CANADIAN THESES ON MICROFICHE

1.S.B.N.

THESES CANADIENNES SUR MICROFICHE

National Library of Canada Collections Development Branch

Canadian Theses on Microfiche Service

Ottawa, Canada K1A 0N4

.

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

- Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.G. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

Bibliothèque nationale du Canada Direction du développement des collections

Service des thèses canadiennes sur microfiche

AVIS

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS REÇUE

N: 339 (r. 82/08)

■ ▲ ·	National Library	Bibliothèque nationale	0-315-08911-3
•	of Canada	du Canada	
<u> </u>	Canadian Theses Division	Division des thèses can	adiennes -
	Ottawa, Canada K1A 0N4		
		56828	
÷	PERMISSION TO MI	CROFILM — AUTOR	ISATION DE MICROFILMER
	e print or type Ecrire en lettr		er ,
	ne of Author - Nom complet d		•
: 1	ENRICHE ALB	ERTA RELK	
	Birth - Date de naissance		Country of Birth - Lieu de naissance THE NETHERLANDS
C	(7. BER. 11 194	+ 9	THE RETHEREMOSS
-	ent Address - Résidence fixe	<i>•</i>	
5	416 HC St. E	DMUNTUN	T(1) 3E'
Title of	Thesis - Titre de la thèse	·	
Title of	THE CHELCIS O	F INTERACTI	ON BETWEEN GENOTYPES
Title of	THE CHECTS O	ANT SELECT	ON OF WHEAT
Title of	THE CHECTS O	ANT SELECT	ON BETWEEN GENOTYPES ON OF WHEAT
Title of	THE CHELCIS O	ANT SELECT	ON BETWEEN GENOTYPES ON OF WHEAT
,	THE CHECTS O ON SINCLE PL (TRITICUM AC	ANT SELECT	ON BETWEEN GENOTYPES ON OF WHEAT
,	THE CHECTS O	ANT SELECTI	ON BETWEEN GENOTYPES ON OF WHEAT
Univers	THE EFFECTS O ON SINCLE PL (TRITICLIM AC	ANT SELECTI STIVUM) DF ALBERTA	ON OF WHEAT
Univers	THE EFFECTS O ON SINCLE PL (TRITICLIM AC ity-Université UNIVERSTY O	ANT SELECTI STIVUM) DF ALBERTA	ON OF WHEAT
Univers	THE CHECTS O ON SINCLE PL (TRITICLIM AC ity-Université UNIVERSTY O for which thesis was presented	ANT SELECTI STIVUM) DF ALBERTA d-Grade pour lequel cette	Name of Supervisor - Nom du directeur de thèse
Univers	THE CHECTS O ON SINGLE PL (TRITICLIM AC UNIVERSITÉ UNIVERSITY O For which thesis was presented PH D	ANT SELECTI STIVUM) DF ALBERTA d-Grade pour lequel cette	ON OF WHEAT
Univers Degree Year th Permis CANAC the film The as	THE CHECTS C CN SINCLE PL (TRITICLIM AC iity - Université UN VERSTY for which thesis was presented PH D nis degree conferred - Année C 1982 usion is hereby granted to the DA to microfilm this thesis and	ANT SELECT STIVEM) DF ALBERTA d-Grade pour lequel cette Tobtention de ce grade NATIONAL LIBRARY OF to lend or sell copies of n rights, and neither the may be printed or other-	Name of Supervisor - Nom du directeur de thèse
Univers Degree Year th Permis CANAC the film The as	THE EFECTS C CN SINCLE PL (TRITICLIM AC ity = Université UN IVERSTY for which thesis was presented PH D nis degree conferred — Année C IG82 usion is hereby granted to the DA to microfilm this thesis and n. uthor reserves other publicatio nor extensive extracts from it	ANT SELECT STIVEM) DF ALBERTA d-Grade pour lequel cette Tobtention de ce grade NATIONAL LIBRARY OF to lend or sell copies of n rights, and neither the may be printed or other-	Name of Supervisor — Nom du directeur de thèse Dr E A CLARK L'autorisation est, par la présente, accordée à la BIBLIOTHÉ QUE NATIONALE DU CANADA de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film L'auteur se réserve les autres droits de publication, ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans l'autorisation écrite de l'auteur

THE UNIVERSITY OF ALBERTA

THE EFFECTS OF INTERACTION BETWEEN GENOTYPES ON SINGLE PLANT SELECTION OF WHEAT (TRITICUM AESTIVUM)

by

HENRIETTE A. KELKER

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

IN

PLANT BREEDING

DEPARTMENT OF PLANT SCIENCE

EDMONTON, ALBERTA

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR HENRIETTE A. KELKER TITLE OF THESIS THE EFFECTS OF INTERACTION BETWEEN GENOTYPES ON SINGLE PLANT SELECTION OF WHEAT (TRITICUM AESTIVUM)

DEGREE FOR WHICH THESIS WAS PRESENTED DOCTOR OF PHILOSOPHY YEAR THIS DEGREE GRANTED 1982

Permission is hereby granted to THE UNIVERSITY OF ALBERTA LIBRARY to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

(SIGNED) HA Killer

PERMANENT ADDRESS: 5416 110 st Estmonton Alberta T6H 3E1

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research, for acceptance, a thesis entitled THE EFFECTS OF INTERACTION BETWEEN GENOTYPES ON SINGLE PLANT SELECTION OF WHEAT (TRITICUM AESTIVUM) submitted by HENRIETTE A. KELKER in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY in PLANT BREEDING.

2. am ante

Supervisor unter Shoke

External Examiner

Date Ss. ptember. 30. 1981.

Abstract

1

In the first year of the study, the response of wheat plants to genotype interaction was studied on monocultures and mixtures of seven wheat genotypes, at seven different interplant spacings. The genotypes differed significant their response to genotype interaction.

In the second year, mixtures and monocultures of f genotypes were grown at two different interplant spaci. The mean variation of the number of tillers, plant wei and yield of the genotypes grown in mixtures at the c spacing, and of kernel weight at the wider spacing, disignificantly from the mean variation in monoculture. F the plants grown in mixtures, an increase in spacing was accompanied by an increase in the plant to plant variation of the number of tillers, the number of heads, plant weight, yield, kernels per plant, kernel weight and harvest index. Similar effects were observed for plants grown in monocultures.

With the ecxeption of height of the flag leaf, plant height and harvest index, the effect of genotype interaction on plant characters differed significantly among genotypes. Correlations between pairs of characters, measured on genotypes and their associates, revealed that the characters which affect (or respond to) genotype interaction are not the same at different spacings and in different genotypes.

In the third year, the effect of initial seed size on lant interactions in five monocultures was examined. Number

iv

of tillers, number of heads, and kernel weight were affected by initial seed size in plots from uniform seed. Plants from large seeds produced more tillers than did plants from small seeds, but plants from small seed produced larger kernels than did plants from large seeds. In plots from mixed seed sizes, however, neighbor interaction caused plants from small seeds to produce shorter plants, bearing lighter seeds, than did plants from large seed.

The data demonstrated that the distribution of many characters, in monoculture as well as in mixture, is not normal. It was shown that, if one selects the highest values for a character, characters which have a negatively skewed distribution are selected with less error than are characters for which the distribution is normal or positively skewed.

Yield trials of mixtures and monocultures were repeated for three years. Only in 1977 did the mixtures yield significantly more than the mean of the monocultures of the components. Interactions between the genotypes differed from year to year.

It was concluded, that the efficiency of selection of single plants from a segregating population is affected by variation due to different initial seed sizes, variation due to interaction between plants from different size seeds, and variation due to interaction between different genotypes, as well as by the frequency distribution of the observed characters.

v

It was recommended that, in order to evaluate the suitability of a character for selection in early. generations, the distribution of this character in a multi-component mixture, as well as its sensitivity to genotype interaction, should be evaluated in conjunction' with the estimation of its heritability.

Acknowlegement

I wish to thank my advisor, Dr. K. G. Briggs, for encouraging me to undertake this project, and for his interest and advice during the following years of study.

I am indebted to Dr. E. A. Clark, for accepting the ' position of substitute advisor, for her critical reading of the manuscript, and for her helpful comments.

I thankfully acknowlege the help which I received from Mr. K. Kutchera and the staff at Parkland farm, with all field operations and the collection of data.

The financial assistance of the Canadian Wheat Board is greatly appreciated.

Lastly I would like to thank my husband, Douglas, for his support, patience and knowledgable advice, and my children for providing me with much needed diversion.

Cha	pter	Pa	age
1.	Intr	oduction	\ 1
2.	Lite	erature Review	3
	2.1	Terminology	. 3
	2.2	Mixtures vs. monocultures	, . 5
	2.3	Types of interaction and interaction effects	.9
	2.4	Effects of plant interaction on plant growth	14
)		2.4.1 Plasticity of plant characters	14
		2.4.2 Competition for water and nutrients	18
		2.4.3 Competition for light	20
		2.4.4 Effects of seed size on plant interactions	23
		2.4.5 Effects of density on plant interactions .	28
	,	2.4.6 Changes in the distribution of characters during growth	33
		2.4.7 Effects of genotype interaction on grain filling and maturity	35
	2.5	Effects of interaction between genotypes on gingle plant selection	38
3.	Shor	t Description of the Experiments	44
4.	Mate	rials and Methods - General Information	46
	4.1	Characteristics of test sites	46
	4.2	Plant material used	47
5.	Inter Inter	raction Between Genotypes at Different rplant Spacings	49
	5.1	Materials and methods	49
	1	5.1.1 Field plot design	19
		5.1.2 Seed preparation and data collection	50

Table of Contents

ı

١.

viii

		*			~ •
,			•	z	
	,		5.2	Analy	sis of the data
			5.3	Resul	ts
• •	•		5.4	Discu	ssion
	•	*	Rela Mixe	tionsh d Geno	ips between Plant Characters Measured on types
			6.1	Mater	ials and methods
			6.2	Analy	sis of the data60
	, "		6.3	Resul	t s
	۰.			6.3.1	Effects of genotype interaction on plant-to-plant variation64
	×			. 3.2	Effects of genotype interaction on the expression of various plant characters68
		5	. ,	6.3.3	Relative performance of genotypes in mixture
				6.3.4	Relationships between characters of interacting genotypes
			*	6.3.5	Interaction between genotypes during the early stages of growth
			6.4	Discus	sion
		2 	٠	б.4.1	Effects of genotype interaction on plant-to-plant variation
					Effects of genotype interaction on mean plant performance
		7.	Effe	cts of	Seed Size on Plant Interaction
		(7.1	Materi	als and methods
		``	7.2	Analys	is of the data
	•		7.3	Result	s
	* .	1		7.3.1	Effects of seed size on mean plant performance and sample distribution of characters
	•		•	7.3.2	Effects of seed size on interaction between neighbours102
			7.4	Discus	sion

,

,

i x

.

.

,

									-	16 . ²
						¢	~	ł	1	· .
,					,	,				
e	•		7 - 1 - + i	abia B		Mixture Y	ield and		•	
	8.	Mono	culture	Yield	of the	Component	5	••••	. 110	
,	•	8.1	Materia	ls and	method	5		• • • • • • • •	.110	~
		8.2	Analys	is of t	he data				.111	
	, ,	8.3	Results	5	• • • • • • •	· · · · · · · · · ·			.118	
			8.3.1	Effect yields	s of ge	notype in	teraction	on plot	.120	
			8.3.2	Mixtur with y	e effic	iency and	its corre	lation	.123	
			8.3.3	Dialle	l analy	sis of va	riance		.126	
	-		8.3.4	Méxtur	e effic	iency	• • • • • • • • • •		. 128	
	2 ¹		8.3.5	Regres	sion of	W on V .		•••••	.129	
		8.4	Discus	sion	• • • • • • • •	••••		• • • • • • • • •	.132	•
•	• ⁹ .	Disc Plan	uŝsion t Selec	of th e tion ir	Results Early	with Res Generatio	pect to Si ns	ngle	.135	1
,		9.1	Effect single	s of no plant	n-norma selecti	l charact on	er distril	oution on	.136	
		9.2	Effect select	s of ge ion	enotype	interacti	on on sing	jle plant	. 139	N
		9.3	Effect select	s of ir ion	nterplan	t spacing	on single	e plant	.140	
		9.4	Effect	s of se	ed size	on singl	e plant so	election	.144	
		، 9.5	Suitab plant	ility o select:	of vario ion	us charac	ters for a	single 	.145	
•	10.	Refe	rences						.149	÷
	11.	List	of App	endice	5			• • • • • • • • •	.167	•
									•	• •
	. 5 0 • •	*		थः , १ क्रस्ट≣्रः ⊈ ,		· · ·	ي. موجع موجع موجع م	ية من	, Fig. e	
				•				х	ء	
		,			4					
					·	•	•	•		
							-			

· × *

List of Tables

Table

хi

6. Comparison of single plant characters of four

Page

12a. The effect of genotype and seed treatment

xii

12b. The effect of genotype and seed treatment

12c. The effect of genotype and seed treatment

- 14, Frequency distribution of mixture yield, relative to the yield of the components grown in monoculture....119

xiii

- 18. Rank-orders of the monoculture yields of eight genotypes, and the mean yields of their mixtures, as observed at the Edmonton and Ellerslie locations..125
- 21a. Estimates of heritability of single plant characters, grown at a 3 cm interplant spacing, as computed from monoculture and mixture data......141
- 21b. Estimates of heritability of single plant characters, grown at a 9 cm interplant spacing,

xiv

as computed from monoculture and mixture data......142

List of Figures

Figure

Page

xvi

1. Introduction

In the history of wheat cultivation, the use of homogeneous cultivars is relatively new. Cultivated wheat populations used to be, and in some countries still are, composed of a large number of genotypes. For centuries, selection was practised by farmers for the plant types best suited for their needs. This resulted in plant types with large free threshing seeds, and increased yields, with better flour quality and with adaptation to a wide range of climatic conditions (Feldman, 1974). Although the principles of selection have been practiced in a more methodical way since the second half of the 18th century (Darwin, 1859), plant breeding has been recognised as a science only since the last part of the 19th century (Allard, 1960).

Almost all current selection methods for small cereals are based on line selection and its modifications (Sneep et al., 1979). These involve the selection of single plants or progeny rows in the early segregating generations.

It is widely recognised that single plant selection for quantitative characters, such as seed yield, in the segregating generations of a breeding program, is largely ineffective. Several studies have attempted to associate various plant characters in the F2 or F3 generations, with the expression of characters in more advanced generations (McGinnis and Shebeski, 1968; Hamblin and Donald, 1974). Interaction between genotypes is considered to be an important cause of the phenotypic variation which hinders

single plant selection (Kiesselbach, 1923; Christian and Gray, 1941). Yet, the effects of specific characters of one plant on the phenotype of its associates, and the implications of these effects for single plant selection, are unclear.

The present study focuses on the interactions between genotypes of common spring wheat (*Triticum æstivum* L.). The study was undertaken to determine the responsiveness of specific plant characters to the presence of other genotypes, and to evaluate the factors associated with the ability to perform well in a mixture situation. The results are discussed in relation to current plant breeding practices.

2. Literature Review

2.1 Terminology

٦

Plant interactions have been studied by scientists from various branches of science, and each discipline has its own definitions and nomenclature. In 'The Origin of Species', Darwin (1859) discussed the competition which takes place between individuals within both the plant and the animal kinggoms. He preferred to use the term 'struggle for existence'. The term 'competition' was used by Odum (1971), who stated that competition, in the broadest sense, refers to the interaction of two organisms striving for the same thing. Harper (1961) described the different approaches of agronomists, ecologists and geneticists to plant competition. From an agronomist's point of view, competition is 'the response of plants to density-induced shortages'. The ecologist considers competition as 'all those forces by which one organism succeeds at the expense of another', while the geneticist deals with the 'effect of interaction operating between individuals of different genotypes within a population'.

A frequently quoted definition of competition was given by Clements et al. (1929), and reads as follows: 'Competition arises from the reaction of one plant upon the physical factors about it and the effect of the modified factors upon its competitors. In the exact sense, two plants

do not compete with each other as long as the water content, the nutrient material, the light and the heat are—in excess of the needs of of both. When the immediate supply of a single necessary factor falls below the combined demands of the plants competition begins.'

Because the word competition is commonly associated with negative effects, its use has been avoided by several authors. Harper (1961) preferred the term 'interference', while Trenbath (1974, 1975) and Trenbath and Harper (1973) used the term 'neighbour effects'. Mather (1961) distinguished 'competition' from 'cooperation', and pointed out that individuals which are competing in one respect may be cooperating in another.

Hall (1974) attributed the responses of plants to their neighbours to both competitive and non-competitive interference. Competitive interference, as defined by Hall, is the same as competition for essential growth factors, as defined by Clements et al. (1929). Non-competitive interference occurs when an individual responds to changes in its environment, which are caused by other plants and which do not fall into the first category. As an example of non-competitive interference, Hall named the positive effect which a legume can have on the growth of a non-legume. This happens when nitrogen, fixed by the legume, becomes available to the non-legume through mineralisation (Henzell and Vallis, 1977).

The word 'interference' implies a one-way process. The mutual influences of plants upon each other can therefore perhaps be best described by the word 'interaction'. The effects of interaction between genotypes are measured as the phenotypic deviations of plants grown in mixed culture from those grown in pure culture, under otherwise similar growing conditions.

2.2 Mixtures vs. monocultures

The literature on mixtures of crop cultivars goes backat least as far as the last part of the 19th century, and the value and practicality of mixtures as a crop has been a much disputed issue. Von Rümker (1892) reviewed several of the older European studies and advocated the use of mixtures in an effort to increase the yield per unit area, especially where it concerned grains used for animal feed.

Montgomery (1912) concluded that, on the average, both oats and winter wheat had higher grain yields when grown in cultivar mixtures than when grown alone. Unfortunately he examined only two cultivars of each species in this study. Similar observations were made on wheat by Engelke (1935), who also noted that total tiller density was always higher in mixtures than in monocultures.

Data on a mixture diallel of four wheat cultivars (Nuding, 1936) were reanalysed by Simmonds (1962). He subsequently showed that the mean yield of the components in

monoculture was negatively correlated with their performance in mixture. The yields of the six mixtures all exceeded the mean yield of their component monocultures, and the highest yields were obtained from mixtures of genotypes which were known to have a wide range of adaptation.

In contrast to the above reports, Heuser (1938) concluded from the trials of five wheat cultivars and their binary mixtures, that monocultures yield at least as well as, and sometimes better than, mixtures do.

Three genotypes of wheat, which were similar in morphological characters, development and yield, produced yields in mixture which were similar to their yield in monoculture (Frankel, 1939). The similarity of the genotypes in this study might explain the lack of effect from genotype interaction.

A review of the more recent literature on the performance of mixtures of genotypes and mixtures of species was made by Trenbath (1974). The reviewed studies examined the biomass production of several forage, cereal and oil seed species. In 344 two-component mixtures, 60% of the mixtures - which is significantly ($\alpha \le 0.01$) more than half yielded more than the mean of the component monocultures, while 24% yielded more than the higher yielding monoculture. This suggests that, on the average, biomass production per plant is better in mixtures than in monocultures.

After evaluating a number of different types of rice (Oryza sp. L.) mixtures, mixing techniques and cultural

practices, Roy (1960) concluded that the chances for gaining or for losing yield potential through the formation of mixtures are about equal and that most advantages of mixtures are obtained when the soil conditions are poor. An advantage of mixtures over monocultures under extreme environmental conditions was also observed for barley (Hordeum vulgare L.) grain yield (Clay and Allard, 1969), in a study involving twentythree mixtures, evaluated over two years and five locations.

• The performance of a mixture of two wheat cultivars (Pitic 62 and Neepawa), sown at various seeding rates differed in the two years of the study (Baker, 1977). This was ascribed to the fact that Pitic 62 was better able to compensate for poor survival after early drought conditions, when grown in pure stand, than when grown in mixture. The reason for this different ability to recover was not discussed, however. Further study of this observation could clarify the process of interaction which takes place between these two wheat genotypes.

Simmonds (1962) wrote an extensive review on the variation in crop plants, and indicated that mixtures, besides being often slightly superior in yield, are usually also more reliable in their performance, especially under conditions of stress.

It thus appears that in the majority of cases, stress conditions affect mixtures less than they do monocultures. With this in mind, it is interesting to note that in a study

by Shorter and Frey (1979), which was conducted over two years and at two locations, the genotype x year, the genotype x location, and the genotype x year x location interactions were insignificant most of the time (12 out of 16) for mixtures, and were always significant for monocultures.

For lima beans (*Phaseolus lunatus* L.), it was observed that the stability of performance is related to the degree of genetic variation in the population. Allard (1961) studied the performance of ten lima bean populations: three monocultures, three two-component mixtures, one three-component mixture and the advanced generations (F7 and F9) from crosses between these three genotypes. He found that, although the monocultures performed most often either very poorly or very well, the mixtures consistently performed at a mediocre level, while the bulk populations performed well most of the time: He concluded that the genetic diversity of the mixed and bulk populations apparently made them more stable.

The yield of five two- and three-way mixtures of barley genotypes appeared to be more stable over years and locations than were the yields of the component genotypes grown in monoculture (Early and Qualset, 1971). At the same time, a tendency was observed for the plant-to-plant variation within a genotype to be greater in mixtures than in monocultures. This is perhaps not surprising, since the micro-environment within the crop stand also is more

Þ

- 8

variable in a mixture of plant types than in a monoculture.

The reviewed studies suggest that mixtures often perform in a more stable manner than do monocultures. In order to evaluate the relative performance of mixtures and / monocultures, it is therefore advisable to repeat any study of competition effects for a number of years. Close observation of single plant characters under both mixture and monoculture conditions during these years could reveal the mechanism underlying the stability of mixtures, and could possibly explain why certain genotypes are better combiners in a mixture

2.3 Types of interaction and interaction effects

Interactions between plants occur in monoculture as well as in mixed populations. Since developmental patterns of genotypes within a species can differ considerably, interplant relations within a mixture of genotypes will differ from those in monoculture. Interaction between plants of two different species or two genotypes of the same species can be detrimental, nonaral or beneficial to either or both associates. Depending on the degree of interaction and the proportion in which each component occurs in the mixture, the mixture yields can be less than, equal to, or more than what can be expected from the monocultures of each component.

Since interactions vary with the growth stage of each of the plants involved, variation in the relationships between the individuals of a population can be brought about by varying the relative growth stages of the interacting plants. This can be achieved through variations in the time of emergence (Ross and Harper, 1972), variations in the seeding depth (Black, 1956), or variations in seed size of the population members (Montgomery, 1912; Kaufmann and McFadden, 1960). Interactions between components of a mixture can also be varied through variations in density (Kira et al., 1953; Chebib et al., 1973) or variations in the proportions of the mixture components (de Wit, 1960; Hill, 1974).

The effect on mixture yield of varying proportions of mixture components at a constant overall density has been studied by de Wit (1960) and by Hill (1974). De Wit introduced the term 'replacement series' for experiments, in which the performance of monocultures and mixtures containing a range of different proportions of two types of plants are assessed.

In de Wit's experiments, population pressure was maintained at a constant level by using optimal seeding rates appropriate for each of the components. Thus, in an experiment involving various proportions of oats and peas, oats were given 31 cm²/kernel and peas were given 139 cm²/kernel in all plots (de Wit, 1961).

10

٩.

De Wit's model assumes that the genotypes in a mixture exclude each other and crowd for the same 'space' Space is assumed to be uniformly distributed and encompasses all essential growth factors. De Wit considered it undesirable to define these factors, since: 'such a description is not necessary, always inaccurate and therefore inadvisable.' (de Wit, 1960). Hall (1974) explained, however, that identification of a particular limiting factor could give valuable insight into the interaction process.

A replacement diagram consists of curves which represent the measurements on yield or other characters for each mixture component, obtained from a series of mixtures of different proportions, as well as a curve representing the sum of the component yields (total mixture yield) for each mixture. These diagrams can take on any of the basic shapes given in the figures 1a to 1d, and can be explained as follows, using plot yield as an example:

- Interaction between genotypes has no effect on the yield of either one of the mixture components (Figure 1a).
- 2. Interaction between genotypes decreases the yield of genotype A, while it increases the yield of B (Figure 1b). The combined effects, however, cause no change in the total yield of the mixture. One can speak in this case of 'complementary competition' (Shuts et al., 1968).
- 3. Interaction between genotypes decreases the yields of both * and B (Figure 1c). This can result in a total

ن ر

%A and %B in the mixture are marked a ong the X-axis, reading from left to right for genotype λ , and from right to left for genotype B. mixture yield intermediate between the yields of A and B grown in monoculture section 'p') or in a total mixture yield which is less than the monoculture yield of the lower yielding genotype (section 'q'). In the latter case one can speak of 'underyielding' of the mixture (Trenbath, 1974).

4. Interaction between genotypes increases the yields of both A and B (Figure 1d), resulting in a total mixture yield which is lower than the yield of the better monoculture, but higher than the yield of the poorer monoculture (section 'p'), or in the mixture yield being higher than the yield of the better monoculture (section 'q'). In the latter case one can speak of 'overyielding' of the mixture (Trenbath, 1974).

An understanding of the mechanisms leading to overyielding could be exploited to increase yield. In general, overyielding occurs in mixtures of species which exhibit marked differences in their pattern of growth. These differences provide the potential to utilise the available resources more efficiently (de Wit, 1961; Trenbath, 1974; Clark, 1980). In herbage plants, Hill (1974) demonstrated that a 50:50 mixture is not usually the optimal composition to maximise forage yield. This conclusion agrees with the diagram in Figure 1d, which shows that overyielding is more likely to occur in mixtures containing a higher proportion of the better yielding genotype.

Differences between genotypes of cultivated cereals are probably more subtle than are those between the components of a mixture of species, because plants of the same species are more similar in growth habit and nutrient requirements. Nevertheless, the presence of genetic differences implies the existence of differences in the various aspects of plant growth. Thus, the potential exists for complicated interplant relationships, which are different from those occurring in a monoculture.

A great number of factors play a role in plant interactions. There is therefore little hope that a generalised set of rules can be designed from which the outcome of plant interactions can be accurately predicted. Hill (1974) recognised this when he presented a theoretical model for the prediction of the value of binary mixtures of herbage species. He emphasised that plant interaction is a dynamic phenomenon, and that relationships can be transient.

2.4 Effects of plant interaction on plant growth

2.4.1 Plasticity of plant characters

The ability of plant parts and processes to respond to variations in the environment has been extensively discussed by Bradshaw (1964). He presented evidence that the plasticity of a certain character

a. is specific for that character,

- b. is specific in relation to particular environmental influences,
- c. is specific in direction,
- d. is under genetic control, not necessarily related to heterozygosity, and

e. can be radically altered by selection.

His theoties on the role of plasticity of plant characters in evolution and adaptation apply directly to the interpretation of interactions between plants of different genotype. Bradshaw proposed that the plasticity of a character is related to the duration of meristematic activity which pertains to its development. Stemlength, for example, is controlled by long periods of meristematic activity and will therefore be more susceptible to environmental influences than are characters which are formed rapidly, such as reproductive structures. However, within this framework, there exists great variation among species as well as among genotypes within species.

Bradshaw explained that as a result of natural selection, a character whose stability is important for survival will likely show greater stability than will a character for which some plasticity is not a disadvantage. Harper (1961) pointed out that seed size is often surprisingly stable, thus ensuring an equal starting capital for each seedling. Significant variations in seed size due to interaction between genotypes, however, have been reported for wheat (Christian and Gray, 1942; Chapman et al., 1969).

For some characters, plasticity can play a great role in adaptation. Height of many species appears to be a very plastic character. Trenbath and Harper (1973) described the different abilities of several oat species (Avena sp. L.) to adapt to different competitive situations through changes in height. Avena sativa was found to be capable of a stem extension of 10 cm above its monoculture value when grown in association with the taller A. Iudoviciana. This resulted, for A. sativa, in a 20% increase in kernel weight over its monoculture value. They discussed the biological significance of this 'extension response' and concluded that such a mechanism must lead to a more even sharing of radiation. In natural communities this would conserve genotypes and thus diversity.

In corn the rapid elongation rate of one plant has an accelerating effect on the elongation rate of its neighbours (Hozumi et al., 1955). This effect appeared to be transient, however, resulting in an oscillating pattern of elongation rate in each plant.

Because environmental conditions in the field vary a great deal, stability of certain characters necessarily implies plasticity in others. Plant height, for example, is in a monoculture usually very uniform. Plasticity must therefore exist in some characters which determine plant height, such as elongation rate at various stages of development. Plasticity of the components of a certain

16

É.

character can result in either stability or plasticity of the resultant character. Plant weight and grain yield of cereals are not considered as stable characters, nor are most of their components. However, harvest index, which is the ratio of grain yield and plant weight, is surprisingly stable over a range of environments (Donald and Hamblin, 1976).

If the degree of plasticity of various characters is genotype specific, as suggested by Bradshaw, then this could have important implications for a genotypes ability to perform in a mixture. Sakai (1955) concluded from a study of twelve barley cultivars that this 'competitive ability' was not associated with any of the characters he measured: plant height, maturity, seed size, habit of growth (erect vs. prostrate), heading habit (spring or winter) or grain yield. He concluded that competitive ability is a biological character in its own right and is under genetic control.

This conclusion has been criticised by several authors (Donald, 1963; Harper, 1965). Harper (1965) pointed out the incompleteness of Sakai's list of characters and stressed the importance of further investigations involving characters such as depth and extent of the root system, leaf area and height of the flag leaf. Sakai's theory on competitive ability as a genetic character is in agreement, however, with Bradshaw's views (1964) on the genetic control of the plasticity of each individual character.

2.4.2 Competition for water and nutrients

Suneson (1949) described experiments involving a mixture of four similarly adapted barley cultivars. Over sixteen years, two of the four components virtually disappeared from the population, even though one of them, Vaughn, had a significantly better yield potential and resistance to leaf diseases than any of the others when grown in pure stand. Atlas, the cultivar which eventually dominated the mixture, had the poorest leaf disease record and a mean yield below the median of the component cultivars.

Subsequent attempts to analyse the relationships between Atlas and Vaughn revealed that competition for light was not a decisive factor (Edwards and Allard, 1963), but that competition was primarily for moisture and nutrients (Hartmann and Allard, 1964). Lee (1960) observed that the response to competition between the two cultivars appeared abruptly at the jointing stage, when Atlas developed a dense mass of crown roots. Since Vaughn did not develop as large a root mass, "Lee suggested that Atlas would become more efficient in gathering nutrients and would have the advantage when both varieties have to draw from the same soil mass.

Competition between roots usually starts long before the shoots are sufficiently developed to cause significant mutual shading (Milthorpe, 1961). But, competition for nutrients often leads to competition for light, since an
unevenly distributed nutrient supply will result in a 'similar variation in shoot growth. The study of nutrient competition without consideration of competition for light is therefore possible only under conditions which artificially prevent intermingling of the leaves of neighbouring plants.

Such studies have been performed by Donald (1958) on a mixture of grasses and by Aspinall and Milthorpe (1959) on barley and white persicaria (*Polygonum lepathifollum* L.) Both studies involved mixtures of species grown in pots.

Aspinall (1960) concluded that root competition, presumably for nutrients, since water was supplied in adequate amounts, reduced growth of the less successful component more than did shoot competition. Donald emphasised the interaction which occurs between competition for light, competition for nutrights, and factors indirectly affected by the two

Both authors mentioned differences in embryo size and in the size of the root systems of species as the main causes of competitive interference in the early stages. These same factors should then play a role in pure stands if random variation occurs in initial seed size and rate of germination.

2.4.3 Competition for light

For most crop species, photosynthetic rate in an individual leaf is saturated at 150,000 - 200,000 lux (Donald, 1961). This is well below the flux density experienced by the top layer of a canopy on a sunny day. In a closed crop stand a large part of the foliage is shaded and will receive light intensities which are below the level of light saturation, except perhaps during the midday hours on a very bright day.

Horizontal as well as vertical distribution of the leaves and leaf angle will affect the amount of light which can be intercepted and utilised by a crop. Erect leaves will allow more light to penetrate into the canopy, enabelling a larger leaf area to take part in photosynthesis.

Competition for light within a canopy will not occur until the photosynthetically active radiation which reaches the surface of the leaf falls below the saturation level. With higher light intensities, competition will occur deeper inside the canopy.

Donald (1967) described the ideal wheat plant for cultivation at high densities, such as are customary for most cereals, and suggested that it should have small erect leaves. This would maximise the area which is illuminated. Nichiporovich (1967) also discussed this subject and stressed that a different leaf angle will be optimal at different latitudes or climates. According to the latter, some cereals have an arrangement of leaves in which the top leaves are approximately vertical, the middle leaves are inclined at intermediate angles and the lower leaves are nearly horizontal. Nichiporovich considered this the ideal arrangement for plants to be grown at high densities. In a mixture of genotypes, this type of plant would also be less susceptible to shading by taller plants, than would types with more horizontal leaves.

Donald (1961) stated that competition for light takes place between leaves rather than between plants or species. This is well illustrated by the studies of Brougham (1958) on competition for light in a sward of white clover. It was shown that, following defoliation, mature petiole length of successive leaves became longer, suggesting an attempt to reach daylight through the increasingly dense canopy.

Because the growth patterns of genotypes differ from each other, the start of plant interactions and their effects on subsequent processes will be different in mixtures than in monocultures. Trenbath and Harper (1973) found that, under optimal moisture and nutrient conditions, reactions of Avena species to genotype interaction could be explained in terms of the shading experienced at different stages of development. Early shading appeared to have a depressive effect on tiller number, while shading of the flag leaf during grain filling had a pronounced effect on seed weight.

The effects of shading on wheat at different points in development were studied by Fischer (1975). He found that

the period of rapid spike growth was the most sensitive to shading, resulting in fewer grains per spikelet and low tiller survival.

A negative correlation between shoot elongation rate and shoot length tended to equalise the height of corn plants during the first few weeks of growth (Hozumi et al., 1955). This effect caused temporary variations in the shoot elongation rate of individual plants. Later in the season, when competition became more severe, this correlation changed into a positive one, suggesting suppression of small plants by taller neighbors.

Growth rate of the high yielding dwarf wheat cultivar Yecora was found to be sensitive to low shading intensities, of three to four weeks duration, at various times during the growing season (Figcher, 1975). Shading at any time reduced crop growth rate. The strongest reductions in yield, however, occurred when the plants were shaded during the month before anthesis. Although the shading treatments in these experiments involved complete plots, one can expect shading by taller neighbours to have similar effects.

Yoda et al. (1957) found that the growth of rose mallow (*Hibiscus moschentos* L.) seedlings, during the latter part of the growing season, was more closely related to the relative size rather than to the absolute size of neighbouring plants. They discussed Hozumi's findings as well as their own, and concluded that the change from a negative to a positive correlation between plant size and

growth rate marked the point where the growsh reductions due to reduced photosynthesis surpassed the etiolating effects of competition for light. The change from a negative to a positive correlation occurred earlier in dense plantings than at wider interplant spacings, supporting this theory.

An increase in the mean plant height of a mixed wheat population was observed by Khalifa and Qualset (1975), who planted the progeny of a cross between short statured and standard height wheats, without artificial selection, for six generations. They found that the frequency of short statured plants in the population decreased, suggesting that tall plants were more successful in setting seed, in spite of a significant negative correlation between height and yield.

In a similar study Busch and Luizzi (1979) found no evidence of such a directional shift. They ascribed this lack of change to either a lesser genetic range in height in their material or to the lesser expression of height differences in the more limiting dryland environment of North Dakota, compared to that of California.

2.4.4 Effects of seed size on plant interactions

The place that an individual occupies within the hierarchy of a plant population seems to be largely determined in the very early stages of plant development (Harper, 1977). Seed size is one of the first factors affecting this early development, and it was shown by

Austenson and Walton (1970) that a two or three fold difference in weight can exist among kernels of wheat in the same head.

The effect of seed size on plant development has been quantitatively studied by various authors. Kiesselbach (1924) reviewed a number of investigations made on cereals around the turn of the century, and added to this many of his own findings. He concluded that:

- When small and large seeds of various cereal crops were space planted, small seeds developed into considerably smaller plants than did large seeds, giving correspondingly lower yields (on the average 19% less). This result was ascribed to the differences in energy reserves of the seeds, and hence, in initial seedling vigour.
- 2. When equal numbers of small and large seeds were planted at a rate optimal for the large seeds, the reduction in yield of the plants from small seeds was less than the reduction at wide spacings, although the small seed plants still yielded on the average 11% less than did the plants from large seed.
- 3. When equal weights of the two types of seed were planted, the plants from small seeds yielded on the average 3% less than did the plants from large seeds. The greater number of small seeds planted compensated, almost completely for the smaller size. When equal. weights of large seeds and unselected seeds were

planted, the plants from unselected seeds consistently yielded slightly more than the plants from large seeds. Averaged over 131 test years, the advantage of unsorted seed over large seed was 2.1%. The author did not speculate on the cause of this more efficient reference of a mixture of seed sizes.

.

Interaction between plants from different seed size within a genotype, and between genotypes differing in growth rate, was studied by Christian and Gray (1941). In both late and early cultivars of wheat, seed size affected the number of tillers and the number of heads per plant. Differences between the genotypes in their performance in mixture affected the the number of heads per plant but not the number of tillers per plant. Thousand kernel weight of the early genotype was significantly reduced by competition from the late genotype, but the latter was not affected.

A similar study was conducted by Kaufmann and McFadden (1960). They studied the competitive interactions between barley plants grown from large and small seeds, and concluded that plants from small seed are more negatively affected by increased plant density than are plants from large seed. The main character responsible for the yield reduction in response to increased density was the number of heads per plant. They reported a ratio of yield from large and small plants of 1:0.78 at a 10 cm equidistant spacing and a ratio of 1:0.54 at a 5 cm equidistant spacing. Comparison of yield from plots seeded to equal numbers of

either uniformly large seeds or uniformly small seeds revealed, as did the studies of Kiesselbach (1924) and Christian and Gray (1941), a higher yield for the large-seed plots.

The effects of seed size on components of yield were studied in more detail by Austenson and Walton (1970). They found that, within each of three cultivars of wheat, total yield, grain yield, straw yield, the number of heads per plant and number of seeds per plant were significantly correlated with initial seed weight. Variation in initial seed weight accounted for from 2.5 to 4.5% of the variation in these characters at maturity. Thousand kernel weight and number of seeds per head appeared to be unrelated to initial seed size.

Black (1958) demonstrated that, in two swards of subterranean clover, derived from equal numbers of seedlings but from different seed sizes, all plants in both swards eventually reached the same size. When large and small seeds were mixed, however, the plants from large seeds progressively suppressed the plants from small seeds and eventually made up 90% of the dry weight and leaf area of the sward.

0

Black noted that the relative growth rate of both the swards from large seeds and small seeds declined once a critical leaf area was reached. The plants from large seed reached this point faster than did the plants from small seed.

Kaufmann and McFadden (1960) reported that the vigorous growth of barley plants from large seeds resulted in an earlier development of second and subsequent leaves and of tillers than was the case for plants from small seed, but no difference was reported in the onset of flowering.

The importance of seed size and seedling growth rate to interplant relationships was demonstrated by Aspinall and Milthorpe (1959) and Aspinall (1960), who studied the interaction between barley and white persicaria. They concluded that, although in pure culture white persicaria has a faster relative growth rate than does barley, the latter has a larger embryo and initial seedling size, enabling it to establish a larger root system more rapidly and thus to gain an advantage when grown in a mixture. Restricted nutrient supply appeared to depress the growth of white persicaria more than did shading by the barley plants.

At the onset of flowering of the barley plants, when barley root growth and leaf expansion decrease, the persicaria plants immediately increased their growth rate, demonstrating the changes in interplant relations which can occur as plant development progresses.

Litav and Isti (1974a,b) compared the growth of seedlings of large and small seeded spinach (*Spinacia Oleracea* L.) strains. Both strains gave the same individual plant yield in pure culture. The authors concluded from their experiments, which were grown at two levels of fertility, that a larger embryonic capital is only an

advantage when nutrients are in short supply. An experiment involving two seed sizes and two fertility levels, showed that an increase in soil fertility enables seedlings derived from smaller seeds to maintain an advantage when seeded earlier than the larger seeds.

A study of a more qualitative nature was made by McDaniel (1969), who investigated the relationship of seed weight, seedling vigour and mitochondrial metabolism in barley. He found that seedling fresh weight, seedling mitochondrial protein and mitochondrial biochemical activity were positively correlated with seed weight. Although the number of mitochondria per unit fresh weight was the same for all classes of seed size, relatively more mitochondrial protein as present in seedlings from large seeds, resulting in a higher respiratory activity. The greater energy production in seedlings from large seeds thus allows a higher growth rate of these seedlings than of the seedlings from smaller seeds of the same genotype (McDaniel, 1969).

Seed size, thus, affects early growth rate of seedlings and is therefore an important factor in determining the competitive advantage or disadvantage of a plant at the time that a shortage of growth factors occurs.

2.4.5 Effects of density on plant interactions

Interaction between plants will start earlier in dense stands than in more widely spaced plantings. However, there is no direct effect of plant density upon plant growth. All

responses to density are indirectly measured as responses to limits on growth factors. Using wheat plants, grown at four different densities, Clements et al. (1929) observed that the effects of density resembled the effects of a water shortage. Pot cultures with different levels of soil moisture, fertiliser and light intensity, confirmed their theories and they concluded that, under their growing conditions, with increasing density, competition for water is most severe, with competition for nutrients and for light playing important, but secondary, roles.

29

Harper and Clatworthy (1963) studied changes in light absorption in swards of Trifolium repens L. and T. fragiferum L. grown at two densities. For both species, initial differences between the two densities in light extinction and leaf area had almost disappeared after fifteen weeks of growth. Apparently light was the limiting factor at both densities and an LAI of about five for T. repens and of six for T. fragiferum was the maximum that could be maintained, under the provided light regime.

Increasing population density, therefore, may be regarded as an increase in competition for light, nutrients and water among associated genotypes. Donald (1958) emphasised that, even if competition occurs for only a single factor, there will be interaction between direct and indirect effects. Competition for nutrients, for example, may affect shoot growth, and this may modify competition for light.

κ۰,

Harper (1961) distinguished two ways in which plants may react to density. Firstly, an increased density may result in a reduced chance for survival. He described the results of studies concerning several species of *Papaver*. It appeared that most of these species regulate their numbers in response to increases in density of their own kind, independent of the density of other species. This forms an important mechanism in nature, which prevents elimination through crowding by neighbouring species.

Secondly, there may be a plastic reaction to density during the development of a plant. This response was illustrated by Harper with the following example, describing the growth of Agrostemma githago L. under various conditions of density and in different mixture situations. When grown in pure stand, the number of plants per unit area, which were produced from different amounts of seed, was fairly constant. All plants bore an approximately equal number of capsules and gave equal seed yields. In association with different species, however, the surviving plants bore an equal number of capsules but gave a different seed yield. Unmixed, the Agrostemma plants in the study gave about 30,000 seeds/sq.yd. In association with wheat, the same the number of plants produced about 12,000 seeds/sq.yd.

This type of response, when it occurs in a mixture of genotypes such as encountered in the early generations of a breeding program, could have important effects on the

outcome of selection. The occurrence of such interactions is suggested by observations made by Phung and Rathjen (1976, 1977), who reported that grain yield of wheat plants was affected by the frequency of plants of the same genotype, amidst a population of plants of a different genotype.

Genotypes in segregating populations of corn responded to changes in density with changes in seed yield (CIMMYT, 1972). They noted that density affected the selection of corn, and that different genotypes were selected at different plant densities.

A study of the effects of variation in spacing, seed size and genotype on plant-to-plant variation of wheat, showed that increased interplant spacing was by far the most effective in increasing plant-to-plant variation for characters, such as plant dry weight and yield components (Chebib et al., 1973). However, interaction between) genotypes and variation in seed size also consistently, but insignificantly, increased variation among plants.

Contrary to the findings of Chebib et al., Kelker and Briggs (1978) observed a decrease in variance with increased spacing for several plant characters measured on seven cultivars of wheat. They concluded that the tendency for variance to respond to changes in spacing is cultivar specific, and that not all plant characters respond to the same degree.

Hozumi et al. (1955) used uniform seed of yellow dent corn to observe the growth of individual seedlings and their

response to neighbouring plants. The seeds were grown in boxes outdoors. They found that large plants in a row tended to suppress their neighbours, and vise versa, resulting in an alternation of large and small plants. This was clearly shown by auto-correlations of plant weights within a row. Correlations with first, third and fifth neighbours were negative, while correlations with second and fourth neighbours were positive. Plant weight in their study was ' estimated from stem diameter and plant height. The importance of plant shape to plant interactions was clearly illustrated by the observation that correlation coefficients of actual plant weight showed a similar pattern, but were much smaller. At wider spacing, the neighbour effects appeared to be restricted to first and second neighbours only (Yoda et al., 1957).

Ł

In an earlier paper by Kira et al. (1953), the authors found quite different results for the growth of soybean plants. In this study, an hexagonal planting arrangement was used, with equal distances between all plants. The correlation between the weight of an individual and the mean weight of the six nearest neighbours appeared to be positive rather than negative. The authors did not speculate on the reason for the observed behaviour. It can be noted, though, that while the corn experiment was performed in boxes, the soybean experiment was grown in the field where soil heterogeneity might have played a larger role. This would tend to create a positive correlation between neighbours

which were similarly affected by varying soil conditions. It is also possible that the different planting arrangement was responsible for the different results, because in rows, the effects of one plant are exerted onto two neighbours, while six neighbours are involved in the interactions between plants grown in hexagons. One can expect a proportional dilution of neighbour effects in this case, decreasing the strength of neighbour correlations.

Thus, because changes in plant density tend to change the time at which neighbour interactions start, one can expect neighbour interactions which are density specific. In a mixture of genotypes or species, the density of plants from the same genotype, as well as the density of plants from different genotypes may affect plant growth independently.

2.4.6 Changes in the distribution of characters during growth

The shape of the frequency distributions of various characters, assessed at different times during the growing season, is illustrative of the dynamic nature of the population. Mean and variance give only a partial description of the distribution curve. A more precise picture is obtained when skewness and kurtosis are included.

Skewness is a measure of asymmetry of the curve. A positively skewed distribution has a mean to the left of the median, and a 'heavy' positive tail (L-shaped). A negatively

33.

skewed distribution has approximately a J-shaped form (Sokal and Rolf, 1969).

Kurtosis further specifies the shape of the curve. Generally, when no skewness is present, a positive kurtosis means that the character has more values around the mean and in the tails and less in the intermediate regions, than does a character with a normal distribution does. The curve is thus sharply peaked with flat long tails. A negative kurtosis, in the absence of skewness, indicates more values in the intermediate regions (Sokal and Rolf, 1969). However, many different shapes of curves may have similar values of kurtosis, and this parameter is not necessarily a measure of peakedness of the curve (Kendall and Stuart, 1977). Strongly skewed distributions tend to have a positive kurtosis, due to the heavy tail on one side of the curve.

Koyama and Kira (1956) pointed out that the frequency distribution of plant weight of many species was normal shortly after emergence, but became more positively skewed (L-shaped) with time. This effect was stronger at higher plant densities. On the other hand, plant height most often developed a distribution which was negatively skewed (J-shaped). The authors observed that higher mortality occurred in those stands which developed a skewed weight distribution during early growth, while in populations which kept a normal distribution, mortality was low. The two species for which height distributions were reported, corn and ragweed, both have a determinate growth habit. In these

plants, genetic factors impose an upper limit to plant height, while no lower limit is present. This could explain the J-shape of the distribution of height. No mention was made of a possible different shaped distribution for plants of an indeterminate growth habit.

Non-normal distributions were also observed on characters of barley, grown in simulated segregating rows at Beaverlodge, Alberta (H. A. Kelker, unpublished). The measured characters (the number of tillers, height, kernels per head and others) were those which are normally used as criteria for plant selection in a breeding program, and non-normality of their distribution could affect the accuracy with which superior genotypes are selected.

2.4.7 Effects of genotype interaction on grain filling and maturity #

Although plant interactions can evoke responses in a great number of plant characters, the plant breeder is, ultimately, only interested in the final effect of these interactions on grain yield, and in many regions, on maturity.

Final crop yield of a high yielding dwarf wheat cultivar, Yecora, appeared to be well buffered against small reductions in crop photosynthesis at various times during the growing season (Fischer, 1975). Crop growth rate, on the other hand, responded to shading at any time. There are various phenomena which can explain the stability of crop

yield. For example, Fischer (1975) also observed that this cultivar adapts to variations in light intensity or plant spacing with variations in tiller survival. In this case morphological plasticity of single plants is related to stability of crop yield.

Another mechanism aiding the stability of crop yield was described by Evans and Wardlaw (1976). They reported that, of the dry matter which accumulates in grain on unstressed plants, 90 to 95% comes from photosynthates produced after anthesis. The remaining quantity comes from reserves stored in vegetative plant parts. Plants under stress from shading or defoliation, however, will draw upon ~ reserves to a much greater extent.

Although actual grain filling does not start until several days after anthesis, shading immediately after anthesis had a significant effect on kernel weight of wheat (Ford and Thorne, 1975). Shading during this period affected the subsequent capacity of grains to accumulate carbohydrates, possibly through limiting the number of endosperm cells, or through a mechanism which limits the amount of carbohydrates that can be translocated. Shading during this period, however, did not affect the amount of nitrogen in the mature grains, thus resulting in grains with a relatively higher grain protein percentage (Jenner, 1979).

The negative correlation which exists between the number of kernels per plant and kernel weight (Fisher, 1975; Jenner, 1979), once more illustrates the mechanism through

which yield can be buffered against variations in individual yield components. Variations in the number of kernels per head were brought about by various degrees of shading in the period just prior to anthesis (Fischer, 1975). Adjustments in subsequent kernel size, however, could not completely compensate for the reduced number of kernels, and reductions in yield were observed as a result from pre-anthesis | shading.

Effects of plant interaction on maturity have generally been overlooked in studies on mixtures of genotypes, possibly because visual assessment of maturity of single plants is generally inaccurate. More reliable measurements can be obtained from the moisture content of the grain as an indirect indication of maturity, although this is a very time consuming technique (Somerville, 1977).

One could, however, anticipate that genotype interactions may affect maturity of mixture components. For example, variations in the onset of flowering, related to varying levels of nutrients in the leaves, have been reported for several plant species (Aitken, 1974). Such a situation could arise from the unequal sharing of available nutrients by the components of a mixture. Variation in the onset of flowering may affect the timing of subsequent developmental stages. Somerville (1977) reported a high correlation between date of flowering and maturity for both wheat and barley.

2.5 Effects of interaction between genotypes on single plant selection

The need for early identification of genotypes which have good agronomic qualities and high yield was clearly demonstrated by Shebeski (1967). He showed with a theoretical example, that with advancing generations, the proportion of plants which can be expected to possess the best combination of genetic characters decreases very rapidly. Thus, selection should ideally take place in the F2 generation.

It is possible to select for a number of simply inherited traits, such as disease reaction or height, at an early stage of a breeding program (Sneep et al., 1979). However, characters which are influenced by many different internal as well as external factors, such as yield, cannot be correctly assessed on a single plant basis. McGinnis and Shebeski (1968) illustrated the ineffectiveness of visual selection for yield in an F2 generation of wheat. They compared the results of visual selection of single plants by three plant breeders, with the results of random selection. They found that there was no significant difference between the mean yield of the F3-progeny plots derived from randomly selected lines and derived from lines selected by plant breeders.

Because visual selection of single plants for yield per Se is ineffective, several studies have dealt with the question whether selection for other characters would be

38 •

effective in increasing yield.

Rasmusson and Cannell (1970) found selection for the number of heads in two populations of barley to be as ineffective as selection for yield itself. Yield was reduced when selection was practiced for high number of kernels per head. Selection for high kernel weight was effective in increasing yield in one of the populations.

An increase in grain yield, associated with mass selection for large kernel size in wheat, was found by Derera and Bhatt (1972). This increase appeared not to be correlated in any way with quality characters, such as test weight, milling extract, wheat protein, flour protein and kernel hardness (Bhatt and Derera, 1973). Nobbelen (1979), however, explained that in the past, increased grain yields of many crops have led to a relative reduction in seed protein, which, in cereals, is mainly due to the increase of the endosperm relative to the embryo.

Morphologic and agronomic characters of 22 cultivars of wheat were studied by Nass (1973). He found that the yield per ear, the number of heads per plant, harvest index, and kernels per head were all positively associated with plot yield. Yield per head and heads per plot had the strongest associations, but because the yield per head and heads per plant are negatively correlated with each other, it would be difficult to select for both traits at the same time. Nass suggested that selection for moderate expression of these two characters could lead to increased yield.

Hamblin and Donald (1974) found no consistent correlations between yield per head and ears per plant in the F3 and the F5 generations of a barley cross. But they did find that tall F3 plants with long leaves tended to give low yields in the F5 generation. They suggested that the greater amount of interaction between genotypes which occurs in the F3 generation caused suppression of the higher yielding types, resulting in the observed negative correlation.

It was concluded from studies on barley that interactions between genotypes caused significant shifts in the expression of plant yield, heads per unit area, and the number of kernels per head, causing genotypes with a high yield potential to yield poorly (Wiebe et al., 1961). If yield in monoculture is the criterion for selection, the poorest rather than the best plants should thus be selected from the early generations.

In the past, yield improvements have been paralleled by a steady increase in harvest index, a character which appears to be relatively insensitive to variations in environmental conditions (Donald and Hamblin, 1976). However, this was an unplanned side effect, since no selection for harvestfindex was practiced. The question can be asked whether the effects would be reversible: would selection for high harvest index be accompanied by an increase in yield? From studies with F3 and F5 generation plants of berbey, it was concluded that harvest index is not

predictive for yield from one environment (F3) to another (F5) (Hamblin and Donald, 1974). However, comparison of single plants of wheat, grown in pots in the greenhouse and in plots in the field, showed that single plant harvest index is a good predictor of crop yield in the field (Syme, 1972).

Selection for harvest index in the F2 generation of two wheat crosses doubled the grain yield per plant in the F3 generation (Bhatt, 1977). In addition, the positive correlation of yield with harvest index was enhanced. While selection for low harvest index resulted in a correspondingly low harvest index in the F3 generation , selection for high harvest index resulted in a population segregating for high and medium harvest index, thus allowing further selection for this character.

Although Donald and Hamblin (1976) reported that harvest index is relatively little affected by variations in density, resulting in a low genotype x density interaction, Nass (1980) found that indirect selection for grain yield through harvest index gave better results when practiced at commercial density than when practiced at low density. He ascribed this to the smaller plant-to-plant variation for harvest index which exists at high density.

The value of selection for harvest index was studied by Rosielle and Frey (1975a,b), using 1200 F9-derived lines of oats, grown in hill plots. They concluded that selection for harvest index alone was 43% as effective as was selection

for grain yield. If selection for height and maturity were combined with selection for harvest index, this percentage increased to 70%, indicating a good relationship between yield and harvest index within the limits of acceptable height and maturity, in homozygous lines.

Harvest index of main shoots appeared to be an even better indicator of crop yield. (Fischer and Kertesz, 1976). Using 30 genotypes of bread wheat, correlation coefficients were computed between the yield of plots at commercial crop spacing with harvest index of main shoots, harvest index of whole plants and grain yield of spaced plants, respectively. They obtained values 0.57 (sign., $\alpha = 0.01$), 0.49 (sign., $\alpha = 0.01$) and 0.20 (n.s.) respectively.

Because interaction between genotypes evokes reactions which are specific to each mixture situation, it is not surprising that Hamblin and Rosielle (1978) found great differences between genetic parameters of crosses when estimated in mixture and when estimated in monoculture. They demonstrated, using published data from different authors, that interaction between genotypes can increase or decrease the observed additive and dominance effects by a considerable amount. They showed cases where these parameters, measured in a monoculture and measured in a mixture, differed by more than 100%. In some cases, the Values were about equal in magnitude, but opposite in sign.

In addition to an effect on the mean values of characters, positive and negative effects of plant

interaction on the variances were reported (Hamblin and Rosielle, 1978). As a result, estimates of heritabilty which are based on the estimation of variance components in a mixture of genotypes, would be either under- or over-estimated. 'This may lead to excessive effort being put into crosses and parents where competitive effects have increased heritability estimates and to the rejection of ' crosses and parents where they have reduced heritability estimates.' (Hamblin and Rosielle, 1978). The authors then suggested that, if early generation selection is to be effective, techniques should be developed which accurately assess the confounding effects of competition on the estimation of genetic parameters, and which could be used to correct these parameters for plant interaction effects.

In order to be able to assess the confounding effects of interaction between genotypes on the expression of genetic characters, it is necessary to know which plant characters are affected by genotype interaction, how interaction affects these characters and which characters of neighbouring genotypes are associated with these effects. The present study was conducted in an attempt to contribute fundamental knowledge on these subjects, focusing on the implications of genotype interaction for breeding of spring wheat.

3. Short Description of the Experiments

The experiments for this study were conducted during the growing seasons of 1977, 1978, and 1979, and were designed to investigate different aspects of the interaction between wheat genotypes.

During the first year of the study, eight genotypes and their binary mixtures were planted accurately at eight different interplant spacings. Morphologic characters were measured on single plants at maturity. It was hoped to learn from this test how the effects of competition were expressed at various spacings in each of the studied genotypes.

For the second year of the study, five of these genotypes were grown at three different spacings in monocultures and binary mixtures, and a detailed study was made of the relationships between plant characters of competing genotypes. Effects of interaction on mean plant performance as well as on plant to plant variation were determined.

During the last year of the study, the role of seed size and subsequent plant development on the development of adjacent plants in a row was investigated. This experiment involved only monocultures of the five genotypes used in the second year.

In addition to the single plant experiments, replicated yield trials, containing eight genotypes in monoculture and all possible binary mixtures, were grown in each of the three years. These tests were conducted to illustrate how

each of the genotypes affected mixture yields, and how the performance of mixtures varied over the three years.

,

45

-

.

4. Materials and Methods - General Information

The specific procedures followed for each of the experiments in this study are discussed in the sections preceding the presentation of the results for each test. General information pertinent to all the experiments is given in the following sections.

4.1 Characteristics of test sites

1

Experiments were conducted at the Edmonton Research Station in 1977 and in 1979, and at the Ellerslie Research Station in 1978. Both stations are operated by the University of Alberta, Edmonton, Alberta, Canada.

The sites are located about 10 km apart, at a latitude of 53° 24' N and at an altitude of 694 m above sea level. Appendix 1 shows the mean monthly temperatures and precipitation during the three growing seasons in which the experiments were conducted.

Both sites are located in the thin black soil zone and the soil is classified as silty clay loam.

Fertilizer was applied in each spring prior to seeding, at rates recommended for wheat, based on soil analyses conducted by the Soil and Feed Testing Laboratory of Alberta Agriculture (Appendix 2). During the fall of 1977 and 1978, Avadex was applied to the test sites for control of wild oats. In 1977 and 1978, herbicide's were applied during the early stages of growth, for control of the common broadleaf

weeds, stinkweed, green smartweed, pigweed and hempnettle (Appendix 2). In addition, all plots were hand weeded when necessary.

4.2 Plant material used

ſ

Eight wheat genotypes were used in the test: Pitic 62, Glenlea, Park, Neepawa, 70M110001, 70M009002, Norquay and NB701. Park and Neepawa are Canada Western Red Spring wheats, while the other genotypes are Utility type wheats. The genotypes were chosen to represent a wide range of agronomic characters such as height, maturity, tiller number and seed size (Appendix 3). Seven of these genotypes had been previously studied, providing extra information on their performance at the Edmonton and Ellerslie test sites (Attinaw, 1977; Somerville, 1977).

As a seed source for Pitic 62, Glenlea, Park, Neepawa and Norquay, foundation seed or registered seed was used. For the genotypes 70M110001, 70M009002 and NB701, clean, sound seed was obtained from yield trials conducted as part of The University of Alberta wheat breeding program.

In each year, kernel weights and germination rate of all genotypes were determined on the seed lots to be planted (Appendix 4). Germination tests were conducted in petri dishes containing two rounds of filterpaper (Wattman, no. 40) and 4 ml of distilled water. The dishes, containing 100 seeds each, were placed in a Seedburo incubator, model 2100,

at 36°C, and germination was determined at 24, 48, 72 and 96 hrs.

tin and the second s

48

5. Interaction Between Genotypes at Different Interplant Spacings

5.1 Materials and methods

5.1.1 Field plot design

During the first year of the study, monocultures and binary mixtures of the eight genotypes were tested over a wide range of spacings, to observe genotypic differences in response to variations in the environment.

Each of these mixtures and monocultures was grown at eight different spacings, ranging from 7 to 60 cm between plants. To make the most efficient use of space, a 'wheelplot' design was used, in which each wheelplot represented one mixture or monoculture grown at seven spacings. Seeds were placed on a grid made up of concentric circles and 'spokes', and seeds of the competing genotypes were alternated on the spokes and circles, such that each plant was surrounded by four plants of the associated genotype. In proceeding outward from the centre of the circle, the distance between plants increased as the spokes diverged, and the distance between concentric circles

Plant density was calculated as the average of the distance from one plant to its four immediate neighbours, which were situated on either the same spoke or on the same

circle. The resulting spacings were 7, 9, 12, 15, 19, 24 and 31 cm between plants or 204, 124, 69, 44, 28, 17 and 10 plants per m² respectively. Commercial seeding rates in the Edmonton area range from 56 to 101 kg/ha. (Alberta Farm Guide, 1976), which converts to approximately 140-250 seeds/m².

Each plot had the shape of a three quarter circle with a radius of 2 m, containing twenty four spokes and nine concentric circles. The plants on the innermost and outermost circles, as well as on the first and the twenty fourth spoke, were discarded as guard plants.

