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Abstract

In this thesis, we investigate Riesz bases of wavelets and their applications

to numerical solutions of elliptic equations.

Compared with the finite difference and finite element methods, the wavelet

method for solving elliptic equations is relatively young but powerful. In

the wavelet Galerkin method, the efficiency of the numerical schemes is

directly determined by the properties of the wavelet bases. Hence, the con-

struction of Riesz bases of wavelets is crucial. We propose different ways

to construct wavelet bases whose stability in Sobolev spaces is then estab-

lished. An advantage of our approaches is their far superior simplicity over

many other known constructions. As a result, the corresponding numeri-

cal schemes are easily implemented and efficient. We apply these wavelet

bases to solve some important elliptic equations in physics and show their

effectiveness numerically. Multilevel algorithm based on preconditioned

conjugate gradient algorithm is also developed to significantly improve the

numerical performance. Numerical results and comparison with other ex-

isting methods are presented to demonstrate the advantages of the wavelet

Galerkin method we propose.
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Chapter 1

Introduction

1.1 Preliminary

Wavelets have been proven to be a powerful tool in signal and image pro-

cessing such as image compression and denoising. In recent years, the

wavelet method for numerical solutions of partial differential equations

(PDEs) has been developed. For the numerical treatment of elliptic equa-

tions, the efficiency of the wavelet preconditioning techniques is directly

determined by the properties of the wavelet bases. Riesz bases of spline

wavelets are more suitable for numerical solutions of PDEs than the classi-

cal orthogonal or biorthogonal wavelets. Spline wavelets with short support

were investigated by Jia, Wang and Zhou in [26] and by Han and Shen in

[21]. Jia [23] constructed spline wavelets on the interval [0, 1] with ho-

mogeneous boundary conditions. For polygonal domains, Riesz bases of

C1 spline wavelets were constructed by Davydov and Stevenson [17] on

quadrangulation, and by Jia and Liu [25] on arbitrary triangulations. The

rigorous wavelet theory provides us a guide to design reliable algorithms

for solving elliptic equations. In this thesis, we focus on constructions of

1
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spline wavelet bases which provide efficient preconditioners for numerical

solutions of elliptic equations. The numerical schemes based on our wavelet

bases are simple, efficient and reliable. We implement our algorithms in C

and use gcc to compile them. Numerical results are provided to demon-

strate the efficiency and effectiveness of the wavelet Galerkin method we

propose.

We use N, Z, R and C to denote the set of positive integers, integers, real

numbers and complex numbers, respectively.

For s ∈ N, the s-dimensional Euclidean space is denoted by R
s. The inner

product in Rs is defined by

x · y := x1y1 + x2y2 + · · ·+ xsys,

for x = (x1, x2, . . . , xs), y = (y1, y2, . . . , ys) ∈ Rs. Let N0 := N ∪ {0}.
An element of Ns

0 is called a multi-index. The length of a multi-index

µ = (µ1, µ2, . . . , µs) ∈ Ns
0 is given by |µ| := µ1 + µ2 + · · · + µs. For

µ = (µ1, µ2, . . . , µs) ∈ Ns
0 and x = (x1, x2, . . . , xs) ∈ Rs, define xµ :=

xµ1
1 x

µ2
2 · · ·xµs

s . A polynomial is a finite sum of the form
∑

µ cµx
µ with cµ

being complex numbers. The degree of a polynomial q =
∑

µ cµx
µ is de-

fined to be deg q := max{|µ| : cµ 6= 0}. We use Πk to denote the linear

space of all polynomials of degree at most k.

Let Ω be a (Lebesgue) measurable subset of Rs. Suppose f is a complex-

valued (Lebesgue) measurable function on Ω. For 1 ≤ p <∞, let

‖f‖Lp(Ω) :=

(∫

Ω

|f(x)|pdx
)1/p

,

and let ‖f‖L∞(Ω) denote the essential supremum of |f | on Ω. We omit

the reference Ω if there is no ambiguity. For 1 ≤ p ≤ ∞, by Lp(Ω) we

denote the Banach space of all measurable functions f on Ω such that
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‖f‖Lp(Ω) <∞. For p = 2, L2(Ω) is a Hilbert space with the inner product

given by 〈f, g〉 :=
∫
Ω
f(x)g(x)dx, f, g ∈ L2(Ω).

For a vector y = (y1, y2, . . . , ys) ∈ Rs, let Dy denote the differential operator

given by

Dyf(x) := lim
t→0

f(x+ ty)− f(x)

t
, x ∈ R

s.

Let e1, e2, . . . , es be the unit coordinate vectors in Rs. For j = 1, 2, . . . , s,

we write Dj for Dej
. For a multi-index µ = (µ1, µ2, . . . , µs), we use Dµ to

denote the differential operator Dµ1
1 D

µ2
2 · · ·Dµs

s .

Suppose Ω is a (nonempty) open subset of R
s. Let C(Ω) be the linear space

of all continuous functions on Ω. By Cc(Ω) we denote the linear space of

all continuous functions on Ω with compact support contained in Ω. For an

integer r ≥ 0, we use Cr(Ω) to denote the linear space of those functions

f on Ω for which Dαf ∈ C(Ω) for all |α| ≤ r. Let C∞(Ω) :=
⋂∞
r=0C

r(Ω)

and C∞
c (Ω) := Cc(Ω) ∩ C∞(Ω).

For m ∈ N0, the Sobolev space Hm(Ω) is defined by

Hm(Ω) := {u ∈ L2(Ω) : Dαu ∈ L2(Ω) for all |α| ≤ m},

where Dαu exists in the distributional sense, i.e.,

〈Dαu, φ〉 = (−1)|α|〈u,Dαφ〉

for all φ ∈ C∞
c (Ω). Hm(Ω) is a Hilbert space with inner product given by

〈u, v〉Hm :=
∑

|α|≤m

〈Dαu,Dαv〉 for u, v ∈ Hm(Ω).

We define the norm and semi-norm in Hm(Ω) by

‖u‖Hm :=
√
〈u, u〉Hm for u ∈ Hm(Ω)
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and

|u|Hm :=

√∑

|α|=m

〈Dαu,Dαu〉 for u ∈ Hm(Ω),

respectively. Let Hm
0 (Ω) be the closure of C∞

c (Ω) with respect to the norm

‖ · ‖Hm in Hm(Ω). The norm and semi-norm in Hm
0 (Ω) are inherited from

Hm(Ω).

Now suppose that Ω is a bounded and connected open subset of Rs, and

its boundary ∂Ω is Lipschitz continuous (see [20] for details). By Poincaré-

Friedrichs inequality (see, e.g., [19]), the norm and semi-norm in Hm
0 (Ω)

are equivalent in the sense that

C1|u|Hm ≤ ‖u‖Hm ≤ C2|u|Hm

for u ∈ Hm
0 (Ω) and some positive constants C1 and C2 independent of u.

Consider the elliptic equation of order 2m, m ∈ N, with homogenous bound-

ary conditions given by

{
Lu = f in Ω,

u = 0,
∂u

∂n
= 0, . . . , (

∂

∂n
)m−1u = 0 on ∂Ω,

(1.1.1)

where

L =
∑

|α|,|β|≤m

(−1)|β|Dβ(aαβ(x)D
α),

and ( ∂
∂n

)m−1u denotes the (m− 1)th derivative of u in the direction normal

to the boundary ∂Ω. We assume that aαβ ∈ C(Ω), f ∈ L2(Ω) and there

exists a positive constant λ independent of x and ξ such that

∑

|α|=|β|=m

aαβ(x)ξ
α+β ≥ λ|ξ|2m, x ∈ Ω, ξ ∈ R

s.
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In fact, the last assumption defines the ellipticity of the deferential oper-

ator L. We will develop the wavelet Galerkin method for solving (1.1.1)

efficiently.

1.2 The Galerkin Method

Let us consider the variational formulation of equation (1.1.1):

find u ∈ Hm
0 (Ω) with a(u, v) = l(v) for all v ∈ Hm

0 (Ω), (1.2.1)

where

a(u, v) :=
∑

|α|,|β|≤m

∫

Ω

aαβ(x)(D
αu(x))(Dβv(x))dx

and

l(v) :=

∫

Ω

f(x)v(x)dx.

If there exists a unique solution to equation (1.2.1), this solution is called

the weak solution. Note that the classical solution satisfies (1.2.1), and the

weak solution satisfies (1.1.1) if it lies in C2m(Ω).

The bilinear form a(u, v) is continuous if

a(u, v) ≤ C1‖u‖Hm‖v‖Hm (1.2.2)

holds true for all u, v ∈ Hm
0 (Ω) and some positive constant C1 independent

of u and v.

a(u, v) is called coercive if for u ∈ Hm
0 (Ω) there exists a positive constant

C2 independent of u such that

a(u, u) ≥ C2‖u‖2Hm. (1.2.3)
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Suppose a(u, v) is continuous and coercive, by the Lax-Milgram theorem

(see, e.g., [5]), the unique solvability of equation (1.2.1) is guaranteed.

Now we assume all functions are real-valued and the bilinear form a(·, ·)
is symmetric. To apply the Galerkin method to solve equation (1.2.1) nu-

merically, we take a finite dimensional subspace Vn to approximate Hm
0 (Ω)

and seek un ∈ Vn such that

a(un, v) = l(v), ∀v ∈ Vn. (1.2.4)

The dimension of Vn increases as n increases. Suppose dimVn = dn where

dn is a positive integer and Φn = {φn,1, . . . , φn,dn
} is a basis of Vn. Then

for each positive integer i, 1 ≤ i ≤ dn, (1.2.4) holds true, i.e.,

a(un, φn,i) = l(φn,i), i = 1, 2, . . . , dn. (1.2.5)

Since un ∈ Vn, we seek yn,1, . . . , yn,dn
∈ R such that un :=

∑dn

i=1 yn,iφn,i

satisfies the linear system (1.2.5). Thus we can write (1.2.5) in the following

matrix form:

Anyn = ξn (1.2.6)

where An = (a(φn,i, φn,j))1≤i,j≤dn
, yn = (yn,i)

T
1≤i≤dn

and ξn = (l(φn,i))
T
1≤i≤dn

.

An is called the stiffness matrix. By solving (1.2.6), we obtain an approxi-

mate solution to (1.2.1).

The condition number κ(An) of An usually deteriorates as n increases.

Hence An becomes ill-conditioned when n is large. An ill-conditioned ma-

trix usually results in very slow convergence for classical iterative methods.

This motivates us to propose the wavelet Galerkin method.
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1.3 The Wavelet Galerkin Method

In brief, the wavelet Galerkin method proceeds by choosing a proper basis,

called a wavelet basis, of the approximate space Vn such that the condition

number of the stiffness matrix associated with this basis is relatively small

and uniformly bounded (independent of the level n). This leads us to study

Riesz bases in Hilbert spaces.

Let H be a Hilbert space. The inner product of two elements u and v

in H is denoted by 〈u, v〉. The norm of an element u in H is given by

‖u‖ :=
√
〈u, u〉. Let J be a countable index set. A sequence (vj)j∈J in the

Hilbert space H is said to be a Bessel sequence if there exists a positive

constant C such that the inequality

∥∥∥
∑

j∈J

cjvj

∥∥∥ ≤ C
(∑

j∈J

|cj|2
)1/2

holds for every sequence (cj)j∈J with only finitely many nonzero terms.

A sequence (vj)j∈J in H is said to be a Riesz sequence if there exist two

positive constants C1 and C2 such that the inequalities

C1

(∑

j∈J

|cj |2
)1/2

≤
∥∥∥
∑

j∈J

cjvj

∥∥∥ ≤ C2

(∑

j∈J

|cj|2
)1/2

hold for every sequence (cj)j∈J with only finitely many nonzero terms. We

call C1 a Riesz lower bound and C2 a Riesz upper bound. If (vj)j∈J is

a Riesz sequence in H and the linear span of (vj)j∈J is dense in H , then

(vj)j∈J is said to be a Riesz (or stable) basis of H . If (vj)j∈J is a Riesz basis

of H , then the condition number of the matrix (〈vj , vk〉)j,k∈J is no bigger

than C2
2/C

2
1 . See [42] for details.

Note thatHm
0 (Ω) is a Hilbert space with the inner product given by 〈u, v〉Hm

for u, v ∈ Hm
0 (Ω). In order to solve equation (1.2.1) using the wavelet
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Galerkin method, we first formulate a sequence of finite dimensional sub-

spaces (Vn)n≥n0 of Hm
0 (Ω) such that Vn ⊂ Vn+1 for all n ≥ n0 and

⋃∞
n=n0

Vn

is dense in Hm
0 (Ω) where n0 is a positive integer. In general, we choose

an appropriate basis Φn := {φin,j, j ∈ J in, 1 ≤ i ≤ r} for Vn. Here r is a

positive integer, whereas {φ1, . . . , φr} are real-valued functions, and

φin,j(x) := φi(2nx− j), j ∈ J in, 1 ≤ i ≤ r, x ∈ Ω

for some index set J in, 1 ≤ i ≤ r.

Then we construct a suitable subspace Wn of Vn+1, called a wavelet space,

such that Vn+1 is the direct sum of Vn and Wn for n ≥ n0. Similarly, Wn

is constructed by a number of functions {ψ1, . . . , ψt} where t is a positive

integer. Specifically, let

ψin,k(x) := ψi(2nx− k), k ∈ Ki
n, 1 ≤ i ≤ t, x ∈ Ω

for some index set Ki
n, 1 ≤ i ≤ t, and Γn := {ψin,k, k ∈ Ki

n, 1 ≤ i ≤ t} forms

a basis of Wn. ψ
1, . . . , ψt−1 and ψt are called wavelets.

By the construction, we have

Vn = Vn0 +Wn0 + · · ·+Wn−1.

Therefore Ψn := Φn0

⋃
(
⋃n−1
k=n0

Γk) forms a basis of Vn other than Φn. Let

Ψ := Φn0

⋃
(
⋃∞
k=n0

Γk). We normalize Ψn and Ψ with respect to the Hm

norm in the sense that the Hm norm of each basis function is a constant

independent of n. And we use Ψnorm
n and Ψnorm to denote the normalized

Ψn and Ψ, respectively. Under certain conditions, Ψnorm forms a Riesz

basis of Hm
0 (Ω).

An application of a general result in chapter 4 of [42] gives the follow-

ing proposition, which relates the Riesz basis of Hm
0 (Ω) and the condition
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number of the associated stiffness matrix.

Proposition 1.1. If Ψnorm is a Riesz basis of Hm
0 (Ω) and a(u, v) is both

continuous and coercive, then the condition number of the stiffness matrix

associated with Ψnorm
n , i.e., Bn := (a(χ, ψ))χ,ψ∈Ψnorm

n
, is uniformly bounded.

Proof. For n > n0, let λmax(Bn) and λmin(Bn) be the maximal and minimal

eigenvalues ofBn. Then the condition number κ(Bn) = λmax(Bn)/λmin(Bn).

For any eigenvalue λ(Bn) ofBn, there exists a column vector z = (aψ)ψ∈Ψnorm
n

such that λ(Bn) = zTBnz/z
T z. Ψ is a Riesz basis of Hm

0 (Ω), then there

exist two positive constants C1 and C2 such that

C1z
T z ≤

∥∥∥
∑

ψ∈Ψnorm
n

(aψψ)
∥∥∥

2

Hm
≤ C2z

T z.

The fact that a(u, v) is continuous and coercive implies

C3

∥∥∥
∑

ψ∈Ψnorm
n

(aψψ)
∥∥∥

2

Hm
≤ a
( ∑

ψ∈Ψnorm
n

(aψψ),
∑

ψ∈Ψnorm
n

(aψψ)
)

≤ C4

∥∥∥
∑

ψ∈Ψnorm
n

(aψψ)
∥∥∥

2

Hm

for some positive constants C3 and C4 independent of n. Therefore,

C1C3z
T z ≤ a

( ∑

ψ∈Ψnorm
n

(aψψ),
∑

ψ∈Ψnorm
n

(aψψ)
)
≤ C2C4z

T z.

Note that

zTBnz = a
( ∑

ψ∈Ψnorm
n

(aψψ),
∑

ψ∈Ψnorm
n

(aψψ)
)
.

We have

C1C3z
T z ≤ zTBnz ≤ C2C4z

T z.

Thus

C1C3 ≤ λ(Bn) = zTBnz/z
T z ≤ C2C4.
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Consequently κ(Bn) = λmax(Bn)/λmin(Bn) ≤ (C2C4)/(C1C3), i.e. κ(Bn) is

uniformly bounded.

In order to solve equation (1.2.1) efficiently, this proposition guides us to

construct a Riesz basis of Hm
0 (Ω) since the condition number of the stiffness

matrix associated with Riesz basis is uniformly bounded. Therefore, our

goal is to construct a Riesz basis of Hm
0 (Ω) such that the condition number

of the associated stiffness matrix is as small as possible.

1.4 Organization of this Thesis

Here is the outline of this thesis.

Chapter 1 gives an overview of the wavelet Galerkin method for numer-

ical solutions of elliptic equations. The elliptic equations with ho-

mogeneous boundary conditions and the Galarekin method are intro-

duced. In order to apply the wavelet Galerkin method to solve the

corresponding variational problems, we relate Riesz bases in Sobolev

spaces and the condition numbers of the associated stiffness matrices.

Thus we make clear that our goal is to construct proper Riesz bases

of wavelets in Sobolev spaces.

Chapter 2 discusses wavelets on the interval. We formulate approximate

subspaces (Vn)n≥1 of H2
0 (0, 1) based on Hermite cubic splines. By

orthogonality with respect to 〈u′′, v′′〉, wavelet spaces (Wn)n≥1 are

constructed. We analyze the properties of the finite element bases of

(Vn)n≥1 and establish the stability of the wavelet bases in H2
0 (0, 1).

These wavelet bases are applied to numerical solutions to the Euler-

Bernoulli equation.
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Chapter 3 studies the wavelet Galerkin method for the second-order ellip-

tic equations with variable coefficients in the two-dimensional space.

We first construct stable wavelet bases in H1
0 ((0, 1)2), and then ap-

ply the associated preconditioning technique in the finite difference

method, instead of the finite element method, for solving general

second-order elliptic equations with rough variable coefficients. The

numerical results and comparison with classical multigrid algorithms

are provided.

Chapter 4 investigates Riesz bases of wavelets in H2
0 ((0, 1)2) and their

applications to numerical solutions of the Biharmonic equation and

general elliptic equations of fourth order. Stable wavelet bases are

constructed in the one-dimensional case and then extended to the two-

dimensional case by tensor products. The characterization of Riesz

bases in Hilbert spaces is proposed. Automatic multilevel algorithm is

developed for solving the Biharmonic equation with error estimates in

the energy norm. We compare our method with many other popular

numerical methods from different point of view such as number of

iterations, relative residue reduction and computational cost.

Chapter 5 highlights our main contributions and indicates possible direc-

tions for future research.



