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Abstract

In recent years rotary-wing unmanned aerial vehicles (UAVs) are seeing more uses in

applications such as transmission line inspection, event filming, parcel delivery, and

search-and-rescue missions. Recent improvements in embedded systems have lead

to more research for improving unmanned aerial vehicle (UAV) autonomy. Tradi-

tionally for outdoor use, the inertial measurement unit (IMU) with magnetometer,

barometer, or global positioning system (GPS) can be used for pose estimation,

where the pose estimate is used for motion control. However, in GPS denied en-

vironments, such as indoors, other sensors need to be used for acquiring pose of

the UAV in the environment. One method to solve for the vehicle’s pose is visual

servoing, which uses a camera to collect information about the environment, and

estimates the UAV’s pose for control. This thesis implements the proposed dynamic

image-based visual servoing (DIBVS) controller in Fink et al. [1] using a newer ex-

perimental platform to improve the performance. This new platform utilizes the

Robot Operating System (ROS) running on an on-board Nvidia Jetson TX1 (TX1)

mini computer with a FLIR Chameleon 3 camera for the computer vision (CV)

system. ROS is chosen to create a simple framework that would handle necessary

components for the UAV, such as image capture and data transfer, while allowing

for minimal software changes to test different algorithms. Using this framework,

future research projects using the platform can save time troubleshooting issues

testing hardware, and instead focus on problems related to the algorithms being

tested. Also, future upgrades to the platform would need minimal changes to the

software so long as the new system is able to run ROS. For the experiments, the

CV system uses color to identify visual features used to compute image moments
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which are sent to a PX4 flight management unit (FMU) for control of the UAV over

a target. The experimental results are compared to the values found in Fink et al.

[1], where the new platform is found to have similar performance to the platform

used in the reference paper. This result indicates successful implementation of the

DIBVS controller on the new platform with a more modular and flexible CV system.
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Chapter 1

Introduction

In recent years there has been an increase in research conducted on unmanned aerial

vehicle (UAV) to replace manned operations in case of dangerous conditions such

as disaster relief. Choices for the type of vehicle can vary from fixed wing aircraft,

conventional helicopter, multi-rotor, and hybrid types of aircraft where each type

has its own advantages and disadvantages [2]. Of interest is the rotorcraft UAV

due to the versatility provided by vertical take-off and landing (VTOL) capabili-

ties, high maneuverability, and ability to perform low speed flights or hover. These

benefits allow for a wide field of applications such as transmission line inspection,

event filming, parcel delivery, and search-and-rescue missions. A survey of looking

at different types of research being done on rotorcraft can be found in [3]. Previous

members of the Applied Nonlinear Controls Lab (ANCL) group had worked with a

conventional helicopter type UAV, such as [4], where it was found that the vehicle

is challenging and complex to control and maintain in an academic research envi-

ronment. Due to these issues, members of the ANCL had developed a quadrotor

platform in [5], which is later referred to as the experimental platform. The choice

for a quadrotor platform is inspired by the success of other research projects such

as Eidgenössische Technische Hochschule Zürich’s (ETHZ) Flying Machine Arena

(FMA) [6, 7], University of Pennsylvania’s GRASP microunmanned aerial vehicle

(MAV) test bed [8], and Massachusetts Institute of Technology (MIT) Aerospace

Controls Laborartory’s (ACL) RAVEN project [9]. The quadrotor platform proved

to be beneficial for use in research over the conventional gas powered helicopter UAV

used in [4] as it is simpler to maintain, and more stable in flight. Although during

the early conception of the quadrotor, it was harder to implement a working plat-

form for the quadrotor due to the requirement of applying a different input signals

for each motor to maneuver. However, this problem was resolved when embedded

systems were developed enough to be added on-board the UAV and able to translate

simple commands, such as inputs from a remote controller, into the required physi-
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cal control signals. A unique aspect of a quadrotor is its ability to choose propeller

rotation direction. A typical choice for the rotation direction is for adjacent motors

to rotate in opposing directions, while opposite motors rotate in the same direction

as shown in Figure 2.1. This choice of propeller rotation is important since the

rotation direction cancels out the counter torque of the motors, which simplifies the

dynamics of the vehicle.

The quadrotor is an interesting platform to study as it is a complex nonlinear

underactuated inherently unstable vehicle, where there are six degrees of freedom

with only four inputs. A common research area for these vehicles is autonomous

motion control, which is difficult due to the necessity for accurate pose estimation.

The issue of pose estimation posed a problem for small UAVs for many decades due

to the weight limitations combined with the issue of having limited power supply

carried on the vehicle. However, with the recent development of smaller, cheaper,

and higher precision embedded systems the possibility of including different sensors

on-board have been opening up which can supplement or replace the use of global

positioning system (GPS) sensors. A typical choice to solve the pose estimation issue

used on-board inertial measurement unit (IMU) in combination with magnetometer,

barometer, or GPS signals as a method for solving this control issue. Using these

sensors in an outdoor environment would be practical to achieve motion control.

However, for places without a GPS signal, such as inside a building, other methods

must be used to gather information about the position of the vehicle, such as a

camera [10]. An on-board camera is a lightweight, low power, and affordable device

that can gather a large amount of information about the environment [11]. Using a

camera for motion control is known as visual servoing which takes the information

gathered from a camera to control the vehicle.

Research for using a camera to recover information about the real world from

an image is called computer vision. In computer vision if given multiple images

of the same scene, information related to the position of the camera is embedded

in the transformation matrix between the two images called a homography matrix

[12]. Using a homography matrix any points in one image can be transformed to

their position in the second image. The homography matrix is described by nine

parameters, where the ninth parameter is a scale factor due to only being able to

find information up to a scale factor in images. Therefore, to solve the homography

matrix it requires a minimum of four corresponding points in each image to solve for

the parameters. Using projective geometry, points being projected onto the image

plane are invariant, which means points are projected as points and lines projected

to lines. However, parallel properties of lines in the images may not be preserved

when using projective geometry as real world parallel lines may intersect at a finite

position in the image. In order to preserve the parallel property of lines, an affine
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projection must be used, which moves the intersection of parallel lines in the image

back to the line at infinity [13]. To compute the line at infinity, two parallel lines

must first be extracted from the image. Computing the intersection of the two lines

in projective geometry yields a point at infinity. The line at infinity can then be

computed from the intersection of a point at infinity with one of the parallel lines.

To transform a projective image into an affine image the intersection of the parallel

lines must be moved back to infinity. This is done by computing the line at infinity in

the image then replacing the last row in the homography matrix with the computed

line at infinity. This new matrix is then used to transform the image into an affine

projection. Affine projections are useful since relative distances of objects in the real

world would be preserved in the image. Transforming to affine projection will now

have all parallel lines intersecting at the line at infinity in the image. By knowing

a geometric measurement in the image and having the affine image, the projection

can be transformed into a geometric projection. The geometric projection is useful

since the affine properties are preserved, and measurements in the image are the

same as measurements done in the real world. By using the invariant properties

from these different projections, it becomes possible to recover information of the

real world from the images.

The controller for motion control commonly used is an inner-outer loop structure,

and [14] had proven the stability of this controller design for flight control. The inner-

outer loop control structure comes from the quadrotor UAV dynamics which can

be split into two subsystems, since the rotational dynamics are independent of the

translational dynamics. Therefore, the inner loop control handles orientation of the

vehicle while the outer loop deals with translation of the vehicle. Due to the coupling

of the translational dynamics to the rotational dynamics, the outer loop controller

provides reference angles for the inner loop. Due to the frequency of the two different

subsystems, visual servoing is a practical implementation to the common inner-outer

loop controller used in UAV control. The frequency difference is used in visual

servoing from the assumption that the reference signals are tracked perfectly by the

inner loop controller [15]. In practice, visual servoing works since the outer loop

control uses the computer vision (CV) system which is mainly limited by the frame

rate of the camera that usually runs at rates of around 30Hz, while the inner loop

uses the IMU with systems such as a Vicon Motion Capture System (MCS) running

at 200Hz indoors. The relatively higher frequency of the inner loop ensures that

the inner loop reaches the reference orientation which is needed to properly control

the position of the UAV. The outer loop controller computes the reference angles

and the total force of the motors needed, while the inner loop uses the reference

angles to compute the input torques needed for pose control. This thesis intends

to implement the controller in [1] on new hardware to improve performance of the
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controller. The new implementation includes the use of an open source software

called Robot Operating System (ROS), loaded onto the Nvidia Jetson TX1 (TX1)

embedded system. The TX1 is chosen due to its capability of using a dedicated

Graphics Processing Unit (GPU) to process images, which is typically the most

computationally taxing process. The choice for using ROS is to have a flexible CV

system where different methods, such as shape or color identification, can be used to

determine targets in an image with as high a frame rate as the system can handle.

ROS is an improvement from the pixy camera used in [1] since the pixy is limited

to seven color options for targets, and a maximum frame rate of 50Hz. Therefore,

using ROS on the embedded system removes limitations on target identification, and

control updates are less restricted than the platform used in the reference paper.

1.1 Literature Review

There are many research projects on UAV as discussed in [2, 3], where some works

focus on the control of the UAV. As noted before visual servoing can be used for

controlling the aircraft. Visual servoing is a method of utilizing a camera to gather

information on the environment, and feed it back to the controller for motion control.

When using a camera for visual servoing the two common methods implemented

are the monocular and binocular setup. The binocular setup has the benefit of

giving information about depth of the object used to recover the full 3D coordinates.

However, this benefit is gone once distance to the object from the camera greatly

exceeds the baseline or distance between the two cameras [16]. Therefore, a more

generalized approach would be the monocular setup, since the binocular setup is

the same as a monocular one for objects far from the camera. The monocular

approach is interesting since the 3D coordinate can be recovered up a scale factor,

similar to binocular approach, by using multiple images with the assumption that the

environment is static through the use of the homography matrix. To solve the scale

factor problem, a solution would be to use an external device to get information

regarding the depth. Some examples of external devices used are range finder,

ultrasonic devices, and IMU used to gather more information about the environment

[2].

Visual servoing is split into two main types of approaches Position-based vi-

sual servoing (PBVS) and image-based visual servoing (IBVS) [17]. PBVS control

extracts the vehicles estimated pose from the images and uses the error from the de-

sired pose to control the vehicle. However, estimation of the vehicle’s pose requires

a priori knowledge of the target geometry combined with extracted image features

to recover the 3D pose. This constraint means research done would need either

computer-aided design models of the target like in [18], or other special markers,
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such as april tags which gives relative pose from the marker, to recover the pose.

However, this constraint would leave the controller unable to operate in common

unstructured environments in the world. Another PBVS control method is based

on visual odometry (VO) which uses the changes in images over time to estimate

vehicle pose with an assumption that the environment is static. Work in [19] utilizes

a vision-based extended Kalman filter (EKF) approach combined with IMU data to

estimate pose of the UAV relative to a desired target. Another example is [20], which

uses PBVS to control landing the UAV by computing pose of the vehicle relative

to the landing pad. Other works include [21] which uses a partial pose based visual

servoing (PPBVS) to estimate parts of the vehicle’s pose relative to the target for

tracking infrastructure.

IBVS controllers differ from PBVS controller since the controller is based di-

rectly on the image features found in the image. By directly using image features

in the control, computations used to find the pose in PBVS can be avoided which

may result in faster performance. An example for a IBVS controller is in [21], where

the second proposed controller is an IBVS controller based on a LQR servo con-

troller used to track infrastructure. Dynamic image-based visual servoing (DIBVS)

is an IBVS control that integrates the vehicle dynamics into the control. Methods

of implementing DIBVS include the spherical projection approach, the homography

approach, the virtual spring approach, and the virtual camera approach. In [22], it

is shown that the triangular, or passivity-like, properties seen in quadrotor dynam-

ics (2.2), are destroyed by applying the perspective projection which couples the

angular velocity with the translation velocity. Therefore, [22] introduces a spherical

projection approach that can get back the passivity-like properties of the dynamics,

where the translational velocity is not coupled with the angular velocity. Using im-

age features, they derive a controller using back-stepping. The advantage to using

the spherical projection is that the depth of objects does not need to be known, how-

ever, this also results in the projections being insensitive to altitude changes [23].