In addition to the seven spacings in the wheelplots, each genotype was grown in a rectangular plot, containing 10 plants each, planted at an equidistant spacing of 60 cm. At this spacing plant interactions were assumed to be absent.

5.1.2 Seed preparation and data collection

To reduce seeding time, all seeds were glued onto cotton string (10/6 S), made by Dominion Textile (Texmade), using LePage's Multi Use Bondfast. This method had previously been used in the field for several years with good success (Dr. V. Burrows, Chief, Cereal Section, Research Branch, Ottawa, Agriculture Canada, 1976; personal communication). To keep the 24 strings (spokes) of each plot separated, they were labelled and tied, in the order in which they had to appear in the field, onto a stake which at seeding time could be placed in the centre of the plot. A

strip of paper was subsequently placed on top of the strings and strings and paper together were rolled around a cardboard tube.

To facilitate placement of the strings in the field, a square metal frame was constructed, containing a bar which could rotate around a central axis. Furrows were drawn with a metal shoe which slid along this bar. After placement of the strings, the furrows were closed and packed using a board.

Before harvest, the location of each plant was recorded on plot maps and all plants were labelled. All plants which had all four neighbours present were harvested when 75% of the tillers appeared to be ripe. Measurements were taken on plant height, height of the flag leaf blade, the number of tillers, the number of fertile heads (heads with a minimum of five seeds), the number of kernels per plant, grain yield per plant, and above ground plant dry weight. From these measurements, the following characters were calculated: extrusion length (calculated as plant height - height of the flagleaf blade), the number of kernels per head, weight per 1000 kernels, the yield per head and harvest index (calculated as plant grain yield/ plant dry weight).

Because the present study approached the problem of genotype interaction as it is encountered by the plant breeder when he makes selections in the field, measurements of height and related characters were taken on two randomly chosen tillers of each plant. In this way it was hoped to

ŕ

obtain a more realistic estimate of the variation which is observed in the field, than would be obtained from measurements on the main stem only.

5.2 Analysis of the data

The wheelplots were arranged according to a randomised block design with two replications which each occupied two banks of plots. The 60 x 60 cm spaced plants were replicated four times and grown at the end of each bank.

Because the spacing treatments were arranged systematically within the wheelplots, the requirements of randomisation were not met. The spacing effects indicated by the analysis of variance are thus confounded with effects due to treatment arrangement. The results cannot be considered as more than an indication of possible effects of spacing and will have to be further tested in subsequent experiments.

5.3 Results

Pitic 62 failed to germinate sufficiently and all treatments involving this genotype were dropped from the 1977 tests. Additional germination and or growth problems were encountered in the remaining plots, resulting in a very low number of usable plants overall. More than half of the plots (31 out of 56) had a survival rate of less than 75%. Recorded survival rate in some plots was as low as 43%,

while a few plots (including all 60 x 60 cm spaced plants) were abandoned completely.

In search for an explanation for the poor germination, soil tests were performed in the fall of 1977. The results indicated levels of available P ranging from 39 to 47 lb/2M on the east side of the field to 14 lb/2M along the west side of the field. Although no specific symptoms of P-deficiency were noted during the growing season, all but four of the sparsely populated plots were located in the western halves of the banks, suggesting a direct or indirect relationship between the phosphorus content of the soil and survival rate.

Seeding was interrupted by two days of heavy rain, causing some of the seeds to become uncovered, which probably added to the low germination rates in some plots.

In an effort to get as much information from the data as possible, the test was treated as a completely randomised design. Plants from both replicates were pooled, and only those treatments were included for which data had been recorded on a minimum of five plants. For none of the genotypes were data available from all possible genotype combinations (Appendix 5). Means and variances of the characters measured at each treatment illustrate the observed range of performance (Appendix 6). Since data about monoculture performance were obtained for only four genotypes (Glenlea, Park, 70M110001 and Norquay), tests for the effects due to genotype interaction had to be limited to

these four genotypes.

Spacing effects and genotype effects were significant $(\alpha \le 0.01)$ for all characters (Table 1). Mixing significantly affected height of the flag leaf, plant height, 1000 kernel weight and harvest index. However, interactions between effects of genotype interaction and spacing were significant for plant weight, yield and the number of kernels per plant, indicating that neighbouring plants affected these characters at some of the spacings" tested. Interactions between the effects of genotype interaction and genotype were significant for all characters except the number of heads, the number of tillers, and kernels per plant, suggesting that the genotypes differed in their response to genotype interaction. Three way interactions were significant for the number of heads, the number of tillers, weight, yield, and the number of kernels per plant. 3

Comparison of mixture and monoculture performance of each of the four genotypes at each of the spacings tested, indicated the specific densities at which the various characters were affected (Table 2). While interaction indicated by significant t-values - was evident for Glenlea at a density of 10 plants/m², Park was only affected at 124 and 69 plants/m² and 70M110001 only at 124 plants/m³. None of the genotypes showed significant effects of interaction at 44 and at 204 plants/m². It is likely that at the highest plant density, the general effects of density on plant growth were so strong that the more subtle effects of
Table 1. The effect of genotype, genotype mixing, and interplant spacing on single plant characters, as determined by analyses of variance, 1

٠ •

5 ~ ÷ All plants were grown in wheelplots in 1977, and measured at maturity. The data are only from plants which had all four * neighbours present.

-

istion T H W Y PL Ht K/P K/H Y/H 5070+61 (C) 3< 160.3* 96.2** 6645** 1162** 35304** 25481** 2665** 16.5** 2655** 16.5** 2655** 16.5** 2665** 16.5** 2504*** 25047*** 2665** 16.5** 2655** 16.5 21.5** 2505 11.5 10.5 11.6 10.6 11.6 0.5 10.6 0.5 10.6 0.5 10.6	Source of		3					¥	Mean squares of characters ²	i of chara	cters ²				
a (c) 3 160.3•• 96.2•• 1162•• 3510•• 3550•• 28647•• 28647•• 2665•• 16.35•• 2 (N) 1 0.0 13.8 1135 109 505•• 8659•• 17 1264 360 1.16 (S) 6 1915.1•* 907.2•• 31510•• 7103•• 83•• 3614•• 201•• 77860 1668•• 4.46•• 3 7.1 19.0 1008• 237• 986•• 3614•• 201•• 77860 1668•• 4.46•• 18 49:5•• 46.7•• 1035•• 243•• 232 20 0.56 341 0.67 6 42.7 28.0 1062•• 252•• 22 41 19 98305• 610 0.56 0.56 5 9 40.3 31 9 40 83315• 205 0.66 5 9 40.3 3215• 265 0.56 0.56 5 9 40 3215• 265 0.66 0.66	variation		5	4	т	¥	۲		H	ExL	K/P	K/H	H/Y	j	IH
Ing (N) 1 0.0 13.8 1135 109 505000 117 1264 560 1.16 Rings (S) 6 1915.1** 907.2** 31510** 7103** 8359* 17 1264 560 1.16 H 3 7.1 19.0 1008* 237* 986** 3614** 201** 77860 16672** 15.93** S 18 49.5** 46.7** 1035** 243** 23 31 0.67 353 S 18 49.5** 46.7** 1035** 243** 23 41 0.67 5.9 M 3 7.1 19.0 1005** 232** 243** 240 313 265 0.66 M 574 22.5 16.3 361 94 3213* 265 0.66 Main 574 22.5 16.3 361 94 3213* 265 0.66 Main 574 22.5 16.3 361 94 3213* 265 0.66	Genotypes	ତ	ы	160.3**	96.2**	6645**	1162**	3510**	32504**	23481**	280477**	2665**	16.35**	2299**	0.191**
tings (5) 6 1915.1** 907.2** 31510** 7103** 3104** 278** 398200** 11672** 15.93** H 3 7.1 19.0 1008* 237* 986** 3614** 201** 77860 1666** 4.46** S 18 40.5** 46.7** 1035** 243** 22 50 37 74868* 341 0.67 S 6 42.7 28.0 1062** 252** 22 41 19 98303* 610 0.56 H × S 9 40.3 41.0** 1183** 198* 34 83 40 83213* 265 0.96* M × S 9 40.3 41.0** 1183** 198* 34 83 40 83213* 265 0.96* idual 574 22.5 16.3 361 94 29 80 55 42857 325 0.46 * * *ignificant, a ≤ 0.05; ** significant, a ≤ 0.01. Abbreviation of characters: T • Munber of tillers per plant H • Number of fillers per plant H • Isolo the fig leaf plade H • Isolo the fig leaf blade	Mixing	E	-	0.0	13.8	1135	109	505**	8859**	17	1264	360	1.16	444	0.037*
H J 7.1 19.0 1008* 237* 986** 3614** 201** 77860 1668** 4.46** S 18 49.5** 46.7** 1035** 243** 22 50 37 74868* 341 0.67 S 6 42.7 28.0 1062** 252** 23 23 40 9333* 510 0.66 M×S 9 40.3 41.0** 1183** 193* 34 0.55 610 0.56 M×S 9 40.3 41.0** 1183** 193* 34 0.3213* 265 0.96* M×S 9 40.3 40 93313* 265 0.96* M×S 9 40.3 34 0.55 46 0.96 M×S 20.51 ************************************	Spacings	(s)	ç	1915.1**	907.2**	31510**	1103**	* * * *	346**	278**	3968200**	11672**	15.93**	153**	0.082**
5 18 49.5** 46.7** 1035** 243** 25 50 37 74668* 341 0.67 5 6 42.7 28.0 1062** 752** 22 41 19 98305* 610 0.56 M × S 9 40.5 41.0** 1183** 198* 34 83 40 83213* 265 0.96* M × S 9 40.5 41.0** 1183** 198* 34 83 40 83213* 265 0.96* M × S 9 40.5 41.0** 1183** 198* 34 83 40 83213* 265 0.96* M × S 9 40.5 41.6** 1183** 198* 34 80 55 42857 325 0.96* * significant, a ≤ 0.05; ** significant, a ≤ 0.01. Ht = Shoot length Ht = Shoot length Ht = Shoot length Ht = Shoot length 16* 16* 16* 16* 16* 16* 16* 16* 16* 16* 16* 16* 16* 16* 16* <	×	,	n	. 7.1	0.61	1008-	237*	986**	3614**	201	77860	1668**	4.46**	**916	0.118**
5 6 42.7 28.0 1062** 552** 22 41 19 98305* 610 0.56 M × S 9 40.5 41.0** 1183** 198* 34 83 40 83213* 265 0.96* M × S 9 40.5 41.0** 1183** 198* 34 83 40 83213* 265 0.96* M × S 374 22.5 16.3 361 94 29 80 55 42857 325 0.46 * significant, a ≤ 0.05; ** significant, a ≤ 0.01. Ht = Shoot length Ht = Shoot length Ht = Shoot length 1 Abbreviation of characters: ExL = Extrusion length Ht = Shoot length 1 <td>×</td> <td></td> <td>18</td> <td>49.5**</td> <td>46.7**</td> <td>1035**</td> <td>243**</td> <td>22</td> <td>50</td> <td>37</td> <td>74868*</td> <td>341</td> <td>0.67</td> <td>18</td> <td>• \$10.0</td>	×		18	49.5**	46.7**	1035**	243**	22	50	37	74868*	341	0.67	18	• \$10.0
W × S 9 40.3 41.0** 1183** 198* 34 83 40 83213* 265 0.96* idual 574 22.5 16.3 361 94 29 80 55 42857 325 0.46 * significant, a ≤ 0.05; ** significant, a ≤ 0.01. Ht = Shoot length Ht = Shoot length 1 <t< td=""><td>×</td><td></td><td>Ŷ</td><td>42.7</td><td>28.0</td><td>1062**</td><td>\$52**</td><td>22</td><td>41</td><td>19</td><td>98303*</td><td>610</td><td>0.56</td><td>59</td><td>0.009</td></t<>	×		Ŷ	42.7	28.0	1062**	\$52**	22	41	19	98303*	610	0.56	59	0.009
idual57422.516.336194298055428573250.46* significant, a ≤ 0.05; ** significant, a ≤ 0.01.Ht = Shoot lengthAbbreviation of characters:ExL = Extrusion lengthT = Number of tillers per plantK/P = Number of kernels per plantH = Number of fillers per plantK/P = Number of kernels per headMt = Plant dry weightY/H = Grain yield per headY = Grain yield per plantK/t = 1000 kernel weightFL = Height of the flag leaf bladeH1 = Hencore trait	× ¥ ×		σ	40.3	+1'0-1	1183**	198*	\$	83	9	83213*	265	0.96*	40	0.013
 significant, a < 0.05; ** significant, a < 0.01. H Abbreviation of characters: Exi Abbreviation of characters: Exi F Number of tillers per plant K/H Wt = Plant dry weight Y = Grain yield per plant FL = Height of the flag leaf blade HI 	Residual		574	22.5	16.3	195	2,	53	ଛ	55	42857	325	0.46	42	0.009
Abbreviation of characters: T = Number of tillers per plant H = Number of fertile heads per plant K/H Wt = Plant dry weight Y = Grain yield per plant FL = Height of the flag leaf blade HI		ti fi can	it, a	<u>≺</u> 0.05; 1	•• signific	ant, a.∧0	.01.		Ht • SI	hoot lengt			-	· ·	
lant K/P Y/H Y/H		riation	l of	characters:					Ext - E:	xtrusion 1	eneth (
lant K/H Y/H Kwt		H	£	mber of ti		plant			K/P = Nu	wher of ke	mels per p	lant.		j.	<u> </u>
		Ŧ	₹ • -	umber of fi	ertile head	s per plar	tt		K/H - Nue	ther of ke	rnels per h			Ľ	
		Ă	1 1 1	lant dry vi	ei ght				Y/H • Gr.	un yield	per head		-		
		~	ບິ - -	rain yield	per plant				Kwt - 100	10 kernel	veight			•	
		1	₹ •	night of tl	he fiag lea	if blade			HI - Hav	rvest Inde	-	-			

55

 \dot{a}

ŧ

Table 2. Comparison of the means of characters of single plants, grown in monoculture and in mixture,

at various plant densities, by means of Students t-test. $^{\mathrm{l}}$

All plants were grown in wheelpiots in 1977, and measured at maturity. The data are only

from plants which had all four neighbours present.

	lens i t v					-values for I		lessured characters	aracters	N		
Genotype	(plants/m ²)	đf	보	z	+	Mt	≻	K/P	K/H	۲/۱	Kwt	토
Gienles	204	22	0.54	0.21	0.31	0.71	0.00	0.19	0.48	16.0	0.24	2.24
\$	124	33	1.28	0.06	1.27	0.58	1.07	1.14	2.37*	2.23*	0.52	1.76
Ŧ	69	ff	1.01	0.63	1.66	0.90	1.88	1.63	2.46*	2.79**	58	1.85
Ŧ	4	27	1.44	0.71	94	0.29	0.37	0.24	1.16	9.68	60.0	0.92
	28	18	0.51	2.23*	3.46**	2.47*	3.03**	2.86**	0.31	0.45	0.43	2.66*
	17	18	0.71	1.04	0.06	0.13	0.44	0.55	2.81**	2.15*	80.1	0.00
а В Сла	91	17	0.57	0.29	1.37	0.73	2.39*	2.72**	2.23*	2.00	2.38*	2.15*
t	204	12	02 I	11 0	0 13	0 10	0 53	11 0		10 V	e c	
Ē	121	2					4 F					00.0
5		<u> </u>	1.04	10.4	24.7	70.1	1.//	P. 60	1.10	1.22	0.67	1.35
	69	3	3.54**	1.20	0.82	1.31	1.18	1.79	0.33	0.60	0.41	1.41
	Ŧ	59	1.86	0.06	0.27	0.16	0.66	0.06	0.18	1.05	1.83	1.46
Ē	28	27	0.29	0.91	0.31	0.35	1.16	0.83	0.11	0.74	0. 6	2.1
E :	17	24	0.34	0.26	0.45	0.47	1.26	0.57	0.05	0.45	0.71	1.59
Ē,	10	24	0.50	1.78	0.56	0.90	0.89	0.74	1.15	0.94	1.36	1.68
1000110001	204	11	0, 0	9 C O		50	, r r	12 0	;	e (9	:
I	124	20	16.0	1.17	2 00.		•11 •		1. L C	0 a	2	7 0 0 7 0
/ 1	69	21	1.86	0.60	1.66	1.51	0.20	0 20			10.1	0
I	4	25	1.19	0.28	0.40	1.11	1.64	1.54	0.95	0.27	52.0	
s	10	17	0.78	0.35	0.77	0.90	0.92	16.0	1.55	1.59	0.0	0.45
	PC L	ŝ	63 0	90 0	40 F			a 0 0	+01 C	•06	, f	;
		2		9 4 6 9 4					- 20.4	- 67 - 7	2.5	74.0
•	10	15	0.41	0.28	0.13	0.14	0.92	0.68	1.21	1.46	1.73	1.35

1.* significant, $\alpha \leq 0.05$, ** significant, $\lambda \leq 0.01$

2. character abbreviations defined in Table 1

56

,

interaction between different genotypes could not be distinguished with the experimental techniques used.

5.4 Discussion

Because the data used for the analysis of this test come from a small number of observations only, further experiments are necessary to verify the conclusions about the effects of plant interactions on the genotypes involved over the range of spacings tested. Nevertheless, a number of comments can be made regarding the observed effects.

The fact that the genotypes differed in their response to genotype interaction, and that each did so at different spacings, indicates that interpretation of mixing experiments performed with a limited number of genotypes and environments could lead to variable conclusions.

It appeared that Glenlea, which is the tallest, latest and most vigorous of the four genotypes, was the only genotype to show effects of genotype interaction at a density as low as 10 plants/m³. Possible methods of interaction are restricted to light interception by neighbouring plants, and interaction between root systems. Since shading by neighbours only occurred during part of each day, interaction between root systems is probably the most influencial factor at this interplant spacing.

6. Relationships between Plant Characters Measured on Mixed Genotypes

6.1 Materials and methods

In 1978, a test was conducted to investigate, in more detail than in 1977, the phenotypic responses of genotypes to genotype interaction at different spacings. To keep the experiment managable, the number of genotypes had to be restricted to five: Pitic 62, Glenlea, Park, 70M009002 and Norquay. They were chosen, based on the 1977 yield trials, to repfesent a wide range of Average Mixture Efficiency (see Section 8.2, p.92), and for their recognisability in a mixture. They were grown in rows 30 cm apart, at plant spacings within rows of 1, 3 and 9 cm. This resulted in densities of 333, 111 and 37 plants/m³. Seeds were glued onto strings as described in Section 5.1.2, and placed in furrows which were drawn with a pointed stick along a board.

A split plot design was used with three replicates. The main plot treatments were mixtures and monocultures, and the subplot treatments were spacings. The mainplots, which were 6 m long, were divided into three subplots of equal length. Each plot consisted of three rows of which only the middle one was sampled. Three plants at each end of each subplot were discarded as guards.

From both the 3 cm spacing and the 9 cm spacing, a random sample of six plants per genotype was taken at

maturity, using only plants which had both neighbour plants present. Measurements were taken on the height of the the flag leaf blade, the extrusion length (height above the flag leaf blade), the head length, the yield per plant, the number of kernels per plant, the number of tillers per plant, the number of fertile heads per plant, and plant dry weight. From these measurements were computed the number of kernels per head, the yield per head, the 1000 kernel weight and the harvest index. As in 1977, measurements on height and related characters were taken on a random sample of two tillers per plant.

It was the intention to examine the root distributions of the genotypes in mixture, and therefore the complete bulk yield test was replicated several times, so that enough extra plots were available for destructive soil core sampling. Unseasonably high soil moisture content, however, made it impossible to obtain good soil cores, and this objective was abandoned. Thus, extra plots were available, and tiller samples were taken from these at flowering and at the mid-dough stage. Measurements were taken on the flag leaf area, the height of the flag leaf blade, the tiller length, the extrusion length and the head length. Each sample consisted of a 1 **m** section of row, chosen at random from one of the middle rows of the plots. The samples taken at the two developmental stages were not replicated, so that differences between mixing treatments may be confounded with differences among plots. At each stage, sampling was

completed in one day, so that differences among the genotypes will reflect genotypic differences in rate of development.

6.2 Analysis of the data

Because it was not possible to accurately separate the plants which were grown at the 1 cm spacing, only data obtained from the 3 cm and the 9 cm spaced plants were included. The data were analysed to detect effects of genotype interaction on within genotype variation, as well as on mean plant performance.

Variance, skewness and kurtosis of the measured characters were computed for each sample, as well as for the combined mixture data for each genotype. Because significant deviations from normality occurred, Bartlett's test for homogeneity of variances could not be used, since this test is extremely sensitive to non-normality (Scheffé, 1959). Scheffé described an approximate test for the comparison of variances, based on the natural logarithms of the sample variances. This analysis was used to test the effect of genotype, genotype interaction and spacing on the variances of all characters.

Overall differences in variation between plants grown in monoculture and plants grown in mixture, were determined by means of a variance ratio F-test, using the mean variances of all genotypes grown in mixture and grown in

monoculture. For these comparisons the natural logarithms of the data were used (Lewontin, 1966).

Although the test was designed as a split plot, it was decided that an error term with more degrees of freedom was desirable, which would make it possible to detect smaller effects of genotype interaction than would be possible with a split plot analysis of variance. Therefore a randomised block analysis of variance was used to test the effects of genotype, spacing and genotype interaction.

Mixture efficiency was expressed for components of yield and plant weight, using the technique described by de Wit '(1960), as the 'Relative Yield Total' (RYT):

where YAB and YBA are, respectively, the mean plant yields, or values of the character concerned, of the genotypes A and B when grown in association with each other, and YAA and YBB are the monoculture yields of the two genotypes. The expressions YAB/YAA and YBA/YBB are called the 'Relative Yield' (RY) of genotypes A and B, respectively, expressing the ratio of the yield of a genotype in mixture to its yield in monoculture. A value of 1 for the RY of a mixture component indicates that the effects of interaction between *"* genotypes are not different from those which plants of the same genotype have on each other. A RY greater than 1 suggests that the associated genotype makes demands on the

environment which are either different from, or less than, those of the genotype under investigation. A RY of less than 1 indicates that interaction between the genotypes negatively affects the growth of the genotype in question, compared to its growth in monoculture.

A RYT of 1 would indicate effects of a compensating nature, or the absence of any effect on either of the components. A RYT greater than 1 suggests that the genotypes are, at least partially, occupying different niches, and thus are not sharing the same supply of resources. A value less than 1 indicates an antagonistic effect of one or both genotypes on their associate.

Both RY and RYT values were computed for mixtures and their components.

Since no simple test is available to determine whether RY or RYT values differ significantly from 1, they were evaluated with a t-test, comparing monoculture and mixture values. RY values were called significant if the difference between mixture and monoculture yield differed significantly from 0. Significance of the RYT values was determined using a t-test comparing expected yields as can be computed from monoculture values, with observed performance in mixture.

Within each individual plant, many characters are correlated. When investigating the relationships between competing plants, these within plant correlations can play a confounding role. Unfortunately, the number of genotype combinations in the experiment yielded an insufficient number of degrees of freedom to investigate partial correlation coefficients between all characters of associated genotypes. Only correlations between character pairs have therefore been investigated. For this, multiple regression analyses were used, using indicator variables to correct for replicate effects (Steel and Torrie, 1980).

6.3 Results

During the growing season, two large bare spots, in which no plants grew, occurred in the plot area. Soil tests, performed after harvest to determine levels of available soil nutrients, soil pH and physical soil characteristics, did not reveal any abnormalities which could be related to the bare spots. All monoculture plots of Pitic 62 happened to be planted in these areas, so that no comparisons could be made between the performance of this genotype in monoculture and in mixture. Additional mishaps at harvest time resulted in the loss of several more treatments. For each genotype, mean values of the measured characters, when grown in monoculture and in mixture at 3 cm and at 9 cm spacings, are given in Appendix 7.

Although one can expect genotype interactions to affect flowering time and subsequent maturity of the mixture components (Aitken, 1974; Somerville, 1977), measurements of maturity on single plants were not made, because the methods available for rapid screening of a large number of samples

are generally inaccurate (Somerville, 1977). Many more replications would have been needed than were available. Visual assessment of genotype maturity in mixture, however, did not indicate any effects of genotype interaction, and no data on this character have been reported.

6.3.1 Effects of genotype interaction on plant-to-plant variation

An analysis of variance using the natural logarithm of the sample variances, showed no effect of genotype interaction on plant-to-plant variation in any of the characters (Table 3). Significant differences between genotypes occurred for variances of all characters except the number of tillers, the number of heads, kernel weight and harvest index, and changes in spacing affected the number of tillers, the number of heads, plant weight, yield, kernels per plant and extrusion length. When, for each genotype, the results of all mixtures were combined, however, variation was, on the average, greater in mixture than in monoculture for the number of tillers, plant weight and yield at the 3 cm spacing, and for kernel weight at the 9 cm spacing (Table 4). Marvest index, height of the flag leaf, extrusion length and height were less variable in mixture than in monoculture at the 3 cm spacing, while kernel weight, height, and extrusion length showed a lesser variability in mixture than in monoculture at the 9 cm spacing.

64

Table 3. Effects of genotype, genotype mixing and interplant spacing, on the variance¹ of single plant characters, as determined by analysis of variance².

4

All plants were grown in four-row plots in 1978. The data are from randomly selected plants, which had both neighbours . .. l present, and which were measured at maturity.

variation	-	ąt					3	Hean squares of characters	ss of chal	racters ²	1				
	-		T	H	Ŧ	۲	E	Ket	Ex	IH	FL	Ħ	HL	ExL	Η/Y
Genotypes (G)	ឲ	5	0.66	1.13	4.13**	4.58**	2.29**	1.49	4,02**	0.16	2.33**	5.47**	2.78**	3. 14**	S.40**
Nixing (æ	-	0.83	0.13	0.02	0.22	0.20	16. đ	0.50	2.13	0.47	0.40	0.70	0.09	2.67
Spacings ((S)		51.37**	54.88**	67.18**	•• 56.99	68.37**	0.85	1.19	0.03		0.17	0.44 0	2.74*	0.04
X × 0		'n	0.24	0.17	0.28	0.12	0.09	e 4,45*	0.22	0	•	1.60'	0.93	0.47	0.17
ر × \$			0.97	0.38	0.62	0.57	0.75	0.92 ·	0.17	0.00	1.11	2.04	0.20	я Ц	0.47
N × S		1	0.95	0.0	0.01	0.04	0.01	0.01	0.13	0.49	0.18	0.02	3.16	0.72	0.01
G × M × S		•	0.59	0.33	0.34	0.36	0.20	0.48	0.15	1.92	0.36	0.15	0.10	04.0	0.22
Residual		8	0.57	0.48	0.44	0.43	0.46	1.46	0.95	1.21	0.59	0.83	0.70	0.67	0.87
 The natural logarithm of the variances were used. 	ral lo	țari tha	a of the v	ariances 1	rere used.			4							
2. * significant, α < 0.05; ** significant,	li cent ,		.05; ** s	i gniftcan	t, a < 0.01.		į	•							-

65

t

3. Character abbreviations defined in Table 1. HL = Head length.

į

Table 4.The effects of genotype mixing and interplant spacify on the
average variation among plants, of single plant characters,
as determined by a variance ratio F-test¹.
All plants were grown in four-row plots in 1978. The data
are from randomly selected plants, which had both neighbours
present, and which were harvested at maturity.

	Inter-plant	Coefficie of variat		F-v	alues
Character ²	spacing (cm)	Monoculture		F ₁ ⁴	F25
T	3	25.1	36 .0	2.06**	2.01**
Н	3	28.2	31.7	1.26	1.82*
Wt	3	29.5	37.6	1.63*	1.68*
Y	3	33.1	39.0	1.39	1.48
K/P	3	31.2	36.6	1.38	1.68*
Kwt	3	7.6	8.9	1.37	2.04** ⁶
K/H	3	18.5	19.5	1.11	1.01
HI	3	12.1	8.4	2.08**	1.89**
F1	3	14.7	13.3	1.22	1.28
Ht	3	12.2	9.5	1.64*	1 75**
Ex 1	3	17.5	14.8	2.08**	2.32**
HL	3	9.4	13.9	1.38	1.22

	Interplant spacing	Coeffici of variat		F-val	ues
Character ²	(cm)	Monoculture	Mixture	F ₃	7
т	9	35.6	38.7	1.18	1.16
н	9	38.0	38.9	1.05	1.51**
Wt	9	38.2	40.3	1.11	1.15
Y	9,	40.3	42.3	1.10	1.18
K/P	. 9	40.4	41.6	1.06	1.29*
Kwt	` 9	5.3	10.0	3.56**	1.26
K/H	9	18.6	18.0	1,06	1, 18
HI	9	8.8	9.0	1.05	1.15
F1	9	13.0	13.4	1.06	1.01
Ht	9	9.2	9.0	1,03	1.10
Exl	9	11.5	11.4	1.02	1,69**
HL	9	9.5	12.7	1.08	1.04

1. * significant, $\alpha \leq 0.05$; ** significant, $\alpha \leq 0.01$

2. Character abbreviations defined in Table 1. HL = Head length.

3. Averages of the coefficients of variation of four genotypes.

4.
$$F_1 = s^2 (\ln x, \text{ mixture})/s^2 (\ln x, \text{ monoculture}), df(180,60)$$

5.
$$F_2 = s^2(\ln x, 9 \text{ cm, monoculture})/s^2(\ln x, 3 \text{ cm, monoculture}),$$

df(60,60).

6. F-values given in italics are the reciprocal of the values
defined in footnotes 4, 5 and 7.

7. $F_3 = s^2(\ln x, 9 \text{ cm}, \text{mixture})/s^2(\ln x, 3 \text{ cm}, \text{mixture}), df(175,180).$

Values of skewness and kurtosis averaged over the four genotypes grown in mononculture and in mixture, are given in Appendix 8. For some characters, in particular kernel weight and harvest index at the 3 cm spacing and number of heads and kernel weight at the 9 cm spacing, skewness was stronger in mixture than in monoculture. Other characters, such as kernels per head and height of the flag leaf at the 3 cm spacing and height at the 9 cm spacing, showed a skewed distribution in monoculture and a near normal distribution in mixture. In most cases, the kurtosis was less in mixture than in monoculture, indicating that, in mixture, more values occurred in the intermediate regions, with a lower concentration of values around the mean and in the tails. An analysis of variance, performed on the values of skewness and kurtosis, did not detect any significant effects of genotype interaction. However, the values were based on samples of only six plants per replicate. An analysis based on larger numbers of plants would be necessary to draw more meaningful conclusions with respect to the effect of genotype interaction on skewness or kurtosis.

6.3.2 Effects of genotype interaction on the expression of various plant characters

Although it was demonstrated in the previous section that the distributions of most characters deviated significantly from normal, no suitable transformations were found to correct this. Analyses were thus performed on

untransformed data.

As expected, the genotypes differed significantly from each other for most characters (Table 5). Mixing of plants with individuals of a different genotype had a significant effect only on head length, on kernels per head and on yield per head. However, genotype x mixing interaction effects were significant for all characters except height of the flag leaf, plant height, kernels per head and harvest index, suggesting differences between the genotypes in their reaction to genotype interaction.

AN characters except height and harvest index were affected by an increase in spacing, and replicate effects were significant for extrusion length, 1000 kernel weight and harvest index. Genotypes differed for most characters in their response to spacing, as indicated by the significant genotype x spacing interactions. Mixing x spacing interactions were only significant for weight and harvest index.

6.3.3 Relative performance of genotypes in mixture

To evaluate the effect of genotype interaction on each character in each genotype, RY values were calculated (Table 6), and the effects of genotype interaction were tested for significance with a t-test. It can be seen that Glenlea, in most cases, yielded better in mixture than in monoculture. This effect was associated with an increased number of heads, and to a lesser extent with an increased

Table 5. The effect of genotype, genotype mixing, and interplant spacing on single plant characters, as determined by analyses of variance¹.

٢_

All plants were grown in four-row plots in 1978. The data me from randomly selected plants, which had both neighbours present and which were measured at maturity.

Source of		•													
veriation		, Ç	⊨	Ŧ	¥	7	Ч	포	ExL	Ħ	K/P(x10 ⁻³) K/H	H/H	Y/H(x10 ²)	Rht	41(x10 ³)
Genotypes (G)	ତ	-	~	54	1794.	399**	9857**	16497**	1318**	320**	76**	4098**	2496**	5641**	15
Hixing	E		S	-	164	18	74	131	8	23	15	528**	121**	я	7
Spacings	(s)	-	1340**	953**	22051**	4338**	••₩66	19	1057**	••••	220**	3338**	932**	514**	-
Replications	2	7	~	1	₹.	S	۶,	41	119*	7	S	o	4	•15	:
X X S		'n	20	16**		••16	п	77	202**	••9	36**	102	39*	67**	ñ
G × S		5	11	ø	••009	106**	167*	42	• 68	\$	23*	25	Q	s1.**	.9
X X S		1	1	~	'n	7	9	1	58	0	3		•	•	•
Res i dual		467	ŝ	4	73	15	48	8	11	7	-	4	12	14	7

significant, a ≤ 0.05; ** significant, a ≤ 0.01.

Ŷ

4

2. Character abbreviations defined in Table 1. HL - Head length.

Table 6. Comparison of single plant characters of four genotypes, in monoculture and in mixture, at two interplant spacings, by means of 'Relative Yield' (RY) values 1,2. .

)

i

ſ

All plants were grown in four-row plots in 1978. The data are from randomly selected plants, which had both neighbours present, and which were measured at maturity.

÷

				٠	NI VALUE		NI VALUES IUF BEASUTEU CHATACLETS	ITACUOUS				
Hixture	Y		F		H		D		¥		J.	K/H
	3 G	9 CM	3 C	9 cm	3 cm	5 0	5	9 cm	3 cm	9 cm	3 CM	9 CM
Glenles + Pitic 62	0.96	1.13	0.87	0.97	0.89	1.11	1.06	1.00	0.93	1.06	1.06	1.01
tred +	1.23	1.66**	1.24	1.51*	1.16	1.67**	1.06	1.04	1.27	1.55*	1.02	0.97
+ 70HD09002	1.21	1.20	1.07	1.24	1.11	1.24	1.04	1.04	1.19	1.17	1.07	0.95
 Norquay 		1.37	1.21	1.34	1.17	1.54*	1.09	0.94	1.34	1.27	1.06	0.90
Park + Pitic 62	• 20 •	0.62*	0.67*	0.60**	0.66**	0.66	0.93	86.0	0.68*	0.57**	1.15	0.93
+ Glenlea	0.64*	0.59**	0.81	0.78	0.78*	0.83	0.93	0.91	0.65**	0.60**	0.92	0.76
+ 70M09002	0.74	0.71*	0.91	0.76	0.85	0.81	\$6.0	1.01	0.75	0.70*	0.92	0.33
 Norquey 	1.12	0.74	1.03	0.72*	1.00	0.77	86.0	1.01	1.09	0.74*	1.16	0.95
70MDV9002 + Glenles	0.75*	0.82	0.97	0.91	0.97	0.98	0.94	94	0.75*	0.75	0.33*	0.83*
+ Park ~	0.82	1.00	0.90	06.0	16.0	0.95	0.97	36.0	0.83	0.97	0.91	1.07
Norquay + Pitic 62	₹;	0.82	;	0. 79	:	0.86	;	98.0	ł		:	0.97
+ Glenles	0.42**	0.87	0.77	69 .0	0.73	0.91		1.02	0.44	0.89	0.67**	0.92
 Park 	0.87	1.12	1.18	1.18	6.0	1.16	0.99	1.01	0.85		0.87	0.95

ų

Table 6 (continued)

Ś,

Mixture		-	H/Y	Ŧ	FL		¥		ExL		HL	- -
	5	9 CM	3	- 9 CB	5	9 CM	3 CB	9 68	3 G	9 CM	5	6 6
Gleales + Pitic 62	1.00	1.08*	1.08	1.01	96.0	1.03	1.01	1.04	1.13	1.03	1.08	96.0
+ Park	1 6.0	1.07	1.07	1.00	96.0	0.07	1.01	0.97	L.15	0.97	1.07	1.00
+ 70MD09002	0.99	1.02	1.10	0.98	0.95	1.03	1.02	1.03	A.17.	1.02	1.09	0.99
+ Norquey	0.97	1.11**	1.14	0.86	0.96	0.89	1.04	0.93	1.20*	86.0	1.05	0.96
Park + Pitic 62	1.05	1.09		0.92	86.0	1.00	1.04	96.0	1.11	0.0	0.97	0.87
+ Glenles	1.00	86.0		0.70**	0.97	96.0	1.02	0.93	1.08	69.0	1.01	0.84
 70MD09002 	0.98	1.03	0.95	0.88	0.92	0.95	0.98	0.94	1.08	0.92	1.01	0.92
 Norquey 	1.01	66'0		0.96	0.96	1.01	1.02	0.99	1.11	0.96	1.12	0.94
70MD09002 + Glenles	1.01	1.06	0.78**	0.83*	0.99	86.0	0.55	96.0	0.84*	1.01	0.88	1.06
+ Park	1.00	1.03	0.80	0.95	1.02	0.97	0.95	0.99	0.90	1.05	0.99	1.11
Norquey + Pitic 62	;	0.99	ł	0.93	;	1.00	;	1.00	1	0.99	;	0.98
+ Glenles	0.96	66.0	0.60**	16.0	0.90	1.01	0.88	96.0	0.87	1.04	0.88	1.8
 Park 	96.0	66.0	0. %	96.0	1.04	0.97	1.8	96.0	0.95	66.0	0.92	0.98

RY = character in mixture
 RY = character in monoculture
 see Section 6.2.

* singificant, $\alpha \leq 0.05$, ** significant, $\alpha \leq 0.01$. ~

3. Character abbreviations defined in Table 1. HL = Head length.

4. No data available.

kernel weight. At the 9 cm spacing, harvest index of Glenlea in two mixtures was significantly higher than in monoculture.

With one exception, Park yielded less in mixture than in monoculture. Reduction in yield was associated with a lesser number of heads per plant, and in one mixture with fewer kernels per head.

Data for 70M009002 were only obtained for two mixture combinations. Yield in combination with Glenlea was less than in monoculture at both spacings and was associated with a reduced number of kernels per head. The number of heads per plant did not show any change from the number in monoculture. Park did not significantly reduce the yield of 70M009002.

Data for Norquay in association with Pitic 62 were only available for the 9 cm spacing. Although yield was less than in monoculture, none of the RY values were significantly less than 1. At the 3 cm spacing, the performance of Norquay in the presence of Glenlea was poor, and the number of kernels per head and 1000 kernel weight were both significantly ($\alpha \le 0.01$) reduced. RY for the number of heads per plant was, in spite of its low value (0.72), not significantly less than 1, due to the small number of observations for this treatment. Association with Park reduced the yield of Norquay at the 3 cm spacing and increased yield at the 9 cm spacing, but neither value (0.87 and 1.12) was significant.

Overall, Glenlea tended to produce RY values greater than 1 for plant weight, yield and components of yield, while values less than 1 were more frequent among the other genotypes. This suggests that Glenlea plants grown in mixture were able to utilise a greater amount of resources than when grown in monoculture. The other genotypes, in particular Park, were more often negatively affected by associated genotypes.

Relative yield totals, derived from the RY values, appeared to be close to 1 for most cases (Appendix 9). A graphic representation of the performance of plants grown in monoculture and in mixture further illustrates the effect of mixture components on each other. Figures 2a through 2e illustrate the relationship between the yields of the genotypes grown in binary mixtures, and their yields in monoculture. In these graphs the monocultures and mixtures are seen as a 'replacement series' (de Wit, 1960), with the proportions of the genotypes in mixture being 1:0, 0.5:0.5 and 0:1, respectively.

At the 9 cm spacing, the RYT of the mixtures Glenlea+Pitic 62 and Glenlea+Norquay was greater than 1, and in both cases, the mixture yield surpassed the yield of the better component grown in monoculture.

ţ

At the 3 cm spacing, none of the RYT values were * greater than 1, suggesting a detrimental effect of genotype interaction on plant yield at this spacing.

74

Fig. 2a-e.

?...

Graphic illustration of the genotype interaction effects on genotype and mixture yield in five genotype mixtures, each grown at two different interplant spacings in 1978. Along the X-axis, the populations containing 100% of the first genotype, 50% of each genotype, and 100% of the second genotype, are marked with the letters A, B and C, respectively.

6.3.4 Relationships between characters of interacting genotypes

One of the objectives of this study was to investigate the relationship between the measured values of characters on neighbouring genotypes. Correlations were therefore computed between the plant characters of each genotype in the test, and a number of characters of the associated genotypes (Table 7).

For most genotypes, the characters which played a role in plant interaction at the 3 cm and at the 9 cm spacings were not the same. Only Pitic 62 showed negative relationships of several characters with height of its associates at both spacings. In addition, the neighbour characters by which a genotype was affected differed from genotype to genotype.

Most characters of Pitic 62 were negatively correlated with the height of its associates. Since Pitic 62 was the latest maturing genotype in the test, and could throughout the growing season be identified in the field through its slow development, it is possible that this genotype showed more clearly the effects of interaction with taller neighbours, affecting plant weight, as well as grain yield and its components.

At the 3 cm spacing, most characters of Glenlea were positively associated with the weight and/or yield and the harvest index of its associates. Only tiller number was negatively related to the height of the associated

Table 7. Correlations¹ of single plant characters of five genotypes, with characters of associated mixture components, at two

interplant specings.

•

All plants were grown in four-row plots in 1978. The data pairs were averages of randomly selected plants, which had both · 3 meighbours present, and which were measured at maturity.

Char-	plant	×.	ttic 62		CI	Glenies		2	1 12	, 1010	70HD09062	2	ferenda o de
actar ²		h.	•	1	.	·		.	۱.	.	•		•
	5	F	т. н.		-H13								
_	-	FL Ht.				2				-IH			
#	-	FL IR.	7. 7	•								FL**, M.*	
	-	FL•. H.				N.	۲.						
5	-	FL Ht.	+			,						•	
3	•	•					۲			• भ		.	
£	•	ч.				HI.	۲.	• IH		-14		FL", IR", BAL"	• I H
IF	-						. Ŧ						
2	-	Y**, #t**								ExL.			
¥	m	FL•								IR. Eat			
E	~	Y., M.								F., H.	•	FL*, H**, Bal*	
L.	n					Ĩ	Y., HI.	• 1 ₩		• 1		FL", Ht"	
ŝ	-	FL••, 紊•	4			#						Ht Eal.*	
-	•	• ž							Ŧ				
_	÷		•						M Y.			•11•	
2	٠	ž.	eat.		Y., MI				•	н Т			
÷	•	FL', H.'',	, ExL•			15				•	·		
5		*# °.14				. 13	,		E Lo			HI*	
ž	•	•IH			••IH			. 4		L		- -	
5	¢,										ent.		
Ĩ	•	۲	ï	二, 王,						•		¥	
FL F	ø	Ext.			~				ų	ExL.	÷		To, Ho, Me, Ye
분	æ								•				•
쿀	•						-					• IW	· T*, N*, Mer, Y**
3	•	-)		H								and."
52	ø												

1

æ

l. * significant, a ≤ 0.05; ** significant, a ≤ 0.01.

2. Character abbrevistions defined in Table 1. HL - Mead length.

3. - megiciwe correlations, * positive correlations.

genotypes. At the 9 cm spacing, however, weight, 1000 kernel weight, height and extrusion length of Glenlea were negatively correlated with yield, weight and harvest index of associated genotypes. It was earlier shown (Table 6), that Glenlea yielded better in most mixture situations than in monoculture. This could occur either if the demands of associates were less than those of Glenlea, leaving the latter a larger share of the available resources, or through 'hogging' of resources by Glenlea, resulting in suppression of the associated genotypes, accompanied by reductions in yield. RY values of less than 1, for the genotypes which were grown in combination with Glenlea (Table 6), support the latter hypothesis.

Park showed very few significant correlations at either the 3 cm or the 9 cm spacing. This could mean that either Park was not much affected by genotype interaction, or that Park was affected by its associates in an inconsistent manner. Since performance of Park in mixture was typically less than its performance in monoculture (Table 6), it can be concluded that Park responded differently to the various associated genotypes.

At the 3 cm spacing, many characters of both 70M009002 and Norquay were negatively correlated with the height of their associates, as was earlier described for Pitic 62. Unlike Pitic 62, however, these relationships did not exist at the 9 cm spacing. Pitic 62, 70M009002 and Norquay all have a medium height, but Pitic 62 tends to produce more

tillers (Appendix 7). It is possible that the tillers of Pitic 62 intermingle more with the tillers of neighbouring plants than do the tillers of the two other genotypes. This could result in effects of competition for light at both interplant spacings in mixtures containing Pitic 62, while for 70M009002 and Norquay, the increase in spacing from 3 cm to 9 cm was sufficient to reduce competition for light to ar insignificant level.

Overall, it appears that competition for light plays an important role in the relationships between interacting genotypes, in particular for the shorter types and at the higher plant density. However, the negative correlations between the yield components of associated genotypes which occurred at the 9 cm spacing, indicate that competition for other growth factors did occur as well.

6.3.5 Interaction between genotypes during the early stages of growth

Mean values and standard deviations for charactess measured on plants, grown in monoculture, at the flowering stage and at the mid-dough stage are reported in Appendices 10 and 11.

Again, correlations between characters of associated genotypes were calculated (Table 8). Positive correlations appeared to be more common than negative ones.

At the flowering stage, however, the flag leaf area of most genotypes appeared to be negatively correlated with

Table 8. Correlations¹ of single plant characters of five genotypes, with characters of associated mixture components, in machine seeded plots, at two growth stages.

\$

All plants were grown in four-row plots in 1978. The dath pairs were averages of randomly selected tillers.

				7					
Char-	Growth	Char	Characters of associated mixture components with which correlations occurred	Lature components	s with 1	hich co	Trelations oc	curred	
acter ²	stage ³	Pitic 62	G] en l es	Hark		70140	70M009002	Norduay	
		•	•	•	•		•		.
FL	Ľ.		ExL. A.			·			
¥	ů.				•			ExL.	
۲ ۲	ند ن (ExL**, Ht * A*	۰.	ExL**, Ht**		•1 1			,
HL	 ()	FL*, Ht**	ExL. A. ExL. A.				• \ + • • 1×3		Ext
FL	X	Er! •			1				
¥	×.	Ext.	•		•JX3		Ext•		F1•
ExL	1 X		•	•		1			
HL	X	ExL•				ExL•		-	

1. * significant, $\alpha \leq 0.05$; ** significant, $\alpha \leq 0.01$.

Character abbreviations defined in Table 1. IIL = Head length, A = Area of the flag leaf blade.

F = Flowering stage, M = Mid-dough stage.

- negative correlations, + positive correlations.

e

٩Ì

\$

height components in associated genotypes. Variations in photosynthesis due to competition for light, or other factors correlated with height, could have affected leaf growth. This effect was not observed at the mid-dough stage, suggesting that leaf senescence, which sets in earlier in some genotypes, and in some plants within genotypes, than in others, caused a greater variation in the measurements of this character at flowering.

Plant height and height of the flag leaf of Norquay were negatively correlated with height of its associates at the flowering stage, but not at the mid-dough stage.

Overall, it appears that the effects of genotype interaction on the expression of the measured characters at both stages of growth were small. This might be partially caused by the greater amount of plant-to-plant variation which occurs in machine seeded plots than in plots with accurately spaced plants. Interaction associated with differences in height, however, appeared to occur at both stages of growth.

6.4 Discussion

6.4.7 Effects of genotype interaction on plant-to-plant variation

The variances of measurements of plants grown in monocultures and plants grown in mixtures were not

significantly different, possibly because a systematic planting pattern was used. A genotype, which is grown in a mixed stand in which two genotypes are alternated and accurately spaced within the row, will always have the same type of neighbours, even though these are different from neighbouring plants in a monoculture. This consistancy in neighbour relationships may explain the observed lack in variation.

Sakai (1955) observed that a genotype which tends to dominate in a minute shows greater variation when grown in mixture with a less dominant type, than when grown alone, or in combination with another dominating type. He did not discuss any changes in variation which could occur in a mixture of genotypes with an equal ability to dominate. One could, however, expect effects on within genotype variation which are related to the relative amount of random variation present in the two genotypes. A variable genotype, in combination with a uniform genotype, could conceivably show a reduction in variation, because the environment it experiences in such a mixture is more uniform than its environment in monoculture. Similarly, the other mixture component could show an increase in variation.

Any of these situations would result in a significant genotype x mixture interaction effect on plant-to-plant variation. In the present study, however, this interaction was only significant for 1000 kernel weight (Table 3).

When observing for each genotype the combined data from several binary mixtures, however, an increase in plant-to-plant variation was found for the number of tillers, weight and yield at the 3 cm spacing, and for 'kernel weight at the 9 cm spacing (Table 4). These effects may well be the result of the greater amount of' environmental variation which is caused by the range of genotypes in the mixtures.

At both the 3 cm and the 9 cm spacing, the distribution of several characters, in particular kernel weight and harvest index, deviated significantly from normal. Although the analysis of variance is insensitive to small deviations from normality, other conclusions based on estimates of variation might be biased to a greater extent. The effect of non-normality on the expected gain from selection in a breeding program will be discussed in Chapter 9.

Chebib et al. (1973) found that in a mixture of segregating F3 lines of wheat, the effect of interaction between genotypes on plant-to-plant variation was insignificant for all measured characters. His results might be partially explained though, by the fact that he obtained his segregating population from a cross between the genotypes Pembina and Manitou, which have a similar genetic back ground', and therefore would produce a progeny which is

'Pembina=Thatcher x R.L.2564(R.L.2564=McMurchy-Exchange x Redman') Manitou=(Thatcher'-Frontana x Thatcher'-Kenya Farmer) x Thatcher'-P.I.170925

genetically and morphologically much more uniform than the progeny from a more diverse cross would be.

Kelker and Briggs (1978) reported both increases and decreases in variation as a response to interaction of several genotypes. In their experiment, seven genotypes of wheat, including the ones used in the present study, were mixed within rows, simulating a segregating population. It was concluded that the tendency to increase or decrease in variation is genotype-specific.

The number of genotypes in the present study was not large enough to be able to verify Kelker and Briggs' conclusion, although the results from the present experiment do not disagree with their results. In Kelker and Briggs' study, the variation of the genotypes Glenlea, Park and 70M009002 each increased in varation due to genotype interaction at a density of 87 plants/ m³, in particular for the characters heads per plant, yield and plant weight. In addition, variation for height of Pitic 62, Glenlea, and Norquay, and harvest index of Pitic 62, Glenlea, Park and Norquay decreased. Similar effects were observed in the present study (Appendix 7).

6.4.2 Effects of genotype interaction on mean plant performance

Significant changes in the mean values of several characters, related to either total plant weight or to plant yield, were observed, as a response to genotype interaction.

Harvest index, which is the ratio of plant weight and plant yield, was very little affected, illustrating the stability which a complex character can maintain in spite of the plasticity of its components.

For some genotypes, the response to genotype interaction was guite different at 3 cm and at 9 cm spacing. This was demonstrated most clearly by Glenlea, the characters of which showed positive correlations with most characters of neighbours at the 3 cm spacing, while negative correlations were more prevalent at the 9 cm spacing. Thus, a change in interplant relationships occurred with increasing plant spacing. A possible explanation is that at the 3 cm spacing, the available growth factors were limiting to both genotypes in the mixtures, thus preventing the expression of genotypic differences. At the 9 cm spacing, resources were less limiting and plants would have a greater chance to develop according to their genetic potential. This could have resulted in negative relationships between the measured characters of Glenlea and its associates at the 9 cm but not at the 3 cm spacing. this hypothesis is supported by the observation in 1977, that effects of genotype interaction were insignificant at the highest plant density, where all plants were severely reduced in growth.

Competitive interaction between plants frequently leads to negative correlations between characters of the genotypes combined in a mixture. However, positive correlations are observed as well. Interaction between plants of different

oat species, resulting in positive correlations between the height of mixture components, has been described by Trenbath and Harper (1973).

Factors which cause differences between replicates, such as soil heterogeneity or a difference in elevation, could also be the cause of a positive correlation between chafacters of genotypes which are combined in a mixture. In the present study, however, it was not possible to distinguish between positive correlations due to plant interaction and those due to other factors.

There is some evidence in the literature (Troughton and Whittington, 1968), that maturity is positively correlated with root mass, because late flowering plants can invest more time in the development of an extensive root system. If maturity is positively correlated with root mass, then Pitic and Glenlea, which were the latest maturing genotypes in this study, could have had a competitive advantage through a larger root system. This could cause negative correlations of other characters specific to these genotypes, such as the number of tillers or height, with the yield components of their associates. Whether this was the case can only be confirmed through studies involving measurements on the root systems during the growing season. This hypothesis could also explain why Park, which was the earliest genotype in the study, generally performed poorly in mixture.

At the 9 cm spacing, negative correlations existed between kernel weight and the number of tillers and the

number of heads on neighbours. These relationships suggest a different type of interaction than observed at the 3 cm spacing. Although interactions related to the greater nutrient requirements of plants with more tillers are probably of importance, one has also to consider the effect which variation in the number of tillers could have on the competition for light Between neighbouring plants. It is possible that at the lower plant density, plants with many tillers interfere more with the light reception of their neighbors than do plants with less tillers, resulting in the observed correlations.

Interaction between genotypes in a mixture occurs throughout most of the growing season. In addition to measurements at maturity, a detailed study of the growth and development of each mixture component could therefore provide information on the causal basis for the observed results of interaction. Several studies have indicated that differences in the developmental pattern of neighbouring plants greatly influence their interaction (Christian and Gray, 1941; Trenbath and Harper, 1973; Trenbath, 1975; Harper, 1977; Clark, 1980). The present study was not designed to perform such a detailed growth analysis. However, data collected at different times during the summer suggest that interactions occurring before flowering, and specifically those affecting growth of the flag leaf, may ultimately affect grain filling through an altered photosynthetic area (Hsu and Walton, 1971)

7. Effects of Seed Size on Plant Interaction

7.1 Materials and methods

In 1979, seed of the genotypes Pitic 62, Glenlea, Park, Norquay, and 70M009002 was sorted, through sieving and hand picking, into large, medium, and small size seeds (Appendix 12). The medium size seeds were discarded, and the rest seeded in plows, containing only large seeds, only small seeds, or small and large seeds alternated within the rows.

All seeds were glued onto strings (see Section 5.1.2) with 3 cm between seeds. The plots each consisted of three 2.5 m long rows, 30 cm apart, and all treatments were replicated three times. Eighteen adjagent plants (54 cm) from the middle rows were sampled at the 3-5 leaf stage, at the jointing stage, at the heading stage and at maturity. Since sampling at each time was completed in one day, the five genotypes were not at exactly the same stage of development.

The locations of the samples were randomised within each row, and two plants at the end of each sample were allowed as guards. At the time of sampling, all plants in the section of row to be harvested were numbered, and measurements were taken on each plant. Empty places in the row were recorded and plants with one or both fir neighbours missing were discarded.

The characters which were measured varied with the time of sampling, as indicated in Table 9, and were chosen, for each developmental stage, as features which could easily be distinguished.

7.2 Analysis of the data

۲

The data were analysed to investigate the effects of seed size and uniformity on plant performance, on within genotype variation, and on the interaction between neighbouring plants.

Variance, skewness and kurtosis of the measured characters were computed for each sample. The effects of genotype, seed size and uniformity on these parameters were examined for each sample date with an analysis of variance. Because several of the distributions of measured characters deviated significantly from normality, a natural log transformation of the variances was used (see Section 6.2)

Because plants were missing at the end of some rows, it was very difficult to identify the exact sequence number of each plant. This especially created a problem in the plots with mixed seed. It was, therefore, impossible to compare the performance of plants from large and small seeds in mixture, with the performance of the same type of plants in plots from uniform seed.

Differences between the genotypes, between the replicates, and between the performance of plants from

Mesured Character Abbreviation 1 2 3 4 Height (to tip of longest leaf) (cm) Ht Ht x x Height (of top most node) (cm) Ht Ht x x Height (fo tip of head, including anns) (cm) Ht x x x Number of leaves N Ht x x x Number of nodes N N x x x Dry veight (g) N N x x x Number of tillers N N x x x Number of tillers H x x x Number of flag leaf (cm) FL x x x Number of spikelets/head Sp/H x x	Abbreviation 1 Ht 1 Ht 2 Ht 3 H 1 H H H T T T T T T T T T T T T T T T T	Growth Stage ¹
Ĵ	Ĵ	3 4
ער ביישר איז	ער בי איז איז איז איז איז איז איז איז איז אי	
f head, including arms) (cm) s eaf (cm) ets/head s/plant),
	eaf (c) ets/head	×
		-
		×
		×
		Ň
		×
	, ,	ĸ
•	•	, x
		×

.
								×			/					8	
			•			,							,	••		,	91
	، م <u>ر</u>			•			i	J			·						#
		tage ¹	3 4	×	×	×	×	• •		۰,			ŧ	••••			•
		Growth Stage ¹	2					L.	•	•				•	р	*	ب
		5	-									х •		· •	, •		ł
			Abbreviation	-	•	_	,		1		· · · · · · · · · · · · · · · · · · ·		<u>ي</u>				
	÷		Abbrev	IH	Kwt	K/H	ExL		•				۲	-) (•	
		•	2		(8)	sb							1			•	
<i>į</i> .	•	۰ ۲		•	ĸ 1000	of hea	f (cm)								· '		. ,
•					of kernels x 1000 (g)	rnels/Number of heads	of flag leaf (cm)						7		•		ł
				(8)				X ¹	Г) 			
		•		Harvest Index = Yield (g)/Dry Weight	1000 kernel weight = Yield (g)/Number	Number of kernels/head = Number of ke	height				-	* . *	÷	•		•	-
•	·	a,		(g)/Dry	ield (g	dinun in	ght.						•				
			빏	Yield (ht = Yi	s/head	Extrusion length = Height		ρό ρά Ο Ο) e		•			١	* *	•
	•		Derived Character	adex =	el weig	kernel	length	3-5 a af ttage	jointing stage	heading stage	ity		, '	•		•	
			ived C	vest l	0 kern	ber of	irusion	5-5 -1	joint	headin	ma turity			1 4			·
			<u>[</u>]	Нат	100	Nur	Ext	-	; ;	*	*						
										_					ł		

.

4

, **,**

+

. 5

-

÷

E.

large, small, and mixed seed were examined, for each sample date, with an analysis of variance.

To investigate the interactions between adjacent plants from small, large, or mixed seed, simple correlation coefficients were computed for all character combinations on pairs of neighbouring plants (1st with 2nd, 2nd with 3rd, etc.).

It was intended to compute these correlations for second neighbours as well as for first neighbours. Missing plants, however, severely reduced the number of pairs for which correlations could be computed. For every plant which was milssing, four of the first neighbour pairs and five of the second neighbour pairs were invalidated, or 23.5% and 31.3% respectively of the data. Since an average of 1.6 plants per plot were missing (10%), correlations on second neighbours have not been included.

In 1978, it was noticed that considerable variation in height existed among plants of the line 70M009002. At the end of the 1979 growing season, it became apparent that this. genotype was not a pure line. There was a marked variation in height and awn length, and it was decided to eliminate this line from all tests involving single plant data. No meaningful comparisons concerning plant interactions can be made between treatments if there are already genetic differences in plant form, and possibly growth pattern, within the line under investigation. It is now believed that this line possessed a degree of outcrossing, perhaps as high as 5%, which would explain the increase in heterogeneity as seed was increased during the three years of this study (Dr. K. G. Briggs, Professor of Plant Breeding, University of Alberta, Edmonton, Alberta, 1980, personal communication).

7.3 Results

7.3.1 Effects of seed size on mean plant performance and sample distribution of characters

Mean values of the plants from small seeds, from large seeds, and from mixed seeds, at each of the measured growth stages are shown in Appendices 13-16. Values of skewness and kurtosis of the samples are given in Appendix 17.

At the 3-5 heaf stage the plants from mixed seed had a significantly lower variance ($\alpha \le 0.05$) for number of leaves than the plants from the uniform seed (Table 10). At maturity, only the variance of head length was significantly ($\alpha \le 0.05$) affected by seed treatment. The head length of plants from small seed was much more variable than was the head length of plants from large or mixed seed.

The skewness and kurtosis of the characters within sample dates were not significantly affected by the treatments. However, distributions did differ significantly among growth stages for those characters which could be compared: the number of tillers, weight and height (sample 3, 4 only, Table 11). Kurtosis of all three characters was

Table 10. The effect of genotype and seed treatment¹ on the variance² of single plant characters, at different stages

of growth, as determined by analyses of variance³.

All plants were grown in three-row plots in 1979. The data are from consecutive plants in a row, excluding plants with missing neighbours.

Source		Mean squares	of ch	aracters ⁴
of variation	df	Number of leaves at the 3-5 leaf stage		Head length at maturity
Genotype (G)	3	9591 、	ŕ	13978
Seed treatment (S)	2	15672*		24183*
Replicate (R)	2	667		14899
G×S	6	4458		6429
G×R	6	11539		7085
S.×R	4	5445		7661
Residual	12	3729		6127

- Seeds were sorted into large and small seeds (see Appendix 10)
 and seeded in rows with uniformly large seeds (treatment 1),
 uniformly small seeds (treatment 2), or large and small seeds
 alternated (treatment 3).
- 2. The natural logarithm of the variances was used.
- 3. * significant, $\alpha < 0.05$.
- Characters which showed no significant differences have been excluded.

Table 11. The effect of growth stage, genotype, and seed treatment¹ on the variance² and skewness of single plant characters, as determined by analyses of variance³.

> All plants were grown in three-row plots in 1979. The data are from consecutive plants in a row, excluding plants with missing neighbours.

