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ABSTRACT

The mechanism of fluid flow in a reservoir can be determined through knowledge
of the potential distribution inside the reservoir. Developing the Discrete Ilux Element
Method (DIFE), this work provides a general analytical solution to the potential
distribution due to a producing well with a straight or curvilinear configuration under
transient or steady state conditions. The potential distributions of horizontal and vertical -
partially penetrating wells and fractures are special cases of this solution.  The Discrete
Flux Element Merhod — provides the ability to model any arbitrary outer boundary
condition, while maintaining the inner boundary at uniform potential or uniform:flux
conditions. The Discrete Flux Ilement Method enables predicting thé performance as well
as the productivity of arbitrary sources such as horizontal, vertical partially pen:eti’ratii:xg
line source wells and fractures in an arbitrary reservoir, including infinite, semi-inﬁﬁife,
infinite slab, semi-infinite slab, infinite channel, semi-infinite channel and box shaped
reservoirs. The shape of the drainage areas around horizontal and vertical pé_rtially
penetrating wellbores and line sources with curvilinear configurations and fractures is
studied both graphically and mathematically. This study shows that the drainage area
around a horizontal well in a rectilinear, isotropic reservoir is first ellipsoidal and then it
opens up in the directions perpendicular to the line source until it rgaches the no-flow

boundaries, and after a transitional period it becomes a vertical cylinder.

One of the common applications of horizontal and vertical partially penetrating

wellbores is in reservoirs with bottom water and/or gas a cap. The applicability of the



Discrete Flux Element Method in such reservoirs is examined. For coning studies the
interface before breakthrough is treated as a no-flow moving boundary while the initial
interface is kept at a constant pressure condition. In the contest of the coning phenomenon
in a rectilinear reservoir, this study presents a new dimensionless variable, Dimensionlesy
Densiry, as a function of reservoir E._veometry, reservoir anisotropy, fluid properties,
production rate and the difference in fluid densities. This work reports the existence of a
Critical Dimensionless Density (CDD) above which the cone is stable. The performance

of the wellbore in the presence of a growing cone is also presented.
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NOMENCLATURE

a=2h, [L]

B = formation volume factor

B,, = oil formation volume factor

¢ = dimensionless vertical coordinate of a point source
¢, = fluid compressibility, [M][L]'[T]"

d = distance between the elements

DD= dimensionless density

DFE= discrete flux element

CDD= critical dimensionless density

[ = distance of the horizontal well to a vertical barrier
£ = gravity constant, [L][T]

h, =reservoir thickness, [L]

h,, = height of the water, [L]

h,,, =dimensionless height of the water cone

hy,, = dimensionless height of the gas cone

h,., = dimensionless height of the cone head
IBC=inner boundary conditions

k =permeability, [L]? |

k, = horizontal permeability, [L]*

k= vertical permeability, [L]*

K =diffusivity, [L]}[T]"

L =length | [L]

L, =coordinate of the starting point of the wellbore.
L, = coordinate of the ending point of the wellbore.
L, = dimensionless producing length

L,; = dimensionless producing length in the transformed domain.



p = pressure, [M][L]'[T]"
(7 = production rate, [L]'[T]"
o critical production rate [L}'[T]"
g = flux
n,=dimensionless horizontal distance
Skl - sources with finite length
s11. sources with infinite length
= time in the definition of the dimensionless time, [T]
! = reservoir thickness, [L]
1,, = dimensionless time
r =radius
r,. = dimensionless radius
w = dimensionless vertical coordinate
o water oil contact
x = dimensionless coordinate,
\ = coordinate, [L]
v =dimensionless coordinate,
} = coordinate, [L]
Z =vertical coordinate, [L]
Ay = difference of the densities, [M][L]*
Ay, = dimensionless difference of the densities,
y =density, [M][L]"
p = dimensionless horizontal distance
1 = viscosity, [M][L]'[T]"
$ =porosity
@ = potential [M][L]"[T]”
¢,, = dimensionless potential of a flux element

v = mathematical \ function



W= stream function

Subscript

D = dimensionless

/ = line source

¢ =reservoir boundary

[ =fracture

i = a counter of the number of the flux elements
7' = transformed

I =well

Superscript

/ time step
$S:  Steady State
Cont. = Continuous

Ins. - Instantaneous



CHAPTER 1

INTRODUCTION

The potential distribution inside a reservoir is an appropriate tool for studying the
flow mechanism and for determining the shape of the drainage area. The potential
distribution can be obtained by the application of accurate potential equations. In the
literature, these equations have been presented for simple source configurations such as
vertical, fully penetrating wellbores with a straight configuration. Moreover, approximate
solutions have been provided for partially penetrating line sources in vertical and
horizontal wells with a straight configuration. The solutions for horizontal wells have been
developed using the uniform flux inner boundary condition assumption [Clonts and
Ramey, 1986, Daviau et al., 1988, and Odeh and Babu, 1990]. As these solutions do not
satisfy the uniform potential at the inner boundary. the use of an equivalent pressure point
is suggested to simulate an infinite conductivity (uniform potential IBC) solution [Clonts
and Ramey, 1980, and Daviau et al., 1988]. Gringarten and Ramey [1975]. for a vertical
partially penetrating wellbore, indicated that an error of 10% or more is associated with
the use of an equivalent pressure point. Rosa and Carvalho [1989] modeled a horizontal
well by dividing the wellbore length into different segments, each with a uniform flux
potential solution which was given by Clonts and Ramey [1986], and showed that the

equivalent pressure point was moving at early times.
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In the literature. no potential equations are provided for the potential of sources
with irregular geometry and arbitrary direction. To apply these solutions [Clonts and
Ramey, 1986. Daviau et al.. 1988, and Odeh and Babu. 1990] one must assume a straight

configuration for the wellbore in the direction of one of the principal permeabilitics

Chapter 6, gives rise to errors in reservoirs with a large directional permeability contrast,
The solutions provided by Clonts and Ramey [1986] and by Daviau et al. [1988] are the
products of three 1-D solutions (Green's function) each one of which models the ﬂ;nw in
the direction of a principal axis of the medium. Thus, the resulting line source equation can
model only a straight horizontal well parallel to the principal axis of the medium,
However, if the wellbore is not drilled in that direction. this nm[hcmatical maodel provides
only an approximate solution.

No steady-state potential equation for partially penet rating fractures and haﬁzam%ﬁl
wells has been presented in literature. Thus the productivity of lﬁxri;&cxrit:’nl wells was
modeled by an assumed geometry for the drainage area [Borisove, 1964 and Joshi, 1990,

In this work a general analytical equation is developed to pf@dicl the pménliai of
line and plane sources with: i) uniform flux or uniform potential inner boundary condition,
ii) arbitrary configuration, iii) arbitrary direction, iv) sealed, constant potential or mixed
outer boundaries, and v) steady-state or transient conditions. The new solution is called
Discrete Flux Flement (DFI) Method. Moreover, this solution (DFE Method) is applied
to derive new pdtential derivative equations for transient pressure analysis purposes.

Development of the Discrete Flux Element (DFE) Method is presented in Chapter S,
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Bf using the new solution (DFE Method), the performance and the productivity of
line and plane sources with different inner and outer boundary conditions are studied and
the results are preseméd in Chapters 6 and 7. respectively. In Chapter 8 the Discrete Flux
Element (DFE) Method is applied to study the shape of the isopotential lines around
sources with arbitrary configuration.

In Chapter 9 an alternative solution is developed for calculating the potential of
vertical partially penetrating wellbores with straight configuration.

In Chapter 10, the steady-state and transient potential equations developed in ‘this
work are used to study the coning and the performance of horizontal and vertical partially

penetrating wellbores in reservoirs with bottom water or gas cap.



CHAPTER 2

LITERATURE REVIEW

This is a review of key papers related to the derivation of solutions for similar or
related cases. There are other papers that have applied these solutions mrsluci_\' special
aspects of reservoir engineering. They are not reviewed here,

Although several transient potential equations for horizontal wells and vertical
fractures are available, no steady-state potential equations for these sources have been
provided yet. However, there are several equations for- 1) the préduélivily index of
horizontal wells, and 2) the pseudo-steady state potential of horizontal wells. These are -

addressed later in this chapter.

2.1 Potential of a Point Source

Kelvin [1884] presented tk= instantaneous, continuous, and steady-state solution

for a point source in an infinite domain.

Madelung [1918] developed an equation for the steady-state potential at any point
due to a point source in a rectilinear domain as a function of the horizontal and vertical
distances of that point to the point source. As that equation was singular for zero
horizontal distance, Muskat [1932] developed'an alternative equation which did not have
the singularity problem. However, Muskat’s equation was valid only for very small valucs

of horizontal distance.
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2.2.  Potential of Sources with Finite Length
Kelvin [1884] stated that the potential of any source with arbitrary geometry can
be constructed by integrating the solution of a point source over the volume of the source:
e The potential solution of a line source is the integral of the potential solution of a point
source along the path of the line source.
e The potential solution of a plane source (fracture) is the double integral C)f the
potential of a point source over the surface of the plane or the sing]e integral of thg

solution of a line source, over the length of the fracture.
Kelvin’s statement has been applied widely to derive potential equations for
different type of sources with infinite length such as line, plane and cylindrical sources
[Carslaw and Jaeger, 1959].

For a source with infinite length(s), both uniform potential and uniform flux Inner
Boundary Conditions (IBC) can be satisfied simultaneously, and the method of integration
provides the exact solution for such sources. However, for sources with finite length both
conditions cannot be met at the same time due to the end effects. The hemispherical flow
at the end(s) of the line source and semi-radial flow at the end(s) of the fracture affect the
potential distribution inside the reservoir as well as the potential at the source, itself. As
the flux distribution for sources with finite length is unknown. the integral over the
solution of a point source is possible only when the uniform flux assumption is invoked.

Thus the resulting potential equation obtained by the integration method does not satisfy
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the uniform potential IBC. However, based on potential theory. the potential on the

surface of the source has to be uniform.

Muskat [1932] integrated the steady-state solution of a point source to derive a
steady-state potential equation for a vertical, partially penetrating wellbore. This
integration was possible only when the uniform flux assumption was invoked. Thus, the
resulting equation indicated a potential gradient along the source. To obtain a potential
equation satisfying potential theory Muskat applied a superposition method. In this
method he used several uniform flux line sources with different lengths and a point source
at the bottom of the wellbore to consider the end effects. Equating the potentials at
different locations along the wellbore, Muskat determined the flux distribution as well as
the wellbore potential with 0.5% accuracy. Muskat discovered that the value of the
potential obtained by the superposition method (uniform potential - 1BC) ~was
approximately the same as that obtained by the uniform flux IBC solution, pl;ovidcd'thal

the latter was calculated at 75% of the wellbore length.

Gringarten and Ramey [1973] applied the Method of Images to develop solutions
for an infinite plane in different types of reservoirs, specifically two parallcl no-flow
boundaries, two parallel constant pressure boundaries and mixed boundaries. By
integrating the solution of these infinite planes about a limited interval, they obtained the

potential solutions of infinite slab sources with the same type of boundary condition.

Gringarten, Ramey and Raghavan [1974] derived a uniform flux potential equation
for a fully-penetrating, vertical fracture in a rectilinear reservoir by integrating the solution

of a fully penetrating line source about the horizontal length of the fracture. As was
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expected, this solution did not satisfy the uniform potential IBC. The approach taken was
similar to Muskat’s superposition method for a vertical partially penetrating well, That is,
Gringarten et al. divided the length of the fracture into different segments, each with
uniform flux, and equated the pressure at the center of the segments to construct the
uniform potential IBC solution. This solution is called the infinite conductivity solution. As
was the case with Muskat’s approximate model, Gringarten et al. suggested that the
pressure obtained by the infinite conductivity, superposition method. would be identical to

that obtained by a uniform flux solution provided that the latter was calculated at a certain

Clonts and Ramey [1986], using three 1-D solutions given by Gringarten et al.

[1973] and Newman’s product rule [Clonts and Ramey, 1986], presented an unsteady

horizontal well to a fracture, Clonts and Ramey postulated that an equivalént preésure
point similar to that of a fracture (i.e. Xeq =0.732X,) could be used to simulate an
infinite conductivity solution. Two types of transient pressure behavior. depending on the
half length of the wellbore, were detected. If L;, <10 (1, is dimensionless half length of
the horizontal well), flow is characterized by an initial radial flow perpendicular to the
wellbore followed by a transition to a pseudo-radial flow period. For 7, > 10, flow is
characterized by early time linear flow followed by a transition to late time pseudo-radial

flow.
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Daviau et al. [1988]. using an approach similar to that of Clonts and Ramey
[1986]. applied three 1-D solutions given by Gringarten et al. [1973] and Newman’s
product rule to construct the potential equation for horizontal wells with uniform flux
IBC. Analyzing the pressure (potential) of a horizontal well, they showed that the pressure

varies along the wellbore. To simulate the infinite conductivity solution, they used a

uniform flux solution at X, =0.7A";. As could be expected, the results indicated flow
regimes similar to those of Clonts and Ramey [19806].

Kuchuk et al. [1988] used the uniform flux equation presented by Clonts Ramey
[1986] for horizontal well pressure analysis. To overcome the non-uniform pressufe along
the wellbore, they applied an average pressure.

Rosa and Carvalho [1989], using a solution similar to the uniform potential
solution for a vertical well given by Muskat [1932] and a solution for a vertical fracture
given by Gringarten et al.[1973], constructed an infinite conductivity Vsqlu:t,i@n for a
several segments, each with a uniform flux 1BC, and by equating the pressure at the center
of the segments, they calculated the flux distribution and the wellbore pressure. By
comparing the resulting solution with the pressure for a uniform flux solution they showed
that the equivalent pressure point at short time is not stationary and that it stabilizes at late
time. Furthermore, at late time its position depends on the wellbore length. However, they
suggested that at short time one could use a unifernﬁ flux solution directly aﬁd at late time

for short wellbores an equivalent pressure point at X, = 0.68X . For a long wellbore the

equivalent pressure point has to be obtained for every individual casc.
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Ozkan et al. [1987]. using the uniform flux solution given by Clonts and Ramey
[1986]. studied the pressure analysis of horizontal wells. Approximate equations were
provided for short and long times. An equivalent pressure point was used to simulate the
infinite conductivity solution. This solution showed a higher pressure drop at the midpoint
of the wellbore length, indicating that flow takes place from both ends toward the middle
of the wellbore. They concluded that this model could be used for horizontal wells which

were producing from the middle of the wellbore. Comparing the solution of a horizontal

is the half length of the horizontal well. Without mentioning the fracture length. they
related this to the fact that the fracture pressure was calculated at the centre of the fracture

width and that of the horizontal well was calculated at the surface of the source. However,

for the higher pressure drop in horizontal wells should be something élse. Ozkan et al.
stated that: the horizontal well productivity is governed by two parameters: 1) the
dimensionless well length and 2) the wellbore radius.

Goode and Thambynayagam [1987], using a Fourier transformation, developed a
uniform flux solution for a horizontal well in an semi-infinite reservoir. To approximate an
infinite conductivity solution they suggested the use of an equivalent pres'sure point at

Xy = 086X
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Odeh and Babu [1990] modeled a transient uniform flux pressure (potential)
solution for a horizontal well in a box shaped reservoir by integrating the solution of a -

point source about the length of the source.

2.3 Productivity of Horizontal Wells

Steady-state potential equations for a horizontal well have yet to be presented.
However. several workers have developed approximate productivity indices for horizontal
wells based on an assumed drainage area shape around a horizontal well and application of ‘
Darcy’s Law [Borisov, 1964, and Joshi, 1988]. The pseudo-steady state cquzition.# for the
productivity of horizontal wells in box-shaped reservoirs are presented by Babu and Odch

[1989] and Goode and Kuchuk [1991].

Borisov [ 1964] presented an equation for the productivity of a horizbnlal well. 'I’hc.
original work was published first in Russian, then transiated into French and then to
English (1980). Unfortunately the paper is not supported by a detailed dcrivvation and
illustrative figures. The method used by Borisov is a general method, involves dividing the
drainage area into two vertical tiers. The total resistance to flow is obtained as the sum of
the resistances of the outer and inner tiers. The inner resistance is estimated by modeling a

horizontal well as a tier.

Joshi [1988] assumed an ellipsoidal drainage area around a horizontal well. He
simplified the mathematical model by dividing the 3-D problem into two 2-D problems.

Therefore the resulting flow model consisted of 1) a horizontal flow component, and 2) a
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vertical flow component into the wellbore in the plane perpendicular to the well axis. In
the horizontal section, the isopotential lines are elliptical while the streamlines are
hyperbolic. This system of confocal ellipses and hyperbolas is modeled as a complex
variable as was suggested by Slichter [Joshi ,1988], from which the production rate for the
horizontal flow into the wellbore is derived. The vertical flow is modeled as a sink in a
parallel-plate channel. The potential and stream functions are represented as complex
variables through the Schwarz-Christoffel mapping function [Joshi. 1988]. From the
production rates the resistivities in the horizontal and vertical planes are calculated. The
total resistivity is then obtained by linear summation of the two resistivities from which
the productivity of the wellbore is obtained. This model shows smaller productivity index
than does the model presented by Borisov [1964].

Borisov’s equation has been used by Giger et al. [1984] to study some aspects of
horizontal wells.

Babu and Odeh [1989], by integrating the solution of a point source in a box-
shaped reservoir, derived a uniform flux, transient, potential equation for a horizontal well

in a box shaped reservoir. The late time solution for the potential inside the reservoir is

obtained as time approaches infinity. The average pressure of the reservoir is obtained by

state wellbore pressure is found by subtracting the average reservoir pressure from the late

time wellbore pressure. Several aspects of this work are open to discussion.

Babu and Odeh assumed a circular wellbore in an anisotropic reservoir. This

implies that the flow into the wellbore is radial. Brigham [1990] and Peaceman [1990 a, c]
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stated that, as the perimeter of the wellbore in the transformed domain is elliptical, an
average wellbore radius should be used instead of the actual wellbore radius. The shape
function in the productivity equation that had been derived by Babu and Odeh was also
verified by Peaceman [1990 b] who used different approach. Dietrich [1995] numerically
simulated a horizontal well with a uniform potential inner boundary condition. Comparing
the simulation and the analytical solution, Dietrich concluded that the two methods
showed less than 3% difference at low to moderate well penetrations and isotropic

permeability conditions.

Goode and Kuchuk [1991] developed equations for the inflow performance of
horizontal wells under pseudo-steady state and steady-state conditions. Pseudo-steady
state is defined as the late time transient solution in a reservoir with sealed boundaries.
However, the steady-state condition was assumed to be reached only if one of the
boundaries of the reservoir was of the constant pressure type. This case corresponded to
reservoirs with bottom water or a gas cap. Therefore, two different equatiéns one for
pseudo-steady state and one for steady-state, were developed. By assuming the horizontal
well to be a fracture, the 3-D partial differential equation was reduced to a 2-D diffusion -
equation. Therefore the problem was turned into finding the potential solution of a fully
penetrating fracture. By assuming a uniform flux into the fracture, and by applying a finite
fourier cosine transform and a Laplace transform, the partial differential cquation was
reduced to an ordinary differential equation. By solving the resulting equation for a
uniform flux IBC, two solutions were obtained for the pressure in a horizontal well, onc¢

for pseudo-steady state and one for steady-state flow. For the case of a box-shaped
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reservoir, the average reservoir pressure was obtained by integrating the pressure over the

steady-state wellbore pressure was obtained.

