is a non-antenna edge, so u ∈ X∪ {r}. For every

active moat A that contains v, if CA (see Definition 33) is a subset of an active

set A′ with respect to F ∪ {e}, then A pays toward the expansion bucket of e

and otherwise A pays towards the killer bucket of e.

Uniformly increase the dual variables corresponding to active moats until

a bucket for an edge e becomes full (antenna bucket in case e is an antenna
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edge, and expansion or killer bucket if e is a non-antenna edge), add e to F.

Update the set of active moats A according to set F.

Pruning: Finally, we do the standard reverse delete meaning we go over

the edges in F in the reverse order they have been added and if the resulting

subgraph after removing an edge is still feasible for the DST instance, remove

the edge and continue.

The following formalizes the different roles of a non-antenna edge that

we discussed above.

Definition 36 (Relation between non-antenna edges and active moats). Given

a subset of edges F ⊆ E, letA be the set of all active moats with respect to F. Consider

a non-antenna edge e = (u, v) (so u ∈ X ∪ {r}). Suppose v ∈ A where A ∈ A.

Then,

• we say e is an expansion edge with respect to A under F if there is a subset of

vertices A′ that is active with respect to F ∪ {e} such that CA ⊊ A′,

• otherwise we say e is a killer edge with respect to A.

For example, all exiting edges from r that are not in F is a killer edge with

respect to any active moat (under F) it enters. See Figure 4.2 for an illustration

of the above definition.

Intuition behind this definition: When e = (u, v) is a killer edge with

respect to an active moat A, then there is a dipath in F ∪ {e} from r or CA′ to

CA where A′ ̸= A is an active moat with respect to F. Note that adding e to

F will make the dual variable corresponding to A stop growing and that is

why we call e a killer edge with respect to A. For example, in Figure 4.2, both

e and e′ are killer edges with respect to A′. On the other hand, if e = (u, v)

is an expansion edge with respect to A, then CA will be a part of a “bigger”

active moat with respect to F ∪ {e} and hence the name expansion edge for e.

For example, in Figure 4.2, e is an expansion edge with respect to A because

in F ∪ {e}, A ∪ B ∪ {s} is an active moat whose SCC contains CA.

Now we can state our algorithm in details, see Algorithm 4. Note that the

purchased edge eℓ at iteration ℓ enters some active moat at iteration ℓ.
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Figure 4.2: Above is a part of a graph at the beginning of iteration ℓ in the
algorithm. Fℓ denotes the set F at this iteration. The circles are SCCs in (V, Fℓ).
Blue circles are inside some active moats shown with ellipses. The black dots
s and s′ are Steiner nodes. The black edges and the zigzag paths are in Fℓ. The
edges e, e′, and e′′ have not been purchased yet (i.e., e, e′, e′′ /∈ Fℓ). Since CA
is a subset of an active moat namely A ∪ B ∪ {s} with respect to Fℓ ∪{e}, e is
an expansion edge with respect to A. However, e is a killer edge with respect
to A′ and e′′ is a killer edge with respect to A. Finally, e′ is a killer edge with
respect to A′ (and A′′) because there is a Fℓ ∪{e′}-path from CA to CA′ (and
CA′′), therefore CA′ (and CA′′) cannot be inside an active moat with respect to
Fℓ ∪{e′}.

After the algorithm finishes, then we label non-antenna edges by expan-

sion/killer as determined by the following rule:

Definition 37 (Killer and expansion edges). Consider iteration ℓ of the algorithm

where we added a non-antenna edge eℓ to F. We label eℓ as expansion (killer) if the

expansion (killer) bucket of e becomes full at iteration ℓ, break ties arbitrarily.

Following remark helps to understand the above definition better.

Remark 38. It is possible that one bucket becomes full for an edge yet we do not

purchase the edge with that bucket label (killer or expansion) due to tie-breaking when

multiple buckets become full. For example, this would happen in our bad example for

the downward blue edges: their killer buckets are full yet all but one are purchased as

expansion edges.

Let us explain the growth phase of Algorithm 4 on the bad example in

Figure 4.1. Since the early iterations of the algorithm on this example are

straightforward, we start our explanation from the iteration where the active

moats are A = {b, z1, z2, ..., zk} and A′ = {a, v}.
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Every (wi, zi−1) for 2 ≤ i ≤ k is a killer edge with respect to A so A pays

toward the killer buckets of these edges. At the same iteration, (w1, v) is an

expansion edge with respect to A′ so A′ pays toward the expansion bucket

of this edge. Now the respected buckets for all mentioned edges are full. Ar-

bitrarily, we pick one of these edges, let us say (wk, zk−1), and add it to F.

Then, A stops growing. In the next iteration, we only have one active moat

A′. Since (w1, v) is still expansion edge with respect to A′ and its (expansion)

bucket is full, in this iteration we add (w1, v) to F and after updating the ac-

tive moats, again we only have one active moat {a, v, w1} which by abuse of

notation we denote it by A′. Next iteration we buy the antenna edge (w1, z1)

and the active moat now is A′ = {a, v, w1, z1}. In the next iteration, the cru-

cial observation is that the killer bucket of (w2, z1) is full (recall the A payed

toward the killer bucket of (w2, z1)); however, (w2, z1) is an expansion edge

with respect to A′ so A′ will pay towards its expansion bucket and then pur-

chases it. Similarly, the algorithm buys (wi, zi−1)’s except (wk, zk) because

this edge is in F already (recall we bought this edge with A). Finally, (r, zk)

is a killer edge with respect to the active moat in the last iteration and we

purchase it.

4.5 The analysis

The general framework for analyzing primal-dual algorithms is to use the

dual constraints to relate the cost of purchased edges and the dual variables.

However, here we do not use the dual constraints and rather we use the buck-

ets we created for each edge. Recall F is the solution output by Algorithm

4. We define FKiller to be the set of edges in F that was purchased as killer

edge3. Similarly define FExp and FAnt. For each iteration ℓ, we denote by

Fℓ the set F at this iteration, Aℓ denotes the set of active moats with respect

to Fℓ, and εℓ is the amount we increased the dual variables (corresponding

to active moats) with at iteration ℓ. Finally, Let y∗ be the dual solution for

3See Definition 37.
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Algorithm 4 Primal-Dual Algorithm for DST on Quasi-Bipartite Graphs
Input: Directed quasi-bipartite graph G = (V, E) with edge costs ce ≥ 0 for
e ∈ E, a root node r, and a set of terminal X ⊆ V \ {r}.
Output: An arborescence F rooted at r such that each
terminal is reachable from r in F.
A ← {{v} : v ∈ X}. {The active moats each iteration, initially all singleton
terminal set.}
y∗ ← 0. {The dual solution}
F ← ∅. {The edges purchased}
ℓ← 0. {The iteration counter}
bAnt

e ← 0, bExp
e ← 0 and bKiller

e ← 0. {The buckets}
Growing phase:
while until A ̸= ∅ do

Find the maximum value ε ≥ 0 such that the following holds:
(a) for every antenna edge e we have bAnt

e + ∑
A∈A:

e∈δin(A)

ε ≤ ce.

(b) for every non-antenna edge e we have bExp
e + ∑

A∈A:
e is expansion
with resp. to A

ε ≤ ce.

(c) for every non-antenna edge e we have bKiller
e + ∑

A∈A:
e is killer with

resp. to A

ε ≤ ce.

Increase the dual variables y∗ corresponding to each active moat by ε.
for every antenna edge e do

bAnt
e ← bAnt

e + ∑
A∈A:

e∈δin(A)

ε.

for every non-antenna edge e do
bExp

e ← bExp
e + ∑

A∈A:
e is expansion
with resp. to A

ε.

bKiller
e ← bKiller

e + ∑
A∈A:

e is killer with
resp. to A

ε.

pick any single edge eℓ ∈ ∪A∈Aδin(A) with one of (a)-(c) being tight
(break ties arbitrarily).
F ← F ∪ {eℓ}.
update A based on the minimal violated sets with respect to F.
ℓ← ℓ+ 1.

Deletion phase:
F ← F.
for i from ℓ to 0 do

if F \ {ei} is a feasible solution for the DST instance then
F ← F \ {ei}.

return F
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(Dual-LP-Modified) constructed in the course of the algorithm. We use the

following notation throughout the analysis.

Definition 39. Fix an iteration ℓ. For any A ∈ Aℓ, let

∆ℓ
Killer(A) := {e ∈ FKiller : e is killer with respect to A under Fℓ},

in other words, ∆ℓ
Killer(A) is the set of all killer edges in F such that they are killer

edge with respect to A at iteration ℓ. Similarly define ∆ℓ
Exp(A).

Let ∆ℓ
Ant(A) := {e ∈ FAnt : e ∈ δin(A) and A is active in iteration ℓ}. Finally,

we define

∆ℓ(A) := ∆ℓ
Killer(A) ∪ ∆ℓ

Exp(A) ∪ ∆ℓ
Ant(A).

Note ∆ℓ
Killer(A), ∆ℓ

Exp(A), and ∆ℓ
Ant(A) are pairwise disjoint for any A ∈ Aℓ.

Suppose we want to show that the performance guarantee of Algorithm

4 is 2 · α for some α ≥ 1, it suffices to show the following: for any iteration ℓ

we have

∑
S∈Aℓ

|∆ℓ(S)| ≤ α · |Aℓ|. (4.1)

Once we have (4.1), then the 2 · α-approximation follows easily:

∑
e∈F

ce = ∑
e∈FKiller

∑
ℓ

∑
S∈Aℓ :

e∈∆ℓ
Killer(S)

εℓ + ∑
e∈FExp

∑
ℓ

∑
S∈Aℓ :

e∈∆ℓ
Exp(S)

εℓ + ∑
e∈FAnt

∑
ℓ

∑
S∈Aℓ :

e∈∆ℓ
Ant(S)

εℓ

(4.2)

= ∑
ℓ

εℓ · ∑
S∈Aℓ

|∆ℓ(S)| (4.3)

≤ α ·∑
ℓ

|Aℓ|εℓ (4.4)

= α · ∑
S⊆V\{r}

y∗S (4.5)

≤ 2 · α · (optimal value o f (Dual-LP)) (4.6)

= 2 · α · (optimal value o f (Primal-LP)) (4.7)

≤ 2 · α · opt, (4.8)

where the first equality follows from the algorithm, the second equality is

just an algebraic manipulation, (4.3) follows from (4.1). Equality (4.5) follows
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from the fact that we uniformly increased the dual variables corresponding to

active moats by εℓ at iteration ℓ, (4.6) follows from feasibility of y∗
2 for (Dual-

LP), and (4.7) follows from strong duality theorem for linear programming

(see Theorem 2).

It remains to show (4.1) holds. Consider iteration ℓ. Using the bound on

the total degree of nodes in G (using minor-free properties) to show (4.1), it

suffices to bound the number of edges in FAnt ∪ FKiller ∪ FExp that are being

paid by some active moat at iteration ℓ, by O(|Aℓ|) (where the constant in

the O-notation depends on α and r, the size of the excluding minor). We

provide charging schemes for each type of edges, separately. Since G is quasi-

bipartite, it is easy to show that for each active moat A ∈ Aℓ, there is at most

one antenna edge in F that enters A, this is proved in Section 4.5.1. The

charging scheme for killer edges is also simple as one can charge a killer

edge to an active moat that it kills; this will be formalized in Section 4.5.2.

However, the charging scheme for expansion edges requires more care and

novelty. The difficulty comes from the case that an expansion edge is not

pruned because it would disconnect some terminals that are not part of any

active moat that e is entering this iteration.

Our charging scheme for expansion edges is more global. In a two-stage

process, we construct an auxiliary tree that encodes some information about

which nodes can be reached from SCCs using edges in Fℓ (which is the in-

formation we used in the definition of expansion edge). Then using a token

argument, we leverage properties of our construction to show the number of

expansion edges is at most twice the number of active moats in any iteration.

These details are presented in Section 4.5.3. Finally, in Section 4.5.4 we put all

the bounds we obtained together and derive our approximation factors.

4.5.1 Counting the number of antenna edges in an iteration

Fix an iteration ℓ. Recall Fℓ denotes the set F at iteration ℓ, and Aℓ denotes

the set of active moats with respect to Fℓ. It is easy to bound the number of

antenna edges in F against |Aℓ|. We do this in the next lemma.
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Lemma 40. At the beginning of each iteration ℓ, we have ∑
A∈Aℓ

|∆ℓ
Ant(A)| ≤ |Aℓ|.

Proof. Suppose an active moat A ∈ Aℓ is paying toward at least two antenna

edges e = (u, v) and f = (u′, v′) that are in F. Let CA be the SCC part of

A. Note that since e and f are antenna edges, u and u′ are Steiner nodes.

Together with the fact that the graph is quasi-bipartite, the heads v and v′ are

terminals and therefore contained in CA. Since all the edges in CA are bought

before e and f , one of e or f should have been pruned in the deletion phase,

a contradiction. Hence, |∆ℓ
Ant(A)| ≤ 1 which implies the desired bound.

4.5.2 Counting the number of killer edges in an iteration

We introduce a notion called alive terminal which helps us to bound the num-

ber of killer edges at a fixed iteration against the number of active moats in

that iteration. Also this notion explains the name killer edge. Throughout

the algorithm, we show every active moat contains exactly one alive termi-

nal and every alive terminal is in an active moat.