Work done in [24] uses a modified spherical projection from [22] while rectifying the

issue of depth insensitivity.

As mentioned previously, the homography matrix has information related to the

camera pose. Work done in [25] uses a set of images corresponding to current and

desired pose to compute homographies for the images, which are then compared

to a reference image set. The desired trajectory assumes a collection of images

along a path the controller will follow are collected ahead of time. The proposed

controller only handles the position of the UAV, while not addressing the yaw. Due

to homographies having an unknown scale factor related to the depth, [25] applies

an adaptive update law to estimate the depth. Using the proposed controller their

simulation was found to be globally asymtopically stable (GAS) for the translational
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dynamics. Other works using homography approach include [26] where the angular

velocity and homography information is used for the derived locally stable control

law. Again the target is assumed planar which limits the uses of the control method.

Work in [27, 28] introduces a virtual spring approach which uses image moments

to find the interaction matrix for controlling the vertical translation and yaw. The

horizontal translation is controlled through increasing image errors causing the vehi-

cle to rotate and fly towards the target. Due to the possibility of rotations putting

the vehicle into an unstable state, a virtual spring is applied to limit rotation of

the vehicle. The proposed controller gives the benefit of not needing translational

velocity which can save on some sensors, and is proven to be locally asymptotically

stable. However, the controller suffers from its assumption that features are par-

allel to the image plane, which would not hold once there is a need for horizontal

translations.

The virtual camera approach transforms points from the actual image plane to

a virtual image plane. This approach is proposed in [29, 30] where a virtual image

plane is assumed parallel to the planar target, and therefore the points roll and

pitch dependency is eliminated. In [31], the virtual camera is applied to the image

points to account for underactuation of the vehicle. By defining appropriate im-

age features similar to the ones proposed in [32, 33] to track the vehicle dynamics,

[31] derive a control law using back-stepping methods. Using the proposed con-

troller, [31] ran simulations and found that the results had shown improvements

over spherical image coordinates. A subset of the work in [31] was done by [5]

which examined the translational control, and ran the controller on an experimental

platform. The results from the experiment had confirmed that the controller was

able to correctly control the translational dynamics, as well as following a moving

target. The work was later extended in [1] to include the virtual camera and add

in the yaw control. The virtual camera is used to restore a passivity-like property

for the image kinematics. Work done in [1] extends [31] by implementing the con-

troller on an experimental platform which few works have done. Furthermore, [1]

goes on to prove that the proposed controller is GAS for translational dynamics,

and globally exponentially stable (GES) for the rotational dynamics. The results

from the experiments performed indicated the UAV was able to center itself on the

target features and correct its yaw by minimizing the image feature errors. For all

the mentioned virtual approach controllers there is an underlying assumption that

the linear velocity of the aircraft is known. There is also the assumption that the

image features will not leave the field of view, which may occur for certain poses.

Other related works include [34] which apply an adaptive control scheme to account

for unknown parameters, as well as compensates for errors observed from the exper-

iments conducted in [5]. Work done in [35], includes input saturation to address the

6



issue of features leaving the field of view. Another work using virtual camera is [23],

which implements a virtual camera but differs by using lines in images, instead of

points, for the controller design to tackle problems such as power line inspections.

Some other areas of research look at the application of navigating the UAV within

its environment. Examples for this type of controller are simultaneous localization

and mapping (SLAM) [36, 37], and parallel tracking and mapping (PTAM) [38]

which creates a map of the environment and locates the vehicle in the map. This

map is built by looking at prominent features in the image and keeps track of the

features as they change in successive images, which can later be used to derive the

vehicle location. PTAM differs from SLAM by splitting the tasks for tracking and

mapping to improve processing times. Difficulties faced by these types of algorithms

is the ability to track large maps of the environment, since key frames are kept in

order to estimate the location of the vehicle, and therefore require more storage

space as the map expands. Other issues are the ability to identify where loop

closure should occur, which is crucial to identify where boundaries of the map. If

map boundaries are not identified correctly then the vehicle may get incorrect pose

estimates as previously found features will be erroneously identified as new features

used in the new pose estimation. A ROS implementation of PTAM is used by

[39] to test visual state estimation with observers designed using EKF, where the

version of PTAM used is based on an improvement by [11]. The work proposed in

[11] improves on the PTAM method proposed by [38] in areas such as limiting the

number of key frames, improving the feature identification, and re-initialization of

the map.

1.2 Thesis Overview

This thesis is separated into two main topics, Chapter 2 describes the modelling and

experimental platform, while Chapter 3 covers the controller and results. Chapter 2

begins by describing the quadrotor UAV dynamics used in the simulation as well as

controller design. The dynamics are described in two different frames of reference

and the different parameters used are defined. After the UAV model, the pinhole

camera model is introduced, which models how the points are projected onto an

imaging plane. Section 3.2 uses this camera model to compute reference values to

compare the experimental values from the CV system. These models are also used

in the simulation to verify how well the controllers respond in Section 3.3. After the

modelling, a brief description of the experimental platform used for the experiment

is included in Section 2.2. Section 2.2 goes over the hardware and software on the

Pixhawk autopilot flight management unit (FMU) or PX4, the companion PC, and

the camera.
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Chapter 3 goes over the controller design, verification of the modelling for the

image moment features, and finally the simulation, and experiment of the UAV.

Chapter 3 focuses on the outer loop controller of the inner-outer loop control struc-

ture, while a PID controller is used for the inner loop. Section 3.1 describes how

points are transformed to a virtual camera, and defines the image moment features.

An analysis of the proposed image moment features in [32, 33] shows that using

the proposed image moments, the passivity-like property from the dynamics can be

restored. The image moment features are used with the UAV dynamics to derive

a controller from the reference paper [1], and the stability is shown to be stable.

Section 3.2 describes the steps taken to verify that the modelling of the camera, de-

scribed in Chapter 2, matches with the results found using the on-board CV system.

The test are carried out on a desktop computer running the ROS with a camera

mounted on the desk. Nine tests were carried out to ensure that the image moment

features would be computed correctly for use in the controller described before,

where two test are carried out to ensure the passivity-like property is restored for

the image moment features. For Section 3.3, a simulation is run on simulink to

verify that the controller with chosen gains gives a stable flight for a given initial

condition. The results from simulation are compared to the results in [1], which

showed a stable response. Finally, the controller is run on the experimental plat-

form to test the performance on a real world platform. The resulting flight data is

analyzed and compared to the reference paper [1].

1.3 Contribution

The contributions of this thesis are focused on setting up a working easily accessible

platform for research to be conducted on UAV. Some main tasks can be described

as follows

• Developed a framework for the CV system that is easy to access and imple-

ment for future research projects. Using this framework built on ROS the

experimental platform controllers can be tested safely on desktops to ensure

proper functionality before deployment on the experimental platform.

• Implementing the DIBVS controller proposed in [1] with new hardware on

the platform to improve performance of the proposed algorithm. Initial test

results indicate similar performance using the new platform with potential for

more improvements using the new platform.
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Chapter 2

Modelling and Platform

This chapter focuses on the modelling used for the simulations and theory then

goes into brief detail on the platform used for the final experiment. In Section 2.1

the models for the unmanned aerial vehicle (UAV) and camera are described. In

Section 2.2 the experimental platform hardware and parameters are described.

2.1 Modelling

In this section the quadrotor dynamics are described first followed by the camera

model. For this section a cross configuration quadrotor is considered with the body

frame oriented such that b1 indicates the front of the vehicle, b2 to the right of the

vehicle, and b3 facing down. However, it should be noted that a plus configuration

gives the same rotational and translational kinematics with only the torque defini-

tions being different. For simplicity the camera frame C is considered to coincide

with the body frame. In practice there could be an simple transformation required,

such as a translation down for a downward facing camera mounted below the chas-

sis. For the camera a pinhole model with perspective projection is used and any

distortions in the camera are not considered in the model.

2.1.1 Quadrotor Model Dynamics

The model for the quadrotor is typically described using two frames: the body frame

B and the navigation frame N . The body frame is situated at the center of mass of

the quadrotor while the navigation frame is centered around a point on earth, such

as the point of takeoff. The frame basis vectors are chosen to follow the right-hand

rule as shown in Figure 2.1, where the third axis of each frame is assumed to be

positive pointing down. For defining the positive direction of the b1 axis there are

two possible definitions: a cross configuration where the b1 axis is between motor

1 and 3, and the plus configuration where b1 points toward motor 1. For defining

9
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n3

L

Ω4

τ4

τ2
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Ω3

τ3

Ω1

τ1

B

Figure 2.1: Model of quadrotor based on [39]

the directions of roll, pitch, and yaw the right-hand rule is used. Therefore, when

looking at the quad from above the roll will be defined positive rolling towards

motor 1, the pitch positive with the nose is pointing up, and the yaw rotating in a

clockwise fashion. To transform vectors between frames (2.1) introduces a rotation

matrix from the body frame to the navigation frame, which is parameterized in ZYX

Euler angles.

Rnb (η) =

⎡⎢⎢⎣cψsθ cψsθsϕ − sϕcϕ cψsθcϕ + sψsϕ

sψcθ sψsθsϕ − cϕcϕ sψsθcϕ + cψsϕ

−sθ cθsϕ cθcϕ

⎤⎥⎥⎦ (2.1)

where R ∈ SO(3), ϕ is the roll, θ is the pitch, ψ is the yaw described by Figure 2.1,

cx = cosx, and sx = sinx. For transforming points from the navigation frame to the

body frame the inverse of the rotation matrix will be used. The vehicle dynamics

10



that describe the translational and rotational dynamics are as follows:

ṗn = vn (2.2a)

mv̇n = −Rnb TMn3 + n3gm (2.2b)

Ṙnb = Rnb sk(ω
b) (2.2c)

Jω̇b = −ωb × Jωb + τ b (2.2d)

where pn is the position, vn is the velocity, g is gravity, m is the mass of the UAV,

n3 is the third basis vector in N , ωb is the angular velocity, J is the inertia matrix,

R is (2.1), sk(.) is the skew symmetric matrix defined by

sk(x) =

⎡⎢⎢⎣ 0 −x3 x2

x3 0 −x1
−x2 x1 0

⎤⎥⎥⎦
and TM is the total thrust from the four motors. From (2.2) a typical choice for states

are x = [pT , vT , ηT , ωT ]T , where η is the ZYX Euler angles as defined in Figure 2.1.

Using these definitions the translational dynamics are described by (2.2a) and (2.2b),

while the rotational dynamics by (2.2c) and (2.2d). It can be seen in (2.2c) and

(2.2d) that the rotational dynamics are independent of the translational dynamics.

However, the translational dynamics are related to the rotational dynamics in (2.2b)

through the rotation matrix. As mentioned in Chapter 1, it is due to this relation

between the translational and rotational dynamics that the inner-outer loop control

structure is chosen.

For the rotational dynamics, the Euler rates can be found in terms of the angular

velocity ω by expanding and simplifying (2.2c)

η̇ =

⎡⎢⎢⎣1 sϕtθ cϕtθ

0 cϕ −sϕ
0

sϕ
cθ

cϕ
cθ

⎤⎥⎥⎦ωb (2.3)

where tx = tanx, and η = [ϕ, θ, ψ]T . It can be seen in (2.3) that there is a singularity

at θ = ±90◦, therefore, this state will need to be specially handled based on this

parameterization. However, this singularity is not a special physical state and can be

safely dealt with by assuming values, such as
cϕ
cθ

= 0, if the singularity is encountered.

For the purpose of the controller, the UAV is assumed to be at or near hover,

therefore, the singularity can be safely ignored. To simplify the expression for (2.2d),

the inertia matrix is assumed to be a diagonal matrix, J = diag(J1, J2, J3), for a
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symmetric UAV which gives:

ω̇b =

⎡⎢⎢⎢⎣
ωb
2ω

b
3(J2−J3)
J1

ωb
3ω

b
1(J3−J1)
J2

ωb
1ω

b
2(J1−J2)
J3

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
τb1
J1
τb2
J2
τb3
J3

⎤⎥⎥⎥⎦ (2.4)

where ω is the angular velocity, Ji is inertia in the ith direction, and τ is the

torque. The torques are defined in (2.5) using the definition for the angle described

in Figure 2.2.

