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Abstract 

 

 

Three important mechanical behaviors of microtubules in vivo, i.e., buckling, 

vibration and splitting are investigated with especial focus on their relevance to 

biological functions of microtubules. To study the vibration and buckling of a 

microtubule, we model a microtubule as an elastic beam and surrounding three 

dimensionally distributed biopolymers as springs by using finite element method. Our 

model predicts that the buckling and vibration of microtubule are highly localized 

within several microns. As a result the critical buckling force and the lowest vibration 

frequency are insensitive to the total length of microtubule. The localized buckling 

and vibration predicted by the present model agree with a number of experimental 

observations which cannot be well explained by the existing elastic foundation model. 

Compared with predictions from the existing elastic foundation model, some key 

parameters (e.g., critical buckling force, buckling wave length, vibration frequency 

and vibration wave length) obtained from the present model are also in better 

agreement with experiments. In addition to our finite element results, several 

empirical equations, which are unavailable from the existing elastic foundation model, 

are provided to calculate these key parameters in terms of mechanical and geometrical 

properties of microtubule and surrounding biopolymer. 

To investigate splitting of a microtubule into splayed protofilaments, we model 

protofilaments as individual elastic beams in parallel and laterally assembled to form 

a microtubule. Our analytical model shows that an axial compressive force could 
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induce splitting of a microtubule shorter than 450 nm even if it is protected by a “cap” 

consisted of strongly bonded GTP dimers at the end. For a longer microtubule, the 

axial compressive force might cause overall buckling prior to splitting. On the other 

hand, after the strong “cap” at the end of microtubule is lost (not necessarily due to 

compressive force), a molecular ring coupled to the frayed end of microtubule could 

provide a pulling force with splitting propagation of microtubule to move 

chromosome during mitosis. Our model predicts that the splitting of microtubule will 

spontaneously propagate with splitting length around 15 ~ 18 nm, which is 

comparable with the frayed end in microtubule of 10 ~ 30 nm observed in 

experiments. By using the predicted splitting length, we estimate the theoretical upper 

limit of pulling force as 7 ~ 24 pN, which is close to the upper bound of the 

experimentally measured pulling force 0.5 ~ 5 pN with reasonable accuracy.  

In summary, our numerical simulations and analytical models offer plausible 

explanations to some important experiments of microtubules in vivo which have not 

been well explained by existing models. It is hoped that the present study could bring 

some new insights to the understanding of interacting between mechanics and biology 

of microtubule and spark further research interest in mechanical modeling of 

microtubules. 
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1. Introduction  

1.1. What is microtubule  

1.1.1. Composition and structure 

Microtubule is one of most important cytoskeletal elements in eukaryotic cells (Boal, 

2002). A microtubule has a tube like structure and is composed of Alpha/Beta tubulin 

heterodimers (called “dimers”). These dimers are helically assembled to form a 

microtubule with outer diameter about 24 nm and length varying from hundreds of 

nanometers to tens of microns. Because the inter-dimer adhesion along the axis of 

microtubule is much stronger than the inter-dimer in circumferential direction 

(VanBuren et al., 2002, VanBuren et al., 2005), a microtubules is also considered to be 

composed of 13/14 protofilaments in parallel with the microtubule axis. A 

protofilament is a single chain biopolymer polymerized by assembling of dimers end 

to end. For an illustration of microtubule composition and structure, see Figure 1.1.   

 

 

Figure 1.1 Composition and structure of a microtubule. 

1.1.2. Functions of microtubule in biological cell 

Microtubules serve as: (a) key components of cell’s skeleton, (b) engines to move 

chromosome during cell division and (c) rails for cellular materials transportation. As 

the key component of cell’s skeleton, a microtubule anchors one end in the 

centrosome which located at the center of cell with another end toward the membrane 

of cell. In this manner, microtubules maintain geometrical shape of cell with bending 

rigidity about 3-4 orders magnitude higher than other biopolymers in cell (Subra, 

2007). Other biopolymers laterally support microtubules to prevent microtubule with 
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very high ratio of length to diameter from mechanical failure such as buckling or 

bending.  

Serving as engines to move chromosome during cell division, microtubules take 

advantage of its polymeric properties. Actually, microtubules are firstly organized to 

form the mitotic spindle with two ends connected to chromosomes via kinetochores. 

Then depolymerization (shrinking) of microtubules generates a pulling force via 

Dam1 ring to position duplicated chromosomes to two poles of newly formed 

daughter cells, see Figure 1.2 (Inoué and Salmon, 1995). Thus chromosomes 

positioning is well controlled by switching between polymerization and 

depolymerization of microtubule, a process named “dynamic instability” (Mitchison 

and Kirschner, 1984). A microtubule is initially polymerized by GTP dimers (each 

dimer formed by an alpha and a beta tubulin monometers carries two GTP molecules). 

It has been now widely recognized that a “cap” at the end of microtubule, composed 

of a few layers of strongly bonded GTP dimers, is essential to prevent microtubules 

from depolymerization. Strongly attached stable GTP dimers will be hydrolyzed to 

unstable GDP dimers after being added to the tip of microtubule. GTP dimers are 

straight and considered to be stable because its shape is compatible with cylinder 

shape of microtubule, while the GDP dimers are naturally curved thus not stable 

within microtubules. According to existing literatures (Mitchison and Kirschner, 

1984, Hyman et al., 1992), the loss of “cap” was considered as a result of hydrolysis 

of stable GTP dimers to unstable GDP dimers. 

Another important function of microtubules is rails for cellular materials 

transportation. Motor proteins can move along a microtubule as trains travelling along 

a railway. The energy for motor protein moving is provided by ATP hydrolysis. For 

example, Kinesin as one typical microtubule motor protein can move toward plus end 

of the microtubule, while Dynein, another type of motor protein, commonly moves 

toward the negative end of microtubule (Kelly, 1990). Many types of cargo proteins 

bound and transported by motor proteins are playing vital roles in numerous organelle 

activities (Hirokawa, 1998). The movement of motor proteins might introduce 

significant mechanical transverse disturbance to microtubules.  

1.2. Why is microtubule mechanics important 

Biological functions of microtubule are largely based on microtubule mechanics. As 
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the strongest component of the cell skeleton, sometimes microtubules are curved and 

appear buckled under compressive loads. It is important to study how much force a 

single microtubule can bear without being buckled and what its mechanical failure 

modes look like (Brangwynne et al., 2006). Some experiments found that mechanical 

interaction between some biopolymers and microtubules is related to high mobility 

and metastasis of cancer cells (Guck et al., 2005, Ochalek et al., 1988, Korb et al., 

2004). Also, because of microtubule’s key role in maintaining the shape of cell, 

mechanical vibration of microtubule directly coordinates the movement and shape 

variance of cells (Tounsi et al., 2010, Allen et al., 2008). As a result, mechanical 

vibration of microtubule is related to electrodynamic activities of cells (Cifra et al., 

2010, Pokorný, 2004), which are important in cancer cell identification (Pokorný et 

al., 2011, Daneshmand, 2012). 

 

Figure 1.2 Illustration of (a) microtubule splitting induced by axial compression and 

(b) pulling force generated by splitting acting on Dam1 ring (note: the figure is only 

for illustration and the two phenomena do not necessarily occur simultaneously and 

the size of Dam1 ring, microtubule and protofilament, short for PF in figure, are not in 

scale). 

When a microtubule serves as an engine to move chromosome, it is now well 

recognized that the kinetics energy required for moving chromosome comes from 

strain energy previously stored in protofilaments within microtubule (Westermann et 

al., 2006). Analysis of this process greatly relies on understanding of mechanical 

behavior of microtubules. Protofilaments can be modeled as naturally curved beams 

but being bent straight to fit into the tube-like shape of a straight microtubule. After 

the strong constraint at the end of a microtubule is lost, outward bending of 
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protofilaments could pulling Dam1 ring and generate pulling force to move 

chromosome, see Figure 1.2. During this process, mechanical strength of microtubule 

is relevant for cell division because chromosome positioning could fail due to 

buckling and bending of microtubules (Faivre-Moskalenko and Dogterom, 2002). On 

another hand, applied external force might also affect polymeric behaviors of 

microtubule. For example, under tensile force, the depolymerization of microtubule 

can be suppressed (Akiyoshi et al., 2010). In addition, mechanical vibration of a 

microtubule could be stimulated by an external force engendered in mitosis and 

transverse disturbances caused by the moving of motor proteins along the microtubule 

(Rai et al., 2013).  

1.3. Microtubule mechanics models review 

As presented in last section, buckling, vibration and splitting are three most relevant 

mechanical behaviors of a microtubule to perform its biological functions in a living 

cell. For buckling and vibration, a microtubule was commonly modeled as a 

continuous elastic structure, e. g., an elastic beam or elastic shell. The free-standing 

elastic beam and shell models without surrounding biopolymers (named “cross 

linkers” in this thesis) are used to predict experimentally observed mechanical 

buckling and vibration behaviors of microtubule in vitro (Pokorný, 2004, Sirenko et 

al., 1996, Tounsi et al., 2010, Wang et al., 2006, Xiang and Liew, 2012, Kurachi et al., 

1995). However the free-standing beam and shell models failed to explain some 

mechanical behavior of microtubules in biological cells. For example, it is observed 

that microtubule can bear a compressive force much higher than the theoretical 

critical buckling force of a free-standing elastic beam (Li, 2008). The high buckling 

force was attributed to surrounding cross linkers, which were modeled as a 

homogenous elastic foundation in the existing literature for both buckling 

(Brangwynne et al., 2006, Jiang and Zhang, 2008, Brodland and Gordon, 1990, 

Ugural and Fenster, 2003) and vibration (Shen, 2011, Ghavanloo et al., 2010, 

Zeverdejani and Beni, 2013). Despite the merits of the elastic foundation model as 

compared to the free-standing beam models in exploring microtubule buckling and 

vibration in vivo, the elastic foundation model still suffer from three major draw backs 

when compared with experimental observations:  

First, for microtubule buckling, the elastic foundation model predicts a uniform 
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multiwave buckling mode when a microtubule is under an axial compressive force 

higher than the critical buckling force (Li, 2008, Mehrbod and Mofrad, 2011, Jiang 

and Zhang, 2008). However microtubule in vivo often exhibits a failure pattern 

refereed as “localized buckling” in which the magnitude of deflection quickly decays 

from the site where the compressive force is applied (Brangwynne et al., 2006, 

Mandato and Bement, 2003, Gupton et al., 2002).  

Secondly, for microtubule vibration, the elastic foundation model predicts that the 

lowest natural frequencies depend on microtubule length and the associated vibration 

modes are characterized by long wavelength spreading through the entire 

microtubule. This feature is in direct contradiction with experimental observation that 

vibration modes of microtubule in vivo are highly localized at certain locations of 

microtubule (Marrari et al., 2003, Mandato and Bement, 2003). 

Third, the relationship between the elastic foundation modulus (a key parameter of the 

elastic foundation model) and properties of three dimensionally distributed cross-

linkers remains a problem to be addressed (Jiang and Zhang, 2008, Wang et al., 2009, 

Gao and An, 2010, Li, 2008, Mehrbod and Mofrad, 2011). The approach widely 

adopted by the existing elastic foundation models to determine the elastic foundation 

modulus is essentially under a two dimensional assumption of in-plane vibration or 

buckling (Ugural and Fenster, 2003), which is inappropriate for three dimensionally 

distributed cross-linkers. Actually some studies have already suggested that it is over 

idealized to model the random distributed cross linkers as a homogenous elastic 

medium (Mehrbod and Mofrad, 2011).  

Microtubule splitting was also extensively studied in the literature. In this case a 

microtubule cannot be modeled as an indivisible shell or beam because splitting or 

depolymerization eventually leads to microtubule disassembling. Instead, 

protofilaments or dimer were modeled as basic units assembled together to compose a 

microtubule (Akiyoshi et al., 2010, Franck et al., 2007, Jánosi et al., 2002, Molodtsov 

et al., 2005a, Vichare et al., 2013, Dogterom et al., 2005, Westermann et al., 2006, 

Inoué and Salmon, 1995). The interaction between protofilaments or dimers was 

commonly governed by an assumed potential energy function (e. g., Lennard-Jones or 

Morse potentials), which may have different forms in various models suggested by 

different researchers (Hunyadi and Jánosi, 2007, Molodtsov et al., 2005a, Molodtsov 

et al., 2005b, Jiang et al., 2002). Because the natural curvature of naturally bent 
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protofilament is a key driving force to cause splitting of a microtubule, it plays a key 

role in splitting of microtubules. Two key questions for microtubule splitting are how 

splitting occurs with loss of the strongly constrained “cap” at the tip of a microtubule, 

and 2) how microtubule splitting provides pulling force to move chromosome. 

To answer the first question, extensive researches have been done on biochemical 

effects due to hydrolysis of tubulin dimers and activities of microtubule associated 

proteins (Mitchison and Kirschner, 1984, Hyman et al., 1992, Vitre et al., 2008, Ji and 

Feng, 2011, Höög et al., 2011). However destruction of strongly constrained “cap” 

might also be induced by a compressive force applied from the membrane of 

microtubule. Similar phenomena have been observed in fiber-composites or carbon 

nanotube ropes (Chai et al., 1981, Kachanov, 1988, Ru, 2004) but not yet been 

investigated for microtubules.  

For the second question, some studies discussed the mechanism of force generation 

by microtubule splitting from biological aspects (Grill and Hyman, 2005, Dogterom et 

al., 2005, Kimura and Kimura, 2011, Jánosi et al., 2002), and most researches showed 

that mechanical modelling of microtubule and protofilaments is crucial to 

quantitatively predict the pulling force provided by microtubule splitting. Vichare et 

al., developed an analytical model to calculate the pulling force of a splitting 

microtubule with given splitting length, however whether such force can be generated 

continuously associated with spontaneous splitting of microtubule is not yet verified 

(Vichare et al., 2013). Some numerical simulations were conducted with adhesion 

between protofilaments based on an assumed potential energy (Molodtsov et al., 

2005b, Molodtsov et al., 2005a). Due to intrinsic limitations of numerical simulation 

techniques, this model rendered a less clear picture for us to physically understand 

how splitting and force generation could occur simultaneously and cooperatively in 

depolymerization of microtubule. Generally speaking, most of existing studies have 

focused on calculating the force produced by microtubule splitting while little 

attention has been paid to determining the range of splitting length which makes 

spontaneous splitting propagation possible.  

 

1.4. Objectives and outline  

Mechanical modelling of a microtubule is of great importance to study biomechanical 
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and biophysical behaviors of microtubules, cytoskeleton and biological cell. As 

presented in section 1.3, many previous mechanics models were successfully 

employed to predict some important mechanical responses of microtubules. 

Compared with the existing research works, two major objectives of the present thesis 

are:  

a) Develop more realistic mechanics models to demonstrate some key 

experimentally observed buckling and vibration behaviors of microtubule in vivo, 

which are relevant for microtubules’ biological functions but cannot be well 

explained by existing models.  

b) Enhance the understanding of interaction between mechanical and biological 

behaviors of microtubule splitting by exploring the effect of some mechanical 

factors which have been ignored by the existing models for microtubule splitting.  

Specifically, the present thesis is organized as follows: 

1) In chapter 2 and 3, two numerical micro-mechanics models are developed to 

simulate microtubule buckling and vibration respectively. Our new models are 

more “realistic” than the existing free-standing elastic beam model and the elastic 

foundation model in the description of mechanical interfacing between 

microtubules and surrounding cross linkers in living cells. The comparison with 

some known experimental observations show that our new models could better 

explain some key features of microtubule buckling and vibration in living cells, 

which cannot be explained by the existing models.   