We consider how terminals can be “killed” in the algorithm by associating

active moats with terminals that have not yet been part of a moat that was

killed. At the beginning of the algorithm, we mark every terminal alive, note

that every singleton terminal set is initially an active moat as well. Let eℓ =

(u, v) be the edge that was added to Fℓ at iteration ℓ. If eℓ = (u, v) is a non-

antenna edge, then for every active set A such that eℓ is a killer edge with

respect to A under Fℓ, mark the alive terminal in A as dead4. If eℓ = (u, v) is

an antenna edge, then for every active moat A such that eℓ ∈ δin(A) and CA is

not in any active moat with respect to Fℓ ∪{eℓ}, then mark the alive terminal

in A as dead5.

The important observation here is that by definition, if eℓ is a killer edge,

4It is possible, eℓ is bought as an expansion edge but kills some alive terminals. For
example, in Figure 4.2 suppose e is being added to Fℓ at iteration ℓ as an expansion edge
(note that A pays toward the expansion bucket of e). Then, we mark the alive terminal in A′

as dead because e is a killer edge with respect to A′ under Fℓ.
5For example, suppose the antenna edge eℓ = (u, v) ∈ δin(A) is being added to Fℓ and u

is in CA′ for some active moat A′. Then, after adding eℓ to Fℓ, we mark the alive terminal in
A as dead.

69



then there must be an active set that satisfies the above condition, hence there

is at least one alive terminal that will be marked dead because of eℓ. In the

case that eℓ is bought as killer edge, arbitrarily pick an alive terminal teℓ that

dies because of eℓ and assign eℓ to teℓ . Note that teℓ was alive until eℓ was

added to Fℓ.

Definition 41. Fix an iteration ℓ. We define

Fℓ
Killer := {e ∈ FKiller : ∃A ∈ Aℓ s.t. e ∈ ∆ℓ

Killer(A)},

in other words, Fℓ
Killer is the set of all killer edges in F such that some active moat(s)

is paying toward their killer bucket at iteration ℓ.

Now we can state the main lemma of this section.

Lemma 42. At the beginning of each iteration ℓ, we have |Fℓ
Killer| ≤ |Aℓ|.

Proof. As shown above, every killer edge e is assigned to a terminal te that

was alive until e was added to F. Thus, at iteration ℓ all the edges in FKiller \ Fℓ
correspond to a terminal that is alive at this iteration. Since there is a one-

to-one correspondence between alive terminals and active sets, the number

of edges in FKiller \ Fℓ is at most |Aℓ|. The lemma follows by noticing that

Fℓ
Killer ⊆ FKiller \ Fℓ.

Note that the above lemma does not readily bound ∑
A∈Aℓ

|∆ℓ
Killer(A)|

against |Aℓ| which is required to prove inequality (4.1). We need the prop-

erties of minor-free graphs to do so. In the next section we prove a similar

bound for expansion edges and then using the properties of the underlying

graph, we demonstrate our approximation guarantee.

4.5.3 Counting the number of expansion edges in an iteration

The high level idea to bound the number of expansion edges is to look at the

graph F∪ Fℓ and contract all SCCs6 of (V, Fℓ). Then, we construct an auxiliary

6Recall that we do NOT call a singleton Steiner node that is a strongly connected compo-
nent of (V, Fℓ) an SCC. So every SCC in (V, Fℓ) is either {r} or contains at least one terminal
node.
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tree that highlights the role of expansion edges to the connectivity of active

moats. Then, using this tree we provide our charging scheme and show the

number of edges in FExp that are being paid by some active moats at iteration

ℓ is at most twice the number of active moats.

We fix an iteration ℓ for this section. First let us recall some notation and

definition that we use extensively in this section.

• F is the output solution of the algorithm.

• Fℓ ⊆ E is the set of purchased edges in the growing phase up to the

beginning of iteration ℓ (i.e., set F in the algorithm at iteration ℓ).

• Aℓ is the set of active moats with respect to Fℓ (see Definition 30). Recall

each A ∈ Aℓ consists of an SCC (with respect to edges in Fℓ) and a

bunch of Steiner nodes. Denote by CA the SCC part of A.

We define an analogue of Definition 41 for expansion edges.

Definition 43. Fix an iteration ℓ. Then, we define

Fℓ
Exp := {e ∈ FExp : ∃A ∈ Aℓ s.t. e ∈ ∆ℓ

Exp(A)},

in other words, Fℓ
Exp is the set of all expansion edges in F \ Fℓ such that some active

moat(s) is paying toward their expansion bucket at iteration ℓ.

This section is devoted to prove the following inequality.

Lemma 44. At the beginning of each iteration ℓ of the algorithm, we have |Fℓ
Exp| ≤

2 · |Aℓ|.

Sketch of the proof

We start by giving a sketch of the proof of Lemma 44. Consider the subgraph

Fℓ ∪F of G. Contract every SCC of (V, Fℓ) and denote the resulting subgraph

by H (keeping all copies of parallel edges that may result). For every non-

root, non-Steiner node v ∈ V(H), we call v active if it is a contraction of an

SCC that is a subset of an active moat inAℓ, otherwise we call v inactive. Note
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that r is a singleton SCC in (V, Fℓ) and therefore r ∈ V(H). We call an edge in

E(H) an expansion edge, if its corresponding edge is in Fℓ
Exp. Note that every

non root vertex in V(H) is either labeled active/inactive, or it is a Steiner

node. Lemma 44 follows if we show the number of expansion edges in H is at

most twice the number of active vertices in H. As we stated at the beginning

of this section, we use an arborescence that highlights the role of expansion

edges to the connectivity of active vertices in H. A bit more formally, we

show if every expansion edge is “good” with respect to the arborescence,

which is formalized below, then every expansion edge is “close” to an active

vertex in H and we use this in our charging scheme.

Given an arborescence T, define ElevelT(v) to be the expansion level of v

with respect to T, i.e., the number of expansion edges on the dipath from r to

v in T.

Definition 45. Given an arborescence T and an expansion edge e = (u, v), we say

e is a good expansion edge with respect to T if one of the following cases happens:

• Type 1: If u has an active ancestor w such that ElevelT(w) = ElevelT(u).

• Type 2: If e is not of type 1 and the subtree rooted at u has an active vertex w

such that ElevelT(w) ≤ ElevelT(u) + 1.

Every expansion edge that is not of type 1 or type 2, is called a bad expansion edge

with respect to T.

A starting point to construct an arborescence that every expansions edge

is good, is a shortest path arborescence rooted at r in H where each expansion

edge has cost 1 and the rest of the edges have cost 0. However, as Figure

4.3 shows, there could be some bad expansion edges in this arborescence.

For example, e is a bad expansion edge with respect to the arborescence in

Figure 4.3 (b). Since B2, the tail of e, is an inactive vertex, there must be an

active vertex, namely A3, that has a dipath from A3 to B2 in Fℓ (see Claim 46).

Then, we “cut” the subtree rooted at B2 and “paste” it under A3 as shown

in Figure 4.3(c). It is easy to verify that now every expansion edge is good
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with respect to the arborescence in Figure 4.3(c). We formalize this “cut and

paste” procedures in Algorithm 5 and prove the output of the algorithm is

an arborescence with the property that every expansion edge is good. At the

end of this section, given an arborescence that every expansion edge is good,

we show there is a rather natural charging scheme that proves Lemma 44.

r

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5e

(a)

r

B2
e

A3

(b)

r

B2
e

A3

(c)

Figure 4.3: (a) shows part of the subgraph Fℓ ∪F of G, in particular, the SCCs
of (V, Fℓ) are shown with circles but the nodes inside SCCs are not shown for
simplicity. The blue SCCs are inside some active moats shown with dashed
ellipses. Contracting all the SCCs result in the graph H discussed before.
Black edges are in Fℓ, blue edges are in F \ Fℓ, and green edges are in Fℓ

Exp.
In (b), we have a shortest path arborescence rooted at r where the cost of
edges is one if it is green and zero otherwise. Note that e is a bad expansion
edge with respect to this arborescence. In (c), we show how to construct an
arborescence using cut-and-paste procedure so that every expansion edge is
a good expansion edge in the resulting arborescence.

Detailed proof

Our arguments use the following observations about edges being paid as

expansion edges in this iteration.
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Claim 46. Let e = (u, v) ∈ Fℓ
Exp, then u ∈ X, v ∈ A for some A ∈ Aℓ, and there

is a Fℓ-path from CA to u. Furthermore, the SCC of (V, Fℓ) that contains u is not

contained in any active moat in Aℓ.

Proof. Since e is an expansion edge with respect to A by Definition 36 there

exists A′ ⊊ V that is active with respect to Fℓ ∪{e}. Since e is a non-antenna

edge, u must be a terminal. Furthermore, u ̸= r because A′ is active so u ∈ X.

By Lemma 32, the SCC part CA′ of A′ contains both u and all vertices in

CA, hence there is a dipath in Fℓ ∪{e} from CA to u. However, notice that

this dipath cannot contain e, thus the path is actually a Fℓ-path. Finally, since

there is a Fℓ-path from CA to u, the SCC B of Fℓ that contains u is not a violated

set and therefore no active moat in Aℓ contains B.

Recall the definition of graph H. We state a couple of facts about this

graph which will be useful later.

Claim 47. For every inactive vertex v in H, there is a Fℓ-path from either r or an

active vertex to v.

Proof. Let v be the contraction of SCC B. Consider all SCCs in (V, Fℓ) that B is

reachable from via a Fℓ-path and pick such SCC C that is not reachable from

any other SCCs of (V, Fℓ), it is easy to see that either C = {r} or C is inside

an active moat and therefore, v is reachable from the active vertex that is the

contraction of C.

Claim 48. For every expansion edge e = (u, v) ∈ E(H), u must be inactive and v

is either active or a Steiner node.

Proof. Let e′ = (u′, v′) ∈ Fℓ
Exp be the corresponding edge to e. By Claim

46, u′ ∈ X and the SCC B in (V, Fℓ) that contains u′ is not a subset of any

active moat in Aℓ. Therefore, u is the contraction of such SCC B and so it is

labeled inactive. Again by Claim 46, v′ ∈ A for some A ∈ Aℓ. If v′ is not a

Steiner node (and therefore v is not a Steiner node) then v′ ∈ CA and v is the

contraction of CA and so it is labeled active.
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r r

Figure 4.4: The left picture shows the subgraph Fℓ ∪F. The SCCs of (V, Fℓ)
is shown with circles and the blue ones are inside some active moats shown
with dashed ellipses at iteration ℓ. Zigzag paths and black edges are in Fℓ,
blue edges are in F \ Fℓ, and green edges are in Fℓ

Exp. The right picture shows
Haux constructed from Fℓ ∪F. The red edges are the auxiliary edges.

To simplify the exposition, we use the following auxiliary graph instead

of H in proving the main lemma of this section. With abuse of notation, we

say a dipath in H is a Fℓ-path if its corresponding edges are in Fℓ.

Definition 49 (Auxiliary graph Haux). For every expansion edge e = (u, v) in

H and every active vertex w in H such that there is a Fℓ-path from w to u, add an

auxiliary edge (w, u)7. Set the cost of each expansion edge to 1 and the rest of the

edges (including the auxiliary edges) have cost 0. Denote this graph by Haux.

See Figure 4.4 for an illustration of Haux. Given a subset T ⊆ E(Haux),

we say e ∈ Fℓ
Exp is in T if its corresponding expansion edge in E(Haux) is in

T. For the rest of this section, when we talk about arborescence we mean an

arborescence rooted at r that is a subgraph of Haux and every active/inactive

vertices in V(Haux) is reachable from r in this arborescence. Following are

two properties of arborescences that will be useful.

Lemma 50. Let T be an arborescence rooted at r in Haux. Then, we have
7We might create parallel edges but since at the end we work with arborescence, the

parallel edges do not matter. Also the resulting graph might destroy the minor-free property;
however, we do not need any property of minor-free graphs in this section.
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a. Every edge in Fℓ
Exp is in T as well. And

b. For every expansion edge e = (u, v) in T, either v is active or the subtree Tv

of T rooted at v contains an active vertex.

Proof. Proof of part (a): note that all edges in Fℓ
Exp are present in Haux. Sup-

pose e ∈ Fℓ
Exp that is not in T. Replace every auxiliary edge with its cor-

responding Fℓ-path in T. Note that the resulting subgraph H′ is a sub-

graph of H (recall H is the contracted graph obtained from Fℓ ∪F) and ev-

ery active/inactive vertex is still reachable from r in H′. Replace every ac-

tive/inactive vertex in H′ by its corresponding contracted SCC, this is a sub-

graph of (F ∪ Fℓ) \ {e} and every terminal is reachable from r. Therefore,

(Fℓ ∪F) \ {e} is a feasible solution for the DST instance. Since e was added

to F after all edges in Fℓ, in the deletion phase we should have pruned e, a

contradiction with the fact that e ∈ F.

Proof of part (b): suppose not. Then v is a Steiner node and every vertex

in the subtree rooted at v is either inactive or a Steiner node. If it is inactive

then by Claim 47 there must be a Fℓ-path from either an active vertex or r to it.

Add these Fℓ-path for all inactive vertices in Tv. With the same argument as

in part (a) we conclude that (u, v) (i.e., its corresponding edge in Fℓ
Exp) should

have been pruned, a contradiction.