τ b1 = LsΘ(−f1 + f2 + f3 − f4) (2.5a)

τ b2 = LcΘ(f1 + f3 − f2 − f4) (2.5b)

τ b3 = −Kτ Ω̃1 −Kτ Ω̃2 +Kτ Ω̃3 +Kτ Ω̃4 (2.5c)

where L is the length of the arm from the center of mass to the motor, fi is the thrust

from the ith motor, Kτ is a constant, Θ is the angle as defined in Figure 2.2, and

Ω̃ the physical signal to the motor. In practice the physical signal will be handled

in a mixer which takes torques as input and correctly sends the required signal to

the motors. It should be noted that (2.5) assumes angle Θ is the same between the

front facing arms and rear facing arms relative to the b2 axis.

Motor i

b2

Θ

b1

L

Figure 2.2: Motor Angle Used for Torque

An alternative representation to ZYX Euler angles used to represent the orien-

tation is quaternions. Both Euler angles and quaternions are valid representations,

which can be transformed from one to the other. It should be noted that there are

two quaternion representations for each Euler representation. Quaternions are a

useful representation since there is no singularity when the pitch angle is perfectly

perpendicular to the horizon, or θ = ±90◦. Therefore, quaternions are favored for

use in controllers to avoid unexpected behaviour occurring for any possible orien-
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tation. To convert Euler angles to the quaternion representation the relation (2.6)

can be used. ⎡⎢⎢⎢⎢⎢⎣
q0

q1

q2

q3

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
cϕ/2cθ/2cψ/2 + sϕ/2sθ/2sψ/2

sϕ/2cθ/2cψ/2 − cϕ/2sθ/2sψ/2

cϕ/2sθ/2cψ/2 + sϕ/2cθ/2sψ/2

cϕ/2cθ/2sψ/2 − sϕ/2sθ/2cψ/2

⎤⎥⎥⎥⎥⎥⎦ (2.6)

where q = [q0, q1, q2, q3] is the quaternion. A drawback for using quaternion rep-

resentation comes from the difficulty of visualizing the physical orientation of the

vehicle with just the vectors. Therefore, if quaternions are given (2.7) can be used

to convert into ZYX Euler angles.

ϕ = arctan

(
2(q0q1 + q2q3)

1− 2(q21 + q22)

)
(2.7a)

θ = arcsin
(
2(q0q2 − q1q3)

)
(2.7b)

ψ = arctan

(
2(q0q3 + q1q2)

1− 2(q22 + q23)

)
(2.7c)

where q is the quaternion.

2.1.2 Camera Model

The camera model used for this thesis is the pinhole model, illustrated in Figure 2.3,

which assumes that all rays enter a pinhole before reaching an image plane on the

other side. Due to the image being inverted the image plane can be moved in front

of the pinhole as shown in Figure 2.3 to simulate the inversion done after the image

is captured. For this thesis the objects of interest are described in N which are then

projected onto the image plane π+p . This model is used due to the properties such

as the mapping of real world points to image points, and the preservation of lines to

lines in the image as discussed in 1. By having these properties it is possible to use

projective geometry to derive real world information from the image, such as finding

parallel lines in real world objects if they are parallel in the image. To extend upon

this concept, by knowing something about an object in the real world it also becomes

possible to get a real world measurement from the image as explained in Chapter 1.

In order to map the 3D world coordinate to the 2D image coordinates a perspective

projection is used. The perspective projection means points are scaled by the depth,

or distance in the c3 axis, from the camera. This is done since the image has less

information than the real world, therefore, any information that is found in the

image can only be found up to a scale factor [12]. After the scaling, the intrinsic

parameters of the camera are used to project the points onto the image plane.

This projection relation is described by (2.8) where any rotations or translation are
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C
c3

c1

c2

f

y1

y2

Image Plane π+
p

Image Feature
y = [y1, y2]

Object of Interest

P = [P1, P2, P3]T

Figure 2.3: Pinhole camera model based on [39], where image feature, y, is a point
on object, P , projected onto image plane π+p

assumed already be applied to the points.⎡⎢⎢⎣y1y2
1

⎤⎥⎥⎦ = H

⎡⎢⎢⎣P1/P3

P2/P3

1

⎤⎥⎥⎦ (2.8)

where (y1, y2) is the image feature coordinate, P is the real world coordinate, and H

is the projection matrix. The projection matrix describes the intrinsic parameters

of the camera and are arranged into a matrix as follows

H =

⎡⎢⎢⎣λ1 s y10

0 λ2 y20

0 0 1

⎤⎥⎥⎦ (2.9)

where λi is the focal length in pixels, s is the skew in the image, and yi0 is the

principal point. The principal point is considered to be the image plane center, and

typically assumed to be half the resolution of the image. The skew is a factor which

relates to the difference in pixel size along the horizontal and vertical direction. For

this thesis, the skew is assumed to be zero since with the advancement of technology

most modern cameras are made with square pixels. The focal length in meters is
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related to the focal length in pixel through the following relation

λi =
f

ρi
(2.10)

where f is the focal length in meters, and ρi is the pixel size in meters. The relation

(2.10) is useful to know as camera calibration programs, such as the ones used in

Section 3.2, are able to directly find the value of λ. Defining s = [y1, y2]
T as the

image feature, the image kinematics can be found by combining (2.8) with (2.2)

which gives

ṡ =

⎡⎣ẏ1
ẏ2

⎤⎦ =

⎡⎣− λ
P3

0 y1
P3

y1y2
P3

−y21+λ
2

λ y2

0 − λ
P3

y2
P3

y22+λ
2

λ −y1y2
P3

−y1

⎤⎦⎡⎣vc
ωc

⎤⎦ (2.11)

where (y1, y2) is the horizontal and vertical position respectively. The interaction

matrix in (2.11) relates the image features to the UAV dynamics in the form

ṡ = L

⎡⎣vcc
ωcc

⎤⎦ (2.12)

where L is the interaction matrix.

2.2 Experimental Platform

The experimental platform was built in [39] with inspiration from the success of

other research groups platforms as mentioned in Chapter 1. The quadrotor is a

custom-built four arm, cross configuration quadrotor frame with the front of the

UAV between two blue arms of the aircraft as shown in Figure 2.4. This platform is

used since commercial quadrotors are difficult to program or have limited program-

ming to allow for custom controllers. This platform is also built on the principle

of using open-source projects [39]. The angle between the two front arms or back

arms, along the b1 direction, is 120
◦, while the angle between the front arm and back

arm, along the b2 direction, is 60◦. For this thesis, the platform consist mainly of

three components: the Pixhawk autopilot flight management unit (FMU) or PX4,

the companion PC, and the camera on the UAV. The data flow between the compo-

nents is shown in Figure 2.5, which uses a protocol called mavlink to translate data

sent between the systems. The computer vision (CV) system gets images from the

camera and orientation from the PX4 which are used to compute image moment

features. The computed image moment features are then sent to a Robot Oper-

ating System (ROS) package called mavros which handles communication with the

PX4. The PX4 combines rotational data from the inertial measurement unit (IMU),
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translation velocity from the Motion Capture System (MCS), and the image mo-

ment features to compute the control inputs for motion control. The environment

also includes a Vicon MCS that uses eight cameras with a desktop PC to compute

information about the vehicle’s pose. A 12.2V LiPO battery is used to power all the

motors, and systems on-board the aircraft, which gives the aircraft approximately

15 minutes of operational time with motors running before needing replacement. A

custom-built power distribution board made in [39] is used to power the PX4, the

companion PC, and the camera.

PropellerPropeller

MotorMotor

Wifly RadioWifly Radio

LairdTech RadioLairdTech Radio

Jetson TX1Jetson TX1

PX4PX4

Forward CameraForward Camera

LIPOLIPO

Downward CameraDownward Camera

GPSGPS Vicon MarkerVicon Marker

Figure 2.4: ANCL experimental platform taken from [39], showing the various com-
ponents of the UAV

Image
Moment

Application
Mavros

IBVS
Controller

Sensors

Camera

Vicon MCS

PX4

TX1/ROS

s

η
η

v

s

η

Image

Figure 2.5: Data flow showing the communication between ROS and PX4 to control
the UAV
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Parameter Value

L 0.28m

m 1.6kg

Θ 30◦

J1 0.03kgm2

J2 0.03kgm2

J3 0.05kgm2

λ 414pixel

y0 (256,320)pixel

Table 2.1: ANCL experimental platform physical parameters

2.2.1 Flight Management Unit

The navigation system is a Pixhawk autopilot FMU, or PX4, originally created by

[40], which controls four motors mounted on the end of each arm of the aircraft.

The PX4 takes inputs from the Vicon MCS, IMU, and CV system to compute

control signals for the experiment. The PX4 uses data streams called topics to

publish data, which any application can subscribe to read the data. Topics are

useful when running multiple applications that need to read the same set of data,

which is used in Section 3.4 for the comparison of outputs between a known working

position controller, and the proposed image-based visual servoing (IBVS) controller

for tuning purposes. A logger is set up on the PX4 to begin logging all the data that

is published on the topics when the vehicle is armed. This log continues until the

vehicle enters an unarmed state. As described in Chapter 1, the PX4 has an inner

loop controller that controls the vehicle’s attitude, and an outer loop controller that

does position control using the inputs from the MCS. A Vicon MCS running on a

ground station computer sends the pose of the aircraft to the PX4 through a laird

tech radio for pose control. This communication runs with a frequency of 100Hz,

which is shown to be the optimal frequency in [39] for sending data. This frequency

is necessary for the controller design described in Chapter 3, where it is assumed the

inner loop can perfectly track the reference. The Vicon MCS computes pose through

the use of special vicon markers, placed on the aircraft, based on how each camera

in the room sees these markers. The data sent from the MCS includes position

from the room center in meters, velocity in meters per second, and orientation in

quaternions.

2.2.2 Companion PC

The aircraft has a Nvidia Jetson TX1 (TX1) mini computer which handles the

CV system, and sends data to the PX4 over a serial connection. The TX1 is an

embedded system that runs with a custom version of Ubuntu 16.04 ARM operating
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system called Linux4Tegra, that comes from Nvidia’s Jetpack software development

kit (SDK). In terms of hardware the system has a quad-core ARM Cortex-A57

Central Processing Unit (CPU), and an Nvidia Maxwell 256 CUDA core Graphics

Processing Unit (GPU). The TX1 is placed on an Auvidia J100 carrier board1,

which also provides two universal serial bus (USB) 3.0 ports, and is mounted on

top of the UAV. One of the USB ports is connected to the downward facing FLIR

(previously known as Point Grey) Chameleon 3 camera2, while the other USB port

has a FTDI cable connected to the PX4 for communication purposes. A wireless

adapter is also included on the TX1 to communicate with a ground station. On

the software side, the TX1 is loaded with ROS that handles running applications,

known as packages in ROS, as well as the communication between applications

or other computers running ROS. ROS is used in many robotics application and

CV systems which allows for ease of development and deployment of code. The

development and deployment of ROS is used in Section 3.2 to test the CV system

before the experiment done in Section 3.4.