2) In chapter 4, a micro-mechanics model is proposed to investigate splitting of a 

microtubule caused by an axial compression force, see Figure 1.2. Different than 

the common opinion in the existing literature which always explains splitting of 

microtubule as a consequence of the loss of cap at the tip of a microtubule due to 

biochemical reaction. The proposed new model shows that a mechanical 

compressive force could cause splitting of a microtubule even without the loss of 

its cap.  

3) In chapter 5, the micro-mechanics model developed in chapter 4 is modified and 

refined by introducing a cohesive zone at the tip of a splitting microtubule, which 

could better model the interaction between protofilaments. The new model is 

employed to study the pulling force generated by microtubule splitting, see 
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Figure 1.2, and a criterion is derived for spontaneous propagation of microtubule 

splitting. Our new model predicts a range of splitting length for spontaneous 

splitting of microtubule, on which the maximum pulling force is estimated. 

4) In chapter 6, major conclusions of the present thesis are summarized and a few 

further research topics are suggested. 
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2. Localized buckling of microtubule     

2.1. Introduction  

The microtubule is one of the most important cytoskeletal elements in eukaryotic cells 

(Boal, 2002). Although mechanical behaviors of microtubules in vitro were well 

predicted by elastic column model, microtubules in vivo (typically tens of microns in 

length) can bear much higher compressive force than that in vitro. The increase of 

critical buckling force is attributed to surrounding cross-linkers, which are often 

modeled as a continuous and homogenous elastic foundation (Brangwynne et al., 

2006, Jiang and Zhang, 2008, Brodland and Gordon, 1990). As a result of the lateral 

elastic constraint, the multiwave buckling mode charactzerized by uniform short 

buckling waves with smaller deflection is energically favorable over the singlewave 

buckling mode predicted by the free-standing elastic column model. With such an 

elastic-foundation model, the critical compressive force and associated wavelength of 

buckling modes can be calculated by the conventional method of elastic buckling 

(Ugural and Fenster, 2003). In particular, the predicted critical force and wavelength 

are insensitive to the length of microtubules and the end conditions.  

Despite the success of the elastic-foundation model in explaining higher critical 

buckling force, this model suffers several limitations. First, the relationship between 

the elastic foundation modulus and the properties of discrete cross-linkers remains a 

problem to be addressed (Jiang and Zhang, 2008, Wang et al., 2009, Gao and An, 

2010, Li, 2008, Mehrbod and Mofrad, 2011). Actually, the commonly used approach 

to determine the elastic foundation modulus is under the assumption of in-plane two 

dimensional (2D) buckling (Ugural and Fenster, 2003), which is inappropriate for the 

three dimensional (3D) microtubule-cross linker system. More importantly, refereed 

to as “localized buckling” by some authors (Brangwynne et al., 2006), microtubule 

buckling in vivo exhibits a localized buckling mode in which the magnitude of 

deflection quickly decays from the site where the compressive force is applied. 

Similar localized buckling modes are observed in other experiments (Mandato and 

Bement, 2003, Gupton et al., 2002). The observed localized buckling is inconsistent 

with the uniform multiwave buckling mode predicted by the elastic foundation model 

(Li, 2008, Mehrbod and Mofrad, 2011, Jiang and Zhang, 2008). In addition, the 

possible effect of end conditions (e. g., free or clamped), which may lead to different 

buckling wavelength and critical force, cannot be captured by the elastic foundation 
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model. In view of the fact that the critical force for observed localized buckling could 

be much lower than that given by the elastic foundation model based on the uniform 

multiwave buckling mode, this discrepancy deserves a further study. To this end, it is 

crucial to examine the role of discrete cross linkers in vivo, which are laterally 

attached to microtubules and distributed randomly in both longitudinal and 

circumferential directions (Boal, 2002). Furthermore, as suggested by the “tensegrity” 

model (Wang et al., 2001, Canadas et al., 2002), the cross linkers have negligible 

bending rigidity and cannot bear compressive force, a feature which cannot be well 

modeled by the existing elastic foundation model.  

In the present study, a micromechanics numerical model is developed to simulate 

buckling behavior of microtubules based on measured properties and observed 

morphology of microtubules and cross linkers. The proposed numerical model is 

validated by comparing its predictions with the elastic foundation model for simple 

2D in-plane buckling of a microtubule supported by continuously distributed linear 

springs. The validated model is then employed to investigate 3D buckling behaviors 

of the microtubule-cross linker system. Based on our numerical simulations, two 

empirical relations are proposed for the critical force and wavelength of localized 

buckling of microtubules. As will be shown, the localized buckling of microtubules 

predicted by the present model is in reasonable agreement with some recent 

experimental data.  

 

Figure 2.1 The present numerical models: (a) equivalent 2D elastic foundation model; 

(b) randomly distributed 3D cross linkers model. 
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2.2. Numerical models 

The microtubule-cross linker system, studied in the present thesis, is composed of a 

microtubule surrounded by cross linkers randomly distributed along longitudinal 

direction, see Figure 2.1. The microtubule is modeled as an elastic hollow cylinder 

column, while the modeling of cross linkers is illustrated in following two sections. 

The two key parameters of the cross-linkers are the spring constant k  and the spacing 

of cross linkers dL , whose values will be given based on available experimental data. 

Buckling of microtubules is stimulated by imposing compressive axial displacement 

at one end of the microtubule with the other end clamped. Some details of using finite 

element method for the buckling of microtubule can be found in Appendix A.  

2.2.1. Microtubule modeling  

The microtubule is modeled as a hollow cylinder column with outer diameter of 24 

nm and thickness of 1.86 nm (Mehrbod and Mofrad, 2011, Jin and Ru, 2012). The 

geometry of cross section and the Young’s modulus E  of 1 GPa (Li et al., 2006) give 

the bending rigidity EI  of 9.034×10
-24

 Nm
2
, which is within the range of the 

measured values of several experiments (Hawkins et al., 2010). The length of 

microtubule L  in the present study is between 300 nm, which is almost the minimum 

length of microtubules in experiments (Howard, 2001), and a few tens of microns. As 

our major concern is the localized mode or uniform multiwave buckling mode with 

shorter wavelength (typically, around 1-3 micron), the length dependency of bending 

rigidity (Pampaloni et al., 2006) is not included in the present thesis. Thus, the 3D 

Timoshenko shear deformable beam elements are used to mesh the microtubule. The 

microtubule is always clamped in one end as it is anchored in centrosome in living 

cells (Howard, 2001, Boal, 2002). Another end of the microtubule is subjected to a 

compressive load under different types of end conditions (e. g., free or clamped) (Boal, 

2002). To initiate buckling of the microtubule, an extremely small perturbation force 

is applied at the end in the direction perpendicular to the microtubule. Our simulations 

show that the magnitude of the small perturbation force is irrelevant to simulation 

results. 

2.2.2. Cross linkers modelling 

All cross linkers are modeled as linear springs with one end permanently attached to 

the microtubule and the other end fixed in all degrees of freedom. The spring constant 

k  of cross linkers (of length 45 nm) used here, 39 pN/nm, is taken from (Peter and 
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Mofrad, 2012). As the spring constant k  may change for different types of cross 

linkers, a wider range of the spring constant (which may depend on length of cross 

linkers) is also considered in the present work. On the other hand, the spacing dL  

ranging from 25 nm to 300 nm (Peter and Mofrad, 2012, Svitkina et al., 1996) will be 

considered. The 3D elastic linear spring elements are used to mesh the cross linkers. 

Two numerical models, characterized by different distributions and constitutive laws 

of cross linkers, are illustrated below, and referred to as the equivalent elastic-

foundation model and the randomly distributed 3D cross linker model respectively.  

 

Figure 2.2 A typical relation between the compressive axial force or the maximum 

deflection and the nominal axial strain given by the present model.  

To demonstrate the efficiency of the present numerical model, first we shall apply it 

to the simple 2D in-plane uniform multiwave buckling and compare its results with 

the elastic foundation model. For the 2D in-plane buckling of a microtubule supported 

by a continuum elastic foundation, the wave length and critical buckling force are 

given by (Brodland and Gordon, 1990) Equation Chapter 2 Section 1 
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where EI  is the bending rigidity of the microtubule and cE  is the elastic foundation 

modulus. The elastic foundation modulus cE  in the 2D condition is directly 

proportional to the spring constant k  and inversely proportional to the spacing dL  of 

uniformly distributed linear springs (Ugural and Fenster, 2003) as  

 c

d

k
E

L
   (2-3) 

This formula (2-3) is commonly used provided that dL  is much smaller than the wave 

length.  

To compare the present numerical model with the elastic foundation model, a 2D 

numerical model is shown in Figure 2.1 (a), where all cross linkers are aligned in the 

same plane and perpendicular to the microtubule. All out-of-plane displacements and 

rotations are not allowed. In addition, as assumed in the elastic foundation model, all 

cross linkers in the equivalent elastic foundation model shown in Figure 2.1(a) are 

capable of bearing both compressive and tensile forces (Wang et al., 2001, Canadas et 

al., 2002). 

 

Figure 2.3 Critical buckling forces Fcr predicted by the present equivalent elastic 

foundation model compared with the elastic foundation formulas Eqs. (2-1) and (2-2) 

with k=39 pN/nm.  

The major goal of the present study is buckling behaviors of a microtubule 

surrounded by 3D randomly distributed discrete cross linkers. The morphological 

details of the cross linkers are modeled based on experimental observations. All cross 

linkers are attached to the microtubule in random directions assigned by the uniform 
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distribution rule, see Figure 2.1 (b). The cross linkers are modeled as linear springs 

with negligible bending rigidity (Mehrbod and Mofrad, 2011, Bathe et al., 2008), thus 

they can bear axial tension but are vulnerable to any axial compression. To realize 

this, the load increments are sufficiently small, and every spring element is verified 

after each load increment and will be permanently removed if the axial force becomes 

compressive (Actually, if a small non-zero threshold value of compressive force, such 

as 1-2 pN, is used, our results remain essentially unchanged. Therefore we have 

simply set the threshold value as zero). Different from the equivalent elastic 

foundation model (where out-of-plane displacements and rotations are not allowed), 

the 3D buckling behaviors are modeled by allowing buckling deflections in all 

directions. 

2.2.3. Model verification by comparison with a classical model 

First let us consider the classic 2D uniform multiwave buckling mode which evenly 

spreads over the entire microtubule (Ugural and Fenster, 2003). In this case, the 

results given by the present equivalent elastic foundation model are compared with 

the classical elastic foundation model.  

 
Figure 2.4 2D in-plane multiwave buckling modes (buckled grey color beam) given 

by the present equivalent elastic foundation model compared with the wave lengths 

given by the classical elastic foundation model Eq. (2-1) (black arrows). 

First compared are the critical buckling forces predicted by the present numerical 

model and the classical formula Eq. (2-2). From the present numerical model, a curve 

of the axial compressive force versus the nominal axial strain is plotted in Figure 2.2, 

with k =39 pN/nm and dL =25 nm. It is seen from Figure 2.2 that the axial 

compressive force linearly increases with the nominal axial strain until a plateau is 
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reached. Also included in Figure 2.2 is the maximum deflection of the microtubule, 

which upturns remarkably as the plateau is approached. Therefore the critical 

buckling force crF  from our numerical simulations is defined as the axial compressive 

force on the plateau. It is seen from Figure 2.2 that after the critical force is reached, 

the axial compressive strain increases quickly without significant change in the axial 

force (for example, the axial force changes only by less than 5% as the axial strain 

doubles). It is seen from Figure 2.3 that the critical buckling force crF  given by the 

present numerical model is in good agreement with the Eq (2-2). In particular, 

consistent with the elastic foundation model, the critical buckling force and wave 

length simulated by the present numerical model is also found to be insensitive to the 

microtubule length.  

 

Figure 2.5 Buckling of a microtubule given by the present randomly distributed 3D 

cross linkers model with spring constant k=39 pN/nm and spacing Ld=50 nm. The 

buckling wave length and critical buckling force are essentially length independent as 

the length of microtubule is much longer than the buckling wave length. 

Three buckling modes given by our numerical models are shown in the Figure 2.4, 

with a good comparison to the classical wavelength formulas Eqs. (2-1) and (2-3). In 

Figure 2.4 (a), the shorter wavelength is associated with the highest spring constant k

=39 pN/nm and the shortest spacing dL =25 nm. In particular, our numerical results 

confirm that the buckling predicted by the 2D equivalent elastic foundation model is 
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characterized by the uniform multiwave mode rather than localized mode, and the 

predicted wave length is insensitive to the length of microtubule. 

 

Figure 2.6 The critical forces Fcr quickly converges to a constants (defined as the 

localized buckling force FL) as the microtubule length exceeds a critical length (the 

latter is around 500 nm when dL =50 nm). This critical length increases with 

increasing spacing of cross linkers dL . 

2.3. Results and discussion 

2.3.1. Features of localized buckling 

Now let us investigate 3D buckling behaviors of the microtubule-cross linker system 

using the randomly distributed 3D cross linkers model. It is seen from Figure 2.5 that 

a remarkable feature of the buckling behavior given by our 3D cross linkers model is 

that the buckling mode is highly localized near the end, which bears great similarity 

with the microtubule buckling observed in vivo by Brangwynne et al. (2006) and 

refereed as “localized buckling”. Although the localized buckling mode obtained in 

our simulations is actually 3D in nature, the out-of plane helical deflection is much 

smaller than the in-plane deflection. Here it should be noted that the localized 

buckling mode predicted by the present static 3D cross linkers model is significantly 

different from those reported in some previous studies, say the localized mode caused 

by the wave of compressive force propagating from one end at which localized 

buckling mode is initiated (Ranjith and Kumar, 2002), or the localized mode as a 

result of the large deflection post-buckling of a compressed column on a 2D elastic 

foundation (Hunt et al., 1993, Lee and Waas, 1996) which has the uniform multiwave 
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mode as its linearized buckling mode. Different than these mentioned works, the 

localized mode obtained by the present model is static in nature and not a result of 

post-buckling developed from an initial uniform multiwave buckling mode. 

  

Figure 2.7 Determination of the p  and q  in the proposed empirical equations (5) by 

linearly fitting simulation results of localized buckling.  

What is shown in Figure 2.6 is the dependence of the critical buckling force crF  on 

the microtubule length. Although the critical buckling force crF  changes considerably 

with length for extremely short microtubules (say, crF  decreases from 511 pN to 365 

pN as the length of microtubule increase from 300 nm to 500 nm), the critical force 

crF  becomes length-independent when the microtubule length exceeds a critical value 

(say, larger than 500 nm). For example, for a microtubule of 2000 nm in length, the 

critical force crF  for localized buckling is around 360 pN (which is almost the same as 
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the critical force 365 pN for a microtubule of 500 nm in length), and the localized 

buckling wavelength is about 500 nm (almost the same as the localized buckling 

wavelengths of much shorter microtubules). In Figure 2.6, it can be seen how the 

buckling force crF  quickly converges to a constant, defined as the localized critical 

buckling force LF , when the length of microtubule exceeds a critical value (say, 500 

nm for k =39 pN/nm and dL =50 nm). Indeed, the critical force LF  for localized 

buckling and the associated wavelength L  become essentially length-independent 

when the microtubule length exceeds a critical value. 

The spring constant k  and spacing dL  of cross linkers influence the predicted critical 

force LF and wave length L  of localized buckling, as well as the critical length of 

microtubules beyond which LF and L  become essentially length-independent. For 

example, our numerical results show that as spacing dL  changes from 25 nm to 100 

nm with k =39 pN/nm, the critical length of microtubules, beyond which LF  and L  

keep essentially constant, increases with the increasing spacing dL . Additionally, as 

expected, our simulations show that higher critical force LF  and shorter wave length 

L  are achieved with larger spring constant of cross linkers, as to be detailed in 

section 2.3.2. 

