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Abstract

Increased anthropogenic greenhouse gas emissions have gained attention from researchers

and world leaders due to the potential for global warming. Part of the primary green-

house gas emitters come from the agriculture and oil and gas industrial sectors. The

sources of two prioritized greenhouse gases, carbon dioxide and methane, are now the

subject of extensive research because of the adverse effects of such gases on a global

scale. Particularly, microbial biodegradation of organic compounds is under consid-

eration due to microbial capacity to produce different greenhouse gases at high rates

or scales, including carbon dioxide and methane, depending on environmental or soil

features. For example, rapid soil organic matter (SOM) mineralization derived from

increased microbial degradation activities due to labile substrate availability in soils

can elevate atmospheric carbon dioxide in short periods. Also, under anaerobic con-

ditions, specific microbial communities can slowly degrade hydrocarbons found in oil

sand tailing ponds, increasing atmospheric methane concentrations over a long time.

In this thesis, we formulated data-validated mathematical models to estimate car-

bon dioxide and methane emissions from microbial organic matter biodegradation pro-

cesses in soils. Under aerobic conditions, a base model captures the biodegradation

kinetics of labile compounds and soil organic matter under carbon and nitrogen sto-

ichiometric constraints. The model quantifies the necessary labile carbon-to-nitrogen

to increase microbial SOM mineralization and time to achieve a maximum degrada-

tion rate for different nutrient-rich soils. An extended version of this model allows us
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to include soil health indicators to understand the dynamic interaction between plant

microbes and soils. Our theoretical results for this specific approach reveal a threshold

for which the input of fertilizers would be needed for plant growth, providing insightful

information that might benefit the agricultural sector for agricultural soil manage-

ment. Considering anaerobic conditions, a mechanistic mathematical model allowed

us to quantify hydrocarbon degradation kinetics and methane emissions from oil sands

tailings. We collected experimental data to evaluate hydrocarbon degradation rates

subject to different temperatures to capture a broad spectrum of degradation kinet-

ics, which are required to incorporate the temperature variations in oil sands tailing

ponds and end pit lakes into the model. Our results quantify the differences between

the model’s predictions and governmental reports, showing a significant discrepancy.

Furthermore, the model predicts that hydrocarbon concentration in oil sands tailing

ponds would reach a steady state when a constant input of tailings and diluents into

ponds is assumed, implying a constant methane biogenesis rate.
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Preface

The structure of this thesis is based on original research work encompassing Chapters

2-4. Part of these research efforts to build this thesis was conducted as part of collabo-

rations with Hao Wang as a supervisory author through all chapters and Tariq Siddique

as a supervisory author for Chapter 4. Now, Chapter 4 encompasses a critical mul-

tidisciplinary effort by distributing my research simultaneously into the experimental

set-up, laboratory data collection, and mathematical modelling. Working closely with

soil microbiology researchers in the laboratory allowed me to comprehend experimental

circumstances and understand the methane biogenesis process from an empirical per-

spective, which is explicitly lost in theoretical research that relies only on the literature.

In this way, my work gained a fundamental understanding of microbial methane for-

mation that I use to bridge the gap between the biological and mathematical sciences

to generate a mathematical model suitable for predicting methane emissions using a

laboratory-verifiable mechanistic approach, which is unique.

Chapter 2 of this thesis is an original work that has been published as Pablo V.

Garcia, Hao Wang. “A Data-Validated Stoichiometric Model for the Priming Effect”.

Bull Math Biol 85, 53 (2023). Pablo V. Garcia was responsible for the model devel-

opment, analysis and manuscript composition. Hao Wang was the supervisory author

and assisted in the model development, and contributed to manuscript edits.

Chapter 3 of this thesis is an original work in a review process prior to publica-

tion as Pablo V. Garcia, Tianxu Wang and Hao Wang. “Rhizosphere dynamics under

simplified soil health indicators”. Pablo V. Garcia was responsible for the model devel-

opment, analysis and manuscript composition. Tianxu Wang was responsible for model

analysis and manuscript edits. Hao Wang was the supervisory author and assisted with
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the model development, and contributed to manuscript edits.

Chapter 4 of this thesis is an original work that will soon be submitted for publica-

tion as Pablo V. Garcia, Alsu Kuznetsova, Tariq Siddique and Hao Wang. “Temper-

ature dependent mechanistic model to predict methane biogenesis from an oil sands

tailings settling basin”. Pablo V. Garcia was responsible for laboratory work, experi-

ment setup, sampling, data analysis, model development, numerical simulations, and

manuscript composition. Alsu Kuznetsova assisted with the experiment setup and

data analysis and contributed to manuscript edits. Tariq Siddique was a supervisory

author who assisted in model conceptualization, model development, and experimen-

tal design and contributed to manuscript edits. Hao Wang was a supervisory author

who assisted in model conceptualization and model development and contributed to

manuscript edits.
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Chapter 1

Introduction

1.1 Motivation

Interest in mitigating greenhouse gas (GHG) emissions from different anthropogenic

sources is still rising due to their global warming potential [52], [89]. Of the different

GHGs currently emitted from agricultural and industrial sectors, carbon dioxide (CO2)

and methane (CH4) are at the top of ongoing research efforts to find strategies and

solutions that help their mitigation and, in consequence, reducing their severe adverse

effects on Earth [13].

Since 1896, Svante Arrhenius, a Swedish scientist, was the first to claim that fos-

sil fuel combustion would eventually increase global temperatures, predicting that the

mean surface would increase about four to five degrees Celsius if the current atmo-

spheric carbon dioxide concentrations doubled [72]. Atmospheric CO2 estimations us-

ing extracted cores from ancient glaciers showed that CO2 atmospheric concentration

was about 300 ppm approximately 300,000 years ago. Since the 1950s, an observatory

on Mauna Loa, Hawaii, almost uninterruptedly have monitored carbon dioxide concen-

trations in the atmosphere, and current trends show a steady increase over the years,

with a current concentration of around 400 ppm in 2020 [23] and currently 420 ppm

in 2023.

On the other hand, methane is the second most abundant atmospheric GHG, ac-

counting for 23% of the climate change since the Industrial Revolution. Its increasing

trend rate has alerted global politics since methane is 25 times more severe in short-
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time scales compared to CO2 warming potential [33]. Compared to natural methane

sinks, which include atmospheric oxidation and soil, anthropogenic methane sources,

encompassing industrial fossil fuels extraction, agricultural sector and landfill man-

agement, biomass burning and rice cultivation, have generated a surplus in the total

methane flux, leading to a concentration increase of this GHG in the atmosphere. Cur-

rent estimations show that global methane sources exceed global sinks by 6 Tg per year

[33], [89].

Mitigating these greenhouse gases requires different strategies and innovative tools

that help with future predictions and provide critical factors that may consolidate pos-

sible pathways. For example, regarding CO2, there is an open question to understand

when soils are the source or sinks of this chemical compound in the short term [29].

Soils are a non-renewable source subject to exploitation due to ore contents, such as

in the oil sands territories, wood harvesting, deforestation for land change of use, food

production, etc., contributing to CO2 increase, and appropriate land management is

required to use soils as a sink through tropical forests conservation or sustainable agri-

cultural food production [54]. However, anthropogenic derived CH4 requires direct

solutions such as tailing managements to decrease its production, despite its value as a

natural gas source benefits. Some oil companies flare controlled CH4 production rate

surplus, converting it into carbon dioxide. However, in massive post-processing bitu-

men tailings, there is no primary mechanism to reduce its production, not considering

other GHG produced, such as H2S, NOx, etc https://www.aer.ca/. Either way, CO2 or

CH4 mitigation strategies can greatly benefit by understanding the core of these GHG

sinks and sources, which are intrinsically related to organic matter biodegradation

processes [27].

The primary thesis goals are to provide insights into soil biodegradation processes,

contribute to developing innovative tools, and provide insights into potentially helpful

initiatives related to global warming. This thesis achieves different milestones, includ-

ing constructing two data-validated models, one to estimate CO2 and another for CH4

emissions. A critical milestone included a laboratory experiment in which I measured

and modelled the temperature-dependence degradation rate of different diluents com-
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monly used during the bitumen separation from oil sands. The experiment included

temperature effects on methane biogenesis using fluid fine tailings samples from the

Base Mine Lake (BML) in Alberta, Canada. My data served as a core for validating

my model; I modelled and predicted hydrocarbon kinetics in the Mildred Lake Settle

using governmental reports on hydrocarbon estimation loss and compared CH4 emis-

sions estimations using FFT temperature features, an unprecedented result to my best

knowledge.

In the following subsections, I briefly introduce crucial concepts used during this

thesis, including biodegradation processes, redox potentials, ecological stoichiometry,

soil health indicators, oil sands tailing ponds (OSTP) and end pit lakes (EPL), the

mathematical background of stability and bifurcations, and monotone dynamic sys-

tems. In the final part of this chapter, I provide an overview of the thesis structure.

1.2 Preliminaries

Biodegradation is a natural process by microbes that degrade organic material to grow,

releasing essential nutrients to the soil and benefiting plants. Microbial degradation

of organic compounds remains under study due to their capacity to degrade soil pol-

lutants, and the by-products depend on the system features. For example, if oxygen

is available for microbes, then they will likely produce more CO2, and when oxygen is

exhausted, and only CO2 is available, they produce CH4. In the following subsections,

I provide some useful definitions and tools used during this thesis.

1.2.1 Redox potential

According to [33], [89], microbes require different chemical species as terminal electron

acceptors (TEA) as part of their metabolic process, and different reduction-oxidation

(redox) potentials determine the relative thermodynamic preference during the produc-

tion or consumption of trace gasses in soil. For example, microbes that use oxygen as a

TEA yield more energy than those that are anaerobically adapted and use nitrate, ox-

idized iron, sulfate or CO2. Aerobic processes are more likely to occur in well-aerated

soils because diffused oxygen is present through porous media zones. After oxygen
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consumption, different microbes seek TEA alternatives based on thermodynamic fa-

vorability. When oxygen becomes limited, denitrification processes take place, releasing

nitrogen gases. At the bottom of the microbial thermodynamical preference, CH4 is

produced using CO2 after the exhaustion of more favourable TEA. For example, in oil

sands territories, unrecovered diluents (carbon sources) are dumped into ponds after oil

sands bitumen separation. Over the years, CH4 production in these ponds proves that

microbes use CO2 as TEA and apparently have exhausted other potential chemical

species they could use.

1.2.2 Canadian oil sands territories

Canada’s Oil sands are the world’s third-largest oil reserve, representing 166.3 bil-

lion barrels (https://natural-resources.canada.ca/). Bitumen extraction from oil sands

relies on two methods depending on how deep the oil deposits are buried. In-situ

production refers to deep bitumen recovery located 75 meters underground, in which

human-created horizontal wells serve to inject steam and pump the liquified bitumen

from the oil sands to the surface continuously. Open-pit mining operates similarly to

mineral mining operations, in which oil sands reserves are closer to the surface or less

than 75 meters underground. Large-scale machinery digs the surface, and the mined

material is transported into crushers to process large clumps of earth. The crushed

material, mainly formed by sand, clay, and bitumen, is mixed with hot water and light

hydrocarbons as diluents to separate the bitumen before being upgraded into synthetic

crude oil. Like any other mining operations, leftover material, or tailings, are stored

in basins, called tailing ponds, allowing solid materials to settle and recover water

used during the process. Different ponds, including the Mildred Lake Settle Basin

and Base Mine Lake, started to become methane biogenesis active in early 1990, and

subsequently, research proved that some of the diluent components, including short-

chain n-alkanes and some BTEX compounds, support methane production [77]. Now,

methane production can be beneficial in increasing water recovery from tailings [24].

However, depending on basins and tailings features, it is required to precisely estimate

methane production periods and concentrations to fulfill methane-reducing strategies
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implemented by the federal government of Canada in 2021.

[27], [35], [37], [75].

1.2.3 Mathematical approach

In this thesis, I used essential mathematical theories, including stability and bifurcation

theories, to study soil biodegradation processes under aerobic and anaerobic conditions.

Solving dynamical systems coupled to systems that consider different mechanisms be-

tween variables may represent a challenge. However, the system can be described

qualitatively by studying equilibria and their stability, providing insights into the so-

lution behaviour and possible prediction outcomes. Local stability criteria describe

the nature of an equilibrium point, determining whether system solutions may be at-

tracted, at least in a local neighbourhood. If all the solutions end in a steady state

regarding different initial conditions, then this equilibrium is referred to as a globally

stable steady state [62]. Studying local solutions behaviour in such equilibria requires

system linearization and determining the nature of the characteristic polynomial the

linear system provides [70].

Models coupled to natural phenomena usually depend on the parameters given,

which may change over time or physical features such as temperature dependence. A

bifurcation defines a change in the system’s qualitative behaviour caused by a param-

eter variation. These variations encompass the creation or destruction of equilibria or

alterations in their stability [70]. Studying bifurcation in soil biodegradation processes

can provide insights into essential parameters representing specific processes, such as

nutrient bioavailability. Bifurcation diagrams provide a full spectrum of how parameter

variation affects a system qualitatively, which can be related to the linearized system.

In Chapter 3, I use these mathematical tools to explore the symbiotic relationship

between plants and microbes through rhizodeposits.
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1.3 Temperature-dependent methane biogenesis in

fluid fine tailings experiments

Methane emissions from oil sands tailing ponds in Alberta, Canada, are a topic of high

research interest since provincial and federal governments are committed to capping

methane emissions through new policies near 2030 (https://www.alberta.ca/climate-

oilsands-emissions). Current methane monitoring methodologies are still under devel-

opment, and creating accurate tools for in-situ methane predictions is a priority. It is

known that fluid fine tailings (FFT), a by-product material formed by a mix of silt,

clays, bitumen and diluents used to separate the ore from oil sands, supports methane

biogenesis [27], [37], [75]. Still, different features present in in-situ scenarios have yet

to be considered, including the temperature effects on methanogens.

In Chapter 4, we developed a new mechanistic model that is data-validated through

a series of laboratory results measuring the hydrocarbon degradation kinetics under

different temperatures. Our approach aims to create a model that considers how tem-

perature plays a role during methane emissions and to construct a solid basis for

reducing the in-situ methane emissions gap by incorporating new modelling features.

1.4 Thesis overview

The main chapters of this thesis encompass GHG estimation tools through a mathe-

matical and experimental approach. Chapter 2 has been published, Chapter 3 is under

review, and Chapter 4 will be submitted for publication soon. The synthesis of each

chapter is described as follows:

Chapter 2 proposes and data-validate a stoichiometric mathematical model on the

priming effect, i.e., increased soil organic matter turnover when adding labile substrates.

This model was proven robust using a local sensitivity analysis, and different outcomes

are presented depending on the soil organic matter nutrient-to-carbon ratio. This

model is proposed as the basis for understanding soil biodegradation processes when

nutrient limitations are present in aerobic conditions.

Chapter 3 extends the model in Chapter 2 and is adapted to the concept of soil
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quality to explore the dynamic interactions between microbes and plants through rhi-

zosphere depositions. This model considers soil health qualities related to implicit soil

conditions such as carbon-to-nutrient ratio content and soil infiltration. The results

show plants’ engagement with microbes increases or decreases rhizodeposits depending

on the soil nutrient availability.

Chapter 4 includes the laboratory experiment to determine different diluent degra-

dation kinetics under different temperature setups. We analyzed the microbial compo-

sition through DNA analysis and determined the time required for bacteria to start de-

grading hydrocarbons, degradation rates, methane biogenesis and conversion efficiency.

In this chapter, we construct a mechanistic model that incorporates two pathways for

methane production, extending our capacity to model CH4 and CO2, a link missing in

the current models. Using the model and data sets, we validate our model and show

prediction potentials against governmental data reported in the Mildred Lake Settle

Basin incorporating fluid fine tailings features such as temperature gradients over the

year.

Chapter 5 concludes this thesis by discussing the results’ significance and future

directions.
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Chapter 2

A Data-validated stoichiometric
model for the priming effect

2.1 Introduction

The potential effects of increased atmospheric carbon dioxide (CO2) on global warming

have been a matter of public interest since the industrial revolution [23], [53], [89].

Carbon sequestration in plant biomass and soil organic matter through appropriate

management of cultivated soils is a process that can mitigate the atmospheric CO2. By

understanding the dynamical exchange of carbon and nitrogen from the atmosphere

into the terrestrial ecosystems, carbon sequestration may be improved [4], [5], [51],

[93]. In particular, part of the soil scientists’ efforts has been towards studying CO2

emissions from soils due to their potential contribution to global warming. Different

theories are being continuously developed to describe the linked interactions between

organic matter and labile compounds as soil microbial activities [6], [14], [49], [51].

Soil Organic Matter (SOM) is a significant carbon reservoir and is a principal

nutrient source for plant growth as it contributes to soil quality [29]. SOM is a complex

biological residue formed over time due to the accumulation of undecayed, recalcitrant

organic matter [14], [53], [89]. SOM carbon pool is about two or three times that

in the atmosphere. Thus any changes will significantly affect the atmospheric carbon

concentration levels [55], [89]. The input of fertilizers, organic substances and plant

residues may increase the microbial activity in soils, enhancing the decomposition rate

of SOM in short periods. Consequently, a sudden and increased release of CO2 from
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soil respiration would directly contribute to global warming[6], [14], [53].

The priming effect is defined as the sudden increase rate of SOM by the input of

substrates in soils [51]. This natural phenomenon and its mechanisms have been an im-

portant topic in several European countries over the last decades [49]. Despite many

theories and mechanisms proposed to describe the priming effect, in this work, we

consider the ‘stoichiometric decomposition’ and ‘microbial nitrogen mining’ approach

[14]. These mechanisms relate the SOM decomposition rate depending on the avail-

ability of labile carbon (C) and nitrogen (N) for different microbial communities. The

‘stoichiometric decomposition’ mechanism assumes that microbial SOM decomposition

rate is at its highest when their demand of C and N is satisfied and decreases when

the availability of N is limited [36]. On the other hand, the ‘microbial nitrogen min-

ing’ mechanism assumes increased harvesting for N from SOM using labile C as an

additional energy source to satisfy microbial growth requirements [17], [59].

Different microbial communities decompose SOM at different rates regarding the

availability of substrates. The linkage between the mechanisms mentioned above is

due to the dynamical interaction between these microbial communities, labile carbon

and nitrogen sources, and SOM [14]. Soil microbial communities may be separated

into two main groups despite the vast number of microbes capable of degrading SOM.

Rapidly growing soil bacteria mainly involved in decomposing labile substrates are

termed zymogenous bacteria. Now, slow-growing organisms predominantly associated

with the decomposition of SOM are classed as autochthonous [93]. In this sense, the

stoichiometric decomposition and microbial nitrogen mining mechanisms can be related

to zymogenous and autochthonous bacteria respectively [14], [17], [36].

It is necessary to incorporate C and N dynamics into mathematical models to study

the priming effect as the interaction between microbial communities, labile compounds,

and SOM [8]. To achieve this, we develop a stoichiometrical mathematical model that

simultaneously considers stoichiometric decomposition and microbial nitrogen mining

mechanisms. The stoichiometrical framework for our system of ordinary differential

equations allows us to incorporate C and N dynamics from labile substrates as the

carbon and nutrient dynamics contained in the SOM. We validate our model using
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a laboratory data set adapted from [14]. Part of the complete laboratory data set

shows how different soil treatments based on labile C and N may induce different CO2

emission rates from soils depending on the strength of the priming effect. Including

different pools to track carbon and nutrient contents in SOM as labile substrates rely

on the assumption that the priming effect is governed by the availability of resources,

microbial biomass, and stoichiometric constraints [14], [21], [83].

Our approach considers the balance of soil substrates as their interaction with

microbial communities during the SOM decomposition process, i.e., using stoichiometry

theory [83]. We determine the robustness of the model and the crucial parameters

for the priming effect with a sensitivity analysis. In this way, we investigate how soil

features, such as nutrient content in SOM, delimit an optimized C:N of labile substrates

to decompose SOM in terms of efficiency, the priming effect strength and the time of

maximum SOM decomposition rate. Furthermore, we explore the impact of the SOM

degradation efficiency on the system and how the acceleration or decrease of the priming

effect is related. The model could provide insights into how using substances rich in

C and N , such as green manure, for example, in different levels of nutrient richness in

soils, may indirectly impact global warming by modifying the SOM degradation rates

in short periods.

2.2 Model formulation

To study the decomposition of SOM under aerobic conditions, we propose the fol-

lowing stoichiometrical mathematical model. The ‘stoichiometric decomposition’ and

‘microbial N mining’ mechanisms are continuously subject to a system of non-linear

differential equations and governed by the availability of labile compounds such as C

and N . Such mechanisms are triggered implicitly by the microbial biomass growth rate

and constrained by the availability of substrates. It is assumed that SOM decomposi-

tion rate increases with only adding labile C as the ‘microbial N mining’ mechanism

suggest. Moreover, it is at its highest when the microbial biomass demand of labile C

and N is satisfied as ‘stoichiometric decomposition’ mechanisms convey [14], [29]. In

natural soil ecosystems, N is the limiting nutrient for microbial communities. To keep
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the model as simple as possible, we consider only C, N found in organic substances as

a necessary simplification [14], [53]. Finally, the CO2 emissions from the decomposition

of organic matter are described in terms of the microbial respiration rate [51].

The microbial biomass rate of change depends on the availability of easily degrad-

able substrates as the ability to harvest the required nutrients from SOM [14]. Both

microbial communities such as zymogenous and autochthonous decompose SOM at dif-

ferent efficiency levels, and their growth rates differ regarding the availability of labile

resources [7], [14]. To mathematically consider this limitation, we consider Liebig’s law

of the minimum, which states that the microbial growth rate is limited by the most

limiting resource [83]. To track the microbial biomass rate of change in terms of carbon

units, we make use of the following equation:

B′ = (µc min{f(N), g(C)}+ µsH(C)min{fs(Ns), gs(Cs)})B︸ ︷︷ ︸
intrinsic growth

− ϵB︸︷︷︸
death

− lB︸︷︷︸
respiration

, (2.1)

where H(C) is a dimensionless saturating function that modulates the impact of a

mechanism during the decomposition of SOM regarding the availability of labile C in

soils. The first two terms on the right-hand side of the above equation correspond to the

intrinsic microbial growth. In particular, the first term corresponds to the fast-growing

zymogeneous bacteria, and the second term to the slow-growing autochtonus bacteria.