One task that ROS handles is the images taken by the camera, the FLIR

Chameleon 3, using a third party ROS package to grab each frame. By using

ROS, the tests done in Section 3.2 and Section 3.4 use the same image processing

code in a custom ROS package to compute the image moments, and send data to

the PX4. The image processing ROS package used in this thesis utilizes the open

source OpenCV library for processing of the images, and identifies objects based

on hue, saturation, and value (HSV) thresholds when looking at pixels. A binary

image is created by setting pixels with HSV within a desired threshold range to one,

otherwise the pixel is set to zero. This binary image will show bright portions for the

objects and dark for any other pixel. Next morphology operations, or shape process-

ing, is carried out in an attempt to remove possible specular highlights, also known

as bright spots, or other erroneous holes detected in the object. The operations car-

ried out scans an area around the pixel in question and assigns the maximum value

for erode operations or minimum value for dilate operations. For this thesis, the

operation uses a combination of alternating erode and dilate operations to remove

holes in objects, while trying to undo any unwanted effects done to the edges of

markers. This operation is carried out to make the detected object more robust to

noise. The modified binary image is then processed using OpenCV libraries which

follow the algorithm in [41] to find the contours of the objects. This is done by a

raster scan, row by row from top to bottom and left to right scanning the image and

identifying borders from changes in adjacent pixels values, i.e. changes from one

to zero or zero to one. Border pixels found are marked with a number to identify

1https://auvidea.com/j100/
2Part no.:CM3-U3-13Y3C-CS
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which contour the pixel belongs to. An assumption for the ROS package is that no

objects in the image will leave the field of view, and the largest N objects within

the desired HSV range are the desired targets. The image moments are also only

able to be computed if there are N > 1 objects in the image. Using the contours

found, the area and centroid for each object is computed. The computed centroids

are used to compute the image moment features described in Section 3.1, and sent

to the PX4 for motion control.

Communication with the PX4 is handled by the mavros ROS package which

translates the data from ROS format, and converts it into the appropriate mavlink

data packet form that the PX4 can read. The vehicle runs the mavlink protocol

to transmit over the radio, where the end computer has the same mavlink protocol

which can translate and read the data. Another benefit to having ROS running

is the ability to log the ROS topics during the flight. Similar to the PX4, ROS

is configured to begin logging data on all topics once the vehicle has entered the

armed state until the vehicle is unarmed. As mentioned before, the inner loop is

assumed to perfectly track the reference [15]. This is done by having the inner loop

running at a higher frequency to achieve a faster stable state for orientation which

then allows the aircraft to stabilize the position states. This is beneficial for the real

world experiment as well since the camera runs at rates around 30Hz compared to

the MCS communication which is part of the inner loop control.

2.2.3 Camera

For this thesis, two different types of camera are utilized: FLIR Chameleon 3 and

FLIR Chameleon 2 camera3. The chameleon 3 is a USB 3 camera used on the

experimental platform, while the chameleon 2 is a USB 2 camera used during de-

velopment of the ROS packages. The chameleon 3 is chosen to be used for the

experimental platform due to having higher specifications such as higher frame rate,

and higher compatibility on the TX1. The camera can take images with a resolution

of 1280x1024 and frame rates of up to 149 fps, frames per second, in color. For the

experiment, the camera is run in a binning mode that averages every two pixels

cutting the resolution in half. Using camera calibration applications, the calibrated

focal length is found to be λ = 414pixel. This camera is a downward facing camera

mounted on the bottom of the vehicle, and as close to the center of mass as possi-

ble. Although the camera is able to run at rates higher than 149 fps with smaller

resolutions, the maximum rate found with the minimum programs running was ap-

proximately 90 fps before any image processing is done. The chameleon 2 camera

is used in Section 3.2 due the software being similar to the chameleon 3 camera,

as well as some technical difficulties encountered with the chameleon 3 on certain

3Part no:11510997
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desktop PC. The chameleon 2 has a max resolution of 1296x964 and max frame rate

of 18 fps resulting in it being undesirable for use in the controller due to low frame

rate, however, by using the ROS packages any experimental code can be tested on

the desktop first before deploying on the experimental platform. In Section 3.2, this

advantage is used during development of the algorithms for validating the camera

modelling and computation of image moment features, since both cameras use the

same ROS packages. This setup saves time and effort from having to constantly

change batteries when powering the CV system for testing, as well as not needing to

unmount the camera when testing. Also, as frame rate does not affect the computa-

tion accuracy of features only the rate of outputs, the choice for developing on the

chameleon 2 is used to check accuracy of computed values before final deployment

on the chameleon 3.
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Chapter 3

Controller

This chapter describes how the vehicle kinematics in Section 2.1 are used with the

image features to derive the control law. The type of controller chosen for this thesis

is an inner-outer loop control shown in Figure 3.1, where the controllers are run on

the PX4. An assumption for this thesis is that the environment contains the target

markers with hue, saturation, and value (HSV) within a certain threshold, where

the N largest visual features found are the target. Section 3.1 describes the control

law derived from the kinematics of the unmanned aerial vehicle (UAV) and image

features. In Section 3.2, the image feature extraction application is tested to verify

how well the features extracted match the modelling. Once verification is done, a

simulation is run to test how the UAV responds with the control law. Lastly, the

controller is run on the experimental platform where the results are analyzed and

compared to results from [1] which uses the same controller.

Outer-loop
Controller

Inner-loop
Controller

Vehicle

TM

η∗ τ b

η
v, η

Computer
Vision

s

R

Figure 3.1: DIBVS inner-outer loop controller structure where the outer loop con-
trols the translational dynamics and the inner loop controls the rotational dynamics
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Figure 3.2: Visualization of virtual camera with image plane in black to virtual
camera plane in green

3.1 IBVS

Using the knowledge that points in an image are related to real world coordinates it

is possible to create a controller for the UAV as shown in [1]. The control structure

selected is an inner-outer loop controller where the outer loop controls the rotational

dynamics, and the inner loop controls the translational dynamics. The focus for this

section will be on the outer loop controller. For the outer loop control, it can be

seen that (2.3) does not depend on the value of ψ, and therefore, it would only be

necessary to control ϕ and θ with ψ controlled separately.

3.1.1 Virtual Camera

For the controller, a virtual camera is utilized which transforms points on the actual

image plane to a new virtual image plane that is parallel with the real world plane

as shown in Figure 3.2. These new virtual points are denoted by the v superscript to

differentiate the two different coordinates, and have the roll and pitch dependency

eliminated from the points. The virtual camera simplifies the controller thus allows

for a simpler control of the yaw, and only adds a single transform which should

not affect the performance of the controller much. For the equations below, it is

assumed that the focal length in the horizontal and vertical direction are the same,

otherwise, a different derivation would be required [39]. Another assumption used is
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that objects would not leave the field of view. To begin the points being projected

onto the virtual plane are described by

pv = RϕθP (3.1)

where Rϕθ is rotation matrix with only the roll and pitch

Rϕθ =

⎡⎢⎢⎣ cθ sϕsθ cϕsθ

0 cϕ −sϕ
−sθ sϕcθ cϕcθ

⎤⎥⎥⎦
and P is the point in the camera frame. The kinematics for the transformed points

is

ṗv = −ψ̇ sk(n3)p
v − vv (3.2)

where vv is velocity in virtual frame, and ψ̇ is the angular velocity for yaw. Similar

to Section 2.1.2, a perspective projection is used with the principal point assumed

at (0, 0), then the projected points can be described as

yv = λ

[
pv1
pv3
,
pv2
pv3

]T
(3.3)

where λ is the focal length in pixel. Combining (3.3) with (3.1) the transformation

of real coordinates to the virtual camera coordinates can be described as

yv =
1

β

⎡⎣λ 0 0

0 λ 0

⎤⎦Rϕθ
⎡⎢⎢⎣λy1λy2

λ2

⎤⎥⎥⎦ (3.4)

where β is

β = nT3Rθϕ

⎡⎢⎢⎣λy1λy2

λ2

⎤⎥⎥⎦ (3.5)

n3 is basis vector in navigation frame, and pi is the normalized real world coordi-

nates. Combining (3.4) with (3.2) yields

ẏv =
1

pv3

⎡⎣−λ 0 yv1
0 −λ yv2

⎤⎦ vv +
⎡⎣ yv2
−yv1

⎤⎦ ψ̇ (3.6)

describing the kinematics in the virtual camera coordinates. From (3.6), it can now

be seen that the points are decoupled from the roll and pitch.
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3.1.2 Image Moment Features

Given an image, there are many ways to identify and track an object in the image,

where two methods either use distinct features on an object or color of the object.

A common example of using distinct features is using two eyes to identify a face,

or two eyes and a mouth. This method of tracking is useful as it prevents some

erroneous identification of objects, such as if a single ellipse shaped object found in

an image frame will not be recognized as a face. Conversely, this method suffers from

a problem if the object of interest is being occluded in the image which would fail

to identify the object. The other method of identifying objects is based on the pixel

color in the image, such as identifying green balls. Using color to identify objects

assumes the environment only contains the desired color for the target of interest,

which typically limits the usage to preset environments or targets. Another problem

that using color may encounter are specular highlights, or bright spots, caused by

light being reflected directly back at the camera, which causes certain pixels to have

higher color intensity. For this thesis, the color method is used to identify the objects

of interest using the HSV of each pixel, and morphology operations are applied to

remove specular highlights. To allow for flexibility in identification of the target it

is assumed that the largest K objects in the image are the desired targets, and any

other objects are just noise.

At this point it is assumed that objects are able to be correctly identified in

the image, and that the object is a planar target. Since the cameras used are

mostly digital cameras the following will look mainly at discrete images. With the

assumptions mentioned above the moment for an object with N pixels are defined

as

mij =
N∑
k=1

(y1k)
i(y2k)

j (3.7)

where yik indicates the kth point in the yi direction. The centered image moment

moments are defined as

µij =
N∑
k=1

(y1k − y1g)
i(y2k − y2g)

j (3.8)

where yg is the centroid of the object described by y1g = m10/m00 and y2g =

m01/m00. For the discrete case it should be noted that m00 = N for N points used

to track an object. The kinematics can now be found by taking the derivative of

(3.7) which yields

ṁij =

N∑
k=1

iyi−1
1k yj2kẏ1k + jyi1ky

j−1
2k ẏ2k (3.9)
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The same procedure applied to the centered image moments yields

µ̇ij =
N∑
k=1

(
i(y1k − y1g)

i−1(y2k − y2g)
j(ẏ1k − ẏ1g) + j(y1k − y1g)

i(y2k − y2g)
j−1(ẏ2k − ẏ2g)

)
(3.10)

Now the depth of any 3D objects, assuming they are planar, can be described as

follows [31, 32]
1

P3
= Ay1 +By2 + C (3.11)

Similar to (2.12), an interaction matrix for the image moments can be defined as⎡⎣ẏ1
ẏ2

⎤⎦ = [Lij ]

⎡⎣vc
ωc

⎤⎦ (3.12)

where L is the interaction matrix necessary to implement visual servoing. Using

the depth defined in (3.11), and substituting with the single point image kinematic

(2.11) gives

ẏ1 = −(Ay1 +By2 + C)vc1 + (Ay1 +By2 + C)y1v
c
3 + y1y2ω1 − (y21 + 1)ω2 + y2ω3

(3.13a)

ẏ2 = −(Ay1 +By2 + C)vc2 + (Ay1 +By2 + C)y2v
c
3 + (y22 + 1)ω1 − y1y2ω2 − y1ω3

(3.13b)

Now using (3.13) substituted into (3.9) the interaction matrix can be found as [39]

Lij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−i(Ami,j +Bmi−1,j+1 + Cmi−1,j)

−j(Ami+1,j−1 +Bmi,j + Cmi,j−1)

(i+ j)(Ami+1,j +Bmi,j+1 + Cmi,j)

(i+ j)mi,j+1 + jmi,j−1

−(i+ j)mi+1,j − imi−1,j

imi−1,j+1 − jmi+1,j−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(3.14)

likewise using the depth in (3.10) with (3.9) the interaction matrix for the centered
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image moments as noted in [33, 39] is

Lij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−iAµij − iBµi−1,j+1

−jAµi+1,j−1 − jBµij

−Aµω2 +Bµω1 + (i+ j)Cmij

(i+ j)µi,j+1 + iy1gµi−1,j+1 + (i+ 2j)y2gµij − i µ11m00
µi−1,j − j µ02m00

µi,j−1

−(i+ j)µi+1,j − (2i+ j)y1gµi,j − jy2gµi+1,j−1 + i µ20m00
µi−1,j + j µ11m00

µi,j−1

iµi−1,j+1 − jµi+1,j−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(3.15)

To simplify the interaction matrix, apply the virtual camera transformation to the

points. This transforms the points such that they are parallel to the image plane

resulting in A = 0, B = 0 in 3.11. Now for visual servoing select the image features

for control of the translational kinematics. From [33], the chosen image features are

s1 = y1g, s2 = y2g, and (3.19) for the translational dynamics. These are intuitive

choices, since the centroids relate to the y1, y2 direction, and the area to p3. Using

(3.14), the interaction matrix for the chosen features, if using infinite points to track

an object to be followed, gives (3.16), where (3.16c) uses the continuous interaction

matrix from [39].