Denote by T the shortest path tree in Haux rooted at r. In the following we

show how to turn T to an arborescence such that every expansion edge is a

good expansion edge (with respect to the resulting arborescence). Once we

have that, we can provide a charging argument that proves the main lemma

of this section (i.e., Lemma 44). We use the following algorithm for modifying

T, note that this is for the analysis and our primal-dual algorithm does not

use this.
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Algorithm 5 Modifying T
Input: A shortest path tree T of Haux.
Output: A tree T∗ rooted at r such that every active/inactive vertex of Haux
is reachable from r in T∗ and every expansion edge is a good expansion
edge.
L ← ∅. {This is the set of edges to be added to T at the end.}
Let Γ be the set of all bad expansion edges with respect to T (cf. Definition
45).
while Γ ̸= ∅ do

pick an arbitrary edge e = (u, v) ∈ Γ. Let w be an active vertex such that
(w, u), (v, w) ∈ E(Haux) cf. Lemma 51. Then
L ← L∪{(w, u)}.
update Γ by removing all the expansion edges incident to u from Γ. {this
makes sure that we add only one edge to L whose head is u}

T ∪ L is a DAG (cf. Lemma 54), so by Claim 55 there exists a subset of
edges of E(T) such that its removal makes T ∪L an arborescence rooted at
r. Call the resulting arborescence T∗.
return T∗.

We show Algorithm 5 works correctly by a series of lemmas.

Lemma 51. For every bad expansion edge (u, v) ∈ E(T), there exists an active

vertex w such that (w, u), (v, w) ∈ E(Haux).

Proof. Note that v is a Steiner node, otherwise (u, v) is a good expansion edge

of type 2 with respect to T. Let (u′, v) be the corresponding edge to (u, v) in

Fℓ ∪F. Claim 46 implies u′ ∈ B for some SCC B of (V, Fℓ), v ∈ A \ CA for

some A ∈ Aℓ, and there is a Fℓ-path from CA to B. Let w be the contraction of

CA in H. Note that u is the contraction of B in H. Therefore, there is a Fℓ-path

from w to u and hence there is an auxiliary edge (w, u) in Haux. The claim

follows by noting that there is an edge whose tail is v and enters CA; hence

(v, w) is in Haux as well.

The above claim proves that the while loop in Algorithm 5 work correctly.

Before we prove T ∪ L is a DAG, we need two helper claims.

Claim 52. For any edge (w, u) ∈ L, we have

ElevelT(u) ≤ ElevelT(w) ≤ ElevelT(u) + 1.
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Proof. Let (u, v) be the bad expansion edge that caused us to add (w, u) to L
in Algorithm 5. By Claim 51 we have (w, u), (v, w) ∈ E(Haux). Also consid-

ering that T is a shortest path tree finishes the proof.

For the next claim we use the following notation. Note that edges in L
will not form a dipath of length greater than 1 because the the edges in L are

oriented from an active vertex to an inactive vertex. So for any dipath P in

T ∪ L beginning with an edge in L, we write P = v1,L, v2, T, v3,L, ..., T, vk

where (vi, vi+1) ∈ L for odd i and the subpath P[vi,vi+1]
uses only edges in T

for even i.

Claim 53. Let k ≥ 3 be odd and let P = v1,L, v2, T, v3,L, ..., T, vk be a dipath such

that vi is active for odd i and inactive for even i. Then ElevelT(vk) ≥ ElevelT(v1)+

k−1
2 .

Proof. We prove it by induction. Let k = 3 (i.e., P = v1,L, v2, T, v3). Since

(v1, v2) ∈ L it must be the case that there is a bad expansion edge (with

respect to T) whose tail is v2; together with the fact that v3 is active and it is

in the subtree rooted at v2, we have

ElevelT(v3) ≥ ElevelT(v2) + 2

≥ ElevelT(v1) + 1,

where the last inequality follows by applying Claim 52 to (v1, v2) ∈ L.

Now suppose the claim holds for k and we prove it for k+ 2. So the dipath

is P = v1,L, v2, T, ..., T, vk,L, vk+1, T, vk+2.

ElevelT(vk+2) ≥ ElevelT(vk+1) + 2

≥ (ElevelT(vk)− 1) + 2

≥ ElevelT(v1) +
k− 1

2
+ 1

= ElevelT(v1) +
k + 1

2
,

where the first inequality follows because there is a bad expansion edge

whose tail is vk+1 and vk+2 is active and it is in the subtree rooted at vk+1,
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the second inequality follows from applying Claim 52 to (vk, vk+1) ∈ L, and

the last inequality follows from the induction hypothesis.

Next we prove the statements after the while loop in Algorithm 5 works

correctly.

Lemma 54. After the while loop in Algorithm 5, T ∪ L is a DAG.

Proof. Recall that edges in L will not form a dipath of length greater than 1;

hence, any dicycle in T ∪ L always alternate between a dipath in T and an

edge in L. By reordering the alternation, we denote a dicycle in T ∪ L by

C = v1,L, v2, T, v3,L, ..., T, vk−1,L, vk, T, v1 where vi is active for odd i and

even otherwise. Note that k is even.

It is easy to see k ̸= 2. Otherwise we have a dicycle C = v1,L, v2, T, v1

which implies there is a bad expansion edge (with respect to T) whose tail

is v2 together with the fact that v1 is an active vertex in Tv2 we must have

ElevelT(v1) ≥ ElevelT(v2) + 2 (otherwise all expansion edges whose tail is v2

are good expansion edges). On the other hand, since (v1, v2) ∈ L by Claim

52 we have ElevelT(v1) ≤ ElevelT(v2) + 1, a contradiction.

For the sake of contradiction, we assume there is a dicycle C =

v1,L, v2, T, ..., T, vk−1,L, vk, T, v1, where vi is active for odd i and inactive

otherwise, furthermore we assume k ≥ 4. By applying Claim 53 to

v1,L, v2, T, ..., T, vk−1, we get ElevelT(v1) + 1 ≤ ElevelT(vk−1), and by apply-

ing Claim 52 to (vk−1, vk) ∈ L we have ElevelT(vk−1) − 1 ≤ ElevelT(vk).

Together, we see ElevelT(v1) ≤ ElevelT(vk). On the other hand, since

(vk−1, vk) ∈ L there is a bad expansion edge whose tail is vk, and the fact that

v1 is an active vertex in Tvk , it must be that ElevelT(vk) + 2 ≤ ElevelT(v1)

which is a contradiction.

Next, we show that T∪L can be turned into an arborescence by removing

a unique subset of edges of E(T). To do so we use the following generic claim.

Claim 55. Let T =
(
V(T), E(T)

)
be an arborescence, and let L =

{(u1, v1), ..., (uk, vk)} be a collection of edges such that ui, vi ∈ V(T) and (ui, vi) /∈
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E(T) for all 1 ≤ i ≤ k. Furthermore, vi ̸= vj for i ̸= j. If T∪ L is a DAG, then there

is a unique set of edges B ⊆ E(T) of size k such that (T ∪ L) \ B is an arborescence.

Proof. We prove this by induction on the size of L. The base case (i.e., when

we have one edge in L) is easy to see. Suppose it is true when |L| ≤ k now

we prove it for |L| = k + 1. Let L′ ⊊ L be a subset of size k. Since T ∪ L

is a DAG so is T ∪ L′ and hence by induction hypothesis there is a unique

B′ ⊆ E(T) such that T′ := (T ∪ L′) \ B′ is an arborescence rooted at r. Let

{e} = L \ L′, since T′ ∪ {e} is a subgraph of T ∪ L, we know T′ ∪ {e} is a DAG

too and again by induction hypothesis there is an edge e′ ∈ E(T′) such that

(T′ ∪ {e}) \ {e′} is an arborescence. Since (T′ ∪ {e}) \ {e′} is an arborescence,

e′ and e must have the same heads (otherwise the head of e has indegree 2

in (T′ ∪ {e}) \ {e′}). The inductive step follows by noticing that e′ cannot be

in L because otherwise it contradicts the fact that the heads of edges in L are

disjoint; hence, e′ ∈ E(T). Let B := B′ ∪ {e′} ⊆ E(T). Note |B| = k + 1. Then,

we have (T ∪ L) \ B = (T′ ∪ {e}) \ {e′} which is an arborescence.

Note that T ∪L satisfies all the conditions of Claim 55 so the line after the

while loop in the algorithm works correctly.

Remark 56. The edges in B in Lemma 55 are the edges of E(T) whose head is one of

vertices v1, ..., vk.

Finally, we show that every expansion edge is a good expansion edge

(recall Definition 45) with respect to T∗ to finish the correctness of Algorithm

5.

Lemma 57. Every expansion edge is a good expansion edge with respect to T∗.

Proof. Note that for a bad expansion edge e = (u, v) in T since there is an

edge (w, u) ∈ L in T∗ where w is active, e is a good expansion edge of type 1

with respect to T∗.

Next we show that when we are removing edges from T to make T∗ =

T ∪ L a DAG, we do not make a good expansion edge becomes bad in T∗.
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By Remark 56, we remove (x, y) ∈ T if and only if there exists an edge in L
whose head is y.

case 1. If e = (u, v) is a good expansion edge of type 1 in T. So there is an active

vertex w in T such that the dipath Pw,u in T from w to u does not have

any expansion edge. Furthermore, if there is an expansion edge whose

tail is on Pw,u, then that expansion edge is of type 1. Hence, there is no

edge in L whose head is in Pw,u and so Pw,u is in T∗ as well and e is a

good expansion edge of type 1 in T∗.

case 2. If e = (u, v) is a good expansion edge of type 2 in T. So there is an active

vertex w in the subtree of T rooted at u such that the dipath Pu,w in T

from u to w has at most one expansion edge (it could be that w = v).

Pick the one that is closest (in terms of edge hops) to u. Then all the

expansion edges whose tail is on Pu,w is of type 2. Therefore, there is no

edge in L whose head is in Pu,w and so Pu,w is in T∗ as well and e is a

good expansion edge of type 2 in T∗.

Finally, we can state the proof of the main lemma of this section.

Proof. (of Lemma 44) Note that in order to prove Lemma 44, it suffices to

show the number of expansion edges in T∗ is at most twice the number of

active vertices in T∗. We prove this based on a token argument. Assign two

tokens to every active vertex. We show that the number of expansion edges is

at most the number of tokens. We do this via the following charging scheme.

Charging scheme: At the beginning we label every token unused. We pro-

cess all the vertices with height l. For each expansion edge whose tail has

height l we assign an unused token to it and change the label of the assigned

token to used. Then we move to height l − 1 and repeat the process. Fix

height l. We do the following for every vertex u with this height: if there

is no expansion edge whose tail is u then mark u as processed. Otherwise
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let (u, v1), ..., (u, vk) be all the expansion edges whose tail is u. Note that by

definition of type 1 and 2, either (i) all (u, vi)’s are type 1 or (ii) all are type 2.

Base on these two cases we do the following:

(i) Let (u, v1), ..., (u, vk) be the expansion edges of type 1. For each 1 ≤ i ≤
k there is at least one unused token in T∗vi

. Pick one such unused token

and assign it to (u, vi) and change its label to used. Mark u as processed.

(ii) Let (u, v1), ..., (u, vk) be the expansion edges of type 2. For each 1 ≤ i ≤
k there is at least one unused token in T∗vi

. Pick one such unused token

and assign it to (u, vi) and change its label to used. Furthermore, after

this there is at least one more unused token in T∗u . Mark u as processed.

Here we prove by induction on the height l, that case (i) and case (ii) works

correctly.

Consider the following base case: let u be a vertex and let (u, v1), ..., (u, vk)

be the only expansion edges in T∗u . Then, by Lemma 50(b), for every 1 ≤ i ≤ k

there is an active vertex in T∗vi
and so it has two unused tokens. Therefore,

both cases (i) and (ii) work in the base case.

Now consider a vertex u and assume case (i) and case (ii) are correct for

all vertices (except u) in T∗u whose is the tail of an expansion edge. We show

it is correct for u as well.

Proof for case (i): Suppose u falls into case (i). So each (u, vi) for 1 ≤ i ≤ k

is of type 1. If there is no expansion edge in T∗vi
then by Lemma 50(b) there

is an active vertex in T∗vi
and has two unused tokens. So now assume there is

an expansion edge in T∗vi
and pick the one fi = (xi, yi) whose tail is closest to

vi (break the ties arbitrarily). If fi is of type 2, then by induction hypothesis

T∗xi
has one unused token (when we processed xi) and since by the choice of

fi there is no expansion edge on the dipath Pvi,xi in T∗; hence this token is

unused at this iteration as well. If fi is of type 1, then there is an active vertex

z on Pvi,xi and has two tokens. Again we note that the tokens of z are unused

since there is no expansion edge on Pvi,z.
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So we proved for each (u, vi) where 1 ≤ i ≤ k there is at least one unused

token in T∗vi
, as desired.

Proof for case (ii): Suppose u falls into case (ii). So each (u, vi) for 1 ≤ i ≤
k is of type 2. With the exact same argument as in case (i), we can show that

for each 1 ≤ i ≤ k there is (at least) one unused token in T∗vi
. So we just need

to show an extra unused token in T∗u .

Since (u, vi)’s are of type 2, there must be an active vertex w such that

ElevelT∗(u) ≤ ElevelT∗(w) ≤ ElevelT∗(u) + 1. Pick such w with smallest

Elevel. If ElevelT∗(w) = ElevelT∗(u) then w has two tokens and these tokens

are different than the ones in T∗vi
because w is not in T∗vi

’s. Furthermore, the

tokens of w are unused because there is no expansion edge on the dipath Pu,w

in T∗.