Chapter 2

Wavelet Bases on the Interval

and Applications

2.1 Introduction

In this chapter, we investigate stable wavelet bases of Hermite cubic splines

on the interval. These wavelet bases are suitable for numerical solutions of

differential equations of the fourth order.

Orthogonal wavelets were constructed by Daubechies in [16], while biorthog-

onal wavelets were investigated by Dahmen and Micchelli in [15]. Chui and

Wang [12] initiated the study of semi-orthogonal wavelets. In order to deal

with problems with bounded domains, Daubechies wavelets were adapted

to the interval [0, 1] by Cohen, Daubechies and Vial [13]. Chui and Quak

adapted semi-orthogonal wavelets to the interval [0, 1] in [11], and the Riesz

basis property was established by Jia in [22]. Dahmen, Han, Jia and Kunoth

[14] constructed biorthogonal multiwavelets on the basis of Hermite cubic

splines and adapted them to the interval [0, 1].

12
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However, in order to solve differential equations, the orthogonality in the

energy norm is more desirable than that in the L2 norm. The orthogonality

with respect to 〈u′, v′〉 instead of 〈u, v〉 were considered in [10] and [24].

Christon and Roach [10] discussed wavelets on the basis of linear finite

elements. Jia and Liu [24] constructed wavelet bases using Hermite cubic

splines and applied them to numerical solutions to the Sturm-Liouville

equation with Dirichlet boundary conditions. In [9], Chen, Wu and Xu

proposed a general construction of wavelets according to the orthogonality

with respect to 〈u(m), v(m)〉, where m is a positive integer. Based on these

wavelet bases, the multilevel augmentation methods provided a very fast

solution for a class of differential equations whose highest order term has a

constant coefficient.

Here we consider the fourth-order differential equations of the type

{
(a(x)u′′)′′(x)− (b(x)u′)′ + c(x)u(x) = f(x) for x ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0,
(2.1.1)

where a(x) is a positive continuous function satisfying K1 ≤ a(x) ≤ K2

for all x ∈ [0, 1] and positive constants K1 and K2. b(x) ≥ 0, c(x) ≥ 0

and f ∈ L2(0, 1). Hence we use the orthogonality with respect to 〈u′′, v′′〉.
For simplicity, we apply the wavelet bases to numerical solutions to the

Euler-Bernoulli beam equation, i.e.,

{
(a(x)u′′)′′(x) = f(x) for x ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0.
(2.1.2)

To solve the Euler-Bernoulli beam equation by the Galerkin finite element

method, we must use at least a cubic polynomial expansion over the indi-

vidual elements, and require a C1 solution. Therefore, we choose Hermite
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cubic splines which have good interpolation property. Although the asso-

ciated wavelet bases are the same as those in [9], the constructions were

independent and the numerical schemes are different. The aim of this chap-

ter is to illustrate classical constructions of wavelets and relevant numerical

schemes by solving relatively simple examples and help further understand-

ing the wavelet Galerkin methods in more complicated cases afterwards.

2.2 Wavelets on the Interval

Recall that L2(0, 1) denotes the space of all square-integrable real-valued

functions on (0, 1). The inner product in L2(0, 1) is defined as

〈u, v〉 :=

∫ 1

0

u(x)v(x)dx, u, v ∈ L2(0, 1).

H2(0, 1) is the space of all functions u in L2(0, 1) for which (the distribu-

tional derivative) u′′ ∈ L2(0, 1). The norm in H2(0, 1) is defined as

‖u‖H2 :=

(∫ 1

0

[(
u(x)

)2
+
(
u′(x)

)2
+
(
u′′(x)

)2]
dx

)1/2

, u ∈ H2(0, 1),

and the semi-norm is given by

|u|H2 :=

(∫ 1

0

(
u′′(x)

)2
dx

)1/2

, u ∈ H2(0, 1).

H2
0 (0, 1) is the closure of C∞

c (0, 1) with respect to the norm ‖ · ‖H2 in

H2(0, 1). The norm and semi-norm in H2
0 (0, 1) are inherited from H2(0, 1)

and equivalent.
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For n ≥ 1, let Vn be the space of those cubic splines v ∈ C1[0, 1] for which

v(0) = v(1) = v′(0) = v′(1) = 0 and

v|(j/2n,(j+1)/2n) ∈ Π3|(j/2n,(j+1)/2n) for j = 0, . . . , 2n − 1.

The dimension of Vn is 2n+1 − 2.

Moreover,

• Vn’s are nested, i.e., V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · ;

•
∞⋃

n=1

Vn is dense in H2
0 (0, 1).

We first find a basis for Vn.

Consider the Hermite cubic splines given by

φ1(x) =





(x+ 1)2(1− 2x) for −1 ≤ x < 0,

(1− x)2(2x+ 1) for 0 ≤ x ≤ 1,

0 for R \ [−1, 1],

and

φ2(x) =





x(x+ 1)2 for −1 ≤ x < 0,

x(x− 1)2 for 0 ≤ x ≤ 1,

0 for R \ [−1, 1].
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Figure 2.1: Hermit Cubic Splines

φ1 and φ2 satisfy the following refinement equations:

φ1(x) =
1

2
φ1(2x+ 1) +

3

4
φ2(2x+ 1) + φ1(2x)

+
1

2
φ1(2x− 1)− 3

4
φ2(2x− 1)

φ2(x) = −1

8
φ1(2x+ 1)− 1

8
φ2(2x+ 1) +

1

2
φ2(2x)

+
1

8
φ1(2x− 1)− 1

8
φ2(2x− 1).

(2.2.1)

Note that φ1 is an even function, and φ2 is an odd function. Moreover, φ1

and φ2 have continuous first derivatives on R satisfying:

φ1(0) = 1, φ′
1(0) = 0, φ2(0) = 0, φ′

2(0) = 1,

φ1(j) = 0, φ′
1(j) = 0, φ2(j) = 0, φ′

2(j) = 0,
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for j ∈ Z \ {0}. Thus, for f ∈ C1(R),

u =
∑

j∈Z

f(j)φ1(· − j) +
∑

j∈Z

f ′(j)φ2(· − j)

is a Hermite interpolation of f on Z, i.e., u(j) = f(j) and u′(j) = f ′(j) for

all j ∈ Z.

For 0 ≤ x ≤ 1 and n ≥ 1, define

φn,j(x) :=

{
φ1(2

nx− (j + 1)/2) for j = 1, 3, 5, . . . , 2n+1 − 3,

φ2(2
nx− j/2) for j = 2, 4, 6, . . . , 2n+1 − 2.

Let Φn := {φn,j, j = 1, 2, . . . , 2n+1 − 2}. It is easy to check that Φn is a

basis of Vn.

Next we construct wavelet space Wn ⊂ Vn+1 such that

∫ 1

0

v′′(x)w′′(x)dx = 0, ∀v ∈ Vn and w ∈Wn. (2.2.2)

Then Vn+1 is the direct sum of Vn and Wn, and the dimension of Wn is

dim(Vn+1)− dim(Vn) = (2n+2 − 2)− (2n+1 − 2) = 2n+1.

Suppose ψ ∈Wn, then there exists a sequence (b(j))j=1,2,...,2n+2−2 such that

ψ =
∑2n+2−2

j=1 b(j)φn+1,j on [0, 1] since Wn ⊂ Vn+1 and Φn+1 is a basis of

Vn+1. By (2.2.2), we have

∫ 1

0

(

2n+2−2∑

j=1

b(j)φn+1,j)
′′(x)φ′′

n,k(x)dx = 0, for k = 1, 2, . . . , 2n+1 − 2.

This linear system can be written in the following matrix form:

Tb = 0, (2.2.3)
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where T = (〈φ′′
n,k, φ

′′
n+1,j〉)1≤k≤2n+1−2,1≤j≤2n+2−2 and b is the column vector

(b(1), b(2), . . . , b(2n+2 − 2))T . Note that

φ′′
1(x) =





−12x− 6 for −1 < x < 0,

12x− 6 for 0 < x < 1,

0 for R \ [−1, 1],

and

φ′′
2(x) =





6x+ 4 for −1 < x < 0,

6x− 4 for 0 < x < 1,

0 for R \ [−1, 1].

The (2n+1 − 2) × (2n+2 − 2) matrix T has the following form by direct

computation,

T = (0, 0, ∗, ∗, 0, 0, ∗, ∗, · · · , ∗, ∗, 0, 0),

i.e., for 0 ≤ l ≤ 2n− 1, the 4l+ 1 and 4l+ 2 columns of T are zero vectors,

and ∗ stands for a non-zero vector. Therefore, (2.2.3) has 2n+1 linearly

independent solutions e4l+1 and e4l+2 for 0 ≤ l ≤ 2n − 1, where ei is the

ith unit vector in R
2n+2−2. Correspondingly, φn+1,4l+1, φn+1,4l+2 ∈ Wn for

0 ≤ l ≤ 2n − 1, and they form a basis of Wn by their linear independence

and dim(Wn) = 2n+1. Let

ψ1(x) = φ1(2x+ 1) and ψ2(x) = φ2(2x+ 1) for x ∈ R.

For 0 ≤ x ≤ 1 and n ≥ 1, define

ψn,j(x) :=

{
ψ1(2

nx− (j + 1)/2) for j = 1, 3, 5, . . . , 2n+1 − 1,

ψ2(2
nx− j/2) for j = 2, 4, 6, . . . , 2n+1.
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Then Γn := {ψn,j, j = 1, 2, . . . , 2n+1} is a basis of Wn.

To avoid treating the term V1 every time separately, we define W0 := V1,

ψ0,1 := φ1(2x− 1) and ψ0,2 := φ2(2x− 1). Since Vn+1 is a direct sum of Vn

and Wn, we have the following decomposition:

Vn+1 = W0 +W1 + · · ·+Wn.

Note that Vn is orthogonal to Wn with respect to 〈u′′, v′′〉. Thus Wm is

orthogonal to Wn with respect to 〈u′′, v′′〉 for m 6= n.

Moreover,

〈ψ′′
n,j, ψ

′′
n,k〉 = 0 for 1 ≤ j, k ≤ 2n+1 and j 6= k. (2.2.4)

Indeed, if |j − k| ≥ 2, supp(ψ′′
n,j) ∩ supp(ψ′′

n,k) = ∅. If j is an even number,

supp(ψ′′
n,j) ∩ supp(ψ′′

n,j+1) = ∅. Thus in these two cases, (2.2.4) holds. If j

is an odd number, (2.2.4) is true because 〈φ′′
1, φ

′′
2〉 = 0.

Consequently,
⋃∞
n=0 Γn is an orthogonal basis of H2

0 (0, 1) with respect to

〈u′′, v′′〉. Similarly Ψn :=
⋃n−1
k=0 Γk is an orthogonal basis of Vn with respect

to 〈u′′, v′′〉.

2.3 The Finite Element and Wavelet Bases

In this section, we discuss the properties of the finite element bases (Φn)n≥1

and the wavelet bases (Ψn)n≥1.

Proposition 2.1. For n ≥ 1,

2n/2Φn := {2n/2φn,j, j = 1, 2, . . . , 2n+1 − 2}

is a Riesz basis of Vn in the L2 space.
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Proof. Let p3(x) be a cubic polynomial defined on [x0, x0 + h] satisfying:

p3(x0) = a0, p3(x0 + h) = a1, p
′
3(x0) = b0, and p′3(x0 + h) = b1,

where x0, h, a0, a1, b0 and b1 are real numbers. Then

p3(x) = ax3 + bx2 + cx+ d,

where

a =
2(a0 − a1)

h3
+
b0 + b1
h2

,

b =
3(a1 − a0)(2x0 + h)

h3
− (3x0 + 2h)b0 + (3x0 + h)b1

h2
,

c =
6(a0 − a1)x0(x0 + h)

h3
− (x0 + h)(3x0 + h)b0 + x0(3x0 + 2h)b1

h2
,

d =
a0(x0 + h)2(h− 2x0) + x2

0a1(2x0 + 3h)

h3

−x0(x0 + h)2b0 + (x0 + h)x2
0b1

h2
.

Therefore,

∫ x0+h

x0

p2
3(x)dx =

h

210
(54a0a1 + 22a0hb0 − 13a0hb1 + 13a1hb0 + 78a2

0

−22a1hb1 − 3h2b0b1 + 78a2
1 + 2h2b20 + 2h2b21).

(2.3.1)

Suppose f =
∑2n+1−2

j=1 2n/2xn,jφn,j, g =
∑2n+1−2

j=1 xn,jφn,j and h = 1/2n, then

‖f‖2L2
= 2n

∫ h

0

g2(x)dx+
2n−1∑

j=2

2n
∫ jh

(j−1)h

g2(x)dx+ 2n
∫ 1

(2n−1)h

g2(x)dx.
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Note that g(0) = 0, g(h) = xn,1, g
′(0) = 0 and g′(h) = xn,2/h, by (2.3.1) we

have

2n
∫ h

0

g2(x)dx =
1

210
(78x2

n,1 + 2x2
n,2 − 22xn,1xn,2)

=

(
xn,1 xn,2

)



13

35
− 11

210

− 11

210

1

105







xn,1

xn,2




.

Since the maximal and minimal eigenvalues of the matrix




13

35
− 11

210

− 11

210

1

105




are 4/21 +
√

1565/210 and 4/21−
√

1565/210, respectively,

C1(x
2
n,1 + x2

n,2) ≤ 2n
∫ h

0

g2(x)dx ≤ C2(x
2
n,1 + x2

n,2), (2.3.2)

where C1 = 4/21−
√

1565/210 > 0 and C2 = 4/21 +
√

1565/210 > 0.

An analogous argument gives

C3(x
2
n,2n+1−3 + x2

n,2n+1−2) ≤ 2n
∫ 1

(2n−1)h

g2(x)dx ≤ C4(x
2
n,2n+1−3 + x2

n,2n+1−2)

(2.3.3)

for some positive constants C3 and C4 independent of n.

For j = 2, 3, . . . , 2n − 1, we have g((j − 1)h) = xn,2j−3, g(jh) = xn,2j−1,

g′((j − 1)h) = xn,2j−2/h and g′(jh) = xn,2j/h, hence by (2.3.1)

2n
∫ jh

(j−1)h

g2(x)dx = ~xTn,jM~xn,j ,
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where ~xn,j is the column vector (xn,2j−3, xn,2j−1, xn,2j−2, xn,2j)
T and

M =




13

35

9

70

11

210
− 13

420
9

70

13

35

13

420
− 11

210
11

210

13

420

1

105
− 1

140

− 13

420
− 11

210
− 1

140

1

105




.

Since the maximal and minimal eigenvalues of M are 31/120 +
√

941/120

and 103/840−
√

421/168, respectively, we have

C5(x
2
n,2j−3 + x2

n,2j−2 + x2
n,2j−1 + x2

n,2j) ≤ 2n
∫ jh
(j−1)h

g2(x)dx

≤ C6(x
2
n,2j−3 + x2

n,2j−2 + x2
n,2j−1 + x2

n,2j),

(2.3.4)

where C5 = 103/840−
√

421/168 > 0 and C6 = 31/120 +
√

941/120 > 0.

Consequently, by (2.3.2), (2.3.3) and (2.3.4),

C7

2n+1−2∑

j=1

x2
n,j ≤ ‖f‖2L2

≤ C8

2n+1−2∑

j=1

x2
n,j ,

where

C7 = min{C1 + C5, 2C5, C5 + C3} and C8 = max{C2 + C6, 2C6, C6 + C4}.

This completes the proof.

The stability of the finite element basis in L2 leads to the uniform bound-

edness of the condition number of the mass matrix. However, if we dis-

cretize (2.1.1) using the finite element basis, the resulting linear system is

ill-conditioned. In fact, we need to look for a basis such that the condition

number of the stiffness matrix is relatively small and uniformly bounded.
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The following theorem and proposition 1.1 indicate that the wavelet bases

constructed in the previous section meet our need.

Theorem 2.2.

∞⋃

n=0

2n/2−2nΓn :=

∞⋃

n=0

{
2n/2−2nψn,j, j = 1, 2, . . . , 2n+1

}

is a Riesz basis of H2
0 (0, 1).

Proof. Suppose f =
∑∞

n=0 2n/2−2n
∑2n+1

j=1 xn,jψn,j . Since
⋃∞
n=0 Γn is an or-

thogonal basis of H2
0 (0, 1) with respect to 〈u′′, v′′〉, we have

|f |2H2 =
∞∑

n=0

2n+1∑

j=1

x2
n,j2

n〈2−2nψ′′
n,j, 2

−2nψ′′
n,j〉.

If j is an odd number,

2n〈2−2nψ′′
n,j , 2

−2nψ′′
n,j〉 = 192.

If j is an even number,

2n〈2−2nψ′′
n,j, 2

−2nψ′′
n,j〉 = 64.

Therefore,

64

∞∑

n=0

2n+1∑

j=1

x2
n,j ≤ |f |2H2 ≤ 192

∞∑

n=0

2n+1∑

j=1

x2
n,j.

This in connection with the equivalence of the H2 norm and semi-norm

gives the desired result.
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2.4 Applications

The variational problem of equation (2.1.1) is to find u ∈ H2
0 (0, 1) such

that

a(u, v) = 〈f, v〉 ∀v ∈ H2
0 (0, 1), (2.4.1)

where a(u, v) = 〈a(x)u′′, v′′〉 + 〈b(x)u′, v′〉 + 〈c(x)u, v〉. We assume that

a(x), b(x) and c(x) are continuous functions on [0, 1] satisfying a(x) > 0

and b(x), c(x) ≥ 0 for all x ∈ [0, 1].

For u, v ∈ H2
0 (0, 1), by the Schwarz inequality,

|a(u, v)| ≤ C1(‖u′′‖L2‖v′′‖L2 + ‖u′‖L2‖v′‖L2 + ‖u‖L2‖v‖L2)

≤ C1‖u‖H2‖v‖H2,

where C1 = maxx∈[0,1]{a(x), b(x), c(x)}. On the other hand, a(u, u) ≥
C2|u|2H2 where C2 = minx∈[0,1]{a(x)}. The equivalence of the H2 norm

and semi-norm gives a(u, u) ≥ C3‖u‖2H2 where C3 is a positive constant

independent of u. Hence a(u, v) is continuous and coercive, and by the Lax-

Milgram theorem, existence and uniqueness of the solution are guaranteed

for (2.4.1).

The corresponding Galerkin approximation problem for (2.4.1) is to find

un ∈ Vn such that

a(un, v) = 〈f, v〉 ∀v ∈ Vn. (2.4.2)

Note that we have two bases for Vn. One is the finite element basis Φn and

the other one is the wavelet basis Ψn. We normalize these two bases such
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that the H2 semi-norm of each basis functions is 1 as follows.

Φnorm
n :=

{ 1

2
√

6
2−3n/2φn,j, j is odd

}⋃{ 1

2
√

2
2−3n/2φn,j, j is even

}
;

Ψnorm
n :=

n−1⋃

k=0

({ 1

8
√

3
2−3k/2ψk,j, j is odd

}⋃{1

8
2−3k/2ψk,j, j is even

})
.