2.3.2. Empirical relations for localized buckling 

The localized buckling is characterized by the two key parameters, the localized 

buckling wave length L  and the critical force LF for localized buckling. In what 

follows, based on our numerical simulations, two empirical relations will be given for 

the dependency of the two key parameters on the spring constant k and the spacing Ld 

of cross linkers. 

In view of the classical formula (2-1), we seek for an empirical relation for the 

localized buckling wave length of the following form  
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where Q, p  and q  will be determined to fit numerical data (Q has the unit of Pa, 

while p  and q  are dimensionless). The reference spacing 0L  is 25 nm (which is 

probably the shortest cross linker spacing, say with the length of GTP/GDP dimers of 
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8.1 nm, see ref. (Hunyadi et al., 2007)), and the reference spring constant of cross 

linkers 0k  is 39 pN/nm (Peter and Mofrad, 2012). In view of the classical formula 

(2-2), we also seek for an empirical relation for the critical force for localized 

buckling of the following form:  
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where B  is a dimensionless constant. To determine p  and q  based on our numerical 

simulations, we rewrite Eq. (2-5) as 
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In Eqs (2-6) and (2-7), the / 2p  and / 2q  are the slopes of the curves of LlnF  versus 

0ln( / )k k  and 0 dln( / )L L , respectively. The simulation results with different 

combinations of k  and dL  are linearly fitted in Figure 2.7 (a) and (b), which gives q  

and p  as 3.6 and 0.47, respectively. With the values of q , p  known, the value of Q 

is linearly fitted in Eq. (2-4) as 1.4 MPa based on the the wavelengths given by our 

simulations. With all of these values obtained, the constant B  is obtained as 5.3 from 

Figure 2.7 (a) and Eq. (2-6). Finally two empirical relations for the critical force and 

the associated wave length for localized buckling are given as  

  (2-8) 

and 
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Since p  and q  are determined using the data of critical force LF  given by Eq. (2-5), 

the predicted wave length L  from Eq. (2-8) is further compared with the data 
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obtained directly from simulations. Again, a good agreement is achieved for k = 0k , 

0 / 4k , 0 /16k , 0 / 32k  and 0 / 64k , as shown in Figure 2.8. Validity of the proposed 

relations (2-8) and (2-9) are also verified for different values of bending rigidities EI. 

For example, in a series of experiments by Felgner et al., the bending rigidity of 

microtubule was measured as low as 3.8×10
-24

 Nm
2
 (Felgner et al., 1997). With the 

bending rigidity EI of 3.8×10
-24

 Nm
2
 and the other parameters adopted in Figure 2.5, 

the critical buckling force given by the empirical formula Eq. (2-9) is 218 pN, which 

is reasonably close to 234 pN obtained by direct numerical simulations with 

EI=3.8×10
-24

 Nm
2
. The two empirical relations (2-8) and (2-9) are expected to be 

useful within a reasonable range of the spring constant (from 0 / 64k  to 0k ) and the 

spacing (from 25 nm to 300 nm) of cross linkers and under the condition that the 

localized buckling wave length L  is at least 10 times longer than the spacing Ld.  

 

Figure 2.8 Localzed buckling wavelength L  given by the present numerical model 

compared with the wave length calculated from the empirical equation (2-8). 

The proposed empirical formulas (2-8) and (2-9), obtained by fitting with our 

numerical data, are significantly different than 2D elastic foundation formulas (2-1) 

and (2-2). For example, the critical force for localized buckling predicted by Eq. (2-9) 

is about 1/6 of the buckling force predicted by the elastic foundation model (2-2) 

based on the same buckling wave length, which indicates that the critical buckling 

force of localized buckling is much lower than that predicted by the elastic foundation 
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model based on in-plane uniform multiwave buckling mode. In addition, although 

both our empirical formulas (2-8) and (2-9) and 2D elastic foundation formulas (2-1) 

and (2-2) predict that the critical buckling force increases with the spring constant k  

and decreases with the spacing dL , the dependence of critical buckling force on the 

spring constant k  decreases from the power index of 0.5 in the 2D model to 0.22 in 

our 3D model, and the dependence of critical buckling force on the spacing dL  

increases from the power index of 0.5 in 2D model to 1.8 in our 3D model. 

2.3.3. Comparison with experiments 

Let us now compare the results of localized buckling given by the present model with 

some known experimental measurements, as well as the elastic foundation model and 

the free-standing elastic column model. In what follows, the microtubules in all cases 

are of a common length of 5 μm , which guarantees that the wave lengths of the 

localized buckling mode and the uniform multiwave buckling mode are much shorter 

than the length of the microtubule. 

The buckling modes given by three models, shown in Figure 2.9, are significantly 

different. The buckling of a free-standing microtubule under the free or clamped end 

condition is illustrated in Figure 2.9 (a) and (b) respectively. With dL =100 nm and k

=39 pN/nm, the localized buckling given by the present model under free or clamped 

end condition is shown in Figure 2.9 (c) and (d) respectively. Finally, the buckling 

mode and critical buckling force of the uniform multiwave buckling given by the 

equivalent elastic foundation model (described in section 2.2.1) is presented in Figure 

2.9 (e) with the same dL  and k  as adopted in Figure 2.9 (c) and (d). All predicted 

buckling behaviors are compared with experimental observations (Brangwynne et al., 

2006, Mandato and Bement, 2003, Gupton et al., 2002) shown in Figure 2.9 (f).  

The localized buckling modes given by the present model in Figure 2.9 (c) and (d) 

with two different end conditions bear a resemblance to the observed microtubule 

buckling mode in vivo shown in Figure 2.9 (f) (Brangwynne et al., 2006, Mandato and 

Bement, 2003, Gupton et al., 2002). Although the actual end conditions of the 

microtubules in vivo (Brangwynne et al., 2006, Mandato and Bement, 2003, Gupton 

et al., 2002) are different, all observed buckling modes are localized in nature, which 

are consistent with our simulations shown in Figure 2.9 (c) and (d) but cannot be 

explained by the 2D elastic foundation model. On the other hand, the single-wave 
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buckling mode given by the free-standing microtubule model is only comparable with 

in vitro experiments (Kikumoto et al., 2006, Elbaum et al., 1996) but fail to predict 

the buckling behaviors of microtubules surrounded by cross linkers in living cells. 

 

 

Figure 2.9 Different buckling cases of microtubules in vivo/vitro: the free-standing 

microtubule buckling with clamped-free (a) or clamped-clamped (b) end conditions 

observed in vitro (Kikumoto et al., 2006, Elbaum et al., 1996); the localized buckling 

with clamped-free (c) and doubly clamped (d) end conditions, which are similar to the 

observation in vivo (Brangwynne et al., 2006, Mandato and Bement, 2003, Gupton et 

al., 2002). 

Also, the present model can effectively predict the critical force for localized buckling 

and the associated buckling wavelength. For example, with dL =100 nm and k =39 

pN/nm (Peter and Mofrad, 2012, Svitkina et al., 1996), the localized buckling wave 

length and critical force given by the present numerical model under a free end 

condition in Figure 2.9 (c) are about 1.2 μm  and 93 pN, respectively, similar results 

of 1.10 μm  and 97.3 pN can be obtained from the empirical Eqs. (2-8) and (2-9). 

With a doubly clamped end condition in Figure 2.9 (d), the localized buckling wave 

length and critical force given by the present model are about 1 µm and 353 pN 

respectively. The two predicted wavelengths agree reasonably with the observed 
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wavelength around 1-2 μm  shown in Figure 2.9 (f). With slightly different spring 

constant and spacing of cross linkers, the predicted buckling wave lengths still fall 

into the range of experimental measurements, say 1-3 μm  (Brangwynne et al., 2006, 

Gupton et al., 2002, Mandato and Bement, 2003). For example, the longer buckling 

wavelength, 3 μm , can be obtained by the present model with the spacing of 300 nm 

(Griffith and Pollard, 1978). In addition, the critical forces for localized buckling 

predicted by the present model, 93.0 pN or 353 pN, are also in reasonable agreement 

with the well-recognized concept that the critical buckling force of microtubules in 

vivo would be around 100 pN (Gittes et al., 1993, Li, 2008, Brangwynne et al., 2006).  

Clearly, if the free-standing column model or the elastic foundation model is adopted 

with the above data of spring constants and spacing of cross linkers, the predicted 

critical buckling force and wave length are different from experimental measurements 

by almost one order of magnitude. For example, the critical buckling forces predicted 

by the free-standing column model are only 0.889 pN and 3.556 pN for a free or 

clamped end. On the other hand, if the elastic foundation model is adopted with the 

foundation modulus given by Eq. (2-3), with the same data of cross linkers as those 

used in Figure 2.9 (c) and (d), the predicted buckling wave length, about 400 nm, is 

much shorter than measured buckling wave length. Actually, in order to predict the 

measured buckling wave length of 2-3 µm with the bending rigidity of microtubules 

adopted in the literature (Li et al., 2006), i.e. 20×10
-24

 Nm
2
 and Ld=100 nm, the elastic 

foundation model requires a spring constant of cross linkers k as low as 0.078 pN/nm, 

which is much lower than the spring constant of most types of protein polymers 

attached to microtubules (e. g., the actin filaments, 1 μm  in length, have the spring 

constant of 44 pN/nm (Howard, 2001), and TAU, which links microtubules to form 

bundles, has the spring constant of 39 pN/nm (Peter and Mofrad, 2012)), and is 

almost one order of magnitude lower than the lower limit of  measured lower limit of 

Kinesin (i. e., 0.65 pN/nm -1.7 pN/nm) (Carter and Cross, 2005), a key motor protein 

attached to microtubules for cellular transportations. Therefore, although the elastic 

foundation model could also give the measured buckling wave length, the assumed 

elastic foundation modulus (Li, 2008, Jiang and Zhang, 2008, Wang et al., 2009) 

cannot be obtained through Eq. (2-3) from the known data of cross linkers reported in 

literature (Peter and Mofrad, 2012, Svitkina et al., 1996, Griffith and Pollard, 1978). 

Thus it seems reasonable to conclude that, as compared with the elastic foundation 
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model, the present discrete cross linkers model can better explain the observed 

wavelength and critical force of localized buckling of microtubules in living cells. 

Physically, for a number of reasons, we also believe that the present 3D discrete 

numerical model can better capture realistic conditions for microtubules in living cells 

as compared with the 2D elastic foundation model. First, the cross linkers in living 

cells are discrete and 3D in nature, which cannot be appropriately described by the 2D 

continuum elastic foundation model. Second, the geometrical nonlinearity, which is 

included in the present numerical model, cannot be easily carried out by the classic 

linear buckling analysis. Third, the cross linkers cannot be idealized as a linear elastic 

foundation because they cannot bear compressive force due to very low bending 

rigidity, a feature captured in the present 3D discrete numerical model. 

2.4. Conclusions 

A numerical micro-mechanics model is proposed to investigate axially compressed 

buckling of a microtubule surrounded by randomly distributed discrete cross linkers. 

The localized buckling behavior observed in vivo (Brangwynne et al., 2006, Mandato 

and Bement, 2003, Gupton et al., 2002), which cannot be predicted by the existing 

models, is well explained by the present numerical model. Based on our numerical 

simulations, two empirical relations are proposed to calculate the critical force and 

associated wave length of localized buckling. For typical cross linkers of the spacing 

of 50-300 nm and the spring constant of 39 pN/nm as reported in literatures (Peter and 

Mofrad, 2012, Svitkina et al., 1996, Griffith and Pollard, 1978), the present model 

predicts that microtubules could buckle under an axial compressive force of about 14-

340 pN with a localized buckling mode of wavelength of 0.6-2.9 microns, in 

reasonable agreement with a few recent experiments (Gittes et al., 1993, Li, 2008, 

Brangwynne et al., 2006).  
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3. Localized vibration of microtubule  

3.1. Introduction 

Microtubules are highly dynamic bio-polymers involved in many cellular functions 

such as mitosis, intracellular transport and adhesion of eukaryotic cells (Boal, 2002). 

Mechanical behaviors of microtubule, e. g., buckling, bending, and vibration, are of 

relevance to cell biology (Stamenović and Coughlin, 1999, Molodtsov et al., 2005a). 

For example, vibration of microtubule could be stimulated by actomyosin powered 

cortical flow (Mandato and Bement, 2003, Lee et al., 2001) and external force 

engendered in mitosis (Rai et al., 2013). On the other hand, vibration of microtubule 

could play a key role in the bio-functioning of cells. For instance, vibration of 

microtubules directly coordinates the movement and shape variance of cells (Tounsi 

et al., 2010, Allen et al., 2008), vibration of microtubule might be related to the 

electrodynamic activities of cells as it has been shown that mechanical vibration of 

microtubule is coupled with its electrical oscillation (Pokorný, 2004), and the 

electrodynamic activities of cells are important features to distinguish cancer cells 

from health cells in the cancer diagnosis (Daneshmand, 2012). In addition, 

microtubules are used as templates for nanofabrication, which requires the knowledge 

of vibration of microtubules (Behrens et al., 2004).  

To enhance the understanding of the microtubule dynamics, there had been a number 

of studies in recent years dealing with the mechanical vibration of microtubules. By 

modelling microtubules as an elastic shells interacting with fluids, frequencies  and 

the energy to excite microtubule vibration were estimated (Pokorný, 2004, Sirenko et 

al., 1996). It is verified that continuum elastic models are capable to study 

microtubule vibration. To better characterize mechanical behaviors of microtubule, 

some elaborate beam (Tounsi et al., 2010) and shell (Wang et al., 2006) models were 

proposed to address the effects of orthotropic mechanical properties, transverse shear, 

length-dependent flexural rigidity and large deflection of microtubule. Microtubule 

vibration was also studied by elastic lattice model (Portet et al., 2005) and atomistic-

continuum models (Xiang and Liew, 2012), which gave comparable results with the 

continuum elastic models.   

Despite the success of the above-mentioned models in the understanding of dynamic 

behaviors of microtubule, they still suffer several drawbacks especially in modeling 
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transvers vibration of microtubule in vivo. Many of existing mechanics models 

ignored the influence of surrounding cytoplasm (Xiang and Liew, 2012, Wang et al., 

2006). Although some models considered the effect of surrounding cytoplasm (Shen, 

2011, Ghavanloo et al., 2010, Zeverdejani and Beni, 2013), the cytoplasm is often 

over-idealized as a homogenous elastic foundation, which is not capable of catching 

discrete features of cross linkers attached to the microtubule. Actually some studies 

already suggested that the random distributed cross linkers cannot be well modelled as 

a homogenous elastic medium (Mehrbod and Mofrad, 2011). More importantly, as 

will be shown later, vibration of microtubule predicted by modelling the surroundings 

as a homogenous elastic foundation has two features: (a) natural frequencies are 

strongly dependent on microtubule length and end conditions; (b) the predicted 

vibration modes spread through the entire microtubule. These two features are in 

direct contradiction with some experimental observations which indicated that 

vibration modes (Marrari et al., 2003, Mandato and Bement, 2003) and buckling 

modes (Jin and Ru, 2013, Brangwynne et al., 2006) in vivo are highly localized.  

 

Figure 3.1 Finite element models: (a) equivalent elastic foundation model; (b) 

presently developed randomly distributed 3D cross linker model. 

