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Abstract

Alarm systems are considered to be a main line of defense against un-

foreseen situations and are of extreme importance in many industrial plants.

These systems alert operators during the occurrence of an abnormality and

sometimes could provide additional information on ways to resolve the issue.

However, an alarm system will not always performing at an optimal level.

In many cases, operators are overloaded with nuisance or chattering alarms

and as a result are not able to focus on meaningful ones. In order to assist

operators with effective decision making, this thesis focuses on ways to mine

valuable operator actions from alarm and event logs.

Expert knowledge is an important factor to achieve operational effective-

ness. Such expert knowledge does not stay within the company when em-

ployees retire. As a result of the work in this thesis, many alarm and action

relationships are extracted and stored for future use. By using these relation-

ships, new and inexperienced operators are able to learn from correct operat-

ing procedures, especially during critical situations. Two main problems have

been examined in this thesis. First, the process discovery of operator actions

in response to univariate alarms. To achieve this, case identification based

on predetermined parameters along with several modeling algorithms will be

utilized. Second, the process discovery of alarms and actions for multivariate

alarms. To capture multivariate relationships, a frequency based algorithm is

applied on the entire event log. Both process discovery algorithms are applied
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to industrial pipeline data to test their effectiveness and the resulting pro-

cess models are discussed. In this thesis, case identification methods, several

process mining algorithms, and methods to interpret the results will also be

discussed.
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Chapter 1

Preliminaries

1.1 Background

In the early days of alarm management, sensors were installed at set lo-

cations and physically wired back to the control panel. An alarm was raised

through an analogue signal, such as a standard 4-20mA current loop. These

alarms were then presented in forms of light and sound to the operator. This

setup had quite a few flaws compared to the Distributed Control Systems in

today’s industry. First, the cost of installing sensors can be expensive due

to the physical wiring. Second, the total number of variables that can be

monitored is limited due to physical space on the control panel. Last, the

optimization of variables is non-existent other than trial and error.

Due to the recent advancement of technologies, Process Control Systems

(PCS) have become an important aspect in many industries. Before the in-

troduction of Distributed Control Systems (DCS) and Supervisory Control

and Data Acquisition (SCADA), a small number of variables were monitored.

Nowadays all aspects of an industrial process are monitored due to the inex-

pensive cost associated with PCS. This, however, raises the problem of alarm

overloading, where operators are faced with more alarm annunciations than

they can effectively handle. According to both EEMUA [1] and ISA 18.2

standards [3], operators are only capable of dealing with up to 6 alarms every

hour. Table 1.1 shows the observed alarms in different industries.

It is obvious from the table that the number of actual observed alarms in

the industry is much higher than the standards set by EEMUA [1] and ISA

18.2 [3] standards. Therefore, alarm suppressing techniques such as filtering,

dead-bands, and delay timers have been implemented. Research in the field of
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Table 1.1: EEMUA standards and observed alarms in industry [1]

Performance measure Benchmark Oil & Gas Petrochemical Power

Average alarms per hour ≤ 6 36 54 48

Average standing alarms 9 50 100 65

Peak alarms per hour 60 1320 1080 2100

Priority distribution % (low/med/high) 80/15/5 25/40/35 25/40/35 25/40/35

alarm systems has been fueled by the high demand for new alarm management

techniques by the industry. In addition, companies are investing thousands of

dollars to train new operators. According to a survey done by the Association

for Talent Developments (ATD) State of the Industry report [4], companies

on average invest $1252 and 33.5 hours in training on employees in 2015. If

the work in this thesis can somehow train new operators to take the correct

actions during alarm floods then this could potentially save money and time

in the long term for many industries.

The propagation of alarms which results in multiple alarm announications

can lead to what are known as alarm floods, where operators are unable to

resolve all alarms at the same time. As mentioned in [5], it is highly unlikely

for operators to read through an alarm response manual during an alarm flood

that requires immediate attention. In general, incorrect operator actions are

not due to a lack of experience, but rather caused by the overload of incoming

alarms. During alarm floods, it is common for operators to overlook the

sources of the problems that caused the propagation of alarms. If theses alarms

are not addressed in a timely manner, this abnormal operation can lead to

unexpected plant shut-down, economic loss and even loss of life as seen in

past plant failure (Chernobyl disaster [6], BP oil spill [7], Texas City refinery

explosion [8]). As a result, there is a high demand by the industry to develop

tools to assist operators with decision making. A&E logs contain historical

information about the process and can be used to capture the correct operator

actions to clear each unique alarm. On the contrary, A&E logs can also be

used to capture actions that should not be taken if an alarm is not cleared

after several attempts. The concept of cry-wolf [9] can be applied to alarm

systems. As the FAR increases, operators are less likely to pay attention to

these alarms even if occasionally these alarms are true. On the other side of the

spectrum, operators become inactive [10] when they rely heavily on decision
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support systems. Thus, a right balance is needed between decision support

systems and allowing operators to acknowledge and process new alarms.