Ly1g =

[
−C 0 Cy1g

(
y1gy2g +

4µ11
m00

)
−
(
1 + y21g +

4µ20
m00

)
y2g

]
(3.16a)

Ly2g =

[
0 −C Cy2g −

(
1 + y22g +

4µ02
m00

) (
y1gy2g +

4µ11
m00

)
−y1g

]
(3.16b)

La =
[
0 0 2Cm00 3m01 −3m01 0

]
(3.16c)

In (3.16), there is a coupling between the chosen features with v3, and the third

feature also has different scaling relation to the corresponding velocity. To remove

the coupling and restore passivity-like properties a proper normalization can be

applied to the features which gives the redefined features as

s3 = P ∗
3

√
a∗

a
(3.17a)

s1 = s3y1g (3.17b)

s2 = s3y2g (3.17c)

where P ∗
3 is the desired depth. Using the new features in (3.17) and noting that
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P ∗
3

√
a∗ = P3

√
a the interaction matrix for these features are

⎡⎢⎢⎣Ls1Ls2

Ls3

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
−1 0 0 s3

(
−y1gy2g

2 + 4µ11
m00

)
−s3

(
1− y21g

2 + 4µ20
m00

)
s2

0 −1 0 −s3
(
1− y22g

2 + 4µ02
m00

) (
y1gy2g +

4µ11
m00

)
−s1

0 0 −1
−3s3y2g

2
−3s3y1g

2 0

⎤⎥⎥⎥⎥⎥⎦
(3.18)

where (3.18) shows that through the normalization in (3.17a) it is possible to de-

couple the interaction matrix for the chosen features. For a discretized image, the

area is not chosen due to the fact that areas may result in no changes depending on

how the objects are tracked as shown in [39], where using only N points to track an

object results in ȧ = 0∀t as a is constant. Therefore, as proposed in [33] the new

feature is selected to be the second order image moments

s3 = a = µ02 + µ20 (3.19)

as these features are invariant to translation as shown in (3.15) for the parallel

assumption stated earlier setting A = 0, B = 0. Using the new feature (3.19) a

similar interaction matrix to (3.18) can be found for the translational kinematics

[33]. For the rotational kinematics, the feature chosen is based on the second order

image moments defining an object’s orientation, ψ defined as

s4 = ψ = 0.5 arctan

(
µ11

µ20 − µ02

)
(3.20)

where ψ is the angle. This orientation approximates an ellipse inside the set of

points and uses the principle axis theorem to define the angle from the b1 axis. As

shown in [39], the interaction matrix for the chosen orientation is given by

Ls4 =
[
0 0 0 α β −1

]
(3.21)

where

α =
−y1g(2µ211 + µ02(µ02 − µ20)) + µ11s2 + 5(µ12(µ20 − µ02) + µ11(µ03 − µ21))

(µ20 − µ202) + 4µ211

β =
µ11s1 − y2g(2µ

2
11 + µ02(µ02 − µ20)) + 5(µ21(µ20 − µ02) + µ11(µ03 − µ21)))

(µ20 − µ202) + 4µ211

Combining these four image moment features from (3.17) and (3.20) with the virtual

camera in Section 3.1.1 the triangular or passivity-like property can be recovered

for the translational dynamics.
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3.1.3 IBVS Controller

Recall from Section 2.1 that the rotational dynamics can be linearized and sepa-

rately controlled from the translational dynamics which is implemented through the

separation of outer loop control from the inner loop control. Once the image points

have been transformed to the virtual camera coordinates, the next step would be

to use the points to compute the image moment features. Recall that the image

moment features are described by

s1 = s3y1g (3.22a)

s2 = s3y2g (3.22b)

s3 =

√
µ∗20 + µ∗02
µ20 + µ02

(3.22c)

s4 =
1

2
arctan

(
2µ11

µ20 − µ02

)
(3.22d)

where µ∗ is the reference image moment for the desired pose, µ is the centered image

moments (3.8), yig is the centroid, and N is the number of points. It should be noted

that the reference image moment can be assumed µ∗ = µ∗20 + µ∗02 without loss of

generality, therefore, only requiring a single value is used as reference. Each of the

image moments feature values in (3.22) describe a physical property of the group

of points where (s1, s2) describe the (y1, y2) position of the center of the points,

s3 describes how close the points are to the desired distance, and s4 describes the

orientation for the set of points based on an ellipse drawn between the points [32].

It should also be noted that if µ20 = µ02 then the angle or s4 is a singularity,

but can be considered to be s4 = 90◦. The simple choice for regulating the four

image moments is [s1, s2, s3, s4]
T = [0, 0, 1, 0]T which indicates that the points are

centered in the image, at the desired distance from the camera, and the points

form an ellipse oriented along the y1 axis. The choice for reference image moments

features are arbitrary for s3, s4, however, for (s1, s2) other reference values may lead

to the points leaving the field of view causing the controller to fail. For TM , a small

angle approximation can be used to describe the force in the virtual frame since

the controller regulates the vehicle at hover which gives T vM ≈ TM [θ, ϕ, 1]T . Using

(3.22) the image moment kinematics can be described by⎡⎢⎢⎣ṡ1ṡ2
ṡ3

⎤⎥⎥⎦ =
−1

p∗3

⎡⎢⎢⎣λ 0 0

0 λ 0

0 0 1

⎤⎥⎥⎦ ṽv +
⎡⎢⎢⎣ s2

−s1
0

⎤⎥⎥⎦ ψ̇ (3.23a)

ṡ4 = −ψ̇ (3.23b)
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where p∗3 is the reference depth, and

ṽv = RT
ψ̃
(vn − v̄nt )

ψ̃ = ψ − ψt

with Rψ defined by (3.36). Using the description of the above image moments

kinematics in (3.23) and combining with the vehicle dynamics (2.2) a control law

can be derived as

ṡ1 = −k2vv1 + s2ψ̇ (3.24a)

ṡ2 = −k2vv2 − s1ψ̇ (3.24b)

ṡ3 = −k1vv3 (3.24c)

v̇v1 = vv2ψ̇ + uθ (3.24d)

v̇v2 = −vv1ψ̇ + uϕ (3.24e)

v̇v3 = uF (3.24f)

ṡ4 = −ψ̇ (3.24g)

ψ̇ = uψ (3.24h)

where k1 = 1/P ∗
3 , k2 = λk1, s is the image moments, v is the velocity, ψ is the yaw,

and u is the inputs described by [1]

uF = −TM
m

+ g (3.25a)

uϕ =
TMθ

m
(3.25b)

uθ = −TMϕ
m

(3.25c)

uψ =

∫ t

0

τ3
J3

dt (3.25d)

where TM is the total force from the motors, g is the force of gravity, (ϕ, θ) is the

roll and pitch respectively, τ is the torque, and J3 is the momentum. From [39] by
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choosing the inputs as

uF = −kh2
(
vv3
kh1

− s3 + 1

)
(3.26a)

uϕ = −kl2
(
vv2
kl1

− s2

)
(3.26b)

uθ = −kl2
(
vv1
kl1

− s1

)
(3.26c)

uψ =
kψs4
J3

(3.26d)

where k are positive gains the system can be shown to be stable. For the gain values

in (3.26), they are chosen such that P ∗
3 kl2 > k2l1 and P ∗

3 kh2 > k2h1 to ensure that

the system is asymptotically stable. The gain values used in this thesis is listed

in Table 3.15 which are tuned values from [1] due to the difference in platform

specifications.

As shown in [39], choosing the correct Lyapunov function candidate the transla-

tional subsystem can be shown to be globally asymtopically stable (GAS) and the

yaw subsystem is globally exponentially stable (GES). To start, consider the trans-

lational subsystem described by (3.24a) to (3.24f), and define the following errors

δ1 =
1

λ
s1 (3.27a)

δ2 =
1

λ
s2 (3.27b)

δ3 = s3 − 1 (3.27c)

δ4 =
vv1
kl1

− δ1 (3.27d)

δ5 =
vv2
kl1

− δ2 (3.27e)

δ6 =
vv3
kh1

− δ3 (3.27f)

where (kh1, kh2, kl1, kl2) are gains. Using these error functions, first consider the

height subsystem with chosen Lyapunov function candidate as

V1 =
1

2

(
δ26 + δ23

)
(3.28)

a positive definite function. Taking the derivative of (3.28) gives the following

V̇1 = −kh1k1(2δ23 + δ3δ6) +
δ6uF
kh1

+
k1
kh1

δ6(δ3 + δ6) (3.29)
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now let uF = kh2δ6

V̇1 = −kh1k1δ23 −
1

kh1
(kh2 − k2h1k1)δ

2
6 (3.30)

where choosing kh2 > k2h1k1 the function would be negative definite. Now consider

translational subsystem and second Lyapunov function candidate

V2 =
1

2

(
δ21 + δ22 + δ24 + δ25

)
(3.31)

taking the derivative yields

V̇2 =
(uθδ4 + uϕδ5)

kl1
+ kl2k1(−δ21 − δ22 + δ24 + δ25) (3.32)

rewriting (3.26b) and (3.26c) in terms of the new error signals yields uϕ = kl2δ5 and

uθ = kl2δ4 which are substituted into (3.32) yields

V̇2 = −kl1k1(δ21 + δ22)−
(kl2 − k1k

2
l1)(δ

2
4 + δ25)

kl1
(3.33)

a negative definite function if choosing kl2 > k2l1k1. The factor 1/λ for s1, s2 in

(3.26b) and (3.26c) is assumed to be part of the gain kl2 without loss of generality.

Finally, using the Lyapunov function candidate

V = V1 + V2

a positive definite function with

V̇ = V̇1 + V̇2

a negative definite derivative for gains chosen as kh2 > k2h1k1 and kl2 > k2l1k1, for all

defined signals then it can be concluded that the translational subsystem is GAS.

For the yaw subsystem, controller input (3.26d) is substituted into the dynamics

(3.24g) and (3.24h) gives

ṡ4 = −
kψ
J3
s4 (3.34)

which is negative definite for all values of s4, thus the yaw subsystem is GES with

the chosen controller. For the inner loop control a simple PID controller described
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by

τ1
b = kpψeϕ + kiψ

∫
eϕ deϕ + kdψ ėϕ (3.35a)

τ2
b = kpθeθ + kiθ

∫
eθ deθ + kdθėθ (3.35b)

τ3
b = kpψeψ + kiψ

∫
eψ deψ + kdψ ėψ (3.35c)

where τ is the torque, k is the gain, and eη is error in the angle. Gain values chosen

for the experiment are listed in Table 3.15, which are based on [1] and tuned for the

experimental platform.

3.2 Image Moment Validation

Recall from Section 3.1.2 that objects are identified by finding where the HSV of

pixels fall within a threshold range. In this section, centers of the object are com-

puted giving a pair (y1, y2) coordinate, where y1 is the horizontal position, and y2 is

the vertical position used to compute the image moments from (3.22a) to (3.22d).

For this section, the camera frame is assumed to coincide with the navigation frame.

Recall from Section 3.1 that the ideal values for controlling the image moment fea-

tures are [s1, s2, s3, s4]
T = [0, 0, 1, 0]T , for a given reference µ∗ = µ∗02 + µ∗20, which is

related to the distance between the target and camera.

3.2.1 Testing Equipment & Procedure

For the experiment run in Section 3.2.4 the following equipment is used.