Source of	E				distributi		
		df	₹a	riance		, Ske	vness
variation	1		Ht ⁴	T	Wt	Ht	T
Growth st	age		,				
	(ĞS)	3	12.48**	25.68**	554.14**	3.26	5.14*
Genotype	(G)	3	2.03**	4.80**	1.23	0.36	2.16*
Seed trea		_			•		
	(S)	2	0.11	0.68	1.87	1.08	0.29
Replicati		2	0.26	0.72	0.82	0.10	1.04
	(R)	2	0.20	0.72	0.82	0.10	1.04
GS × G		9	2.51**	1.07	3.13	0.33	0.66
s × s		6	0.76	0.53	1.82	1,55	1.05
S × R		6	0.26	0.29	0 - 59	2,60	p.72
G × S		6	0.57	0.44	1.49	1.62	0.24
G × R		6	1.07	0.40	1.74	0.35	1.93
S × R		4	0,51	0.56	4.39*	1.68	0.76
Residual		12	0.47	0.57	1.71	0.85	0.79

1. As defined in Table 10.

2. The natural logarithm of the variances was used.

3. * significant, $\alpha \leq 0.05$; ** significant, $\alpha \leq 0.01$.

4. Character abbreviations defined in Table 1.

unaffected by growth stage, as was skewness of the weight distribution. However, the skewness of the distribution of tiller number changed significantly ($\alpha \le 0.01$) from an, on the average, negative value at the first three sample dates, to a positive one at maturity (Appendix 17).

The skewness of the height distribution increased from an average value of -0.34 at the heading stage, to a value of -0.69 during the last part of the growing season (Appendix 8). Although the difference has only a significance level of α =0.057 it does illustrate the increase in skewness which was earlier observed by Koyama and Kira (1956).

At each growth stage, differences among genotypes were significant for most characters (Table 12a through d). At the first three growth stages, the genotype x treatment interactions were more often significant than were the treatment effects. This suggests that genotypes were affected differently by the various seed treatments throughout the growing season. At maturity, the seed treatment main effects and the genotype x seed treatment interactions were predominantly insignificant, as were the seed treatment effects. Height and dry weight, which had shown significant seed treatment effects at the jointing and at the heading stage, did not show these effects any longer. Because maximum height was not obtained by most plants until after heading, this disappearance of seed treatment effects illustrates the tendency of plants to grow out to a uniform

Table 12a. The effect of genotype and seed treatment¹ on single plant characters, measured at the 3-5 leaf stage, as determined by analyses of variance.²

> All plants were grown in three-row plots in 1979. The data are from consecutive plants in a row, excluding plants with missing neighbours.

Source of		df	Me	an square	s of chara	cters ³
variation			Ht 1	L	Т	$\frac{Wt}{(x \ 10^3)}$
Genotypes	(G)	3	322**	0.28	8.31**	5**
Seed treatment	(S)	2	10	0.82	0.97	3
Replicates	(R)	2	47**	4.46**	0.68	2
G × S		6	23	2.16**	2.77**	3•
G × R		6	58	1.39**	1.45	4**
5 × R		4	1	6.87**	1.47	1
G × S × R		12	31	2.02**	1.74**	3*
Residual		3 92	12	0.32	0.70	1

1. As defined in Table 10.

2. * significant, $\alpha \leq 0.05$; ** significant, $\alpha \leq 0.01$.

3. Character abbreviations defined in Table 9.

Table 12b. The effect of gere is and seed treatment¹ on single plant characters, measured at the jointing stage, as determined by analysis of variance.²

> All plants were grown in three-row plots in 1979. The data are from consecutive plants in a row, excluding plants with missing neighbours.

	_	C				
Source of		df	Me	an squares	of chara	cters ³
variation		di	Ht ₂	N	Ť	Wt
Genotypes	(G)	3	147**	11.21**	12.29	3.24**
Seed treatment	(S)	2	61*	0.26	6.99	0.58
Replicates	(R)	2	78**	12.03**	3.39	1,.74**
G × S		6	51**	2.03**	4.56	0.62*
G × R		6	36*	0.84	7.42	0.44
S × R		4	116**	2.05**	5.55	0.38
G×S×R		11	63**	2.12**	3.77	0.46
Residual		315	17	0.45	4.90	0.28

1. As defined in Table 10.

2. * significant, $\alpha \leq 0.05$; ** significant, $\alpha \leq 0.01$.

5. Character abbreviations defined in Table 9.

Table 12c. The effect of genotype and seed treatment¹ on single plant characters, measured at the heading stage, as determined by analyses of variance.²

> All plants were grown in three-row plots in 1979. The data are from consecutive plants in a row, excluding plants with missing neighbours.

Source of	7	Mea	n squares of ch	aracters ³
variation	J df .	Ht ₃	T	Wt
Genotypes	3	18462**	68.7**	1.69
Seed treatment	2	200**	0.7	9.63*
Replicates	2	► 187 * *	12.7*	2.08
G×S ·	6	270**	13.0**	9.77**
G×R	6	45	7.5	3.34
S×R	4	283**	6.1	7.07*
G × S × R	12	134**	7.5*	3.57
Residuals	383	28	4.0	2.67

1. As defined in Table 10.

ъĴ

2. * significant, $\alpha \leq 0.05$; ** significant, $\alpha \leq 0.01$.

3. Character abbreviations defined in Table 9.

99

1

2

э

Table 12d. The effect of genotype and seed treatment¹ on single plant characters, measured at

maturity, as determined by analysis of variance²,

All plants were grown in three-row plots in 1979. The data are from consecutive plants in a row, excluding plants with missing neighbours.

Source of		34		Σ	Mean squares of characters	s of char	acters ³		
variation			Ht ₃	T	Ŧ	Nt	λ.	K/P(x 10 ⁻²)	HI(x 10 ³)
Genotypes	୍ତ	£	15437**	73.9**	55.1**	1297**	339.6**	2156**	73**
Seed treatment (S)	(s)	7	3	. 11.7*	9.4*	48	10.7	145	£
Replicates	(R)	3	51	14.1*	14.6**	58	10.4	145	1
s × S		ç	3	5.0	4.6	85	20.6*	153*	۰ ۱
G×R		ę	17	5.5	5.2	84	12.9	77	7**
S × R		4	42	11.4**	4.6	28	4.8	55	4
G×S×R		12	69	10.4**	7.2**	100*	10.3	84	7**
Residual	4	404	29	3.4	2.9	50	40.6	58	5

100

6

Ę

Source of			9 -	Mean	squares of	Mean squares of characters	S	
variation		ID.	Kwt	К/Н	F1	ËxL	H/qS	HL
Genotypes	(0)	3	4557.6**	3582**	8409**	5606**	11.2**	508.1**
Seed treatment (S)	(s)	2	42.9**	43	30	10	0.4	0.6
Replicates	(R)	2	115.2**	184*	. 38	25	11.6**	0.7
G × S		Q	7.1	94	94	15	1.1	3.7
G × R		9	19.5*	44	46	11	4.4*	16.9**
S × R		4	13.0	55	Q	15	3.1	7.3*
G × S × R		12	15.6*	103*	11	4	• 2.1	8.4**
Residual		404 .	8.9	56	47	17	. 1.7	3.0
l As defined in T		able 10.					,	

ę

2 * significant, $\alpha \leq 0.05$; ** significant, $\alpha \leq 0.01$.

ŧ

3 Character abbreviations defined in Table 9.

101

¢

ē.

e,

height, which is characteristic of their genotype.

The mean tiller number per plant dropped from jointing to maturity, for all genotypes except Park (Appendices 14 through 16). Tiller number was not significantly affected by seed treatment at the jointing and the heading stages, a significant genotype x seed treatment interaction ($\alpha \le 0.01$) occurred at the heading stage, and at maturity, a significant treatment effect ($\alpha \le 0.05$) existed for the number of tillers and the number of heads per plant (Table 12b through d).

At maturity, the plants from small seeds had fewer tillers and heads than did the plants from large seeds, for all genotypes except Glenlea (Appendix 16). Since seed treatment effects earlier in the season were not significant, this suggests that plants from small seed on the average lost more tillers than did plants from large seeds. Thousand kernel weight of the plants from large seeds was significantly smaller ($\alpha \le 0.01$) than that of the plants from small seeds (Table 12d).

7.3.2 Effects of seed size on interaction between neighbours

, ·

The correlations of all measured characters of each plant with those of their first neighbours gave an unwieldy total of 1572 correlation coefficients. It would be of little value to look at the magnitude of each of these coefficients individually. More important is to see if any patterns in character relations exist. If no correlation

exists between two characters of neighbouring plants, the probability that the coefficients for all four genotypes in a treatment will be of the same sign just by chance is 1 x $1/2 \ge 1/2 \ge 1/2 = 0.125$. Therefore, the value of the coefficients does not have to be very high to be meaningful, if they all have the same sign. In order to accept the hypothesis that a correlation exists between characters measured on neighbouring plants, in each of the four genotypes given the same treatment, with $\alpha \le 0.01$, each of the coefficients has to have the same sign and a significance level less than or equal to 0.47, since 2 x $(0.47)^*= 0.01$. Using this value, all correlation coefficients were examined for each of the three treatments (Table T3).

Throughout development, positive correlations were more common than negative ones. As was explained in Section 6.4.2, plant interactions as well as environmental conditions can be responsible for this. Conditions which affect a short section of row, such as variation in depth of sowing, wheel compaction or irregular nutrient distribution, could result in higher or lower values for all plants in that section, compared with plants in the rest of the plot, and, thus, result in positive correlations between neighbours.

At the jointing stage, the only negative correlation was the one between tiller number and the number of nodes of neighbouring plants, derived from mixed seed sizes.

Table 13. Correlated¹ a

of neighbouring plants, at different stages of gro. in rows of plants from large seeds, small seeds or alternated large and small seeds.

All plants were grown in three-row plots in 1979. The data are from overlapping pairs of neighbouring plants in a row: $1^{st}+2^{nd}$, $2^{nd}+3^{rd}$, $3^{rd}+4^{th}$, etc.

$Growth^1$		Corr	elated (+,	-)
stage	Character ³	characters of	f neighbou:	ring plants ⁴
3-5L	Ht ₁	+Ht ₁ ² ,	+Ht ₁ 3	
3-5L	L	+Ht ₁ 3,	+L1,	+L3
3-5L	Wt	+Ht ₁ 3		
J	Ht 2	+Ht ₂ 1,	$+Ht_2^2$	
. J	N	+Ht ₂ 1,	+N1,	+N3
J	T ·	+N1,	-N3,	+T1
J	Wt	+Ht ₂ 2,	+N2	
н	Ht ₃	+Ht ₃ 1,	+Ht 32	+Ht 3
н	Т	+T2,	-T3	
н	Wt .	+Ht ₃ 1,	$+Ht_3^2$,	+Wt2
м	Ht 3	- KNt 3		٠
м	Т	-HI1,	-KWt1	
м	н	-HI1,	-KWtl	
м	K/H	- KWt 1		. 1
м	HI	+HI1		
M	KW t	+KWtl		

₽ 105

¢

1. All correlations are significant with $\alpha \leq 0.01$.

1

•

ļ

2. 3-5L = 3-5 Leaf stage, J = Jointing stage, H = Heading Stage, M = Maturity.

3. Character abbreviations defined in Table 9.

4. Last number indicates seed treatment as defined in Table 10.

At the heading stage, the tiller numbers of neighbouring plants, derived from mixed seed, were negatively correlated. However, at this stage, tiller number of some genotypes was affected by seed treatment also (Table 12c), and the observed correlation, therefore, does not necessarily imply the occurrence of neighbour imeractions. At maturity, a significant negative correlation existed between the number of tillers and harvest index and between number of heads and harvest index of plants from large seeds, and between height and 1000 kernel weight, and between stem length and 1000 kernel weight, of plants from mixed seed. Since seed size effects on tiller number, head number and kernel weight were observed in plots seeded to uniformly sized seed, one would expect negative correlations between these characters, in plots from mixed seed sizes. Their absence indicates possible effects of neighbour interaction. For plants derived from small seeds, significant correlations were all positive.

7.4 Discussion

The drop in tiller number, which was observed after heading for plants from all seed treatments, was more severe for plants from small seed than for those from mixed or large seed. This resulted in significantly fewer tillers and fewer heads on plants from small seeds at maturity.

106

 \mathcal{O}

For most genotypes, however, yield per plant was not significantly affected by seed treatment. The larger 1000 kernel weight, observed for plants derived from small seeds, demonstrates compensation for the reduction in head number, through an increase in seed weight. A number of factors could have contributed to this result. Firstly, some of the assimilates which were acquired before anthesis, and which had been stored in the lost tillers may have been relocated and later been used in grain filling on the remaining tillers (Evans and Wardlaw, 1976). Secondly, since competition for light takes place between leaves rather than between plants (Donald, 1961), leaves of plants with few tillers could experience less competitive interference from leaves on other tillers than would leaves on plants with many tillers, given the same interplant spacing. A higher rate of photosynthesis per leaf could therefore occur in plants with few tillers, resulting in more assimilates per tiller and, thus, the potential for larger kernels.

The data from this test give only partial support to the findings of Hozumi et al. (1955), who found negative correlations between dry weights and between shoot lengths of neighbouring corn plants derived from uniform seed. Negative correlations did occur in the present experiment, but not very frequently. The negative correlations which were observed among plants from large seed, all occurred between tillers or heads per plant and those characters which pertain to grain filling (harvest index, 1000 kernel weight). This suggests that variation in tiller number is, directly or indirectly, related to the process of grainfilling in adjacent plants. No negative correlations showed up in the plots from small seed. This could possibly be the result of smaller root systems, which would reduce interaction between neighbouring plants.

Although alternating height differences between neighbours existed throughout the growing season in all three treatments, at maturity only the mixed seed treatment showed significant effects related to differences in height. It was not possible to determine with certainty whether small seeds gave rise to short or tall plants. If one assumes the former, than seed size in the mixed seed treatment had an effect on gernel weight opposite to the effect observed in the uniform seed treatments. The negative correlation, which occurred in the mixed seed treatment between height and kernel weight, suggests that plants from small seed with tall neighbours yielded seeds with low kernel weight and vice versa. Thus, interaction between the tall and short plants affected plant growth in such a way that tall plants were able to acquire a relatively greater amount of one or more of the factors limiting to grain filling. It thus appears that interactions between neighbours derived from different size seeds, were different than those which occurred between plants from uniform seeds, affecting in particular the character kernel weight.

The results of the present experiment indicate that differences in seed size can be a source of variation among phenotypes, both through effects on plant development as well as through effects on neighbour relationships. Although these conclusions are based on observations in monocultures, similar effects can be expected in a mixture of genotypes. Effects of interaction between genotypes in a segregating population might thus be confounded with the effects of seed size which occurred among the seeds of the propagated lines.

109

8. The Relationship Between Mixture Yield and Monoculture

Yield of the Components.

8.1 Materials and methods

Yield trials were grown in 1977 and 1979 in Edmonton, and in 1978 in Ellerslie. The trials involved eight genotypes (see Section 4.2), grown in monoculture and in all possible binary combinations, arranged in a randomised block design with three replications.

Plots consisted of four 6 m long rows, spaced 23 cm apart, in banks which were separated by 2 m wide pathways. The rows were seeded in all three years in a N-S direction, guard plots were seeded at the end of each bank, and at harvest, a 30 cm strip at both ends of each plot was removed. Only the center two rows of each plot were harvested with a small plot harvester'. Using a visual assessment of maturity, each plot was harvested when more than 50% of the plants appeared to be ripe.

To obtain an equal number of plants of each genotype per plot, percent germination and 1000 kernel weight of each genotype were used to calculate the weight of seed necessary to give an average density of 257 seeds/m², or an average of 1.7 cm between seeds within rows. For an average weight of 40 g/1000 kernels, this seeding rate is equivalent to 100 kg viable seed per ha. These are similar seeding rates and 'Designed and produced by J. Fitzsimmons and T. Snider, Dept. of Genetics, University of Alberta, Edmonton, Alberta.

plant spacings to those normally used for standard yield trials of wheat at both stations.

The plots were seeded with a small-plot disk seeder, designed in 1970 by the Canadian Department of Agriculture, Swift Current, Saskatchewan. A cone-shaped seed divider was attached to partition the seed equally into the four drill rows.

Harvesting conditions in 1978 were very wet, causing some loss of yield and considerable lodging in one corner of the field. Because the amount of loss was hard to estimate, the data have not been adjusted. None of the genotypes was infested with significant levels of disease or insect pests in any of the three years.

8.2 Analysis of the data

It was the objective of this study, to observe the stability of mixture yield over years, and to investigate the relationship between mixture yield and the yield of their components grown in monoculture.

By means of a randomised block analysis of variance, the variation among years, among monocultures, among mixtures and between mixtures and monocultures was examined.

From the yields of the monocultures in each block (replicate), the expected yield of each mixture in the same block was calculated as:

where $\Upsilon(AB), \Upsilon(A)$ and $\Upsilon(B)$ are the plot yields of the mixture of genotypes A and B, and their monocultures, respectively. The ratio of the observed yield and the expected yield of a mixture of two genotypes, hereafter referred to as Specific Mixture Efficiency (SME), was calculated as:

using the same notation as above. If, for example, a mixture of the genotypes A and B has a plot yield of 1400 g, and the monoculture plot yields of A and B are 1000 g and 1500 g, respectively, then the SME of the mixture AB would be 2x1400/(1000+1500)=1.12.

The SME resembles the RYT which was used in Chapter 6. The RYT, however, is calculated from the RY of each of the components, and hence, will have values which are numerically slightly different from the SME values. The meaning of values less than one, greater than one, and equal to 1 is the same for both, however.

Significance of the SME values was tested with a t-test analoguous to the one described for RYT (see Section 6.2).

Spearman's rank order correlation coefficients were computed for the correlations between grain yield of the mixtures and SME in each of the three years, as well as for the correlations between yields in 1977 and 1978, yields in 1977 and 1979, and yields in 1978 and 1979, respectively. The same correlations were computed for the SME values.

112

Mixtures of two genotypes can be seen as analogues of the F1 generation of a genetic cross, and hence, techniques similar to those which are used to determine genetic parameters, can be used to analyse mixture properties. An analysis of variance for diallel crosses was developed by Hayman (1954). In his method, the total variation is partitioned into a component due to 'arrays' (columns of the diallel table), a set of three orthogonal interaction components, and an error term. Morley Jones (1965) described the use of this technique to analyse data from a half diallel.

¢

<u>*</u>

Hayman's technique of diallel analysis has been modified and used by various authors to analyse competition experiments (Williams, 1962; Eberhart et al., 1964). In most of those cases, the competing individuals could be readily identified, allowing data to be collected from each of the components of the mixtures. Hay (1974) described the use of Hayman's analysis of variance for experiments in which the competing individuals cannot be separated.

The components of variation in the Hayman analysis are:

 The array sum of squares, with n-1 degrees of freedom for an n x n diallel. Each column of the full diallel table comprises an array. The examination of the arrays of a half diallel thus requires that each data point is used twice in the computation. Morley Jones (1965) computed the SS for arrays as follows:

where Yr. is the sum of the rth array and Yrr is the value of the rth monoculture (diagonal values of the diallel table). Significant differences among the arrays would indicate that differences exist between the general ability of the genotypes to perform in a mixture.

- 2. An interaction term, b, which can be partitioned into three orthogonal components:
 - a. b1 tests the effect of genotype interaction and allows examination of the difference between mixtures and monocultures, with 1 degree of freedom.
 - b. b2 tests the differences between genotypes in their interaction with all other genotypes. The sums of squares are computed using for each array the differences between twice the mixture values and the monoculture values:

Using the same notation as above, b2 has n-1 degrees of freedom. If no interactions between genotypes occur, this component measures strictly the differences in yielding ability among genotypes. b3 tests the effect due to specific combinations of

c. b3 tests the effect due to specific combinations of genotypes and is computed by subtraction of the SS's for arrays for b1 and b2 from the total SS.

**

The formula which was used by Morley Jones for array SS, was used by Griffing (1956) to test differences in General Combining Ability (GCA). He used the remaining variation as a whole, to determine effects of specific combining ability (SCA). The use of Griffing's technique for the analysis of mixture experiments was suggested by Jensen and Federer (1965). Hayman's partitioning of the interaction SS, however, allows a closer examination of the types of interaction which take place and of their relative magnitude.

GCA is a parameter which was originally introduced to assess the value of a genotype for breeding purposes. An extensive review of this subject was given by Sprague and Fatum (1942). Because high yield is an objective of most breeding programs, an indicator of both yielding ability of a genotype and its value as a parent in crosses, is useful for the selection of breeding material. In experiments which study the mechanisms underlaying mixture efficiency, however, the yield of a mixture is only of interest in relation to the monoculture yields of its components. Average Mixture Efficiency (AME) can be expressed as the ratio of the observed mixture yields to the mixture yields which can be expected based on the monoculture yields of the mixture components:

using the same notation as before. If, for example, binary

mixtures are formed from the genotypes λ , B, and C, and the monoculture plot yields are 900 g, 950 g, and 1000 g, respectively, and the mixture plot yields are 1000 g each, the AME for genotype λ would be 2x3000/(3x900+900+950+1000)=1.09.

The AME provides a measure of the average effect of a genotype on mixture yield, using its monoculture yield as a point of reference. The GCA gives an indication of a genotype's ability to perform in mixture using the experiment mean as a point of reference.

Jinks (1954) suggested the use of regression of the covariances (W) of offspring and parents of a diallel cross on the variances (V) of the offspring, to investigate dominance relationships. Harper (1965) and Hill and Shimamoto (1973) used a similar technique to determine the genotypic differences in 'competitive ability' of plants grown in mixtures. For the analysis of mixture experiments, the positions of the array variances along the X-axis of the resulting graph indicate the ability of the genotypes to dominate in the mixture. Dominating types will influence the performance of the mixtures in which they grow to a larger extent than will less dominating types, resulting in more uniform array components. Their arrays are, therefore, expected to have smaller variances and covariances. As a result these values will lie near the origin of the graph. Without any specific interactions between genotypes, a regression line can be fitted with asslope of approximately

1. Deviations from 1 will result from mixtures which perform much better or much worse than expected, causing an increase in variance and a decrease in covariance.

If a linear relationship exists between V and W, the sum (W + V) can be correlated with the monoculture yields (or any other character that might play a role in genotype interaction) to determine whether there is an association of monoculture yield with the ability to dominate in a mixture.

For the analysis of variance of the mixture yield trials from 1977,1978 and 1979, Hay's directions (1974) were followed. Regression lines of W on V were fitted according to Jink's method (Jinks, 1954). SME and AME values were computed, and for comparison, Griffing's (1956) formula was used to compute the effects of General and Specific Combining Ability (GCA and SCA) for each genotype or genotype combination. In order to assess the significance of the AME values, a t-test was used to compare the observed mixture yield with the expected yield based on monoculture values. Significance of the GCA values was tested with an F-test, using MS values obtained from the analysis of variance. Correlations between monoculture yields and AME were computed, to investigate the relationship between AME and yielding ability.

8.3 Results

In spite of satisfactory performance in the 1977 germination test (84.7%), Pitic 62 failed to germinate in the field that year, and in 1977, all plots involving this genotype had to be discarded.

Monoculture and mixture yields varied substantially in the three years (Appendix 18a through c). Besides the different locations involved, the weather patterns in the three years were quite dissimilar (Appendix 1), which probably contributed to these yield differences.

The yield levels of the mixtures, in relation to those of the component monocultures, were divided into the following four categories (Table 14):

- below the monoculture yield of the lower yielding component in that year (C1),
- between the monoculture yield of C1 and the mean of the component monoculture yields (C2),
- between C2 and the monoculture yield of the higher yielding component (C3), and

4. above C3.

Ø

Significantly ($\alpha \le 0.05$) more than half of the mixtures yielded more than the mid-component yield, suggesting, on the average, a greater efficiency of resource utilisation by mixtures than by monocultures in these three years. However, only 4 of the mixtures (14.3%) yielded more than the mid component yield in all three years. None yielded consistently less.

Table 14. Frequency distribution of mixture yield relative to the yield of the components grown in monoculture.

*

All plots were machine seeded, and harvested at maturity,

in 1977, 1978 and 1979.

Mixture	Frequer	acy distribut	ion of mixt	ure yield ¹
	^Y M ^{<c< sup="">1</c<>}	^C 1 ^{<y< sup="">M^{<c< sup="">2</c<>}</y<>}	C ₂ <y<sub>M<c<sub>3</c<sub></y<sub>	Y _N >C3
Pitic 62 + Glenles				2
Pitic 62 + Park			1	1
Pitic 62 - Meepawa			1	1
Pitic 62 + 70M110001				2
Pitic 62 + 701009002				2
Pitic 62 + Norquay	1		•	1
Pitic 62 + NB 701	•			2
Glenlea + Park			1	2
Glenlea + Neepawa			2	1
Glenlea + 70M110001		2		1
Glenlea + 7014009002		1		2
Glenles + Norquay	_		2	1
Glenlea + NB 701	2			1
Park + Neepawa	1		1	· I
Park + 70M110001	1	1	1	
Park + 70MD09002	1		2	
Park + Norquay		1	1	1
Park + NB 701	1		1	1
Neepawa + 70M110001	1	1	1	
Neepawa + 70N009002	-	ī	ž	
Necpawa + Norquay	ا م	ī	-	1
eepawa + NB 701 0		1		2
70H110001 + 70H009002	1	1	1	
70H110001 + Norquay	-	2	•	1
70M110001 + NB 701	1	-	2	-
0M009002 + Norquay		2		· 1
70M009002 + NB 701		2	1	· •.
iorquay + NB 701				
	11	16	21	29
ercent of total	(14.3)	(20.8)	(27.3)	(37.7)

1. Number of seasons in which the mixture yield $(Y_{\underline{M}})$ fell in the

specified categories; where

C1 = Lower yielding component-

C₂ = Mid-component yield

 C_{χ} = Higher yielding component

2. Data for Pitic 62 were only obtained in two years.

8.3.1 Effects of genotype interaction on plot yields

An analysis of variance of the combined data of the three test years showed that year effects as well as effects among mixtures and monocultures were significant ($\alpha \le 0.01$) (Table 15). Partitioning of the treatment SS into components containing variation due to differences among monocultures, due to differences among mixtures and due to differences between mixtures and monocultures, revealed that mixture and monoculture yields did not differ significantly when observed for a period of three years. Significant interaction effects existed beween years and mixtures and between years and monocultures, suggesting a year effect on the performance of individual genotypes when compared in mixture and in monoculture.

Analysis of each year individually (Table 16) revealed the absence of significant differences between monocultures in 1978. This fact is probably largely responsible for the year effect reported in Table 16. The wet fall weather in 1978 caused considerable lodging in one corner of the field, which resulted in a significant ($\alpha \le 0.01$) replication effect, and probably obscured true genotype effects. The differences among mixture yields were significant in each of the three years ($\alpha \le 0.05$, $\alpha \le 0.01$, $\alpha \le 0.01$). Only in 1977 did mixture and monoculture yields differ significantly ($\alpha \le 0.05$).

Table 15. The effect of year, genotype monoculture and genotype mixing on plot yield, as determined by analysis of variance.¹

All plots were machine seeded, and harvested at maturity, in 1977, 1978 and 1979.

Source of variation	df	Mean square
Years (Y)	2	2913881**
Treatments (T)	27 ²	26432**
Genotype		
Monocultures (Mono)	6	51901**
Mixtures (Mix)	20	18963*
Mix vs Mono	1	22990
Y × T	54	33183**
Y × Mono	12	45503**
Y × Mix	40	30069**
Y × Mix vs Mono	2	21547
Residual	168	11487

significant, α ≤ 0.05; ** significant, α ≤ 0.01.
 Data for Pitic 62 have been excluded for all years.

Table 16. The effect of genotype monoculture and genotype mixing on plot yield in each of three test years, as determined by analyses of variance.¹

4

All plots were machine seeded, and harvested at maturity, in 1977, 1978 and 1979.

Үеаг	Source of variation	df	Mean square
1977	Trestments:		
	Genotype		
	Monocultures (Mono)	6	68725**
	Mixtures (Mix)	20	21543*
	Mono vs Mix	1	60 896 *
	Replications	2	22021
	Residual •	53	10846
978	Treatments:		
	Genotype		
	Honocultures (Hono)	7	22197
	Hixtures (Mix)	27	29860**
	Mono vs Mix	1	6513
	Replications	2	138430**
	Residual	107	12336
979	Treatments:		
	Genotype	χ.	
	Monocultures (Nono)	7	48808**
	Mixtures (Mix)	27	43720***
	Mono vs Mix	1.	14597
	Replications	2	3242
	Residual	107	8682

1. * significant, $\alpha \leq 0.05$, ** significant, $\alpha \leq 0.01$.

8.3.2 Mixture efficiency and its correlation with yield

Both the mean mixture yields and SME values differed from year to year. For example, the Park/Neepawa mixture yielded well above the expected yield in 1977, while in 1979, the yield of the same combination failed to reach even the level of the lower yielding component (Appendix 18a through c).

Spearman's rank-order correlation coefficients were computed for the following correlations (Table 17):

- 1. mixture yield and SME in 1977, in 1978 and in 1979,
- mixture yields in 1977 and 1978, in 1977 and 1979, and in 1978 and 1979, and
- 3. SME's in 1977 and 1978, in 1977 and 1979, and in 1978 and 1979.

No consistent relationship seemed to exist between the mixture yields and the SME values in any of the three years. The relative mixture yields in 1978 appeared to be quite different from those in 1977 and in 1979, and either climatic conditions or the different location could have influenced relative yields.

Attinaw (1977) grew seven of the eight genotypes which were involved in this study, at three different locations, including Edmonton and Ellerslie. Table 18 shows the rank order for yield, in each year, for the genotypes grown in his study and in this study at the two locations. Some genotypes appeared quite consistent in their relative position (e.g. Glenlea and Park), while others were more

- Table 17. Relationship between mixture yield and Specific Mixture Efficiency¹, within and between years, as expressed by
 - Spearmans rank order correlation coefficient².

Correlated Parameters ³	Correlation coefficient
Y ₇₇ - Y ₇₈	-0.37*
Y ₇₇ - Y ₇₉	0.58**
Y ₇₈ - Y ₇ 9	-0.29
Y ₇₇ - SME ₇₇	0.19
Y 78 - SME 78	0.26
Y ₇₉ - SME ₇₉	0.74**
SME ₇₇ - SME ₇₈	-0.21
SME ₇₇ - SME ₇₉	0.29
SME ₇₈ - SME ₇₉	0.06

1. As defined in Section 8.2.

- 2. * significant, $\alpha \leq 0.05$; ** significant, $\alpha \leq 0.01$.
- 3. Y₇₇, Y₇₈, Y₇₉ = mixture yield in 1977, 1978 and 1979, respectively.

 SME_{77} , SME_{78} , SME_{79} = Specific Mixture Efficiency in 1977, 1978 and 1979, respectively. Rank orders of the monoculture yields of eight genotypes, and the mean yields of their Table 18.

.

mixtures, as observed at the Edmonton and Ellerslie locations,

				Rank orders	rders			
Genotype			Monocultures	S			Mixtures	•
	1975 ¹ Edmonton	1977 ¹ Edmonton	1979 ² Edmonton	1975 ¹ Ellersliø	1978 ² Ellerslie	1977 ^{2 .} Edmonton	1978 ² Ellerslie	1979 ² Edmonton
Pitic 62	1	£	-)	1	3	;	4	1
· Glenlea	4	4	£		4	S	2	3/4
Park	7	7	æ	7	7	Q	7	2
Neepawa	S	9	v	S	1	7	4	ø
70M110001	2	Ð	v	2	2	ħ	٤Ĵ	S
70M009002	3	•	-	Q	80	1	æ	. 2
Norquay	Q	2		খ	ñ	2	در	Q
NB 701	:	S	2	8	g	- -	ç	3/4

1. Data from Attinaw (1977)

2. Data from present study

3. Genotype not represented in test of that year

125

5 unstable (e.g. 70M009002). In 1978, however, the genotypes Neepawa and Pitic 62 showed quite a different relative yield level than in any of the other years. This erratic behaviour also determined the performance of the mixtures containing these two genotypes, as illustrated by the ranking of the array means. The variable yields obtained from both monocultures and mixtures over the three years thus appear to relate to factors other than the change in location.

8.3.3 Diallel analysis of variance

جه)

As was discussed in Section 8.2, analysis of the data as a mixture diallel allows a more detailed interpretation of the results.

Array means differed significantly in each of the three years ($\alpha \le 0.01$)(Table 19). In the absence of interaction effects between the genotypes, this is a reflection of genotype differences in yielding ability. In the previous section it was shown, however, that in 1978, the differences among genotypes in monoculture were insignificant. A significant array effect in this year, thus, suggests the occurrence of a significant interaction between genotypes in mixture in that year.

The b1 effect, which contrasts mixture and monoculture yields, was significant in 1977 only ($\alpha \le 0.05$), indicating that interaction between genotypes was present in that year also. Only in 1979 was the b2 effect significant ($\alpha \le 0.01$), indicating that the effects of genotype interaction on yield
Table 1: ... e average array and specific effects of genotype on mixture yield, as determined by diallel analyses of variance¹ for each of the three test years.

L

All plots were machine seeded, and harvested at maturity.

ear	Source of variation ²	df	Mean square
1977	Replications	2	22021
	Arrays	6	100804**
	Mixtures vs monocultures `	1	60896*
	Average genotype interaction	6	7519
	Specific genotype interaction	14	13805
•	Residual	53	10846
978	Replications	2	138430**
	Arrays	7	176335**
•	Mixtures vs monocultures	, 1	6513
	Average genotype interactions	7	6901
	Specific genotype interaction	20	18877
	Residual	70	12336
1979	Replications	2 · ·	3242
	Arrays	7	168180**
	Mixtures vs monocultures	1	14597
	Average genotype interaction	7	27834**
	Specific genotype interaction	20	7501
	Residual	70	8682

1. * significant, $\alpha \leq 0.05$; ** significant, $\alpha \leq 0.01$.

differed among genotypes.

Hay (1974) explained that, when the additions made by the interactions to the array values (mixtures) are correlated with the diagonal values (monocultures), '...the differences between the arrays will be inflated and the array mean square will be more likely to reveal interactions . than the b2 mean square.' It can be noted, though, that this is only the case if the correlation is positive. In the present study, the correlation between monoculture yield and Specific Mixture Efficiency was insignificant in two of the three years, and significantly positive ($\alpha \le 0.01$) in the third year (Table 17). Simmonds (1962), however, investigated the relationship between the difference between mixture yield and mean monoculture yield, and the mean monoculture yield of the components, and reported a negative corelation. Thus, a positive correlation cannot be considered to be a general rulé.

The b3 effect, which measures variation due to specific mixtures, was not significant in any of the three years, suggesting that no specific combination of genotypes performed exceptionally well or exceptionally poorly in any of the three years.

8.3.4 Mixture efficiency

The AME values for each of the genotypes in each of the three years show the ability of each genotype to perform in a mixture situation (Appendix 19). The values for GCA, which merely reflect the relative yield level of the mixtures in the test, were computed for comparison. Slight discrepansies between the rank order for array mean yield and for GCA are due to the fact that monoculture yields are used twice in the computation of GCA and once in the computation of the array mean yield.

Great variation existed from year to year among AME values of each genotype. In 1977, all genotypes had AME values greater than 1, suggesting a contribution to the mixture yield which is greater than expected from monoculture values. In 1978, however, less than half the genotypes seemed to perform better than expected in mixture.

Correlation coefficients of AME with monoculture yield for the three years were insignificant (Table 20), and it can be concluded that no consistent relationship existed between monoculture yield and the ability to perform in a mixture.

8.3.5 Regression of W on V

The regression of the covariances (W) of the array values and monoculture values (diagonal values of the diallel table) on the array variances (V), provides information on the relative ability of the genotypes to dominate in mixture (Figure 3). Because the genotype Pitic 62 was eliminated from the 1977 tests, the values for that year are not directly comparable with the other years.

Table 20. Simple correlations (r) between monoculture yield and Average Mixture Efficiency¹, in 1977, 1978 and 1979.

Year ²	ř
1977	-0.48
1978	-0.05
1979	0.57

.

- 1. See Section 8.2
- Seven genotypes were used in 1977, eight in each of the years 1978 and 1979.

Fig. 3a-c.

V-W regression lines, illustrating the relative ability of genotypes to dominate in a mixture, in the years 1977, 1978 and 1979. V = variance of the array (mixture) values, W = covariance of the array values and the diagonal (monoculture) values. As was already shown by the previous analyses, in 1978 the behaviour of the mixtures was erratic. Although the slopes of the regression lines in 1977 and 1979 were both close to one, the ranking of the genotypes according to their behaviour in mixture was guite different in each of the years. Glenlea, 70M009002, Neepawa and Park generally maintained their positions, while 70M110001, Norquay and NB701 showed guite different behaviours in mixture in the two years.

The V-W regression line shows along the x-axis the genotypes in order of their dominance in the mixtures. Correlation of the rank-order of dominance in mixture of the genotypes with their monoculture yields, resulted in a Spearman's rank-order correlation coefficient of 0.25 (n.s.) for 1977 and of 0.99 (sign $\alpha \le 0.001$) for 1979 (Figure 3).

It can thus be concluded that the ability to dominate in a mixture was highly variable from year to year and not consistently related to yield in monoculture.

8.4 Discussion

It has been suggested that the ability to perform well in a mixture is negatively correlated to yield in monoculture (Wiebe et al., 1961; Simmonds, 1962). The present study, however, did not support this theory. Significant differences existed in every year in the relative ability of the genotypes to dominate in mixture. No

relationship was found between the ability to dominate in mixture and monoculture yield in the same year.

Baker (1977) reported variable results for Neepawa, Pitic 62, and a mixture of the two, and ascribed this to the fact that Pitic 62 was better able to compensate for poor survival after early drought conditions, when grown in pure culture than when grown in combination with Neepawa.

DePauw et al. (1981) included the same genotypes in a study comparing yield at five locations over four years. They also found great variation in the performance of the genotype Pitic 62. They ascribed this to frost damage in the post-anthesis stage. In the present study, however, neither post-anthesis frost nor early drought occurred in any of the three years.

It is probable that the different responses of the genotypes to the variable climatic conditions were responsible for the year to year variation. Identification of genotype-specific responses to the environment, however, would require a qualitative study of genotype-environment interactions.

The results of this experiment do support the findings of those investigators who concluded that mixtures, on the average, yield more than the expected mean of the component monocultures (Table 14). This suggests that a positive interaction can occur between the components of a mixture, resulting in a more efficient use of available resources by one or both of the mixture components. Variation within and

between years, however, was so large that the yield advantage of mixtures over monocultures was statistically insignificant (Table 15). No specific binary mixture was identified which consistently gave a high yield advantage.

9. Discussion of the Results with Respect to Single Plant Selection in Early Generations

Inefficiency of single plant selection in early generations can be ascribed to two major sources of error:

- The amount of additive genetic variation present in the population is low, which makes it difficult to identify those genotypes which harbour the superior genetic material one wishes to select.
- 2. Effects of genotype x environment interaction on plant growth can cause undesirable phenotypic variation. The relative magnitude of these factors is expressed by the heritability (H²) of a character, which is computed as follows:

H³ = Genetic variance / Total variance

Estimates of heritability can be obtained in a variety of ways, and the outcome will vary with the experimental design used and the method of computation employed (Allard, 1960; Falconer, 1960). Experiments with a large number of replications will reduce the environmental variance and, thus, give higher estimates for H³. However, single plant selections from early generations have to be made from unreplicated plots, and the improvement of the selected population over the parental population depends entirely on how accurately superior genotypes can be identified within those plots.

9.1 Effects of non-normal character distribution on single plant selection

The expected gain from selection can be expressed as

where k is the selection differential, which takes into account the mean and the variance of the parental population, the mean of the selected fraction, and the selection intensity; .. is the phenotypic standard deviation; and H² is the heritability of the observed character (Allard, 1960). This expression assumes a normal distribution of the units to be selected, whether they are mean values of characters of plants grown in rows or observations on single plants. Reports on non-normal distributions of several characters of various plant species were given by Koyama and Kira (1956) and by Harper (1977).

The present study showed that the genotypes grown in binary mixtures with a range of associated genotypes at the 3 cm spacing, showed significant deviations from normality for all characters, except the number of kernels per head and height of the flag leaf (Appendix 8). At the 9 cm spacing, deviations from normality occurred for the number of tillers, the number of heads, kernels per plant, 1000 kernel weight and harvest index.

Deviations from normality will affect the accuracy with which genotypes can be distinguished, and will lead to gains from selection which are different than those expected based on the above formula.

The effect which a positively skewed distribution would have on single plant selection is graphically illustrated in Figure 4a. If genotypes with a high value of a certain character are to be selected, a positive skewness would increase the probability for less desirable genotypes to be present in the selected fraction. Similarly, a negative skewness (or selection of plants with the lowest values for a certain character from a population with a positively skewed distribution) would result in a selected fraction with more desirable genotypes than would have been the case if the character had been normally distributed.

To quantify this effect, the distribution of chi-square, which is a typical skewed distribution, can be conveniently used (Appendix 20). It has been shown, that the effect of skewness on single plant selection became much larger when the frequency of superior genotypes in the population was low. (Dr. D. H. Kelker, Associate Professor of Statistics, University of Alberta, Edmonton, Alberta, 1981, Personal communication). A positive skewness would, thus, result in gains from selection which are much lower than expected, based on estimates of heritability. Similarly, a negative skewness would result in a higher than expected gain from selection, if the highest values from the population were selected.

Considering these facts, Appendix 8 leads to the conclusion that response to selection at the 3 cm spacing would be less than expected for the number of tillers, the

Fig. 4.

The effect of skewness and kurtosis of the distribution of a plant character on single plant selection. $G_1 - G_4$ represent genotypes in a mixture, with means at equal distances apart. a_1 , a_2 and a_3 are the ranges of genotypes selected in populations with a normal distribution, a positive skewness, and a positive kurtosis, respectively. $a_3 < a_1 < a_2$.

number of heads, weight, yield and kernels per plant, and greater than expected for 1000 kernel weight, harvest index, height and extrusion length, provided that the tallest individuals were selected.

As was mentioned earlier, little can be said about the effect of a significant kurtosis in the presence of skewness. In the absence of skewness, however, a positive kurtosis is likely to have an adverse effect on selection (Figure 4b), because the selected fraction would be contaminated with less desirable genotypes to a greater extent than would be the case if the character had been normally distributed. Similarly, better results can be expected with a negative kurtosis.

At the 9 cm spacing, selection for a large number of tillers or a large number of kernels per head could result in smaller than expected gains, while selection of plants with a high harvest index or large kernels could result in a higher than expected gain.

9.2 Effects of genotype interaction on single plant selection

The results from the experiment conducted in 1978 suggest that within-genotype variation of several characters would be significantly increased by genotype interaction if b the plants were grown in a multi-component mixture. At the the 3 cm spacing, the number of tillers, weight and yield

were affected by genotype interaction, while at the 9 cm spacing, 1000 kernel weight showed an increase in variation (Table 4).

The effect of genotype interaction on estimates of heritability is shown in Tables 21a and 21b for the data from the experiment grown in 1978. Analyses of variance for each interplant spacing, using a random model (Steel and Torrie, 1980), provided the variance components which were used to estimate the values of H² (Briggs et al, 1978). Differences between the two estimates suggest that genotype interaction can lead to higher estimates of heritability, in particular for the characters weight, yield and kernels per plant. This observation supports the idea that H² is not allways a reliable predictor for the ease with which a character can be inproved through selection.

9.3 Effects of interplant spacing on single plant selection

The within-genotype variation for several characters of plants grown in monoculture increased significantly with an increase in spacing (Table 4). The mean variation of the four genotypes, when grown in mixture, increased significantly with the increase in spacing for all characters, except kernels per head and components of height.

1

This suggests that identification of superior genotypes would be more successful at the 3 cm than at the 9 cm

1-4

Table 21a. Estimates of heritabil. of single plant characters, grown at a 3 cm interplant spacing, as computed from monoculture and mixture data of four genotypes.

> All plants were grown in four-row plots in 1978. The data are from randomly selected plants, which had both neighbours present, and which were harvested at maturity.

Character ²	Heritabi	lity
	Computed from monoculture data	Computed from mixture data
Т	0.57	0.57
н	0.66	0.70
Wt	0.16	0.50
Y	0.35	0.63
К/Р	0.04	0.35
Kwt	0.91	0.94
K/H	0.70	0.83
HI	0.63	0.63
FL	0.88	0.89
Ht	0.83	0.83
ExL	0.01	0.48
HL	0.87	0.90

1. Heritability = $\frac{\text{Genetic variation}}{\text{Total variation}}$

5

Inter Vallation

2. Character abbreviations defined in Table 1. HL - Head length.

Table 21b. Estimates of heritability of single plant characters, grown at a 9 cm interplant spacing as computed from monoculture and mixture data of four genotypes.

> All plants were grown in four row plots in 1978. The data are from randomly selected plants, which had both neighbours present, and which were harvested at maturity.

haracter ²	Heritability		
	Computed from monoculture data	Computed from mixture data	
т	0.0	0.0	
н	0.0	0.32	
Wt	0.48	0.67	
Y	0.50	0.71	
K/P	0.19	0.45	
Kwt	0.97	0.97	
к/н	0.71	0.77	
HI	0.71	0,71	
FL	0.91	0.91	
Ht	0.74	0.74	
ExL	0.78	0.87	
HL	0.87	0.94	

1. Heritability = $\frac{\text{Genetic variation}}{\text{Total variation}}$

r

٦

2. Character abbreviations defined in Table 1. HL = Head length.

spacing, because the genetic variance at the 3 cm spacing and at the the 9 cm spacing is approximately the same, differing only by an amount representing genotype x spacing interaction.

i

Other studies led to different conclusions, however. In an earlier study concerning the same genotypes as were used in the present experiment, a decrease rather than an increase in variation with an increase in spacing was observed for most characters (Kelker and Briggs, 1978). The different results may be partially explained by the fact that in the present study, the difference between the two seeding rates was much larger than in the earlier study. In addition, the distance between rows was larger in the present experiment than in the previous study, resulting in a different neighbour interactions (Harper, 1961; Donald, 1963). It is umilikely, though, that these factors can account for a complete reversal of the effect of an increase in spacing on plant-to-plant variation.

Nass (1980) observed that, while biological yield and grain yield of plants from two spring wheat crosses responded each in a different manner to a ten-fold increase in plant spacing, harvest index of plants from both crosses was less variable at a higher (commercial) plant density. Nass recommended growing plants at commercial crop densities, if plants with high harvest index were to be selected. The commercial seeding rate for the humid Prince

Edward Island environment, however, is more than double the rate used in Alberta.

The fact that different seeding rates as well as different planting patterns were used in the various studies, makes it difficult to compare their results. It can be concluded, though, that an increase in plant spacing does not always result in an increase in plant-to-plant variation. The contrasting results from the two Alberta studies, concerning the same genotypes, suggest that location effects and year effects may play an important role.

The present study showed that mean values of most characters were significantly affected by spacing effects as well as by genotype x spacing interaction effects' (Table 5). This could lead to different results from selection at different spacings (CIMMYT, 1972; Nass, 1980). For this reason, as well as to avoid a possible increase in variation, selection should be practiced at a density which approximates the commercial seeding rate of the region to which the selected genotypes have to be adapted.

9.4 Effects of seed size on single plant selection

The experiments performed to evaluate the effect of variation in initial seed size on plant-to-plant variation, suggested that variation in seed size can be an additional source of error in the identification of superior genotypes.

The number of heads, the number of tillers and 1000 kernel weight appeared to vary with initial seed size, while harvest index and 1000 kernel weight were affected by variations in seed size among neighbouring plants. Thus, the use of uniform seed would reduce the plant-to-plant variation observed in the selection plots.

This has earlier been suggested by Christian and Gray (1941) and by Chebib et al. (1973). However, the sorting of seed should aim for seed of medium size, to avoid selection for large kernelweight. The latter could be an undesirable side effect, because the number of kernels per head and 1000 kernel weight are negatively correlated (Fischer, 1975 ;Jenner, 1979). Reports of studies investigating the effects of selection for increased kernel size on yield are contradictory (Bhatt and Derera, 1973; Rasmusson and Cannell, 1970), while the percent protein in the kernels tends to decline with an increase in kernel size (Röbbelen, 1979). The merits of seeding uniform seed would, therefore, have to be evaluated for each selection program in light of its breeding objectives.

9.5 Suitability of various characters for single plant selection

The, formula for the calculation of heritability shows that the highest values will be obtained for characters which:

a show a large amount of additive genetic variation, and b are little affected by random environmental variation. The previous sections of this chapter explained that, in addition, the best chances for genetic improvement through selection exist for those characters which, in a segregating population grown at a commercial crop density:

are little affected by variations in initial seed size,
are little affected by neighbour interactions arising
from variations in seed size.

- e are little affected by genotype interactions, and
- f have a distribution which is negatively skewed (if the lowest values are to be selected the skewness should be positive).

For most characters, there are one or more factors by which selection is hindered. Estimates of heritability would encompass the factors mentioned in the points a, b, c and d. To what extent H² is biased through genotype interaction effects would depend on the method of calculation (Hamblin and Rosielle, 1978). The effects of non-normality are not accounted for.

Because only homozygous genotypes were used in this study, there is only additive genetic variation, and a hypothetical mixture of these genotypes would be unrepresentative of a segregating population. But the characters measured in this study can be evaluated with respect to the remaining points which determine the efficiency of selection. It then appears that the characters

1000 kernel weight and harvest index did fullfill these requirements best (Tables 4, 5, 12d), and gains from selection could be higher than suggested by an estimate of heritability. Based on the data from this study, the number of tillers, the number of heads and yield can be expected to respond poorly to single plant selection, resulting in less genetic improvement than expected. Of the remaining characters, none had a distribution which would interfere with predictions of gain from selection. Genotype interaction, however, biased estimates of heritability for plant weight, yield and kernels per plant.

It was explained that kernel weight is not always a reliable indicator of yield and may affect percent protein of the selected genotypes. Selection for high harvest index, as an indirect method for selection for yield, however, has shown promising results (Donald and Hamblin, 1976; Fischer and Kertesz, 1976; Bhatt, 1977). The present study gives support to the observation that selection for high harvest index can result in high gains from selection (Bhatt, 1977).

The results from the present study suggest, 'that, in order to evaluate the suitability of a character for selection in early generations, the distribution of this character in a multi-component mixture, as well as its sensitivity to genotype interaction, should be evaluated at a commercial plant density, in conjunction with the estimation of its heritability. The combined information

--- 148 could then lead to a more realistic expectation of the progress which can be made through selection.

10. References

Aitken, Y. (1974). Flowering time, climate and genotype. Melbourne Univ. Press, Carlton, Victoria.

Alberta Farm Guide. (1976). Alberta Agriculture, Edmonton.

- Allard, R. W. (1960). Principles of plant breeding. Wiley and Sons, Inc., New York.
- Allard, R. W. (1961). Relationship between genetic diversity and consistency of performance in different environments. Crop Sci. 1:127-33.
- Aspinall, D. (1960). An analysis of competition between barley and white persicaria. II. Factors determining the course of competition. Ann. appl. B101. 48:637-54.
- Aspinall, D. and F. L. Milthorpe. (1959). An analysis of competition between barley and white persicaria. I. The effects on growth. Ann. appl. Biol. 47:156-72.
- Attinaw, A. (1977). Effects of seeding rates and dates on wheat. M.Sc. Thesis, The Univ. of Alberta, Edmonton, Alberta.

Austenson, H. M. and P. D. Walton. (1970). Relationships

between initial seed weight and mature plant characters in spring wheat. Can. J. Plant Sci. 50:53-8.

Baker, R. J. (1977). Yield of pure and mixed stands of two spring wheat cultivars sown at five rates of seeding. Can. J. Plant Sci. 57:1005-7.

- Bhatt, G. M. (1977). Response to two-way selection for harvest index in two wheat crosses. *Aust. J. agric. Res.* 28:29-36.
 - Bhatt, G. M. and N. F. Derera. (1973). Associated changes in the attributes of wheat populations mass-selected for seed size. Aust. J. agric. Res. 24:179-86.
 - Black, J. N. (1956). The influence of seed size and depth of sowing on pre-emergence and early vegetative growth of subterranean clover. Aust. J. agric. Res. 7:98-109.
 - Black, J. N. (1958). Competition between plants of different initial seed sizes in swards of subterranean clover, with particular reference to leaf area and the light microclimate. Aust. J. agric. Res. 9:299-318.
 - Bradshaw, A. D. (1964). Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13:115-55.

Briggs, K. G., D. G. Faris and H. A. Kelker. (1978).

Efectiveness of selection for plant characters of barley in simulated segregating rows. Euphytica 27:157-66.

- Brougham, R. W. (1958). Leaf development in swards of white clover (Trifolium repens). New Zeal. J. of agric. Res. 1:707-18.
- Busch, R. H. and D. Luizzi. (1979). Effects of intergenotypic competition on plant height, days to heading and grain yield of F2 through F5 bulks of spring wheat. Crop Sci. 19:815-9.
- Chapman, S. R., R. W. Allard and J. Adams. (1969). Effect of planting rate and genotypic frequency on yield and seed size in mixtures of two wheat varieties. Crop Sci. 9:575-576.
- Chebib, F. S., S. B. Helgason and P. J. Kaltsikes. (1973). Effect of variation in plant spacing, seed size and genotype on plant-to-plant variability in wheat. Z. *Pflanzenzuchtg*. 69:301-32.
- Christian, C. S. and S. G. Gray. (1941). Interplant competition in mixed wheat populations and its relation to single plant selection. J. Council Sci. Ind. Res. 14:59-68.

CIMMYT (1972). Report on progress toward increasing yields of maize and wheat. pp. 1967-68. Intern. Maize and Wheat Improvement Center, El Batan, Mexico.

Clark, E. A. (1980). Physiological basis for transgressive yielding in bean-maize intercrops. Ph.D. Thesis, Iowa State Univ., Ames, Iowa.

Clay, R. E. and R. W. Allard. (1969). A comparison of the performance of homogeneous and heterogeneous barley populations. *Crop Sci.* 9:407-12.

- Clements, F. E., J. E. Weaver and H. C. Hanson. (1929). Competition in cultivated crops. Carnegie Inst. Wash.. Publ. No. 398.
- Dārwin, C. (1859). On the origin of species. A facsimile of the first edition. Harvard Univ. Press, Cambridge, Mass.
- DePauw, R.M., D. G. Faris and C. J. Williams. (1981). Genotype-environment interaction of yield in cereal crops in northwestern Canada. Can. J. Plant Sci. 61:255-63.
- Derera, N. F. and G. M. Bhatt. (1972). Effectiveness of mechanical mass selection in wheat. Aust. J. agric. Res. 23:761-8.

Donald, C./M. (1958). The interaction of competition for light and for nutrients. Aust. J. agric. Sci. 9:421-35.

- Donald, C. M. (1961). Competition for light in crops and pastures. In Mechanisms in biological competition. F. L. Milthorpe (ed.). S.E.B. Symp. XV, pp. 287-313. Cambridge Univ. Press.
- Donald, C. M. (1963). Competition among crop and pasture plants. Adv. Agron. 15:1-118.
- Donald, C. M. (1967). The breeding of crop ideotypes. Euphytica 17:385-403.
- Donald, C. M. and J. Hamblin. (1976). The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Adv. Agron. 28:361-405.
- Early, H. L. and C. O. Qualset. (1971). Complementary competition in cultivated barley. *Euphytica* 20:400-409.
- Eberhart, S. A., L. H. Penny and G. F. Sprague. (1964) Intraplot competition among maize single crosses. Crop Sci. 4:467-71.
- Edwards, K. J. R. and R. W. Allard. (1963). The influence of light intensity on competitive ability. Amer. Nat.

97:243-248.

Engelke, H. (1935). Versuche mit Weizenmischsaaten. J. Landw. 83:63-86.

- Evans, L. T. and I. F. Wardlaw. (1976). Aspects of the comparative physiology of grain yield in cereals. Adv. Agron. 24:301-59.
- Falconer, D.S. (1960). Introduction to quantitative genetics. Ronald Press Co., New York.
- Feldman, M. (1974). Wheats. In Evolution of crop plants. pp.120-28. N. W. Simmonds (ed.). Longman, New York.
- Fischer, R. A. (1975). Yield potential in a dwarf spring wheat and the effect of shading. Crop Sci 15:607-13.
- Fischer, R. A. and Z. Kertesz. (1976). Harvest index in spaced populations and grain weight in microplots as indicators of yielding ability in spring wheat. Crop. Sc1. 16:55-9.
- Ford, M. A. and G. N. Thorne. (1975). Effect of variation in temperature and light intensity at different times on growth and yield of spring wheat. Ann. appl. Biol. 80:283-99.

- Frankel, O. H. (1939). Analytical yield investigations on New Zealand wheat. J. agric. Sci. 29:249-61.
- Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. biol. Sci. 9:463-93.
- Hall, R. L. (1974). Analysis of the nature of interference between plants of different species. I. Concepts and extension of the de Wit analysis to examine effects. Aust. J. agric. Res. 25:739-47.
- Hamblin, J. and C. M. Donald. (1974). The relationship between plant form, competitive ability and grain yield in a barley cross. Euphytica 23:535-42.
- Hamblin, J. and A. A. Rosielle. (1978). Effect of interaction between genotypes on genetic parameter estimation. Crop Sci. 18:51-54.
- Harper, J. L. (1961). Approaches to the study of plant competition. In Mechanisms in biological competition. F. L. Milthorpe (ed.). S.E.B. Symp. XV, pp. 1-39.
- Harper, J. L. (1965). The nature and consequences of interference amongst plants. In Genetics today. Proc. 11th Intern. Cong. Genet., The Hague, pp. 465-82.

Pergamon Press, Oxford.

- Harper, J. L.(1977). Population biology of plants. Acad. Press, San Francisco.
- Harper, J. L. and J. N. Clatworthy. (1963). The comparative biology of closely related species. VI. Analysis of the growth of *Trifolium repens* and *T. fragiferum* in pure and mixed populations. J. exp. Bot. 14:172-90.
- Hartmann, R. W. and R. W. Allard. (1964). Effect of nutrient and moisture levels on competitive ability in barley. Crop Sci. 4:424-6.
- Hay, D. A. (1974). A quantitative method for analysing competition where individuals cannot be identified. Aust. J. biol. Sci. 27:133-196.
- Hayman, B. I. (1954). The analysis of variance of diallel tables. Biometrics 10:235-44.
- Henzell, F. L. and I. Vallis. (1977). Transfer of nitrogen between legumes and other crops. In Biological nitrogen fixation in farming systems of the tropics. A. Ayanaba and P. J. Dart (eds). Wiley and Sons. New York.

Heuser, W. (1938). Versuche mit Sortenmischungen von

Winterweizen. Mitt. Landw. 8:5-6.

- Hill, J. (1974). Methods of analysing competition with special reference to herbage plants. III. Monocultures vs binary mixtures. J. agric. Sci., Camb. 83:57-65.
- Hill, J. and Y. Shimamoto. (1973). Methods of analysing competition with special reference to herbage plants. I. Estabishment. J. agric. Sci., Camb. 81:77-89.
- Hozumi, K., H. Koyama and T. Kira. (1955). Intraspecific competition among higher plants. IV. A preliminary account on the interaction between adjacent individuals. J. Inst. Polytechn. Osaka City Univ., D6:121-30.
- Hsu, P. and P. D. Walton. (1971). Relationships between yield and its components and structures above the flag leaf node in spring wheat. *Crop Sci.* 11:190-193.
- Jenner, C. F. (1979). Grain-filling in wheat plants shaded for brief periods after anthesis. Aust. J. Plant Physiol. 6:629-41.
- Jensen, N. F. and W. T. Federer. (1965). Competing ability in wheat. Crop Scl. 5:449-52.

Jinks, J. L. (1954). The analysis of continuous variation in

a diallel cross of Nicotiana rustica varieties. Genetics 39:767-88.

- Kaufmann, M. L. and A. D. McFadden. (1960). The competitive interaction between barley plants grown from large and small seeds. Can. J. Pl. Sci. 40:623-9.
- Kelker, H. A. and K. G. Briggs. (1978). The effects of interaction between genotypes and interplant spacings in simulated segregating rows of wheat. Proc. 5th Intern. Wheat Genet. Symp., New Delhi, pp. 778-86.
- Kendall, M. and A. Stuart. (1977). The advanced theory of statistics. Vol. I. McMillan, New York.
- Khalifa, M. A. and C. O. Qualset. (1975). Intergenotypic competition between tall and dwarf wheats. II. In hybrid bulks. Crop Sci. 15:640-4.
- Kiesselbach, T. A. (1923). Competition as a source of error in comparative corn yields. J. Amer. Soc. Agron. 15:199-215.
- Kiesselbach, T. A. (1924). Relation of seed size to the yield of small grain crops. J. Amer. Soc. Agron. 16:670-82.

- Kira, T., H. Ogawa and N. Sakazaki. (1953). Intraspecific competition among higher plants. I. Competition-yield-density interrelationship in regularly dispersed populations. J. Inst. Polytechn. Osaka City Univ., D4:1-16.
- Koyama, M. and T. Kira. (1956). Intraspecific competition among higher plants. VIII. Frequency distribution of individual plant weight as affected by the interaction between plants. J. Inst. Polytech., Osaka City Univ., 7:73-94.
- Lee, J. A. (1960). A study of plant competition in relation to development. Evolution 14:18-28.
- Lewontin, R. C. (1966). On the measurements of relative variability. Syst. Zool. 14:141-2
- Litav, M. and D. Isti. (1974a). Root competition between two strains of Spinacia oleracea. I. Pattern and processes. J. appl. Ecol. 11:1007-16.
- Litav, M. and D. Isti. (1974b). Root competition between 'two strains of Spinacia oleracea. II. Effects of nutrient supply and of non-simultaneous emergence. J. appl. Ecol. 11:1017-25.