The minimum function is related to Liebig’s law which limits the maximal microbial

growth rate in terms of the available resources in the system. The dimensionless

functions f(N) and g(C) (or simply f , and g) corresponds to saturating functions

which represents the N and C uptake rate respectively [97]. For simplicity, the SOM

pool is divided into the amount of recalcitrant carbon Cs and nitrogen Ns, respectively.

The dimensionless functions fs(Ns) and gs(Cs) (or simply fs and gs) are saturating

functions which represents the SOM compounds degradation rates. The last two terms

correspond to biomass loss by microbial death (ϵ) and respiration (l) rates.

The dynamics for the labile carbon pool are given by

C ′ = − µc

r1
min{f(N), g(C)}B︸ ︷︷ ︸

labile carbon decomposition

+ ϵB︸︷︷︸
carbon recycling

. (2.2)
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In the above equation, the yield constant (r1) is the proportional conversion of C to

microbial biomass [46]. It is also considered the immediate carbon recycling in this

model by the natural death of microorganisms at a rate (ϵ).

A simplified version of a more complex process for the nitrogen dynamics is repre-

sented as follows:

N ′ =− θµc min{f(N), g(C)}B︸ ︷︷ ︸
labile nutrient uptake

+ θ(ϵ+ l)B︸ ︷︷ ︸
nutrient recycling

+

(θs − θ)µsH(C)min{fs(Ns), gs(Cs)}B︸ ︷︷ ︸
nutrient exudation from SOM decomposition

, where θs > θ.
(2.3)

The first term corresponds to the microbial labile nutrient uptake rate to satisfy stoi-

chiometric growth requirements. The second term represents nutrient recycling due to

mass-specific microbial respiration loss and death rate [2], [46]. The constant param-

eter (θ) correspond to the microbial nitrogen:carbon ratio, and it is assumed constant

since we are assuming a strict homeostasis [83], [98], [99]. The last term represents the

nutrient exudation from SOM decomposition where (θs) is the nutrient:carbon ratio

for SOM, which is assumed constant for simplicity [28], [85].

The dynamics for recalcitrant carbon in SOM are represented as

C ′
s = −µs

r2
H(C)min{fs(Ns), gs(Cs)}B︸ ︷︷ ︸
recalcitrant carbon decomposition

, (2.4)

where the yield constant r2 is the proportional conversion of Cs to microbial biomass.

Finally, the dynamics of the recalcitrant nutrients found in SOM are described as

N ′
s = −θsµsH(C)min{fs(Ns), gs(Cs)}B︸ ︷︷ ︸

nutrient uptake from SOM decomposition

, (2.5)

where is assumed that θs > θ. In this way, microbial harvest for SOM nutrients will

increase the labile nutrients availability in soils. This assumption is supported by the

findings on plants allocating rich labile C substrates to microbial communities through

their roots in exchange nutrients found in SOM [89]. Therefore, we propose the whole
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model as

B′ =(µc min{f(N), g(C)}+ µsH(C)min{fs(Ns), gs(Cs)})B − ϵB − lB,

C ′ =− µc

r1
min{f(N), g(C)}B + ϵB,

N ′ =− θµc min{f(N), g(C)}B + θ(ϵ+ l)B + (θs − θ)µsH(C)min{fs(Ns), gs(Cs)}B,

C ′
s =− µs

r2
H(C)min{fs(Ns), gs(Cs)}B,

N ′
s =− θsµsH(C)min{fs(Ns), gs(Cs)}B,

(2.6)

where the saturating functions take the Monod form; i.e.

f(N) =
N

N +Kf

, g(C) =
C

C +Kg

, fs(Ns) =
Ns

Ns +Kfs

gs(Cs) =
Cs

Cs +Kgs

,

(2.7)

and H(C) we will propose it as

H(C) = 1− C

C +Kh

. (2.8)

The function H(C) modulates the ‘microbial N mining’ and ‘stoichiometric decompo-

sition’ mechanism depending on the availability of labile substrates. The microbial

growth will increase at high rates when the microbial stoichiometric constraints are

met, potentially increasing SOM decomposition. On the other hand, with sustained

utilization of labile C, the nutrient exudation from SOM decomposition is continuously

increasing and is proportional to the microbial biomass. Now, emissions of CO2 in this

model are directly related to the microbial respiration rate. To model the CO2 rate of

change we will use the following equation:

CO′
2 = lB′. (2.9)

Since we consider the model for short periods and the laboratory data used was

based on a closed nutrient system, i.e. there is no loss or gain of N , we assume the

conservation of law matter for N . Then, the total nitrogen (TN) dynamics present in

model (2.6) is given by

T ′
N = θB′ +N ′ +N ′

s = 0, (2.10)

for some θs > θ. Therefore, the total nitrogen in the system is fixed and
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N = TN − θB −Ns, (2.11)

where

TN = θB(0) +N(0) +Ns(0), (2.12)

which evidently results in a simplification of system (2.6) if required.

2.3 Material and methods

The increased atmospheric CO2 derived from the heavy use of crop fields has led soil

scientists to study the priming effect over the last decades. Several mechanisms and

theories have been developed to explain this natural phenomenon. However, the com-

bination of stoichiometric decomposition as the microbial nitrogen mining mechanisms

has been supported by laboratory experiments [14], [51]. The laboratory experiment

used to validate this model is summarized as follows.

2.3.1 Laboratory experiment

The combination of the stoichiometric decomposition and microbial nitrogen mining

mechanisms was experimentally supported to understand better the priming effect [14].

This experiment measured different microbial growth rates, extracellular enzyme pro-

duction, and CO2 emissions derived from the decomposition of labile substrates as from

SOM. The experiment was based on adding different soil treatments to soil samples

previously homogenized and stored in separated jars. Part of the soil treatments was

based on adding only labile C or N or a combination of both. The CO2 emissions from

SOM decomposition were directly measured, and different priming effect intensities

were identified depending on the soil treatment by the ninth day.

For this work, we consider the control sample and three soil treatments: added

mineral N (min-N), sucrose (suc-C), and min-N with suc-C. A detailed description for

each treatment used in four different jars is given in Table 2.1. The data adapted from

[14] for these treatments is provided in Figure 2.1.
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Treatment Amount (µg C g soil −1) Applied N (µg N g soil−1)

Control 0 0
min-N 0 110
Suc-C 500 0

Suc-C+min-N 500 110

Table 2.1: Experimental design. Table adapted from [14].
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Figure 2.1: Data adapted from [14]. (Left panel): Cumulative CO2 emissions from four
different soil treatments in the ninth day. (Right panel): Cumulative CO2 emissions
over nine days for each experiment.

Mathematically speaking, different experimental treatments will correspond to dif-

ferent initial conditions C(0), and N(0) for our model. The data points represented in

Figure 2.1 was used to validate the model (2.6) with equation (2.9).

2.3.2 Data fitting

The CO2 data emissions from the laboratory experiment found in [14] were adapted

using OriginPro 2020 software. The cumulative SOM degradation measured in terms

of CO2 was differentiated in the laboratory from labile C degradation using radioactive

isotopes. Since our model tracks the cumulative CO2 directly from microbial respira-

tion, a discrepancy arises between the laboratory data set and the model predictions.

This discrepancy leads to the unavailability of parameters for the system (2.1). How-

ever, some parameters are found in the literature, and the rest were fit.

We split the data into four groups corresponding to each treatment as in Table 2.1.

Then, we simultaneously fit the equations (2.6) and (2.9) for each group with different
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Param. Definition Value/Range Unit Ref. 95% C.I.

µc Max. growth rate for labile C 8.31 day−1 Fitted [7.35 - 9.27]
µs Max. growth rate for Cs 6.62 day−1 Fitted [6.21 - 7.04]
l Respiration rate 3.05 day−1 Fitted [2.94 - 3.12]
ϵ Microbial death rate 0/[0.1056] day−1 [62] -
r1 Yield constant 0.104 /[0 - 1] - Fitted [0.09 - 0.117]
r2 Yield constant 0.103 /[0 - 1] - Fitted [0.067 - 0.14]
θ Microorganisms N:C ratio 0.2 - [83] -
θs SOM decomposition N:C ratio 0.3946 - Fitted [0.371 - 0.417]
Kf N -dependent H.S.C. for mi-

croorganisms growth
2.9 µg N g soil−1 [62] -

Kg C-dependent H.S.C. for mi-
croorganisms growth

30 µg C g soil−1 [57], [62] -

Kfs Ns-dependent H.S.C. for mi-
croorganisms growth

1277.42 µg N g soil−1 Fitted 1277.42

Kgs Cs-dependent H.S.C. for mi-
croorganisms growth

19.1164 ×103 µg C g soil−1 Fitted [19145.7 - 19177.7]

Kh C-dependent H.S.C. for mi-
croorganisms strategy

474.78 µg C g soil−1 Fitted [325.22 - 624.33]

Table 2.2: List of parameters used for the numerical simulation. H.S.C stands for
half-saturation constant. C.I. stands for Confidence Interval.

Initial condition Values Unit Reference 95% C.I.

B(0) 3.63 µg C g soil−1 Fitted [2.89 - 4.37]
C(0) {0, 500} µg C g soil−1 [14] -
N(0) {0, 110} µg N g soil−1 [14] -
Cs(0) 1.47×104 µg C g soil−1 [14] -
Ns(0) 980 µg N g soil−1 [14] -

Table 2.3: Initial conditions.

initial conditions corresponding to each treatment. We predict the four data groups

with fixed parameters and different initial conditions. Full description of the used

parameters, as its references, can be found in Tables 3.2, and 2.3. For this particular

case, we consider the death rate ϵ = 0 given the short period of the experiment.

To avoid over-fitting, the ratio #(data points):#(free parameters) is 4.8. The free

parameters are estimated using a nonlinear regression function in MATLAB (nlinfit).

We determine the goodness of fitness from predictions given by equation (2.9) by using
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the Normalized Mean Square Error (NMSE) function defined in MATLAB as

NMSE = 1− ||x0 − x1||2

||x0 − x0||2
, (2.13)

where ||.|| is the euclidean norm, x0 is a vector that contains data points, x1 is the

predictions from the model and x0 is the mean of the experimental data points. The

function NMSE defined in MATLAB measures the goodness of fitness predicted in

the interval (−∞, 1] where the perfect fit is if the function is equal to one. The

minimum value we achieved using the NMSE function was about 0.9, and the numerical

simulation is shown in Figure 2.2. We estimate the 95% confidence intervals using the

MATLAB function (nlparci) and the coefficient estimates, residuals and the estimated

covariance matrix from nlinfit.

The data fitting reveals that SOM decomposition dynamics are governed primarily

by Cs transients for this particular data set. The degradation efficiency for the nutrients

uptake in SOM (Kfs) determines if Cs or Ns dynamics govern SOM decomposition. If

Kfs < KgsNs(t)/Cs(t), for some t, then SOM dynamics are governed by Cs, otherwise it

will be governed by Ns. By choosing Kfs ≈ KgsNs(0)/Cs(0), we discard the possibility

that SOM decomposition is governed by Cs limitation only.
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Figure 2.2: Model validation using the data adapted from [14] and parameters from
Tables 2.1, 3.2, and 2.3. Each panel represents a different soil treatment. It is shown
when labile C or N limits the CO2 emissions. The system is mostly C-limited because
it is not considered an external sink of labile nutrients such as plants.
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Figure 2.3: Numerical simulations of the model (2.6) and (2.9) using Tables 3.2, 2.3,
and 2.1. (First column): Cumulative SOM decomposed and CO2 emissions. (Second
column): CO2 production and percentage of SOM decomposed with respect to time.
(Third and fourth column): Simulated microorganisms biomass subject to different
SOM decomposition mechanisms.

2.4 Numerical simulations

We validate our model by comparing the predictions of CO2 from the model to the

adapted laboratory data set. However, the model predictions of the degradation of

SOM differ somewhat from reality. The first panel in Figure 2.3 shows the cumulative

decomposed SOM on the ninth day of each experiment. The numerical simulation for

SOM decomposition is at least consistent with the experiment in [14],i.e., a combination

of added labile substrates promotes a higher decomposition rate of SOM rather than

using only N and C separately.

Our simulations shows that the system is C-limited predominantly for all treat-

ments, except when labile C is added. This is because we are not assuming other

external sinks of labile nutrients, such as plants’ N uptake for biomass formation.

Adding only labile N will not increase the SOM decomposition, and microbial N min-

ing mechanism strength remains weak since there is no labile C to utilize. Adding

labile C increases microbial N mining mechanism strength; consequently, more nutri-

ents from SOM are released, increasing microbial biomass production. Adding labile C

and N will increase the SOM decomposition at higher rates by rapidly increasing mi-
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crobial biomass and activities subject to the stoichiometric decomposition mechanism

(see Figure 2.3).

Measuring the robustness of the model will provide insightful performance on the

model’s predictions on SOM decomposition as information on the sensitivity of the

parameters used. The reliability of SOM dynamics predictions with respect to the

availability of labile substrates can be measured, and we may track down those crucial

parameters during the priming effect with a sensitivity analysis.

2.4.1 Sensitivity analysis

We perform a local sensitivity analysis to understand how significantly the parameters

used in the model affect SOM decomposition. Each parameter sensitivity index can

measure the relative importance of the parameters influencing SOM degradation. The

definition of the normalized forward sensitivity index is

γu
p :=

∂u

∂p
× p

u
, (2.14)

where u is the variable that depends differentiably on the parameter p. A forward

difference scheme is needed to compute the sensitivity index because of the absence of

an explicit solution of system (2.6). The numerical sensitivity index is

γu
p =

u(p+∆p)− u(p)

∆p
× p

u(p)
, (2.15)

where u(p) refers to the variable of interest dependent on the parameter p, and ∆p

should be a small quantity such as 1% of the default value of p. The sensitivity index

γu
p is a real number by which we can measure the relative importance of a parameter,

and the sign of this value is the positive (or negative) relationship concerning the

variable u.

We denote Γj
i as Cs(9) with the paramters given in Table 3.2 and the initial condi-

tions given in Table 2.3 but with N(0) = i and C(0) = j. We consider the variable

u = 1− Γj
i

Cs(0)
, (2.16)

to compute the sensitivity index for the percentage of SOM decomposed on the ninth

day for i = {0, 110} and j = {0, 500} to represent the different experimental treat-

ments. Thus, we can measure the importance of each parameter in our model for SOM
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decomposition predictions. The parameter’s positive (negative) relationship strength

depends on each soil treatment. The sensitivity analysis reveals the model’s robustness

and the positive (negative) strength of SOM decomposition on the ninth day of the

experiment. From Figure 2.4, it may be surprising that the parameter µs, associated

with slow-growing bacteria but predominant in SOM degradation, is more beneficial

to SOM conservation. Based on the data-fitting, the system is primarly Cs-limited,

but SOM decomposition under Ns-limitation was also investigated. We computed the

sensitivity index for these two circumstances, guaranteeing the model’s robustness for

different scenarios.
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Figure 2.4: Sensitivity Index (S.I.) for u = 1 − Γj
i/Cs(0) for i = {0, 100} and j =

{0, 500} of SOM decomposition when different treatments are considered. (Left panel):
S.I using parameters in Table 3.2. In this case, the system is Cs-Limited (Kfs <
KgsNs(0)/Cs(0)). (Right panel): S.I. when the system is Ns-Limited, i.e., we choose
Kfs such that Kfs > KgsNs(0)/Cs(0).

2.4.2 Numerical experiment: impact of Exogenous Labile C

and N in SOM decomposition

The addition of a combination of labile substrates controls the strength of the prim-

ing effect and, in consequence, increases atmospheric emissions of CO2 from soils in

short periods. The addition of only labile C increases SOM decomposition during the

laboratory experiment, and the decomposition is higher when exogenous labile C and

N are combined. We explore numerically how the combination of a single input of
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C(0) ∈ [0, 500] and N(0) ∈ [0, 30] at t = 0 influences SOM decomposition.

From Figure 2.5 (left panel), we show the relative SOM decomposition increment

when the combination of C(0) = j and N(0) = i is considered and compared to when

only C(0) = 500 is added as 1 − Γj
i/Γ

500
0 for i ∈ [0, 30] and j ∈ [0, 500]. Furthermore,

we show an optimal C:N ratio, represented by the red line in the same figure, initially

required to decompose SOM efficiently, minimizing the resources of labile substrates.

We also plot different curves generated by 1 − Γj
i/Γ

500
0 on the right panel of the same

figure when i =∈ [0, 30] and j = {0, 100, 200, ..., 500}. The red dots in each curve gen-

erate an optimal C:N≈ 26 ratio to decompose SOM efficiently, and they are represented

by maximum (i, j) such that |Γj
i − Γj

30| < εΓ500
0 for ε = 0.1. We choose the specified

interval for N(0) ∈ [0, 30] because adding larger labile N inputs does not change the

results qualitatively, suggesting that low input of labile N may have the same potential

to greatly impact SOM decomposition as high inputs of labile N .
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Figure 2.5: Impact of adding an initial single dose of labile N and C to soils during
SOM decomposition. (Left panel): Relative SOM decomposition increment when the
combination of C(0) = j and N(0) = i is considered and compared to when only
C(0) = 500 is added as 1 − Γj

i/Γ
500
0 . (Right panel): Different curves generated by

1−Γj
i/Γ

500
0 when i =∈ [0, 30] and j = {0, 100, 200, ..., 500}. The red line in both panels

is given by N(C) = C/25.83 and represents an optimal C:N initial ratio to maximize
SOM decomposition in terms of efficiency and is generated by a linear regression using
the points (i, j) such that |Γj

i − Γj
30| < εΓ500

0 for ε = 0.1.

We extend our results regarding the optimal C:N ratio inputs to maximize SOM

by considering different SOM carbon-to-nutrient ratios (Cs:Ns). By fixing the total

amount of carbon in SOM (Cs(0)), we estimate the labile C:N ratios required as initial
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amendments to decompose SOM efficiently in terms of the initial nutrient richness in

it (Ns(0)). In Figure 2.6, we can see that high (low) amounts of labile N will maximize

SOM decomposition for nutrient-rich (nutrient-poor) soils. These results show that the

C:N ratio to maximize SOM decomposition will depend on the dynamics that govern

SOM decomposition, that is, when SOM is Cs or Ns limited. If SOM dynamics are

strictly governed by Cs transients, then the optimal C:N ratio remains constant, but if

Ns transients govern it, then the optimal C:N ratio will increase linearly with respect

to the initial carbon-nutrient content in SOM.
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Figure 2.6: Optimal initial C:N ratio to decompose SOM efficiently with respect to the
SOM nutrient-richness ratio. The experimental reference is Cs(0) : Ns(0) = 15, and the
labile C:N ratio for labile substrates in the laboratory experiment was approximately
4.5. The optimal labile C:N ratio is constant for nutrient-rich soils, and it increases
linearly for nutrient-poor soils.

The expected time required for microbial communities to decompose SOM at its

highest rate (tM) will depend on the initial amendments and initial Cs:Ns ratio. We

compared the predicted time tM for two different amendments. Specifically we consider

only C(0) = 500, N(0) = 0 and when C(0) = 500, N(0) = 20 as an optimized

treatment. Also, we computed the percentage of SOM carbon decomposed relatively to

Cs(0) : Ns(0) ratios by the ninth day using the same amendments (see Figure 2.7). By

adding labile C and N , the tM is constant because the stoichiometric decomposition

mechanism is immediately at its highest, independent of SOM nutrient content. In

contrast, adding only labile C will increase the tM for nutrient-poor soils and remains

constant for nutrient-rich soils. The microbial N mining mechanisms will predominate
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for larger periods in nutrient-poor soils until enough nutrients are released from SOM

decomposition. The percentage of decomposed carbon in SOM at ninth day is constant

for nutrient-rich soils and will decrease for nutrient-poor soils. These results show that

the soil’s nutrient richness determines the time and strength of the priming effect.
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Figure 2.7: (Left panel): Time expected for the priming effect to occur, i.e., when mi-
crobial communities decompose SOM at its maximum rate. (Right panel): Percentage
of decomposed SOM by different treatments by the ninth day.

2.4.3 Numerical experiment: positive and negative priming
effect

The results from the laboratory experiments in [14] showed a positive priming effect

when Suc-C and Suc-C+min-N were added to soil samples. However, there was not a

significant statistical difference after adding min-N. Positive or negative priming effects,

i.e., increase or reduction of SOM decomposition after adding labile substrates respec-

tively, have been documented when N is added into soil samples [51]. For example,

in [38] it is stated that nitrogen depositions reduce SOM decomposition in temperate

forests.

In our model, the SOM degradation efficiency Kgs and Kfs are highly related rela-

tively to the cumulative SOM decomposition (see Figure 2.4). SOM priming depends

on the input of labile sources C and N , and microbial activities. However, microbial

activities also rely on their ability to uptake resources from SOM. To understand how

the SOM degradation efficiencies regulate the priming effect strength for two different

soil treatments, we propose the following numerical experiment by considering Kgs and
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Kfs as parameters.

We define SC = Cs(0) − Γ500
0 as our numerical experiment reference, and we com-

pute the difference with SCN(K) = Cs(0)− Γ500
20 but varying only K = Kfs (K = Kgs)

which is the half-saturation constant for fs (gs). In Figure 2.8, the positive (negative)

value indicates a negative (positive) priming effect concerning the different values of

the half-saturation constants. We suggest that the half-saturation for recalcitrant car-

bon and nitrogen saturating functions in SOM should not be considered a constant

but a function of other physical properties. In this way, the system will potentially

show negative priming effects even if the soils are treated with a combination of labile

compounds.
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Figure 2.8: Difference of cumulative decomposed SOM between soil treated with
C(0) = 500, N(0) = 0 (Γ500

0 ), and with C(0) = 500, N(0) = 20 (Γ500
20 ) varying Kfs (left

panel) and Kgs (right panel) on the ninth day. The parameters are taken as in Table
3.2. The initial conditions for other variables are considered as in Table 2.3. The model
is capable to reproduce positive (negative) priming effects depending on the value for
the half-saturation constant for fs and gs.