1.2 Literature survey

Process mining takes existing data records, extracts all the variations of

process and turns the results into understandable visualizations of the process.

Process mining consists of 3 main research areas [11]:

• Process Discovery: The construction of a model (petri-nets, fuzzy models

[12], social networks [13], and instance graphs [14]) from event logs that

represent how a process operates. There are many process discovery

algorithms currently available since each algorithm has its advantages

and disadvantages.

• Conformance Checking: Using the mined relationships to check with

additional data or expert knowledge of the process. There are many

quality dimensions associated with conformance checking as well.

• Process Enhancement: Any additional information discovered from con-

formance checking or interpreting the process model can be used to en-

hance the process. In terms of alarm management, process enhancement

involves reducing the number of alarm annunciations and provideing de-

cision support for operators.

One earlier work in the field of process mining [15] contains a great overview

of the extensive ways to mine relationships using the process mining software,

ProM. Although some earlier work was also conducted before the terminology

process mining was introduced, some of which include workflow mining [16,

17, 18] and business process modeling [19]. As research in the field of process

mining developed, new algorithms and softwares were developed. Some of

the fundamental algorithms are, but not limited to, the alpha miner [18],

heuristics miner [20], fuzzy miner [21], and genetic miner [22]. Over the last

few years, many revised versions of these algorithms were also created [23, 24].

In particular several improvements to the α algorithm have been proposed in

[25, 26, 27, 24, 28, 29]. An overview α+ algorithm within the ProM software

was described in [28] and the α++ algorithm was discussed in [29] to cover

non-free-choice constructs.
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This thesis attempts to adopt the process mining algorithms discussed

above into the field of alarm management. However, there is still plenty

of room for the application of process mining techniques. One of the main

foundations for this thesis is the ”Process Discovery of Operator Actions in

Response to Univariate Alarms” [30], which applied process discovery to text

based messages to capture univariate relationship and then displayed the re-

sults using petri-nets. Dealing with industrial A&E logs may contain several

problems. For example, missing records, duplicated events, and imprecise

values all introduce difficulties. A more recent paper by Suriadi [31] covered

some of the common imperfection patterns within event logs and the different

approaches to clean them. Dasani [32] created work-flow models from event

messages from a boiler operation. Conformance checking was applied to the

resulting model to extract unique findings. Conformance checking is a method

to test the quality of the process model, although the term ”quality” is quite

vague and can be interpreted in many different ways.

Two possible methods to evaluate the quality of mined process models were

found in [33]. The authors used existing metrics (fitness, generalization and

structure) and a k-fold cross validation method to evaluate the process models.

A similar type of work was found in [34], where the authors stated four quality

dimensions (replay fitness, precision, generalization and simplicity) along with

their respective mathematical representations. The ETM algorithm, a genetic

algorithm which optimizes the process discovery based on the weights of the

four quality dimensions was created. Another paper based on assessing the

quality dimensions was found in [35]. A complete overview of process discov-

ery techniques along with accuracy dimensions was discussed. The authors

categorized 12 dimensions into two categories, namely, recall and precision. A

comprehensibility metric was created based on the three metrics to quantify

complexity [36]. As the authors stated, ”the future of process mining research

should emphasize on developing insightful techniques for analyzing real-life

event logs.” This is a major motivation for this research. Process models

based on real life data can sometimes be complex and difficult to interpret,

therefore human interpretation of the results should also be examined.