Mather, K. (1961). Competition and cooperation. In Mechanisms in biological competition. F. L. Milthorpe (ed.). S.E.B. Symp. XV. pp. 164-81.

McDaniel, R. G. (1969). Relationships of seed weight, seedling vigour and mitochondrial metabolism in barley. Crop Sci. 9:823-27.

McGinnis, R. C. and L. H. Shebeski. (1968). The reliability of single plant selection for yield in F2. Proc. 3rd Intern. Wheat Genet. Symp., Canberra. pp. 410-415.

Milthorpe, F. L. (1961). The nature and analysis of dompetition between plants of different species. In Mechanisms in biological competition. F. L. Milthorpe (ed.). S.E.B. Symp. XV, pp. 330-355.

Montgomery, E. G. (1912). Competition in cereals. Nebraska Agric. Exp. Stn. Bull. 127.

Morley Jones, R. (1965). Analysis of variance of the half diallel table. *Heredity* 20:117-21.

Nass, H. G. (1973). Determination of characters for yield , selection in spring wheat. *Can. J. Plant Sci.* 53:755-62.

Nass, H. G. (1980). Harvest index as a criterion for grain

yield in two spring wheat crosses grown at two population densities. Can. J. Plant Sci. 60:1141-6.

- Nichiporovich, A. A. (1967). Aims of research on the photosynthesis of plants as a factor in productivity. In Photosynthesis of productive systems, pp. 3-36. A. A. Nichiporovich (ed.), Israel Prog. Sci. Trans., Jerusalem.
- Nuding, J. (1936). Leistung und Ertragsstruktur von Winterweizensorten in Reinsaat und Mischung in verschiedenen deutschen Anbaugebieten. Pflanzenbau 12:382-447.
- Odum, E. P. (1971). Fundamentals of ecology. Saunders, Philadelphia.
- Phung, T. K. and A. J. Rathjen. (1976). Frequency-dependent advantage in wheat. Theor. appl. Genet. 48:289-97.
- Phung, T. K. and A. J. Rathjen. (1977). Mechanisms of frequency-dependent advantage in wheat. Aust. J. agric. Res. 28:187-202.
- Rasmusson, D. C. and R. Q. Cannell. (1970). Selection for grain yield and components of yield in barley. *Crop Sci.* 10:51-4.

- Röbbelen, G. (1979). The challenge of breeding for improved protein crops. In Seed protein improvement in cereals and grain legumes. Vol. I, pp. 27-42. Intern. Atomic Energy Agency, Vienna.
- Rosielle, A. A. and K. J. Frey. (1975a) Estimates of selection parameters associated with harvest index in oat lines derived from a bulk population. Euphytica 24:121-31.
- Rosielle, A. A. and K. J. Frey. (1975b). Application of restricted selection for grain yield improvement in oats. Crop Sci. 15:544-7.
- Ross, M. A. and J. L. Harper. (1972). Occupation of biological space during seedling establishment. J. Ecol. 60:77-88.
 - Roy, S. K. (1960). Interaction between rice varieties. J. Genet. 5:137-52.
 - Rümker, K. von (1892). Über Mengsaat verschiedener Weizensorten. Fuhlings Landw. Z. 41:46-51, 92-7.
 - Sakai, K. I. (1955). Competition in plants in relation to selection. Cold Spring Harbour Symp. Quant. Biol. 20:137-57.
- Scheffé, H. (1959). The analysis of variance. Wiley Publications in Statistics, Shewhart and Wflks. (eds.), Wiley and Sons, New York.
- Shebeski, L. H. (1967). Wheat and breeding. Can. Centennial Wheat Symp. pp. 249-72. K. F. Nielsen (Ed). Modern Press, Saskatoon.
- Shorter, R. and K. J. Frey. (1979). Relative yields of mixtures and monocultures of oat genotypes. Crop Sci. 19:548-53.
- Shut, W. M., C. A. Brim and S. A. Usanis. (1968). Intergenotypic competition in plant populations. I. Feedback systems with stable equilibria in populations of automous homozygous lines. Crop Sci. 8:61-6.
- Simmonds, N. W. (1962). Variability in crop plants, its use and conservation. *Biol. Rev.* 37:442-65.
- Sneep, J., B. R. Murty and H. F. Utz. (1979). Current breeding methods. In Plant breeding perspectives. J. Sneep and A. J. T. Hendriksen (eds.), Pudoc, Wageningen.
- Sokal, R. R. and F. J. Rohlf. (1969). Biometry. Freeman and Co., San Francisco.

163

٠.

- Somerville, S. C. (1977). Yield and maturity estimates in cereals. M.Sc. Thesis, The Univ. of Alberta, Edmonton, Alberta.
- Sprague, G. F. and L. A. Tatum (1942). General vs. specific combining ability in single crosses of corn. J. Amer. Soc. Agron. 34:923-32.

6.

- Steel, R. G. D. and J. H. Torrie. (1980). Principles and procedures of statistics. McGraw-Hill, Toronto.
- Suneson, C. A. (1949). Survival of four barley varieties in a mixture. Agron. J. 41:459-61.
- Syme, J. R. (1972). Single-plant characters as a measure of field plot performance of wheat cultivars. Aust. J. agric. Res. 23:753-60.
- Trenbath, B. R. (1974). Biomass productivity of mixtures. Adv. Agron. 26:177-210.

Trenbath, B. R.(1975). Neighbour effects in the genus Avena. III. A diallel approach. J. appl. Ecol. 12:189-200.

0

Trenbath, B. R. and J. L. Harper. (1973). Neighbour effects
in the genus Avena. I. Comparison of crop species. J.
appl. Ecol. 10:379-99.

164

- i i

- Troughton, A., W. J. Whittington. (1968). The significance of genetic variation in root systems. In Root growth, Proc. 45th Easter School in Agric. Sci., Univ. of Nottingham, pp.296-313, W. J. Whitington (ed.).
- Wiebe, G. A., F. C. Petr and H. Stevens. (1961). Interplant competition between barley genotypes. In Statistical genetics and plant breeding, pp. 546-53. W. D. Hanson and H. F. Robinson (eds.). Publ. 982, Natl. Acad. Sci., Natl. Res. Counc., Wash. D.C.
- Williams, E. J. (1962). The analysis of competition experiments. Aust. J. biol. Sci. 15:509-525.
- Wit, C. T. de (1960). On competition. Vers1. landbouwk. Onderz. Ned. 66:1-82.
- Wit, C. T. de (1961). Space relationships within populations of one or more species. Mechanisms in biological competition. F. L. Milthorpe (ed.). S.E.B. Symp. XV, pp. 314-329.
- Yates, F. and W. G. Cochran. (1938). The analysis of groups of experiments. J. agric. Sci. 28:556-80.
- Yoda, K., T. Kira and K. Hozumi. (1957). Intra specific competition among higher plants. IX. Further analysis of

 the competitive interaction between adjacent individuals. J. Inst. Polytech., Osaka City Univ., D8:161-78.

٠

Ξ.

.

11. List of Appendices

Appendix

Page

- Mean monthly temperatures and precipitation near the test sites, for the growing seasons of 1977, 1978 and 1979, and the long term averages...17.1

- 6. Descriptive statistics of characters of plants, grown in monoculture and in mixture at various interplant spacings, measured at maturity in 1977....177
- 7. Descriptive statistics of characters of plants, grown in monoculture and in mixture at two

interplant spacings, measured at maturity in 1978....214

- 10. Descriptive statistics of characters of plants, grown in monoculture and in mixture, in machine seeded plots, measured at the flowering stage, in 1978
- 11. Descriptive statistics of characters of plants, grown in monoculture and in mixture, in machine seeded plots, measured at the middough stage, in 1978

12. Variation in thousand kernel weights among the seed classes used in 1979.....239

13. Descriptive Statistics of characters of plants from large, small and mixed size seeds,

169

×

19. Performance of mixtures in each of the three years, containing specific genotypes, as expressed by the Array mean yield, the average Mixture Efficiency, and the General Combining Ability......262

170

•

.

.

Appendix 1. Mean monthly temperatures and precipitation near the test sites, for the growing seasons of 1977, 1978 and 1979, and the long term averages.

A. Edmonton

Month	Тег	peratu	re (°C)	I	Rainfal	1 (1111)
	1977	1979	Long term average ¹	1977	1979	Long term average
Мау	11.8	8.7	10.9	134	38	37
June	15.6	14.9	14.7	11	63	75
July	15.6	17.8	17.5	107	122	83
August	13.4	16.5	15.9	91	39	72
September	9.6	12.9	10.9	40	22	36

B. Ellerslie

٦

Month	Temper	ature (C)	Rainf	all (mm)
	1978	Long term average ²	1978	Long term average
May	10.5	10.5	59	47
June	16.0	14.0	38	84
July	16.5	16.0	114	85
August	14.5	15.0	94	68
September	12.0	10.0	34	36

- 1 Average of 99 years. Information obtained from the Annual Meteorological Summary for the Edmonton Municipal Airport, issued by Environment Canada, 1980.
- 2 Average of 17 years. Information obtained from the Department of Geography, Division of Meteorol gy, 1980.

/

•	Fertiliser ¹	1	(kg/ha)		Herbicide	
Location	Z	٥,	ĸ	Trade name ²	Growth stage	Rate of application
Edmonton 1977	14	34	0 7	Buctril M	3-5 leaf	237 m/hđ
Ellerslie 1978 -	14	34	0	Avadex	. N. A. 3	13.6 kg/ha
	¢			NCPA-K	3-5 leaf	237 mľ/ha
	;			Banvel	3-5 leaf	44 ml/ha
Edmonton 1979	5.5	14	•	Avadex	N. A.	
 Actual amounts N, P and broadcast application; 	N, P an cation;	d Kapp appli	lied, deriv ed two week	Actual amounts N, P and K applied, derived from granular mono ammonium broadcast application; applied two weeks before seeding and incorpora		14.2 kg/ha
2. Active ingredients:						14.2 kg/ha bhate (NH4K2PO4) i r disking.
Buctril M: Avadex: MCPA-K:	ints:					14.2 kg/ha phosphate (NH ₄ K ₂ PO ₄) in a ted by disking.

U

Ċ

٦

3. N. A. = not applicable.

1

172

4

Appendix 2. Details regarding fertiliser and herbicide application to the 1977, 1978 and 1979

Appendix 3. Agronomic characters of wheat genotypes in the study.

•,

١

			Tiller number	1000 kernel
Genotype	Maturity ¹	Height (cm) ²	per plant ³	weight (g) ⁴
Pitic 62	9 +	85	4.5	36.7
flenleg	8+	108	2.6	44.6
	-	101	4.5	33.4
Neepawa	0	102	No data	32.9
70M110001 ⁵	+3	16	No data	44.2
70M009002 ⁶	*	86	3.3	42.8
No rquay	4	82	3.4	36.6
NB 701.7	+1	108	No data	43.0

1. Number of days earlier or later than Neepawa (Attinaw, 1977).

2. Attinaw; 1977

- Average of 1978, 1979 tests, plants 3 cm apart in rows 30 cm apart З.
- 4. Average of 1977, 1978, 1979 seedlots used.
- 5. Pedigree of 70M110001 = CIANO S × ((CIANO \times SON-KL REND)8156)

ħ

- 6. Pedigree of 70MD0900 = CIANO S × ((SON 64-Y SOES × G10)INIA'S')
- 7. Data obtained from 1976 Co-op NonBread Wheat Test, Edmonton.

Pedigree of NB701 = ((SON 64-Y 50ES × G10)INIA) × INIA'S' - NAPO

Approved in the second served weight (1000 kwt) and percent germination (% germ) of the seed used

for the experiments in 1977, 1978 and 1979.

	1791		1978	78	1979	6
Genotype	1000 kwt	l germ	1000 kwt	f gern	1000 kwt	1 germ
Pitic 62	34.3	84 .0	, 39.1	<u>89.5</u>	No data	80
Glenlea	42.5	95.0	90 	93.5	44.5	97.5
Park	33.5	6 .0	31.8	0, 66	34.9	
Neepawa	32.1	0.66	33.2	0.66	2.11	
70M110001	35.9	9 8 .0	47.9	(C.70
70M009002	33.6	92.0	0		40.9	0.66
Norquay	35.8	88.5	36.6		5 F	2.04 2.05
NB 701	38.9	98.0	43.1	85.0	47.1	91.0

•	Associate		P1	ants pe	r treat	ment		
Genotype	Genotype	204 ¹	124	69	44	28	17	10
Glenlea	Glenlea	11	14	13	1,3	15	13	8
	Neepawa	7	7	7	6	5	7	:
	70M110001	6	7	8	5	5 _2	-	4
	70M009002	9	-	10	΄ 5	5	o -	
	NB 701	÷	7	7	5	- 4	0	
Park	Park	6	14	12	11	15	13	1
	Neepawa	-	5	6	-	-	, +	
	70M110001	7	8	-	-	-	-	
	70M009002	6	7	7	8	7	6	
	NB 701	6	7	7	9	7	· 7	
Neepawa	Glenlea	7	10	7	8.	. 6	7,	
	Park	÷ ,	7	7	-	-	-	
	70M110001	6	-		-	-	-	
	Norquay	-	-	-	-	6	7	
	NB 701	[•] 7	6	6	9	7	6	
70M1 1000 1	70M110001	16	10	10	11	12	8	
	Glenlea	6	6	6	7	-	-	
	Park	8	6	+	• -	-	-	
	Neepawa	5	-	-	-	-	-	
s ·	NB 701	-	-	. 7	9	-	-	•
70M009002	Glenles	5	7	6	5	5	6	-
	Park	7	6	6	-	6	~ 8	•
	NB 701	6	9	6	7'	7	8	1
Norquay	Norquay	-	6	6 '	7	- `		- (
	Neepawa	-	-	-	-	8	7	4
	NB 701	9	6	-	, =	-	-	
NB 701 🏓 👘	Glenlea	-	6	6,	5	• •	-	-
	Park	<u>58</u>	6	• _	5	6	7	
	Neepawa	7	7	7	7	7	7	
	70M110001	-	-	- 5	6	* ÷	-	
	70 0 9002	5	5	6	8	5	5	
	Norquay	5	8	-	-	-	5	

Appendix 5. Number of plants available Per treatment, from the density, for analysis of the wheelplot experiment, grown in 1977.

1

1. Plant density (plants/m²)

2. Less than five plants available

Appendix 6. Descriptive statistics of characters of plants, grown in monoculture and in mixture at various interplant spacings, measured at maturity in 1977.

1

`•

•

.

.

177

.

. .

•

ţ

			-					
APPENDIX &				•3/16/	82 -		PARE 7	
FILE WP77		ATE = 03/18/82:						
	• • • • • •							
CRITERIAN VARIAN		PLANT HEIGH	T CM					
		CULTIVAN						•
	BY SPAC	INTER-PLANT TREATMENT	SPACING	,				-
						•		
44F - 48. E								
	000	VALUE LAVEL	3 UM	MEAN	STD DEV	VARIANCE		
FOR ENTIRE POPUL	ATION			93 8-98		282 4870	. 1041	
		•				242 4470		
Cu.	,		7078 . 0000					
5+40		204 P. ANTS W	2885 0000	1 2 29 17	8 8044		182	•
C 0 ++ +		MONDEULTURE	150 0000	3 6364	Q 1 0748	122 6504	24	
COMP	· · •	MITTURE	445 000C	531	8 '87c '3 2908	88 4845 178 8410	13	
		-						
SPAC	2	3 CM SPACING	3882 0000		8 8825	88.8521	. 25	
COMP	r	MONDCULTURE	1886 0080		15 0018	228 0848	3.	
COMP	2	HINTURE .	2426 0000	15 5238	3 8810	15 0519	21	,
6 P A C	3	. CH SPACING	3897 0000					
COMP	-	MONDCULTURE	474 9000	3479	9 2417		35	
COMP	. 1	MINTURE	3423 0000	10 13646	3 4244	11 7584	13	
	-				11 2807	127 4867	· 22 ·	* 1
SPAC	. 4	44 PLANTS H	3232 0000	111 4483	. 7447	78 4784	28	
C 9947	1	MONOCULTURE	1442 0000		2 \$820	6 6667	13	
COMP	2	MITTURE	1780 0000	101 3780	2778	121 1833	1.	
5 P A C	-			•				
Campus	8	28 PLANTS M	2233 0000	11. 1500	4 2212	17 8188	201	
COMP	-	MONOCULTURE	1863 0000	110 8467	3 7007	13 8982	15	
	2	MIXTURE	580 0000	112 0800	5 9882	35 6000 .	· ·	•
SPAC	6	T PLANTS H	2202					
COMP	•	MONSCULTURE		110 1000	\$ \$\$30	32 4105	20	
COMP	,	HINTURE	1440 0000 751 0000	116 7892	5 5995	3 3880		· /
	-			101 417:	E 0845	37 1428	×	<u> </u>
5 P A C	,	TO PLANTS M	2050 000c	107 8847		74 3216		
COMP	· · ·	MENOCULTURE	874 0000	101 2800	5 3345	28 6000		

.•		' e			*3/18/	• 2	
,	TALVE LADEL		5 um				VARIANCE
		1176		108			
	PARK 204 Plantë m Monoculturë		••••	<u>.</u> 7	7206 7200 1867	7 3821 7 8877 8 7417	64 6627 66 3767 22 8667
	MISTURE	1836	****			7 2864	62 8013
	3 CH SPACING	3984			4390		41 4024

.

ţ .

٩

CUL	3	*	10818			7285		3821			,	207 -
SPAC	1	204 PLANTS H				7200	7			3787	4	241
* C (part #	•	MONOCULTURE			181	1887		7417	31		٠	
COMP	3	M] # 7 UA B	1836	****			,	2864	6 2	8013	'	181
	3	3 CH SPACING	3984			4399		• 3 3 3		4834		411
CONP	,	MONOCULTURE	1383	****			10		113	2487		141
C 8444	1	m 1 x 7 v# 2	2661	****			•	4+31			t	27:
SPAC	3	S CH SPACING	3188					.737	24	7418		33 -
Comp	. 1	MONOCULTURE	1230		102		4	2060	1.4	4646	,	1.2
Comp	1	MIETWÄE	1034					3816	1.8		1	201
8 9 40		AA PLANYS H	28.84					1334		7726		28.
COMP	1	MONOCULTURE	1053			3434	. A		1.0			111
COMP	2	M X 7 V2 C	1883		. 83	7059	•				•	171
SPAC .		28 PLANTS M	2818				3	7410	13			28 -
C BHAP '	•		1488			2887	3	1278		7818		181
C 910 P	2	MIETWEE	1366	,		4871	4	. 1 7 7			+	141
8		17 PLANTS H				1834			4.		+	20 -
C Bee P	1	MONOCULTURE	1182				7	6418		3874		13.
C 0117	3	MIXTURE	1204		. 3			1717	34		1	13
8#AC	7.	10 PLANTS H	2384					1288	37	\$345		28 -
C (1911 P	١,		1185		1	1838		1080	37	3077		13
C 041 P	3	DIXTURE	1188				•	3341	40			131
ÊWL	•		12488			****			78	344.0	*	1211
BPAC	1	204 PLAN75 M	1984		5.8	4000		3384				20 -
C 844 P	2	MIXTURE	1804				•	3744	**			30 -
8 P AC	3	3 CM SPACING	2346			2174	1.	2845	185	3897.5		23 -
C BHIP	3	MINTURE	3348	. 0000	100	2174	1 I O	2848	105	3507	+	23)

ĸ

ł

.

....

2

٤,

APP20011

1

æ

03/16/83 **** C e

ARIABLE	C	VALUE LABEL		S UM		MEAN	87	D BEV	VAR	IANCE		
SPAC	3	S CH SPACING				8000				8318	1	201
C 044 P	2	MIKTURE	1838	0000	••		•	0518		8318	(201
SPAC	· •	44 PLANTS M	1818			1768	10	8872	120	2784	4	* 171
COMP	2	MIXTURE.	1818	0000		1768	10		120	2784	4	171
8 P.A.C		28 PLANTS M	1879			25.32			23	3168	,	18.
COMP	i	MINTURE				2832				3158	ì	
	_											
BPAC		17 PLANTS M		0000				2827		2211		20)
C 0417	. 2	MIFTURE			• 1	8000	•	2627	34	2211	ł	20
SPAC	•	TO PLANTS M	1084					7330	45	3333		12 -
COMP	2	MIETURE	1064	0000		***7		7330	45	3333		12.
					76	1301	10		117			144.
SPAC	ĩ	204 PLANTS M	2831			40.00		4578				36 .
COMP	· · · ·	MONOCULTURE	1213			4124		7760		3828		
C 844#	29	WINTURE	1424	0000	76	0 \$ 7 \$	13		184			1.
SPAC	,	3 CH BPACING	1878		74	3142						22.
2 0007	ī	MONDCULTURE						2895		4000	i.	1.
E 9449	3	MINTURE		0000		8433		4680			- 7	121
SPAC	3	. CH BPACING	1780			0470		3816		8103		231
C 0417	5	MONOCULTURE		0000				4304		2111	- 1	101
· C 044P	,	HISTURE -	1041			0788		1088		0788	-	1.1
	•				••	••••						
SPEC	* #	44 PLANTS H	2051					8817		\$498		27.1
C 0447	1	MANACULTURE		0000		7273		7481		0182		11.
Comp	2	MLXTURE	1.855		7.8	6250	12	8853	160		. 1	181
SPAC .		28 PLANTS M			70	3333	•	2923		4247	· .	12.
C 044P	i	MOMOCULTURE				3333		3973		4 2 4 2		131

179

...

2

-

FUOR CUPY

÷

COPIE DE QUALITEE INFERIEURE

APPENDIN .				1 02/10/	42		PARE S
CRITERIEN VARIABI	L# #7			-	-	-	
		VALUE LABEL	5 UM		570 BEV		•
SPAC Comp	•	17 PLANTS M	*** ****	70 (200 70 (200	4 2408 4 2408	17 8821 17 8821	
8*AC 1 COMP COMP	7 1 2	IO PLANTS M Monoculture Mieture	1423 0000 680 0000 783 0000	74 4947 73 3333 78 3000	6 1711 3 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	46 7881 8 3888 123 3444	194 93 93
CUL BPAC C B MP	, , , , , , ,	7 0 0000002 204 plants m Nixture	1486 8880 1486 8880	77 8188 82 8888 82 8888		** 78'8 123 3038 133 2038	2
5 ° A C C DM P	2	3 CH BPAČINÉ Hieturg	· 728 · 0000 · 738 · 000	78 8488	7 0287 7 0287	48 4075 48 4075	111
· SPAC Comp	3 2	S EM SPACING Minture	1447 0000 1447 0000	80 3889 80 3888	7 2772 7 2772	52 6575 52 6575	184 184
- SPAC Comp	4 7	44 PLANTS M Mizture	888 0000 888 0000	4 82 4187 48 4187		77 7187 77 7187	12: 1.12:
SPAC. Comp	6 2	28 PLANTS M Mixture	1314 8888 1314 8888	73 0000 71 0000	8 4772 8 4772	30 0000	1 1 1 1
SPAC Comp	;	17 PLANTS H Hitture	1000 0000	76 4848		46 1845	12) 12) A
BPAČ Comp	, 3	IN PLANTS M MIXTURE	1870 0000 1870 0000	74 7818 74 7818 R	7 2450 7 2450		31
C W L 8 P A C C 800 P	7 1 2	HORQUAY 304 Plaute m Misturi	5371 0000 733 0000 733 0000	77 8408 81 8444 81 4444	8 8180 × 2 7888 2 7888	41 1884 7 7778 7 7778	t ∎∎ i t ∎ i t ∎ i
BPAC Comp	2	3 CM SPACING Møndeulture	113 0000 173 0000	78 4187	3 3438	11 1742 18 5667	121

C

C B

C 844 P BPAC CBMP 87AC C 8447 BPAC COMP 5 P A C C DMP

COMP

CUL SPAC Comp 8 P A C C OMP 8746 C 000P SPAC Comp

SPAC EBMP

SPAC COMP

APPENDIE 6

5

2

. A N /R E 28

18-18-

24 -

					03/16	/ # 2		P &	68 [°] 6
 H T	•								
	VALUE LABEL		S ute	·	MEAN	570 BEY	- VARIANCE		N
2	-	480				2 + 3 3 2	13 2000	,	•
3	- 5 CH SPACING		****		3333	• ;;;;	27 4887 27 4887		8 i 8 i
;	AA PLANTS M Meneculture		0000 0000		* 7 1 4 3	7	81 2381 87 2381		77
5	38 PLANTS M Mixture		0000 0000		2600 2600	: ; ;;;A	63 6436 63 6436	1	
5 2	17 PLANTS M Mixtury	1141			0887	5 2436 5 2435	37 4867 27 4867		156 158 -
?	10 PLANTS M Mønsculturf		0000		8167 4333	7 3788 3 8880	84 4470 13 3687	•	12.
 2	MINTURE		0000		0000	10 2176	104 4000		•
	NB701 204 PLAN75 M	18288			3888	8 4159 7 4728	11 1.35	:	183 - 28 -
3	MINTUNE	2782	••••	110	4400	7 4728	** **33	4	28 -
2	3 CM BPACING Minture	3830 3830			3126	\$ \$430 \$ \$430	81 8347 81 8347	•	32
	S CH SPACING Minturg	2622			2500	6 2760 6 2780	38 4130	¥.	24 :
	AA PLANTS M	3244			****	7 7848	10 2000	;	311
1	MINTURE	. 3244			0000	7 7845		i,	31

105 2333

88 2083 88 2083

1888 0000 1888 0000

3381 0000 2381 0000

1 1457 1 1457

10

41 BB

113 7373 113 7373

ł

1

180

FOOR COPY Copie de qualitee inferieure

٩,

181

n a same n se j

APPENDIS 0 CR LITERION VARIABLE, NY PAGE

VARIABLE	6001 [°]	VALUE LABEL	g una	mê-a p	 		w
A.	7 2	10 PLANTE M Mixture	2811 0000	88 8318 88 8318		;	20; 20;
TOTAL CABED + MIBBINE ÇABES -	1080 31 88	3					

APPENDIE .		x			
	•		. 03/18/#2	PARE	
FILE WP77			*		
	sevine poit :	03/15/0X.			•
CRITERIBH VARIABLE	- FL	ELANT OF THE FLAG LEA		 	•
BROKEN BOWN BY	CUL (ULTIVAR			
# v	SPAC	NTER PLANT BPACING			
B Y		REATMENS		•	
* * * * * * * * * * *		in the state of th		 	
VARTABLE					

		VALUE LABEL	` .	E UM		MEAN	570 D	E v	VAR	TANCE		, #	
POP ENTINE POPUL	LATION		27001		38	3063	7 81	72		1088			
CUL	2	GLENLEA	7181			3482	,						
SPAC	1	284 PLANTS M		0000		476c	4 03			1888		182 -	
COMP		MONDEVLTURE				3636	3 77			2880		241	
COMP	2	MIXTURE		0000		44 15				2845	. *		
	-			0000			4 38		1.8		÷ .	131	
SPAC .	7	3 CM SPACING	1400										
COMP	ĩ	MONOCULTURE		0000			4 4 7	1.5		0000 .		36 -	
COMP	2	MISTURE				\$714	\$ 03			3407	1	141	
	•				40	** 2 4	3 49	20	15	1876	•	21	
#PAC	2	. CH SPACING		0000									
· Comr	ī	MONOCULTURE		0000		8428				8261	1	26 1	
Camp	2	MIXTURE				8482	13 84			4744	r	131	
	•		• 3 7		37	8182	4 34		18	8177	,	22	
8745		44 PLANTS M											
C 0447		MONOCULTURE		0000		6863	. 7 18			8227	۰.	28 /	
COMP	-	MINTURE		0000		6154				8887	4	121	
	4		• 3 3		38	8626	1 03	24	26	3202	1	14 -	
COMP	•	TO PLANTS M				3500 -	7 841		63	1888	+	20 -	
COMP	1	HONSCULTURE		0000	3.0	8000	8 8 2 1		74	3143	+	18.	
	2	MINTURE	210	0000	47	0000		12	35		1		
8 PAC													
		17 PLANTS M		0000	3.8		8 240		27	4832		20 -	
COMP	1	MONOCULTURE	501	0000	34	8385	8 344			1021		13	
COMP	2	MIXTURE	277	0000	38	8714	1 34			8824	1	,	
									••			• •	
8 # A C	7	10 PLANTE M	732		34	****	4 812		3.0	3743		1.0	
Comp	1	MONOCULTURE		0000		3780	5 262						
									37			♣ +	

. OUN CUPI

4 巒

COPIE DE QUALITEE INFERIEURE

APPREDIX					0321678	87 ·		PA8E 8
CRITERIAN VARIAS	LE PL			•				
VARIABLE		VALUE (LABEL		فنج	41Ê A B			•
C 844 P	2		435 000				17 2848	4.4.2
281	,			• •	1 1003	8 2828	27 8788	. 207)
SPAC	1	5 4 PLAN78 H	- iss +++			8 3343	48 1233	· 28.
COMP	1		286 886	. 4	2 8887	3 8434	12 2887	• • • • •
COMP	3	MIXTWRE	743 000	• 3		8 8487	48 8773.	9 9 9
8740	1	2 CH BPACING	1007 000				27 1939	411
C 844.P	ī			1 0 4	2 1428	4 8882	24 8834	14 F
CBMP	1	MITTURE	1023 000	• •			27 .2	271
8745	,	. CH BPACING	1318	• •	1 1280	5 4875 5	30 1125	
Cally	1	MORDEVLTURE	120 000		3 3333	3 2447	8 1818	1 121
COMP	3	MIXTURE	784 686	io i 1			41 2211	20
8 P AC	•	44 PLANTS M	1177	1 0 4	2 038 -	4 1783	38 1838	2.4
COMP	,	MOMOCULTURE	488 999	ia 4	4 3636	3 8800	18 0845	· 21
E BINP	2	NIX7988		• •		8 8821 s	44 4487	1 171
8745		28 PLANTS M	1261 000		3 4828	3 #248	18 4818	29 -
C	,	MONDCULTURE		1 0 4	3 3333	3 8884	18 3524	- *# *
C	2	MITTURE		ie 4	3 8+29	4 1261	17 0188	7 8 -
8745		17 PLANTS H	1451 444		o 423 1	3 8311	18 4538	281
C 000 P	1	MENSCULTURE	132 004	10 A	• • • • • • •	4 2817	18 8768	- 13)
COMP	1	MIITURE		• 1		3 8447	12 \$788	- 1 2 -
SPAC	,	10 PLANTE H	1005 000		4 7692	3 8284		1 241
C 844P	1	MONOCULTURE	612 000		8 3846	4 7878	33 8331	- 13 P
C 844 P	3	MITTURE		·• _ /•	. 1538	2 8 8 8 2	* **77 L	a 13-
	•	700000001	·		4 1994	2 2 444	31 8839	1 1311
SPAC	,	204 PLAN75 H 1	105 000		4 7888	4 9329	84 8133	201
CBMP	. 1	MIETURE		io 3	4 7588		84 8132	1 20 1
SPAC	1	3 CH BPACINE	742 000		4	4 7883	22	1 231
C BHP	3	M [X 7 69 8	782 800	• 1		4 7882	12	231.2

						1				· \	-		а <u>а</u>	m
		,									\nearrow		۰.	
APPENDIX 4						+3/14	/**	•	t i				. (PARE 10
CRITERION VARIADI	LE PL													
VARIABLE	CODE	VALUE LABEL		5 UM		MEAN		8 T D	BEY		¥ 88			· •
SPAC	,	. CM SPACING	710			1.000			3518		40	4737	,	20)
COMP	2	MITTURE						ě.	3618	÷	40	4737	1	201
8 7 40	•	44 PLANTS M			33	6471			#733		47	2428	,	17.
COMP	2	MINTURE			22				8733		47	2426	'	17.
S SPAC		28 PLANTS M				8421			4003			3620		101
C 9MP	2	MINTURE			33	8421		4	4003		1.	3676	'	1.
SPAC	•	17 PLARTE H				7800						4101	1	30 · 20 ·
C BHP	2	MINTURE		****		3100		,	****		_			
3 P AC	7	10 PLANTS M	421	0000		0633						8016		12 -
COMP	2	MINTURE	421	0000	36	0833		3			18		,	121
CUL -		NOROUAY		0000					2005			0447	,	1481
SPAC	1	204 PLANTS M				0000			3260			7058	;	25/
CBMP	1	MONOCULTURE				8128			2017			2984		
COMP	2	MITTURE	876	0000	10	3184		•					,	-
BPAC	. 2	3 CH SPACING		0000	29	4545						6 CO 7	,	32)
COMP	1	MONDCULTURE	304						8238	~			1	101
CBMP	2	MITTURE	340		2.8	3333			3811		78	2424	1	12)
BPAC	7	S CH SPACING				4522						7826	4	23
8-8449	+			****		4000			32.94			3111		101
COMP	2	MIXTURE	414	0000	31	8482		4	0783		1.	8410	,	131
SPAC	٠	44 PLANTS M		0000					:12			3200	1	(10)
C 844 P	1	MONOCULTURE				7800			12 7 7			4585	:	(10)
COMP	2	MIETURE	481		30			•	7888		78	** 7 %	•	N
SPAC		28 PLANTS H				4333				L			!	131
COMP	1	MONOCULTURE	368		21	4333		4			31	8081	1	121

.

183

APPENDIK 4			•	,			• 1	,	-	
	ABLE FL									
VARIABLE		VALUE LADEL		5 641				VABIANCE		٠
SPAC	· • •		269			3750	4 4701	18 8821		
C 0407	- I	MONOCULTURE	28.0	****	33	3760	4 4781	18 8821	'	
SPAC	7	TO PLANTS M			31		3 4489	11 8847		18.
C BHIP	,	MOBBEVLTURE					1 8028	3 3600	1	
C 944 P	, 1 , 1	MIXTURE	317	****	31	7880	4 8717	20 8000		1.
		7 0M00 3 0 0 2	3409		26		8 3126	28 2228	(131
SPAC	,	204 PLANTS M		****		3488	1485	28 4888	•	18
COMP	2	MITTURE			28	3441	8 1488	28 4488		
5 P & C	. 1	3 CH SPACINE	4 8 3		28		4 8883	22 0485		2 2
C 904P	2 *	MINTURE	8 8 3		26	****	4 \$463	22 ****	'	21
spat	,	. CH SPACING			"		* ## 23	83 3987		
COMP	2	NIETURE	4 8 8		27	** * * *	7 8823	43 3447		1.8
		44 PLANTS M	304	0000	25	3333	8 3880	40 4347	r	1 2
Comp	1.	MIETURE				3333	1 3514	40 4242		1 8
						· 2 2 2	3 3121			
8 P A C C 0111 P	1	MINTURE				· · · · ·	3 342 *			1.
					••	7273		18		
8 P A C C 844 P	4	17 PLANTS H Hizture				7273	4 0022	18 0173	ì	11
	•									_
SPAC	•	TO PLANTS M				9044	4 8260 4 8280	21 2965		21
C 8449	· 1	M X T UR 2						2	•	
CUL	,	NOROUAT	1883			3043	4 5100	21 0878	1	
SPAC	1	204 PLANTS M				* * * *		41 8111	•	;
, COMP	2	MIŞTURE	271		30	* * 1 *	8 4807	• • • • • •	•	•
SPAC	2	3 CH SPACING				4 7 8 7	8 1778	28 4106	ſ	12
COMP	1	MONOCULTURE	182		27		2 4485		(•

.

APPENGIE +						03/1	*/*2					PA68	•
CRITERION VARIAS	ILE PL												
	CODE	VALUE LABEL		5 UM		-							
VARIABLE	CODE	VALUE LAUEL		3 V P									-
COMP	2	MIXTURE	178		28	*333		•	8402	4.8	1887		
BPAC	• 3	a de spacine	162		26	3333		3		14			
COMP	- ;	MONSCULTURE	162		76	3333		3		14		'	•
#PAC	4	44 PLANTE M	182			4288			1492				7
COMP	1	" MONDCULTURE	182		27	4 2 8 8		2	1492	4		'	7
\$ P A C		28 PLANTS M	255			8750						•	
COMP	2	MIXTURE	255		3 1	875C		4	0861	14		•	
SPAC	• .	17 PLANTS M				2000			7284			•	16
COMP	2	MISTURE	408		27	200C		3	7284	ני	8887		, 18
SPAC	. 7	10 PLANTS M		0000							6162		12
COMP	1	MONECULTURE		0000		8000			8341		7000	•	
COMP	2	HISTURE	183		27	1887		4	6360	20		•	•
CUL	· •	N#701 '		0000		2188			8731		2397		183
SPAC	1	304 PLANTS M				8 2 0 0			0784		7800	•	14
C 844P	2	MIXTURE	813		34	\$ 300			0754	24	7880	•	**
	2	3 CH SPACING	1207		37	7188			0178		1784		33
C OMP	2	MIXTURE	1207		37	7188			0176	28	1784	1	33
SPAC	2	. CH SPACINE			40			4	2781	18	3028	1	24
C gally	• 1	MINTURE		****			~	4	2781	10	3425	•	24
5PAC		44 PLANTS M	1 2 2 2		3.	4194		12	1378	147	3183	(31
C 914P	2	MINTURE	1222	0000	3.8	4194		12	1 2 7 8	147	3183	•	31
	_	*3	• • •		••				4788				
SPAC	6 2	28 PLANTS M Mixture		8800 8880		****	• •		4798		0261		
COMP	2		/ 1 4	4444			,	•		-			
SPAC		17 PLANTS M	800		37	8000				47	0435	•	- 24

1

.

,	÷,	-			<i>,</i>		•		184	-
×	APPENDIA C CRIVERION VARIABLE VARIABLE BPAC	PL CB08 7			£ 000	43/14/67 MEAN 1 27 4276	нув. нуч. 	1 3631 1 3631	PARE 13	1
÷	COMP YOTAL CASES + MIBBING CASES -	3 1980 22 84		1007	č	17 4176		18 2021	* 391	
	•		¢				c ,	:	•	1
	1						e e and was a		N	
•	•		-				•	1	, • •	
	••	•	۰ ,	مەرى	:	?	•	•	, ·	•
·~••		:	*		•	•	•			-
2				-	н. С		, Pr	٩.		f
			:	•	•		t		·	
		1 des		r		?		• •	- ,	÷.
	а. - С	,					¢	•	:	·
			Ŷ					•	:	

CRITERION VARIAS BROKEN DOWN	LE N	HEADS PER PL Cultivar Inter-Plant				•	£	** •	
	8 Y C 844 P	TREATHERT							
VARIABLE		VALUE LADEL	· · · •		MEAN				
POR ENTIRE POPUL	4 T I,0 N		7821 00	90 / I	2994		28 ****	1 10441	
	2	ELENLEA	1800 00			. 7422	45 4875		
SPAC -	,	204 PLANTS M		êo 1			3 2101	1 241	
C Brite	A! !	. MONOCULTURE	44 00		8800	1 7888	3 3000	1 111	
COMP	2	MIXTURE		00 J	8482		3 4744	13/	
SPAC	1	3 CH BPACING	151 00		4412	1 3988	1	1 341	
COMP	,	MOMBCULTURE	18 80		4818	1 3914	1 8389	- 	•
C OMP	2	MIETURE	83 80	00 .4	4288	1 4343	2 0571	1 211	
57AC	3	O CH SPACING			4457	1 8210	3 3169	e 361	
COMP	1	MONDCULTURE	48 44		7 3388	1 8492	2 6268	4 93 9	
COMP -	3	MIETURE	1 124 00	90 1	8364	1	3 4815	1 11	
SPAC		44 PLANTE M	231		2069	2 2840	1	1 291	•
C 841 P	1	MOMOCULTURE	111 00			1 7814	3 1828	i 181	
C 844 P	3	MIXTURE	127 60	eo 7	8378	2 6 1 8 6	4 4475	1	1e :
SPAC		28 PLANTS M	240				31 3884 1	(20)	
COMP -	1	MONOCULTURE	188 🚜	80 10	8333	4 34 83 Ø	18 8381	(15)	
COMP	*	MISTURE	42 00		4000	7 1274	86 8 000	4 • • •	
BPAC		17 PLANTS M	214 44			. 1000	37 2168 /		
- C 044P	· · ·	MONOCULTURE	202 00		\$345	5 0111	26 8028	1 121	
COMP	7	MIETURE	44 00	00 YI	8718	7 7428	** ****	(7)	
BPAC	•	TO PLANTS M	345 00	DO 20	7895	4 4143	71 8424		
C (111) P	,	Newsculture	161 00	. 70	1280	6 1113	26 1280	· .	

.

185

1

							•			
		•			•		\$2		-	I 1
	E #									
VAR LABLE	C #88	VALUE LABEL		8 VM				VAR LANCE		
C Base	2	MIXTURE			21	2727	10 4794	108 8183	•	• •
CUL .	3	PARE	1337			4993	3 3844	1,1 4708		246
SPAC	,	204 PLANTS M	1.02		•		1 7059	2 9100	(25
COMP	1	MONOCULTURE				****	1 8974	3 8000		
COMP	2	HIZTURE	78	****	4	1053	1. 8982	2 8772	r	1.
SPAC	2	3 CH BPACINE			4		2 3483	8 8497		40
C 000/7	۱	MERECULTURE				****	1 4247	1 5000	•	13
Camb	2	MIXTURE	120		4	4444	2 6945	7	•	27
SPAC	3	. CH SPACINE					2 1877	4 4475		87
Camp	1	MONOCULTURE				1887	1 8994		1	12
COMP	2	HIITURE	105	••••	4	28 840	2 1978	4 8289	1	20
SPAC	4	44 PLANTS M				7867	2 8484	7 2116		2.8
C 000 P -	1	MORECULTURE					2 44+3	8 7638		11
COMP	2	MINTURE	1 1 8		•	7847	2 8867	6 8812	•	17
SPAC		28 PLANTS M				4136	2 1132	4 4885		29
C Bet P	1	MENECULTURE					2 4831		•	18
C BHIP	2	MILTURE	123	****	•	7887		2 7887		•
SPAC	•	STANTS H					8 1748	28 7338	۰.	28
C BHIP	1	MUNACULTURE				3077	3 3363	11 0041	۴.	13
COMP	2	MITTURE	1 1 8	****	•	4482		44 4784	1	13
SPAC	,	TO PLANTS M				7348	4	18 2046	•	2.
COMP	1	MONOCULTURE				2848	4 1841	17 2884		13
COMP	2	MIETURE	118		•	0788	3 8464 /	12 8789	•	13
CU.	٠	7					4	18 0029	•	121
SPAC	1	204 PLANTS M				28.00	2 1491 ***	4 8184	1	20
COMP	1.	MINTURE			4	28.00	2 1481	4 8184	(3.
1*AC 1	3	3 CH SPACING		0000		28.09	1 8638	3 4743	4	23
C 944 - C	2	MITTURE		****	4	2805	1 8430	3 4743	•	- 23

۲

		•					
APPERBIX 8	•			#3/16/	B 2		PA48 18
CRITERION VARIAB	L 🗷 H				. /		
VAR JABLE	C	VALUE LABEL	8 UM		STO DEV	VARIANCE	
SPAC	3	S CH SPACING	128 0000		2 4386	5 9383 4	20)
COMP	1					• • • • • •	
BPAC	4	44 PLANTS M	101 0000	8 8412	1 8834	3 8338 - 4	
E BM P	< 2	MILTURE	101 0000	8 8412	1 8434	3 9336 (*	171
SPAC		28 PLANTS M	182 0000	8 8263	3 4700	12 0405	161
COMP	;	MINTURE	182	4 1243	3 4700	12 0400 (101
SPAC	:.	17 PLANTS M	188 0000	1 2500	3 8984	12 8342 4	201
C 0117	2	MINTWRE	185 0000	8 2800	3 5954	+12,9342 +	24.
5PAC	7	TO PLANTS M	141 0000	12 4187	8 2549	38 1742 4	. 121
COMP	2	MIXTURE	1420000	12 4187	8 2585	39 1742 4	12
CUL	\$	NORQUAY	821 0000		4 8743	20 8240	145.2
SPAC	1 1	TAA LENdin	134 0000		2 0781	4 3237	367
EBMP	1	MBNOCULTURE	83 0000		1 1818	1 3954 /	10 1
	3	MIXTURE	71 0000	3 . 309	2 8424	4 9425 <u>-</u> 1	1
SPAC	2	3 CH SPACING	106 0000	1 0478	1 8021	3 2478 4	21)
COMP	. 1	MONOCULTURE	88 0000	5 8440	2	4 0444 4	110 1
COMP	2	MIXTURE	EO 000 0	4 5455	4 5075	2 2727 (11)
5745 ·			1.04	4 82-17		2 2010 (- 231
COMP	i i	MONOCULTURE	43 0000	4 3000	1 8888	3 5657 4	10
COMP	2	MIXTURE		4 8823	1 2844	1 5841 6	121
SPAC .		44 PLANTS M	200 0000	7 4074	2 8890	- 8 1728 -	27 1
C BRIP	,	MOUSCULTURE			2 9646	8 -8000 (4 111
COMP	2	MIXTURE	112 0000	7. 0000	2 8048	7 8887 (18 -
SPAC	•	28 PLANTS M			3 6760	1.2 7470 .	121
COMP	• •	MONSCULTURE		4 4847	3 \$780	112 7878 4	12.

~

- 186

1

APPENDIN 6						03/18/8	12		•	488 17	
CRITERION VARIAS	618 H										
VARIABLE	CODE	VALUE LADEL		s (jen	•			VAR I ARCE		• 、	
BPAC	•	17 PLANTS H		••••				43 1250			
COMP	,	MONOCULTURE			•		8 8870	43 1360		• 1	
BPAC	7		224		12		7 7488				
E 800P	,	MOBOCULTURE	1.03		11	3333		36 0000			
C 844P	3	MISTURE	. 128	(12	3	8 3367	47 1988	r	1	
CWL		7		****		7834	4	24 0202		121)	
8PAC	•1	204 PLANTS M				3884	1 2887	1 8834		1.8.1	
COMP	3	MITTURE	é 1	****	3	7441 ~	1 2887	1 8834	(140	
BPAC	2	3 58 8745186				7727 \$	1 4774	2 1840		12)	
C 844P	i	MITTURE				7727	4774	2 1840		(12)	
	-										
57AC C 887	3	B CH SPACING Mixture		****		8887 8887	2 0884 2 0804	4 2821		182	
	•		••		•	•••	2	* 2020	•	,	
SPAC	4	44 PLANTS M					2 3484	8 8182		12)	
C BHP	2	MISTURE	80	0000			2 3484	8 8182	۲	12 -	
8 7 4C		28 PLANTS M					3 3271	11		1.8.)	
C BMP	2	MIXTURE					3 3278	11 0752	1	181	
8PAC						4845	4 4327	·			
COMP	\ •	MIXTURE		****		4646	4 4327	20 8488	;	221	
	1				•		• • • • • •	10 0000	'		
SPAC	۰ ،	10 PLANTS M	251		1.1		7 3788	\$4 \$478		21)	
C BHP	2	MINTURE	261		11		7 3780	54 4478	(21)	
. W.L.	,			****			8 7842	33 4888	,		
8 P A C	,	204 PLANTS M				4444	0 8818	. 7778	i		
COMP	2	HITTURE	4.		4	****		. 7778	•	• •	
SPAC		3 CH SPACING				1887	1 9824	3 8887		. 121	
COMP	ī	HANDCUCTORS					2 8294			· · · · · · · · · · · · · · · · · · ·	
					-						

•			.•	
•				

APPENDIK S						+2/10/	49 .			P 84	E 18
CRITERION VARIA	BLE M				•	-		·			
VARIABLE		VAL CAREL		5 UM		MEAN	STD DEV	**			
COMP	2	MIXTURE	32			3333		•	2 2667		
SPAC	3	. CM SPACING	31			1887	2 6 3 8 4	T		•	
C GMP	,	MOROCULTURE	31			1687	2 6394	×	4 9867	•	 •
BPAC	4	44 PLANTS M			7	7143	2 8804		7 2381		
COMP	•	MONOCULTURE	54	0000	. 7	7 1 4 3	2 8804		7 2381	•	7.
SPAC	6	28 PLANTS M					3 4200			t i	
E 044P	3	MIXTURE	\$3	****	• •		3 4244	,		1	
SPAC	•	17 PLANTS M					7 0690			,	181
COMP	2	HIXTURE	174		11		7 0580	4			15
SPAC	7	10 PLANTS M				3333	7 8458		3 1818	,	12
C 844 P C 844 P	. 2	NONOCULTURE Nixture		0000 0000		0000 5557	8 8125 6 7429		2 4880		
	-		-								
CUL	•	NB7+1					4 8882				1811
6 P A C C 000P	2	204 PLANTS M Mitture		0000 0000		1800	1 2477 1 2477		1 6687	•	26 28
87AC	1	3 CH SPACING			· .					,	
< 800 P	₽ ²	AIXTURE				2803	1 8772		2 4128	(31
SPAC	3	B CH SPACING	131			+\$#2	2 0212				241
COMP	2	MINTURE	131	0000	6	4883	2 0212			1	24 1
SPAC	•	44 PLANTS M	2		•	7087	2 7712				311
C BMP	3	MITTURE	244		•	7017	2 7712		* ****	•	31)
BPAC	•	28 PLANTS M					2			1	141
COMP	2	MINTURE	186		• •		2 -8998			•	18.1
8 PAC		17 PLANTS H	285		• •		8 4344	21	6376		231
C 8447	3	MINTURE	255		, ,	8870	8.4344	21	\$ \$ 378	•	23)

187 ۶ APPENDIE (. LABEL 14008 cese 総第 **B** (1997) 3 11 :::: 12 0345 12 0345 349 349 TETAL CARES -MIRSING CARES -989) 28 а .

ć

١, ì ġ, ٩.

۱ ¢

03/18/83 ı 14818 CUL 8 PAC COMP CULTIVAN 18788-PLAN TREATMENT Ż SPACING VALUE LABEL 1903 Bi. -2422 8774 1048 7784 8 ... NEATION 182) 24) 11) 13) SLEWLEA 704 PLANTS Mûngeulturg Mîsturg 2073 123 84 68 3848 2181 1112 8784 4005 2 A 3 2 3 €U 2 36 × 14 × 21 × 4 1042 3 4121 4 4333 3 CM SPACING Mënoculture Mitture 188 0000 87 8000 118 8000 E 3143 4 7857 15 8887 0288 8472 1066 2 3 C 9147 2 36 + 13 + 22 + 7 2807 2.8077 8 2748 O CH BPACING MôngCulturg Mixturg: 249 0000 80 0000 188 0000 7 1143 8 1638 7 8818 ***3 *7** *4** 2 5 P A C C BMP C BMP 28) 13) 18) 11 1773 3 8231 17 8828 11 0348 10 3848 11 8026 3433 8847 1**3**47 44 PLANTS M MONOCULTURE MINTURE 174 135 185 8P & & 3 C 8147 20 : 18 : 8 : 2448 4785 3188 28 PLANTS M MQMBCULTURS Mixturs 101 0000 101 0000 14 8600 12 7333 21 8000 38 8874 23 7810 28 3880 SPAC C 8149 C 8149 20 / 13 / 7 / 18 8580 18 8880 18 8571 8 0833 4 3889 8 8188 28 8398 18 8888 43 8088 17 PLANTS H Hondeulture Mixture 378 0000 347 0000 132 0000

515 8000 185 8080

7 7263

27 1878

58 6958 40 2578

18.) 8.)

٢

10

..... 1

7

APPENDIX 6						•3/10	./				**	
CRITERION VARIAS	LE T											
VANJABLE '	C 9 94	VALWE LADEL		8 ww		-			-	ANCI		
C Base	3	MITTORE	ינגב	****	20	1818		A 2403		\$ \$ 3 \$	+	
ÊVL	3	FARK 1	1848						2.0			207
BPAC	,	394 PLANTS M	134		i i	21.00		2 2238			i.	25
C Bitt P	1	MOMOCULTURE	33	****		6.000		1 8798				
C 8447	2.	1 I F T UR ,	1.0.1	****		3188		2 3617		4725	i i	18.7
SPAC	3	3 CH BPACING	24.8					3 1847				
COMP	1	MOROCULTURE				1420		3			÷	
COMP		HINTURE	188	****		7407		2 1444		7378		27
SPAC	3	. CH SPACINE	28 1		,			3 . 278				32
C 844 P	,	MONDEVLTURE				4147		3		3841	-	121
COMP	,	WIFTURE						3 . 3		2105		20
8 P A C	•	AA PUANTE M	245			7560	•	3				2.8 -
C OMP	1	MAMMEVLTURE						4 2250				1 1
1 0 00 P	2	MIXTURE	14.8			\$442		3 4443		3424	,	1.1
SPAC		28 PLANTS M	3 * *	****	10	4828		2 . 271				28 -
C BARP	•	MOMOCULTURE	188			3333	#	3 1001			;	
C 0447	3	MITTURE	148		10			2 0978		4015		
SPAC		17 PLANTS H	317		12		•					20 1
COMP 1	b 1	MONOCULTURE		****	1 2	4923		8 4210		3874	i	13
C 9497	3	HITTURE	182	****	11			1 1414		39.74	1	121
SPAC	۲	10 PLANTS H	125		12				24			26.)
C 844 P	1	MONECULTURE	184			4482		1 1444		4977		131
COMP	,		• 7 •	****	13	1834		8 8144				131
υι	= 4	700005002	1268								,	1311
SPAC	1	204 PLANTS H	118			78.00		3 4000	2 3 3 1			201
· C OMP	3	MINTURE	3.18	****		7894		3 4000			i.	201
SPAC	1	3 CH SPACING	142			1738		2 4788		. 7 7 5		22)
COMP	2	HIETURE	1 142			1730		2 2794		4775	ì	23)

1

1

7

		÷		N					
				ų			-		
APPENDIN A						Г	ir -		*
arrene() .		4				· • 2 / 18)	42		PA66 22
CRITERION VARIABLE	Ŧ							1	
VARIABLE -		VALUE LABEL		-		MEAN		VAR I ANCE	
1							:		,
TAC.	3	. CH SPACING	188			4100	3 8317	14 4818	(36)
C	2	HITTURE	140		•	4800	3 8317	14 8818	201
SPAC		44 PLANTS M	148				2 6886		171
COMP	2	MISTURE	144		· i		2	8 7874	171
SPAC V									
Comp	-	MINTURE		0000		0528 0526	3 7035 3 7635	14 1837	1 1 1
5 C C C C C C C C C C C C C C C C C C C	-					0010	3 7838	14 1827	1 1 8 4
SPAC		17 PLANTS H	266		12		4 0071	16 0833	201
COMP	2	MIXTURE	284	0000	12		4 0079	16 6832	2.
SPAC	7	TO PLANTS M	147	0000					
C 944+	2	MINTWRE		0000		1887			· 12-
CUL			11.81						-
SPAC	ĩ	204 PLANTS M		0000		3420	5 8782 7 3258	36 7501	- 146-
COMP	1	MONOCULTURE		0000		3800	1 1437	1 4000	4 34 -
C 0449		MIKTURE		8080	4	4211	3 0084	8 0361	
SPAC	7	3 CH SPACING				4435	3 1867		/
C 0000	ī	MONOCULTURE		0000		3000	3 8488	10 0201	1 11
C 894 P	2,	MITTURE		0000			1 1333	2	
SPAC Comp	3	O CH BPACING		0000		2600	2 6266	0 3034	(23)
COMP	2	MONOCULTURE		0000		3000	2 3684	8 8887 -	101
	2	MILTURE	8 1	0000	7	****	2 4833	* *** *	1 12
SPAC		44 PLANTS M	263			3784	3 8245		
C 844 P	1	MONOCULTURE		0000		7273	4 1796	11 11 11 N	271
C BHIP	2	MIXTURE		0000		1280		17 4182	X 111
BPAC		28 PLANTE M						~	N T
COMP		NONSCULTURE		0000		7500	4 5362	20 8882	1211
				499C	+	7800	4 \$352	20 \$882	12 1

, 188

- 1

`.

Ì

· · ·				•			-	
APPEND1# 8				•3/9			PA68 33	
CRITERION VARIAS	LE T	•			•	•		
TAR IABLE	C	VALUE LABEL	5 1000	11 8 A 8				
SPAC CBMP	•	17 PLANTS M Memoculture	** ****	10 7860	7 2241 7 3341	83 6496 83 6498	• •	
8 P A C C Dup C Dup	7 1 2	IS PLANTS M Monoculture Mixture	312 0000 132 0000 180 0000	18 4715 14 8887 18 8888	1 3233 1 7034 1 0 4333	40 8340		*
CUL # SPAC Comp	6 1 2	7 011005002 204 Plants M Mitture	1248 0000 78 0000 78 0000	8 8118 4 2222 4 2322	8 1135 2 1620 2 1620	47 3786 - 4 4143 - 4 4143 -)311 × 1∰ ×	-
SPAC COMP	2	S ÉM SPACING Mixture	100 0000 100 0000	4 7727 4 7727	5 1 7877 1 7877	3 2316 -		ۍ ^د م
SPAC J COMP	2	TE CH BPACINE Mittury	113 0000	. 8 2778 8 2778	2 8487	\$ \$\$30 \$ \$\$10	1 a 3 3 a 3	
8 P A C C 840 P	4 2	44 PLANTS M Mixture	123 0000 123 0000	10 2800	3 4146 3 4146		121	-
8 P A C C 8m P S	5 2	28 PLANTS M Mixture	174 0005 175 0005	\$ 7775 \$ 7778	4 2778 4 2778	18 3007	f(m) 10)	
8 P A C C 844 P	6 2	17 PLANTS M MIXTURE	301 0000 301 0000	14 0455 14 0455	\$ 2065 \$ 2005	38 8218 38 8218	22)	
SPAC Comp	7 2	10 PLANTS M Mixture	344 0000 344.0000	18 3810 18 3810	6 8438 6 8438	34 1478 1	21) 31)	
CUL BPAC Comp	7 1 2	NGROUAY 204 Plants M Mikture	Ċ.	(2 1738 6 6846 6 8646	7 1413 8 8819 8 8819	• 7774 (• 7778 (**) ****	
5 P A C C DWP #	2	3 EM SPACINE Monsculture	** ****	;;	- 3 2845 - 1005	10 7878 (18.0007 (121	

1

189

18/82 CODE 5 UM C (1994) 2 TURE 34.0000 2657 . SPAC COMP CH SPACING 47 0808 7 8333 9 3 6707 18 7887 SPAC COMP PLANTS M 12 4871 2 4536 , ; ; 7) 7) ÷ 1428 -----28 PLANTS M MIXTURE 3 8848 ** 132 0000 18 8000 13 4244 : ;::: 223 0000 273 0000 14 4887 38 4341 18.) 18.1 SPAC COMP 2 17 PLANTS H MIXTURE 8 P A C G ØM P C ØM P IO PLANTS M Monoculture Mixture 228 0000 112 0000 118 0000 18 8000 18 8687 18 3333 8 8423 8 9368 8 7860 71 2727 78 4487 78 4887 121 N NB701 204 PLANTS M MIXTURE 32 8884 3 3888 3 2888 1812 0000 140 0000 140 0000 8 8018 8 8000 8 8000 8 7327 1 8028 1 8028 8 1 2 183 -26 -26 -SPAC COMP 5 P A C C 8MP 3 CH SPACING Mixture 2 174 0000 8 4378 8 4378 2 2862 331 8 2483 8 2483 B CH SPACINE MIXTURE 5 P A C C 0MP 3 188 0000 * *187 * *187 2 8180 24) 24)

* * 3* 7

12 7322

18 1887

3 8818

3 3230

.

274

128 0080 728 0080

384 0000

e,

٨

0 CUL

١

6 P A C C 0M P

5 P A C C 944 P

4 2

8 2

82

44 PLANTS H

28 PLANTS M MINTURE

17 PLANTS H

13-4088

1

37 1884

ø.

