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Abstract 

Surface plasmon resonance (SPR) has emerged as a powerful tool in sensing and 

biosensing for decades due to its label free and real-time data collection characteristics. In the 

first part of this thesis, a custom-built high performance SPR spectrometer with broad range of 

scanning angle, high resolution of 0.001° and multi operation mode is described in Chapter 2. 

The second part of the thesis (Chapters 3-5) focuses on development of a novel SPR sensor 

substrate that is able to detect small molecules (< 400 Da) in low concentration with high 

sensitivity. Stimuli-responsive polymers, especially poly(N-isopropylacrylamide) (pNIPAm)-

based microgels, were used in the assay development for SPR signal enhancement (Chapters 3-

4). In addition, a cost effective method was developed to fabricate hexagonal close packed Au 

nano arrays by directly painting the Au@pNIPAm hybridized core shell particles on the substrate 

and plasma etching after deposition; this can potentially be used in SPR sensor substrate and 

surface-enhanced Raman spectroscopy. Due to the thermoresponsivity of the pNIPAm shell, the 

interparticle Au nanoarray distance can be dynamically tuned and controlled by varying the 

painting temperature. In Chapter 6, a temperature-light dual responsive photonic device 

composed of Au@pNIPAm core-shell microgels is reported and its optical properties were 

investigated under the stimuli of temperature and light. In addition, the dependence of AuNPs 

distribution in microgel composites on light responsive performance was compared in terms of 

optical heterogeneity and responsive kinetics. In Chapter 7, a pNIPAm-brush based optical 

device with multi-responsiveness was reported, which can potentially be used for sensing and 

biosensing, drug delivery or other applications that require light manipulation and wavelength 

filtration.  
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An active life serves the purpose of giving man the opportunity to realize values in 

creative work, while a passive life of enjoyment affords him the opportunity to obtain fulfillment 

in experiencing beauty, art, or nature. But there is also purpose in that life which is almost barren 

of creation and enjoyment and which admits of but one possibility of high moral behavior: 

namely, in man’s attitude to his existence, an existence restricted by external forces. A creative 

life and a life of enjoyment are banned to him. But not only creativeness and enjoyment are 

meaningful. If there is a meaning in life at all, then there must be a meaning in suffering. 

Suffering is an ineradicable part of life, even as fate and death. Without suffering and death 

human life cannot be complete. 

The way in which a man accepts his fate and all the suffering it entails, the way in which 

he takes up his cross, gives him ample opportunity–even under the most difficult circumstances–

to add a deeper meaning to his life. It may remain brave, dignified and unselfish. Or in the bitter 

fight for self-preservation he may forget his human dignity and become no more than an animal. 

Here lies the chance for a man either to make use of or to forgo the opportunities of attaining the 

moral values that a difficult situation may afford him. And this decides whether he is worthy of 

his suffering or not.  

Man’s Search for Meaning 

Frankl, Viktor E.    
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Chapter 1 

Introduction to Surface Plasmon Resonance  

In this Chapter, surface plasmon resonance (SPR) is introduced. The first section focuses on the 

history of SPR and an overview of available commercial instrumentation. The second section 

focuses on propagating-based SPR techniques with different excitation setups. The physical 

mechanisms involved will be included in detail. The third section focuses on localized SPR 

(LSPR) that exists on metallic nanostructures, whose theory and synthesis will be covered. This 

Chapter will be the foundation for better understanding of the chapters which follow.  

1.1 Background and History of SPR 

Surface plasmons (SPs) are the collective oscillation of electrons along the interface of a 

free electron metal (e.g. gold, silver, aluminum and copper) and a dielectric medium (e.g. gas, 

liquid and solid).1 The first observation of this physical phenomenon was recognized originally 

more than 100 years ago by R. W. Wood, when he observed diffraction anomalies as 

polychromatic light illuminations on metallic diffraction gratings.2 In 1941, Fano3 was the first to 

give an explanation of these anomalies that related to the electromagnetic waves excited on 

gratings. Eventually, the theory of SPR was fully developed and proved by Ritchie,1 Stern and 

Ferrell4 and Kanazawa5 in the late 1950s. They explained the associated energy loss as the 

electron beam passing through thin metallic foils in contact with a dielectric medium. Until the 

1960s, the optical excitation of SPR was demonstrated by Otto6 and Kretschmann and Raether7 
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Figure 1-1. SPs propagation on the metal/dielectric medium interface (along X axis at Z=0) and 

penetration through both sides with exponential decay (maximum field intensity at Z=0). The 

local charge produces an evanescent field in the X and Z directions with an electric field strength 

of     . The    is the generated SPs evanescent wave propagation length along the metal/dielectric 

medium interface. The    is the generated SPs evanescent wave penetration depth in 

metal/dielectric medium. 

1.2.1 Optical Properties of Metals 

The frequency of collective free electron oscillation at the metal/dielectric interface, 

which is also called plasmon frequency, can be defined by Eq. (1),11 

     
   

   
 (1) 

where N is the free electron density, e is the electron charge, m is the electron mass and    is the 

permittivity of the free space. In the Drude model, which treats the electrons as a gas of free 

particles, the dielectric constant of a metal can be described as a function of the applied electric 

field with angular frequency of  , as defined in Eq. (2),12  

        
  

 

      
  (2) 

where    is the plasmon frequency and   is the collision frequency with an amplitude of ~1014 

Hz at room temperature. The electron–nuclei collision dampens the electron oscillation in the 

presence of an external electromagnetic field. Drude’s model is adequate enough to describe 

many aspects of optical properties of metals even with the electrons/electrons and 

electrons/positive-core interaction omission. The dielectric constant of a metal can also be 

defined as a complex number by Eq. (3), 
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                     (3) 

where       is the real part and       is the imaginary part. Both of these terms are associated 

with the refractive index n and the extinction coefficient K, given by the following expressions: 

           (4) 

         (5) 

By measuring the reflection and transmission of a vacuum-evaporated thin film at room 

temperature, Johnson and Christy have investigated the optical properties of noble metals (gold, 

silver and copper) in the spectral range of 0.5–6.5 eV.13 The results were shown in Figure 1-2. 

Such experimental measurements are useful in distinguishing the contribution from free 

electrons and interband transitions.  

1.2.2 SPR on a Smooth Surface 

As shown in Figure 1-1, the SPs are excited on the interface of two semi-infinite media, 

which represent a dielectric material (Z>0) and a metal (Z<0). The dielectric constant of these 

materials is given by, 

                                (6) 

                        (7) 
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wave as it only has a component along the Y axis. In addition, the propagation of SPs along the 

X axis can exist only when the dielectric constant of these two media satisfy both Eq. (8) and (9), 

    

  
 

   

  
   (8) 

              
 

 
 

    

     
 (9) 

where     is the component of the wavevector in the Z direction in the dielectric medium,     is 

the component of the wavevector in the Z direction in the metal,     is the component of the 

wavevector in the X direction in the dielectric medium,     is the component of the wavevector 

in the X direction in the metal,   is the frequency of the applied electromagnetic wave, c is the 

speed of light in vacuum and    and    are the dielectric constant of the dielectric medium and 

metal, respectively. There is a solution for Eq. (8) and (9) only when the dielectric constants of 

these two materials have opposite signs with     ,      and         , which also yields:  

     
 

 
 

  
 

     
 (10) 

     
 

 
 

  
 

     
 (11) 

1.2.3 Penetration Depth    

The evanescent characteristics of SPs can be seen from the expression for the electric 

field in Eq. (12),15  

                         
                  (12) 

where     for the electric field intensity    in the metal and     for the electric field 

intensity    in the dielectric medium. It can be seen that the electric field decreases 

exponentially in both the X and Z directions. However, as the wavevector in the Z direction (    
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and    ) is still imaginary, this means that it is non-propagative and evanescent in the Z 

direction. The penetration depth or the skin depth, the distance where the electric field decreases 

to 1/e, can be defined by Eq. (13), 

     
 

 
 

     

  
  (13) 

where     for the penetration depth     in the metal and     for the penetration depth     

in the dielectric medium. It is apparent from equation (13) that the penetration depth strongly 

depends on the frequency  . For example, when exciting surface plasmons on a gold/water 

interface with 630 nm wavelength light, the penetration depth in Au was around 29 nm; while it 

is ~162 nm in water.10b As the excitation wavelength changed to 850 nm, the penetration depth 

became 25 nm and 400 nm in gold and water, respectively.10b The wavelength dependence of the 

SPs penetration depth at the interface of a Au/dielectric medium (n =1.32)14a is shown in Figure 

1-3. The penetration depth in the dielectric medium increases as the excitation wavelength 

increased, while it decreases in the metal. The expression of the penetration depth also explains 

why the SPs are only sensitive to refractive index changes in the vicinity of the metal/dielectric 

medium interface (normally in the hundred nm range in the dielectric material). For 

biomolecules with a size     , which is normally smaller than    , this means that they can 

always “feel” the SPs’ field once the biomolecule is captured on the metal surface. The effective 

refractive index      under the evanescent field can be defined by averaging a Z-dependent 

dielectric refractive index n(z) by a weighting factor             , as shown in Eq. (14):16 

      
           
  
 

       
  
 

  
 

  
             

  

 
 (14) 

Such an expression can be simplified to yield Eq. (15) when a single biolayer with a refractive 

index      adsorbs on the interface, 
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  (18) 

Note that the distance that surface plasmons propagate along the interface of a given 

metal/dielectric depends on the frequency  . Typically, the propagation length of SPs at the 

gold/water interface can be up to 3.8 µm under the excitation at 632 nm.17 The spectral 

dependence of the propagation length of the SPs’ supported by different metals (gold, silver and 

aluminum) is shown in Figure 1-4. From the Figure, it can be predicted that the SPs propagates 

longer at the interface of semi-infinite media as the wavelength increases.   

 
Figure 1-4. The propagation length of SPs at the interface of the metal and the dielectric medium 

(n =1.32) as a function of wavelength.14a Reprinted with permission from Ref. 14a. Copyright 

2006, Springer.    

1.2.5 Optical Excitation of SPs 

To excite the SPs at the metal/dielectric medium interface, an external energy source is 

needed, which can be fast electrons or light. Electronic excitation of SPs can only be achieved 

under vacuum conditions,15 which will not be discussed here. In the case of light illumination, 
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the SPs can be excited only when the horizontal component (X axis) of the wavevector of the 

photon         matches the real part of the    . The wavevector of the component in the X 

direction of a photon traveling in a dielectric medium can be defined by Eq. (19),   

        
 

 
         (19) 

where   is the incident angle,    is the dielectric constant of the dielectric medium,   is the 

angular frequency of the photon and   is the speed of light in vacuum. As described in the 

previous section, the real part of     can be defined by Eq. (20), 

    
   

 

 
 

     

      
  (20) 

where     is the real part of the dielectric constant of the metal,    is the dielectric constant of 

the dielectric medium,   is the angular frequency of the photon and   is the speed of light in 

vacuum. Obviously, it is impossible to satisfy the condition of the SPs excitation by directly 

shining light onto a smooth metal surface because            
  even at      . As a 

consequence, the wavevector of the incident light should be increased to match the real part of 

the     in order to excite the SPs at the metal/dielectric medium. Generally, two methods can be 

applied to gain additional wavevector to transform the photon to the SPs. The first one utilizes 

the diffraction gratings,18 the second one employs the attenuated total reflectance coupler.19 

These two mechanisms will be discussed below in detail. 

1.2.5.1 Grating Coupler 

As illustrated in Figure 1-5a, when a beam of light impinges on the interface of a 

dielectric medium and a metal grating, the wavevector in the horizontal component will be 

enhanced by the diffraction so that the SPs are excited at the interface. The additional 
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our instrument building, this setup will be the focus of our discussion. When light shines through 

a glass (dielectric constant      ) and is reflected at the glass/metal interface , the wavevector 

at this interface can be defined by Eq. (23),15  

        
 

 
         (23) 

where    is the dielectric constant of the glass and   is the incident angle. Under these 

conditions, it is possible to meet the requirement of          
  by choosing the proper glass 

(  ), incident angle ( ) and frequency ( ) to excite SPs since      . As a result, Eq. (24) is 

obtained: 

  

 
        

 

 
 

     

      
  (24) 

Since the metal in this case is no longer treated as a semi-infinite material, the incident wave is 

able to penetrate through this thin metal layer (        and reach the interface of the 

metal/dielectric to generate SPs, which finally decay exponentially in the dielectric medium. For 

a metal layer thickness    greater than   , the electric field of the incident wave will decrease to 

almost zero when reaching the metal/dielectric interface; this will not have a coupling effect and 

will not be able to generate SPs at the metal/dielectric interface. Therefore, the thickness of the 

metal also plays an important role in the excitation of SPs. Generally, 50 nm Au or 47 nm Ag 

were used in the experimental setup to achieve the best sensitivity.9  From Eq. (24), one is able to 

derive the angle (   ) at which SPs were excited at a given glass/metal/dielectric medium,  

            
     

          
  (25) 

where     is the real part of the frequency-dependent dielectric constant of the metal and    and 

   are the frequency-dependent dielectric constant of the dielectric media and the glass, 
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particular refractive index of the surrounding material (dielectric medium in contact with the 

metal) and specific wavelength of incident light traveling through the prism, there is only one 

resonance angle,    , able to meet the requirement of wavevector matching shown in Eq. (25). 

By scanning the angle at which the light impinges the prism, one is able to tune the horizontal 

component of the photon wavevector so that it matches the real part of the     to generate SPs at 

the metal/dielectric interface. The parameters of incident light, such as the intensity, phase, 

spectral distribution and polarization, will change significantly once the light is coupled to the 

metal and the excited SPs. With a different detector, multiple operation modes were available in 

prism-based SPR instrumentation. For example, if the light intensity is recorded by a photodiode, 

the reflected intensity can be plotted as a function of the scanning angle (θint). Due to the light 

absorption by SPs, one will observe diminished reflected light intensity. The angle at which the 

minimum reflected intensity is observed is called the resonance angle. As demonstrated in Eq. 

(25), such an angle is very sensitive to the refractive index change (   ) at the vicinity of the 

metal surface. A typical SPR spectrum is shown in Figure 1-8a. As can be seen, a significant 

resonance angle shift can be observed when the dielectric medium changes from air (      

   to water (             . Alternatively, instead of an angular based interrogation, the 

resonance condition can be fulfilled by shining a white light with multi-wavelengths at a fixed 

angle so that one of the specific wavelengths excites the SPs. A traditional wavelength module 

based SPR spectrum is shown in Figure 1-8b. As can be seen, the resonance wavelength revealed 

a red shift as the refractive index increased due to more protein-binding on the sensor surface. 

For a prism based SPR sensor, the documented refractive index resolution is around 10-6–10-8 

refractive index units (RIU).21 
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Generally, in the Kretschmann configuration, bulk optical parts were involved in the 

instrumentation such as the light source, detector and prism as well as in the liquid handling 

system for sensing. Other options to excite SPs with a compact setup and a remote detection 

capability can be fulfilled by an optical fiber based SPR platform.22 The structure of an optical 

fiber based SPR sensor is shown in Figure 1-7b; it is composed of a core in the center and is 

surrounded by a cladding layer with a refractive index gradient. By removing a chunk of 

cladding, the fiber core was exposed for a further thin metal film coating. The sensor area was 

composed of a thin metal film at the core/cladding interface with an overlayer potentially 

exposed to the sample of interest. The principle of the excitation of SPs is similar to that of a 

prism based Kretschmann setup. As shown in Figure 1-7b, the light propagates in the fiber core 

with total internal reflection due to the refractive index difference between the core and the 

cladding (lower refractive index). By tuning the angle of light emitted to the core layer, the 

evanescent field was generated with a wavevector matching condition that satisfied the one 

coupled to the SPs; this finally resulted in a reflectance change. In addition, the evanescent field 

can penetrate the cladding layer at around 100 nm.23 The optical fiber based SPR sensor 

normally has a lower minimal detectable refractive index resolution than the prism based one, in 

the range of 10-4–10-6 RIU.24 Other disadvantages of optical fiber based SPR sensors include the 

multimode combination in the operation with uncontrolled fields so that the SPR spectra were 

broad and ill-defined, with an overall under performance.25 The non-standard optical fiber 

modification normally faced the challenge of fragility, suffering from a high cost compared to 

unmodified standard fibers.26 
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A sensor/biosensor generally is composed of four elements: the target (molecule of 

interest), the probe (specifically interacts with the target), the transducer (converts the 

target/probe interaction into a measurable quantity) and the signal (detected by the instrument 

and finally displayed as readable information).28 The SPR as a sensing and biosensing platform 

was able to modify probe molecules on the Au sensor surface and detect the refractive index 

change near the sensor surface upon the target approaching, which finally yielded a resonance 

angle shift or reflected light intensity change. The characteristics of SPR, including real-time 

detection, label-free, high detection sensitivity and a wide dynamic range, make them perfect 

optical tools in sensing and biosensing applications.29 The following section will cover the 

challenges of a SPR platform in sensing and biosensing that this thesis aims to address.  

 1.2.6.1 Challenges of SPR in Sensing and Biosensing 

As shown in the theoretical description in section 1.2.3, the penetration depth of SPs in 

the dielectric medium (normally an aqueous solution) is in the range of a hundred nanometers, 

which means that the SPs will only be sensitive to changes in the vicinity of the sensor surface 

(from the metal/dielectric medium interface extended to hundreds of nanometers in the 

dielectric). Much research has been conducted into examining relatively large molecules, like 

proteins and their interaction with other biomolecules-proteins/aptamer/nucleotides29b due to 

their comparable size with the evanescent field.  However, the dimensions of some other 

biomolecules of interest normally fall in the range of microns such as microbes, pathogens, 

viruses and cells, which is beyond the limit of the sensing field. Therefore, it is extremely 

difficult to detect these biomolecules of interest via a SPR platform. Another extreme case is the 

detection of small molecules with molecular weights below 400 Da, like organic molecules and 

carbohydrates. Generally, the presence of these molecules also has clinical significance that 
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indicates specific stages of illness or disease. However, the cumulative refractive index change 

from the small molecules in low concentration is normally too small to result in a detectable 

resonance angle shift or a reflected light intensity change. The two aspects mentioned above are 

the main challenges researchers were facing in SPR sensing and biosensing. The detection of 

small molecules in low concentrations via a SPR platform is the aim that thesis wants to address. 

1.2.6.2 Approaches of SPR Signal Amplification 

Some great reviews30 have been published describing strategies that can be used to 

enhance SPR signals. In principle, these approaches involve additional mass introduction to the 

metal/aqueous interface to increase the total refractive index change that finally yields an 

observable signal change. The additional mass can come from biomolecules like the sandwich 

based enzyme-linked immunosorbent assay (ELISA) or from nanomaterials (they exhibit a great 

contrast in refractive index) such as a carbon nanotube,31 Au nanoparticles,32 latex particles,33 

etc.  One of the first SPR signal amplifications reported by the Keating group was that when the 

oilgonucleotides were modified with colloidal Au nanoparticles (AuNPs), a 10-fold angular shift 

took place, which corresponded to a ~1000-fold sensitivity improvement.34 The illustration of 

this assay is shown in Figure 1-9. A probe of short oilgonucleotide S1 was immobilized on the 

Au sensor surface by thiol chemistry. Upon binding a complimentary oilgonucleotide S2 with 

more base pair than S1, the resonance angle showed a ~0.1° shift (Figure 1-9b). The 

oilgonucleotide S2 here also played a role as an anchor for a secondary amplification tag 

attachment. Subsequently, another oilgonucleotide S3 (complimentary to the extended based pair 

of S2) modified with AuNPs was introduced to the system and yielded a ~2° angular shift of 

SPR spectra. The authors claimed that the SPR signal amplification is due to several reasons: 1) 

absolute mass loading increase by AuNPs as the secondary binding events happened; 2) great 
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different analytes. However, there are some disadvantages, such as the expensive cost of 

additional precious bio-reagents, the complexity of surface/tag modification and multiple 

injection/wash steps. 

In this thesis, the principle strategies for amplifying SPR signals is the utilization of smart 

polymers that were able to convert the biomolecule interactions into a polymer conformation 

change, which results in a higher refractive index change compared to sole biomolecule binding. 

The smart polymers are macromolecules that are able to change their chemical or physical 

properties under exposure to external stimuli, such as temperature, pH, ionic strength and analyte 

concentration.35 One of the most well studied thermoresponsive polymers is poly(N-

isopropylacrylamide) (pNIPAm), which exhibits a linear to globular conformation change at 

temperatures above the low critical solution temperature (LCST) ~32  .36 Like the linear chain, 

the crosslinked pNIPAm (such as a microgel/hydrogel classified in terms of size) network 

exhibits a volume phase transition at the critical temperature (~32   as well), which remains 

swollen below this temperature and shrinks above this temperature. A smart polymer can be 

designed in such a way that it responds to multiple stimuli in addition to temperature by 

copolymerizing with other monomers; examples can be found in the literature.37 In addition, 

there are numerous good reviews35, 38 a reader can refer to concerning stimuli-responsive 

polymers with respect to their properties and applications, which will not discussed in detailed 

here. Furthermore, the introduction about the smart polymer used is included in the individual 

Chapters as well. 

1.2.6.3 Kinetics Measurement in Real-time Mode39 
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where A represents the immobilized probe molecules on the SPR sensor surface and B represents 

the target in the analyte, ka (mol-1s-1) and kd (s-1) represent the association and dissociation rate 

constant for the formation and decomposition of complex AB, respectively. In the associated 

phase,  

      

  
                     (27) 

where               and                  . The SPR signal (RU) is proportional to the 

amount of bound complex on the sensor chip. Therefore, the formation of AB complex can 

further be expressed by Eq. (28),  

    

  
                      (28) 

where    is the SPR signal at time t and      is the maximum SPR signal after all the binding 

sites are occupied. Upon integration,  

    
       

      
                  (29) 

where    is the binding affinity, given by the following expression: 

    
  

  
  (30) 

 and                   defines the amount of time needed to reach equilibrium. At the 

equilibrium phase Eq. (29) becomes:  

        
       

      
  (31) 

In the dissociated phase, the solution changes to a buffer with the AB complex dissociating with 

time. In this case, the concentration of the target in the solution becomes zero ([B]t = 0). 