In the present study, finite element method is employed to simulate vibration behavior 

of microtubules based on measured properties and observed morphology of 

microtubule and cross linker. The proposed numerical model is firstly verified by 

comparing its predictions with the widely used elastic foundation model for a simple 
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case in which the microtubule are supported by linear springs uniformly distributed in 

a 2D plane. The verified model is then modified to investigate vibration behaviors of 

a microtubule surround by 3D randomly distributed cross linkers. Based on our 

numerical simulation results, some empirical relations are proposed to estimate the 

(lowest) critical frequency of localized vibration and the associated wave length. As 

will be shown, the localized vibration of microtubules predicted by the present model 

is comparable with some recent experimental observations. 

3.2. Numerical models 

3.2.1. Modelling 

The microtubule is modeled as a hollow cylinder column with outer diameter of 24 

nm and thickness of 1.86 nm (Mehrbod and Mofrad, 2011, Jin and Ru, 2012). The 

geometry of cross section and the Young’s modulus E  of 1 GPa (Li et al., 2006, 

Enemark et al., 2008) give the bending rigidity EI  of 9.034×10
-24

 Nm
2
, which falls 

into the range of the measured values of several experiments (Hawkins et al., 2010, 

Kikumoto et al., 2006). The Poisson ratio of the beam is assumed as 0.3 and shear 

modulus is 0.38 GPa. The density of microtubule is taken as  =1.47 3g / cm  (Tounsi 

et al., 2010), which gives A  of  2.06×10
-12

 kg/m, where A is the cross section area 

of microtubule. The assumed length of microtubule L  is in the range from several 

microns to a few tens of microns (Alberts et al., 1994). The 3D Timoshenko shear 

deformable beam elements are used to mesh the microtubule. We only modeled one 

microtubule in present study thus the contact between adjacent microtubules is not 

considered, which might also important for microtubule dynamics. We applies the 

simply supported boundary condition on two ends of microtubule, which has been 

adopted in some previous studies of microtubule vibration as an elastic beam (Tounsi 

et al., 2010). Actually because the localized vibration modes are distributed through 

the whole microtubule, most localized vibration modes concerned in this study lies at 

segments far away from the end. These localized vibration modes (>95%) are not 

subjected to the end condition applied.  

We developed two numerical models which are distinguished by the manners of cross 

linker distribution. To study vibration and buckling of microtubule interacting with 

surroundings, linear elastic foundation model was commonly used in previous studies. 
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In this model, microtubule is subjected to a reactive force proportional to the 

magnitude deflection. Mechanically, it is equivalent to that the microtubule is attached 

by linear springs of equal interval in the same direction and the microtubule is only 

allowed to deflect within the plane which the springs are distributed (Shen, 2011, 

Ghavanloo et al., 2010, Zeverdejani and Beni, 2013, Brangwynne et al., 2006). In the 

first model, all cross linkers are perpendicular to the microtubule and aligned in the 

same 2D plane, and all out-of-plane displacements and rotations of both cross linkers 

and microtubule are not allowed. We named this model as “equivalent 2D elastic 

foundation model” because it is consistent with all assumptions made in the classic 

elastic foundation model, see Figure 3.1 (a) for the detailed illustration.   

In the second model (named “randomly distributed 3D cross linker model”), we 

consider the role of randomly distributed 3D cross linkers based on the morphological 

details of the cross linkers observed in vivo. In this model, all cross linkers are 

attached to the microtubule in random directions assigned by the uniform distribution 

rule. Different from the equivalent 2D elastic foundation model where out-of-plane 

displacements and rotations are not allowed, 3D deflections in all directions are 

allowed in the randomly distributed 3D cross linker model. The details of randomly 

distributed 3D cross linker model are shown in Figure 3.1 (b).  

 

Figure 3.2 Three lowest transverse (mode number=7, 11, 15) and longitudinal (mode 

number=1, 2, 3) vibration frequencies predicted by Eqs. (3-1) and (3-2) are in good 

agreement with simulations given by the present equivalent 2D elastic foundation 

model shown in Figure 3.1 (a). Simply-supported end conditions are applied for all 

cases.   
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Despite different distribution morphologies, all cross linkers are modeled as linear 

springs with one end permanently attached to the microtubule and another end fixed 

in all degrees of freedom. As the spring constant k and spacing Ld may change for 

different types of cross linkers, in the present study, we shall consider the spring 

constant k of cross linkers ranging from 1pN/nm to 39 pN/nm and the spacing dL  

ranging from 25 nm to 100 nm (Peter and Mofrad, 2012, Svitkina et al., 1996). For 

convenience, a basic case is defined by the spring constant k = 0k =39 pN/nm and the 

spacing dL = 0L =25 nm, based on a few previous studies (Peter and Mofrad, 2012, 

Svitkina et al., 1996, Jin and Ru, 2013).  Although some microtubule associated 

proteins cannot bear compressive force due to the negligible bending rigidity (Wang 

et al., 2001), such non-linear property cannot be included as a result of performing 

linear eigenvalue analysis in present study. Some details of using finite element 

method for the vibration of microtubule can be found in Appendix B. 

3.2.2. Model verification by comparison with a classical model 

The longitudinal vibration (displacement along the microtubule axis) frequency Af   

and 2D in-plane transverse vibration (deflection perpendicular to the microtubule 

axis) frequency Tf  can be calculated by the following formulas based on the elastic 

foundation model (Timoshenko et al., 1974) Equation Chapter (Next) Section 1 
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where all parameters are defined in sections 2.1 and 2.2, and n is the mode number. 

Here, our major interest is transverse vibration and the frequency Tf  given by (3-2). 

It is seen from (3-2) that the frequency Tf  monotonically decreases with the wave 

length T  , which implies that the minimum Tf  is reached at n=1 when T  is equal 

to the microtubule length L. It is also noted from Eq. (3-2) that all transverse vibration 

frequencies of microtubules of variable length predicted by the classic elastic 

foundation model are bounded from below by the lower-bound minimum classic 
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frequency minf , which is determined by the cross linker parameters  and Ld but 

independent to microtubule length.  

To verify our finite element model, the present equivalent 2D elastic foundation 

model is compared with the classic formulas Eqs. (3-1) and (3-2). Here the 

microtubule of length of 1000 nm, spring constant k of k0/8 and spacing dL  of 2 0L  of 

cross linker is taken as an example. The standard modal analysis (also called linear-

eigenvalue analysis) of finite element method is performed, see Appendix B. The 

natural vibration frequencies and natural mode shapes are obtained from the 

generalized equation of motion in matrix form. From the comparison shown in Figure 

3.2, we can see that the predictions given by the present finite element model agree 

very well with the classic formulas. In addition, the transverse vibration mode of the 

lowest frequency given by our simulation in this special 2D case spreads through the 

whole microtubule, perfectly consistent with the classic elastic foundation model. 

 

Figure 3.3 Illustration of vibration modes (A, B and C) from the randomly distributed 

3D cross linker model. The deflection patterns of these three typical cases are 

localized. The vibration mode with longer deflected length is associated with higher 

vibration frequency.  

3.3. Results and discussion 

3.3.1. Features of localized vibration  

Now let us study 3D vibration behavior by using the randomly distributed 3D cross 

k
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linker model described in Figure 3.1 (b). In Figure 3.3, firstly, we showed three 

typical localized vibration modes A, B and C with microtubule length of 50000 nm, 

k=k0 and Ld=L0, given by the present randomly distributed 3D cross linker model. Our 

simulation shows that the three modes with different natural frequencies can be 

stimulated in three locations of microtubule, respectively.  

 

 

Figure 3.4 Vibration frequencies (from the lowest) of a microtubule with length of 50 

μm , k of 39 pN/nm and Ld of 25 nm predicted by the randomly distributed 3D cross 

linker model. All transverse vibration modes with lower frequencies shown here are 

localized. 

The lowest 50 and 200 vibration frequencies are shown in Figure 3.4 (a) and Figure 

3.4 (b), respectively. All transverse vibration modes with the lowest frequencies are 

highly localized, in direct contradiction to the elastic foundation model which predicts 
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that the lowest frequency of transverse vibration is associated with a single-wave 

mode spreading through the entire microtubule. It is also noticed that the deflected 

length d (through which deflection is larger than 5% of the maximum deflection) 

increases with the associated frequency. In particular, the localized mode C with two 

waves has much longer deflected length than the localized modes A and B which have 

only one wave. This feature of localized vibration is different than the classic elastic 

foundation model which predicts that the wave length decreases with increasing 

frequency.  

 

Figure 3.5 The frequencies of transverse vibration are distributed more densely for 

longer microtubules, where microtubule length varies from 240 Ld to 2800 Ld. Here 

the localized critical frequency marked by the dashed line is obtained by the mean 

value of the lowest 10 very close frequencies, above which densely distributed 

frequencies of localized modes are identified.  

Within a given frequency range, more vibration modes with different frequencies can 

be stimulated in a longer microtubule than in a shorter microtubule, as shown in 

Figure 3.5, which is consistent with the concept that vibration spectrum of an infinite 

beam is continuous while vibration spectrum of a finite beam is discrete. It is seen 

from Eq. (3-2) that all frequencies obtained from the classic elastic foundation model 

for any microtubule length are bounded from below by the minimum classic 

frequency minf . Our simulations confirm that all frequencies of localized modes for 

microtubules of different length are also bounded from below. This lowest bound only 

slightly decreases with the increase of microtubule length (L) and converges to a non-



 33 

zero positive value, which is 200 MHz for present case with k of 39 pN/nm and Ld of 

25 nm, as the ratio of L/Ld approaches and exceeds 2000. The lowest bound of 

localized frequencies is thus insensitive to the microtubule length and can be well 

estimated by using the present model with L=2000 Ld.  

 

Figure 3.6 The deflected length d (through which the deflection is larger than 5% of 

the maximum deflection) versus vibration frequencies obtained from four tests with 

the same Ld  of 25 and k of 39 pN/nm but different random angles assigned to cross 

linkers. Each data point is obtained by the mean value of 10 frequencies and 

associated deflected lengths. The data point with lowest frequency and shortest wave 

length indicates the critical frequency Lf and the associated wave length L  of 

localized mode.   

Here, we defined the lowest bound (critical) frequency Lf  of localized vibration as 

the mean value of lowest 10 very close frequencies, above which very densely 

distributed frequencies of localized modes are identified. In our simulations for a 

microtubule of length L=2000 Ld , the localized modes of the lowest 10 frequencies 

always have only one wave, thus it is reasonable to define the averaged deflected 

length d of these 10 modes as the localized wave length L . The reason for defining 

the critical frequency and wave length based on the 10 lowest frequencies and 

associated wave lengths is to minimize the influence of randomness of the cross linker 

distribution. On using the averaged value, simulations with the same Ld and k but 

different random directions of cross linkers give almost the same critical frequency 

and associated wave length, as shown in Figure 3.6 in which four tests with the same 
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Ld  of 25 nm and k of 39 pN/nm but different random directions of cross linkers are 

compared. Actually, it is showed in Figure 3.7 that all frequencies of localized 

vibration are roughly bounded from above by the minimum classic frequency minf  

given in Eq. (3-2) based on the classic elastic foundation model. In other words, the 

minimum classic frequency minf  offers an upper bound for all localized frequencies 

predicted by the present model. All vibration modes with frequencies above minf  

show the deflection which spreads through the entire microtubule and thus are no 

longer localized. 

 

Figure 3.7 The total deflected length d versus vibration frequencies obtained from our 

randomly distributed 3D cross linker model for microtubules of length (L) of 5000, 

6000, 8000 and 10000 nm (with k of 39 pN/nm and Ld of 25 nm). All frequencies of 

localized modes are lower than the lower-bound minimum frequency minf  of 448 

MHz given by Eq. (3-2), and beyond minf  the deflection spreads through the whole 

microtubule and vibration modes are no longer localized.  

The localized vibration is characterized by the (lowest) critical frequency Lf , the 

associated wave length L , and an upper limit frequency minf . These three parameters 

are mainly determined by the cross linker parameters k and Ld. The dependency of  

Lf  and L  on the cross linker parameters k and Ld is shown in Figure 3.8 for a 

number of different combinations of k and Ld but the same values of EI  and A . The 

minimum classic minf   shown in Figure 3.8 (a) is approximately the upper bound for 

all frequencies of localized modes, which is also the lower-bound minimum classic 
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frequencies for all microtubules of arbitrary length given by Eq. (3-2) based on the 

classic elastic foundation model. As expected, minf , as the upper bounds for localized 

 

 

Figure 3.8 The dependency of the critical frequency fL (a) and the associated wave 

length L  (b) of localized vibration on Ld and k. The lower-bound minimum 

frequency minf  given by Eq. (3-2) is always higher than the critical frequency Lf of 

localized modes given by the present model. 

frequencies, are much higher than the lowest critical frequencies Lf  of localized 

vibration. In Figure 3.8 (a), critical frequency Lf increases with increasing spring 

constant k or decreasing Ld, because higher frequencies are usually stimulated with 

higher stiffness. On the other hand, because the deflection of localized vibration is 

constrained by surrounding cross linkers, the wave length tends to be shorter with 

higher spring constant k and more densely distributed cross linkers defined by shorter 
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Ld, see Figure 3.8 (b). 
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Figure 3.9 Comparison between the critical frequency Lf predicted by empirical 

formula (3-5) and numerical simulation with variable k (a) and Ld  (b). 

3.3.2. Empirical relations for localized vibration 

In what follows, based on our numerical simulations, some empirical relations will be 

offered for the dependency of the critical frequency Lf  and the associated wavelength 

L  on the spring constant k and the spacing Ld of cross linkers. Firstly we define the 

case used in Figure 3.3 - Figure 3.6 as a basic case with Ld = L0= 25 nm, k= k0=39 

pN/nm and L=2000 Ld. The obtained critical frequency and wave length of localized 
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Figure 3.10 Comparison between the wave length L  predicted by empirical formula 

(3-6) and numerical simulation results with variable k (a) and Ld (b). The formula 

(3-6) is valid only when the predicted L  is longer than 13Ld.  

 

vibration for the basic case are defined as 0f  and 0  , which are 204 MHz and 706 

nm respectively. Let us assume that the dependency of critical frequency and wave 

length on arbitrary Ld and k takes the forms of   
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Figure 3.11 Effect of the bending rigidity EI on the critical frequency *f  (a) and the 

associated wave length *  (b) of localized vibration.  

Obviously, Eqs. (3-3) and (3-4) hold for the basic case. Now, the four constants a, b, c 

and d can be determined by the slops of   0ln /Lf f  versus  0ln / dL L in Figure 3.9 

(a),  0ln /Lf f  versus  0ln /k k  in Figure 3.9 (b),  0ln /L   versus  0ln /k k  in 

Figure 3.10 (a), and  0ln /L   versus  0ln /dL L  in Figure 3.10 (b) respectively. 

The fitted equations are expressed as 
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and 
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From Figure 3.9 and Figure 3.10, it is found that the fitted equations (3-5) and (3-6) 

can well represent the data from numerical simulations. It is verified that the two 

empirical equations are valid within a reasonable range of spring constant ( k  from 

0 / 64k  to 0k ) and spacing (Ld from 0L  nm to 12 0L ) of cross linkers provided the 

wave length L  not shorter than 10Ld.  
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Figure 3.12 Effect of A  on the critical frequency *f  of localized vibration. 

For all cases discussed above, EI  of 9.034×10
-24

 Nm
2 

 (Jin and Ru, 2013) and A  of  

2.06×10
-12

 kg/m (Tounsi et al., 2010) were used for microtubules. As the mechanical 

parameters of microtubule reported in the literature show relatively high deviation 

(Felgner et al., 1997), in what follows, we examine the influence of the uncertainty of 

microtubule parameters on the critical frequency and the associated wave length of 

localized vibration. For this end, let us consider a range of the microtubule parameters 

with E I   from 0.25EI  to 4EI  and A   from 0.25 A   to 4 A  . The obtained 

critical frequency *f  and the associated wave length *  are shown in Figure 3.11 and 

Figure 3.12 respectively.  