311

18) 18)

٣

· ·									. 19
	s					•3/	18/82		PAGE 3
VARIADLE	C 0 0 E	VALUE LABEL		6 V4		MEAN		-	
8 F & C C 010 F	7	10 PLANTS M MIXTURE			; ;	: :;;;	1 100 1 100	20 3203 20 3203	(28 (28
TOTAL CASES - Missing Cases -	31 00	2 8 967		•			-		
	1						Ŧ		
								₿.	
ŋ	1	۴		-				:	
-	1 -				·		· ·		
		•					-	· ()	
· · ·	1				•			ľ	-
0		•					:	• •	5
1		٠			•	:			
		•		,	•		•	а 	•
.•	5						•		
									- = = î
	r «		,		• • •				
		• •	*						· · ·
								,	
		s					:	· · ·	
APPENDIX 8 Filt wP77 ()	CREATION DA	TE = #3/18/83)		٠		#3 /1	•/•>		PASE 35
CRITERION VARIABLE GROKEN DOWN O	E WT Cul SPAC Y Comp	DRV WEIGHT Cultivar Inver-Plany Treatment	BPACIN	N7 6 G	* # * u				
VARIABLE	C 9 D 4	VALUE LADEL		5 U M		MEAN	 870 878	L VARIANCE	• • • • • • • •
FOR ENTIRE POPULAT			44123			0510	28 8858	823 4360	1 1048)
CUL SPAC ¹ Comp Comp	2 1 1 2	GLEHLEA 204 plants m Monoculture Mixture	367	2487 4889 2499 2199	3 1	1480 0204 3682 0188	36 9136 14 9501 16 5910 13 7664	1240 7475 223 5003 275 2616 185 5149	(181) (24) (11) (13)
SPAC Comp Comp	2 1 2	3 CM BPACING Monoculture Mixture	1130	3494 4499 5399	31	2000 3464 1305	7 8676 8 0405 7 8665	81 7404 84 8802 81 8822	· 36· · 14) · 21)
	3	O CH SPACING Monoculture Minture	1236		34 36	1831 1831 3827	10 2451 4 5787 11 0434	104 9628 76 3197 122 8410	(· 36) (13)
SFAC Comp Comp	2		~ = +			8211	12 2460	148 8287	(22)
С ФИР С ВИР ВРАС С ВИР	4	44 PLANTS N Meneculture			83	8881	8.8872	47 1882	(13)
С ФМР С ВМР 5 РАС С ФМР С ФМР 5 РАС С ФМР	4 1 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44 PLANTS M Monaculture Mittire 38 Plants M Monsculture	700 838 1443		63 66 72		6.8572 16.7420 22.4445 19.4482	247 8120 603 8386	(13) (15) (20)
C 9MP C 0MP S PAC • C 0MP C 9MP S PAC	4 1 2	44 PLANTS M Mereculture Mitting 20 Plants M	700 838 1443 887	8199 8394 7299 2100 4599	53 55 72 65 91	3881 2880 1870		247 8120	6 9300 6 163

191

APPENDIX &									•		P.	
	8 L # WT -											
VAR LABLE	C 808	VALUE LABEL	1	5 UM		-	87			ANCE		· ` .
C (000 P	2	MIXTURE *	× 1		138		31	2071			¢	11)
CUL	3	PARK	- Yang	2288		7084		38 18				
SPAC	ī	204 PLANTS H		3488				4300		4461		200)
COMP	1	MONOCULTURE				3047		0000			1	28.)
C BMP	2	MIXTURE				3428		8130		9700	;	8) 1 0)
SPAC	2	3 CH SPACING						3983				
C 844P	ī	MONOCULTURE		1100		1814		8427				41)
COMP	2	MIXTURE		4888		2774		8772		4134	:	14)
SPAC	3	. CH SPACING	1023		••	2837						
COMP	ī	MONOCULTURE				1504		3310			•	32)
C gitt P	3	MIXTURE		24 8 8		1835		1031		2474	1	12)
SPAC		44 PLANTS M	1003			1887						
	1	MONSCULTURE		4000		4816		8810				27)
C BRA	2	MINTURE				9262		7494		4125	(11)
SPAC			1384			7010						-
COMP	,	MONDCULTURE				1227		1787		2480		29 /
COMP	2	MIXTURE				3207		1887		7874	:	18
SPAC		19 PLANTS H	1224					3340				
COMP	,	MENOCULTURE	832			8823		5754		4888	(26.)
Comp	2	MITTURE				4748		4384		8282	t 1	121
SPAC	,	TO PLANTS M	1188			7150	••	\$281	• • • •			
COMP	1	MONDCULTURE				1331				3686	1	28)
COMP .	2	MIXTURE	\$ 2 7			2989		2442		45.84		13)
CWL	•	*****	***3	739 1		7827						
SPAC	1	204 PLANTS M	449			4805		2116		7017		131)
C BHIP	2	MIXTURE	449			4445		2118		1827	÷	20)
SPAC	2,	J CH BPACING			28	1022		4300		3443	,	
C OMP	2 '	MIXTURE	677			1022		4300		3443		23)

đ

APPENDIN &				03/16/	82		PAGE 28
CRITERION VARIA	LE WT						
VARIABLE'	CODE	VALUE LABEL	S UM	MEAN	STD DEV	VARIANCE	
SPAC	3	S CM SPACING		37 0180	. 7104		201
COMP	2	MIXTURE		32 9180		\$5 2854	201
\$P AC	4	44 PLANTS M	\$\$4 \$285	32 6371	8 0514	84 8251	171
C DMP	3	MISTURE	554 8288	32 8371	8 0514		17.
SPAC		28 PLANTS M		45 0175	11 7802	138 3033	·
COMP	2	MIXTURE	885 3388	45 0175	11 7802	138 3033	1.
SPAC ,		17 PLANTS M	030 2000	45 8700	14	220 2480	
COMP	2	MIXTURE	131 3111	46 9700	14 8408	220 2480	· 20)
SPAC	,	10 PLANTS M			23 4997	882 238 2	1 121
COMP	2	MIXTURE			23 4987	\$\$2 2342	12
CUL	5	NOROUAY	5870 4890	34 1838	23 8808		1461
SPAC	•	204 PLANTS M	847 8888	24 2180	7 1443	51 0984	(36)
C 044 P	1	MONOCULTURE	382 1288	23 4431	4 7340	22 4448	1.1.1
COMP	2	MIXTURE	465,4295	24 4883		77 8302	- (19 1
SPAC	2	3 CH SPACING	834 2489	24 8295	. 10	47 8334	(27)
C DHIP	1	MONOCULTURE	332 2199	33 2220	10	117 8240	10
COMP	2	HIXTURE	301 0300	24 1882	\$ 4582	28 7780	1 12)
SPAC	3	B CH APACING		28 4888	7.4171		• • • • • • • • • • • • • • • • • • • •
C 800P	1	MONOCULTURE	258 7298	28 8730	8 1000		1 101
C 9949	2	MJ X TURE	385 7688	30 4438	6 4610	41 8088	1 131
SPAC	•	44 PLANTS M	1083 0888	40 4848	10	113 9978	
COMP	1	MORDCULTURE	476 1989	42 2909	12 0012	144 1989	1 111
COMP	2	MIXTURE	818 8899	38 5556	10 1085	102 1210	1.
SPAC	5	28 PLANTS M	457 3499	38 9484		205 3468	(12)
COMP	1	MONDCULTURE	467 3488	34 9464	18 2485	288 3468	12

n

192

IPPENDIT &				03/18/	82		PABE 2
RITERIES VARIA	818 WT						
ARTABLE		VALUE LABEL	. <u>8</u> .000			VAR LANCE	
SPAC	•	17 PLANTS M	481 8400		28 8498		
CBMP	1	MONDCULTURE	481.8400	87 7080	28 8488	478 8783	- E - 🖡
SPAC	7	TO PLANTS H	1412 0788	74 3200	37 1287	1378 3180	
C 8477	1	MONOCULTURE		88 28411	28 0134	788 2814	
COMP	2	MISTURE		#1 1	43 8438	1031 0848	- i - 1
VL		7	6782 2680		42 0288	1768 4887	
BPAC	1	204 PLANTS M	820 1188	34 4511	41 7818	1744 0480	1 14
COMP	2	MISTURE		34 4511	41 7818	1744 0480	
SPAC	2	3 CH SPACING			75 5640	\$712 \$373	
COMP	2	MIXTURE	1080 0087		75 8844	8712 8373	1 21
SPAC	3	. CH SPACING		30 8022	6 1202	37 4685	
COMP	3	MIXTURE		30 \$922	6 1292	37 4565	L 18
SPAC	•	44 PLANTS H	878 0288	47 8182	20 1015	407 \$871	12
COMP	2	MITTURE	878	47 0.182	20 1818	407 8871	1 12
SPAC	5		788 3188	44 4da -	13 498	.78 7786	
CONP	2	MITTURE	788 3184	44 4447	13 488	178 7788	1
	-			•••••			
BPAC	•	17 PLANTS M	1463 6208		33 8443	1143 0029	4 22
COMP	2	HINTWRE	1482 8288		33 8443	1143 0029	(22
SPAC	7	TO PLANTS H		80 8952	27 1768	738 8870	1 21
Camp	2	MISTURE		** ***2	27 1788	738 6070	
L.	٦	NOROUAY	3448 8388	50 5354	28 9874	727 9431	
BPAC	1.	204 PLANTS M	231 1899	25	4 8848	20 7431	•
C 844 P	3	MIXTURE	231 1988	25	4 8848	20 7431	4 🕈
SPAC	2	3 CH BPACINE	341 2088	28 4342	8 8139	74 1881	(12
COMP	1	MONOCULTURE	172 8880	28 7787	11 8218	128 7475	- i - 🚺

		•										
APPENDIN .						03/16/	8 2		•		P Å	4E '30
CRITERION VARIA	BLE WT	•					لا	•				
TARIABLE	C 9 8 2	VALUE LABEL		S UM			S T	D DEV) ^{wan}			
COMP	2	MIXTURE .	188	8499	2,8			8178	23	2090		6)
SPAC	3	S CH SPACINE		4		4160				1841		6)
C 044P	1	M0#0CULTURE	182	4100	30	4160	12		161	1541	'	• 1
SPAC	4	44 PLANTS M	313	7800	A	4267						· • •
COMP	۱.	MONSCULTURE	313	7800		4267					4	7)
SPAC		28 PLANTS M			. 10	5812		7310	4.8	3179		a (
COMP	2	MIKTURE			70	5812		7318	48	3178	4	
SPAC	6	17 PLANTS H			. 83	0507	2 1	7388	472	5801	ι.	18 -
C OMP	2	MIXTURE			63	0807	21	7381 .	472			18 -
SPAC	7	10 PLANTS M			78	6417		4317	1185	8417		12 -
COMP	1	HUNDCULTURE		8400		106,7			1889		•	+
COMP	2	, MIXTURE	445	0500	74	1767	31	4345	1013	4380		•
UL	• •	NB7#1	8543		5 2	4384 .		7188		4924	ι.	182 -
\$PAC	2	204 PLANTS M		7788		4712		3832		2501	- +	28
COMP	2	MIXTURE	786	7788	31	4712	•	3632	1.8		•	26 i
SPAC	2	3 CH BPACING		4888	30			7348	45	2644		31)
C 044P	2	MIXTURE '		4888	30			7348	48	2844	(311
· SPAC		S CH SPACINE			24	. 3300	•				•	24)
COMP	· · 2	MINTURE	919	0104	34	3300		\$233			(24)
SPAC	4	44 PLANTS M	1439		46	4497		2088	128		4	31.)
COMP	2	MIXTURE	1439	#2#7	4.6	4497	11	2008	125	8931	ſ	211
Cal PAC	5	28 PLANTS H	1220		67		12		183	4344		14)
COMP	2	MINTWRE	1220	****	. 7	1011		3489		4348	. '	141
SPAC	•	17 PLANTS H	1844	****	76		28	0551	788	7731	•	24 -
COMP	2	MISTURE +	1844			4428		0851	788		i	24

C.

193

					1		
CRITERION VARIAGE Variable		VALUE LADEL	5 1004	HEAR '		VAR I ANCE	•
APAC à		IS PLANTS M	2371 0300 2371 0300	81 7880 81 7880	24 3021 24 3021		20) 20)
TOTAL CABES + Missing Cabes -	1040 38 88 3	2					

,				-			
						τ	
		t					
			5		· · · · ·		
				a ¹		•	
	•						

Å

									#3/	18/88		,			PA	ee 22	•
	WP 7 7	CR.			03/18/82)			+									
		ABLE	50L 57AC		P T J & H Reed vield Cultivar Inter-plan Treatment					, , , , , , , , , , , , , , , , , , ,	-						
• •		• • •	• • •	• • •		• • • •	• •	* * * *		* * * *		• • •		• x :	* * *		
-	ABLE			¥ Ā	LVE LABEL		S UM		MEAN	57		۷	VAR				,
en I	ENTINE POP	PULATIO		,		14804	4174	1.6	3035	13		•	186	.0888	,	10351	
			2		ENLEA	34 3 4		20			223	,	333			1801	
	PAC		- ī		4 PLANTS H		2460	7	7081		827	3				23	
	COMP		i i		NOCULTURE				7138	7	216					111	
	C 841P		Z	M 1	ETURE	. 02	3900	7			636	8	20	67,88	,	121	
	PAC		2		CH SPACING		7100				114			7268	1	34 -	
	C 894 P		1		HACULTURE		4800		2885		243			5188 1875	1	121	
	C 841 P		2	M1.	TURE	177	2300	•	4380	;		1	•	1878	•		
	PAC		3		CH SPACING		2180		3203		188			3817	1	36)	
	COMP		٠	Me	NGÇULTURE						872				•	13 /	
	COMP		2		RTURE	248		11	3033	4	105	3	- 18	8623	+	22)	
e i	PAC `	•			PLANTS M	4.84		17	1038		. 360	o .	24	7300	i i	28)	
	COMP				BOCULTURE	217	8480				217		10	3803	1	131	
	C 881 P				X T VA 4				4388	•	714	7	45		1	14)	
	PAC			28	PLANTS M		1200	25			635	4			i	20)	
	COMP		ī		NOCULTURE	225	2999	2 2	3133		374	4		1300	1	78)	
	COMP	-	2		TURE					•		1	/ 46	3801	1	S 1	
	PAC			17	PLANTS M	781	3484		\$178		414				r	301	
	COMP	•	1		NOCULTURE				4300		338			**7*	•	121	
	COMP		2	# 1	X T UR E	271	7600	31		20		6	440	3888	1	7 1	
	PAC	,	7	10	PLANTS M	1061					483					1.0.1	
-	COMP .		,	HO	BOCULTURE	363	3011	44	1837	18	377		236	4894	- E	4 1	

,

.....

C (111 7

C

8 PAC C 9HP

8 P A C

....

(

14 0482 13 0847 15 1084

13 8084 16 4002 12 4045

13 1888 12 0040 14 3331

10 2002 4 2205 4 2205

1 4345

4 7748 5 4034 3 8134

6 1801 8 7373 8 3777

· ···· · ····

7 2788 1 8882 1 8882

3 3743

12 7003 20 2000 16 2146

37 8484 48 2864 28 8188

36 7102 40 1803 24 8863

\$7 \$784 3 \$384 3 \$384

.

1 4 4

*

: : :

*

í

(***												194
					•3/1	./					**	
ADLE V												
	VALUE LADEL				-				***	ANCE		
2	MEXTURE	784	4788		4473		20		400		t	111
1	PARE	1874	4487		8344				33	1307		3971
\$	284 PLANTS H	114	7888	- i	\$ 8.8.8							281
1	MOBOCULTURE	24	7400	4	1233		2	2404			1	
2	M I I T VA B				7347						i	181
,	3 CH SPACING	218	2900		3445							
i											2	
2	HIETURE										÷.	271
,	B CH SPACING	241		,								
												331
3	HITTURE											201
	AA PLANTS M		3440	10	2878							28 -
						-						
2.	MIXTURE					-0		2005				••• •▼•
	2 3 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	CODE VALUE LADEL MIITURE J PARK SAA PLAUTE M MODOCULTURE J SCM SPACING MIITURE J SCM SPACING MIITURE J SCM SPACING MODOCULTURE 4 44 PLAUTE M	CODE VALUE LADEL 2 MIXTURE YOA 3 PARK 1074 4 204 PLAUTE 114 1 MOBOCULYURE 24 2 MIXTURE 24 2 MIXTURE 24 3 SCM SPACINE 210 1 MOBOCULYURE 31 3 SCM SPACINE 241 1 MOBOCULYURE 141 4 44 PLAUTE 104	CODE VALUE LADEL Bum 2 MINTURE 704 4700 3 PARK 1074 4007 4 PARK 114 7000 3 PARK 114 7000 4 PARK 114 7000 1 PARK 114 7000 2 MINTURE 114 7000 3 6 CM SPACINC 3 6 CM SPACINC 1 MEMOLITURE 100 0000 1 MEMOLITURE 141 1300 4 44 PLANYS 748 7300 4 44 PLANYS 748 7300	CODE VALUE LABEL But 2 MIXTURE 704 4700 54 3 PARK 1874 4007 54 3 PARK 1874 4007 64 3 PARK 1874 4007 64 4 PARK 1874 4007 64 3 PARK 1874 4007 64 1 MORECULTURE 24 7400 64 2 MIXTURE 24 7400 64 3 CM SPACINE 215 2500 6 1 MORECULTURE 125 3700 6 3 CM SPACINE 241 1400 7 1 MORECULTURE 141 1300 7 4 44 PLANTS 745 3400 10	CODE VALUE LABEL EUM MELAB Z MINTURE 704 4700 64 4073 3 PAR 1074 4407 6 8364 4 304 PLANTS M 114 7000 6 8660 1 MODECULTURE 24 7440 6 1233 3 3 CM SPACING 210 3000 6 3466 1 MODECULTURE 6 1 2700 6 5153 3 3 CM SPACING 210 3000 6 5153 2 MINTURE 126 0300 7 6364 3 S CM SPACING 211 1460 7 5384 4 MOBOCULTURE 141 1360 7 6665 3 S CM SPACING 231 1460 7 6665 1 MOBOCULTURE 141 1360 7 6665 6 6463	03/18/83 ABLE Y CODE YALUE LABEL NUM MEAD Z MEATE YALUE LABEL NUM MEAD Z MEATE YALUE LABEL NUM MEAD Z MEATE YALUE LABEL YEE YEE MEAD Z MEATE YEE YEE YEE YEE YEE YEE Z YEE YEE YEE YEE YEE YEE Z ZE YEE YEE YEE YEE YEE Z ZE YEE ZE YEE YEE YEE Z YEE YEE YEE YEE Z YEE YEE YEE YEE YEE YEE Z ZE YEE YEE YEE YEE YEE Z YEE	03/10/83 ABLE Y CODE VALUE LABEL SUM MEAN BY 2 MINTURE 704 4799 64 4073 20 3 PARK 1074 4007 0 8364 6 4 304 PLANTE M 114 7000 4 6466 2 3 PARK 1074 4007 0 8364 2 4 304 PLANTE M 114 7000 4 6466 2 3 MINTURE 21 8 3000 6 3465 3 2 MINTURE 124 3800 6 3465 3 3 8 CM SPACING 24 1460 7 6386 2 3 8 CM SPACING 24 1460 7 6386 2 3 8 CM SPACING 24 1400 7 8386 2 3 8 CM SPACING 24 1400 7 8386 2 4 44 PLANTE M 283 3460 10 2875 4 4 46 PLANTE M 283 3460 10 2875 4	03/18/83 ABLE Y CODE VALUE LADEL EUM MEAN BYD DEV 2 MINTURE 704 4799 04 4073 20 0183 3 PARK 1874 4007 0 8384 6 4000 3 PARK 1874 8 218 2000 4 7247 7 2 8687 3 BE DE SPACINE 218 2000 4 7247 7 2 8687 3 BE DE SPACINE 218 2000 4 5183 2 7448 7 3 CM SPACINE 218 2000 4 5183 2 7448 7 3 CM SPACINE 218 2000 4 5183 2 7448 7 3 CM SPACINE 241 1400 7 8384 2 8738 7 3 CM SPACINE 241 1400 7 8384 2 8738 7 3 BE CM SPACINE 241 1400 7 8384 2 8738 7 3 SE CM SPACINE 241 1400 7 8384 2 8738 7 3 SE CM SPACINE 241 1400 7 8384 2 8738 7 3 SE CM SPACINE 241 1400 7 8384 2 8738 7 3 SE CM SPACINE 241 1400 7 8384 2 8738 7 3 SE CM SPACINE 241 1400 7 8384 2 8738 7 3 SE CM SPACINE 241 1400 7 8384 2 8738 7 3 SE CM SPACINE 341 1400 7 8		33/18/83 ABLE Y CODE VALUE LABEL EMM MEAN BYD DEV VARIANCE 2 MIXTURE 704 4700 64 4073 20 0182 400 0816 3 PARK 1074 4407 6 8364 2 400 21 307 4 204 7100 64 4073 20 0182 400 0816 3 PARK 1074 4407 6 8364 2 4703 6 1407 4 0000 00000000 116 7000 4 6460 2 4703 6 1407 3 PARK 1074 4407 6 8364 2 4703 6 1407 3 MIXTURE 21 0 2000 6 3446 3 1345 7 0508 2 3 CM SPACINE 21 0 2000 6 5163 2 7466 7 5326 3 MIXTURE 12 0 2000 6 5163 2 1022 10 2326 3 8 CM SPACINE 21 1 2000 6 5163 2 1022 10 2326 3 8 CM SPACINE 21 1 400 7 8386 2 6738 6 4440 4 MISTURE 12 1 4000 7 8386 2 6738 7 1886	

407 3099 195 8200 211 4800

381 8308 200 2800 181 2000

342 1288 187 2308 184 8000

1318 8488 84 8700 84 8700

118 8800

24 PLANTS M Meneculture Mixture

17 PLARTS M Monoculture Mitture

10 PLANTS M Monoculture Mieture

Tempesees 204 Plants H Histure

3 CH BPACINE MITTURE

.

2

6 1 2

713

4 1 2

22

,

1

		, T			•		Ŧ
APPENDII S Criteriou Varias			•	\$3/1\$/8	2		PA88 34
VARIABLE		VALUE LABEL	5 VM	MEAN		VARIANCE	•
8 P A C C 840 P	3 2	8 CM 8PACING Mixture	184 2000 184 2000	8 2100 8 2100	4 1278	17 0370 17 0370	r 201 (201
874C 8847	4 2	44 PLANTS M Mixture	161 7400 151 7400	8 8788 8 8768	2 2288 2 3288	11 0808 11 0808	(17) 1 171
SPAC Comp	5	28 PLANTS M Mîltûre	263 4400 263 4400	13 8863	4 8844	20 8337 20 8337	1 181 1 181

57AC 28mp	4	44 PLANTS M Mixture		7400		8758 8758	3 3388 3 3388	11 0808 11 0808	, 1	17) 17)
SPAC Comp	6 2	28 PLANTS M Milturg		****		***3	* ****	20 8337 20 8337		1 0 1 1 0 1
* 8 PAC C 944P	* 1	17 PLANTE M Mixture		::::		****	7 3138 7 3138	\$3 4877 \$3 4877	;	201
8 P A C C #MP	7 2	10 PLANTS M Mixiure		3760 3760		3084 3084	12 3008	183 7848 183 7848	;	117 117
CUL SPAC Comp Comp	1	NORQUAY 204 Plants M Monoculturg Minturg	144	2887 3480 3780 8780		0388 3240 7721 8454	11 6010 2 3414 2 3704 4 6575	134 5840 11 1850 5 1646 15 4837	6 6 4	1451 357 187
SPAC Comp Comp	2	3 ÉM BPACING Menoculturg Minturg	147	0100 1800 0300	;	0005 1055 4182	3 5566	15 8675 21 7858	:	21) 21) 23)
5 P A C 2 000 P 2 000 P	3	S CM SPACING	185	3800 8400	7	1904 0840 2954	2 6063 2 1082 2 8040	7 8784	•	231
SPAC COMP	4	44 PLANTS P Hongculture Histore	348	5195 1529 3899	12	8482 8148 8128	5 6204	6 7387 31 6860 37 6366	1 1 1	13) 27) 11)
SPAC COMP	- •	28 PLANTS M Monoculture		\$140 \$160	13	7082 7082	4 9225 7 4881 7 4881	24 3313 88 0718 86 0718	•	18) 12) 12)

.94

28 -18 -14 -

28) 13) 13)

28) 13) 13)

120) 20) 20)

22) 23)

OPIE DE QUALITEE INFERIEURE

بوباوات بالمواجف المعطم بعديات الالا

IUOR COPY

. . . .

۱

						03/16	/#1	-			P & 6	E
ITERIES VARIA	DLE V											
		VALUE LABEL		8 MM		MEAN	57		7 A R			
8PAC	•	17 PLANTS M			29	4780			278	2485		
C BRIP	1	MEDICULTURE	183		2 6	4780	18	1201	278	2485	1	
SPAC	7	TO PLANTS H		7388		8337						1
C 800P	1	MONOCULTURE		2700				338			ì	
C BHAP	2	HIITURE	334	4888	33	8478		28.05			(1
L		700000002	1883		• 6	4828			223			11
SPAC	1	204 PLANTS H					2	.7		3261	,	
COMP	2	MITTURE			•	\$ 2 8 0	2	0798	•	3281		,
SPAC	2	J CH BPACING	· 2 ·			8023	2	4844		22211		:
Camp	2 -	MISTURE	121	****		\$ 4 2 3	2	4844		2221	· .	1
8PAC	3	S CH SPACING		1200			1	1230		7830		
C 941 P	2	HIITURE	• • •	1200	•		• •	1330	•	7830	,	
SPAC	4	44 PLANTS H	. 78	3000	14		-			1388		1
C (000 P	2	MISTURE	178	3000	14	9417				1306	1	1
8PAC	•	28 PLANTS M		4288	• •	1360	,	1222		7284		,
	2	MINTURE	284	4298	۰.	1380	,	1 2 2 2		7264	1	1
BPAC		17 PLANTS H			28	2718	1.8	4#32	334			
COMP	2.	MIXTURE		****	25	2718	18	4032	334		•	3
SPAC	7	10 PLANTS M	672		33	6280	18	2848	284	8344	(,
COMP	2	HILTURE	472	****	33		16	2848	284	8344	¢.	2
	7	HORQUAY	1004		16		12	3433	183	3473		
8 P A C C 804 P	; ,	200 PLANTS M		1400		2425		8482		8414		
	1 1	MILTURE	4 1		•	2425	,		, '	8414	4	
8 P A C C 8MP	2	3 CH SPACING		8300				3188	1.8		e	1
	1	MOSOCULTURE	63	7000			5	4340	20	\$280	•	

						•						
APPENBLE 6							4,2				-	
CRITERION VARIAB	LE V											
VARIABLE		VALUE LABEL		S 1000		-	57	D DEV	VAR	IANCE		
COMP	2	MIXTURE	32	4300	•		2	4842		7843		
SPAC	3	S CM BPACING	82	1000	10	45.00			34		1 -	8.3
Comp	1	MONOCULTURE	# 2	7000	10	45.00		2288			i i	
SPAC	4	44 PLANTS H	82	\$100	13	8017	5		32	27.00	4	8.1
COMP	· •	MONDEULTURE	8 2	8100	- 13	8017				2744	í.	B (
SPAC	5	28 PLANTS M	178		25				24	7380		7,
COMP	2	MIXTURE	175		25			8738		7290		
## A C	•	17 PLANTS M	307		20			3283				18.3
COMP	2	MINTURE						2253		1801		15
SPAC .	7	TO PLANTS M	34 15			4433		3737	30.		,	121
Camp	1	MONOCULTURE		7800		1317		3637		6 6 0 3	÷	
COMP	2	NIKTURE	142	7700	23	7880		0343		0743		• • •
CUL			3057	6184	1.8			7013				1.8.1./
SPAC	1	204 PLANTS M		8700		6144		2240		8482		26)
Comp	2	MINTURE		8780		5148		2240			- i	24
SPAC	2	3 CN SPACING	232		7	2718		1041		6357	,	32,
COMP	2	NIXTURE				2716		1041			1	32)
SPAC	3	. CH SPACING	201		1.			1803		3430	i.	24)
Camp	Ť	HINTURE				4780		1443		3830	1	243
SPAC		44 PLANTS M				4180		4080	••		,	30 -
C (010 P	2	NIXTURE				4180		4080		2484	1	201
- 1PAC		28 PLANTS M				4 8 2 4						
C	2	MINTURE				4924		8768		2553		181
	_											,
BPAC Comp		17 PLANTS H								4838		23 -
C CONTRACTOR	2	MIXTURE		0599	28		, ,	8071		44.34		

1

196

APPEND13 6					**		PA82 37
CRITERIES VARIABL	8 Y						
VAR LADLE	CODE	VALUE LADEL	8 ante	MÊ A N			٠
8 P A C C BMP	7	IN PLANTS M	841 4888 841 4888	·· ···	11 7848 11 7848	127 0084 127 0084	(20) (20)
TOTAL CASES - Missing Cases -	1000 41 08	4 2 461	1		Ŧ	·	3

•

PPERBIE 8						#3/18	/82	• • •	PAGE 30
118 WP 77	CREATION	DATE - 03/18/821							· .
						L A T I	••••	• • • •, • • •	
RITERION VARIA: Braken down	BLE WK BV CUL	EULTIVAR	CHAELS.	PER PLA					
	BY BPAC	INTER PLANT	SPACIN	6				÷	
	BY COMP	TREATHERT		-					
	• • • • •		* * *		· · ·		1 xf I I I I	* * * * * * *	
ARTABLE	C	VALÚE LABEL		-		MEAN	STD DEV	VAR I ANGE	
OR ENVIRE FORU			361303		360	****	212 3664	87686 6181	. (1832)
U L	,		72326	****		3470	377	142883 8849	170
SPAC		204 PLANTS W		0000		6622	134 2100	18012 3781	23
C 0MP	,	MONOCULTURE		0000		2727	174 4764	20441 8182	1 11
COMP	2	MIXTURE	1784	0000	149		81 0478	4244 7273	12
87AC	,	3 CH SPACING			شد .		54 5710		
COMP		MONOCULTURE		6000		0000	57 A16A	2888 8207	34
COMP	2	MIXTURE		0000		9824	\$2 2747	2732 8476	21
	_								
SPAC	3	S CH SPACING		0000		\$714	78 2817	5668 8403	1 361
C 844 P C 844 P		MONECULTURE Mitture		0000 0000		2368	73 3134	8374 8880	(13)
L DMP	*			0000		, 36 4	73 8447	8423 4887	1 17
SPAC		46 PLANTS M	*383			0387		8303 7384	1 241
COMP	,	MONSCULTURE	4445	8068		4443		4507 1410	1 13
COMP	1 2	MINTWR C	4848		328		117 8485	12002 4085	()
87AC		28 PLANTS M			. 14	2000	206 1432	42043 7474	1 201
COMP	ī	MONDENLTURE					178 0820	32073 8524	1 181
COMP	2	MINTURE					188 8828	25178.7080	
8PAC		17 PLANTS M					303 3731		
COMP	7	MONOCULTURE		0000		8187	242 8182	54881 1742	1 121
COMP	2	MISTURE		0000		2857	403 8834	183128 8048	4 7)
	_								
SPAC	7	TO PLANTS M	21773			8474	434 1811	101086 1837	· · · · · · · · · · · · · · · · · · ·
C SHIP	•	MOROCULTURE			\$70	1000	296 1810	47788 4288	· •

÷

197

ي د ي مر

APPENDIX .							/**				PA	
CRITERION VARIAS												
VARTABLE		VALUE LABEL		6 alla	- - -	HEAR			TAR	1 A #C E		
C 0417	2	-			1348	2727	423		178339	2182		11)
	3	PARE			270			7886	21500		i	2071
SPAC	,	204 PLANTS M	2005		118			7324		1000	+	25)
C 849 F	1	MOMOCULTURE	877		112	* 3 3 3		6788		3867	,	🗰 N
C 8447	2	H 1 3 7 4 8 6	2318	****	122			9343	3803	1 1 1 1	+	181
SPAC	7	3 CH SPACING			144	8341		3772		4878	•	A 1 2
C (940 P	,	MOMOCULTURE	7488	****		1429		•133		3828	+	14)
C 840 P	2	191 X Y MR 8	3484	****	128	2 8 8 3		8316	4833	7880	1	27)
8PAC	• •	. CH SPACING			212	3780	82	1771	8783			331
C	ī	MONOCULTURE	2937		244	7860				7500		12)
C BRIT	3	MIETURE	3888	****	182		72	\$244	\$ 2 8 9		1	34 /
8PAC		SA PLANTS M			285	1788	134		18807			281
C 9997	•	MOMOCULTURE	3166		284			4418	17276			111
C 9007	3	******	4830	****	284	1178	124		16636	7363		171
SPAC		28 PLANTS H	11878		399	1724		1744	18173			291
COMP	+	HOMOCULTURE	8701		380			4373	17839		,	181
C 000 P	2	MLXTURE		****	418		122	7736	15073	3243		14:
3PAC		17 PLANTS M					200	3023				20 -
C 0007	1	HERECULTURE	8517	****	432	*78*		6126	20768			121
C 0007	2	MINTVER .	\$*3*		388		231	**7*	\$3787	7434	'	13 -
SPAC	•	10 PLANTE M			387	8467			39467			201
C 0107	1	MERECULTURE	4887			****	2 * *	3367	43817			13)
C \$107	2	HINTWEE		****	418		189	1340	38788	7264	•	13)
	See.	700000002	38481	****		1783		2445	37747		1	1901
SPAC .	La sel	204 PLANTS M			117					4737	ŕ	20)
COMP	n	PRUTIC	3360	****	117	6000	63		2818	4737	'	20 -
8PAC	2	S CH SPACING	3173			2273		8271				221
C 9447	1	HIXTURE	3173		144	3273	* 1	8271	3787			22,

٩,

Þ

APPENDIX 6						43/16/	**			PA88	
CRITERION VARIABL	. E. 1915					,					
VARIABLE	COAC	VALUE LABEL		\$ UM		-			VARIANCE		
S Part C	3							2444	14844 2737 14844 2737	1	201
C 844 P	2	MIFTURE	4555		117		122	2488	14844 1737	4	341
SPAC		AA PLANTS W	4436		280	\$442	117	3861	13773 3824		171
COMP	2	MINTURE						3801	13773 3824		17:
8PAC			7186	0000	373		115	1476	13268 1837		
COMP	2	MIXTUNE	7105		373	8474	116	1878	13288 1837	•	181
5 P AC		17 PLANTS H		0000	439	1000	174		30472 3083		201
C	ż	MIXTURE		0000	439	1000	174	4188	30472 3083	5	20 (
BPAC	7						304			1	
C DMP	2	NIXTURE			\$45	8081	304		\$2\$72 .805	ť	* * -
ÊUL		BBROUAY .	40448					7088	78388 7382	1	1451
SPAC	1	204 PLANTS M		0000		. 143		7028	5883 316C	1	38 /
COMP	1	NEMOCUTANKE				8878		7884	2377 0825	1	181
COMP	2	MINTURE	2097	0000	110	34 8 4	**	0287	8033 3887	- N	1.
8PAC	2	3 CH SPACING		0000		8524		3269	7801 8476	~	21
COMP	1	MOWOCULTURE	1782			* * * *		0784	11485 3811		
COMP	2	MINTURE	1420		118	3333	62	. 744	2786 6870	'	12)
SPAC	3	S CH SPACING				**25			3720 1344	(231
C 9447	1	HOBOCULTURE	1534			4000		****	4998 4069	•	
C DHIP	2	HIETORE			188		. 7	3034	3283 -7308	,	13)
(in all		44 PLANTS M				7.4.8.7		3578	27343 1884	+	27)
(0007	1	HOWSEVLYURS	4462			2727		8884 -	43496 8182	+	111
C 0447	3	HINTURE	4368		272	1875	310	6872	14361 6868		181
5P4C		28 PLANTS M	3788						30298 2424	ι.	121
		MONDEULTURE	3784					0838	30298 2424	1	12:

. 198

				•			
eeneris e				03/10/	42		PA88 4
CRIVERION VARIA	BLE WE						
ARIABLE	C006	VALUE LAGEL	5 1 964				•
SPAC			3730 0000	488 3800	*** 7822		
C DMP	1	MONOCULTURE	1730 0000	488 2500	489 7823	187885 8288	· •
SPAC	7	10 PLANTS M	13480 0000	701 4737	421 8183	188484 4884	i 19
	2	MONSCULTURE	1121 0000	813 8689	335 4888	116306 1111	1.1
	2	MISTORE	7888	788 8000	882 8874	282888 2778	() •
(WL	•	7	47421 0000	370 2441	288 6327	124004 4888	(127
SPAC	1	204 PLANTS M	2010 0000	111 0607	48 8484	2454 7055	1 1.
E amp	2	MINTWRE	2010 0000	111 8867	** ****	3484 7068	10
8PAC	2	3 CH SPACING	2880 0000	121 8182		3081 2887	1 22
C 000P	3	MIXTURE	2880 0000	121 8182		3081 2987	
SPAC '	,	8 CH 87AC396	2555	188 4478	78 8724		
Editor	Ť		2868	188 8878	78 8729	6172 8888	- f - 👬
8PAC		AA PLANTS M	* 4847 8888	344 \$423	170 7302		
C 8147	2	MINTURE	4087 8000	340 8833	176 7302	20144 4106	11
SPAC COMP		28 PLANTS M Mitture	8487 0000 8487 0000	300 0444	187 6260 187 8200	30016 6261	1
••••	•						· · · · ·
SPAC	•	17 PLANTS M	12111 0000	624 3333	428 7488	183823 8332	
COMP	1 1	MIXTURE	13111 0000	824 3333	438 7488	+***** ****	E 11
SPAC	7	TO PLANTS M	18481 0000		398		
COMP	,		18081 0000	804 0500	208 0618		
	7			488 8482	318 8838		
SPAC	1	204 PLANTS M	1118 0000	138 8000		4425 7143	-i. -
C (914)P	2	MINTURE	1118 0000	128		4425 7143	- •
87AC 8	,	3 CH 8746188	2334	212 1818	128 1724		
C and		MONOCULTURE	1477 0000	246 1887	167 8851	24882 8887	-i -i

		· · ·				·	$\left(\right)$
APPENDIN 8				03/10/82		 42	
CRITERION VARIABLE NK							
	 		A		 	A 1	

VARIABLE	C 004	. VALUE LABEL	8 UM	MEAN		VAR LANCE	•
COMP	2	MIXTURE	857 8080	171 4000	** 2883	4788 2000	8 - 8 7
SPAC Camp	3	S CH SPACING Monoculture	1731 0000	288 8000	182 7882	33337 6000 23337 6000	•! •! •
	•					2332, 444 4	
SPAC	• •	44 PLANTS M	2318 8880	385 0000	156 8779	24518 4000	1 . .
COMP	,	MONSCULTURE	3310 0000	385 0000	156 8770	24418 4888	• • •
SPAC	· •	28 PL'ANTS M	4672 0000	887 4288	140 1814	18683 6188	· 7·
COMP	2	MIXTURE	4672 0000	887 4285	140 1814	19883 6180	· · · · · · · · · · · · · · · · · · ·
SPAC			8451 0000	863 6000	232 8428	84122 8428	1 18 -
COMP	2.	MINTURE	8461 0000	\$63 4000	232 6425	\$4122 \$429	1 (1 1 1
SPAC	,	10 PLANTS M	8211 0000	767 6833	415 2190	172408 8108	• 121
COMP	1	MONOCULTURE	8107 0000	881 1887	473 4178	224134 1887	- +
COMP	· 2	MINTURE	4104 8080	684	372 0200	138484 8888	e 🔶 1
Cu.	•		78280 0000	437 8006	371 4780		e 1416 _
SPAC	1	204 PLANTS M	4447 0000	177 8800	81	2702 8433	- F 🛛 🚛 -
Camp	2	MIXTURE	1447 0000	177 8800	S1 8888	2702 \$433	1 21-1 7
SPAC	2	3 TH SPACING	5428 0000	188 4583	71	8163 7813	a 32
COMP	2	MIXTURE	8438 0000	188 8883	71	5163 7813	- · · · · · · · · · · · · · · · · · · ·
SPAC	· 3	. CH SPACING	1057 0000	282 4284		10123 7228	(74)
COMP	3	MIXTURE		282 8280	100 8884	10133 7338	241
SPAC	•	44 PLANTS S	10537 0000	381 2333	123 2865	17757 8482	301
COMP	2	MITTURE	10537 8880	281 2225	133 3666	17787 8482	4 30 1
SPAC		28 PLANTS M	11148 0000		. 217	47383 8488	• • • • •
C 0 M P	2	MIXTURE	11148 0000		1217 8887	47363 6468	4 18 1
SPAC		17 PLANTS M	17181 0000	747 4348	378 1805	43005 3478	
C 0 M P	2		17181 0000	747 4344	7 378 1805	143095 3474	
,

* ;

; ,

2

199

đ

.

1.

78 1346

APPEND12 4					42		PAGE 43
CRITERIOS VARIABL							
YAR TABLE		VALUE LAGEL	5 ann	99Ë A 9		VAR LANCE	
8 P A C C 940 P	7	IN PLANTS H	24444 0000 24444 0000	842 8000 842 8000	611 3037 611 3037	201431 4032 201431 4032	4 201 4 201
TOYAL CASES - WIDSING CASES -	1010 40 00						

			,			• , •
÷ * • •	8 (1 ⁴ - 1	n a sana ang ang ang ang ang ang ang ang ang	A State of S	e e general e	tan tu ja aksis La	1 - 1999 - 12

	-			
	· · · · ·	:	1. A	
		•		
	•	63/16/82	ана — П.	PA ST
F118 - WF77	(CREATION BATE + 03/18/02)			

CRITERION VARIADLE DROKEN DOWN DV BY	0 8 5 C 1 EL CUL SPAC COMP	IPTIBN BITAUBIDU LENG Cultivar Ibter-plant Sp Tobatabuy	TH CH	•	••••	. . T	1 0 N S		· · · · · ·			• • 7
				• • •								
VARIABLE	C++¢ '	VALUE LABEL		-		-			-			•
POR ENTIRE POPULATIO	**	•	1344	****		8344	12	\$078	188	****	i.	1040
E U 1	,		3120							****	,	1821
SPAC	,		1782			4167						24
COMP	1 -	MEMBEULTURE		****		2727		8133			1	1 1
COMP	3	HITTURE			72		11		134		'	121
SPAC	2	3 CH BPACING	2682		73	7714						35 -
C BMP	i i	MONOCULTURE	1016		73			6137	134		4	14
C BHP	2.	MIETURE	1888		74	8714		4723			1	231
8PAC	,	. CH SPACING	2834									28.1
C 000P	-		843			1311			145			131
C Base	2		1801			2182		3828			i	221
SPAC	•	44 PLANTS N	2044									
Comr	-	MONOCULTURE		0000		3444		3120	1.04		1	2.
			1117.						111	8898		13)
	•				••		•	****			•	
#PAC		SS PLANTS H	1418		7.0		,			2737	1	
C 0017	,	MONDEULTURE	1000		71		7	2083	62	7818		18.
C BANP	2	MINTONE	34+		78			6277				÷.
****		17 PLANTS M	1424			2000		7718				2.0
COMP	1	MONOCULTURE				22+4		7842			;	13.
COMP						2487		4243		714	1	7
	-						•	****			'	* '

314 ****

8 8384 8 8813

٥

** ***

APPENDIX 8 *2/18/82 **** 48 CRITERIES MARIABLE EL. -.... VALUE LABES . ----.......... VAR LAUCE . 2 C ON F 751 0000 .. 2727 111 # 2 3 2 7 6 0 0 6 0 0 0 6 2 6 3 1 -1307 84 87 88 87 8 8887 4 8841 3 7383 8 2214 47 0418 23 0223 13 0000 27 2022 207) 201 0) 101 PARK 204 PLANTS M Nonocultury Mistury 1444 381 SPAC C 8949 2 3 CH SPACINE Horoculture Histure 2287 **** 44 0483 54 3471 54 3764 4 8 8 8 9 4 2 1 8 7 4 6 7 ** 7878 0834 0114 41) 14) 27) 1 2 8 P A C C 899 P C 899 P B CH BPACING Mensculturg Misturg 1882 710 1142 :::: 87 8780 88 1887 87 1889 32) 12: 20) 3 48 3716 28 4343 88 2828 **** 2 MITANE MONOCALANE 44 DIVENE 24 : 1 1 ; 1 7 ; SPAC 1 0 0 0 8 0 0 8 0 0 •••• 83 88 83 **** 7848 0784 5130 22 25 21 **** **** 7784 C (1000 P 3 28 PLANTS M Monoculture Mixture 5 8 4 5 **6** 5 7 **6** 5 •••• 2013 4873 2200 283 153 143 ŧ 8482 8333 2143 27 28 27 6788 7810 2882 ... C 9009 • 3 ż 17 PLARTS M Monoculturs Misturs 1141 81 88 82 7308 7883 8833 7828 4474 24**6**8 20) 13) 13) **** ** ŝ 10 PLANTS H MOWOCULTURS MIETURS 944 873 873 7 **** 7882 7882 7882 51 81 81 8077 3882 1885 41 3448 60 4500 34 6023 28 · 13 · 13 · 8 1 C 9999 ż 7000000002 204 PLANTS M N1NTUR**T** 8027 0000 1213 0000 1213 0000 11 3744 10 1100 10 1100 **** 131) 20) 20) EWL 82 1847 87 6878 87 8878 1 SPAC ê eer ż -----3 CM SPACING Mixture 2 ----. 64 7133 64 7233 ! 23) 23)

.

APPENDIX A 03/16/83 PARE VAR LABLE VALUE LABEL 8 UM MEAN 578 8EV -----· CH SPACING Mixture 3 1224 11 4000 + 11 8117 138 8188 20 -20 -1 5 P A C C 9MP 4 AA PLANTS M Mixture 1083 0000 121 2847 171 82 8284 82 8284 11 0120 38 PLANTS H Mixture SPAC 5 2 **** **** 82 4211 5 8378 5 8378 28 2673 18) 181 • . . 17 PLANTS M Mixture : 1171 1171 201 **** 14 1100 18 1100 8 8813 8 8813 32 0500 ; . Come TO PLANTE M MINTURE 843 8880 843 8880 \$3 \$433 \$3 \$433 3 P A C C 6HP 8 0174 26 1742 12: 2 , NDRÐUAV 204 Plants i MBROCULTURE Mixture 8 44 3134 44 4000 44 0000 44 7388 8 8878 7 8788 4 7788 10 8480 **** **** **** CUL 145) 26) 16) 18) 8 0 8 3 1884 784 489 **** C 9447 2 944 2 1 22 SPAC 3 EM SPACINE Monoculture Minture 1031 488 997 **** ** **** 0943 9834 8748 22) 10) 121 71 123 -----5.5 10 S CH SPACING MOROCULTURE MINTURE 1022 28% 627 **** 44 4344 30 6000 48 3306 11 2182 7 8277 12 8878 313 128 4029 48 3448 187 8823 23) 10) 13) C 8447 44 PLANTS M MOROCULTURE MITTURE 1181 422 788 **** 4 8 4 7 4 8 4077 2000 8525 412 0 3167 5 4732 10 5111 46 4015 20 4655 112 4655 26) 10: 16: C BHP C BHP

*** ****

40 1000

-

7

.

÷

200

44

N

12:

27 0808 22 0808/

POOR COPY Copie de qualitee inferieure

1

١

201

		ž										
APPEN011 4							62				PAI	IE 47
VARTABLE		VALWE LADEL		8 9 94					***			•
8 7 40		17 PLANTS H				25.00						
Comp	۲	MONOCULTURE	3+4	****	34	1800	•		43		ι.	
8 7 40	7	10 PLANTS M				2105		3885			ŧ	191
CONP	1	M#####################################		****						7800	•	
CBARP	2	M 1 X 7 VA 8	446	****	44		•	3437			•	•••
CUL		7 689 9 9 9 9 2	8788			7838		3288		7887	,	1311
8PAC	i	364 PLANTS H	875			1887		2184			•	147
Comp	2	#1 # 7 # # #	875	****		1087	٠	3184			•	, 18)
BPAC	1	3 CH SPACING	1128				7	1787		4813	5	221
CBMP	1		1128		81		٦	1787		4913	•	32 . *
SPAC	2		344					7376		4477		4 181
Camp	1	HITTURE			63	2778		7378	73	4477	+	181
8845		AA PLANTS N			. 7	0433		2318				121
COMP	1	MIXTURE				0433		2310	17		4	12)
BPAC		28 PLANTS H			4.4	2778		1841	17		,	181
Camp	1	MISTURE			44	2778		1841	17			18)
8 9 4C		17 PLANTS N				7 2 7 3				7218	•	22)
COMP	1	HINTORE	1004			7273	•	6331	31	7318	*	82)
SPAC	,	TO PLANTS M	1.84.8					7884			(21)
Comp .	2	MINTURE	1000			8871	4	7884	77		4	811
CUL	,		3414			6362		7812	33			
#PAC	1	384 PLANTS M				3333		8415			+	• •
C 844P	3	MISTURE	483			3333	•		30	1000	(•)
8PAC	2.	3 CH BPACING	812					.731		****	۰.	181
CONF	1	HONOCULTURE	311		8 1	4333	3		18	3667	- C P	• •

APPENDIX 8				+2/18/			PAGE 45 11
CRITERIES VARIAS	LE E L						
VARIABLE	C	VALUE LABEL	5.00	MEAN	STO DEV	VARIANCE	• '
COMP	2	MINTURE	301 0000	80 1887	5 1828	28 8887	()
SPAC Comp	3	S CH BPACING Monoculture	288 ****	** ****	3 6333	13 2000	4 6 F
BPAC		44 PLANTS M	310 0000		7 1346	50 0048	. 71
COMP	1	MONOCULTURE	348 0800	61 2467	7 1348		7° 🔺
S P A C C GMP	6 . 2	28 PLANTS M Mixture	411 0000	61 3764 61 3764	8 0125 8 0125	26 1260 26 1260	
SPAC Comp	· · · · 2	17 PLANTS M Misture	733 0000 733 0000	** ***7		34 1334 34 1338	r 184
SPAC COMP	7	IS PLANTE M MENSCULTURE	553 0000 778 0000	46 0833	8 3688 6 7726	60 4470 48 8887	122 • 81
COMP	2 .	MINTURE	278 0800	48 4333		42 9887	아, 한 고기
CUL BPAC Comp	8. 1 2	85761 364 Plants M Mittury	12278 0000 1848 0000 1849 0000	67 6426 73 8666 73 8666	8 8878 7 8184 7 8184	\$2 \$565 53 \$480 54 \$480	(143) (28) (26)
SPAC	. 2	3 ÉM BPACING Misture	2313	72 8034 72 8034	\$ \$7\$\$ \$ \$7\$\$	#3 6363 73 6363	
	· · ·	S CH SPACING	1661 0000	68 2683 68 2683	·	88 1721 88.1721	1 24) (24)
SPAC COMP	4	44 PLANTS M	3064 0 000 7064 0000	 	12 4360	184 7848 184 7848	r 31) - 31)
SPAC Comp	8	18 PLANTS H MINTURE	****	86 7778 88 7778	6 6	36 8301	1 1 1 1
5 P A C C 600 P	•	17 PLANTS H Mixture	1441 0000	6 1 7083 6 1 7083	\$ \$717 \$ \$717	34 4784 34 4784	· 24) · 24)

0

•

.. -----VARIABLE BL ----..... TAR LANCE VAL NO 28) 28) 7 2 1034 1714 ** 87AC C# TETAL CASES -MISSING CASES -1040 32 88 PET 3

Þ

1 .

 $\sim j$

. .

FA88 50

202

	`					· · · ·			•									
• • • • • • • •	\backslash I) E \$	¢	i i	P 1	F 1		8 F	5 U			P 6	I L	Ÿ.	1.0	8	-	٠
CRITERION VARIAL		R H				98 E A.			8 PER	HEA	8							
SROKEN DOWN		CVL				. 7 1 9.	A R											
	8 Y	SPAC			181	ren -	PLAI	NT BPAC	186									
	B Y	C 844			788	i A TW	2 V V 3											

VARIABLE	C 8 D #	VALUE LABEL	5 UM	MEAN	570 98V	VARIANCE	۰.
POR ENTIRE POPU	LATION		44888 7801	47 2272	30 0454	842 7881	(1020)
\sim							
CUL	2	SLENLEA.	7881 \$181	43 1848	17 4313	343.4814	174)
SPAC	,	204 PLANTS H	821 8777	36 7338	10 \$788	120 8201	. 23)
COMP	- 1	MONOCULTURE	380 3167	34 \$742	14 8880	216 8784	
COMP	2	HIXTURE	441 9411	36 7888	8 8124	42 4118	12)
SPAC	2	3 CH SPACING	1200 7281	36 3186	7 8348	E: 3805	4 34 (
COMP	1	MONOCULTURE	488 7734	31 6211	7		6 436
COMP	2	MIXTURE	780 8623	37 8844	7 0085	40 1194	E. 213
SPAC	3	B CH SPACING	1301 4780	37 1880	1 2465	84 7888	· 30) ···
COMP	1	MONOCULTURE	423 0904	32 6464	4 4343	38 24+2	1 131
COMP	2	MITTURE	878 3888	21612211	. 7.525		- 22)
SPAC	4	44 PLANTS M	1173 8808	41 9288		78 1498	1 261
. AC 844 P	1	MONOCULTURE	818 1222	30 6866	3 0788	. 4724	131
1 C 1999 P	*	#1# 7# ###		43 7218	11 8398	138 1842	1 · · · · · · · · · · · · · · · · · · ·
SPAC		28 PLANTS M		45 7848	8 3318		(20)
	1	MANACULTURE		48 4872	8 8784	78 7724	4 181
CONF	2	MINTURE	234 0400	46 8080	7 1788	81 8324	4 6 3
SPAC		17 PLANTS M	1078 4854	88 7829	18 8843	348 2073	1
COMP	1	MONOCULTURE	687 3883	48 8480	12 1387	147 2880	1 121
COMP	2	MIXTURE	491 1071	70 1582	21	443 1920	· 7·
SPAC	,	SO PLANTS M	1188 0837	42 6839	34 1888	1168 6223	1. 1.
COMP	1	MONOCULTURE	382 3312	44 9414	14 3482	248 1881	

100R CUPY

OPIE DE QUALITEE INFERIEURE

43/13/83 PAGE 8.1 CA 1 7 28 1 80 VALUE LABEL 5.08 NE A N 578 VAR I ANCË • • • 38 8478 2 0073 3340 1820 0241 4074 8800 7408 2002 X. 2063 257 67 197 1043 3737 8187 4876 3 8871 733 ĊWL PARE 264 PLANTS M MOROCULTURE MIXTURE 29 C 0007 1 182 3. 4#1 131 371 3 CH SPACING Mensculture Mature 1188 7334 418 8187 773 8327 20 7435 31 8831 28 8801 8683 3613 8883 21 * C (1997 . CH SPACINE Menoculture Mixtude 1101 2020 0420 161 2686 38 8871 223 2628 22 | 121 20) 8425 2182 7884 40 2176 38 2880 48 7873 13 1288 471 818 3 C 0000 ż 44 PLANTS M Monoculture Misture 1181 1323 484 2373 728 8881 42 8404 42 2034 42 7888 1781 1781 61 3887 38 1441 78 4748 7...... 412 C 000P 11 2ď: 181 141 28 PLANTS H Monoculture Miiture 47 8168 47 3000 47 8843 10 8078 10 4627 11 1214 112 8281 100 8888 123 8078 1340 8783 718 8834 878 8149 8 1 A C C BHIP ż 28) 13 | 13 | 17 PLANTS N Meneculture Mixture 1361 6411 878 8418 883 8883 62 4066 62 2724 62 5366 0100 4000 6736 288 1788 118 8484 423 2723 18 8 1 3 C 900P 28) 13) 13) 14.51.7 19.51.07 **** *73* 388 1887 128 4828 888 8884 NO PLANTE M MONOCULTURE MISTURE 1428 4820 771 4833 18 PAC 712 C 8447 25 700000002 204 PLANTS M MIETURE 4814 40 3745 27 4083 27 4083 7844 4147 4147 ****** 128) 20) 20) 1. 812 SPAC C 8447

£

783 1876

....

E 8489

22

3 CH BPACING Milture

28 PLANTS M

8 1

.

13 0782

41 1411

171 0842

121

30

.....

.83 03/18/83 VARIANCE . 5 UH VALUE LABEL 20) 20) 38 2378 38 2378 104 0624 CH SPACING 724 7881 13 8348 <u>ا</u> SPAC 3 -171 -----***** 21 8678 466 1732 * * A C C 0007 * 778 3493 ÷ ſ 10 8830 117 7887 101 *** 2**7 48 8478 SPAC 5 2 24 PLANTS Misturs ē aur 20 20 17 PLANTS MINTURE 18 8505 366 3462 366 3462 * 2 ** 1003 8302 1003 8302 50 1915 C 8 P A C C 844 P 10 PLANTS M Mixture *** 41 8088 4 8781 4 8781 73 6328 111 7 40 5788 3# 4877 31 0782 26 3054 18 882) 8 3076 8 6646 9 2399 388 2831 70 5184 46 4183 85 1812 144 -38 -18 -19 -NGROUAV 204 Plants m Mømeculture Mixture **** **** ĊVL 5 C 9MP 1 2 33 1181 37 0832 28 8831 4121 1301 0890 130 2382 123 8791 122 8864 201 212 3 CH BPACING Menoculture Mirture 887 3873 333 8785 378 8238 11 ------23) 10) 12) 3718 70 0000 312 B EM SPACING Monoculture Minture 878 3818 365 8780 487 8888 38 0170 36 8428 35 842# 8 C 9417 é 14 8785 14 8373 13 8884 107 8900 223 1211 182 3072 27) 11) 16) 44 PLANTS M Monsculture Mixture 1088 7240 481 1217 818 8023 40 6184 43 7343 38 4761 412 COMP

880 1883 880 1883

203

22) 22)

1

£

POOR COPY Copie de qualitee inferieure

PPEND12 8						03/18/	42		PAG	66 G:
RITERION VARIA	DLE KH									
ARIABLE	C 0 0 2	Value Label		5 MM		MEAN	870 BEV	TAR LANCE		
SPAC	•	17 PLANTS H	413	3808	E 1		13 4005			
COMP	,	MONOCULTURE		3504			13 4005	178 8738	1	
8PAC	,	TO PLANTS M		3313						-
C OM P	1	HOMOCULTURE				8040	33 6084 10 3486	1120 8200 107 8864	1	
COMP	2	MIXTURE		7884			43 3870	1883 2874	1	
U L		7 eme e s d e 2		4120		1807	17 6887			
8PAC	1	204 PLANTE M		2833		1424	10 1888	1413 0502	1	127
C 844P	2	HINTURE		2833		1824	10 1885	103 1846	- 1	1.
SPAC	7	3 CH SPACING	780	2285			12 2404	180 4140		
C 844 P	2	MINTURE		2246 -		4344	12 2004	150 8180	1	22
BPAC	3	8 CH SPACING		1480	40	3243	18 8801	284 8387		
COMP	2	HIFTWE				3243	18 8801	284 8387	i	18
	4	AA PLANTE M		8874			10 8821			-
COMP	3	HIXTURE		8874		\$488	10 8821	114 3218	*	12
SPAC		28 PLANTE M	1871				28 4828			-
C (949 P	1	MIXTURE	1071				24 4425	701 3281	-	14
BPAC										
C DWP	;	17 PLANTS H Mixture	1400				44 2788	1980 8712	- e	21
	•		1488	1483		8812	44 2785	1888 8712	"	21
87AC	7	10 PLANTS M	1787			3000	\$7 \$211	3384 4844		20
C 944 P	3	MIXTURE	1787	**73		3099	87 8211	3354 1501	i	- 20
۱	7	HOROUAY.	8788.				40 0824	1844 2471		
SPAC COMP	2	284 PLANTS M		**33		7884	4 3494	88 7181	i	- 11
	. 2		248	e#33	30	7884	. 3488		i i	. ě
BPAC	2	3		\$ 2 7 3		0 8 4 3	12 1827	147.3124		
C Dia P	1		276	7083		1181	11 8880	143 0170	1	

APPENDIX &						03/16/					****	
CRITERIOS VARIA	BLE KH											••
VARIABLE	C D D E	VALUE LABEL		S UM inj		"MEAN		DDEV		IANCE		
COMP	3	MINTURE	189		31		7	3428				
SPAC Comp	. 1	D CH SPACINE Mondculture		8278 8278		0450		8008 8008		3880	ŕ	
SPAC		44 PLANTE M	~	4269	-					3880	,	6 1
C DMP	1	MONSCULTURE		4268		737# 737#		2788 2788		4748		# 1 # 1
8 P A C C DMP	8 2	28 PLANTS H		**33				3478	300		1	÷.
8740	-	HISTORE		**33	**		17	8474	300		1	7 '
COMP	2	17 PLANTS M Mixture		****		590# 5904		8680 8680		4613	*	18) 18)
SPAC "	7	10 PLANTS M					40		1674			121
COMP	1 2	MONOCULTURE Mixture		8 8 0 0 3 3 8 8		# 2 8 C # # 0 O		8734		4 8 7 1 2 8 8 2	i I	
CUL SPAC	•					2701	44		2203	7482		
Come	1 2	204 PLANTS M Milture		****		8840 8840		1817		2801		283
SPAC	2	3 CH SPACING		4118					73	4787		311
COMP	2	MINTURE		4114	41			5718	73	4787		311
SPAC Comp		9 CM SPACING Mitture		2287		0512 0517		8878 8876		3726		24) 24)
3 BPAC	•	44 PLANTE M		7380		1248	17					20)
Comp	2	MIXTURE	1893	7350	63	1248	17					201
SPAC Comp	8 2	28 PLANTS M Mixture	1026	4320		0740 0340		1836				181
SPAC		17 PLANTS M	1700	7707					1285			23 -
COMP	- 2	MIXTURE	1700						1246			23:

APPEND13 4				+3/14/4			P.44	
CREVERION VARIABL								
VARIABLE	C	VALWE LABEL	2 Lana	48 A.H		VAR I ANCE		
SPAC COMP	7	10 PLANTS M Mixture	2883 8263 2883 8263		** ***7 ** ***7	0021 2022 0021 2022	1	20) 20)
TOTAL CASES + Missing Cases +	1086 81 BR	4 7 PCT						

PPENDIX .					8/82		-
		ATE = +3/15/82+					
RITERION VARIADLE -BROKEN DOWN DV BY BY	D E S C VH Cul SPAC Comp	A 1 P T 1 G H SEED VIELD Cultivan Inter-Plant Treatment		P 0 P W L A T	1 0 N 8		
ARIADLE			5 U U U	MEAN	STD DEV	VARIANCE	
OR ENTIRE POPULATS			1868 0883	1 8071	1 0326	1 0662	
U	2	GLENLEA	388 0532	2 1397	0 8817	0 7282	
SPAC	,	204 PLANTS M	41 8094	1 4178	0 4814	0 2317	i 23 i
E OMP	1	MONOCULTURE	18 8426	1 7221		0 3420	1 11
C 844 P	2	HITTURE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 9056	0 3173	0 1349	12
SPAC	2	3 CH SPACING	4771	1 7806	0 4431		4 34
COMP	1	MONOCALIVAE	<i>J</i> 0 1311	1 6874	0 4884		(13)
COMP	2	MIXTURE	40 2415	1 0103	9 3472	0 1488	21)
SPAC	3	S CH SPACING	65 8227	1 8748	0 8290	. 2788	
COMP	+	MONOCULTURE	20 8213	1 5786	0 4082	0 1888	i izi
COMP	2	MIXTURE	45 1013	2 0801	0 \$210	0 2714	- 231
SPAC	4	44 PLANTS M	80 3123	2 0797	0 5411	0 2828	(29)
COMP	1	MONOCULTURE	25 8183	1 8708	0 2011	0 0477	1 121
COMP	3	MIXTURE	34 8880	2 1845	0 7028	0 4840	(18)
SPAC	- -	28 PLANTS M	43 8273	2 1914	0 4073	0 1659	
COMP	,	MONOCULTURE	32 6068	2 1671	0 4180	0 1788	(18)
COMP	2	MIXTURE .	11 3214	2 2843	0 4056	0 1845	ι Β ι
SPAC		17 PLANTS M	84 8882	2 7280	0 8471		(20)
COMP	1	MONDCULTURE	31 4804	2 4223	0 6262	0 3821	(13)
COMP	2	MIXTURE	23 0688	3 2087	1 2164	1 4783	· 7)
SPAC	7	10 PLANTS H	88 0442	3 0550	1 8421	2	
COMP	1	MONOCULTURE	17 6885	2 2361	0 7544	0	E

- POOR COPY

COPIE DE QUALITEE INFERIEURE

206

 \mathbf{n}

 \sim

		t										
APPENDIE 6											P 4	
CRITERION VARIAS	LE TH											
VARIABLE		VALUE LABEL		5 UM		MEAN				ANCE		
C 844P	2	HITTHE	40	1888	3		,		3	\$ 2 # 5	,	11
CWL	3	PARK	304	1484		4785						7 44
SPAC	,	204 PLANTS H	27	4428	1			3843		1328	i i	
C BMP	1	MONOCULTURE		#333		1723		2242			i i	- 1
COMP	2	HIITUR C	2 1	4483	1	1373		3032		1848	4	
SPAC	7	3 EM SPACINS	43	1 3 4 3	,			3884		1238		
COMP	1	MONOCULTURE	18	4030		1918		1383		1161	ì	13
COMP	2	HITTER		1376		0421		3737		1395	i	27
SPAC	3	S CH SPACING	46	4758	,	4211		4347	-	14		32
COMP	1	MONOCULTURE	18	3301		3808		2222			i	- 12
C 816P	2	MINTURE	2.	1488		4873		1254		2781		- 201
SPAC		44 PLANTS H	43		,	8701	• •			1243		24
COMP	1	MOROCULTURE	1.6	3184		4433				1441	÷	- 11
C 844P	2	MITTWRE		8478		0203				1047	÷	- 17)
SPAC		28 PLANTS H		4462	,					1887		
COMP	1	MONOCULTURE		2131						2004		
COMP	2	MISTURE		1014		7289		474		1244	÷	
SPAC		17 PLANTS M		7801		7882				2887		
COMP	Ť	MONOCULTURE				4443		773		1423		13
COMP	2	MISTURE		8041		7842				3888	ł	121
SPAC	7		44	4108					-	3726		28.)
C (940 P	,	MONDCULTURE		8712		.747		1184		1020	2	133)
COMP	2	MITTURE		7384		7482						131
.VL		700000000				4333		448			,	
SPAC	1	204 PLANTS H		3681				434		1178	-	201
COMP	2	WJTTVEE		3461		****		434		1170	i	20)
SPAC	2	2 CH APACINE			•	3254				1803	,	22)
COMP	2	MISTWEE		1847		3284				1863	i	22)

		,		-		-

 $\boldsymbol{\nu}$

1 1 2.