So let us assume ElevelT∗(w) = ElevelT∗(u) + 1. There are two cases to

consider:

• w is in T∗vj
for some 1 ≤ j ≤ k. Note that there is no expansion edge on

Pvj,w. Therefore, among the two tokens of w, one could be assigned to

(u, vj) as before and the other one will be unused when we are process-

ing u so this would be the extra unused token we wanted.

• w is not in T∗vj
for any 1 ≤ j ≤ k. So there is one expansion edge (x, y)

on Pu,w. By the choice of w (with smallest Elevel), (x, y) must be of type

2 (otherwise there is an active vertex w′ on Pu,x whose Elevel is strictly

smaller than w, a contradiction with the choice of w). Therefore, x has

one unused token when x was processed. Since there is no expansion

edge on Pu,x, this token is unused at this iteration as well. Finally, since

x is not in T∗vi
for 1 ≤ i ≤ k this unused token is the extra token, as

desired.
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4.5.4 Putting everything together

Fix an iteration ℓ. We use Lemmas 42 & 44 and the properties of graph G to

bound ∑
A∈Aℓ

|∆ℓ
Killer(A) ∪ ∆ℓ

Exp(A)|. Consider an active moat A and its SCC

CA. We show there is at most one killer/expansion edge that enters CA. So

the remaining killer/expansion edges must enter some Steiner node in A \
CA. We use this fact later.

Claim 58. Fix an iteration ℓ and an active moat A ∈ Aℓ. There is at most one edge

in ∆ℓ
Killer(A) ∪ ∆ℓ

Exp(A) whose head is in CA.

Proof. Suppose there are two edges e and f in ∆ℓ
Killer(A) ∪ ∆ℓ

Exp(A) that enter

CA. Since e and f are bought later than all the edges in CA, we should have

pruned one of e or f in the deletion phase.

Consider the graph Fℓ ∪F. Remove all vertices that are not in an active

moat at this iteration. For each active moat A, remove all Steiner nodes in

A \ CA that are not the head of any edge in Fℓ
Killer ∪ Fℓ

Exp. Then, for each

A ∈ Aℓ contract CA to a single vertex and call the contracted vertex by CA.

Finally, if there are parallel edges, arbitrarily keep one of them and remove

the rest8. Call the resulting graph G′.

Now we relate the sum we are interested in to bound with the sum of the

indegree of vertices in G′.

Claim 59. For each active moat A ∈ Aℓ, we have

|∆ℓ
Killer(A) ∪ ∆ℓ

Exp(A)| ≤ |δin
G′(CA)|+ 1. (4.9)

Proof. Consider an active moat A and let v be a Steiner node in A \ CA. First

note that the indegree of vertices in F is at most 1 therefore there is at most

one edge e ∈ Fℓ
Killer ∪ Fℓ

Exp that enters v. Secondly, we note that by Lemma

32 there is at least one edge in Fℓ from v to CA and we kept one such edge in

G′; so the contribution of e to the LHS of (4.9) is accounted for in the RHS.

8Note that all the parallel edges are antenna edges and so removing them does not affect
the quantity ∑

A∈Aℓ

|∆ℓ
Killer(A) ∪ ∆ℓ

Exp(A)| we are trying to bound.
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Finally, by Claim 58 at most one killer/expansion edge enters CA and the

contribution of this edge is accounted for by the plus one in the RHS.

Next, using Lemmas 42 & 44 we bound the number of vertices in G′.

Claim 60. |V(G′)| ≤ 4 · |Aℓ|.

Proof. The set V(G′) is consist of CA’s for some active moat A and bunch of

Steiner nodes. Note that we kept a Steiner node s if there is (exactly) one edge

in Fℓ
Killer ∪ Fℓ

Exp that enters s. Therefore, |V(G′)| is at most |Aℓ|+ |F
ℓ
Killer|+

|Fℓ
Exp|. The bound follows from Lemmas 42 & 44.

Finally, we prove Theorems 25 & 27.

Proof. (of Theorem 25) Since G is Kr-minor free so is G′. So we can write

∑
A∈Aℓ

∣∣∆ℓ
Killer(A) ∪ ∆ℓ

Exp(A)
∣∣ ≤ ∑

A∈Aℓ

(
|δin

G′(CA)|+ 1
)

= |E(G′)|+ |Aℓ|

≤ O(r ·
√

log r) · 4 · |Aℓ|+ |Aℓ|

= O(r ·
√

log r)|Aℓ|,

(4.10)

where the inequality follows from Claim 59 and the second inequality follows

from Claim 60 together with Theorem 34.

Next we show (4.1) holds for α = O(r ·
√

log r).

∑
A∈Aℓ

|∆ℓ(A)| = ∑
A∈Aℓ

|∆ℓ
Killer(A) ∪ ∆ℓ

Exp(A)|+ ∑
A∈Aℓ

|∆ℓ
Ant(A)|

≤ O(r ·
√

log r)|Aℓ|+ |Aℓ|

= O(r ·
√

log r)|Aℓ|,

where inequality follows from inequality (4.10) and Lemma 40.

As we discussed at the beginning of Section 4.5 that if (4.1) holds for α then

we have a (2 · α)-approximation algorithm. Hence, Algorithm 4 is an O(r ·√
log r)-approximation for DST on quasi-bipartite, Kr-minor free graphs.

Proof. (of Theorem 27) The proof of Theorem 27 is exactly the same as proof

of Theorem 25 except instead of O(r ·
√

log r) in (4.10) we have 2 because G′
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is a bipartite planar graph, see Lemma 35. Now we can write

∑
A∈Aℓ

∣∣∆ℓ
Killer(A) ∪ ∆ℓ

Exp(A)
∣∣ ≤ 9 · |Aℓ|,

and

∑
A∈Aℓ

|∆ℓ(A)| ≤ 10 · |Aℓ|.

Therefore, (4.1) holds for α = 10 and hence we have a 20-approximation

algorithm, as desired.

4.6 NP-hardness

In this section we prove Theorem 28. We reduce from the NP-complete prob-

lem CONNECTED VERTEX COVER (CVC) on planar graphs. Here, we are

given a planar graph G = (V, E) and a positive integer k. The goal is to

decide if there is a vertex cover S ⊆ V (i.e., every edge has at least one of

its endpoint in S) such that |S| ≤ k and G[S] is connected. This problem is

known to be NP-complete, see Lemma 2 in [27].

Our reduction from CVC on planar graphs to UNDIRECTED STEINER

TREE on quasi-bipartite planar graphs is similar to the reduction showing

UNDIRECTED STEINER TREE problem is NP-hard on general graphs from

[39]. Let (G = (V, E), k) be an instance of CVC where G is planar. Subdi-

vide every edge e ∈ E by a terminal vertex xe and call the resulting graph G′,

which is also planar. Let X := {xe : ∀e ∈ E} be the set of terminals and V(G)

is the set of Steiner nodes in G′.

Lemma 61. G′ has a Steiner tree of size k + |E(G)| − 1 if and only if G has a

connected vertex cover of size k.

Proof. Suppose G has a connected vertex cover S of size k. Then, G′[S ∪ X] is

connected and therefore it has a spanning tree T where |E(T)| = |S ∪ X| −
1 = |E(G)|+ k− 1.

Now let T′ be a tree that spans X in G′ and |E(T′)| = |E(G)| + k − 1.

Since |X| = |E(G)|, we have |V(T′) \ X| = k. Define S := V(T′) \ X; we
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show that S is a connected vertex cover for G. The fact that it is a vertex

cover is clear because for every edge e ∈ E(G) at least one of its endpoint

is in V(T′) \ X. Consider u, v ∈ S. Since u, v ∈ V(T′), there is a path P =

u, xe1 , w1, xe2 , w2, ..., wℓ−1, xeℓ , v in T′. Note that the path u, w1, w2, ..., wl−1, v is

in G[S]. So we showed G[S] is a connected subgraph of G and |S| = k, as

desired.

This completes the proof of Theorem 28.
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Chapter 5

Bounded-Degree Traveling
Salesman Problem

5.1 Overview and the basics

In this chapter we study Question 2 stated in the introduction.

Let us start by recalling the definition of the problems we consider in

this chapter. An input to BOUNDED-DEGREE SUBSET TRAVELING SALESMAN

problem (BDSTSP) is an undirected graph G = (V, E) with edge costs ce ≥ 0

for all e ∈ E, a subset of terminals X ⊆ V we are to visit (|X| ≥ 2), and even

integer bounds bv ≥ 0 for all nodes v ∈ V. The goal is to find a minimum-

cost closed walk (tour) Q spanning all terminals such that dQ(v) ≤ bv (i.e.,

the number of edges in the multiset Q incident to v is at most bv). Note bv

should be thought of as a degree bound, thus the tour should pass through

v at most bv
2 times. We call a special case of BDSTSP where X = V, the

BOUNDED-DEGREE TRAVELING SALESMAN problem (BDTSP).

All graphs in this chapter are undirected and may be multi-graphs and

all subsets of edges may be multi-subsets, we adopt this convention now so

we do not have to use the prefix multi on every set or graph. In particular,

when we discuss the degree of a vertex with respect to a set of edges or with

respect to a graph, we mean its degree if we count all edges with the same

multiplicity that they appear in the set/graph. However, all subsets of ver-

tices will be actual sets: each vertex will be in the set at most once. The cost

is considered with multiplicity, e.g. if edge e is used k times its contribution
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to the cost is k · ce.

All of our algorithms are based on linear-programming relaxations: if the

LPs are not feasible then we report there is no feasible solution. Otherwise,

we will find an (α,+d)-approximate solution: the cost of the tour will be

at most α times the value of the LP relaxation and will visit each node at

most (bv+d)
2 times (i.e., the degree of the tour at v will be at most bv + d). We

note that if there is a feasible solution, then the LP relaxations we use will be

feasible and will have value at most the optimum solution value.

Recall for F ⊆ E, odd(F) is the set of all vertices with odd degree with

respect to F, i.e., odd(F) = {v ∈ V(F) : dF(v) is odd}. Given a (sub)graph

H, for brevity, we use dH(v) and odd(H) instead of dE(H)(v) and odd(E(H)),

respectively. Recall χ(F) is the characteristic vector of the edges in F. We

sometime use notation |A| = odd which means |A| ≡ 1 (mod 2), similarly

we define the notation |A| = even. Since the graphs in this chapter are undi-

rected, we use uv to denote an edge between u and v.

The results and Techniques

As a warm up, in Section 5.2 we present a simple (3
2 ,+4)-approximation al-

gorithm for BDTSP (i.e. if X = V).

Theorem 62 (BDTSP). There is a (3
2 ,+4)-approximation algorithm for BDTSP.

Since a feasible solution is an Eulerian graph and bv’s are even, if there

is an approximation algorithm whose degree violation is better than addi-

tive factor of 2, then this algorithm can decide the Hamiltonian cycle prob-

lem. Hence, assuming P ̸= NP, the additive factor of 2 violation on de-

gree bounds is necessary. Furthermore, the same integrality gap example for

Held-Karp relaxation where the degree bound on every vertex is 2, see Figure

5.1, shows the integrality gap of the natural LP formulation (BDTSP-LP) is at

least (4
3 ,+2), meaning any tour obtained by rounding a feasible solution of

(BDTSP-LP) has cost at least 4
3 times the LP optimum and violates the degree

bound of at least one vertex by at least +2.

Throughout this chapter we heavily use some classic results in combi-
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Figure 5.1: This is the graph G = (V, E) that shows the (4
3 ,+2) integrality

gap of the natural LP for BDTSP (BDTSP-LP). All vertices are terminals, the
cost of blue edges is zero and the cost of black edges is 1. The LP value on
blue edges are 1

2 , and 1 on all the other edges. Also bv = 2 for all v ∈ V. Note
that the cost of the LP is 3 · k and satisfies all the degree bounds. However,
in any integer solution we must cross one of the path of length k at least
twice. Therefore, any integer solution will violate the degree constraint by at
least an additive factor of 2 and its cost is at least 4 · k which give the desired
integrality gap.

natorial optimization that we discuss here briefly. Recall the definition of the

BOUNDED-DEGREE STEINER TREE problem (BD-Steiner-TP) from Section 2.5.

Lau and Singh [49] showed the following result about the natural LP relax-

ation of this problem. Let W ⊆ V, be the subset of vertices with degree con-

straints (so vertices in V \W can have arbitrary large degrees). The following

is the natural LP relaxation for BD-Steiner-TP.

minimize: ∑
e∈E

ce · xe (BDST-LP)

subject to: x(δ(v)) ≤ bv ∀v ∈W (5.1)

x(δ(S)) ≥ 1 ∀S ̸= X, S ∩ X ̸= ∅ (5.2)

x ≥ 0 (5.3)

Theorem 63 (Theorem 1.1 in [49]). Let x be a feasible solution to (BDST-LP).

Then, in polynomial time, one could get a Steiner tree T of cost at most 2 · cost(x)

and dT(v) ≤ bv + 3 for all v ∈W.

Next, recall the classical Y-join problem in Section 2.6. Like Steiner tree,

one could generalize Y-join problem to include degree bounds. In an instance

of BOUNDED-DEGREE Y-JOIN, in addition to Y-JOIN input, there are integer

degree bounds bv for all v ∈ V where bv is odd if and only if v ∈ Y. Here is a
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natural LP relaxation for this problem.

minimize: ∑
e∈E

ce · xe (BD-Y-join LP)

subject to: x(δ(v)) ≤ bv ∀v ∈ V (5.4)

x(δ(S)) ≥ 1 ∀S ⊊ V, |S ∩Y| = odd (5.5)

x ≥ 0 (5.6)

The first set of constraints are called degree constraints and the second set

of constraints are odd-cut constraints.