Suppose un =
∑

φ∈Φnorm
n

yφφ. Let An be the matrix (a(σ, φ))σ,φ∈Φnorm
n

, and

let ξn be the column vector (〈f, φ〉)φ∈Φnorm
n

. Then the column vector yn =

(yφ)φ∈Φnorm
n

is the solution of the system of linear equations

Anyn = ξn. (2.4.3)

This linear system is ill-conditioned, i.e., the condition number κ(An) of

the matrix An increases rapidly as n increases. Hence, it would be very

difficult to solve (2.4.3) when n is large.

Now we employ the wavelet basis Ψnorm
n to solve (2.4.2). Suppose un =

∑
ψ∈Ψnorm

n
zψψ. We obtain the following linear system:

Bnzn = ηn. (2.4.4)

Here Bn is the matrix (a(χ, ψ))χ,ψ∈Ψnorm
n

, whereas ηn is the column vector

(〈f, ψ〉)ψ∈Ψnorm
n

, and zn is the column vector (zψ)ψ∈Ψnorm
n

.

We use λmax(Bn) and λmin(Bn) to denote the maximal and minimal eigen-

values of Bn, respectively. Then κ(Bn) := λmax(Bn)/λmin(Bn) gives the

condition number of Bn. An application of proposition 1.1 and theorem

2.2 gives the following theorem.

Theorem 2.3. The condition number of the stiffness matrix associated with

Ψnorm
n , i.e., Bn := (a(χ, ψ))χ,ψ∈Ψnorm

n
, is uniformly bounded (independent of

n).
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For the model problem, i.e., (2.1.1) with a(x) = 1, b(x) = 0 and c(x) = 0,

the condition number of An increases like O(24n). However, the condition

number of Bn is always 1 since Ψnorm
n is an orthonormal basis of Vn with

respect to the H2 semi-norm.

Note that Φnorm
n and Ψnorm

n are two bases of Vn. There exists a unique trans-

formation between Φnorm
n and Ψnorm

n . To find the matrix representation of

this transformation, we define

Γnormk :=
{ 1

8
√

3
2−3k/2ψk,j, j is odd

}⋃{1

8
2−3k/2ψk,j, j is even

}
.

Then Ψnorm
n =

⋃n−1
k=0 Γnormk . We use the same notations Φnorm

n , Ψnorm
n and

Γnormn to denote the column vectors (φ)φ∈Φnorm
n

, (ψ)ψ∈Ψnorm
n

and (γ)γ∈Γnorm
n

,

respectively. Let In be the n× n identity matrix. Define

F :=




2
√

2 0

0
√

2


 , D :=




√
2 −

√
6

2√
6

4
−
√

2

4


 , E :=




√
2

√
6

2

−
√

6

4
−
√

2

4


 .

For fixed n and 2 ≤ k ≤ n, by the refinement equations (2.2.1), we have




Φnorm
k−1

Γnormk−1


 = PkΦ

norm
k ,
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where Pk is a (2k+1 − 2)× (2k+1 − 2) matrix in the form




E F D 0 0 · · · 0

0 0 E F D · · · 0

· · · · · · · · · · · · · · · · · · · · ·

0 · · · · · · 0 E F D

I2 0 0 0 · · · · · · 0

0 0 I2 0 · · · · · · 0

· · · · · · · · · · · · · · · · · · · · ·

0 · · · · · · · · · · · · 0 I2




.

In this matrix, there are 2k−1 − 1 blocks of D, E and F , respectively. And

there are 2k−1 blocks of I2.

Therefore, the matrix representation Sn of the transformation between

Φnorm
n and Ψnorm

n satisfies

Ψnorm
n = SnΦ

norm
n ,

where

Sn =




P2 0

0 IP2







P3 0

0 IP3


 · · ·




Pn 0

0 IPn




for identity matrix IPk
of size (2n+1 − 2k+1)× (2n+1 − 2k+1).

Consequently, the linear system (2.4.4) is equivalent to

SnAnS
T
n zn = Snξn
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since Bn = SnAnS
T
n and ηn = Snξn. If we use conjugate gradient (CG)

algorithm to solve SnAnS
T
n zn = Snξn, the iterations needed to reach a fixed

tolerance τ would not increase as the mesh size decreases since the con-

dition number of Bn is uniformly bounded. By letting yn = STn zn, the

CG algorithm for solving SnAnS
T
n zn = Snξn is equivalent to the precon-

ditioned conjugate gradient (PCG) algorithm for solving Anyn = ξn using

preconditioner Sn.

The CG and PCG algorithms for solving Anyn = ξn are introduced as

follows.

Algorithm 2.1 CG Algorithm for Anyn = ξn
1: Given initial guess y0

n, r0 ← ξn − Any0
n

2: p0 ← r0

3: for k = 1, 2, . . . do

4: αk−1 ← rTk−1pk−1/p
T
k−1Anpk−1

5: ykn ← yk−1
n + αk−1pk−1

6: rk ← rk−1 − αk−1Anpk−1

7: If ‖rk‖2 < τ , stop

8: else pk ← rk −
rTkAnpk−1

pTk−1Anpk−1

pk−1

9: end for
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Algorithm 2.2 PCG Algorithm for Anyn = ξn with preconditioner Sn
1: Given initial guess y0

n, r0 ← ξn − Any0
n

2: p0 ← r0

3: for k = 1, 2, . . . do

4: αk−1 ← rTk−1pk−1/p
T
k−1Anpk−1

5: ykn ← yk−1
n + αk−1pk−1

6: rk ← rk−1 − αk−1Anpk−1

7: If ‖rk‖2 < τ , stop

8: else

9: sk ← STn Snrk

10: pk ← sk −
sTkAnpk−1

pTk−1Anpk−1
pk−1

11: end for

Now we apply the wavelet bases to numerical solution to the Euler-Bernoulli

bean equation (2.1.2).

Example 2.1. Consider equation (2.1.2) with a(x) = 1 + 0.5 sin(x) and

right hand side f given by

f(x) = −6x2 sin(x) + 24x cos(x) + 6x sin(x) + 11 sin(x)− 12 cos(x) + 24.

In this example, the exact solution u(x) = x2(1−x)2. We first use the finite

element basis Φnorm
n to discretize the corresponding variational problem and

solve the resulting linear system Anyn = ξn by CG algorithm (2.1). Next,

we employ the wavelet basis Ψnorm
n to solve the same problem, i.e., solve

Anyn = ξn by PCG algorithm (2.2) with preconditioner Sn. We set the

tolerance τ to be 1e− 10 and use the zero vector as the initial guess. NCG

and NPCG denote the number of CG and PCG iterations, respectively.
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Table 2.1: CG vs PCG for Example 2.1, τ = 1e− 10

Level n 6 7 8 9 10 11

NCG 255 807 2900 11024 44215 180897

NPCG 10 10 9 8 8 7

In this table, the first row gives the level. The second and third rows

give the number of iterations to achieve the tolerance 1e− 10 for CG and

PCG algorithms, respectively. Since the linear system Anyn = ξn is ill-

conditioned, the CG iterations increase rapidly as the level n increases.

However, the system SnAnS
T
n zn = Snξn (or Bnzn = ηn) is well conditioned.

The condition number of Bn is uniformly bounded, which guarantees that

the PCG iterations would not increase as mesh size decreases. This is

confirmed by our numerical results. In fact, more is true. We see from the

last row of table 2.1 that the PCG iterations decrease as n increases. From

this table, it is clear that the preconditioning technique is effective.

Let yn and y∗n be the numerical and exact solutions of Anyn = ξn. Then

un =
∑

φ∈Φnorm
n

yφφ is the numerical solution of example 2.1. Let en :=

‖u′′n − u′′‖L2 be the error estimated in the H2 semi-norm. Suppose u∗n =
∑

φ∈Φnorm
n

y∗φφ, then e∗n := ‖(u∗)′′n − u′′‖L2 is the discretization error in the

H2 semi-norm. We list the number of PCG iterations needed to achieve the

discretization error in the H2 semi-norm in the following table. In order

to compute the discretization error, we simply perform sufficiently many

PCG iterations to get y∗n. The rate of convergence in the H2 semi-norm is

computed by log2(
e∗n−1

e∗n
). Note that e∗5 = 8.73e− 4.
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Table 2.2: Numerical Results of Example 2.1

Level n 6 7 8 9 10 11

NPCG 7 7 8 8 8 8

e∗n 2.18e-4 5.46e-5 1.36e-5 3.41e-6 8.54e-7 2.13e-7

log2(
e∗n−1

e∗n
) 2.00 2.00 2.01 2.00 2.00 2.00

It is well known that the convergence rate provided by cubic splines is 2

in the H2 semi-norm. This is confirmed by our numerical results. We also

notice that the number of PCG iterations needed to achieve the discretiza-

tion error remains stable under mesh refinement. Therefore, the wavelet

Galerkin method may have advantages over many other methods if the

problem needs to be discretized on a mesh with small size. For instance,

the problem has a highly oscillating solution.

Example 2.2. Consider equation (2.1.2) with a(x) = x+1 and right hand

side f given by

f(x) = −8k3π3 sin(2kπx)− 8(x+ 1)k4π4 cos(2kπx),

where k = 37.

In this case, the exact solution u(x) = (1− cos(2kπx))/2. Note that e∗12 =

2.29.
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Table 2.3: Numerical Results of Example 2.2

Level n 13 14 15 16

NPCG 11 10 11 12

e∗n 5.73e-1 1.43e-1 3.58e-2 9.08e-3

log2(
e∗n−1

e∗n
) 2.00 2.00 2.00 1.98

Since the exact solution has a high-frequency component, we need to solve

the problem at a high level n to get an approximate solution with small

error. We see that the rate of convergence is 2 from the last row of this

table. For large n, the convergence of CG method is extremely slow. But

the PCG method has good performance.

In fact, to further improve the numerical performance, we may use the

multilevel PCG method which will be discussed in the next two chapters.

For the model problem, i.e.,

{
u′′′′(x) = f(x) for x ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0,
(2.4.5)

we know that the stiffness matrices associated with the wavelet bases are

identity matrices. Hence no other preconditioning techniques could be bet-

ter.

Bramble, Pasciak and Xu [3] proposed the BPX method for precondition-

ing. Based on their work, Liu constructed additive Schwarz-type precondi-

tioners using Hermite cubic splines in [29], which is suitable for the following



33

problem.
{
u′′′′(x) + u(x) = f(x) for x ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0.
(2.4.6)

The condition numbers of the corresponding preconditioned matrices are

listed as follows:

Table 2.4: Condition Numbers of Liu’s Preconditioned Matrices

Level n 6 7 8 9 10 11

κ 7.57 7.75 7.88 7.98 8.06 8.12

However, using the wavelet preconditioning technique, the condition num-

bers of the preconditioned matrices are only about 1.002 for 6 ≤ n ≤ 11.

In the one-dimensional space, the orthogonality to the energy norm results

in orthonormal wavelet bases in the Sobolev space Hm
0 (0, 1), where m is a

positive integer. However, this way of construction cannot apply to the two-

or higher-dimensional cases. Therefore, we propose different constructions

of Riesz bases of wavelets in the Sobolev spaces to deal with second-order

and fourth-order elliptic equations in chapter 3 and 4.



Chapter 3

The Wavelet Galerkin Method

for Second-order Elliptic

Problems

3.1 Introduction

Throughout this chapter, we will consider the second-order elliptic equation

with Dirichlet boundary condition,





− ∂

∂x
(a

∂

∂x
u)− ∂

∂y
(b
∂

∂y
u) = f in Ω,

u = 0 on ∂Ω,

(3.1.1)

where Ω = (0, 1)2. a and b are two real-valued continuous functions on

[0, 1]2 satisfying a1 ≤ a(x, y) ≤ a2 and b1 ≤ b(x, y) ≤ b2, where a1, a2, b1

and b2 are positive constants.

34
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For the Poisson equation with Dirichlet boundary condition (i.e., problem

(3.1.1) with a = b = 1)





−∂
2u

∂x2
− ∂2u

∂y2
= f in Ω,

u = 0 on ∂Ω,

(3.1.2)

and on uniform discretizations, wavelet preconditioning techniques are kno-

wn to be less efficient than multigrid algorithms. But the classical multigrid

methods are usually not effective when the coefficients a and b are rough.

For instance, a and b are anisotropic or highly oscillatory (see, e.g., [39],

[6] and [18]). Line Gauss-Seidel (see, e.g., [4]), semi-coarsening (see, e.g.,

[33]) and algebraic multigrid (see, e.g., [2]) are designed to deal with some

of these cases.

An advantage of the wavelet Galerkin method is that, as long as wavelets

have been constructed such that the condition number of the associated

stiffness matrix of the model problem is relatively small, these wavelets are

applicable to a class of general elliptic equations. In particular, if proper

wavelet bases have been constructed to solve the model problem (3.1.2)

efficiently, to solve (3.1.1), we can still expect fast convergence of the nu-

merical scheme based on the same wavelet bases without modifying our

algorithm according to the properties (oscillation, anisotropy, etc.) of the

variable coefficients a and b, given max{a2, b2}/min{a1, b1} is not too big.

We relate the finite difference and finite element methods for solving the

Poisson equation, and show that our wavelet bases constructed in section

3.2 are also applicable in the finite difference method for numerical solutions

of equation (3.1.1). As a result, the associated numerical scheme becomes

simpler and more efficient because numerical integrations are avoided.
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3.2 Construction of Wavelets

In this section, we construct wavelets on the unit square on the basis of

bi-linear splines.

Let φ(x) be the hat function, that is,

φ(x) =





1 + x for −1 ≤ x < 0,

1− x for 0 ≤ x ≤ 1,

0 for R \ [−1, 1].

φ satisfies the following refinement equation:

φ(x) =
1

2
φ(2x+ 1) + φ(2x) +

1

2
φ(2x− 1), x ∈ R. (3.2.1)

For n ≥ 1, consider the following set,

Φn = {φn,(j1,j2)(x, y) : (j1, j2) ∈ Jn, (x, y) ∈ Ω},

where

Jn = {(j1, j2) : j1 = 1, 2, . . . 2n − 1; j2 = 1, 2, . . . 2n − 1}

and

φn,(j1,j2)(x, y) = 2nφ(2nx− j1)φ(2ny − j2), (x, y) ∈ Ω.
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For (j1, j2) ∈ Jn, φn,(j1,j2) is supported on [0, 1]2 and by (3.2.1), we have

φn,(j1,j2) =
φn+1,(2j1,2j2)

2
+

(φn+1,(2j1−1,2j2) + φn+1,(2j1,2j2−1) + φn+1,(2j1,2j2+1) + φn+1,(2j1+1,2j2))

4
+

(φn+1,(2j1−1,2j2−1) + φn+1,(2j1−1,2j2+1) + φn+1,(2j1+1,2j2−1) + φn+1,(2j1+1,2j2+1))

8
.

(3.2.2)

Let Vn be the linear span of Φn. Φn has the following property:

Proposition 3.1. Φn is a Riesz basis of Vn in the L2 space for n ≥ 1.

The dimension of Vn is (2n − 1)2. By (3.2.2), we have

V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · .

Moreover,
⋃∞
n=1 Vn is dense in H1

0 (Ω).

Let Qk : L2(Ω)→ Vk be the L2-orthogonal projection onto Vk (k ≥ 1) with

〈Qku, v〉 = 〈u, v〉, u, v ∈ L2(Ω) and Q0 := 0. Several authors (see, e.g., [40]

and [43]) have proved that there exist two positive constants C1 and C2

such that

C1|f |2H1 ≤
n∑

k=1

4k‖(Qk −Qk−1)f‖2L2
≤ C2|f |2H1, f ∈ Vn. (3.2.3)
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Now, we construct subspace Wn of Vn+1 such that Vn+1 = Vn + Wn for

n ≥ 1. First we introduce the following seven index sets:

K1
n :=

{
(k1, k2) : k1 = 1, 3, . . . , 2n+1 − 1, k2 = 1, 3, . . . , 2n+1 − 1

}
;

K2
n :=

{
(k1, 1) : k1 = 2, 4, . . . , 2n+1 − 2

}
;

K3
n :=

{
(k1, k2) : k1 = 2, 4, . . . , 2n+1 − 2, k2 = 3, . . . , 2n+1 − 3

}
;

K4
n :=

{
(k1, 2

n+1 − 1) : k1 = 2, 4, . . . , 2n+1 − 2
}
;

K5
n :=

{
(1, k2) : k2 = 2, 4, . . . , 2n+1 − 2

}
;

K6
n :=

{
(k1, k2) : k1 = 3, . . . , 2n+1 − 3, k2 = 2, 4, . . . , 2n+1 − 2

}
;

K7
n :=

{
(2n+1 − 1, k2) : k2 = 2, 4, . . . , 2n+1 − 2

}
.

They are subsets of Jn+1.

Correspondingly, define

Γ1
n :=

{
ψn,(k1,k2) := φn+1,(k1,k2), (k1, k2) ∈ K1

n

}
;

Γ2
n :=

{
ψn,(k1,k2) := φn+1,(k1,k2) −

1

2
φn+1,(k1,k2+1), (k1, k2) ∈ K2

n

}
;

Γ3
n :=

{
ψn,(k1,k2) := −1

2
φn+1,(k1,k2−1) + φn+1,(k1,k2) −

1

2
φn+1,(k1,k2+1),

(k1, k2) ∈ K3
n

}
;

Γ4
n :=

{
ψn,(k1,k2) := −1

2
φn+1,(k1,k2−1) + φn+1,(k1,k2), (k1, k2) ∈ K4

n

}
;

Γ5
n :=

{
ψn,(k1,k2) := φn+1,(k1,k2) −

1

2
φn+1,(k1+1,k2), (k1, k2) ∈ K5

n

}
;

Γ6
n :=

{
ψn,(k1,k2) := −1

2
φn+1,(k1−1,k2) + φn+1,(k1,k2) −

1

2
φn+1,(k1+1,k2),

(k1, k2) ∈ K6
n

}
;

Γ7
n :=

{
ψn,(k1,k2) := −1

2
φn+1,(k1−1,k2) + φn+1,(k1,k2), (k1, k2) ∈ K7

n

}
.

(3.2.4)



39

Let Kn :=
⋃7
i=1K

i
n, Γn :=

⋃7
i=1 Γin and Wn be the linear span of Γn.

It is easy to show that the functions in Φn and Γn are linearly independent

and Wn ⊂ Vn+1 by definition, hence Vn+1 = Vn +Wn and

dimWn = dimVn+1 − dimVn = 2n(3 · 2n − 2).

Consequently,

Vn+1 = V1 +W1 +W2 + . . .+Wn.

To avoid treating the term V1 every time separately, we define W0 := V1,

K0 := J1, Γ0 := Φ1 and ψ0,(1,1) := φ1,(1,1). Γn has the following property:

Proposition 3.2. For n ≥ 0, Γn is a Riesz basis of Wn in the L2 space.