2 1 2

3 1 2

4 1 2

5

NDRGUAY 204 Plants M Monoculture Mixture

3 CM SPACING Monoculture Mixture

S CH SPACINE WOODEWLTURE Mixture

44 PLANTS M Mênêculture Mîkture

28 PLANTS M MONDEULTURE

			• *				
	-						
							· .
APPENDIX 8					. 2		PARE SA
CRITERIEN VARIA	ILE YN						
VARIABLE	Case	VALUE LADEL	8 UM	***		VARIANCE	
SPAC	3.	. CH SPACING	26 1172	. 3058	0 4413	0 2014	(20)
COMP	2	MIXTURE	28 1172	1 3068	0 4483	. 2014	201
SPAC Comp	• 2	44 PLANTS M Mixture	26 3320 26 3320	1 4102	0 3240 0 3740	0 1080	(17) (17)
SPAC Comp		28 PLANTS H Minture	32 6414 32 6414	1 7180	0 3465		1 101
	•		32	1 7180	. 0 3868	0 1484	E 101
SPAC Comp	6 7	17 PLANTS M Mixture	38 3441	1 8172	0 8081	0 \$452	201
SPAC LOMP	7	10 PLANTS M	18 8043		0	0 2811	e 11)
~ 0417	1	MIXTURE	15 9043	1 4488	0 6110	0 2611	

24 3208 24 3208

2 0287 2 0287

	- 24	117	2		1	30(0		493	•	20	1.8	1	20)	
-	25	332			,	4 8 6	2	0	3	240		101		(17)	
	28	333				4 8 4	2 2	Ô	3	240	o	101	i o		171	
		841				714		0	3			141		,	1101	
	3 2	841	4		1	714	10	, e	1		6	141		t	101	
		244						0			•		12	1	201	
	30	. 344	1		١		2	ø			Ó		7	(201	
		104			١	446		· o				2.8	11	ŕ	117	
	16	904	3		1	441	• •	0	6	110	۰	26	11	•	111	: بور مورد روی اور اور
	265		,	t	1	776		•					17	,		Υ.
		433	0	-	;	200	11		- 31		0	160	17	(36)	V
	2 2		3	-		436				32					1	100
	27	451	7		•	181	7	0			ō	1.01	11	1	1	1, 11
	30	031	•		1			e		74	•	223		,	20)	•
	1.	343	7		1	704		•	4.4			224				
	14	. 8 8 7	7		1	338	2			118		100		4	111.	
	30				,		e		31	77	•	124		,	23)	
	18		7		•			6	31	22		101		1	1ê)	
		. 7 .	3		1	838		é	24			144			13)	
	46		2		,	784				87		268		1	271	
	1.0		7		1			ě	. 4.1	12		188		i	111	
		114										340		i.	16.1	

0 4821

0 2422 0 2422

1

١

4

121

.

1

٠,

C. .

> CUL SPAC

COMP

COMP

COMP COMP

COMP

SPAC CDMP

9

1

.

FOOR COPY Copie de qualitee inferieure

207

APP80011 0				•3/14/	• 7		
5 6.1788.18 1 1/	ARIABLE TH		_				
TARIABLE		VALUE LADEL					•
(SPAC COMP	•	17 PLANTS IN MONOCULTURE		2 266 -	0 7385 0 7388	• • • • • • •	· • • •
5 P A C C DMP C DMP	7 1 2	10 PLANTS M Monsculture Mixture	63 726 · 2 07 0 32 8860	2 8277 2 3412 3 2885	· 3184 6 4837 1 8785	1 7418 0 2437 2 8175	2 191 4 91
CUL " SPAC COMP	- 1 7	7 0000000 204 PLANTE M MITTURE	269 7246 26 3643 26 3643	2 2838	1 4788 0 3714 0 3716	2 1413 0 1381 0 1381	
SPAC Comp	2	J CH SPACING Mixture	21 4584	1 4300	0 8217 0 8217	e 1711 e 7711	21
SPAC Comp	3	B CH BPACING Misture	28 8288 28 8285	1 8017 1 8017	0 8002 0 8002	6 8403 8 8403	1 18 1 1 18 1
SPAC Comp	4	64 PLANTS M Minture	28 8712 28 8712	2 1889 2 1989	0 4885 0 4885	0 2387 0 2387	· 7章) (7章)
SPAC Comp	8 2	38 PLANTS M Mirtung	43 0823 63 0823	2 3030	1.11	· 2700 · 2700	181 181
ÉPAC Comp	8 2	17 PLANTS M Misture	81 0188 81 0188	2 7726	1 7383	3 0318	(- 王室) (- 王室)
SPAC Comp	7	10 PLANTS M Mixture	73 0881 73 0881	3 8844 3 8844	2 2666 2 2666	5 0875 5 0875	· 20: · 20:
CUL SPAC CSNP	7 1 2	NOMOVAY 204 Plante M Mixture	* 134 0330 8 3465 8 3465	2 0760 1.1733 1.1723	1 2033 0 1004 0 1004	· 0727 • 0365 • 0365	
8 P A C C 800 P	· 2 . 1.	3 CH SPACINS Honoculture	18 4070	1 4070 1 7174	· · · · · ·	• 1747 • 1710	113

APPENDIX .

	•	
	,	

PAGE 64

¢

ſ

CRITERION VARIA	DLE VH						
VARIABLE	Č O D E	VALUR LADÙL	8 UM	MEAN	STD DEV	VARIANCE	
Camp		HIXTURE	8 1824	1 2326	0 2804	0 0627	5 3
8 P & C C 911 P	3	O EN SPACINS Honoculture	· · · · · · · · · · · · · · · · · · ·		· ····	+ 3673 (+ 3673)	
SPAC	•	44 PLANTS M	11 7368	1 8881 1 8881	0 4880	6 2171 · 6 2171 ·	
COMP	•	MONOCULTURE:	11 7388	7 1554	· ····	6 4347	
SPAC Comp	2	MINTURE		; ; ; ; ; ;	0	0 4347	
SPAC Comp	6 . 2	17 PLANTS M Minture	38.8813 38.8813	2 4434 2 4434	1 8441 1 8441	3 7786 3 7786	
SPAC Comp	7	TO PLANTS M Monoculture	34 2886 70 8884	2 8566 3 4814	1 6684 1 6781	2 4316 -	
COMP	3	MIXTURE	13 3742	2 2207	1 2880		
59AC 59MP	# 1 2	8070) 204 Plante M Mixture	414 3384 45 8813 45 8812	2 3019 1 4244 1 8344	1 2368 0 2339 0 7339	1 6287 / 0 0547 / 0 8647 /	25 (
SPAC Comp	;	3 CH SPAČING Mikture	88 3001 88 3001	1 7842 1 7842	0 3781 0 3791	0 1437 i 0 1437 i	
97-82 C 641 P	1 1 1		47 8872		-0.3101 0.3101	• 1•1• (• 1•1• (
S P A C C GMP	;	44 PLANTS M Mitture	:: ::::	2 1832 2 1832	* *****	· · · · · · · · · · · · · · · · · · ·	30) 30)
SPAC Comp	5 2	18 PLANTS M Minture	:>::::	2 3142 2 3142	0 8181 0.8181	: : : : : : : : : : : : : : : : : : : :	16) 16)
SPAC Comp	\$	17 PLÁNTS M Mieture	64 4361 64 4361	2 8016 2 8018	1 1884		

.

208

APPEND11 6					••		-	,
CRITERION VARIABL	8 YH						•	
	CODE	VALWE LABEL	\$ MP4			VARIANCE		•
SPAC Comp	7	10 PLANTS M Misturs		~	2 4844		e e	28) 28)
TOTAL CASES - Missing Cases -	1060 48 PM	4 4 PCT)				

		7 Z
APPENDIN 6	#3/18/#T	PAGE 07
FILE WP77 (CREATION DATE = 03/16/62	1) (************************************	
	N BP EUBPOPOLATIONS (21 In 1960 Kähnels G	

WEIGHT FEN 1999 KENNELD G
CULTIVAN
INTER-PLANY RPACING
TREATHER T

VAR LABLE .		VALUE LABEL		5.04		MEAN	\$70	DEV	VAR	ANCE		
FOR ENTIRE POPUL			42588	7874	41	2488	7	7884		**** ,	٩	1032 -
EUL	2	S. ENLEA				7244			28	4840		1781
J BPAC		204 PLANTS M	1178	1845		2882	3	1304		7888	1	231
COMP	,	MONOCULTURE		3191		7555	3	7874	14	4201	1	111
COMP	2	MINTURE		4534		7378	2	****				12 -
SPAC	2	3 CH SPACING	1717	3334				4477		7824		341
COMP	ī	MONOCULTURE		8498		0031						131
C BHA P	, 3	MITTURE	1867	2121		8235	3	7184	13		ſ	211
SPAC	3	. CH SPACINE		1867		1485		7935			(20 +
COMP	1	MENECULTURE	821	7948		8234		#231			•	131
COMP	2	HINTURE	1123	4838	8 1	8225	··· 4		23		4	32 1
8 P AC	· •	44 PLANTS M		1302		2240				6160		24 -
COMP	1	MONOCULTURE	841			3768		377,8				131
E guire	2.	MISTURE	737	. 1361	4.0	. 1482	•	7828	77	3183	ſ	18.)
SPAC		28 PLANTS M		7877		4399		1878		7484		30)
COMP	1	MONOCULTURE		7434		7182		3368				28.7
C 844P	2	MINTURB	24 1	****	4.8	2110	2	2888	•	2418	1	
SPAC		17 PLANTS M		2083						2010		101
COMP	1	MONOCULTURE		1055		2848		7784			ţ	121
C 814P	2	MISTURE	374	1824	**		۲	\$217		6764	1	7 1
SPAC	7	10 PLANTS M		0728		1617		1848				101 8
C 944P	1	MONOCULTURE	407		50	***3	з,	2454	10	7861	•	#)

۲.,

1

209

33, 10, 13, 27, 11, 18,

12)

Ø

		÷								
APPENDIX .									PAI	
CRIVERION VARIAS						,				
VARIABLE	C 0 9 6	TALWE LADEL		-				VARIANCE		
C 844P	. *	#1 # T ## #		4471	47		2 4041	\$ 7428		11)
CWL		PARE	1207			7384				
BPAC	1	JOG PLANTS H			37			27 0004	•	247)
COMP	,	MONOCULTURE					4 8428	34 4384		26)
C 9997	2	MITTURE					3 3498	11 4897		6)
	•				37	8783	8 3184	28 2860	•	18)
8 7 AC	3	3 CH SPACIES		1211		7348	5 5744			
C GHLP	ĩ	MANDENLYNEE						31 1904	4	41)
C (100 P	,	HITTME		2080		1888	7 6633	87 2842	1	141
	-						4 3284	18 7368		27/
SPAC	3	F CH SPACING	1.497	2280						
Comp	ĩ	MONACULTURE		7834		****	4 8782	24 7826	4	32)
C (100 P	1			4722			8 3410	28 8288	+	12)
	•				39			23 707 1		30 1
SPAC	4	44 PLANTS H								
COMP	ĩ	MONOCUL TURE		\$480			4 8885	23 8878		241
Cánar								36 7841	1	111
	-				38	3188	3 8478	13 3060		171
SPAC		28 PLANTS M								
C DMP	,	MARACULTURE		7747		8787	8 8842	43 4834	,	38)
COMP		HITTURE				7862	8 7848	78 8488		180
	-		***	8173	3.6	4337	3 1013			14)
SPAC		17		4408						
Éstor	7	MANDEULTURE		4726		7877	6 4635	78 8434	•	241
t ame	2	MINTURE				4888	4 9145	18 1887	+	121
	•			****	34		8 8112	36 1341		131
SPAC	7	TT PLANTS H		3005	÷					
C BHPP		HONOCULTURE				4734	3 4744	12 0714	1	28)
COMP	2	HIXTURE		1244		5489	2 8878	8 2243	1	137
	-			1881	35	2949	3 8818	15		131
CUL -	· •	700000003								
BPAC		304 PLANTS H	4622			8317	8 1386	28 4181	1	1281
Cour				2322		1818	L 1885	27 0247	1	20)
	•		782	3322	38	1818	8 1948	27 #247	4	201
SPAC	1	2 CM BPACINE								
C DOOP	-	AISTNAS		0832			4	20 7115	1	22)
	-			**32	37	0397	4 8818	20 7115		221

	 	- 84

APPENDIX .						03/16/	.7			
	OLE EWY		•						• -	
VARIABLE		VALUE LABEL		-		-		VAR JANCE		
SPAC	,	. CH SPACING	72.		74	4310	3 8413	12 4422		
COMP	3	MINTURE				43.0	3 8613	12 6432		201
SPAC		44 PLANTS H			35		7 3110		,	
C 844+	2	MINTURE					7 3110	13 4565	÷	171
SPAL	•	38 PLANTS M	781		34		2 7442	7 1304		
C (1997)	2	MISTURE	701		36	8428	3 7442	7 1244	4	
8 P A 5 😤	۹.	17 PLARTS M	711		36		* ****	23 0424		20,
c ###	- 1	MIETURE	711	*#27	34	8841	4 8004	23 0435	i	20
SPAC	7	10 PLANTS M		7938	33	3449	7			
	- 2	MISTURE	366	7838	33	3448	7 8288	61 2861		11
ENL		NOROUAY		3223	44	1264	4 8006	24 0182		145 -
BPAC	1	204 PLANTS M		8951		4173	3 6845	12 8483	-	38
C	1	MONOCULTURE		4464	44	2187	2	4 3474	÷	1.
COMP	,	MISTURE		1053	44	7424	4 4246	18 5775	1	
SPAC	. 1	3 CH SPACINE	842	3797	44	4752		20		311
CONT	1	MOROÇULTURE		8384		1817	2 2836	\$ 2604		
COMP	1	MIXTURE		7442				42 0003	i.	121
	-									

	. 2						
		MIXTURE	366 7938	33 3448	7 8788	81 2881	
e							
CUL		NURBOUAY	6398 3223	44 1264	4 9004		
BPAC						24 0182	
		204 PLANTS M	1888 8051	46 4173	3 6446	12 8483	
C #44#		MONOCULTURE	738 4888	48 2187			
C 899 P					2 0888	4 3874	4
	2	MISTURE	850 1053	44 7424	4 4246	18 \$77\$	
•							•
- SPAC	-						
	. 1	3 CH SPACING	842 3797	44 4762		78 8844	
COMP		MOROCULTURE				30 80 9 0	
			418 6384	48 1817	2 7876	5 2604	
C BHIP		M3X7484	828 7443	43 8484			
						42 0003	- t - ,
SPAC .	3	• CH BPACING	1023 1318	44 4444			
					3.2001	18 4773	÷
			487 1798	41 7180	2 0403		
C #14 P	2	ALT X 7 UK 2	565 9574				•
	-			43 6348	3 4175	14 8731	
5 7 40		44 PLANTS H	1147 2085				
C 000 P				42 4492	6 2467	38 8843	
	1.	HREE REAL THRE	471 4861	42	8 8892		
C 844 P	1 (NISTAR				48 4443	4
	- (676 7634	42 2348		38 1484	,
	1						
8PAC	• 1						
	• /	26 PLANTS M	525 2205	44 1017	4 0125	18 1002	,
C 8449	1 /	MANACULTURE	828 2288	44 1017			
			//++	44 1817	4 0125	16 1002	
	1						

FOOR COPY Copie de qualitee inferieure

.

.......... PA88 05 BRIGH TARIABLE VARJADLE NÇ AD VAR I ABCE VALUE LABEL 8 194 ۲ 87 AC C 8407 381 8848 8 7887 ** **** e 1 45 1981 *) *) 10 PLANTS W MDBBCULTURE MIXTURE 403 1919 381 3081 423 8836 5 P A C C 900 P C 900 P 42 3788 43 3688 42 3884 5 3564 5 3175 5 7537 28 1218 28 2797 33 1848 19) 8) 10) 8 6 8 . 43 3437 48 3437 48 3457 700000003 204 PLANTS M MITTURE **** **** **7 **** **7 **** 6 6913 6 4338 6 4338 33 3003 41 3048 41 3048 1271 181 181 ŧ 2 1008 1300 221 4 7884 2 3 CH SPACINE Mizture 48 4241 12 S TH SPACING -----3 714.0314 44 6270 8 8788 32 2443 32 2443 18) 1 1 3431 121 8 P A C C BHIP AA PLANTS M 514 8788 514 8788 42 8180 24 8830 28 8830 * ţ 727 0384 :: ;;;; 34 8025 36 8025 ::: SPAC COMP 5 2 1 8078 1 8078 -*** 3*** 43 3878 42 3878 8 P A C C 800 P 2 21 8743 21) 41 8024 33 3084 33 3084 20) 7 *** -----IN PLANTS H 6 8920 5 8929 + 1174 8733 313 8172 313 4172 30 8334 30 8821 38 8821 6 0736 1 1670 1 1670 28 7431 17 2382 17 2382 *** 7 1 2 DER GUAV 204 PLANYS M MIXTURE 1 8940 6807 11) 874C 3 CH SPACING Monoculture 418 3873 34 1381 2 8215 3 1

3

APPEWBIE 6 CAITERION VARIABLE KWT

VARIABLE	C 0 0 E	VALUE LABEL	5 414				· •
C 8417	,	MIXTURE	184 2185	38 8421	2 7468	- 7 3271	د د (
SPAC	t	. CH SPACING	243 4733	33 0700	7 1810	\$1 138A	e 🔹 🖬
C 941 P	•	MONSCULTURE	203 4732	33 8748	7 1810	61 1384	• • • •
	4	ลล์ ครอบรอ พ	218 8888	38 8480		44 8787	
C 0447	,	MOROCULTURE	218 8888	38 6420		44 6757	• • • •
BPAC		28 PLANTS M	284 8277	37 8488	3 8307	12 4888	
C DHP	2	241 X T UR B	284 8277	37 8488	3 8347	12 4858	· 7 ·
SPAC		17 PLANTS M	837 0884	35 8037	4 8423	21 8863	1 18 -1
COMP	2	MITTURE	527 0554	38 4037	4 8429	21 8863	1 1
SPAC	7	10 PLANTS M	417 1427	34 7618	. 1972	37 2840	1 12)
COMP	,	MONOCULTURE	225 4385	37 8728	3 7247	13 8882	- E - E - E - E - E - E - E - E - E - E
C 844 P	2	MIXTURE	101 7072	31 8612	7	49 2074	• • • • • • • • • • • • • • • • • • •
	•		7418 4833	48 8727		34 4487	+ 1#1 +
.BPAC	1	204 PLANTS H	1061 8888	42 4884	3 7434	14 3171	- 26 F
' COMP	1	HITTURE	1081 8888 .	47 4884	3 7436	14 3171	1 25
87AC	2	3 EM SPACINE	1386 1028	42 4407	8 1420	26 4444	1 325
Comp	2	MIX THE	1368 1076	42 4407	\$ 1420	28 4444	1 321
SPAC	` 3	а си врастий	1847 8387	43 8474	4 3314	18 7812	1 241
C (000 P	2	MIXTURE	1047 8367	43 8474 '	4 3314	18 7812	1 241
-							
SPAC		44 PLANTE M	1237 8341	41 2848 47 2846	4 2021	17 6673	301
C 844 P		MISTURE	1227 6241	• • • • •	4 2021	** ••**3	
SPAC		28 PLANTS M	733 8947	40 7730	8 8787	38 9358	s 187
C 8449	2	HIXTURE	733 8343	40 7738	. 6 0787	31 9255	1.1.1
5PAC		17 PLANTS H		38 8712		32 0074	231
C 8007	2	# 3 K 7 WR 8	ass 3384	38 8712	8 8675	32 0074	1 221

210

۰.

				+3/14/4	1		PA68	••
CRITERIER VARIABL	6 KW7							*
VARIABLE	C 996	VALUE LADEL	5 vm			VARIANCE		
SPAC Comp	7 2	IO PLANTS M MIXTURE	1888 8783 1888 8783	37 .3714 37 .2114	* 3*33 * 3*33	70 4478	(t	20) 20)
TOTAL CASES - Miñside cases -	····	4 4 PET		,			÷	

APPENDIX 0							+3714	/01			- PA		
FILE WP77 (CR		TE + 03/18/821			я				-				
CRITERION VARIABLE BROKEN DOWN BY DY	H 1 CUL SPAC Comp	HARVEST INDER CULTIVAR INTER-PLANT S TREATMENT	PACIN	E	•			• • •					- -
		TITITE TABLE	• ·	 چين ک	* * *	• •		570 DEV	¥484				
POR ENTIRE POPULATI	••	- ε	7080	3000		•		47 8782	****	• 1 • 2	۲	10211	
ENL	,					3	8314	2 0483	•		,	178)	
8PAC	ī	204 PLANTS M		6466			6326	1 3347		7818	° +	23.	
COMP	1	MONOCULTURE	\$ 7	\$437			2312	1 4888		2105	1	1 1 1	
COMP	2	MINTURE		0029		٠		0 \$107	¢	***3	• •	12)	
	3	3 CH BPACING	154				***2	2 1088		4380	1	341	1
COMP	•	MONOCULTURE	70				4488	3 8529		3304	1	131	
Cemp	2	MIXTURE		7815			1801	1 0420	,	****	1	210	
SPAC	3	. CH SPACING	180	3801		4	2860	3 1013		4152	(36)	2
C 844P	i	MONOCULTURE					1321	2 7883		7767	1	13)	
C BHIP	3	MIKTVER	83	7722		3	8078	1 4280	2	0336	1	82+	
8445	•	44 PLANTS H	1.04	2077		3		3 1384		8483		28)	
C CHINE	i i	MODOCUL TURE	42				2742			1384	4	- 131	
COMP	2	MIXTURE		\$\$11		4	3727	4 2788	1.	2994	4	181	·
8PAC		28 PLANTS M		#322		2		0 2007		1827		201	
COMP	ī	MOBOCULTORE	45	0526		3				1447		18)	
E OMP	1	#1 X T ## E	12			3		. 1188	•	÷134	+		
8PAC		UT PLANTS M				2	7804	0 4880		7070	(201	
COMP	1	COMPCULTURE	36			2	8404	0 4082	•	1888	1	121	
C BHP		ALAT URE	1.8			2			•	2001	+	71	
8PAC	,	IN PLANTS M	47			2	5024	1.0781	,	1840		1.0 /	
1.049	i	MONDEVLTURP	74	8728		÷.	0718	1 4793	2	6430	4		

.

212

•

PPEUDIE 6						03/10/	42					
	PLE 01											
		VALWE LABEL		, 8 wM		HEAD	87		VAR	IANCE		
C 000P	2				1	***3	•	4881	•	2173	4	• •
	3	PARK		4424	11	8412				***3		
SPAC	,	294 PLANTS H	188	4887	7	4580	i	1821			i	2
C 9997	,	MONDEULTURE				3260		**71		7888		
C 800P	3	HIXTORE	148	****	7	2010		2084	27	****		1
BPAC	2	3 CH SPACINE		3478	÷1	5704	120	****	*****	****		
C DMP	1	MONDEVLTURE	1479	7384	186		377		142444			
C 8447	3		224		•	33.08	•	1181	37	3941	r.	2
BPAC	3	. CH SPACINE	181			738 1	,	3130	,	7241		
C BHTP	•	MONOCULTURE	1 B 1			3214				8583		ī
C 944 P	3	HITTWE			4		1	8027	1	3843	4	2
SPAC	•	44 PLANTS H		2494	3					3344		
C 844 P	+	MOMOCULTURE	4.4	8788	4				÷	4244	1	ī
C 944 P	2	HITTURE		3100	3	7884	ę	4 8 4 7		2349	1.	
SPAC		28 PLANTS M	184		3		•		,	2721		,
C BHAP	,	MOWOCULTURE		4854	3		1	4282	2			
C 011P	1	MIETVRE	46	3988 .	3	3435	•		•	2562		•
SPAC	•	17 PLANTS M		3317	3	6378	•	4367		7000		,
C 944 P	•	MƏMƏČULYURE		8778		3783		6377		4487		
C 000 P	2	HITTURE		****	3	***3	•	****	٠		(,
SPAC -	,	10 PLANTE M		0472		**34	,		,		1	
COMP .	•	MAMACULTURE		1318		3848	,	7828		1774		1
C (1007	3	#1# 70% #	45		3	6320	•		•	2719	•	1
IL	4	700001001		1435					42			18
BPAC	. 1	284 PLANTS H		7883		5400		8878	187	3483	1	- ÷
6 0 10 P	2	MIITURE	210	7883	10		13		187	3443	,	2
8PAC	2	3 EN SPACINE		3857						3485		2
COMP	2	MIETWRE	148	3467		8084		9485	- 31	3448	1	
		2							-			

÷

			•
•			

APPENDIN &		\$		•			/ 6 2				PA	
CRITERION VARIA	OLE HT											5
VARJABLE		VALUE LABBL		8 (per		ME A N			***			•
#PAC	3	. CH SPACING				3336		2434		8478		20 -
C Ber P	3	HINTURE			4	3326	1	2834	1		•	24 -
APAC	4	44 PLANTS 0	74	2044		****		2485				17.
COMP	2	HIXTYRE		3944		4826		2000			;	17)
8PAC		28 PLANTS M	4.3	4871	,	3474		\$7.05				181
COMP	2	MITTURE		4971		3430				3384	i.	1.0
SPAC		17 PLANTS M		7448		2872 .		0305				
CÓMP	2	MIXTURE		7448		24.72		*3**				20
SPAC	7	10 PLANTS M			,		,	3616			,	
COMP	2	MIXTURE		4428		4057		3818		\$ 7 7 8	i.	111
EUL		NOROUAY	1205	6454		3141	34	7418	1800		1	1481
SPAC	•	284 PLANTS M		2487		3866	1 1	4493	131			35 -
COMP	•	MONOCULTURE	74		4	4244	1	4821	2	1.086		14 -
C BHIP	2	M1X7WR8	218	1880	11	4832	14	8383	223	1894		₹ 9 -
SPAC	2	3 CM SPACING				4223		4278	10045	7418	+	21.
COMP	1	MONOCULTURE		7144		8678	1	65.8 1	i	1218		
· · · · · · · · · · · · · · · · · · ·	- -	*****		1878	43	20-2 1	128	7214	17818		•	121
SPAC	3	S CH SPACING	100			3491	,	\$278	2	3340		23)
COMP	1	MOMOCULTURE	34	3409	3	8341	•	0333	•	6710 *	1	1
C 8497	2						1	4363	3	3710	•	13)
SPAC	4	44 PLANTS M	9 -5 T	3881		1244	,	3132	10			27)
C 844 P	+	MONOCULTURE		8104	3	7828	3			4221	1	11)
C DMP	2	MITTURE		7887	4	3888	3		12			181
8PAC	1	28 PLANTS H			,	4827	3	0334		1346	,	12.
C 0107	•		4.1									12.

,

213

,

.

	•			#3/18/	82	•	PA88 7
HITERION VARIA	BL# #1						
		VALUE LADEL	5 100				•
SPAC Comp	•	17 PLANTS M Nonoculture	63 6378 63 6378	6 6032 6 6072	··	136 7369 138 7369	,
5 P A C C 000 P C 000 P	7 1 2	TO PLANTS M Monoculture Misture	61 6782 26 0308 28 6427	2 7147 2 7614 2 6642		• 3003 • 1000	· 101
8 P & C 5 P & C 5 8 M P	• 1 2	700000002 204 Plants M Mizture	822 4882 188 4744 188 4744	1 4743 8 4687 8 8887	14 0770		127
5 P A C C C MP	2	3 CH SPACING Mietung	334 8376 324 8376	15 8348	30 4663 20 8582	••• 2333 ••• 2333	21)
SPAC COMP	3	S CH SPACING Mitturg	78 1888	* ****	1 7780 . 1 7780	3 1816 3 1814	181
8 P & C C 8m P	6 2	44 PLANTS M Minture	41 3023 41 3023	3 4418 3 4418	• 726• • 726•	• \$271 • \$271	. 12) · • •
8 P & C C 8mp	8 2	28 PLANTS M MIXTURE	66 6322 66 6322	3 8002 3 8002	1 4847	2 1486 2 1486	: 1.∰.) : 1.⊕.)
3 P A C C 800 P	8	IT PLANTS M Nitture	80 7884 90 7884	4 1284 4 1284	* ****	21 8834 21 8834	· ***
874C C967	7 2	'0 PLARTS M MIITURE	81 8040 81 8040	2 8003 2 8002	• 4#17 • 4#17	• 233• • 233•	30
SPAC CSMP	7 1 2	NOROUAY 204 Plants M MISTURE	248 7881 41 1818 41 1818	3 7968 6 1377 6 1377	1 3413 • 8211 • 8211	3 3004 0 8743 0 8743	· • • • •
5 FAC C 800 F	2	3 CH SPACING Monoculturg	47 4888 24 8878	4 3143	* 1 8513	2 7207	

		· ·		
•	• • •	•	•	
	•			
	•			

APPENDIN 6			,	•3/16/8	. 2			72
CRITERION VARIABLE	E #1							
VARIABLE	C	TALUE LABEL	\$ UM		570 BEV			
C 844 P	1	HENTWRE	22 7880	4 \$\$34	_0 7231		i.	
SPAC CBmp	3	T CH SPACINS Monscul Ture	23 2224 23 2224	3 8784 3 8784	2 2778	• • • • • • •	ł 1	11 .
5 P A C C @MP	● · · 1	44 PLANTS M Menoculture	20 7435 20 7425	3 4872 3 4872	1 0705 1 0705	1 1468	9 4	
3 P A C C 8MP	\$ 2	28 PLANTS H MINTURE	20 1940	2 8849	0 3210 0 3219	• 1043 • 1043	•	7 . 7 .
884C / C8MP	8 2	17 PLANTE M Mixture	40 5140 40 6140	3 3076 3 3076	0 7006 . 0 7006	0 4908 0 4908		1.8 1
5 P A C C 8MP C 8MP	· 7 · 1	10 PLANTS M' Monoculture Misture	44.3782 14.8819 - 20.8142	3 6980 2 4770 4 9185		10 \$375 • 1957 19 4986		1 2 1
CUL SPAC Comp	8 1 2	48761 206 Plants M Místure	***	6 4428 4 4148	32 7867 6 8386	818 8441 • 8819	•	
SPAC Comp	1	3 CH BPACINE Mieture	118 3890 448 8409 448 8809	4 4 1 4 8 14 6 7 5 4 14 4 7 5 4		• ##1• • ##1•		8 8 - 1 6 7 - 1 6 7 - 1
SPAC Camp		S CH SPACING	94 0102 44 9192	3 8 17 1	1 3225	1.7491		14.) 14.)
5 P A C C 0M P	2	A4 PLANTS M Mikturë	117 8122 117 8122	3 0304 3 0304	2 8098	7 8081		10 i 10 i
SPAC Comp.	8 2	36 PLANTS M Mirture	8 · 4054 8 · 4054	2 4859 7 4859	6 4271 6 4271	• 1824 • 1824		
\$ # A C C 9 44 #	4 1	17 PLANTS M Mixture	70 6120 70 6120	3 0701) 0811 1 0811	1 1048		3
	7.	IO PLANTE M Mixture	88 8383 88 9383	2 8841	• 8017 • 6817	• • • •		•

TOTAL CASES + 1080 MISSING CASES + 40 00 4 5 PCT

Þ

POOR COPY Copie de qualitee inferieure

- .

· 1 1

١

214

Appendix 7. Descriptive statistics of characters of plants, grown in monoculture and in mixture at two interplant spacings, measured at maturity in 1978.

215 ۲.

.....

.

03/ 8/82

٠

FILE SPHERC CREATION * 2 R 1 8 R 1 C.#

TILLERS PER PLANT CULTIVAN INTEA-PLANT SPACINE THEATMENT T CUL BPAC MTR

۰.

									* * * * *
YAP LABLE	C 0 0 E	VALUE LABEL		S UM				VAR LANCE	
			24 17			**13	3 1873	. 7789	
CUL		PTTIC 82	670				4 38.00		
8PAC	. 2	3 CH SPACING					1 3944	1	421
# T 2	2	MINTURE				6 2 4 4		1 8870	
SPAC	3	9 CH SPACING	363		10	3824		23 1824	34-
M T R	1	MINTURE	363	0000		3624	4 8117	23 1824	34
CUL	2	BLEWLEA					3 9840		
SPAC	2	3 CM SPACING	309	0000	. 3	8786	1 1633	1 3833	
	,	MANACULTURE		0000		4444	÷ ±214	0 8487	141
44 T #	- 2	PIETURE	247		3	7424	1 2183	1 4868	
SPAC	3	* CH SPACING			,		3	10 1005	
HT R	,	MONSCULTURE	113			2778	2 4444	8 8771	1.1
(HT)	2	M 1 3 7 VR 8	\$ 3 \$		•		3 2846	18 7621	- 4 49
CWL	3	PARE			5		2 3469		1 127 (
SPAC	2	- 3 CH SPACING			4	6788	1 3931	1	
MTE	•	MENECULTURE		0000	6	3434			
	2	MITTURE	245		4	\$376	1 4500	2 1024	84
SPAC	3	9 CH BPACING			+	3226	2 4888		
	•	MONOCULTURE		0000		4107	2 2344	4 9924	
MTR	7	MITTURE	341	0000	6	\$ 3 0 0	2 2860	6 1 3 6 2	50
Cu.	•	7 0M0 0 8 0 0 Z		0000	5	8511	2 8959	7 2878	
SPAC	2	3 CH BPACINE		0000		1087	1.1201	1 2546	
NTE	۲	MONSCULTURE	**		•	2778	1 \$741	1 1824	

۲

PP80011 7									PA	
RITERION VARIABL	£ T				٠					
ARTABLE		VALUE LABEL		1 JUN		-				
#T#	2	MITTAR	118	****		****	1 1847	1 3333		
8PAC		. CH SPACING		****	7		3 7132	7 3613		
11 T L	ż					****	1	8 7858		- i i i
	-	MITTURE .	* 1 7	****	7	2223	3 8684			30 :
WL .		HORQUAY	581				3 1030			
BPAC	1	3 CM SPACINE	143	****	3	8722	1 8818	2 8278		
HI TH	•	MONOCULTURE	70				1 3783	1 8348		
117 B		MIXTURE		****	- Ā		2	4 1732	i	
SPAC		. CH SPACING	474	****	•	2000				
MTR	Ĩ.	HOUDEULTURE		****			3 1804	8 8834		
WT2	1	HISTORS	300			1420	3	10 1176	1	181

			• *	en en tras		
			t and			a
¢	•	н (с. 1	• *	•	· · ·	• •
			•			
				•		

5

`**`**

APPENALS 7						01 /1	*/**	,	PAGE 4
FILE APHERA I									
FILE SPHERE (CHEATION DA	TE = 12/30/81)					_7 *	,	
	D E S C E H V Cul V SPAC V MTR	R I P T 1 B H HRADS PER P Cultivan Inter-Plant Treatment		1 u	• • • •		1 🖉 🖬 🛔	· · · · · ·	• • • • • •
VARIABLE	C 9 9 2	VALUE LABEL		5 VM			STD DEV	* * * * * * * *	· · · · · ·
	*184		3043	****	•	3480	T 8381	4, 0007	
CUL SPAC MTB	1 2 2	PITIC 82 3 CM SPACING MIXTURE	484 187 187		3		3 1040 1 4175 1 4175	0 6260 2 0102 2 0102	
\$PAC MT#	3 '	B CM BPACINE Mitjure	277			1471	2 1443 3 1443	* ****	4 94 / 4 94 / 4 94 /
CUL BPAC MTR MTR	2 2 1 - 2	CLERLEA 3 CM BPACING Mømøculture Mixture	272		3	7412 2381 0888 2870	2 4430 1 6014 1 0555 0 5445	5 5661 1 6035 1 1144 0 6774	(170) (\$4 (1 \$
878C MTR MTR	3 1 2	O CH SPACING Monoculture Mixture		**** ****		2083	- 2 6443 1 7876 2 8830	6 4733 3 1243 6 783 4	
CUL SPAC MYA Mya	3	PARK 3 CM BPACING Menoculture Mixture	281		5 1	5427 4765 2727 3144	2 1863 1 3123 0 8448 1 3283	4 8324 1 7331 0 4182 1 760	
8PAC MTH MTH	3 1 2	S CH SPACING Monoculturg Minturg	4 1 4	0000 0000	:	74 18 25 00 38 00	2 3488 2 3404 2 2213	5 6001 5 4773 4 9343	(56) (52) (12) (50)
CUL Spac Mta	4 2	70M005002 3 Cm spacing Monoculture	183	0000 0000	3	8383 9783 1111	2.8705 1 1830 1 1318	7,1788	4 843 1 461

217

APPE0011 7							
CRITERION VARIABLE	E #						
VARIABLE	COPE	VALUE LABEL	8 MPH				•
MTB	2.	MINTWE	100 0000	3 4824	1 8274		
BPAC	3	D CH SPACING	347	7 2262	2 7844	7 8847	
MTE	1	MODDEVLTURE	122	7 3688	3 0705	8 4341	1 183
ST R	2	MINTWE	214	7 1333	2 8882	8 7482	(20)
CWL			134		2 8878		
SPAC	2	J CH SPACING	133 0000	3 8844	1 2344	1 5325	(20)
M78	•	MODOCULTURE	70	3	1 2783	1 8240	i 18 1
MTe	2	HITUNE		3 5000	1 2005	1 4412	101
SPAC	3	. CH SPACING	481 8800		3 +337	. 2+21	
MTR	ī	MOBOCHLTURE	124		3 1030	0 0340	i 183
MTR	2	HITTURE	277	4 4447	3 0200	\$ 3134	4 491
TUTAL CASES - Missing Cases -	870 ' 8R	0 2 PET					• • • • • • • •

•	

5

PPENDIX 7						03/1	4/42		PAG	a 1 a - 1
ILE SPHERE (CREATION	ATE = 12/30/81)								
ī	Y CUL	BRY WEIGHT CULTIVAR 18788 - PLANT TREATHENT			• • • u ·	L A 7			•	
		VALUE LADEL	• • • •	5 5 UM		 MEAN			• •	
				5 (HH		SLAN.	570 82V	VARIANCE		
OR SHTIRE POPULA	T 1 BN'		11137	***3	1.	7127	12	148.8781	1	
	1	P371C #2	1775		2,		14 8083	210 4028		
SPAC	2	3 CH SPACING		3287	13	2360	4 9013	24 0230		441
MTR	2	MINTURE	636	3297	13	2360	4 8013	34 0238		48 3
SPAC	3	S CH SPACING	1130	7887	33	\$ 2 3 2	16 2973	734 0088	ι	34 /
MTR	2	MIXTURE	1139	7487	33	\$ 7 3 7	16 2073	234 0088	+	34 /
UL	. 2	GLENLEA	3467		22		13 7837	188 1842	,	1881
SPAC	· 2	3 CM SPACING	1147	4 8 9 4		8283		21 8888	+	831
447 R	· 1	MONSCULTURE		3399		1865	4 8706	21 8146	1	17)
M T R	2	MINTURE	***	1805	14	3448	4 4230	21 3738	1	
SPAC	3	. CH SPACING	2710	1491	31		13 8445	181 8785	1 I	
MTR	1	MANACULTURE	478.	2788	24	4888	10 1377	182 7734	4	182
MTR C	. 2	MIXTURË	2233		33	3413	14 3877	247 2928	4	87)
UL.	3	PARK	1814		14	2480	703	44 5431		1271
SPAC	2	3 CH BPACING	870	2196		3128	3 7883	14 4942	(88)
MTR	1	HONSCULTURE		4388		8 2	2 5188	8 2442	1	121
HTR	2	MIXTURE	814		•	7982	3 8974	14 8783	4	631
SPAC	3	. CH BPACING	1144	3794	18	4877	7 1223	60 7277	н. —	62)
MTR	1	MONOCULTURE	305		2 %	8817	7 2732	82 4888		12)
MTR	2	MIKTURE	A 3 4	7896	1.6		\$ \$074	34 4973	•	501
υι	٠	704005002	1826	4692	1.		10 7884	118 3472		
SPAC	2	3 CH BPACING				4030	3 4978	13 8739	1	441
MTR	,	MONOCULTURE	230	1015	1.4	3818	3 7247	13 4731		167

 \checkmark

APPENDIX 7				03/10/			PAGE
CRITERIOS VARIABL	E W7	÷					
VARIABLE	C 0 0 E	VALUE LADEL	8 L/m	-	STD DEV	VARIANCE	
MTR	2		318.4784	11 2814	3 3314		1 38
SPAC	3	8 CH BPACING	1244 4784	28 8787	10	113 3284	6 44
HTR	1	MONOCULTURE	\$28 2288	28 3487	12 3821	182 8742	i 18
MTR	2	MIXTURE	782 2387	26 0747		87 1477	201
υ.		ROROVAY	1883 7887	18 4142	10 7863	118.8884	
SPAC	2	3 CH BPACING	427 7888	11 8823	8 0817	26.8232	(30)
MTR	t	MANACULTURE	248	13 6133	4 8871	30 4547	1 181
NTR	, 2	MIXTURE	142 7688	10 1823		25	1.1.1
SPAC	3	B EM SPACING	1438	23 0327	18 7821	118 8078	
MTR	1	MONOCULTURE	462 4684	28 1884	11 1242	123 7443	1.1
MTR	2	MIXTURE		23 4868	10 8821	114 1974	421
TOTAL CASES -	870						
ISSING CASES .	i en			•			

					· .	
APPENDIX 7				+3/18/8		PASE 8
FILE SPHERG	(CREAT)	DN BATE = 12/30/411			•	
CRITERION VARIA BROKEN DOWN		\$880 YIGLD CULTIVAR CULTIVAR NC INTER-PLANS R TREATMENT	PER PLANT G	PULATIO	N S · · · · · · · · · · · · · · · · · ·	• • • • • • • • •
VARIABLE			5 UM	 MEAN		
POR ENTIRE POPU	LATION		4001 1980		5 4054 29	. 2182 (870)
CUL SPAC MTR	. 1	3 CH BPACING		8 4828 6 8333 6 8333	2 495 8 6	9621 (62) 2342 (68) . 2342 (68) .
SPAC MTR	、 J 2	MINTURE	487 8884 487 8884	11 111	6 8180 42	4847 (34) 4847 (34)
CUL SPAC MTR MTR	2 2 1 2	3 CM SPACING Monoculture	1878 1892 804 8888 84 8000 408 8888	8 8800 8 0071 8 2722 8 2078	2 0845 4 2 2657 5	9428 (170) 3452 (84) 5550 (18) 9275 (55)
SPAC Mitr Mitr	1	MONOCULTURE	1171 8884 184 8888 878 8888	13 6232 10 8187 36 3082	4.3017 18	4319 (44) 3650 (16) 8479 (88)
CUL SPAC MTR MTR	2 1 2	3 CM SPACING Monocultury	747 8887 271 8888 80 2000 211 8988	5 8414 4 1197 5 0187 3 9204	1 8287 2	1843 (128) 8482 (86) 8781 (12) 8788 (64)
SPAC MTR MTR	3 1 2	MONOCULTURE	478 7888 127 3000 348 4888	7 8742 10 8083 6 8700	3 2843 10	6387 : 021 8884 : 121 - 9928 : 501
CUL SPAC MTR	• • 2 1		880 8887 280 8888 117 8000	8 1865 8 8874 8 8444	1 7823 3	5471 (94) 2128 (46) 5981 (16)

12 A

......

219

÷

APPENDIX 7							* 2				P & 4	6L 9
CRITERION VARIABLE	1 4	í										
VARIABLE		MALUE LABEL		8 UM		MËAN			VAR	ANCE		
MTR .	2	MIXTURE	143	****		1036	,		1	2485	1	38,
SPAC	3				12	\$847		1882	28			481
MTR	,	MONOCULTURE	241	7989	13	4333		7364	32		+	181
MTR	2	MIITURE	364	3191	11	8487		7888	22	1435	•	30)
CUL		WOR OUA Y		7087		7376		1240	28	2882	1	
SPAC	2	J CH BPACING	187	3001		2055	2	2477		2337		28)
M78	1	MAABCULTURE	1.04				2			2121	4	181
HTR	2	MINURE				3611		2479	6		1	181
SPAC	,			3004	10	4547		1886	20		4	
MTR	1	MONACULTURE	207	6		1 3 3 3	Ś.	4444	28			187
11 T R	2	MIXTURE		7899			. i	1231	20	2482	1	423
TOTAL CADES -	878											

APPENDIN 7 03/18/83 PAGE 10

.... CREATION DATE . 12/30/811 SPHERG P T I O N O P S Number of Kernels Pi Cultivar Juter-Plant Bpacing Treatment • • R. ¢ ŝ t Đ ÷. CR 2 NK CUL SPAC 8 Y 8 Y 1.11

	87 MTR	TREATMENT										
				••••								
VARIABLE		VALUE LABEL		8 MM		MEAN	8 T I	DEV	VAR			
FOR ENTINE POPU	LATION			0000	210	\$ 2 2 8	124		18033	****	· •,	\$74)
CUL	,	#1T1C #2	21420		261	2185	173	2322	30008	3833		82)
SPAC	2	3 CH SPACING	7884	0000	163	8133		1055		7378	•	44)
MTR	7	MIXTURE	7884	0000	183	* 3 3 3		1055	4 2 3 6	7376	•	48.1
SPAC	` 3	. CH SPACING	13856	0000		7058		3432	34382		4	34 -
MTR	2	MINTURE	13888	0000	394	7088	185	3432	34382		•	34)
	2	GLEWLEA	33724			4000		2483	12603		ł	170
SPAC	2	3 CM SPACING	10471					8728	1870		,	
MTR	1	MONOCULTURE	2057			2778		7497	2013		-	111
MTA	2	MIXTURE		0000	127	4848	34	3424	1847	8228	(
BPAC	3	S CH SPACING	23267			4302		1835	12803		1	
MTB	1	MONOCULTURE	3903			7778			7325			1 1 1
NTR		MIXTURE	18388		284	8324	118	7878	13405	7733	4	
CVL		PARK	21287			1484		2985				1281
BPAC	2	3 CH SPACING	7861			1081		2474	1881		1	
MTR	1	MONECULTURE	1878			A333		8212	1280		1	12:
MTR	3	MIXTURE		0000	114		4.4	1301	2018	7830	1	54 -
SPAC .	3	D CH SPACING	13406			2288		0208	. 777		(# 2)
MTB	1	MONOCULTURE	3817			0933		0441	7070		•	12)
MTŘ	2	MIXTURE		0000	1 # 7	7800	70		4883	8078	'	5 8 0 F
CUL /-1	4	70M00.	22203			2021		9310	18888		(
SPAC D	2	3 CM BI	7133					1701	1880			461
MTR W.	,	MONOCUCA	3131	0000	173		4.4	1741	1851	3497	4	147

10

~

١

												220
						•3/14/				•	PASS	11
APPENBIX 7												
CRITERION VARIABLE	**											
VARIADLE	C	VALUE LABEL		2 UM		MEAN	8 7 8	BEV	V AR	ARCE		-
NT1	2		4002	****	142		**	4082	1.032		(28)
	-	S CH SPACING	15070		313		120	. 771	18884		(481
SPAC	3					4444	148	4185	21146	8487	¢	18)
MYR.	2	MONECULTURE				2847	121		14778	1878	· •	30)
M 7 R	-		• • • • •									
	•	NDROUAT	21380	****	222	7883		1338	17724			
CUL		3 CH SPACING	4738		131	8278		3438		8278	•	34)
SPAC		MONOCULTURE			181	1111		7984		8762	(1.8.)
MTR	2	MUNUCULIUNE	2018			9444	63	8723	2013	1144	(18)
MTR	7											1.2.2.1
	-	. CH SPACING	18845		277	4187	136	4027	18895		•	
SPAC	3		\$ 3 2 2				148	2877	21102		4	18)
MTR	1	MOMOCULTURE				8982		4738	17818	2712	1	42)
MTR	2	MINTURE	11323									
TOTAL CASES -	570											

			•	· .	•
				• • •	
	• • • • •				
				•	¢ .
,				•	
• .	·	•	· · ·	• •	

•

. • · · · • . .

APPENDIX 7		,					6/82	-	•		P4(B# 12	
· · ·						-							
FILE SPHERG (CR	EATIEN DA	TE = 12/30/81)									•		
CRITERION VARIABLE BROKEN DOWN BY BY BY	D E S C KWT Cul Spac MTR	R I P T L O N WEIGHT PER Cultivar Inter-Plant Treatment	1000 KER SPAC1NG		• 0 • u I	. A T	10 M.S		· · · ·				
YAR 14818		VALUE LABEL		SUM		MEAN	. STI	DEV					
FOR ENTIRE POPULATI	0 N		23118	3103	40	****	٠	\$762	44		. C	874)	
	1		2		24	4217		4188		5343	(
CUL	1	PITIC 82 3 CM SPACING	1718			8122		\$ 272		2778	(441	
SPAC	2	MIXTURE	1718		36	.122	4	8272	24	2776	(4.8.3	
	-	S CH SPACING	1287		37	2423		4734			4	34 1	
SPAC MTR	3	MIXTURE	1287		37	2823	3	4738	12		· (34)	
	2	GLENLEA	8322	326 1	48			7343		4130		170)	
CUL SPAC	2	3 CH SPACING	4036	4008		0524				2880		101	
M78	ī	MONOCULTURE	826			\$ 3 2 3		8028					
MTR	2	MIXTURE	3208		4 8	8 3 0 8	3	\$313	,,		•	•••	
	2	S CH SPACING	4245		41	8363		3808		2790			
SPAC	1	MONOCULTURE	897		48			4884				14 2	*
NTR NTR	2	MIXTURE	3313	3773	4 9		4	6285	1	4878	1		
	-	PARK		1275		7028	3	\$233		2 4137		128 -	
CUL	3	3 CH SPACING	2262		34	2807	2	8128		7 8121			
SPAC	2	MONOCULTURE		\$100	35	8788	1			2 8304		12)	
MTR MTR	2	MITTURE	1832		33	\$ 2 8 3	2	1003		4 1 2 0	•	841	
						1518		1261	•		1	821	
SPAC	3	S CH SPACING	2178			0129		1382	•		(12)	
MTR	1	MONOCULTURE	1747	1847				\$462	. 24		· · ·	80)	
<u>с мтр 5</u>	2	MIXTURE	1747				-						
N N		704001002	3687	3830	34	1828	3					941	
CUL		3 CM SPACING	1871			3325		1205		8 3700		46	
SPAC	2	MONOCULTURE		7784		3766		2713	•	0 7015	•	141	
MTR	1	MOMOCULIUNE	• / 2										

.

APPERDIE 7						03/10/	93				P & 4	88 13
ENITERION VARIA	DLE KWT											
TARIABLE		VALUE LABEL		8 MBI		-						•
14 T B		MIXTURE			36	** 12		2053	17		ı	281
SPAC	1	. CH BPACINE	1918		20		,	7943	1.0	2674		48)
鮮平貴	1	MONOCULTURE	748	1244	. i	1188		0103		8137		181
10 T B	2	HITTURE				1887		3443		2112	÷	341
			3740	1728	3.8	3764	,			7783		
SPAC	2	3 CH SPACING	1418	0112		3073					2	36)
11 T T T	1	HOUDCULTURE	7 2 3	7080		2058				8787		
11 T 2	1	MIXTURE		3862		****		4224		8870	t t	14)
BPAC	,	O CH BPACINE	2 2 9 8	1113	20	4188		1881	10	1834	· ·	
# 7 R	1	MONOCULTURE	710	8785	39	4817				4894		181
M T B	2	MITTURE	1854	4488		3914		****		1780	i	41)

INDIX T 2 SPMERG (CREATION DATE = 12/30/81)

CRITERION VARJABLE KM NUMBER OF KERNELS FER MEED BROKEN DOWN BY CUL CULTIVAR BY SPAC INTER-PLANT SPACINE

BY MTR T	TREATMENT

VARIABLE	CDDE	VALUE LABEL	5 UM	MEAN		VARIANCE	· · · ·	4 .
FOR ENTIRE POPUL			12094 1702	34 4294			· · · · · /	
C W L	1	F171C 82	3721 0482	46 3746	12 2144	148 1827		e
SPAC	3	3. CH SPACING	2066 7488	43 0873	13 2479	175 5062	441	
HTA	2	MIETURE	2086 7488	43 #\$73	13 2478	178 8083	44	
SPAC	3	S CH SPACING	1464 2883				34)	
MTR	. 2	MIXTURE -	1884 2883	44 8889	8 8887	87 3328	341	
CUL	2	ALENLEA	7028 0818	41 3474	7 2683	82 8823	1 1761	
##AC	2	3 CM SPACING	3344 8888	38 8774 .	8 1363	37 6418	4 841	
MTR		MONDEULTURE	870 7499	37 2630	4 1714	34 0450	1 141	
M78 ,	1	MIXTURE	3878 1488	38 0628	6 1168	37 4807		
SPAC 1	,	S CM SPACING	3780 1831	43 8663	7 3627			
. мтн	1	MONOCULTURE	818 7442	45 4489	8 1887	87 1883	1.1.1	
部で書	. 2	MIXTURE (2941 3474	43 8488	7 1237	80 7488		
ευι	3	PARK	3003 0500	28 0828		44 1897	1271	
#PÅC		3 CH SPACING	1702 8184	28 1941	1 2492	24 4246		
HTA	1	MONOCULTURE	282 7876	28 7069	6 6766	31 0876	1 311	
NTR	. 2	MIXTURE,	1418 8.188	38 2929	5 2744	24 4444	841	
SPAC	,	T TH BPACING	1991 0432	32 1138		42 8223		
MTB	1	MOROCULTURE	431 7888	36 9404	\$ \$324	38 1843	121	
MTR	1	MIXTURE	1889 2788	31 1866	8 3827	40 4444		
	4	700000007	3014 6647	41 8442	7 7843	80 1280		
BPAC	2	3 CH SPACING.	1424 7332	38 6661	7 4411	55 3863		
NTP	ĩ	MONDCULTURE	777 2988	43 1833	7 4782	88.8384	1 1481 1 181	

							22 2
		÷ .					
• •				Ť			
*******				#2/18/0	12		PAGE 15
ARIADLE		VALUE LABEL	5 UM	19 0 A 17	STD DET	VARIANCE	•
#178		N 1 2 7 WR E	1847 4833	37 4483		43 8381	6 28 1
			2048 8218	43 8378	7 8473		- 4 .
BPAC		MONOCULTURE	802 2407	44 5745	7 385 1	84 8878	i 1≜i
MTR.	1	HILTURE	1287 4899	42 8188	7	81 8848	(30)
11 T P							
	_		1738 8847	38 8182	8.3471		1 98 7
		BROUAT 3 CM BPACING	1278 4761	38 8243	4 1184		t 20)
SPAC	1		788 7888	39 4243	9 1817	51 1487	i 10-i
m T A		MONOCULTURE		21 6204	7 2231	82 1734	- 18 -
HT R	3	HITTURE					
				40 8485	7 8871	81 8818	(00)
8PAC	3	S CH SPACING	2088 8787	41 4434	8 8170	88 3484	(18)
MTA	1	MANACULTURE	784 7011		8 8418	40	(42)
何于有	2	#1 1 T WR 8	1882 2778	44 2923		~	
TOTAL CANES -	\$7 \$						

0 2 PCT 1 88 MISSING CAI

ľ

*

.

1

CUL SPAC

٠. 3

. • · • \mathbf{a} , . : . , . -÷ . • ۰.

	•				. 4	•		
APPENDIX 7	۴.	z		+3/18/4	1	•		
FILE SPHERE		BATE = 12/30/81)						•
CHITERION VARIAL BROKEN DOWN	BY CUL BY BPAC	HARVEST INDET Cultivar Inter-Plant I	PACING					ĩ
	87 MTR	TREATMENT						
VARJARLE		VALUE LABEL	\$ UM	MEAN		VAR LANCE		
	LATION		245 2853	0 4341		0 0013		
	,	PITIC 82	38 0718	0 4399		* ****	82)	
SPAC MTR	2	3 CN SPACING Mixture	21 0045 21 0045	0 4376 • 4378	0 0733 0 0733		4.6.1	
SPAC	3		15 4874	0 4432 0 4432	0 0863 0 0863	0 0032	34	
MTR	. 1	MINTURE	15 0874	0 4432				
C W L	2	SLENLEA	73 1100	0 4367	0 0492		· • • • • • • • • • • • • • • • • • • •	
SPAC ,	2	3 CH BPACING	26 5845	0 4408	0 0580	0 0016	(<u>1</u> 7)	
MTR MTR	2	MONOCULTURE Mixture	24 8168	0 4381	0 0383	0 0012		
		S CH SPACING	38 8288	0 4297	0 0387		48)	
SPAC NTR	- P	MONOCULTURE	7 3348	0 4978	0 0521			
# T #	ż	MINTURE	20 1007	0 4387	0 0337	0 0010	6 671	
	3	PARK	81 4721		0 0431	0 0010	1271	
CUL		3 CH BPACING	25 1263	0 3989				
SPAC		MONDCULTURE	8 7664	0 3977	0 0640	0 9941	(12)	
MTA WTR	÷	MIXTURE	21 1599	0 3992	0 0327		6 531	

36 8487 4 8481 20 6877

42 2242 18 8848 7 1809

.