Maybe a less known fact in combinatorial optimization is that

(BD-Y-join LP) is integral as well. This result is a consequence of a more

general theorem in [64]. However, this connection is not obvious.

Theorem 64 (Theorem 36.8 in [64]). The feasible region of (BD-Y-join LP) is

integral, if and only if, bv is odd if v ∈ Y and even otherwise for all v ∈ V. In other

words, any extreme point optimal solution of (BD-Y-join LP) is a minimum cost

Y-join while respects the degree bounds bv’s.

The proof of Theorem 36.8 in [64], which the above result is derived from,

is quite complicated. Instead, we present rather a standard iterative round-

ing algorithm to prove Theorem 64. For the sake of better readability, we

postpone the proof to the end of the chapter, see Section 5.4.

Now we have all the tools to talk about the first result of this chapter.

The proof of Theorem 62 is a straightforward adaptation of Wolsey’s analysis

[70] of the Christofides-Serdyukov algorithm for TSP so we sketch it here

to discuss our techniques. Let x∗ be an optimal solution for the natural LP

formulation of BDTSP. Step (1): it is easy to see x∗
2 is feasible for (BDST-LP)

when terminal nodes are the entire set of vertices. From this, we obtain a

spanning tree T of cost at most ∑
e∈E

ce · x∗e whose degree on vertex v is at most

bv
2 + 3. Step (2): fix the degree parities of T using Y-join polytope augmented

with degree bounds at most bv
2 + 1 (depending on the parity of v’s degree in

the tour) and show x∗
2 is feasible for (BD-Y-join LP).

91



Remark 65. Notice that we did not use the +1 algorithm for degree-bounded span-

ning trees by [66]. This is because dividing x by 2 is only guaranteed to satisfy the

weaker cut-based LP relaxation for spanning trees.

Theorem 64 and its proof serve as introduction to the framework we use

in this chapter. The main results of this chapter is about different approxima-

tion/violation trade-offs for BDSTSP.

Theorem 66. There is a (5
3 ,+4)-approximation algorithm for BDSTSP.

Theorem 67. There is a (13
8 ,+6)-approximation algorithm for BDSTSP.

Theorem 68. There is a (3
2 ,+8)-approximation algorithm for BDSTSP.

In each of these, we first adapt step (1) from BD-Steiner-TP discussed

above, compute a Steiner tree (instead of spanning tree) T using x∗
2 as a frac-

tional solution to (BDST-LP). However, step (2) is not applicable since x∗
2

might not be feasible for (BD-Y-join LP).

To prove Theorem 66, it is easy to show that 1
3 · (χ(T) + x∗) is feasible

for (BD-Y-join LP) where χ(T) is the characteristic vector of T which yields

(5
3 ,+4)-approximation factor1. In order to improve the cost factor, we first

augment the natural LP for BDSTSP with non-trivial constraints asserting

the number of cut edges in a Steiner cuts (a cut that contains only Steiner

nodes) should be at least the degree of any Steiner node in the cut. Then, we

modify the iterative rounding algorithm of [49] using splitting off techniques

by Mader to obtain a more “structured” Steiner tree. Namely, some Steiner

nodes are designated dangerous because they have low fractional degree in

our LP solution: our modification ensures dangerous nodes will have even

degree in the resulting tree. Finally, we show how this Steiner tree helps us

to obtained a better bounded-degree Y-join to fix the degree parity of odd-

degree vertices.

1Interestingly, this is basically the same fractional join from [3] that could be formed to
analyze Hoogeveen’s TSP-Path algorithm.
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5.2 Bounded-Degree TSP (Warm Up!)

In this section we prove Theorem 62. Fix an instance of BDTSP: G = (V, E),

edge cost ce ≥ 0 for all e ∈ E, even degree bound bv ≥ 0 for all v ∈ V. The

following is a natural LP formulation for this problem. For each edge e, there

is a variable xe indicating whether e is in the solution or not. Note that in an

optimal solution for the problem, we might need to pick an edge twice but

not more than twice since, otherwise, one can reduce its occurrence by two

and retain connectivity.

minimize: ∑
e∈E

ce · xe (BDTSP-LP)

subject to: x(δ(S)) ≥ 2 ∀ ∅ ̸= S ⊊ V (5.7)

x(δ(v)) ≤ bv ∀ v ∈ V (5.8)

0 ≤ xe ≤ 2 ∀ e ∈ E (5.9)

One can separate the constraints using a minimum-cut algorithm, so we

can find an optimal solution (or determine (BDTSP-LP) is infeasible) in poly-

nomial time using ellipsoid method. If the LP is infeasible, we report there is

no feasible solution and terminate. Otherwise, we proceed as follows.

The algorithm is very similar to Wolsey’s analysis of Christofides-

Serdyukov algorithm. First we compute a spanning tree T using an opti-

mal solution to (BDTSP-LP) and then we fix the degree parities using the

odd(T)-join polytope. However, we need to respect (approximately) the de-

gree bounds. For a node v, let b′(v, T) be the smallest integer at least bv
2 whose

parity is the same as |dT(v)|: note b′(v, T) ∈ { bv
2 , bv

2 + 1}.
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Algorithm 6 (3
2 ,+4)-approximation algorithm for BDTSP

Input: Graph G = (V, E) with edge costs ce ≥ 0 for every e ∈ E and even
degree bounds bv for every v ∈ V.
Output: A tour that spans V.

Compute an optimal solution x∗ of (BDTSP-LP).
Let T be a Steiner tree (in this case spanning tree) obtained from applying
Theorem 63 with input G = (V, E), edge cost ce for e ∈ E, X := V, degree
bounds bv

2 for every v ∈ V and x := x∗
2 .

Let odd(T) be the set of vertices with odd degrees with respect to T. Com-
pute an odd(T)-join J in G using Theorem 64 with degree bounds b′(v, T)
for all v ∈ V.
Output a closed spanning walk in T ∪ J.

We show Algorithm 6 works correctly and this proves Theorem 62.

Proof. (of Theorem 62) Note x is feasible for (BDST-LP) where X := V and

degree bounds bv
2 for every v ∈ V. Hence, by Theorem 63 we have cost(T) ≤

2 · cost(x) = cost(x∗). Furthermore, dT(v) ≤ bv
2 + 3.

Consider vertex v in the graph, note that x(δ(v)) ≤ bv
2 . By using degree

bounds b′(T, v) for v ∈ V, we ensure (BD-Y-join LP) is integral and that x is

a feasible solution. Thus, by Theorem 64 J has cost at most cost(x) = cost( x∗
2 )

and dJ(v) ≤ bv
2 + 1 for every v ∈ V.

Putting the bounds on T and J together we have an Eulerian subgraph

T ∪ J with cost 3
2 · cost(x∗) and dT∪J(v) ≤ bv + 4.

5.3 Bounded-Degree Subset TSP

In this section, we prove our main results, i.e., Theorems 66, 67 and 68. Fix

an instance of BDSTSP: G = (V, E), edge costs ce ≥ 0 for each e ∈ E, a set of

terminals X ⊆ V, and an even integer degree bound bv ≥ 0 on each vertex

v ∈ V. We refer to vertices in V \ X as Steiner nodes.

The algorithm for BDSTSP is to find a “good” Steiner tree T that spans

the terminals and then fix the degree parity using odd(T)-join. However,

finding a “good” odd(T)-join is not as trivial as it was for BDTSP since x∗
2 may

no longer be feasible for odd(T)-join polytope since some cuts S involving
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only Steiner nodes may have very low x∗(δ(S)). Nevertheless, for all the

approximation factors in this section, we show combining x∗ and T itself

with appropriate ratios is sufficient to construct a “good” (fractional) solution

for the odd(T)-join polytope with degree constraints. We start with a simple

application of this idea by proving Theorem 66.

We begin with the natural LP for BDSTSP. As before, we assume the LP

has an optimal solution, otherwise the BTSTSP instance has no feasible solu-

tion.

minimize: ∑
e∈E

ce · xe (BDSTSP-Natural-LP)

subject to: x(δ(S)) ≥ 2 ∀S ̸= X, S ∩ X ̸= ∅ (5.10)

x(δ(v)) ≤ bv ∀v ∈ V (5.11)

0 ≤ xe ≤ 2 ∀e ∈ E (5.12)

Proof of of Theorem 66. Let x∗ be an optimal solution to

(BDSTSP-Natural-LP). Since x∗
2 is feasible for (BDST-LP) where de-

gree bounds are bv
2 for every v ∈ V, we obtain a Steiner tree T of cost at most

2 · cost( x∗
2 ) = cost(x∗) and dT(v) ≤ bv

2 + 3, see Theorem 63. Furthermore,

we iteratively prune leaf nodes that are Steiner nodes so all leaves of T are

terminals. With abuse of notation, we denote the resulting tree by T.

Next, we show that y := χ(T)
3 + x∗

3 is feasible for (BD-Y-join LP) when

odd(T) is the set of odd degree vertices and the RHS of the degree constraints

are either bv
2 + 1 or bv

2 + 2 (whichever has the same parity as dT(v)). Note

that by definition of y, and the fact that dT(v) ≤ bv
2 + 3, y respects the degree

constraints in (BD-Y-join LP). Now consider a cut S that contains a terminal.

Then T crosses the cut at least once and x∗(δ(S)) ≥ 2 so y(δ(S)) ≥ 1.

Now consider an odd-cut S, i.e. |S ∩ odd(T)| = odd, that contains only

Steiner nodes. Since ∑
v∈S

dT(v) = 2 · |ET[S]|+ |δT(S)| and ∑
v∈V

dT(v) is odd, we

must have |δT(S)| = odd. We claim that |δT(S)| > 1, otherwise |δT(S)| = 1

means S contains a leaf node which is impossible since (the pruned version)

of T has only terminals as leaf nodes. Therefore, |δT(S)| ≥ 3 and by definition

of y we have y(δ(S)) ≥ 1, as desired.
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So we have proved y is feasible for (BD-Y-join LP). By Theorem 64, there

is an odd(T)-join J of cost at most cost(y) = 1
3 · cost(T) + 1

3 · cost(x∗) ≤ 2
3 ·

cost(x∗) and dJ(v) ≤ bv
2 + 2 for all v ∈ V. Finally we output a closed walk

in subgraph Q := T ∪ J. Note cost(Q) ≤ 5
3 · cost(x∗) and dQ(v) ≤ bv + 5

for all v ∈ V. Since Q is an Eulerian graph and bv’s are even, it must be that

dQ(v) ≤ bv + 4 for all v ∈ V. This finishes the proof of Theorem 66.

To improve on the approximation factor of Theorem 66 we consider a

slight strengthening of (BDSTSP-Natural-LP) for BDSTSP. We first make an

observation about the structure of an optimal solution and then we add a set

of constraints based on this observation.

We use the following definition throughout this section. Let v be a Steiner

node, we say S is a v, X-cut if v ∈ S ⊆ V \ X.

Lemma 69. There exists an optimal solution Q∗ such that for any Steiner node v

and any v, X-cut S, we have |δQ∗(S)| ≥ dQ∗(v).

Proof. Among all optimal solutions, letQ∗ be one with the minimum number

of edges. For this proof, every degree or cut is with respect to Q∗ unless

stated otherwise. We show |δQ∗(S)| ≥ dQ∗(v) for every v and any v, X-cut S.

Suppose otherwise, that for v there is some v, X-cut S with |δQ∗(S)| < dQ∗(v).

We take S to be a minimum-cardinality v, X-cut.

Let k := |δ(S)|. Note ∑
v∈S

d(v) = 2 · |EQ∗ [S]|+ |δ(S)| and since all vertices

have even degree, k must be even. We say u ∈ S is a boundary node with

respect to S if δ(u) ∩ δ(S) ̸= ∅.

Contract V \ S to a single vertex and call it t. Since S is a minimum car-

dinality v, t-cut, there are k edge-disjoint simple paths P1, ..., Pk from v to t, in

particular, for every boundary node u ∈ S, |δ(u) ∩ δ(S)| of the paths P1, ..., Pk

have u as their second-last node (just before t).

Construct a graph G′ obtained from Q∗ as follows. Remove all the edges

in EQ∗ [S] \ ∪k
i=1Pi which is non-empty as we assumed dQ∗(v) > k and then

remove all the isolated vertices. Note that dG′(v) = k which is even. Also

for every boundary vertex u ∈ S, |δ(u) ∩ δ(S)| many of Pi’s contain u, so the
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degree of boundary vertices is even as well. The vertices inside S except v

are internal vertices of some paths so their degrees are even. Finally, degree

of the vertices outside of S did not change, so their degree is even as well.

Hence, G′ is Eulerian.

We claim G′ connects all the terminals, which would contradict the min-

imality of Q∗. Hence, |δQ∗(S)| ≥ dQ∗(v), as desired. It is easy to prove the

claim. Consider two terminals x and x′. If a x − x′ path in Q∗ does not use

any vertex in S then this path exists in E(G′). So suppose every x− x′ paths

in Q∗ crosses S, let u and u′ (possibly u = u′) be the two boundary vertices

(with respect to S) on a x− x′ path in Q∗. Note that there is a path between

u and v, and a path between u′ and v in E(G′). Therefore, x and x′ are con-

nected in E(G′).