Therefore, 
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propagate along the interface of the metal/dielectric medium, is shown in Figure 1-11. This 

phenomenon is known as localized surface plasmon resonance (LSPR). In this process, as the 

wave front of the light passes, the electron density in the metallic particle is polarized to one end 

of the surface and oscillates collectively with the light frequency.42 Generally, the light–matter 

interaction involves scattering and absorption, where scattering is related to the incident light re-

radiated to a different direction with the same frequency and absorption is associated with light 

transfer to heat.43 However, when the particle size is below its free electron mean free path, the 

scattering effect is not expected. As the size of the metal nanoparticles approaches the de Broglie 

wavelength of its charge carrier, the excitation of the electron/hole pairs will be confined by the 

boundary of the particles. The energy level is no longer continuous and will split into discrete 

quantized states, as shown in Figure 1-12.44 In addition, the spacing between the electronic 

energy levels increased with a decrease in particle size.44 The LSPR properties (spectrum 

distribution, peak position, scattering/absorption ratio) of metal nanostructures are strongly 

dependent on the chemical composition, size, shape, geometry, structure as well as the 

surrounding environment.43 For example, as shown in Figure 1-13, the resonance peak of the 

LSPR spectrum of Au nanoparticles shifted from ~520 nm to the near-infrared field, ~820 nm, as 

the shape evolved from spherical to rod-shape.45 In addition, the red shift in the spectrum can be 

observed as the nanorod aspect ratio further increases. In Figure 1-14, broad plasmonic tunability 

was demonstrated by the variation of the hybridized nanoparticle components. The spectrum 

resolved a blue shift from ~1020 nm to ~740 nm as the Au shell thickness increased from 5 nm 

to 20 nm on the 60 nm silica core.46  
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Figure 1-13. Transmission electron micrographs (top), optical spectra (left) and photographs 

(right) of aqueous solutions of Au nanorods of various aspect ratios. The seed sample has an 

aspect ratio of 1. Samples a, b, c, d and e have aspect ratios of 1.35 ± 0.32, 1.95 ± 0.34, 3.06 ± 

0.28, 3.50 ± 0.29 and 4.42 ± 0.23, respectively. Scale bars:  500 nm for a and b and 100 nm for 

c−e.45 Reprinted with permission from Ref. 45. Copyright 2005, American Chemical Society. 
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Figure 1-14. Photographs of tunability of metal nanoshells (top) and optical spectra of Au 

shell−silica core nanoshells (the labels indicate the corresponding Au shell thickness).46 

Reprinted with permission from Ref. 46. Copyright 2004, SAGE Publications Inc.  

LSPR spectroscopy using nanomaterials offered similar advantages as the planar metal 

film based analogue with label-free and real-time measurement characteristics, both of which 

were able to provide thermodynamic and real-time kinetic information of the binding process.47 

The LSPR platform has other benefits along with those mentioned above such as less sample 

volume for measurements and simplified optical parts involving instrumentation.48 The only 

disadvantage is that it is not as sensitive as planar based SPR spectroscopy. In the next section, 

the theory governing the optical properties of metal nanoparticles will be given in terms of key 

equations. The major synthetic method of nanostructures also will be covered. 

1.3.1 Theory of LSPR 

The plasmon resonance of metallic nanoparticles can be treated with the Drude model, 

which assumes that the positive metal ion is fixed in place and the valence electrons are 

dispersed around the core. When the incident light shines on the spherical metal nanoparticle, 

whose size a is much smaller than the incident light wavelength λ, the electric field intensity 

around the metallic nanoparticles can be considered as static. The electric field can be expressed 

by Eq. (35) by solving Maxwell’s equations with a quasi-static approximation,49 

                
     

      
      

  

   
  

                  (35) 

where    and    are the frequency-dependent dielectric constant of the metal and dielectric 

medium, respectively, a is the size of the nanoparticles and    is the incident field intensity. The 
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equation shows that the electric field can be greatly enhanced in comparison to the incident field 

when        , which is a condition fulfilled for surface plasmons resonance in metallic 

nanoparticles. In addition, It can be concluded from Eq. (35) that both the size of the 

nanoparticles (a) and the dielectric constant of the surrounding environment (   ) have a 

significant impact on the magnitude of the electric field around the nanoparticle; this is 

consistent with the experimental results.  

The extinction spectrum of spherical nanoparticles, combining the scattering and 

absorption effects, exhibits a peak at the LSPR frequency. By solving Maxwell’s equations, Mie 

showed that the wavelength dependent extinction (sum of absorption and scattering) can be 

expressed by Eq. (36),50 

      
         

   

        
 

      

                     
   (36) 

 where N is number of finite polarisable elements that are able to interact with the applied 

electric field individually,    and     are the real and imaginary part of the frequency 

dependent dielectric constant of the metal, respectively,    is the frequency dependent dielectric 

constant of the surrounding dielectric medium, a is the size of the nanoparticle and   is a factor 

correlated to the particle shape. The value of   is 2 in the case of a spherical nanoparticle, and 

approximations were needed for other geometries.49 Eq. (35) demonstrated that the LSPR peak 

can be manipulated by multiple parameters, such as the size, shape and chemical component. In 

the case of LSPR in biosensing, the extinction peak of the spectrum shifted to a higher value as 

the biomolecules binding to the nanoparticle surfaces due to dielectric media refractive index 

        increased. The maximum wavelength shift can be characterized by Eq. (37),16, 51 

                       (37) 
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where m is the refractive index sensitivity,    is the refractive index difference between the 

biomolecules and the bulk solvent, d is the effective thickness of the absorbed biomolecule layer 

and    is the characteristic electromagnetic field decay length. Thus, quantitative information 

about the biomolecule coverage on the nanoparticle can be obtained by monitoring the LSPR 

peak shift (      . In addition, the binding constant and rate constant can be derived from the 

plot of       as a function of concentration and time, respectively.  

1.3.2 Nanoparticle Synthesis 

The synthesis of nanoparticles has continuously been an active topic of research because 

of the difficultly in generating the desired size, shape and monodispersity of nanoparticles.45, 52 

Generally, two different strategies can be applied in nanoparticle synthesis: “bottom up” and “top 

down” techniques.53 The bottom up method involves the assembly of atoms into nanostructures 

whose atoms were normally formed by ion reduction using wet chemistry, whereas the top down 

technique employs different lithographic techniques, which result in removing the bulk materials 

and leaving the desired nanostructures.50, 54 

In the bottom up approaches, solution phase synthesis is a versatile method of generating 

monodispersed nanoparticles with a controlled size, shape, component and structure.55 Generally, 

the reduction of metal salts was involved in this process with the addition of a capping agent, 

which is used as a stabilizer that controls the growth of nanoparticles as well as prevents them 

from particle aggregation. The capping agent can be small molecules (thiol ligands) or 

macromolecules (polymers) that are able to absorb on the metal surface and prevent aggregation 

by electrostatic interactions. Some commonly used reducing agents are citrate,56 hydrides,57 

alcohols58 and hydroxylamine.59 In addition to carrying out a reduction chemically, other 
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approaches are also available such as electrochemical,60 photochemical,61 sonochemical,62 etc, 

approaches. Good reviews63 are available that refer to the nanoparticle synthetic details based of 

the wet chemistry. 

In the top down techniques, conventional lithography techniques, including electron 

beam lithography (EBL)64 and focused ion beam lithography (FIB),65 are applied to remove large 

amounts of metal material to control the size, shape and interparticle distance of nanostructures. 

In EBL, the resist film was scanned over by a densely focused electron beam for pattern 

generation. This pattern then serves as a sacrificial mask for metallic nanostructure formation 

either by milling or depositing depending on the desired geometry. FIB is similar in approach by 

applying a beam of ions instead of electrons to generate both additive and subtractive patterning. 

Both of these techniques can generate a well-defined nanostructure with a precisely controlled 

size, shape, interparticle distance and structure, with a resolution down to 10 nm. However, these 

techniques suffered from a low throughput and a high cost for industrial scale production. 

Alternatively, some unconventional lithography techniques have been developed recently for 

nanostructure synthesis, such as nanosphere lithography (NSL),66 colloidal lithography (CLL)67 

and soft lithography.68 Generally, the pattern in these techniques was created by self-assembling 

either a hard sphere (silica nanoparticle,69 polystyrene beads70 or latex particles71) or a soft 

material (polymer colloidal particles)72 on the substrate. A void will be created between these 

particles for further metal layer deposition. The metallic structure can be formed after removing 

these assembled particles by either thermal treatment or solvent removal. Obviously, the 

periodicity and size of the nanostructure can be tuned dynamically by the assembled process of 

sacrificial particles. In addition, the shape of the nanostructures could be tuned by thermal 

annealing. The difference between NSL and CLL is that a hexagonally closed packed structure 
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was formed in NSL, while a random assembly was formed in CLL. Soft lithography involves a 

set of microfabrications utilizing an elastomer stamp (normally 

poly(dimethylsiloxane)(PDMS)),73 conformable photomasks or mold to pattern the material of 

interest. In conclusion, these unconventional lithography methods have the benefit of low cost, 

versatility and ability to produce a well-defined structure; these will be promising approaches for 

industrial production. There are several reviews50, 74 covering the top down approaches the reader 

can refer to.  
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Chapter 2 

Building of a Surface Plasmon Resonance 

Spectrometer  

2.1 Introduction 

Surface–surface interactions between at the interface between two surfaces play a major 

role in many processes that are important in our everyday lives,75 such as the moving machine 

parts in engines and the various joints found in the human body. The strength of these 

interactions dictates the surface and/or interfaces of tribological and rheological properties, such 

as adhesion, friction and lubrication.76 Unlike conservative forces, such as those resulting from 

surface charges, van der Waals interactions or steric effects, the forces between surfaces due to 

their relative motion lead to energy dissipation while they disappear in the absence of such 

motion.77 As two surfaces approach each other in a liquid, lubricating forces arise to prevent a 

solid contact between the approaching machine parts or between the particles in the concentrated 

colloidal dispersions. However, as the two surfaces get close enough (5–10 molecular layers), the 

liquid starts to lose its function and behaves like a solid; this is known as liquid-to-solid 

transition (manifested as an increase of many orders of magnitude in the effective viscosity).78 

Clearly, the efficiency of liquids to act as low-viscosity lubricants between the moving solid 

surfaces is limited by the onset of this solid-like behavior as the liquids are being squeezed out 
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under compression, especially, at low sliding velocities. The attachment of polymer brushes (a 

dense array of polymer chains whose one end is anchored to a surface) onto surfaces will change 

the equilibrium surface forces and the form of the motion-dependent interactions dramatically. 

The dynamic properties of the polymer chains and the polymer–solvent interactions will effect 

primarily on the surface–surface interactions.79  

In the case of equilibrium properties of the uncompressed polymer brush layers, the 

polymer brush conformations can be predicted by self-consistent field theory and molecular 

dynamic simulations and have been investigated primarily utilizing scattering techniques.80 

Leckband and other groups have demonstrated that the conformation of pNIPAm brushes on a 

surface is greatly dependent on the grafting density and the molecular weight of the chain.81 It 

has been shown that the low grating density and molecular weight pNIPAm chain does not 

collapse above its LCST.81a A vertical phase separation of the pNIPAm brushes was observed 

below its LCST in the distance–force profile with a dilute outer layer and dense surface proximal 

layer. However, there is much less understanding about the structure/conformation of the 

polymer chain on the surfaces under compression and confinement. Although the direct 

interaction forces between polymer layers can be quantified by force spectroscopy, such as 

surface force apparatus (SFA)82 and atomic force microscopy (AFM),83 less physical structure 

information of the brushes can be extracted from these direct measurements. As a result, most of 

our understanding of the polymer structures and the behavior of brushes under confinement have 

evolved from modeling approaches, including scaling theories, analytical and numerical 

statistical models and Monte Carlo simulations.84 By applying the theoretical approaches 

mentioned above, the polymer behavior on surfaces in a restricted space can be predicted, and 

the impact of several factors can be investigated such as the solvent quality, grafting density, 
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chemistry of monomers, brush charges, affinity to substrate, etc. Experimentally, several unique 

techniques have been developed to investigate these issues by combining optical spectroscopy 

and a force type apparatus.85 For example, the Prescott76 and Cosgrove86 groups, among others,87 

have applied neutron reflection to study the structure of confined thin films because of the 

advantages of this technique: 1) sensitive to the composition and concentration variation close to 

an interface; 2) a high spatial resolution (a few Å) to the reflective interface; 3) a high 

penetration depth allowing probing of the structures at the buried interface; 4) non-invasive to 

sample after long time neutron exposure; 5) the ability to probe a single component in a mixed 

system by replacing the hydrogen atoms with deuterium. However, a drawback of this technique 

is that a large beam-footprint (500–2500 mm2) was required to perform the reflection 

experiments on an acceptable experimental time scale.76  

To probe the polymer chain conformations in a restricted geometry, it is essential to 

create an aqueous environment with a controllable and uniform confinement over the course of 

the measurements; this probably involves a long incubation time for sample stabilization before 

testing. There were some challenges involved in implementing all the functions mentioned above 

into the instrumentation design.  One of the challenges is the alignment of these two surfaces. In 

the well-established SFA techniques, such issues can be avoided by applying one flat and one 

curved mica surface. The flat–curved surface–surface interactions can be approximated to flat–

flat surface–surface interactions by the Derjaguin approximation when the distance between the 

two surfaces changes. Furthermore, the distances between these two surfaces were measured and 

monitored by an interference spectrometer. In the Prescott group,76, 85 instead of using two solid 

substrates, one of these surfaces was substituted by a flexible polymer membrane (Melinex). The 

contact or separation of the two surfaces over a large surface area can be achieved by inflating or 
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deflating the membrane film. The distance between these two surfaces can be controlled by 

adjusting the inflation strength. Another challenge is that it is difficult to maintain a surface 

uniformity over a large surface area under confinement. 

I have built a surface plasmon resonance (SPR) spectrometer that was developed for 

polymer–polymer interaction studies under confinement, and is described in the current Chapter. 

SPR is a technique that can probe the events taking place at the metal/dielectric medium 

interface, and it is very sensitive to refractive index changes near the interface.88 The refractive 

index of polymer brushes on the surface is correlated with the polymer chain conformation, 

therefore, the SPR technique will be a very useful tool for polymer chain conformation 

investigations. The surface confinement can be achieved by applying a piezo stage controlled 

probe surface under the sensor surface with the distance monitored by three capacitive sensors 

synchronically. The parallel and absolute distances between two surfaces were further calibrated 

by a reflectance probe, which works on the same principle as an interferometer. 

In this Chapter, I will first explain the principle and design of this instrument and will 

follow with the software that was developed to control the motion of the SPR rotation stages and 

the piezo stages. The detailed procedure of the optics alignment and calibration are also given. 

This Chapter finishes with the calibration results, conclusions and outlook. 

2.2 Materials and Method 

The components used to build this surface plasmon resonance spectrometer are listed in 

the Table 2-1.  

Table 2-1. Components of the assembled surface plasmon resonance instrument. 
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Item Description Merchandise 

Vibration isolation 
table 

Smart Station UT2 48-12 OST-UT2-
48-12-I 

Newport, California 

IQ damper IQ-200-UG-12 Newport, California 

IsoStation accessory 8FT hip guard, OTS-HG-8 Newport, California 

Bottom shelf 8FT shelf below, OTS-BSH-8 Newport, California 

Side mount shelf 8FT side shelf, OTS-SH-8 Newport, California 

Bracket Right angle bracket for RV stage, 
EQ180 

Newport, California 

Rotation stage RV240PE, High torque, full step 
drive 

Newport, California 

Structural rail X95-OPT, 63 mm square pattern, 
600mm and 400mm 

Newport, California 

Rail carrier M-CXL48-50 Newport, California 

Clamp post holder Q-TMS-4 Newport, California 

Poster extender PS-4E Newport, California 

HeNe laser 1.5 mW, R-32734 Newport, California 

Laser mount Cylindrical, 1-1.75 inch, ULM-TILT Newport, California 

Attenuator LBP-NG4 Newport, California 

Detector Silicon photodiode, 
918D-SL-OD3 

Newport, California 

Polarizer Glan-Thompson Calcite Polarizer, 
10GT04AR.14 

Newport, California 

Rotation stage 
(polarizer) 

360°, coarse and fine adjustment, 
RSP-1T 

Newport, California 

Power meter High performance optical 
power/energy meter, 2963C 

Newport, California 

Iris diaphragm Aperture, M-DI47.28 Newport, California 
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Piezo stage 2mrad*2mrad*16µm, PSM2-D Newport, California 

XPS drive module Drive model for piezo-stack based 
nanopositioning, XPS-DRVP1, *3 

Newport, California 

Lens Plano-convex, BK7, 12.7 mm 
Dia.,19.0 mm EFL, 430-700nm, 

KPX040AR.14, *2 

Newport, California 

Lens Plano-convex, BK7, 25.4 mm Dia., 
150 mm EFL, 430-700nm, 

KPX100AR.14 

Newport, California 

Laser line filter 25.4 mm Dia, 632.8±2 nm center, 
10±2nm FWHM,10LF10-633 

Newport, California 

Mirror mount 1.0 in. Dia., 2 knob adjustment, front 
load, SS100-F2KN 

Newport, California 

Lens Cylindrical plano-convex, BK7, 50.8 
mm*25.4 mm, 38.1 mm EFL, 430-

700nm,CKX038AR.14, *2 

Newport, California 

Cylindrical lens mount 50.8mm max optic, ± 5 degree, 2arc 
sec, CYM-2R 

Newport, California 

Lens cradle Cylindrical lens adapter, CYM-2R-
A12.7 

Newport, California 

Lens Plano-convex, BK7, 25.4 mm Dia., 
250 mm EFL, 430-700nm, 

KPX109AR.14 

Newport, California 

XPS controller 8-axis universal controller, ethernet, 
XPS-C8 

Newport, California 

PWM drive module For brush and stepper motors, 
3A/48V max, XPS-DRV01, *2 

Newport, California 

Digital multimeter 34401A, 6 
   digit, *3 Agilent, California 

Capacitive sensor Model 8810,+/- 5µm range, 
bandwidth 1 KHz, output +/- 10V,  

*3 

MicroSense, 
Massachusetts 

Lens Objective, 60x, 0.85NA, 2.9 mm 
focal length, 5.4 mm clear, MV-60X 

Newport, California 
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Lens positioner 3-axis lens positioner, 0.5 in. Dia., 
2.0 in. height, LP-05A-XYZ 

Newport, California 

Lens (Prism) BK7, VIS AR coated, TIR wild field 
angles, hemicylindrical toroid, EFLY 
25.4, EFLX infinity, Y25.4, X 50.8, 

Radius 12.7 

Newport, California 

Damped post 1.5 in. Dia., 14 in. length, DP14-A Thorlabs, New Jersey 

XYZ manual stage 460A-XYZ, SM-13 micrometer, 
sensitivity 1µm, 13mm travel range, 

prism motion control 

Newport, California 

Z stage  PT-1, 0.001 inch resolution, 1 inch 
travel range, control probe surface  

Thorlabs, New Jersey 

Y stage 422-1S, linear stage, 1 inch travel 
range 

Newport, Canifornia 

Tilt Stage GN1, rotation ± 10°, accuracy 0.167° Thorlabs, New Jersey 

Mount Plate For rotation stage Machine shop in 
University of Alberta 

Bracket Base Mount the bracket to the vibration 
isolation table 

Machine shop in 
University of Alberta 

Prism holder  Machine shop in 
University of Alberta 

2.2.1 Design of the SPR Instrument 

To study polymer–polymer interactions with respect to confinement conformation 

changes, the instrument design was divided into two major parts based on the two functions: 

optical spectroscopy and confinement control. The optical spectroscopy involves a SPR 

spectrometer that can probe the polymer conformational information on the sensor surfaces. The 

function of confinement control is to create stable and uniform surface–surface 

approaches/separations with fine control in a workable range. These two parts are described in 

detail in the following section. A schematic illustration of the instrumentation is shown in Figure 
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BK7 prism was used with a dimension of Y 25.4 mm, X 50.8 mm, Radius 12.7 mm. The prism 

was mounted on a prism holder (customized by the machine shop in the University of Alberta) 

and subsequently attached to a XYZ manual transition stage for relocation. The XYZ stage was 

clamped to a damper stand that was locked on the isolation vibration table. The 50 nm Au coated 

glass substrate (BK7) was coupled to the back side of the prism (in the XY plane) by a refractive 

index-matching oil with the Au layer facing downward. The hemicylindrical prism was 

stationary when rotating the light source and the detectors because it was able to collect light 

from different angles with the light beam being focused on the same spot.   

The excitation light source is expected to generate collimated light when it travels in the 

prism so that the incident beam has a uniform incident angle. In addition, the collimated light 

should be scanned from different angles with a wide range. To fulfill these purposes, a 

monochromatic HeNe laser and a series of optical lenses were secured to an optical rail (X95-

OPT) and subsequently attached to a high precision rotation stage (RV240PE) with 0.001° 

resolution. The rotation stage was mounted to a bracket (EQ180) that was fixed on the isolation 

vibration table. On the optical rail, the HeNe laser was mounted to the end and was followed by a 

series of optics in the following order: an iris; a polarizer; a plano-convex lens; another plano-

convex lens; a cylindrical lens (50.8 mm*25.4 mm). Each optic lens was mounted in a lens 

holder and further attached to a post, which finally was secured to the rail by clamps. The 

positions of the individual optics can be adjusted by tuning the post height and moving the 

clamps on the rails, where they will be fixed and locked after calibrating. 

The detector should be able to collect the reflected light and record the light intensity at 

individual incident angles to generate the SPR spectrum. This means that the detector and the 
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light source beam should be scanned simultaneously, and the angle of the light source and the 

detector should be the same in order to collect the reflected light. In this SPR spectrometer, a 

silicon photodiode was used as the detector (918D-SL-OD3). It was mounted to another optical 

rail (X95-OPT) that further was attached to another high precision rotation stage (RV240PE). 

The rotation stage also was mounted to a bracket (EQ180) that was fixed on the isolation 

vibration table. First, the reflected light emitted from the prism was focused by a second 

cylindrical lens (50.8 mm*25.4 mm) and a plano-convex lens before hitting the silicon 

photodiode detector. Each of these was attached to a post and subsequently secured to the optical 

rails by clamps.  

The two rotation stages were mounted in such a way that their rotation center and the 

center of the prism in the XY plane are on the same line along the X axis. In addition, the motion 

of these two rotation stages was controlled by the computer via a XPS-C8 controller, which was 

controlled in a Laboratory Virtual Instrument Engineering Workbench (LabVIEW) programming 

environment. The data acquisition was complemented by the power meter also worked under 

LabVIEW control. 

The confinement was achieved by setting another probe surface below the sensor surface 

(a 50 nm Au coated glass substrate). The material of the probe surface can be varied according to 

the experimental requirements. The principles of controlling the confinement of the two surfaces 

are simple. That is, one of the surfaces (sensor surface, the upper one) is rigidly coupled to the 

back of the prism, and the other surface (probe surface, the lower one) is set below and secured 

onto a metal plate by vacuum suction. The metal plate was directly mounted to a piezo stage. 