2 MENOCULTURE MIXTURE

312 4 2 1 DMBOBGOJ CM BPACING DNBCULTURE

82) 12: 50:

82) 44) 18)

0 0021 0 0005 0 0034

0 0013 0 0012 0 0020

* • •

;

0 0487 0 0378 0 0483

0 0388 0 0380 0 0444

PAGE 17 APP80011 7 VARIABLE # I ----. 5.000 ... 2000 VALUE LABEL 28) 12 6838 2 ا قد 44) 18) 301 • • • • • • • •363 •318 •351 0 0012 0 0010 0 0012 23 3664 6 1467 16 2167 N CH SPACING Monoculturg Mixturg • SPAC 1 1178 1178 88) 38) 187 187 0410 0453 0435 0474 42 4071 16 7377 4 0300 7 7004 4417
4372
4442
4342
4342 •••• 1 NOROUAT 3 CM SPACINE MONSCULTURE MIETURE CUL 1 80) 18) 181 26 8994 8 8894 18 8897 0 4448 0 4491 0 4425 •3•3 •3•7 •4•7 S TH SPACING Monsculture Misture • : 312 -----#78 #78 TOTAL CASES -MISSING CASES -*** PET

CRITERION VARIABLE BROKEN DOWN BV BY	D 2 5 C R 8 CUL 8PAE MTR	1 P T 1 B N 0 P 5 Ng14NT PF 7NE FLAG Cultivar Inter-Flant spacing Yesatmant	LEAF BLADE		•
			,		
	****		5 UM	WEAN	

2

VARIABLE	C 0 D E	VALUE LABEL		S DH		HEAH				-	
POR ENTIRE POPU			30130		62	8421	10 2866	105 4021	- •	7e)	
							7 2072	83 2486			
CUL	1	P1716 82					7 4418		- 1 - C	44 -	
SPAC	2	3 CH SPACING					7 4418	\$\$ 3875		44)	
#T#	Ż	MITTURE	2001	0000	• •						
		· · · · · · · · · · · · · · · · · · ·		0000		3824		47 7845	*	34+	
SPAC	3			0000		3424		47 7885		34 -	
M T #	2	MIETURE		0000	•		• • • • • •				
		ELENLEA	10551		82		7 7347	65 5254	· 1	701	
EUL		3 CH SPACING		0000		3453		43 1888		841	
SPAC		MONOCULTURE						44 4575		141	
MTR	1	MINTURE				3788	8 2505	38 0887		88 F	
MTR	7			****							
	4 3	S CH SPACING				0233	7 8142	62 6847	1	881	
# PAC	• •	MENOCULTURE				4333	8 0988		+	181	
MTA .					. ŝ.	0735 .	7 8298	82 8194	+	881 :	
M 7 A	4				* -	•					
-	3	PARK			62	4888	8 2814	88 2510		28 >	
CUL .	· ;	3 CH SPACINE			63	4131	7 8838	43 4193	•	88)	
SPAC		MOROCULTURE			54	2100	10 1368	102 7500	•	12)	
4878 M 78		MIXTURE			63		7 6112	88 4179	ł	841	
	-										
SPAC	3	1 CH SPACING	2150	0000			8 1865			821	
MTR	-	MANACULTURE			6.1	6833	7 3541	64 0833		121	
411	,	NITTURE		0000	80			74 8871	6	80)	
	•										
		7 888 8 8 8 8 7	4 2 8 8	0000	48		8 4778	34 8448		94 F	
CUL BPAC	;	3 CH SPACING		0000	48	0717		44 3339	1	481	
87AL M78		MONOCULTURE		0000	46	2778	8 8182	42 4477		141	
	<.										

223

PA68

1

. .

18

-

,

,

APPENDIE 7							11				P 8 6 6	1 10
VARIABLE		VALUE LABEL		5 UM			878	BEY	T AR	ARCE		
MTR	2		1 284	****	45	8871		****	47	****	,	28)
8PAC	,	8 CH 8740186	2100		45	1878					1	
MTR		MOSSCULTURE			48	2222	4	1848			t.	181
# T #	2	WIITURE	1286		43	1887	•	8778	31	1082	1	30,
			4128	****	43	.1.4				3473		
CWL		3 CH SPACING	1860	****	43	****		6594		****		38 1
BPAC -		MONOCULTURE			43	1887	7	1148		.174	ŧ	1.6
MTR MTR	2	M 1 E 7 MR E			4 2		•		1 7	8378	1	181
	,	. CH BPACINE	2878			****		1835				
SPAC		MONSCULTURE			43			4484	41		(- 18)
44 TR	!	MISTURE	1788			7381			20	7834	(421
MTR	3					÷ - ·						
TOTAL CASES .	570											

.

-

APPENDIX 7				1		•1/						, •		2,9
TLE SPHERS (C	REATION DA	NTE + 32/30/81)												
RITERION VARIABLE BROKEN ODWN OV FROKEN ODWN OV	D Cul SPAC	R] P T] O N PLANT NEIGHT Cultivar Inte-Plant Taga tment	CM	• •	 	A 7		•						
				• •	 • •	• •				* * * *	• • •	•••	, .	• •
FARIABLE	CODE	VALUE LADEC		s ým		11 E A 11			108V	V & R	FANCE			
FOR ENTIRE POPULAT	1.04		47884		83	1849		12	0110		8873		• •	170
		PTTIC #2	.472		7.6					80	8872	1		82
	2	3 CH SPACING	3749			8375			3340		1327	1		4.8
SPAC MTR	2	MIITURE	3789		78		7	•	3340	47	1237	•		4.8
			2843		7.8					73	7183			34
SPAC MTR	3	9 CH SPACING Miyturð	2643							73	7183	1		34
	_	BLENLEA	18884		84	1412						(7.
UL BPAC	2	3 CH BPACING	7885						4743		** 3 *	+		
MTR	.	MONSCULTURE	1						7850		7814			18
MTR	2	MINTURE				3636		7	4168	**	0043	'		
SPAC	3	. CH SPACING				2442								
MTR		MEROCULTURE	1880			3333			\$ 8 3 9					18
MTR	2	MIXTURE		0000	• 3	1306		16	0288	100	\$ # 2 4	•		**
•	` 3	PARK	11378						2841		8784			
EVL .	÷	3 CH SPACING	\$871									•		
BPAC MTR		MONACULTURE	1065						3850		2082			12
#12 #78		MINTVEL	4416			1862		10	3268	195		•		

(

-

MTR MTR

SPAC MTR

CUL

1	MENTURE	6284 0000	15 3131	7 4168	55 0047	i
1	MONOCULTURE	1880 8000 1880 8000 8338 8000	83 1447 83 3333 83 1204	10 8643 10 8630 10 0285	101 8926 112 8888 100 5924	t i i
	3 CM SPACING Monoculture	11278 0000 8871 0000 1088 0000 4818 0000	68 6884 88 9848 87 8187 88 1882	11 2841 12 8181 26 3880 16 3268	128 8794 168 8287 410 2882 108 8443	

0000 0000 0000

1831 0000 3217 8880 1313 8880

1118

9 EM SPACING Monoculture Misture

Temoosoo2 3 CM SP#CING Mesoculture

31

4

88 8387 83 1887 87 8000

·X::::

.

224

s, ***** 2.

۲.

82: 12: 50:

#4) 461 183

:

4

67 2622 67 5162 101 3465

44 0020 67 6045 60 4065

1 8817 7 8687 10 8871

1 1348 1 2392 7 0119

.....

۰.

					3		
CRITERION VARIABLE		,					
VARIABLE		VALUE LABEL		mi an			
	2	11 I T WR E	1994		4 4847	71 4818	(28)
BPAC WTB WTB	3 1 2	S EN SPACINE Nonôculture Nisture	3418 0000 1301 0000 2118 0000	71 2282 72 2774 78 8000	8 4187 8 3005 8 4747	70 3203 24 0048 28 0724	1 44) 1 14) 201
UL BPAC MTR NTR	6 3 1 2	NDEQUAT NGECULTORE NIETURE NIETURE	11:3 0000 21:4 0000 1322 0000 1373 0000	72 0104 72 0556 73 4444 70 5557		28 4308 38 4364 31 8065 37 7847	
SPAC MTR MTR	3	S CM SPACINS Mondeulture Mixture	4318 0000 1388 0000 3074 0000	71 8833 71 8444 72 8888	8 1732 8 7844 4 4228	36 7834 46 7838 18 8810	- 862 - 161 - 421
187AL CABES -	*70	\sim					

			7 		•
۰.	•	19 a. a. 19 a.	•1		• •
	*			ペナ	

	1		
APPENDIA 7		 *	PAGE 17
FILE SPHERE	(CREATION BATE = 12/30/81)		

		FFTTER OF RESPERALATIONS	
医马克氏麻痹下麻痹 医脊髓下骨部下层	WL.	HEADLENGTH EM	
BRBKER BOWN BV	ĊVL	CULTIVAR	. ,
8 Y	BPAC	INTER-PLANT BPACING	

	87 MTR	TREATHENT		-					
			'						
VARIABLE		VALUE LABEL		s yn		MEAN	STO DEV	VARIANCE	
POR ENTIRE POPUL	ATION .			****	1.		2	4 2743	870)
CUL	,	PITIE #2				4512	1 6180		·
BPAC	2	3 CH SPACING		0000		1887	1 5690	2 6210	1 8 83
HTP	3	HIJTURE		0000		1887	1 1400	. 2 8248	1 42 1
	-							2 8248	· • • • •
SPAC .	3	B CH SPACING	437	0080	12		1 8880	2 6935	1 341
MTR	2	MIXTURE		0000		4520	1	2 6636	341
¢u.	2	<u>GLENLEA</u>	1800		• • •	1704	1 4059	1	1701
BPAC	· · ·	3 CH BPACINE			10	4005	1 1012		
HTR		MENSCULTURE	192	0000	10		1 1378		1 141
MTR	<u> </u>	MIXTURE	718	0000	10		1 2501		
	1.								* -
BPAC		9 CM SPACING			• • •		1 4342	2 0171	6 88.5
MTR	1	MONOCULTURE		0000	11		1 5714	2 4705	i i i i i i i i i i i i i i i i i i i
MTR	a .	HINTHR E	781	****	• •	4683	1 2476	1	f : 👾 i
C V L	,	PARK			-				
SPAC	i	3 CH SPACING	1016	8000		8287	1 2041		1 1281
MTR		MONOCULTURE				4444	0701	1 1468	4 8 9 4
NT.		MINTURE		****		6433			121
	•				,	4830	1 1888	1 3477	6 84 F
BPAC	3	. CH BPACING				4032			
M T A		MONOCULTURE		0000		1887	1 1888		6 82 6
MT 8	,	MIXTURE		0000		2200	1 1836		121
	-			****	•	1100		1 3000	5 5 0 1
CHI	۵.	7 01000 0 00 2	1071			2020	1 8212	3 8 2 8 3	
SPAC	2	2 CH SPACING				4344	7884		
M 7 8	ĩ	MONSCULTURE		0000		0000	7180		· •••
				****		****			

APPERDI 7										P &	66 23
	8 HL										
VARIABLE		VALUE LAPEL							VARIANCE		
MTR	2	HISTURE	310	****	• •		,	7188	2	i.	28.
SPAC	3	B CH BPACING		****	• •	2042	1	****	2 2220		
M T B	1	MOROCULTURE	214	****	12	****	1	4887	2 1048	+	181
MT R	2	MINTURE	337	****	10		•	3481	1 8172		34 -
C # L			1075			1878	,		1 2982		
BPAC	2	3 CH SPACING	394		1.			***	1 1888		34 -
MTR	1	MODOCVLTVER	207	****	11	1000		7871			101
14TB	1	HINTURE	187	****	10	3448	i	1848	1 3105	. t	181
3 P A C	3	. CN SPACING		****		35.00	1.	1173	1 2443	,	
MTR.	÷	MONOCULTURE	205	****		3880		1868	1 4281		3.8.1
#T2	3	MIXTURE	478	****		3333			1 2033		42)
TUTAL CADES .	870										

Ķ

۰.,

3

...

CR

-

	1 1	,																													• 3	/1	•/		2												r	,
E	8 P	ME	R 6	•	C #	84	T		•		1	8	,	2/	34	•/		,																					2									
								2 1 	1	C	R		2 X C W	78. L 7	U 8] 1	11 /#	9 M 1		• 6	7 H	C	•	U	•	•	•	•	•	, ,		•	•	I	0	*	\$	-	×		•	x	,	•	-	•	•	•	
			-		•		8 I 8 I	P A (-			7 8 8 A -	R - 74	P (рт -		•	"	•					•	ي.	/	~	ļ	-												,	•			

 .		**************************************	·].		····	N						
VARIABLE	C	VALWE LADEL	/	8 UM	-							
POR ENTIRE P	BPULATION		23365		,NL		•	* 2 * *		• 7 7 4		£781
	,	#111C 82	3185	****	34	4786	,			3368		82.
SPAC	2	3 CM BPACINE	1782	9990	37	1260	4	1178				4.4.1
44 T #	2	MIXTURE	1783	0000	. 37	1250		1178	4.8			4.8 1
SPAC	3	B CH SPACING		8000	40	3874		0783	28	7888		34 -
MTR	2	MIXTURE	1373	0000	40	3824	•	0783	24	7888		341
έυι	2	SLENLEA						4783				1701
3##AC	2	3 CH SPACINE		0000		8238		6369		0316		
MTR	1	MONECULTURE				7332		0604				1.8.1
MTR	2	MIXTURE	2781	0000	41	4333	•	4388	41	4333	,	881
SPAC	3	E CH SPACING				7442		6113		4887		
MTR	,	MONOCULTURE		8900		1887		3816				181
MTR	2	MITTURE	3035	0000	44	6324	•	4337	29		1	
EUL	3	PARK				3894						126)
SPAC	2	3 CH BPACINE				8488		4 2 7 4		0210		
MTR	1	MEMBCULTURE		****		28.0.0		2371		2048	_ (121
MTR	1	MITTURE	3313		4 2	4333	7	4184		.473	1	841
SPAC	3	S CH SPACING	2670			2003		1 2 2 8		4881		
MTR	1	MONOCULTURE		0000		7500				2255		12)
NETR	2	MIXTURE	2261		41	2200	•		34		,	50 x
CUL	•	704001002	3421			3838		2832				
SPAC	1	3 CH SPACING	1828			3478				1430	(
MTR	,	MONOCULTURE			34	8667			34	4706		181

24

4

. . . .

-										
APPENDIE 7						03/10/	82		PAG	18 26
	8 8L			•						
VARIABLE		VALUE LABEL		5 1964						•
#T.	2	411 2 7 MR #	#34	****	33	2143	6 6211	26 2110	١	24)
8PAC	,	8 CH 87AC186	1788		37		4 2313	17 8038	(44)
01 T E	1		705		39	1887	4 2737	18 3847		18)
#T2	3	M 3 3 7 WR #	1000	****		3333	3 8941	18 1884	•	30)
			3419		40	1878	4 1818	17 8748	1	
SPAC		3 CH BPACING	1438	****	n		4 8184	31 311	1	361
	1	MONOCULTURE	762		41	7778	4 2843	18 9884	1	181
ai T B	2	MIXTWRE		****	34	11	4 3226	18 8828	÷	181
SPAC	1	. CH SPACING	2421		40	35.00	3 8481	18 8872	1	
MTR.	1	MONOCULTURE	718		38	7778	4 3731	18 1242	1	18)
MTR	1	MIXTURE	1785		40		3 7814	14.2056		423
TATA CARES .										

		ь.							
			:						1
						•		,	
							÷.		
			•						PA86 28
PPENDIX 7								r	
ILU SPWERS (CR	CATION DA	LTE + 12/30/81)							
RITERION VARIABLE	¥ M	SERD YIELD	PER REAL						
BROKEN DOWN DY	EUL BPAC	EULTIVAN INTER-PLENT							
	MTR	TRRATMENT							
					• • • •				
ARIABLE		VALUE LAGEL	•	5 U M		HEAR		VAR LANCE	
					· .		0 \$345	0 2901	(170
OR RETIRE POPULATI	ų a				,			• ••••	
U L	,	+111C 87	134		1			. 2	
SPAC	2	3 CH SPACING				\$350	0 4030	. 2430	- i 48 i
M T B	2	HIXTURE	73		1	8350	0 4830	0 3430	
5 P A C	,	. CH SPACING		2387	1	8011	0 3297	. 1	. 34)
MTR.	÷.	HIRTWRE		2387	,	8011	8 3347	6 1847	- 34)
U L	2	BLENLEA	344		,			0 2134	
SPAC	-	3 CH SPACING					0 4130	. 1897	. 84 1
NTR	ĩ	MONDCULTURE	31	3333	- 1	7487	0	0 3856	101
M78	3	MISTURE	128		۱		0 3387	0 1184	
SPAC	2	S CH SPACING	149	2494	2	2004		0 2032	*i - 44 i
WTR.	7	HOUDEUL TURT		7887		2010	. 4325 -	* 2324	1 101
MTR		WIXTURE	148	4841	,	1836	0 4442	0 1873	
	2	PARE	· No	3770	,		. 2082		1282
*****	i	3 CH LPACING	- N -	4441			0 2410	0 0505	- i - i i i i
#TB	ĩ	MONOCULTURE		1884	÷		0 2288	. 1148	121
NTR	2	HITTURE	4.8		٠	8873	0 2181		1 54 1
#PAC	,		70	7214	,	1407	0 2951	0 0871	
W78	7	MONOCULTURE				29.8.6	0 2215		121
erth .	2	MITTURE		1818		1037	0 3000	6 0880	

1081 7416 1383

150 55 29

CUL

SPAC

4 2 1

3 CM SPACING

1 8869 1 4908 1 8188 227

6 1300 0 1155 0 1057 1

0 3005 0 3401 0 3751

ويجاجب حنص

.

.

T THE REPORT OF A DESCRIPTION OF A DESCR

.

e care

د د به می است

MTR 2 MINTURE 37 6 23 1 3430 6 3007 0 0013 1 BPAC 3 6 EM SPACING 43 2006 1 700 3200 1 0 10000 1000 1000 1000	PESSIE 7				3/10/	* 2		PAGE	27
MTR 2 MINTURE 37 6 23 3 1 3430 6 3007 0 4013 281 BPAC 3 6 20 20 1 3200 1 3007 0 4013 281 BPAC 3 6 20 20 1 3200 1 3200 0 3007 0 4013 1 281 BPAC 3 6 20 20 1 3200 1 3200 0 3007 0 4000 1 481 MTR 1 MONOCULTONE 32 0 400 1 2700 0 32700 0 1020 1 801 SPAC 2 3 CM SPACING 107 10 3240 0 2840 0 1200 1 801 SPAC 2 3 CM SPACING 100 10 3007 0 3807 0 1020 1 801 SPAC 2 3 CM SPACING 100 10 4007 0 3807 0 1326 281 WTB 1 MONOCULTONE 20 1002 1 8007 0 3807 0 1326 1 801 WTB 2 MINTR 20 1002 1 8007 0 3807 0 1326 1 801 WTB 3 MONOCULTONE 20 1002 1 801 0 2301 0 1000 <t< th=""><th></th><th>LE VH</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		LE VH							
BPAC 3 0 EM BPACINE 33 2865 1 7868 0 3867 0 0883 1 281 MTA 1 MEMBELLYUNE 33 0886 1 7868 0 3210 0 10660 461 MTA 1 MEMBELLYUNE 33 0886 1 7868 0 3210 0 1066 461 MTA 2 MISTWEE 50 3884 1 5768 0 2107 0 1020 1 101 SPAC 2 3 0 0 50 3840 0 3840 0 1280 960 1020 1001 WTB 1 MEMBELLYUNE 20 5002 1 5007 0 3840 0 1280 960 1020 1001 <t< th=""><th></th><th>CUDE</th><th>VALUE LADES</th><th>8 484</th><th>-644</th><th></th><th></th><th></th><th></th></t<>		CUDE	VALUE LADES	8 484	-644				
MTB 1 MEMBEULTUNE 33 0000 1 31 0 3200 0 1050 1 441 MTB 2 MIITUNE 33 0000 1 431 0 3200 0 1050 1 441 2 MIITUNE 3 0000 1 471 0 3200 0 1050 1 141 3 MITUNE 2 301 1 1373 1 3340 0 3400 0 1001 MTE 3 MEMOULTUNE 1 4007 0 3407 0 1330 301 MTB 1 MEMOULTUNE 24 502 1 5003 0 3107 0 1330 301 MTB 1 MEMOULTUNE 24 502 1 5003 0 1007 0 0000 161 MTB 3 MTATUNE 22 0017 1 2201 0 3307 0 1000 161 MTB 3 MTATUNE 22 0017 1 2201 0 1000 161 MTA 3 0 0 0 0 1000	# T <u>n</u>	,	# 1 # 7 WB B	37 4033	1 3430	. 3.47	• ••••		28)
HTTE 1 HTTEVER 32 HE		3				. 3250			441
MTM 3 MINTWE 60 3864 1 6708 6 2107 0 1022 301 dL 6 0000004 147 3272 1 3848 0 1280 961 GPAC 2 2 0 000004 147 3272 1 3848 0 1280 961 WTB 1 MENDECULTURE 24 5002 1 6007 0 3897 0 1284 381 WTB 1 MENDECULTURE 24 5002 1 5037 0 1387 0 3897 0 1284 381 167 0 6082 1 167 0 6082 1 167 0 3897 0 167 0 167 0 167 0 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 <td></td> <td>1</td> <td></td> <td></td> <td>1 8218</td> <td>* 37**</td> <td></td> <td></td> <td></td>		1			1 8218	* 37**			
BPAC 2 3 CM BPACING 6 6418 1 4067 0 3487 0 1288 <th1288< th=""></th1288<>		2	#11TWE	** 3884	1 8788			i i	
BPAC 2 3 CM BPACTUG 60 6416 1 4067 0 3887 0 1336 201 WTM 1 MONDCULTURE 24 8002 1 6683 0 3107 0 0886 1 81 WTM 3 MTUTURE 24 8002 1 6683 0 3107 0 0886 1 81 WTM 3 MTUTURE 22 0817 1 3281 0 3301 0 1000 1 81 SPAC 3 0 CM 8PACTURE 08 8082 1 8116 0 3277 0 1074 1 81 MTR 1 MONDCULTURE 30 1402 1 8116 0 3277 0 1074 1 81 MTR 1 MONDCULTURE 30 1402 1 8146 0 3264 0 1074 1 81 MTR 1 MONDCULTURE 30 1402 1 8146 0 3264 0 6878 1 421		•	100 04A 1	147 3373					
NTE 1 NENGCULTURE 24 5602 1 5603 0 3107 0 6000 161 NTE 3 MIXTURE 27 6617 1 2201 0 3201 0 1600 161 SPAC 3 0 Emails 0 1000 161 0 161 0 161 0 161 <th162< th=""></th162<>		1	3 CH SPACING						
NTR 3 NTRTWAR 22 017 1 2201 0 3301 0 0000 101 0 1000 101 0 1000 101 0 1000 101 0 1000 101 0 1000 101 0 1000 101 101 0 1000 101 1000 101	1178	,						•	
SPAC 3 0 CM SPACING 96 0.002 1.0116 0.3277 0.1000 1.011 MTR 1 M000CULTUNG 30 1.022 0.0745 0.3277 0.1074 0.074	#T#	3						l.	
MTR 1 MONOCULTUNE 30 1467 6 6746 0 3277 0 1674 1 601 MTR 7 MIRTUNE 65 6551 1 6846 0 3864 0 0675 1 621		-				• 33• '		1	141
MTR 1 MONDEULTUNG 20 1007 % 6785 0 2024 0 102 1 103 MTR 7 MIRTUNG 01 6051 1 5040 0 2054 0 0078 1 421	SPAC	3	8 CH 8847188						
MTE 7 MIRTURE DE BORT 1 BORT 0 2000 0 1000 1 421	WT2	ĩ							
							. 1849	t	181
		•			1 8848	. 2884			421
	7876L CA888 +	979	- · ·	<u>,</u>				·.	-

4 · · · · · ·

್ರಕ್ಕೆ ಈ ಮೊದ್ದ ಕರ್ಷಕ್ ಇವರು ಕೊಂಡಿ ನಿಂಗ ಸಿಕ್ರಿಯಿಂದ ಕರ್ಷಾರ್ಧ ಮಾಡಿದ ಸಂಘಟನೆ. ಕರ್ಷಿಯಾ ಕಾರ್ಯಕ್ರಮ ಮಾಡಿದ ಸಂಘಟನೆ ಮಾಡಿದ ಸ

Appendix 8.

٤

8. Distribution parameters of characters of single plants, grown in monoculture and in mixture, at two interplant spacings.

All plants were grown in four-row plots in 1978. The data are from randomly selected plants, which had both neighbours present, and which were harvested at maturity.

	Spacing	Skewnes	² ,3	Kungos	is ³
Character ¹	(cm)	Monoculture	Mixture	Monoculture	Mixture
т	3	0.47	0.88**	1.21	1.66**
Н	3	0.53	0.40*	1.02	0.60
Wt	3 3 3	0.72*	0.38*	1.44*	78*
Y	3	0.91**	0.43*	0.71	042
K/P	3 3	0.59	0.47*	0.97	7.40
Kwt	3	0.54	-0.88**	3.41**	2.18**
K/H	3	0.90**	-0.16	1.53	0.52
HI	3	-0.09	-0.64**	5,99**	1.51**
FL	3 3 3 3 3 3	-0.82**	-0.29	0.87	0.57
Ht	3	-1.15**	-0.86**	1.57*	1.29**
ExL	3	0.40	-0.54**	1.51*	-0.13
нг	3	0.33	-0.40	0.65	0.93
T	9	0.20	0.63**	-0.48	0.49
Н	9	-0.09	0.72**	-0.75	0.93*
Wt	9	0.12	0.29	-0.13	0.03
Y	9	-0.15	0.32	-0.46	0.12
K/P 3	9	-0.03	0.47*	-0.51	0.31
Kwt	9 .	-0.16	-1.36**	-0.02	3.40**
K/H	9	-0.34	-0.09	1.86**	0.04
HI	9	-1.46**	-0.89**	3.10**	2.64**
FL	9	0.33	0.31	-0.23	-0.16
Ht	9	-0.93**	0.07	1.24*	-0.08
ExL	9	-0.53	-0.37	0.52	-0.12
HL	9	-0.28	-0.41	0.33	0.58

1. Character abbreviations defined in Table 1, HL = Head Length.

2. Values of skewness and kurtosis are averages of four genotypes and three replicates.

3. * significant, $\alpha \leq 0.05$; ** significant, $\alpha \leq 0.01$.

229

Appendix 9. Melative Yield Totals¹ for several characters of plants grown in mixtures at two interplant spacings in 1978.

Mixture	•	.		-	-	Ŧ	R.	ť	IH .	1	Ĩ,		Y	K/H	Y,	H/Υ
	5	3 cm 9 cm	2	9	5	3 cm 9 cm	3	9 CB	20	S cm 9 cm	10	3 cm 9 cm	ٿر. ص	5	5	3 cm 9 cm
Glenles + Park	0.94	0.94 1.13 1.03	1.05	1.15	0.97	1.25*	1.00 0.97	0.97	0.97	1.03	0.96	1.06	0.97	0.97 0.87	0.99	0.85**
Glenles + 70M009002 0.98 1.01	0.98	1.01	1.02	1.08	1.04	1.11	0.09	66.0	1.00	1.04	0.97	86.0	0.95	0.92	, 0.94	0.91
Glenles + Norquay	0.88	0.88 1.12	66 °0	1.12	0.95	1.23*	0.99	0.98	0.97	1.05	1.14	1.06	0.87	0.91	1.00	0.90
Park + 70M009002	0.78*	0.78* 0.86	0.91	0.83	0.88	0.88	96 0	1.00	0.99	1.03	9.79** 0.84	10.64	0.92	86.0	0.92	0.92
Park + Norquay	1.00	0.93	1.00 0.93 1.11	0.95	1.00	1.00 0.97	ر. وي	1.01	0.99	0.99	0.97	86.0	1.02	0.95	1.05	0.95

ction 6.2.

* significant, $\alpha \leq 0.05$; ** significant, $\alpha \leq 0.01$.

Character abbreviations defined in Table 1. 2.

COPIE DE QUALITEE INFERIEURE

231

and the second second

۵

Appendix. 10. Descriptive statistics of characters of plants, grown in monoculture and in mixture, in machine seeded plots, measured at the flowering stage, in 1978.

ويترون والمتهير والمراجع والمراجع والمراجع

POOR COPY Copie de qualitee enferieure

......... PARE 2 AGHERG (CREATION DATE = 03/18/42) TERION VARIABLE S NEISMY OF BROKEN DOWN SY CUL CULTIVAR BY COMP. TRATMENT VARIABLE VALUE LABEL 5 U H MEAN VARIANCE . FOR ENTIRE POPULATION 72272 0000 12 2885 - 6 - 2 6 3 2 👝 13101 CUL COMP COMP PITIC 62 Monoculture Mixture 18838 0000 4088 0000 12741 0000 51 8722 51 2250 52 2172 A 3882 7 3328 8 7205 70 5472 53 7715 76 0473 324 : 80 : 244 : 1 1 2 CUL 20#P Comp 67 8155 68 5667 67 6019 GLENLEA Monoculture Mitture 18378 0000 4114 0000 18284 0000 8 4885 7 5428 8 7435 72 0847 88 8838 78 4803 271 - 60 - 211 -7 2 CUL Comp Comp 18883 0000 3232 0000 13731 0000 88 3'12 83 8887 80 7888 P & # K 13 0838 8 4888 13 8728 170 8842 41 8788 185 2427 288 - 80 - 226 -3 MONOCULTURE : 2 CUL COMP Comp 700005002 Monocul*ure Minture 3135 0000 2778 0000 7217 0000 47 8806 47 9:38 47 4803 7 7877 7 8878 7 8310 60 2388 58 5416 61 3241 2101 412 i CUL Comp Comp NOROUAY MOROCULTURE MIRTURE 48 1008 48 0080 48 8087 10086 0000 2655'0000 744'0000 7 8818 7 8813 7 8838 58 1842 48 8821 82 3144 218-\$ • 2 TOTAL CASES ... 1310

•

.

232

.

÷

•

233

£

/

APPENDIX 14										
FILE FLANNERS		ATE = 02/10/82>								444 3
CRITERION VARIASI DROKES DOWN	LE D LY CUL LY COMP	PLANT NEIGHT Cultivar Treatment	• / •					• • • • •		
VARIABLE		VALUE LABEL		5 J.M		MEAN				••••
POR ENTIRE POPULA				0000	71	7271	18 4848	271 0836	•	
	,	P171C 02	20414			2469				
C 000 P	1	MONOCULTURE	8142			2780	11 8447	134 2980	(334)
C 844 P	2	MIXTURE	18874			2277	10 8446	118 7715		
								138.8729	1	2441
	1	SLENLEA	23130	0000		38.05				
C BARP	1	MONDEULTURE	4877					141 4841	1	271)
C 044 P	2	HINTORE	10103			332	12 2037	148 8387	•	
CV L							11 7638	137 8178	+	***)
	3	产品表 版	21432	0000		0323	18 2384			
	1	MOROCULTURE		0000		3000	16 0407	232 2088		248)
C Des P	2	MIXTURE	18884 4			\$451	16 2831	224 8237	1	
								233 8804	1	188)
C BMP	4	700000001	13873 4	1000		6333	11 8376			
	,	MANACULTURE	3708 6	0000		***3	10 1107	133 1137	4	310)
COMP	2	MIXTURE				4947	12 0884	102 2263	1	581
								148 4081	•	152)
CUL		HOROVAY	13020 0	000		1488				
COMP	1	MONOCULTURE	3466 6				10 8977	120 8487	1	388)
C 844 P	2	MIXTURE	8170 6			0368	11 7724	138 8903	1	##)
TOTAL CASES + Minsing Cases +	1310	4 4 PCT			••		10 8887	114 4830	(141)

3

Ą

APPENDIK 10 File – Flagmers (Creation Date = 03/16/82)	•3/10/62	PA81
CRITARION VARIABLE ML HEADLENGTH CM BROKEN DOWN BY CUL CULTIVAR	· · · · · · · · · · · · · · · · · · ·	× + =
BY COMP TREATMENT		

ARIABLE	· CODE	VALUE LABEL		S UM		MEAN		TD DEV	VAR LANCE		
R ENTIRE POPU	LATION		14044	0000	• •	2824		2 7777	7.7188	,	(1262)
L	,	PITIC 82									
COMP		MONOCULTURE				1333		1 6826	2 8048	+	324)
C 0M P	2	MIXTURE		0000		8878		1 4485	2 1011		801
	•	MINI VEE	3127	0000 .	12				2 8449	i	2441
4	2	GLENLEA	3037	0000		2066					
COMP	1	MONDEULTURE		0000				2 0785	4 3201		271.1
COMP	2	MIXTURE		0000		1333		1	3 4398		
	-			0000		2278		2 1415	4 8881	1	2117
COMP 2	3	PARK	2034	9999		2810		3 8886			
	,	MONDCULTURE	4.4.1	0000		0187			12 8836		2471
COMP	2	MIXTURE		0000		3282		1 1122	1 3370		60)
				****	•	3767		4 0740	18 8873		1872
11	4	704000002	2525	0000	12	0429		1 8376	3 7641		
COMP	,	MEMPCULTURE	702	8000		1034		4228		•	210)
ç om p	2	MIXTURE	1827	0000		0187	i.		3 3924	•	68)
-					• •		٠.	1.8848	3.8400	•	1821
n	•	NOROVAY	2321	0000	1.1			1 8380			
C OM P	1	MONOCULTURE	704	0000		8322			2 8785	ŧ	3001
COMP	2	MIXTURE	1822					1 8825	3 6818	•	
						8035		1 8053	2 2881	4	1411

 ζ^{*}

. . .

.

234

PPENDIX 14						03/16/	8 2						-7 66	a (
		TE = #3/18/82	•											
ROKEN DOWN BY		A P T B B Estrution Cultivan Treatment				. A T I		•					-	• • •
· · · · · · · · · · ·		VALUE LABEL	• • • • •	 B.UM	 			 . т.	 					
ARIABLE		VALVE LADEL												
OR ENTIRE POPULATI	••		20100		۱.	3613		2 1	7845	478			•	1368
	,		3977		12	3127			1882					323
C 900P	1	MOBOCULTURE	1044		13				3389					
COMP	2	MIXTURE	2833		1 2	0700			1256	24	. 2711	i (848
VL	2	GLENLEA	4762			6261			8812		2423			171
C 8999	1	MONOCULTURE				3432					342			
Comp	3	MISTURS	3440	****	•	4313		1.	3484	104		, ,		211
	3	PARK		0000	17									286
COMP	1	MONOCULTURE	1046	0000		4323			6344					
CBOSP	,	MIXTURE	2023		12	0130		4 4	4118	1873	4981	• •		224
U L		7000000002	3877		17	0333			3344					210
C 8447	1	MOROCULTURE	830		18				3894					
C 810P	2	MINTURE	2847		17	4148			3138	20		2 (182
UL		BORGUAY	2833			3827					1883			2.78
C 944P	÷	MÖNÖCULTURE	1204			4064			4704					
COMP	2	HIXTORE	1728		10	4043		24	1002		287() (. 188

SSING CASES - 1 DR O 1 PC1

ŧŝ

٠

T.

٦

APPENDIX 10						+3/16/	***		PARE I
FILE PLASMERE (CR)		TE + 03/18/821							
CRITERION VARIABLE BROKEN DOWN BV BV	D E S C Arta Cul Comp	R I P T I O N Plaeleap Di Cultivar Tréatment		U	• • • •	. .	• • • • • • • • • •		• • • • • • • •
VARIABLE	CODE	VALUE LABEL				MEAN		VARIANCE	
FOR ENTIRE POPULATIO	B.N		31314		24	1088			(· *** · ·
CUL C D MP CDMP	1 1 2	PITIC 52 Monoculture Mirture	8736 2170 8664	1111	27	0482 4772 8083	5 7224 5 1885 5 8927	48 1812 36 2882 47 8088	E 323) E 76) E 244)
CUL COMP C OM P	2 1 2	GLENLEA Monoculture Mixture	7848 1846 690 1		27	8888 4460 1018	7 2096 7 4641 7 2037	63 2677 66 7123 62 7618	270 - 60 - (210 -
CUL C DMP C DMP	3 1 2	PARK Monoculture Mixture		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	14	7878 7717 0429	8 1318 8 5450 8 5107	66 1207 42 8492 72 4318	1 277) 1 80) 1 217)
CUL COMP COMP	4 1 8.	TONOCCULTURE Monoculture Mieture	4640 1346 3281.		23	0962 2555 8525	\$ \$444 7 2015 5 3454	44 1478 51,8021 40,8111	(210) (51) (152)
CUL	1 2	HOROUAY Moroculture Mixture	8473 1488 3887	7887	25	8813 1430 8706	5 4453 5 4011 5 6042	41 8424 28 1721 48.2978	1 218) 1 80) 1 100)

ISSING CASES - 11 OR O 6 PCT

...
.

la ana 12-1

э

Appendix 11. Descriptive statistics of characters of plants, grown in monoculture and in mixture, in machine seeded plots, measured at the middough stage, in 1978.

•

5

يواجدون المترجع والمترجع والمراجع

-

e

. , .

an an Galainn an S

236

APPENDIS 11					•										-	
			, ,													
CRITERION VARIABLE GROKEN DOWN BY BY	B E S C B Cul Comp	R I P T I B B HEIGHT DF Cultivar Treatment	THE FLAC		BLADE C	H	A T	I Ø W	•		· · ·			• •	• •	• • •
VARIARLE			T I I V		* * * *		• •	•••	·			•	•••	• •	* *	
		VALUE LADEL				1	HÇ A U		871			A WE				
FOR ENTIRE POPULATIO			68830	****		4	3972		11			132	7712		()	
	,	PITIC 82				<u> </u>						_				
Comf	÷	MOROCULTURE	3130				2882 3187			4432 3783						2881
CBMP	2	MIXTURE	11920				2807			2425						80 - 228 -
CUL	2	6LENLEA	20114						10							303.
CONF	,	MOROCULTURE	3648				7787			3438			3472			
Comp	2	MINTURE	18488	****	•	, ,	7787		ē	7828			1180	(2431
CUL	,	PARK	14837											i.		284)
C 8447 C 8447	1	MONOCULTURE	2848				280						3337	+		
	,	HIITWAE	12488			• •			•	1048		87		1		224 -
CAL	4	7000000002							-	1833						
C 844P	1	HONSCULTURE	2821										1184			
C 8447	2	MINTWRE	7726							2244			2434			1811
CUL		REEGUAT			41		763									1841
C 8447	۱.	MODOCULTURE	2845				783			7881				i je	-	
C 916P	3	MIXTURE	8218				278						2000	i		1381

.

PPERDIK 11						- +3/f	1/11		- PA8) e
TLE FLASHER		ATE = 03/18/82)					· .			
RITERIEN VARI DROKEN SOW	A018 0	PLANT HEIG Cultivan Treatment	нт ^р си —	~		4 A T	1 0 N 8		* .	• •
ARIABLE	C 0 0 8	VALUE LADEL			• • •		* * * * * * * * * * * * * * * * * * *	* * * * * * * *	• •	
OR ENTIRE POP			104205			2147	14 7786	214 3180		1265
					••					1201
UL	1	PITIC 62	23322	0000			10	118 7881	,	24
COMP	1	MONOCULTURE	4472	0000		2000	11 2292	126 0849		- 77
COMP	2	MINTURE	18450			9211	10 7183	11.4 8386	i	22
Ψι	2	GLENLEA	21888			3078	13 0919	171 3985	,	30
COMP	1	MONOCULTURE		0000		2203	12 2142	183 8230		- 1
COMP	2	MIXTURE	A 1 20			3004	12 7107	181 7182	6	24
U L	,	PARK	24248				12 7344	182 1838		28
COMP	,	MENOCULTURE	3838	0000		4000	14 1313	100	i	- 4
C 941 P	2	MIXTURE	20713	0000	6.2	4444	12 3841	7120	i.	12
VL	1 a 🕴	7 0H0 0 0 00 7	18484		74	4336		72 7860	1	22
COMP	· ·	MONOCULTURE	***2	****	74	8833	. 4		1	- 19.
COMP	. 3	MIXTURE	13001	0000	74	8484	8 2953	87 3374	i -	16
VL T	· •	HOROUAY	14482		74				í	
COMP	Ŋ	MONOCULTURE	4328		74		11 0882	122 2394	i	- ē,
COMP	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MIXTURE	10124			4412	8.8274	77.8224	1	- 1 ž č

Ň,

•

237

PP89012 11								8/82						186	
THE PLANNERS (CR)		TE + 03/18/82+							*						
RITERION VARIABLE BROKEN DOWN BY BY	B E S C HL Cul Comp	R 1 P 7 I 8 8 WEADLEWSTH 1 CULTIVAR TREATWENT		E W, W	• • •		A 7	1	-	• •	* * * *				
			• • • •				MEAE	* = 1				 1 ANCZ			•
OR ENTIRE POPULATIO			14301			• •	2784		2		•	3781		1 128	
	1	#171C #2	3428				2007			2813			ţ	**	
C BMP	1 2	MODOCULTURE	802 3024	****			3867 2632			6380 4088		3378 7843	ć	23	
U L C 8007	2	61 ENLEA MONOCUL TURS	3335	****			8430 8881			7005		8818 7878	:		
COMP	2	MITTURE	2747			• •	3048				-	1082	*	74	
UL Comp	1	PARK Monoculture	2147	****			1328			1451		2020	4 7	28	14 10
C 841P	2	MISTURE	1840			٠	2143		'	**24	,	1288	1	23	14
UL	4	700000002	2748				4344					7185	1	- 22	11 10
COMP COMP	1	MONDELLINE	1871	****			88 04 7427			8734		1017	i	18	
UL			2253				6134					7847	1	1.	
C 900P C 900P	1.	MONOCULTURE	1885				4455			8234		****	1	- 13	

PAGE

P T I & N O P I Extrusion Length C Eultivar Treatment Т ERION VARIABLE BROKEN DOWN BY BY EL EVL Comp

RIABLE	CODE	VALUE LABEL		8 UM		MEAN	87			ANCE		
R ENTIRE POPULATI	• •		38176		30	8 2 6 3	۲	****		1394	•	1267
L.	,	P171C 82			28				31	3044	•	244)
COMP	,	MONOCULTURE		0000	24	8633	4		24	2085		
COMP	2	MIXTURE	8530	0000	2.8	8404	•	7888	33	2788	•	238 (
	2	GLENLEA	8575	0000				6403		3740		13011
COMP	1	MONOCULTURE	1814	0000	32	4407		2321		7680	1	58 H
COMP	2	MIXTURE	7651	0000	31		*	4990		2348	4	342 -
	3	PARK				7878					1	284)
C 816 P	1	- MONOCULTURE		0000		1760					1	40)
COMP	2	MILTURE			26	7188	•	4834	78	3824	'	224
	▲	7				****		2808		8872		2211
COMP	1	MONOCULTURE		0000		7000		4898		2478	1	
COMP	7	MISTWRE	4276	****	21	****	•	1692	29		1	\$011
	5	NOROUAY				4718		3788			1	1821
COMP	1	MONOCULTURE		0000		7414		2243		7818	- t	881
COMP	2	MINTURE	3946	****	24	8259	4	***3	. 33		4	128)
TOTAL CASES .	1268											~1

.

.

+2/18/82 ----FLADMERS (CREATION BATE + 03/18/02+ TERIEN VACIABLE AREA PLACERT BLACE AREA CM BO SROKER DOWN BY CUL CULTIVA V COMP TREATMENT V COMP TREATMENT VARIABLE SUM MEAN VALUE LABEL TAR LANCE . 34878 1830. 37 4888 13841 CUL Comp Comp PITIC 82 Horoculture Histure 4670 1663 1788 3088 8860 7887 30 2411 20 0733 30 3110 7 7847 8 4212 8 8918 1 1 2 247-1 2271 CUL COMP COMP SLENLEA MONOCULTURE MIXTURE 8111 8883 1728 1887 8181 8888 2 1 2 33 0307 20 1000 33 000 17 1844 136 7888 14 8114 4 # 300/ CUL C 941P C 941P PARK MONOCULTURE MITTURE 4888 7888 881 3888 4364 3888 18 3877 18 5380 18 8270 5 8838 5 4183 5 8283 3 38 8844 28 3873 38 8483 2887 2 CUL Comp Comp 21 119 21 119 21 119 4 1 2 700005002 M040CULTURE MIRTURE 5754 6557 1721 2996 4033 6991 7 4861 7 8428 7 4288 88 8818 48 8017 88 1887 221) 84) 16)/ -CUL Comp Comp ROROVAT Monoculture Mixture \$388 3888 1838 8887 3838 4882 27 1484 28 2052 28 8048 5 1 2 6 2023 6 0110 5 0787 38 8830 47 7731 38 7464 • 1843 TETAL CASES + MIBBING CASES + 1288 " 11 88 • 8 PCT

•

238

4

. .

Appendix 12. Variation in thousand kernel weights (g) among the seed classes used in 1979.

	Seed class							
Genotype	Small	Large	Unsorted					
Pitic 62	29.8	40.8	²					
Glenlea	32.0	45.6	44.5					
Park	25.8	36.0	34.9					
70M009002	25.6	46.2	45.9					
Norquay	25.5	38.0	37.3					

- 1 Only sorted small and large seeds were used in the seed size experiment.
- 2 No data available.

4

1

240

Appendix 13. Descriptive statistics of characters of plants from large, small and mixed size seeds, measured at the 3-5 leaf stage, in 1979.

~

, ÷ , .

٠,

......

N

242

. .

. .

PPENDIX 13		1			42/16/42	1		PAG	
TLE BOLT CERE		ATE = 12/38/81	,						
RITERION VARIADLE DROKEN DEMM DV DV	L 1 EWL TR			,					
ARIABLE		VALUE LABEL	, .		HEAD			÷ •	
	***		1782	****	3 ****			•	***
			3.8.7		3 6173				1.84
TR	1	LARGE SEED			3 7143		3564		41
TR	2	SMALL SEES	144		3 4444		1847		
TR	3	WIX20 5220	101	****	3 8446	0 4315	1883	i.	20
WL	1	PITIE 83	346		3 6871			1	
TR	1	LARGE SEED		****	3 3184			1	34
TR TR	2	SMALL SEED			3 7847				34
TN	3	MINED 8560	130		3 8384		2462	•	3 :
u L	7	GLENLEA	441		3 8 1 2 6		3448		11
TA	1	LARGE SEED	140		3 8 8 8 2		4341		i i i i
TR	3	SMALL SEED	128	****	3 3644		4011		
78	3	WIXED SEED	133	****	3 8000		2228	ŧ	- ž
UL	3	PARK	244		3 6510	. 7818			
TR	1	LARGE BEED	124	****	3 8384	ê 7424 - i			
78	2	SMALL SEED	111		3 5845		7849	1	31
, TR	. 3	WIES SEED	117		3 4412	• • • • • • •	4358	•	- 34
UL		********		****	3 8260			+	
78	1	LARGE SEED			3 6361		2411	1	23
78	3	SMALL SEED		****	3 \$000		4444	•	- 10
TR	3	M1888 8888		****	3 5200				. 81

.

.

CREATION

12/20/41)

VARIABLE		VALUE LABEL	5 UM	MEAN	STD DEV		
FOR ENTIRE POPU							(487)
	•		223	2 1442	0 8176		1 184)
TR Ì	1	LARGE SEED	100 0000	2 2810	0 9094	0 1211	421
TR	2	SMALL SEED	70 0000	1 8444	0 7808	0 6284	381
· TR	3	HINED SEED	\$3 0000	2 0345	0 8887		24
EUL	1	PIT16 82	223 0000	2 1236		0 4018	1 105,
TR	1	LARGE SEED	86 0000	2 2832	0 7847	0 0316	1 241
TR	,	SMALL SEED		2 0000	0 8211	0 8485	1 4 341
T #	3	MIXED SEED		2		0 1107	1 33
CUL	2	EL ENLEA	178 0000	1 5855	0 7188	0 8178	1 1111
TR	1	LARCE SEED	57 0000	1 \$000	0 7280	0.5270	1 34-
TR	2	SMALL SEED	83 0000	1 8878	0 8148	0 1830	- 1 3 .6 -
TR 2		WIKER SEED	18 0000	1 8000	0 6039	0 3847	5 38 /
cu. 1	2	PARK	185	1 8939	0 8787		
тв		LARGE SEED	11	1	0 8881	0 3543	33
T R	2	SMALL BEED	Le	1 8128	0 8437	0 7118	6 314
TĦ	3	WINED SEED	81	1 7841	0 5918	0 3843	1 34)
EWL	4	700000001	133 0000	2 0781	1 2782	1 4247	
T #	1	LARGE SECO	81 0000	2 4622	1 4414	1 8844	23
TR	2	SMALL BEED	28 0000	1 8828	0 0030	0 1313	1 161
T R	3	MINED SEED	47 0000	1 8800	1 1002	1 35 00	25

FOOR COPY COPIE de qualitee inferieure

APPENDIA 13				+2/16/41	r		PAGE 6
PILE 8811 (CA		ATE + 12/30/81)					
CRITERION VALIABLE BROKEN DOWN BY BY	8001 Cul Tr	CULTIVAR TREATHENT			•• • • •		
***1**LE		TALVE LABEL			878 BEV		•
FOR ENTIRE POPULATI			44 3170				(442)
	•		10 0300				()
TR	1	LARGE SEED	4 8834	. 1149		* **24	421
TR	2	SMALL SEED	3 4830				
Ţ. ₽		W1280 8880	2 1820		• •171		1 261
CHL	,	P1716 82	. 342.			0 0011	1.05
. 78	1	LARGE STEP	3 8879				(38)
TR	2	SMALL SEED	2 4054		e ezei	0 0013	- 34-
78	3	MINED SEED	2 8780	0 0903	0 4321	0 0011	331
EVL	2	BLENLEA	10 3870		0 0341	0 0015	
TE	•	LARGE BEED	3 6340	y e 1000	8 8447		1 341
78	ž	SMALL SEED	3 4000	* 1899	0 0328		. 381
TE	,	WINED SEED	3 3630	• • • • • •	0 0373	0 .014	- 36-
EWL	,						
78	i	LARGE SEED	2		8 8318		
TA	1	SMALL SEED	2 6 2 4 8				1 31)
TE	3	MIXES SEES	2.8280		0 0120		(34)
CUL		700001001	5 3844				
- T#	1	LANGE SEED	1 2000			0 0024	1 221
TŘ ,	2	SHALL SEES			0 0333		1 181
TR	3		2 1880				(28)

¹ POOR COPY COPIE DE QUALITEE INFERIEURE

÷

,

.

Appendix 14. Descriptive statistics of characters of plants from large, spall and mixed size seeds, measured at the jointing stage, in 1979.

.

244

्रि

وريونية والتوار بنفرتها الأرار

245

PPENDIX 14							•3/	16/82						-	
ILE BOLT (CR		DATE - 12.	/30/81)						٠						-
AIYEAIGH YARIADLE BROKEN DOWN OV BV	871 Eul 78	CULT	17 NEIANT 11448	CM			L A T	1 0 H		• • •		 	• •	•	• •
••••••••••••••••••••••••••••••••••••••							• • •	• • •	• •				• •	• •	• •
		VALUE	LADEL		11 UM		MEAH		878		VAR				
OR BHTIRE POPULATI	• •			3440		•			4	8401	23	4284			40
U L															
TB	1	LARSE			1000		8042								
TR	,	SMALL			0000					9478		4818			- 3
TR	1	MIXED			8000		1471			3875		25 * 4			- 3
						•					25	7788	1		2
/L	1	#171C		385								_			
TR	1	LARES								****		4317			÷
TR	2	SMALL					1428			8938		1814	•		2
TR.	3	HINEB					7800			7474		3428	•		۰
						-						3473			,
TR -	2	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			2000		2265			2444					-
TR ·	1	LAREE		241	1000							6221	1		
TR	2	بسويا ۲۳۸			4000		1830			8790		1247			3
	3	مريد	\$ E E D	334			2067			4525		8471			3
i.	-								-				4		
T. T	3	PARK	_			10			4			3052			
TR.	1.	LARGE				12	4843			3885					÷
Ť	2	SMALL			0000	1.0	1428			2771		2837	- i		- 2
	,	MIXED		364	1000	10	1833					1888			
1L													•		
те		704001			3000		7886		4	2237	17	4286			71
TR	2	LAREE					7428					4144	ì		- 20
TA		BRALL I			0000				4			4711	i		20
		HIXED :		338		10				2788		2492			

APPENDIE 14						`#3/18/83		,	PA88 3
PILE BOLZ (C	REATION D	ATE = 12/30/811							
CRIVERION VARIABLE GROKEN DOWN BY Ry	CUL	TILLERS PE CULTIVAR TREATMENT	R PLANT			L A T I O	N S		* * *
				• • •	* * * *		. • · · ·		* * * * * *
VARIABLE		VALUE LABEL		SUM		MEAN		VARIANCE	
FOR ENTIRE POPULAT	1.0.4							********	N
· · · · · · · · · · · · · · · · · · ·			2241	0000			2 0843	4 3442	1 4071
CUL	٥								
TR	1	LARGE SEED		0000		2800	1 8733		6 881
TR	2	SMALL SEED		0000		3564	1 3711	1 4798	4 291
TR						0384	1 7838	3 1409	4 241
		MIKED SEED	128	0000			1 9731		23)
CUL									
	,	PITIC 82	281	0000		8862	3 2001	10 2485	
9 ¹ 78	. 1	LARGE SEED	144	0000		2857			6 62)
TR	2	SMALL SEED		0000		6429	3 3978		1 28)
TŘ	3	NIKED SEED					2 0232	4 0934	- 14)

17		SWALL SEED	83 0000	6 6428	2 0232	11 2222	
TŘ	3	NIKED SEED				4 0934	142
	*			1 0000	3 8873	36 3333	101
EVI							
	· 4	GLENLEA	483 0000	\$ 1343	1 7886		
. TR	1	LARGE SEED	174 0000			3 2387	4 84 F
TR 9	-			4 7027	1 8644	2 7783	4 37 - 🕳
TR 3	-	SMALL BEED	166 0000	. 7774	2.1843	4 8410	
	3	MIXED SEED	163 0000	5 1000			1 271
e e la sector de la del	* .				1 4704	2.1821	(20) 7
6UL ' '	-						
	3	PARK	488 8000		1.8102		
TR	1 .	LARGE SEED	154 8000			3 2787	L ##1
TR _	-			1 1000	1.0007	3.7778	(24)
		BMALL SEED	155 4000	8 8788	2 1052		
TR [3	MIXED SEED	176 0000			4 8188	(28)
				\$ 4867	1.8694	2.4644	(30)
CUL						- +	
	4	700000002	474		3 1304		
TR	,	LARGE SEED	178 0000			4 9365	1 781
TR.	_			4 3871	2 0324	4.0411	(28)
	1	IMALL SEED	118 0000		1 0 1 0 7		
Ť#	3 1	HINED SEED	178 0000			3 8737	(20)
				5 7418	2.3480	\$ \$978	(31) `

٩

	•								
APPENDIX 14					43/14/43			PAGE	
FILE BOLD ICR		ATE = 12/30/81)						
CRITERION VARIABLE BROKEN DOWN BY BY	8001 CUL TR	R I P T I B M Number PF Cultivar Treatment			• • U L A 7 1 •			· · · •	•
VARJABLE	CODE	VALVE LABEL		5.494	NEAN				
FOR ENTIRE POPULATIO	PA .				2 2500	0 8281		(. 4 01	• •
CUL	ø		211		2 1978				
TR	•	LARGE SEED			2 2223	* \$\$\$3	0 8070		
78 78	2	SMALL SEED			2	0 8103	0 0031	1 34	
1.	3	MIXED SEED	\$ O		2 1738	0 7188		1 23	12
CWL	,	P1716 82			1 7304		6 4751		
78	,	LARGE DEED			1 8214	0 7224	0 1121		
TR	ż	SMALL SECO			1 8428	0 7448		. 14	
TR	3	MIXED SEED	18		1 8000	0 . 1	0 2587	10	£ 1
CUL	3	ELENLEA				0 8178			
78	1	LARSE SEED			2 1686	0 1170	0 8947 0 8243	4 84	
ŤŘ		SMALL SETS			2 1883	0 7367	0 8413	1 27	
TR	ā	MINED SEED			2 8487		0 3820		
			-						
CUL	3	PARK			2 4419	. 7.12	0 8750		
TR	•	LARGE SEED			3 7600	0 7618		1 24	
78	3	BMALL BEED			2 4843	0 8222	0 4101	1 24	
78	3	MIXED SEED			3 1333	• \$713	0 3284	1 30	1
	•	7000000002	267		3 6570	• 7437		. 78	
78	ĩ	LARSE SEED		0000	2 8788	0 7724			
TR	1	SMALL SEED			2 1	. 74.4	0 5785		
TR	3	HIXED SEED	77	0000	2 4430		0 8814	1 31	
TOTAL CARES .	487						Ø.		

• • • • • •

PA67 8		03/18/82				12 14	
					BATE = 12/30/811		
			POPUL		CRIPTICH DRY WEIGHT	ON VARIABLE DW1	
					. CULTIVAR		
					TREATMENT .	#Y TR	
* * * * * * * * * * * * *							
VARIANCE N				5 UM	VALUE LABEL	t per cont	
						(
0 2980 + 4071	0 5459 0 2	3412	1	348		IRA POPULATION	08 EH
						1	
						. t	
0 2246 (98)		3445		133 3000	LARGE SEED	\	78
0 1474 / 38) 0 2887 (34)		3476		46 5000	SMALL SEED	7	TR
0 3088 1 231		3413		30 4500	MINED SEED	i	T
						-	• • •
0 2805 (82)		4455	,	75 1700	P1716 62	1	UL
0 3403 1 28		3667		38 2400	LARGE SEED	1	T R
0 1193 1 141		4545	1	20 4200	SMALL SZED	2	TR
0 3983 1 101	0 6267 0 3		1	18 6100	MIXED SEED	3	t a
0 4007 (94)	0 6830 0 4	4433		136 8700	GLRNLEA	, 2	
0 3484 4 374		3445		80 8600	LARGE BEED		78
0 7197 1 271		4184		34 2200	SMALL SEED	2	TR
0 1431 (30)		1130		46 4900	MINED SEED	ā	
0 2326 (86)		1178		86 1400	PARK	3	HL .
0 2734 1 281		1007		30 8200	LARGE SEED	1	TR
0 2780 (28)		1471		32 1200	SHALL SEED	3	TR
0 1884 (30)	D 4040 0 1	1087 * -	1	33 2000	MINED SEED	3	TR
0 2790 (70)	0 8282 0 2	3365		105 5800	764605007	•	
0 2873 (28)		1041		42 2800	LARGE SEED	i	78
0 1245 20				18 1840	SMALL SEED	2	TR
0 2837 1 31/		4282		44 1800	MIXED SEED	3	TR
	0 3848 0 8037						TR

5

246

΄.

Appendix 15. Descriptive seed of characters of plants from large, small and mixed simeseds, measured at the heading stage, in 1979.

247

A second seco

APPENDIX 18					•	•1/						P 4	AE 2	
FILE BDL3	-	TE + 12/30/81												
CRITERION VALIAD. OROKEN DEWN	.Е ИТ1 IV Сыс IV ТВ	R I P T I D N PLANT NEIGHT Cultivar Treatment	• • •		•••		1	8		· · · · ·	· · ·	· · · ·	· · ·	
VARIABLE	Cabe	VALUE LABEL		5 UM		MEAN		\$ 71		VAR				
	110H		13481	1000	2.0	4881		12		159	7908		487.	
Cu.	•		7384						2787					
TR	t	LANGE SEED				5594							26 -	
TR .	2	SMALL SEED	800			0156			2984		4594		32	
TR .	3	MIXED SEED	.74		2.8	1062		11	0029	121		(24 1	
C 4 L	1	PITIC 82	1707		16	1084		3	\$035	• 2	275 1		108 -	
TR	,	LARGE SEED	\$ 3 4	5000	16	1870		3			\$459		23.	
TR	2	SMALL SEED		\$000	16	4385		3	9788	1.6	8280		314	
TR	3	MINES SEED			18	8000		3	4955	1 2	2190		4 2	
CUL	2	GLENLEA	3131	0000	31				\$137	31	2900		101-	
78	•	LARGE SEED	1						6401		\$703		37 .	
TR	2	SMALL SEEC	1004			4867		- i		35	3984	с. –	30,	
TR	1	MINED SEED/				1176			4455		\$443		34)	
		5			_									
CUL	3	PARK (4883			6429	•		8834		3414			
TR	1	LARGE BEED							8488		2100	:	34 1	
TR	2	BWALL BEED	1383			4500			7882				30)	
TR	3	MINED SEED	1417		47	2333		•	1110	43	\$471	"	30,	
Cu.	4	704005002	1814		28				4245	4 5	7102			
TR	i	LARGE SEED	799	8000	30	7500		ŝ	3484	2.8		4	20)	
TR	2	SMALL SEEC	314			8333			0847		7810	ι	16 -	
79	j	MINED SEED				3421			7780		34 24		1.1	
TOTAL CASES .	487					174								

•

249

.