Proof. It is easily seen that Γ0 is a Riesz basis of W0. For n ≥ 1, suppose

f =
∑

(k1,k2)∈Kn
an,(k1,k2)ψn,(k1,k2) where an,(k1,k2) ∈ R. By the construction

of Γn, we have

f =
∑

(k1,k2)∈Kn

an,(k1,k2)φn+1,(k1,k2)−

∑

(k1,k2)∈Jn+1\Kn

(an,(k1−1,k2) + an,(k1+1,k2) + an,(k1,k2−1) + an,(k1,k2+1))φn+1,(k1,k2)

2

Note that Φn+1 is a Riesz basis of Vn+1 for n ≥ 0, thus

‖f‖2L2
≥ C1

( ∑

(k1,k2)∈Kn

a2
n,(k1,k2)

+

∑

(k1,k2)∈Jn+1\Kn

(an,(k1−1,k2) + an,(k1+1,k2) + an,(k1,k2−1) + an,(k1,k2+1))
2

4

)

≥ C1

∑

(k1,k2)∈Kn

a2
n,(k1,k2),

(3.2.5)
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where C1 is a positive constant independent of n. On the other hand,

‖f‖2L2
≤ C2

( ∑

(k1,k2)∈Kn

a2
n,(k1,k2)

+

∑

(k1,k2)∈Jn+1\Kn

(an,(k1−1,k2) + an,(k1+1,k2) + an,(k1,k2−1) + an,(k1,k2+1))
2

4

)

≤ C2

∑

(k1,k2)∈Kn

a2
n,(k1,k2)

+

C3

∑

(k1,k2)∈Jn+1\Kn

(
a2
n,(k1−1,k2) + a2

n,(k1+1,k2) + a2
n,(k1,k2−1) + a2

n,(k1,k2+1)

)

≤ C4

∑

(k1,k2)∈Kn

a2
n,(k1,k2)

,

(3.2.6)

where C2, C3 and C4 are positive constants independent of n. Combining

(3.2.5) and (3.2.6), we have

C1

∑

(k1,k2)∈Kn

a2
n,(k1,k2)

≤ ‖f‖2L2
≤ C4

∑

(k1,k2)∈Kn

a2
n,(k1,k2)

.

Therefore, Γn is a Riesz basis of Wn.

3.3 Stability of Wavelets in the Sobolev Space

H1
0

In this section, we establish the stability of the wavelets constructed in the

previous section in the Sobolev space H1
0 (Ω). Let

Ξk :=
{
τk,(k1,k2) : (k1, k2) ∈ Ek

}
,
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where Ek :=
{
(k1, k2) : k1 = 1, 2, . . . , 2k, k2 = 1, 2, . . . , 2k

}
and

τk,(k1,k2) :=

[
k1 − 1

2k
,
k1

2k

]
×
[
k2 − 1

2k
,
k2

2k

]
.

Consider the following bilinear form:

〈f, g〉Vk+1
=

∑

τk,(k1,k2)∈Ξk

〈f |τk,(k1,k2)
, g|τk,(k1,k2)

〉Vk+1,τk,(k1,k2)
for f, g ∈ Vk+1,

where

〈f |τk,(k1,k2)
, g|τk,(k1,k2)

〉Vk+1,τk,(k1,k2)

=
2−2(k+1)

4

[
f
( 2k1

2k+1
,

2k2

2k+1

)
g
( 2k1

2k+1
,

2k2

2k+1

)

+f
(2k1 − 2

2k+1
,
2k2 − 2

2k+1

)
g
(2k1 − 2

2k+1
,
2k2 − 2

2k+1

)

+f
(2k1 − 2

2k+1
,

2k2

2k+1

)
g
(2k1 − 2

2k+1
,

2k2

2k+1

)

+f
( 2k1

2k+1
,
2k2 − 2

2k+1

)
g
( 2k1

2k+1
,
2k2 − 2

2k+1

)

+2f
(2k1 − 1

2k+1
,
2k2 − 2

2k+1

)
g
(2k1 − 1

2k+1
,
2k2 − 2

2k+1

)

+2f
( 2k1

2k+1
,
2k2 − 1

2k+1

)
g
( 2k1

2k+1
,
2k2 − 1

2k+1

)

+2f
(2k1 − 1

2k+1
,

2k2

2k+1

)
g
(2k1 − 1

2k+1
,

2k2

2k+1

)

+2f
(2k1 − 2

2k+1
,
2k2 − 1

2k+1

)
g
(2k1 − 2

2k+1
,
2k2 − 1

2k+1

)]
.

(3.3.1)

Indeed,

〈f, g〉Vk+1
= 2−2(k+1)

∑

(k1,k2)∈Jk+1\K
1
k

f
( k1

2k+1
,
k2

2k+1

)
g
( k1

2k+1
,
k2

2k+1

)
(3.3.2)

for f, g ∈ Vk+1.

Let BL(τ) be the space of bi-linear polynomials on a square τ . If we assume
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that there exist two positive constants C3 and C4 independent of k and z

such that

C3‖z‖2L2(τk,(k1,k2))
≤ 〈z, z〉Vk+1,τk,(k1,k2)

≤ C4‖z‖2L2(τk,(k1,k2))
(3.3.3)

for z ∈ BL(τk,(k1,k2)), k ≥ 0 and (k1, k2) ∈ Ek at this moment, then it is

easy to see that

C1‖f‖2L2
≤ 〈f, f〉Vk+1

≤ C2‖f‖2L2
on Vk, (3.3.4)

where C1 and C2 are two positive constants independent of f and k.

For f ∈ Vk+1, we write ‖f‖2Vk+1
and ‖f |τk,(k1,k2)

‖2Vk+1,τk,(k1,k2)
for 〈f, f〉Vk+1

and 〈f |τk,(k1,k2)
, f |τk,(k1,k2)

〉Vk+1,τk,(k1,k2)
, respectively. By (3.3.4), we know

that ‖ · ‖Vk+1
is a norm on Vk. Hence we have the following multiscale

decomposition

Vn+1 = W̃0 + W̃1 + W̃2 + . . .+ W̃n,

where W̃0 := V1 and W̃k := {g ∈ Vk+1 : 〈g, f〉Vk+1
= 0 ∀f ∈ Vk}.

The following lemma implies (3.3.3).

Lemma 3.3. Suppose z ∈ BL(τk,(k1,k2)), then

3

4
‖z‖2L2(τk,(k1,k2))

≤ 〈z, z〉Vk+1,τk,(k1,k2)
≤ 9

4
‖z‖2L2(τk,(k1,k2))

(3.3.5)

Proof. A simple transformation of coordinates shows that it is sufficient to

prove
3

4
‖z‖2L2(τ0,(1,1))

≤ 〈z, z〉V1,τ0,(1,1)
≤ 9

4
‖z‖2L2(τ0,(1,1))

for z ∈ BL(τ0,(1,1)).
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By definition, τ0,1,1 = [0, 1]2. Suppose z(0, 0) = a, z(1, 0) = b, z(0, 1) = c

and z(1, 1) = d, where a, b, c, d ∈ R. Since z ∈ BL([0, 1]2),

z(x, y) = (b− a)x+ (c− a)y + (a+ d− b− c)xy + a for (x, y) ∈ [0, 1]2.

On one hand,

‖z‖2L2(τ0,(1,1))
=

1

18
(2a2 + 2b2 + 2c2 + 2d2 + 2ab+ 2ac+ ad+ bc+ 2bd+ 2cd).

On the other hand, a(0, 1/2) = (a+ c)/2, a(1/2, 0) = (a+ b)/2, a(1, 1/2) =

(b+ d)/2 and a(1/2, 1) = (c+ d)/2. Hence,

〈z, z〉V1,τ0,(1,1)
=

1

16

{
a2 + b2 + c2 + d2 + 2

[(a + c

2

)2

+
(a + b

2

)2

+
(b+ d

2

)2

+
(c + d

2

)2]}

=
1

16

(
2a2 + 2b2 + 2c2 + 2d2 + ab+ ac+ bd+ cd

)
.

Consequently,

‖z‖2L2(τ0,(1,1))

〈z, z〉V1,τ0,(1,1)

=

16a2 + 16b2 + 16c2 + 16d2 + 16ab+ 16ac+ 8ad+ 8bc + 16bd+ 16cd

18a2 + 18b2 + 18c2 + 18d2 + 9ab+ 9ac+ 9bd+ 9cd
.

(3.3.6)

Let

y =




y1

y2

y3

y4




=




3

2
−3

2
−3

2

3

2

−3 0 0 3

0 −3 3 0

3
√

3

2

3
√

3

2

3
√

3

2

3
√

3

2







a

b

c

d




,
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then 


a

b

c

d




=




1

6
−1

6
0

1

6
√

3

−1

6
0 −1

6

1

6
√

3

−1

6
0

1

6

1

6
√

3
1

6

1

6
0

1

6
√

3







y1

y2

y3

y4




. (3.3.7)

Substituting (3.3.7) in (3.3.6), we have

‖z‖2L2(τ0,(1,1))

〈z, z〉V1,τ0,(1,1)

=
yTAy

yTy
,

where

A =




4

9
0 0 0

0
2

3
0 0

0 0
2

3
0

0 0 0
4

3




.

The maximal and minimal eigenvalues of A are 4/3 and 4/9, respectively.

Therefore, (3.3.5) holds true.

Although we define W̃k and Wk in different ways, they are exactly the same,

i.e.,

Proposition 3.4. W̃k = Wk for k ≥ 0.

Proof. If k = 0, W̃0 = V1 = W0. For k ≥ 1, W̃k and Wk are both comple-

ments of Vk in Vk+1, thus dimW̃k = dimWk. It is sufficient to prove Γk is

orthogonal to Φk under 〈·, ·〉Vk+1
.



45

For ψ ∈ ⋃7
i=2 Γik and φ ∈ Φk, by simple computation, we know

∑

(k1,k2)∈Jk+1

ψ
( k1

2k+1
,
k2

2k+1

)
φ
( k1

2k+1
,
k2

2k+1

)
= 0.

Note that ψ is zero at (k1/2
k+1, k2/2

k+1) for (k1, k2) ∈ K1
k , therefore

〈ψ, φ〉Vk+1
= 2−2(k+1)

[ ∑

(k1,k2)∈Jk+1

ψ
( k1

2k+1
,
k2

2k+1

)
φ
( k1

2k+1
,
k2

2k+1

)

−
∑

(k1,k2)∈K1
k

ψ
( k1

2k+1
,
k2

2k+1

)
φ
( k1

2k+1
,
k2

2k+1

)]
= 0

For ψ ∈ Γ1
k, ψ is zero at (k1/2

k+1, k2/2
k+1) for (k1, k2) ∈ Jk+1 \K1

k . Thus

〈ψ, φ〉Vk+1
= 0 for φ ∈ Φk.

Consequently, Γk =
⋃7
i=1 Γik is orthogonal to Φk under 〈·, ·〉Vk+1

.

For k ≥ 1, the mapping Pk : Vk+1 → Vk satisfying (I−Pk)Vk+1 = Wk is then

the linear projection onto Vk that is orthogonal with respect to 〈·, ·〉Vk+1
.

And Wk is the kernel of Pk. Let P0 := 0. Fix n ∈ N for the time being. For

each integer k with 0 ≤ k ≤ n, let Tk := Pk · · ·Pn−1 and Tn be the identity

operator on Vn. Then Tk is a linear projection from Vn to Vk.

According to theorem 4.9, to verify the stability of our wavelet basis, we

only need to check whether the four conditions of theorem 4.9 are satisfied

by taking Hµ = H1
0 (Ω) and H = L2(Ω).

It is easily seen that the first two conditions of theorem 4.9 are fulfilled be-

cause of (3.2.3). Proposition 3.2 implies that the last condition of theorem

4.9 holds true. The following lemma indicates that the third condition of

theorem 4.9 is satisfied.

Lemma 3.5.

‖Tkf‖L2 ≤ C2λ(j−k)‖f‖L2 for f ∈ Vj (3.3.8)
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where k, j ∈ N with k < j ≤ n, λ < 1 and C is a constant independent of

k, j.

Proof. For k < j ≤ n with k, j ∈ N and f ∈ Vj ,

‖Tkf‖L2 = ‖PkPk+1 · · ·Pj−1f‖L2.

By (3.3.4), we have

‖PkPk+1 · · ·Pj−1f‖L2 ≤ C1‖PkPk+1 · · ·Pj−1f‖Vk+1

= C1

‖PkPk+1 · · ·Pj−1f‖Vk+1

‖Pk+1 · · ·Pj−1f‖Vk+2

· · · ‖Pj−1f‖Vj

‖f‖Vj+1

‖f‖Vj+1

≤ C
‖PkPk+1 · · ·Pj−1f‖Vk+1

‖Pk+1 · · ·Pj−1f‖Vk+2

· · · ‖Pj−1f‖Vj

‖f‖Vj+1

‖f‖L2,

(3.3.9)

where C and C1 are positive constants independent of j and k.

If we assume that

‖Plg‖Vl+1
≤
√

3‖g‖Vl+2
for l ∈ N0 and g ∈ Vl+1, (3.3.10)

then

‖PkPk+1 · · ·Pj−1f‖L2 ≤ C
√

3
j−k‖f‖L2 = C2λ(j−k)‖f‖L2,

where λ < 1, we are done.

In order to verify (3.3.10), we follow the method used in [36].

For each τl ∈ Ξl, note that BL(τl) is a subspace of Vl+1|τl. Define

BLc(τl) := {h ∈ Vl+1|τl : 〈h, f〉Vl+1,τl
= 0 ∀f ∈ BL(τl)}.

Recall that 〈·, ·〉Vl+1,τl
is not an inner product on Vl+1|τl, but ‖ · ‖Vl+1,τl

is

a norm on BL(τl). Hence, the mapping Pl,τl : Vl+1|τl → BL(τl) satisfying
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(I − Pl,τl)Vl+1|τl = BLc(τl) is then a linear projection onto BL(τl) that is

orthogonal with respect to 〈·, ·〉Vl+1,τl
.

Letting w = g|τl, we have

‖Plg‖2Vl+1
= ‖g‖2Vl+1

− ‖(I − Pl)g‖2Vl+1

=
∑

τl∈Ξl

{
‖g|τl‖2Vl+1,τl

− ‖g|τl − (Plg)|τl‖2Vl+1,τl

}

≤
∑

τl∈Ξl

{
‖w‖2Vl+1,τl

− ‖w − Pl,τlw‖2Vl+1,τl

}
.

On the other hand, by the first inequality of Lemma 3.3

‖g‖2Vl+2
=

∑

τl∈Ξl

{ ∑

τl+1∈Ξl+1,τl+1⊂τl

‖g|τl+1
‖2Vl+2,τl+1

}

=
∑

τl∈Ξl

{ ∑

τl+1∈Ξl+1,τl+1⊂τl

‖w|τl+1
‖2Vl+2,τl+1

}

≥
∑

τl∈Ξl

{ ∑

τl+1∈Ξl+1,τl+1⊂τl

3

4
‖w‖2L2(τl+1)

}

=
∑

τl∈Ξl

{3

4
‖w‖2L2(τl)

}

Therefore,

‖Plg‖2Vl+1

‖g‖2Vl+2

≤ sup
τl∈Ξl

‖w‖2Vl+1,τl
− ‖w − Pl,τlw‖2Vl+1,τl

3

4
‖w‖2L2(τl)

(3.3.11)
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A simple transformation of coordinates shows that, to estimate the right

hand side of (3.3.11), it is sufficient to consider the case τl = [0, 1]2 and

Vl+1|τl = {w ∈ R([0, 1]2) w is bilinear on [0, 1/2]× [0, 1/2],

[0, 1/2]× [1/2, 1], [1/2, 1]× [0, 1/2] and [1/2, 1]× [1/2, 1]}.

Suppose

w(0, 0) = a1, w(1/2, 0) = a2, w(1, 0) = a3,

w(0, 1/2) = a4, w(1/2, 1/2) = a5, w(1, 1/2) = a6,

w(0, 1) = a7, w(1/2, 1) = a8, w(1, 1) = a9,

then ‖w‖2L2(τl)
can be found to be

1

4

[ 1

18
a1a5 +

1

9
a1a2 +

1

9
a1a4 +

1

18
a2a4 +

2

9
a5a2 +

2

9
a5a4

+
1

18
a2a6 +

1

9
a2a3 +

1

18
a3a5 +

1

9
a6a3 +

2

9
a6a5 +

1

18
a4a8

+
1

9
a4a7 +

1

18
a5a7 +

2

9
a8a5 +

1

9
a2

9 +
1

9
a2

1 +
4

9
a2

5 +
2

9
a2

2

+
2

9
a2

4 +
2

9
a2

6 +
1

9
a2

3 +
2

9
a2

8 +
1

9
a2

7 +
1

9
a8a7 +

1

18
a5a9

+
1

18
a6a8 +

1

9
a9a6 +

1

9
a9a8

]
.

Hence
3

4
‖w‖2L2(τl)

=
1

16
~aTB~a,
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where ~aT = (a1, a2, a3, a4, a5, a6, a7, a8, a9) and

B =




1

3

1

6
0

1

6

1

12
0 0 0 0

1

6

2

3

1

6

1

12

1

3

1

12
0 0 0

0
1

6

1

3
0

1

12

1

6
0 0 0

1

6

1

12
0

2

3

1

3
0

1

6

1

12
0

1

12

1

3

1

12

1

3

4

3

1

3

1

12

1

3

1

12

0
1

12

1

6
0

1

3

2

3
0

1

12

1

6

0 0 0
1

6

1

12
0

1

3

1

6
0

0 0 0
1

12

1

3

1

12

1

6

2

3

1

6

0 0 0 0
1

12

1

6
0

1

6

1

3




.