The probe surfaces can be moved toward or away from the sensor surface using a four-stage 
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control system with a different accuracy (resolution). First, a coarse control micrometer drive 

allows for traveling in the Z direction over a range of 2.5 cm with a resolution of 25 µm. The 

second control employs a micrometer-driven differential spring with a travel range of 2.5 cm in 

the Y axis. The third control involves a tilt stage for surface parallel alignment with an accuracy 

of 0.167° in a ± 10° rotation range along the X or Y axis. The fourth control involves a voltage 

controlled piezo stage that allows (vibration-free) accurate positioning with a resolution of 0.3 Å 

over a linear range of 16 µm in the Z direction and a 2 mrad rotating range along the X/Y axis. A 

capacitance technique is used to monitor and measure the separation between the surfaces up to ± 

0.1 nm. Three capacitive sensors were set through the holes at the ends of the prism holder in a 

triangular shape; they can sense the metal plate simultaneously. After the two surfaces are 

aligned (parallel to each other), the refractive index of a polymer layer on a sensor surface is 

monitored by the SPR as the two surfaces are moving toward or away from each other by 

applying one of the four-stage controls. For example, by applying a voltage to the piezoelectric 

crystal, the distance between the two surfaces will change and be predicted by the capacitive 

sensor. In the mean time, the reflected light intensity will be recorded simultaneously. This 

yields the refractive index information of the polymer layer on the sensor surface at a particular 

surface separation, which can further be used to predict the polymer conformation under 

confinement. As mentioned above, the principles used to create the surface confinement are 

usually very simple; the main challenge has always been in designing a mechanical device that 

will successfully apply these principles at the nanometer level. In addition, a temperature control 

and feedback system was inserted in the metal stage of the probe surface that was attached to the 

piezo stage. The heat isolation was achieved by separating the metal stage from the piezo stage 

with a piece of ceramic disc.  
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The setup of this instrument is easy to modify by adding other accessories for different 

measurement purposes. For example, by replacing the probe surface with a fluidic cell, one was 

able to use the SPR spectrometer to implement all the functions of a commercial SPR instrument.  

In addition, an objective can be set under the probe surface to collect all the light scattered back 

and send it to a spectrometer through an optical fiber for further analysis. 

2.2.2 Software 

The motion of two rotation stages and a piezo stage were controlled by a PC through the 

XPS-C8 controller. The read out of the photodiode detector (in Watts) and output of three 

capacitive sensors (in Volts) were collected by a PC. A program was developed that can control 

and record the movement of the two rotation stages and collect the reflected light intensity 

synchronically, finally yielded a SPR spectrum with the reflected light intensity change as a 

function of incident angle. In addition, another program was developed that can record the data 

from all three capacitive sensors simultaneously. All the programs developed are running under a 

LabVIEW environment. 

2.2.2.1 Introduction of LabVIEW 

LabVIEW, also called a visual instrument (VI), is a graphic program platform, which 

contains a front panel and a block diagram. The front panel is the user interface imitating the 

appearance and operation of the physical instrument. The block diagram is the program behind 

the user interface with graphic codes to control the front panel objects. In contrast to text-based 

programming languages, LabVIEW uses icons instead of lines of text to build an application. In 

text based programming, the order of execution was determined by instruction, but in LabVIEW, 



 

44 
 

it was determined by the order of graphic icons and the data flow through the nodes in the block 

diagram.   

2.2.2.2 LabVIEW of the SPR Spectrometer 

The application developed for controlling the SPR instrument is shown in Figure 2-2 and 

2-3 with a front panel and a block diagram, respectively. The program can be executed by 

pressing the arrow in the red circle. All parameters in the green rectangle should be exactly the 

same except for target position 1 and target position 2. The IP address is 192.168.254.254, 

which is used to build the connection between the XPS-C8 controller and the PC. The Group 

name is the name of rotation stages, where the one controlling the light source is Group 1 and 

the other one controlling the detector is Group 2. The Positioner name for each of them is 

Group1.Pos and Group2.Pos, respectively. The Target Position and Target Position 2 

represent the final location of the rotation stages, both of which can rotate from 0.000° to 

180.000°. However, for safety and space limitation, the angle normally was set between 0.000° 

to 65.000°. The relation between the angle of incidence and the target position is that their sum 

equals 90.000°. For example, the target position of 0.000° means that the incident angle is 

90.000°. The SGamma Parameters denotes the parameters controlling the rotation stages. For 

example, the column with Velocity represents the motion speed of the rotation stage, and the 

Acceleration describes the acceleration for the velocity, changing from 0°/s to 0.4°/s. The 

maximum velocity for scanning the rotation stages is 2°/s, and the maximum acceleration is 

8°/s2. Once the stages start moving, two plots will be generated, as shown in Figure 2-2 in 1 and 

2. Chart 1 shows the moving track of rotation stage 1(with the light source). Chart 2 (the XY 
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the paper plane. (The positive Z axis is pointing out of the paper plane). Once the alignment was 

confirmed, this stage was rotated to 90.000° with the laser light on. Then, the spot where the 

laser light hit the vibration isolation table was marked for further checking.  Secondly, a 

polarizer was clamped to the optical rail once the laser light was aligned. To generate a P-

polarized incident light (in our case it should point toward the Z axis when the incident angle is 

90.000°), a polarizer was added beside the laser with the polarization axis parallel to the X axis 

(it should be on the left side of the laser seen from Figure 2-9). Then, the laser head was rotated 

until the light intensity emitted from the polarizer reached a minimum. Next, the laser head was 

locked and rotated the polarizer 90° so that the polarization axis is parallel to the Z axis. After 

the polarizer rotation, the emitted light intensity should reach a maximum. Then, the rotation 

stage was moved to 90.000° in order to check that the laser spot was hitting the target that had 

been marked on the vibration isolation table. Thirdly, a plano-convex lens was locked right 

beside the polarizer with no gap between the two clamps. Another plano-convex lens was further 

attached to the optical rail, moved back and forth along the rails and locked until it gave out a 

collimated light. After each addition of a lens to the optical rail, the rotation stage was moved to 

90.000° to check whether the laser light is hitting the same spot marked on the vibration isolation 

table (the hemicylindrical prism was not in the prism hold).  Fourthly, a cylindrical plano-convex 

lens was attached to the optical rail with rotation stages at 90.000°. The lens was moved along 

the rails and locked once the light emitted from the backside of the prism is collimated.   
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As mentioned in the introduction, a uniform confinement over a large surface area is 

required for surface–surface interaction studies using our system. The confinement was achieved 

by setting a probe surface below the SPR sensor surface and ensuring that these two surfaces are 

parallel over the sampling area. In addition, the surface separation was measured by three 

capacitive sensors simultaneously, ensuring that the surface defined by the bottom of three 

sensor probes is parallel to the SPR sensor surface, as shown in Figure 2-10. The alignment of 

these three capacitive sensor probes was accomplished as described below. First, a 50 nm Au 

coated glass substrate was secured to the probe surface and moved to fully contact with the SPR 

sensor surface, and a reflectance spectrometer was set under the probe surface to measure the 

separation between them. The reflectance spectrum can be characterized by Eq. (38),89 

                 (38) 

where λ is the wavelength peak position, m is the peak order, n is the refractive index of air,   is 

the incident angle, equal to    in this case, and d is the distance between the probe and sensor 

surfaces. By defining each peak from the reflectance spectrum, the absolute distance between 

them can be calculated. Afterwards, the capacitive sensors were tuned individually until the 

readout reached the closest limit (-10V). In addition, one can also monitor the reflected HeNe 

laser light to check that one sensor surface and probe surface are parallel by rotating the light 

source beam to 90.000°. Once these two surfaces are parallel, the laser light should be reflected 

back to the light source.  
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2.2.4.2 The Offset of the Angle of Incidence 

The error of the incident angle was calculated based on the difference between the 

experimental and theoretical results of the total internal reflectance angle (TIR). The SPR 

spectrum of the prism (without a 50 nm Au coated sensor surface) was scanned with the 

developed LabVIEW program. The TIR is the angle where the reflectance has a significant 

change. In addition, the SPR spectrum of a 50 nm Au coated sensor surface was scanned in air 

and water at room temperature. 

2.2.4.3 Resonance Angle v. Refractive Index Unit 

The resonance angle is the angle of the minimum reflected light intensity in the SPR 

spectrum. It is the angle at which the derivative wave vector of the incident light in the X axis 

matches that of the free electrons in the Au film and results in surface plasmon excitation. In 

addition, the resonance angle is very sensitive to the refractive index change of the dielectric 

medium immediately in contact with it. Hence, the resonance angle shift can be used to derive 

the refractive index units’ change, which further correlates with the polymer layer 

conformational change. 

The relation between the resonance angle and the refractive index unit can be obtained by 

scanning the SPR spectrum of a series of standard sucrose solutions with known refractive index. 

Then, the resonance angle of each solution is plotted as a function of refractive index.  

2.2.4.4 Capacitive Sensor 
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The output of the capacitive sensor is a voltage, which cannot directly yield the distance 

of surface–surface separation. To do so, the reflectance spectrometer was applied as an internal 

calibration method. The principle is that as two surfaces are approaching or moving away, the 

data from capacitive sensors and the reflectance spectrum shift are recorded simultaneously, and 

the distance can be calculated from the reflectance spectrum. Therefore, the voltage at different 

surface separations can be correlated by a calibration curve of the distance as a function of 

voltage. The signal to noise ratio of the capacitive sensor was detected by monitoring the voltage 

as a function of time as the two surfaces are in full contact. 

2.3 Results and Discussion 

In general, the SPR instrument built for surface–surface interaction studies exhibits a 

broad dynamic range (25.000°–90.000°) with a resolution of 0.001°. The HeNe laser is relatively 

stable with a signal to noise ratio of 0.8µW/s over 10 min. The results are shown in Figure 2-11a. 

This instrument can work in two modes: scanning mode and real-time mode. In the scanning 

mode, both rotation stages move from a position of 0.000° to 65.000° (correlated to an incident 

angle of 90.000°–25.000°) at the speed of 0.4°/s to generate a SPR spectrum. From the spectrum, 

the resonance angle can be obtained and used to derive the refractive index units, which can 

potentially be used to correlate with the polymer layer conformation. In the real-time mode, the 

reflected light intensity is monitored as a function of time instead of angular information. A SPR 

sensorgram can be generated in this mode. In this case, the angle of incidence is fixed at a certain 

value that is the inflection point where the maximum of reflected light intensity can be achieved 

when the SPR spectrum shifts. The inflection point can be calculated by the first derivatives of 

the SPR spectrum. In this mode, dynamic information of events occurring at the Au/dielectric 
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medium interface can be obtained. For example, the dissociation and association kinetics of 

biomolecular binding can be derived from the SPR sensorgram by Langmuir Isotherm fitting. 

The offset of the angle of incidence was checked by comparing the TIR angle of the 

experimental result to the theoretical one. Experimentally, the TIR of the prism (41.227°) is 

obtained by scanning the SPR spectrum without sensor surface loading, as shown in Figure 2-

11b. Theoretically, the TIR of the prism should be 41.316° based on Snell’s law, 

       

     
 

  

  
 (39) 

 where the refractive index of prism (BK7) is 1.51508 and that of air is 1.00027635. The offset of 

the angle of incidence is                         with an error of 0.215%. Furthermore, 

the SPR spectrum of a standard surface (a 50 nm Au coated glass substrate) was scanned in air 

and water. As can be seen from Figure 2-11c, the resonance angle shifted form 43.597° to 

74.412° as the dielectric medium switched from air to water. Furthermore, the SPR instrument 

was calibrated in terms of the resonance angle as a function of refractive index by scanning a 

series of standard sucrose solutions with different concentrations. The result is shown in Figure 

2-11d. 
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The surface confinement was monitored by capacitive sensors, which were further 

calibrated with a reflectance spectrometer. From the calibration, the minimum surface separation 

achieved is ~2.7 µm when the probe surface is full in contact with the sensor surface. It is 

calculated based on Eq. (38) from the reflectance spectrum shown in Figure 2-12. The asterisk in 

the spectrum indicates the position of each peak with wavelengths of 462 nm, 502 nm, 554 nm 

and 615 nm, respectively. The peak order m for each is 12, 11, 10 and 9. The signal to noise ratio 

of each capacitive sensor was detected by monitoring the output voltage as a function of time 

without moving the probe surface. The result was 0.172 mV, 0.168 mV, and 0.137 mV for sensor 

1, 2, and 3 respectively, while it was claimed to be 0.149 mV by the manufacturer. To determine 

the distance change from the readout of the capacitive sensor, the calibration curve was obtained 

by monitoring the readout as the probe surface was separated from the sensor surface manually, 

as shown in Figure 2-13a. As one can see, the voltage readout was stable for each of the sensors 

when the probe surface was fixed. However, as the probe surface moved far away, the voltage 

decreased immediately with a noticeable change. At the same time, the surface separation was 

recorded from the micrometer. Once the readout stabilized for a period of time, the probe surface 

was moved away. This process was repeated until the probe surface was out of sensing range. 

The calibration curve for individual capacitive sensors is shown in Figure 2-13b.  The sensitivity 

for each of the sensors is 8.48674 V/µm, 8.63379 V/µm, and 7.90954 V/µm. 





 

62 
 

addition probe surface can be installed to probe surface-surface interactions; 4. Additional 

objective/optical fibers and spectrometer can be used with the setup to gain real-time information 

at the sensor/environment interface even in scanning mode, which will potentially be used to 

analyze light/dielectric medium interactions. In addition, the general function as a commercial 

SPR instrument can be deployed by attaching other accessories like a fluidic cell. However, 

improvements are still needed in terms of surface confinement control, which is intended to work 

at the nanometer level. Once the instrument meets all the requirements mentioned in the 

introduction, polymer–polymer interactions under confinement can be studied. First, the 

thickness and graft density of the controllable polymer brushes will be varied on the sensor and 

probe surfaces via living polymerization, such as atom transfer radical polymerization. By tuning 

parameters such as polymer chemistry, polymer chain length, grafting density and solvent, one 

can get much information about the impact of these factors on the conformation change of the 

brushes (sensor surface) as a function of distance to other brush layers (probe surface). Based on 

these fundamental studies, surface coatings can be designed with desired tribology under 

confinement.  

  



 

63 
 

Chapter 3  

Polymer Film/Au Assembly Enhanced 

Surface Plasmon Resonance for Sensing 

This Chapter deals with the development of an Au film and stimuli-responsive polymer 

assembly-enhanced sensor by integrating both the planar film plasmon coupling and anaylte 

induced polymer conformation change into an angular interrogation surface plasmon resonance 

(SPR) system for small molecules detection. The optical properties of the poly(N-

isopropylacrylamide-co-acrylic acid) (pNIPAm-co-AAc) microgel coated sensor device were 

investigated as a function of temperature. For the first time the distance dependence of the 

plasmon coupling behavior in two planar Au films with controlled thickness was studied as a 

function of temperature in a quantitative manner in terms of the SPR signal. As a proof of 

concept, dopamine was detected, and the optimized assay with additional 5 nm Au overlayer 

showed 10-fold and 30-fold sensitivity enhancement over the SPR sensor surface modified only 

with polymer layer at different concentrations.  

3.1 Introduction  

Since Wood's first observation of the surface plasmon resonance (SPR) phenomenon in 

1902,90 significant advances have been made to understand3, 6a, 91 and utilize the phenomenon 
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further.8, 92 Surface plasmons (SPs) are the collective oscillation of electrons along the boundary 

of a “free-electron” metal and a dielectric medium,1 which can be excited at specific resonance 

conditions according to the composition of the metal and the refractive index of the dielectric 

medium that it is contacting.93 SPs are sensitive to changes in the RI and/or thickness of the 

dielectric medium in the immediate vicinity (~λ/2) of the metal surface, which makes SPs very 

useful for label-free plasmonic sensing and biosensing. Most commercial SPR instruments 

currently available use surface plasmon polaritons (SPPs) that are excited on thin Au or Ag films 

in attenuated total internal reflection geometry. The SPP-based approach allows for an extremely 

low detection limit below 10-5 refractive index units (RIU).94  However, it is still a challenge to 

detect small molecules (< 400 Da) at low concentrations using this phenomenon,30b as these 

small molecules have a small influence on the overall RI/thickness at the metal/dielectric 

interface.  

Generally, SPR spectroscopy detects RI/thickness changes of the dielectric medium 

within the penetration depth of the evanescent field, with maximum sensitivity on the surface 

and exponentially decaying sensitivity with increasing distance from the surface. Therefore, the 

SPRs performance could be improved via several approaches, such as utilizing secondary 

amplification tags (metal nanoparticles,95 liposomes,96 antibodies,97 etc.) or applying 3D 

immobilization matrices98 on the SPR sensor surface that allows multiple binding sites for the 

analyte within the matrix. In one example, Lee et al.31 applied polyclonal antibody conjugated 

carbon-nanotubes as amplification tags in a sandwich immunoassay for human erythropoietin 

(EPO) and human granulocyte marcrophage colony-stimulating factor (GM-CSF). Using this 

approach, a detection limit in the picogram range could be achieved. In another example, Lyon et 

al.32 utilized Au colloids combined with SPR to detect human immunoglobulin (h-IgG). By 
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exposing an antibody derivatized surface to free antigens and then secondary antibody-Au 

conjugates, the signal increased ~25-fold compared to a sensor surface not exposed to AuNPs. 

By applying this method, they could detect a concentration of h-IgG down to 6.7 pM. The signal 

enhancement was attributed to the plasmon coupling between the AuNPs and the planar Au film 

as well as the RI increase caused by the secondary antibody binding to the surface. However, 

such sandwich-based immunoassays require multiple steps that can introduce error into the 

measurement and can hinder their use as point-of-care diagnostics.  

We developed a SPP-based sensor platform that is able to detect low molecular weight 

analytes at low concentrations with high sensitivity without using an additional amplification tag. 

To achieve this, smart polymers were immobilized on the SPR sensor surface that could convert 

the probe–target interactions into a change in the polymer conformation, which can lead to a 

significant RI change. In addition, the polymer network provides a three dimensional scaffold for 

multiple probe immobilization, which can lead to additional improvement in sensitivity.99  

Smart polymers, also called stimuli-responsive polymers, can undergo reversible 

chemical and/or physical property changes in response to external stimuli, such as pH, 

temperature and electric field.35 Poly(N-isopropylacrylamide) (pNIPAm) is one of the most well-

known and well-studied temperature responsive polymers that exhibits a lower critical solution 

temperature (LCST) of ~32  .36b Above this temperature, the conformation of pNIPAm switches 

from an extended/random coil conformation to a compact globular state; this conformational 

change is reversible over many cycles. Like linear pNIPAm, pNIPAm-based networks (hydrogel, 

microgel, nanogel) also exhibit an LCST and undergo a volume phase transition from swollen to 

collapsed as the solution temperature exceeds ~32  . It has been shown that the temperature 
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induced polymer conformation change results in a ~0.1 RIU increase (1.36 to 1.46).100 

Furthermore, pNIPAm-based polymers can be rendered sensitive to other stimuli, in addition to 

temperature, through post-polymerization modification or copolymerization with other 

functional groups/monomers.101 This will allow the polymer conformation to be altered, at 

constant temperature by exposure to various stimuli and/or the addition of specific analytes.  

Our group previously showed that microgels sandwiched between two thin Au layers 

could yield an optical device with visible color. These devices (referred to as etalons) are able to 

reflect specific wavelengths of light via constructive/destructive interference of light in the 

microgel-based cavity of the device. In previous studies, we demonstrated that these devices 

could be used for a variety of applications, e.g., for sensing and biosensing37b, 102 and 

environmental monitoring.37c, 103 In this Chapter, we utilize the etalon as a sensor in an SPR 

instrument, and show that signal amplification can be achieved. The configuration of the sensor, 

shown schematically in Figure 3-1c, contains a monolayer of microgels sandwiched between the 

SPR Au film and an additional Au layer coated on the microgels. It was hypothesized that the 

pNIPAm-based polymer film can switch between swollen and deswollen states upon a 

temperature change or in the presence of a specific analyte. Hence, the changes in refractive 

index near the surface as well as the distance between these two Au layers can be tuned 

dynamically, leading to a higher coupling efficiency between the plasmon carrying surface and 

the etalon's Au layer. Therefore, the SPR performance can be greatly enhanced by molecular 

binding (or thermal input) induced polymer conformational change and the plasmon coupling 

effect. In comparison to other groups’ strategies mentioned above, our approach requires 

relatively simple device fabrication processes, not requiring complex equipment that may be 
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substrate; iii) 50 nm Au; iv) microgel layer; v) dielectric medium (solvent or air); vi) additional 

Au layer (with variable thickness 1 nm, 5 nm, 10 nm, 15 nm). 

3.2 Experimental Section 

3.2.1 Materials  

Unless stated otherwise, all reagents and chemicals were purchased from commercial 

sources and used without further purification. N-isopropylacrylamide (NIPAm) was purchased 

from TCI (Portland, Oregon) and purified by recrystallization from hexanes (ACS reagent grade, 

EMD, Gibbstown, NJ) before use. N, N’-methylenebisacrylamide (BIS) (99%), acrylic acid 

(AAc) (99%) and ammonium persulfate (APS) (98+%) were purchased from Sigma Aldrich (St. 

Louis, MO). Anhydrous ethanol (Brampton, Ontario) was processed by adding the 3 Å molecular 

sieves. Milli-Q deionized water (DI H2O) with a resistivity of 18 MΩ·cm was used. Glass 

microscope slides were purchased from Fisher. Chromium (99.999%) was purchased from ESPI 

(Ashland, OR) and Gold (99.99%) from MRCS Canada (Edmonton, AB, Canada). 

3.2.2 Microgel Synthesis 

Two different sizes of poly (N-isopropylacrylamide-co-acrylic acid) (p(NIPAm-co-AAc)) 

microgels were synthesized via free radical precipitation polymerization, as described 

previously.89 Briefly, for p(NIPAm-co-10%AAc)-1 (large) (denoted as MG-1 with 10% 

mole/mole of AAc), NIPAm (11.9 mmol) and BIS (0.703 mmol) were dissolved in 99 mL of DI 

H2O and filtered through a 0.2 μm filter into a 250 mL, 3-neck round-bottom flask. The flask 

was equipped with a reflux condenser, a temperature probe and a needle for introducing N2 gas 

into the reaction mixture. The reaction mixture was heated to 70   for about 1 h, then AAc (1.43 
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mmol) was added to the solution in one aliquot and allowed to stabilize for 5 min before adding 

the APS (0.2 mmol in 1 mL of DI H2O) solution. The polymerization was allowed to proceed at 

70   for 4 h under a N2 environment. The clear solution became turbid within the first few 

minutes after initiating the reaction. The dispersions were allowed to cool down to room 

temperature and filtered through glass wool to remove any large aggregates.  The microgel 

solution was cleaned by repeated centrifugations at ~10,000 rpm for 30 min, followed by 

redispersion in DI H2O. This process was repeated at least 6 times. The p(NIPAm-co-10%AAc)-

2, (small) (denoted as MG-2, with a 10% mole/mole of AAc) was synthesized by mixing NIPAm 

(11.1 mmol), BIS (0.652 mmol), and sodium dodecyl sulfate (SDS, 0.2 mmol) in 190 mL DI 

H2O and filtering through a 0.2 µm filter before transferring to a 3-neck round-bottom flask. The 

flask was equipped with a reflux condenser, a temperature probe and a needle for introducing N2 

gas into the reaction mixture. AAc (1.30 mmol) was added to the solution after the solution was 

heated to 70 °C for about 1 h. The reaction was then initiated with a solution of APS (0.3 mmol 

in 10 mL of DI H2O). The resulting suspension was allowed to cool down to room temperature 

after reacting at 70 °C for an additional 4 h.  Large aggregates were removed by vacuum 

filtration through a Whatman #1 paper. The microgel solution was then distributed into 

rehydrated dialysis tubing (12-14k nominal MWCO, 25 mm flat width, Fisherbrand Regenerated 

Cellulose, Nepan, ON) for purification. The tubes were placed into a 2-L beaker, filled with DI 

H2O and stirred for two weeks; the DI H2O was replaced twice daily.  