2.5 Discussion

The CO2 emissions derived from soils have been a subject of interest in the last years

due to the potential effects of global warming. In particular, sudden increments of

SOM decomposition rates in short periods derived from using labile substrates such

as fertilizers have gained attention, and different mechanisms have been proposed to

explain these increments over the last decades [51], [53]. Recently, a laboratory ex-

periment has supported combining the ‘microbial N mining’ and ‘stoichiometric de-

composition’ mechanism to explain this natural phenomenon named the priming effect
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[14]. Various mathematical models successfully model the priming effect by tracking

without considering both mechanisms and only tracking carbon pools. Incorporating

these mechanisms, as nitrogen dynamics, is needed to increase the accordance between

mathematical models and data measurements [8], [14]. Therefore, we proposed for the

first time the inclusion of both mechanisms to explain the priming effect as carbon and

nitrogen dynamics in a novel stoichiometric mathematical model.

The mathematical model in this work encompasses microbial utilization of different

labile and recalcitrant carbon and nitrogen pools to predict the strength of the priming

effect in soils with diverse SOM carbon and nutrient contents. Based on the laboratory

data adapted to validate the model, we were required to estimate those parameters that

were not available in the literature with 95% confidence. Our results predicted that

the carbon dynamics in SOM principally governed the laboratory experiment results.

Under this assumption and considering that the model is nutrient closed, simplifying

the model by tracking only carbon dynamics in SOM would be possible. However, SOM

degradation may be subject to nutrient content, and we considered that possibility in

our model predictions.

We validated our results and showed model prediction robustness through a local

sensitivity analysis. The laboratory experiment used abundant soil treatments in labile

carbon and nitrogen to produce the priming effect. However, we predicted an optimized

labile C:N ratio of approximately 26 would have the same results compared to C:N ratio

of 4.54 used for the experiment. This prediction assumes that soil amendments based

on only labile carbon are enough to produce the priming effect and increase by adding

labile nitrogen. Furthermore, we found that the optimized ratio of labile substrates

to decompose SOM efficiently remained constant for nutrient-rich soils and increased

for nutrient-poor soils. This result is comparable with the prediction in [29], which

predicted that nutrient-poor soils are more often subject to the priming effect than

nutrient-rich soils. Our results showed that less labile nitrogen input is needed to

maximize SOM decomposition in nutrient-poor soils. Studying how nutrient richness

in soils affects the model predictions, we found that in nutrient-rich soils, the priming

effect is likely to happen in short periods. Still, depending on the soil treatment, it
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may be delayed and weakened in nutrient-poor soils. Finally, given the sensitivity

analysis, we determined that the SOM degradation efficiency determines the increase

or reduction of the priming effect on this model, which can be correlated with other

physical properties like temperature [22], for example.

This model still has limitations. First, the assumption for the function that mod-

ulates SOM decomposition mechanisms is heuristic, and predictions could improve by

using mechanistic fundamentals. Second, the CO2 emissions, when only carbon is used

as a soil treatment, still present inaccuracies at the beginning of the simulation. The

heuristic function that modulates both mechanisms may still be improved to produce

better results without compromising its use to modulate the mechanisms behind the

priming effect. The model also suggests that the SOM degradation efficiencies should

be considered parameters, not constants, for general situations. Otherwise, the model

may not accurately represent the negative priming effect. Another limitation is that

the model is robust for short periods and is based on the assumption that it is nu-

trient closed. However, these issues will open more research directions, for example,

considering the nutrient uptake by plants, SOM decomposition for larger periods and

continuous or periodic inputs of labile substrates.
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Chapter 3

Rhizosphere dynamics under
simplified soil health indicators

3.1 Introduction

Excessive use of fertilizers in terrestrial systems directly impacts the soil, water and

air quality through nitrate leaching, eutrophicating lakes and potentially increasing

cyanobacteria blooms, and emitting greenhouse gases such as N2O emissions [60], [100].

Reducing its use and ensuring increased crop yields are major global challenges in

which understanding the beneficial interactions between plants and the rhizosphere

microbiome is required [68], [87]. These interactions are derived through plant rhi-

zodeposits when the scarcity of nutrients in soil limits plants’ development, and it en-

compass a dynamic relationship between terrestrial carbon and nitrogen cycles, which

can result in plant health promotion and fitness [16], [58]. However, current laboratory

methodologies to study the rhizosphere and microbial interactions with soils involve

destructive sampling, difficulting its understanding [33]. Thus, developing new tools,

including mechanistic mathematical models, are necessary to provide more or possibly

new insights into terrestrial processes.

In terrestrial processes, mineral nutrients usually limit plant growth in terrestrial

ecosystems, and specific microbial communities can increase their bioavailability in

soils by mineralizing soil organic matter (SOM) [63], [68]. Under nutrient limitation

conditions, plants can supply microbes with rich labile substrates in the rhizosphere,

promoting their growth and activities [26], [40]. In exchange, microbes are expected
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to increase the nutrient bioavailability by mineralizing SOM, especially nitrogen (N),

the principal limiting nutrient in soils [9], [84]. The root exudates, or rhizodeposits,

are part of plants’ mechanisms that may promote their development [60]. However, it

may also increase the competition between plants and soil microorganisms for nutrient

availability [50]. Microbes immobilize labile substrates in soils to satisfy their stoichio-

metric constraints for growth, decreasing nutrients required for plant growth [56], [83].

Still, under certain soil conditions, they might also promote nutrient bioavailability by

degrading SOM at an increased rate [49], [68].

Rhizodeposits are a mixture of labile substrates that include carbon, nitrogen, phos-

phorous, etc., which plants exude through their roots depending on different environ-

mental features and soil health indicators [50], [60]. Soil health is defined by the

National Resources Conservation Services features (NRCS) as “The capacity of the

soil to function as a vital living ecosystem that supports plants, animals and humans.”

It is a broader term containing soil quality, which is used to establish soil N availability,

soil structural stability, SOM carbon-to-nitrogen contents and microbial activities, to

mention a few, as soil health indicators [84]. The importance of connecting soil health

indicators to plant rhizodeposition relies on a better understanding of the symbiotic

relationship between plants and microbes, providing knowledge and guidance on how

fertilizers impact soils [9], [15], [32].

Plants can contribute to microbial growth, and uncertainties arise regarding increas-

ing or immobilizing nutrient bioavailability under different soil features, which are still

to be explored [60], [68]. Diverse soil microorganisms exist in the rhizosphere, including

principal slow-growth SOM decomposers microorganisms (oligotrophs) and fast-growth

and labile substrate decomposers microorganisms (copiotrophs) [65]. Oligotrophs are

more suitable to survive in low soil nutrient bioavailability due to their capability to

decompose SOM in such harsh conditions. On the contrary, copiotroph bacteria are

rapid-growth microorganisms highly dependent on labile substrate availability but in-

efficient SOM decomposers [33]. These microbial communities are essential for plant

survival in temperate forests, for example, in which plants release root exudates to

promote their growth and retrieve essential nutrients derived from microbial SOM de-
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composition [14], [16], [60]. However, plant growth may be affected if the microbial

stoichiometry growth demands are satisfied and the soil health has deteriorated [43],

[56], [83].

Experimentally tracking rhizodeposition’s indirect influence on SOM mineraliza-

tion is challenging due to destructive laboratory methods to obtain data samples from

soil-root-microbes systems or because of instrument limitations to measure microbial

biomass and its dynamics [33]. Now, soil health indicators, a broader term that includes

soil quality, characterizes the environmental functioning between plants and microbes,

and its features depend on soil physicochemical properties, including carbon and nitro-

gen storage, soil infiltration and nutrients cycle [31], [84]. More than two hundred SOM

models have been published since 1930, and the CENTURY model and its different

versions are the most cited since 1980 [12]. These models vary in different timescales

or hypotheses and may include macronutrient pools like carbon, nitrogen, and phos-

phorous dynamics and soil features like temperature, infiltration, etc. However, their

approach is mostly based on statistical or empirical dynamics that may include several

first-order equations to be handled [10], [39], [45], [64], [66], [67], [90]. Including mech-

anistic processes could benefit these models when specific soil fractions and dynamics

based on dynamical microbial activities under stoichiometric restrictions are available

[14], [83], [96]. Furthermore, given their importance in the agricultural sector, these

models focus principally on carbon pools, and incorporating rhizodeposits’ interactions

with microbial communities under soil health indicators will provide valuable missing

insights [8], [34], [56].

This work proposes a stoichiometric mathematical model to understand rhizosphere

interactions between the plants and soil microbes’ symbiotic relationship in a simpli-

fied terrestrial system. To substantially contribute to current SOM model efforts, the

mechanisms in this model are related to labile nitrogen bioavailability as a limiting

nutrient and simplified soil health indicators. The mechanistic model in this work con-

siders soil infiltration rate, related to soil structural stability, SOM carbon-to-nitrogen

content as the major pool of recalcitrant nutrients, and general microbial activities

which degrade SOM to release and increase nutrients bioavailability. The model core is
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based on a previous data-validated mathematical model [96]. However, in this model,

we simplify SOM dynamics to incorporate soil health indicators, reducing the model

complexity and allowing a mathematical analysis that establishes a new background

to determine how soil features directly affect plants’ use of rhizodeposition for their

health promotion and fitness through numerical experiments.

3.2 Mathematical model

We propose the following mathematical model to study rhizodeposition impacts on

soils, considering some crucial soil health indicators in a soil-plant-microbial system,

such as microbial activities, soil infiltration and SOM C/N content [84]. However,

we assume a continuously replenishing undecayed organic material to keep the model

simple, which may be reasonable for short or even long periods in different scenarios,

including in some actively agricultural soil [44]. In this context, our model assumes

the SOM carbon-to-nutrient ratio remains unchanged, allowing us to measure the rhi-

zodeposition effects on microorganisms’ SOM mineralization directly.

The microbial biomass rate of change depends on the bioavailability of labile com-

pounds and their capacity to mineralize recalcitrant nutrients found in SOM [7], [14].

This limitation is given stoichiometrically using Liebig’s law and the ability of microbes

to use part of the labile C to mineralize SOM, satisfying their growth requirements

[83]. Then,

B′ =
(
µc min{f(N), g(C)}+ µΓΓ(Cs, Ns)H(C)

)
B︸ ︷︷ ︸

intrinsic simplified growth

− ϵB︸︷︷︸
death

− lB︸︷︷︸
respiration

, (3.1)

where Cs ≥ 0 and Ns ≥ 0 are SOM carbon and nitrogen pools. We consider 0 ≤

Γ(Cs, Ns) ≤ 1 as a constant since we assume unchanged SOM content in soil for

this model. The first two terms on the right-hand side correspond to the intrinsic

growth rate of copiotrophs and oligotrophs microorganisms, respectively [33], [96].

The parameter µc is the maximum growth rate when labile C are N are abundant,

allowing fast-growth bacteria to proliferate. The maximum growth rate of slow-growth
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bacteria, capable of decomposing SOM more efficiently, is given by µΓ [96]. However,

since we assume unchanged SOM content for simplification, we will rewrite part of the

second term as µs = µΓΓ(Cs, Ns), allowing us to study soil-plant-microbes dynamics

by a free parameter that represents part of soil health indicators, determining the

microbial SOM degradation rate implicitly [61]. Since we are differentiating slow-

and fast-growing bacteria, the bacterial maximum growth rate is assumed to satisfy

µs < µc [14], [49]. The last two terms represent microbial communities’ natural death

and respiration rate. It is considered that the microbial respiration rate is greater

than the microbial death rate (l > ϵ), and the maximum growth rate for rapid-growth

bacteria is higher than the respiration rate and death rate (µc > l + ϵ). Otherwise,

microbial communities’ survival would be compromised independently of the amount

of available sources.

The dynamics of the labile carbon pool will consider both organic carbon available

for microorganisms from external sources, such as manure, and plant’s derived labile

carbon from rhizodeposition. In this way,

C ′ = − µc

r
min{f(N), g(C)}B︸ ︷︷ ︸

labile carbon decomposition

+ ϵB︸︷︷︸
carbon recycling

+ P in(N)︸ ︷︷ ︸
C-rhizodeposition

− d1C︸︷︷︸
carbon loss

, (3.2)

where 0 < r < 1 determines the yield conversion of C to the microbial biomass and

ϵ > 0 represents the immediate labile carbon recycling to the system by natural mi-

croorganisms death rate [97]. In the third term, we include the labile carbon input from

the plant’s roots to the soil or carbon rhizodeposit. Note that plants use rhizodeposits

as a trade-off to promote microbial growth, thus increasing the SOM mineralization

and the release of available nutrients (N) for their benefit [9], [68]. The rhizodeposits

amount depends on different soil and atmospheric features, such as light intensity, tem-

perature, pH, moisture, etc. [33]. For simplicity, we consider only the available labile

N as the plant driver to input rhizodeposits and promote microbial activities [43], [71].

The last term represents the labile C loss rate determined by soil infiltration as a soil

health indicator [56], [84].

The nitrogen soil cycle complexity is simplified as labile N , easily uptaken by mi-

crobial communities and plants. In this model, nitrogen dynamics are given by
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N ′ =− θµc min{f(N), g(C)}B︸ ︷︷ ︸
nutrient immobilization

+ θ(ϵ+ l)B︸ ︷︷ ︸
nutrient recycling

+

(θs − θ)µΓ
sΓ(Cs, Ns)H(C)min{fs(Ns), gs(Cs)}B︸ ︷︷ ︸

nutrient exudation from SOM minerealization

+

θpP
in(N)︸ ︷︷ ︸

N -rhizodeposition

−
(
P out(N) + d1N

)︸ ︷︷ ︸
N -plant uptake and -infiltration

, where θs > θ.

(3.3)

The first term tracks the nutrient uptake from microbial communities to satisfy

their stoichiometric requirements to growth, and θ represents the nitrogen-to-carbon

conversion ratio and is assumed constant since strict homeostasis for microbes is as-

sumed [83], [98], [99]. This term refers to nutrient immobilization since microbes use

and hold labile N to produce biomass, making it unavailable for plants [33]. The second

term assumes the nutrient recycling to be immediately available due to mass-specific

death and respiration rates [2], [46]. The third term tracks the microbial nutrient ex-

udation due to SOM mineralization, which is enhanced by the available labile C and

directly relates to the priming effect if it is considered, especially possible when Cs and

Ns pools are tracked [96]. We also consider θs as a constant parameter to keep the

model simple [28], [85]. The last terms correspond to plant rhizodeposition, given by

the nitrogen-to-carbon ratio parameter θp, labile N plant uptake and nutrients leaching

to underground water [16], [60], [68]. For this model, it is assumed that the rhizodeposit

function satisfies that 0 ≤ P in(N), and P in(N)′ < 0.

Therefore, our model to study the rhizodeposition effects to microbial communities

with simplified SOM mineralization dynamics is proposed as

B′ =(µc min {f(N), g(C)}+ µsH(C))B − (ϵ+ l)B,

C ′ =− µc

r
min {f(N), g(C)}B + ϵB + P in(N)− d1C,

N ′ =− θµc min {f(N), g(C)}B + θ(ϵ+ l)B + (θs − θ)µsH(C)B+

θpP
in(N)− (P out(N) + d1N),

(3.4)

where the functions f(N), g(C) and P out(N) follows the Monod form,

f(N) =
N

Kf +N
, g(C) =

C

Kg + C
, P out(N) = αout N

βN +N
, (3.5)
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and αout is the plant maximum nutrient uptake rate and Kf , Kg and βN are half

saturation constants (H.S.C) for their respective functions [82], [97]. The function

H(C), which modulates the microbial SOM mineralization mechanism [96], takes the

form as

H(C) = 1− C

Kh + C
. (3.6)

Finally, plant rhizodeposits exponentially decay with respect to the root length, and it

may be diffused over the soil matrix, which plants have no control over. However, the

net input of labile compounds close to the rhizosphere is higher in order of magnitude

than its diffusion [26], [40]. Therefore, the plant rhizodeposition, which depends on

nutrient N availability in soils, we propose it as

P in(N) = αine−βcN , (3.7)

to remain consistent with the literature, where αin > 0 is the maximum labile C input

rate and βc is a unidimensional parameter that modulates the rhizodeposit rate.

3.3 Model analysis

Our model simplifies the soil-plant-microbial carbon and nitrogen dynamics, and in

this section, we rigorously investigate its mathematical behaviour. Feasible biologi-

cal interpretations can be achieved by first demonstrating the model’s well-posedness

through its positivity and soundness. Also, the model’s long-term behaviour is assessed

by exploring all potential steady states and their local stability. Furthermore, we es-

tablish criteria for the extinction and persistence of rhizosphere microbiomes, allowing

us to study our model prediction outcomes.

For our mathematical analysis, we define

L1 = 2(µs + ϵr − ϵ− l) + d1,

L2 = 2θs(ϵ+ l)− d1(θs − θ).
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3.3.1 Positivity and boundedness

Consider the following region Ω as

Ω = {(B,C,N) : B > 0, C > 0, N > 0}

Theorem 1. Solutions of (3.4) with initial conditions in the Ω remain there for all

forward time. Furthermore,

if L1 ≤ 0, then Ω ∩ {(B,C,N) : 1
r
B(t) + C(t) < 2αin

d1
} is invariant for system (3.4);

if L2 ≤ 0, then Ω ∩ {(B,C,N) : (θ − θs)B(t) +N(t) < θp
2αin

d1
} is invariant for system

(3.4);

if 1
r
L1 + L2 ≤ 0, then Ω ∩ {(B,C,N) :

(
1
r
− (θs − θ)

)
B(t) + C(t) +N(t) < 2αin(1+θp)

d1
}

is bounded and invariant for system (3.4).

Proof. Assume S(t) = (B(t), C(t), N(t)) is a solution of system (3.4) with S(0) ∈ Ω

and t1 > 0 is the first time that S(t) touches or crosses the boundary of Ω. We will

prove the theorem by contradiction arguments from six cases.

Case 1. B(t1) = 0.

dB

dt
= (µc min {f(N), g(C)}+ µsH(C))B − (ϵ+ l)B

≥ −(ϵ+ l)B

≡ δ1B, ∀t ∈ [0, t1],

where δ1 is a constant. Thus, B(t1) ≥ B(0)eδ1t1 > 0 holds, which contradicts with

B(t1) = 0. Therefore, S(t1) can not reach this boundary.

Case 2. C(t1) = 0. Let B̂ = max
t∈[0,t1]

B(t).

dC

dt
= −µc

r
min {f(N), g(C)}B + ϵB + P in(N)− d1C

≥ −µc

r
g(C)B − d1C

= −µc

r

C

Kg + C
B − d1C

≥ −

(
µc

r

B̂

Kg

+ d1

)
C

≡ δ2C, ∀t ∈ [0, t1],
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where δ2 is a constant. Thus, C(t1) ≥ C(0)eδ2t1 > 0 holds, which contradicts with

C(t1) = 0. Therefore, S(t1) can not reach this boundary.

Case 3. N(t1) = 0.

dN

dt
≥ −θµc min {f(N), g(C)}B − (P out(N) + d1N)

≥ −θµcf(N)B −
(

αout

βN +N
+ d1

)
N

≥ −

(
θµcB̂

Kf

+
αout

βN

+ d1

)
N

≡ δ3N, ∀t ∈ [0, t1],

where δ3 is a constant. Thus, N(t1) ≥ N(0)eδ3t1 > 0 holds, which contradicts with

N(t1) = 0. Therefore, S(t1) can not reach this boundary.

Case 4. 1
r
B(t1) + C(t1) =

2αin

d1
.

Let

y1(t) =
1

r
B(t) + C(t). (3.8)

Since L1 = 2(µs + ϵr − ϵ− l) + d1 ≤ 0, then ∀t ∈ [0, t1],

d

dt
y1(t) ≤

(
µs

r
+ ϵ− ϵ+ l

r

)
B + αin − d1C

≤ −d1
2
y1(t) + αin.

Hence,

y1(t) ≤
2αin

d1
+

(
y1(0)−

2αin

d1

)
e−

d1
2
t <

2αin

d1
. (3.9)

Therefore, S(t1) can not go across this boundary.

Case 5. (θ − θs)B(t1) +N(t1) =
2αinθp

d1
.

Let

y2(t) = (θ − θs)B(t) +N(t).

Since L2 = 2θs(ϵ+ l)− d1(θs − θ) ≤ 0, then ∀t ∈ [0, t1],

d

dt
y2(t) ≤ θs(ϵ+ l)B − d1N + αinθp

≤ −d1
2
y2(t) + αinθp.
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Hence,

y2(t) ≤
2αinθp
d1

+

(
y2(0)−

2αinθp
d1

)
e−

d1
2
t <

2αinθp
d1

.

Therefore, S(t1) can not cross this boundary.

Case 6.
(
1
r
− (θs − θ)

)
B(t1) + C(t1) +N(t1) =

2αin(1+θp)

d1
.

Let

y3(t) =

(
1

r
− (θs − θ)

)
B(t) + C(t) +N(t). (3.10)

Then,

d

dt
y3(t) ≤

(
1

r
µs + ϵ− (ϵ+ l)

(
1

r
− θs

))
B + αin(1 + θp)− d1(C +N).

Since 1
r
L1 + L2 ≤ 0,

1

r
µs + ϵ− (ϵ+ l)

(
1

r
− θs

)
≤ −d1

2

(
1

r
− (θs − θ)

)
.

It follows that,

d

dt
y3(t) ≤ −d1

2

(
1

r
− (θs − θ)

)
B − d1

2
(C +N) + αin(1 + θp)

= −d1
2
y3(t) + αin(1 + θp).

Then, ∀t ∈ [0, t1],

y3(t) ≤
2αin(1 + θp)

d1
+

[
y3(0)−

2αin(1 + θp)

d1

]
e−

d1
2
t <

2αin(1 + θp)

d1
. (3.11)

Therefore, S(t1) can not cross this boundary, completing the proof.

We proved the positivity of the system (3.4) by showing the set Ω is invariant in

Theorem 1. This guarantees that our system is biologically meaningful. Moreover,

with additional conditions, the system is invariant in even smaller sets. We now prove

the dissipativity of the system, i.e. these sets can not only be invariant but also attract

all solutions.

Theorem 2. Suppose the initial value (B(0), C(0), N(0)) ∈ Ω.

(a) If L1 ≤ 0, then lim sup
t→∞

B(t) ≤ 2rαin

d1
, and lim sup

t→∞
C(t) ≤ 2αin

d1
.