Next we calculate the numerator. By (3.3.1), we have

‖w‖2Vl+1,τl
=

1

16

(
a2

1 + a2
3 + a2

7 + a2
9 + 2(a2

2 + a2
4 + a2

6 + a2
8)
)

(3.3.12)

BL(τl) is equivalent to the linear space spaned by (1, 1/2, 0, 1/2, 1/4, 0, 0, 0)T,

(0, 1/2, 1, 0, 1/4, 1/2, 0, 0, 0)T, (0, 0, 0, 1/2, 1/4, 0, 1, 1/2, 0)T

and (0, 0, 0, 0, 1/4, 1/2, 0, 1/2, 1)T since every w ∈ BL(τl) is determined by

w(0, 0), w(1, 0), w(0, 1) and w(1, 1). (1,−1, 1, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 1, 0, 0, 0, 0), (1, 0, 0,−1, 0, 0, 1, 0, 0), (0, 1, 0,−1, 0,−1, 0, 1, 0)

and (−1, 1, 0, 0, 0,−1, 0, 0, 1) are orthogonal to the above linear space with

respect to 〈·, ·〉Vl+1,τl
and all these nine vectors span the linear space equiv-

alent to Vl+1|τl. Therefore the representation of Pl,τl, denoted by the same

notation Pl,τl, satisfies the following linear system:

Pl,τlX = Y,
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where

X =




1 0 0 0 1 0 1 0 −1

1

2

1

2
0 0 −1 0 0 1 1

0 1 0 0 1 0 0 0 0

1

2
0

1

2
0 0 0 −1 −1 0

1

4

1

4

1

4

1

4
0 1 0 0 0

0
1

2
0

1

2
0 0 0 −1 −1

0 0 1 0 0 0 1 0 0

0 0
1

2

1

2
0 0 0 1 0

0 0 0 1 0 0 0 0 1




and

Y =




1 0 0 0 0 0 0 0 0

1

2

1

2
0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1

2
0

1

2
0 0 0 0 0 0

1

4

1

4

1

4

1

4
0 0 0 0 0

0
1

2
0

1

2
0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0
1

2

1

2
0 0 0 0 0

0 0 0 1 0 0 0 0 0




.
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Solving this linear system, we get

Pl,τl =




7

12

5

12
−1

6

5

12
0 − 1

12
−1

6
− 1

12

1

12
5

24

5

12

5

24

1

6
0

1

6
− 1

24
− 1

12
− 1

24

−1

6

5

12

7

12
− 1

12
0

5

12

1

12
− 1

12
−1

6
5

24

1

6
− 1

24

5

12
0 − 1

12

5

24

1

6
− 1

24
1

12

1

6

1

12

1

6
0

1

6

1

12

1

6

1

12

− 1

24

1

6

5

24
− 1

12
0

5

12
− 1

24

1

6

5

24

−1

6
− 1

12

1

12

5

12
0 − 1

12

7

12

5

12
−1

6

− 1

24
− 1

12
− 1

24

1

6
0

1

6

5

24

5

12

5

24
1

12
− 1

12
−1

6
− 1

12
0

5

12
−1

6

5

12

7

12




.

Consequently, a straightforward computation gives

‖w − Pl,τlw‖2Vl+1,τl
=

1

16

[
− 5

6
a1a2 +

1

3
a1a3 −

5

6
a1a4 +

1

6
a1a6

+
1

3
a1a7 +

1

6
a1a8 −

1

6
a1a9 +

7

6
a2

2 −
5

6
a2a3

− 2

3
a2a4 −

2

3
a2a6 +

1

6
a2a7 +

1

3
a2a8 +

1

6
a2a9

+
5

12
a2

3 +
1

6
a3a4 −

5

6
a3a6 −

1

6
a3a7 +

1

6
a3a8

+
1

3
a3a9 +

7

6
a2

4 +
1

3
a4a6 −

5

6
a4a7 −

2

3
a4a8

+
1

6
a4a9 +

7

6
a2

6 +
1

6
a6a7 −

2

3
a6a8 −

5

6
a6a9

+
5

12
a2

7 −
5

6
a7a8 +

1

3
a7a9 +

7

6
a2

8 −
5

6
a8a9

+
5

12
a2

9 +
5

12
a2

1

]
.

(3.3.13)
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Combining (3.3.12) and (3.3.13), we have

‖w‖2Vl+1,τl
− ‖w − Pl,τlw‖2Vl+1,τl

=
1

16
~aTA~a, (3.3.14)

where

A =




7

12

5

12
−1

6

5

12
0 − 1

12
−1

6
− 1

12

1

12
5

12

5

6

5

12

1

3
0

1

3
− 1

12
−1

6
− 1

12

−1

6

5

12

7

12
− 1

12
0

5

12

1

12
− 1

12
−1

6
5

12

1

3
− 1

12

5

6
0 −1

6

5

12

1

3
− 1

12

0 0 0 0 0 0 0 0 0

− 1

12

1

3

5

12
−1

6
0

5

6
− 1

12

1

3

5

12

−1

6
− 1

12

1

12

5

12
0 − 1

12

7

12

5

12
−1

6

− 1

12
−1

6
− 1

12

1

3
0

1

3

5

12

5

6

5

12
1

12
− 1

12
−1

6
− 1

12
0

5

12
−1

6

5

12

7

12




.

Therefore,
‖Plg‖2Vl+1

‖g‖2Vl+2

≤ sup
~a∈R9

~aTA~a

~aTB~a
.

The eigenvalues of the matrix
√
B

−T
A
√
B

−1
can be found directly to be

3, 8/3, 2, 2, 0, 0, 0, 0 and 0. Hence

‖Plg‖2Vl+1

‖g‖2Vl+2

≤ 3,

which implies (3.3.10). This completes the proof.



53

Suppose S is a nonempty set of complex-valued functions and a ∈ C, we

define

aS := {af : f ∈ S}.

Let Ψn :=
⋃n−1
k=0 2−kΓk and Ψ :=

⋃∞
k=0 2−kΓk.

Consequently, by theorem 4.9, we have

Theorem 3.6. Ψ is a Riesz basis of H1
0(Ω).

3.4 The Finite Element and Finite Differ-

ence Methods

If we use the finite element method to solve (3.1.2), we are seeking u ∈
H1

0 (Ω) satisfying the variational form

〈∇u,∇v〉 = 〈f, v〉 ∀v ∈ H1
0 (Ω).

The corresponding Galerkin approximation problem is the following: find

un ∈ Vn such that

〈∇un,∇v〉 = 〈f, v〉 ∀v ∈ Vn. (3.4.1)

Note that Φn is a basis of Vn, so is 2−nΦn. Thus we are seeking un =
∑

φ∈2−nΦn
yφφ, such that

〈∇un,∇φ〉 = 〈f, φ〉 ∀φ ∈ 2−nΦn.

This linear system can be written as:

Anyn = ξn. (3.4.2)
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Here An is the matrix (〈∇φ,∇σ〉)φ,σ∈2−nΦn
, whereas ξn and yn are the

column vectors (〈f, φ〉)φ∈2−nΦn
and (yφ)φ∈2−nΦn

, respectively. Therefore,

solving (3.4.1) is equivalent to solving (3.4.2).

Note that Ψn is another basis of Vn, we may also seek un in the form
∑

ψ∈Ψn
zψψ such that

〈∇un,∇ψ〉 = 〈f, ψ〉 ∀ψ ∈ Ψn.

Similarly, we can write this linear system as follows:

Bnzn = ηn. (3.4.3)

Here Bn is the matrix (〈∇ψ,∇χ〉)ψ,χ∈Ψn
, whereas ηn and zn stand for

the column vectors (〈f, ψ〉)ψ∈Ψn
and (zψ)ψ∈Ψn

, respectively. Then solving

(3.4.1) is also equivalent to solving (3.4.3).

We consider the relation of the above two equivalent linear systems (3.4.2)

and (3.4.3). By (3.2.2) and (3.2.4), we know that there exists a unique

matrix Sn transforming the basis 2−nΦn to the other basis Ψn, therefore,

Bn = SnAnS
T
n ,

ηn = Snξn.

This shows the linear system (3.4.3) is exactly

SnAnS
T
n zn = Snξn. (3.4.4)

In the previous section, we established the stability of Ψ inH1
0 (Ω). Thus the

condition number of Bn, i.e. SnAnS
T
n , is uniformly bounded. Sn is called

the preconditioner of An. Without preconditioning, the condition number
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of An increases like O(22n). The uniform boundedness of the condition

number of Bn is also confirmed by the following numerical results:

Table 3.1: Condition Numbers of (Bn)2≤n≤9

n size of Bn λmax(Bn) λmin(Bn) κ(Bn)

2 9× 9 4.54 2.49 1.82

3 49× 49 5.16 1.73 2.98

4 225× 225 5.40 1.40 3.86

5 961× 961 5.50 1.25 4.40

6 3969× 3969 5.76 1.19 4.84

7 16129× 16129 5.93 1.14 5.20

8 65025× 65025 6.07 1.11 5.47

9 261121× 261121 6.19 1.10 5.63

where λmax(Bn), λmin(Bn) and κ(Bn) = λmax(Bn)/λmin(Bn) are the maxi-

mal, minimal eigenvalue and condition number of the stiffness matrix Bn,

respectively.

Stevenson constructed wavelets on the basis of bi-linear splines in [35]. If

(3.4.1) is discretized by Stevenson’s wavelet bases, the condition numbers

of the stiffness matrices, (BStv
n )2≤n≤9, are listed in table 3.2.
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Table 3.2: Condition Numbers of (BStv
n )2≤n≤9

n size of BStv
n λmax(B

Stv
n ) λmin(B

Stv
n ) κ(BStv

n )

2 9× 9 7.16 2.26 3.17

3 49× 49 11.96 2.08 5.76

4 225× 225 13.71 1.83 7.50

5 961× 961 14.20 1.69 8.38

6 3969× 3969 14.71 1.60 9.19

7 16129× 16129 15.55 1.55 10.02

8 65025× 65025 16.04 1.52 10.53

9 261121× 261121 16.46 1.51 10.93

We see that the condition numbers of the stiffness matrices associated with

our wavelet bases are much smaller than those provided by Stevenson.

As we know, the numerical integration consumes lots of CPU time to solve

the general second-order elliptic problem (3.1.1), if finite element method

is applied. To avoid numerical integration, we consider the finite differ-

ence method, whose performance could also be improved by our wavelet

preconditioning.

We first discretize the Poisson equation (3.1.2) on the uniform grid with

h = 1/2n.
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For a function g, let gi,j = g(ih, jh), 1 ≤ i, j ≤ 2n − 1. A second order

scheme is given by the 9-point stencil

1

3h2




1 1 1

1 −8 1

1 1 1



,

i.e., we discretize (3.1.2) as follows:

− (ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 8ui,j+

ui−1,j−1 + ui+1,j−1 + ui−1,j+1 + ui+1,j+1)/(3h
2) = fi,j,

(3.4.5)

where 1 ≤ i, j ≤ 2n − 1. This linear system could be written in the matrix

form:

ÃnUn = h2Fn, (3.4.6)

where

Un = (u1, . . . , u2n−1)
T with uj = (uj,1, . . . , uj,2n−1), 1 ≤ j ≤ 2n − 1

and

Fn = (f1, . . . , f2n−1)
T with fj = (fj,1, . . . , fj,2n−1), 1 ≤ j ≤ 2n − 1.

Note that Ãn in (3.4.6) and An in (3.4.2) are exactly the same by straight-

forward computation. Hence to solve (3.1.2) numerically, we may solve the

linear system (3.4.6) with Sn being the preconditioner. Furthermore, Sn

is also a good preconditioner for proper difference scheme of the general

second-order elliptic equation (3.1.1) if max{a2, b2}/min{a1, b1} is not too

big.
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3.5 Numerical Schemes and Algorithms

In this section, we will show the efficiency of our wavelet preconditioning

on solving general second-order elliptic equation (3.1.1) using the finite

difference method.

A second-order difference scheme for discretizing (3.1.1) is

[(
bi,j−1/2 + bi,j+1/2 + ai−1/2,j + ai+1/2,j

+
ai−1/2,j−1/2 + bi−1/2,j−1/2

2
+
ai−1/2,j+1/2 + bi−1/2,j+1/2

2

+
ai+1/2,j−1/2 + bi+1/2,j−1/2

2
+
ai+1/2,j+1/2 + bi+1/2,j+1/2

2

)
ui,j

−
(
ai−1/2,j +

ai−1/2,j−1/2 − bi−1/2,j−1/2

2
+
ai−1/2,j+1/2 − bi−1/2,j+1/2

2

)
ui−1,j

−
(
ai+1/2,j +

ai+1/2,j+1/2 − bi+1/2,j+1/2

2
+
ai+1/2,j−1/2 − bi+1/2,j−1/2

2

)
ui+1,j

−
(
bi,j−1/2 +

−ai−1/2,j−1/2 + bi−1/2,j−1/2

2
+
−ai+1/2,j−1/2 + bi+1/2,j−1/2

2

)
ui,j−1

−
(
bi,j+1/2 +

−ai+1/2,j+1/2 + bi+1/2,j+1/2

2
+
−ai−1/2,j+1/2 + bi−1/2,j+1/2

2

)
ui,j+1

−ai−1/2,j−1/2 + bi−1/2,j−1/2

2
ui−1,j−1

−ai−1/2,j+1/2 + bi−1/2,j+1/2

2
ui−1,j+1

−ai+1/2,j−1/2 + bi+1/2,j−1/2

2
ui+1,j−1

−ai+1/2,j+1/2 + bi+1/2,j+1/2

2
ui+1,j+1

]/
3 =

1

22n
fi,j for 1 ≤ i, j ≤ 2n − 1,

u0,j = u2n,j = ui,0 = ui,2n = 0, for 0 ≤ i, j ≤ 2n.

(3.5.1)
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Here we take the values of a and b as follows:

ai−1/2,j−1/2 = a(xi−1/2, yj−1/2), bi−1/2,j−1/2 = b(xi−1/2, yj−1/2),

ai,j−1/2 = a(xi, yj−1/2), bi,j−1/2 = b(xi, yj−1/2),

ai−1/2,j = a(xi−1/2, yj), bi−1/2,j = b(xi−1/2, yj),

where xi−1/2 = (i− 1/2)/2n and yj−1/2 = (j − 1/2)/2n for 1 ≤ i, j ≤ 2n.

Note that if a(x, y) = b(x, y) = 1, (3.5.1) reduces to (3.4.5). We write

(3.5.1) in the following matrix form:

Aa,bn Un =
1

22n
Fn. (3.5.2)

The condition number of SnAnS
T
n is uniformly bounded, so is the condition

number of SnA
a,b
n STn given 0 < a1 < a(x, y) < a2 and 0 < b1 < b(x, y) <

b2. Hence (3.5.2) can be solved by PCG algorithm with Sn being the

preconditioner.

In order to further improve the numerical performance, we use the multi-

level algorithm based on the PCG algorithm.

We first introduce some notations to describe the accuracy of our numerical

solutions. For n ≥ 2, let

Un = (un1 , . . . , u
n
2n−1)

T with unj = (unj,1, . . . , u
n
j,2n−1), 1 ≤ j ≤ 2n − 1,

be the approximate solution to (3.5.2). Similarly,

U∗
n = (un,∗1 , . . . , un,∗2n−1)

T with un,∗j = (un,∗j,1 , . . . , u
n,∗
j,2n−1), 1 ≤ j ≤ 2n − 1,
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represents the exact solution of (3.5.2). Suppose uexa is the exact solution

to (3.1.1). Let un,exai,j := uexa(i/2n, j/2n), 1 ≤ i, j ≤ 2n − 1. We define

‖en‖Dn
2

:= h
( 2n−1∑

i=1

2n−1∑

j=1

(uni,j − un,exai,j )2
)1/2

;

‖e∗n‖Dn
2

:= h
( 2n−1∑

i=1

2n−1∑

j=1

(un,∗i,j − un,exai,j )2
)1/2

.

Indeed, ‖ · ‖Dn
2

is the discrete L2 norm of functions defined on Ωh where

h = 1/2n, i.e., given a function f : Ωh → R,

‖f‖Dn
2

= h
( ∑

(x,y)∈Ωh

f 2(x, y)
)1/2

(see, e.g., [6]). Then ‖e∗n‖Dn
2

represents the discretization error in the dis-

crete L2 norm.

If ‖en‖Dn
2
≤ K‖e∗n‖Dn

2
, where K is a constant close to 1, we say that the

error of an approximate solution Un achieves the level of discretization error

in the discrete L2 norm.

For k ≥ 3, let Ikk−1 and Ik−1
k be the bilinear interpolation and full weighting

operators, respectively. These two notations agree with the notations Ih2h

and I2h
h in the case h = 1/2k in [6].

In order to solve the linear system Aa,bn Un = 1
22nFn, we apply the following

multilevel algorithm. Note that Aa,b2 is a matrix of size 9 × 9. We first

solve the equation Aa,b2 U2 = 1
24F2 exactly and get the solution U2. Then for

3 ≤ k ≤ n, perform mk PCG iterations, with initial guess Ikk−1Uk−1, for the

linear system Aa,bk Uk = 1
22kFk to get Uk. Finally, the Un is the approximate

solution we want.

Note that mk (3 ≤ k ≤ n) iterations at level k are equivalent to mk/4
n−k

iterations at level n. Thus, the total number of equivalent iterations at
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level n is computed by the following formula.

Nit =

n∑

k=3

mk

4n−k
. (3.5.3)

3.6 Numerical Examples

In this section, we apply our algorithm to solve (3.1.1) with coefficients

a(x, y) and b(x, y). In comparison, we also solve the following examples

by multigrid V (2, 1)-cycle and full multigrid (FMG) algorithms based on

V (2, 1)-cycle since these two algorithms are commonly seen in multigrid

books. For the multigrid algorithms, we choose usually used Gauss-Seidel

relaxation, bilinear interpolation operator, full weighting restriction opera-

tor and grid 4× 4 as the coarsest grid. See [6] for details.

Example 3.1. Consider the Poisson equation, i.e., (3.1.1) with

a(x, y) = b(x, y) = 1

where (x, y) ∈ Ω. Let the right hand side

f(x, y) = 30(2x2 − 2x+ 2y2 − 2y) (x, y) ∈ Ω.

In this case, the exact solution is

u(x, y) = 30(x− x2)(y − y2) (x, y) ∈ Ω.

Note that ‖f‖L2 = 1. The numerical results are listed in the following

table.
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Table 3.3: Numerical Results of Example 3.1

Level n Grid 2n × 2n Nit ‖en‖Dn
2

‖e∗n‖Dn
2

5 32× 32 3.94 1.63e-4 1.61e-3

6 64× 64 3.98 4.17e-4 4.03e-4

7 128× 128 4.00 1.03e-4 1.01e-4

8 256× 256 4.00 2.66e-5 2.52e-5

9 512× 512 4.00 6.51e-6 6.30e-6

10 1024× 1024 4.00 1.73e-6 1.57e-6

11 2048× 2048 4.00 4.12e-7 3.94e-7

In the above table, the first column lists the level. Given n, the size of

the matrix Aa,bn is (2n − 1)2 × (2n − 1)2. For example, at level 11, Aa,b11 is a

4190209× 4190209 matrix. The second column gives the grid to discretize

(3.1.1).

The total number Nit of equivalent iterations at level n is computed by

(3.5.3) and listed in the third column. For instance, for n = 11 and 3 ≤
k ≤ n, mk = 3. By (3.5.3) we have

Nit =

11∑

k=3

mk

4n−k
≈ 3× 4

3
= 4.00.

We compare our approximate solution with the exact solution on the grid

points and list the error ‖en‖Dn
2

in the fourth column. In comparison,

the fifth column gives the discretization error in the discrete L2 norm.

In practice, we simply perform sufficient PCG iterations to get U∗
n. For
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5 ≤ n ≤ 11, we have

‖en‖Dn
2
≤ 1.11‖e∗n‖Dn

2
,

which shows that the level of discretization error is achieved. Moreover,

‖e∗n+1‖Dn+1
2
/‖e∗n‖Dn

2
≈ 1/4 for 5 ≤ n ≤ 10.