3.2.3 SPR Sensor Surface Fabrication 

Glass coverslips were washed copiously with DI H2O and anhydrous ethanol, followed 

by drying with N2 gas. The glass slide was coated first with 2 nm of Cr and then with 50 nm of 
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Au using a Torr International Inc. (New Windsor, NY) thermal evaporation system Model 

THEUPG at a pressure of 10-6 torr. Microgels were deposited on the freshly prepared Au coated 

glass substrate using a previously described “paint-on” technique.104 Briefly, an aliquot of 40 μL 

resultant microgel solution was dropped onto the Au coated substrate and spread toward each 

edge using the side of a micropipet tip. The film was rotated 90° to spread the microgel solution 

to fully cover the slides. The painting procedure was done on a hot plate set to 30 °C. Then the 

temperature was increased to 35   and the microgel solution on the Au coated glass substrate 

was allowed to dry for 2 h. The excess amount of microgels was removed by washing the surface 

with a large amount of DI H2O and further soaking in DI H2O overnight. Slides with lower 

microgel packing densities were achieved by depositing a 40 μL aliquot of a diluted microgel 

solution (three-fold diluted DI water compared to the concentrated samples) on Au coated glass 

substrates and washing away the extra amount of microgel before the solution dried on the Au.  

Additional layers of 2 nm Cr and different thicknesses of Au (1 nm, 5 nm, 10 nm, 15 nm) 

were subsequently added on top of the microgel layer by thermal evaporation. The sensor 

devices were soaked in DI H2O and dried by N2 prior to use. 

3.2.4 Instrumentation 

MG-1 and MG-2 particles were imaged with an Olympus IX71 inverted microscope 

(Markham, Ontario) fitted with a 100   oil-immersion objective, a 10   eyepiece, a 1.6  

 magnification enhancer, differential interference contrast (DIC) optics and an Andor 

Technology iXon+ camera (Belfast, Ireland). The hydrodynamic diameter of MG-1 and MG-2 

particles was measured by photon correlation spectroscopy (PCS) (Brookhaven Instruments 

ZetaPlus zeta potential analyzer, Holtsville, NY) as a function of temperature starting at 20    
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with 5 increments up to 60  . Measurements were taken in DI H2O and a pH 3 solution with an 

average of eleven 30 s acquisitions, and an average of three measurements per sample at each 

temperature. Atomic force microscopy (AFM) (Digital Instrument, Dimension 3100) was used to 

characterize the surface topology of the SPR sensor surface. The images were obtained with an 

Al-coated Silicon SPM tip (Arrow-NCR-50, nanoworld) in tapping mode with a resonance 

frequency of ~285 Hz and a 0.5 Hz scanning rate. The overlayer thickness of Au was further 

confirmed by an imaging ellipsometer (Nano film ep4, Accurion, Germany). The SPR 

instrument is described in detail in Chapter 2.  

3.3 Results and Discussion 

3.3.1 Microgels Characterization 

P(NIPAm-co-AAc) microgels (MG-1 and MG-2) were synthesized via free radical 

precipitation polymerization and imaged using optical microscopy. The images in Figure 3-2 

revealed that both sets of microgels were spherical, and exhibited a larger diameter in DI H2O 

compared to their diameter in pH 3 solution. The large diameter in DI H2O was a result of the 

negative charges on the deprotonated carboxylic acid group leading to Coulombic repulsion and 

network swelling. The carboxylate groups are protonated at pH 3.0, which neutralizes the 

charged carboxylate groups and allows the network to contract. The uniformity of synthesized 

microgel particles (MG-1 and MG-2) were characterized by measuring the particles size 

distribution in pH 3 solution at 25   via PCS. The result is shown in Figure 3-3. Both single and 

narrow peaks were observed for sample MG-1 and MG-2 solutions, which proved the 

homogenous of resultant microgel particles in an aqueous solution. The apparent hydrodynamic 

diameter was also investigated via PCS as a function of temperature, as shown in Figure 3-4. At 
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shown to yield a single microgel layer on the Au surface via a self-assembly process.104 To 

determine the packing density of the resultant films, the surface topography of the assemblies 

was imaged via AFM operated in tapping mode. The images are shown in Figure 3-5a and Figure 

3-5c. From the results, we can see that the particle packing density depends on the concentration 

of the microgel deposition solution and the drying time. That is, when a dilute microgel solution 

is deposited on the Au surface and washed off the surface before the layer could dry, the 

microgels formed an incomplete layer and the microgels were spaced far apart from one another 

(film 1 in Figure 3-5a), with a packing density of ~1.28 particle/μm2. However, as the 

concentration of the microgel solution and drying time increased, the microgels became more 

closely packed on the Au (film 2 in Figure 3-5c), with a packing density of ~5.52 particle/μm2.  

Next, we investigated how the packing density of the resultant film (film 1 and film 2) 

affected the SPR sensor performance in response to solution temperature variations. To 

accomplish this, the microgel coated Au sensor surfaces were attached to the SPR prism and 

incubated in a pH 3 solution, as illustrated in Figure 3-1b. The SPR spectra were collected at 25 

  and 40   respectively, as shown in Figure 3-5b (film 1) and Figure 3-5d (film 2). As is 

apparent in both cases, the RA and the minimum reflectance increased as the solution 

temperature increased. However, in the case of film 1 with the lower packing density, only a 

~0.3° RA red shift with a ~25 μW intensity increase was observed as the solution temperature 

increased. In comparison, a higher initial RA was observed for film 2 in pH 3 solution at 25  . 

In addition, a more noticeable SPR spectrum deformation can be observed in film 2 with a RA 

red shift of ~2.8° and a minimum reflected light intensity of ~500 μW. The increase in the 

minimum reflectance was attributed to more light scattering from collapsed microgels as they 

shrink at temperatures above the LCST; this can be explained by the Mie theory.105 The red shift 
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Figure 3-5. a) An AFM image of a MG-1 fabricated film 1 on a 50 nm Au coated glass sensor 

surface. The scan area is 5 μm   5 μm. b) The SPR curve of film 1 in a pH 3 solution at 25   

(solid) and 40   (dash). c) An AFM images of a MG-1 fabricated film 2 on a 50 nm Au coated 

glass sensor surface. The scan area is 5 μm   5 μm. d) The SPR curves of film 2 in a pH 3 

solution at 25   (solid) and 40   (dash).   

3.3.3 Temperature Sensitivity of the Dense Microgel Film  

 Since the effect of particle packing density had been identified, we subsequently 

evaluated the sensitivity of the densely packed MG-2 microgel modified film to temperature, as 

well as its reversibility. The MG-2 microgels were chosen because of their comparable particle 

size to the penetration depth of the SPs. After being loaded on the SPR spectrometer, as shown in 

Figure 3-1b, the MG-2 microgels modified SPR sensor surface was incubated in a pH 3 solution 

and the SPR curves were scanned at different solution temperatures. The results are shown in 

Figure 3-6a. The SPR spectrum became broader and shallower as the temperature increased, 

which can be attributed to microgel collapse resulting in RI and light scattering changes. 

Specifically, the polymer density near the SPR Au surface increased gradually as the microgels 

shrunk. As a result, the penetration of the evanescent wave was disturbed and ultimately yielded 

a broadened SPR curve. We also noticed that the RA increased and reached a maximum at the 

LCST, while it decreased as the temperature further increased, as shown in Figure 3-6b. This 

result can be explained by the distribution of the electric field on the Au film. It is known that the 

SPs decay exponentially as the distance from the sensor surface increases. The region close to 

the sensor surface is the point where the electric field is strongest; therefore, the SPR is more 

sensitive to the increase in polymer density close to the Au film than to its decrease far from the 
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RA of the MG-2 constructed film plotted as a function of temperature in a pH 3 solution. d) The 

MG-2 microgel film thermal-response reversibility as the temperatures cycle from 22   to 40  , 

in terms of the reflected light intensity. The odd numbers represent the intensity at 22  , and the 

even numbers represent the intensity at 40  . 

3.3.4 Au Film Plasmon Coupling Effect 

To further enhance the SPR performance, an additional Au film was deposited on top of 

the MG-2 microgel modified SPR sensor surface by thermal evaporation, which finally yielded 

Au-MG2-Au assemblies, as shown in Figure 3-1c. We hypothesized that the SPR signal could be 

amplified by plasmon coupling between the plasmon carrying Au film and the outer Au layer of 

the device, and that the amplification efficiency would be greatly dependent on the outer Au 

layer thickness. To confirm our hypothesis, different thicknesses of Au overlayer (1 nm, 5 nm, 10 

nm, 15 nm) were deposited on MG-2 microgels modified sensor surfaces, and their SPR sensing 

performance was compared in terms of the thermoresponsivities. The Au overlayer thicknesses 

were confirmed by ellipsometry, as shown in Figure 3-7. For simplicity, the resultant SPR sensor 

devices were denoted as Aux-MG2-Au50, where x represents the thickness of the Au overlayer on 

the microgels and 50 is the thickness of the SPR Au sensor surface in units of nm. For example, 

the Au1-MG2-Au50 indicates that a 1 nm Au film was evaporated on a MG-2 microgels modified 

50 nm Au coated glass substrate.  
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Figure 3-7. The overlayer Au thicknesses, measured by ellipsometry, as a function of the Au 

thickness recorded from the thermal evaporation instrument. The fitted dash line has a slope of 

1.08 with R2 of 0.999. 

The influence of the Au overlayer thicknesses on the SPR performance was investigated 

by comparing the reflected light intensity change for the devices at various temperatures. The 

results are shown in Figure 3-8. The reflected light intensity of all the sandwiched assemblies 

showed a similar trend as the sample of the Au0-MG2-Au50 film (as shown in Figure 3-6c) as the 

temperature changed. That is, the reflected light intensity increased dramatically as the 

temperature approached LCST and reached a plateau with further temperature increases. As 

mentioned above, this effect can be attributed to a temperature induced polymer collapse, which 

finally led to an increase of RI and light scattering. In addition, some degree of enhancement can 

be observed with different thicknesses of Au overlayer deposition on the MG-2 microgels. 

However, such enhancement is not proportional to the increase in the Au overlayer thickness, 

since the MG-2 microgels with a 5 nm Au overlayer shows the maximum amplification as the 

temperature increases from 22   to 40  . Less reflected intensity changes can be observed 

0 5 10 15 20 25 30

0

5

10

15

20

25

30

 

 

M
ea

su
re

d 
Th

ic
kn

es
s 

 (n
m

)

 Evaporated Au Thickness (nm)



 

80 
 

when the additional Au layer thickness either increases or decreases under the same amount of 

thermal input. The reason for signal enhancement can be explained by plasmon coupling 

between the Au sensor surface and the outer layer Au film coating on the microgels. It is known 

that the SPs are very sensitive to changes in the vicinity of the sensor surface within a distance of 

λ/2, which is estimated to be ~316 nm from the SPR sensor surface in our case. The thickness of 

Aux-MG2-Au50 assemblies in the solvated state is approximately equal to the hydrodynamic 

radius of the building block (MG-2 colloidal particles),89 which is  ~175 nm as measured by PCS 

(Figure 3-4). That is to say, the additional Au film will always be within the surface plasmon 

probing range. With thermal induced microgel collapse, the two Au films approached each other 

and resulted in plasmon coupling. The best coupling efficiency was achieved while the thickness 

of the outer layer Au film is 5 nm. We ascribed this to the fact that the Au surface roughness 

resulted in a scattering effect. We hypothesized that the Au film was deposited by thermal 

evaporation, an island structure would likely appear in the initial state instead of a film due to the 

nucleation of the Au atoms.107 With more Au atoms being deposited, a film started to form and 

the roughness decreased. This can be proved by AFM images of Au films with variable 

thicknesses; this has been published by our group previously.108 The critical thickness is close to 

5 nm. The island structure with the most roughness was supposed to scatter more light, which 

finally led to an increase in the reflected light intensity. Hence, as the Au film thickness further 

increased above 5 nm, the enhancement effect became weaker due to the disappearance of the 

island structures.  





 

82 
 

with thermal sensors. It has been known that pNIPAm-based polymers can respond to other 

species isothermally with the molecular recognition sites being engineered into networks. 

Specifically, the equilibrium between the polymer and solvent can be broken by analyte–polymer 

interactions, and hence the polymer conformation changes. In this investigation, we detected 

different concentrations of dopamine with SPR sensors based on Au0-MG2-Au50 and Au5-MG2-

Au50 and compared their performance. Dopamine is a neurotransmitter that sends a signal to 

nerve cells in the brain. The dysfunction of dopamine in the nervous system is associated with 

many diseases, such as schizophrenia and Parkinson’s disease.109 The detection of dopamine 

down to the nanomolar range has clinical significance. Dopamine can bind to the carboxylic 

group in p(NIPAm-co-AAc) polymer networks, resulting in polymer swelling.110 Therefore, we 

expected that the SPR spectra would show a blue shift upon introducing dopamine. 

Experimentally, the Au5-MG2-Au50 assemblies were first loaded into the SPR spectrometer after 

incubating in DI H2O at room temperature, and the spectrum was scanned, as shown in Figure 3-

9a (solid line). Then, the incident angle was fixed at the inflection point where maximum 

reflected intensity changes would be achieved as the SPR spectrum shifts. The reflected intensity 

was monitored in real-time fashion at this inflection point with a series of dopamine additions. 

The SPR spectrum was collected again after the last addition, as shown in Figure 3-9a (dashed 

line). The SPR spectrum showed an obvious blue shift and a minimum reflected intensity 

decrease in the presence of 5.8 mM dopamine in solution. This result means that the RI decreases 

near the Au sensor surface, which further indicates the swelling of the Au5-MG2-Au50 assemblies 

in the presence of dopamine.  For quantification, the reflected intensity changes before and after 

each dopamine addition were calculated and plotted as a function of dopamine solution 

concentration. The same procedure was performed with the SPR sensor based on Au0-MG2-Au50 
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dopamine concentrations in two ranges: from 0-2.370µM with slope of -10.358 µW/log(nmol/L), 

intercept of 5.476 µW and R2 of 0.9184; from 2.370 µM and above with slope of -31.359 

µW/log(nmol/L), intercept of 76.307 µW and R2 of 0.996.    

3.4 Conclusions 

Microgel-based thin films deposited on SPR sensor surfaces lead to enhanced SPR 

signals in response to microgel solvation state changes. This can be related to the concentration 

of small biomolecules of interest in solution, and to a greater sensitivity than unmodified SPR 

sensor surfaces. Furthermore, microgel film/Au assemblies have a reproducible response to 

temperature by showing both a shift in the SPR angle and the reflected light intensity. We also 

studied how the response depends on the thickness of the Au coating on the microgels. Finally, 

we showed as a proof of concept that dopamine responsive pNIPAm-based microgels deposited 

on the SPR sensor surface could be used to detect a range of dopamine concentrations with good 

sensitivity. These devices could be developed further to detect protein/DNA-based biomolecules 

of interest. 
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Chapter 4  

Stimuli-Responsive Microgel-Based SPR 

Transducer for Glucose Detection Using a 

Competitive Assay with Concanavalin A 

In this Chapter, a poly (N-isopropylacrylamide-co-glycosyloxyethyl methacrylate) (p(NIPAm-

co-GEMA)) based polymer transducer was developed for glucose quantification via surface 

plasmon resonance (SPR) spectrometer with improved sensitivity over bare Au SPR sensor 

surface. By understanding the copolymer conformation behavior (swelling/deswelling) on the 

SPR sensor surface, such polymer film can be used as a genetic materials for sensitivity 

improvement in small molecules detection for SPR based technique.  

The glucose responsive microgel composed of p(NIPAm-co-GEMA) was synthesized by free 

radical polymerization. The copolymers contracted after introducing Concanavalin A (ConA) 

owing to the non-covalent crosslinking of the polymer network by the binding of the free 

pendent glycosyl group in GEMA to one of the four binding pockets in ConA. Such contractions 

could be removed in the presence of a free glucose solution because of the relatively high affinity 

between ConA and glucose. By monitoring the contraction/expansion process of the p(NIPAm-

co-GEMA) microgel constructed film on the surface plasmon resonance (SPR) Au sensor 
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surface, the concentration of glucose in solution can be quantified. The p(NIPAm-co-GEMA) 

microgel constructed film shows absorption resistance to other proteins and retains a high 

affinity toward ConA in the presence of other interfering proteins. Experimentally, the microgel 

composition was characterized by nuclear magnetic resonance (NMR) spectroscopy to confirm 

the successful copolymerization of GEMA. The thermal responsiveness of the colloidal particle 

was investigated via photon correlation spectroscopy (PCS) by measuring the particle size as a 

function of temperature. The particles were visualized by transmission electron microscopy 

(TEM). A noticeable surface contraction can be observed under atomic force microscopy (AFM) 

after soaking the p(NIPAm-co-GEMA) microgels constructed polymer film in the ConA 

solution. In contrast, the pNIPAm constructed polymer film shows no change before and after 

soaking in the same ConA solution. Finally, the competition between the glycosyl group (in the 

p(NIPAm-co-GEMA) polymer network) and the free glucose (in solution) for the binding sites 

of ConA was monitored by a custom-built SPR instrument, which showed a 9-fold SPR signal 

enhancement than bare Au SPR sensor surface in the specific physiological concentrations of 

glucose detection. The polymer conformation change induced by biomolecules interaction 

showed more refractive index (RI) change than that by solely biomolecules. 

4.1 Introduction 

The development of rapid, affordable and portable technologies for diagnosing and 

treating infectious and chronic diseases is of global importance and a major challenge that many 

researchers are trying to address.48, 111 While many examples of diagnostic technologies exist 

(e.g., cell culture methods112 and enzyme-linked immunosorbent assay (ELISA)113), they are 

typically confined to lab-based settings where the appropriate environment and infrastructure is 
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in place to ensure the technology functions properly.114 However, there are many situations that 

can benefit from performing a diagnostic test outside of the lab, therefore, point-of-care (POC) 

diagnostic technologies have been developed over the past few decades.  

A number of technologies are currently commercially available, e.g., home pregnancy 

tests,115 biological fluid testing (urinalysis)116 and drug screening,117 with many being amenable 

to use in resource-limited settings where inexpensive, robust and rapid tests can have a major 

impact on improving human health.114b, 118 Optical biosensor platforms have many benefits that 

can be exploited for POC applications.114b, 119 For example, the simplicity and the setup in 

AuNP-based colorimetric assays make it possible to identify the presence of a target by naked 

eye, which definitely reduces the necessity for technical personnel training. Some of the 

traditional optical sensors are including photonic crystal fibers,120 interferometric devices121 and 

plasmonic nanoparticles.48-49, 122 Surface plasmon resonance (SPR) has emerged as one of the 

very useful optical sensors that was able to detect RI/thickness changes at the surface of a Au 

film, which can further be related to the surface binding/reactions.10d Surface plasmons (SPs) are 

the collective oscillation of electrons along the interface of a free electron metal (Au, Al, Cu) and 

a dielectric medium.1 When the momentum of incident light matches that of the free electrons in 

the metal, the SPs will be generated as an evanescent wave field that decays exponentially as a 

function of distance from the SP-supporting surface and propagates along the metal/dielectric 

medium interface. In angular interrogated-based planar SPR spectroscopy, the reflected light 

intensity was recorded as the incident angle scanning, which finally yielded a SPR spectrum with 

the reflectance changes as a function of incident angle.  Spectrally, a dip will be observed due to 

the absorption of SPs. The resonance angle (RA) is defined as the point where the minimum 

reflectance is reached. Two modes can be operated in the angular interrogated-based planar SPR 



 

88 
 

platform, a scanning mode and a real time mode. Specifically, when the biomolecules are 

detected in the scanning mode, they can be quantified by subtracting the RA shift before and 

after the bio-interaction occurs in the SPR spectrum, where the RA shifts are associated with 

refractive index increases due to the biomolecules binding. In the real-time mode, the binding 

process is monitored during the whole course that the RA or reflectance is recorded as a function 

of time; the incident angle is fixed at a certain value. The dissociation and association kinetics 

then can be derived from the SPR sensorgram by Langmuir Isotherm fitting.  

One of the challenges in utilizing SPR spectroscopy in biosensing is that it is difficult to 

detect small molecules (< 400 Da) in low concentrations because of the undetectable refractive 

index changes accumulating from the target molecules. Stimuli-responsive polymers have 

emerged as alternative materials for SPR signal enhancement along with the antibody/antigen 

sandwiched based amplification assays.123 Stimuli-responsive polymers are macromolecules that 

can change their chemical and/or physical properties upon exposure to external stimuli, e.g., 

temperature, pH, light, analyte and application of external fields (magnetic/electromagnetic).35, 

124  Poly (N-isopropylacrylamide) (pNIPAm) is a well-known and extensively studied 

temperature responsive (thermoresponsive) polymer that exhibits a lower critical solution 

temperature (LCST) of ~32  .36 As a result, pNIPAm exists as a solvated random coil at T < 

LCST and transits to a relatively desolvated globule at T > LCST. Like the linear pNIPAm, 

crosslinked networks of pNIPAm (hydrogel) and colloidally stable particles (microgels or 

nanogels) also can be synthesized while retaining their thermoresponsivities. PNIPAm can be 

made to respond to additional stimuli via copolymerization with other functional/responsive 

monomers. For example, the pH responsive microgels can be synthesized by copolymerizing 

with acrylic acid, which has a pKa around 4.25. When the pH value is above the pKa, the 
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polymer networks will swell due to the Coulumbic repulsion of negative charges as 

deprotonation takes place.125 In addition, most of the biomolecules can be attached further to the 

polymer networks through carbodiimide coupling reactions.126 When the specific interactions 

between the target (biomarker) and the recognition sites on the polymer networks are strong 

enough, the polymer conformation can be altered isothermally. Thus, the biomolecule 

interactions were transduced into an optical signal (RI change) that can be applied to amplify the 

SPR signals.  