We use Lemma 69 to get a slightly stronger LP relaxation for BDSTSP.

minimize: ∑
e∈E

ce · xe (BDSTSP-LP)

subject to: x(δ(S)) ≥ 2 ∀S ̸= X, S ∩ X ̸= ∅ (5.13)

x(δ(v)) ≤ bv ∀v ∈ V (5.14)

x(δ(v)) ≤ x(δ(S)) ∀S ⊆ V \ X, ∀v ∈ S (5.15)

0 ≤ xe ≤ 2 ∀e ∈ E (5.16)

Constraint (5.15) is valid because there is an optimal solution that has

this property according to Lemma 69. Furthermore, this constraint can be

separated by computing a minimum weight v, X-cut (with respect to weight

x on the edges) for every Steiner node v. Let x∗ be an optimal solution to this

LP.

Here we discuss how to get a more well-structured Steiner “tree”2 T using

a slightly modified version of the algorithm in [49] for computing a degree-

bounded Steiner tree, which in turn, results in a cheaper odd(T)-join. An

ingredient we use here is the splitting-off procedure from Section 2.7.
2We put tree in the quotation as we will see later that T might contain cycles to allow the

degree parity of some Steiner nodes to be even, so T might not be a proper tree.
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The tweak in the algorithm of [49] for BD-Steiner-TP is to completely

“split-off” a predetermined subset of Steiner nodes when the algorithm de-

cides to drop the degree constraint corresponding to these Steiner nodes. This

will ensure that we get a feasible solution for BD-Steiner-TP (not necessarily

a tree) such that all the Steiner nodes in the predetermined subset have even

degree (counting with multiplicities). More precisely, we use the following

lemma.

Lemma 70. Given an instance
(
G = (V, E), X, c, b

)
of BD-Steiner-TP, a feasible

solution x of (BDST-LP) and a set A ⊆ V \ X where bv = 1 for all v ∈ A, there

is a polynomial time algorithm that computes a feasible solution T of BD-Steiner-TP

such that

1. cost(T) ≤ 2 · cost(x).

2. dT(v) ≤ bv + 3 for all v ∈ V \ A.

3. dT(v) ≤ bv + 7 for all v ∈ A.

4. dT(v) is even for all v ∈ A.

5. |δT(S)| is even for any S ⊆ A.

6. Let T(m) be a minimal (inclusion-wise) subset of edges of T such that T(m) is

still a feasible solution for the BD-Steiner-TP instance. Then, T(m) satisfies

property 1 and dT(v) ≤ bv + 3 for all v ∈ V.

We defer the proof of the lemma until the end and instead we show how

to use it to prove our results about BDSTSP.

5.3.1 Proof of Theorem 67

Here is our algorithm for BDSTSP and we will show a (13
8 ,+6)-

approximation guarantee for this algorithm.

For the rest of this section, let x∗ be an optimal solution for (BDSTSP-LP)

computed in step (a) and x := x∗
2 . Let A be the subset of Steiner nodes and
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Algorithm 7 (13
8 ,+6)-approximation algorithm for BDSTSP

Input: Graph
(
G = (V, E), X, c, b

)
.

Output: A closed walk Q in G that spans X.

(a) Compute an optimal solution x∗ of (BDSTSP-LP). Let A := {v ∈ V \
X : x∗(δ(v)) < 2}, and let b′v := bv

2 if v /∈ A and b′v := 1 if v ∈ A.
(b) Apply Lemma 70 with instance

(
G = (V, E), X, c, b′

)
, feasible solution

x := x∗
2 , and set A to obtain a Steiner tree T with properties 1-5 in the

lemma.
(c) Compute a Steiner tree T(m) using T according to property 6 of Lemma
70.
(d) Compute a minimum cost odd(T(m))-join J such that dJ(v) ≤ b′v + 3 for
all v ∈ V (cf. Lemma 71).
(e) Output a closed walk Q in T(m) ∪ J that spans all the terminals.

b′v’s the degree bounds constructed based on x∗ in step (a). Also let T and

T(m) be the Steiner trees computed in steps (b) and (c) of the algorithm, re-

spectively. Note that x is feasible for (BDST-LP) when the degree bounds are

according to b′. Combining this fact and Lemma 70 we have:

cost(T(m)) ≤ cost(T) ≤ 2 · cost(x) = cost(x∗). (5.17)

Lemma 71. There is an odd(T(m))-join J with cost at most 5
8 · cost(x∗) and dJ(v) ≤

bv
2 + 3 for all v ∈ V.

Proof. We claim y := χ(T)
4 + 3·x∗

8 is feasible for (BD-Y-join LP) when the set

of odd degree vertices is odd(T(m)) and the RHS of degree constraint is at

most b′v + 3 for all v ∈ V (in fact this fractional solution is feasible when

degree bounds are bv
2 + 2 but similar to the proof of Theorems 62 and 66, we

might need to consider bv
2 + 3 for some vertices as (BD-Y-join LP) is integral

if and only if the parity of the degree bounds match the parity of the degree

of vertices in an integral solution). We prove the claim after we show how the

lemma follows from this claim. By Theorem 64, there is an integral odd(T(m))-

join J whose cost is at most

cost(y) = cost(
1
4
·χ(T))+ cost(

3
8
· x∗) ≤ 1

4
· cost(x∗)+

3
8
· cost(x∗) ≤ 5

8
· cost(x∗),
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where the first inequality follows from (5.17). Furthermore, dJ(v) ≤ b′v + 3 ≤
bv
2 + 3.

So it remains to prove the claim. As (5.18) shows, y satisfies the degree

constraints of (BD-Y-join LP) when the degree bound is at most b′v + 3 for all

v ∈ V.

y(δ(v)) =
1
4
· dT(v) +

3
8
· x∗(δ(v)) ≤ 1

4
· (b′v + 7) +

3
8
· bv ≤

bv

2
+ 3, (5.18)

where the first inequality follows from properties 2 & 3 of Lemma 70.

Next we show cut constraints in (BD-Y-join LP) hold under solution y.

Consider a subset S ⊆ V such that |S ∩ odd(T(m))| = odd. There are three

cases to consider:

• Case 1: If S ∩ X ̸= ∅. Then, x∗(δ(S)) ≥ 2 and since T is connected we

have |δT(S)| ≥ 1 which implies y(δ(S)) ≥ 1.

• Case 2: If S ∩ X = ∅ and S ∩ (V \ A) ̸= ∅. Then, there is a Steiner

node s ∈ S such that s /∈ A. By definition of set A we have x∗(δ(s)) ≥
2. By constraint (5.15) in (BDSTSP-LP) this implies x∗(δ(S)) ≥ 2 as

well. Again since T is connected, we have |δT(S)| ≥ 1 and this implies

y(δ(S)) ≥ 1.

• Case 3: If S ⊆ A. Since (5.19) holds for any subset of vertices and

|S ∩ odd(T(m))| = odd, the LHS of (5.19) is odd and so is |δT(m)(S)|.
Furthermore, if |δT(m)(S)| = 1 then we can remove S from T(m) and still

have a feasible solution, contradicting the inclusion-wise minimality of

T(m). Hence |δT(m)(S)| ≥ 3. So we have

|δT(S)| ≥ |δT(m)(S)| ≥ 3.

On the other hand, since S ⊆ A, by property 5 Lemma 70 we have

|δT(S)| = even; together with above inequality we get |δT(S)| ≥ 4.

Therefore, y(δ(S)) ≥ 1 in this case as well.
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Now the proof of Theorem 67 follows easily.

Proof of Theorem 67. Since T(m) ∪ J is an Eulerian subgraph, there is a

closed walk Q in it that spans X. By (5.17) we have cost(T(m)) ≤ cost(x∗).

By Lemma 71 cost(J) ≤ 5
8 · cost(x∗) and this implies cost(T(m) ∪ J) ≤

13
8 · cost(x∗), as desired.

By property 6 of Lemma 70, dT(m)(v) ≤ b′v + 3 ≤ bv
2 + 3 and by Lemma 71

we have dJ(v) ≤ bv
2 + 3. So dT(m)∪J(v) ≤ bv + 6 for all v ∈ V, as desired.

5.3.2 Proof of Theorem 68

To prove Theorem 68, we modify Algorithm 7 slightly as follows. Re-

move step (c), in step (d) compute a minimum cost odd(T)-join J (instead

of odd(T(m))-join), and in step (e) output a closed walk in T ∪ J that spans

all the terminals. Similar to Lemma 71, we have the following bound on the

bounded-degree odd(T)-join LP.

Lemma 72. There is an odd(T)-join J with cost at most 1
2 · cost(x∗) and dJ(v) ≤

bv
2 + 1 for all v ∈ V.

Proof. We just need to show x∗
2 is feasible for (BD-Y-join LP) when the degree

bound is either bv
2 or bv

2 + 1 depending on the parity of dT(v). It is trivial that

the degree constraints hold. So we show the cut constraints hold. Let S ⊊ V

such that |S ∩ odd(T)| = odd.

• Case 1: If S ∩ X ̸= ∅. Then, x∗(δ(S)) ≥ 2 which implies x∗
2 (δ(S)) ≥ 1.

• Case 2: If S∩ X = ∅ and S∩ (V \ A) ̸= ∅. Then, there is a Steiner node

s ∈ S such that s /∈ A. By definition of set A we have x∗(δ(s)) ≥ 2.

By constraint (5.15) in (BDSTSP-LP) this implies x∗(δ(S)) ≥ 2 as well

which implies x∗
2 (δ(S)) ≥ 1.

• Case 3: If S ⊆ A. Thus, we have S ⊆ A and note that dT(v) is even for

all v ∈ A by property 4 of Lemma 70. This is a contradiction because

we assumed |S ∩ odd(T)| is odd. So the constraints for S ⊆ A are not

present in the LP.
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Proof of Theorem 68. By (5.17) we have cost(T) ≤ cost(x∗) and by Lemma

72 we have cost(J) ≤ 1
2 · cost(x∗) which implies cost(T ∪ J) ≤ 3

2 · cost(x∗).

By properties 2 and 3 of Lemma 70, we have dT(v) ≤ bv
2 + 7 and by

Lemma 72 we have dJ(v) ≤ bv
2 + 1 for all v ∈ V. Thus, dT∪J(v) ≤ bv + 8,

as desired.

5.3.3 Proof of Lemma 70

We restate the lemma here for convenience.

Lemma 73. Given an instance
(
G = (V, E), X, c, b

)
of BD-Steiner-TP, a feasible

solution x of (BDST-LP) and a set A ⊆ V \ X where bv = 1 for all v ∈ A, there

is a polynomial time algorithm that computes a feasible solution T of BD-Steiner-TP

such that

1. cost(T) ≤ 2 · cost(x).

2. dT(v) ≤ bv + 3 for all v ∈ V \ A.

3. dT(v) ≤ bv + 7 for all v ∈ A.

4. dT(v) is even for all v ∈ A.

5. |δT(S)| is even for any S ⊆ A.

6. Let T(m) be a minimal (inclusion-wise) subset of edges of T such that T(m) is

still a feasible solution for the BD-Steiner-TP instance. Then, T(m) satisfies

property 1 and dT(v) ≤ bv + 3 for all v ∈ V.

The following is the result that allows us to tweak the iterative rounding

algorithm of [49] for BD-Steiner-TP to ensure Steiner nodes in A have even

degree in the resulting tree (recall the statement of Lemma 70). We use Mader

theorem as the subroutine. However, just applying Mader theorem repeat-

edly when the connectivities are based on LP weight on edges does not run

in polynomial time. To overcome this, we follow the idea of Post and Swamy
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[58]. In [58] they work with the directed version of Mader theorem. Although

everything will be translated to our setting in a straightforward fashion, we

present the proof for completeness.

Lemma 74. Let I =
(
G = (V, E), X, c, b

)
be an instance of the BD-Steiner-TP

and let x be a feasible solution for (BDST-LP) of this instance. Let s ∈ V be a

Steiner node. Then, in polynomial time, one can obtain an instance of BD-Steiner-

TP I ′ =
(
G′ = (V \ {s}, E′), X, c′, b

)
and a feasible solution x′ for (BDST-LP) of

this instance such that

1. costc′(x′) ≤ costc(x).

2. An integral solution T′ for I ′ can be transformed to an integral solution T for

I whose cost is at most costc′(T′), dT(s) is even, and dT(v) = dT′(v) for all

v ∈ V \ s.

Proof. First we show how to obtain x′ and c′ using Mader’s theorem repeat-

edly; however, the running time of this procedure might be exponential. At

the end, we show how to modify it so it runs in polynomial time.

Since x is rational and the number bits needed to represent it is polyno-

mial in the size of the input, there is a positive integer ∆ such that ∆ · xe is an

even integer for all e ∈ E. We replace each edge e, with ∆ · xe copies of parallel

edges. Note that degree of s is even and there is no cut-edge in the graph. By

applying Mader’s theorem repeatedly, we can split-off s completely. Denote

the resulting graph by G′ = (V \ {s}, E′). Finally, we define a new solution x′

for the resulting graph as follows: x′e =
# copies o f e

∆ for all e ∈ E′. Note that by

construction, x′ respects the degree bounds and we preserve the connectiv-

ity between each pairs of nodes (except s), hence x′ is feasible for (BDST-LP)

corresponding to G′. The edge costs c′ is defined naturally, i.e., for the existed

edges in G, c and c′ agree with each other and for a new introduced edge uv

we set c′uv := csu + csv. Let I ′ := (G′, X, c′, b) be the resulting instance.