There are several perspectives on the role of human factors in alarm sys-

tems design. Undoubtedly, the goal of any alarm system is to effectively

display the state of the plant to the operator. The operator should be able
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to clearly identify which alarm requires immediate attentions and how to fix

the abnormality. In [37], the authors support the notion that operator perfor-

mance is not directly affected by support tools, but rather the performance of

an operator affects the way the support tool performs. As the authors stated

in [38], the benefits of a decision support scheme was helpful in reaching a

diagnosis more quickly, however, it did not improve the accuracy of correctly

diagnosing the root cause. It is only true if the decision support is predicting

the occurrence of alarms before they are triggered. This thesis attempts to

improve on decision support systems by incorporating suggested actions for

incoming alarms.

1.3 Thesis contributions

The major contributions in this thesis are summarized as followed:

1. Propose a data segmentation method to capture the univariate alarm

relationships and the corresponding operator actions. The results are

modeled using different process mining algorithms.

2. Propose a variant of the heuristics miner to capture the multivariate

relationships between operator actions and alarms. The results are dis-

played in flow chart diagrams with frequencies of occurrence.

3. Develop a new graphical visualization framework to capture alarm data

and operator actions.

1.4 Thesis organization

The remainder of the thesis is organized as follows.

Chapter 2 gives a brief introduction to common notations and terminology

used in process mining, and proposes an algorithm to capture operator actions

in response to univariate alarms. Finally, an industrial case study is used to

test the effectiveness of the algorithm.

In Chapter 3, a variant of the heuristics miner is used to capture the mul-

tivariate relationships of alarms and operator actions. A process model based

on flow chart design and a new graphical representation will be presented.
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Process discovery results are presented and discussions on improvements are

provided.

In Chapter 4, conclusion and future work in this research area are summa-

rized.
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Chapter 2

Process discovery for univariate
alarms

2.1 Preliminaries

Several Assumptions are made about the input data before applying any

process discovery algorithm:

• Each event in the log refers to a part in the mined model.

• Each event corresponds to a set of tasks known as a case or trace.

• All events are ordered in the same way as they originally occurred.

Without properly recorded raw data, process mining techniques are un-

able to recover useful models. The raw data can be saved in many forms,

some common file formats are the Extensible Event Stream (XES), Comma-

Separated Variables (CSV) and Extensible Markup Language (XML). Accord-

ing to IEEE Standard 1846 [39], the XES format is the standard format in

event logs. Many process mining softwares, such as ProM, allows the inter-

changability of these file formats. Most A&E logs are saved in the CSV file

format which are transformed into XES in ProM. The entries fround in A&E

logs can be categorized into three main categories: alarms, actions/status,

return to normal.

As mentioned in [30], operator actions are classified into two categories:

1. Primary Action: this is an actions that is recorded in A&E logs. Such

action can include changing the operating limits or opening and closing

a valve.
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2. Secondary Action: this is an actions that is performed before or after

a primary action. These actions are not recorded in the A&E log and

therefore are considered non-standard and non-documented actions. Ex-

ample of secondary actions include verbal communication, and the use

of communication equipment. The only way to recover these actions are

from expert knowledge.

According to ISA standards 18.2 there are 3 transition of alarm states,

these states are process state, acknowledgement state and alarm annunciation

state. xt
s will be used to denote the process state which checks if the process

variable is within a normal operating range. The following notations are based

on existing literature in the field of process discovery of A&E logs [30]:

xt
s =

{
1, if ωt /∈ Ω,

0, otherwise,
(2.1)

where ω is the variable being monitored and Ω is the normal operating range.

In an industrial setting when xt
s = 1, a message is produced on the control

panel to alert the operator. The process state will return to normal if the

operator acknowledges the alarm and a suppression is applied or the proper

operator actions are performed to resolve the issue (e.g., increasing the op-

erating limit, opening a value, reducing the pump output pressure). The

acknowledgment state is formulated as

xc
t =

⎧⎪⎨
⎪⎩
1, if bt = 1 & xc

t−1 = 0,

0, if xc
t−1 = 1 & xs

t = 1 & xs
t−1 = 1,

xc
t−1, otherwise,

(2.2)

where bt is the physical action performed by the operator to acknowledge the

alarm. Finally, the alarm annunciation state is based on both the acknowl-

edgement state and the process state:

xc
a =

⎧⎪⎨
⎪⎩
1, if xs

t = 1,

0, if xs
t = 0 & xc

t = 1,

xa
t−1, otherwise,

(2.3)

For any given unique alarm tag, the alarm occurrence and return to normal

should always occur in pairs. An event is then defined as a 4-tuple system, E

= {et, ev, es, ef} where et is the time stamp, ev is the tag ID, es is the state,
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and ef ([0,1]) indicates the event type. ef = 1 if it is an alarm and ef = 0 if

it is an action performed. es = [1, 2, 3] for ALM, RTN and OA. Depending on

the DCS or SCADA system the way to record es can vary. Using the definition

of an event, an event log is then defined as L = {E1, E2, , El} where l is the

total number of events.