2-4  Horizontal and Vertical Partially Penetrating Wellbores in Reservoirs with
Bottom Water or Gas Cap
When producing from a reservoir with bottom water or a gas cap, one needs to
have knowledge about:
1. The critical production rate (Coning) - this is the rate above which the interface is not

stable and the water and/or gas will breakthrough.
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3. The well production performance - due to the existence of a moving boundary-before"
breakthrough wéll testing of such reservoirs is different from that of regular reservoirs
with fixed boundary.

These three topics are discussed below.

2.4.1. Critical Production Rate
Muskat and Wykoff [1935] presented the fundamentals of coning. By using the
concept of static equilibrium, they developed the critical production rate as a function of

cone height and potential distribution inside the reservoir. As the cone height and potential
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distribution are interreiated. and as both depend on the production rate, the equation could
not be solved without further assumptions. They then assumed that the initial interface was
a no-flow boundary and calculated the potential at the cone head. It was postulated that, if
the actual interface were used as the real no-flow boundary. the critical production rate
would have been lower. This implies that Muskat and Wykoft’s solution for the critical
rate had to be the upper limit on the exact solution. This solution was presented
graphically for vertical partially penetrating wells with a dimensionless radius of 0.001 and
several drainage areas.

Arthur [1944] modified the Muskat and Wykof¥ solution for any type of ivellﬁm;cr
and drainage radius. He presented a set of graphs for vertical paniailyapenelréting wells
from which one can calculate the critical production rate for any arbilfary wellbore and
drainage radius and penetration depth.

Meyer and Garder [1954], by using the potential definition giyénl by Hubbert
[1940], modeled a vertical partially penetrating well under steédysstaté_ conditions. Théy '
assumed that the shape of the cone in a vertical section is a triangle with one corner at the
bottom of the wellbore and two others at the outer boundary. Assuming that the water
reaches the bottom of the wellbore at breakthrough they presented an equation for the
critical production rate. The critical production rate obtained by Meyer and Garder is the
lower limit to the solutions. This might be due to the triangular geometry of thc cone

which results in a smaller area for oil flow as compared to that for a curved interface.

methods, determined the critical production rate for both water and gas coning. The
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results are in the graphical form for a single oil viscosity (1 cp ). permeability (1000 md )
and fluid density difference (for an oil water system 03 g/cc and for a gas oil system
06 g/cc) for a 1000 ft drainage radius and a dimensionless wellbore radius equal to
0.001 for several reservoir thicknesses. From the results of this study it was concluded
that the wellbore radius did not affect the critical production rate. For a given reservoir
geometry and fluid properties, the critical production rate obtained from the curves has to
be corrected to the actual reservoir conditions. This method provides an approximate
solution to the coning problem without considering the geometry of the cone. Moreover,
it enables one to find the best location and perforation interval inside a rectilinear reservoir
for both water and gas coning.

Henly et al. [1961] who performed experimental work on a physical model under
bottom water drive, found that the capillary forces have negligible influence on coning
phenomena. |

Chierici, et al. [1964] presented a graphical solution to the coning problem based
on potentiometric experiments and the theoretical mode! of Muskat and Wykéff [1935].
This solution can be used to determine 1) the critical production rate and 2) the optimal
location and length of the perforation interval in a gas-oil-water system. In this solution
the effect of water-oil contact (WOC) geometry has not been considered. The main
advantage of this method as compared to Muskat and Wykoff's method is its ability to

consider arbitrary perforation intervals and locations within the reservoir.

Bournazel and Jeanson [1971] modeled a water coning problem in the laboratory.

They introduced approximate empirical equations for the time to breakthrough, water-oil
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ratio and critical production rates. The results of their studies showed that 1) increasing
the production rate reduces the breakthrough time. 2) increasing the penetration depth
critical production rate and time to breakthrough, but it does increase the water-oil ratio
(WOR), 4) the well radius has no significant effect on the critical production rate and the
breakthrough time, 5) the external boundary radius has little effect on the WOR, 0)
increasing the oil viscosity decreases the time to breakthrough and 7) the breakthrough

time is proportional to the anisotropy ratio &, 4.

Schols [1972] constructed an empirical equation for the critical production rate
which was based on extensive experimental work.
Kuo and DesBrisay [1983] presented an empirical equation for water cul

performance prediction. For calculation of the critical production rate they suggested the

and 3) Schols [1972]. However, the critical production rates obtained by these methods
are different.

Wheatly [1985] developed an equation for the critical production rate by assuming
that the water oil contact is a no-flow boundary and by taking into account the cone
geometry. To model a uniform-potential vertical, partially, penetrating well under steady-
state conditions, Wheatly superimposed different wellbores with different lengths. He also
derived the equation for the streamline passing through the points located ﬁﬁ the outer
boundary and at the bottom of the wellbore. The potential distribution inside the reservoir

was found from the potential equations of different line sources and a streamline equation.
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The critical production rate obtaincd from this solution is smaller than that prtedicted by
Muskat and Wykoff [1935].
and modeled a vertical well as a point source. The stability condition is found whgn'the
vertical potential gradient at the WOC is smaller than the gravitational gradient. The case
of coning due to production from a horizontal well is also studied by considering a
horizontal well without end effects; that is one of infinite length. Because a 3-D problem
was approximated by-a 2-D problem, the coning was studied énly in the plane
- perpendicular to the wellbore axis.
Hoyland et al. [1989] used a numerical, finite-difference simulator to model the
caﬁing in a vertical well under steady-state conditions. Based on numerous runs, they
developed an empirical correlation for the critical production rate. Althcugh the reéult of

the simulator itself is in complete agreement with Wheatly's model, the range of

2.5  Active Eﬁttcm Water Drive

Muskat [1947] presented a model for fully developed reservoirs with bottom-
water drive. This modet pfcwides the breakthrough time as well as the water-cut
performance of reservoirs with closed lateral and upper boundaries. A steadyssiaté

potential equation, based on a vertical, partially penetrating wellbore with a constant

The vertical velocity is calculated using the derivative of the steady-state potential

equation. The'time to breakthrough is obtained by calculating the time that a point located
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initially on the WOC reaches the bottom of the wellbore. The assumptions made to obtain

these solutions are:

it

The difterence in fluid densities is negligible (zero).

)

The reservoir pressure remains above the bubble point pressure during production.
(This is a necessary assumption for calculating the displacement efliciency through a

material balance. Muskat assumes that the depleted zone is to be filled by water).

The mobilities in both the oil and the water invaded zones are the same.

L3

4. The system is operating under steady-state conditions. It was explained by Muskat that

this assumption guarantees a constant potential at the boundary.

)

There is no oil stripping in the flooded zone.

In his original paper, Muskat [1947] assumed a constant potential boundary at the
initial interface location, but through Elkins’ discuss%@n and Muskat’s reply [Mruskal,
1947] it is clear that a constant potential at the initial WOC is not a necessary condition - -

-for modeling an active water drive. The active water drive concept was used for mallgriélr'
 balance purposes. In the absence of any other drive mechanism, for examplcgas’drivc or 4
edge-water drive, the total oil production must bé equal to the volume C:.F water
encroached. Applying this material balance Muskat presented the displacement efficiency
as the ratio of the total oil production to the total pore vniume at the time of

breakthrough.
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Ozkan and Raghavan [1990-b] applied Muskat’s model [1947]. assuming the
initial WOC' as a constant potential boundary, to construct an approximate solution for the
time to water breakthrough for a horizontal well.

2.6 Performance of Partially Penetrating Wellbores in Reservoirs with Active
Bottom Water or Gas Cap

Kuchuk et al. [1988] developed a transient potential solution for a horizontal well
in an infinite slab reservoir with bottom water or a gas cap. Neglecting gravity they
modeled the effect of the bottom water by assuming a constant potential boundary at the
initial WOC. Kuchuk et al. used the aVerage pressure of the wellbore to simulate an
infinite conductivity solution. By analogy they postulated that their model coulﬂ bé applied
to the reservoirs with a gas cap.

Ozkan and Raghavan [1990-a], again neglecting gravity, presented 'a'trahsigynt
uniform-flux potential equation for a horizontal well in a laterally-closed reservoir with
bottom water or a gas cap. Similar to the work of Kuchuk et al. [1988], the effect of
bottom water or a gas cap was accounted for assuming a constant potential at the initial
WOC. To simulate the infinite conductivity solution the use of an equivalent pressure
point, as proposed by Clonts and Ramey [1986], was suggested. Even though the outer
bou:\ldary conditions of the two models are totally different, no justification is provided for

using the same location of the equivalent pressure point.



STATEMENT OF THE PROBLEM

It was shown in the preceding chapters that the available potential solutions for
horizontal wells [Clonts and Ramey, 1986 and Daviau et al., 1988, and Kuchuk et al., *
1988, and Odeh and Babu, 1990] had been developed with certain assumptions. These
include:

1) a straight line configuration,
2) the wellbore is in the direction of one of the principal axis of the medium,
3) uniform flux Inner Boundary Conditions, IBC.

Due to drilling technologies and geological conditions the configuration of most
horizontal wells is curvilinear rather than straight. When applying the above solutions to
potential equations, one must assume a straight line configuration for the source in the
direction of one of the principal axes of the medium. Therefore by stretching a 3-D
flow mechanism inside the :-servoir. A 3-D curvilinear line has two curvilinear projections
in the vertical and horizontal planes. In an anisotropic reservoir with significant contrast in

horizontal and vertical permeabilities, the impact of each directional flow component on
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of the reservoir, The effect of wellbore configuration on the performance of the wellbore
is studied in Chapter 6. Increasing the wellbore length in the horizontal direction causes
the ends of the well to approach or pass through any vertical barrier present in the
reservoir. The effect of the distance of a horizontal wellbore to a vertical barrier on
performance of the welibore is studied in Chapter 6.

Horizontal wells are usually not drilled in the direction of one of the principal
permeabilities. The solutions for horizontal wells based on Green's function [Clonts and
Ramey, 1986, Daviau et al., 1988] and integral over the potential of a point source [Odeh
and Babu, 1990] are based on the assumption that the wellbore is in the direction of one of
the coordinate axes. If the principal axes and the coordinate axes are not the same then a
permeability tensor with 9 elements must be used. Assuming the same direction for the
coordinate axis and the principal axis of the medium is another approximation that affects
directly the performance of the wellbore.

The uniform flux solution does not satisfy the unifDrrm potential inner bcuﬁdaﬂf
conditions. To simulate a uniform potential solution, the use of a uniform flux at an
equivalent pressure point [Clonts and Ramey, 1986. and Daviau et al. 1988] or anr
average wellbore pressure [Kuchuk et al., 1988], were suggested. One might accept an
approximate solution for the wellbore potential but the applicability of this solution is
inappropriate for cases where the potential distribution inside the reservoir is important as
in interference testing and coning.

The pressure derivative with respect to time is another variable, besides pressure

itself, that is used in well testing. A pressure derivative shows the sensitivity of the
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wellbore pressure with respect to time. This information, applied both qualitatively and

boundaries, water table movement, and so forth. As the potential equations discussed
above are not true solutions, but incorporate several assumptions and approximations, the
quality and the accuracy of the pressure derivative is compromised. The same is true for
vertical, partially. penetrating wells and fractures.

At this time, no steady-state potential equation has been provided for partially
penetrating horizontal wells and fractures.

Consequently, the principal objective of this work is to use potential theory for line’
and plane sources with finite length and arbitrary configuration in a reservc?ir with urhilréw

outer boundary conditions to derive the solutions for the following cases: -

1. transient potential;

2. potential derivative;
3. steady state potential;
4. productivity index.

A study of the flow regimes and drainage areas described by this solutions is also

undertaken.
One common application of vertical or horizontal, partially-penctrating wellbores

is in reservoirs with bottom water and/or a gas cap. To examine the application of the new

potential solutions to these conditions, one needs to know the type of outer hboundary
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condition which pertains. Different types of outer boundary conditions are defined in the

literature for modeling bottom water or a gas cap.

The final objective of this work is to consider coning and the performance of a
vertical or a horizontal well in bottom-water and gas-cap reservoirs. Specifically it is
planned to:

1) Investigate the boundary conditions;

2) Develop the cone height equation, find the critical production rate and

breakthrough time;
3) Study the wellbore performance in the presence of a growing cone.

A schematic representation of the different problems studied in this thesis is given in

Figure 3.1.
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Figure 3.1:  Flow diagram showing statement of the problem. The objectives are
shown in highlighted boxes.




CHAPTER 4

TYPES OF SOURCES

To simplify the discussion in the following chapters, the sources are clasified in this

reservoir (infinite slab) and semi-infinite slab reservoir are presented. The potential
solution for other sources from the literature are presented in Appendices A, B and C.

These are used in subsequent chapter to develop the discrete flux element (DFE) method.

4.1 Classification of Sources

As the potential equation of a lirie source with infinite length is not affected by end
effects, the flow into the wellbore at any section perpendicular to the wellbore is radial.
This implies that the both potential and the flux into the wellbore are uniform along the
wellbore. The potential equation for such wellbores can be obtained by integrating the
solution of a point source over the length of the'squrcve i.e. from —0 to o [Kelvin,
1884, and Carslaw and Jaeger, 1959]. Howe\."er, also, dué to the radial nature of the flow
into the wellbore, the potential can be found directly by solving rthe diffusivity equation in

the radial form (Equation 4.1.1).

l by )
»—{—(r‘—”):l{—’ ................................... (4.1.1)
rarN or KN ¢t

Both methods leads to the Exponential Integral or F; solution.



o

For cases where the wellbore is not fully penetrating, the flow into the wellbore at
the end(s) is spherical. The effect of this on the well performance is called "’cndei‘l‘c:x‘-‘.’_
These are classified in this work as sources with finite length. Muskat [1932] showed ilIax
the flux into the wellbore is non-uniform due to the existence of the end effects. Therefore
the Laplace or diffusivity equation in radial form cannot be applied as the governing
differential equation in reservoirs being produced by such wellbores. Instead. Ih:t,;"l:i"l,.li:
potential equation will have to be a 3-D partial difterential equation.

The potential equation for a fracture with infinite dimensimjs can also be derived
by the double integral of a point source over the lengths of the fracture; that is .\ and }’
from —o0 to +20. This solution can be obtained also by solving the Laplace or éifiillsix?it)f

equations in 1-dimensional form (Equation 4.1.2).

cY?r Ko -

Similar to the case of line sources. the potential equation of the fractures with- infinite-

length satisfies both uniform flux as well as uniform potential Inner Boundary Conditions -~

(IBC), simultaneously. However, for fractures with finite length(s), due to the end effects,
the flow into the fracture is non-uniform.

For simplicity of discussion through this work, in Section 4.1.1 the sources are
However, in Section 4.1.2 line sources are classified based on their geometry with respect

to reservoir boundaries.
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4.1.1. Classification Based on the Dimensions of the Source
4.1.1.1 Sources with Infinite Length(s)

Line source. This type of source is characterized by radial flow into the line source. The
most common type of these sources is fully penetrating wells-in rectilinear reservoirs. The
potential equation of these sources can be derived directly by solving the diffusivity
equation in radial form which leads to the exponential integral or I; (Theis) solution.
Carslaw and Jaeger [1959] showed that the same solution can be obtained also by
integrating the solution of a point source from —¢ to +x .

Plane source (Fracture). This type of source is characterized by linear flow into a plane.
A good example of this type of flow is channel flow. The potential equation can be derived

by solving the 1-D governing differential equation directly (Equation 4.1.2). However,

taking a double integral of the solution of a point source over the length and height of the

fracture leads to the same potential equation [Carslaw and Jaeger, 1959].

4.1.1.2. Sources with Finite Length

Line source. This type of source is characterized by semi-spherical flow at the end(s) of
the wellbore. The flow into the wellbore is not radial due to the end effects. Therefore, the
governing differential equation is the diffusivity or Laplace’s equation in 3-dimensional

form. The most common example of this type of problem is the partially penetrating

Plane source (Fracture). The flow characteristics of this type of source are: i) semi-radial

flow at the end(s), and ii) linear flow at the center of the fracture. Depending on the
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fracture dimension, linear or radial flow may be dominant. The governing differential
equation for production from such sources is 3-D.

A direct solution of the 3-D governing partial differential equations for line or
plane sources is impractical and has not been presented yet. Moreover, integrating the
solution of a point source is possible only by making use of the uniform flux assumption, -
and this leads to unrealistic flow characteristics.

4.1.2 Classification of Line Sources

At first glance, a horizontal and a vertical line source look diflerent. But, the
governing differential equations have to be solved for the potential (hydraulic. electrical or
thermal). Consequently, from a derivation point of view, there is no difference between
horizontal and vertical sources. The main factor that could be used for classification of line
sources is the type of outer boundary and its position with respect to the source.
4.1.2.1 Line Sources in Rectilinear Reservoir (Infinite Slab)

Fully penetrating wells. This type of source is perpendicular to the no-flow boundaries
(see Figure 4.1.2.1.1). The potential solution for this type of source is derived exactly as

electrical source, regardless of the position of the slab, the governing potential cquation is

always exponential integral.
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The flow characteristic of this type of source is radial flow into the wellbore. The
source can be either horizontal or vertical. Indeed this group is of the type of sources with

infinite length.

z
3 Y
] —
Z
ZY I
X
b)
Z
I Y
nf
X
c)
Figure 4.1.2.1.1: Possible configurations of a vertical source;

a) in a horizontal slab, b) in a vertical slab and

¢) in an inclined slab
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Vertical partially penetrating wells. Here the wellbore direction is perpendicular to no-
flow boundaries in a rectilinear reservoir (see Figure 4.1.2.1.2). However. the end(s) of
the wellbore is not connected to these boundaries. This type of source is characterized by

hemispherical flow at the end(s) of the wellbore and is of the typc of the sources with

finite length.

Z Z :
7 FAN
T T
a b
Figure 4.1.2.1.2: Possible configurations of a vertical partially penctralringr

source in a) a vertical slab and b) a horizontal slab

Horizontal partially penetrating wells. Here the wellbore direction is parallel to the no-
flow boundaries in a rectilinear reservoir (see Figure 4.1.2.1.3). This group is of the type

of sources with finite length.

Z :
Y —_— Z
. L
X b
a X
Figure 4.1.2.1.3: Possible configurations of a horizontal partially penetrating

source in a) a horizontal slab and b) a vertical slab
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Inclined wells. The angle between the wellbore direction and the normal to the plane of

the no-flow boundaries is between 0" and 90°. As the flow into the wellbore is riot radial

this type of source belongs to the group of sources with finite length.

Line Sources With Irregular Geometry. Due to technical restrictions or to the geological
structure of the reservoir, often happens that the well cannot be drilled in a straight
also of the type of sources with finite length. The potential equation for this type of
source, for the first time, is presented in this work (Chapter 5).

Line Sources in Semi-Infinite and Box-Shape Reservoirs. Any type of partial line
sources in box-shaped or semi-infinite reservoirs are of the type of sources with finite

length.
4.2 Point Seurce Potential Equation

The instantaneous and transient potential solution tcra point source in an inﬁﬁit_e‘ isotropic.
domain and steady-state solution to a point source in a rectilinear isotropic domain are
presented in Appendix A. In this section 1) the definition for the flux term and the
diftusivity coefficient for fluid flow problem, and 2) the transient pcxténtial to a point

introduce the dimensionless variables first.