Hence the rate of convergence is 2.

In comparison, we use both multigrid V (2, 1)-cycle and FMG V (2, 1)-cycle

to solve the linear system Aa,bn Un = 1
22nFn. We measure the computational

cost of multigrid algorithm by work unit (WU). A work unit is the cost

of performing one relaxation sweep on the finest grid. For instance, we

estimate one V (2, 1)-cycle by (3 + 0.5) × 4
3
≈ 4.67 WU. In the bracket,

3 WU denotes the computational cost for the three relaxation sweep on

the finest grid. And the restriction and interpolation operations on the

finest grid cost 0.5 WU. Since the algorithm is multilevel, a factor 4/3 is

multiplied to the computational cost on the finest grid. Similarly, one FMG

V (2, 1)-cycle costs 4.67 × 4/3 ≈ 6.23 WU. Since our wavelets are simple,

the computational cost of one PCG iteration is about 2.5 WU according to

the PCG algorithm (2.2) introduced in the previous chapter. In fact, we

run the PCG and multigrid V (2, 1)-cycle algorithms on the same computer.

At level 10, one PCG and one V (2, 1)-cycle consume 0.16 and 0.31 seconds,

respectively. This confirms that our estimation is reasonable for the PCG

algorithm.

At level 11, 5 V (2, 1)-cycles are needed to achieve the discretization error,

which costs 5 × 4.67 = 23.35 WU. Only 1 FMG V (2, 1)-cycle is required

to reach the discretization error, and the computational cost is 1× 6.23 =

6.23 WU. From the above table, it is easily seen that our algorithm costs

4.00×2.5 = 10 WU. Therefore, on solving the Poisson equation, our wavelet
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algorithm is less efficient than FMG algorithm, but more efficient than

multigrid V (2, 1)-cycle.

Example 3.2. Consider (3.1.1) with

a(x, y) = 1 + 0.95 sin(kx)

and

b(x, y) = 1 + 0.95 sin(ky)

where (x, y) ∈ Ω and k = 610. Suppose the exact solution of the equation

is

u(x, y) = t sin(πx) sin(πy)(x2 + y2), (x, y) ∈ Ω,

where t > 0 is so chosen that the f obtain from (3.1.1) with a, b and u

given above satisfying: ‖f‖L2 = 1.

Table 3.4: Numerical Results of Example 3.2

Level n Grid 2n × 2n Nit ‖en‖Dn
2

‖e∗n‖Dn
2

8 256× 256 17.32 3.07e-4 3.07e-4

9 512× 512 17.33 6.82e-5 6.48e-5

10 1024× 1024 17.33 1.81e-5 1.60e-5

11 2048× 2048 17.33 4.45e-6 3.96e-6

In this example, the coefficients a(x, y) and b(x, y) are different. They

oscillate significantly along x and y axes, respectively.
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The approximate solution obtained by our algorithm achieves the level of

discretization error since

‖en‖Dn
2
≤ 1.13‖e∗n‖Dn

2
for 8 ≤ n ≤ 11.

Note that

‖e∗n+1‖Dn+1
2
/‖e∗n‖Dn

2
≈ 1/4 for 9 ≤ n ≤ 10,

which indicates that the rate of convergence is of order 2 when n is large.

This is reasonable because we have to discretize (3.1.1) with very small mesh

size h = 1/2n to obtain an effective solution when a and b are oscillating.

In comparison, at level 11, 25 V(2,1)-cycles are needed to achieve ‖e11‖Dn
2

=

4.49e− 6, and the computational cost is about 116.75 WU. Our algorithm

costs only about 43.33 WU. The multigrid V (2, 1)-cycle algorithm diverges

for 5 ≤ n ≤ 8, hence the FMG V (2, 1)-cycle is not applicable. In order

to apply FMG algorithms, one has to increase the coarsest level, raise

the number of relaxation or change the coarser grid operator. Further

discussion on this issue is beyond the scope of this thesis.

Example 3.3. Consider (3.1.1) with

a(x, y) = 1 + 0.95 sin(kx)

and

b(x, y) = 1 + 0.95 sin(ky)

where (x, y) ∈ Ω and k = 1000. Suppose the exact solution of the equation

is

u(x, y) = t sin(πx) sin(πy)(x2 + y2), (x, y) ∈ Ω,

where t > 0 is so chosen that the f obtain from (3.1.1) with a, b and u

given above satisfying: ‖f‖L2 = 1.
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Table 3.5: Numerical Results of Example 3.3

Level n Grid 2n × 2n Nit ‖en‖Dn
2

‖e∗n‖Dn
2

9 512× 512 18.67 1.19e-5 1.19e-4

10 1024× 1024 18.67 2.87e-5 2.66e-5

11 2048× 2048 18.67 7.17e-6 6.48e-6

Here we raise the number k to 1000. The variable coefficients a(x, y) and

b(x, y) are more oscillating than those in example 3.2. Both the multigrid

V (2, 1)-cycle and FMG V (2, 1)-cycle diverge. Thus other techniques should

be used in the multigrid algorithms to achieve convergence.

Note that

‖en‖Dn
2
≤ 1.11‖e∗n‖Dn

2
for 9 ≤ n ≤ 11.

This shows that our wavelet algorithm still works well, and the compu-

tational cost does not increase much to achieve the level of discretization

error.

Example 3.4. Consider (3.1.1) with a and b given by

a(x, y) = b(x, y) = 1.0 + 0.95 sin(50.7π(x− y)), (x, y) ∈ Ω.

Suppose the exact solution of the equation is

u(x, y) = t sin(πx) sin(πy)(x2 + y2), (x, y) ∈ Ω,

where t > 0 is so chosen that the f obtain from (3.1.1) with a, b and u

given above satisfying: ‖f‖L2 = 1.
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Table 3.6: Numerical Results of Example 3.4

Level n Grid 2n × 2n Nit ‖en‖Dn
2

‖e∗n‖Dn
2

7 128× 128 10.63 1.72e-4 1.72e-4

8 256× 256 13.32 5.22e-5 5.04e-5

9 512× 512 13.33 1.43e-5 1.30e-5

10 1024× 1024 13.33 3.45e-6 3.24e-6

11 2048× 2048 12.00 8.08e-7 8.08e-7

In this example, the coefficients a(x, y) and b(x, y) are the same and oscil-

lating diagonally. This table also indicates that the level of discretization

error is achieved and the convergence rate is 2.

At level 11, 25 V (2, 1)-cycles are needed to reach ‖e11‖D11
2

= 8.08e − 7,

whereas 13 FMG V (2, 1)-cycles are required to achieve the same error.

Hence the computational costs of multigrid V (2, 1)-cycle and FMG V (2, 1)-

cycle are 116.75 WU and 80.99 WU, respectively. From the above table, the

level of discretization error is achived by 12.00 equivalent PCG iterations

which costs 12×2.5 = 30 WU. This shows that our algorithm is much more

efficient than both multigrid V (2, 1)-cycle and FMG V (2, 1)-cycle.

From the above examples, we observe that classical multigrid algorithms

are not efficient on solving (3.1.1) when the coefficients a and b are rough.

Special techniques need to be applied according to the properties of these

coefficients. But the wavelet Galerkin method has good performance, and

the convergence of the corresponding numerical schemes is always guaran-

teed.



Chapter 4

Riesz Bases of Wavelets and

Applications to Fourth-order

Elliptic Equations

4.1 Introduction

Many practical problems in elasticity and fluid dynamics are modeled by

biharmonic equation. Here we consider the bending plate problem in the

case all edges are built-in [38]. This problem is modeled by the two dimen-

sional biharmonic equation with homogeneous boundary conditions. That

is,
{

∆2u(x, y) = f(x, y) (x, y) ∈ Ω,

u(x, y) =
∂

∂n
u(x, y) = 0 (x, y) ∈ ∂Ω,

(4.1.1)

where u and f denote the deflection of the plate and distributed load,

respectively, and Ω denotes the unit square (0, 1) × (0, 1). As usual, ∆

68
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stands for the Laplace operator: ∆ =
∂2

∂x2
+

∂2

∂y2
, and

∂

∂n
represents the

normal derivative.

Many numerical methods have been employed to solve the biharmonic equa-

tion. Altas et al [1] introduced a vector difference scheme of fourth order

and solved the resulting linear system by geometric multigrid method. Al-

gebraic multigrid method was used by Chang and Huang in [7] and Chang,

Wong and Fu in [8] for the linear system arising from a second-order dif-

ference scheme. To apply the finite element methods, Oswald [32] designed

multilevel preconditioners for the biharmonic equation discretized by bicu-

bic C1 splines, while Sun in [37] considered preconditioning techniques for

the linear system based on quadratic splines’ discretization. In the litera-

ture, (4.1.1) is often decoupled into two Poisson equations as follows:

−∆u = ω

−∆ω = f

}
in Ω, u =

∂u

∂n
= 0 on ∂Ω. (4.1.2)

Silvester and Mihajlovic [34] applied multigrid preconditioning to the linear

system resulting from discretizations of the above decoupled system.

As is well-known, the linear system arising from usual discretizations of the

biharmonic equation is ill conditioned. Under mesh refinement, the condi-

tion number of the stiffness matrix deteriorates rapidly like h−4 in general.

Thus, it is a challenging problem to efficiently solve the large linear system.

In this chapter, we investigate stable wavelet bases in Sobolev spaces. We

will show theoretically and numerically that the condition numbers of the

stiffness matrices associated with our wavelet bases are uniformly bounded

and relatively small. Thus, classical iterative methods could have good per-

formance on solving the resulting linear system. By the use of multilevel

idea, we further improve the efficiency of our algorithms. These wavelet
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bases are also applicable to numerical solutions of general fourth-order el-

liptic equations, and our numerical schemes still have superb performance.

Suppose Ω is a (nonempty) open subset of Rs. In the first chapter, we

defined Sobolev spaces Hm(Ω) and Hm
0 (Ω) for m ∈ N. Here we introduce

Sobolev spaces Hµ(Ω) and Hµ
0 (Ω) where µ is a nonnegative real number.

The Fourier transform of a function f ∈ L1(R
s) is defined by

f̂(ξ) :=

∫

Rs

f(x)e−ix·ξdx, ξ ∈ R
s,

where i denotes the imaginary unit. The Fourier tansform can be naturally

extended to functions in L2(R
s). By Plancherel theorem (see, e.g., [41]),

we have ‖f̂‖L2 = (2π)s/2‖f‖L2.

For µ ≥ 0, we denote by Hµ(Rs) the Sobolev space of all functions f ∈
L2(R

s) such that the semi-norm

|f |Hµ(Rs) :=
[ 1

(2π)s

∫

Rs

|f̂(ξ)|2|ξ|2µdξ
]1/2

is finite. The space Hµ(Rs) is a Hilbert space with the inner product given

by

〈f, g〉Hµ(Rs) :=
1

(2π)s

∫

Rs

f̂(ξ)ĝ(ξ)(1 + |ξ|2µ)dξ, f, g ∈ Hµ(Rs).

The norm in Hµ(Rs) is given by ‖f‖Hµ(Rs) = (〈f, f〉Hµ(Rs))
1/2. This newly

defined Hµ(Rs) for µ ∈ N0 agrees with the Sobolev space defined in the

first chapter. For a (nonempty) open subset Ω of R
s, we use Hµ

0 (Ω) to

denote the closure of C∞
c (Ω) in Hµ(Rs).
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4.2 Wavelets in the One-dimensional Space

In this section we construct stable wavelet basis of H2
0 (0, 1), and then in

the next section adapt it to the unit square Ω by tensor product so that we

obtain a stable wavelet basis of H2
0 (Ω).

For a positive integer m, let Mm be the B-spline of order m, which is the

convolution of m copies of χ[0,1], the characteristic function of the interval

[0, 1]. More precisely, M1 := χ[0,1] and, for m ≥ 2,

Mm(x) =

∫ 1

0

Mm−1(x− t)dt, x ∈ R.

We use cubic splines to construct the approximate space Ṽn of H2
0 (0, 1).

Consider the B-spline of order four

M4(x) =





1

6
x3 for 0 ≤ x < 1,

−1

2
x3 + 2x2 − 2x+

2

3
for 1 ≤ x < 2,

1

2
x3 − 4x2 + 10x− 22

3
for 2 ≤ x < 3,

−1

6
x3 + 2x2 − 8x+

32

3
for 3 ≤ x ≤ 4,

0 for R \ [0, 4],

and the boundary element

φb(x) =





1

12
(−11x3 + 18x2) for 0 ≤ x < 1,

1

12
(7x3 − 36x2 + 54x− 18) for 1 ≤ x < 2,

1

6
(−x3 + 9x2 − 27x+ 27) for 2 ≤ x ≤ 3,

0 for R \ [0, 3].
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Figure 4.1: B-spline of Order 4 and Boundary Element

Note that

M4(1) = 1/6,M4(2) = 2/3,M4(3) = 1/6

φb(1) = 7/12, φb(2) = 1/6.

(4.2.1)

Furthermore,

M4(x) =
1

8

(
M4(2x)+4M4(2x−1)+6M4(2x−2)+4M4(2x−3)+M4(2x−4)

)
,

φb(x) =
1

16

(
4φb(2x) + 11M4(2x) + 8M4(2x− 1) + 2M4(2x− 2)

)
.
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These two refinement equations guarantee that the following approximate

subspaces Ṽn’s are nested. For x ∈ [0, 1], n ≥ 3, define

φ̃n,j(x) :=





2n/2φb(2
nx) j = 1,

2n/2M4(2
nx− j + 2) j = 2, . . . , 2n − 2,

2n/2φb(2
n(1− x)) j = 2n − 1.

Let Φ̃n := {φ̃n,j, j = 1, 2, . . . , 2n − 1} and Ṽn := span{Φ̃n}. Note that

φb ∈ Hµ(R) for 0 < µ < 5/2, M4 ∈ Hµ(R) for 0 < µ < 7/2, and both φb

and M4 are compactly supported. Hence Ṽn ⊂ Hµ
0 (0, 1) for 0 < µ < 5/2.

It is easily seen that

• Ṽ3 ⊂ Ṽ4 ⊂ Ṽ5 · · · ;

•
∞⋃

n=3

Ṽn is dense in Hµ
0 (0, 1) for 0 < µ < 5/2;

• dim(Ṽn) = 2n − 1.

Moreover,

Proposition 4.1. For n ≥ 3, Φ̃n is a Riesz basis of Ṽn in the L2 space.

Next we need to construct suitable wavelet space W̃n such that Ṽn+1 =

Ṽn + W̃n for all n ≥ 3. For this end, let P̃n be the linear projection from

Ṽn+1 onto Ṽn given as follows: For fn+1 ∈ Ṽn+1, fn := P̃nfn+1 is the unique

element in Ṽn determined by the interpolation condition

fn(k/2
n) = fn+1(k/2

n) k = 1, 2, . . . , 2n − 1.

Then the following proposition holds.
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Proposition 4.2. For 3 ≤ m < n, ‖P̃m · · · P̃n−1‖ ≤ C2(n−m)/2, where C is

a constant independent of m and n.

See section 6 in [27] for the proof.

Let W̃n be the kernel ker(P̃n) of P̃n in Ṽn+1. W̃n is generated by the following

wavelets:

ψ(x) := −1

4
M4(2x) +M4(2x− 1)− 1

4
M4(2x− 2),

ψb(x) := φb(2x)−
1

4
M4(2x).
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Figure 4.2: Wavelets ψ and ψb
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In other words, W̃n = span{Γ̃n} := span{ψ̃n,j, j = 1, 2, . . . , 2n} where

ψ̃n,j(x) :=





2n/2ψb(2
nx) j = 1,

2n/2ψ(2nx− j + 2) j = 2, . . . , 2n − 1,

2n/2ψb(2
n(1− x)) j = 2n

for x ∈ [0, 1] and n ≥ 3. Indeed, {ψ̃n,j, j = 1, 2, . . . , 2n} is linearly inde-

pendent. By (4.2.1), we know that ψ(i) = ψb(i) = 0 for all i ∈ Z, thus

P̃nψ̃n,j = 0.

Furthermore,

Proposition 4.3. For n ≥ 3, Γ̃n is a Riesz basis of W̃n in the L2 space.

An application of theorem 4.9 gives the following result.

Theorem 4.4. For 1/2 < µ < 5/2, the set

{2−3µΦ̃3}
⋃ ∞⋃

n=3

{2−nµΓ̃n}

forms a Riesz basis of Hµ
0 (0, 1).

Since 1/2 < 2 < 5/2, in particular, {2−6Φ̃3}
⋃⋃∞

n=3{2−2nΓ̃n} is a stable

wavelet basis of H2
0 (0, 1).

4.3 Wavelets in the Two-dimensional Space

In order to obtain a stable wavelet basis ofH2
0 (Ω), we use the tensor product

denoted by ⊗. For two functions v and w defined on [0, 1], we use v⊗w to
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denote the function on [0, 1]2 given by

v ⊗ w(x, y) := v(x)w(y), 0 ≤ x, y ≤ 1.

For n ≥ 3, let Jn := {j = (j1, j2) ∈ Z2 : 1 ≤ j1, j2 ≤ 2n − 1}. Define

φn,j := φ̃n,j1 ⊗ φ̃n,j2, j ∈ Jn;

Φn := {φn,j, j ∈ Jn};

Vn := span{Φn}.

(4.3.1)

Vn’s have similar properties as their counterparts Ṽn’s, i.e.,

• V3 ⊂ V4 ⊂ V5 · · · ;

•
∞⋃

n=3

Vn is dense in Hµ
0 (Ω) for 0 < µ < 5/2;

• dim(Vn) = (2n − 1)(2n − 1).

Furthermore,

Proposition 4.5. For n ≥ 3, Φn is a Riesz basis of Vn in the L2 space.

Let Pn be the linear projection from Vn+1 onto Vn given as follows: For

fn+1 ∈ Vn+1, fn := Pnfn+1 is the unique element in Vn determined by the

interpolation condition

fn(k/2
n) = fn+1(k/2

n) k ∈ Jn.

Similarly, the following proposition holds.

Proposition 4.6. For 3 ≤ m < n, ‖Pm · · ·Pn−1‖ ≤ C2(n−m), where C is

a constant independent of m and n.
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The wavelet space is constructed as Wn := ker(Pn). Let

Γ
′

n :=
{
φ̃n,j1 ⊗ ψ̃n,k2 : 1 ≤ j1 ≤ 2n − 1, 1 ≤ k2 ≤ 2n

}
;

Γ
′′

n :=
{
ψ̃n,k1 ⊗ φ̃n,j2 : 1 ≤ j2 ≤ 2n − 1, 1 ≤ k1 ≤ 2n

}
;

Γ
′′′

n :=
{
ψ̃n,k1 ⊗ ψ̃n,k2 : 1 ≤ k1, k2 ≤ 2n

}
.

Then

Proposition 4.7. For n ≥ 3, Γn := Γ
′

n

⋃
Γ

′′

n

⋃
Γ

′′′

n is a Riesz basis of Wn

in the L2 space.