• FLIR (formerly Point Grey) Chameleon 2 Camera. Serial number: 11510997

• FLIR (Point Grey) ACC-01-4002 lens with focal length of 8 mm

• Target board with known geometry, shown in Figure 3.3

• Ruler to measure distance

• Calibration board

The camera chosen for this section is the FLIR Chameleon 2 camera due to problems

encountered with the platform as mentioned in Section 2.2, however, all Robot

Operating System (ROS) packages used for the Chameleon 2 camera are the same

packages for a Chameleon 3 camera. For the target board, four green markers are

placed on a board in the four cardinal directions from the center. The approximate

dimensions of the markers are listed in Table 3.1 with an error of 0.1 cm for each

measurement taken with respect to the center. The center points of the two middle
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Marker

Center

Figure 3.3: Target board with 4 markers

markers are spaced 14.8 cm vertically apart, while the left and right squares are

spaced 21 cm horizontally. This spacing is chosen so the orientation for the group

of points is pointing from the center to the right marker.

Marker Name Width(cm) Height(cm) Center y1(cm) Center y2(cm)

Top Square 4.8 4.8 0 7.4

Bottom Square 4.8 4.8 0 -7.4

Left Square 4.8 4.8 -10.5 0

Right Square 4.8 4.8 10.5 0

Table 3.1: Dimensions of the target markers with errors of 0.1cm

To ensure that theoretical values computed match values computed in the ROS

package, the target center is aligned with the optical center of the camera first then

the target is moved to simulate any offset. For all tests in this section, the target

is set up and assumed to be parallel with the image plane. It is also assumed that

any rotations are parallel to the image plane, and therefore, can be described by

Rψ =

⎡⎢⎢⎣cosψ − sinψ 0

sinψ cosψ 0

0 0 1

⎤⎥⎥⎦ (3.36)

where Rψ is the rotation matrix in the c3 axis. Figure 3.4 illustrates the experiment

setup where the camera is fixed to the desk on the right, and the relocatable target

on the left.
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TargetTarget
CameraCamera

Figure 3.4: Image moment reference setup with relocatable target in front of the
fixed camera

3.2.2 Camera Calibration

Simulating the camera requires its intrinsic parameters which can be acquired through

calibrating the camera. A few different applications used for this calibration are

listed in Appendix A. For this thesis, the Camera Calibration Application from the

Computer Vision Toolbox on Matlab is used to get the intrinsic parameters for the

projection matrix using the steps listed in Appendix A.0.2. This toolbox is chosen

due to its ease of use, as well as being able to get the error when calculating the

intrinsic parameters of the camera. To use the application, a set of images of a

known checkerboard patterned calibration board is used as input to the application.

This application finds the corners of the pattern for each image, and uses the known

dimensions of each square in the pattern to compute the intrinsic parameters. Im-

ages used should have sharp lines along edges of the squares to reduce the error

when computing the corners. Values acquired for this thesis are listed in Table 3.2,

and the projection matrix can be found by substituting the values into (2.9). Note

that the focal length in both directions are within the computed error range of each

other, and therefore are assumed to be the same. Another way to compute the focal

length uses (2.10) which yields very similar values.
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Parameter Value (pixel) Error (pixel)

λy1 2194 4.67

λy2 2192 4.54

Cy1 658 2.26

Cy2 440 2.57

Table 3.2: Projection matrix values and errors

3.2.3 Modelling Values

Using the known dimensions of the target board, and projection matrix from Sec-

tion 3.2.1, a Matlab script was created to compute the expected values for s1 to s4

from (3.22). Table 3.3 lists the testing conditions for each experiment, where eight

of the experiments are designed to have the target at the extreme for a single image

moment features. For example, the ”Target Closer” and ”Target Farther” experi-

ment are used to test decreasing and increasing s3 respectively. Figure 3.5 shows a

snapshot for each of the nine experiments carried out, where the Figure 3.5a is the

reference setup used to set s = [0, 0, 1, 0]T .

Experiment Depth (m) Offset x (m) Offset y (m) Angle (◦)

Target Reference 1.6 0 0 0

Target Closer 0.8 0 0 0

Target Farther 2.4 0 0 0

Target Up 1.6 0 0.20 0

Target Down 1.6 0 -0.20 0

Target Right 1.6 0.25 0 0

Target Left 1.6 -0.25 0 0

Target Tilt Left 1.6 0 0 50.1

Target Tilt Right 1.6 0 0 -47.2

Table 3.3: List of Experiments Test Conditions

For experiments with offsets and rotations, the initial points are first rotated

then translated before they are projected onto the image plane when computing the

reference values. Recall from Section 2.1.2 that the pinhole model is used, therefore,

the measured points are projected onto the image plane using (2.8), and the values

for computed projected center points, (y1, y2), of the target board are described in

Table 3.4 with units of pixels.
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(a) Reference target setup (b) Target moved closer to
camera

(c) Target moved away from
camera

(d) Target moved up on image
plane

(e) Target moved down on im-
age plane

(f) Target moved left on im-
age plane

(g) Target moved right on im-
age plane

(h) Target tilted left on image
plane

(i) Target tilted right on im-
age plane

Figure 3.5: A snapshot for each of the nine experimental setups used to test the
computation of the image moment features
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Experiment
Top

Marker
Bottom
Marker

Left
Marker

Right
Marker

Target Reference (0,101) (0,-101) (-143,0) (143,0)

Target Closer (0,203) (0,-203) (-287,0) (287,0)

Target Farther (0,67.6) (0,-67.6) (-95.7,0) (95.7,0)

Target Up (0,375) (0,173) (-143,274) (143,274)

Target Down (0,-173) (0,-375) (-143,-274) (143,-274)

Target Right (343,101) (343,-101) (199,0) (486,0)

Target Left (-343,101) (-343,-101) (-486,0) (-199,0)

Target Tilt Left (-77.8,65.0) (77.8,-65.0) (-92.0,-110) (92.0,110)

Target Tilt Right (74.4,68.9) (-74.4,-68.9) (-97.5,105) (97.5,-105)

Table 3.4: Reference Values for Projected Points (y1, y2)

Table 3.4 values are centered around the principal point known as the center of the

image. Using (3.8) the required centered image moment are described as follows

µ11 =

K∑
j=1

(y1j − y1g)(y2j − y2g) (3.37a)

µ20 =
K∑
j=1

(y1j − y1g)
2 (3.37b)

µ02 =

K∑
j=1

(y2j − y2g)
2 (3.37c)

where (y1j , y2j) is the center of the jth point, and (y1g, y2g) is the average value of

(y1, y2). The computed centered image moments are listed for each experiment in

Table 3.5.

Experiment µ11 µ20 µ02

Target Reference 0 41170 20559

Target Closer 0 164681 82237

Target Farther 0 18298 9137

Target Up 0 41170 20559

Target Down 0 41170 20559

Target Right 0 41170 20559

Target Left 0 41170 20559

Target Tilt Left 10123 29055 32658

Target Tilt Right -10255 30088 31627

Table 3.5: Reference Values for µ11,µ20, and µ02

For all experiments in this section, the reference µ∗ = µ20 + µ02 is taken from
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the ”Target Reference” experiment listed in Table 3.5. Using the centered image

moments the image feature moments described by (3.22) are computed for each

experiment condition and are listed in Table 3.6.

Experiment s1 s2 s3 s4

Target Reference 0 0 1 0

Target Closer 0 0 0.5 0

Target Farther 0 0 1.5 0

Target Up 0 274 1 0

Target Down 0 -274 1 0

Target Right 343 0 1 0

Target Left -343 0 1 0

Target Tilt Left 0 0 1 -50.1

Target Tilt Right 0 0 1 47.2

Table 3.6: Reference Values for s1-s4

As illustrated in Table 3.6, each set of two experiments after the ”Target Reference”

experiment test a single image moment feature in the following order: s3 → s2 →
s1 → s4. The results from the experiment shows that using the image moment

features selected the passivity-like property is successfully restored resulting in only

a single image moment feature changing.

3.2.4 ROS Experimental Results

Following the experiment procedure steps listed in Appendix B.1, the ROS package

is used to compute the image moment features s1 to s4 with the target board

in the different positions listed in Table 3.3. Algorithm 1 is implemented on the

ROS package running on a desktop PC which handles all the computer vision (CV)

processes and image moments calculations.
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Algorithm 1 Image Moment Calculation

1: convert RGB image to HSV
2: get threshold value for desired color
3: if maxThreshold > pixel > minThreshold then
4: return 255
5: else
6: return 0
7: end if
8: Apply Morphology to image
9: for object > minSize do

10: find center of object
11: Shift pixel values to middle of the image
12: Apply normalization to the image points
13: Apply virtual camera transform to the points
14: end for
15: Sort detected objects from largest to smallest area
16: Compute the image moments with centers for N largest objects
17: Send image moments to outer loop controller

Experiment
Top

Marker
Bottom
Marker

Left
Marker

Right
Marker

Target Reference (0.337,100) (1.14,-101) (-141,0.698) (141,-0.234)

Target Closer (-1.52,196) (3.29,-202) (-281,-1.18) (278,-0.647)

Target Farther (0.007,67.3) (0.649,-67.0) (-94.1,0.741) (93.9,-0.741)

Target Up (-0.980,370) (-0.976,171) (-142,272) (139,269)

Target Down (0.629,-173) (0.908,-382) (-144,-276) (144,-279)

Target Right (342,102) (347,-102) (202,-0.4) (487,0.986)

Target Left (-341,100) (-343,-102) (-485,-0.209) (-201,-1.86)

Target Tilt Left (-76.2,68.0) (78.8,-64.4) (-92.5,-106) (93.7,107)

Target Tilt Right (71.4,69.3) (-76.4,-70.1) (-99.1,104) (93.7,-104)

Table 3.7: Experiment Values for Projected Points y1, y2

For each setup, the average value over 500 computed image frames are used when

comparing to the same values listed in Section 3.2.3. The average center locations

for each marker are listed in Table 3.7. Once the centers are found, the points are

sorted from largest to smallest based on the area associated to each center point

found. The largest four areas are then used to compute the centered image moment

values listed in Table 3.8.
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Experiment µ11 µ20 µ02

Target Reference -212 39766 20231

Target Closer -813 156313 79198

Target Farther -181 17677 9028

Target Up -470 39520 19848

Target Down -519 41598 21686

Target Right -282 40784 20780

Target Left -47.1 40219 20522

Target Tilt Left 9624 29339 31577

Target Tilt Right -9676 29518 31204

Table 3.8: Experimental Values for µ11,µ20, and µ02

With the centered image moments computed, the values are used with (3.22) to

compute the image moment features where the average value is listed in Table 3.9.

Experiment s1 s2 s3 s4

Target Reference 0.340 0.0803 1.01 0.624

Target Closer -0.080 -1.01 0.512 0.606

Target Farther 0.192 0.101 1.52 1.20

Target Up -1.50 276 1.02 1.37

Target Down 0.489 -274 0.988 1.50

Target Right 345 0.177 1.00 0.810

Target Left -346 -1.02 1.01 0.138

Target Tilt Left 0.967 1.19 1.01 -48.4

Target Tilt Right -2.60 -0.170 1.01 47.6

Table 3.9: Experimental Values for s1-s4

where s is the image moment feature computed for the 4 markers. All results in

Table 3.9 used the reference value from Table 3.5 of the reference setup µ∗ = 61731.

3.2.5 Error Analysis

The average error for each value over the nine tests are listed in Tables 3.10 to 3.12.

Using the pinhole projection model for a camera and the projection matrix (2.8),

the errors in the points can be found after some derivation to be described by (3.38).
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(3.38b)

where (λy1, λy2) is the focal length in pixel, (P1, P2, P3) is the real world coordinates

relative to the camera position in metres, and (Cy1, Cy2) is the principal in pixels.

The results of using (3.38) for the target board are described in Table 3.10 for

the nine experiments. An example for each step to compute the errors in y1 is in

Appendix B.2.