We show that costc′(x′) ≤ costc(x). This follows from the fact that if we

introduce a new edge uv, then its cost is csu + csv and we decrease the LP
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weight on su and sv by the same amount we increase the LP value on uv.

If uv exists in G we claim that csu + csv > cuv because otherwise one can

increase the LP value on su and sv and decrease the LP value on uv by the

same amount and get a cheaper feasible solution, contradicting the fact that

x is optimal.

Finally, for any integral solution T′ for I ′ we construct an integral solution

T for I by replacing every edge uv in T′ that is not in G with the correspond-

ing pair of edges su and sv (keep the edges with multiplicities) that were

split-off. Note we might have more than 2 copies of an edge e incident to s in

T. In this case, we reduce the occurrences of e as much as possible so that the

resulting solution is feasible for I , and the parity of the degree of the end-

points of e does not change. By definition of c′ we have costc(T) ≤ costc′(T′).

Note ∆ · xe might be exponential in terms of the size of the graph. Here we

show by a straightforward adaptation of techniques in [58], we can construct

x′ efficiently.

Let x be the LP weight on the edges. Splitting-off a pair (su, sv) to the

extent of α > 0 means reducing xsv and xsv by α, and increasing xuv by α such

that all the connectivities between any pair of nodes (except pairs involving

s) are preserved (the connectivity between two nodes u and v is defined as

the minimum weight u− v cut when edges have weight according to x). We

say we split of (su, sv) to the maximum extent if value α above is the maximum

value possible.

Note that by the first procedure we explained earlier, there exists always

a pair (su, sv) and value α > 0 such that we can split of (su, sv) to the extent

of α. We can find such pairs by brute force (O(n2) pairs) and find α by binary

search. Note that it is possible u = v which in that case it means reducing xsu

by α.

The algorithm is simple. We find a pair of edges (su, sv) and the largest

value α > 0 such that we can split-off (su, sv) to the extent of α and repeat

this procedure until there is no edge incident to s.

In the next claim, we show if we split-off a pair of edges to the maximum

104



extent, that pair never becomes splittable again which in turn implies a poly-

nomial running time of above procedure.

Claim 75. Consider an splittable pair (su, sv) according to Mader theorem (Theo-

rem 9). If we split-off (su, sv) to the maximum extent, then (su, sv) will not become

splittable again.

Proof of Claim 75. This follows from Claim 3.1 in [20] which states the fol-

lowing:

Claim 76 (Claim 3.1 in [20]). A pair (su, sv) is splittable if and only if there is no

set Y such that u, v ∈ Y, s /∈ Y, and there are two nodes w ∈ Y, s ̸= z /∈ Y such

that |δG(Y)| ≤ λG(w, z) + 1.

Multiply x by a suitable integer ∆ such that ∆ · xe is even for all e ∈ E.

Replace each edge e by ∆ · xe many parallel edges in G.

Suppose we split as much copy of (su, sv) as possible. Then, there must be

a set Y that satisfies the properties of Claim 76. Now assume we split of a pair

of edges (e, f ) incident to s and let G′ be the resulting graph. We show that Y

still satisfies the properties of Claim 76; hence, non of the copy of (su, sv) are

splittable after splitting-off (e, f ).

Note s /∈ Y so |δG′(Y)| ≤ |δG(Y)|. Furthermore, since (e, f ) is a split-

table pair we have λG′(w, z) = λG(w, z). Therefore, |δG′(Y)| ≤ |δG(Y)| ≤
λG(w, z) = λG′(w, z) + 1. Hence, Y satisfies the properties of Claim 76 in G′

as well so (e, f ) is not splittable in G′.

By the above claim, once a pair is split-off to the maximum extend, that

pair never becomes splittable again. Hence, after at most n2 iterations of

splitting-off, the algorithm terminates. Also within each iteration, we need

to do a binary search to find the appropriate α which is polynomial. This

finishes the proof of the lemma.

Now we are equipped to finish the proof of Lemma 70.

Proof of Lemma 70. We run the (2,+3)-approximation of [49] with the fol-

lowing tweak. Whenever we drop the degree constraints corresponding to
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a Steiner node v in A, we completely split-off v as well. After the tree is

constructed, we restore any edges produced by the splitting-off procedure to

the original set of edges and further prune some edges if necessary (i.e., if

their multiplicity is > 2 after this restoration step)3. See Algorithm 8 for the

complete description of the algorithm.

Properties 1 and 2 are trivial because of the approximation factor of Algo-

rithm 8 and Lemma 74.

Property 3: we completely split-off a Steiner node s ∈ A in Algorithm 8

when the algorithm decides to drop the degree constraint corresponding to

s (see step b in Algorithm 8). Hence, we must have d(s) ≤ bs + 3 ≤ 4 in

the current graph in that iteration. Once we apply Lemma 74 (property 2)

to obtain a solution for the current instance of BD-Steiner-TP (i.e., by putting

s back) we might use these (up to) four edges incident to s multiple times;

however, we do not need to use any edge more than twice (otherwise we can

drop two copies of the edge and preserve both connectivity and parities) so

the degree of s in the solution will be at most 8 = bv + 7 since bv = 1 for

v ∈ A. This proves property 3.

Property 4: the degree of a node v ∈ A that was split-off in our iterative

rounding algorithm is even simply because each edge used in T that was

produced in the splitting-off procedure is then subdivided to re-integrate v so

the degree of v is even. Further, any parallel edges that were pruned maintain

the parity of the degree of v.

Property 5: for any set S ⊆ V we have

∑
v∈S

dT(v) = 2 · |ET[S]|+ |δT(S)|. (5.19)

If S ⊆ A, by property 4 the LHS of (5.19) is even and therefore |δT(S)| must

be even.

Property 6: by property 2, for all v ∈ V \ A we have dT(v) ≤ bv + 3. In

T(m) we keep only one copy of each parallel edge so dT(v) ≤ bv + 3 for all

3Note we might have edges with multiplicity 2 in this solution but nevertheless we call
the solution a Steiner tree.
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v ∈ A (see the argument for property 3) and the resulting solution is still

feasible which implies the last property for T(m).

Algorithm 8 Iterative rounding algorithm of [49] for BD-Steiner-TP with
small change in step (b)
Input: Graph

(
G = (V, E), X, c, b

)
, a subset of Steiner nodes A where bv = 1

for all v ∈ A.
Output: A connected subgraph T of G that spans X such that dT(v) ≤
bv + 7 is even for all v ∈ A and dT(v) ≤ bv + 3 for all v ∈ V \
A.

Initialize T′ ← ∅ and W ← V (W is the set of vertices with degree con-
straints present in the LP formulation).
while T′ is not a feasible solution for BD-Steiner-TP do

(a) Compute an optimal extreme point solution x of (BDST-LP) and re-
move every edge e with xe = 0.
(b, with modification). Removing a degree constraint: For every v ∈ W
with degree at most bv + 3 in G, remove v from W. Furthermore, if v ∈ A,
completely split-off v and compute an optimal solution for the resulting
instance (cf. Lemma 74). Redefine G to be this new graph and x to be the
new optimal solution after splitting-off procedure.
(c) Picking 1-edge: For each edge e = uv with xe = 1, add e to T, remove
e from G, and decrease bu, bv by 1.
(d) Picking a heavy edge with no degree constraints: For each edge e =
uv with xe ≥ 1

2 and u, v /∈W, add e to T′ and remove e from G.
Updating the connectivity requirements: For every set S ̸= X, S∩X ̸= ∅
update the RHS of constraint (2) in (BDST-LP) to be max{1− |δ′T(S)|, 0}.

Let T be the resulting Steiner tree obtained from T′ by applying Lemma 74
repeatedly.

Note that the algorithm works correctly for any subset A of Steiner nodes

(i.e., A does not need to contain only Steiner nodes v with bv = 1). The per-

formance guarantee of this algorithm follows from [49] and the fact that after

splitting-off a Steiner node, by Lemma 74 we still have a feasible solution for

the (BDST-LP) of the resulting instance with cost at most the cost of the orig-

inal LP. So T′ is a Steiner tree for the instance
(
G′ = (V \ A, E′), X, c′, b

)
. The

fact that the Steiner tree T for the original instance obtained from T′ has the

desired properties of Lemma 70 follows from Lemma 74.
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5.4 Proof of integrality of (BD-Y-join LP)

For convenience we restate the LP here.

minimize: ∑
e∈E

ce · xe (BD-Y-join LP)

subject to: x(δ(v)) ≤ bv ∀v ∈ V (5.20)

x(δ(S)) ≥ 1 ∀S ⊊ V, |S ∩Y| = odd (5.21)

x ≥ 0 (5.22)

In this section, we prove the this LP is integral. Note bv is odd if and only

if v ∈ Y. This will be important. In fact, without this condition Figure 5.2

shows the integrality gap of (BD-Y-join LP) could be as bad as 1
2 .

u v

w

M

0 0

Figure 5.2: Let Y = {u, v} and degree bound for all three vertices is 1. Note
w /∈ Y but bw = 1. Then, the optimal Y-join is the edge uv with cost M.
However, setting 1

2 on all the edges is a feasible solution for (BD-Y-join LP)
with cost M

2 . Therefore, the integrality gap of (BD-Y-join LP) is at least as
bad as 2.

We present an iterative rounding algorithm that shows an extreme point

of (BD-Y-join LP) is integral. The algorithm and its analysis are a simple

adaptation of the iterative rounding algorithm for maximum matching pre-

sented in [48].

Assuming the while loop works correctly, it is easy to see any extreme

point of (BD-Y-join LP) is integral: because of the updates we make after

adding an edge e to J with xe = 1, the vector xres obtained from x by re-

moving the entry corresponding to e is an extreme point of the updated

(BD-Y-join LP). Therefore, by induction on |E|, we can assume xres is in-

tegral which implies x is integral.
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Algorithm 9 An iterative algorithm for bounded-degree Y-join problem
Input: Undirected graph G = (V, E) with edge costs ce ≥ 0 for all e ∈ E,
degree bounds bv ≥ 0 for all v ∈ V, and Y ⊆ V where |Y| even.
Output: A Y-join.

J ← ∅
while E ̸= ∅ do

Find an optimal extreme point solution x to (BD-Y-join LP) defined on
G = (V, E). Find an edge e = uv with either xe = 0 or xe = 1 (cf. Lemma
80). In the former case remove e, and in the latter case add e to J and do
the following:
Update Y ← Y∆{u, v}. Update E ← E \ {e}. Update b(v) ← b(v)− 1,
and b(u) ← b(u)− 1. Remove all the cut constraints for all sets S such
that |S ∩ {u, v}| = 1.

output J.

Next we prove the algorithm works correctly, i.e., there is an integral vari-

able at each iteration. Before proving this, we need some properties of an ex-

treme point solution of (BD-Y-join LP) which follows from the Rank Lemma

(see Lemma 1) and standard uncrossing techniques.

Lemma 77 (Properties of an extreme point). Consider an extreme point x and

suppose 0 < xe < 1 for all e ∈ E. Then, there exists a laminar family L of Y-odd

sets and W ⊆ V such that

(i) For any S ∈ L we have x(δ(S)) = 1 and for any v ∈ W we have x(δ(v)) =

b(v).

(ii) The vectors in {χ(δ(S)) : S ∈ L} ∪ {χ(δ(v)) : v ∈ W} are linearly

independent.

(iii) |L|+ |W| = |E|.

(iv) E[S] is connected for each S ∈ L.

Proof. Properties (i)-(iii) follow from a standard application of uncrossing

technique and Rank Lemma; however, we present the proof here for com-

pleteness. We recommend reading Section 2.4 for reader unfamiliar with

laminar families.
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Let F be the collection of Y-odd sets S such that the corresponding con-

straint in the LP is tight with respect to x, i.e., x(δ(S)) = 1. It is easy to show

if A and B are both Y-odd sets, then either A ∪ B and A ∩ B are Y-odd sets

or A \ B and B \ A are Y-odd sets. Another known fact is that δ(.) is a strong

submodular function:

δ(A) + δ(B) ≥ δ(A ∪ B) + δ(A ∩ B)

δ(A) + δ(B) ≥ δ(A \ B) + δ(B \ A).

The proof of above inequalities are standard and can be found for example

in Chapter 2 of [48].

Claim 78. Let A, B ∈ F . Then, either A ∪ B, A ∩ B ∈ F or A \ B, B \ A ∈ F .

Furthermore, in case A ∪ B, A ∩ B ∈ F then χ(δ(A)) + χ(δ(B)) = χ(δ(A ∪
B)) + χ(δ(A ∩ B)), and in the case A \ B, B \ A ∈ F then χ(δ(A)) + χ(δ(B)) =

χ(δ(A \ B)) + χ(δ(B \ A)).

Proof. Assume A∪ B and A∩ B are Y-odd sets (if not then A \ B and B \ A are

Y-odd sets and the proof follows identically using these sets instead). From

submodularity of δ(.) we have

1 + 1 = x(δ(A)) + x(δ(B))

≥ x(δ(A ∪ B)) + x(δ(A ∩ B))

≥ 1 + 1.

So the above inequalities hold with equality. In particular, we conclude

x(δ(A ∪ B)) = 1 and x(δ(A ∩ B)) = 1 which implies A ∪ B, A ∩ B ∈ F . Also

we have x(δ(A)) + x(δ(B)) = x(δ(A ∪ B)) + x(δ(A ∩ B)) which implies the

furthermore part since δ(A ∪ B) ∪ δ(A ∩ B) ⊆ δ(A) ∪ δ(B).