APP\$1917 18						02/1	8/82	ζ	PASE
PILE SPL3 (CRE		BATE + 12/30/612							
CRITERION VARIABLE BROKEN DOWN BY BY	• • • •	C R 1 P T 1 B 8 Tillers Per Cultiver Treatment	PLANT					· · · · · · · ·	
**************************************		VALUE LABEL	• • •	 			• • • • • • • • •	VARIANCE	
								AWINNES	
POR ENTIRE POPULATIO) m		2367	****	•	1784	2 1042	4 4107	(487
CUL	•		488			3183		3 4010	
TR	1	LARSE SEED	205			1144	1 8177	3 3040	36
TR	2	SMALL SEED		0000		2813	1 7841	3 1110	1 33
TR	3	MIXED SEED	118		4	7817	1 0332	3 7373	24
CW1	,	P1710 82				7847	2 8070	. 7884	
TR	1	LARGE SEED		0000			2 8184	8 8227	
TR	2	SMALL SEED			4		2 8088	8 2888	1 31
TR	3	MITED SEED.	288	0000		0714	2 3416	8 4824	. 41
. U L	1	S. EN. EA	394		,		.1 2478	1 8884	
TA	ī	LARGE SEED		0000			6	0 4221	101
TR	2	SMALL SEED				\$333	T 1344	1 2020	
TR	3	MISED SEED				7383	1 6630	1 4430	34
:UL	3	PARK				2488	1 7940	3 2148	
TR	1	LARGE SEED	213				1 4248	2.0292	1 11
TR ·	2	BHALL BEED				4887	2 1413	4 4713	
TR	3	MINED SEED	147		4		1 7878	3 1866	3.
. V L	4	7 844 8 8 8 8 8 8 8	346			7887	3 2727	. 1850	
TR	1	LARSE SEED	168				2 3442	8 8138	1 10
TR	2	SMALL SEED	8.1			4000	2 6873	7 1143	i 18
TR	3	MINED BEED	107	****		6318	1 8622	3 4878	1 1

•

APPENDIX 18 03/16/02 PAGE Pile BDL3 N(CREATION DATE = 13/30/01)

DESCRIPTION OF CRITERION VARIABLE DWI DRY WEIGHT PERI BROKEN DOWN BY CUL CULTIVAR BY TR TREATMENT · · . · · O P B U B PER PLANT B • •

VARIABLE	C 0 0 1	VALUE LABEL	8 UM	MEAN	STD DEV	VARIANCE	
FOR ENTIRE POPULA	TION			4	1 8788	2 4431	(467)
CUL	0		370 8400	4 0291	1	2 4818	
TR	1	LARGE SEED	182 4700	4 2363	1 8751	2 4444	361
TR	2	SMALL SEED	118 8300	3 7166	1 2026	1 4488	4 321
T#	3	MIXED SEED	88 2400	4 1367	1 8483	3 7888	- 🛉 🙀 🧰
CUL	1	P111C 82	428 8800	4	1 8784	2 4245	. 1061
7#	1	LARGE SEED	137 6800	4 1894	1 8798	2 8218	1 331
TR	2	SMALL SEED	126 8500	4 0887	1 7704	3 1343	1 31.
TR	3	MIXED SEED	186 8200	3 94,44	1 8488	2 7088	421
cu.	· 2	GLENLEA	407 7400	4 0370	1 4447	2 8471	1011
TR 2	1	LARGE BEED	142 2700	3 8451	1 0571	1 1178	37)
TR	,2	SMALL BRED	142 1300	4 7377	3 8214	2 3144	(30)
TR	3	MIXED SEED	123 3400	3.6276	1.6528	2.4111	4 341
CUL	3	PARK	393 3400	4 0137	1 4128	1 8863	
TR	1	LARGE SEED	170 \$700	4 4997	1 3277	1 7627	345
TR	2	SMALL SEED	111 7000	3 7233	1 4726	2 1888	301
TR	3	MIXED SEED	110 8700	3 8494	1 3242	1 7836	201
CUL	•	700000002	280 1300	4 2366	1	2. 4744	
TR	1	LARSE SEED	131 0300	8 0288	1 4894	3 4873	385
TR	2	SMALL SEED	83 8400	3 8493	1 4557	3 4475	1.
7 m	3	MIXED SEEP	75 2500	3 8611	1 8063	2 8771	1.

TOTAL CASES - 487

÷

÷

Appendix 16. Descriptive statistics of characters of plants from large, small and mixed size seeds, measured at maturity, in 1979.

250

.

.

÷

ì

ĸ.

APPENDIX 18									63/	**/**			
FILE SOLA													PA68 3
BUOFILE PAOT PAIA PSIT PAOS		403	8478 = 1 Pa P6 P6 P8	03 01 14	P 4 0 4 P 5 0 2 P 5 1 5 P 6 1 2	:	405 603 601 613		P\$01 P\$01 P\$03 P\$15	+ 4 8 8 7 8 4 4 7 6 4 4	P418 P547 P645	P & 1 1 P & 0 4 P & 0 7	P810
CAITEAIGA VANJ BROKEN DOWN		1 VL	71 Cu Ta	T 3 0 N LLERS PØ LTIVAR Batment									
						• • •		1	· · ·	$\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$		• : • •	
VARIABLE	c	8 Q E	VALU	E LABEL		8 VM					***	IANCE	-
POR ENTIRE POP	FLATION				2210			4	8775	2 0882		3807	- 444+
C V L		,											
7 B						0000			4490	2 0357		3503	139
78		à				0000			15.01	2 0803	4	3695	44
T#		5							4484	29 4041		7786	43)
		-				0000		4	8077	1 8723	3	4721	\$2.
E U L		2	GLENI		4.54	0000							
* #		÷.		3460		0000			7850	1 4144	2	0001	1071
7 🖷		2				0000			7860	1 4041	1	9715	34 -
78		ŝ		SEED		0000				1 4587	2	1308	40.
		Ť				0000		3	7878	1 4018	•		33 -
		3	****			0000							
Ť		5				0000				2 1312		\$421	1171
TR		2				0000			8478	2 3867		8841 .	44.1
7#		ā.				0000			0000	7 7841	3	0788 -	27)
		-			244	0000		•		2 0723		2030	
UL.			70000										
Ť 🖪		1		1220		0000			9136	2 1617	4		
TR		2				0000	-		1600	2 1841			
TR		ŝ	MIKED			0000			3459	1 7187			
				9 E E Q	180	0000			0000	2 3345		4595	
TOTAL CASES .	***	I I									•	~ * * * * *	4.

يوت در شور از ا

252

	APP68011 18					•3	/16/82		PAI	16 4
Pais Pais <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>										
Picin Picin <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>										
PROB PRID PRID <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>										
CRITERION VARIABLE N' NEADE PER PLANT ENDICENDENT CUL CUL CULTIVAR VARIABLE CUL CULTIVAR PARIABLE CODE VALUE LABEL SUM MEAN STD PEV VARIABCE N VARIABLE CODE VALUE LABEL SUM MEAN STD PEV VARIABCE N VARIABLE CODE VALUE LABEL SUM MEAN STD PEV VARIABCE N VARIABLE CODE VALUE LABEL SUM MEAN STD PEV VARIABCE N VARIABLE POPULATION 1084 0000 4 4766 2 1862 2 1862 4 6721 1 186 CUL 1 PITIC 62 724 0000 6 2000 2 1862 4 6320 3 5442 4 4431 CUL 1 PITIC 62 724 0000 6 2000 2 1842 4 6721 1 180 YR 2 LABER 257 0000 6 2000 2 1842 4 6721 1 180 YR 2 LABER 257 0000 6 3400 2 1000 6 4400 1 1000 YR 2 LABER 257 0000 3 6000										
VARIABLE CODE VALUE LABRL BUM MEAN BTD DBV VADIANCE B PBR DBTIRE POPULATION 1 01TIC 02 T24 0000 4 4766 1 8530 3 8462 4 4431 CUL 1 01TIC 02 T24 0000 6 2000 2 1302 4 6721 1 1301 CUL 1 DITIC 02 T24 0000 6 2000 2 0000 6 0030 4 4431 CUL 1 DITIC 02 T24 0000 6 2000 2 0000 6 0030 4 4431 CUL 1 DMALL 0000 201 0000 2 0000 6 0030 4 4431 CUL 2 LADES 0000 2 0000 6 0000 2 0000 6 0000 2 0000 6 0000 2 0000 7 000 1 0071 CUL 2 GLENLES 110 0000 3 4700 1 3000 1 6333 1 0071 TR 3 LARES 0000 1 0000 3 0000 1 0000 1 6303 1 0071 1 0071	CRITERION VARIABLE BROKEN DOWN DV	8 1 C W L	HEADE PER CULTIVAR			ULA				
PAR SHTIRE POPULATION 1000 1000 4 4760 1 8530 3 54422 4 4531 CUL 1 PITIC 42 724 0000 5 2000 2 1362 4 6721 1 1261 VR 1 SMALL 5880 357 0000 5 2000 2 0000 4 01362 1 401 TR 2 LANSED 320 0000 5 2000 2 0000 6 0000 2 0000 6 0000 1										· · ·
CUL 1 PITIC 02 T24 0000 0	VARIABLE		VALNE LABEL		8 UM	MEA		VARIAS	i c e	
YR 1 SMALL BEER 207 Dobe 8 Bible 8 Bible 4 Bible 1 1 Bible 1 1 1 1 1 1 1 1 1 1 1	FOR ENTIRE POPULATI	**		1884	••••	4 478		3.64	42 1	4431
YR 2 LANCE SEED 230 0000 6 3401 2 6 6 6 7 1 5 7 6 6 6 7 1 5 7 5 7 7 5 7 <th< td=""><td>C W L</td><td>1</td><td></td><td>724</td><td></td><td></td><td></td><td></td><td>21 (</td><td>120)</td></th<>	C W L	1		724					21 (120)
TR 3 MINED SEED 337 0000 4 0077 1 0770 2 4400 4 CUL 2 ELENLEA 365 0000 3 554 1 1 3700 1 770 2 4400 4 577 TR 1 EMALL SEED 116 0000 3 554 1 1 3700 1 7700 1 7700 1 7700 1 6770 1	TR	,	BMALL BEES	267		1 440				
CUL 2 6 L ENLEA 3 8 6 0000 5 6 8 8 1 1 2 3 8 6 1 7 7 8 6 1 7 7 8 6 1 0 7 1 TR 1 8 A A LL 8 8 8 1 1 8 0000 3 6 8 8 1 1 3 8 6 1 1 7 7 8 6 1 0 7 1 TR 2 LARSE SEED 1 8 0000 3 6 8 8 1 1 3 8 6 1 1 8 3 3 3 1 4 6 1 TR 2 LARSE SEED 1 10 0000 3 7 8 6 0 1 8 3 3 3 1 4 6 1 TR 3 M 1 8 8 8 8 2 D 1 10 0000 3 7 8 6 0 1 8 3 3 3 1 4 6 1 TR 3 M 1 8 8 8 2 D 1 10 0000 4 8 4 8 5 2 0 8 5 6 1 8 3 3 3 1 4 6 1 TR 3 M A LL 8 2 D 1 3 2 0 0000 4 8 3 5 2 1 3 2 3 3 1 4 6 1 TR 3 LARSE SEED 1 18 0000 4 8 6 5 2 1 6 3 1 2 3 3 3 3 1 7 1 TR 3 LARSE SEED 1 18 0000 4 3 6 000 1 7 20 8 1 5 1 1 8 1 6 4 1 CUL 4 7 000000 2 2 3 4 0000 4 1 7 8 0 1 6 8 1 1 7 8 0 1 7 8 1 TR 1 8 4 8 1 D <t< td=""><td>TR</td><td>2</td><td>LARGE SEED</td><td>230</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	TR	2	LARGE SEED	230						
TR 1 BMALL BEED 118 0000 3 3 1 3 1 1 1 1 TR 2 LAREE SEED 10000000 3 7600 1 3601 1 7172 1 361 TR 2 LAREE SEED 10000000 3 7600 1 3645 1 3533 1 601 TR 3 M1510 SEED 117 6000 3 7600 1 3645 1 3645 1 3645 1 3645 1 3635 1 777 377 3777 3777 3777 3777 3777 3777 3777 3777 3777 3777 3777 3777 3777 37777 37777 37777 37777 37777 37777 37777 37777 37777 37777 37777 37777 37777 37777 37777 3777777 377777 3777777 3777777	TR	3	WINED SEED	237	****	4 887	7 1 8776	1 44		62)
VR 1 BMALL BEED 118 0000 3 4700 1 3061 1 7112 381 TR 2 LABER SEED 160 0000 3 7600 1 3060 1 3061 1 7112 381 TR 3 LABER SEED 100 0000 3 7600 1 3060 1 3061 1 533 461 TR 3 MINED SEED 107 0000 3 6485 1 3445 1 6132 1 333 VB 3 MALL SEED 107 0000 4 6885 2 0485 4 5135 1 177 YB 1 SMALL SEED 118 0000 4 6885 2 0485 4 3535 451 TR 2 LABER SEED 118 0000 4 6885 2 0485 4 3325 451 TR 2 LABER SEED 118 0000 4 5600 1 2255 1 5115 641 CUL 4 760000002 234 0000 4 1780 1 6872 2 6907 601 TR 1 SMALL SEED 100 0000 4 3440 1 5653 2 7723 781 TR 2 LABED 100000 3 3444 1 5653 1 7626 1 601	EWL	2	BLENLEA	345		3 894	1 3304	1 71	• • •	1071
TR 3 MILED SEED 117 0000 3 6488 1 3464 1 0162 1 331 TR 3 PARK 647 0000 4 6888 1 3464 1 0162 1 331 TR 3 MALL SEED 326 0000 4 6838 2 0486 3 6815 1 171 TR 1 SMALL SEED 326 0000 4 6885 2 0486 4 3535 4 651 TR 2 LAAGE SEED 116 0000 4 5855 1 512 3 323 4 61 TR 3 MILED SEED 188 0000 4 5860 7 2706 3 5116 6 64 CUL 4 760000002 234 0000 4 1780 1 6872 2 6907 901 TR 1 SMALL SEED 106 0000 4 3600 1 6872 2 6907 901 TR 1 SMALL SEED 106 0000 4 3600 1 6853 2 7733 981 TR 2 2 685D 7 1 00000 3 5464 1 3664 1 768			SMALL SEED	114		3 470	1 1 3 . 1 3 . 1	1 71	12 1	
Control Control <t< td=""><td>TR</td><td></td><td>LARGE SEED</td><td>150</td><td></td><td>3 754</td><td>0 13649</td><td>1 #1</td><td>33 6</td><td></td></t<>	TR		LARGE SEED	150		3 754	0 13649	1 #1	33 6	
YB I SMALL SEED 22 0000 4 5505 2 6505 4 3535 4 451 YB 2 LAASS SEED 110 0000 4 5505 1 4312 3 3533 4 51 YB 2 LAASS SEED 110 0000 4 5503 1 4312 3 3533 4 51 YB 3 MILL SEED 12 0000 4 5503 1 5118 4 51 YB 3 MILL SEED 12 0000 4 5503 1 5118 4 50 CUL 4 760000002 234 0000 4 5500 1 5533 2 7733 501 YB 1 SMALL SEED 100 0000 3 5444 1 5653 2 7733 501 YB 2 LAASS 550 10 00000 3 5444 1 5653 1 7535 1 851	2. TR	3	MIXED SEED	117	****	3 646		1.41	#2 I	33)
YB 1 BMALL SEED 220 0000 4 6685 2 6685 4 3532 4 365 TR 2 LARGE BEED 130 0000 4 5685 2 5325 1 5325 1 5372 3 3323 1 577 3 5172 3 3323 1 517	H.		PA84			4 823		3 44	1.8 1	1171
TR 2 LARGE SEED 118<0000 4 2502 1 4312 3 3 3 771 TR 3 MTHED SEED 128<0000	7.		SMALL SEED	224		4		4 31	36 4	481
CUL 4 700000002 234 0000 6 1700 1 6673 2 6307 (4 289	3 3 4918	3 35	33 1	27)
TR 1 \$MALL \$229 100 0000 4 2400 1 6853 2 7733 (28) TR 2 LARGE \$280 71 0000 3 5444 1 3045 1 7020 (18)	TA	3	MITED SEED	188	****	4 500		1 61	** (441
TR 2 LARGE SERS 71 0000 3 5444 1 3045 1 7030 (18)	EWL		700000002	734	****					
TR 3 MIXED SEED 187 0000 4 2432 1 4764 3 5225 (37)										
	TR	3	MIXED 1240	187	****	4 343	2/ 1 8788	3 4 3	38 (371

APPENDIX	18					03/16/			PARE	
			ATE + 12/30/811							
SUBPILE	P401	#402	P403	P464	P405	P404	P 4 0 8			P412
	P414	P418	PEOI	P 5 8 2	P 5 0 3	P 5 0 4	P 8 0 8			2819
	PE11	2812	P\$14	P816	P801	P803	Pte4	P885	P207 (****
	****	P#10	P\$11	P#12	P613	P818				
	1									· •
		WT1	BRY WEIGHT	PER PLANT	6					
SR OK E	N DOWN BY	CUL	CULTIVAR							
	# ¥	TR	TREATMENT							
• • • • • •										• •
VARIADLE		C 0 0 E	VALUE LABEL		S UM	HEAN		VARIANC	e	
			•	7557 7		17 0001	7			421
FUR ENTIR	- POPULAT				•••		,,		• • •	
CUL		,	PIT1C 82	2800 8				78 733	s ():	381
18		,	SMALL SEED	1038 1		23 6182	7 8380	81 448		441
TR		2	LARGE SEED	870 3		20 2419		\$4 061		431
78		3	MIXED SEED	981 2	***	18 0835	\$ 7360	78 300	• • •	621
C V L		2	BLENLEA	1881 1		17 6748	8 8142	47 808		
78		1	SMÁLL SEED	874 8		18	\$ \$4\$4	42 842		34)
TR		2	LANGE SEED	738 2		18 4875	7 3838	84 681		401
7B		3	M1X20 \$440	\$77 \$		17 8161	. 7.38	44 155	• • •	33)
C #1.		,	PARE	1993 4	***	13 8000	\$ 1544	22 750		181
*#		1	SMALL SEED	870 8		13 4838	8 4890	41 848		481
78		2	LARGE SEED	327 1		13 0840	6 JOOS	28 098		25)
T R		3	MIXED BRED			13 7432	4 3884	18 235		44)
EVL		4	704000000	1212 1		14	8 7080	44		
TR.		•	SMALL SEED	384 8		14 5820	6 6632	30 826		25)
TM		1	LARGE STED	262 0		14 0000	4 4623	18 813		14)
TR		3	MINED BRED			15 6947	8 1888	67 082	4 / 1	34)

TOTAL CABES - 444 MISSING CASES - 2 00 0 5 PCT

A_--

253

						#3/16	/82			PA68 4
	.4 (64 Papi Paia Pbii Pbii	P402 P402 P415 P512 P610	TE = 13/30/81) P403 P501 P514 P511	P404 P602 P616 P613	P405 P803 P801 P813	P404 P604 P603	F405 F805 F801	P418 P807 P605	P411 P500 P507	P4 1 P8 1 P8 4
00 04 20		CUL TR	CULTIVAR Treatment	PER PLANT				. .	· · · ·	· · · .
ARIABLE			* * * * * * * * * *				* * * * * *		• • • •	· · · ·
						MÊAN		VAR 1		
<u>88 80718</u> 4	POPULATI	ðu		3317 83	••	7 8467	3 6062			4421
W L		1	P1716 82	1204 30						
79		1	SMALL SEED	400 28		9 3843 19 8870	3 7872	14		120)
TR		*	LARGE SEES	388 76			3 4031			44)
. 78		3	MIXER SEED	431 24		4 1712	4 4882	18 4		43)
							3 1323	• •	111 8 (62)
78		*	ALTREA	878 44		7 7435	3 1332			
ŤŘ		1	/SMAL) SEED	283 880		7 4882	3 0071		1171 (1478 (1071
Ţ			LARSE SEES	322 88		8 9872	3 3444			24)
		/ • (M3XE8,8669	281 810		7 4334	3 0003	11.4	371 (441
WL		/ _/	-					••	-371 (33)
та		< <u>1</u>	PARE			6 4544	2 3673			
TR		. 1\	SMALL SEED	281 776		8 4733	1 7724		· · ·	117)
TR			LARGE SEED	138 436		\$ 1287	2 4041			483
		ママノ	MIXED SEED	248 476		\$ \$470	1 4033			27)
ýn.			×						716 1	44)
⁷ 78			700003002	848 434			3 1174		188. (
TR		2	SMALL BEED	183 330		8 8333	3 6467			70)
TR		1	LARGE STEP	114 484		\$ 3800	1 8824		128 (28)
			MIXED SEED	248 424	•	7 4817	3.8481			142
TOTAL CAS		***				2.11	2.0444		011 (30)

..... 80 E F 18 12/30 P401 P414 P811 P402 P418 P812 P810 P403 P801 P814 P814 P404 P602 P616 P612 P404 P804 P803 P615 7 4 4 9 7 5 4 6 7 5 4 6 P412 P810 P844 P411 P844 P807 P803 P801 P813 P607 P605 **** D 8 8 P 1 CNL TR P 1 ε P T I B N Heisht of Cultivar Treatment A 1 u CH 8 V 8 V . . . · · · VARIABLE VALUE LADEL SUN MEAN DØV CORDIATI 27735 0000 2224 CUL YR TR TR PITIC 42 BMALL SEED LARGE SEED M1HED SEED 8784 0000 2822 0000 2827 0000 3345 0000 63 2662 64 1364 61 0930 64 3265 7877 5187 8741 8433 60 1823 72 6866 73 6160 36 3224 130: 44: 43: 82: . . . 2 SLENLEA Small Seed Large Seed Mited Seed CUL 2123 73 8813 73 8848 78 8000 72 8784 7818 0000 2801 0000 3020 0000 2385 0000 5 838 H 5 1475 7 4527 7 3510 107 -34 : 40) 33 : 7 R TR TR CVL PARE BMALL BEEB LARGE BEED MIKED BEED 5432 0000 2719 0000 1555 0000 2557 0000 3123 TA TR TR 58 2032 50 1067 57 6256 58 1136 5 5488 5 5105 5 7148 5 7280 44 2063 43 6850 45 6883 45 2883 117) 48) 27) 44) 1 CHL 700000002 BMALL SEED LARGE SEED MIXED SEED 81 7884 80 8200 80 1111 83 1083 4193 6000 1273 6000 902 6000 2018 6000 4122 6 6007 4 6630 4 7260 6 3402 78 78 78 78 21 3888 20 8267 22 4878 40 3128 81) 28) 18) 28) * * * * TOTAL CASES .

NL EABER + 444

,

254

TILE BOLA BUDFILE PAA PAA PEA PEA	• •	8A738# 4 P402 P415 P612	P403 P401												
		P\$ 10	P814 P811	P\$+2 P\$15 P\$12	<i>.</i> ,	P445 P643 P841 P613		P406 P504 P003 P115	P 4 01 P 5 01 P 5 01	i i	P410 P807 P808		P 8 8 8 P 8 8 8 P 8 8 7		P41) P81(P80)
000424 00	14818 14818 197	* 8 8 C #71 Cul 78		IT CH		• • •		1 Å T	 -			· · ,		• •	
			VALUE LADEL									• • •		• •	• •
								MEAD	878		YAR	IANCE)		
	PULATI	••		43266		60		4810	12	,,,,	183	2744	,	4	
		•	PITIC 83												
78		i	BMALL BEED	4187				1842				2445			1381
TR		2	LARGE SEED	3976				4419		8738		2320			44)
TR		3	HIRED BEED	4941				4038		5237		****			431
WL		1							-						
TR 1		1	SMALL SEED	3805						7881					1871
78		i i	LARGE SEED	4804				8412							341
TR			MINED SEED	3444				7471		1328					40)
						•			•	2483	• 7				33)
ar		3	PARK	11680					7	1001			,		1191
78 78		1	SMALL SEED	4270				4743		1701.		4105			48)
T B		2	LARGE SEES	3743			1.00	#741		1872		1261			275
		3	MIFED SEEP	4442		•	100			1687		3487			
U L			700000002								_				
78			SMALL SEED	8847 2008				8272							
TB		ż	LARGE SEED	1415				3200							26)
78.		i i		3123				8887		4443		1178			18)
TOTAL CARES		-				.		1843	7	2 10.1	67	2084	•		38)

		3						
APPENDIN 14			•	43/1#/(12			ABE 8
			•					
SUBFILE PAGE PALA	P482 P415	P403 P501	7484 P468 7882 P563	2448	7400	P418	P#11	P412
P& 1 1	P812	2814	P842 P843 P818 P841	P 844 P 843	P 5 4 4	P107 P001	P\$#8 P\$#7	
P000	P& 10	P#11	PR12 PR13	P&15				****
CRITERION VARIABLE BROKEN DOWN BY	D # 8 C 8P1 CUL	R I P T 1 G N Spikelets Cultivas						• •
Ū Y	TR	TREATMENT						
		* * * * * * *	* * * * * * * * * *				* = = = :	
VAR TADLE		VALUE LADEL	1 wm	MEAN				
FOR ENTIRE POPULATI		*	2767		1 3726	1.80		4441
CUL	1	P171C 82	1207 0000					
TR	•	SMALL SEED	382 0000		0 1610	1 81		129)
7# 7#	2	LARGE SEED	355 8800	4 4444	1 8018	2 71		43 -
		MIXED SEED	460 8086	8 8482	1 3044	1 76	114 6	62)
CUL	2	BLEDLEA						
78	1	SMALL SEED	287	4 7363	1 4826	2 11		1071
TR	. 2	LARBE SETO	346 0000		1 1447	2 63		341
TR	. 1	MIXEO SEED	277	4.3831				401
EVL								
TA	3	PARK			1 6072		. 1	1171
, TE	2	BMALL BOOD	383 0000	7 8813	1 4020	1 11		461
Ť	1	LARGE SEED	218 0000		1 8171	3 30	20 1	27)
	•	MIX69 9669	381 0000	4 2044	1 1110	1 23	63 (441
CUL		700000000						
TR	ĩ	SMALL SETS	211 0000	8 4400	1 28.05	1.84		#1 7
TE	2		181 8880	8 8444	1 6207	2 34		26 -
78	-	WIXER STER	314 0000	4 5745	1 2113	1 4 8	73 -	1.8.1

TUTAL CASES -

a

and a general contractor to the state of the

255

;

APPENDIX 16						43/16	/ 6 2			
FILE 8014 (CR) 800FILE P401 P610 P611 P000	FATION D: P402 P418 P512 P514		P404 P502 P515 P512	P 4 6 5 P 6 6 3 P 6 6 1 P 6 1 3		P 4 6 8 P 8 6 4 P 8 6 2 P 8 6 2	P 4 4 8 P 6 4 8 P 6 4 8	P41# P507 P805	P411 P508 P607	P413 P810 P846
CRITERION VARIABLE PECKEN COM PT 	HL 1 Cul Tr	R I P T I O N Meadlength Cultivar Treatment	-				•••			
VARIABLE		VALUE LADEL	* * : :					* * * * * *	• • • •	•••
		ANTAR TURAL		E Links		바루 소 문		YAR I AN	C 8	
POR ENTIRE POPULATIO				****	• •	8721	2 8173		• 3 (
EWL	,	PITIC 82								
TR		SMALL SEED				**73	2 #128	4 45		120)
TR	ż					4434	1 8982	3 88		44)
T B	i					0894	2 1848	4 841		431
							1 9288	3 71		
CUL	2	SLENLEA	1276				2 3818			
78	1	SMALL SEED				4412	2 8827	" & 714 7 #4		107)
Y #	2	LARGE SEED	478			4750	2 2210	4 133		
TR	3	MITEO SEES	377	****		4242	2 2443			40)
ENL	_									
78	3	PARE		****		4781	1 2565	1 674	14 I	1171
Th.	1	SMALL SEED				1887	1 1004	1 431		441
÷.	2	LARGE SEED		****		7778	1 2566	1 884		271
*=	3	WIXED BEED	4 2 5	****			1 2848	1 876		445
EWL	•	700000000		****						
78	i	BMALL STER				7200	1 2847	1 874		
TR	2	LARGE BEED						2 293		24 I
TR S	3.			****		1670	1 1514	1 114		10)
							1 1814	1 325	7 (38)
TOTAL CASES -	4 4 4									

APPENDIX	•											PAGE 11
			TE = 12/20/81									
SUSPILE	P401	P4+2	P403	P404					P401	P410	P.4.1.1	P 4 1 2
	P414	P418	P501	P802		883 -		P 5 6 4	7595	P\$#7	P 8 8 4	
	P811	P012	P814	- P\$1 \$	P	801			P 8 8 4		P447	
		P\$ 10	P# 11	P612		813		P8 18				
CRITERION DROKEN	88WN 87	K 1 Cul Tr	R I P T 1 0 N Number of Cultiver Treatment		1 U S P28 P	P 0	₽ U	L A T	1045			
* * * * *	* * * * * *			· · · ·	••••		· ·	* • •				
VARIABLE			VALUE LABEL		5 UM			MEAN				
										. = .		• ·
		-		10040			1.	\$420	87 0410	7576	1307	4417
EUL												
TB		1	PITIC 82	32885			236	6827	101 1188	10224	3808	1301
TR		2	BMALL BEED	12100					84 8888		4373 .	441
TR			LARGE SEED	10098				8372	114 4384	13095		43 /
		3	MITED REED	10587	9990		206	6182	83 7474		8271 (
CUL		3	ELEDLEA	18912	0000		181		40 3101		4083 4	
TR		1	SMALL SEED					4114	58 5720			
7 R		2	LARBE SEED	8278				7800	46 1833			34)
TR		3	MINED SEED					8750	87 0307		8590 ·	40)
E W1.	7 N		P 881									
78			SMALL SEED	17872				0427	13 0104	3975	3814 1	1171
TR		-			0000			8783	78 4670		7881 -	44 2 -
78		1 · ·	LARGE SEED					2063	84 8878	4212	8868 E	1 27)
		•	MINED SECO	8774			163		46 2877	2140		44 >
CWL		4	7000000002	13481				7722				
TR		1	SMALL STEP						78 2487			7.5 1
TR.		2	LARGE SEED					1000	71 4827		4100 (28 I
78					0000			4333	40 1844	2455		1 8 1
TOTAL CA									87 1880	7801	4888 11	36 -

MISSING CASES - 3 08 0.7

- - -

256

1

APPENDIN	16				•		03/1	8/82			PASE	19
			ATE - 12/20/41)									
	P401	P402	P403		P405		4.0.4		P410	P411		P412
	P414	P415	P801	P502	P503		5.04	P 5 4 5	P807	P 8 8 8		P81
	P\$ 11	P512	P5 14	P\$ 18	P801		103	P 8 8 4		P887		PLO
	P808	P6 10	P811	P612	P613							
	VARIABLE B DOWN BV BV	KWT 1 Cul Tr	A 1 P T 1 B B WEIGHT PER CULTIVAR TREATMENT		1 V 8 P 8 RWELS 6	P ¥ L	• •	1 0 0 8				·
		C										
			VALUE LABEL		5.04			STD DEV	VAR 1 AG			
	E POPULATI			14448	8261	41 7	787	8 4882	41.81	176	C	432)
		,	PITIC 83		4268	40 1	• 6 1	3 2004	10.20		ı	120)
78		+	SMALL SEED	1724	1000		842	2 8846	14 81		1	
TR		1	LARSE SEED	1625		38 8		2 7071	7 32			41)
78		3	MIERD STED	2 • 9 8	0147	41 1	872	2 4730	7.14	148 (81)
		2		\$287		81.3	305	3 3445	11 34	.70 4		102)
TR		1	SMALL SEED	1882	4873			3 7864	14 41	87 1		33)
TR	,	2	LARGE BEED	2019	1378	81 7	728	2 4184	7 01	1 86 (38)
TR		3	MITED SEED	1885		\$1.1	330	3 7207	13 84	140 (31)
		3	PARE	4131	8778	38 8	294	2 7837	7 74			116)
TR		1	SMALL SEED	1822	3880	38 2		3 9488	8 40	176 (48)
TR		1	LARGE SEED		7077	38 8	272	2 1187	4 41			28)
TR		3	MI IED SEED	1872		36 8	788	2 8836	8 31	132 (43)
		•	700000002	3178	4348	48 7	187	3 2384	10 44			78,
78		1	SMALL SEED	1018	8248	40 8	770	3 1408	10 11	184 (26)
TR		2	LARGE SEED	738	****	40 8		3 3346	11 11	1 87 (18)
78		3	MIKED SEED	1472	4810	40 8		2 3143	10 84			36)

· tozis

ç

-	,		-			•					
	18						•3/	16/82		•	ASE 13
			78 + 12/30/41)								
SUBPILE	P401	P442	P403	P484	P 4 0	\$	P408	P 4 0 9	P410	P411	P413
	P414	P418	P 6 4 1	P502	` P90	3	P 6 8 4	P 5 + 4	P807	P 5 0 8	P 5 1 0
	P&11	P\$12	P& 14	P&15	P & 0		P803	P 6 6 4	P 6 0 5	P 6 0 7	P 8 0 8
	P\$ • \$	P & 1 @	P811	P812	P 8 1	3	P& 15				
CRITERIO	N VARIABLE En Down DV BV	0 8 5 C M11 Cul Tr	A I P T I G W Warvest in Cultivar Treatment	8 F 1881	5 U 8 P	e P u	L A T	10 N S · -	• • · · · · ·		· · · •
· · · ·	. .			• • • •	· · · ·	• • •	• • •	· · · · · · ·		· · ·	· · · •
		C	VALUE LÄBEL		S UM		MEAN	\$70 BEV		C #	
FOR ENTI	RE POPULATI			183			4388	0 0638	0 0a	20	4211
CUL	-	,	+171C #2		2429		4 8 0 3	0 0627	• ••	27 (136)
78		1	SMALL SEED				4623	0 0268	C 00		441
TR		2	LARGE SEED		4417		4498	0 0781	0 00		411
TR		3	MIXED SEED	2 2			4490	0 0430	0 00		6.1.)
CUL		2	S. SNLSA	41	4804		4371	0 0345	0 00	15 (104)
TR		1	SMALL SEED		8414		4408	0 0820	0 00		33.
TR		2	LARGE SEED				4340	0 0234	0 00		39)
TR		3	MIXED SEED	1 3			4373	0 0382	0 00		32)
CUL		3	PARK		2338		4003			26 (1131
78		ī	SMALL SEED		6117		4024		0 00		4.6.1
TR		2	LARGE SEED		0780		3782	0 0707	0 00		24)
TR		3	WIXED SEED		8441		4103	0 0336	0 00		431
CUL			7 em e e 9 e e 7				4600			27 (78)
TR		1	SMALL SEED	1 1	2286		4492	0 0346	0 00	15 (26)
TR		2	LARGE SEED		2483	-	4881	0 0388	0 00	13 (141
TR		3	MINED SEED	16	4041	c	4887		0 00	43 i	351

.

TOTAL CASES - 444 MIBBING CASES - 13 OR 2 9 PCT

POOR COPY Copie de qualitee inferieure

,

257

(

SPPENDIE 10							/81			
TLE SPLA ()		ATE - 12/30/41	,							•
NUPILE PAGE	P442	P4#3	P444			P 4 8 8	P408	P410	P411	P 6 1 2
P414	P415	P8#1	P\$02	P\$83		P 5 8 4	P 8 4 4	P807		P 8 1 6
P\$ 1 1	P\$12	P814	P818	P801		P883	P 8 9 4	P445		
P848	P& 10	P# 1 1	P#12	P813		P815				
ATTENTE TANTADU	E KNI 7 CVL	R I P Y I S M Humber Df Cultivar Traatment			1 P U			* * < * ÷	* * * * *	
• • • • • • • • • •		*****					* * * * * * *			
ARTABLE		VALUE LABEL		6 UM		MEAS				
AR ENTIRE POPULAT										
			17384		••	2464		42 7	848 0	431)
WL	1.	PITIC 82	8214	6.84 1	44			74 8		
TR	+	SMALL SEED	2000	5513		8134	8 4938	41 04		44)
TA	2	LARGE SEED	1785	3856	43	7882	10 \$603	111 8		411
TA	3	MITTO SEED	2324	7332	4 8		1 4714	70 8		61)
WL	2	BL BULBA		10 36		8278	7 1147			
TE	1	SMALL SEED	1387		4 2	3824	7	43.11		33)
TR	3	LARGE SEED	1888		41	2314	4 1991	43.44		30)
TR	3	WITED SEED	1383	7023	41	3775	0 0370	48 11	343 (311
V L	3	PARK	3742		33			** ••		1184
TR	1	SMALL SEED	1424	4858		8873		43 76		441
TR	2	LARES SEED	878	4391	23	8012	8 4828	71.00		201
TR	3	WIXED BEED	1478	7272	34	3490	5 8487	28 44		42)
PL .		700000002	3049	1144			7			771
ŤĦ	+	SMALL SEED	861			4877	7 8108	61 00		28.
TR	3	LARGE SERD	727			4128	8 3488			
TR (3	MINED SEED	1378		40		7 8825	61.68		34)
TOTAL CASES .	444									
ISAING CASES -	13 88	2 # PCT								
				¥						

6

١

BUPFILE PA01 PA02 PA02 PA03 PA04 PA04	A&# 10</th><th>P A</th><th></th><th>•</th><th></th><th></th><th>1</th><th>\$/\$2</th><th>03/1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>APPENDIX 1</th></tr><tr><th>PAIA PAIA PAIA</th><th></th><th></th><th></th><th>•.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th></tr><tr><th>PS:11 PS:12 PS:14 PS:13 PS:14 PS:13 PS:14 PS:13 PS:14 <th</th><th></th><th></th><th></th><th></th><th>P410</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr><tr><th>PAGE PAIN <th</th><th>P\$ 1</th><th>84</th><th>P 8 6</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr><tr><th>CR 17881381 EL 1 EXTRUSION LATE EL 1 EXTRUSION LATE SROKEN BOWN BY CUL CULTIVAR EXTRUSION LENCTH CM YARIABLE CBDE VALUE LABEL SUM MEAN STO DEV VARIANCE YARIABLE COUTIVAR TR TRATMENT TOA 13 0000 23 4827 7 3286 53 7065 YAR SHTIRE POPULATION TOA 13 0000 23 4827 7 3286 53 7065 1 CUL 1 PITIC E2 2352 0000 16 8200 4 4844 18 8416 1 TR 1 SMALL SEED 725 0000 16 8200 4 4844 18 8416 1 TR 1 SMALL SEED 725 0000 16 8200 2 226 38 7064 1 TR 2 LARE SEED 743 0000 17 2751 2 9661 18 7288 1 CUL 1 PITIC B2 2778 0000 17 0000 2 7928 7 8028 1 CUL 2 CENLEA 2778 0000 28 9248 4 8431 1 1 7 8028 1 CUL 2 CENLEA</th><th>PBC</th><th>87</th><th>P 8 4</th><th></th><th>PBAL</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr><tr><th>CR ITTER TON VARIABLE ELI EXTRUSTON LENCTH CM BROKEN BOWN BY CUL CULTIVAR BY TR TRATMENT YARIABLE CODE VALUE LABEL SUM MEAN STD DEV VARIANCE YARIABLE CODE VALUE LABEL SUM MEAN STD DEV VARIANCE YAR TRATMENT 10413 0000 23 4927 7 3286 S3 7065 CUL 1 PITIC S2 2352 0000 16 8200 4 4844 18 8416 1 YR 1 SMALL SEED 725 0000 16 8200 4 8844 18 8416 1 YR 1 SMALL SEED 725 0000 16 8200 4 8844 18 8416 1 YR 1 SMALL SEED 725 0000 17 0000 2 7926 1 20037 1 CUL 1 PITIC S2 2387 0000 17 0000 2 7926 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>P818</th><th></th><th>P613</th><th>P612</th><th>P011</th><th></th><th></th><th></th><th></th></tr><tr><td>VAR JABLE CODE VALUE LABEL SUM MEAN STD DEV VARIANCE PBR ENTIRE POPULATION 10413 0000 23 4527 7 3286 53 7065 CUL 1 PITIC 62 2352 0000 16 6209 4 4844 18 6415 1 CUL 1 PITIC 62 2352 0000 16 6209 4 4844 18 6415 1 TR 1 SMALL STED 743 0000 17 2781 2 2651 15 7284 1 TR 2 LAREE STED 743 0000 17 0000 2 7938 7 8028 1 16 7284 1 TR 3 MITED STED 444 0000 26 831 21 0051 1 TR 1 SMALL STED 482 0000 26 8412 4 8431 1 TR 2 LAREE STED 482 0000 26 8412 4 8431 1 TR 3 MITED STED 482 0000 26 7879 3284 14 14441</td><td></td><td></td><td></td><td>• •</td><td></td><td>• •</td><td>N 8</td><td>1.0</td><td></td><td>• • •</td><td></td><td></td><td>EXTRUSION</td><td>с н</td><td>■↓ 1</td><td>VARIABLE</td><td>CR 1 788 1 88</td></tr><tr><td>VARIABLE CODE VALUE LABEL SUM MEAN STD DEV VARIANCE PBR BNTIRE PDPULATION 10413 0000 234827 73288 837088 CUL 1 PITIC 82 2382 0000 168209 44844 188416 1 TR 1 SMALL SEED 725 0000 168209 44844 188416 1 TR 1 SMALL SEED 725 0000 168209 44844 188416 1 TR 2 LARGE SEED 743 0000 172781 29611 157294 1 TR 3 MEED 840 0000 170000 27935 7 00351 1 CUL 2 CLENERA 2775 0000 25 9345 4 8831 210051 1 CUL 2 CLENERA 2775 0000 25 9345 4 8831 210051 1 CUL 2 CLENERA 2775 0000 25 9345 4 94413 1 CUL 2 CLENERA 2775 0000 25 9345 4 94314 1 CUL 2 CLEN</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>PBR ENTIRE PDPULATION 10413 0000 23 4527 7 3286 53 7068 CUL 1 PITIC 62 2352 0600 16 6309 4 6444 10 8415 1 CUL 1 PITIC 62 2352 0600 16 6309 4 4844 10 8415 1 TR 1 SMALL SEED 735 0000 16 4773 6 2226 36 7204 1 TR 2 LARGE SEED 743 0000 17 2761 2 6661 15 7284 1 TR 2 LARGE SEED 440 0000 17 2761 20051 1 6031 10051 1 TR 2 LARGE SEED 482 0000 25 9346 4 8331 21 0051 1 TR 1 SMALL SEED 484 0000 26</td><td></td><td></td><td></td><td>• •</td><td>• • •</td><td>• •</td><td></td><td>: 1</td><td>• =</td><td></td><td></td><td></td><td></td><td>• •</td><td></td><td></td><td></td></tr><tr><td>CUL 1 PITIC 82 2382 0000 16 8209 4 4844 18 8415 1 TR 1 SMALL SEED 725 0000 16 4773 6 2226 38 7204 1 TR 1 SMALL SEED 725 0000 14 4773 6 2226 38 7204 1 TR 2 LARGE SEED 743 0000 17 2781 2 8611 15 7288 1 TR 2 LARGE SEED 444 0000 17 0000 2 7935 7 8035 1 CUL 2 CLEMMERA 2776 0000 25 9348 4 8831 21 0051 1 TR 1 SMALL SEED 482 0000 25 9348 4 8831 21 0051 1 TR 1 SMALL SEED 1000 0000 25 9348 4 8831 1 0 031 0051 14 4813 1 TR 1 SMALL SEED 1000 0000 25 1280 4 2080 14 934 1 14 9431 1 1 14 103 1 14 103 1 1 1 1 1 1 1 1</td><td></td><td></td><td></td><td>-</td><td>v</td><td>DEV</td><td>\$ T-D</td><td></td><td>MEAN</td><td></td><td>8 UM</td><td></td><td>VALUE LABEL</td><td></td><td></td><td></td><td>VARIABLE</td></tr><tr><td>TR 1 SMALL SEED 735 0000 16 4773 6 2226 38 7204 1 TR 2 LARSE SEED 743 0000 17 271 3 9661 15 723 1 3 9661 15 723 1 3 9661 15 723 1 3 9661 15 723 1 3 9661 15 723 1 3 9661 15 723 1 3 9661 15 723 1 3 9661 15 7400 3 9661 15 7400 3 9661 15 7400 3 9661 15 7400 3 9661 15 7400 3 9661 15 3000 15 8431 2 9601 16 4613 16 7400 3600 25 9661 16 4613 16 736 3244 16 736 3244 16 734 16 16 16 746 16 9600 25 7280</td><td></td><td>1</td><td>7085</td><td>83</td><td></td><td>3286</td><td>۲</td><td></td><td>4927</td><td>23</td><td></td><td>10413</td><td></td><td></td><td>0 H</td><td>PRPULATI</td><td>WR ENTINE</td></tr><tr><td>TR 1 SMALL SEED 735 0000 16 4773 6 2326 38 7304 1 TR 2 LARGE SEED 743 0000 17 2781 3 9661 16 7298 1 TR 2 LARGE SEED 743 0000 17 2781 3 9661 16 7298 1 TR 2 GLULARE 2775 0000 25 9345 4 8331 21 0051 1 TR 1 SMALL SEED 882 0000 25 9345 4 8331 21 0051 1 TR 1 SMALL SEED 882 0000 25 9345 4 8431 1 1 TR 1 SMALL SEED 882 0000 25 9345 4 9848 24 9441 1 TR 2 LARGE SEED 1006 0000 25 9280 4 9441 1 7344 1 CUL 3 PARK 3740 0000 31 9884 3 3464 11 4383 1 TR 1 SMALL SEED 1438</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td>בחו</td></tr><tr><td>TR 2 LARGE SEED 743 6000 17 298 3 6651 16 7288 1 TR 3 MISED SEED 444 6000 17 298 2 7828 1 16 7288 1 16 7288 1 16 7288 1 16 7298 1 8051 16 7828 1 16 7298 1 8051 16 7828 1 16 7298 1 8051 16 78038 1 16 7298 1 8051 16 8031 1 16 78038 1 16 78038 1 1 8051 1 16 8431 1 1 8431 1 1 16 16 4441 1 1 1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 <</td><td>1381</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· ·</td><td></td><td></td></tr><tr><td>TR 3 MIXED SEED 444 0000 17 0000 2 7828 7 6078 CUL 2 GLENLEA 2776 0000 25 9345 4 5831 21 0051 4 TR 1 SMALL SEED 882 0000 25 9345 4 5831 21 0051 4 TR 1 SMALL SEED 882 0000 25 9345 4 2890 14 4813 4 TR 1 SMALL SEED 600 0000 25 9345 4 9461 4 TR 3 M1XED SEED 484 0000 26 7879 4 3284 11 4346 CUL 3 PARK 3740 0000 31 9564 3 2279 10 4193 6 TR 1 SMALL SEED 1436 0000 31 25697 16 1836 1<</td><td>44)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td>TA</td></tr><tr><td>TR 1 SMALL SEED 482 0000 25 8412 4 2000 14 4413 TR 2 LANSE SEED 1008 0000 25 2250 4 8842 24 9441 TR 3 MIRED SEED 484 0000 25 7879 4 3244 14 13 TR 3 MIRED SEED 484 0000 31 9554 3 3464 11 134 CUL 3 PARK 3740 0000 31 9554 3 3464 11 1355 TR 1 SMALL SEED 1438 0000 31 9554 3 2279 10 4183 1 TR 2 LASES 482 0000 32 9557 4 2607 18 1838 1 TR 2 LASES 420 0000 32 9557 4 2607 18 18 1 TR 3 4185 882D 1420 0000 32 9577 2 2314 8 1658 TR 3 400005002 1846 0000 18 9564 3</td><td>521</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td>TR</td></tr><tr><td>TR 1 BMALL BEED 682 6000 25 8412 4 2500 16 4613 TR 2 LARGE SEED 1008 1008 0000 25 2250 4 8842 24 9441 TR 2 LARGE SEED 1008 0000 25 2250 4 8842 24 9441 TR 3 MIXED SEED 484 0000 26 7879 4 3244 13 7344 CUL 3 PARK 3740 0000 31 8584 3 3464 11 1384 TR 1 SMALL SEED 1432 0000 31 8585 3 3279 10 4183 TR 2 LARGE SEED 1432 0000 33 8687 4 2607 16 18 18 TR 2 LARGE SEED 1420 0000 32 2887 10 4183 TR 3 4185 882D 1420 0000 32 2867 16 18 TR 2 LARGE SEED 1420 0000 32 2727 2 2314 6 16</td><td></td><td></td><td></td><td>. .</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2776</td><td></td><td></td><td>2</td><td></td><td></td></tr><tr><td>TR 2 LARGE SEED 1008 0000 25 2280 4 848 24 8441 (TR 3 MIEED 444 6000 25 7879 4 3244 18 7344 (CUL 3 PARK 3740 0000 31 9854 3 3464 11 4295 TR 1 SMALL SEED 1436 0000 31 2565 3 2279 10 4183 (TR 2 LARGE SEED 1436 0000 32 2667 18 4807 (4 16 1834 (16 16 16 16 534 (16</td><td>107)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>TE</td></tr><tr><td>TR 3 MIRED SEED 44 0000 26 7879 4 3244 12 7344 1 CUL 3 PARK 3740 0000 31 9554 3 3464 11 4326 11 4326 11 4326 11 4326 11 4326 11 14 16</td><td>441</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td>TR</td></tr><tr><td>CUL 3 PARK 3740 0000 31 9554 33664 11 4785 TR 1 SMALL SEE0 1436 0000 31 2565 3 2275 10 4193 1 TR 2 LARES SEE0 32 0000 32 3657 4 2607 16 1536 1 TR 2 LARES SEED 1430 0000 33 2727 2 2314 6 1556 1 1 1 1 1656 1</td><td>221</td><td>÷</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>TR</td></tr><tr><td>TR 1 SMALL SEED 1436 GOOD 31 2600 32 2779 10 4103 7 TR 2 LARGE SEED 430 GOOD 32 2667 4 103 1 1436 1</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>1746</td><td>****</td><td></td><td></td><td></td><td></td></tr><tr><td>TR 2 LARGE SEED 482 0000 32 6867 4 2607 10 183 1 TR 2 LARGE SEED 1420 0000 32 5867 4 2607 18 1834 1 TR 3 M1XED SEED 1420 0000 33 2727 2 8314 8 0160 1 TW 4 700008002 1846 0000 18 9864 3 3324 11 1049 1</td><td>117)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>TR 3 HIRED SEED 1420 0000 32 2727 2 5314 5 0160 1 UL 4 700005002 1546 0000 15 9564 3 3324 11 1045 (</td><td>481</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>78</td></tr><tr><td>TUL 4 7040080002 1846 0000 18 0864 3 3324 11 1048 1</td><td>27:</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td>•</td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td>1</td><td>048</td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>78,</td></tr><tr><td></td><td>28)</td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></tr><tr><td>TH 2 LANKE SEED 338 0000 18 8111 2 8170 12 3683 1 Th 2 MixED SEED 718 0000 28 9211 3 7184 13 8044 1</td><td>1.8.1</td><td>1</td><td></td><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>C</td><td></td></tr></tbody></table>
---	---

BEB • 444

Appendix 17. Distribution parameters of characters of single plants, measured at different stages of growth, derived from large seeds, small seeds and alternated large and small seeds.

		Skoness ^{1,2}			Lurtosis ²	
Character	Large seed	Small seed	Mixed seed	Large seed	Small seed	Mixed see
3-5 Leaf Stage:		:	•			
HR 1	-0.78*	-0.85*	-0.38	1.59*	0.92	0.85
<u> </u>	-0.80*	-0.34	-0.59	2.60**	1.62*	2,18**
Ŧ	-0.59	0.03	-0.59	0.91	-0.01	0.81
ft.	. 0.29	0.07	0.06	1.24	0.39	0.53
Jointing Stage:						
iit .	0.11	0.45	0.12	1.04	-0.21	-0.35
ML 2	-0.00	-0.19	-0.21	0.98	0.58	-0.61
Ť	0.07	-0.44	-0.10	0.36	0.31	0.02
/t	0.42	0.18	0.30	1.42*	-0.29	0.08
Heading Stage:						
41	-0.23	-0.39	-0.39	1.01	1.29	1.19
^{Ht} 3	-0.57	-0.54	-0.10	0.55	0.32	÷0.03
ži.	0.19	0.22	0.15	0.05	- 0 , 59	0.50
Maturity:				,		
He.	-0.37	-1.22**	-0.49	0.76	2.45**	0.53
HR 3 T	0.60	0.14	0.39	0.75	0.61 -	-0.10
Wt	0.33	0.01	0.41	1.02	0.85	0.36
N	0.27	0.18	0.34	0.57	0.64	0.24
FL	0.13	-0.47	-0.12	1,31	0.49	0.24
ExL	0.16	-0.27	-0.06	0.39	3.06**	0.36
HL	0.06	-1.06*	-0.59	1.31	2.91**	0.94
Sp/H	-0.56	-0.59	-0.50	0.85	0.64	0.10
¥/#	0.34	-0.09	0.35	1.15	0.77	0.31
K/P	0.41	-0.06	0.35	1.58*	0.78	0,22
HI	-0.80*	-1.28**	-0.15	1.95**	2,23** -0,25	0.02
Kwt	-0.50	-0.14	-0.51	0.57*		1.03
K/H	33 تر ٥-	-0.75*	-0.23	1.84**	0,76	1.03

All plants were grown in three row plots in 1979. Plants with missing neighbours are excluded.

**5

1. Talues of skowness and kurtosis are averages of the values of three replicates and four genotypes.

2. * significant, $\alpha \le 0.05$; ** significant, $\alpha \le 0.01$.

-30

Appendix 18a. Plot yield and Specific Mixture Efficiency¹ of mixtures

ŝ,

grown in 1977.

Mixture	Plot	yield (g)	Specific M	ixture Efficiency
	Mean	Std. Dev.	Mean	Std. Dev.
For Entire Population	1345	138	1.05	6 0.10
Glenlea	1249	154		
Glenlea + Park	1278	64	1.10	0.09
Glenlea + Neepawa	1361	179/	1 12	0.06
Glenlea + 70M110001	· 1277	8 Ó	0.94	0.05
Glenlea + 70M009002	1346	27	0.98	0.07
Glenlea + Norquay	1352	150	1.02	0.16
Glenlea + NB 701	1353	110	1.09	0.05
Park	1096	105	· ·	
Park + Neepawa	1227	130	1.08	N 0.06
Park + 70M110001	1275	97	1.05	0.16
Park + 70M009002	1401	56 [·]	1.07	· 0.01
^p ark + Norquay	1364	8	1.04	0.03
Park + NB 701	1347	145	-1.16	, 0.13
Neepawa 🧭	1170	86		+ -
Neepawa + 70M110001	1302	153	1.03	0.14
Neepawa + 70M009002	1344	65	1.00	0.01
leepawa + Norquay	1239	103	0.96	0.04
eepawa + NB 701	1302	126	1.08	0.03
70M110001	1358	253		,
70M110001 + 70M009002	1498	123	1.05	0.06
70M110001 + Norquay	1482	92	1.07	0.03
70M110001 + NB 701	1 30 3	70	£ ^{1.03}	0.19
0M009002	1514	64	-	ę
0M009002 + Norquay	1451	114	0.99	0.06
0M009002 + NB 701	1508	. 88	1.10	0.05
lorquay	,1418	108		
orquay + NB 701	1421	36	1.07	0.07
IB 701	1240	203		•

1. See Section 8.2.

Appendix 18b. Plot yield and Specific Mixture Efficiency of mixtures

grown in 1978.

.

Mixture	Plot	yield (g)	Specific Mi	xture Efficiency
	Mean	Std. Dev.	Меал	Std. Dev.
For Entire Population	1012	138	1.02	0.07
Pitic 62	966	251		
Pitic 62 + Glenlea	1111	116	1.11	0.07
Pitic 62 + Park	1014	47	1.08	0.11
Pitic 62 + Neepawa	1112	61	1.08	0.13
Pitic 62 + 70M110001	1105	92	1.09	0.08
Pitic 62 + 70M009002	1006	47	1.11	0.05
Pitic 62 + Norquay	912	79	0.92	0.13
Pitic 62 + NB 701	993	229	1.04	0.03
Glenlea	1043	138		
Glenlea + Park	1085	62	1.10	0.09
Glenlea + Neepawa	10 8 7	115	1.02	0.20
Glenlea + 70M110001	1 19 7	27	1.13	0.02
Glenlea + 70M009002	1067	48	1.13	0.10
Glenlea + Norquay	1063	57	1.02	0.02
Glenlea + B 701	912	160	0.92	0.10
Park	933	57		
Park + Neepawa	1023	77	1.00	0.06
Park + 70M110001	911	40	0.91	0.06
Park + 70M009002	815	84	0.91	0.00
Park + Norquay	992	118	1.00	
Park + NB 701	880	186	0.93	0.07 7 0.10
leepawa	1112	92		
leepawa + 70M110001	1007	125	0.92	0.10
leepawa + 70MD09002	1000	92	1.02	0.10
leepawa + Norquay	1141	103	1.02	0.13
leepawa + NB 701	1127	105	1.10	0.12 0.11
OM110001	1078	113		
0M110001 + 70M009002	873	124	0.92	0 11
OM110001 + Norquay	1054	66	0.92	0.11 0.04
0M110001 + NB 701	1050	168	1.03	0.04
0M009002	859	159		
0M009002 + Norquay	873	2	0.92	0.05
0M009002 + NB 701	894	175	0.92	0.05
orquay	1049	38		
orquay + NB 701	1106	31	1.12	0.08
B 701	941	179		

260

(

.

وجمع المعالمين الارتدانين

Appendix 18c. Plot yield and Specific Mixture Efficiency of mixtures

grown in 1979.

æ

.

·	Plot	yield (g)	Specific Mi	xture Efficien
Mixture	Меал	Std. Dev.	Mean	Std. Dev.
For Entire Population	1248	140	1.03	
Pitic 62	1342	80		
Pitic 62 + Glenlea	1436	36	1.09	0.10
Pitic 62 + Park	1313	11	1.11	0.06
Pitic 62 + Neepawa	1339	59	1.10	0.05
Pitic 62 + 70M110001	1379	29	1.05	0.09
Pitic 62 + 70M009002	1511	80	1.14	0.02
Pitic 62 + Norquay	1437	99	1.19	0.13
Pitic $62 + NB 701$	1401	123	1.05	0.12
	1401	120	2.00	
Glenlea	1312	166		~ ~-
Glenlea + Park	1238	99	1.06	0.03
Glenlea + Neepawa	1199	75	1.00	0.13
Glenlea + 70M110001	1175	81	0.91	0.11
Glenlea + 70M009002	1313	112)	1.01	0.14
Glenlea + Norquay	1271	. 90	1.08	0.20
Glenlea + NB 701	1272	63	. 0.97	0.08
Park	1033	104		
Park + Neepawa	1002	38	0.94	0.04
Park + $70M110001$	1153	34	1.00	0.04
Park + 70M009002	1212	40	1.04	0.01 •
	1082	73	1.04	0.03
Park + Norquay Park + NB 701	1324	134	1.12	0.08
Park + ND /01	1324	154	1.12	0.08
Neepawa	1102	125		
Neepawa + 70M110001	1122	· 44	0.94	0.05
Neepawa + 70M009002	1178	36	0.98	0.04
Neepawa + Norquay	1067	58	0.98	0.08
Neepawa + NB 701	1181	30	0.97	0.02
70 M 110001	1290	130		•
70M110001 + 70M009002	1285	67	1.00	0.08
70M110001 + Norquay	1141	22	0.96	0.07
70M110001 + NB 701	1175	167	0.90	0.14
JUNELOUUL ND /UL		<u>a</u>	0.20	
70M009002	1299	43		0.00
70M009002 + Norquay	1301	62	1.10	0.09
70M009002 + NB 701	1 30 7	45	1.00	0.02
Norquay	1082	122		
Norquay + NB 701	1226	80	1.01	0.07
NB 701	1327	73		

.

.

Appendix 19. Performance of mixtures in each of the three years,

containing specific genotypes, as expressed by the Array mean yield (Array \overline{Y}), the Average Mixture Efficiency $(AME)^{1,2}$, and the General Combining Ability $(GCA)^2$

7** -71.8* 4** -69.4* 2* 17.3 3* 100.9* 3* 51.0*
7** -71.8* 4** -69.4* 2* 17.3 3* 100.9* 3* 51.0*
4** -69.4* 2* 17.3 3* 100.9* 3* 51.0*
2* 17.3 3* 100.9* 3* 51.0*
3* 100.9* 3* 51\0*
3* 51、0*
-0.0
5** 7.6
* -26.6
** 129.4*
** -51.8*

1. See Section 8.2.

.

2. * significant, $\alpha \leq 0.05$; ** significant, $\alpha \leq 0.01$

Appendix 20.

Calculation of the effect of skewness on single plant selection.

Assume a 50:50 mixture of two genotypes G1 and G2. The mean value for a character X of G1 is 0.3589 σ less than the mean of this character for G2. (The value of 0.3589 had to be chosen due to the restricted number of values listed in chi-square tables). Assume further that X has a chi-square distribution with 30 degrees of freedom, and thus a variance of 2x30, a skewness of 0.516, and a kurtosis of 0.400. If the 0.75% of the population having the highest values for X were selected, the selected fractions would consist of 1/3 G1 and 2/3 G2 (Figure 5). The probability of selecting G1 rather than G2 is P(Error)=0.333.

If the character, X, had had a standard normal distribution, it can be found, through trial and error, that:

P(z>2.29)=0.011

P(z>2.29+0.3589)=P(z>2.6489)=0.00401

Total selected fraction=(0.011+0.00401)/2=0.0075The probability to select G1 rather than G2 is P(Error)=0.00401/0.01501=0.267.

The probability to select G1 rather than G2 is thus 0.333/0.267=1.25 times larger in the case where the distribution of X is skewed, than in the case where the

Fig. 5. Graphic illustration of selection in a 50:50 mixture of two genotypes, G_1 and G_2 , for a character x, which has a positively skewed distribution. The selected fraction would, in this case, consist of 1/3 G_1 and 2/3 G_2 .

disribution of X is normal.

P(Error) will increase, however when the frequency of G2 in the population decreases.

Assume a mixture of G1 and G2, with means for the character X which are 1.096 \odot apart, and in which the frequency of G2 is 1/10 the frequency of G1. The distribution of X is the same as in the previous example. If this time 0.11% of the population is selected, then the probability of selecting G1 rather than G2 is

 $\frac{10(0.0005)}{10(0.005)} = \frac{0.005}{0.05} = 0.5$

If X had had a standard normal distribution, then it can be found, by trial and error, that

Farment's const

۲

F(x = 2.1 + 1.5) = F(x = 1.6) = 0.0012

 $F(trior) = 10(0.002)/(1 \times ... 02 + 0.003) = 0.2$ The probability to select G1 is thus 5/2=2.5 times larger in the case where X is skewed than in the case of a normal distribution of X.

On the other hand, if the distribution of X is negatively skewed, and has a curve which is the mirror immage of the curve used in the above examples, the probability to select the superior genotype, G2, is greater than would be the case if X were normally distributed.

Ą.

For a 50:50 mixture of G1 and G2, with the means 0.151 s apart, it can be calculated, in the same manner as before, that the probability to select G2 is 1.19 times greater than would be the case for a normal distribution, if 0.75 % of the population is selected. If the ratio of G1:G2 is 10:1, and the means are 0.3851 s apart, the probability to select G2 rather than G1 is 1.49 times greater than would be the case if X were normally distributed and 0.11% were selected.

. •

÷.,

266