Experiment
Top

Marker
Bottom
Marker

Left
Marker

Right
Marker

Target Reference (2.64,3.18) (2.64,3.18) (3.21,2.91) (3.21,2.91)

Target Closer (3.55,6.32) (3.55,6.32) (8.03,3.76) (8.03,3.76)

Target Farther (2.44,2.79) (2.44,2.79) (2.57,2.73) (2.57,2.73)

Target Up (2.64,5.58) (2.64,3.64) (3.21,4.53) (3.2,4.53)

Target Down (2.64,3.64) (2.64,5.58) (3.21,4.53) (3.21,4.53)

Target Right (5.09,3.18) (5.09,3.18) (3.66,2.91) (6.71,2.91)

Target Left (5.09,3.18) (5.09,3.18) (6.71,2.91) (3.66,2.91)

Target Tilt Left (2.64,3.18) (2.64,3.18) (3.21,2.91) (3.21,2.91)

Target Tilt Right (2.64,3.18) (2.64,3.18) (3.21,2.91) (3.21,2.91)

Table 3.10: Error in Values of Computed u and v

These errors amount to approximately 1% error for the size of the image. To com-

pute the error in µ, it is necessary to first find the error in the average value of

(y1, y2) described by

∆y1g =

√ K∑
j=1

[
∆y1j
K

]2
(3.39a)

∆y2g =

√ K∑
j=1

[
∆y2j
K

]2
(3.39b)

where K is the number of points detected in the image, (y1g, yavg) is the average

value of (y1, y2) of all points in the image. For a more general error calculation, it

will be assumed that the points are independent of each other but have the same

error in the average value, since any object in the image is converted to a single

point. Using the error values found from previous equations, the error for each of
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the centered image moments values can be computed using (3.40) to (3.42).

∆µ11 =

(
K∑
j=1

[
(dvj)∆uj

]2
+
[
−(dvj)∆y1g

]2
+
[
(duj)∆vj

]2
+
[
−(duj)∆y2g

]2)1/2

(3.40)

∆µ20 =

√ K∑
j=1

[
2(duj)∆uj

]2
+
[
−2(duj)∆y1g

]2
(3.41)

∆µ02 =

√ K∑
j=1

[
2(dvj)∆vj

]2
+
[
−2(dvj)∆y2g

]2
(3.42)

where dy1j = y1j − y1g and dy2j = y2j − y2g for each point. The computed values

are listed in Table 3.11.

Experiment ∆µ11 ∆µ20 ∆µ02

Target Reference 702 1302 912

Target Closer 1834 6517 3627

Target Farther 436 696 533

Target Up 995 1303 1351

Target Down 995 1303 1351

Target Right 939 2193 913

Target Left 939 2193 913

Target Tilt Left 758 1018 1079

Target Tilt Right 754 1046 1066

Table 3.11: Error Values for µ11,µ20, and µ02

Finally, combining all the results together, error in the computed image moment

features are described by (3.43) to (3.46).

∆s1 =

√(
y1g∆s3

)2
+
(
s3∆y1g

)2
(3.43)

∆s2 =

√(
y2g∆s3

)2
+
(
s3∆y2g

)2
(3.44)

∆s3 =

√
µ∗

2 3
√
µ20 − µ02

√
∆µ202 +∆µ202 (3.45)

∆s4 =
1

(
λy2
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λy2

µ02)2 + 4µ211

√dW +

⎡⎣(λy2
λy1

µ20 −
λy1
λy2

µ02

)
∆µ11

⎤⎦2

(3.46)
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where dW is given by

dW =
µ211
λ2y1

⎡⎣(µ20∆λy2)2 + (λy2∆µ20)2 +(−µ20∆λy1
λy1

)2
⎤⎦+

µ211
λ2y2

⎡⎣(µ02∆λy1)2 + (λy1∆µ02)2 +(µ02∆λy2
λy2

)2
⎤⎦

and µ∗ is from the reference setup. The expected error values are computed and

summarized in Table 3.12

Experiment ∆s1 ∆s2 ∆s3 ∆s4

Target Reference 2.93 3.05 0.013 1.95

Target Closer 2.90 2.52 0.008 1.27

Target Farther 3.76 4.14 0.024 2.72

Target Up 2.93 6.18 0.015 2.76

Target Down 2.93 6.18 0.015 2.76

Target Right 8.36 3.05 0.019 2.61

Target Left 8.36 3.05 0.019 2.61

Target Tilt Left 2.93 3.05 0.012 2.07

Target Tilt Right 2.93 3.05 0.012 2.08

Table 3.12: Error Values for s1-s4

where (∆s1,∆s2) are in units of pixels, ∆s3 is unitless, and ∆s4 is in degrees. Again

the values listed in Table 3.12 are the average values for each image set.

3.2.6 Comparison of Results

The difference between the expected values listed in Section 3.2.3 and the average

experimental value listed in Section 3.2.4 for the projected points are summarized

in Table 3.13 where all values are in units of pixels. Comparing these values to the

values computed in Section 3.2.5 it can be seen that the majority of the y1 values

are computed within this error range with only two experiments where one of the

marker’s y1 is outside the range. Analyzing y2 values a similar result can be seen

where only one of the markers y2 value failed to fall within the expected range for

four experiments. These results are acceptable since the error in the y1 or y2 values

never exceed more than half of the marker’s location for more than half the total

number of experiments, and are only marginally more than the computed expected

error. Therefore, it was assumed that the resulting larger error could be the result

of unaccounted camera distortion or misalignment of the target.

Table 3.14 list the average value of the computed difference between Section 3.2.3
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Experiment
Top

Marker
Bottom
Marker

Left
Marker

Right
Marker

Target Reference (0.337,-0.889) (1.14,0.739) (2.33,0.699) (-2.61,-0.232)

Target Closer (-1.52,6.82) (3.29,0.758) (6.19,-1.18) (8.58,-0.647)

Target Farther (-0.007,-0.266) (0.649,0.555) (1.57,0.717) (-1.71,-0.741)

Target Up (-0.980,-5.23) (-0.976,-1.77) (0.926,-1.56) (4.86,4.90)

Target Down (0.629,-0.754) (0.908,6.31) (-0.535,-1.62) (0.977,5.02)

Target Right (-0.131,0.623) (4.58,-0.502) (2.30,-0.400) (1.38,0.986)

Target Left (1.19,-1.06) (-0.655,-0.919) (0.524,-0.209) (-2.35,-1.86)

Target Tilt Left (1.65,2.90) (1.01,0.628) (-0.436,3.80) (1.63,-2.57)

Target Tilt Right (2.99,0.403) (-1.96,-1.25) (-1.61,-1.48) (3.77,1.65)

Table 3.13: Difference Between Expected and Experimental Values for (y1, y2)

compared to Section 3.2.4 for the computed centered image moments and image

moment features. Comparing the µ values it can be seen that all the µ11 values are

within the range of its expected value with error. Looking at µ20 it is within the

error except for three experiments, while µ02 is within the expected range for all but

a single experiment. Again these results are acceptable due to there being less than

half of the experiments outside the expected range. Analyzing the image moment

feature values it can be seen that s1, s2, s4 are all within range of the expected value

with error, while s3 only fails three experiments.

Experiment µ11 µ20 µ02 ∆s1 ∆s2 ∆s3 ∆s4

Target Reference -212 1406 -328 0.3043 0.080 0.014 0.624

Target Closer -813 8350 -3041 -0.080 -1.01 0.012 0.606

Target Farther -181 -621 -110 0.192 0.100 0.020 1.20

Target Up -470 1642 -690 -1.5 1.9 0.020 1.37

Target Down -519 436 1148 0.489 0.066 -0.013 1.50

Target Right -282 -251 230 209 0.177 0.0002 0.810

Target Left -47.1 -816 -27.8 -2.70 -1.02 0.007 0.138

Target Tilt Left -499 283 -1082 0.968 0.968 0.006 1.70

Target Tilt Right 580 -571 -423 -2.60 -0.170 0.008 0.372

Table 3.14: Difference Between Expected and Experimental Values for µ and s1-s4

From these nine experiments, the results indicate that the ROS package com-

putes image moment features with satisfactory accuracy for use in the flight test

experiment. These experiments also verified that the image moment features from

Section 3.1.2 are decoupled values that describe a single physical property of the

image features.
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3.3 Simulation

For the simulation, a simulink model running in Matlab is used to simulate the

UAV dynamics described in Section 2.1 with special simulink blocks that act as the

controller described in Section 3.1. The simulink model includes a block for the

vehicle dynamics, the camera, image moments computation, outer loop controller

and inner loop controller. The parameters for the UAV used in the model are

described in Table 2.1, while the gain values used for the controller are listed in

Table 3.15. The inner loop equations are described by (3.35), and the outer loop by

(3.26).

The target markers used in the simulation has the first marker located at X1 =

[0,−0.114, 0]Tm, and the second marker at X2 = [0, 0.114, 0]Tm. These points are

chosen to simulate the target board used in Section 3.4 as shown in Figure 3.8. The

desired pose of the vehicle is set to X∗ = [0, 0,−1.5]Tm with ψ∗ = 0. The vehicle

is given an initial condition of X0 = [0.25, 0.25,−1]Tm with a starting yaw of 45◦,

which simulates switching from a position controller at a non-ideal pose. Results

from the simulation are plotted in Figure 3.6, which shows a stable response for the

given initial conditions.

The error in position is described by ep = Pn∗ − Pn giving the relative distance

from the reference, which can be seen in Figure 3.6b to be always converging, and

close to zero at the point t = 20 s. For the error in image moment features, the

error values are computed as es = s∗ − s where s∗ = [0, 0, 1, 0]T and plotted in

Figure 3.6a. The plot shows that the values exhibit similar behaviour as the position,

and is converging to zero around t = 20 s. From Figure 3.6d, it can be seen that

the vehicle corrects for the initial yaw to zero well before t = 20s when the other

parameters reach their desired values. Therefore, from Figure 3.6 the controller

chosen is stable as shown in Section 3.1. Comparing the results with values from [1]

it can be seen that the new controller is slower at reaching the desired result taking

twice the amount of time. Also, comparing the image feature trajectory plots, the

new controller is overshooting the desired pose before correcting itself compared to

[1] which directly goes to the desired position. These differences are likely due to

the chosen gain values not being tuned perfectly for the platform, however, since

the results were still stable, these gain values give an acceptable result for use in the

real world experiment.

3.4 Experiment

For the experiment, multiple steps were taken to verify the results during imple-

mentation of the controller. The target is chosen as two semi-circular green markers
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Figure 3.6: Simulated results using the proposed controller in [1] to control pose of
UAV.
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placed in the center of the Motion Capture System (MCS) space. The target marker

shape is chosen to avoid having specular highlights, or bright spots, in the image

which may cause the centers to be computed incorrectly. The semi-circular shape

will be less likely to reflect the overhead lights directly back into the camera. For

the experiment, values (s1, s2, s3) used are normalized values to minimize impacts

of noise on the image moment features used. Also, the thrust is normalized such

that approximately half the total thrust will counteract the force of gravity. The

experiment only replaces the outer loop control of a known working inner-outer loop

position controller from [39], therefore, only outputs of the two outer loop controllers

are compared. Reusing the inner loop controller is beneficial as both controllers use

the same structure for the inner loop which reduces the need to remake and test

the inner loop. It also eliminated the inner loop variable when tuning the gains,

as the inner loop is already tuned for the vehicle. The first step taken to verify

the controller is a hand held experiment, where the UAV will be held up in the

air above the target, and the computed control outputs are checked to ensure that

the control signals values are close to a known working controller. The hand held

experiment runs the same setup as the final experiment, but with the motors un-

plugged to prevent accidental start up of the motors. This step is taken to ensure

that the control signals are in a safe operating range to prevent damaging the ve-

hicle and environment since large control signals may cause the vehicle to crash.

The hand held experiments were done by having the Vicon MCS track the UAV,

and providing the necessary pose information to the controllers used on the UAV.