(b) If 1
r
L1+L2 ≤ 0 and 1

r
−(θs−θ) > 0, then the system (3.4) is dissipative. Moreover,

lim sup
t→∞

B(t) ≤ 2rαin(1+θp)

d1(1−r(θs−θ))
, lim sup

t→∞
C(t) ≤ 2αin(1+θp)

d1
, and lim sup

t→∞
N(t) ≤ 2αin(1+θp)

d1
.
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Proof. By (3.8) and (3.9) if L1 ≤ 0, we have

y1(t) =
B(t)

r
+ C(t)

≤ 2αin

d1
+

(
y1(0)−

2αin

d1

)
e−

d1
2
t

≡ 2αin

d1
+ C1e

− d1
2
t,

where C1 is a constant. Hence,

lim sup
t→∞

B(t)

r
+ C(t) ≤ 2αin

d1
.

Moreover, by Theorem 1, ∀ t ≥ 0, B(t) > 0, C(t) > 0, then

lim sup
t→∞

B(t) ≤ 2rαin

d1
,

lim sup
t→∞

C(t) ≤ 2αin

d1
.

By (3.10) and (3.11), if 1
r
L1 + L2 ≤ 0, we have

y3(t) =

(
1

r
− (θs − θ)

)
B(t) + C(t) +N(t)

≤ 2αin(1 + θp)

d1
+

[
y3(0)−

2αin(1 + θp)

d1

]
e−

d1
2
t

≡ 2αin(1 + θp)

d1
+ C2e

− d1
2
t,

where C2 is a constant. Hence,

lim sup
t→∞

(
1

r
− (θs − θ)

)
B(t) + C(t) +N(t) ≤ 2αin(1 + θp)

d1
.

Similarly, since ∀ t ≥ 0, B(t) > 0, C(t) > 0, N(t) > 0, and 1
r
− (θs − θ) > 0, then

lim sup
t→∞

B(t) ≤ 2rαin(1 + θp)

d1(1− r(θs − θ))
,

lim sup
t→∞

C(t) ≤ 2αin(1 + θp)

d1
,

lim sup
t→∞

N(t) ≤ 2αin(1 + θp)

d1
.

This completes the proof.
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3.3.2 Equilibria

After determining the invariant set of our model (3.4), we can study how different soil

health indicators and rhizodeposition affect simplified soil systems from a mathematical

point of view. First, we start examining the model steady-states and their stability.

Consider the system

0 = (µcmin∗ + µsH(C∗))B∗ − (ϵ+ l)B∗, (3.12a)

0 =− µc

r
min∗B∗ + ϵB∗ + P in(N∗)− d1C

∗, (3.12b)

0 =− θµcmin∗B∗ + θ(ϵ+ l)B∗ + (θs − θ)µsH(C∗)B∗+

θpP
in(N∗)− (P out(N∗) + d1N

∗). (3.12c)

with positive parameters, and we denote min∗ := min {f(N∗), g(C∗)}, where the su-

perscript (∗) indicates the generic steady state of each variable. We discuss the possible

equilibrium points as follows:

(a) Let B∗ = 0, and denote E0 = (0, C∗
0 , N

∗
0 ) the boundary steady state. From

equation(3.12c), it is possible to compute N∗
0 as

d1N
∗
0 = θpP

in(N∗
0 )− P out(N∗

0 ), (3.13)

where N∗
0 > 0 if θpP

in(N∗
0 ) > P out(N∗

0 ). Given last condition is satisfied, then

C∗
0 is directly computed by equation (3.12b),

C∗
0 =

P in(N∗
0 )

d1
, (3.14)

which is positive.

(b) Denote the first internal equilibrium as E1 = (B∗
1 , C

∗
1 , N

∗
1 ) where B∗

1 , C
∗
1 , N

∗
1 > 0

and assume g(C∗
1) ≤ f(N∗

1 ), i.e. min∗ = g(C∗). Consider C∗
1 the unique solution

of (3.12a), which exists and is unique since it is assumed that µc > ϵ + l, and

using equation (3.12b) we describe B∗
1 in terms of N∗

1 as

B∗
1(N

∗
1 ) =

d1C
∗
1 − P in(N∗

1 )

ϵ− 1
r
µcg(C∗

1)
, (3.15)
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where ϵ − 1
r
µcg(C

∗
1) > 0 (ϵ − 1

r
µcg(C

∗
1) < 0) and d1C

∗
1 − P in(N∗

1 ) > 0 (d1C
∗
1 −

P in(N∗
1 ) < 0). Note that if we consider C∗

u such that ϵ − 1
r
µcg(C

∗
u) = 0, then

H(C∗
u) = (ϵ(1 − r) + l)(µs)

−1 from equation (3.12a), and g(C∗
u) = H(C∗

u) must

be satisfied. This relationship leads to the following expression µs = (ϵ(1− r) +

l)(rϵ)−1µc, contradicting our assumption for µs < µc since ϵ(1− r)(rϵ)−1 > 0 and

l > ϵ > ϵr. Therefore, we can determine that C∗
u is unfeasible from a biological

perspective. Using equation (3.12c), N∗
1 is given implicitly by

N∗
1 =

1

d1

[
θsµsH(C∗

1)

(
d1C

∗
1 − P in(N∗

1 )

ϵ− 1
r
µcg(C∗

1)

)
+ θpP

in(N∗
1 )− P out(N∗

1 )

]
, (3.16)

where θsµsH(C∗
1)(d1C

∗
1 − P in(N∗

1 ))(ϵ − µcg(C
∗
1))

−1 + θinp (N∗
1 ) > P out(N∗

1 ) must

be satisfied to guarantee N∗
1 remains positive.

(c) Considering f(N∗
2 ) ≤ g(C∗

2), or min∗ = f(N∗), and defining E2 = (B∗
2 , C

∗
2 , N

∗
2 )

where B∗
2 , C

∗
2 , N

∗
2 > 0, let

µcf(N
∗
2 ) + µsH(C∗

2) = ϵ+ l, (3.17)

from equation (3.12a), which have a unique solution since µc > ϵ + l. From

equation (3.12c), we can compute B∗
2 in terms of N∗

2 as

B∗
2(N

∗
2 ) =

P out(N∗
2 ) + d1N

∗
2 − θpP

in(N∗
2 )

θs(ϵ+ l − µcf(N∗
2 ))

, (3.18)

where P out(N∗
2 )+d1N

∗
2 −θpP

in(N∗
2 ) > 0 (P out(N∗

2 )+d1N
∗
2 −θpP

in(N∗
2 ) < 0) and

θs(ϵ+ l − µcf(N
∗
2 )) > 0 (θs(ϵ+ l − µcf(N

∗
2 )) < 0). Note that if ϵ+ l = µcf(N

∗
u)

for some N∗
u , then µsH(C∗

u) = 0, which leads to C∗
u → ∞, which is biologically

unfeasible. Then C∗
2 can be calculated in terms of N∗

2 from (3.12b) as

C∗
2(N

∗
2 ) =

1

rd1

[
(−µcf(N

∗
2 ) + rϵ)

(
P out(N∗

2 ) + d1N
∗
2 − θpP

in(N∗
2 )

θs(ϵ+ l − µcf(N∗
2 ))

)
+ rP in(N∗

2 )

]
,

(3.19)

where −µcf(N
∗
2 )+ rϵ > 0 or rP in(N∗

2 ) > (µcf(N
∗
2 )− ϵr)B∗

2(N
∗
2 ). In this way, N∗

2

can be calculated implicitly by equation (3.12a), or

µcf(N
∗
2 ) + µsH(C∗

2(N
∗
2 )) = ϵ+ l. (3.20)
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Remark. It is possible to find a parameter set such that both internal equilibria

coexist, satisfying f(N∗) = g(C∗) simultaneously (see Figures 3.4a, 3.5). Also,

we assume positive parameters, which leads to C∗ > 0 or N∗ > 0.

Our model suggests that two internal equilibria may coexist, determined by the avail-

ability of labile compounds in the system and the ability of microbes to mineralize

SOM to extract required nutrients. These internal steady states represent the sym-

biotic relationship between plants and microbial communities, whereas the boundary

equilibrium represents the inability of soils to sustain microorganisms actively.

3.3.3 Stability analysis

We analyzed the existence of a boundary steady state and two possible internal steady

states of (3.4) in the last section. The existence is related to diverse model parameters,

including the soil health indicators (µs and d1) and the nitrogen-carbon rhizodeposition

ratio (θp) [56]. In this section, we study the stability of these steady states.

The Jacobian matrix of (3.4) at E0 is given by

J

∣∣∣∣
E0

=

 µc min∗ +µsH(C∗
0)− (ϵ+ l) 0 0

−1
r
µc min∗ +ϵ −d1 P in(N∗

0 )
′

−θµc min∗ +(θs − θ)µsH(C∗
0) + θ(ϵ+ l) 0 θpP

in(N∗
0 )

′ − (P out(N∗
0 )

′ + d1)

 .

Its characteristic polynomial follows as

0 = (−d1 − λ)(µcmin∗ + µsH(C∗
0)− (ϵ+ l)− λ)(θpP

in(N∗
0 )

′ − (P out(N∗
0 )

′ + d1)− λ),

where P in(N∗
0 )

′ < 0 and P out(N∗
0 )

′ > 0. The boundary equilibrium E0 = (0, C∗
0 , N

∗
0 ) is

locally asymptotically stable (L.A.S.) if and only if

µc min{f(N∗
0 ), g(C

∗
0)}+ µsH(C∗

0)− (ϵ+ l) < 0. (3.21)

For possible internal equilibria, consider first E1 where g(C∗
1) < f(N∗

1 ). The Jaco-

bian matrix evaluated at this steady state is given by

J

∣∣∣∣
E1

=

µcg(C
∗
1) + µsH(C∗

1)− (ϵ+ l) (µcg
′(C∗

1) + µsH
′(C∗

1))B
∗
1 0

−1
r
µcg(C

∗
1) + ϵ −d1 +

1
r
µcg

′(C∗
1)B

∗
1 P in(N∗

1 )
′

Jα1 Jα2 θpP
in(N∗

1 )
′ − (P out(N∗

1 )
′ + d1)

 ,
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where Jα1 = −θµcg(C
∗
1) + (θs − θ)µsH(C∗

1) + θ(ϵ + l), Jα2 = (−θµcg
′(C∗

1) + (θs −

θ)µsH
′(C∗

1))B
∗
1 . Its characteristic polynomial is

0 = a0λ
3 + a1λ

2 + a2λ+ a3, (3.22)

where,

a0 =1,

a1 =2d1 +
1

r
B∗

1µcg
′(C∗

1)− θpP
in(N∗

1 )
′ + P out(N∗

1 )
′,

a2 =
1

r

[
B∗

1µsH(C∗
1)

′
(
− ϵr + µcg(C

∗
1) + r(θ − θs)P

in(N∗
1 )

′
)
+

B∗
1µcg

′(C∗
1)

(
d1 + l + ϵ(1− r)− µsH(C∗

1) + (rθ − θp)P
in(N∗

1 )
′ + P out(N∗

1 )
′
)
+

d1r(d1 − θpP
in(N∗

1 )
′ + P out(N∗

1 )
′)

]
,

a3 =− 1

r
B∗

1

[
µcµs

{
H(C∗

1)g
′(C∗

1)− g(C∗
1)H

′(C∗
1)

}(
d1 + (rθs − θp)P

in(N∗
1 )

′ + P out(N∗
1 )

′
)
−

µc(l + ϵ(1− r))g′(C∗
1)

(
d1 − θpP

in(N∗
1 )

′ + P out(N∗
1 )

′
)
+

µsrH
′(C∗

1)

({
(ϵ+ l)θs − ϵθp

}
P in(N∗

1 )
′ + ϵ(d1 + P out(N∗

1 )
′)

)]
.

(3.23)

Note that g′(C∗
1) ≥ 0, H ′(C∗

1) ≤ 0, P in(N∗
1 )

′ < 0 and P out(N∗
1 )

′ ≥ 0. Therefore, this

internal steady state is L.A.S. if and only if a2, a3 > 0 and a1a2 > a3 by the Routh-

Hurwitz criterion [18]. In fact, assuming a2, a3 > 0, we can reduce and denote the

condition a1a2 − a3 > 0 equivalently as

ξ0(B
∗
1)

2 + ξ1B
∗
1 + ξ2 > 0, (3.24)

41



where

ξ0 =
µc

r2

[
µcg

′(C∗
1)
(
d1 − ϵr + ϵ+ l + (rθ − θp)P

in(N∗
1 )

′ + P out(N∗
1 )

′)+ (3.25a)

µs

(
H ′(C∗

1)
(
µcg(C

∗
1)− ϵr + r(θ − θs)P

in(N∗
1 )

′)− µcH(C∗
1)g

′(C∗
1)

)]
,

ξ1 =
1

r

[
µcg

′(C∗
1)

(
µsH(C∗

1)
(
rθsP

in(N∗
1 )

′ − d1
)
+ d1(3d1 − ϵr + ϵ+ l)+ (3.25b)

P in(N∗
1 )

′(rθ − 2θp)
(
2d1 + P out(N∗

1 )
′)+ 4d1P

out(N∗
1 )

′ + θpP
in(N∗

1 )
′2(θp − rθ)+

P out(N∗
1 )

′2
)
+ µsH

′(C∗
1)

{
µcg(C

∗
1)
(
d1 − rθsP

in(N∗
1 )

′)+ rP in(N∗
1 )

′
(
2d1(θ − θs)+

θs(ϵ+ l) + θp(θs − θ)P in(N∗
1 )

′ + (θ − θs)P
out(N∗

1 )
′
)
− d1ϵr

}]
,

ξ2 =d1
(
d1 − θpP

in(N∗
1 )

′ + P out(N∗
1 )

′) (2d1 − θpP
in(N∗

1 )
′ + P out(N∗

1 )
′) . (3.25c)

In a biological context, the inequality (3.24) can be positively related to soil infiltration

rate d1 since ξ2 > 0, i.e., plant-microbial interactions will remain stable when soil infil-

tration is sufficient under a simplified soil system. Moreover, as a soil health indicator,

the SOM degradation rate µs may implicitly affect these interactions, and numerical

simulations are needed for further exploration.

For the internal equilibrium E2 satisfying f(N∗
2 ) < g(C∗

2), the jacobian matrix is

J

∣∣∣∣
E2

=

µcf(N
∗
2 ) + µsH(C∗

2)− (ϵ+ l) µsH
′(C∗

2)B
∗
2 µcf

′(N∗
2 )B

∗
2

−1
r
µcf(N

∗
2 ) + ϵ −d1 −1

r
µcf

′(N∗
2 )B

∗
2 + P in(N∗

2 )
′

Jβ1 Jβ2 Jβ3

 ,

where

Jβ1 =− θµcf(N
∗
2 ) + µs(θs − θ)H(C∗

2) + θ(ϵ+ l),

Jβ2 =µs(θs − θ)H ′(C∗
2)B

∗
2 ,

Jβ3 =− θµcf
′(N∗

2 )B
∗
2 + θpP

in(N∗
2 )

′ − (P out(N∗
2 )

′ + d1).

The characteristic polynomial evaluated at this steady state is given by

0 = b0λ
3 + b1λ

2 + b2λ+ b3, (3.26)
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where,

b0 =1,

b1 =2d1 + θµcf
′(N∗

2 )B
∗
2 − θpP

in(N∗
2 )

′ + P out(N∗
2 )

′,

b2 =− 1

r

[
µcf

′(N∗
2 )B

∗
2

(
− d1rθ + µsrθsH(C∗

2)− µs(θs − θ)H ′(C∗
2)B

∗
2

)
+

µsH
′(C∗

2)B
∗
2

(
ϵr − µcf(N

∗
2 ) + r(θs − θ)P in(N∗

2 )
′
)

− d1r(d1 − θpP
in(N∗

2 )
′ + P out(N∗

2 )
′)

]
,

b3 =− 1

r
µsB

∗
2

[
d1µcrθsH(C∗

2)f
′(N∗

2 ) +H ′(C∗
2)

(
d1ϵr − d1µcf(N

∗
2 )−

µc(l + ϵ(1− r))θsf
′(N∗

2 )B
∗
2 +

{
(ϵ+ l)rθs − ϵrθp+

µc(−rθs + θp)f(N
∗
2 )

}
P in(N∗

2 )
′
)]

.

(3.27)

Therefore, an internal equilibria E2 = (B∗
2 , C

∗
2 , N

∗
2 ) is L.A.S. if and only if b2, b3 > 0

and b1b2 > b3 by Routh-Hurwitz criterion [18]. Taking in account the condition b2 > 0,

assuming b3 > 0 and b1b2 > b3, we can express it as d1η1 − µsη0 > 0, where

η0 =B∗
2

[
−H ′(C∗

2)

(
(θs − θ)

(
B∗

2µcf
′(N∗

2 )− rP in(N∗
2 )

′)+ (3.28a)

µcf(N
∗
2 )− ϵr

)
+ µcrθsH(C∗

2)f
′(N∗

2 )

]
,

η1 =r
(
B∗

2µcθf
′(N∗

2 ) + d1 − θpP
in(N∗

2 )
′ + P out(N∗

2 )
′) . (3.28b)

Note that η1 > 0 and η0 > 0, assuming ϵr is small enough. Therefore, the condition

b2 > 0 can be framed in a biological context regarding soil health indicators µs and

d1, and we found that the plant-microbial interactions may remain stable when soil

infiltration is sufficient, as previously mentioned. Still, in this case, it also depends on

the SOM degradation rate, which may result in unstable dynamics for this steady state,

especially when soils rich in nutrients are considered. These results are summarized in

Table 3.1 and in the following theorem.

Theorem 3. The equilibria stability of model (3.4) is given as follows:

1. The boundary equilibrium E0 is L.A.S. if and only if µc min{f(N∗
0 ), g(C

∗
0)} +

µsH(C∗
0)− (ϵ+ l) < 0.
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Steady states and stability conditions summary
E0 = (B∗

0 , C
∗
0 , N

∗
0 ) E1 = (B∗

1 , C
∗
1 , N

∗
1 ) E2 = (B∗

2 , C
∗
2 , N

∗
2 )

B∗
i 0 (d1C

∗
1 − P in(N∗

1 ))(ϵ −
1
r
µcg(C

∗
1))

−1

(
P out(N∗

2 ) + d1N
∗
2 −

θpP
in(N∗

2 )
)(
θs(ϵ + l −

µcf(N
∗
2 ))
)−1

C∗
i P in(N∗

0 )(d1)
−1 (µcg(C

∗
1) + µsH(C∗

1)) − (ϵ +
l) = 0

(rd1)
−1
[
(−µcf(N

∗
2 ) +

rϵ)
(
P out(N∗

2 ) + d1N
∗
2 −

θpP
in(N∗

2 )
)(
θs(ϵ + l −

µcf(N
∗
2 ))
)−1

+ rP in(N∗
2 )
]

N∗
i d1N

∗
0 = θpP

in(N∗
0 ) −

P out(N∗
0 )

θsµsH(C∗
1)
(
d1C

∗
1 −

P in(N∗
1 )
)(
ϵ − 1

r
µcg(C

∗
1)
)−1

+
θpP

in(N∗
1 )−P out(N∗

1 ) = d1N
∗
1

µcf(N
∗
2 )+µsH(C∗

2(N
∗
2 )) = ϵ+ l

L.A.S. µc min{f(N∗
0 ), g(C

∗
0)}+

µsH(C∗
0)− (ϵ+ l) < 0

a2 > 0, a3 > 0 and ξ0(B
∗
1)

2 +
ξ1B

∗
1 + ξ2 > 0

b2 = d1η1−µsη0 > 0, b3 > 0 and
b1b2 > b3

Table 3.1: Steady states and stability conditions summary. Each column represents
the steady state Ei = (B∗

i , C
∗
i , N

∗
i ) and how each term is computed. If an expression is

in terms of an equation, then the value must be computed implicitly. Otherwise, the
value is given explicitly. The local asymptotically stable (L.A.S.) conditions are given
in terms of variables defined in section 3.3.3.

2. The internal equilibrium E1 is L.A.S. if and only if a2 > 0, a3 > 0 and ξ0(B
∗
1)

2+

ξ1B
∗
1 + ξ2 > 0, where a2, a3 are defined in (3.23) and ξ0, ξ1 and ξ2 are defined in

(3.25).

3. The internal equilibrium E2 is L.A.S. if and only if b2 = d1η1 − µsη0 > 0, b3 > 0

and b1b2 > b3, where b1, b3 are defined in (3.27), and η0, η1 are defined in (3.28).

3.3.4 Persistence-extinction criteria

In the previous section, we analyzed the local behaviour of solutions. We now shift our

focus to their global behaviour and establish criteria for the persistence and extinction

of bacterial biomass.

The theorem below outlines a criterion for persistence. Theorem 3 demonstrated

that when µc min{f(N∗
0 ), g(C

∗
0)}+µsH(C∗

0)− (ϵ+ l) > 0, the boundary equilibrium E0

is unstable. Under the same condition, we now show that the boundary equilibrium is

unstable and sustains a uniform lower bound, as further explained in the subsequent

theorem.
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Theorem 4. If µc min{f(N∗
0 ), g(C

∗
0)} + µsH(C∗

0) − (ϵ + l) > 0, then the bacteria are

robustly uniformly persistent: there exist η > 0 such that

lim inf
t→∞

B(t) ≥ η, (3.29)

for all solutions of (3.4) with B(0) > 0.

Proof. Let XB
0 = {(B,C,N) ∈ R3|B = 0} and ϕt be the flow generated from system

(3.4). Take any u1(t) = (B1, C1, N1) with initial value u0
1 ∈ XB

0 . One can show

B1(t) = 0 for all forward time from equations (3.4). Then the ω-limit set of u0
1 ∈ XB

0

is given by

ω(u0
1) = {(B,C,N) ∈ XB

0 : ϕtk(u0
1) → (B,C,N) for some sequence tk → +∞}.

It follows that

N ′
1 = θpP

in(N1)− (P out(N1) + d1N1), ∀t ≥ 0.