In current investigation, I developed an optical transducer that potentially can be coupled 

to a portable SPR device and used as a POC device. Glucose was chosen as a model molecule for 

detection, as a proof of concept, due to its clinical significance;127 the sensing mechanism is 

shown in Figure 4-1b. Specifically, the glycosyl group in poly (N-isopropylacrylamide-co-

glycosyloxyethyl methacrylate) (p(NIPAm-co-GEMA)) microgels can bind to any one of the 

four binding pockets in Concanavalin A (ConA) and result in the contraction of polymer 

networks.128 As the glucose has a higher binding affinity toward ConA, the latter will 

disassociate from the polymer networks, and the contraction of the polymer networks can be 

removed. By monitoring the microgels conformational change (swelling/deswelling) on the SPR 

sensor, the number of glucose molecules in solution can be quantified. It was hypothesized that 

the conformation of the polymer-based film can be altered by the physiologically relevant 

concentrations of glucose that output as a detectable optical signal. By incorporating a p(NIPAm-

co-GEMA) microgel film to a portable optical detector, the fabrication of a home glucose 

monitoring device is very promising. 
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resulting in a pale green viscous fluid. N, N’-methylenebisacrylamide (BIS) (99%), ammonium 

persulfate (APS) (>98%), Trizma base (>99%), α-D-glucose, D-(+)-galactose, sucrose, 

Concanavalin A (ConA), erythrina crystagalli (Ery) and Bovine serum albumin (BSA) were 

purchased from Sigma Aldrich. Calcium chloride (anhydrous CaCl2) was purchased from Fisher 

Chemical (Fair Lawn, New Jersey). Manganese chloride tetrahydrate (MnCl2•4H2O) was 

purchased from Matheson Coleman & Bell (Norwood, Ohio). Hydrochloric acid (HCl) was 

purchased from Caledon (Georgetown, Ontario). Anhydrous ethanol (Brampton, Ontario) was 

processed by adding 3 Å molecular sieve to remove trace amounts of water. All deionized water 

(DI H2O) was obtained from Milli-Q Plus system from Millipore (Billerica, MA) with a 

resistivity of 18 MΩ·cm. Glass cover slips were purchased from Fisher Scientific (Ottawa, 

Ontario). Chromium (99.999%) was purchased from ESPI (Ashland, OR) and Gold (99.99%) 

from MRCS Canada (Edmonton, AB, Canada). 

4.2.2 Microgel Synthesis 

Microgel particles were synthesized via surfactant free, free radical precipitation 

polymerization. The monomer mixture, with a total concentration of 112.2 mM, was composed 

of 78% (mol %) N-isopropylacrylamide (NIPAM), 21% glycosyloxyethyl methacrylate (GEMA) 

and 1% N,N’-methylenebisacrylamide (BIS) crosslinker. Briefly, NIPAm (0.88 mmol) and BIS 

(0.11 mmol) were dissolved in 10 mL of DI H2O and filtered through a 0.2 μm filter into a 50-

mL, 3-neck round-bottom flask. Additionally, the reaction vessel was equipped with a reflux 

condenser and a temperature probe. The mixtures were degassed with dry N2 and heated to 65   

for about 1 h. Next, GEMA (0.23 mmol) was dissolved in 500 µL anhydrous ethanol, added to 

the solution in an aliquot and allowed to stabilize for 5 min before adding APS (0.078M, 500 µL) 

solution. The mixtures were allowed to react at 65   for 4 h under a N2 environment. The pale 
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yellow clear solution became turbid within the first 15 min after initiating the reaction. The 

dispersions were allowed to cool down to room temperature and filtered through glass wool to 

remove all large aggregates.  The microgel solution was cleaned by repeated centrifugation at 

~10,000 rpm for 30 min (X 6). The resultant is a concentrated pale yellow pellet. 

4.2.3 p(NIPAm-co-GEMA) Film Modified SPR Sensor Chip 

The glass cover slips were washed with copious DI H2O, 95% ethanol, more DI H2O and 

dried with flowing N2 gas. The clean glass chip first was coated with 2 nm Cr and then with 50 

nm Au using a Torr International Inc. (New Windsor, NY) thermal evaporation system under a 

pressure of 10-6 torr. The microgel film was generated using a previously described “paint-on” 

technique.104 Briefly, an aliquot of 40 μL p(NIPAm-co-GEMA) microgel solution was deposited 

on an Au coated substrate and spread toward each edge using the side of a micropipette tip. The 

film was rotated 90° to spread the microgel solution to fully cover the slides. The painting 

procedure was processed on a hot plate at 30  . When the temperature was increased to 35  , 

the microgel solution on the Au substrate was allowed to dry for 2 h. The excess amount of 

microgels was removed by washing the surface with a large amount of DI H2O and further 

soaking in DI H2O for overnight.  

4.2.4 Tris-HCl Buffer Preparation 

A 0.1 M pH 7.5 Tris-HCl buffer solution was prepared by dissolving 12.144 g Trizma 

base in 990 mL DI H2O in a 2-L beaker. After adjusting the pH of the solution to 7.5 by adding a 

concentrated HCl solution, 0.1979 g MnCl2•4H2O and 0.1110 g CaCl2 were added to the 

mixture; the final volume of the solution was adjusted to 1 L in a volumetric flask. Different 
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concentrations of ConA were prepared with the 0.1M pH 7.5 Tris-HCl buffer. All the protein 

solutions (1 mg/mL BSA, 1 mg/mL Ery and 2 mg/mL BSA/ConA mixtures) were prepared with 

the pH 7.5 Tris-HCl buffer.   

4.2.5 Microgel and Microgel Film Characterization 

The chemical composition of the microgels was confirmed by nuclear magnetic 

resonance (NMR) spectroscopy (Agilent/Varian Inova two-channel 400 MHz). The transmission 

electron microscope (TEM) images of the microgel particles were acquired using a JEOL, JEM 

2100 (JEOL USA, Inc., MA, USA) with an accelerating voltage of 200 kV, and the images were 

analyzed further by the Image-J software. The specimens were prepared by adding 10 μL of 

highly diluted microgel solutions onto the carbon coated copper grids and air-dried overnight. 

The hydrodynamic diameter of the p(NIPAm-co-GEMA) microgel particles was measured by 

photon correlation spectroscopy (PCS) (Brookhaven Instruments ZetaPlus zeta potential analyzer, 

Holtsville, NY) as a function of temperature from 25   to 60   in 5 degree increments. All the 

measurements were taken in DI water with an average of ten 30 s acquisitions and an average of 

three measurements per sample at each temperature. The surface morphology of the microgel 

modified SPR sensor chip (before and after soaking in ConA solution) was characterized by 

atomic force microscope (AFM) (Digital Instrument, Dimension 3100) in air. The images were 

acquired in a 10 10-μm area using a scan rate of 0.5 Hz and 512 scan points and lines in the 

tapping mode. The p(NIPAm-co-GEMA) microgels coated SPR sensor surface was soaked in 1 

mg/mL ConA for 45 min, rinsed with pH 7.5 Tris-buffer and dried by blowing with N2 before 

imaging. The glucose responsiveness of the p(NIPAm-co-GEMA)-ConA film was monitored by 

measuring the film thickness change in liquid by an AFM (Asylum Research MFP 3D AFM, 
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Santa Barbara, CA) and the reflectance changes by a surface plasmon resonance (SPR) 

spectrometer. The SPR spectrometer is a custom-built instrument equipped with a 632.8 nm 

HeNe laser (1.5 mW, R-32734, Newport) and a photodiode detector (918D-SL-OD3, Newport) 

with a scanning range of  25.000° to 90.000° and a resolution of 0.001°. The 50 nm Au sensor 

chip was coupled to the back of a BK7 hemicylindrical prism with a refractive index of 1.51.  

The motion of the rotation stages were controlled by a XPS C-8 controller (Newport) with a self-

developed LabVIEW program. In addition, the position of the rotation stages and the readout of 

the photodiode detector were recorded synchronically with a self-developed LabVIEW program. 

The setup is shown in Figure 4-1a. The SPR instrument was calibrated by a series of sucrose 

solutions with different concentrations. The calibrated curve of the RA as a function of RI is 

shown in Figure 4-2. 

 

Figure 4-2. The calibration curve of a custom-built SPR spectrometer. Different concentrations 

of sucrose solution were prepared and their refractive index at different concentration was cited 

from the reference.129 The RA at each concentration was determined and plotted as a function of 

refractive index. Each point represents the average of three different measurements, and the error 
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bars represent their standard deviation. The red line is the best fit with a slope of 124.058 

degree/RIU, an intercept of -89.500 degree and a R2 of 0.997. 

4.3 Results and Discussion 

4.3.1 p(NIPAm-co-GEMA) Microgel Characterization  

First, the successful incorporation of GEMA comonomer to the microgel particles was 

confirmed by investigating the microgels chemical composition via 1H NMR, as shown in Figure 

4-3. By comparing the 1H NMR spectrum of GEMA, pNIPAm and p(NIPAm-co-GEMA), the 

peak with a chemical shift of 3.5–4.5 can be ascribed to the existence of the pendent glycosyl 

group in GEMA of the p(NIPAm-co-GEMA) microgel. It proves that the GEMA has been 

successfully incorporated in the microgels. The morphology of resultant p(NIPAm-co-GEMA) 

microgels was investigated by TEM with a representative image shown in Figure 4-4. As can be 

seen, the microgels have a spherical morphology, although some of the features in Figure 4-4 

seem oblong; this could be the result of two microgels coming together on the TEM grid. The 

measured diameter of the spherical features in the TEM image reveals an average dry diameter 

of 511   9.6 nm (n=19). Next, the thermoresponsivity of the microgels was characterized with 

PCS, as shown in Figure 4-5. As can be seen, the hydrodynamic diameter of the particles 

decreases as the solution temperature was changed from 25   to 60  , where ~1 μm diameter 

size changes can be observed as the microgel undergoes a fully swollen–collapsed state 

transition. In addition, a volume phase transition temperature (VPTT) of ~32   could be 

predicted for the p(NIPAm-co-GEMA) microgels from Figure 4-5. As can be seen, the presence 

of glycopolymer does not significantly affect the VPTT of the pNIPAm microgel.  



 

96 
 

 

Figure 4-3. The 1H NMR spectra of p(NIPAm-co-GEMA), GEMA and pNIPAm, respectively. 

 

Figure 4-4. A TEM image of the p(NIPAm-co-GEMA) microgels. 
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Figure 4-6a and 4-6c, respectively. In Figure 4-6a, closely packed colloidal particles were 

observed with an average roughness of 10.9 nm over a scanning area of 100 µm2 before exposing 

them to ConA. However, the particles are contracted when the interparticle distance increased 

and the bottom substrate was exposed after soaking in ConA, as shown in Figure 4-6c. Such 

changes were even more noticeable in a 3D demonstration, as shown in Figure 4-6b and 4-6d, 

where the flat p(NIPAm-co-GEMA) microgel film (Figure 4-6b) became more curved (Figure 4-

6d) after incubation in the ConA solution. It was hypothesized that such a microgel contraction is 

a result of the polymer networks further crosslinked by GEMA and the multivalent binding site 

in ConA. As a control, the surface morphology of the pNIPAm microgel (without the co-

monomer GEMA) coated SPR sensor surface also was characterized before and after soaking in 

the same concentration of ConA; no obvious changes can be seen from the AFM images, as 

shown in Figure 4-7. 

 
Figure 4-6. The AFM images of the p(NIPAm-co-GEMA) film a) before and c) after soaking in 

1 mg/mL ConA. Images b) and d) are a 3D demonstration of the image a) and c), respectively. 
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Figure 4-8. a) SPR spectra of the p(NIPAm-co-GEMA) microgels modified sensor chip in pH 

7.5 Tris-HCl buffer and different concentrations of ConA. b) The reflectance at the RA plotted as 

a function of the ConA concentration.  

To determine the reason for local RI increases, the RA was plotted as a function of the 

ConA concentration, as shown in Figure 4-9. Based on the calibration curve of RA vs. RI (in 

Figure 4-2) and the RA value at each ConA concentration, one can estimate the RI at each ConA 

concentration, which is listed in Table 4-1. There is a 87.2 10-4 refractive index units (RIU) 

change when the ConA concentration increased from 0 to 1 mg/mL. However, the intrinsic 

refractive index increase from such a concentration change is ~1.85x10-4 RIU, which was 

calculated by the dn/dc value of ConA with an estimation of  ~0.185 mL/g.130 Therefore, it can 

be concluded that the polymer shrinkage is the main reason for the local RI increase that finally 

resulted in a SPR spectrum red shift. In addition, the SPR spectra at the high angle region are not 

smooth, which can be attributed to the surface roughness of the microgel film in the collapsed 

state (scattering effect).  



 

101 
 

 

Figure 4-9. The RA of p(NIPAm-co-GEMA) film in different concentrations of ConA. The data 

were derived from Figure 4-8a. The RA at each ConA concentration was determined from SPR 

spectra by picking the point with the lowest reflected light intensity. Each point represents the 

average of three different measurements and the error bars represent their standard deviation. 

The line in the graph is used for guiding.  

Table 4-1. The calculated effective refractive index at each RA based on the calibration curve in 

Figure 4-2.  

Concentration of ConA (mg/mL) Resonance Angle Refractive Index 
0 78.246 1.35216 

0.001 78.228 1.35201 
0.01 78.284 1.35246 
0.1 79.067 1.35878 
0.5 79.291 1.36058 
1 79.328 1.36088 

 

It should be pointed out that the SPR technique is very sensitive to the immediate vicinity 

(~λ/2, where λ is the wavelength of incident light) of the Au sensor surface, which is 

approximately less than ~300 nm in this case. It means that the outermost surface of the microgel 

(far away from the SPR Au substrate) is not under the electromagnetic field of the SPR 
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evanescent wave. The effective RI (  eff ) in the vicinity of the Au sensor chip can be 

characterized and estimated by Eq. (41), 

                                                          (41) 

where    is the RI of the pNIPAm based polymer, normally in the range of 1.51–1.54 in visible 

light,131    is the RI of water (~1.333 at 632.8 nm wavelength),    is the RI of ConA (~1.52),132 

and   ,      and         are the volume ratio of the polymer chain, water and ConA in a 

certain space, respectively. When there is no ConA in the solution (          , the 

volume ratio of water,   , in the polymer networks is estimated to be ~ 90%; this was calculated 

based on   = 1.35216 (as shown in Table 4-1),   = 1.54 and   = 1.333. The effective refractive 

index increased to   = 1.36088 (as shown in Table 4-1) as the concentration of ConA increased 

to 1 mg/mL, with   = 1.54 and   = 1.333. It is difficult to estimate the practical ConA 

occupation percentage in the polymer networks due to several reasons, such as the diffusion-limit 

(solvent to polymer networks), the number of binding ligand (GEMA) in the polymer networks. 

Since the refractive index of ConA is very close to that of the polymer, it can be assumed that the 

volume fraction of the ConA and polymer can be merged as one parameter. Thus, the volume 

ratio of water,   , changed to ~ 85%; this was calculated based on   = 1.36088 (as shown in 

Table 4-1),   = 1.54,   = 1.333 and    ≈1.54 (should be 1.52).  Such a 5% volume decrease of 

water is a result of polymer networks contraction after the addition of 1 mg/mL ConA and the 

concomitant change of inner osmotic pressures. To summarize, the effective RI is determined by 

the RI of the polymers and solvent as well as their occupation percentage in a fixed volume. 

When the polymer networks contract, the volume ratio of polymer will increase and the overall 

RI will be closer to that of the polymer. The increased RI was revealed as a RA shifting to a high 

value in the SPR spectrum.  
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It is noteworthy that the reflected light intensity was increased as well when more ConA 

was added to the solution. It was attributed to the higher light scattering efficiency of the ConA 

induced microgel particles collapse. This can be explained by the Mie theory.133 The minimum 

reflected light intensity was plotted as a function of the ConA concentration, as shown in Figure 

4-8b. As ConA adding to the solution, the minimum reflected light intensity was increased from 

226.8 μW to 264.5 μW as the concentration increased and reached a plateau at a concentration of 

1 mg/mL. Therefore, the 1 mg/mL ConA solution was used as the maximum contraction that can 

be achieved at this concentration. An even higher concentration probably will result in protein 

aggregation and make the protein lose activity in solution.  

It is evident from Figure 4-8a that the SPR curve becomes too broad for an accurate 

plasmon RA determination when the ConA concentration increases. It would be more practical 

to measure the reflected light intensity change as a function of time at a fixed angle; despite the 

occurrence of a reflectance change, it possesses no clear physical meaning in terms of the 

interfacial dielectric properties. By monitoring the reflected light intensity changes at a fixed 

angle, a better understanding of the ConA–GEMA interactions in the real-time fashion will be 

obtained. To achieve this, the SPR spectrum of the p(NIPAm-co-GEMA) film in pH 7.5 Tris-

HCl buffer was scanned, and the inflection point was determined by the first derivatives of the 

SPR spectrum. Then, the incident angle was fixed at the inflection point with the reflected light 

intensity monitored as a function of time, as shown in Figure 4-10. As can be seen, the reflected 

light intensity increased immediately, with 295 µW changes in 10 min after the addition of 

1 mg/mL ConA (arrow 2-3 in Figure 4-10). The nonspecific adsorption of ConA to the polymer 

film was removed by subsequently running pH 7.5 Tris-HCl buffer through the sensor surface 

(arrow 3-4 in Figure 4-10). The intensity decrease in the dissociation phase possibly is due to the 
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following reasons: 1) a bulk refractive index change from ConA/buffer to only buffer; 2) 

nonspecific adsorption removal; 3) partial dissociation of bound ConA with GEMA. Due to the 

shorter decay length of the electromagnetic field of the SPR evanescent field, the dissociate 

responses can be attributed only to the removal of non-specifically bound ConA and the partial 

dissociation of bound ConA. The reflected light intensity is still much higher than the one before 

ConA is added to a running buffer, which further proved the successful interaction between 

ConA and GEMA. To regenerate the p(NIPAm-co-GEMA) sensor surface, a high concentration 

of sucrose (136 mg/mL) in buffer solution was introduced to the fluidic cell followed by running 

buffer solutions. In Figure 4-10 (arrow 4-6), it can be seen that the reflected light intensity 

decreased immediately and then increased suddenly, while the intensity finally went back to the 

initial state (before introducing ConA). Such behavior can be explained by the fact that due to a 

higher binding affinity toward ConA/sucrose than ConA/GEMA and an extremely high 

concentration of sucrose, more ConA would be expected to dissociate from the polymer 

networks, resulting in a rapid reflectance decrease. However, such a high concentration of 

sucrose also will result in an imbalance between the inner and out osmotic pressure of the 

polymer film after ConA dissociation, which would be expected to result in polymer collapse 

and is revealed as an interrupted reflectance increase in the SPR profile. After switching to pH 

7.5 Tris-HCl buffer, the reflectance decreased immediately back to where it was before adding 

ConA, which indicates that all the bound ConA has dissociated from the polymer film.    
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Figure 4-10. Real time SPR data of the p(NIPAm-co-GEMA) modified Au sensor surface in 

different solutions: 1), 3), 5), 7), 9), 11) pH 7.5 Tris-HCl buffer; 2) 1mg/mL ConA in buffer 

solution; 4) 136 mg/mL sucrose in buffer solution; 6) 1 mg/mL BSA in buffer solution; 8) 1 

mg/mL Ery in buffer solution; 10) 1 mg/mL BSA and 1 mg/mL ConA mixture in buffer solution. 

To prove that the interaction is from GEMA instead of NIPAm, the microgel without 

GEMA as co-monomer was synthesized and modified on a SPR sensor surface, and the same 

procedures were carried out for comparison. The results are shown in Figure 4-11. There is only 

a ~30 µW intensity change after the addition of 1 mg/mL ConA, which is negligible compared to 

the ~290 μW increase in the p(NIPAm-co-GEMA) modified SPR sensor surface. In comparison 

to the dissociation phase, more reflected light intensity decrease can be observed in the case of 

p(NIPAm-co-GEMA). However, the total reflected light intensity change of the p(NIPAm-co-

GEMA) modified film  (~250 µW) is still much higher than that of the pNIPAm modified one 

(~10 µW) after the nonspecific adsorption removal.  
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Figure 4-11. A real-time SPR profile of a p(NIPAm-co-GEMA) film (black line) and a pNIPAm 

film (red line) interaction with 1 mg/mL ConA in a pH 7.5 Tris-HCl buffer. The first arrow in 

each line represents the point where 1 mg/mL ConA was introduced, and the second arrow in 

each line represents the point where pH 7.5 Tris-HCl buffer was added. 

4.3.3 Nonspecific Binding Studies 

To make such a glycol-copolymer film as a general transducer in a sensing application, it 

is desirable that this film should have very few nonspecific interactions and should not be 

affected by other interferences. To verify that the SPR signal change is due to the specific 

interaction from ligand and receptor, the following experiments were carried out. First, the 

regenerated device was exposed to bovine serum albumin (BSA), which was expected not to 

interact with the GEMA-modified microgels. As apparent in the SPR profile in Figure 4-10 

(arrow 6-7), there is a slight reflectance increase after BSA injection, which drops back to the 

initial baseline after the addition of pH 7.5 Tris-HCl buffer (arrow 7-8). There is only a ~2 µW 

reflected intensity change, which is negligible in comparison to that from ConA. This proves that 

such a polymer film does not interact with other proteins.  
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Furthermore, the same surface was exposed to the erythrina crystagalli (Ery) (lectin), a 

dimer plant lectin with a molecular weight of 56 KDa, which specifically binds to galactose. No 

interaction was expected in this case either. As can be seen in Figure 4-10 (arrow 8-9), there was 

a minimal signal change after the Ery injection and the intensity decreased to the baseline after 

running a wash buffer. Again, only a ~4 µW reflected light intensity increase was observed 

between buffer cycles. From the above results, it can be concluded that the p(NIPAm-co-GEMA) 

film neither interacts with other proteins nor has an affinity toward other lectins. 

Lastly, the same device was exposed to a 2 mg/mL ConA/BSA (1:1 mass ratio) mixture 

buffer solution for which a similar response was expected for the case of the 1 mg/mL ConA 

addition. As can be seen in Figure 4-10 (arrow 10-11), the reflected intensity increased 

dramatically after the ConA/BSA mixture addition and reached a similar amplitude when only 1 

mg/mL ConA (arrow 2-3) was added. The intensity decrease in the dissociation phase is similar 

to the case of only running ConA. In conclusion, the performance of such a transducer was not 

affected by other interferences.  

4.3.4 Glucose Response Studies 

The glucose responsiveness of the conjugated polymer film p(NIPAm-co-GEMA)-ConA 

was investigated further since the specific interactions between ConA and GEMA have been 

proved.  As can be seen in Figure 4-1b, a swelling response with microgel size increases will be 

expected when exposing the ConA-GEMA microgels to a glucose solution. It was hypothesized 

that the polymer contraction was released after glucose exposure owing to the higher binding 

affinity of ConA toward glucose than GEMA. If this happens, one expects to see a decrease in 

the SPR signal as the biomolecular interactions transfer to a polymer conformation change with a 
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concomitant refractive index decrease. As a first step, liquid AFM imaging was performed to 

verify the change in the diameter of the microgels in response to addition of glucose. For this 

experiment, a microgel sandwich was generated to facilitate the imaging process by first 

depositing 15 nm Au on a glass substrate, followed by a monolayer of microgels and 

subsequently a 5 nm Au overlayer. As can be seen, the thickness increased from 1.3 ± 0.1 μm to 

1.9 ± 0.2 μm after exposure to glucose, as shown in Figure 4-12. It is important to note that the 

images were acquired in the same region of the film that was scratched with a razor prior to 

imaging. With the SPR spectrometer, the p(NIPAm-co-GEMA)-ConA film was exposed to a 

series of glucose concentrations with the reflected intensity recorded, as shown in Figure 4-13. A 

decreasing trend in the reflected intensity can be observed as the glucose concentration increases. 