Both the critical frequency and the associated wave length of localized vibration are 

affected by the variation of bending rigidly EI of microtubules. However, the 

influence of EI on the critical frequency and the associated wave length is insensitive 
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to the chosen values of k and Ld as shown in Figure 3.11. The wave length of localized 

vibration increases with increasing value of EI, which is consistent with localized 

buckling (Jin and Ru, 2013).  This result is reasonable because if the bending rigidity 

of microtubule is much higher than cross linkers, the constraint due to the cross 

linkers could be ignored and vibration could be not localized.  

The value of A  of microtubules only influences the critical frequency but does not 

much affect the wave length of localized vibration. In addition, the effect of A  on 

localized vibration is also insensitive to the specific values of k and Ld as shown in 

Figure 3.12. The critical frequency is proportional to the square of A , which is 

similar to the effect of A  in the classic elastic foundation model Eq. (3-2). It is also 

found that the effects of A  and EI are not coupled. Two empirical equations are 

proposed to best fit the numerical results in Figure 3.11 and Figure 3.12 as 

    
0.5 0.15*  / /  / Lf f A A E I EI       (3-7) 

  
0.3*  /  / L E I EI      (3-8) 

It is noted that the predicted critical frequency and associated wave length by Eqs. 

(3-7) and (3-8) plotted in Figure 3.11 and Figure 3.12 as solid lines can well represent 

the simulation results.  

3.3.3. Comparison with experiments 

Despite comprehensive studies on microtubule vibration, the comparison between 

theoretical results and experiments is rare, probably because direct measurement of 

natural vibration frequency of microtubule in vivo is still difficult if not impossible. 

However, some experimental observations, e.g. Fig. 3 on page 20 of ref. (Marrari et 

al., 2003),  Fig. 2,3 on pages 1099 and 1100 of ref. (Mandato and Bement, 2003), Fig 

2, 3 on page 735 of ref. (Brangwynne et al., 2006), indicated that vibration modes are 

insensitive to microtubule length and clearly localized with wave lengths around 1-4 

microns. These observed localized vibration modes are in direct contradiction with 

those predicted by the classic elastic foundation model, but in reasonable agreement 

with localized vibration waves of 0.5-3 microns simulated by the present 3D 

randomly distributed cross linker model.  
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3.4. Conclusions 

A numerical micro-mechanics model is proposed to investigate free vibration of a 

microtubule surrounded by randomly distributed discrete cross linkers. The present 

model shows that transverse vibration modes associated with the lowest frequencies 

are always localized, in sharp contrast to the single-wave mode spreading through the 

entire microtubule predicted by the widely used classic elastic foundation model. In 

particular, the lowest frequencies of localized modes are typically at least 50% lower 

than the minimum classic frequency predicted by the classic elastic foundation model, 

and the former could be even one order of magnitude lower than the latter for shorter 

microtubules of only a few microns in length. Different from the vibration modes 

given by the classic elastic foundation model whose wave lengths decrease with 

frequency, the deflected length of localized modes predicted by the present model 

increases with frequency and approaches the entire microtubule when frequency 

approaches the minimum classic frequency. Based on our numerical simulations, 

some empirical relations are proposed for the critical (lowest) frequency and the 

associated wave length of localized modes. The comparison between our simulations 

and some known experimental observations shows that the localized vibration 

predicted by the present model and the proposed empirical equations are consistent 

with a number of available experimental observations. It is hoped that the present 

work could offer new insights into the understanding of microtubule vibration in 

living cells.   

  



 42 

4. Splitting of microtubule under compressive force  

4.1. Introduction  

The microtubule (MT) is one of the most important cytoskeletal elements in 

eukaryotic cells(Boal, 2002). Microtubules are formed by polymerization of α/β 

tubulin dimers into slender protofilaments, which assemble into hollow tubules. 

Microtubules are highly dynamic, and “dynamic instability” is referred to switch 

between polymerization and depolymerization phases at the plus end of a microtubule 

(Karp, 2009) where microtubule grows and shrinks more rapidly and more 

extensively than the other (minus) end. The phenomena of “dynamic instability” is 

essential for the mitosis, cell motility, intracellular transport and many other cell 

behaviors (Gliksman et al., 1993). It has been widely recognized that a “cap” at the 

plus end, composed of a few layers of strongly bonded GTP dimers (heterodimer 

formed by an alpha and a beta tubulin molecule carries two GTP molecules), is 

essential to prevent microtubules from depolymerization. Actually, loss of the “cap” 

will certainly lead to depolymerization of microtubules, called “catastrophe” 

(Mitchison and Kirschner, 1984) characterized by splitting of protofilaments, a 

phenomenon somewhat similar to splitting of unidirectional fiber-composites or 

carbon nanotube ropes under axial mechanical compression (Chai et al., 1981, 

Kachanov, 1988, Ru, 2004), see Figure 4.1 According to existing literature (Mitchison 

and Kirschner, 1984, Hyman et al., 1992), the loss of the cap is usually considered as 

a result of hydrolysis of the GTP dimers to unstable GDP dimers at the plus end, a 

chemical process essential for “dynamic instability”. 

Microtubules are known to play a key role in maintaining cell shape by bearing 

compressive forces. In view of the weaker lateral bonding between adjacent 

protofilaments, it is of greater interest to examine whether a mechanically compressed 

microtubule, capped by a few layers of GTP dimers at its plus end, could split prior to 

its overall buckling. In spite of extensive research on continuum modeling of buckling 

and bending (Wang et al., 2006, Li et al., 2006, Yi et al., 2008) and molecular 

dynamics or thermodynamics simulation of microtubules (Molodtsov et al., 2005a, 

VanBuren et al., 2005), mechanical compression driven splitting of microtubules has 

remained absent in the literature. In the present study, for microtubule capped by a 

few layers of GTP dimers at its plus end, we shall study compression-driven 
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protofilament splitting either at middle of a microtubule as shown in Figure 4.1 (a), or 

at the plus end of a microtubule as shown in Figure 4.1 (b). We are only interested in 

splitting which happens prior to overall buckling of the compressed microtubule 

under increasing axial mechanical compression (buckling is shown in Figure 4.1 (c), 

which has been studied comprehensively in the literature, see e.g. (Odde et al., 1999)). 

This study could give new insight into the role of mechanical compression in dynamic 

instability and splitting of capped microtubules, a relevant topic which has not yet 

been studied in the existing literature.  

 

Figure 4.1 Three possible failure modes of a microtubule under axial compression 

with the minus end anchored in centrosomes (Howard and Hyman, 2003): (a) splitting 

at the middle, (b) splitting at the plus end, and (c) buckling as a column.  

4.2. Modelling 

4.2.1. Elastic energy of protofilament in unbuckled and buckled configurations 

The measured bending rigidity of microtubules and geometrical parameters of 

protofilaments can be used to estimate bending rigidity of an individual protofilament. 

From available data on microtubule and protofilaments (Mickey and Howard, 1995, 

VanBuren et al., 2005), it is assumed here that protofilament has a rectangular cross 

section with width b=5.15 (Mickey and Howard, 1995) nm and thickness h , see 

Figure 4.1 (b). The measured Young’s modulus of microtubule fall in the range of 0.5 

GPa to 2 GPa (Li et al., 2006), so E=1 GPa is used in the present study. It is also 

known that a bending strain energy of about 2.8 Bk T /dimer is stored in straight 

protofilaments which have a natural radius of curvature of R=21 nm (VanBuren et al., 
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2005). Since the bending strain energy stored in a beam with rectangular cross section 

can be calculated based on cross section geometry. The thickness of protofilaments is 

estimated as 1.84 nm, which is less than the equivalent thickness of microtubule of 

2.7 nm (Sirenko et al., 1996), but very close to the effective bending thickness of 1.6 

nm (de Pablo et al., 2003) as expected. Then the cross-sectional area 

18 2
p 9.48 10  mA    and the second moment of cross section 36 4

p 2.67 10  mI  

(Mickey and Howard, 1995) of protofilaments can be obtained. 

The lateral binding free energy between adjacent protofilaments plays an important 

role in splitting of a microtubule. The binding free energy between strongly bonded 

protofilaments composed of GTP dimers is measured as -3.2 to -5.7 Bk T /dimer 

(VanBuren et al., 2002) for 310KT  , which correspond to -1.6 1210  to -2.8 1210  

J/m by assuming that the length of a dimer is about 8.1 nm (Hunyadi et al., 2007). The 

average value of the upper and lower limits, -2.3 1210  J/m, will be used, which is 

reasonably close to the simulation results -2.7 1210  J/m (Sept et al., 2003). Thus the 

adhesion energy of GTP protofilaments T = 2.3 1210  J/m will be used, which 

represents the external work required to separate two adjacent GTP protofilament of 

unit length.  

On the other hand, reliable data for the lateral adhesion energy between weakly 

bonded protofilaments composed of GDP dimers ( D ) is still not available, and 

controversial data have been reported in the existing literature(Nogales et al., 1999, 

Wang and Nogales, 2005, Molodtsov et al., 2005a), although it is commonly believed 

that the adhesion energy between GDP protofilaments ( D ) is lower than the adhesion 

energy between GTP protofilaments ( T ) (Nogales et al., 1999, Wang and Nogales, 

2005). As will be shown below, the present model can offer a method to estimate the 

binding energy D  between weakly bonded protofilaments composed of GDP dimers. 

A microtubule under axial mechanical compression may collapse through three 

possible modes: protofilament splitting at middle, or protofilament splitting from the 

plus end, or overall buckling as an elastic column, see Figure 4.1 (a), (b) and (c) 

respectively. In order to derive the criteria to prevent protofilament splitting of a 

microtubule, energy expressions for a buckled/unbuckled protofilament is to be 
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derived. Under axial compression, elastic energy of an unbuckled straight 

protofilament  D1U L , of length L composed of GDP dimers (with a natural radius of 

curvature R), is given as Equation Chapter (Next) Section 1 

  
2

p p
D1 22 2

EA L EI L
U L

R


   (4-1) 

where   is the applied axial compressive strain, L is the length of protofilament. The 

first and second terms in Eq. (4-1) are axially compressed strain energy and bending 

strain energy, respectively. As stated before, the natural radius of curvature R is about 

21 nm (Hawkins et al., 2010). 

Inside cells, since mechanical compression on microtubules is usually created by 

cell’s membrane, strain-loaded (rather than stress-loaded) compression is more 

relevant for microtubules. Thus, when a protofilament of length L is debonded and 

buckled from the compressed microtubule with a deflection w(x), see Figure 4.2, the 

excess axial strain, defined by (  - cr ), where cr  is the critical axial strain for 

buckling of a single protofilament under the given (such as doubly-clamped or 

cantilever) end conditions, is released and the released length is related to the 

amplitude of buckling deflection by(Chai et al., 1981, Kachanov, 1988, Ru, 2004) 

  
2

cr

0

1

2

L
dw

L dx
dx

 
 

   
 

  (4-2) 

It should be stated that, since the present work studies splitting prior to buckling of a 

microtubule, the applied axial compressive strain ε is comparable to the critical strain 

for overall buckling of the entire microtubule as a whole and then is much (more than 

two orders of magnitude) larger than the critical strain for buckling of a single 

protofilament cr , and therefore LHS of (4-2) is assumed to be positive. 

Subsequently, the elastic strain energy  D2U L  of a buckled protofilament of length L 

is given by 

  

2
2

p p2
D2 cr 2

0

1

2 2

L
EA L EI d w

U L dx
R dx


   

     
    

  (4-3) 
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On the other hand, for a naturally straight protofilament composed of GTP dimers, the 

elastic strain energies at the unbuckled and the buckled states,  T1U L and  T2U L  , 

are given by 

  
2

p
T1

2

EA L
U L


  (4-4) 

and 

  
2

2
p p2

T2 cr 2

0
2 2

L
EA L EI d w

U L dx
dx


 

   
 

  (4-5) 

respectively. Obviously, Eqs.(4-1, 4-3) reduce to Eqs.(4-4, 4-5) when the natural 

curvature disappears and then R is infinite. 

4.2.2. Protofilament splitting criteria under compressive force 

Now, let us first discuss protofilament splitting at middle of a capped compressed 

microtubule. In this case, the doubly clamped end condition is relevant for buckled 

protofilament due to the cap at the plus end and the other end anchored in 

centrosomes(Howard and Hyman, 2003). Then unbuckled configuration (C1) and 

buckled configuration (C2) of a single protofilament of length L are shown in Figure 

4.2, where the deflection w(x) under the doubly clamped end condition can be given 

as (Brush and Almroth, 1975) 

   0

1 2
1 cos

2

x
w x w

L

 
  

 
 (4-6) 

and the critical strain for buckling of a single protofilament as a doubly-clamped 

column is (Brush and Almroth, 1975) 

 

22

cr cr1
3

h

L


 

 
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 
 (4-7) 

In this study, splitting condition will be derived based on energy consideration. Since 

the mechanical compression is strain-loaded, the axial force does not do work during 

splitting or buckling of protofilaments. As a result, the splitting condition can be 
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derived based on a comparison of energy between the split and the un-split states. 

Thus, because the adhesion energy between weakly bonded protofilaments composed 

of GDP dimers DL  resists splitting, splitting cannot occur if the adhesion energy 

DL  is larger than the difference in elastic strain energy between the unbuckled and 

the buckled configurations. Therefore the condition to prevent splitting from middle 

of a capped microtubule is 

    D1 D2 DU U L U L L     (4-8) 

On using Eqs. (4-1), (4-2), (4-3), (4-6) and (4-7), the criterion to prevent splitting at 

middle of a capped microtubule can be rewritten as 

  
2p

cr1 D
2

EA L
U L       (4-9) 

Since the derived criterion (4-9) does not contain R, the stored strain energy of 

protofilaments composed of GDP dimers has no influence on splitting at middle of a 

microtubule. This is simply due to the fact that the buckling deflection under the 

doubly clamped end condition has equal but opposite effects on the curvature change 

near the two ends and at the middle of the protofilament and thus they exactly cancel 

out each other, as shown in Figure 4.2. 

 

Figure 4.2. Configurations of a split (C2) or un-split (C1) protofilament (with doubly 

clamped end condition) for splitting of a microtubule at the middle. 

For protofilament splitting at the plus end of a microtubule, the clamped-free end 

condition is relevant since the other end is anchored in centrosomes(Howard and 
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Hyman, 2003). Due to the existence of the cap composed of a few layers of GTP 

dimer at the plus end, the split protofilament consists of two sections, one short 

section composed of GTP dimers at the plus end and the other major section 

composed of GDP dimers, as shown in Figure 4.3, where the deflection under 

clamped-free end condition is given as (Brush and Almroth, 1975) 

 
0 1 cos

2

x
w w

L

 
  

 
 (4-10) 

and the critical strain for compressed buckling of a single protofilament as a 

cantilever elastic column is (Brush and Almroth, 1975) 
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cr cr2
48
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L


 

 
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 
 (4-11) 

Here it is stated that the buckling deflection (4-11) used here can also be replaced by 

another simple approximation w(x)=w0x
2
. Our numerical analysis confirmed that such 

an alternative choice of buckling deflection will not cause any meaningful difference. 

 

Figure 4.3. Configurations of a split (C2) or un-split (C1) protofilament for splitting at 

the plus end of a microtubule. 