An application of theorem 4.9 gives the following result.

Theorem 4.8. For 1 < µ < 5/2, the set

{2−3µΦ3}
⋃ ∞⋃

n=3

{2−nµΓn}

forms a Riesz basis of Hµ
0 (Ω).

In particular, {2−6Φ3}
⋃⋃∞

n=3{2−2nΓn} is a Riesz basis of H2
0 (Ω). This

wavelet basis will be used to solve the biharmonic equation on Ω.

Note that the upper bound of ‖Pm · · ·Pn−1‖ is C2(n−m) which is slightly

different from the upper bound C2(n−m)/2 of ‖P̃m · · · P̃n−1‖ in the one-

dimensional case. This results in the difference of the lower bound 1 of

µ in this theorem and the lower bound 1/2 of µ in theorem 4.4.

4.4 Stable Wavelet Bases in Hilbert Spaces

In this section, we give a characterization of Riesz bases of Hilbert spaces

equipped with some induced norms.
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Let H be a Hilbert space equipped with norm ‖ · ‖. Suppose that V0 = 0

and (Vn)n=1,2,... is a nested family of closed subspaces of H , i.e., Vn ⊂ Vn+1

for all n ∈ N. Assume that
⋃∞
n=1 Vn is dense in H . Fix µ > 0 and let Hµ

be a linear subspace of H . Suppose Hµ itself is a normed linear space with

norm ‖ · ‖Hµ
. For n ∈ N0, let Pn be a linear projection from Vn+1 onto Vn,

and Wn be the kernel space of Pn. Then Vn+1 is the direct sum of Vn and

Wn. The following theorem characterizes the Riesz basis of Hµ.

Theorem 4.9. If the following four conditions are satisfied:

• If f ∈ Hµ has a decomposition f =
∑∞

n=1 fn with fn ∈ Vn, then

‖f‖Hµ
≤ A1

( ∞∑

n=1

[2nµ‖fn‖]2
)1/2

,

where A1 is a positive constant independent of n;

• For each f ∈ Hµ, there exists a decomposition f =
∑∞

n=1 fn with

fn ∈ Vn such that

A2

( ∞∑

n=1

[2nµ‖fn‖]2
)1/2

≤ ‖f‖Hµ
,

where A2 is a positive constant independent of n;

• Suppose that 0 < ν < µ and there exists a positive constant B such

that

‖Pm · · ·Pn−1‖ ≤ B2ν(n−m)

for all m,n ∈ N with m < n;

• {ψn,k : k ∈ Kn} is a Riesz basis of Wn in H.

Then {2−mµψm,k : m ∈ N0, k ∈ Km} is a Riesz basis of Hµ.
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See section 5 in [27] for the proof of this theorem.

Let Q̃n : L2(0, 1) → Ṽn be the L2-orthogonal projection onto Ṽn (n ≥ 3)

with 〈Q̃nũ, ṽ〉 = 〈ũ, ṽ〉, ũ, ṽ ∈ L2(0, 1) and Q̃0 := 0. Similarly, in the two-

dimensional space, let Qn : L2(Ω) → Vk be the L2-orthogonal projection

onto Vn (n ≥ 3) with 〈Qnu, v〉 = 〈u, v〉, u, v ∈ L2(Ω) and Q0 := 0.

The following inequalities have been established in section 4 of [27].

C̃1‖f̃‖Hµ ≤
(
[23µ‖Q̃3f̃‖L2 ]

2 +

∞∑

n=4

[2nµ‖(Q̃n − Q̃n−1)f̃‖L2]
2
)1/2

≤ C̃2‖f̃‖Hµ

(4.4.1)

hold for all f̃ ∈ Ṽn with 0 < µ < 5/2 where C̃1 and C̃2 are two positive

constants independent of f̃ ;

C1‖f‖Hµ ≤
(
[23µ‖Q3f‖L2]

2 +
∞∑

n=4

[2nµ‖(Qn −Qn−1)f‖L2]
2
)1/2

≤ C2‖f‖Hµ

(4.4.2)

hold for all f ∈ Vn with 0 < µ < 5/2 where C1 and C2 are two positive

constants independent of f .

For 1/2 < µ < 5/2, we take Hµ = Hµ
0 (0, 1) and H = L2(0, 1) in the

one-dimensional case. Let us check the four conditions of theorem 4.9.

The norm equivalence (4.4.1) and its proof in [27] indicate that the first two

conditions are satisfied. Proposition 4.2 gives the third condition with ν =

1/2. The last condition holds true because of proposition 4.3. Therefore,

theorem 4.9 implies theorem 4.4.

Similarly, in the two-dimensional case, we take Hµ = Hµ
0 (Ω) and H =

L2(Ω) for 1 < µ < 5/2. Then an application of theorem 4.9 with ν = 1

gives theorem 4.8 since the four conditions are fulfilled because of the norm

equivalence (4.4.2), proposition 4.6 and proposition 4.7.
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4.5 Condition Numbers of the Stiffness Ma-

trices

In this section, we apply the wavelet bases constructed in the previous sec-

tion to numerical solutions of the biharmonic equation (4.1.1). We always

assume n ≥ 3.

The variational problem of the biharmonic equation (4.1.1) is to find u ∈
H2

0 (Ω) such that

a(u, v) = 〈f, v〉 ∀v ∈ H2
0 (Ω), (4.5.1)

where a(u, v) = 〈∆u,∆v〉. For u, v ∈ H2
0 (Ω), it is easy to verify that

a(u, v) ≤ ‖u‖H2
0 (Ω)‖v‖H2

0 (Ω) and a(u, v) ≥ C‖u‖2
H2

0(Ω)
where C is a constant

independent of u. Hence a(u, v) is continuous and coercive, and by the Lax-

Milgram theorem, existence and uniqueness of the solution are guaranteed

for (4.5.1).

In order to solve (4.5.1), we take the finite dimensional subspace Vn to

approximate H2
0 (Ω) and seek un ∈ Vn such that

〈∆un,∆v〉 = 〈f, v〉 ∀v ∈ Vn. (4.5.2)

Recall that Φn = {φn,j, j ∈ Jn} is a basis of Vn. The argument in the first

chapter guides us to look for the column vector yn = (yφ)φ∈Φn
satisfying

Anyn = ξn, (4.5.3)

where An = (〈∆σ,∆φ〉)σ,φ∈Φn
and ξn is the column vector (〈f, φ〉)φ∈Φn

.

Then we obtain an approximate solution un =
∑

φ∈Φn
yφφ in Vn. The

condition number κ(An) of the matrix An is of the size O(24n). Hence, it

would be very difficult to solve the linear system (4.5.3) when n is large.
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Now we employ the wavelet basis Ψn := {2−6Φ3}
⋃⋃n−1

k=3{2−2kΓk} of Vn

constructed in the previous section. Similarly, we are looking for the column

vector zn = (zψ)ψ∈Ψn
satisfying

Bnzn = ηn, (4.5.4)

where Bn = (〈∆χ,∆ψ〉)χ,ψ∈Ψn
and ηn is the column vector (〈f, ψ〉)ψ∈Ψn

.

Then the approximate solution in Vn is un =
∑

ψ∈Ψn
zψψ.

Note that Φn and Ψn are two bases of Vn, there exists a unique matrix Sn,

called wavelet transform, which transforms Φn to Ψn. Therefore,

Bn = SnAnS
T
n ,

ηn = Snξn.

Hence linear systems (4.5.4) and (4.5.3) are equivalent if we set yn = STn zn.

Actually, we will use multilevel algorithm based on the following modified

PCG algorithm.
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Algorithm 4.1 Modified PCG Algorithm

1: Given initial guess y0
n, r0 ← ξn − Any0

n

2: p0 ← r0

3: for k = 1, 2, . . . do

4: αk−1 ← rTk−1pk−1/p
T
k−1Anpk−1

5: ykn ← yk−1
n + αk−1pk−1

6: rk ← rk−1 − αk−1Anpk−1

7: sk ← Snrk

8: If ‖sk‖2 < τ , stop

9: else

10: sk ← STn sk

11: pk ← sk −
sTkAnpk−1

pTk−1Anpk−1
pk−1

12: end for

The difference between this modified PCG algorithm and the former PCG

algorithm in the second chapter is the stopping criterion. This modified

PCG algorithm stops when the l2 norm of the residue of equation (4.5.4) is

less than some tolerance τ . Whereas the former PCG algorithm stops when

the l2 norm of the residue of equation (4.5.3) is less than some tolerance τ .

Since {2−6Φ3}
⋃⋃∞

n=3{2−2nΓn} is a Riesz basis of H2
0 (Ω), the condition

number κ(Bn) of the matrix Bn is uniformly bounded by proposition 1.1.

This is also confirmed by the numerical computation. The condition num-

ber κ(Bn) is computed for 4 ≤ n ≤ 9 and listed in table 4.1.
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Table 4.1: Condition Numbers of the Preconditioned Matrices

n size of Bn λmax(Bn) λmin(Bn) κ(Bn)

4 225× 225 2.7160 0.07996 33.97

5 961× 961 2.7883 0.07995 34.88

6 3969× 3969 2.8082 0.07994 35.13

7 16129× 16129 2.8259 0.07994 35.35

8 65025× 65025 2.8434 0.07994 35.57

9 261121× 261121 2.8489 0.07994 35.64

A multigrid preconditioner was proposed in [34] for the decoupled bihar-

monic system (4.1.2). From tables 1, 2 and 3 in [34], we can see that the

condition number of the preconditioned matrix grows like O(h−1), where h

is the mesh size. In particular, for piecewise linear approximation on the

48× 48 grid, the condition number already exceeds 80. In comparison, the

condition number κ(Bn) of the stiffness matrix associated with our wavelet

basis is uniformly bounded. For the 512× 512 grid (n = 9), κ(B9) < 36.

To estimate the accuracy of our numerical solutions, we introduce the fol-

lowing notations. Let z∗n := (z∗ψ)ψ∈Ψn
be the exact solution to the equation

Bnzn = ηn and u∗n =
∑

ψ∈Ψn
z∗ψψ. Suppose u is the exact solution to the

biharmonic equation (4.1.1). Let e∗n := u∗n − u. Then ‖∆e∗n‖L2 and ‖e∗n‖L2

represent the discretization errors in the energy norm and L2 norm, respec-

tively. Suppose un =
∑

ψ∈Ψn
zψψ, where zn := (zψ)ψ∈Ψn

is an approximate

solution to equation (4.5.4). Let en := un−u. Similarly, let ẽ∗n := u∗n−u∗n+1

and ẽn := un − un+1. Then

Proposition 4.10. ‖∆e∗n‖L2 ≤ ‖∆en‖L2.
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Proof.

‖∆en‖L2 = 〈∆(un − u),∆(un − u)〉

= 〈∆(un − u∗n + u∗n − u),∆(un − u∗n + u∗n − u)〉

= ‖∆(un − u∗n)‖L2 + 2〈∆(u∗n − u),∆(un − u∗n)〉+ ‖∆e∗n‖L2

Note that un, u
∗
n ∈ Vn, so is un− u∗n. Since u and u∗n satisfy the variational

formulation (4.5.2), we have

〈∆u∗n,∆(un − u∗n)〉 = 〈f, un − u∗n〉 = 〈∆u,∆(un − u∗n)〉.

Thus, 〈∆(u∗n − u),∆(un − u∗n)〉 = 0. Consequently,

‖∆en‖L2 = ‖∆(un − u∗n)‖L2 + ‖∆e∗n‖L2 ≥ ‖∆e∗n‖L2

If ‖∆en‖L2 ≤ K‖∆e∗n‖L2 , where K is a constant close to 1, we say that

the error of an approximate solution un achieves the level of discretization

error in the energy norm. Similarly, the error of un achieves the level of

discretization error in the L2 norm if ‖en‖L2 ≤ K‖e∗n‖L2 for K is close to 1.

4.6 Numerical Examples: Error Estimates

in the Energy Norm

In physics, ∆u has its own meaning where u is the solution of (4.1.1).

For example, in fluid mechanics, −∆u represents the vorticity of the fluid

where u describes the stream function. In many cases, people only need

to look for an approximation of ∆u. Thus, it is important to design the
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efficient algorithms for computing approximate solutions that achieves the

level of discretization error in the energy norm ‖∆en‖L2 . In this section,

we will provide such algorithm and give sufficient examples to demonstrate

its efficiency.

For k > 3, let Ek be the linear mapping from RΨk−1 to RΨk that sends

(aψ)ψ∈Ψk−1
to (bψ)ψ∈Ψk

, where

bψ :=

{
aψ for ψ ∈ Ψk−1,

0 for ψ ∈ Ψk \Ψk−1.

(4.6.1)

We use Pk to denote the mapping from RΨk to Vk that sends (aψ)ψ∈Ψk
to

∑
ψ∈Ψk

aψψ.

We wish to solve the linear system (4.5.4), i.e., Bnzn = ηn, and then obtain

an approximate solution un. For 4 ≤ k ≤ n, let z
(l)
k be the approximate so-

lution to Bkzk = ηk when lth PCG iteration is performed. Correspondingly,

the residue r
(l)
k = ηk −Bkz

(l)
k . We apply the following multilevel algorithm.

Algorithm 4.2 Solving Bnzn = ηn

1: Solve B3z3 = η3 exactly and denote the solution by z
(m3)
3 . Then u3 =

P3z
(m3)
3

2: Perform 2 PCG iterations for B4z4 = η4 with initial guess E4z(m3)
3 to

get z
(2)
4 . ‖∆ẽ3‖L2 ← ‖∆(u3 − P4z

(2)
4 )‖L2

3: for k = 4 to n do

4:

ǫn,k ←
k

n

‖∆ẽ3‖L2

22n−5

5: Perform mk PCG iterations for Bkzk = ηk with initial guess Ekz(mk−1)
k−1

to get z
(mk)
k such that ‖r(mk)

k ‖2 ≤ ǫn,k.

6: end for
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Hence, z
(mn)
n is the approximate solution to Bnzn = ηn and un = Pnz(mn)

n

is the approximate solution to the biharmonic equation. Set rn = r
(mn)
n .

Remark 1. The size of B3 is only 49 × 49. We can solve B3z3 = η3

exactly. In practice, we could perform sufficient CG iterations with initial

guess vector 0. Therefore, the initial residue for Bnzn = ηn is r0
n = ηn.

Remark 2. Since our numerical scheme is efficient, 2 PCG iterations are

good enough to obtain an approximate solution to B4z4 = η4 with initial

guess E4z(m3)
3 for computing ‖∆ẽ3‖L2 .

Remark 3. The factor k/n in the threshold ǫn,k comes from the fact that

more iterations performed on coarser grid lead to less iterations on finer

grid. In practice, k/n could be replaced by a positive increasing function

a(k) with a(n) = 1.

Remark 4. Recall that the error of an approximate solution un achieves

the level of discretization error in the energy norm, if ‖∆en‖L2 ≤ K‖∆e∗n‖L2

for some K close to 1. Since the rate of convergence is of order 2 for

the energy norm, i.e., ‖∆e∗n‖L2 ≤ M12
−2n for some positive constant M1

independent of n, then ‖∆en‖L2 ≤ M2−2n for some positive constant M

independent of n. ‖∆en‖L2 ≤M2−2n holds if the residue ‖rn‖2 ≤M22
−2n.

This motivates us to choose the factor ‖∆ẽ3‖L2/2
2n−5 in the threshold ǫn,k.

Indeed, recall that zn and z∗n are the approximate and exact solution to

Bnzn = ηn, respectively. Since {2−6Φ3}
⋃⋃∞

k=3{2−2kΓk} is a Riesz basis of

H2
0 (Ω), we have

C1‖zn − z∗n‖2 ≤ ‖∆(Pn(zn − z∗n))‖L2 ≤ C2‖zn − z∗n‖2,

i.e.,

C1‖zn − z∗n‖2 ≤ ‖∆(un − u∗n)‖L2 ≤ C2‖zn − z∗n‖2, (4.6.2)
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Let the residue rn = ηn − Bnzn. Then Bn(zn − z∗n) = Bnzn − ηn = −rn.
Since the condition number of Bn is uniformly bounded, there exist two

positive numbers C3 and C4 independent of n such that

C3‖zn − z∗n‖2 ≤ ‖rn‖2 ≤ C4‖zn − z∗n‖2,

This in connection with (4.6.2) gives

C1

C4
‖rn‖2 ≤ ‖∆(un − u∗n)‖L2 ≤

C2

C3
‖rn‖2.

Note that en − e∗n = un − u∗n, thus

‖∆en‖L2 − ‖∆e∗n‖L2 ≤ ‖∆(en − e∗n)‖L2 = ‖∆(un − u∗n)‖L2 ≤
C2

C3
‖rn‖2.

This shows

‖∆en‖L2 ≤ ‖∆e∗n‖L2 +
C2

C3
‖rn‖2.

Consequently, ‖rn‖2 ≤ M22
−2n leads to ‖∆en‖L2 ≤M2−2n.

Note that mk (4 ≤ k ≤ n) iterations at level k are equivalent to mk/4
n−k

iterations at level n. Thus, the total number of equivalent iterations at

level n is computed by the following formula.

Nit =

n∑

k=4

mk

4n−k
. (4.6.3)

We are in a position to give numerical examples to show that the above

algorithm is efficient. The following computation is conducted on a Lenovo

desktop with 2 GB memory and an Intel Core 2 CPU 6400 at 2.13 GHz.

Example 4.1. Consider the biharmonic equation (4.1.1) on Ω with f given

by

f(x, y) = tπ4[4 cos(2πx) cos(2πy)− cos(2πx)− cos(2πy)], (x, y) ∈ Ω,
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where t > 0 is so chosen that ‖f‖L2 = 1. The exact solution of the equation

is

u(x, y) = t[1− cos(2πx)][1− cos(2πy)]/16, (x, y) ∈ Ω.

Table 4.2: Numerical Results of Example 4.1

Level n Grid 2n × 2n Nit ‖r0
n‖2 ‖rn‖2 ‖∆en‖L2 ‖∆e∗n‖L2 Time(s)

5 32× 32 1.75 5.64e-3 1.01e-5 2.23e-5 2.00e-5 0.001

6 64× 64 1.81 5.64e-3 1.72e-6 5.21e-6 4.99e-6 0.002

7 128× 128 1.88 5.64e-3 3.02e-7 1.28e-6 1.25e-6 0.007

8 256× 256 1.80 5.64e-3 7.25e-8 3.22e-7 3.11e-7 0.029

9 512× 512 1.81 5.64e-3 1.32e-8 8.02e-8 7.79e-8 0.133

10 1024× 1024 1.50 5.64e-3 9.31e-9 2.12e-8 1.95e-8 0.531

In the above table, the third column gives the total number Nit of equivalent

iterations at level n computed by (4.6.3). For instance, for n = 10 and

4 ≤ k ≤ n, mk iterations are required for the equation Bkzk = ηk, where

m4 = 15, m5 = 13, m6 = 8, m7 = 5, m8 = 2, m9 = 1, and m10 = 1. By

(4.6.3) we have

Nit =

n∑

k=4

mk

4n−k
=

15

4096
+

13

1024
+

8

256
+

5

64
+

2

16
+

1

4
+ 1 ≈ 1.50.