Let F (N) = θpP
in(N) − (pout(N) + d1N). Note that F (N) is a decreasing function

over N . Therefore, if N(t) < N∗
0 , then N ′(t) = F (N) > F (N∗

0 ) = 0. N(t) will then

increase. If N(t) > N∗
0 , then N ′(t) = F (N) < F (N∗

0 ) = 0. N(t) will then decrease.

Therefore, limt→+∞ N1(t) = N∗
0 . Hence, ω(u

0
1) ⊂ {(B,C,N) : B = 0, N = N∗

0}.

Take any u2(t) = (B2, C2, N2), where u0
2 = (B2(0), C2(0), N2(0)) ∈ ω(u0

1). One can

show B2(t) = 0 and N2(t) = N∗
0 for all forward time from equations (3.4). Then, we

have

C ′
2 = P in(N∗

0 )− d1C2, ∀t ≥ 0.

Then limt→+∞ C2(t) = C∗
0 . Hence, ω(u0

2) ⊂ {(0, C∗
0 , N

∗
0 )}. Therefore, all solutions of

system (3.4) with initial value (0, C1(0), N1(0)) ∈ XB
0 converge to (0, C∗

0 , N
∗
0 ) eventu-

ally. i.e. ∀u0
1 ∈ Ω̄1 ∩XB

0 , ω(u
0
1) = {(0, C∗

0 , N
∗
0 )}.

Let

R(ϵ) = µc min{f(N∗
0 ), g(C

∗
0)}+ µsH(C∗

0)− (ϵ+ l), (3.30)

then R(ϵ) > 0. Following Corollary 4.7 in [73], let T = 1, M = Ω̄ ∩ XB
0 , we have

Ω(M) = {(0, C∗
0 , N

∗
0 )} and r(P (T, z)) ≥ eR(ϵ) > 1, ∀z ∈ Ω(M). Therefore, the Lya-

punov exponent is positive. Thus, for any B(0) > 0, there exists a η > 0, such that

lim inft→∞ B(t) ≥ η. This completes the proof.
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Therefore, when µc min{f(N∗
0 ), g(C

∗
0)}+µsH(C∗

0)−(ϵ+l) > 0, the bacterial biomass

will never go extinct. Now, we consider the extinction criteria. The following theorem

provides a sufficient condition for bacterial extinction.

Theorem 5. If µc min
{
f
(

2αin(1+θp)

d1

)
, g
(

2αin(1+θp)

d1

)}
+µs−ϵ−l ≤ 0, 1

r
L1+L2 ≤ 0 and

1
r
− (θs−θ) > 0, then for all (B(0), C(0), N(0)) ∈ Ω1, (B(t), C(t), N(t)) → (0, C∗

0 , N
∗
0 ),

as t → +∞.

Proof. Let

Ω1 =

{
(B,C,N) : B > 0, C > 0, N > 0,

(
1

r
− (θs − θ)

)
B + C +N <

2αin(1 + θp)

d1

}
⊂ R3

(3.31)

and C̄ = N̄ = 2αin(1+θp)

d1
. Let u1(t) = (B1(t), C1(t), N1(t)) with initial value u0

1 =

(B1(0), C1(0), N1(0)) ∈ Ω1. By Theorem 1, if 1
r
L1 + L2 ≤ 0 and 1

r
− (θs − θ) > 0,

for each u0
1 ∈ Ω1, the forward orbit {ϕt(u0

1) : t > 0} is bounded and C1(t) < C̄ and

N1(t) < N̄ for all t ≥ 0. Thus,

B′
1 ≤

(
µc min

{
f(N̄), g(C̄)

}
+ µs − ϵ− l

)
B1, ∀t ≥ 0.

Since µc min
{
f
(

2αin(1+θp)

d1

)
, g
(

2αin(1+θp)

d1

)}
+ µs − ϵ − l ≤ 0, we have that B′

1(t) ≤ 0

for all t ≥ 0. Suppose B1(0) > 0, then B1(t) converges to B̄. Therefore, ω(u0
1) ⊂

{(B,C,N) : B = B̄}. If a equilibrium point (B∗, C∗, N∗) ∈ ω(u1), then B∗ = B̄. In

fact B̄ = 0, otherwise B̄ > 0, C∗ < C̄ and N∗ < N̄ , it follows that

0 = (B∗)′ = (µc min {f(N∗), g(C∗)}+ µsH(C∗)− ϵ− l)B∗

<
(
µc min

{
f(N̄), g(C̄)

}
+ µs − ϵ− l

)
B∗ ≤ 0, ∀t ≥ 0,

which is a contradiction. Hence ω(u0
1) ⊂ {(B,C,N) : B = 0}.

By similar argument in Theorem 4, we can show that for all solution with initial

value u0
2 ∈ ω(u0

1), the ω limit set ω(u0
2) ⊂ {(B,C,N) : B = 0, N = N∗

0}; and for all

solution u3 with initial value ∈ ω(u0
2), the ω limit set ω(u0

3) ⊂ {(0, C∗
0 , N

∗
0 )}. i.e. for all

solution of system (3.4) with initial value in Ω1, the solution converges to (0, C∗
0 , N

∗
0 )

eventually.
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Note that µc min
{
f
(

2αin(1+θp)

d1

)
, g
(

2αin(1+θp)

d1

)}
+ µs − ϵ − l ≤ 0 implies that

µc min{f(N∗
0 ), g(C

∗
0)} + µsH(C∗

0) − (ϵ + l) < 0. Therefore, from the local stability

results in Theorem 3 and the global attractiveness in Theorem 5, we deduce the global

stability of the boundary equilibrium E0.

Theorem 6. If µc min
{
f
(

2αin(1+θp)

d1

)
, g
(

2αin(1+θp)

d1

)}
+ µs − ϵ− l ≤ 0, 1

r
L1 + L2 ≤ 0

and 1
r
− (θs − θ) > 0, E0(0, C

∗
0 , N

∗
0 ) is globally stable.

Our extensive mathematical findings cover aspects such as well-posedness, long-

term behaviour, stability, microbial persistence and extinction criteria. In the follow-

ing section, we apply our mathematical findings to discuss the model predictability

outcomes through numerical experiments.

3.4 Numerical experiments

The rhizodeposit’s dynamic influence on plant-microbial interactions can be explored

through simulations, extending our theoretical results found from the model’s math-

ematical analysis. In this section, we study the model (3.4) predictions based on soil

infiltration and SOM degradation rate as simplified soil health indicators to explore

bifurcations, transient dynamics, rhizodeposits influence on microbial activities and in-

creased labile-N bioavailability outcomes. We explore how these simplified soil features

determine the plant’s approximate use of rhizodeposits and SOM mineralization trade-

offs. The parameters used for the following simulations are listed in Table 3.2, which

remained fixed unless stated otherwise. Our numerical results were performed using a

combination of XPP/XPPAut (mainly for bifurcation diagrams) and MATLAB.

3.4.1 Soil health

To understand plants’ use of energy and resources as rhizodeposits to promote their

growth through enhancing microbial activities and uptaking released nutrients from

SOM mineralization, we consider biodegradation soil mechanisms and soil quality in-

dicators, or in more general terms, soil health indicators [31]. These indicators include
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Param. Definition Value [Range] Unit Ref.

µc Max. growth rate for labile C 8.31 day−1 [96]
µs Oligotroph SOM degradation

rate
2.526 day−1 Free Parameter (S.H.I.)

l Respiration rate 3.05 day−1 [96]
ϵ Microbial death rate 0.1 day−1 [62]
r Yield constant 0.104 - [96]
θ Microorganisms N:C ratio 0.2 - [83]
θs SOM decomposition N:C ratio 0.3946 - [96]
Kf N -dependent H.S.C. for mi-

croorganisms growth
2.9 µg N g soil−1 [62]

Kg C-dependent H.S.C. for mi-
croorganisms growth

30 µg C g soil−1 [57], [62]

Kh C-dependent H.S.C. for mi-
croorganisms strategy

474.78 µg C g soil−1 [96]

αin Rhizodeposition 3.6 µg C g soil−1 day−1 Free parameter (fixed)
αout Plant maximum N uptake rate 2 [1.36 - 5.75] µg N g soil−1 day−1 [82]
βC Rhizodeposition threshold 10 (µg N g soil−1)−1 Free parameter (fixed)
βN Plant uptake N -dependent

H.S.C.
25 [5 - 63] µg N g soil−1 [82]

d1 Soil infiltration rate 0.0222 [> 0] day−1 Free parameter (S.H.I.)
θp Rhizodeposition N:C ratio 0.1 [0,0.1] - [50]

Table 3.2: List of parameters used for the numerical simulation. H.S.C. (S.H.I.)
stands for half-saturation constant (soil health indicator). The plant’s rhizodeposits
depend on different soil features, including soil nutrients bioavailability, pH, tempera-
ture, moisture, etc. These delimiting rhizodeposits features are simplified in terms of
free parameters but remain fixed through the simulations unless stated otherwise.
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the organic matter stratification in soils, soil infiltration, conservation and flow of nutri-

ents. For example, in Figure 3.1, we plot different solutions using equations (3.4) with

initial conditions (B(0), C(0), N(0)) = (0.033, 2.603, 0.498), varying the soil infiltration

and SOM degradation rate as simplified soil health indicators.

Figure 3.1: Numerical simulations from equation (3.4) with initial condition
(B(0), C(0), N(0)) = (0.033, 2.603, 0.498). The soil infiltration (d1) and the SOM
degradation rate (µs) are varied as indicators for soil quality status, and other pa-
rameters are fixed as in Table 3.2. (Top panels): Simulation reached the boundary
steady state with d1 = 0.02 top-left (d1 = 0.062 top-right) and µs = 2.5. (Bottom
panels): Simulation reached a periodic solution and to an internal steady state with
d1 = 0.02 bottom left (d1 = 0.062 bottom right) and µs = 2.8. Note: The nitrogen
transients are shown as θ−1N(t) for comparison with B(t) and C(t) only in this case.

The numerical results from Figure 3.1 show that the rhizodeposits and soil health

indicators are related intrinsically in this model, which will be explored more in detail

in the following subsections. Varying only the soil infiltration and oligotroph SOM

degradation rate, implicitly containing information on fixed SOM C/N stoichiometric

ratio, we can measure how plants (and microbes) benefit given on different simplified

soil health indicators. A periodic solution may arise given that the persistence criterion

is satisfied (see section 3.3.4), and Figure 3.2 assists in visualizing this result. From

these simulations, we can observe that the bioavailability of C and N in this simpli-
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fied soil system may guarantee the survival of microbes. Furthermore, depending on

soil health indicators, rhizodeposits may enhance SOM mineralization by sustaining

microbes’ activities, increasing N soil bioavailability, and indirectly improving plant

growth.

Figure 3.2: Three-dimensional transient dynamics. The parameters and initial condi-
tion (white triangle) are used as in Figure 3.1 (bottom-left panel). The nullsurfaces
are represented in blue (B-nullsurface), red (C-nullsurface) and yellow (N -nullsurface).
The time series is represented in blue dots, and the internal and boundary steady states
are in stars (blue and green, respectively). The solution (B(t), C(t), N(t)) for t > 0
reaches close to E0 at the beginning of the simulation, goes away from it and finalizes
orbiting around E1.

3.4.2 Bifurcation analysis

Understanding soil health indicators under numerical experiments may provide insights

into soil research experiments. The simulations in Figure 3.1 (bottom-right) show that

periodic solutions can be stabilized for different soil indicator ranges, suggesting that

soil nitrogen bioavailability may occur periodically or constantly, delimiting the need

for plant use of rhizodeposits for microbial growth promotion and SOM mineralization.

The following bifurcation diagrams extend our numerical results and allow us to study

in more depth model (3.4) under the parameters given in Table 3.2, varying soil health

indicators and rhizodeposits N/C ratios.

50



Bifurcation over the SOM degradation rate

For the following bifurcation diagrams, we use the soil infiltration and the SOM degra-

dation rate as soil health indicators. First, fixing the soil infiltration rate and rhi-

zodeposit N/C ratio (see Table 3.2), we vary µs, which implicitly measures the SOM

carbon-to-nitrogen content as the microbial SOM degradation rate [96]. In Figure 3.3,

we show the one-dimensional bifurcation diagram for the variables B, C and N in

terms of µs.
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Figure 3.3: Bifurcation diagram for model (3.4), fixing the parameters as in Table 3.2
and varying µs a soil health indicator. Three panels represent the bifurcation diagram
for microbial communities (B), labile carbon in soil (C), and labile nitrogen in soil (N),
and Ei for i = 0, 1, 2 denotes the stable (red) or unstable (black) system equilibria.
A transcritical bifurcation occurs (TC) and corresponds to the boundary steady state
E0 at µs = 2.525. The emergence of internal steady states occurs around µs = 2.381
and a bistability region with it between E0 and E1. Furthermore, a Hopf-Bifurcation
(HB1 for the left branch and HB2 for the right branch) also emerges on the interval
µs = [2.522, 3.02] and the maximum and minimum of the orbits are represented in
blue.

When the infiltration rate and rhizodeposits N/C ratio remain fixed and positive, we

can observe from Figure 3.3 that the survival of microorganisms does not depend only

on the plant’s rhizodeposits but also on soil quality. A threshold was found using the

set of parameters in Table 3.2 and delimits a transcritical bifurcation that indicates
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the minimum requirement for the SOM C/N ratio content (implicitly measured by

µs) that may guarantee microbial persistence. Furthermore, we found a range where

oscillations occur, suggesting a periodic input of plant rhizodeposits due to a periodic

increase and decrease in N bioavailability mineralized by soil microbial communities.

However, for soils rich in SOM C/N content, the model (3.4) suggests a stabilized and

constant symbiotic relationship between plants and microbes.

Bifurcation over multiple parameters

Soil degradation rate and soil infiltration can be used as an indicator to determine

immobilization/mineralization of soil nutrients, where rhizodeposits C/N content may

vary depending on the type of plant and soil conditions [31], [61], [95]. This section

uses two-parameter bifurcation diagrams to investigate the relationship between SOM

mineralization with soil infiltration rates and N/C rhizodeposition ratios. In Figure

3.4, we plot a two-parameter bifurcation diagram to show how the infiltration and the

SOM degradation rates influence the transient dynamics of model (3.4).

The two-parameter bifurcation diagram for soil infiltration and SOM degradation

rate as soil health indicators reveals the coexistence of both internal steady states. The

stability of the internal steady state E1 is partitioned into two regions (blue for stable

and red for unstable); meanwhile, E2 remains unstable and approximated by a two-

dimensional scattered region in yellow to avoid colours overlapping (see Figure 3.4).

The transcritical bifurcation (green line) for the boundary equilibrium persists over the

two-dimensional plot, dividing the microbial extinction (left of the partitioned region)

and persistence (right of the partitioned region), delimiting the model’s bistability and

limit cycle regions.

In Figure 3.4, we have used the two simplified soil health indicators, and we found

that soil infiltration rate can stabilize microbial growth when the SOM C/N ratio con-

tent is suitable for microbial proliferation. To study the impact of rhizodeposition N/C

ratio on the stability of steady states, we use Figure 3.5, a two-parameter bifurcation

diagram in terms of θp and µs by fixing d1, which shows a similar qualitative behaviour

compared to Figure 3.4a, modifying only the unstable region for E1. The transcritical
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Figure 3.4: Two-parameter bifurcation diagram for d1 and µs as soil health indicators,
where TC (S.B) stands for Transcritical (Stable Boundary). In Figure 3.4a, the stabil-
ity of internal steady-state E1 is represented in blue (stable) and red (unstable). The
E0 TC bifurcation divides the region into a stable (left) and unstable (right) steady
state. The steady-state E2 remains unstable, and a scatter plot in yellow approxi-
mately represents its region, avoiding a complete colour overlap. Figure 3.4b simplifies
and rescales the magenta region in Figure 3.4a, representing only the contour of the
stable steady-state E1 and the TC bifurcation for reference to other numerical exper-
iments. The dashed line d1 = 0.022 indicates the fixed parameter during some of our
simulations.
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Figure 3.5: Two-parameter Bifurcation diagram for θp and µs, representing the N/C
rhizodeposition ratio and a soil health indicator, respectively. The qualitative be-
haviour of steady states is similar and fully described in Figure 3.4a. However, the
unstable steady state region for E2 (a scatter plot in yellow represents the region and
avoids colour overlap) is now contained in the bistability and the intersection of the
unstable E1 and microbial extinction region. The dashed line θp = 0.1 indicates the
fixed parameter for other simulations as reference. Note that high values used for θp
ratios may be unrealistic regarding rhizodeposits but can be assumed if fertilizers input
is also considered and is only used for numerical prediction purposes.

bifurcation for the boundary steady-state E0 delimits the microbial extinction (left

region) and persistence (right region). The internal steady states may coexist, but E2

remains unstable (a scattered plot in yellow avoids approximates and highlights this

region) as in Figure 3.4a, overlapping the region where microbes extinction is stable,

and E1 can be stable or unstable.

3.4.3 Rhizodeposition, mineralization and imobilization

Soil health indicators gauge soil’s capacity to sustain plant growth [61]. However, N

bioavailability moderates the interconnection between soil, plants and microbes through

the plant rhizodeposition, promoting microorganisms’ SOM mineralization and, thus,

increasing labile N availability [9], [68]. Figures 3.4, 3.5 show the existence of different

regions where microbial communities may persist and their growth fluctuation can be

stabilized due to increased soil infiltration capacity or high N/C rhizodeposition ratios.

Assuming a fixed soil infiltration rate and N/C plant’s rhizodeposition, in this section,

we study the plant’s trade-off of investing energy and resources to microbes through
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rhizodeposits with the increased N -bioavailability due to SOM mineralization. First,

we define the cumulative trade-off of the plant’s labile substrates deposited to the

rhizosphere (λµs) as

λµs =

∫ τ

0

(θs − θ)µsH(C)B − θpP
in(N)dt, (3.32)

where the subscript µs denotes the corresponding SOM degradation rate value and τ

is the time for which the cumulative nutrients trade-off is measured. For example, if

the soil health indicators are related to the limit cycle, we denote τ as its period. The

sign of λµs value represents the positive (negative) feedback, i.e., how much labile N

becomes bioavailable comparing plant exudates through its roots with microbial SOM

mineralization. If λµs > 0 (λµs < 0), then the increased N -bioavailability comes mainly

from SOM mineralization (rhizodepositions) sources. In Figure 3.6, we plot different

values of λµs using Table 3.2, and fixing the integration interval τ as the correspondent

limit cycle period, or by the lower (upper) limit cycle period if µs is before (after) the

Hopf-bifurcation for consistency purposes.

By using λµs to quantify the plants’ rhizodeposition trade-off with microbial SOM

increased mineralization, we can determine when the plants’ investment of nutrients

and energy may pay off or account for resource losses depending on the two soil health

indicators. In Figure 3.6, we denote a positive N feedback in blue colour when the

λµs > 0, indicating that plants’ rhizodeposits will increase microbial biomass, SOM

mineralization and N bioavailability. Otherwise, negative feedback (red) indicates that

plants’ rhizodeposits will not be able to promote microbial SOMmineralization, leading

to resource waste. Part of the nutrient dynamics also depends on microbial labile N -

immobilization, and Figure 3.6 shows the amount of cumulative N uptaken by microbes

by integrating absolutely the first term of equation (3.3) (θµc min{f(N), g(C)}B).

From this simulation, it can be pointed out a threshold given by the SOM degradation

rate (µs ≈ 2.8) as a soil health indicator that separates the rhizodeposition positive and

negative feedback, and which the microbes would immobilize all available labile N from

rhizodeposits and SOM mineralization sources. On the one hand, if the soil quality is

less than this threshold, only microbial communities benefit from rhizodeposition. On
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Figure 3.6: Plants rhizodeposits may increase overall N bioavailability by promoting
microbial biomass and SOM mineralization depending on soil health indicators. The
positive (negative) feedback denotes a cumulative increase of bioavailable N surplus
from SOM mineralization (rhizodeposits) as the main source. The time interval to
quantify such measurements is taken by the periodic limit cycles correspondent to
the Hopf-bifurcation in Figure 3.3. The radius of each bubble denotes |λµs |, where
λµs is defined in equation (3.32), representing the absolute cumulative rhizodeposition
trade-off and its scale is given by the panel on the right. The cumulative microbial
N -immobilization is represented in black and is given by integrating the N uptake rate
by microbes over the specified period.

the other hand, if the soil quality exceeds this threshold, the plants will benefit by using

part of their resources to increase microbial activities that mineralize SOM. In partic-

ular, if the SOM quality exceeds the right Hopf-bifurcation (HB2), N -bioavailability is

comparatively greater than microbial immobilization. This phenomenon can be related

to the priming effect, i.e., a rapid increase of SOM mineralization by inputting labile

substrates into soil [14], [49], [60], [96].

The numerical experiment for the positive and negative rhizodeposition plant’

trade-off to promote microbial SOM mineralization highlights a threshold that de-

limits plants’ benefits after investing in rhizodeposits over a period in relation to soil

health indicators (see Figure 3.6). It also measures the immobilized microbial labile N

amount, which is comparatively lower for greater-quality sols, where their growth and

SOM mineralization are substantially increased along with N bioavailability. To quan-

tify this trade-off, in Figure 3.7, we measure the cumulative N -rhizodeposition versus
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the SOM-derived N due to increased microbial activities over a period τ separately,

providing clearer information regarding plants’ investment against N return from SOM

mineralization in different regions defined by soil health indicators.

Figure 3.7: Comparison between N -rhizodeposition (red) versus N -mineralization
(blue) subject to soil quality indicators d1 and µs. The two-parameter bifurcation
diagram from Figure 3.4b (grey) is on the background to show the cumulative N sur-
plus given different stability regions. The threshold by which N -rhizodeposition equals
N -mineralization over a period τ (see Figure 3.6) is plotted as a line with black cir-
cles in terms of the soil quality indicators. This threshold separates the region where
the cumulative N -mineralization (right region) and N−rhizodeposition (left region)
increases with respect µs. The panel on the right represents the N scales for each
mechanism.