Interestingly, there are two linear ranges in the calibration curve, with 5 mM as the critical point 

where the sensitivity is lower below this glucose concentration. This was attributed to the 

competition between GEMA in the polymer networks and free glucose in the solutions for the 

ConA binding sites. Although glucose has a higher binding affinity toward ConA, the low 

concentration of glucose made it hard for ConA to dissociate from the glycosyl group of the 

polymer network, which finally yielded less reflectance changes. For comparison in terms of 

sensor sensitivity, a bare Au film was exposed to the same series of glucose solutions. The 

p(NIPAm-co-GEMA) film showed a 9-fold enhancement in glucose detection, as seen in Figure 

4-13. Lastly, the responsiveness of polymer–ConA conjugate toward other carbohydrates, such 

as galactose, was also investigated and the result is shown in Figure 4-14. As can be seen, the 

reflected intensity decrease rates are similar in the buffer and in the galactose/buffer solution 

(200 mg/dL); this demonstrated the low affinity between ConA and galactose. In the dissociation 

phase, the reflected intensity decrease is reasonable as the free ConA in the solution was 
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removed constantly (by running a solution, either buffer or galactose), which resulted in the 

establishment of a re-equilibrium between ConA in the solution and the polymer network.  

 
Figure 4-12. In-liquid AFM images of the Au film sandwiched p(NIPAm-co-GEMA)-ConA 

conjugates before and after incubating in the 1mg/mL glucose solution. A line was scratched into 

the device using a razor blade, and the scratched spot was imaged. Images were taken first in the 

pH 7.5 Tris-HCl buffer solution at 25  .  
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Figure 4-14. A real-time SPR profile of a p(NIPAm-co-GEMA) film in different solutions in the 

order: buffer/ConA/buffer/galactose (200 mg/dL)/buffer. The arrows in the plot represent the 

point at which a different solution was switched in the fluidic cell. 

4.4 Conclusions   

In conclusion, the successful synthesis of glucose responsive microgel particles 

composed of p(NIPAm-co-GEMA) was demonstrated. The chemical compositions have been 

confirmed by 1H NMR. Such synthetic particles also were used to construct a homogenous film 

with a “paint on” self-assemble technique. The specific interaction between GEMA and ConA 

was visualized by AFM, showing noticeable surface contractions after soaking in the ConA 

solution, while no changes occurred in the case of a pNIPAm film. Such specific interactions 

were further investigated by a real-time SPR spectrometer, with an obvious association and 

dissociation phase observed in a ConA/buffer and a buffer solution, respectively. The polymer 

film showed neither any affinity toward other lectins, like Ery, nor other proteins, like BSA.  In 

the presence of other interfering proteins, the polymer film still showed a high binding affinity 

toward ConA. Finally, the responsiveness of polymer–ConA conjugates toward glucose was first 

confirmed by a height measurement in liquid AFM and further studied by a custom-built SPR 

spectrometer.  The calibration curve was obtained and showed a 9-fold enhancement compared 

to the bare Au film. The interaction with other carbohydrates was also investigated, with non-

binding affinity observed. In future work, a simple modified polymer film is expected to be 

coupled to a portable SPR spectrometer and be applied as a disposable POC sensor transducer 

with a well-designed control channel. 
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Chapter 5 

Microgel Assisted Self-Assembly of Au 

Nanoparticles for Lithographic Applications 

The fabrication and assembly of nanoscale materials and features is the foundation of 

nanoscience and nanotechnology and the key to generating ever smaller electronic 

components.134 Photolithography has been used successfully thus far to produce devices with 

nanoscale features; however, it is difficult to produce features with a resolution below ~λ/4. 

Here, Au nanoparticle core and poly(N-isopropylacrylamide) shell (Au@pNIPAm) colloidal 

core-shell particles are generated and their self-assembly is shown to potentially improve on this 

limitation. First, Au@pNIPAm core-shell colloidal particles were synthesized by free radical 

emulsion polymerization. The colloidal particles were spread on a substrate using a “paint-on” 

technique.104 This procedure resulted in a monolayer of Au@pNIPAm core-shell particles, and 

after plasma etching, the Au nanoparticle core remained on the substrate. Therefore, an ordered 

Au nanoparticle array formed by Au nanoparticles could be achieved by using the Au@pNIPAm 

core-shell particles to template the deposition. The periodicity of the array can be tuned 

dynamically by controlling the deposition temperature owing to the thermoresponsivity of 

pNIPAm.  

5.1 Introduction 
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Au nanoparticles (AuNPs) exhibit unique optical properties arising from localized surface 

plasmon resonance; they have been widely applied in photonic,135 electronic,136 catalytic,137 and 

other fields. The ordered AuNPs nanostructure (array,138 pillar,139 hole140) on a solid substrate 

has attracted great attention due to the synergic effect of these structures. For example, the 

optical electric filed would be enhanced greatly at the interparticle gap when two nanoparticles 

are close.141 The optical spectra can be tuned easily by varying the interparticle distance of 

nanoparticles.142 It is critical to generate local regularity at nano scale levels for collective 

plasmonic properties because of the short-range coupling.143 

Different approaches have been applied to generate these nanostructures, such as 

electron-beam lithography (EBL)144 and focus ion beam lithography (FIB).145 These techniques 

provide high resolution and are able to yield features of 1-2 nm with fine control. However, the 

time consuming serial processes and low throughput limited their application in semiconductor 

industry. Nanosphere lithography (NSL) has emerged as an alternate approach to fabricate a 

nanostructure over a large surface area with low-cost and time-saving.66, 146 Generally, the hard 

polystyrene (PS) spheres are coated on the substrate and self-assembled into a hexagonal packed 

structure as the solvent evaporates.66 Afterwards, Au is deposited on the film by thermal 

evaporation and fills into the gap created by the PS particles.66 An ordered triangular Au array 

can be formed by removing the PS spheres pattern in the desired solvent. However, the 

interparticle distance can only be varied by the size of the PS particles. In addition, the 

morphology of the nanostructure generated by this approach is limited. As an alternative method, 

a smart polymer has emerged as a great candidate to replace the hard sphere PS for surface 

nanopattern. Smart polymers147 are macromolecules that undergo chemical or physical property 

changes on exposure to external stimuli, such as temperature,148 pH,149 light,150 analytes,151 etc. 
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Poly(N-isopropylacrylamide) (pNIPAm) is one of the most well-documented thermoresponsive 

polymers, which exhibits a low critical solution temperature of ~32  .152 The pNIPAm polymer 

chain can undergo a linear to globular conformation change as the temperature is raised above its 

LCST.152 We would like to take advantage of this property to generate a surface pattern with a 

tunable size just by varying the temperature.  

A simple alternative method was applied to produce a 2D Au nano array with a tunable 

interparticle distance and a variable array size by a microgel assisted self-assembly process. In 

principle, the Au nanoparticles were isolated by smart polymer encapsulation (Au@pNIPAm 

core shell particles) and were self-assembled on the substrate as the solvent was evaporating. The 

interparticle distance was controlled by the polymer layer thickness, which is dependent on the 

swelling state of the shell and which ultimately is controlled by the annealing temperature. In 

addition, the nanoparticles array sizes can be varied by overgrowing the Au core over the 

Au@pNIPAm particles. Finally, the polymer layers were removed by plasma etching without 

invasion of the Au cores. Thus, a simple and inexpensive method of producing an Au nano array 

was demonstrated with a tunable interparticle distance and an array dimension that potentially 

can be applied in surface-enhanced Raman spectroscopy (SERS) or nanosensor devices.   

5.2 Experimental Section 

5.2.1 Materials 

 Gold chloride trihydrate (HAuCl4·3H2O) (Aldrich, >99.9%), sodium citrate dehydrate 

(Aldrich, >99%), sodium dodecyl sulfate (Aldrich, >99%), 3-butenylamine hydrochloride (B-en-

A) (Aldrich, >97%), N,N’-methylenebisacrylamide (BIS) (Aldrich, >99%), acrylic acid (AAc) 
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(>98%), potassium peroxodisulfate (PPS) (Aldrich, > 99%), 95% ethanol (Brampton, Ontario), 

cetyltrimethylammonium chloride (CTAC) (Aldrich, 25 wt%, H2O)  were used as received. N-

isopropylacrylamide (NIPAm) was purchased from TCI (Portland, Oregon) and purified by 

recrystallization from hexanes (ACS reagent grade, EMD, Gibbstown, NJ) before use. Milli-Q 

deionized water (DI H2O) with a resistivity of 18 MΩ·cm was used. Glass cover slips were 

purchased from Fisher Scientific (Ottawa, Ontario). Chromium (99.999%) was purchased from 

ESPI (Ashland, OR) and Gold (99.99%) from MRCS Canada (Edmonton, AB, Canada). All 

glassware was cleaned with aqua regia and thoroughly rinsed with DI H2O. 

5.2.2 AuNPs Synthesis and Functionalization 

The AuNPs were synthesized following the well established Turkevich et al. protocol.153 

Briefly, a preheated 25 ml sodium citrate dehydrate solution (1 wt %) was added quickly to 500 

mL of 0.5 mM HAuCl4 with vigorous stirring and strong boiling. After reacting for 20 min, the 

mixture was allowed to cool down to room temperature with slow stirring. The stabilizing of 

AuNPs was achieved by adding 3 mL of 1 mM SDS solution dropwise and stirring for 20 min. 

Next, 1.63 mL of B-en-A (1.4mM in ethanol) was added dropwise to the mixture and stirred for 

another 20 min to generate a hydrophobic surface of AuNPs. The resultant was concentrated by 

centrifugation at 1065 rcf for 14 h.  

5.2.3 Au@pNIPAm Core Shell Particle Synthesis 

Core-shell Au@pNIPAm microgel particles were synthesized by seeded precipitation 

polymerization.154 The particle size (or shell thickness) was tuned by varying the Au seed 

concentration. More seeds would generate more nucleation sites, resulting in less monomer 
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polymerization on each AuNP surface. Experimentally, NIPAm (0.1132g, 1.000 mmol) and BIS 

(0.0272g, 0.176 mmol) were dissolved in 50 mL DI H2O and filtered through a 0.2 μm filter into 

a 100-mL, 3-neck round-bottom flask, which was equipped with a reflux condenser and a 

temperature probe. The mixtures were degassed with N2 and heated to 70   over 1 h. Next, an 

AuNPs seed solution ([Au] 0.017M, 50µL/70 µL/100µL/200 µL) was added to the heated 

solution dropwise and stirred continually for 10 min before adding the initiator PPS (1 mg in 0.5 

mL H2O) solution. The red clear solution became turbid within the first 15 min after initiation of 

the reaction. The mixtures were allowed to react at 70   for 2 h under a N2 environment. The 

dispersions were allowed to cool down to room temperature and filtered through glass wool to 

remove large aggregates. The microgel solution was cleaned by repeated centrifugation at 

~10,000 rpm for 30 min ( 6). The resultant core shell particles were labeled as shown in Table 

5-1.  

5.2.4 Au Core Overgrowth 

The Au core overgrowth was obtained by reducing HAuCl4 in the presence of 

Au@pNIPAm-2 microgel particles (70 µL as seed).155 First, the 2 wt% Au@pNIPAm microgel 

solution was diluted with the same volume of 100 mM CTAC. Next, a feed solution was 

prepared containing 0.5 mM HAuCl4 and 4.75 mM CTAC. In a typical synthesis, a 200 µL 

precursor solution was combined with 8 mL of 2.4 mM CTAC under vigorous stirring in a 

20-mL glass vial, followed by the addition of 130 µL of 10 mM freshly prepared ascorbic acid. 

Next, a 2 mL feed solution was added dropwise to the seed solution under stirring, and the 

reaction was allowed to proceed for 20 min. The particles were purified by centrifugation at 3740 

rcf until the supernatant was colorless, whereupon the supernatant was discarded and the 
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precipitate was redispersed in water. This process was repeated twice. The final core size of ~40 

nm was determined by transmission electron microscopy (TEM). Particles with an overgrowth 

gold core of ~50 nm, ~60 nm and ~75 nm in diameter were obtained by adding a 5 mL, 15 mL 

and 30 mL feed solution, respectively, to the precursor particles. The ratio of ascorbic 

acid/HAuCl4 was kept constant at 1.3 in all overgrowth experiments.       

5.2.5 Au@pNIPAm Microgel Particles Assembled Film 

The Au@pNIPAm microgels were coated on a 50 nm Au coated glass substrate 

(1 1 inch) by a “paint-on” technique.104 Initially, the 50 nm Au coated glass substrate was 

cleaned with 95% ethanol and DI H2O and dried with N2 before use. An aliquot of 40 μL 

resultant Au@pNIPAm hybridized microgel was dropped onto the pre-cleaned surface and 

spread toward each edge using the side of a micropipette tip. The film was rotated 90 degrees to 

spread the microgel solution to fully cover the slides. The painting procedure was processed on a 

hot plate with controllable temperature. The Au@pNIPAm microgel solution coated substrate 

was allowed to dry on the hotplate at a fixed temperature for 2 h. The excess amount of 

microgels was removed by washing the slide with a large amount of DI H2O and further soaking 

in DI H2O overnight.   

5.2.6 Au Nano Array 

The Au nano array was formed by removing the polymer shell of the self-assembled 

Au@pNIPAm microgel film by plasma etching. The resultant film was set in a RIE (Oxford 

NGP 80) plasmon etching chamber at 100W under an O2 environment. The etching time was 
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explored to fully remove the polymer shell without invasion to the AuNPs; the AuNPs remained 

at their original array location.  

5.2.7 UV-vis Spectroscopy 

The absorbance spectra of AuNPs and Au@pNIPAm microgel particles were recorded 

with an Agilent 8453 UV-vis spectrophotometer, equipped with an 89090A temperature 

controller and a peltier heating device. Measurements were performed at ambient temperature. 

The absorbance spectrum of the Au@pNIPAm microgel particle solution was measured as a 

function of temperature from 20 to 60   in 5 degree increments. The temperature was allowed to 

stabilize for 5 min before a spectrum was recorded. 

5.2.8 Transmission Electron Microscopy  

Both AuNPs and Au@pNIPAm microgel particles were characterized with a JEOL TEM 

instrument (JEM 2100, USA) in terms of particle morphology and size. The specimens were 

prepared by drying 10 μL solutions of highly diluted samples on carbon coated copper grids. 

5.2.9 Photon Correlation Spectroscopy (PCS) 

The hydrodynamic radius of Au@pNIPAm microgel particles was measured by PCS 

(Brookhaven Instruments ZetaPlus zeta potential analyzer, Holtsville, NY) as a function of 

temperature from 25 to 60   in 5 degree increments. All the measurements were taken in DI 

H2O with an average of ten 30 s acquisitions and an average of three measurements per sample at 

each temperature.  

5.2.10 Atomic Force Microscopy (AFM) 
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The Au array and Au@pNIPAm microgel film on a 50 nm Au coated glass substrate 

were imaged by AFM (Digital Instrument, Dimension 3100) in air. The images were acquired 

using a scan rate of 0.5 Hz and 512 scan points and lines in the tapping mode.  

5.2.11 Scanning Electron Microscopy (SEM) 

The Au array generated by Au@pNIPAm-5/6/7/8 on a 50 nm Au coated glass substrates 

were imaged by a Zeiss Sigma FESEM instrument and operated at 5 KV. 

Table 5-1. List of Au@pNIPAm microgel particles with different synthetic ratios. 

Sample name AuNPs seed 
Volume (µL) 

NIPAm 
(mmol) 

Au@pNIPAm-2 
precursor 

solution (µL) 

Feed solution 
volume 

(HAuCl4 + 
CTAC) (mL) 

Au@pNIPAm-1 50 1.000 - - 
Au@pNIPAm-2 70 1.000 - - 
Au@pNIPAm-3 100 1.000 - - 
Au@pNIPAm-4 200 1.000 - - 
Au@pNIPAm-5 - - 200 2 
Au@pNIPAm-6 - - 200 5 
Au@pNIPAm-7 - - 200 15 
Au@pNIPAm-8 - - 200 30 

5.3 Results and discussion 

5.3.1 AuNPs Characterization  

The AuNPs synthesized following the Turkevich protocol were 14 ± 2.3 nm in diameter, 

measured by analyzing TEM images with Image J (n=156). As can be seen in Figure 5-1a, most 

of the AuNPs were of spherical shape. The characteristic LSPR peak in the UV-vis spectrum of 

AuNPs can be observed in Figure 5-1b at 518 nm.  
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Figure 5-3. Au@pNIPAm microgel particles hydrodynamic diameters measured at different 

temperature by PCS. The open squares represent Au@pNIPAm-1 microgel particles; the open 

circles represent Au@pNIPAm-2 microgel particles; the open triangles represent Au@pNIPAm-

3 microgel particles; the open inverted triangles represent Au@pNIPAm-4 microgel particles.  

5.3.3 Au Core Overgrowth   

The Au core size can be tuned further by growing AuNPs on the Au/pNIPAm interface 

by reducing the HAuCl4 in the presence of Au@pNIPAm-2 microgel particles. The resultant Au 

core overgrowth particles were characterized by TEM, as shown in Figure 5-4. As can be seen, 

the Au core increased gradually when more feed solution was added to the same amount of 

Au@pNIPAm-2 precursor particle solutions. The diameter of the Au cores can be measured by 

analyzing the TEM images with Image J. The final core sizes were 40±3.9 nm, 49±2.6 nm, 

59±4.8 nm and 75±3.8 nm when the volume of feed solution was 2 mL, 5 mL, 15 mL and 30 

mL, respectively. It is noteworthy that the shape of the AuNPs core remained the same in the 

process of overgrowing except for the case of a 5 mL feed solution addition. In the TEM image 

in Figure 5-4b, irregular shapes of AuNPs were observed, and the color of the Au@pNIPAm-6 

solution was purple. This is ascribed to the ratio of the capping agent (CTAC) to the AuNPs 

cores which affects the faceting tendency and growth kinetics.156 The resultant core-shell 
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Figure 5-5. UV-vis spectra of Au@pNIPAm particles with Au core over growth. The solid line 

represents spectra of the precursor Au@pNIPAm-2 particles; the dashed line represents the 

spectrum of the Au@pNIPAm-5 particles with a plasmon peak at 537 nm; the dotted line 

represents the spectrum of the Au@pNIPAm-6 particles with a plasmon peak at 580 nm; the 

dash–dot line represents the spectrum of the Au@pNIPAm-7 particles with a plasmon peak at 

551 nm; the short–dash line represents the spectrum of the Au@pNIPAm-8 particles with a 

plasmon peak at 564 nm. 

5.3.4 Au Nano Array  

With the possibility of a variable shell and core size of Au@pNIPAm microgel particles, 

Au nano arrays can be generated with different interparticle distances and different array sizes. 

The resultant Au@pNIPAm-2 microgel film deposited at 25   was characterized by AFM, as 

shown in Figure 5-6a. A predominantly hexagonal arrangement of microgel particles can be 

observed, with no obvious AuNPs core owing to the location of the AuNPs in the hybridized 

particles buried inside of the microgel particles. Next, the pNIPAm shell was removed by 

plasmon etching without invasion of the AuNPs cores, expecting the AuNPs cores to remain at 

the original array spot. To do so, the exposing time of the resultant polymer film was explored 
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5.3.5 Interparticle Distance Control of Au Nano Arrays  

As can be seen from Figure 5-2 and Figure 5-3, the polymer shell thickness can be 

controlled by two methods: 1) changing the AuNPs seed to monomer ratios in the reaction; 2) 

tuning the painting temperature owing to the instinct thermoresponsivity of the pNIPAm shell. 

As a result, it was hypothesized that the Au nano array interparticle distance can be tuned in two 

different ways. The first approach is to paint different sizes of microgel particles (Au@pNIPAm-

2 and Au@pNIPAm-4) on the substrate at the same temperature (20  ). The second approach is 

to paint the same batch of microgel particles at a different temperature (20   and 60  ). The 

resultant films fabricated under different conditions were characterized subsequently by AFM 

after plasmon etching for 30 s. The results are shown in Figure 5-7. The interparticle distance 

between AuNPs was larger when the Au nano array was generated by comparatively large 

microgel particles (Au@pNIPAm-2 with a hydrodynamic diameter of 307.5±7.6 nm at 25  ) at 

the same painting temperature, as shown Figure 5-7a. For the Au@pNIPAm-4 resultant array 

painting at 20  , the AuNPs–AuNPs are closer, with many more particles in the same scanning 

area, as shown in Figure 5-7b. The interparticle distances at 20   are ~334±34 nm and ~180±23 

nm for Au@pNIPAm-2 and Au@pNIPAm-4 particles generated arrays, respectively, as shown 

in Figure 5-8. As the deposition temperature increased to 60   , the interparticle distance 

between AuNPs decreased when the Au nano array was generated by the same batch of core-

shell particles, as can be seen by comparing Figure 5-7a and Figure 5-7b to Figure 5-7c and 

Figure 5-7d. The measured AuNPs–AuNPs interparticle distance is shown in Figure 5-8. As can 

be seen, the interparticle distances at 60   decreased to ~253±33 nm and ~169±22 nm for 

Au@pNIPAm-2 and Au@pNIPAm-4 particles generated array, respectively. Therefore, the 

interparticle distance can be controlled by either depositing different sizes of microgels at 
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Figure 5-9. SEM images of Au nano arrays generated by (a) Au@pNIPAm-5 microgel particles, 

(b) Au@pNIPAm-6 microgel particles, (c) Au@pNIPAm-7 microgel particles, (d) 

Au@pNIPAm-8 microgel particles deposited on a 50 nm Au coated glass substrate at 25  . The 

scale bar is 200 nm. 

5.4 Conclusions 

In conclusion, a simple and inexpensive approach to Au nano array fabrication has been 

demonstrated by “painting-on” Au@pNIPAm microgel particles on a substrate. The Au nano 

array periodicity can be dynamically tuned by painting different shell sizes of Au@pNIPAm 

microgel particles or varying the painting temperature. In addition, the Au core sizes are tunable 

by further growing on the Au@pNIPAm microgel particles. It is expected that such an Au nano 

array can be applied as a substrate for surface-enhanced Raman spectroscopy or surface plasmon 

resonance spectroscopy for signal enhancement.  
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Chapter 6 

Au@pNIPAm Core-shell Microgel Based 

Optical Device  

Au nanoparticle core and poly(N-isopropylacrylamide) shell (Au@pNIPAm) microgels were 

synthesized by seed mediated free radical polymerization. Subsequently, a one dimensional 

photonic device was fabricated by sandwiching the resultant Au@pNIPAm particles in between 

two thin layers of Au film. Such an optical device exhibits visual color and yields a characteristic 

multipeak reflectance spectrum, where the peak position is primarily determined by the distance 

between two Au layers. In this Chapter, it was found that the optical properties of the core-shell 

particle based devices can be tuned by green LED light, and the responsivity is dependent on the 

exposure time. The optical properties in terms of response kinetics and optical spectrum 

homogeneity were compared with devices that were fabricated by pNIPAm-based microgels 

with AuNPs modified by physically adsorption. The uniform Au@pNIPAm microgel based 

devices showed a fast response and exhibited a comparatively homogenous spectrum over the 

1 1 inch slides. Potentially, these materials could be used in drug delivery, active optics, as well 

as soft robotics.  