The fourth column of the above table lists the initial residue, and the fifth

column lists the residue when the algorithm terminates. Note that ‖r0
n‖2

depends on n. But the first three digits of ‖r0
n‖2 are the same for n ≥ 5.

The sixth column gives the err ‖∆en‖L2 of the approximate solution in the

energy norm. For the purpose of comparison, we lists the discretization
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error ‖∆e∗n‖L2 in the energy norm in the seventh column. Recall that

e∗n = u∗n − u and u∗n = Pnz∗n, where z∗n is the exact solution to equation

(4.5.4), which is obtained by sufficiently many iterations. We find that

‖∆en‖L2 ≤ 1.12‖∆e∗n‖L2 for 5 ≤ n ≤ 10.

This shows that the approximate solution obtained by our algorithm achieves

the level of discretization error. Moreover, we see that

‖∆e∗n+1‖L2/‖∆e∗n‖L2 < 0.2506 ≈ 1/4 for 5 ≤ n ≤ 9

which indicates that the rate of convergence is of order 2.

The last column gives the CPU time in seconds for solving the linear system

of equations Bnzn = ηn. At level n = 10, the matrix B10 has size 1046529×
1046529. Our algorithm takes only 0.531 second to solve the equation

B10z10 = η10.

Example 4.2. For (x, y) ∈ R
2, let z := (x − 1/2)2 + (y − 1/2)2 − 1/4.

Consider the biharmonic equation (4.1.1) on Ω with f given by

f(x, y) = t[(4z + 1)2 sin z + 16(4z + 1)(1− cos z) + 32(z − sin z)]

for z < 0, and f(x, y) = 0 for z ≥ 0, where t > 0 is so chosen that

‖f‖L2 = 1. The exact solution is given by u(x, y) = t(sin z − z + z3/3) for

(x, y) ∈ Ω.

The following table lists the numerical results. Note that in this example,

we have

‖∆en‖L2 ≤ 1.11‖∆e∗n‖L2 for 5 ≤ n ≤ 10.

Thus the level of discretization error in the energy norm is achieved.
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Table 4.3: Numerical Results of Example 4.2

Level n Grid 2n × 2n Nit ‖r0
n‖2 ‖rn‖2 ‖∆en‖L2 ‖∆e∗n‖L2 Time(s)

5 32× 32 2.00 5.19e-3 9.35e-6 2.89e-5 2.77e-5 0.001

6 64× 64 1.81 5.19e-3 2.32e-6 7.47e-6 6.78e-6 0.002

7 128× 128 1.92 5.19e-3 3.72e-7 1.76e-6 1.69e-6 0.007

8 256× 256 1.60 5.19e-3 1.35e-7 4.50e-7 4.21e-7 0.026

9 512× 512 1.51 5.19e-3 2.95e-8 1.16e-7 1.05e-7 0.122

10 1024× 1024 1.43 5.19e-3 9.61e-9 2.84e-8 2.63e-8 0.523

Example 4.3. Consider the biharmonic equation (4.1.1) with f given by

f(x, y) = te(3x−y)
2

, (x, y) ∈ Ω,

where t > 0 is so chosen that ‖f‖L2 = 1.

In this case, the exact solution is unknown. We list the error ‖∆ẽn‖L2

of the approximate solutions between consecutive levels and ‖∆ẽ∗n‖L2 for

comparison.
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Table 4.4: Numerical Results of Example 4.3

Level n Grid 2n × 2n Nit ‖r0
n‖2 ‖rn‖2 ‖∆ẽn‖L2 ‖∆ẽ∗n‖L2 Time(s)

5 32× 32 2.75 1.15e-3 7.02e-6 3.58e-5 3.58e-5 0.001

6 64× 64 3.13 1.15e-3 1.83e-6 8.89e-6 8.87e-6 0.002

7 128× 128 3.25 1.15e-3 4.20e-7 2.20e-6 2.20e-6 0.009

8 256× 256 3.31 1.15e-3 8.23e-8 5.51e-7 5.51e-7 0.048

9 512× 512 2.27 1.15e-3 4.98e-8 1.38e-7 1.38e-7 0.157

The sixth column and seventh column are almost the same. Hence, the

approximate solution achieves the level of discretization error.

Example 4.4. Let (ci1,i2)0≤i1,i2≤210 be a random array of real numbers be-

tween 0 and 1. Consider the biharmonic equation (4.1.1) with f being a

piecewise constant function given by

f(x, y) = tci1,i2 for
i1
210

< x <
i1 + 1

210
and

i2
210

< y <
i2 + 1

210
.

where t > 0 is so chosen that ‖f‖L2 = 1.

In this example, the exact solution is unknown. We list ‖∆ẽn‖L2 and

‖∆ẽ∗n‖L2 in the following table showing the numerical results.
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Table 4.5: Numerical Results of Example 4.4

Level n Grid 2n × 2n Nit ‖r0
n‖2 ‖rn‖2 ‖∆ẽn‖L2 ‖∆ẽ∗n‖L2 Time(s)

5 32× 32 2.75 5.55e-3 8.78e-6 3.31e-5 3.31e-5 0.001

6 64× 64 3.06 5.55e-3 2.01e-6 8.29e-6 8.29e-6 0.002

7 128× 128 1.98 5.55e-3 9.55e-7 2.08e-6 2.08e-6 0.006

8 256× 256 1.99 5.55e-3 2.04e-7 5.35e-7 5.35e-7 0.032

9 512× 512 1.93 5.55e-3 6.20e-8 1.42e-7 1.42e-7 0.139

For relative residue reduction in the l2 norm, the above numerical examples

show that our algorithm requires considerably fewer iterations than those

reported in [32] and [37]. Let us discuss relative residue reduction in l∞

norm given by the quantity τn := ‖rn‖∞/‖r0
n‖∞. In the following table, for

ǫ = 10−4, 10−5 and 10−6, we list the average number of iterations needed

for τn < ǫ in the above four examples.

Table 4.6: Relative Residue Reduction in l∞ Norm

Level n Grid 2n × 2n τn < 10−4 τn < 10−5 τn < 10−6

8 256× 256 1.8 3.0 5.0

9 512× 512 1.4 2.0 2.9

10 1024× 1024 1.3 1.5 1.9

The relative residue reduction in the l∞ norm was discussed in [34] for

the 258 × 258 grid discretized by piecewise linear elements. It required 4

BICGSTAB iterations to get τ8 < 6.2×10−4 and 20 BICGSTAB iterations
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to get τ8 < 1.2 × 10−6. Further, 3 multigrid V (1, 1) cycles per iteration

were performed for preconditioning (see Table 4 iii in [34]). The algebraic

multigrid method was used in [7] and [8]. It was reported in Table 10 of [7]

that more than 40 iterations were needed for the relative residue reduction

in the l∞ norm to be less than 10−6.

We remark that residue reductions are not fully comparable, because the

corresponding matrices are different in different contexts. We think that

it is more appropriate to compare the efficiency of numerical algorithms to

achieve the level of discretization error. The wavelet Galerkin method we

propose has the advantage that the number of iterations needed to achieve

the level of discretization error will not increase as the mesh size decreases.

In comparison, in most of the aforementioned papers, the number of itera-

tions would increase as the mesh size decreases.

4.7 Numerical Examples: Error Estimates

in the L2 and L∞ Norms

In this section we investigate numerical solutions of the biharmonic equa-

tion and estimate errors of the approximate solutions in the L2 and L∞

norms. We simply perform more iterations to achieve the level of discretiza-

tion error. For the examples considered in this section, about 7 equivalent

PCG iterations based on our wavelets will be sufficient.

The following example was considered in [1]. We define

‖en‖∞ := max{|en(i1/2n, i2/2n)| : 0 ≤ i1, i2 ≤ 2n}

which agrees with the one given in [1].
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Example 4.5. Consider the biharmonic equation (4.1.1) with f given by

f(x, y) = 16π4[4 cos(2πx) cos(2πy)− cos(2πx)− cos(2πy)], (x, y) ∈ Ω,

The exact solution of the equation is

u(x, y) = [1− cos(2πx)][1− cos(2πy)], (x, y) ∈ Ω.

The numerical results are listed in the following table.

Table 4.7: Error Estimates in the Maximum Norm

Level n Grid 2n × 2n ‖eDn ‖∞ Time (s) ‖eLDn ‖∞ Time (s) ‖e∗n‖∞

5 32× 32 6.28e-6 0.003 6.28e-6 0.004 6.28e-6

6 64× 64 3.90e-7 0.007 3.90e-7 0.013 3.90e-7

7 128× 128 2.44e-8 0.026 2.44e-8 0.047 2.44e-8

8 256× 256 4.19e-9 0.110 1.52e-9 0.198 1.52e-9

9 512× 512 4.27e-8 0.507 8.34e-11 0.885 8.31e-11

In the above table, the third column gives the error ‖eDn ‖∞ by using the

double precision arithmetic, and the fourth column lists the corresponding

CPU time in seconds. The fifth column gives the error ‖eLDn ‖∞ by using

the long double precision arithmetic, and the sixth column lists the corre-

sponding CPU time in seconds. The last column provides the discretization

error ‖e∗n‖∞ in the l∞ norm for comparison.

We observe that, starting from level 8, the accuracy of the approximate

solutions is affected by the roundoff errors if the double precision arithmetic

is used. But the long double precision gives the desired accuracy at levels
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8 and 9. We also find that ‖e∗n‖∞/‖e∗n+1‖∞ < 0.626 ≈ 2−4 for n = 5, 6, 7, 8.

Thus, the rate of convergence is of order 4.

A vector difference scheme of order 4 was used in [1]. The matrix obtained

from discretization using their scheme has size 3(2n − 1)2 × 3(2n − 1)2 at

level n. In comparison, the matrix Bn has size (2n − 1)2 × (2n − 1)2. But

our discretization error ‖e∗n‖∞ is smaller. For instance, for n = 7 we have

‖e∗7‖∞ ≈ 2.44× 10−8, while the corresponding discretization error in [1] is

4.2×10−8. It was reported in [1] that 3 FMG (Full Multigrid)W (3, 2)-cycles

were used to achieve the level of discretization error. We estimate that a

multiplication of their matrix with a vector costs as twice as much as a

multiplication of our matrix (Bn) with a vector (see the above comparison

of the matrix size). Consequently, we estimate that a multigrid V (3, 2)-

cycle costs as much as 5 PCG iterations of our scheme. The computational

cost of a FMG W (3, 2)-cycle is about twice of the cost of a simple V (3, 2)-

cycle (see [1]). Thus, the computational cost of 3 FMG W (3, 2)-cycles is

about the cost of 30 PCG iterations of our scheme.

Example 4.6. Consider the biharmonic equation (4.1.1) on Ω with f given

by

f(x, y) = e(3x−y)
2

, (x, y) ∈ Ω.

In this case, the exact solution is unknown. In the following table we

list numerical results of the approximate solutions that achieve the level

of discretization error in the L2 norm. The numerical computation shows

that the rate of convergence is of order 4.
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Table 4.8: Error Estimates in the L2 Norm

Level n Grid 2n × 2n ‖ẽDn ‖L2 Time(s) ‖ẽLDn ‖L2 Time(s) ‖ẽ∗n‖L2

5 32× 32 7.18e-7 0.003 7.18e-7 0.004 7.18e-7

6 64× 64 4.18e-8 0.007 4.18e-8 0.013 4.18e-8

7 128× 128 2.54e-9 0.026 2.54e-9 0.047 2.54e-9

8 256× 256 1.67e-10 0.110 1.59e-10 0.198 1.58e-10

9 512× 512 1.20e-9 0.507 1.00e-11 0.885 9.92e-12

4.8 General Fourth-order Elliptic Equations

In this section we extend our study to general elliptic equations of fourth

order. If the Dirichlet form of a fourth-order elliptic operator is strictly co-

ercive, then the wavelet bases constructed in this chapter are still applicable

to numerical solutions of the corresponding fourth-order elliptic equation

with homogeneous boundary conditions. For simplicity, we consider the

following elliptic equation,

{
∆(a(x, y)∆u)(x, y) = f(x, y) for (x, y) ∈ Ω,

u(x, y) =
∂

∂n
u(x, y) = 0 for (x, y) ∈ ∂Ω,

(4.8.1)

where a(x, y) is a continuous function on Ω and there exist two positive

constants K1 and K2 such that K1 ≤ a(x, y) ≤ K2 for all (x, y) ∈ Ω. The

variational form corresponding to this elliptic equation is

〈a∆u,∆v〉 = 〈f, v〉, ∀v ∈ H2
0 (Ω)
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We use our wavelet bases to discretize this equation and obtain the following

linear system:

Ba
nzn = ηn, (4.8.2)

where Ba
n = (〈a∆χ,∆ψ〉)χ,ψ∈Ψn

and ηn is the column vector (〈f, ψ〉)ψ∈Ψn
.

Then the approximate solution in Vn is un =
∑

ψ∈Ψn
zψψ.

Note that K1 ≤ a(x, y) ≤ K2, then 〈a∆u,∆v〉 is continuous and coercive.

An application of proposition 1.1 gives the following theorem.

Theorem 4.11. The condition number κ(Ba
n) is uniformly bounded.

Example 4.7. Let a(x, y) := (1 + x)(1 + y) for (x, y) ∈ Ω. Suppose f is

obtained by (4.8.1) with exact solution u given by

u(x, y) = [1− cos(2πx)][1− cos(2πy)]/4, (x, y) ∈ Ω. (4.8.3)

The numerical results are listed in the following table.

Table 4.9: Numerical Results of Example 4.7

Level n Grid 2n × 2n ‖en‖L2 ‖e∗n‖L2 Time (s)

5 32× 32 7.38e-7 7.38e-7 0.017

6 64× 64 4.57e-8 4.57e-8 0.053

7 128× 128 2.85e-9 2.85e-9 0.196

8 256× 256 1.78e-10 1.78e-10 0.806

9 512× 512 1.10e-11 1.10e-11 3.524

Example 4.8. Let a(x, y) := 1+0.5 sin[10.8(x−y)] for (x, y) ∈ Ω. Suppose

f is obtained by (4.8.1) with exact solution u given by (4.8.3).
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The numerical results are listed in the following table.

Table 4.10: Numerical Results of Example 4.8

Level n Grid 2n × 2n ‖en‖L2 ‖e∗n‖L2 Time (s)

5 32× 32 8.25e-7 8.25e-7 0.017

6 64× 64 5.11e-8 5.11e-8 0.053

7 128× 128 3.21e-9 3.18e-9 0.196

8 256× 256 2.04e-10 1.99e-10 0.806

9 512× 512 1.26e-11 1.21e-11 3.524

From the numerical examples, we see that our numerical schemes also have

superb performance on solving general elliptic equations of fourth order.



Chapter 5

Conclusions and Future Work

In this thesis, we present new constructions of spline wavelet bases, establish

their stability in Sobolev spaces and demonstrate their effectiveness for

numerical solutions of elliptic equations.

We provide different ways to construct wavelet bases. All of these construc-

tions are simple. Consequently, the corresponding numerical schemes are

easily implemented. On one hand, we prove that the condition numbers

of the stiffness matrices associated with our wavelet bases are uniformly

bounded. This guarantees that the number of iterations needed to achieve

the level of discretization error will not increase under mesh refinement.

Therefore, the wavelet Galerkin method is suitable for large scale computa-

tion. On the other hand, we compute the condition numbers numerically.

Numerical experiments confirm our theoretical results, and indicate that

the condition numbers are relatively small compared with those provided

by other preconditioning techniques. Thus our methods are efficient and

competitive to the existing methods.

These wavelet bases are then applied to solve elliptic equations with ho-

mogeneous boundary conditions. Since our preconditioning techniques are

99
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effective, classical iterative algorithms have good performance. To fur-

ther speed up these algorithms, we use the multilevel idea in the wavelet

Galerkin method. In particular, we design extremely fast automatic mul-

tilevel algorithms based on PCG algorithm for computing approximate so-

lutions that achieve the level of discretization error in the energy norm.

Numerical examples demonstrate the advantages of the wavelet Galerkin

method we propose over many other popular numerical methods.

Based on the theoretical and numerical results obtained in this thesis, we

believe that the wavelet method has great potential in numerical solutions

of partial differential equations.

In [30] and [31], Liu and Xu developed Galerkin methods for solving high-

order singularly perturbed problems of reaction diffusion and convection

diffusion types, respectively. They used Hermite splines with knots adapted

to the singular behavior of the solution of the problems. In particular,

fourth-order singularly perturbed problems were solved using Hermite cu-

bic splines. We may consider employing wavelet bases on the adaptive

mesh concentrated in the layers to improve the numerical performance.

Kumar [28] applied the wavelet optimized finite difference method based

on an interpolating wavelet transform using cubic spline to solve the singu-

larly perturbed reaction diffusion equations of elliptic and parabolic types.

Our wavelet bases constructed in Chapter 2 may also be used to generate

adaptive mesh.

It is known that finite element methods have advantages over finite differ-

ence methods in solving high order PDEs on irregular domains. But for

second-order problems on regular domains, especially with variable coeffi-

cients, finite difference methods could have better performance since they

don’t have to do numerical integrations. Let us consider using the general
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9-point stencil

(1− α)




0 1 0

1 −4 1

0 1 0




+
α

2




1 0 1

0 −4 0

1 0 1



,

0 ≤ α ≤ 1, to discretize equation (3.1.2). Note that the standard 5-point

stencil is obtained with α = 0. The 9-point stencil with α = 2/3 is used in

chapter 3. And we construct stable wavelet bases which provide efficient

preconditioners for the resulting linear systems. In fact, more is true nu-

merically. If we discretize the Poisson equation using the 9-point stencil

with α other than 2/3, those preconditioners still work well. For instance,

the condition numbers of the preconditioned finite difference matrices are

uniformly bounded by 13, 10, 9, 8 and 7 as α = 0, 1/4, 1/3, 1/2 and 3/4,

respectively. But for α = 1, it seems that the condition number grows as

the mesh size decreases. From the numerical experiments, we guess that

our wavelets are applicable in the case 0 ≤ α < 1. How to prove this

theoretically is a specific problem I will work on. This work will broaden

the applications of our wavelet bases in general difference schemes. In the

long term, the application of wavelet preconditioning techniques in finite

difference methods will be studied.

On regular domains such as rectangular domains, we have successfully ap-

plied the wavelet Galerkin method to numerical solutions of elliptic equa-

tions and presented numerical results to demonstrate their advantages. Sta-

ble wavelet bases on general meshes have been studied by many mathemati-

cians (see, e.g., [17] and [25]). However, numerical schemes have yet to be

implemented. On general domains, how to construct stable wavelet bases

which are both easily implemented and effective still needs to be further

investigated.
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