Similar to splitting from middle, under strain-loaded compression, the splitting from 

unbuckled configuration (C1) to buckled configuration (C2) must overcome the 

adhesion energy barrier, which is determined by D  
for the major GDP dimer part of 

the protofilament and T  for the short GTP dimer part at the split plus end. For the 
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protofilament of length L, let that the major GDP dimer section be of length L  

while the short GTP dimer section at the split end be of length (1 ) L, see Figure 

4.2, where   is between 0 to 1 but close to 1. Thus, the criterion to prevent 

protofilament splitting at the plus end of a capped microtubule can be derived as 

          D1 T1 D2 T2 D TU U L U L L U L U L L L L L                  (4-12) 

where it should be stated that since the integral interval in  T2U L L   locates at the 

split end, it can be expressed as 

  
 
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EA L L EI d w
U L L dx

dx



 

  
    

 
  (4-13) 

Similar to (4-9), condition (4-12) can be rewritten as 
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 

 (4-14) 

Different from splitting at middle of a microtubule in which the natural curvature of 

protofilaments does not make any difference, the natural curvature of GDP 

protofilaments promotes splitting at the plus end of a microtubule, as to be showed 

below. 

4.2.3. Protofilament splitting versus column buckling of a microtubule 

The goal of the present study is to examine whether protofilament splitting at middle 

or the plus end of a compressed microtubule would happen prior to overall buckling 

of the microtubule. Here it should be clarified that, L defined in previous sections is 

the length of the split protofilament, which is not necessarily the entire length of the 

compressed microtubule if partial splitting of protofilaments over only a section of the 

microtubule is considered. However, since our goal is to find the condition to prevent 

splitting prior to buckling of the microtubule, and buckling of the entire microtubule 

will definitely happen prior to buckling of any section of the microtubule, it is 

sufficient for our purpose to consider splitting of protofilaments of length L prior to 

buckling of a microtubule of the same length L. For this reason, we shall assume that 

L is the common length of both the split protofilament and the microtubule. The 
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critical strain for buckling of the entire microtubule of length L (both strain-loaded or 

stress-loaded) is given by (Ugural and Fenster, 2003) 

 

2

m
mcr 2

m

I
n

L A


   (4-15) 

where mI  and mA  are the second moment 32 40.85 10 m  (measured bending 

rigidity(Venier et al., 1994) over Young’s modulus of microtubule of 1 GPa (Li et al., 

2006)) and area of the cross-section 16 21.23 10 m  of a microtubule with 13 

protofilaments, and the constant n is decided by the end conditions of the microtubule. 

For example, n=4 for doubly clamped ends, n=1 for simply support ends, or n=0.25 

for clamped-free (cantilever) ends. In view of the diversity of end conditions that 

microtubules may actually experience in vivo, the geometrical average value n=1 will 

be used in the present analysis, which corresponds to simply-supported ends. The 

competition between splitting at the middle and buckling can be analyzed by 

combining Eqs. (4-9) and (4-15), while the competition between splitting at the plus 

end and buckling can be analyzed by combining Eqs. (4-14) and (4-15). Then the 

required adhesion energy between GDP protofilaments D , to prevent splitting at 

middle of a microtubule prior to its overall buckling, can be given as 

  
2p

mcr cr1

2
D

EA
     (4-16) 

Similarly, the required adhesion energy ( D ) to prevent splitting at the plus end of a 

microtubule prior to its overall buckling can be given as 

  
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 
 (4-17) 

where mcr , cr1  and cr2  on RHS of (4-16) and (4-17) all depend on the length L of 

microtubule/protofilaments. Thus, condition (4-16) or (4-17) can be used to determine 

a critical value of D  
provided all other parameters are given. In particular, because 

mcr >>( cr1 , cr2 ), our numerical results confirmed that neglecting ( cr1 , cr2 ) in (4-17) 

and (4-18) will not cause any meaningful inaccuracy.   
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4.3. Results and discussion 

4.3.1. Required adhesion energy of GDP protofilaments against splitting from 

middle of a microtubule 

It is noted from Eqs. (4-15) and (4-7) that the required adhesion energy ( D ) between 

GDP protofilaments given in (4-16), which ensures that splitting at the middle of a 

microtubule will not occur prior to buckling of the microtubule, decreases with the 

length L of microtubule. Thus, based on Eqs. (4-15), (4-7) and (4-16), the required 

lowest adhesion energy D is plotted in Figure 4.4 as a function of the length L of 

microtubules composed of 13 protofilaments with the uncertainty of the Young’s 

modulus E (0.5-2 GPa). In this case, T  and the stored bending strain energy in GDP 

protofilaments does not influence the results. Since reliable data for the adhesion 

energy D  is not yet available in the literature, the present result (4-16) offers a 

method to estimate the adhesion energy D  in terms of the microtubule length. For 

example, to prevent splitting at middle of microtubules of length not shorter than 0.2 

micron, it is seen from Figure 4.4 that the adhesion energy ( D ) of microtubules of 13 

protofilaments should be not lower than about 
12

D =0.6 10  J/m  , which is about one 

fourth of adhesion energy between GTP protofilaments 
-12

T 2.3 10  J/m   (VanBuren 

et al., 2002). Therefore the present model could offer a lower limit of the adhesion 

energy between GDP protofilaments ( D ). In particular, it could suggest from Figure 

4.4 that compression-driven splitting from middle of a microtubule is possible only 

for short microtubules but prohibited for microtubules of length longer than a few 

hundreds of nanometers. 

4.3.2. Required layers of GTP cap against end splitting of microtubule 

The required adhesion energy ( D ) to prevent splitting at the plus end of a 

microtubule can be calculated using (4-17) as a function of the microtubule length L 

and   (the latter represents portion of GDP dimers in the protofilaments). Since loss 

of a cap at the plus end will certainly lead to dynamic instability or splitting of a 

microtubule at the plus end (Mitchison and Kirschner, 1984), the present work will 

focus on compression-driven splitting of a capped microtubule protected by at least 
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one layer of GTP dimers at its plus end. If m GTP layers exist at the plus end of a 

microtubule, the variable   in Eq. (4-17) is given by 

 m1
m L

L



   (4-18) 

where mL  is the length of a single GTP dimer of 8.1 nm(Hunyadi et al., 2007), and L 

is the length of microtubule. Therefore, for a given number of GTP dimer layers at the 

plus end, the present result (4-17) allows us to determine the minimum adhesion 

energy D to prevent splitting at the plus end if the length of microtubule is given, or 

to determine the minimum length of the microtubule to prevent splitting at the plus 

end prior to buckling if the adhesion energy D  is given. For m equals 1, 2 or 4, the 

required lower limit of adhesion energy D  to prevent splitting at the plus end is 

plotted in Figure 4.5 as a function of the length L with the assumed E=1 GPa and 
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Figure 4.4. Required lowest limit of the adhesion energy between GDP dimers ( D ) to 

prevent splitting at the middle prior to buckling of a compressed microtubule with 

Young’s modulus varying from 0.5 to 2 GPa. 

First of all, it is seen from Figure 4.5 that for microtubules of length shorter than 150 

nm, no matter how many GTP layers exist at the plus end, the required adhesion 

energy between GDP dimers D , to prevent splitting prior to buckling, must be 
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higher than the adhesion energy between GTP dimers, 
-12

T 2.3 10  J/m   , which is 

impossible. Thus for microtubules shorter than 150 nm, splitting of a capped 

microtubule will happen at the plus end prior to overall buckling of the microtubule 

under high mechanical compression. If the uncertainty of the Young’s modulus (0.5-2 

GPa) and adhesion energy between protofilaments (1.7 1210  to 3.0 1210  J/m) are 

taken into account, this length, below which compression-driven splitting at the plus 

end will happen prior to overall buckling, is roughly between 125 ~180 nm.  
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Figure 4.5. Required lowest limit of the adhesion energy between GDP dimers ( D ) to 

prevent splitting at the plus end  prior to buckling of a compressed microtubule 

capped by 1, 2 or 4 layers of GTP dimers at the plus end (with R=21 nm) - also 

included here is the 1-layer case with neglected stored strain energy (R=infinite). 

These results are obtained based on E=1 GPa and T = 2.3 1210  J/m. 

Here, the present model confirms that, with no mechanical compression, stored 

bending strain energy alone cannot drive splitting at the plus end of a microtubule 

capped by just one single layer of GTP dimers even when the adhesion energy of 

GDT protofilaments is completely ignored (i.e. even when D =0). In this case, 

actually, the released bending strain energy of a deflected GDP protofilament of 

length L can be estimated from (4-1), (4-3) and (4-10) as (w0πEIp)/(2RL), where w0 

represents its maximum end deflection. For splitting of the microtubule capped by one 

single layer of GTP dimers, this released bending strain energy must be bigger than 

the adhesion energy barrier ( T8.1 nm  ). Using the data adopted (W=EIp/(2R
2
)=3.0
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1210  J/m and 
-12

T 2.3 10  J/m   ), it turns out that the released bending strain 

energy can be larger than the adhesion energy barrier ( T8.1 nm  ) only when the end 

deflection w0 is larger than about 4 nm /L R , which is at least a few nanometer large 

even when the splitting length L is only a few GDP dimers. In other words, because 

splitting must begin from zero end-deflection, the adhesion energy barrier offered by 

even one single layer of GTP cap is sufficient to prevent splitting at the plus end, in 

spite of huge stored bending strain energy of a long microtubule. This conclusion does 

not rely on the relation (4-3). 

Furthermore, Figure 4.5 indicates that there exists a critical length of microtubules 

beyond which splitting from the plus end prior to buckling is prohibited even with 

vanishing adhesion energy D . Such a critical length decreases with increasing 

number of GTP layers at the plus end. For example, it is seen from Figure 4.5 that the 

critical length is about 450 nm, 330 nm or 250 nm for 1, 2 or 4 GTP layers at the plus 

end, respectively. In other words, for microtubules with 1, 2 or 4 GTP dimer layers at 

the plus end and longer than the above-mentioned respective critical length, splitting 

at the end will not happen prior to overall buckling of microtubule under mechanical 

compression, and therefore mechanical compression alone cannot cause splitting and 

dynamic instability of microtubules. In particular, this conclusion is independent of 

the specific value of adhesion energy between GDP protofilaments D . If the 

uncertainty of the Young’s modulus (0.5-2 GPa) and adhesion energy between 

protofilaments (1.7 1210  to 3.0 1210  J/m) are taken into account, the critical length 

beyond which splitting from the plus end is prohibited even with vanishing adhesion 

energy D are 300 nm~750 nm for one layer case, 236 nm~526 nm for two layers 

case, and 180 nm~380 nm for four layers case.  

To clearly illustrate this critical length, let us assume that D =0 and the microtubule is 

capped by m layers of GTP dimers. For splitting at the plus end, it can be verified 

from (4-2) and (4-10) that the end deflection 0 4 /w L   , where ε is the applied 

axial compressive strain. The critical axial strain for splitting at the plus end is 

determined by the condition when the sum of released axial compressive strain energy 

(EApε
2
L)/2 and released bending strain energy p2 /EI R  is equal to the adhesion 
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energy barrier T8.1 nm m  . Substitution of the applied axial strain ε=εmcr (the latter 

is given by (4-15)), we obtain a simple estimate for the dependence of the critical 

length on the layer number m 
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 (4-19) 

For example, for m=1, 2 or 4 with E=1 GPa and T = 2.3 1210  J/m, the critical 

length estimated by (4-19) is 454 nm, 339 nm and 259 nm, in agreement with accurate 

numerical results indicated in Figure 4.5. The estimated intervals of the critical length 

mentioned before can also be verified using this equation (4-19). 

To illustrate the effect of stored strain energy on splitting, also included in Figure 4.5 

is the required adhesion energy ( D ) to prevent splitting at the plus end of a 

microtubule capped by 1 GTP layer with ignored stored strain energy of 

protofilaments (R=infinite). Comparison between the 1-layer curves for R=21nm and 

R=infinite in Figure 4.5 indicates that stored strain energy of GDP protofilaments does 

offer a driving force for splitting at the plus end, in agreement with some literatures 

(Mitchison and Kirschner, 1984, Hyman et al., 1992), while the stored strain energy of 

GDP protofilaments does not affect the splitting from middle of a microtubule as 

stated previously. 

Finally, it is stated that if the microtubule is compressed by a constant axial stress 

rather than a constant axial strain, the major part of the present analysis remains 

essentially unchanged provided the released axial compressed strain energy (see the 

first terms on RHS of (4-14)) is now replaced by the external work of the constant 

axial force ( pEA  ) on the end axial displacement of the split protofilament given by  
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For strain-loaded splitting, on using the amplitude relation (4-2), it is readily seen that 

the released axial strain energy can be written in a form similar, but different by a 

factor of two, to the external work (4-20) for stress-loaded splitting. Therefore, 

although the present amplitude relation (4-2) no longer holds for stress-loaded 
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splitting, the adhesion energy between GTP and GDP protofilaments still offer 

sufficient energy barrier to prevent the onset of stress-loaded splitting provided the 

condition obtained in the present study against strain-loaded splitting is met. 

Therefore, the condition obtained in the present study against splitting is expected to 

ensure a sufficient energy barrier against the onset of stress-loaded splitting of 

microtubules. 

4.4. Conclusions 

A micro-mechanics model is proposed to study splitting of an axially compressed 

capped microtubule prior to its overall buckling. Explicit criteria are derived to 

prevent splitting prior to buckling, which depend on the microtubule length, the 

adhesion energy between protofilaments and the number of GTP dimer layers of the 

cap at the plus end. With a cap at the plus end, the required lowest adhesion energy to 

prevent splitting at the middle of a microtubule decreases with microtubule length, 

this offers a method to estimate the adhesion energy between GDP protofilaments in 

terms of the length of microtubules. Our basic conclusion is that compression-driven 

splitting can happen prior to buckling only for very short capped microtubules but not 

for longer capped microtubules (typically longer than a few hundreds of nanometers). 

For microtubules shorter than 125 nm~180 nm (depending on specific values of 

Young’s modulus and adhesion energy between protofilaments), for example, 

compression-driven splitting will happen prior to buckling even in the presence of a 

few layers of GTP dimer layers at the plus end. In the other hand, for given number of 

GTP dimer layers at the plus end, a critical length exists beyond which splitting at the 

plus end is prohibited even with vanishingly small adhesion energy between GDP 

protofilaments. In particular, for microtubules of length longer than 0.3~0.75 micron 

(depending on specific values of Young’s modulus and adhesion energy between 

protofilaments), even one single layer of GTP dimers is sufficient to prevent 

compression-driven splitting, in agreement with the known observation that a single 

layer of GTP dimer at the plus end is sufficient to prevent depolymerization phase in 

dynamic instability of microtubules of practical length (Caplow and Shanks, 1996).  
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5. Pulling force provided by microtubule splitting 

5.1. Introduction 

Microtubules with high stiffness and strength compose the skeleton of biological 

cells. However the function of microtubules in vivo is far beyond maintaining the 

shape of cells: polymeric properties of microtubule are also functional in many 

cellular activities (Boal, 2002). During the depolymerization of microtubule, a force 

on order of a few pNs which is comparable to the force generated by some typical 

motor proteins can be used to position chromosomes and membrane organelles 

(Hendricks et al., 2012, Asbury et al., 2006). The force is related to a kind of 

biopolymer named protofilament, typically 13/14 of which are circumferentially 

assembled in parallel to form a microtubule. The force is generated by the previously 

stored bending strain energy in these unstable protofilaments with a tendency to splay 

outward from the microtubule lattice. During the splitting of microtubule, some 

microtubule associated cellular structure, such as Dam1 ring, could serve as an 

energy-efficient coupler to generate a pulling force to drive chromosome motion 

(Grishchuk et al., 2008, Cheeseman and Desai, 2008). The Dam1 ring exhibits lateral 

mobility that could track the splitting end with the shortening of microtubules 

(Westermann et al., 2006). It is observed that the splitting of microtubule drives a 

Dam1-coated bead to move around 3 microns, which is comparable to chromosome 

displacement in vivo (Asbury et al., 2006). In another hand, the depolymerization 

phase characterized by splitting of microtubules can be suppressed by a tensile force 

applied on the Dam1 ring (Akiyoshi et al., 2010, Franck et al., 2007). The strong 

connection between polymeric properties of microtubule and external mechanical 

force suggest the significance of understanding biomechanical behaviors of 

microtubules.  