6.1 Introduction 



 

131 
 

Gold nanoparticles (AuNPs) have attracted significant attention over the past few decades 

owing to their unique optical properties caused by what is known as localized surface plasmon 

resonance (LSPR).157 LSPR is a phenomenon that allows for light of specific energy to be 

absorbed. This phenomenon is dependent on the nanoparticles’ size, shape and structure, as well 

as the dielectric constant of the metal and media in contact with them.158-159 AuNPs of various 

shapes and sizes have been exploited for a variety of applications, including optical sensing and 

bio-sensing,160 gene targeting,161 drug delivery,162 stem cell tracking163 and optical imaging.164 In 

addition, the local heat generated by LSPR excitation of AuNPs makes them an excellent 

candidate for photothermal therapy, which can be used to kill tumor cells non-invasively.165 In 

this submission, the photothermal properties of AuNPs were used to generate heat that can 

trigger the phase transition of the thermoresponsive poly(N-isopropylacrylamide) (pNIPAm); 

these materials can then be used as light responsive optical devices. 

Stimuli-responsive polymers are macromolecules that undergo physical and/or chemical 

changes in response to changes in their local environment,35 e.g., temperature,148, 166 pH,167 ionic 

strength,168 analyte concentrations169 and light exposure.170 Ideally, the polymers should return to 

their initial state once the external stimuli are removed. Of all the stimuli-responsive polymers, 

temperature responsive pNIPAm is the most well known and well studied.36b, 166, 171 The 

conformation of pNIPAm chains in water can transition from a solvated random coil to a 

relatively desolvated globule as the environmental temperature increases above pNIPAm's lower 

critical solution temperature (LCST) of ~ 32  .36b Like linear pNIPAm, crosslinked networks of 

pNIPAm (hydrogel) and colloidally stable particles (microgels or nanogels) also can be 

synthesized while retaining their thermoresponsivities. That is, pNIPAm hydrogels, microgels 

and nanogels swell in water below LCST and collapse above LCST reducing their size and 
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volume.172 By introducing additional functional/responsive groups into the polymers at the time 

of synthesis, other stimuli-responsivities can be engineered into the polymer networks in addition 

to temperature. Of particular interest to this submission is light responsivity because of the 

ability to apply the stimulus remotely and the ease of field manipulation (switching on/off, 

intensity control).173 There are many examples of light-responsive polymers that are triggered by 

photochromic molecules that undergo isomerization change upon specific wavelength light 

illumination, such as azobenzene,174 spiropyran174 and diarylethene.175 Generally, the molecular 

structure change is accompanied by a local polarity change and even a color change of the 

photochromic unit. In this submission, AuNP core–pNIPAm shell (Au@pNIPAm) particles were 

generated through seed mediated free radical polymerization and their light responsivity 

evaluated. Finally, they were incorporated into optical devices (etalons) to generate colored 

materials with light stimulated optical properties. 

Etalons are optical devices composed of two semi-transparent layers sandwiching a 

dielectric. The Serpe Group developed etalons composed of responsive polymers that change 

their optical properties in response to specific stimuli. These devices have been used to generate 

drug delivery platforms,176 sensors (pH,177 temperature,177a humidity178) and biosensors (specific 

proteins,102a DNA,169b small molecules178). The structure of the devices is shown schematically in 

Figure 6-1. A monolayer of pNIPAm-based microgel was sandwiched between two thin layers of 

Au film supported on a glass substrate. This device exhibits visual color and characteristic 

reflectance spectra. The characteristics peak can be predicated by Eq. (38), 

                                                                     (38) 
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where n is the refractive index of the dielectric medium (microgel layer), d is the distance 

between two Au layers,   is the angle of incident light and the integer m is the peak order. 

Therefore, the microgel size change will be revealed as a peak shift in the reflectance spectrum. 

It is noteworthy that the mirror–mirror distance dominated the optical properties of etalon; the 

refractive index change of the microgel layer has a negligible effect on the peak position. 

 

Figure 6-1. A schematic illustration of an Au@pNIPAm microgel based etalon device response 

to temperature and green LED light. The etalon is constructed by sandwiching the Au@pNIPAm 

microgel layer (b) between two Au layers (a) (15 nm) and (c) (50 nm) on a glass substrate (d). 

The red dots represent the AuNPs, and the green spheres represent the pNIPAm microgels. Upon 

stimulation, temperature increase or green light irradiation, the microgel layers collapsed, 

resulting in a distance decrease between the two Au layers. 

Light responsive optical devices were developed by taking advantage of AuNPs core 

photothermal properties and pNIPAm shell thermal responsivity. Specifically, the LSPR of 

AuNPs core can be excited under visible light and subsequently transforms to local heat energy, 

which induces pNIPAm shell collapse and results in a mirror–mirror distance decrease and a 

concomitant reflectance spectrum blue shift. In addition, the impact of the AuNPs distribution in 

a microgel layer was investigated with regard to optical properties in terms of response kinetics 
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and optical uniformity. In future, AuNPs cores are expected to have a tunable morphology (size 

or shape) so that they are able to absorb light in the near-infrared (NIR) range and be applied in 

light triggered drug delivery in vivo. 159  

6.2 Experimental Section 

6.2.1 Materials 

 Gold chloride trihydrate (HAuCl4·3H2O) (Aldrich, > 99.9%), sodium citrate dehydrate 

(Aldrich, > 99%), sodium dodecyl sulfate (Aldrich, > 99%), 3-butenylamine hydrochloride (B-

en-A) (Aldrich, > 97%), N,N’-methylenebisacrylamide (BIS) (Aldrich, > 99%), acrylic acid 

(AAc) (> 98%), potassium peroxodisulfate (PPS) (Aldrich, > 99%) and 95% ethanol (Brampton, 

Ontario) were used as received. N-isopropylacrylamide (NIPAm) was purchased from TCI 

(Portland, Oregon) and purified by recrystallization from hexanes (ACS reagent grade, EMD, 

Gibbstown, NJ) before use. Branch polyethyleneimine-coated AuNPs (15 nm) were purchased 

from nanoComposix (San Diego, CA). Milli-Q deionized water (DI H2O) with a resistivity of 18 

MΩ·cm was used. Glass microscope slides were purchased from Fisher. Chromium (99.999%) 

was purchased from ESPI (Ashland, OR) and Gold (99.99%) from MRCS Canada (Edmonton, 

AB, Canada). All glassware was cleaned with aqua regia and thoroughly rinsed with DI H2O. 

6.2.2 AuNPs Synthesis and Functionalization 

The AuNPs were synthesized following the well established Turkevich et al. protocol.153-

154 In brief, preheated 25 ml sodium citrate dehydrate solution (1 wt %) was added quickly to 500 

mL of 0.5 mM HAuCl4 solution under vigorous stirring and strong boiling. The clear yellow 

solution became dark red immediately after the addition of sodium citrate dehydrate. After 20 
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min, the mixture was allowed to cool down to room temperature with slow stirring. To further 

stabilize the AuNPs, 3 mL of 1 mM SDS solution was added to the AuNPs dispersion and stirred 

for 20 min. The hydrophobic AuNPs surface was achieved by further modification with 3-

butenylamine, 1.63 mL of B-en-A (1.4mM in ethanol), which was added dropwise to the mixture 

and stirred for another 20 min. The resultant was concentrated by centrifugation at 1065 rcf for 

14 h.  

6.2.3 Au@pNIPAm Core Shell Particle Synthesis 

Core-shell Au@pNIPAm microgel particles were synthesized by seeded precipitation 

polymerization.154a NIPAm (0.2263g, 2.000 mmol) and BIS (0.0544g, 0.353 mmol) were 

dissolved in 99 mL DI H2O and filtered through a 0.2 μm filter into a 250-mL, 3-neck 

round-bottom flask, equipped with a reflux condenser and a temperature probe. The mixtures 

were degassed with N2 and heated to 70   over 1 h. Next, AuNPs seed solution ([Au] 0.017M, 

320 μL) was added to the heated solution dropwise and was allowed to stabilize for 10 min 

before adding initiator PPS (2 mg in 1 mL H2O) solution. The red clear solution became turbid 

within the first 15 min after initiator addition. The mixtures were allowed to react at 70   for 2 h 

under a N2 environment. The dispersions were allowed to cool down to room temperature and 

filtered through glass wool to remove large aggregates. The microgel solution was cleaned by 

repeated centrifugation at ~10,000 rpm for 30 min (X 6). As a control, the poly(N-

isopropylacrylamide) (pNIPAm) and poly(N-isopropylacrylamide-co-acrylic acid) p(NIPAm-co-

AAc) microgels were synthesized in a similar fashion without adding AuNPs seeds at the initial 

stage of the reaction. The p(NIPAm-co-AAc) microgel was composed of 10% mole ratio of 

AAc. 
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6.2.4 Etalon Fabrication 

Glass coverslips were washed copiously with DI H2O, 95% ethanol and DI H2O 

sequentially, and dried with N2. A coating of 2 nm Cr (adhesive layer) and 50 nm Au layer were 

applied on a precleaned glass substrate with a Torr International Inc. (New Windsor, NY) 

thermal evaporation system (Model THEUPG) under a pressure of 10-6 torr. The resultant 

microgel particles were immobilized on an Au coated glass substrate with the “paint-on” 

technique.104 Briefly, an aliquot of 40 μL resultant Au@pNIPAm hybridized microgel was 

dropped onto the Au coated substrate and spread toward each edge using the side of a 

micropipette tip. The film was rotated 90 degrees to spread the microgel solution to fully cover 

the slides. The painting procedure was processed on a hot plate at 30  . When the temperature 

was increased to 35  , the Au@pNIPAm microgel solution on the Au coated glass substrate was 

allowed to dry for 2 h. The excess amount of microgels was removed by washing the slip with a 

large amount of DI H2O and further soaking in DI H2O overnight.  Additional layers of 2 nm Cr 

and 15 nm Au films were coated on top of the microgel surface with thermal evaporation. The 

fabricated device was stored in DI H2O and dried with N2 prior to use. As a control, the 

p(NIPAm-co-AAc) based microgels were also painted on the 50 nm Au substrate. The BPEI 

coated AuNPs were incorporated into the microgel layer by soaking the microgel coated device 

in a 0.05 mg/mL AuNPs solution for 45 min. Extra AuNPs on the surface were removed by 

washing the surface with DI H2O. An additional Au layer (15 nm) was subsequently deposited 

on top to form a sandwiched structure. 

6.2.5 UV-vis Spectroscopy 
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The absorbance spectrum of AuNPs before and after polymerization was recorded with 

an Agilent 8453 UV-vis spectrophotometer, equipped with an 89090A temperature controller and 

a peltier heating device. Measurements were carried out at ambient temperature. The absorbance 

spectrum of Au@pNIPAm microgel particle solution as a function of temperature was measured 

from 20 to 60   in ten degree increments. The temperature was allowed to stabilize for 5 min 

before a spectrum was recorded. 

6.2.6 Transmission Electron Microscopy (TEM) 

Both the AuNPs and Au@pNIPAm microgel particles were characterized with a JEOL 

TEM instrument (JEM 2100, USA) in terms of particle morphology and size. The 

specimens were prepared by drying 10 μL solutions of highly diluted samples on carbon coated 

copper grids. 

6.2.7 Photon Correlation Spectroscopy (PCS) 

The hydrodynamic radius of Au@pNIPAm microgel particles was measured by PCS 

(Brookhaven Instruments ZetaPlus zeta potential analyzer, Holtsville, NY) as a function of 

temperature from 25 to 60   in 5 degree increments. All the measurements were taken in DI 

H2O with an average of ten 30 s acquisitions and an average of three measurements per sample at 

each temperature.  

6.2.8 Atomic Force Microscopy (AFM) 
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The surface morphology of Au@pNIPAm microgel based etalon devices was 

characterized by AFM (Digital Instrument, Dimension 3100) in air. Images were acquired in a 

10 10 μm2 area using a scan rate of 0.5 Hz and 512 scan points and lines in tapping mode.  

6.2.9 Reflectance Spectroscopy 

Reflectance spectra of Au@pNIPAm microgel based etalon devices were collected with a 

USB2000+ spectrometer, an HL-2000-FHSA tungsten light source and an R400-7-VIS-NIR 

optical fiber reflectance probe, all from Ocean Optics (Dunedin, FL). The spectra were recorded 

using Ocean Optics Spectra Suite Spectroscopy Software over a wavelength range of 350–1250 

nm. The sample was measured for thermoresponsivity in DI H2O in a temperature controlled 

chamber fitted with a reflectance probe. The sample and solution temperature were cooled to 0 

  and the temperature was increased manually in increments of two degrees up to 70  . The 

temperature was allowed to stabilize for 5 min at each temperature before a spectrum was 

recorded. The light responsivity of core-shell microgel based etalon devices was investigated by 

monitoring the spectrum shift as a function of green LED light irradiation (~517 nm). The 

sample was immersed in 3 mL DI H2O and fixed in a Petri dish that was positioned ~1 cm on top 

of LED light source (isolated with foam block). All the spectra were recorded with the LED light 

off. The control experiment was performed in a similar way with pNIPAm microgel based etalon 

devices without the AuNPs core. 

6.3 Results and Discussion 

6.3.1 AuNPs and Au@pNIPAm Synthesis and Characterization 
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AuNPs were synthesized following the well established Turkevich protocol153 and 

characterized by TEM, as shown in Figure 6-2a. The size of AuNPs was 24.9       nm, 

measured by analyzing TEM images with Image J (n=1455). Using seed precipitated 

polymerization, a thermoresponsive pNIPAm shell was coated on the outside of AuNPs. The 

successful encapsulation of AuNPs can be proved by a TEM image of AuNPs before and after 

polymerization, as shown in Figure 6-2b. As can be seen, each particle only has one Au 

nanoparticle core after polymerization; neither free AuNPs nor aggregated AuNPs were observed 

in the TEM images. Further characterization of the resultant nanocomposites was carried out by 

UV-vis spectroscopy and PCS. In UV-vis spectra, shown in Figure 6-2c, the distinct plasmon 

band diminished and exhibited a red shift from 518 nm to 520 nm after pNIPAm shell 

modification. It is likely a result of the plasmon damping by the pNIPAm shell of increasing 

local refractive index around the AuNPs as well as the strong light scattering effect of the 

microgel layer. When the temperature increased, the absorbance of Au@pNIPAm particles 

increased both at low wavelengths and at the surface plasmon peak, as shown in Figure 6-2d. 

Both these effects are likely to arise from microgel collapse at elevated temperatures, which 

results in more light scattering owing to a high refractive index contrast with the solvent as well 

as a local refractive index increase on AuNPs. The variation of the absorbance at 400 nm was 

plotted against temperature, as shown in Figure 6-3, reflected the increase in turbidity of the 

colloid. In addition, the plasmon band red shift is a result of a local refractive index increase of 

microgel collapse at elevated temperatures. The size of Au@pNIPAm in the hydrated state is 

around 279 3 nm at 25  , measured by PCS. The thermoresponsivities of Au@pNIPAm 

particles were characterized with PCS by measuring the particle hydrodynamic radius as a 

function of temperature, as shown in Figure 6-4, where a well-defined volume transition is 
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 The core-shell particles obtained were subsequently deposited on an Au coated glass 

substrate to fabricate optical devices (etalons) following a previously reported “paint-on” 

technique as detailed in the experimental section. The surface topology of etalon devices was 

characterized via tapping mode AFM; the result is shown in Figure 6-5. The surface roughness 

(Rq) of the resultant optical device is 5.40 nm in an area of 100  m2. To confirm the basic 

responsivity and function of the etalons, an initial experiment was focused on characterizing the 

etalon thermoresponsivity. The reflectance spectrum of an Au@pNIPAm microgel based etalon 

device in DI H2O is shown in Figure 6-6a. As can be seen, a characteristic peak and trough can 

be observed at 568 nm and 712 nm, respectively, at 22  . In order to determine the spectral shift 

accurately, the trough position was monitored instead of the peak because it is smoother and 

narrower. As temperature increased, the trough moved toward lower wavelength. This can be 

predicted by Eq. (38) since the wavelength is proportional to the distance between two layers of 

Au, which was determined by the size of the microgels between them. When the temperature is 

increased, the pNIPAm shell collapses, resulting in two Au mirrors approaching each other, 

which finally lead to a reflectance spectrum blue shift. The wavelength at the trough was plotted 

as a function of temperature, as shown in Figure 6-6b. A total ~330 nm blue shift can be 

observed as the temperature changed from 2   to 70  . Again, the volume phase transition 

trend can be observed in Figure 6-6b owing to the thermoresponsivity of the pNIPAm shell. It is 

of note that the optical properties of the etalons were completely reversible over a number of 

cycles without an obvious loss in function, as can be seen in Figure 6-7.  
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Figure 6-7. The groove wavelength in the reflectance spectrum of the Au@pNIPAm microgel 

based etalon device at 22   (odd numbers) and 40   (even numbers).  

6.3.3 Light Responsivity of Au@pNIPAm Microgel based Etalon Devices 

 After investigating the basic thermal response of the Au@pNIPAm microgels based 

device, the light response of the etalon device was characterized in DI H2O.  During this process, 

a green LED light was exposed from the bottom of the etalon device. The reflectance spectrum 

of the device was collected after exposing to LED light every 5 min with the light off, as shown 

in Figure 6-8a, and the reflectance spectrum shift was plotted as a function of irradiation time, as 

shown in Figure 6-8b. As can be seen, light illumination caused a ~10 nm spectrum red shift 

every 5 min of irradiation during the first 15 min. The amount of red shift diminished gradually 

after 25 min and ceased around 60 min with an accumulated shift of 60 nm. The light response 

was attributed to the localized surface plasmon resonance generated by AuNPs core followed by 

a release of heat into the local surrounding environment. It is proposed that the heat generated 
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found that illumination of a pNIPAm microgel based etalon device with the green LED light had 

limited impact on the optical properties, which showed only a ~10 nm blue shift in total after 30 

min exposure. It is likely that the Au film of the etalon device absorbs the light energy and 

releases it as heat. From Figure 6-9, it can be seen that the response of a pNIPAm based etalon 

device is much smaller than that of an Au@pNIPAm microgel based device. This further proved 

that AuNPs core in the microgels absorbed green light and dissipated it as heat to induce 

pNIPAm shell collapse.   

 

Figure 6-9. The reflectance spectrum blue shift of an Au@pNIPAm microgel (squares) and a 

pNIPAm microgel (dots) based etalon device as light is on (even numbers) and off (odd 

numbers) over several cycles.  

6.3.4 Light Responsivity Dependence of AuNPs Distribution in Microgel 

The impact of AuNPs distribution in the microgel layer was investigated further with 

respect to light responsivity in terms of optical heterogeneity and responsive kinetics. A previous 
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article179 from our group has demonstrated that an AuNPs impregnated etalon device can 

respond to light irradiation as well. It was shown that the AuNPs were modified in the microgel 

layer by electrostatic interactions, where the positively charged BPEI-AuNPs were expected to 

be attracted by negatively charged microgels and be distributed in the polymer networks 

randomly. However, the Au@pNIPAm core-shell particle based etalon here is constructed with 

each microgel containing a single AuNP in the center, resulting in a homogenous AuNPs 

distribution in the microgel layer. Visually, as shown in Figure 6-10, the Au@pNIPAm microgel 

based etalon gives a uniform color over the whole device, while the AuNPs impregnated 

microgel etalon device gives a dense color at the outside layer, likely due to a coffee ring effect 

of AuNPs air-drying. Three spots in each of the devices were randomly selected, and their 

reflectance spectra were recorded, as shown in Figure 6-11. From the almost overlapped 

reflectance spectra in Figure 6-11a, it can be concluded that the Au@pNIPAm microgel based 

device was optically homogenous over the 1 1 inch area. In comparison, an AuNP impregnated 

microgel etalon device showed significant variation from spot to spot. The AFM image of an Au 

impregnated microgel device was included in Figure 6-12. By comparing it to the AFM image of 

Au@pNIPAm microgel based device in Figure 6-5, it is noted that the roughness increased due 

to the surface adsorption of AuNPs. In addition, the characteristic spherical shape of the microgel 

particles disappeared. Next, the light responsive kinetics was compared by monitoring the 

reflectance spectrum shift of three different spots in each device; the results are shown in Figure 

6-13. In the initial 15 min, the Au@pNIPAm microgel based etalon devices showed more blue 

shift under light irradiation than the AuNPs impregnated microgel etalon devices. After 

irradiation for nearly 30 min, a noticeable spectrum shift started to be observed in the AuNPs 

impregnated microgel etalon device. The total response is similar though over the course of 60 
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min illumination in both devices. The fast response of a uniformed core-shell particle based 

device demonstrated that the energy transfer possibly is due to the particle structure with the 

energy source (AuNPs core) surrounded by the microgel shell layer. It was hypothesized that the 

localized surface plasmons of AuNPs are dissipated in a non-irradiative manner as heat which 

was absorbed by the surrounding microgel layers; this ultimately results in shell collapse. 

However, in the AuNPs impregnated microgel device, the distance between each AuNPs was 

unknown because they possibly form AuNPs dimers, trimers or even aggregates. Upon light 

illumination, the localized surface plasmon resonance of AuNPs would be similar while the 

energy transfer probably happened between nanoparticles instead of AuNPs and microgels 

directly. Since the total response is similar after 50 min irradiation, it can be assumed that all the 

energy finally dissipates into heat and transfers to the surroundings, resulting in microgel 

collapse. Furthermore, the consistent light response from three different spots in an 

Au@pNIPAm microgel based etalon device proved the optical homogeneity. The obvious 

response variation from spot to spot in an AuNPs impregnated microgel device demonstrated the 

uneven distribution of AuNPs in the microgel, which lead to non-uniform local heating and 

resulted in a different behavior of the surrounding microgels. The mechanism of this 

photothermal induced polymer conformation change should be looked at in detail by probing the 

micro phase behavior of polymers at the metal/polymer interface to elucidate the energy transfer 

and light/metal interactions.   
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6.4 Conclusions 

In summary, it has been demonstrated that Au@pNIPAm microgels can be used to fabricate 

an optical device which is able to respond to temperature and a specific wavelength of light. The 

thermoresponsive properties of the device came from the inherent properties of the pNIPAm 

shell, which exhibits a LCST of ~32    The light responsivity was fulfilled by taking advantage 

of the fact that AuNPs are able to absorb green light and generate heat locally. Specifically, the 

LSPR can be generated on the AuNPs core with green light irradiation, which is finally released 

by a non-radiative pathway as heat. The local heat energy can lead to pNIPAm shell collapse and 

a concomitant spectrum blue shift. Moreover, it was found that the thermal and light response of 

such a device could be cycled many times without significant loss of functionality. Finally, the 

impact of the AuNPs distribution in the microgel to light responsivity have been investigated and 

showed uniform optical spectra and fast response in the Au@pNIPAm microgel based device. In 

future, it is expected to fabricate these optical devices with a tunable AuNPs core morphology 

such that they respond to NIR light, which is considered as a transparency “therapeutic window” 

with deeper penetration depth and less absorption and scattering in vivo. Potentially, such a 

device can be used for a locally triggered on-demand drug delivery platform. 
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Chapter 7 

Polymer Brush Based Multiple 

Responsive Optical Device 

Poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAm-co-AAc) polymer brushes were 

grown from Au-coated glass substrates via surface initiated atom transfer radical 

polymerization (SI-ATRP). Subsequently, another thin Au layer was deposited on top of 

the brush to yield a sandwich structure, with the brush confined between the two Au 

layers. This structure was shown to exhibit excellent optical properties and shows a 

response to multiple external stimuli, such as pH, temperature and humidity. This novel 

device could be used for sensing, biosensing, drug delivery or for other applications that 

require light manipulation and wavelength filtration.  