In Figure 3.7, we separately compute the cumulative release of labile N from SOM

mineralization (blue) and rhizodeposition input (red) over the period τ (see Figure

3.6), varying the soil health indicator (µs) to distinguish cumulative N−mineralization

versus N−rhizodeposition amounts. Considering the SOM quality threshold implicitly

given by µs as in Figure 3.6, it is possible to compare the amount of N−rhizodeposits

invested against N−released from SOM mineralization. This numerical experiment

shows that the soil quality is inversely proportional to the rhizodeposit amount re-

quired to increase N bioavailability and directly proportional to microbial capacity to

mineralize SOM. The higher the soil quality, the fewer rhizodeposits are required to pro-

mote SOM mineralization and plant growth, i.e., plants can promote the priming effect

using low amounts of rhizodeposits in rich soils. However, the threshold represented

in black circles (extended over the infiltration value d1) indicates when the plants’
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rhizodeposits are insufficient to promote sufficient SOM mineralization, reducing the

cost-benefit of investing their resources to grow. Our results show this threshold to

be linearly dependent on soil health indicators, suggesting that greater soil infiltration

rates would proportionally require higher soil quality to benefit plant growth.

3.5 Discussion

The agricultural sector’s increased interest in developing suitable tools to promote rural

sustainability, such as food security with reduced input of anthropogenic fertilizers

and no-tillage strategies, has led soil quality experts to establish and create different

soil health indicators and laboratory methods [19], [20]. Soil health, defined as “The

capacity of the soil to function as a vital living ecosystem that supports plants, animals

and humans.” by the NRCS, provides a background to define soil quality features and

delimits current critical indicators that are mainly related to soil structural stability

(soil infiltration), SOM carbon-to-nitrogen contents (providing potential bioavailability

of labile N), and general microbial activities (which are principal SOM decomposers)

[61], [84]. Also, by studying the rhizosphere, a spatial and temporarily heterogeneous

zone where the interactions between plants and microbes occur, as a key component

of the soil N cycle, strategies that reduce the input of fertilizers could be developed

[9], [68]. The relationship between soil health indicators and plant use of rhizodeposits

is inherently correlated. Still, current methodologies to quantify plants’ root exudates

involve destructive sampling, making it challenging to quantify and understand the

symbiotic relationship between plants and microbes in the rhizosphere [33], [61], [63].

Mechanistic mathematical models provide a non-invasive conceptual tool that can

contribute to the rhizosphere complex dynamics understanding [12], [33]. In this work,

we presented a stoichiometric mathematical model that is based on a previously vali-

dated one that incorporates experimental laboratory data that shows SOM-increased

mineralization by adding different labile substrates mediated by different microbial

communities [96]. Our model simplifies the complexity of soil plant-microbial dynam-

ics through rhizodeposits by incorporating soil health indicators such as an implicit

measurement of the SOM quality content and soil infiltration rates. In this way, we

58



identified how these indicators may affect the interactions between soil, plants and

microorganisms, contributing to a further understanding of soil nutrient cycles when

considering different soil features.

Through a series of different bifurcation diagrams and numerical experiments, we

described how the soil health indicators play a role in the rhizosphere. Sufficient soil

infiltration rates can mitigate the periodic necessity of plants’ exudates to indirectly

increase N -bioavailability by promoting microorganism growth and SOM mineraliza-

tion. This result can be related to the soil structural stability, specifically soil ag-

gregates that mediate hydrologic and biological processes by infiltrating and draining

beneficial amounts of water, strengthening the importance of no-tillage strategies [84].

Our model also highlights a linear relation between soil infiltration and quality that

can be used to determine the impact of rhizodeposits in SOM mineralization. This

relation predicts when microorganisms immobilize the available labile N entirely from

different sources (root exudates and soil), distinguishing regions in which plants’ use

of energy and resources will benefit themselves by indirectly increasing soil nutrient

availability derived from SOM mineralization. We also found that higher-quality soils

require less N -rhizodeposits over time to increase SOM mineralization with the possi-

bility of promoting the priming effect, and low-quality soils require more frequent input

of rhizodeposits, in which fertilizers use may be a suitable option in this case.

The model predictions mentioned above are mathematically and numerically jus-

tified. Still, different limitations are present, which have to be addressed in future

research. For example, we consider nitrogen the main limiting nutrient, but in some

specific scenarios, phosphorus can be limiting instead [60], [83]. SOM mineraliza-

tion dynamics were simplified by using a fixed soil health indicator, which, in reality,

the SOM carbon-to-nitrogen ratio may vary at different rates over time and can dra-

matically decrease when priming effects are present. Incorporating SOM degradation

dynamics in the model with different soil features, including soil temperature, pH, irri-

gation, nutrient cycling from protozoa grazing, etc., can improve the understanding of

rhizodeposition effects on soil. However, our model may provide a basis to open new

research directions toward the benefit of agricultural management.
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Chapter 4

Temperature-dependent
mechanistic model to predict
methane biogenesis from an oil
sands tailings settling basin

4.1 Introduction

The world’s third-largest identified oil reservoir belongs to Canada’s oil sands reserve in

Alberta, representing about 166.3 billion barrels (https://natural-resources.canada.ca/).

Oil sands are a natural mixture of sand, minerals, bitumen and water, and in Alberta,

20% of the reserve is suitable for open-pit mining operations (https://www.alberta.ca/oil-

sands-overview). As with many oil-operating mining sites, the tailings produced after

mining and separating the bitumen from oil sands are stored in large basins or oil sands

tailing ponds (OSTPs) [37]. An increase in mining waste has adverse effects on the en-

vironment, and in particular, Alberta’s OSTPs have continuously produced methane

derived from hydrocarbon biodegradation processes since 1990 [69], [88]. There are

no current estimations for when it will cease or how much would be expected over

the years [27], [35], and the federal government of Canada recently announced the

2030 Emissions Reduction Plan, which partially aims to reduce 40% of Canada’s cur-

rent methane emissions compared to 2005 levels by 2030 and reach net-zero emissions

by 2050 (https://www.canada.ca). Consequently, developing accurate tools, including

data-validated mathematical models, is crucial to estimating methane emissions from
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oil sand mining activities over time and assessing ongoing efforts to fulfill methane-

reducing strategies as needed.

Alberta’s principal anthropogenic methane emissions mainly originate from the oil

and gas industry, a sustained portion of which is from OSTP and end-pit lakes (EPL) in

oil sand territories (https://www.aer.ca/). Bitumen extraction from oil sands produces

continuous input of fluid fine tailings (FFTs) into OSTP, which may actively support

methane emissions over time [27]. FFTs are a byproduct of a mixture of sands, clays,

and unrecovered hydrocarbon residuals during the bitumen extraction process from

oil sands, which are suitable to support methane biogenesis [69], [77]. Compared to

OSTPs, EPLs are controlled in-field water-capped ponds containing a fixed amount

of wet FFTs, and their use is to recover water previously used, reducing fresh water

usage during bitumen separation [27]. EPLs are ongoing land reclamation technologies

to reincorporate mined lands to their natural state [41]. Now, an unrecovered frac-

tion of hydrocarbons, including naphtha and paraffinic diluents used during bitumen

extraction, in OSTPs and EPLs are now a primary source of methane biogenesis and

constitute a long-term process, difficulting the ongoing goals of creating suitable land

reclamation scenarios and methane mitigation [27], [80], [81]. Still, tailing’s methano-

genesis processes are beneficial for reducing acute toxicity in ponds and accelerating

water pore recovery [27]. Providing insights on this process, such as the methane ex-

pected and the longevity of the process under in situ features, could be essential for

tailings management control and, consequently, methane emissions mitigation.

Diluents such as naphtha, petroleum distillate containing short-chain n-alkanes,

BTEX (benzene, toluene, ethylbenzene and xylene isomers), and light paraffinic dilu-

ents, comprising mainly C5-C6 alkanes, are used during the bitumen separation from

oil sands [11]. Laboratory research has consistently shown that the biodegradation

of short-chain n-alkanes [74], [75], [91], [92], iso- and cyclo-alkanes [1], [78], [80], [92]

and some BTEX compounds [76] under temperature-fixed environments can sustain

microbial growth and methane biogenesis[27]. Now, different OSTPs, including the

Mildred Lake Settle Basin (MLSB), are continuously storing diluents, resulting in a

constant organic material supply to support methane production over the years [35],
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[37]. Methane emissions are also present in EPL, such as at the Base Mine Lake (BML).

The particular reason for methane emissions in BML is because mature fine tailings,

which presumably contained active methanogens, were transferred from MLSB to the

BML between 1995 and 2012 [27]. Although OSTPs and EPL technologies may share

common FFT material, they differ in other features, such as temperature gradient pro-

files [30], [77], [94]. Then, it is crucial to incorporate OSTPs and EPLs features, such

as temperature gradients, into mathematical models for in-situ accurate predictions.

Current mathematical models, such as a phenomenological zero- and first-order ki-

netic model and a second-generation stoichiometric model, accurately predict methane

production from FFT samples under fixed-temperature laboratory settings [47], [77].

These models could be extended and resourceful for in-situ predictions and future

estimations. However, the justification of phenomenological models, based on basic

principles relatable to more complex processes without proper mechanisms, is required

to validate their meaningful predictions. Also, microbial-biomass-based stoichiometric

models may increase prediction potentials by incorporating limiting factors, such as

nitrogen bioavailability for microbes growth, with the trade-off of simulating microbial

biomass dynamics [47]. Therefore, a data-validated mechanistic mathematical model

is essential to support phenomenological models and overcome the infeasible track of

biomass data. Furthermore, current models have been developed and tested under lab-

oratory circumstances with temperature-fixed experiments, and including temperature

variation may be crucial for methane predictions in OSTPs and EPLs.

In this work we investigate how temperature variations contribute to hydrocar-

bon degradation kinetics in OSTPs and EPLs through a new mechanistic and data-

validated model. For this, we set up laboratory experiments to measure methane

production and hydrocarbon kinetics commonly found in FFT under 5°C, 20°C, and

30°C. Such temperatures were selected to reproduce a broad spectrum of hydrocarbon

(HC) temperature-dependent biodegradation rates. However, since our 5°C experiment

is ongoing, we incorporated 10°C experiments from the literature into our data set for

our model. Our mechanistic model encompasses known biological methane formation

path flows, in which a DNA analysis determines the microbial communities and weight
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of such path flows during methane generation. We compared our proposed mecha-

nistic model predictions against the outputs of phenomenological models and verified

the accuracy of simpler models. This way, we provide a solid basis for using more

straightforward tools, which could be resourceful for rapid in-situ methane prediction

scenarios. Finally, we investigated how our model predictions differ from governmental

reported data containing diluent loss and methane emissions from different oil sands

industries.

4.2 Material and methods

This section describes the laboratory experiment used to measure different temperature-

dependent hydrocarbon degradation rates. We divided our experiment into three hy-

drocarbon groups, each containing a sample of short-chain n-alkanes, BTEX, and iso-

alkanes that served as carbon sources. Triplicates of each group were initially incubated

at 5°C, 20°C, and 30°C to determine temperature effects on hydrocarbon degradation.

Over 800 days, we collected data from microcosm headspace samples, and the original

data remains confidential until published.

4.2.1 Fluid fine tailings source

Fluid fine tailings were collected in bulk in September 2019 from the Swan Base Mine

Lake 12 (Platform 2) at a depth of 10.9 metres below the surface and stored in air-tight

pails in the dark at a temperature of 4°C. After removal from the refrigerator, samples

were immediately used in the culture setup in 158 mL sealed serum bottles.

4.2.2 Experiment set up

The anaerobic microcosms were prepared using 50 mL each of methanogenic medium

and FFT in 158-mL serum bottles with a headspace of 30% CO2 balance N2 as pre-

viously described [75]. The methanogenic medium contained inorganic salts (NaCl,

CaCl, NH4Cl, MgCl2, (NH4)6Mo7O24, ZnSO4, H3BO3, FeCl2, CoCl2, MnCl2, NiCl2,

AlK(SO4)2, NaHCO3), vitamins (pyridoxine, thiamine, nicotinic acid, pantothenic
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acid, cyanocobalamin, p-aminobenzoic acid), sodium sulfide (reducing agent) and re-

sazurin (redox indicator) as described by [25]. The microcosms were pre-incubated at

room temperature in the dark for two weeks for microbial acclimation and consump-

tion of residual hydrocarbons and any alternative electron acceptors in MFT [75]. Prior

to amending the microcosms with selected hydrocarbons, the headspace of all micro-

cosms was flushed with 30% CO2 balance N2 to remove any CH4 produced during pre-

incubation. Each treatment was prepared in triplicate with different microcosm groups.

Three different groups of hydrocarbons were used as a source of carbon: short-chain

n-alkane (pentane, C5; hexane, C6; heptane, C7; octane, C8; decane, C10), monoaro-

matic BTEX compounds (benzene, toluene, ethylbenzene, m,p-xylene, and o-xylene),

iso-alkanes (2-methylpentane, 2-MC5; 2-methylhexane, 2-MC6; 3-methylhexane, 3-

MC6; 2-methylheptane, 2-MC7; 4-methylheptane, 4MC7; 2-methylnonane, 2-MC9).

As the internal standards for quantification of hydrocarbon degradation we used 1,1,3-

trimethylcyclohexane (CAS#3073-66-3; ChemSampCo, Inc.). Triplicate abiotic con-

trols (heat-killed microcosm) were prepared in parallel by autoclaving (121 °C, 20 psi,

60 min) for four consecutive days before hydrocarbon amendment to account for abiotic

degradation. Triplicate baseline controls (unamended microcosms) were also prepared

to account for CH4 production from any residual endogenous substrates in the FFT.

Immediately after the amendment, samples were collected from all the microcosms

to determine FFT’s initial (day 0) status for hydrocarbons and microbial community

structure. The microcosms were incubated statically in the dark at room temperature,

and headspace analysis was performed periodically (bi-weekly) to monitor CH4 produc-

tion and hydrocarbon degradation (monthly) in the microcosms. Culture samples were

also taken periodically from the microcosms for microbial community characterization.

4.2.3 Analytical measurements

Methane was measured by taking out 0.1 mL headspace with an insulin syringe (28g, 0.5

mL) and injecting it into a gas chromatograph equipped with a flame ionization detector

(GC-FID; Thermo Fisher Scientific, Trace 1300) with TG-Bond Q capillary column

(30m, 0.32mm). Analyses were performed at an oven temperature of 40°C using He as
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a carrier gas with a 40 mL/min flow rate. Percentages of methane in the headspace

were calculated using external standards and then converted to molar basis using the

Gas Law equation: pV = nRT . All microcosms were monitored for labile hydrocarbons

and 1,1,3-trimethylcyclohexane (internal standard) by direct manual injection of 100

µL of headspace using a gas chromatograph equipped with a mass spectrometer (GC-

MS, Thermo Fisher Scientific, Trace 1300 - ISQ). Hydrocarbon concentration in the

headspace was obtained by calculating the peak ratio of HC/internal standards from

each measurement and comparing it with the ratio of Day 0 (establishing date), which

was considered as 100%.

4.2.4 Microbial analyses

The microbial community structure was studied by sequencing 16S rRNA genes. One

mL sample from each microcosm was taken with a 1 mL sterile syringe at the specific

time point. Samples were stored at -20°C before DNA extraction. Total genomic DNA

in the sample was extracted using the Fast DNA SPIN Kit for Soil (MP Biomedicals,

USA). The extracted DNA was quantified using a Qubit 4 model fluorometer (Thermo

Fisher, USA) immediately after extraction and was stored at -20°C before subsequent

analyses. Extracted DNA samples were sent to the Molecular Biology Facility at the

University of Alberta (MBSU). The V3-V4 variable regions of the 16S rRNA gene were

amplified via PCR using universal primers 926Fi5 (5’- AAA CTY AAA KGA ATW

GRC GG -3’) and 1392Ri7 (5’- AC GGG CGG TGWGTR C -3’) [3]. A second round of

amplification was conducted using Illumina bridge PCR-compatible primers, followed

by sequencing using the Illumina MiSeq platform (Illumina, San Diego, CA,USA).

Quality-verified sequences were compared against the SILVA taxonomic database (ver-

sion 3.0) using MetaAmp pipeline and clustered into Operational Taxonomic Units

(OTUs) at ≤3

4.2.5 Laboratory results

After 800 days, samples under 5°C showed no methane biogenesis for all hydrocarbon

groups; meanwhile, samples at higher temperatures showed active methane biogenesis
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production.

For the n-alkanes group (see Fig. 4.1), we found that degradation of short n-

alkanes at 30°C started before the 20°C experiment at the first amendment spike (400

ppm). However, hydrocarbon degradation rates at 30°C were visually lower than the

hydrocarbons at 20°C. These results show that microbial activity is activated faster in

warmer temperatures, slowly degrading short-chain n-alkanes and producing methane.

At 20°C, the microbes required more adaptation time before starting to degrade hydro-

carbons. However, their hydrocarbon degradation was faster once microbes started the

biodegradation process. This effect dramatically changed after the second amendment

spike, where we can observe that the lag phase disappears and the degradation kinetics

rates are now similar.

We found no clear indications for Beneze degradation in the BTEX group (see Fig.

4.2). At 30°C, the first hydrocarbons to be biodegraded were Toluene and o-xylene at

high rates, showing comparatively reduced lag phase among other results in this hydro-

carbon group. After a second spike and additional exhausted hydrocarbons, we saw the

same trend for such compounds with increased m,p-xylene decaying. A third spike of

the biodegraded hydrocarbons, we could observe that Ethylbenzene also started to be

biodegraded. Meanwhile, 20°C BTEX experiment showed a rapid decay of Toluene and

o-xylene after 200 days. We also could observe a slow biodegradation of Ethylbenzene

and a drastically high decay of m,p-xylene after 500 days. Experimentally, we could

observe increased degradation rates for both treatments after a second spike, with a

dramatically reduced lag phase. Furthermore, methane conversion efficiency was lower

at 20°C than 30°C after the second spike.

We also found a significant difference in the iso-alkane group’s methane biogenesis

and hydrocarbon degradation kinetics. At 20°C, a very slow decaying of 2-MC5 and

3-MC6 over 700 days and a very slow degradation of 2-MC7 was appreciated. In

comparison, the experiment at 30°C showed an increase in the biodegradation rate of

the first 3 spiked compounds. After exhaustion, we spiked our samples again with the

same hydrocarbons previously added, plus an additional 4-MC7 and 2-MC9. After the

second spike, all compounds showed no lag phase and increased degradation rate. In
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Figure 4.1: Experiment results for the short chain n-alkanes group. Red, black, blue
and green colours distinguish experiment results between different temperature con-
ditions. 5°C experiment is distinguished by the navy blue colour, black for 20°C, red
for 30°C and green for the control experiment. The date of the DNA sample is shown
in light blue. (a) Methane biogenesis derived from the biodegradation of short-chain
n-alkane (pentane, C5; hexane, C6; heptane. C7; octane, C8; decane, C10). The
cumulative theoretical maximum for both spikes is shown in dotted orange lines, and
dotted stems (vertical lines) represent hydrocarbon spikes. Solid lines show the mean
CH4 data trend. Panels (b) to (f) show the hydrocarbon degradation kinetics for each
n-alkane compound. Simultaneous re-spikes for both temperature treatments are in
orange.
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Figure 4.2: Experiment results for the BTEX group. See Fig. 4.1 caption for more
figure details. (a) Methane biogenesis derived Ethylbenzene, Toluene, mp-xylene and
o-xylene biodegradation. The cumulative theoretical maximum for diverse spikes is in
dashed black and red lines. Solid lines show the mean CH4 data trend and dotted stems
represent hydrocarbon spikes. Panels (b) to (f) show the hydrocarbon degradation
kinetics for each chemical compound labelled on the y-axis. Stems show an event such
as spiking or DNA sample.
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[80], a greater conversion efficiency and decay for a mix of iso-alkanes was established.

Therefore, these results suggest that a more diverse compound mixture may benefit

methane biogenesis. Brief summaries of these results can be found in Fig. 4.7 and Fig.

4.8.

4.3 Mechanistic methane biogenesis model

Methane mitigation in oil sands territories requires assessed strategies based on ac-

curate quantifications of methane biogenesis production due to the biodegradation of

unrecovered diluents [75]. A zero- and first-kinetics phenomenological model and stoi-

chiometric microbial-based nutrient-limited model may provide accurate methane and

hydrocarbon estimations in temperature-fixed laboratory settings with the potential

to be extended to in-situ greenhouse gas estimations [47], [77]. However, modelling

limitations may arise due to the absence of, for example, methane biogenesis mecha-

nisms for the phenomenological models or access to biomass measurements, which is

usually unavailable. Biomass quantification results in a laboratory challenge since FFT

contains different carbon sources, including bitumen and organic diluents [75]. In this

section, we propose a mechanistic model that keeps track of the carbon flow from the

microbial degradation of HC to the production of acetates, hydrogen (H2), CO2 and

methane, which are potentially measurable variables.