Dimensionless Variables. To put the potential equations into dimensionless form, an

arbitrary reference length, «, is used. The appropriate reference length in a reservoir with

constant thickness is



a=2h ’ . 2.1

: PR
where, A, is the reservoir thickness.
The remaining dimensionless variables can be defined using «. -

Thus the potential of a continuous point source (Equation A.2.1) in dimensionless form

can be written as;

| r, :
@, = —erfe—=— (4.2.2)
2, ,/41,, o -
where
2ha :
P = AP {4.2.3)
N QH
and where ’
©=p-ve:, . s i, RIS | (4.2.4)
’l') —_—_I(I*,", V : o e, v e (4.25)
©oude,a” ' : S :
Fy = L, ................................... (4.2.0)
a
12
),)-(xz+y2+:2) T 427
X = —X— s (4.2.8)
a
v = }— OO PP PUPR (429)
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“andl

and

£ e (4.1.10)

4.2.1 Flux Term and Diffusion Coefficient for Fluid Flow Problems

For a fluid flow problem, the diffusivity coefficient is defined as [Earlougher, 1977}

K=k TR TTR (4.2.1.1)
e,

where &, 1, ¢ and ¢, are the permeability, viscosity, porosity and total compressibility.
respectively.
The definition of the flux, ¢, for a thermal problem was obtained by Carslaw and

as follows.
For a point source with a total flux () in an isotropic infinite domain one can write:

o A on .
O= [ [ [bc,odXed¥YdZ e (4.2.0.2)

where ¢ is the instantaneous potential given by Equation A.1.2 as:

[ PRV YN P& B
WXy za)=—3 e [lrmar ey Ptz o e (A2
8(nKr)"*

Substituting ¢ from Equation A.1.2 into Equation 4.2.1.2:



K8

. +x LY e +or L oend - +o s .
Q:-ﬂ'—’—— i e 1A= AT gy i e (Y1) 4.&:‘1).‘[ e CRE R

S(KA")‘ : —-x - - B
................................ (4.2.1.3)

Using the substitution [Grzdshteyn and Ryzhik, 1980]:

[e ¥ dy = oo (4.2.1.4)
. % .

one obtains:

0 = géc, e (4.2.15)
or

q= L e (4.2.1.0)

Qc,

4.2.2 Continuous Point Source in an Infinite Anistrbpic Domain
The instantaneous point source solution in an anisotropic domain is given in Ap'pcndix A

ey i weslrar R v alzesi® 2]
o(X,¥.Z.1) = —5— e [eomar P stgerer Pzt i)
8(m) (A.\.KYKZ) : 7

where K-, K, and K, are the diffusivity coefficients in each of the A~ }- and Z-

directions. A simple form of Equation A.1.3 can be found.

From Equations 4.2.1.1 and 4.2.1.6 the diffusivity coefficients and flux term can be

written as;



Ky = -t
T e,

, k,
KF) = —
Hee,

K, - k.

and

¢
f!_z;:"__

dc,

Applying Equations 4.2.2.1 to 4.2.2.4 Equation A.1.3 reduces to

Qo=

Q(Ll Cbl!l )3 2

8(71-3; 3 K. KK, )| 3

Defining;

Equation 4.2.2.5 reduces to:

exp

| e, ;(3;

.7 )i'

=+

(),r L 2

4i

e (42.2.6)
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oo b Q) g [(Y-X) -0y (z-2])
- aBg(ntiny)” | k| o’ B
e (4.2,2,8)
Defining
r::(’c—‘("+(} }) +(Z"Z] ................................ (4.2.2.9)
B
Equation 4.2.2.8 reduces to:
(p:-l= _Q exp| — r’ L (4.2.2.10)
aBymk) T ake| e 4221
where
K=— : i (12.2,11).
nbe, i

Equation 4.2.2.10 defines the potential of an instantaneous point source in an anisotropic

reservoir with anisotropic coefficients, o and B, given by Equations 4.2.2.6 and 4.2.2.7;

Equation 4.2.2.12 in dimensionless form can be written as:



k1 L
1, 7 e ORI v (4.2.2.15)
pde,a” . '

and

provides the solution for a point source in an isotropic reservoir.

4.2.3 Continuous Point Source in a Rectilinear (Infinite Slab) Anisotropic

Reservoir

The performance of a source depends on the boundary conditions. Typically, no-
flow or constant potential BCs are found in reservoir engineering.

Solving partial differential equations for different combinations of outer boundary
conditions is difficult and sometimes impossible without further simplifying assumptions.
However, the Method of Images can be used to introduce a no-flow or a constant

potential boundary into an existing solution. The Method of Images and mirrors originated
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with the discovery of crystal structure and crystallography science, and was used by

Madelung [Muskat, 1932] in electrical science to model a steady state point source in a

rectilinear solid. Muskat [1932] modified that point source solution for fluid flow

problems.

In this section the transient solution of a point source in a rectilinear reservoir, by

application of the Method of Images to Equation 4.2.2.13 (Figure 4.2.3.1), is derived as;

1 = 1 R z ] R,
op(Rw)=—(S —erfc—=—=+ ¥ erfc——=+
Po(Rw) aB(.\'=02R, Jar,  S2e2R, Jar,
= 1 R = 1 R
5 erffc—==+ S erfc—3=)
N=12R, VA, N=12R, NETR

e 4230)

where

- 5 7.]-2 v T
R =|R*+(N+w+c) /B’ O T (4.2.3.2)

[ 152 2,022 . _
Ry=|R*+(N+w-o)* /8~ . L e (4.23.3)

[ 52 2 L112 : ‘

Ry =R +(N-w+e) /;3-] ................................ (4.2.3.4)

[ .. 2 L1 2 '
Re=[R+(N-w=o B2 (4.235)
and where

2 2 o -
R=[(X—X') +(y-7) /a‘] ................................ (4.2.3.6)



where w is the dimensionless vertical coordinate (=) of an arbitrary point.

y o s tc
.l @

1
: l c

Figure 4.2.3.1: Schematic drawing of Method of Images.

4.2.4. Transient Point Source in a Semi-Infinite Slab '

Applying the Method of Images one can introduce a no-flow boundary (see Figure
4.2.4.1) perpendicular to the no-flow upper and lower boundaries. The resulting

mathematical solution models the performance of a source in front of a vertical barrier.



Figure 4.2.4.1: Modeling a no-flow barrier by the Method of Images.

]('1

1z 1
=—{X - + erfc —=2=
af v=ulR, ,/4],, v=u 2R, NET

i ! erfc lit:mk ¥ d erfc it +

N=12R, Jar,  x=2R, 5"*7/4;”

=+

= X/ % ,R'
i leﬁb! L& | i

Noo 2Ry Jar, 5;,2Rg Jﬁu,

|t R‘
2 el '\/é“b

where

[ , 5,12
lﬂ:FZHN+W+qWBﬂ : s (4.2.4.2)
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R, = :Rz +(N+w -c)z /Bz]] i - R (4.2.4.3)
R, = :RZ +(N=w+c) /{32]"2 ................... R (4.2.4.4)
Ry = [ (N =)’ /BZ]' i R o (4245)
R = [(\ - _\-')2 + (y-y')2 /0(_2]1 e (4246)
Rl = :R’Z +(N +w+c)2 /Bz: e i T AR PR (4247)
R} = :R'Z +(N +w-c)’ /32:' S .......... (_4.2.4'.3)
R; = :je'l +(N -w+c) /;32:l 2 S et :"f"', ......... (4.2.4.9)
R, = [/e'2 +(N-w-¢)’ /[32]' 2 e ($.2.4,10)

and where

R L2 -
R = [(x wx=2L) (- )’ /a‘]l .............................. (424.11)

where w is the dimensionless vertical coordinate (=) of an arbitrary point.



CHAPTER 5

DEVELOPMENT OF DISCRETE FLUX ELEMENT (DFE) METHOD

derivatives of horizontal wells with uniform flux and straight configuration assumptiéns
[Clonts and Ramey, 1986, Daviau et al.. 1988, Kuchuk et al., 1988] have been presenied.
in the literature. Rosa and Carvalho [1989] presénted an infinite conductivity pressure -
solution for horizontal wells with straight conﬁgﬁratibﬁ. It m:a‘y be of concern thal ,1hic
pressure derivatives evaluated by these approximations vary in value, and that this could
affect interpretation in pressure transient analysis and productivity calculationi Specific

limitations of these solutions include:

i) Geometry of the source: Horizontal wells are assumed 10 be a straight line source
in the direction of one of the principal axes, buf most wellbores, particularly horizontal
ones, are curvilinear. If the wellbore were not in the direction of one of the principal axes
of the medium the K-matrix would be a tensor with 9 elements. Thus, by assuming a
straight line source in the direction of one of the principal axes one neglects the 6 flow

components which directly affect the potential of the source as will be shown below.

Darcy’s law in an anisotropic domain in the simplest form can be written as

[Collins, 1961];



o 2] b
v :-E(k',i_"‘i+/<,2';"’—+1<,]ﬂj P=123 e, (5.1)

I.l \ (,.‘XI (« 9(2 (&”;

where, in this notation, 1,2 and 3 represent the x, y and - directions and V; is the
volumetric flux, p and p are the fluid density and viscosity, respectively, and ¢ is the

potential. Equation 5.1, in a general form, can be written as:

v = Pyl (i=1.2,3 and j=1,2.3)
heo ey
............................ (52)
where KU 1s a tensor with nine elements:
K, K, Kg IRt
K=K, Ky, Kyyt e (5.3)

K.’H KJZ K'BJ

Assuming that the K-matrix is symmetric, one can rotate it to a particular coordinate

svstem (principal axes of the medium) to produce a diagonal matrix called the K -matrix:

Thus, it can be inferred that the coordinate system, of any potential solution with three
orthogonal principal permeability components, is parallel to the principal axes of the
porous medium. Therefore, when using the product of three 1-D solutions (Green'’s
function) in the x, y and - directions [Clonts and Ramey, 1986, and Daviau et al., 1988].

one implicitly assumes that the wellbore is in the direction of a principal axis of the
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medium. However, the configuration of most horizontal wells is irregular and independent

of the principal axes.

Assuming a straight configuration along a principal axis, one neglects six flow components

(Equation 5.1):

pl, o . ¢ | <

"] :_—(AIZ :—+Al3 '——) ....... PR R T PR R PR PR (35)
H Cv, X,

v =—B(1<2, L f”) e, (5.0)
M & B o ' : . -

vy = —B(KM D Ky f”} ............ S (5.7)
Tl ox, ox, : R :

i) Potential distribution inside the reservoir: Even if one uses an equivalent pressure °

point to get an approximate value for the potential on the surface of a wellbore or a~
fracture, how can one calculate the potential distribution inside the reservoir? The

potential distribution inside the reservoir is required for
a) Interference well testing;
b) Coning;
c) Flow mechanisms:
d) Drainage area calculation.

In addition no steady-state solution has been presented in the literature for,

partially penetrating, horizontal wells and fractures.
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In this chapter, a new general solution for the potential of sources with finite
length and arbitrary geometry is presented. Applying this method one can determine the
potential and potential derivative for both uniform flux and uniform potential IBCs for any
type of outer boundary conditions for any source type such as:

1. Horizontal or inclined wells with straight or curvilinear configuration.

)

Vertical, fully or partially penetrating wells.

Arbitrary geometry fractures.

ol

This general solution can be used for bvéth transient and steady state conditions, In
the next chapters the application of this method will be shown by solving seve}a! problems
in petroleum reservoir engineering. However, the dimensionless potential is provid’edirit
can be used generally in other applirt:at,icns of potential ‘theory with the appropriate

coeflicient of diffusivity.
5.1 Potential Equation
The potential due to a source is the solution of the diffusivity equation in the form

of:

A direct solution to this equation for an arbitrary source with respect to potential theory is

impractical. However, it has been solved for an instantaneous point source [Kelvin, 1884]:
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—{(.\'—.\")2 Ky +(F-1 0 Ry (- «J &
e » ,

o(XN.).Z.1)= d AL

S(TC,)J 2(A".\ l\")- }\./:‘)l 2

The potential due to an arbitrary source can be obtained by i:uegrating the point source
solution over the volume of that sourée [Kelvin, 1884). For sources with infinite
dimensions in the direction of the principal axis of the medium, this method provides an
exact solution based on potential theory. However, the apﬂicmion of this method for
sources with finite length'is assoéiéted with certain assmnplidns that Vwcr‘c discusscd x,:s’u‘lrié.r -

in this chapter.

The solution due to a line source can be obtained by integration of a point source

over the length of the source (Figure 5.1.1):

(pL(.\',y,z,l )=Hq(.\",)".:','t)(p’,','""(.\‘—-.\",.\.'-'-y’,;—:’,t)d/dr ........ FRUEN (511
an o SR
((x.v.7)
o

N
/ (x.r.2)

Figure 5.1.1: A line source with arbitrary geometry in an infinitc domain
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IHx.

where @, (x,),z2.7) is the potential due to a line source at point ¢(x.y,z) at time 1, @},

strength ¢, alx,,y,,z,) and h(x,,y,.z,) are the two ends of the integration path and

(1) = (dx)® 4 () (cd=)* e (5.1.2)

It was shown in Chapter 2 for sources with infinite length and straight
configuration that the uniform flux IBC is a valid assumption. However, for sources with

finite length, ¢ is a function of time and position in space (x'.y'.z').

By applying superposition in time one can remove ¢ from under the first integral:

h i o ; . .
0, (\\:I ); jq(r's)’::Zi )j’m’fi"'(,x —xy=y s tdhdr s (501.3)
1 0 T

The integral of an instantaneous point source over time is actually the solution for a

continuous point source:

b : SERE IS ATy s
@, (s )= fav vz e (x=x vy =yl (5.1.4)

This integration can be completed by applying various assumptions such as:

1 uniform flux IBC,

2. straight line configuration,
3. the direction of the wellbore is in the direction of one of the principal permeabilities.

The final form of Equation 5.1.4 has to be integrated numerically.
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Eliminating the above restrictions this study presents a new solution called the
“Discrere Flux Flement (DEFE) Method ™.
Changing the integral sign into a series one can write:

n

o, (v z) =g, (x, .35 Do (x ~x, vy =¥z —z0)

=]

el

where # is the number of flux elements, ¢, is the strength of the /* flux element and ¢’

is the potential of the /" flux element at point (x.y,z).

A schematic of this model, is shown in Figure 5.1.2.

Figure 5.1.2.: Schematic drawing of the line source with rrregular gcometry

modeled by DFE Method

The series in Equation 5.1.5 will converge once the distance between two {lux
elements becomes equal to the well radius (Section 5.3). Writing the potential in the form

of Equation 5.1.5. has certain advantages.
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i) The geometry of the source can be taken into account without losing accuracy. It
can be used for modeling the potential of vertical, horizontal, inclined and
curvilinear line sources.

i) All the point source (flux elements) solutions are in a coordinate system parallel to
the principal axes of the medium. Thus a line source with arbitrary direction can be
modeled without rotation of the coordinate system.

i) Any type of outer boundary condition (sealed, constant potential or mixed) can be
modeled using the method of images.

iv) A uniform flux or uniform potential inner boundary condition is possible.

For a horizontal well extending from (;\E‘lﬂ-"‘f,;*?l",) to (x5.3.2,.) Equation 5.1.5.
can be written as:

ol

g, (X, b 1O (x - —-‘;l Y =z =-:u’) :’

1=

0, (¥ 0z0)=

i=1

where

X, =N+ xOX SUUURTRRUURCRRURRURRRRNY (. 00 B ) |
and

Oy =ry oo (5.1.8)

where



Line source with uniform flux IBC

For a uniform flux IBC (using normalized total flux = 1):

Therefore, Equation 5.1.5. reduces simply to:

. 1 2 o
¢, (x.yzo0)= - ;]q)‘}‘ B R N L D
f1=]

Line Source Wirt Uniform Potential IBC

For a uniform potential IBC, one must find the flux distribution along the source.

Therefore one needs # + / equations to solve for the flux strengths of # flux elements and

the source potential,

Of the total, » equations are found by writing

the

solutions for potential at the

surface of # flux elements. Using the dimensionless form these are:

+qn(p Liln

=1 Ppy TPt

(p S he
Pie TP 21 Y20 paato G, D0y
P =P HY2P 32t FY, D 3,
----- TGP 1nn
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The (1 - 1)st equation is the total flux strength constraint equation:

Sq =1 v (5.1113)
[ :
The complete system of equations can be written in matrix form as:
(‘P/m PP~
Dy Pz P 14 .
=1. e ETTRS (5.1.14)
Dyms Pps Do -1 qn 0
I / / O jop] L]
Fracture

The potential due to flow to a fracture can be obtained by integration of the
potential solution for an instantaneous line source with respect to time and the length of
the fracture. Following the same approach used for a line source one can obtain an

equation similar to Equation 5.1.5 for a fracture. For a vertical. fully penetrating fracture.

extending from x, to x, the potential can be written as:

n . : .
0 (¥ 0) = S, (% 2 YOS (= %0 = 2 1).

1=]

................................. (5.1.15)

where, ¢, is the dimensionless potential due the fracture and ¢, is the dimensionless

potential due to the i flux element, with flux q;.
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Outer Boundary Conditions

Any type of outer boundary condition can be introduced into the point source
solution in Equation 5.1.5 by using the method of images. This method was explained in
Chapter 4. Specific cases are illustrated in later chapters where the DFE method is applied

to various real problems.
§.2  Potential Derivative
The potential derivative with respect to- In(7,,) is used to study flow regimes. The

potential derivative with respect to In(s,,} can be obtained using:

dp _’bd(Dnu' ‘ o (%2])
d(In(1,,)) dr,, o | ,

The potential equation in a general form can be written (using Equation 5.1.5); -

H ~ - -
— ) . 7.9)
O = 24, Py, s e i e e (822)

1=1

where ¢+ is the potential due to the source, and ¢y, is the potential of the /' flux

element with flux ¢, Substituting Equation 5.2.2 into Equation 5.2.1, one can write’

o _, faf, T | (523)
1l 2 Py / 1, / "
t/(ln(lu)) 1=] C[[) (,1) ) .

The derivative of the potential of a single point source is found from Equation 4.2.3 |

through 4.2.3.6:
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where
Co. . .72 .
lﬁ:[R*+(N4ﬂr+gf/ﬂ2] i e e (5.2.5)

1y =1+ (N v w-c) /9] e (5.2.6)

It

o R R
RR:[R‘+(A’%uﬂﬂ§3/ﬁ1 et (3.2.7)
and
RJ:[R*+(N=»f=¢y/BE] i (5.2.8)

where

) S SRR e -
§+(3':)")*/c4‘] PR S e (5.2.9)

R= [(\‘ - x')

Equation 5.2.3. can be used for both uniform flux and unif&;‘rmv petential IBC.

5.2.1 Uniform Flux IBC

For a uniform flux IBC and a constant production rate, the first term in Equation 5.2.3 is

zero. Therefore Equation 5.2.3 reduces to:

I 40, (5.2,

Ao _

d(In(r,,)) =



5.2.2 Uniform Potential IBC

As was shown previously, a uniform potential IBC implies that the flux, ¢, be-a
function of time and coordinates. However, at late times, once the flow stabilizes, ¢ is
independent of time, yet it is a function of the coordinates Therefore, the potential

derivative at late and short times can be written as discussed below.