During the experiment, the working position controller is also turned on to record

the output for comparison with the image-based visual servoing (IBVS) controller

outputs. The UAV is moved in five second intervals to a new pose such that each

pose would only affect one of the outputs, e.g. moving the UAV up to check if thrust

increases, until all four outputs have been checked. If the output for both controllers

are within a small range of each other, and with the same shape then it was con-

cluded that the IBVS controller is giving a satisfactory output and the experiment

may proceed to the next step. If the results were not showing good outputs, the

controller gains are tuned and the experiment done again. The next step of the

experiment entailed flying the UAV autonomously using the MCS with the known

working position controller to test the IBVS controller under flight conditions. The

outputs of the IBVS controller are compared to the position controller output to

verify whether the outputs from the hand held test results carry over to the vehicle

under real flight conditions since the states change rapidly.

Once the output shows promising results, more flights are done while replacing

one of the four outputs from the position controller with a output from the IBVS

controller. If the UAV shows signs of instability from hover, the flights are stopped
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Gain Value

kh1 0.9

kh2 0.28

kl1 0.89

kl2 0.28

kψ 0.6

[kpϕ, kiϕ, kdϕ] [10,1,3]

[kpθ, kiθ, kdθ] [10,1,3]

[kpψ, kiψ, kdψ] [6,1,3]

Table 3.15: Gains Used in IBVS Controller

then the logs from the PX4 are collected and analyzed to make appropriate changes

to the controller gains. This test is done to ensure that each part of the IBVS

controller is working while keeping the vehicle safe by limiting only one part of

the control signals to the untested controller during flight, thus decreasing the risk

of crashing the vehicle due to incorrect control signals. Also, if the vehicle was

found to oscillate the flight was aborted to ensure the vehicle did not put itself into

an unstable pose. The final values after tuning are listed in table 3.15 with the

assumption that factors, such as m/TM , is absorbed into the gains k due to being

unable to directly measure the force TM . Also, a constant is added to the thrust

to account for gravity. After confirming that each part of the controller is working

within the expected range the UAV is run for a longer duration, e.g. 60 s, to confirm

whether the controller is stable or only marginally stable for the final experiment.

The Vicon MCS is considered the ground truth and used to compute all the error

values. To perform the experiment, the UAV is manually flown near the expected

set point of X = [0, 0,−1]T , at which point the MCS position controller is used to

move and stabilize the vehicle to the set point. The position controller is used to

ensure that the target will be in the field of view of the camera before switching

to the IBVS controller. The position controller is only run for a limited amount of

time to avoid draining the battery significantly. Once stabilized near the set point,

the IBVS controller is engaged to control the vehicle. It should also be noted that

the average position of the quadrotor may be offset a little from the direct center

(0, 0) of the MCS reference due to the target not being perfectly aligned with the

rooms center. This offset is accounted for when setting up the reference value used

to compute the image moment feature. After the trial time elapses, the vehicle is

placed back into the position controller to again stabilize the vehicle before being

landed manually.
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Figure 3.7: Experimental results using the DIBVS controller for pose control of
UAV.
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Figure 3.8: Snapshot of processed image during flight outlining green target markers

Error Name Mean Value Standard Deviation

es1 -0.077 0.021

es2 -0.030 0.027

es3 0.178 0.032

es4(rad) 0.001 0.021

eP1(m) 0.078 0.011

eP2(m) 0.058 0.020

eP3(m) -0.17 0.029

eψ(
◦) 1.62 1.61

Table 3.16: Average Errors in Values

After running the final experiment, it was found that the image moments were

being computed at an average rate of 34.6 frames per second. The results are plotted

in Figure 3.7 where the IBVS controller is running between the time t = 28.5 s to

t = 102 s for a total flight time of t = 72.5 s. During the transitions between

controllers there is a chance that the vehicle may move away from the expected

pose due to the non-smooth transition between different controller set points. This

behaviour is seen in Figure 3.7b at t = 103 s when the UAV moved to the right as the

position controller switched in. The errors for each output are computed and listed

in Table 3.16. The position error is taken as eP = P ∗−P where the reference value

the measured center of the target given by the Vicon MCS which is acquired prior
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to the flight tests. Errors in the image moment features are taken to be es = s∗ − s

with the reference s∗ = [0, 0, 1, 0]T , and the reference µ∗ used is measured from the

computed values of the ROS package with the UAV held at the desired pose. The

error in yaw is computed as eψ = ψ∗ − ψ where the reference yaw is orientation of

the target measured using the MCS. A snapshot from the camera during the flight

is shown in Figure 3.8.

From the results in Figure 3.7, it can be seen that with the IBVS controller

running, the position and the image moments all reach a bounded value near the

desired pose. It should be noted that the error in s3 is expected due to the voltage of

the battery dropping from idling as the subsystems boot and lack of integrator term

in the controller resulting in decreasing thrust over time. However, as the reference

signal is very stable and slowly increasing as the voltage is dropping, the thrust

controller is showing the correct response by increasing the signal. Unfortunately,

this increase in control signal is not enough to correct the position error. The results

from [1] are given as follows: [es1, es2, es3, es4]
T = [0.1185, 0.2162, 0.0395, 0.0612]T ,

[eP1, eP2, eP3]
T = [3.78,−0.16,−5.42]T cm, and eψ = 2.86◦. Comparing the values

to [1], the results from this experiment shows that the controller is in-line with

the previous experiment which uses this controller. The experiment shows slight

improvement to the image moment feature tracking and yaw values during the use

of the IBVS, while the position error is slightly greater than the results from [1].
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Chapter 4

Conclusion

4.1 Summary of Results

The goal of this thesis is to implement the controller from [1] using a different plat-

form to improve performance of the algorithm. Testing was carried out using the

Robot Operating System (ROS) framework to investigate its uses for creating a flex-

ible framework for future computer vision (CV) systems. The experimental results

confirmed the use of ROS to handle the image taken from a camera, and processing

of the image frames to compute image moment features proposed in [32, 33]. The

resulting image moment features are successfully used for motion control of the un-

manned aerial vehicle (UAV). This result achieves the goal of implementing a flexible

CV system in two aspects, the first is an implementation without strict hardware

restrictions. Without the hardware restriction, the platform can be upgraded as

required so long as ROS can be used and still run with minimal software changes.

The second aspect is the ability to implement different CV algorithms with minimal

changes to the platform reducing the amount of work required to implement and test

different setups. Using the code validated from Section 3.2.4 experimental test were

carried out on the platform where the results are analyzed in Section 3.4. From the

results in Table 3.16, it can be concluded that the controller is working as tested in

simulation, giving a stable flight while hovering above the target. Moreover, when

comparing the experimental results to [1] similar error results are achieved with some

improvements on the image moment features and yaw. These results indicate the

thesis had succeeded in re-implementation of the controller on a different platform,

and improved the algorithm performance.
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4.2 Future Work

There are still lots of improvement work to be done on this project, one of which is

implementation on the Graphics Processing Unit (GPU) for the processing of images.

During implementation of the CV system on the Nvidia Jetson TX1 (TX1), the

frame rate was initially found to be insufficient resulting in an unstable system during

flight. To rectify the issue, the morphology operations were lowered to alleviate the

computation times for each image resulting in a less robust result. The cause of the

slow processing time was found to be the image processing algorithms, specifically

the smoothing functions, taking too long to process images resulting in lower frame

rates. Due to time constraints, the algorithm was implemented on the Central

Processing Unit (CPU) which resulted in a frame rate of 34.6fps which is lower than

some benchmarks1 indicating frame rates of up 100fps. Therefore, using the GPU

might be able to increase the rate of image moment feature updates to the outer loop

controller leading to a faster response, and better error correction. Another area of

work is the use of other CV based algorithms, such as the 8 point algorithm in [12],

to replace the Vicon Motion Capture System (MCS) which could greatly improve the

flexibility of the system. Currently, due to the requirement of the MCS providing

velocity values to the vehicle it is restricted to be flown indoors within the set

airspace of the MCS to use the controller without adding a new sensor. By replacing

the MCS, future UAVs could be flown in more diverse environments without having

to rely on the MCS providing a reference velocity for the controller. Moreover,

the algorithm may solve some drifting problems that certain controllers experience.

Also, this research can be extended to include the adaptive dynamic image-based

visual servoing (DIBVS) controller proposed in [39]. Due to time constraints, the

controller was only tested for the DIBVS controller, however, similar results found in

the testing of the two DIBVS controller indicate that the adaptive DIBVS controller

should be possible.

1Example benchmark result https://devblogs.nvidia.com/parallelforall/jetson-tx2-delivers-
twice-intelligence-edge/
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Appendix A

Camera Calibration

For this thesis two methods were tested to acquire the camera intrinsic parameters

which are listed in Appendices A.0.1 to A.0.2. The matrix used for the thesis was

the matrix result that gave the smaller error, which was found to be the Matlab

variation.

A.0.1 ROS Alternative

The camera parameters were acquired by using the camera calibration1 ROS pack-

age, and compiled in a local ROS environment. To acquire the calibration matrix

the following steps were taken:

1. Clone the project into a catkin workspace, and build the project using the

catkin make command

2. Create or use the checkerboard calibration pattern that is provided with the

camera calibration2 ROS package.

3. Run your ROS package for the camera, and confirm the camera is publishing

images from the camera to a ROS topic. For this document a Pointgrey, a.k.a.

FLIR, chameleon 2 camera is used.

4. Run the calibration tool using the following command, replacing the options,

such as size and square, to match your set up.

rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.025 image:=/camera/image_raw camera:=/camera

5. Once the calibration window is open move the calibration board from left to

right, and top to bottom of the camera image. During the movement also tilt

the board to add skew to the data points. Keep moving the board until the

calibration button lights up to indicate enough points are collected.

1http://wiki.ros.org/camera calibration
2http://wiki.ros.org/camera calibration/Tutorials/MonocularCalibration
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6. Click the calibration button, and wait for a while. Once done the parameters

will appear on the terminal or use the save button to save parameters.

The projection matrix was found for an image with the size of 1280x960. There-

fore, the image center as indicated in the projection matrix (660,449) for (y1, y2)

respectively, which is close to half of the resolution or the assumed center of the

image. To ensure that the values computed in theory match the values being com-

puted in experiment the image centers are subtracted such that any value computed

would be centered around the center point.

A.0.2 Matlab Alternative

Another method for getting the projection matrix would be to use a Matlab cam-

era calibration toolbox.3 Using the Matlab calibration toolbox is recommended

since the error in the projection matrix is given for all values being computed. To

use the toolbox the same tools as the ROS package is used, but a set of images has to

be acquired beforehand with a known naming scheme, ie. image 1.jpg,image 2.jpg...

for all images. Once these conditions are satisfied the following steps can be use to

find the projection matrix.

1. Start the toolbox by adding it to path and running the command cablib gui

and selecting either mode

2. Choose the extract corners options and identify the corners of the calibration

board. Note that the size of the squares has to be entered in millimetres.

3. After all images have their corners extracted the calibration button can be

used to compute the projection matrix

optional Using the computed estimates the corners can be extracted again and the

calibration sequence run again. Note that the results may be better or worse

than the initial values

optional Blurry images can also be removed to give a better result

For the writing of this document the calibration board used is an 8x6 checker-

board pattern that has squares of the size 2.5cm.

3http://www.vision.caltech.edu/bouguetj/calib doc/
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Appendix B

Image Moment Validation

B.1 Experiment Procedure

The steps to perform the experiments is listed below, and the experimental condi-

tions for each of the 9 experiments are listed in Table 3.3.

1. Set camera and target on level surfaces

2. Measure distance from the front of the target to the middle of the camera. This

measurement is going to be the depth for the target points for calculating the

theoretical values.

3. Run the Matlab script supplying it with the specified depth measured from

the step before

4. Run the image moments calibration ROS node while supplying the µ∗ from

the previous step unless testing the value of s3.

5. Move the target, without changing its depth, such that the two marked centers

are aligned

6. For any offset move the target the specified distance. For any angles move

either the target or camera the specified angle

7. Once target and camera are in position, read the values of s1-s4

B.2 Computations

Below is the intermediate steps for the computation of the error for the bottom

marker, (u2, v2), and the left marker, (u3, v3), in the reference test condition. Please

note that the other two markers gives the same error as its opposing marker, due to

the symmetry of the markers on the target board.
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