4.3.1 Model development

Methane biogenesis in OSTP and EPL is derived from the microbial metabolism of

residual diluents used during the bitumen separation from oil sands [27]. Previous

studies have shown that a range of n-alkanes, BTEX and iso-alkanes support methane

biogenesis, and the biodegradation of these HC compounds produces acetates, hydrogen

and carbon dioxide, essential for methane biogenesis production in anaerobic conditions

[33] [75] [27], [79], [80]. For this model, we consider the two known methane biogenesis

pathways given by
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Figure 4.3: Experiment results for the iso-alkanes group. See Fig. 4.1 caption for
more specific details. (a) Methane biogenesis derived from 2-MC5, 3-MC6, and 2M-C7
biodegradation for the first spike with additional 4-MC7 and 2-C9 for the second. The
cumulative theoretical maximum for diverse spikes is orange (the first spike is in both
treatments) and red. Solid lines show the mean CH4 data trend. Panels (b) to (f)
show the hydrocarbon degradation kinetics for each chemical compound labelled on
the y-axis. Stems show an event such as spiking or DNA sample.
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CO2 + 4H2 → CH4 +H2O (CO2 reduction),

CH3COOH → CO2 + CH4 (Acetate fermentation).
(4.1)

Nutrient limitation may play a fundamental role during methane biogenesis for-

mation [47]. However, supported by a relatively consistent CH4 production in flux

chambers over large periods and no further microbial biomass augmentation of anaer-

obic enrichment cultures, we considered CH4 methane biogenesis limitation only by

hydrocarbon sources [77], [86]. Then, the hydrocarbon degradation rate of change is

given by

C ′
i = −kcig(Ci)︸ ︷︷ ︸

Hydrocarbon degradation

+ C i
in︸︷︷︸

Diluents input

, (4.2)

where kci represents the i-th hydrocarbon degradation rate and g(Ci) = 0 for 0 ≤

t ≤ λi, representing microbial required acclimatization lag period. Also, C i
in is the

specific i-th diluent input into the system and is considered a positive constant for

OSTP (i = 1) or zero for EPL (i = 0) scenarios. Hydrocarbon biodegradation produces

labile substrates, which we consider in terms of acetates. Then,

S ′ = r1

n∑
i=1

kcig(Ci)︸ ︷︷ ︸
Acetate production

− r2f(S)︸ ︷︷ ︸
Acetate degradation

, (4.3)

where acetates (S) are produced proportionally to the hydrocarbon degradation

date (r1 ∈ [0, 1]), which are further biodegraded to produce, CO2 and CH4 metabolites

at a rate (r2). In anaerobic conditions, hydrocarbon fermentation yields an increase

of hydrogen in the system, which is microbially utilized along with CO2 to produce

methane, i.e.,

H ′ = hc

n∑
i=1

kcig(Ci)︸ ︷︷ ︸
Hydrogen production

− 4r3m(H,D)︸ ︷︷ ︸
CO2 reduction

, (4.4)

where hc is hydrogen productivity in anaerobic bacterial systems [42], and r3 is
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attained to the CO2 reduction. Here, the function m(H,D) is considered for mass

action to simplify the equations. Now,

D′ = (1− r1)
n∑

i=1

kcig(Ci)︸ ︷︷ ︸
CO2 production

− r3m(H,D)︸ ︷︷ ︸
CO2 reduction

+ (1− r4)r2f(S)︸ ︷︷ ︸
Acetate fermentation

, (4.5)

represents the CO2 rate of change during the hydrocarbon degradation and methane

production. This pool increases during acetate fermentation and hydrocarbon degra-

dation at (1− r4)r2 and (1− r1)kci rates, respectively. The parameter r4 ∈ [0, 1] is the

proportion of CH4 produced from acetate degradation by acetoclastic methanogens.

Finally, the two pathways to form methane lead us to,

G′ = r3m(H,D) + r4r2f(S)︸ ︷︷ ︸
Metabolites production

, (4.6)

where G represents the metabolite’s increase rate before being utilized by hy-

drogenotrophic (CO2 reduction path) and acetocalstic (acetate fermentation path)

methanogens to produce CH4. Note that our system is open, i.e. (
∑

Ci+S+H+D)′ =

hc

∑
kcig(ci) ≥ 0, which may increase the surplus of hydrogen in the system. Finally,

we consider the methane production in terms of

CHj
4(t) = ηSFG(t), (4.7)

as proposed in [77] with G(0) = 0, where 0 ≤ η ≤ 1 is the methane conversion

efficiency. Since we are not explicitly measuring the stoichiometric fraction for each

hydrocarbon degradation yield to methane production as in [47], [77], we use SF as

the mean stoichiometric fraction for degradable hydrocarbons. In this model, CHj
4(t)

represents the methane biogenesis estimation in active OSTP (j = 1 and C i
in > 0) or

an EPL (j = 0 and C i
in = 0). For simplicity, our mechanistic model considers functions

g(C) = C and f(S) = S. Therefore, the first-order mechanistic model (FOM - model)

is given by,
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C ′
i =− kciCi + Cj

in,

S ′ =r1

n∑
i=1

kciCi − r2S,

H ′ =hc

n∑
i=1

kciCi − 4r3HD,

D′ =(1− r1)
n∑

i=1

kciCi − r3HD + (1− r4)r2S,

G′ =r3HD + r4r2S,

CHj
4(t) =ηSF (G(t)−G(0)) ,

(4.8)

where the biodegradation of hydrocarbon-derived simpler compounds explicitly es-

timates methane biogenesis. Also, as part of the model features, we can differentiate

the two methanogenesis strength paths depending on hydrogenotrophic and acetoclas-

tic methanogens by modulating the free parameter r4, which DNA sequence samples

can provide an accurate proportion.

4.3.2 Qualitative methane biogenesis predictors

To simplify model (4.8), if required, we assume that methane biogenesis can be deter-

mined only through acetate fermentation, i.e., r1, r4 = 1, and r3 = 0 to avoid hydrogen

and carbon dioxide kinetics tracking. For simplicity, we consider C as the sum of the

total amount of hydrocarbons. Then, the reduced model is given by

C ′ = −kcC + Cj
in

S ′ = kcC − ρ2S

G′ = ρ2S

CHj
4(t) =ρ2ηSF (G(t)−G(0)),

(4.9)

where, ρ2 is different paramater from (4.8). Considering the initial stage of hydrocarbon

degradation i.e. (C(0), S(0), G(0)) = (0, 0, 0), and a constant input of diluents j = 1,
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we can solve (4.9) equations explicitly as follows,

C(t) =
Cj

in

kc

(
1− e−kct

)
, (4.10a)

S(t) =
Cin

ρ2(kc − ρ2)

[
kc(1− e−ρ2t)− ρ2(1− e−kt)

]
, (4.10b)

and,

G(t) = Cint+
Cin

ρ2kc(kc − ρ2)

[
ρ22(1− e−kct)− k2

c (1− e−ρ2t)

]
. (4.11)

Therefore, long-term methane biogenesis estimations can be expressed as

CH1
4(t) ≈ ηρ2SFCin

(
t− ρ2 + kc

ρ2kc

)
, (4.12)

which is in the form of a zero-order kinetic model. This result highlights that in OSTP,

where a constant efflux of diluents is considered, methane estimations could be linearly

estimated for sufficiently large t.

For EPL scenarios, i.e., j = 0, and (C(0), S(0), G(0)) = (C0, S0, 0) where C0, S0 > 0,

we have the following simplified model:

C ′ = −kcC,

S ′ = kcC − ρ2S,

G′ = ρ2S,

CH0
4(t) =ρ2ηSFG(t).

(4.13)

Solving the system above, we have that

C(t) =C0e
−kct,

S(t) =
1

ρ2 − kc

[
C0kc

(
e−ρ2t + e−kct

)
+ S0e

−ρ2t(ρ2 − kc)
]
,

(4.14)

and,

G(t) =
C0

kc − ρ2

[
kc(1− e−ρ2t)− ρ2(1− e−kct)

]
+ S0(1− e−ρ2t), (4.15)

where,

Therefore, the cumulative methane biogenesis produced in an EPL may be esti-

mated as t → ∞, or

CH0
4 → ρ2ηSF (C0 + S0). (4.16)
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4.4 Model validation

The model (4.8) considers hydrocarbon kinetics under a fixed temperature. Some

parameters may generally be temperature dependent (°C), which can be determined

using diluent biodegradation experiments under different temperatures. Our data set

was supplemented with two extra sets extracted from the literature, enabling extended

numerical results by considering other biodegradable hydrocarbons commonly present

in oil sands activities at 10°C and 20°C. To estimate the required parameters and vali-

date model (4.8), we data-fitted hydrocarbon dynamics and compared CH4 predictions

with the methane measurements. We used two numerical error estimators to quan-

tify the dispersal of our predictions of estimated methane production under different

temperature settings.

4.4.1 Data-fitting and parameter estimation

Since our experiments for 5°C (n-alkanes, BTEX, and iso-alkanes) did not show any

activity for more than 800 days, and we only achieved partial degradation of iso-alkanes

at 20°C, we incorporated the following data found in the literature which contains

iso-alkanes degradation at 20°C (3-MC6, 2-MC7, 4-MC7 and 2-MC8) and methane

production from amended FFT collected at 31m from the Mildred Lake Settle Basin

[80], and only methane emissions from the degradation of a hydrocarbon mixture (n-

decane, n-octane, toluene, o-xylene, 3-MC6, 2-MC5) in FFT collected from BML at

10°C [48].

To estimate model (4.8) parameters regarding each temperature experiment setting,

we divided the data set into subsets according to each hydrocarbon group (n-alkanes,

BTEX, iso-alkanes) and the temperature-related degradation kinetics (10°C, 20°C and

30°C). Then, we subdivided each subset into data subsamples according to the number

of microcosm spikes, i.e., adding more hydrocarbons. This subsample set contains each

hydrocarbon degradation kinetics group at different temperatures according to the

number of hydrocarbon spikes (T s
τ ), where τ is the temperature (°C) and s represents

the spike (s ∈ [1, 2, 3]). For example, if we are working on the n-alkanes subset, and

we want to fit our model to the subsample T 2
30, this would mean that we will be using
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the n-alkanes data at 30°C after the second spike. The model parameters calculation

corresponds to each subdivided data plus the additional two data sets in the literature.

Each spike mathematically represents a dramatic change rate in our dynamical sys-

tem (4.8). Therefore, we simplified our data fitting by using each data subsample sepa-

rately and gluing numerical solutions. However, a mismatch in the initial conditions for

each subsample arises after the first spike. We used (C1
i (0), S

1(0), H1(0), D1(0), G1(0)) =

(c1i , 0, 0, 0, 0) as the initial condition for each first subsample, where c1i represents

each initial hydrocarbon value at the first spike. Once the model was fitted for

the first spike subsample, we used the end of this simulation as the initial condi-

tion for the contiguous subsample, which contains the second spike (and so on), i.e.

(C2
i (0), S

2(0), H2(0), D2(0), G2(0)) = (c2i+C1
i (end), S

1(end), H1(end), D1(end), 0), where

c2i is the HC concentration for the second spike and end is the last simulation point

of the first spike subsample (related to MATLAB notation). We assumed that the

metabolites used for methane production for the first spike were independent of those

generated in the second spike. The rationale behind this assumption is that after

adding new hydrocarbon sources, microbes will require some time to produce new

metabolites, contributing to further methane production. The cumulative CH4 bio-

genesis was calculated for the first metabolite leftovers pool until exhaustion to com-

pensate for the mismatch between metabolites between spikes, adding it to the second

methane subsample pool. All parameters were estimated for each subsample, except

for the hydrogen productivity (hc = 2.2) [42], the mean stoichiometric fraction (SF )

and conversion efficiency (η) (see Fig. 4.8), since we computed them directly given

that biodegradable hydrocarbons and the theoretical CH4 maximum are known.

Using the hydrocarbon subsample points, a nonlinear regression function in MAT-

LAB (nlinfit), and the Normalized Mean Square Error (NMSE) defined as

NMSE = 1− ||x0 − x1||2

||x0 − x0||2
, (4.17)

where ||.|| is the Euclidean norm, we estimated the model parameters and quantified our

fitting accuracy. In the above equation, x0 contains laboratory data, x1 the predictions

from the model as vectors and x0 is the mean of the laboratory data points. The

function NMSE returns a value between (−∞, 1], where if NMSE= 1, then a perfect
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fit is obtained. The NMSE summary we obtained from our subsample data fitting is

represented in Fig. 4.4.

Data fit

0.5

0.55

0.6
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0.7
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Figure 4.4: Normalized Mean Square Error (NMSE) summary from subsample data
set fitting. The distribution of the NMSE calculated contains degradation kinetics
accuracy of n-pentane (C5), n-hexane (C6), n-octane (C8), n-decane (C10), toluene,
ethylbenzene, xylene isomers, 2-MC5, 3-MC6, 2-MC7, 4-MC7, 2-MC8, and 4-MC9 at
different temperature (20°C and 30°C) and spikes. The NMSE quantifies the model
accuracy from (∞, 1], where if NMSE= 1, then a perfect fit is achieved. The me-
dian NMSE value achieved is ≈ 0.9. The three different outliers belong to NMSE

(
C7

(T 1
20)
)
=0.52 NMSE

(
2-MC5 = 0.55 (T 1

20)
)
and NMSE

(
2-MC5 = 0.69 (T 2

30)
)

We achieved an NMSE median value of ≈ .9 from those subsamples that contained

HC degradation kinetics, and the interquartile range was estimated between [.86, 97].

However, NMSE calculations showed three outliers that belong to the hydrocarbon

fitting for the C7 (T 1
20), 2-MC5 (T 1

20), 2-MC5 (T 1
30) with RMSE=0.52, 0.55 and 0.59

respectively (see Fig 4.7). Still, a good accordance on the degradation kinetics trends

for our simulations holds.

Once the model (4.8) was fitted regarding HC kinetics, we visually inspect the ac-

cordance between hydrocarbon degradation and methane biogenesis predictions against

data in Fig 4.5, 4.6a and 4.6c. In these figures, we plot the sum of hydrocarbon pre-

dictions (we model HC kinetics for the 10°C experiment (see Fig 4.6d)) and laboratory

data to represent the hydrocarbon kinetics in a simplified visual way instead of show-
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Figure 4.5: Model (4.8) methane predictions against laboratory data (first column )
and the sum of hydrocarbon data fitting results (second column) against hydrocarbon
degradation experiments at 20°C (30°C) coloured in black (red). For simplified visual
purposes, the sum of all hydrocarbon data points is shown and compared with model
fitting. Panels (a) and (b) show the cumulative CH4 prediction compared to data
and the cumulative n-pentane (C5), n-hexane (C6), n-heptane (C7), n-octane (C8)
and n-decane (C10) degradation fitting. Panels (c) and (d) show the results obtained
for toluene, ethylbenzene, and xylene isomers experiments. Panels (e) and (f) for
iso-alkanes experiments, composed of 2-MC5, and 2-MC7 for the first spike and an
additional 4-MC7 and 2MC9 for the second spike for the 30°C experiment.
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Figure 4.6: Model (4.8) predictions against laboratory data and CH4 data fitting.
Panels (a) and (c): methane prediction against laboratory data and HC degradation
sum model fitting at 20°C (3-MC6, 2-MC7, 4-MC7, 2-MC8) (data adapted from [80]).
We added all hydrocarbon data points and model fittings for visual purposes. Panels
(b) and (d): CH4 data fitting and sum HC degradation modelling (n-decane, n-octane,
toluene, o-xylene, 3-MC6, 2-MC5) (data adapted from [48])

ing the model fitting for each hydrocarbon. In general, we found a good agreement

for the qualitative CH4 and hydrocarbon degradation kinetics behaviour, and we can

estimate qualitatively the disperse of observations against predictions using the root

mean square (RMS) defined as,

RMS =
1√
N

√√√√ N∑
i

(yj1 − yj0)
2, (4.18)

where yjk represents the mean methane data as a vector (predicted methane as a
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vector) for k = 0 (k = 1) and j is the j − th component. Lower RMS values represent

less discrepancy between predictions and observations. We achieved RMS values that

varied between [0.073, 0.88], and the mean was 0.435. Our iso-alkanes experiment at

20°C attained the lowest RMS value and the highest for the n-alkanes experiment at

20°C. Note that in Fig. 4.5e the model showed an slight underestimation of CH4 despite

of perserving the qualitative trend after he second spike. A reason for this, is because

model 4.8 considers the mean stoichiometric fraction.

Based on the good accordance between predictions and data, we estimated the

95% confidence parameters intervals using the MATLAB function (nlparci), which

uses the residuals and the estimated covariance matrix from nlinfit. From Fig. 4.7,

we found a slight increase in n-alkanes degradation rates after the second spike for

20°C and 30°C, achieving the maximum at the former. Toluene, ethylbenzene and

xylenes isomers (TEX) degradation rates are found to be dispersed for all the spikes

but remain in the same order despite the different spiking for T s
30 (170 ppm for s = 1

and 257 ppm for s = {2, 3}). Iso-Alkanes hydrocarbons degradation rate estimates on

the T 1
20 subsample show high dispersion. However, this feature is derived from the two

experiments we consider. The highest value corresponds to the adapted data from [80],

composed of an experiment with different settings and several iso-alkanes that are not

present in ours. The lowest degradation kinetics for Iso-Alkanes at 20°C corresponded

to our experiment, in which hydrocarbons show a slow degradation rate. This result

suggests a higher degradation rate when a diverse HC mixture is present in FFT, where

the microbial communities are more active. The lowest HC degradation rate values

coincide with the 10°C data subgroup adapted from [48], which contains a mixture of

short n-decane, n-octane, toluene, o-xylene, 3MC6 and 2MC5.

The hydrocarbon degradation rate trends generally remained in the same order for

20°C and 30°C for n-alkanes, TEX and iso-alkanes at 30°C (second spike). This result

suggests a maximum HC degradation rate around 20°C and 30°C, accompanied by an

evident decay for lower temperatures. We also found that FFT microbiomes no longer

require an adaptation stage after adapting to the environment, degrading newly added

HC immediately, at least in relatively short periods of HC scarcity. Furthermore, HC’s
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increased rate for n-alkanes and TEX is related to increased CH4 conversion efficiency

after the second spike (see Fig. 4.8), though TEX second spike and third (T
{2,3}
30 )

spike had greater HC concentrations (from 170 ppm to 257 ppm). The dispersal of the

conversion efficiency on the Iso-Alkanes subsample at 20°C was explained by considering

two different experiments.

The rest of the estimated parameters for model (4.8) are shown in Fig. 4.9. We

found that parameters r2 and r3 remained unchanged during our data-fitting, and its

accurate estimations can be achieved if CO2, H2 or acetates data is available. The pa-

rameter 0 ≤ r1 ≤ 1 determines the CO2 flow generated from HC degradation, whereas

0 ≤ r4 ≤ 1 determines the weight of methane biogenesis through acetate fermentation.

To estimate r4, we used the proportions between acetoclastic and hydrogenotrophic

methanogens as a starting point based on our DNA analysis.

4.5 Numerical experiments

The first-order mechanistic model (4.8) was validated using laboratory experiment

data sets, and its accuracy was measured in different error metrics. The required

temperature-dependent parameters were determined using iso-alkanes, short n-alkanes,

and TEX biodegradation experiments in FFT samples under different temperatures in

section 4.4.1. Now, model outcomes might be helpful towards land reclamation strate-

gies in oil sands territories, such as estimating CH4 emissions in oil sands activities

and anticipating cumulative methane in EPL over the years. We numerically explore

predictive potentials between model (4.8), zero- and first-order kinetic models, as de-

scribed in [77], enabling us a direct comparison between models and describe in which

scenarios they might be helpful.

4.5.1 Predictions on measurable variables

Before comparing model (4.8) with the zero- and first-order kinetic models, we first

show the simulated kinetic behaviour of acetates, CO2 and hydrogen. These numerical

predictions may provide insights into experimental designs like estimating data sam-

pling scheduling. Data availability for CO2, H2 and acetate kinetics would increase,
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Figure 4.7: Degradation rate and lag phase estimation summary. The figure is divided
into two columns, and each hydrocarbon group is arranged for each row, where the
y-axis title in the first column determines the hydrocarbon group. Each column title
indicates the estimated parameter. The x-axis for each panel represents the data
subgroup (T s

τ ), where τ is the temperature (°C) and s ∈ {1, 2, 3} is the number of
spikes in each experiment hydrocarbon group. The first panel’s row shows the n-
alkanes degradation kinetics and lag phase at different temperatures subject to each
experimental spike. The second panel’s row is for TEX, and the third is for iso-
alkanes. The degradation rate kinetics are expressed in a logarithm scale to improve
its visualization, and box plots show the parameter dispersal, including outliers. The
variation on T20

1 experiments for iso-alkanes is derived by incorporating data from [80]
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although HC biodegradation kinetics and CH4 emissions are well captured. In Fig.

4.10, we plotted the unmeasured variables predicted by the model (4.8) that play a

crucial role in the two pathways for methane biogenesis.

Our numerical results predict increments on CO2 and acetates that are qualita-

tively similar but in different magnitudes for the 20°C experiments. These increments

correspond to when the bacteria start to decompose specific HCs. For example, in Fig.

4.10b, each sudden increase on CO2 and acetates corresponds to start of C7, C10,C8,

C6 and C5 degradation in that order. One of the main differences between 20°C and

30°C numerical experiments showed that 20°C would have greater CO2 production (for

n-alkanes and BTEX), in which DNA analysis shows acetocalstic and hydrogenotrophic

methanogens were proportionally close, about 45% to 55% each. Meanwhile, in the

30°C experiments, where acetoclastic methanogens were more abundant (up to 70% in

the BTEX experiment), we see a decrease in CO2 magnitude. These numerical predic-

tions for unmeasured variables during our experiment still need to be validated. How-

ever, the hydrocarbon degradation kinetics and methane emission are well-captured.

4.5.2 Zero- and first-order kinetic model predictions revisited

Simple phenomenological models might provide useful rapid methane estimations if

the prediction uncertainty or error is quantified. Using our data-validated mechanistic

model, we compared the hydrocarbon degradation kinetics and methane biogenesis

estimations with the zero- and first-order kinetic models. However, the zero-order

kinetic model was previously adjusted, based on [77], to keep feasible positive solutions.

The solution for the modified zero-order kinetic model is given by:

Ci(t) =

{
Ci(0)(1− ki

0t) if t ≤ (ki
0)

−1 and t ≥ λi,

0 otherwise,
(4.19)

and

CH4(t) = η

n∑
i=1

SFi

(
Ci(0)− Ci(t)

)
, (4.20)

for each number of biodegradable hydrocarbons i, where ki
0 is the zero-order i-th hy-

drocarbon degradation rate. In this way, we compared the hydrocarbon degradation
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Figure 4.10: Model (4.8) predictions on acetates, CO2, and hydrogen kinetics by de-
grading a group of short-chain n-alkanes, TEX, and some iso-alkanes at different tem-
peratures during methane biogenesis. Panels (a), (c), and (e) represent predictions
for distinctive HC group experiments at 20°C, whereas panels (b), (d), and (f) belong
to experiments at 30 °C. The numerical predictions are shown in a logarithm scale
for better visualization. Acetates and CO2 scale are represented on the left axis, and
hydrogen on the right for each panel.
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rate given by the FOM and zero-order kinetic models and methane emissions RMS

given by the phenomenological and FOM models (see Figure 4.11).
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Figure 4.11: FOM and phenomenological models output comparison. ki
0 represents the

zero-order hydrocarbon degradation rate. The RMS predictions for the FOM, zero-
and first-order model are described as RMSFOM, RMS0 and RMS1, respectively.

In Figure 4.11, the zero-order kinetics rates (ki
0) were computed individually for

each hydrocarbon degradation time series at different temperatures and compared to

those calculated by the FOM model. The RMS for the methane predictions using

the zero- and first-order kinetic models (RMS0, RMS1) are calculated and compared

with the RMS methane predictions from FOM results. This figure shows that the

degradation kinetic rate from the zero-order kinetic model is most likely to be half of

the actual value. Furthermore, the FOM methane emissions predictions are generally

better represented than the phenomenological model.