Late time potential derivative. At late times, after flow stabilization, the first term of

Equation 5.2.3 becomes zero and thus

——b v
d(ln(t,,)) l),=11 dt;,

ot ndo, o

o=y P T (5.2.2.1)
Potential derivative before flow stabilization. As the function of ¢ is unknown, the first
term in Equation 5.2.3 can not be evaluated. In this study, numerical differentiation is used

to evaluate the pressure derivative as follows:

(1(1)1) . r .
—L_ - ] ] R
infr) A

\ /["1-’])

@ 1 (’1’:)“{’/)\‘-(’1:)) ' | (5222

5.3  Convergence

To check the convergence of the series given by Equation 5.1.5, a horizontal well
with L, =4, and r,;- = 0.001 was modeled with different numbers of point sources. The
resultant potential and its derivative with respect to In(r,,) for different values of the

distance between point sources are given in Figures 5.3.1 and 5.3.2, respectively. The

potential value converges as the dimensionless distance between two flux elements
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becomes equal to 0.002- 0.001 (2r,,,. - r,,-). However, the potential derivative. for all

[y

cases, converges at f,, > 107" This indicates that beyond a certain time one can use large
distances between the flux elements for calculating the pressure derivative.
The minimum in the pressure derivative curve (Figure 5.3.2) is the effect of the no-

flow boundaries. Further explanation about this curve can be found in Section 6.1.
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.4 Validity of the Discrete Flux Element Method
To check the validity of Equations 5.1.5 and 5.1.15, a vertical, fully penetrating
line source and a vertical uniform flux solution fracture were modeled using the DFE
method.
Vertical, Fully Penetrating Line Source
The exact solution for & vertical line source is known as the [; or. exponential
integral solution:

]

Ty e . ,,,(54;1.)'1

A wellbore with ry,,- = 0.001 is modeled using DFE method. Figure 5.4.1 Shaws'that the
potentials calculated from both the DFE method and the exponential iﬂtegrai solution are
identical. Table 5.4.1 indicates that the potential values obtained using DFE Method are
larger than those obtained using exponential integral in the range of 0.095% - V'Qi.le 7%

corresponding to short and late times,
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Figure 5.4.1: Comparison of the potential of a vertical fully penetrating wellbore . '
modeled using the DFE method and exponential integral.




Table 541

Comparison of the pressures of a vertical fully penetrating wellbore with

K, = 0001 in an isotropic reservoir obtained using the DFE Method and
the exponential integral. '

Dimensi-

onless time

Dimensionless pressure

Error (%)

11

100 ~ =

Pry

-0.095

-0.075

-0.068

-0.053

-0.049

-0.044

DFE"MEthmicli Exarintegral
(pPpr) (Ppy)
3.8209 ;;3183 7
49113 7 ;9076
5,4264 54167
76;8048 7 ;S.SOIZ
7.497'7 7.494
8.413 7 :Ei,éllﬁ(i)l
9.5133 i Q.SDS
10.023 - IOGOI‘?;
11.409- 7 11.406
12105 | 12,099
13.019 7 lZiDle




ot

Dimensi- Dimensionless pressure Error (o)

onless time

6% 107" 14.117 14.114 0022

1 14,628 14.625 -0.024

4 16.015 16.011 -0.026
8 16.708 16.704 -0.024
60 ~ 18.723 18.719 -0.022

100 19.233 19.230 -0.017

Vertical Fracture with Uniform Flux IBC.

A vertical fracture, extending from xj to x5 . is modeled by both continuous integration of
a line source and the /) Method.

Continuous integration. The potential due to a vertical, fully penctrating line source is
given by Equation 822 or by the log approximation [Earlougher, 1977], which, using

the dimensionless variables applied in this work, can be written as:

m,,,j:ln(—%]msaw ....... e (5.4.2
T ' :

where

(%]

o =(x- r’); +Q=y) e (5.4.3)
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The potential response due to a vertical fracture can be written as:

By = I{ln;’% 4:()_30907de' e 3. 44)
afl 1l B RS- N

or

0y = (x5 = x{)in(r,) - 1,19093]+(’.r=x5)1n[(x=> x3)? +_1’Z]

2 7 X — X x-x
~(x - x.’)ln[(.v —x7) + )7 ] - 3)’[{1 tan ——2 —  tan ~ Y':}

Y A

The potential at the center of a fracture with dimensionless thickness equal to

0.001 and uniform flux IBC obtained from Equation 5.4.5 and the DFE Method are

compared in Figure 5.4.2. As can be seen, there is almost complete agreement. Table 5.4.2

indicates that the potentials obtained using DFE Method (dimensionless distance between
the elements equal 0.001) are smaller than those obtaineu by continuous integration in the

range of 1% - 0.19% corresponding to short and late times. respectively.



Dimensionless potential

1408+01

1 20E+01

1 00E+01

8 00E+D0

6 00E+00

4 00E+00

0 0DE+00 _
1 00E-03 1 00E-02 1 ODE-O1 1 00E+00 1 00E+O1 1 00E 02
dimensionless time
= 5.4,2:  Potential at the center of a vertical fracture with dimensionless

length equal to 0.1 modeled using the DFE method and analytical
integration of a vertical line source.



Table 5.4.2:

Comparison of the pressures at the center of a vertical fully penetrating
fracture with /.;, = 0.2h, and thickness equal to 0.001 obtained using the
DFE Method and continuous integration (both with a uniform flux IBC).

Dimensionless

time

Dimensionless pressure of a vertical | Error (%0)

DFE Method Continuous integral A Pem = P )

[‘2( anl

(Pnr) (Pconr.)

1.8307 1.8111 -1.09

4.1333 41137 -0.48

6.4359 6.4163 -0.31

8.7385 8.7188 -0.22

11.0411] 11.0214 -0.17

("]

tad |

(]

e

o]
.
<
W

13.3433 13.3:

5.5  Comparison of the Discrete Flux Element and Infinite Conductivity

Methods

The examples given by Ozkan et al. [1987] were solved using DFE method. To
compare the results of the two methods the dimensionless variables used by Ozkan et al.

have been used. These are;
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poe, (1./2)
Fegw. = l'“-
"(112) ’
where /. is the wellbore length.

X, =0732X

(58S
Ozkan et al. [1987] simulated the infinite conductivity solutions for horizontal wellbores
Y, where

by calculating a uniform flux solution  at “an equivalent ‘pressure point ‘that is

e (5.5.4)
Thus to compare these solutions, the DFE Method is applied to obtain the unilorm flux
solutions for three different horizontal wells at the equivalent pressure “point
(X, =0732.X ). All the wellbores with dimensionless radii equal to 0,0001 and with
dimensionless lengths 0.25, 1 and 25 are located at the mid-height of the infinite slab
reservoir,
The comparison of the dimensionless pressures obtained using DFE Method and the

infinite conductivity solutions are shown in Figure 5.5.1
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Figure 5.5.1: Comparison of the potentials for a horizontal well modeled by the
DFE method and the infinite conductivity solution,

Equivalent Pressure Point
Horizontal Well in an Infinite Slab Reservoir

Using the uniform potential IBC, the potential and potential derivative with respect

to In(s,,) were calculated for two horizontal wells. /.,, =/, and L, = 2h,. The results are

shown in Columns | and 4 of Tables 5.6.1.1 and 5.6.1.2. Also, using uniform flux IBC.

the same values were calculated for the whole length of the wellbore. The coordinates of
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the points where the potential and its derivative are identical to the uniform potential 1BC

solution are reported in Columns 2 and 5. These coordinates are calculated as a
percentage of the wellbore half length and are shown in Columns 3 and 0. Inspecting
Column 3 one can see that 1) the equivalent pressure (potential) point is moving in time
and stabilizes at late times once the semi-log pressure derivative approaches 1 (radial
flow), 2) cven at late times (radial flow period) these values are not identical for different
well lengths, and 3) the equivalent points for the potential and its derivative are not

identical. Moreover, for the case of /., = 2/, no point_on the wellbore (at 7, = 10 )

with uniform flux IBC, can simulate the uniform potential IBC.

Table 5.6.1.1: Equivalent pressure point (EPP) and cquivalent derivative point
EDP, for a horizontal well with /., =/,

tn | PUHJ;; NDEE || o DD | %
1 2 3) T 5) ' n'}
2=10"° GJHZ}!; (1,3;2;5 7 ‘)().E“f&’ | - ;ﬁ o -
w00 1sme Jean |wan owes o | 7o
i() ;) *LAZ(;I:;? 0.189 7 7717757,()'}5177 77(),755()4 0.15 60%
77(;; | 12;%1;) ;);l; 7 72% ().8uy 013 (ii‘.j—;’ffin
0 s o am oosse o | ovan
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Table 5.6.1.2: Equivalent pressure point (EPP) and equivalent derivative point
EDP for a horizontal well with L, = 2/4,.

1) 2} 3) 4) 3 6)

V]Ui‘ 1.5642 ()4‘;2 7 ‘;5.4‘31'2,. 7;);1174 *7 N * )

1t ; "2;(‘9 (,Lai%‘) 79:5:;'%’?: 7 (1,3391 7 ().4‘)3'”7 . 133.6’!4.
7];1 ‘7 37,!';(,13 W 0,452 7 90, 4%, | ()‘;54 7(;_4471 SH:E'H.
10 45787(1172 ) ();0;1 E;)_%'}i. - (i,4é42 ()3:4: 7 ;RR'H.
(),li - (3:(17751 7 (l:ﬁ;\ 7771‘}}. 7 0.7098 7 ()_3(71;; 7 7(;().8‘.'55.
| R 3;)})24 7 0.344 G?ﬁ.s‘}‘.'.ﬁ 0.9563 7 U?l(; 7 (;13.2‘%’2;
10 l().;’%éS (:343 68.6"% 0.9934 0318 7 (‘:173.6'5'&
l(;() N 12.623 i)!?;:ql.? 68.6% (!,‘;")9:7:7 U.UU?;EJ 63.6;5;57

1) PUPIBC= potential due to uniform potential inner boundary c@nditi‘c)n,

2) X1), I.PP= location of equivalent pressure point.

3) % of the half length of the horizontal well.

4y DUPIBC= log derivative due to uniform potential inner boundary condition.
5) XD, I=DP= location of equivalent derivative point.

6) %o of the half length of the horizontal well.

*) there is no point on the wellbore to indicate the pressure derivative,

It can be seen. from Columns 4. 5 and 6 of the Tables 5.6.1.1 and 5.6.1.2, that the
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.6.2 Horizontal Well in a Semi-Infinite Slab Reservoir

a semi-infinite reservoir is investigated. The wellbore with 7, = 0001 and /1, =/, is

located at the mid-height of a semi-infinite slab (Figure 5.6.2.1). The vertical barrier is

perpendicular to the wellbore axis. The distance of the wellbore end to this barrier is 0.

No-flow boundary

Vertical
barrier

No-flow boundary

Figure 5.6.2.1: Schematic drawing of a horizontal well located at the mid-height of

Applying the DFE method, both uniform flux and uniform pmg,i?lial: IBCs érc s
modeled. The locations on the wellbore at which the uniform flux potential solution is
identical to the uniform potential solution for different times are calculated and are shown
in Table 5.6.2.1. Column 2 of Table 5.6.2.1 shows the dimensionless potential obtained by
a uniform potential IBC. Columns 3 and 4 indicate the location of the equivalent pressure

point (EPP) as a percentage of the total and half lengths of the wellbore length.
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Table 5.6 2 1: Equivalent pressure point for a horizontal well with 1, = A, and
Fiyy, = 0001 located at the mid-height of a semi-infinite slab reservoir.

(EPP = equivalent pressure point).

W e, 3) EPP 4 EPP
(Uniform pot. IBC) | Based on the wellbore | Based on the wellbore half
length length
2. 10 | 162 99% S e
24107 ) 3.80 7 97% 95.2% o
g . 10~ | 6.06  lossw b 91.6%
j 0= |8.27 - 87.6% o 75.2%
2. m- }})2; N 77.2% 54.4%
2 00 |22 |eoav e
2 7 17.47 o 68.4% 36.8% -
20 225? 7 684"% 7 36.8% |
_ N ]

As can be seen from Table 5.6.2.1, the equivalent pressure point is moving in time and

stabilizes at late times and is located at 68.4 % of the wellbore length (measured from the

vertical barrier) or 36.8% of the half length of the wellbore. However, for the same

horizontal well in an infinite slab, the equivalent pressure point at late times was located at

71% of the half length of the wellbore (Section 5.6.1).



5.6.3 Concluding Remarks
From Sections 5.6.1 and 5.6.2 it can be concluded that:

. The equivalent pressure point is moving in time; however, it stabilizes at late times

(radial flow period).

£

The equivalent pressure point location at late times depends on the wellbore length.

(V)

The equivalent pressure point location depends on the reservoir geometry and no-flow

barriers.

4. The equivalent points for pressure and pressure derivative arc not the same.



CHAPTER 6

6.1 Performance of Horizontal Wells

The potential and semi-log potential derivative of a horizontal well with L,=h,
and uniform potential inner boundary condition have been considered for three different
cases:

I. wellbore in an isotropic infinite reservoir ( that is a reservoir with no baundary) using

=

Equations 5.1.5 and 4.2.2.13;

1

wellbore at the mid-height (z;;- = 0.25) of an isotropic rectilinear reservoir (infinite

3. wellbore at a point close to the upper boundary (z;; = 0.15) in an isotropic rectilinear

1

La.l

reservoir (infinite slab) using Equations 5.1.5 and 4.2.3

The results are shown in Figures 6.1.1 and 6.1.2 for the potential and the potential
derivative respectively. Both figures show that in an infinite reservoir vhe response of the
the two other cases follows the same pattern as that of an infinite reservoir for a certain
period of time. Once the transient drainage area reaches the no-flow boundaries the

response at the wellbore in a rectilinear reservoir deviates from that in an infinite reservoir.
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Figure 6.1.1 and 6.1.2 indicate that this deviation happens quicker when the well is closer
to the no-flow boundary. Thus the deviation point of the potential and its derivative from

the response of a similar wellbore in an infinite reservoir can be used 10 determine the

distance of the wellbore from the no-flow boundaries.

Figure 6.1.1 indicates that the potential due to the wellbore closer to lhc’n'"nsﬂm\-
boundary is higher than that for the wellbore located at the mid-height of the 'r:cscmjxir_
However, at late times the semi-log potential derivatives for both are equal‘to 1, ‘\'\'hi(:h is
an indication of radial flow (the semi-log potential derivative equal to 1 is identical 10 1/2

using the traditional definition of dimensicnless variables).

Figures 6.1.3 and 6.1.4 show the potential and its semi-log derivative for two

horizontal well lengths L, =/, and 1, =2/, located at the mid-height of a rectilinear

reservoir. The potential drop due to the shorter wellbore is higher than that for the-longer

one. However, both indicate radial flow with slope | at late times.
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Figure 6.1.1: Potential of a horizontal well with , = A, located in a rectilinear
reservoir at different heights and an infinite reservoir. '
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Figure 6.1.2: Potential derivative with respect to In(7,,) for a horizontal well with
L, =, in a rectilinear reservoir located at different heights and an

infinite reservoir.
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6.2 Vertical Partially Penciiating Wells

The potential and potential derivative with respect to In(s,,). for dillerent
penetration depths are shown in Figures 6.2.1 and 0.2.2 At late times all cases indicate
radial flow with slope 1. In Figure 6.2.1, the intercept of the late times part of the curve
with time axis is an indication of well penetration depih. Figure 6.2.2 indicates that the

value of the potential derivative with respect to In(7,,) at early time could also be used as

an indicator of effective well penetration depth or reservoir thickness.
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Figure 6.2.1: The potential response of vertical partially penetrating wellbores with
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6.3 Vertical Fractures

The potential response of a fully penetrating vertical fracture with dimensionless
thickness 0.001 and different lengths has been calculated using Equation 5.15 with

uniform potential IBC. Equation 5.1.5 for a fracture can be written as:
2
D =24, (0.3.1)
‘ =1

where ¢, is the potential due to a fracture and ¢, is the potential due 1o a line source
element with flux strength ¢,. For the potential of a vertical line source, the log

approximation has been used.

/
¢, = ln(—’,’j +080907 ST, (6.3.2)
" : ' o

The results are shown in Figure 6.3.1. The intercept with the time axis is an indication of

fracture length.
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Figure 6.3.1: Dimensionless potential of vertical fully penetrating fractures with
different length and dimensionlesss thickness 0.001.

6.4 Performance of Line Sources with lrregularr Geométry ’

The configuration of most horizontal wells is ‘cunriliﬁearr.atl1ef than a straight line.
Applying the approximate potential» éolutions, 'for horizonyélguwél-ls, brovided by Clonts and
Ramey [1986], Daviau et al. [1988], Kuchuk ét al. [1983] ‘and Odeh and Babu [1990], one
has to assume a straight line geometry for the wellbore in the direction of one of the

principal permeabilities.

In this section the effect of the wellbore configuration has been studied using a
simple example. A one-quarter circle with radius 2=0.2 is modeled in three different
rectilinear (infinite slab) reservoirs. In each case the performance of the curvilinear line
source is compared to that of a straight horizontal well with the same producing lengih.

The wellbore model is located in the plane y=-0. In isotropic reservoirs the value of one of
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the isopotentials parallel to the wellbore has been taken as the wellbore potential
However. in anisotropic reservoirs the ispotential lines are elliptical. In this section the
cross section of the wellbore is assumed to be elliptical. This assumption does not have

any effect on the quality of the results. The wellbore pressures are calculated at v=0.001.

Fig. 6.4.1: Schematic drawing of a curvilinear source
(1/4 of a circle with radius 0.2) in a rectilincar
reservoir. ’

Case 1. The vertical permeability: is considered ‘to be greater than the horizontal

permeab:lity:
o = {—-"—:1 ........................ (6.4.1)
and

k, 7
p= -KL = ﬁ ........................ (6.4.2)
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Comparison of the potential and its semi-log potential derivative are shown in
Figures 6.4 2 and 6.4 3. Figure 6.4.2 shows that the dimensionless potential (pressure) of
the curvilinear source is higher than that of the straight horizontal well. In other words, the |
productivity of a curvilinear line source is smaller than that of a straight horizontal
wellbore with the same producing length. Figure 6.4.3 shows that the semi-log potential
derivative of the curvilinear source is higher than that of the straight horizontal line source.

Howver, at late times, the responses of both configurations indicates radial flow.
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and,

Yl i
K \/'k‘; - \/: ........................ (644)

Figures 6.44 and 6.4.5 show that the potential and semi-log potential derivative of a
curvilinear line source are smaller than those of a straight horizontai wciibore.b How&er,
the semi-log potential derivatives of both cases at late time approach I, which is an
indication of radial flow. Figure 6.4.5 shows that the radial flow re_spbnsc ,._of}the_

curvilinear wellbore starts sooner than that of the straight horizontal wellbore.
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Case 1. For this case the model reservoir is assumed to be isotropic with

Figures 6.4.6 and 6.4.7 show that the potential and semi-log potential derivative of both
curvilinear and straight horizontal wells are almost identical. Figure 6.4.7 shows that the
radial flow response of the curvilinear line source starts sooner than that of the straight

horizontal line source,
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6.4.1 Discussion
A wellbore with curvilinear geometry has a horizontal and a vertical component. In
reservoirs with a significant difference in horizontal and vertical permeabilities. the role of
cach component in the reservoir depletion is different. In reservbirs with higher vertical
permeabiliiy, the productivity of the horizontal component is higher than that of the
vertical component. Thus, if one models a curvilinear line source with a straight horizontal
well, one underestimates the dimensionless potential drop (Case ). In reservoirs with
higher horizontal permeability. the productivity of the vertical component is higher than
that of a horizontal well with the same producing length. Thus, if one models a curvilinear
wellbore by a straight horizontal wellbore, one ovérestimates the dimensionless poténtial, |
(Case I1). Moreover, the potential derivatives of a curvilinear and a straight horizorn.tal |

well are different.

In isotropic reservoirs a curvilinear line source can be modeled by 'a> :stra‘i‘g'ht;
horizontal well (Case !II). Hq\xf'e\’er, the potential derivatives show different &'alﬁés for the
time to the start of the radial flow response. |
6.4.2 Concluding Remarks

Based on the results of this study it was found that modeling a curvilinear line source with
a straight horizontal line source creates errors in the calculated pressure and pressure

derivative response. This error increases with an increase in the anisotropic coefficient.