Denote by span(F ) the vector space generated by the set of vectors

{χ(δ(S)) : S ∈ F}.

Claim 79. Let L′ be a maximal laminar subfamily of F . Then span(L′) =

span(F ).
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Proof. Suppose not. So span(L′) ⊊ span(F ). For any S /∈ L′ define

intersect(S,L′) to be the number of sets in L′ that are crossing S. Since

span(L′) ⊊ span(F ), there exists a set A ∈ F with χ(δ(A)) /∈ span(L′).
Choose such set A with minimum intersect(A,L′). Let B ∈ span(L′) such

that A and B are crossing (such B exists otherwise L′ ∪ {A} is laminar, con-

tradicting the maximality of L). By Claim 78 either A ∪ B, A ∩ B ∈ F or

A \ B, B \ A ∈ L′. Suppose the former case holds (the argument for the other

case is identical). Note both intersect(A ∪ B,L′) and intersect(A ∩ B,L′) are

smaller than intersect(A,L′) because for example A ∪ B intersects the same

sets that A intersects except B since B ∈ L′. By the choice of A, we conclude

A ∪ B, A ∩ B ∈ L′. Applying Claim 78 we get

χ(δ(A)) + χ(δ(B)) = χ(δ(A ∪ B)) + χ(δ(A ∩ B))

which implies χ(δ(A)) ∈ span(L′), a contradiction.

Now properties (i)-(iii) follow easily. Take a maximal subset L ⊆ L′ such

that χ(δ(S))’s for all S ∈ L are linearly independent. Take a maximal subset

W ⊆ V such that x(δ(v)) = 1 for all v ∈ W and {χ(S) : S ∈ L or S ∈ W}
are linearly independent. Note Claim 79 implies {χ(S) : S ∈ L or S ∈ W}
correspond to a maximal number of linearly independent tight constraints.

So we can apply Rank Lemma and conclude |{χ(S) : S ∈ L or S ∈ W}| =
|E|. This finishes the proof of properties (i)-(iii).

We show that one can further modify the laminar family to obtain a lam-

inar family with property (iv). Consider S ∈ L and suppose E[S] is not con-

nected. Since |S ∩ Y| is odd, there must be a connected component C of E[S]

such that |C ∩ Y| is odd. Because C is a Y-odd set we have x(δ(C)) ≥ 1.

Also note since C is a connected component of E[S] we have δ(C) ⊆ δ(S).

Putting these two facts together, we conclude C is a tight set. Now consider

the laminar family (L \ {S}) ∪ {C}. Note span((L \ {S}) ∪ {C}) = span(L).
Repeating this procedure until there is no set in the laminar family that vio-

lates property (iv) finishes the proof.

Now we are ready to prove the algorithm works correctly.
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Lemma 80. Given any extreme point x of BD-Y-join LP there must exist an edge

e with xe = 0 or xe = 1.

Proof. Suppose not. So we have 0 < xe < 1 for each e ∈ E. Let L be a laminar

family and let W be a subset of V that satisfy properties (i)-(iv) in Lemma 77.

We show a contradiction with property (iii) using a token-based argument.

Let L′ := L∪W be the extended laminar family. We assign one token to each

edge in the support of x (i.e., edges with positive x-value). Then we distribute

the tokens inductively among the sets in the laminar family such that each

member of L′ receives at least one token and we show there are some extra

tokens left which shows the contradiction with the fact that |E| = |L′|.
We use the natural forest structure that the laminar family L′ imposes,

recall that each component of this forest is a rooted tree. We use the following

claim to redistribute the tokens of E[S] among the laminar sets inside S. By

property (iv) of Lemma 77 each child of S is a connected component in G so

we can contract each child to a singleton and name the contracted vertex the

same as the child’s label. Denote the resulting graph GS. We say an edge

e = (u, v) is an induced edge in S, if S is the smallest set in L that contains

both u and v.

In the next claim, we show the number of induced edges in S is at least

the number of children of S in the forest representation of L′. Hence, we

can redistribute the tokens of the induced edges in S to the children of S

so that every child gets one token. Then, we show every root in the forest

representation of L′ gets one unassigned token as well, and there is at least

one unassigned token left at the end.

Claim 81. Let S be a tight set in L. Then, |E(GS)| ≥ |V(GS)|, i.e., the number of

induced edges in S is at least the number of children of S in the forest representation

of L′.

Proof. Let R1, ..., Rk be the children of S. By property (iv) of Lemma 77, GS is

a connected graph and if it is not a tree then E(GS) ≥ k and we can assign
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the tokens of these (at least) k edges in E(GS) to R1, ..., Rk and we are done.

So suppose GS is a tree.
k
∑

i=1
x(δ(Ri)) = x(δ(S)) + 2E[GS] and since x(δ(S)) = 1, we must have

k
∑

i=1
x(δ(Ri)) is odd. Since GS is a tree so it is a bipartite graph. Let V1

and V2 be the two parts of GS and since
k
∑

i=1
x(δ(Ri)) is odd, w.l.o.g., as-

sume ∑
Ri∈V1

x(δ(Ri)) ≤
k
∑

i=1
x(δ(Ri))−1

2 . From this inequality and the fact that

x(δ(S)) = 1 we get

k
∑

i=1
x(δ(Ri))− 1

2
= x(E(GS)) ≤ ∑

Ri∈V1

x(δ(Ri)) ≤

k
∑

i=1
x(δ(Ri))− 1

2
. (5.23)

So all the inequalities in (5.23) must hold as equality. Therefore, x(E(GS)) =

∑
Ri∈V1

x(δ(Ri)) which implies χ(δ(S)) = ∑
Ri∈V2

χ(δ(Ri)) − ∑
Ri∈V1

χ(δ(Ri)) and

this contradicts the linear independence of the characteristic vectors in L′.
This finishes the proof of the claim.

We continue the proof of Lemma 80. Let S′ ∈ L′ and correspond to a non-

root vertex in the forest representation. Let S ∈ L be the tight set that is the

parent of S′. By Claim 81 we can assign a token of an induced edge in S to S′.

Note that the tokens of the induced edges in S are only used for the children

of S, therefore no token is assigned to more than one tight set/vertex.

Next, we need to show every root nodes of the forest representation of

L′ gets one unassigned token. Let S1, ..., Sk be the root nodes of the forest.

Denote by GR the graph obtained from contracting E[Si]’s. Note that all the

tokens of edges in E(GR) are unassigned so far by our token assignment to

the non-root vertices.

Since xe < 1, we have |δ(Si)| ≥ 2. We show that at least one root node has

degree at least 3. But first let us show if this holds then Lemma 80 follows.

Since one non-root node has degree at least 3, we have |E(GR)| ≥ k+ 1 which

implies we can assign one token to each root node and still have at least
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one token left unassigned. This implies |E(G)| > |L′|, a contradiction with

property (iii) of Lemma 77. Therefore, there must be an edge e with xe = 0 or

xe = 1.

Now it remains to prove at least one root node has degree at least 3. Sup-

pose not. Note x(δ(Si)) = 1 for all the root nodes otherwise there is a root

node of degree at least 3. Since bv is odd if and only if v ∈ Y, every Si is a

Y-odd set. Consider a connected component of GR consisting of Si1 , . . . , Siℓ .

Note ℓ must be even otherwise ∪ℓj=1Sij is a Y-odd set so x(δ(∪ℓj=1Sij)) ≥ 1, a

contradiction since ∪ℓj=1Sij is a connected component of GR. Hence, ℓ is even

which implies
ℓ

∑
i=1

(−1)iχ(δ(Si)) = 0, a contradiction with the linear indepen-

dence of characteristic vectors in L′.
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Chapter 6

Conclusion

In this thesis we studied some problems in network design, namely DI-

RECTED STEINER TREE in different special cases and the TRAVELING SALES-

MAN problem in the presence of degree bounds. We designed approximation

algorithms and gave upper bounds on the integrality gaps of the natural LP

relaxations for some of the above problems. In this chapter, we discuss re-

lated open questions and possible further research directions.

6.1 DIRECTED STEINER TREE

In Chapter 3, we gave an O(log k)-approximation for DST on planar graphs.

However, there is no known lower bound to rule out a PTAS for this problem.

Our first big open problem is to understand the approximability of planar

DST better.

Question 3. Better understanding of approximability of DST on planar graphs.

More specifically, is there a PTAS or a constant factor approximation for DST on

planar graphs?

Even obtaining a QPTAS for planar DST is very interesting. One might

try to use some of the ideas in the recent paper by Cohen-Addad [13] for

UNDIRECTED STEINER TREE1. The high-level idea in [13] is the following.

If the diameter of the graph is small compared to opt, then apply Thorup’s

1Although there is a PTAS for UNDIRECTED STEINER TREE [6], Cohen-Addad provide a
general framework to obtain QPTAS for many connectivity problems in minor-free graphs.
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shortest path separator and obtain smaller subinstances. Otherwise, apply

decomposition techniques (e.g. [2]) to obtain connected components with

smaller diameter. The latter step requires some guessing which leads to

quasi-polynomial running time. For planar DST, one could try the above two

steps approach. The first step carries over easily; however, it is not trivial

how to apply the the second step in the case of planar DST. Although there

are results (e.g. [41]) that reduces the diameter of a planar directed graph

by removing some edges, it does not give a “nice” decompositioning of the

graph.

Another possible direction is to extend our result for DST on planar

graphs to minor-free graphs. However, as pointed out in [1], [13], minor-free

(undirected) graphs do not have shortest-path separators. In [13], Cohen-

Addad bypassed this difficulty by designing a new separator called a mixed

separator for undirected minor-free graphs. It is not clear that analogous sep-

arators exist in directed graphs. For example, the mixed separators in [13]

are obtained, in part, by contracting certain paths. These paths are obtained

using structural results in minor-free graphs [61] and it is not clear how to

find analogous paths in the directed case.

Question 4. What is the approximability of DST on graphs excluding a fixed mi-

nor?

In Chapter 4, we showed if we further restrict the planar DST to quasi-

bipartite instances, then we can get a constant factor approximation. Our

result extends to minor-free graphs as well. Our approach was based on a

primal-dual framework and it bounds the integrality gap of the classical LP

relaxation for DST too. However, the primal-dual algorithm we presented

here was rather “non-standard”: we consider different buckets for an edge

and fill these buckets with different rates. This leads to violation of dual

constraints but we showed the violation can be bounded by a constant. This

framework could have the potential to be applied to other problems.

Question 5. What are the other applications of our primal-dual framework with
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multiple buckets presented in Chapter 4?

6.2 BOUNDED-DEGREE TRAVELING SALESMAN

In Chapter 5, we presented a (5
3 ,+4), a (13

8 ,+6) and a (3
2 ,+8) approxima-

tions for the BOUNDED-DEGREE SUBSET TRAVELING SALESMAN problem.

It would be interesting to see if there is any O(1)-approximation that vio-

lates the degree bounds by at most +2. On the other hand, a demonstration

that any O(1)-approximation algorithm based on the natural LP relaxation

requires a +4 violation on the degree bounds would be interesting as well.

Question 6. Can we get an (O(1),+2)-approximation or show +4 on the degree

violation is a lower bound using the natural LP relaxation of BDSTSP?

Another interesting question to explore is a closely related problem to TSP

but in the presence of degree bounds. Namely, the BOUNDED-DEGREE TRAV-

ELING SALESMAN PATH problem (BDTSPP) where the input is an undirected

graph G = (V, E), a pair of vertices s and t, non-negative edge costs ce ≥ 0

for all e ∈ E, and non-negative integer degree bounds bv ≥ 0 for all v ∈ V.

The goal is to find a cheapest walk spanning V which starts at s and finishes

at t.

Given our approximation algorithms in Chapter 5, there is a similar re-

sult for BDTSPP. Let x∗ be an optimal solution of (BDTSPP-LP), the natural

LP relaxation for BDTSPP. Then, x∗ is feasible for Bounded-degree Steiner

tree polytope, and using [49] we get a spanning tree T with cost at most

2 · cost(x∗) and dT(v) ≤ bv + 3. We need to find a cheap join to fix the

degree parity. One can show x∗
3 + χT

3 is feasible for the bounded-degree

(odd(T)∆{s, t})-join polytope2. So overall, we have a solution P whose cost

is at most 8
3 · cost(x∗) and dP (v) ≤ 5

3 · bv + 4.

Note that we could not use x∗
2 to get a cheaper tree with less degree viola-

tion as we did for BDTSP because of constraint (6.1).

2This is essentially the same argument in [3] used to analyze Hoogeveen’s TSP-path al-
gorithm.
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minimize: ∑
e∈E

ce · xe (BDTSPP-LP)

subject to: x(δ(S)) ≥ 2 ∀ ∅ ̸= |S ∩ {s, t}| = 0 or 2, S ̸= V

x(δ(S)) ≥ 1 ∀ |S ∩ {s, t}| = 1 (6.1)

x(δ(v)) ≤ bv ∀ v ∈ V

0 ≤ xe ≤ 2 ∀ e ∈ E

As before one could generalize BDTSPP so we only need to visit a certain

subset of vertices in which we call the BOUNDED-DEGREE SUBSET TRAVEL-

ING SALESMAN PATH problem (BDSTSPP). The same approach for BDTSPP

works here with the same approximation guarantee. So our last question is

to investigate the approximability of these problems.

Question 7. Can we do better than the trivial approximation algorithms for BDT-

SPP and BDSTSPP?
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