Many biomechanical researches were performed to study interacting between 

mechanical force and depolymerization (splitting) at the end of microtubule (Jánosi et 

al., 2002, Molodtsov et al., 2005a, Vichare et al., 2013, Inoué and Salmon, 1995, 

Dogterom et al., 2005, Westermann et al., 2006, Jin and Ru, 2012). Some of studies 

only illustrated the mechanism of how a pulling force is generated by splaying of 

protofilament associated with microtubule depolymerization without quantitative 

analysis (Jánosi et al., 2002, Inoué and Salmon, 1995, Dogterom et al., 2005, 
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Westermann et al., 2006). An analytical model was developed to predict the pulling 

force provided by protofilament splaying by modelling protofilaments as elastic 

beams (Vichare et al., 2013). In Vichare’s model, the adhesive energy between 

protofilaments, which is the energy consumption for unit length of splitting 

propagation, was assumed as a constant and independent of the deflection of 

protofilament. Such idealization might introduce certain error if the interaction 

between protofilaments is not limited to an infinitesimal distance. To better model the 

protofilaments interaction, Molodtsov et al. proposed a more accurate model based on 

numerical simulations (Molodtsov et al., 2005b, Molodtsov et al., 2005a). In 

Molodtsov’s model a non-monotonic potential energy as a function of protofilament 

deflection was introduced to characterize the interaction between protofilaments. 

However due to intrinsic limitations of numerical simulation, it rendered a less clear 

picture to physically explain the correlation between biomechanical properties of 

microtubule and pulling force generation due to microtubule splitting. Most 

importantly, previous studies were focusing on calculating the force produced by 

protofilament splaying without verifying whether such force can be provided during 

spontaneous splitting propagation of microtubule rather or only achievable in a 

specific configuration/moment. It is crucial to address this issue because the pulling 

force must be continuously generated given the fact that a microtubule depolymerizes 

at a rate as high as 27 dimers per second to drive the chromosome separation at the 

speed around 1 μm/min (Hiraoka et al., 1984). Thus it is desirable to develop an 

analytical biomechanics model to investigate the pulling force generation by 

protofilament splaying during the spontaneous and continuous microtubule splitting.  

In the present study we first derive expressions for bending strain energy in a 

protofilament and potential energy between protofilaments based on a continuum 

elastic beam model and a cohesive zone model respectively. Then the total energy of 

protofilament and cohesive zone after and before splitting propagation of microtubule 

is compared to obtain a criterion for the spontaneous splitting propagation. Under the 

assumption that the Dam1 ring attached to protofilament keeps a constant radius, the 

force generated by microtubule splitting is then calculated. Based on derived splitting 

propagation criterion and calculated pulling force, how a microtubule in vivo provides 

pulling force during spontaneous splitting propagation is explained. Finally, our 

analytical predictions are compared with some known experiments. 
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Figure 5.1 Coupled Dam1 ring is pulled by the splitting of a microtubule. (a) a three 

dimensional illustration with deflection magnitude w0 and splitting length LD defined, 

(b) a simplified model with one protofilament (short for PF in figure) due to 

symmetrical splaying of other protofilaments with respect to microtubule axis. 

5.2. Beam-Cohesive zone model for protofilament 

5.2.1. Deflection pattern of protofilament  

During continuous force generation with microtubule shortening, the “cap” composed 

GTP dimers with straight shape and strong adhesion is already lost from the end of 

microtubule, thus in present study protofilaments purely composed of GDP dimers are 

modeled as naturally curved elastic beams with radius of curvature R (Hawkins et al., 

2010). With propagation of microtubule splitting, the Dam1 ring coupled at the end of 

microtubule will be pulled by the splaying of protofilaments towards the un-split part 

of microtubule, see Figure 5.1 (a) for a three dimensional illustration. We assume that 

all protofilaments behave similarly with respect to the axis of microtubule, as a result 

only one protofilament is included in our model. The deflection (w) of a protofilament 

vanishes at the end of splitting propagation and reaches w0 at x=LD, where the 

deflection magnitude w0 equals to the gap from outer radius of microtubule to the 

inner radius of Dam1 ring, see Figure 5.1 (b) for an in-plane illustration in view from 

circumferential direction of microtubule. The LD is then defined as the splitting length 

of microtubule. The pulling force is generated only by splaying of protofilament from 
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x=0 to x=LD, while the un-split part with x<0 and the x> LD part exceeding the Dam1 

ring have no contribution to the force generation. We propose following function form 

for the deflection of protofilament from x=0 to x=LD: Equation Chapter (Next) Section 1 
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  (5-1) 

which satisfies the end conditions that the deflection and rotation angle equal to zero 

at x=0. Actually the deflection form of protofilament should not have very higher 

order polynomial terms because it will curved into a circle with constant radius of 

curvature (third order derivative is zero) if detached from microtubule (Elie-Caille et 

al., 2007). It was also indicated in previous study that by using such a parabolic 

deflection form, the energy method can predict the critical buckling force with error 

as low as 1.3% compared with the exact solution (Ugural and Fenster, 2003). A study 

for microtubule splitting under compression also verified that choosing different 

forms of protofilament deflection will not lead to a meaningful inconsistency in 

results (Jin and Ru, 2012). Thus it is contended that the parabolic deflection form in 

Eq. (5-1) is a reasonable choice. 
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Figure 5.2 Normalized potential energy per unit length / MU U  versus protofilament 

deflection w from previous models (dash lines) and present cohesive zone model 

(solid lines).  

The elastic strain energy D  of a protofilament within splitting length DL  is  
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where R is the radius of curve of a protofilament free of external load. By inserting 

Eq. (5-1) into Eq. (5-2), we derived the expression for D  as  
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5.2.2. Potential energy of cohesive zone at splitting propagation end 

The splitting of microtubule is also influenced by interaction between adjacent 

protofilaments, which was commonly modeled by a potential energy function. One 

choice is the monotonic Lennard-Jones or Morse potential which assumes that only 

adhesion exist between adjacent protofilaments (Hunyadi and Jánosi, 2007). Non-

monotonic potential energy may also be used as a combination of initial stage and 

post stage characterized by potentials with opposite effects (Molodtsov et al., 2005a, 

Molodtsov et al., 2005b, Jiang et al., 2002). In the initial stage, adhesive potential 

energy offers a resistance force to prevent the deflection of protofilaments until the 

deflection reaches the maximum adhesive separation 0r . For the post stage with 

deflection larger than 0r , the potential energy provide a repulsive force incorporated 

with the bending strain energy to facilitate further deflection of protofilament. The 

repulsive force will vanish as the deflection reaches maximum repulsive separation 1r  

because after that the energy in cohesive zone keeps a constant, see Eq. (5-4). The 

post repulsive stage was proved to play an important role in propagation of splitting 

and splaying of protofilament (Molodtsov et al., 2005a), however were ignored in 

previous linear elastic models (Jin and Ru, 2012, Vichare et al., 2013). In present 

study, we introduce a cohesive zone model which could capture the feature of both 

types of previously proposed potential energy functions as 
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where MU  is the energy increase per unit length in the initial stage (the energy barrier 

from w=0 to w=0.7 nm shown in Figure 5.2) and PU  is the potential energy drop in 

the second stage per unit length, see w=0.7 nm to w= 3 nm in Figure 5.2. If =0, the 

potential energy in Eq. (5-4) degenerates to a monotonic potential energy. From a 

comparison in Figure 5.2, it is noticed that the present model can well represent the 

potential energy forms adopted in previous research (Molodtsov et al., 2005b, 

Molodtsov et al., 2005a). The derivative of Eq. (5-4) with respect to w gives  

  

 0 0 0

0
1 0

1 0 1 0

1

2 / 1 /           > 0

2
1              > 

0                                         

M

P

U r w r r w

U w r
U w r w r

r r r r

w r

  


 
     

  
 

  (5-5) 

where  U w  is force per unit length pushing the protofilament toward the positive 

direction of deflection w. It is verified from Eq. (5-5) that the potential energy 

provides adhesive force (negative) in the initial stage ( 0  > 0r w ) and repelling force 

(positive) in the post stage 1 0 > r w r .  

 

Figure 5.3 Splitting propagation (from solid line to dash dot line) and outward 

splaying of protofilament (from solid line to dash line). The move of Dam1 ring ds 

could be induced by increase of deflection dw0. 

By integrating Eq. (5-4) through DL , the total energy of cohesive zone within splitting 

length (x=0  ~ DL ) is expressed as 

PU
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By substituting w from Eq.(5-1) into Eq. (5-6), the  0 ,C Dw L  is integrated as 
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According to the potential energy given by previous models (Molodtsov et al., 2005b, 

Molodtsov et al., 2005a, Jiang et al., 2002) 0w  is about 20 times of 0r  and 1r  is about 

6 times of 0r , then the Eq. (5-7) can be approximately simplified as 
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It is noticed from Eq. (5-8) that if both 0r  and 1r  are much smaller than 0w , the 

second term will vanish and the cohesive zone model will degenerated to a surface 

energy model adopted by previous studies (Jin and Ru, 2012, Vichare et al., 2013), in 

which the energy between protofilaments is a Heaviside step function of w with 

magnitude of M PU U . 

5.2.3. Splitting propagation criterion 

Now let us derive a criterion for spontaneous splitting propagation by considering 

both the bending strain energy of protofilament and the potential energy at cohesive 

zone. The Dam1 ring is assumed to be static during splitting propagation so that 0w  

keeps a constant. The propagation of splitting may occur spontaneously only if the 

total energy after propagation is smaller than the total energy before propagation. It is 

assumed that the splitting propagate toward the un-split part by DdL  with position of 

Dam1 ring fixed as shown in Figure 5.3. The total energy before propagation 0  is 
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composed of an un-split part (zero deflection) of length DdL  (note: the previously 

stored bending strain energy is not zero for un-split part because protofilaments are 

naturally curved) and a split part with maximum deflection 0w  of length DL , which is 

expressed as  

              00 0, 0 ,,, 0D DC C DD D Dw L dLw L dL          (5-9) 

The total energy after propagation 1  is expressed as  

 

   

 
 

 
 

1 0 0

0 0

0 0

0 0

,,

, ,
, ,

D D D D

D D

D D

D D

C D

C D

C D D D

w L w L dL

w L w L
w L w L

L L
w w

dL

dL dL

     

 
 


 



  (5-10) 

The criterion for spontaneous propagation of splitting is   

 0 1 0     (5-11) 

by substituting Eq. (5-9) and (5-10) into inequation. (5-11), we have 
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The first term in Eq. (5-12) with constant zero deflection is calculated from Eq. (5-3) 

by setting 0 0w   and the energy in cohesive zone without deflection is zero, which 

gives the second term  0,C DdL =0. By substituting Eq. (5-3) and (5-8) to replace 

 0 , DD w L  and  0 ,C Dw L  in Eq. (5-12), we obtain the criterion for spontaneous 

propagation as 
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where 
2/ 2CU EI R  is the previously stored bending strain energy in a protofilament 

per unit length.  
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Figure 5.4 For monotonic potential in cohesive zone with 0 0/ 0r w  : (a) the range of 

2
0 / Dw R L  to provide non-negative pulling force during spontaneous splitting 

propagation versus /M CU U . (b) normalized maximum pulling force max /p CF U  

during spontaneous splitting propagation versus /M CU U .  

5.2.4. Force produced by protofilament deflection 

In this section we offer an expression of force produced by splaying of protofilament 

with given splitting length DL . As shown in Figure 5.3, with the diameter of Dam1 

ring being a constant, the simple geometrical relationship between the deflection 

increase ( 0dw ) and subsequently induced displacement of Dam1 ring toward the un-

split protofilament ( ds ) can be expressed as following: 
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With the splitting length LD fixed, total mechanical work done to pull the Dam1 ring 

by ds  is the total energy decrease due to the increase of deflection 0dw , which is 

expressed as 

 
   

0

0 0

0

,, DD

D

C D

p

w L
F ds dw

w

w L

L

    


 
  (5-15) 

where pF  is the pulling force stimulated by protofilament splaying. The Eq. (5-15) 

can be further simplified by substituting Eqs. (5-3), (5-6) and (5-14) to replace D , 

C  and 0dw , which gives 
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5.3. Results and discussion 

5.3.1. Pulling force provided by protofilament during steady splitting 

Both Eq (5-13) and Eq. (5-16) should be taken into account to predict the pulling 

force generated during spontaneous splitting of microtubule. Here we start from the 

simplest case that the cohesive zone is constituted by a monotonic potential energy 

( PU  =0) with 0r  and 1 0r w . To provide pulling force larger than zero, following 

two conditions simplified from Eqs. (5-13) and (5-16) must be satisfied 
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  (5-17) 

The second condition requires 02DL w R  and the maximum pulling force p CF U  

(previously stored bending strain energy is completely utilized to provide pulling 
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force) is reached as 04DL w R . The second condition alone cannot promise the 

spontaneous propagation of microtubule unless the first condition in Eq. (5-17) is also 

satisfied. If the previously stored bending strain energy in protofilaments per unit 

length CU  is much larger than the adhesive energy per unit length MU  to prevent 

splitting of protofilaments, i. e., /M CU U =0, the first condition gives 03DL w R  

with the third term in the first condition vanished. Subsequently the inequation (5-17) 

yields the range of DL  as 0 02 3Dw R L w R   and the maximum pulling force 

maxpF = 0.9 CU  is reached when 03DL w R , which suggests that with negligible 

adhesive energy , most of previously stored bending strain energy  could be 

utilized to provide a pulling force to move Dam1 ring. Here maximum pulling force 

maxpF  is defined as the achievable maximum force within the range of splitting length 

DL  in which the splitting of microtubule could spontaneously propagate. However if 

/M CU U   1, the first condition of (5-17) yields that 02DL w R  which is against 

02DL w R  required by the second condition which implies that a pulling force 

cannot be generated during the spontaneous splitting of microtubule. The normalized 

maximum pulling force maxpF / CU  and range of 2

0 / Dw R L  satisfying inequation (5-17) 

versus the ratio of /M CU U  from 0 to 1 are plotted in Figure 5.4 (a) and (b). It is 

verified that at /M CU U =1, the maximum and minimum values of 2

0 / Dw R L  coincides 

in Figure 5.4 (a), which suggests that if / 1M CU U  , a microtubule with arbitrary 

splitting length fails to provide pulling force during spontaneous splitting.  

If 0r  is comparable with 0w  and the potential energy is still monotonic, criteria (5-13) 

and (5-16) are simplified as 
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  (5-18) 

The relationship between range of 2

0 / Dw R L  and /M CU U  is given in Figure 5.5 for 

MU CU
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different ratios of 0r  to 0w . It is found that for 0 0/r w =0.1 the range of 2

0 / Dw R L  and 

maxpF / CU  is almost as same as results of 0 0/r w =0 presented in Figure 5.4 (a) and (b). 

With 0 0/r w =1, the range of 2

0 / Dw R L  for spontaneous splitting propagation decreases 

by about 20%. However maxpF   still reaches 0.9 CU  when /M CU U =0.  