6.5 Performance of a Horizontal Well in a Semi-Infinite Slab Reservair

A reservoir with two parallel no-flow boundaries and a vertical barrier can be
considered as a semi-infinite slab. The potential equation tor a horizonial well in a semi-
inﬁhite slab is modeled by the method of images as explained in Chapter 5. A schematic
drawing of a horizontal well with /., = /1 at the mid-height of such a reservoir is shown in
Figure 6.5.1. The reservoir is assumed 10 be isotropic. The potential and its derivative with
respéct to In(7,,) with uniform flux IBC for such a wellbore tor different distances from
the vertical barrier are shown in Figures 6.5.2 and 0.5.3. respectively. Two cases with the
distance (/) to the barrier equal to 0 and 0.5 are studicd. The potential drop for the
wellbore closer to the vertical barrier is highest. The potemiél (iCI'i‘\'.Zl(.i\’C at Jate times is 2,
As the potential derivative for the case of horizontal and \)c‘rlicallrwc!ls in a rectilinear
reseﬁ'oir at late times is 1, which indiCates a cylindrical drénihzigc érca, it can be cnnélmlcd
that for the case of a semi-infinite reservoir a potential derivative equal 10 2 (double slcipc) '

is an indication of a semi-cylindrical drainage area.

No-flow boundary

Vertical
barrier

No-flow boundary

Figure 6.5.1: Schematic drawing of a horizontal well in an semi-infinite slab
reservoir,
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Figure 6.5.2: Dimensionless potential for a horizontal well in a semi-infinite
slab reservoir (F is the dimensionless distance of the wellbore end
to the vertical barrier).
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Figure 6.5.3: Potential derivative for a horizontal well in an semi-infinite
slab reservoir (F is the dimensionless distance of the wellbore end
to the vertical barrier).




6.6  Flux Distribution Along the Source

The flux distribution for a horizontal well in a rectilinear rescrvoir is shown in
Figure 6.6.1. Due to symmetry, only the wellbore half length is used. As can be scen at
short time (7, =2 = 1077) the flux distribution is almost uniform. However, at a longer

time (7, = 1) the flux at the ends is significantly larger.

The flux distribution along a horizontal well, with 1, =24 s, =000l and
=0, located at the mid-height of a semi-infinite slab isotropic reservoir with zero
distance to the vertical boundary is shown in Figure 6.6.2. Due to the existence of the
vertical barrier the flux distribution is asymmetric ir: contrast to the symmetric distribution
in the rectilinear case.

The concept in the literature [Clonts and Ramey, 1986, and VDaviau ct al., 1988] of
using an equivalent pressure point was based on a symmetﬁc flux distribution a.kmg vlhc:‘
wellbore. This is clearly not the case for the semi-infinite slab reservoir, and prghab‘ly‘hm

for other geometries involving vertical barriers to flow.



6 00F-03 .

& 00E-02 -

7 GUE-03 -

6 00E-D2 .

4 QO0E-0% -

4 00E-03 -

strength

100E-03 -

2 00E-03 empyrpr—gr =N

T 0%E-03 -

0 GOE +00 -
0 00E+0D
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CHAPTER 7

PRODUCTIVITY OF SOURCES WITH FINITE LENGTH

been presented before. In this chapter, by applying the DFE method, the steady-state
potential equations and productivity indices for these sources are developed

Equation 5.1.5 is a general equation that can be used for both transient and steady-

state conditions.

1=

Oy = S 4, i (1)

wherep®,,, is the dimensionless potential of a source with finite length and. @), is the
dimensionless potential of a flux element with flux, ¢,. Equation 7.1 can be used for-a

uniform potential 1BC by calculating the flux distribution along the S0UTCC A5 Was

rectilinear reservoirs.
To apply the DFE method under steady-state conditions (Equation 7.1), one necds
the potential solutions for point and line sources to model a line or a plane source,

respectively.



7.1 Steady-State Potential of Flux Elements
7.1.1 Point Source
Madeluny developed a steady-state potential equation for a point source in a

rectilinear (infinite slab) domain [Muskat, 1932}:

0 ﬁ('w,p, H*F) = 4::1[2 é (}éu (2mnp)cos(2muny) CGS(ET’[}IH-‘F) +In(2/ p))]

L oa=l1"

..... e (AR

Muskat [1932] defined the flux term, ¢, for fluid flow problems as (Equation A.4.2).

g = 4%1:‘” (A4z |
where

a=2h, et (AV4L3)
where A, is the reservoir height

¢=p-yge , e !m,i;m.;.-.;r(7.1'.1.1).
In this study the dimensionless potential for a steady-state condition is defined as; |

o ;zgff’ ¢ e (7.1.1.2;

Thus equation A.4.1 in dimensionless form can be written as:

(p;j!,(n:p, “ip) = 2[2 i(I{G(Zmzp) ccs(?mnr)cgs(?_nnwﬁ)+ In(2/ p))} (7113)

=1



7.1.2 Line Source

The steady-state solutions for line sources are given in Appendix C. To model a
vertical, fully penetrating fracture, one can use a vertical line source solution (Equation

C3.1)

¢ =2¢In(2/p)

where

p= ((\ —x ) -, ):)r 2

and

Oun

[ = ———

drkax

By substitution of

or a fully penetrating wellbore, equation C.1.7 reduces to:

g =Y
I amka

-

~J
ok
M

Thus Equation C.3.1 in dimensionless form can be written as:

e L (7.2.13)

where the potential ¢ and the dimensionless potenti

al ¢,, have the same dcfinitions as
does the point source {Equations 7.1.1.1 and 7.1.1.2, respectively).
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7.2 Productivity Index
The productivity index is the raiio of the production to the pressure drop at the
wellbore.

The potential drop between the producer and reservoir boundary (Figure 7.2.1), for a

production rate Q, can be written as:

Ap =@ = =(p.=vgh, — Py +¥8Me) : (7.2.1)

b 1

% A
Pw T
e .,
R :

Figure 7.2.1: Schematic drawing of a horizontal well in a rectilinear reservoir.

where ¢ is the potential at the outer boundary and @j” is the potential on the surface
of the source (either line source or fracture), p, is the pressure at the outer boundaryv at

the height /1, and p,, is the pressure of the source at the height /.
Considering the pressure at the outer boundary at the top of the reservoir:

Ap = (‘1)(’ -y + ygh”.), ........................ (7.2.2)

Using Equation 7.1.1.2 the steady state dimensional potential can be written as:



93
oY o SN . . -
CP Emki.lqj[:!h-;s IRERERN (7, _\)
the potential drop between producer and the outer boundary can then be calculated:

~ QFL " A _ X5 V L ,,
Ap = Tnlﬂy( (q qi“,“)pv "PDH’) (724)

where the first term within the brackets is the dimensionless, steady-state pmenﬁzﬂ at the
outer boundary and 3}, is the steady-state, dimensionless potential on the surface of the
source.

Equating Equations 7.2.2 and 7.2.3, the general equation f'c:f ﬂ]é productivity index can be

derived as:

) 2 o
pr=—2F8 SR . e (12.5)
(P - e +vehy) w(Sa,08), - oi)

Assuming unit values for permeability, viscosity and reservoir height, the Unit ]f'ro'ci(xi:liviiy

Index (UPI) is introduced as:

) 4 -

UPf = e SRR & AX )
(Z ql(pf)/u Iy ‘Pun)

The UPI for horizontal wells of different lengths at dlfTEl‘Em locations, and for vertical

partially penetrating wells with different penetration depths, is calculated and the results
are shown in Figures 7.2.2 through 7.2.4. The UPI for vertical fractures with different
lengths is calculated and the results are shown in Figure 7.2.5. The UPIs for cach of a
horizontal well, a vertical well and a vertical fracture as a function of drainage radius are

shown in Figure 7.2.6.
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Figure 7.2.6: A comparison of the unit productivity index for a horizontal well,
vertical well and a vertical fracture, each with a producing length
equal to the reservoir height.

Inspecting the UPI curves in Figures 7.2.2 through 7.2.6, one can see that:
The UPI for a horizontal well is higher than that of a vertical well having the same
producing length. While the length of a vertical well is limited to the height of the
reservoir, the length of a horizontal well has no such limitation (Figure 7.2.6).
The UPI for a horizontal well as a function of the drainage radius is less than for a
vertical fracture, provided that the well radius is identical to the fracture thickness
(Figure 7.2.6).
The UPI for a partially penetrating well increases with increasing length for both

horizontal and vertical wells (Figures 7.2.3 and 7.2.4).
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» The UPI for a horizontal well decreases as the well location approaches the no-Now
boundaries, and is maximum for wells located at the mid-height of the reservoir
(Figure 7.2.2).
7.3  Comparison of Different Methods
Assuming a horizontal well with length equal to the reservoir height, that is,
Ly =05, the Unit Productivity Index has been calculated using three different methods:

1) Borisov [Joshi. 1991] 2) Joshi [1991] and 3) the DFE method The results are plotted

in Figure 7.3.1 and indicate that:

 the UPI obtained by Borisov's method is about 4% less than that obtained by the DFF
method presented here.

e the UPI obtained by Joshi's method is 23% less than the DFE solution.
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7.3.1 Comments
In Chapter 5 the validity 01" DFE Method in modeling transient potential salutiéns
for horizontal and vertical wellbores is demonstrated. The calculated error for ‘a vertical
fully penetrating wellbore, for the distance between the elements equal to the wellbore
radius is 0.017% at late times (Chapter 5). However. one can reduce this error to zero. by
deereasing the distance between the flux elements. Moreover. in Chapter 9 the validity of
DFIZ Method in modeling stcady-state potential of vertical, partially penetrating wellbores

is shown, Thus it can be inferred that the error associated with the productivity obtained

Productivities obtained by Borisov’s [1964] solution is close to those obtained by
the DFE Method. As, Borisov's equation is easy to calculate, it can be recommended fora
fast calculation. It should be mentioned that, Borisov's equation is restricted to horizontal
wells with straight configuration in an infinite slab reservoir. However, by using the DFi
Method, one can take into account 1) the wellbore configuration and 2) the reservoir
geometry and the no-flow barriers.

Joshi’s [1991] solution underestimates the horizontal well productivity. This can
be due to the type of the flow components that have been used by Joshi. He models the
resistivity to flow due to a horizontal well by the linear summation of the resistivities of
two 2-D flow cdmpcngnts, These are, the resistivities of a vertical fully penetrating plane
source and a fully penetrating horizontal line source in an infinite, horizontal channel. For

using such flow components no justification is provided by Joshi.



CHAPTER 8

DRAINAGE AREA AND POTENTIAL DISTRIBUTION

The shape and distribution of the isopotential lines around sources with finite
length provide the shape of the transient and static drainage area and the flow type. In this
chapter, the transient and steady-state potential distributions inside an infinite slab and
semi-infinite slab reservoir are calculated for each individual case by apblying Equation
5.1.5 with uniform potential IBC. The steady-state potential equations are used for a
mathematical interpretation of the geometry of the drainage area.

8.1 Graphical Study of the Drainage Area
8.1.1 Horizontal Well | .
The transient (at /;; =0.1) and steady-state potential distributions around a

horizontal well located at the mid-height of a rectilinear reservoir in three different

sections are shown in Figures 8.1.1.1 and 8.1.1.2, respectively.
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Figure 8.1.1.1: Transient potential distributions around a horizontal well with

Lp =hat 17, =01 for:

a) horizontal section, xy plane
b vertical section, xz plane

c) vertical section y= plane.
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Figure 8.1.1.2: Steady state potential distributions around a horizontal well for
a) horizontal section, xy plane
b) vertical section, xz plane
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In the xy-plane, the isopotentials are elliptical around the wellbore. However, they
open up in the direction perpendicular to the well axis and become circular. In the xz
plane, the isopotentials are again elliptical in the vicinity of the wellbore, and become
vertical far from the wellbore This indicates that the drainage area in the limit is
cylindrical. lsopotential lines in the y= plane, normal to the well (x) axis, show that the
streamlines are perpendicular to the wellbore surface. From these descriptions one can
conclude that in an isotropic reservoir:

e the flow in the vicinity of the wellbore is always radial. However, it is spherical at both
ends of the wellbore.

e the transient drainage area is ellipsoidal at the beginning of production; however, it
opens up in the directions normal to the wellbore axis. If the reservoir were of infinite
dimension in all directions, the drainage area would turn into a sphere in the limit.
in the limit,

The transient potential distribution around a horizontal well in two anisotropic
rectilinear reservoirs is calculated and the isopotential lines are shown in Figures 8.1.1.3a

and 8§.1.1.3b.

In both cases k, : ‘1 =3 for Figure 8.1.1.3.a and 1‘% =1/3 for Figure
; k. N

As can be expected the potential gradient in the x direction is larger for Figure 8.1.1.3a as

compared to that for Figure 8.1.1.3b,
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Figure 8.1.1.4 shows the potential distribution in the lower part of a horizontal well in a

semi-infinite slab reservoir. This model represents a reservoir with two parallel no-flow

boundaries and a vertical no-flow barrier perpendicular to the wellbore axis.
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Figure 8.1.1.4; Transient potential distribution in the lower part of a horizontal
well at the mid-height of a reservoir with two parallel
no-flow boundaries and a vertical no-flow barrier perpendicular to
the well axis.

This picture shows the application of the DFE solution to model different outer
boundary conditions. Figure 8.1.1.4 indicates that the maximum vertical pressure drop is
on the surface of the barrier perpendicula- %z wellbore. Therefore, if this reservoir is
associated with bottom water, water will ;. - e surface of this barrier and finally will

break through at that end of the wellbore closer to the vertical barrier.
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8.1.2  Vertical Partially Penetrating Wells

The isopotential lines around a vertical, partially. penetrating well are shown in Figure
8.1.2.1. In an isotropic reservoir, the flow into the wellbore is ahmost radial in the plane
normal to the wellbore axis and it is hemi-spherical at the wcllbgrc ends. 'l.‘l.lvcvnglar
wellbore behaviour is ellipsoidal flow, with the distribution approaching cylindrical flow in

the far field regions.
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Figure 8.1.2.1: Potential distribution around a vertical, partially penetrating -

wellbore.

8.1.3 Curvilinear Line Sources

The potential distribution around a curvilinear wellbore is shown in Figure 8.1.3.1,

representing a horizontal well with a producing heel.
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Figure 8.1.3.1: Transient potential distribution around a curvilinear line source

This is a good example to demonstrate the flexibility of the DFE method in
modeling an arbitrary geometry line source. If this reservoir is associated with a gas cap,
gas would breakthrough at point “A” because of the higher vertical potential drop.
However, water will rise (or break through if the production rate is higher than the critical
ratc) at point “B” for the same reason, if there is a bottom water. The isopotential map

illustrates the flow behaviour inside a reservoir that can assist with completion design.
8.1.4 Vertical Fractures

The potential distribution around a vertical fracture is shown in Figure 8.1.4.1.
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Figure 8.1.4.1: Potential distribution around a vertical, fully penetrating, fracture

The flow into the fracture is perpendicular to the fracture sﬁr!‘acc; however, at
both ends it is radial. Cylindrical flow occurs far from the fracture.
8.2  Mathematical Study of the Drainage Area
8.2.1 Horizontal Well

The shape of the drainage area can be investigated by using the potential equation of a

1932] because
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K,(2nmp )=0 for pz1 e (8211

Thus the Equation A 4.1 reduces to:

\
¢ =4¢gin= forp=x1 rtrirrer e (8.2.1.2)
P

This indicates that the potential no longer depends on the vertical coordinate for
p 21 and the reservoir responds as if it were producing from a vertical well. In the xy
plane, for the points located at distances far from the horizontal well, the difference in
distance between that point and different points on the horizontal well is negligible.
Therefore, as expected, the flow immediately surrounding the horizontal well is elliptical.
and becomes increasingly radial away from the well. Thus the drainage area is a cylinder
depending on the distance to the outer boundary.
8.2.2 Vertical Partially Penetrating Well

Because of symmetry, the potential distribution in planes x:,and;\‘: is similar in
shape (in an isotropic reservoir). As it was shown in the case of a horizontal well, at pz1.
the potential lines are completely vertical.
8.2.3 Vertical Fracture

Since the fracture potential is obtained by superposition of a number of fully
penetrating line sources, the potential lines are vertical for small and large values of p. In
the xy-plane the isopotential lines are elliptical in areas close to the fracture surface and

become circular with increasing p .



CHAPTER 9

AN APPROXIMATE SOLUTION FOR THE POTENTIAL OF VERTICAL

PARTIALLY PENETRATING WELLBORES

Muskat [1932] presented steady-state potential solutions for several vertical
partially penetrating wellbores attached to the upper boundary. These are the wellbores
with 5%, 10%, 25%, 50%, 75% and 90% penetration depths. These solutions were
obtained by superposition of different uniform flux line source sélutians and the éc‘r’lu:tinn’

of a point source located at the bottom of the wellbore. A schematic drawing of Muskat's

model is shown in Figure 9.1.

1.2.3.4.5.6

Point 2

Point 1 C) I , |
O

Figure 9.1:  Schematic drawing of the superposition method used by Muskat for
modeling a uniform potential, vertical, partially penetrating
wellbore. The line and point elements are separated for better
demonstration of the model.
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Muskat’s solution is not general and is restricted to only the 6 above mentioned

penetration depths, each with a different solution. Table 9.1 shows the lengths of the line

elements and the position of the point elements which have been used by Muskat for

modeling the partially penetrating wells. Parameters are made dimensionless with respect

to 2h,; thus, the lengths vary from 0 to 0.5 corresponding

depths.

T

to 0 to 100% penetration

able 9.1: Length of different line sources and position of different point

sources used in modeling a vertical partially penetrating wellbore.

Elements

90%
[x = 0.43]
Length

75'!‘;:
[x=0.373]
Length

[x=0.25]

Length

10%
[x =0.05)
Length

3%
[x=0.025]
Length

line 0.45 0.375 0.25 loaz2s Toos 0.023
source | R R _ _ _ _

line [ 044 0.36 0.24 0.113 0.04 002
soyrce 2 - B i __

line 0.42 0.34 0.22 0.1 0.02 001
source 3 o _ _ - —
line |04 0.3 0.2 008

source 4 - I
line | 0.375 02 0.15 005

sowreeS | | 4 o o\
line 03 ] - -

sourcc 6 - - _ I

paint 0.37

source | . _ _ e

point

source 1

Table 9.1

shows that Muskat has used different patterns for different penetration depths.

For all cases he has used a point source at the bottom of the wellbore; however, for 75%

penetration depth, he has used two point sources. No basis for such patterns have been
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the area of potential solutions of partially penetrating wellbores; however, his solutions
have certain limitations.

1) These solutions are for special penetration depths and cannot be generalized for

other cases.
i) These are the solutions for wellbores attached to the upper no-flow boundary,

In other words, for a wellbore with a penetration depth other than those mentioned in the
Table 9.1, none of these patterns can be applied.

In Chapter 5, the DFE Method is presented as a potential solution for m—]' arbitraxr}'
wellbore. However, as the number of equations to be sal’véd sixmxllé'x‘ncmxsly is'large, in this
chapter an attempt is made to generalize Muskat’s éppma;h_m construct an apprnxim;lig
solution for any type of straight vertical partially pengiratixig wellbore, However, lhé
wellbore may or may not be at£ached to l,,ﬁ: no-flow u‘pp(;x;bm;mdary. Thus Muskat's

solution is a special case of such a solution.

9.1 Development of the Method

The criteria for this study were

i) the wellbore is located an an arbitrary interval inside the reservoir.

i) To model the uniform potential solution a minimum number of line source

elements is to be used.



14

iii) The potential values have to be in agreement with Muskat’s solutions for wellbores

attached to the upper boundary with penetration depths 5, 10, 25. 50. 75 and 90%.
) The solution must be in agreement with the DFE method solution presented in

Chapter 5.