4.5.3 Methane biogenesis simulations in OSTP and EPL

According to the Mildred Lake 2019 Tailings Management Report (Syncrude Canada,

April 30, 2020), the MLSB (an operating oil sands tailing pond) FFT temperature

varies in depth between 6.9 - 15.7 °C (4m - 9m) and 18.4 - 20.8 °C (14m - 37m).

In depths greater than 14m, the temperature is relatively constant due to a lack of

mixing and thermal insulation [77]. However, the FFT temperature gradient in Base

Mine Lake (end-pit lake located in Syncrude Mildred Lake facilities) varies temporally,
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oscillating between approximately 5 °C and 25 °C relative to the depth (2.5m and 7.5m)

[30], [94]. To compare the model’s performance in methane predictions between FOM,

zero- and first-order kinetic models considering temperature features, we utilized MLSB

reported diluents loss and methane emissions from 2016-2017 (data adapted from [47])

to simulate the OSTP (C1
in ≥ 0), and assumed an immediate closure at the beginning

of 2018 to simulate an EPL C0
in = 0 using the BML temperature fluctuations.

For our OSTP simulation, we fixed the pond temperature between 17 and 22°C,

and for our EPL simulations, we interpolated the BML temperature variation at 2.5m

depth over time using the 2014 data found in [94] as a representative temperature

gradient using cubic splines and the MATLAB function (spline).

In Figure 4.12, we could observe a comparable performance of the zero- and first-

order kinetic models with our mechanistic model that describes two path flows of CH4

biogenesis. We separately computed the zero-order hydrocarbon kinetics median (see

Table 4.1) since Figure 4.9 provides hydrocarbon kinetics information for the first-

order and mechanistic models (see Table 4.2). Then, we fitted a quadratic polyno-

mial or an exponential function, depending on the best parameter fit, to our data set

with the highest achieved hydrocarbon kinetics median values, providing continuous

temperature-dependent hydrocarbon kinetics for all models and hydrocarbon groups.

Since negative kinetics are unfeasible, the quadratic polynomials were defined as zero

instead of negative values during simulations. For our EPL scenario, we used cubic

splines to simulate FFT temperature variations and evaluate the quadratic polynomial

over time to get information about the degradation kinetics. The quadratic fit and

polynomial evaluation were done using fit MATLAB 2024a function.

The different methane predictions for all models are consistently proportionally

close to each other in the OSTP scenario, numerically validating the zero- and first-

order methane biogenesis prediction potential using the first-order mechanistic model

(4.8) (see Figure 4.12). All models consistently underestimated the cumulative methane

reported from 2016 to 2017. In fact, for the year 2016 (2017), 46.84±7% (42.44±5%)

was estimated by the zero-order model, 48.4±2% (48.19±2%) by the first-order and

45.63±2% (45.20±1%) by the FOM model for fixed temperatures that ranged from
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Figure 4.12: First-order mechanistic (FOM), zero- and first-order kinetic models com-
parison on the methane biogenesis estimation in MLSB for 2016-2017 and EPL simu-
lation from 2018 to 2021. Methane biogenesis predictions are in blue, and HC kinetics
are in brown. Dotted lines represent the zero-order kinetic model outputs, dashed lines
for the first-order kinetic model and solid lines for the model (4.8). Diluent input from
2013-2015 is considered as the 60% of diluent loss reported during 2016 per assumed
year, simulating a lower HC input over these years to reach a possible HC steady state.
Methane was numerically unmeasured until 2016 to compare model cumulative CH4

predictions to the reported in MLSB during 2016-2017 [47]. Red dashed lines repre-
sent reported cumulative methane. The zero-order kinetic model underestimates CH4

reported by a factor of 2.1, 2.04 for the first-order kinetic model and 2.18 for the FOM
model. After 2018, zero HC input was assumed to simulate an EPL scenario after
OSTP closure. Methane emissions and HC degradation kinetics are predicted in four
consecutive years of the simulation.
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K0 kinetics (median) Fitting
HC group T 1

10 T 2
20 T 2

30 f(τ)
n-alkanes 2.3977E-05 0.003518 0.000486 -3.2E-05τ 2 + 0.0013τ − 0.01
TEX 2.3977E-05 0.00153 0.00242 -7.5E-06τ 2 + 0.00015τ − 0.001
iso-alkanes 2.3977E-05 0.00019759 0.00161635 2.88E-06 Exp(0.21 τ)

Table 4.1: Zero-order HC kinetics table and function fit (Fitting). The rows below
the K0 kinetics (median) show median zero-order kinetics for different HC subsets T s

τ ,
where τ is the temperature, and s is the number of HC spikes added. Zero-order HC
kinetics for 10°C was estimated by modelling data adapted from [48] (see Fig.4.6). The
last column contains the zero-order temperature-dependent functional representation.

K1 kinetics (median) Fitting
HC group T 1

10 T 2
20 T 2

30 f(τ)
n-alkanes 1.0001E-04 0.018 0.0142 -1.E-04τ 2 + 0.005τ − 0.036
TEX 1.0001E-04 0.0207 0.0387 -7.95E-05τ 2-0.0051τ -0.043
iso-alkanes 1.0001E-04 0.0026 0.013 1.84E-04Exp(0.141 τ)

Table 4.2: First-order HC kinetics table and function fit (Fitting). The rows below
the K1 kinetics (median) show median first-order kinetics for different HC subsets T s

τ ,
where τ is the temperature, and s is the number of HC spikes added. First-order HC
kinetics for 10°C was calculated as in Table 4.1.

17°C to 22°C. To produce these results, we assumed a constant HC input before 2016,

estimating roughly the amount of degradable HC left after 2015 and the beginning of

2016. In this scenario, we simply assumed 60% of 2016 unrecovered diluents for each

previous year, representing a smaller-scale diluent input in the MLSB. In Fig. 4.12, we

show the methane biogenesis predictions during 2016-2017 for three years of assumed

HC input loss from 2013 to 2015. Table 4.3 shows the percentage of predicted CH4

for 2016 and 2017 for an n-assumed years previous to 2016, and further prediction

improvements can be done if diluent mass and FFT loss rates are known.

It was found that zero-order methane estimations reached a fixed percentage of esti-

mated methane before other models. This feature is due to zero-model linear HC decay

at low HC concentrations, which rapidly increases methane estimations compared to

first-order models, which show exponential HC decay and lower methane rate estima-

tions. For this reason, zero- and first-order models estimate different HC kinetics when

constant input of HC is assumed. These results show that zero- and first-order kinetic
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MLSB Cumulative CH4 predictions in 2016 and 2017 at 21°C

Period HC input
Zero-order First-order FOM
2016 2017 2016 2017 2016 2017

2016-2017 0 48.40% 44.16% 40.05% 47.00% 38.09% 44.23%
2015-2017 1 48.87% 44.11% 47.34% 48.12% 44.73% 45.16%
2014-2017 2 48.68% 44.2% 48.56% 48.42% 45.77% 45.4%
2013-2017 3 48.86% 44.05% 48.90% 45.50% 46.02% 45.47%

Table 4.3: First-order mechanistic (FOM), zero- and first-order kinetic models cumula-
tive methane predictions in MLSB during 2016-2017 using HC temperature-dependent
kinetics and HC input assumption in previous years. The total methane reported from
this period was 2182.1 tmol [47]. Each assumed year before 2016, assumes 60% of 2016
unrecovered diluent, simulating smaller-scale HC input. Methane predictions reach a
fixed percentage of the cumulative methane reported by increasing the years of assumed
HC input before 2016.

models can estimate in-situ methane emissions. However, Fig. 4.12 shows limitations of

the zero-order-kinetics, whose estimations on HC storage in OSTP and EPL are differ-

ent from the mechanistic and first-order kinetic model, including methane estimations

in EPL settings. In our simulations, after 2018, the temperature variations drasti-

cally decreased hydrocarbon kinetics in colder weather and increased during warmer

days. Our numerical experiment suggests that the hydrocarbon degradation rate and

methane biogenesis decrease in EPL scenarios. In this simulation, the first-order ki-

netics estimate that it would take around 3.5 (5.5) years to degrade up to 80% (90%)

of the total accumulated hydrocarbons estimation in 2018, with slight increments of

cumulative methane over the years. Therefore, if EPL keeps producing methane after

several years, then it is likely that methane biogenesis is supported by other organic

sources that were not considered here.

4.5.4 Comparison between reported methane emissions and
model predictions in Alberta’s oil sands territories.

For this section, we utilized fugitive methane emissions datasets and unrecovered dilu-

ent reports from tailing ponds in Alberta oil sand mining regions. The sources of

such data sets are available at (https://open.alberta.ca/) and (https://www.aer.ca/),

which contain yearly reports on methane emissions and monthly reports of wasted dilu-
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ent (ST-39) for different oil sands mining companies currently operating in Alberta.

These reports correspond to different industry performances of cumulative methane

emissions and diluent loss, in which individual oil sands tailing ponds monitoring is

unavailable. To compare yearly methane emissions from the reports to those that the

FOM model predicts for different companies, we assumed that unrecovered diluents are

daily ditched into OSTP and immediately bioavailable for methane biogenesis, FFT’s

temperature is relatively constant, and hydrocarbon biodegradation is constantly active

under methanogenic conditions. Also, we assumed that a fraction of the unrecovered

diluents are volatilized and biodegraded by aerobic and sulphate-reducing bacteria.

Therefore, for each company, only about 57% of unrecovered diluents are considered

under methanogenic conditions [11], [47]. Our results are shown in Figure 4.13

In Figure 4.13, we simulated the cumulative hydrocarbon degradation kinetics us-

ing the FOM model, assuming an evenly distributed yearly diluent loss as input of

hydrocarbons into ponds day-to-day. For these results, we used a fixed temperature of

20°C and compared the methane emissions reports and predictions by the end of each

year. In Figure 4.13a, our FOM model underestimates methane emissions reported

from Syncrude from 2011 to 2020 and overestimates it in 2021. Also, in Figure 4.13d,

our model underestimates methane emissions most of the years, but in many cases, we

observed that the model relatively agrees with methane emissions reports. However,

for Figures 4.13b and 4.13c, a significant discrepancy between model predictions and

methane report is revealed. Our model overestimates methane emissions from CNRL

and Shell companies each year, up to approximately 16 times the reported methane

emissions. Also, the cumulative hydrocarbon kinetics for our simulations show that the

accumulation of diluents reaches a steady state in the first years. This result suggests

constant methane production in active oil sands tailing ponds if diluents are constantly

replenished.

4.6 Discussion

Methane contributes to 13% of GHG emissions in Canada, of which 40% comes from

the oil and gas sectors (https://www.canada.ca/), and the Alberta government is ex-
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(a) (b)

(c) (d)

Figure 4.13: Yearly methane emissions comparison between FOM model predictions
and Alberta Energy Regulator reports. Each panel represents methane emission com-
parison between different companies (a)-Syncrude, (b)-CNRL, (c)-Shell and (d)-Suncor
reports against model predictions. Each bubble represents the ratio of methane FOM
predictions and yearly reports for each company. The left axis represents the reported
yearly diluent loss and localizes the center of each bubble. Green (red) bubbles rep-
resent an underestimation (overestimation) of methane predicted by the FOM model
in percentage. The right axis represents the cumulative hydrocarbon kinetics over the
years simulated by the FOM model.
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amining produce legislation that would limit GHG emissions in oil sands territories by

2030 (https://www.alberta.ca/climate-oilsands-emissions). Methane emissions from oil

sands wet tailings are primarily due to the biodegradation of unrecovered hydrocar-

bons stored in OSTP and end-pit lakes EPL [27], [35], [37]. These hydrocarbons are

constituted partially from diluents used during the bitumen separation from oil sands

[11], and the degradation of different compounds including n-alkanes [74], [75], [91],

[92], BTEX [76], and iso-alkanes [1], [78], [80], [92], can support methane biogenesis

[35], [37]. Creating accurate data-validated methane estimation mathematical models

incorporating different OSTP and EPL features would be valuable for future tailing

management and assessing current methane emissions industry performance.

To develop a temperature-dependent mechanistic data-validated model for methane

emissions in OSPT and EPL, we investigated how temperature variations can con-

tribute to the biodegradation of short-chain n-alkanes (C5, C6, C7, C8 and C10), BTEX,

and iso-alkanes (2-MC5, 3-MC6, 2-MC7, 4-MC7 and 2-MC9), which are hydrocarbons

found in OSTP and EPL that support methanogenesis, using FFT samples at 5°C,

20°C and 30°C. One principal objective of this experiment was to capture a broad

temperature-dependent degradation kinetics spectrum. However, our 5°C experiments

showed no methane activity after over 3 years, and data found in the literature with ex-

periments running at 10°C and 20°C were used [48], [80]. Our findings for our 20°C and

30°C experiments show that the conversion efficiency from active samples may increase

after adding more hydrocarbons to the samples after exhaustion. The degradation

kinetics trends at these temperatures remained generally at the same scale. Also, the

microbial lag phase is dramatically shortened once the microbes are adapted to de-

grade hydrocarbon sources. These results suggest a continuous diluent degradation

with probably increased methane conversion efficiency for constantly added hydrocar-

bon supplies.

Current mathematical models, such as the zero- and first-order kinetic and second-

generation stoichiometric models, accurately estimate methane emissions from HC

degradation in laboratory settings. Their prediction potentials may be extended for

in-situ methane estimations and hydrocarbon degradation [47], [77]. However, differ-
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ent features still need to be included, such as the hydrocarbon temperature-dependent

kinetics, mechanistic validation for the phenomenological models or incorporation of

usually unavailable biomass kinetics [47]. To overcome these situations, we proposed

a mechanistic model encompassing two methane biogenesis paths, allowing the recov-

ery kinetics for measurable variables such as CO2, acetates and hydrogen if required.

Also, including these features in the mechanistic model allowed us to accurately pre-

dict methane emissions and degradation kinetics in laboratory settings, diversifying

the methane path flow weights based on the microbial communities shown by DNA

analysis.

Our data-validated model in laboratory settings provides a basis to extend the

model predictions capacity and compare them to in-field reported methane emissions.

Also, our mechanistic model provides a justifiable basis for using simpler phenomeno-

logical models, such as the zero- and first-order mechanistic models, in which their

degree of prediction is evaluated. During our simulations, we compared our mechanis-

tic model against diluents and methane emissions reported in [47] from MLSB during

2016 and 2017 by incorporating hydrocarbon temperature dependence. This approach

reduced the still-wide gap between our model estimations and reality. According to our

results, cumulative methane production linearly increases after hydrocarbons reach a

saturation threshold, which is indirectly attributed to the FFT production rate, and

simpler models, such as the zero- and first-order models, have the potential to estimate

methane emissions in situ. Our methane predictions are about 7% lower than the

second-generation stoichiometric model for methane biogenesis estimations [47]. How-

ever, to reach such estimations presented in [47], it would be necessary to deplete the

yearly diluent loss at its totality according to stoichiometric mass-balance calculations.

Our temperature-dependent model simulations reveal a surplus of diluents, stacking

over the years of continuous oil sands mining. Furthermore, this accumulated surplus

of elusive diluents would likely slowly degrade in EPL due to a temporal variation not

present in OSTP. Temperature estimations in MLSB show they remain at a reason-

ably constant temperature (about 20°C) between 10-30 m depths [77], compared to a

seasonal range from about 5°C to 20°C in BML between 2.5-7.5 m depths [30], [94].

94



Assessing methane emissions from oil sands industry activities, particularly in Al-

berta, is required to evaluate the performance of methane mitigation efforts. Using free

data-available reports from Alberta oil sand mining regions through the Open Gov-

ernment Program and Alberta Energy Regulator websites, we compared the methane

emission predicted from our mechanistic model with such reports. Our model predic-

tions indicated a considerable overestimation of methane emissions compared to the

reported from CNRL and Shell based on the amount of diluent loss per year. In con-

trast, our simulations show an underestimation of methane emissions from Syncrude

reports in the last decade, except for the last year of reported data and relatively agree-

able methane emissions from Suncor reports. The variation in the methane emissions

estimations could be explained by the fact that OSTP and EPL in such companies’

facilities are still inactive or FFT tailings are being treated differently to avoid dilu-

ents being degraded under methanogenic conditions. Compensating such discrepancies

between methane predictions and methane reports will require continuous monitoring

and increased data resolution from OSTP and EPL activities.

Modelling GHG emissions from oil sands tailing ponds and end-pit lakes is chal-

lenging and requires more than hydrocarbon kinetics and temperature features. For

example, including different redox potentials into models to enable the possibility of

microbes to form various chemical species, including H2S, would provide a better un-

derstanding of in-situ biodegradation processes. Building holistic models would require

large amounts of data collected directly from OSTP and EPL as a time series, which can

increase costs and is probably unfeasible. Laboratory experiments provide a solid mod-

elling background to anticipate in-situ methane release. Our mechanistic model allows

accurate tracking of methane biogenesis, hydrocarbon degradation, and recover CO2,

acetates, and hydrogen kinetics, if missing, under temperature-dependent features in

exchange of stoichiometric calculations present in the second-generation stoichiometric

model, where microbial biomass is not available. Under strict methanogenic conditions,

the mechanistic model in this work also provides a basis for simple phenomenological

models and quantifies their methane predictions and hydrocarbon degradation accu-

racy, which are easier to implement and can provide insightful information for rapid
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in-situ methane biogenesis assessments. However, implementing new required features

for GHG emissions, including the possibility of hydrocarbon degradation under differ-

ent redox potentials, would require using a mechanistic models approach.
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Chapter 5

Conclusion

5.1 Discussion of main results

The first component of this thesis was designated to create innovative tools for soil

organic matter degradation processes under aerobic conditions. We have designed a

stoichiometric model that could be used to understand how microbial communities

utilize labile substrates rich in carbon and nitrogen. The data-validated priming ef-

fect model incorporates soil biodegradation processes by considering microbial and soil

composition carbon-to-nitrogen ratios, and we extended this model to explore the sym-

biotic relationship between plants and microbes. Using different soil health indicators,

such as SOM carbon-to-ratio content and soil infiltration, we could explore when plants

must invest part of their resources into the rhizosphere to promote microbial growth

and release SOM nutrients in exchange. Delimiting these scenarios could be helpful for

soil management strategies, which can address better use of fertilizers.

The second component of this thesis focuses on methane production from oil sands

territories, establishing the importance of incorporating temperature-dependent hydro-

carbon degradation kinetics for in-situ predictions. We monitored the biodegradation

of different groups of hydrocarbons, commonly used as diluents to separate bitumen

from oil sands, in laboratory settings under three different temperatures. Our results

point out that lower temperatures are not favourable for microbes to decompose un-

recovered hydrocarbons that are stored continuously in OSTP or have been stored in

EPL for years. In fact, after three years of monitoring, we didn’t see methane pro-
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duction in 5°C experiments, and through literature-found data, 10°C is cold enough to

decrease substantially the hydrocarbon degradation rate. On the other hand, 20°C and

30°C showed increased degradation rates that remain in the same order, suggesting a

plausible maximum close to such range.

A DNA analysis revealed that different microbial communities are present during

the HC degradation, including hydrogenotrophic and acetoclastic methanogens. These

groups of methanogens produce methane in two distinct paths, a feature we could

incorporate into a new mechanistic model for estimating methane emissions in oil sands

activities [27], [75]. Such a model was tested to verify its accuracy under laboratory

settings and quantify the degradation kinetic rates observed through the experiments.

Once we quantified the variables and parameters, we tested our in-situ predictions

considering temperature gradient profiles in OSTP and EPL. These predictions were

compared against methane and diluent loss reports in MLSB from 2016 to 2017 [46].

Our numerical predictions highlight an accumulation of hydrocarbon over the years

that is explicitly related to the unrecovered diluent rate. Also, given that OSTP

temperature variation ranges between 17°C to 22°C [77], a constant methane emissions

rate is observable, which can be reproduced by simpler models such as the zero-order

kinetic model. However, the temperature may fluctuate between about 5°C to 22°C

for EPL scenarios over the year [30]. This temperature variation slows down the HC

degradation process in EPL in winter, and zero-order kinetic model HC estimations

differ from the first-order.

Temperature variations in EPL will prolong the years microbes would take to de-

plete HC supplies. Our results show that, for known biodegradable HC, it would take

about 10 years to degrade 90% of the HC stored in an EPL. In Chapter 4, we also

showed that our mechanistic model is capable of recovering, to some degree, impor-

tant measurable chemical species such as CO2, acetates and H2, which are part of the

methane biogenesis progress.

The final remarks of this work show that phenomenological models, such as the

zero- and first-order kinetic models, have the potential to predict methane emissions

in situ, with the advantage of providing simple and accurate tools to stakeholders that
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are rapidly required to evaluate methane emissions from oil sands activities.

5.2 Limitations and future work

Our data-validated model for SOM degradation processes is validated only through

laboratory experiments, and calibration of the model by comparing it with in-field

real data still has to be addressed. Our approach has been justified mathematically,

providing a solid theoretical background to use such a model that potentially incor-

porates plant rhizodeposits and soil infiltration mechanisms. However, rhizosphere

interactions between soil, plants and microbes represent an enormous challenge since

several features that control rhizodeposits, microbial growth and activities, watering,

pH, and mineral availability must be included. This can complicate the current model,

and mathematical analysis would become more challenging for each new mechanism

incorporated.

Regarding our mechanistic methane emissions model, we can highlight its possibility

of including redox potentials, usually present in in-situ scenarios. Incorporating redox

potentials into mechanistic models will allow us to estimate NOx, H2S, and other harm-

ful gases in the long term. Our model provides a mechanism when anaerobic conditions

are present, and incorporating new models for H2S emissions will increase in-situ GHG

estimations that would benefit tailing management and land reclamation scenarios.

However, incorporating redox potentials into soil biodegradation processes will force

the creation of holistic models, and several experiments should be done by researchers

and soil experimentalists to validate and calibrate such models. Furthermore, in-situ

methane estimations require monitoring services or tools that can provide substantial

information for mathematical models and increase the accuracy of GHG estimations

in the long term.
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