7.1 Introduction 

Since the pioneering work of Yablonovitch180 and John181 in 1987, photonic materials 

have attracted significant attention. These materials possess periodic refractive index variability 

and can be classified as one-dimensional (1D), two-dimensional (2D) or three-dimensional (3D), 

depending on whether their periodicity is in 1, 2 or 3 dimensions, respectively. Photonic 
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materials have found many uses and applications, e.g., optical fibers,182 photovoltaic devices,183 

displays184 and sensors.185 While photonic materials in general are of great interest, structures 

that change their optical properties in response to stimuli only increase their utility. Previously, a 

number of materials have been used to fabricate these devices. Among them, responsive 

polymer-based photonic structures186 have emerged as some of the most useful.187 Structures 

have been made that respond to stimuli such as pH,188 ionic strength,185a solvent,189 and 

electric190 and magnetic fields.191 In our previous studies, we demonstrated that poly (N-

isopropylacrylamide) (pNIPAm)-based hydrogel particles (microgels) could be used to 

fabricate tunable photonic materials.104, 178, 192 

PNIPAm has received significant attention over the years due to its thermally switchable 

solubility and conformation in water.172c Specifically, in water of a temperature lower than 

pNIPAm's lower critical solution temperature (LCST) of 32  , it is fully soluble and exists as a 

random coil, while pNIPAm collapses and becomes insoluble when the temperature above 32  . 

PNIPAm has been used for a variety of applications including: separations,193 biotechnology,194 

actuation195 and tissue engineering.196 As mentioned above, pNIPAm can exist as a random coil 

in solution, while it can also be crosslinked into network structures to make hydrogels and 

hydrogel particles (microgels).197   

In this Chapter, we synthesize pNIPAm-based brushes on surfaces. Polymer brushes are 

polymer chains tethered to a surface or interface via physisorption198 or covalent attachment.199 

Physisorption involves the adsorption of polymer chains on the surface or interface, however, the 

polymer attachment can be weakened at high temperature and upon solvent replacement.198, 200 

To yield a more robust film, covalent attachment can be used. This can be achieved via “grafting 
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to” or “grafting from” techniques.201 The “grafting to” method involves polymers diffusing to the 

substrate surface and reacting with a surface functional group. The "grafting from" approach uses 

a surface that has a reactive group, e.g., initiator or monomer, covalently attached to a surface, 

which can be polymerized. In this case, the thickness of the polymer film can be controlled by 

varying the polymerization time.  One of the most common polymerization methods used for 

"grafting from" is atom transfer radical polymerization (ATRP).202 Compared to traditional 

radical polymerizations, it provides control of polymer chain elongation, which gives narrow 

polydispersity index (PDI) and controlled molecular weight. In this way, the thickness of 

polymer brushes can be controlled.203 

We used a "grafting from" approach to generate a pNIPAm brush layer on an Au-coated 

glass substrate, and then deposited another thin Au layer on top of the resultant brush to make a 

"sandwich" structure. This device yields bright visual color, which could be tuned by adjusting 

the thickness of the polymer brush. Furthermore, the devices could change their color 

dynamically with temperature changes, i.e., tuning the pNIPAm solvation state allowed the brush 

thickness to be dynamically tuned, therefore changing the visual color. Additionally, we made 

the pNIPAm layer pH responsive by copolymerization of acrylic acid (AAc) into the pNIPAm 

layer, and its pH response was characterized. Finally, we investigated the device's response to 

humidity.  
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Figure 7-1. A schematic representation of the fabrication process of a polymer brush based 

optical device. 

7.2 Experimental Section 

7.2.1 Materials 

N-isopropylacrylamide (NIPAm) was purchased from TCI (Portland, Oregon) and 

purified by recrystallization from hexanes (ACS reagent grade, EMD, Gibbstown, NJ) before 

use. Copper(I) bromide (CuIBr, 98%, Aldrich), was purified by adding it to a 10% H2SO4 

solution, followed by addition of a saturated NaHSO3 solution. After stirring for 5 min, the 

precipitated CuBr was separated by vacuum filtration and washed by acetic acid, anhydrous 

ethanol and ether, which finally yielded a white powder. Anhydrous ethanol (Brampton, Ontario) 

was processed by adding 3 Å molecular sieve. Acrylic acid (99%, Aldrich), 2-Bromo-2-

methylpropionyl bromide (BiBB, 98%, Aldrich), 11-Mercapto-1-undecanol (97%, Aldrich), 

N,N,N’,N’,N”-pentamethyldiethyldiethylenetriamine (PMDETA, 99%, Aldrich), 

dichloromethane (>99.8%, Aldrich) were used as received, without further purification. Milli-Q 
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deionized water (DI H2O) with a resistivity of 18 MΩ·cm was used. Glass microscope slides 

were purchased from Fisher. Chromium (99.999%) was purchased from ESPI (Ashland, OR) and 

Gold (99.99%) from MRCS Canada (Edmonton, AB, Canada). 

7.2.2 Instrumentation 

Imaging Ellipsometer (Nano film ep4, Accurion, Germany), Atomic Force Microscopy 

(Digital Instrument, Dimension 3100), Reflectance Spectroscopy (Ocean optics, Dunedin), 

Thermal Evaporator ( Torr International Inc., NY). 

7.2.3 ATRP initiator (BrC(CH3)2COO(CH2)10S)2 Synthesis204 

11-Mercapto-1-undecanol (1.02 g), 10% potassium hydrogen carbonate (5 mL) and 

dichloromethane (40 mL) were added to a round-bottom flask and stirred for 30 min to mix well. 

Bromine (0.4 g) was added dropwise to the mixture, with continuous stirring, for another 30 min. 

The organic phase was separated and the aqueous phase was extracted with dichloromethane (15 

mL x 2) twice. The organic phases were combined and dried by magnesium sulfate. After 

vacuum filtration, the solvent was collected and rotary evaporated, yielding a white solid. The 

crude disulfide was recrystallized from an ethanol/hexane solution. 

Recrystallized disulfide (0.55 g) and triethylamine (1.9 mL) were dissolved in 

dichloromethane (31.4 mL) and incubated in an ice bath under a N2 environment, and 2-bromo-

2-methylpropionyl bromide (0.42 mL) was added drop by drop to the mixture. After stirring for 

1 h, the solution was moved to room temperature and stirred for another 2 h. The solution was 

extracted by 2 M sodium carbonate, followed by saturated ammonium. The organic phase was 
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dried by magnesium sulfate and was evaporated. The crude product was purified by column 

chromatography (hexane:ethyl acetate 13:1 V/V), resulting in a pale yellow oil. 

7.2.4 Surface-Initiated ATRP Preparation of PNIPAM Brush 

Microscope slides (1 1 inch) were washed copiously with ethanol and DI H2O. After 

drying with N2 gas, they were put in a thermal evaporator to coat an adhesive layer of Cr (2 nm) 

followed by a 50 nm thick layer of Au. The freshly prepared slides were immersed into a 0.5 mM 

initiator solution (dissolved in anhydrous ethanol) and allowed to sit for 3 h at room temperature. 

The initiator modified slides were rinsed with ethanol and dried by N2 before use. NIPAm (6.9 g) 

was dissolved in water (68 mL) and degased with N2 for 3 h, and PMDETA (216 μL) was added 

to methanol (20 mL) and degased with N2 for 3 h. After that, CuBr (31.15 mg) was added to the 

methanol mixture under a N2 environment and was sonicated for 30 s. The microscope slide was 

put in a reaction vessel with a N2 stream, and 17 mL degased NIPAM solution was transferred to 

the vessel with a syringe, followed by a 2 mL degased CuBr/PMDETA/methanol solution. The 

reaction time was varied from 5 min to 6 h. After the polymerization, the slides were removed 

from the vessel, washed with copious methanol and water and dried with nitrogen.  

7.2.5 Surface-Initiated ATRP Preparation of P(NIPAm-co-AAc) Brush 

The procedure was similar to the one used in preparing pNIPAm brushes. Instead of 

using a NIPAm solution, acrylic acid (6 mL) was added to the monomer solution. After that, 

0.5 M sodium hydroxide was added to adjust the pH of the mixture close to 7.  

7.2.6 Ellipsometry and Atomic Force Microscope Analysis 
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The thickness of NIPAm based brushes was measured by ellipsometry with an angle of 

incidence (AOI) of 42 degrees and multiple wavelengths (from 400 nm to 900 nm in increments 

of 40 nm between each scan). Each slide was measured in three spots, and each spot was selected 

in three areas of interest, with a total of nine areas measured. The fitting parameters for NIPAM 

were a refractive index (n) of 1.485 and an absorption coefficient (k) of 0. The thicknesses of 

Au-brushes-Au assemblies and the surface topology were also measured by AFM. The 

polymerization time vs. NIPAm film thickness measured by ellipsometry and AFM were 

compared. 

7.2.7 Reflectance Spectrum Measurement  

Reflectance measurements were conducted in a temperature controlled chamber. The 

reflectance spectra were recorded using Ocean Optics Spectra Suite Spectroscopy Software. To 

evaluate the reproducibility of temperature response, the temperature was increased from 24   

to 40   and then decreased back to 24   for several runs. For the pH response reproducibility of 

pNIPAm-co-AAc brushes, the pH was changed from ~2.7 to ~6.2 and back to ~2.7 for several 

runs by adding diluted HCl or NaOH solution.  

7.3 Results and Discussion 

Initially, pNIPAm-based brushes were grown onto Au-coated glass substrates, as shown 

in Figure 7-1. First, an ATRP initiator was attached to the Au surface by a self-assembly process 

in anhydrous ethanol. Following this step, surface-initiated atom transfer radical polymerization 

(SI-ATRP)199a, 202b was conducted to produce the desired brush. The resultant brush was 

characterized by ellipsometry and atomic force microscopy (AFM) as shown in Figure 7-2 and 
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7-3. Ellipsometry revealed that the thickness could be tuned over 300 nm, with a RMS roughness 

on the order of less than 20 nm. Finally, another 15 nm Au layer was thermally evaporated onto 

the resultant polymer brush.  This yields a layered structure, which is capable of interacting with 

light to produce color. Specifically, light is capable of entering the brush-based cavity and 

undergoes multiple reflections, yielding constructive and destructive interference. This 

interference allows specific wavelengths of light to be reflected/transmitted, yielding color. The 

specific wavelengths that are reflected can be predicted from Eq. (38),  

            (38) 

where λ is the wavelength maximum of the reflected peak/peaks, m is the peak order, n is the 

refractive index of the dielectric medium, d is the distance between the two layers of Au and θ is 

the incident angle. It can be seen that the wavelength is directly proportional to the distance 

between these two layers of Au. Since the distance can be tuned by the pNIPAm brush 

responsivity, the position of the device's reflectance peaks and its color can be tuned dynamically.  

 

Figure 7-2. PNIPAm polymer brushes thickness measured as a function of different 

polymerization time by Ellipsometry (■) and AFM (●). 
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thickness of the brush is increased, the number of peaks in the reflectance spectrum increases. 

This is a direct result of more orders of reflection being possible when the dielectric thickness of 

the etalons increases, as can be predicted from Eq. (38).   

 

Figure 7-4. The reflectance spectra of pNIPAm polymer brush based devices with different brush 

thicknesses. The thickness was measured by AFM in air as shown in Figure 7-3 with: a) 236.9 ± 

9.6 nm, b) 289.4 ± 9.0 nm, c) 384.3 ± 12.9 nm, d) 440.7 ± 6.4 nm. 

To investigate the ability of these devices to respond to multiple stimuli, we prepared 

pNIPAm-based brushes with and without AAc. The various responsivities are shown in Figure 7-

5.  First, a pNIPAm brush-based device was generated, and its response to temperature 

investigated. In this case, the device was investigated using reflectance spectroscopy, and the 

position of a single wavelength monitored as an indicator of its response. As can be seen in 

Figure 7-5a, the device's reflectance peak shifted an impressive ~500 nm when the water 

temperature was changed from 24 to 40  . The variability from device to device (polymer brush 

synthesized in the same batch) was investigated over the thermoresponsivity. As can be seen 

from Figure 7-6, a slight difference in the wavelength shift as a function of temperature can be 
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observed from the three pNIPAm brushes based devices. Additionally, the visible color of the 

device changed dramatically as shown in Figure 7-7. The response is a direct result of the 

pNIPAm brush layer collapsing at T > LCST, bringing the device's Au layers close to one 

another. The response was shown to be reversible over many cycles in Figure 7-8.   

In addition to the temperature response, we looked into the pH response for the AAc-

modified brushes. As AAc exhibits a pKa value of ~4.25, it is deprotonated and negatively 

charged at pH > 4.25, while it is neutral at pH < 4.25. Coulombic repulsion of negative charges 

at pH > 4.25 causes the polymer brush to expand, which increases the distance between these 

two layers of Au. This response is expected to yield a red shift of the reflectance peaks, while 

protonation of the AAc groups (to neutralize the AAc groups) will cause the polymer to 

recontract and yield a blue shift in the reflectance spectrum. As can be seen in Figure 7-5b, the 

reflectance peaks yielded a red shift from 440 nm to 570 nm as the pH was brought above the 

AAc pKa, and went back to the original position once the pH returned to < 4.25. The pH response 

is also reproducible over many cycles, as shown in Figure 7-9. We also investigated the 

temperature response at both high and low pH as shown in Figure 7-5c. At pH 2.44, the 

wavelength shifted from 800 nm to 600 nm as temperature was increased from 22 to 34 oC. As 

can be seen, the transition temperature for these devices is lower than the devices without AAc 

as a result of the increased hydrophilicity of the brush due to the AAc groups. At pH 6.50 (above 

the AAc pKa), the wavelength shifts from 600 nm to 500 nm when temperature in increased from 

24 to 40 oC. The minimal temperature responsivity is a result of the negative charges in the brush 

preventing the collapse at high temperature. As can be seen from Figure 7-10, the p(NIPAm-co-

AAc) polymer brush based optical device showed obvious color change as temperature increased 

above its LCST at pH 3 solution. 
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Finally, we demonstrated that the pNIPAm-co-AAc brush-based devices exhibit optical 

responses to atmospheric humidity changes. As shown in Figure 7-5d, the wavelength shifts 

from 470 nm to 550 nm as the relative humidity increases. Large wavelength shifts can be 

observed when humidity increases up to 40 %. The reason for the red shift is that the polymer 

brush chain is in a collapsed state when the humidity is low, while it transitions to a more 

solvated state as the humidity increases. This is a result of the hygroscopic properties of the 

pNIPAm-based brush.  

 

Figure 7-5. Stimuli-responsive properties of a polymer brush based device. a) Temperature 

responsivity on a pNIPAm brush based device; b) pH responsivity on a p(NIPAm-co-AAc) brush 

based device; c) temperature responsivity on a p(NIPAm-co-AAc) brush based device; d) 

humidity responsivity on a p(NIPAm-co-AAc) brush based device. 
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fashion. This device is versatile and is based on different functional monomers polymerized on 

this brush structure. In addition, by incorporating with specific molecules, the polymer brushes 

serve as a backbone; the specific interaction of these molecules with external stimuli or triggers 

can result in a size change, and potentially can be used as a sensor or drug delivery platform. 

  



 

167 
 

Chapter 8 

Conclusions and Future Work  

8.1 Conclusions of SPR Instrument 

A high performance SPR spectrometer with a broad scanning range, angular resolution of 

0.001° and multi-operation mode has been built for surface–surface interaction studies as well as 

sensing and biosensing studies. A LabVIEW based program has been developed with 

multifunction abilities including instrument motion controls, sensor-probe surface distance 

monitoring and data collections. However, improvements are still needed for the surface 

confinement control, which is expected to work at nanometer levels.  

8.2 Conclusions of SPR Signal Enhancement 

Novel thermoresponsive microgel-based thin films/Au assemblies were deposited on SPR 

sensor surfaces, leading to a multi-fold enhanced SPR signal in response to the microgel 

solvation state changes. The microgels conformation changes can be ascribed to either 

temperature changes or the concentration changes of small biomolecules of interest at constant 

temperature. Such assemblies showed higher sensitivity than those without an additional layer of 

Au film. The enhancement dependence of the top layer Au film thickness was investigated as a 

function of temperature, with the best sensitivity achieved when the Au overlayer thickness is 5 
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nm. The reason of enhancement can be ascribed to the efficient plasmon coupling and scattering 

effect of the assemblies. 

A competitive assay based on a p(NIPAm-co-GEMA) microgel film was applied to 

amplify the SPR signals in glucose detection. The principle is that the conformation of the 

p(NIPAm-co-GEMA) microgels on the SPR sensor surface is altered isothermally as ConA 

association/dissociation takes place from the polymer networks. Both the glucose and GEMA in 

polymer networks were able to bind to ConA. Such assay has shown a 9-fold enhancement, 

which gives better sensitivity in detecting physiological concentrations of glucose than 

unmodified SPR Au sensor. The enhancement factor was slightly lower than that in the previous 

case (microgel/Au film assemblies) owing to the absence of the additional Au layer. Even with a 

thin Au film, such as 5 nm, the protein (ConA) is hard to penetrate through the Au film barrier. 

By specifically tailoring the chemistry of the microgel film, SPR sensor surfaces can be designed 

and fabricated for the detection of desirable small molecules.    

8.3 Conclusions of the Universal Au Nanoarray Substrate for SPR Sensing 

and SERS 

A simple and cost effective approach to Au nano array fabrication has been demonstrated 

by painting the Au@pNIPAm core shell microgel particles on the silicon wafer. The shell 

thickness (pNIPAm layer) can be tuned either by varying the seed/monomer ratio in the synthesis 

or the environmental solution temperature. Therefore, the periodicity of the Au nano array can be 

tuned dynamically by painting different batches of the Au@pNIPAm microgel particles or 

varying the painting temperature with the same batch of microgel particles. Furthermore, the Au 

core sizes were tunable by further growing on the Au@pNIPAm microgel particles. By tuning 
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the Au nanoarray periodicity and Au core size, an approximate 107 enhance factor is expected to 

be observed in SERS sensor.   

8.4 Conclusions of the Etalon based Optical Device 

A thermal/light dual responsive optical device composed of Au@pNIPAm core shell 

microgels has been demonstrated. The thermal responsivity is the intrinsic property of the 

pNIPAm shell that exhibits a swollen-to-collapsed state transition upon temperature changes, 

while the light responsivity is fulfilled by the LSPR properties of the Au core. The AuNPs can 

absorb green light and generate heat locally, which further can lead to the pNIPAm shell collapse 

and a concomitant spectrum blue shift. Moreover, the thermal and light response of such a device 

could be cycled many times without significant functionality loss. The optical heterogeneity and 

fast response of such a device showed its potential application in a remote light triggered drug 

releasing platform.  

A multi-responsive optical device composed of p(NIPAm-co-AAc) polymer brushes has 

been fabricated, which is able to change color under the stimuli of temperature, pH and humidity. 

This device exhibits spectral uniformity over a 1 1 inch area and reproducibility over multiple 

pH/temperature/humidity cycles due to the homogeneity of polymer brushes synthesized via 

ATRP. The brushes thickness is varied by controlling the reaction time.   

The versatility of the etalon device was proved by varying the dielectric medium between 

the two Au films in the etalon, which can be spherical microgels or polymer brushes. In addition, 

the chemistry of microgel/polymer brushes can further be explored for the desired functionality.  

8.5 Future Work in SPR Instrument and SPR based Sensing Strategies 
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Once the instrument meets all the requirements mentioned in the introduction of 

Chapter 1, polymer–polymer interactions under confinement can be studied. First, the polymer 

brushes with a controllable thickness and graft density will be modified on the sensor and probe 

surfaces via the ATRP techniques (in Chapter 7). By tuning these parameters, such as polymer 

chemistry, polymer chain lengths, grafting densities and solvent, one can collect information 

about the impact of these factors on the conformation changes of the polymer brushes (sensor 

surface) as a function of distances to other brush layers (probe surface). Based on these 

fundamental studies, a surface coating with the desired tribology can be designed for use under 

confinement conditions.  

On the other hand, the development of a portable SPR instrument is necessary for the 

POC application. Two factors need to be taken into consideration. First is the method for optical 

excitation of SPR. As described in Chapter 1, both the gratings coupling and the fiber optics are 

good options for the SPR setup miniaturization. Instead of applying an angular interrogation in 

SPR, a wavelength based platform can be used to reduce the complexity of the optical 

components and avoid the use of expensive light sources. Second is the solution handling 

platform in the SPR instrument. Microfluidic cells can meet the requirements for a low volume 

of sampling solution, instrument integrity and ease of operation. As demonstrated in Chapter 3 

and 4, a stimuli-responsive polymer based transducer (with or without additional Au film) can be 

used in the portable SPR instrument to amplify the SPR signal and enhance the overall 

performance. 

Other challenges in the SPR based sensing technology involve the detection of pathogens 

and cells because of their size, which are larger than the penetration depth of the evanescent 
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field. More focus should be put on the assay development for such a requirement. In addition, the 

design of the metal and dielectric medium interface should be considered.  

8.6 Future Work in Au Nanoarray Surfaces 

The optical properties of the Au nanoarray should be investigated either theoretically by 

finite different time domain or experimentally by reflectance/transmission spectra with 

periodicity and AuNPs size variation; this will provide very useful information for rational 

sensor surface design. In addition, the optimized substrates should be tested by SPR or SERS to 

calculate the enhancement factor. 

8.7 Future Work in Au@pNIPAm Core Shell Microgels 

The chemistry of a shell layer in Au@pNIPAm core shell particles can be tailored to 

respond to biological molecules of interest. In the presence of the target, the conformation of the 

shell can be tuned to have an impact on the LSPR properties of the AuNPs core. The 

Au@pNIPAm core-shell microgels by itself in solution can be applied in a sensing platform due 

to the LSPR effect of the AuNPs core. Instead of utilizing it as an assembly on the solid 

substrates (collective effect), the solution based assay has the advantage of fewer processing 

steps and an easy readout (without the need of additional spectroscopy) for signal processing. By 

observing the turbidity change of the solution, one can tell the presence or absence of the target 

of interest.  
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