To model a vertical wellbore not attached to the boundaries, one needs the
uniform flux potential solutions for a line source located in on an arbitrary interval inside
the reservoir. This solution is presented in Section 9.2.1. The potential along such a

wellbore is shown schematically in Figure 9.1.1.

— No-flow
P : A boundary

,/> | I L
— o No-flow

boundary

Figure 9.1.1: Schematic drawing of the potential drop along a uniform flux,
vertical, partially penetrating line source.

Figure 9.1.1 indicates that the maximum potential drop is at the centre of the

wellbore and minimum at both ends. To modify the small potential drop at both ends of
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the wellbore. additional line and point sources have to be superimposed on the main line

source.

To account for the end eftect, two point sources have to be introduced at the two
ends of the wellbore. To modify the small pressure drop at two ends, two line sources are
also added to the model. Figure 9.1.2 shows schematically the potential of cach of the

sources. before superposition.

— A No-flow
. boundarv
5

- , No-flow
boundary

5

Figure 9.1.2:  Schematic drawing of the potentials of line (2, 3 and 4) and point -

source (1 and 3) elements.

The next step is to define the strength of each element in such a way that the
potential along the wellbore is almost uniform. In this model, there are 5 flux elements;

thus, one needs 6 equations to solve for the strengths and the well potential. Of these, 5
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along the wellbore. and | equation can be found from the constraint equation. which
guarantee that the total flux is equal to the sum of the individual strengths.

Figure 9.1 2 indicates that the best observation points are those at which the
maximum potential of the elements is located. These are shown in Figure 9.1.2 by the
numbers 1. 2, 3. 4 and 5. The uniform potential solutions for different line source

penctration depths are calculated. For each penetration depth, several values of h have

been used where

and where /., and /. are the length of the original line source and the length of the part
that has been chosen for superposition, respectively.

The results are shown in Table 9.1.1.
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Table 6.1.1:  The potential values obtained by superposition of 5 flux elements for
different values of » compared to Muskat’s and the DFE Method solutions.

Pcn;‘!/i: ;2’4 b; b=3 b=06 b=§ ”bﬁimi 7h——:2() b=100 Minskzuir !)i-‘la’
5 279.22 | 3789 2793 799 ”23(;})777 73!\‘,717,57 2%;‘1; 2\1‘)*? 37940 | 279.23
;(') ) 7](;;i:§7 lt'_;)i—ll’ 169.6 !76‘3,73';7 7177(,1;(1('37 !;/'().37 !7!,(; | 172,16 Vlh‘.;.?f\:w 717(’:‘)“-
25 54.69 7 2%4.(’1 h4f;l 8469 | B48 7 72%4:) 7 :::\‘; nh;ﬁ,;ﬂ’ %44”\‘) MH )
50 7 74797.5:1 - ;‘)_47 49,466 :‘;42; 74‘;.53 74‘)‘17\ i ;*):\ | 50,02 {4u¥ | 4923
75 N :’wﬁ:'\ 7 36,40 3645 3045 3648 | 36,5 3(7'»;(‘17 3680 3053 30,38
90 3218 7 32.15 32,142 | 32 l-; 7?2 71427 :1'271‘75 7?; 217 7 ?2:{;\ ) 3206 32.03

Table 9.1.1 indicates that the pattern of 5 flux elements is successful in nmdclling a
uniform potential solution for small values of » (b 3 to 0). As the DFE method 15 the
upper limit on the exact solutions, it is used as a basis for calculation of the error

assaciated with the 5 flux elements method.

The solutions obtained using 5 flux elements and those of Muskat are in gcmd
agreement. Thus it can be concluded that the pattern for modelling a vertical well is not
unique. However. other patterns migh. =xist which provide similar results. As the aim of
this study was to define a general p.irorn with a minimum number of clements, other
patterns with a larger number of the elements have not been considered. In the following
sections, the mathematical equations for modelling a wellbore with the 5 flux clement

method are provided.
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9.2 Superposition of S Flux Elements

To model a uniform potential solution for a vertical partially-penetrating wellbore,
the potential solutions of the five flux elements were superimposed in such a way that the
potential along the wellbore is approximately uniform. The schematic drawing of this

model is shown in Figure 9.2.1.

The model consists of three line source flux elements with uniform flux solution

and two point sources as:

V. Flux element no. 1. (Line source). Tts length is identical to the original perforation

interval.

2. Iux element no. 2. (Line source). Its length is 1/3-to 1/6 of the perforation interval
and is located at the top of the perforation interval. L
3. Flux element no. 3. (Line source). Its length is identical to flux element no. 2, and is

located at the lower part of the perforation interval.
4. Flux element no. 4. (Point source). 1t is located at the top of the perforation interval.

Flux element no. 5. (Point source). 1t is located at the lower end of the perforation

w

interval.
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(R

Bottom boundary

Figure 9.2.1: Schematic drawing of a vertical partially penetrating well.

modeled by 5 flux elements.

Here the method is applied to the steady-state potential solution, but, it is

applicable to transient flow as well.

The steady-state potential sglutigﬁ for a point source is given in Appendix A, f\l‘ah
the steady-state potential solution for a vertical, partially penetrating, uniform ,“u}; line
source attached to the upper boundary is given iﬁ, Appendix C. However, for the n(,w s
general model the uniform flux solutions of an arbitrary pgribrzltian interval and Inir:atinhiis 7
needed. This is obtained by the supperposition of two flux element solutions, one for
injection and one for production.

9.2.1 The Potential Solution of a Uniform Flux Vertical Partially Penetrating

Wellbore with Arbitrary Perforation Location

The solution for a vertical partial penetrating wellbore at the top of the reservoir is

given by [Muskat, 1932]:
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u,__ ]

d(w,p,x)= élq|:— s l’—llx (_Twp)ccs(jmmr)sm(’f’mm)sm('e"cn\)}- +xIn(2/p)|.
1 J

IU

The function K, is a modified Bessel function of first kind and of order zero, x is the well

penetration depth and p is the horizontal distance to the vertical axis

, s 12 :
p= ((x cx )y —_;ﬁ,_)z) ST (o B

and flux ¢ is:

(L )
g = i (C3)
4mkax _ v

Figure 9.2.1.1: Schematic of a vertical partially penetrating
wellbore in a rectilinear reservoir
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The potential solution given by Equation C.1.1 is linear. Thus by superimiposing
the potential solutions for two line sources given by Equation C.1.1, with positive and
negative signs, representing production and injection, respectively. one can obtain a
uniform flux solution for a vertical well extending from x, to x, with arbitrary perforation
location and interval (Figure 9.2.1.2).

| = =R(,(ZTUIP)EDS(ETUIH')Slﬂ(zT[HH')[Sin(31‘[".\*3)*: sm(lmz.\*,)]’
o(, p.X,.xy) = 4q| — glu ‘ - N y

’ T I!;].

+(x, = x)In(2/p)
S (921
where

o

7= 47;41’1(;\*2 -x;)

Equation 9.2.1.1 describes the potential due to a vertical, partially penetrating
wellbore extending from x, to x, at a point located at vertical coordinate w and

horizontal distance to the wellbore p.
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Xy = X’l
...... X2
Figure 9.2.1.2: Superposition of two uniform flux vertical line sources

to obtain a solution for an arbitrary perforation location.

9.2.2  Uniform Potential Solution of a Vertical, Partially Penetrating Wellbore with
an Arbitrary Perforation Location
The uniform potential solution for a vertical, partially penetrating line source is
obtained through the superposition of five flux elements as shown in Figure 9.1.2.1. The

elements are;

. Flux element no 1 has the same length as the original wellbore. If the top and the
bottom of the well are located at X and .., respectively. then the producing length

would be:
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. Flux element no. 2 is a line source with a producing length restricted between

Xs, and X', where:

Xa =Xy | SR o o R (9.2.2.:.?)
and
Xp = Xg + (X - X )16 SR RTINS L(9.223)

¢ Flux element 3 is a line source extending from X', to .\\',.. where:

Xr: =Xr B SERRTTERREN ...... (9224)
st = XI —(XS - xl}/6 o devherresasseeaai el (0225) L

e Flux elements 4 and 5 are two point sources located atr'the top and the bottom of the

first line source

Xp = Xy e e '(9.2.2_.())‘ '
Xpp=Xy B (9.2.2.7)

By applying the superposition principle one can write the potential at any point in the
reservoir as follows:

o(w.p)= A1 (X Xpowop)+ Asp 2 (X gy X gy wop)+ Ay (N e Xy owep) +
A p (X prowep) + A py (X pzwp)

(922.8)
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where ¢;,. ¢, and @, are the potentials due to the three line source flux elements,
and ¢,; and @, are the potentials due to the two point sources. The unknowns A, to

As are the flux strengths of the elements.

To find the flux distribution and the wellbore potential, six equations are required.
Five of the equations are obtained by writing the potential equation at five different points
along the wellbore (locations of these points are shown in Figure 9.1.2). The last equation

is the constraint equation:

1 ]

IR
X
i

This method provides the potential solution for any possible perforation location as

follows:

X, =0, X, <05, weil located at the top of the reservoir,
X¢ >0, 0.5, welllocated at the bottom of the réserﬂ"bif; 'f
Xg >0, .Y, 0.5 well located between the upper and lower boundaries of the reservoir.

This general method allows one to study coning phenomena including:

I. water coning in oil and gas reservoirs with bottom water:

2

gas coning in oil reservoirs with a gas cap;

(73}

simultaneous gas and water coning in oil reservoirs with a gas cap and bottom water.
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In Chapter 10. this new and general solution is applied to the coning problems in oil

reservoirs with bottom water and;or a gas cap.

9.3  Validity of the Method

The validity of the method was checked by comparison with Muskat’s solution for

Method. The dimensionless wellbore radii are equal to 0.001. In the 5 flux elements
solution. the length of the smaller elements is chosen to be 1/6 of the original wellbore

length.
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Table 9.3.1.  Potential of the vertical partially penetrating wellbores with different
penetration depths, obtained by the method of superposition of 5 flux

element solution is obtained with respect to the DFE Method.

Penetration DFE Muskat | 5 flux % error
depth % method elements

00 27923 279.46 279.92 | 0.25%

70 169403 169.73 | 16987 0.27%

84459 | 846 0. 3%

25 ' 3923 1918 3048 | 0.5%
10 36.28 36.53 36.4 o4

o

ol |t

5 32.03 3216 32.1

Bl
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9.4 Streamlines

Streamlines are useful for studying the fluid flow mechanism in a reservoir. The streamline

equations for a source under steady-state conditions in cylindrical coordinates can be

derived using Equation 9.4.1 (Muskat, 1932):
w'(p.w) = ~ap| Law s
p

Note: The stream function is represented by ' to prevent any confusion with y function

which was previously used in Equation A.4.5.

Applying Equation 9.4.1 to the point source potenﬁal, Equations A 4.1 and A.4.3 forlarge

and small values of p the stream function is found as:

W'y, = 4u[2p i(l\, (2nmp) cos(2mmr . ) sin(2nmw) + w)}

n=1

where K, is the modified Bessel function of first kind of first order.

For small values of p (< 1), the streamline function is found as:

W+ "']: W — “]I)
T
I 12 . S\ 2
(p‘ +(w-w,) )

(pz + (w +w, )2)




in which v, is the streamvalue of the it/ point source.

The equation of the streamlines for a line source similarly can be obtained as:

ES l 1 :
W, = 4[2 Y — K, (2mp)sin(2mnx)sin(2mwnr) + \u} .................................. (9.4.9)

Therefore the stream line value due to the vertical well can be written

5 .
gy = SA W (0 4.5)

The streamline values for a point source and a vertical partially penctrating wellbore have

been calculated and plotted in Figures 9.4.1 and 9.4.2, r'es'[mctivc'ly.

0.20 4 _
@ %90

0.10 - ‘
0.00 0.20

Figure 9.4.1: Streamlines around a point source
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Streamlines around a vertical partially penetrating wellbore using
the superposition of 5 ﬂux elements.




CONING AND PERFORMANCE OF HORIZONTAL AND VERTICAL WELLS IN

THE PRESENCE OF A GROWING CONE

In this chapter, sources with finite length in reservoirs underlain by bottom water
and/or overlain by a gas cap are studied. This study is limited to coning and wellbore
~performance in the presence of a growing cone before breakthrough. Because of -

similarity, only oil reservoirs with bottom water are considered, unless otherwise specified.

The physical model is a rectilinear (infinite slab) reservoir, The assumptions for this

study are those that have been made by Muskat and Wykﬁﬁ"[j 935].
¢ Small cémpressibility.
e Negligible viscosity contrast.
e Single phase in thé;t oil zone.
e The cone height is controlled by static equilibrium.
e Production under steady state conditions.
However, in this study the following assumption are used:
e The true WOC as no-flow boundary.

¢ Transient potential equations to calculate the breakthrough time and the performance

of the wellbore.
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The first assumption, that is small compressibility, limits the transient solution to
oil reservoirs; however, the steady state solution can be applied to gas reservoirs as well,
Hwyland et al. [1989] by using a numerical simulator showed that, under steady-state
conditions, the critical production rate does not depend on the mobility ratio. However,

the experimental works of Sobocinski and Cornelius [1965] and Bournazel and Jeanson

assumption, that is negligible viscosity contrast. has no effect on the results of steady-state
solutions: however, it affects the time scale for transient solutions or breakthrough time,
The third assumption, that is single phase fluid flow, provides an approximate solution for
the oil reservoirs with a gas cap. However, this assumption has been used widely by
Muskat and Wykoff' [1932], Muskat [1982], Meyer and Garder [1954], Chaney andNai:el
[1956], Chierici et al. [1964], Kuchuk et al. [1988] and Ozkan and Raghavan [1990].
Reservoirs with bottom water are produced with a horizontal or a vertical partially
penetrating well, both of which are sources with finite length. In Chapter 5 the DFE
Method was developed and introduced as a general solution for sources with finite length
with any arbitrary outer boundary conditions. Knowing the boundary conditions at the
water-oil contact (WOC), one can use the DFE Method to study the performance of these
sources in reservoirs with bottom water. Fluid properties are left without subscript but

represent the principal fluid in the reservoir unless explicitly indicated otherwise, for



10.1 Boundary Condition at WOC

Two types of boundary conditions have been used in the literature for the WOC in coning
problrems: 1) a no-flow boundary and 2) the initial WOC as a constant potential

boundary.

Muskat and WyckofT [1935] established the fundamentals of coning for a coning
problem due to a vertical well in a rectilinear reservoir under steady-state conditions.
Using the concept of static equilibrium, Muskat and Wykoft found the cone height and the
critical production rate. Muskat and WykofY proposed that the proper approach is to take
the WOC as a no-flow boundary. As taking an unknown and irregular geometry as the
actual boundary was impractical at the time, Muskat and WykofY used the initial WOC as - -
the no-flow boundary. However, Muskat and WykofT postulated that if the uclu‘u/‘WV(’)C - :
were considered as a no-flow boundary, the critical production ratc would han been:
lower. This justified their approximate approach because the critical production rhlc Qcﬁnld

be conservative.

Among others, Wheatly [1985] examined the same problem by assuming the WOC

to be a streamline, implicitly considering the actual WOC as a no-flow boundary.

Muskat [1947] modeled aﬁ active bottom water drive for a vertical well in a fully
developed reservoir by assuming the initial WOC as a constant potential boundary. In the
subsequent discussion, by Elkins and in Muskat’s reply [Muskat, 1947], it became clear
that a constant potential at the initial WOC is not a necessary condition for an active
bottom water drive. Indeed, a constant potential boundary is the necessity of steady-state

solutions. That is because, the absolute. steady-state, potential at a single point inside the
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reservoir does not carry a meaningful value and it is only the difference of the potential
between two given points that can model the flow between them. For the same reason, the
productivity of a wellbore [ See Chapter 7 of this work] highly depends on the drainage
radius (location of the constant potential boundary).

In the following analysis it is shown that the two models 1) the WOC as a no-flow
boundary, and 2) the WOC as a constant potential boundary, are limiting cases, before
breakthrough, of a single problem.

The Condition at the Initial WOC before Breakthrough

10.2

Bottom water rises in a cone to a certain height in response to prcﬂucticn Fn:n’ﬁ’trﬁé
oil zone. The difference in the weight of the two fluids of a column with the height of the
cone is identical to the vertical pressure drop [Muskat and Wyckoff, 1935]. Thus two
forces with identical magnitude and opposite directions (Figure 10.2.1) are acting on the
WOC:

g = =0ph,, e (10.201)

Equation 10.2.1 implies that the pressure at the initial WOC remains constant at p, before

breakthrough, and that this is a condition of static equilibrium.
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Figure 10.2.1: Schematic drawing of a cone under a vertical well
The initial potential at the original WOC can be written as:
®,=p —v,8h R 0 (10.2:2)

The potential on the surface of the interface afier it hai‘s moved can be obtained as:

Oo=p, -y, 8h -y, .8h.=p —v.80 - Aygh, e (10.2.3)

Equations 10.2.2 and 10.2.3 are identical only if the density difference is zercii.ThLis the
solution using a constant potential at the initial interfét:é 1'% aﬁ'appraximaticn to the mnmg
problem when the two fluids have identical densities. |
The assumption of initial WOC as a no-flow boundary is a valid assumption if the
cone height is small.
Therefore, before breakthrough, the two solutions with the original WOC position

as 1) a no-flow boundary and 2) a constant potential boundary are the limiting cases of the
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general coning problem. However, the exact solution is obtained by considering a no-flow
moving boundary.

Afier breakthrough, when static equilibrium no longer exists, the original WOC
position ceases to remain at a constant pressure condition. After the breakthrough period.
when the wellbore is producing water directly from the aquiﬁzn the boundary condition
should be found through the knowledge of the geometry and extension of both the oil and

water zones.

10.3 WOC Geometry
Coning is a general term that is used to describe the deformation of the water-oil
interface. The fluid flow in a rectilinear reservoir with bottom water is illustrated in Figure

10.3.1.

: no flow
wellbore boundary

strcam lincs

potential
lines
oil zonc

. WOC at time ? initial WOC at
water >0.0 constant
70N

water
influx pressure F2

Figure 10.3.1: Schematic drawing of flow mechanism in an oil reservoir

underlain by a bottom water.
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In this section the cone geometry is derived using the concept of static equilibrium, For an
anisotropic reservoir with vertical permeability, &, and horizontal permeability, 4, . the

equivalent isotropic reservoir height is defined as [Muskat, 1947}

1" =10k, Ik, v (10031)

where ¢ and 7’ are the actual reservoir height and its equivalent in an isotropic reservoir.

An equation for the cone height is developed by Muskat and WykotY'| 1935] as function
of the potential and the pressure drop. The cone height for a given ;zi*cssm’c drop has to be
found graphically. Moreover, to use that method the parameters, that are reservoir
thickness. oil viscosity, permeability, pressure drop and production rate must be known.

In this section a cone height equation is developed as a function of the potential
drop and a dimensionless coefficient. The new cone- height cquation permits for a
computer programing. This new equation provides the ability of prediciing the ws,:llbﬁrc

performance in the presence of a growing cone.
A dimensionless potential is defined as:

2nka

= ) — Yoo e (100302)
0= (p - vgs)
where
a=2t' e e (103 °3)

A potential drop is defined as:

A(p[,, =@, =P 103
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Writing Equation 10.3.2 for a point on the WOC and applying Equation 10.3.4 one

obtains.

h
Qu

where p(p.z)is the pressure of a point at the horizontal coordinate p and vertical

coordinate = and p, is the pressure of the wellbore calculated at a vertical coordinate

pressures at different points

plpc)=po-yagl'=2) (10.3.6)
and

PLE D EYLEL (10.3.7)



Substituting Equations 10.3.6 and 10.3.7 into Equation 10.3.5 onc obtains:

2wtk -
AQ;, lﬁﬁ[;\p—A}c&'(/'—:)] e (10.3.8)
where

Ap=p, =Py Y 825 e (10.3.9)

At the boundary of the drainage area the height of the cone is almost zero. thus Equation

10.3.8 can be written as:

Ytk s : AR
AP (10.3.10)
On S

Agy, =

where A, is the potential drop between the wellbore and the outer boundary.