Now we further investigate the case with a non-monotonic cohesive. In this case 

criteria (5-13) and (5-16) shall be applied to give the range of DL  and normalized 

maximum pulling force 
maxpF / CU . Typical values of 0 0/r w  as 0.05 and 1 0/r w  as 0.3 

(Molodtsov et al., 2005b, Molodtsov et al., 2005a, Jiang et al., 2002) are adopted to 

investigate the influence of PU . The range of 2

0 / Dw R L  versus /M CU U  is plotted in 

Figure 5.6 (a) and the normalized maximum pulling force max / CpF U  versus /M CU U  

is plotted in Figure 5.6 (b). For /P MU U =0.4, the max / CpF U  decreases with the 

increase of /M CU U and vanishes as /M CU U  2, which indicates that with the 

assistance of repulsion between protofilaments in the cohesive zone, a pulling force 

with spontaneous splitting propagation could be generated even if the previously 

stored bending strain energy CU  is only a half of the energy barrier MU  which blocks 

the protofilament deflection. This results is in contrast with what we obtained by 

using monotonic potential in last section which requires CU > MU  to provide a pulling 

force. For /P MU U =0.8, a pulling force could be provided even when /M CU U  as 

large as 5, see Figure 5.6. If /P MU U  increases to 1, the maximum of pulling force is 

reached at /M CU U =6, which suggests that the pulling force is mainly driven by the 

repulsion between protofilament due to the potential energy drop PU  rather than the 

previously stored bending strain energy in protofilaments CU . However previous 

studies have theoretically and experimentally demonstrated that the previous stored 

bending strain energy  plays decisive role to cause microtubule splitting (Hyman et 

al., 1992, Desai et al., 1999, Elie-Caille et al., 2007, Xiao et al., 2006), thus it is 

assumed that  should not be larger than 0.8.  

CU

/P MU U
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5.3.2. Comparison with experiments 

In this section we compare our analytical predictions with available experiments. The 

inner radius of Dam1 ring is measured as about 35 nm (Miranda et al., 2005, 

Westermann et al., 2005) which could slide along the un-split microtubule with outer 

diameter around 24 nm but too small to pass over the frayed end around 50 nm  

(Mandelkow et al., 1991). Thus the 
0w  as the difference between the inter radius of 

Dam1 ring and outer radius of microtubule is about of 5.5 nm. The radius of curvature 

of naturally curved protofilaments is around 21 nm, which gives previously stored 

bending strain energy CU  as 2.1 ~ 4.2 
BK T  per dimer (VanBuren et al., 2005, 

VanBuren et al., 2002, Caplow and Shanks, 1996). The potential energy barrier 

blocking protofilament deflection per unit length MU  is measured as  2 ~ 5.7 
BK T  

per dimer (VanBuren et al., 2002, VanBuren et al., 2005, Sept et al., 2003, Caplow and 

Shanks, 1996), which gives the ratio of MU  to CU  varying from 0.5 to 2.6. Typical 

values of 0 0/r w =0.05 and 1 0/r w =0.3 adopted in previous studies are used for the 

further comparison (Molodtsov et al., 2005b, Molodtsov et al., 2005a, Jiang et al., 

2002).  

0.28

0.32

0.36

0.4

0.44

0.48

0.52

0 0.2 0.4 0.6 0.8 1

r0 /w0=0.1

r0 /w0=1

w
0
R

 /
 L

D
2

Max

Max

Min Min

UM / UC

UM / UC=0.97

 

Figure 5.5 The range of 2
0 / Dw R L  to provide non-negative pulling force during 

spontaneous splitting propagation versus /M CU U  for monotonic potential in cohesive 

zone with 0 0/r w =0.1 and 1.  

By taking the measured parameters given above for the monotonic potential case ( PU
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=0), we can get 
DL =1.41

0w R  ~ 1.52
0w R  or 15.2 nm ~16.3 nm and the maximum 

force provided by a single protofilament as 0.46 CU  or 0.5 ~ 1 pN (depending on the 

value used for  within measured range) for /M CU U  = 0.5. Thus the maximum net 

pulling force of a microtubule composed of 13 protofilaments is about 6.5 ~ 13 pN. If 

/ 1M CU U  , i. e., the potential energy barrier is equal to or larger than previously 

stored bending strain energy, microtubules are not able to provide pulling force during 

spontaneous splitting propagation.   

For the non-monotonic potential case with PU =0.4 CU , we get the similar 
DL =15.2 

nm ~ 16.9 nm but much larger maximum net pulling force about 9.4 ~ 18.9 pN 

(depending on the value used for  within measured range) for /M CU U  = 0.5. If 

/M CU U  exceeds 1.6, microtubules are not able to provide the maximum pulling force 

of during spontaneous splitting propagation.   

For the non-monotonic potential case with PU =0.8 CU , we get 
DL =15.1 nm ~17.6 

nm and maximum net pulling force of microtubule as 11.8 ~ 23.8 pN (depending on 

the value used for  within measured range) for /M CU U  = 0.5. In this case, even if

/M CU U  reaches 2.6, microtubules could still provide the maximum net pulling force 

within the range of 6.82 ~ 13.8 pN.  

The predicted splitting length agrees with the commonly accepted assumption that 

splitting is strongly localized at frayed microtubule end, i. e., the rest part of 

microtubule away from the end keeps intact with straight protofilaments perfectly 

bonded together. In particular, some experimental observations, e. g., figures 2 and 3 

in ref. (Müller-Reichert et al., 1998) and figures 4 ~ 7 in ref. (Chrétien et al., 1995), 

show that the length of a protofilament from zero deflection to deflection 5.5 nm ( 0w ) 

at frayed microtubule end is about 10 ~ 30 nm, which is comparable with predicted 

splitting length DL  around 15 ~ 18 nm by our analytical model.  

Some previous experiments measured that the pulling force provided by splitting of a 

microtubule is about 0.5 ~ 3 pN (Asbury et al., 2006) and 5 pN (Grishchuk et al., 

2008), which is lower than the theoretical predicted maximum pulling force 7 ~ 24 pN 

by present analytical model. It should be noted that the latter is actually the theoretical 

CU

CU

CU
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upper limit of the pulling force for two reasons. First, the maximum force 
maxpF  is 

achieved when 0 1 0    in Eq. (5-11). Physically, the difference between  and 

1  is the driving force to stimulate protofilament propagation. The spontaneous 

splitting propagation actually requires 0 1 0   , which requires the actual pulling 

force lower than 
maxpF . Second, the present analytical model ignores the water 

resistance and some other forms of energy dissipation which might reduce the pulling 

force generated in vivo. Thus the predicted maximum force in present study is a good 

estimation to the upper limit of the pulling force generated in vivo.  
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Figure 5.6 For non-monotonic potential with 0 0/r w =0.05 and 1 0/r w =0.3: (a) the 

range of 
2

0 / Dw R L  to provide non-negative pulling force during spontaneous splitting 

propagation versus /M CU U . (b) Normalized maximum pulling force max /p CF U  

during spontaneous splitting propagation versus /M CU U .  
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5.4. Conclusions 

In the present study we developed a new mechanics model to investigate an important 

biological function of microtubules in vivo: generating pulling force during 

spontaneous microtubule splitting to move the coupled Dam1 ring at frayed end. Due 

to symmetrical distribution and similar mechanical behaviors of 13 protofilaments 

with respect to the axis of microtubule, only one protofilament is included and 

modeled as an elastic beam to represent other protofilaments. The interaction between 

adjacent protofilaments is characterized by a cohesive zone model with adhesive and 

repulsive stages. By comparing the total energy before and after propagation of 

splitting, we derived a criterion for spontaneous splitting propagation in a 

microtubule. For given splitting length, an explicit expression of generated pulling 

force is derived based on the total energy decrease with the Dam1 movement caused 

by splaying of protofilaments. The maximum pulling force is then predicted based on 

the range of splitting length satisfying the spontaneous splitting propagation criterion. 

The predicted maximum pulling force by the present model is 7 ~ 24 pN, which offers 

an upper limit to the experimentally measured force 0.5 ~ 5 pN. The observed 

splitting length around 10 ~ 30 nm from experiments is also comparable with the 

predicted splitting length 15 ~ 18 nm by the present model.   
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6. Concluding remarks and future works 

6.1. Conclusions 

New analytical and finite element models have been developed in this thesis to 

investigate mechanical behaviors of an individual microtubule in living cells. Major 

conclusions achieved in this thesis are summarized below: 

(1) By modeling a microtubule as an elastic beam and surrounding cross linkers as 

randomly distributed discrete springs, we performed numerical simulations for 

microtubule buckling. Our model predicts that, depending on mechanical properties 

and interval of the cross linkers, microtubules in vivo could buckle under an axial 

compressive force between 14 ~ 340 pN with highly localized buckling mode of 

wavelength 0.6 ~ 2.9 microns, which is in reasonable agreement with observed 

localized buckling wave length of 1 ~ 3 microns and measured buckling force around 

100 pN (Gittes et al., 1993, Li, 2008, Brangwynne et al., 2006). It is stressed that such 

localized buckling mode and the associated buckling force cannot be explained by the 

existing models.  

 

(2) By modeling a microtubule as an elastic beam and surrounding cross linkers as 

randomly distributed discrete springs, we performed numerical simulations for 

microtubule vibration. The predicted lowest frequencies (14 MHz ~ 204 MHz, 

depending on mechanical properties and interval of the cross linkers) are at least 50% 

lower than the values predicted by the existing elastic foundation mode and thus in 

much better agreement with experimentally measured resonance frequency 8 MHz 

(Cifra et al., 2011). In addition, in contrast with the existing elastic foundation model 

which predicts wave lengths spreading through the entire microtubule, the wave 

length of localized vibration predicted by the present model is around 0.5 ~ 3 microns 

and consistent with the values of 1 ~ 4 microns observed from experiments (Marrari 

et al., 2003, Mandato and Bement, 2003, Brangwynne et al., 2006).  

 

(3) By using elastic beam model for protofilament and adhesive energy to 

quantify the energy consumption of splitting propagation, we explored splitting of 

microtubule driven by axial compression. Our analytical model shows that for 



 74 

microtubules shorter than 150 nm, compression-driven splitting could occur even with 

a very strong “cap” composed of stable and strongly bonded GTP dimers at the tip of 

microtubule. On the other hand, for microtubules of length longer than 450 nm, even 

the weakest “cap” composed of a single layer of GTP dimers is sufficient to prevent 

compression-driven splitting prior to overall buckling of the compressed microtubule, 

in agreement with the well-known observation that a single layer of GTP dimers at 

microtubule end is sufficient to prevent depolymerization of microtubule longer than 

a micron (Caplow and Shanks, 1996).  

 

(4) By using elastic beam model for protofilament and cohesive zone model to 

characterize interaction between adjacent protofilaments, we analytically predict the 

maximum force generated by spontaneous splitting of microtubule. The maximum 

pulling force predicted by the present model is found to be around 7 ~ 24 pN 

associated with splitting length around 15 ~ 18 nm, which reasonably agrees with the 

experimental values of pulling force around 0.5 ~ 5 pN (Asbury et al., 2006, 

Grishchuk et al., 2008) and splitting length of 10 ~ 30 nm (Müller-Reichert et al., 

1998, Chrétien et al., 1995).  

The theoretical models and numerical simulations achieved in this thesis 

contribute new ideas and insights into the study of microtubule mechanics, and some 

results predicted by the present models provide plausible explanations for some 

important experimental phenomena of microtubules in vivo which have not been well 

explained by existing models. It is hoped that the present study has the potential to 

stimulate further research interest in mechanical modeling of microtubules. 

6.2. Recommended future works 

We would suggest two research topics for future work:  

1). A micromechanics model for inhomogeneous microtubule composed of both GDP 

and GTP dimers 

In chapter 5 we studied splitting of a microtubule purely composed of unstable GDP 

dimers. It is also desirable to develop a more sophisticated model with protofilaments 

containing both unstable GDP dimers and stable GTP dimers. The modified model 

can be used to study whether splitting of microtubule can be driven by some other 
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mechanical loadings than an axial compression. In addition, recently it has been found 

that GTP dimers can concentrate not only at the tip of microtubule but also at some 

other locations of microtubule body (Kueh and Mitchison, 2009, Dimitrov et al., 

2008). The modified model could also be applied to study effects of these GTP 

remnants, such as rescuing microtubules from depolymerization (spontaneous 

splitting).   

2). Critical curvature of microtubule failure under bending and indentation  

Buckling as a cylinder shell instead of a beam is also an important failure mode for 

microtubule. It is well known from experiments that the mean radius of curvature of a 

bent microtubule which could cause microtubule failure is about 1.2 rad / mm (Odde 

et al., 1999). However critical radius of curvature of a bent microtubule for 

microtubule buckling as a cylinder shell is predicated theoretically as 0.03 rad / mm 

(Yi et al., 2008), which is much smaller than the above-mentioned experimental value. 

Such remarkable discrepancy might be attributed to the inappropriate constitutive 

model adopted for buckling analysis of microtubules. It is well recognized that a 

microtubule could be stable either as a cylinder or as a two dimensional flat sheet 

when it is fully unfolded (Chrétien et al., 1995). A recent study suggested that 

indentation response of microtubules from experiments are better matched by 

simulations with both cylinder and sheet as stable configurations (Wu et al., 2012). 

Existence of two stable configurations might affect critical radius of curvature and 

other mechanical behaviors of microtubule; however none of existing continuum shell 

models for microtubule could capture this important feature.  
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Appendix A 

 

Finite element analysis for buckling of microtubule (referred from Abaqus Help 

documents): 

The buckling pattern and critical buckling force of microtubule are simulated based 

on structural static equilibrium with inertial and damping effects ignored. The overall 

equilibrium equations for the microtubule are: 

     K u f    (A-1) 

where  K  is the structure stiffens matrix assembled by the stiffness matrix of 

microtubule modeled by beam elements and the stiffness matrix of cross linkers 

modeled by spring elements;  u  is the nodal displacement vector and  f  is the total 

load vector. In present case,  f  is the vector of applied axial compressive force at 

the end of microtubule.  

The effects of large deformation are also included in present finite element simulation. 

The large deformation computations can be achieved by using a few basic physical 

variables (motion and deformation) and the corresponding configurations. The applied 

compressive loading acting on the microtubule make it move from one position to 

another. This motion can be defined by comparing a vector in the “deformed” and 

“un-deformed” configurations. The the position vectors in the “deformed” and “un-

deformed” state are represented by {x} and {X} respectively, then the motion 

(displacement) vector is computed and coupled with Eq. (A-1) to solve the 

equilibrium of microtubule under axial compressive loading with large deformation.  
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Appendix B 

 

Finite element analysis for vibration of microtubule (referred from Abaqus Help 

documents): 

The vibration of microtubule is investigated by using linear eigenvalue analysis in 

finite element method to get natural vibration frequency and corresponding vibration 

mode. The linear eigenvalue problem in finite element method has the following form:  

       i i iK M     (B-1) 

where  K  is the structure stiffness matrix assembled by the stiffness matrix of 

microtubule modeled by beam elements and stiffness matrix of cross linkers modeled 

by spring elements;  i  and i  are eigenvector and corresponding eigenvalue to be 

extracted;  M  is the structure mass matrix assembled based on the density of 

microtubule and the volume of each beam element; i is the mode number. The 

frequency and the deflection form of certain mode i can be derived according to 

extracted eigenvalue i  and corresponding eigenvector  i  respectively. In present 

study, Block Lanczos algorithm is performed for eigenvalue and eigenvector 

extraction.  

 

 

 