Dividing Equation 10.3.8 by Equation 10.3.10 and substituting Ap from Equation 10.3.10

one obtains:

On

(1"-2)=[a0,, *A(p,)(p,:)]m:; R, L103.01)
Now

t'=z=h., =2th, L (10.3.12)
where 4., is the dimensional cone height and A_ is dimensionless cone height. Applying

Equations 10.3.1 and 10.3.3 and 10.3.12, and assuming a formation volume factor of £,

Equation 10.3.11 reduces to:
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L OB, L
b= [0 - 80, (p5)]—25 ZE. e (10.3.03)
87 ;" 1* Avgr : '

Introducing the concept of dimensionless density

5

- kp 5
8t " 1P Avg
Ay :Z&'_f )
m " QB';LI

enables Equation 10.3.15 to be written as:
, -1 —_—
h. = [A(p!l,f - A(p,g(p,;)](éy ,;,) ceveeieresierenennneeenennn(10.3.13)

Substituting from Equation 10.3.4 one can write

he = [0 = 0.(p.2)|(8Y »)" S (10.3.16)

Equation 10.3.16 indicates that the cone height, and consequently its stability. is
controlled by the value of the dimensionless density. For large values of (4y,) the cone
height is very small. A sensitivity analysis shows that there is a critical dimensiénless
density (CDD) above which the cone is stable. As can be seen from Equation 10.3.16, the
dimensionless density (Ay,,) is a coefficient that accounts for: 1) reservoir geometry, 2)
permeability anisotropy. 3) fluid properties, 4) production rate and 5) the density
difference between the two fluids. The wellbore geometry and the drainage radius are
associated with the potential solution. Therefore, every wellbore length is associated with

a CDD for any given reservoir.
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The parameters that affect the magnitude of dimensionless density and consequently the

cone height and time of the breakthrough are:

Permeability Anisotropy Coefficient (Ag /A‘) For very small values of -vertical
permeability or large values of horizontal permeability the anisotropy coeflicient grows
very large. Under these conditions the cone height will be small. At the limit, where &,

approaches zero. the cone height will approach zero.
Reservoir Thickness (i‘) The thicker the reservoir, the smalier the cone height will be

and the longer the time to water breakthrough will be if all other. parameters remain
constant.

Density Difference, Ay . Large values of Ay result in the formation of small cones. If the
density difference approaches zero, the cone height will be infinite, implying a very short
time to water breakthrough. Therefore the solution for the condition of constant- potential
at the initial WOC, which was based on a negligible density diflerence, is valid only for a
very short period before breakthrough.

Fluid Viscosity, . The greater the viscosity the higher the cone will be and the greater
the risk of breakthrough. Thus it can be inferred that in viscous hcavy oils a stimulation

process that reduces oil viscosity reduces the risk of water or gas breakthrough.

and arbitrarily. By reducing the production rate one can freeze the movement of the WOC

boundary.
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For large values of dimensionless density the existence of bottom water or a gas

cap can be neglected. Therefore, a solution to the diffusivity equation with a no-flow

boundary at the initial interface of two fluids should be a valid approximation in this case
for well test analysis in infinite acting reservoirs.

The solution to the diffusivity equation with constant potential at the original

interface, prior to breakthrough, is valid only when the density difference is negligible.

10.4 Transformation of Domain
If one treats the WOC as a no-flow boundary, one must cope with two problems:

o The geometry of the WOC is unknown and irregular.
o Even if the geometry were known, considering an irregular geometry as the no-flow

boundary in the Laplace or diffusivity equation appears to be impractical.
straight line. For this transformation only the height of the cone at the point under the
wellbore is required. When transforming the boundary. one must also transform the
wellbore configuration accordingly. One can assume that the reservoir properties in the
transformed domain are the same as in the actual domain. This is a valid assumption as the
distance between the wellbore and the cone remains approximately the same as that in the
actual domain,

A transformation coefficient, oi(p). is defined here as:
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1’1.)“' (p)__

- T4 D
0.5~ I, (P)

afp) =1+

where #4;

Ihy

(p) is the dimensionless cone height at a horizontal distance p from the Z axis.

Therefore any vertical coordinate can be transtormed as:

wy =afp) <w e (10.4.2)

This transformation guarantees that any point on the upper no-flow boundary remains at
the initial coordinate value while the points on the cone surface are shifted to the initial
WOC location. The application of Equation 10.4.1 implies that:

1) The producing length of the vertical well must be increased, The transformed well

penetration depth can be found from

I.]):r = l.!) ¥ (‘L(p) (l()43)

where Lp, and /., are the wellbore depths in the transformed and real domain,
respectively.

2) The elevation of a horizontal well be changed while its producing length remain
constant.

The validity of this transformation is checked by comparing the results obtained using the
transformation with the results of analytical and numerical solutions of Wheatly [1985]

and Hisyland et al. [1989] respectively.

For reservoirs with both bottom water and a gas cap, a combined transformation cquation

has been developed:
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' o h,
zy :,(l : e J(l + = ”‘l——*}‘ i (1004.04)
L 05-h 0 05~ hfg) S 7

10.4.1 Application of Transformation to Coning Analysis

Equation 10.3.16 indicates that the production rate is a function of cone height é,ﬁd
potential. Morcover, the potential depends on the cone height or current WC)C location
while the cone height itself depends on the potential. Here an implicit method for steady- :
state and unsteady state flow to calculate the cone height and potential at the same time is
presented. This method also defines the shape of the cone, which is the dynamic WOC.
10.5 Coning and Performance of Vertical Partially Penetrating Weils

In this section the steady state and transient potentials due to a vertical, partially
penetrating wellbore are used to study the critical production rate and the performance of
the wellbore in the presence of a growing cone. The steady state potential solution i3
modeled by the Five Flux Elements Method that was developed in Chapter 9. The
transient potential solution is obtained through the application of the DFE method
developed in Chapter 5.

10.5.1 Critical Production Rate

Steady-state flow is simpler than transient flow because of the calcuiation
procedure, and is useful for optimizing the length and location of the perforation interval.
Also it can be used to study the stability of the cone at various production rates. The

uniform potential solution for a vertical well is obtained by superposition of the five flux
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The first term in the numerator is the potential on the WOC and the second term is the

potential at the outer boundary.

Calculation Procedure.

1) Potential values at the cone head and at the outer boundary are first calculated for
a rectilinear reservoir without considering a deicrmed cone shape.
2) Introducing the value of the potential at the cone head and at the outer boundary in

Equation 10.5.1.2, and for a given production rate, one can calculate the cone

height /1, .

L
et

Having a value for the cone height the transformation rule is applicd and a new

penetration depth is calculated for the transformed domain

4) Calculate the values of the potential in the transformed domain.
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5) Applying Equation 10.5.1.2 a new value for the cone height can be calculated
This procedure is repeated (usually 2-5 iteration) until the value of the cone height

converges to a tolerance of 0.05%.

To calculate the critical production rate one should start with a small value for the
production rate and calculate the cone height as explained above. The stability of the cone
can be determined by comparing the cone height with the bottom of the wellbore or by
checking whether static equlibrium has been violated. Figure 10,5.1.1 provides the critical
production rate for different perforation depths and Qiff‘erent drainage radii. Figure
10.5.1.2 and Table IO.S.].] compare the results from .this method with Hoyland et al.

[1988] and with Wheatlty [1985].



Table 10.5.1.1:

Comparison of critical production rates (Qc) obtained by the
method presented in this work and those obtained by simulation
(Hoyland et al., 1989) and the analytical solution of Wheatly

[1985]

No  Res. Drainage K Penctration  Simulator th;lrﬂ; ' This Study

height Radiug depth (Hovland)

Qc¢ Qc Qc

() {ft) (md) Yo (StB/IY) (5tB/Iy) (StB/1)
1200 1000 T1s00 238 6600 G108 036
2 n ) | T 476 T s000 1751 480y
3 T - hi 7 i T 714 7 27(')7“77 2642 ETET)
FE " 905 ~ 750 707 RI4
5 a0 n n 3R 0 2 270
6 100 I T 138 oo 124 1230
7 a0 | 714 BTE YR 16,5
8 210 S0000 | 176 T3300 0 3865 3sae
) i “a00 o o Tos00 As00 S780
T 000 714 3300 3053 36
THE 1000 150 238 650 616 633
1z T 300 4110 1224
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Discussion. Table 10.5.1.1 shows a good agreement between the critical production rates
obtained from this study and those obtained from Wheatly's [1985] analytical solution and
from the numerical simulation of Hoyland et al. {1988]. Hovland et al. derived an
empirical equation for the critical production rate by using the results of a set of
simulation. The critical production rates obtained from direct simulation [Hoyland et al.,
1088] are used to prepare Column 6 of the Table 10.5.1.1. However, in Figure 10.5.1.2,
to plot the curve corresponding to the method of Hoyland et al., the critical production
rates are obtained by using the empirical equation. Figurc 10.5.1.2 indicates ‘that the
empirical equation given by Hoyland et al. [1988] are limited to short penctration dcplhsi
Critical production rates obtained by the solution presented in this study and ilm‘ltgl’»thc'
wheatly’s solution are in good agreements for large penetration depths; however, l,h'c)‘f
deviate by a small amount for short penetration depths. This might be due o the potential
equation that has been used by Wheatly for modeling a vertical partially penetrating
wellbore. Wheatly [1985], modeled a vertical, partially penetrating wellbore hyr
superposition of different line sources with different lengths each of which are modeled by
a radial flow solution. Because these line sources could only model a radial flow toward -
the wellbore and parallel to the no-flow boundaries, Wheatly introduced a point source at
the bottom of the wellbore to consider the flow convergence at the bottom of the
wellbore. Although, no justification is provided for such potential equation for a vertical
partially penetrating wellbore, but it may be inferred that for large penetration depths, that
the radial flow is dominant, the error of Wheatly’s approximate solution is smaller. As the

validity of the potential equation used in this study, Five Flux Element Method, is verificd
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solution presented in this study can be used for large and short penetration depths.

Shape of the Cone. Applying Equation 10.5.1.2, one can define the height of the cone at
different points on the dynamic WOC. Figure 10.5.1.3 shows the shape of the cone for a

20% penetration depth, in an gas-oil-water system.

o1
008 .
voe -
an? .
ons .
005 .
004 -
o0l .
oo .
oo -

Dimensionless height

Dimensionless radius

Figure 10.5.1.3: Shape of the water cone in a gas-oil-water system when the
cone head reaches 20% of the reservoir height,
(AYnw =300 kg / m*, Ay, =600 kg/m*, i, =15 ft.
R,.=500ft, k, =k.=1 darcy. B=] andp =1 cp)

Gas Coning. Gas coning can be treated the same way as was done for water coning,
provided that the cone height is measured from the top of the reservoir and the difference
of the densities of gas and oil is considered.

Simultaneous Water and Gas Coning. For reservoirs with bottom water and a gas cap

the transformation given by Equation 10.4.4 can be used
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Calculation Procedure. Assume that the perforated length is /.. and that it is located

between two boundaries. The water and the gas height at the respective cone heads for a

given production rate can be calculated as follows:

1. Assume a small value for the height of the water cone while the height of the gas cone
is zero.

2]
c
w,
=
i
m
=
=~
]
=,
o)
=
o
=
N
o
I
e
]
E
=)
[y
—
—_
[g]
=
=
o}
j= %
=
a,
o}
=
o
=
fr=
—_
=
=1
—_
-
=
=
oli]
-
o
;:‘
5
Tl
]
=
)
5‘
=
2,
=

Calculate the potential at the boundary and at the head of the water and gas cone.

o dl

4. Using Equation 10.5.1.1, calculate the height of the gas and water cones separately. 3

5. Check the stability of the gas and water cones. If water or gas has broken through,
stop the calculation, and this shows that for this production rate the gas and/or water -

cone is not stable,

p"-.‘

Compare the calculated height of the water cone with that of the previous iteration (or
with the initial guess for the first iteration).

« Ifthe values have not converged to the necessary tolerance use the new values for the
water and gas cone heights and repeat the calculation from step 2. A tolerance of

0.05% is suggested.
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the same time. If the perforated zone is too close to the gas cap, gas breakthrough occurs
sooner, if it is too close to the bottom water, then water will break through sooner. The
best location is found by trial and error, changing the location of the perforated zone and
doing the calculation explained above. The length of the perforation interval also controls
the critical production rate. To find the best location and length of the perforation interval
for a given reservoir, one can use trial and error to change the interval length and location
and do the calculation shown above. Such a calculation was performed and the results are

shown in Figure 10.5.1.3.

10000

1000

100 =8

Critical production rate {r biblid)

® Pen=55% ¥ Pen=70%

1 e - —
0 0.1 c.2 0.3 04 05

Distance from the top of the reservair to the top of the wellbore

Figure 10.5.1.4: Critical production rate for a gas-oil-water system
(AYow =300 kg/m*, Ay, =600 kg/ m*, i, =200 ft,
]{H = 500 ft . k’l

k,.=1 darcy, F=land n=1cp)
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10.5.2 Performance of the Wellbore and Breakthrough Time

In this section the transient potential equation is applied to study the performance
of vertical wells in the presence of a growing cone. The wellbore is modeled by a uniform
potential IBC using the DFE Method.

The WOC is a dynamic interface moving towards the wellbore. Therefore, the
potential must be obtained by superposition in time of different solutions. cach with a
different WOC location. The movement of the boundary is controlled by the static

equilibrium condition. When transforming the cone shape boundary, using Equation

different wellbore lengths. If time is incremented by A4r, then at time " the potential 1s
found by the superposition of / solutions, each with a diflerent wellbore length. At time
11" the wellbore length is ﬂ,’ which is normally greater than L‘;{xf-” Thé increase in
well length is made by the addition of point sources to.the basc of the wellbore in the
previous time step. Since the production rate is constant, then at /" one finds the new
distribution of flux stength by calculating only the changes in the strength of each point..
Writing the potential for the i observation point and collecting the unknowns on the lefi-

hand side and the known values on the right hand side, one can write the relation:



—
Ly
(]

fi’ll'?f':l * iii.[?’if—jl?.*m”“’i’éqjllz “epi =

o [ = =1 =]
(u, P,y + B0 ...+ P )+

00 e 1| < -1 _1-1
(uz'cp,z + 8y, +... AUy )3 )+—

N o 11 g I=1 _[=1 ROE
a, g, +od,p,, .. 0 P, e (10.53.201)

where «j is the initial strength of the point j at time zero. The parameter &' is the
change in the strength of the j"’ point source at time 1.

Writing the potential equations for # point sources and one constraint equation as

Féal =0 s (10.5.22)
=l : i

(n+1) equations are obtained. Solving the new system of equations one can define the

wells with 50% and 20% penetration depths. The potential response at the wellbores for
different dimensionless densities is shown in Figures 10.5.2,1 and 10.5.2.3. Figures
10.5.2.1 and 10.5.2.3 also show the potential response of the same wells in a rectilinear

reservoir with simple solid boundaries, that is, without bottom water or a gas cap. They

show that for large values of dimensionless density, the potential response in wells subject
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Therefore, studving reservoirs with large values of dimensionless densities, one can
neglect the existence of bottom water or a gas cap. The only parameter that can be
changed easily and arbitrarily in Equation 10.3.14 is the production rate. Therefore, for
well test analysis, by choosing a small but practical value for production rate one can

achieve a high dimensionless density value. Dimensionless cone height  against-

dimensionless time is shown in Figures 10.5.2.2 and 10.5.2 4.



dimensionless potential

% SUE+01

3 O0E+01

2 50E401

2 00E-O

1 50E+04

1 00E+01

5 00E+00

0 00£+00

100E-05

. DD=495 - - . . | ————— S0l boundary ..
: ' ; _ - = = = = -pp=2087
— — — DD=786
D D=147
~—{F—DD=74
o DD=40 5

100E-04 1 00E-03 1 00E-02 100E-01 1.00E+0C 1 00E+01 1 00E+0Z2 i 00E=-03

Dimensionless time

Figure 10.5.2.1: Dimensionless potential against dimensionless time of a

a 50% vertically penetrating wellbore in reservoirs with
different dimensionless densities. (Solid line indicates the
performance of the same wellbore in a reservoir without
bottom water or gas cap). (BT = Breakthrough).

Breakthrough happens when the equilibrium is violated.




Dimensionless cone height

" olin
*

2.50E-01 _— _ -
2.00E-01 . - ) [ N
.0 - op=ees BT for
o DD=74

1.50E-01

1.00E-01 | --

0.00E+00 B B et
100E-05 1.00E-04 100E-03 1.00E-02 100E-01 1.0

Dimensionless time

Figure 10.5.2.2 : Dimensionless cone height against dimensionless time lor

a 50% vertically penetrating wellbore in reservoirs with

different dimensionless density. ( ET;Breakihmugh).

=]
i
o+
o
=
—
[
2t
m
"
=]
rd
=]
po]
T
+
o
[
—
o
o
bl
s
P
v



Dimensionless polential
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10.6 Performance of Horizontal Wells and Breakthrough Time

In this section the performance of horizontal wells in the presence of a growing cone or

crest is studied. The inner boundary condition is assumed to be a uniform potential

modeled by the DFE Method.

Similar to the case of a vertical well, an increase in pressure drop with time causes
movement of the WOC interface toward the wellbore. Thus the wellbore potential is
affected by continuous changing of the WOC boundary. The wellbore pot:amial response
can be obtamea through superposition in time. As the WOC geometry is irregular the
transformation given by Equation 10.4.1 is applied to shift the boundary to its original
position. For a vertical well, this transformation increases the wellbore length. Howe\‘reri
for a horizontal well, this transformation changes the vertical coordinates of the wellbore,
while the producing length remains the same. The assumption of identical properties for
both the transformed and the original domain is a valid appron. .ation. as the welibore
distance to the WOC remains almost the same. The resulting irregular geometry of the

wellbore is modeled by the DFE Method.

Calculation Procedure

A uniform potential IBC is-used 10 calculate the potential distribution inside the
reservoir. To apply the transformation one has to calculate the WOC height at any time
step using Equation 10.3.16. The potential distribution and the WOC position directly
affect each other. An implicit method through an iterative procedure is used to take into

account their mutual effect. The same method has also been used for a vertical well in the
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previous section. As the wellbore is modeled by a series of point sources in the DFE
Method, every point source must be transformed into a new position. Based on Equation
10.4.1, transforming the vertical coordinate of any point requires only the height of the
WOC beneath that point, which is a conjugate point. Thus, calculating the well
configuration in the transformed domain, for a wellbore modeled by # point sources, one
has to calculate the WOC height at # conjugate points beneath every flux element For a
horizontal well with a straight line configuration only onc half’ of the wellbore need be

modeled due to symmetry.

To find the potential distribution, at any time, one needs # - 1 equations to solve
for the strengths and the wellbore potential simultaneously, Writing the well potential at

-th

time step /, on the surface of /" point source and grouping the unknowns in the left hand

side and the known values at the right hand side one obtains:
=1 Ao h=i A R A
GOt +@Ohn o 0 = @y = 1A, RIS LETLERIERRE R (l() 6.1)

where

14 i’ ?i\'i =

Iy I =l Vb=t b ety ey

f)’] ‘31)1*;1' + flﬂ(Pn/‘n’ e fl,,‘Pmm ’(ql Pppg H G0 pp2 T TP D
2 np=n 2 =0 s 2 L= _ 2 =1 2 ,I,fl; s L PR &
P ey TGP L2 P popin ("Il Propi T 2P 0 A D

=iy 4 Dy =iy
+f]; (Pnp,) +f['! (Pm'“ R C'fn m]u‘m

(10.6.2)



160

where ¢' is the strength of the /" flux element at time step /. and ¢}, is the potential
due to the /" flux element at point j for the period 4, -/, .

Writing similar equations for the other points along the wellbore, one can find #

equations. The last equation is the constraint equation:

Syl = , e (10.6.3)
i=1 : 7

The system of equations in matrix notation can be written as:

F(pf’*llli Pz o Oy =1 || rhs,
Py ‘Piluz; e @iy 1|4 rhs,
=4, 7
‘pll‘i!nl (pf"!,)u?, ””(f’f"‘[hm -1/ q:’) I’h,\'”
|/ Y | 0 gp’mﬂ U

Solving the svstem of Equations 10.6.4 yields fhe wellbore pressure asrwell as the strength

of every flux element. Knowing the streng[hs of the flux elements one can calculate the

potential on the WOC.

The steps in the calculation can be summarized as follows:

I. For the current time step, /. and wellbore configuration, using the system of Equations
10.6.4 calculate the wellbore potential, the strengths of the flux elements and finally

the potential of their conjugate points on the WOC.
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2. Applying Equation 10.3.16, calculate the height of the WOC at different conjugate
points,
Compare the height of the WOC from step 2 against the wellbore height. 11 it has
reached to the wellbore, then water has broken through at this time step; stop
calculations.

3. Compare the WOC height with that of the previous time step, /-/;

¢ If the solution has not converged then, applying Equation 10.4.1, find the vertical
coordinate of the wellbore at different points in the transtormed domain, and go to

step 2.

e If the solution has converged then increase the time and go to step 1.

Results. Figure 10.6.1 shows the pressure response of a horizontal well with .,. = 100% ,
well responses are identical to those of a similar well in a reservoir without bottom water
(solid boundary). The corresponding interface heights, shown in Figure 10.6.2, indicate a
smal! displacement of the interface. Figure 10.6.2 shows that for Ay;, cqual to 50, the
interface rises as high as 0.167 at 7, =10, and it breaks through at /;) > 10. However,
Figure 10.6.1 shows that the potential response deviation from that of a reservoir with a
solid boundary is small. This indicates that the assumption of a no-flow condition at the
original interface is a good approximation for both small and large values of Ay, before
breakthrough. Figure 10.6.3 shows the potential response of a horizontal well with

L1 =200%. Figure 10.6.4 shows the height of the cone peak for two horizontal wells
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with 1, =100% and [ =200%. both with Ay, =50. The shorter wellbore breaks
through at 7;, > 10 however, the longer one is stable. As was expected, the critical
dimensionless density (CDD) was greater for the shorter horizontal well. Figure 10.6.5
shows the height of the cone peak versus dimensionless drainage radii for different
dimensionless densities, for a well with L, =100% under steady state conditions. Figure
10.6.5 shows one half of the cone profile. in the xz plane, under a wellbore with

1 = 100% extended from x = =0.25 to +0.25. As can be seen from Figure 10.6.5 the

conclude that water breaks thruugh into the producer at the middle of the wellbore. Figure
10.6.6 shows the shape of a stable cone in 3-D due to a horizontal well (straight

configuration with /. =100%) in a reservoir with Ay, =200.
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Figure 10.6.6: Shape of the cone due to a horizontal well with /., = A, and
DD=200, at 7,, =100 (stable cone).

10.7 Discussion of Results

This section provided a solution for the vertical and horizontal well performance in
the presence of a growing cone. The interface was considered as a no-flow moving
boundary. The position of the interface was obtained through the static equilibrium
cquation where guaranteed a constant pressure at the original WOC. Developing an
cquation for the cone height, this chapter presented a new parameter, the dimensionless

density. It was shown that based, on static equilibrium, the solution of a constant potential
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at the initial interface is an approximation to a coning problem when the density difference
is zero.

Equation 10.3.16 shows that as Ay approaches zero, the cone height approaches
infinity. In other words, once the drainage area recarhes the initial WOC, water will
breakthrough. On the other hand. before the drainage area reaches WOC., the potential
responses obtained from two different solutions of scaled and constant potential
boundaries are the same. Therefore, a constant potential boundarv provides no additional

information before breakthrough than a sealed boundary does. After breakthrough, lhg
initial interface ceases to remain at constant pressure conditions. Thus, for this period
where the aquifer is communicating directly with the producer, the real boundary of the 7
aquifer should be applied. Depending on the extent and geometry of the aquifer, a no-flow
boundary, at the bottom of the water zone, or a constant potential boundary insid(: the
water zone affects the potential response. The analysis showed that before l::n'eaklhrmxgh
the potential response obtained by the solution of a no-flow moving boundaryis Ll()‘sLlU
that of a no-flow boundary at the initial position of the WOC.
10.8 Concluding Remarks

In this Chapter the cone height equation (Equation 10.3.16) was derived, based on which:

1. the stability of the interface and the time of the breakinrough are controlled by the
dimensionless density, Ay,,. The higher the Ay, the smaller is the cone height. For a
given reservoir, a Critical Dimensionless Density (CDD), is associated with cvery

wellbore length above which the cone is stable
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2. the greater the viscosity, the greater is the cone height and consequently the sooner
breakthrough occurs. Thus. processes reducing viscosity such as steam stimulation can
postpone breakthrough in coning.

3. the smaller the vertical permeability, the smaller the cone height and greater the time to
breakthrough.

The potential response of a vertical well indicated that for large values of Ay,
movement of the interface is very small. Thus for all practical purposes, one can neglect
the existence of the bottom water or gas cap in a rectilinear reservoir by choosing a large
Ay, .

1t was shown that before breakthrough the pressure at the initial interface is always
constant based on static equilbrium. However, the potential at this level is constant only if
the difference of two fluid densities is zero. Thus a solution of constant potential at the
initial interface before breakthrough is a special case of a coning problem. After
breakthrough, where the aquifer is directly communicating with the producer, the initial
WOC ceases to remain at a constant pressure conditions. Afier breakthrough, the lower
boundary of the aquifer or a constant potential boundary inside the aquifer should be

applied, depending on the geometry and extension of the aquifer.



CHAPTER 11

11.1  Conclusions

In this work a novel analytical potential solution for sources with arbitrary
geometry, Discrere Flux flement (DIFL) Method, is developed. Applying the DFE
method, for the first time, the steady state potential equations for horizontal wells and 7
fractures are obtained. The applicability of the DFE Method in reservoirs with and withrﬁu
bottom water operating under steady-state and unsteady state conditions is exaniincd. The
boundary conditions at the WOC, before breakthrough, in reservoirs with bottom water
are defined. A new variable, Dimensionless Density is introduced which controls the cone

height and breakthrough time. The principal conclusions of this study are:

1. The DFE Method can be used for modeling the potential of an arbitrary source with

arbitrary geometry and uniform potential or uniform flux IBC.

o

Modeling a curvilinear horizontal wellbore by a straight horizontal well causes errars
in the prediction of the performance of the wellbore. This error is significant for the
wellbores in reservoirs with significant permeability contrast.

The equivalent pressure point [Clonts and Ramey, 1986, and Daviau ct al., 1988]

(%)

moves in time and it is not the same as that of the pressure derivative.
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A vertical barrier perpendicular to a horizontal well causes an asymmetric flux

based on a symmetric flux distribution; thus, it cannot be generalized.

The transient drainage area around line sources with finite length, in isotropic
reservoirs, is elliptical and at late times it becomes cylindrical.

In reservoirs with bottom water, the potential at the original interface is not constant.
The WOC is a no-flow moving boundary and its position before breakthrough is
controlled by dimensionless density. For every wellbore geometry a critical
dimensionless density exists, above which the WOC is stable.

A stimulation process thai can reduce oil viscosity can also increase the time of water
breakthrough.

In reservoirs with bottom water, the larger the dimensionless density the smaller the
cone height and larger the breakthrough time will be. Thus, by using a large
dimensionless density, it is possible to freeze the WOC. This will allow for modelling
the oil reservoir by an infinite slab (rectilinear reservoir with two parallel no-flow
boundaries). Thus for well testing a more realistic model will be achieved, compared

to those models with a constant potential at the original WOC.



11.2  Recommendations For Further Studies

The DFE Method provides a potential solution in isotropic and anisotropic
reservoirs due to a line or plane source. It can be applied in most of the single-phase flow
problems. Its application should be compared with the Theis solution for a fully
penetrating vertical well, particularly in well testing. For anisotropic reservoirs. further

studies of modeling a wellbore wir. a circular cross section are recommended.

For the coning problems the following can be suggested:

e Studying the effect of the viscosity contrast of the two fluids on the performance of
the wellbore and the movement of the cone.

e Coning in gas reservoirs under unsteady-state conditions,

e Coning in reservoirs with closed lateral boundaries.

» Coning in reservoirs operating under the bubble point pressure (1wo phase flow).-
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APPENDIX-A

Point Sources

A-1  Instantaneous Point Source
I'he transient potential due to a source is a solution of the diffusivity equation in

the form of:

‘:3,‘[’ + ‘7:‘[’ JLe_1ce ' ....... (A.1.1)
oX- oY o720 Ko

Deriving the potential for a cube of zero dimensions, Kelvin [1884] developed the
instantaneous solution due to a point source in an infinite domain that satisfies Equation
A.1.1 as follows:

g -y ey -z s

o(X. V. Z.1)= —F—+
8(nkr)™?

Equation A.1.2 provides the potential due to an instantaneous point scuréé, with flux ¢ in
an infinite domain, located at (\". Y, 2’). At (7 =0 ), the patential,i‘s zero everywhere,
except for the point (.",}",Z’), where it is singular. Equation A.1.2 is a general solution
for any type of flow problem such as thermal, electrical and fluid, provided that
appropriate definitions for flux, ¢, and diffusivity cgeﬁ’icient,' K, are used. For thermal
flow, these definitions are given by Carslaw and Jaeger [1959]. Equation A.1.1 for an

anisotropic domain can be written as:
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The instantaneous point source solution in an anisotropic domain is given as [Carslaw and
Jaeger [1959]]:

g e Ry Ry 22y ke

(p(‘.\"w Y, Z*’): 32, T ant
8(nr)"(Ky KyKz)"™

A.2  Continuous Point Source

Integrating Equation A.1.2 with respect to time one can find the continuous solution duc

to a point source as follows [Kelvin. 1884, and Carslaw and Jaeger, 1959].

q r :
= erfec——— ORI et (A2
@ 4nKr 4K
where

Pe(X=X)Y (=YY +(Z-2) (A2.2)

A-3  Steady State Point Source In An Infinite Reservoir

The steady state point source in an infinite domain was obtained from equation

A.2.1 as time approaches infinity [Carslaw and Jaeger, 1959]:

q L
= e e erer i (A3.1
M 4nKr )
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A-4  Steady State Point Source in a Rectilinear Reservoir

The solution to a point source in a rectilinear reservoir can be found by applying
the method of images to Eq A.3.1. The infinite series in the resulting equation converges

slowly. A fast convergent equation is given by Madelung [Muskat, 1932] as:

n=|\

o (o-0.0y) = 442 % (Ko (cnp)costzmm)cofzmn ) e ) |-

.................................. (A41)

where the flux term for a fluid flow problem is given [Muskat. 1932]:

Op ' o
G =—=— (A42
! dtka ‘ ( c )
where
a=2h s Lo (A4.3)

1

where #, is the reservoir thickness.

Equation A.4.1 provides the potential at a point located at vertical coordinate w and

horizontal distance p from a point source located at vertical coordinate w (Figure

A.4.1). The function K, is the modified Bessel function of the first kind and of order

zero, and p 1s given by

2
5

b= ((\ —x,) +(y—y,,)2)| T (A.4.4)
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Figure A.4.1: Schematic drawing of a point source in a rectilincar reservoir- -

Equation A.4.1 is singulzr at p =0 and it converges slowly at small values of p. Muskat-

[1932], developed an alternative for Equation A.4.1 that provides a finite valuc at p =0

oplp,w,wp)=
(—2w(1=w+ip)=2y(1+w +wp) - ncot(n{i + wp)) = weot{mw s = w)) + l
q '] -+ ! -+ ! Y ! 73
Wp W Wp—u (pz - w)z) (pz +(wp - ‘r)l) { -

Inspecting Equation A.4.5 one finds that it is still singular at w = w,.



APPENDIX B
Potential Equations of Sources with Infinite Length
The transient potential due to a source is a solution of the diffusivity equation in the form
of:

=7 =3
) B B ©)
s ,—:z:

=2 RO (- 3
P D & '

The inner boundary condition is to be defined by potential theory. such that the
potential on the surface of the source must be uniform. For sources with arbitrary and
irregular gcometry, the application of such an inner boundary condition is impractical.
Kelvin [1884] stated that the potential equation for any type of source can be constructed
from the solution of a point source. Kelvin’s statement is interpreted for line and plane
sources, |

The potential due to a line source is the integral of a point source solution about
the path of the source: |

h

o1 = [qopdl (B2

o
The potential due to a plane source is the integral of a point source solution over

the surface of the plane:

Q, = [qedy i (BU3)

r-

Y

For a rectangular plane Equation B.3 can be written as:
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Substituting Equation B.2 into Equation B 4, the potential for a fracture reduces to:

o . .
¢

In other words, the potential solution of a plane source is the integral of a line source

solution.

The function of flux, ¢, is unknown, Kelvin [1884], assuming a uniform flux into
the source, presented the potential equations for line and plane sources with infinite
length. The uniform flux assumption for such sources leads to a uniform potential

distribution along the source.

The potential solution for sources with infinite length can be obtained casily by
integration of the solution for a point source from ~oc to +x . The solutions can also be
obtained directly by solving the radial diffusivity equation for a line source or the I-D
diffusivity equation for a plane source. |

Although this work is mainly concerned with potential equations for sources with
finite length (SFL) a short review of the solutions for sources with infinite length will

highlight the differences and similarities between them.



B.1 Instantaneous Line Source with Infinite Length

The potential due to a line source parallel to the Z-axis can be cbtained by
integrating the potential of an instantaneous point source solution over the length of the

source [Kelvin, 1884, and Carslaw and Jaeger, 1959]:

b -[(.\'—.\"): L(r=v) +(Z—Z'):]/4K'/'
(p /. = ""“‘3‘*’/"‘_‘2“ ' ([C

S A7 (B.1.1)
8(mkt)"' " -~ o :

This integration is possible only using uniform flux assumption. For a line source with

infinite length this is a valid assumption. Therefore Equation B.1. reduces to:

g -[(‘\'-_\")3 w(r=r) |1k

oo L T T T (B.1.2
P 4kt : )
or

G 1 4RI T
o=—1_¢ | B3
P dnht S )
where
Pl (VN =T s (B14)

and ¢ is the flux from the unit length of the line source
B.2 Continuous Line Source with Infinite Length

By integrating Equation B.1.3 with respect to time one can derive the potential

equation for a continuous line source:
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By assuming a constant rate one can remove ¢ from under the integral [Carslaw and

Jaeger, 1959]. Thus Equation B.2.1 reduces to:

) iq ! 7 P
p=—-——E (~— . T B2
’ 4k it 4,]{1') , ( :

B.3. Instantaneous Plane Source with Infinite Dimensions
The instantaneous potential due to the plane sources can be obtained by integrating -

Equation B.1.2 along the length of the fracture from — to +x.

IR [ AR R D i ol VAT VA : .t
pr= ]i [ qge [( )y ) ] Y’ R RTINS (B3 D)

where ¢ is the flux from a unit area of the fracture. Here also the assumption of uniform
flux for a fracture with infinite dimensions is made.” Thercfore. Equation B.3.1 can be-

written as:

@y

B.4 Continuous Plane Source with Infinite Dimensions
The potential due to a continuous plane source can be derived by integrating

Equation B.3.2 with respect to time [Carslaw and Jaeger, 1959}
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For a constant rate problem, the flux ¢ can be removed from under the integral. The: ..

solution to Equation B 4.1 is [Carslaw and Jaeger, 1959]:

i 1/1 N ~ * F
I S CENE TS & { ;‘ ée”"
14} o (V=) AR {14} er
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Where ¢ is the flux from a unit area of the fracture.



APPENDIX C
Sources with Finite Length

As was shown for sources with infinite iength; the potential due lé a line source
can be obtained by integration of the solution of a point source over the length of the line
source, and the potential due to a fracture can be obtained by integration of the solution of
a line source over the surface of the fracture. Such integrations were possible only by
virtue of the assumption of a uniform flux Inner Boundary Conditions, IBC. For sources
with infinite length, a uniform flux and uniform potential IBC can be satisfied
simultaneously. However, for sources with finite length, the uniform flux IBC does not
provide a uniform potential IBC. Muskat [1932] suggested an approximate method for a

simulate the uniform potential solution by using the uniform flux solution calculated at a

[x]

ertain point on the wellbore. That point is located at 75% of the wellbore height.

C.1  Steady State, Uniform Flux Potential Solution for Vertical Partially

Penetrating Well

Integrating the steady-state point source solution in a rectilincar reservoir, Muskat
[1932] derived a uniform flux potential solution for a vertical partially penetrating
wellbore (Figure C.1.1) as:

{ Ko(2m )cos(me')sin(me')sinEntz.r)}-i- xIn(2/p)

A I\ —_
nn 1 -

d(w,p,x) = 4((
L
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where

1172

p= ((-r' ~x)+(y E*y’;)z)

X I ) l W

and where K, is a Bessel function of zero order and w, p are the coordinates of the point
under study, and x is the length of the wellbore. Equation C.1.1 is singular on the Z axis
(p = 0). Muskat [1932] developed further equaiions to provide finite values at (p : 0) as

follows:

for x-w>>p,:

o f]li;’lng—n —21n(T(x +w)[(x —w)) - ln(si’n(ﬂ:(r +w)) sin(n(x - u)))]

w

forv—w=p,:



Irln 2t -2 In{T(x +w)(x = w)) - ln(sin(ﬁ(;\' + ) sin(n(x - u)))
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d =g ‘ 7 , 172 v (C1L4)
L—ln(.\'—w)-ln u"x+(p§ +(u'—x)ﬁ) '
for x=w:
I it . - . :
¢ = g In=—-2InT"(2x) - In(sin(2mv))
_ g\l' ’
e (C1.5)
and for w = x:
L L [ R uzl
d=yq Eln—l—:(‘} ~ v) In ann(“’;l)ﬂn»;éfi 1+ —P
} F(w+x)  sina(w+x) F 20 (w-x)? J
.............................................. (C.1.0)
where
e 3
1 4 1thax ' ( )

C.2  Steady State Uniform Potential Solution for Vertical Partially Penetrating

Wellbore

Equation C.1.1 and its variations do not provide a uniform potential along the

wellbore. Muskat [1932] and [1982] applied superposition to model the wellbore by

different line sources with various lengths, each with uniform flux. To consider spherical

flow at the end of the wellbore (end effect), Muskat introduced a point source -t the

bottom of the wellbore. Equating the wellbore potential at different locations alc  « the
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wellbore, Muskat calculated the flux distribution along the wellbore to maintain a uniform
potential.
C.3  Steady State Potential Solution for Fully Penetrating Wellbore -

Putting x- 0.5 in Equation C.1.1, one can find the potential due to a verticai fully |
penetrating wellbore as: .
¢ =2¢qIn(2/p).
where p is the horizontal distance to the wellbore and ¢ is the flux of the wellbore given

by Equation C.1.7.