Figure 2.1: A single tank fluid level system [2]

Consider a single tank system, where the input flow rate is Qi and the

output flow rate is Qo. The input flowrate quantity is controlled by the pump

and the output rate is controlled by the valve. If the ratio between the pressure

of the pump and the position of the value is not within the operating range

then the level in the tank will give an alarm annunciation. Therefore in this

system, three different variables are inter-related. Consider a scenario where

the level in the tank is above the normal operating range set at 50-55%. Several

operating procedures can be executed by the operator:

1. Increase the opening of the valve at the bottom of the tank.

2. Reduce the flow rate coming from the pump and to increase the opening

of the valve.

3. Increase the normal operating threshold of the level.

4. Shut off the pump and let the level slowly return to normal.

5. Reduce the flow rate of the pump.

Any of the five sets of actions can clear the alarm, but it is also the goal

of this research to determine the best operating procedure for operators. To

achieve this several factors are considered:

9



• Time taken to reduce the alarm.

• Number of steps taken by the operator.

• Priority level of the alarms raised.

• The frequency of each unique set of actions

The events from different traces can occur simultaneously, therefore caus-

ing events to overlap in time. Several attributes are examined in order to

properly segment the overlapping data. Occasionally A&E logs contain un-

labled events or improperly labeled events, which increases the computational

difficulty of data segmentation. Unlabeled events [40] are defined as event logs

with case ID attributes missing. Due to unlabeled events, process discovery

algorithms are unable to identify if any two events belong to the same pro-

cess instance or trace. However, multivariate analysis deals with frequency of

occurrence and do not rely trace labeling; therefore it can handle unlabeled

events.

The segmentation of A&E logs consists of two parts:

1. First, decompose the event log into cases based on predefined domains.

As mentioned in [40] expert knowledge is usually required to achieve such

segmentation. Segmentation can also be achieved by studying Piping

and Instrument Diagrams (P&ID).

2. Partitioning the cases into traces based on identifying the heads (ALM)

and tails (RTN). This is also known as trace labeling.

2.2 Data pre-processing

Pre-processing the data is one of the most important steps in order to

achieve a sound process model. Feeding the mining algorithm with poorly

recorded event logs will only result in undecipherable and useless relationships.

Therefore several categories within the A&E log will be examined:

1. Time: A uniform format is the objective in pre-processing. One common

format is Date-Month-Year-Hour-Minutes-Seconds for a time stamp.

Some commonly found errors are around noon or midnight of each day

due to the time changing to 00:00:00 or 12:00:00. Other errors include
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missing digits, repeating symbols, and incorrect symbols. Although ”in-

advertent time travel” [31] is not covered in this thesis due to lack of

expert knowledge, this problem should be addressed if any additional

knowledge is known about the process. The inadvertent time travel

refers to the occurrence of an event which should never occur before an-

other event. A simple example would be the clearing of an alarm should

never occur before the same alarm is raised. More complicated relation-

ships will have to be gathered from P&IDs, operators or other process

knowledge sources. The table below shows a very common occurrence

found in A&E logs.

Table 2.1: Example of events with the same time stamp

Time stamp Type Area Tag ID Parameter State Priority

01-Jan-17 09:00:01 Response Pump 1 P 001 Pressure CMD Limit Change 0
01-Jan-17 09:00:01 Alarm Pump 1 P 001 Pressure RTN LO 0
01-Jan-17 09:00:01 Alarm Pump 1 P 001 Pressure RTN LOLO 0
01-Jan-17 09:00:01 Alarm Pump 1 P 001 Pressure RTN LOLOLO 0

By observing table 2.1, the operator action along with the clearing of

three alarms occurred at the same stamp. This would never occur in

reality since the clearing of an alarm will always occur after an action

but never at the same time. Imprecise data as mentioned in Table 2.2

is one way to categorize this type of behavior.

2. Type: This field in the A&E log contains one of two types of information:

(a) An indication of an ALM or RTN in the form of ’Alarm’.

(b) An operator response has been performed indicated by ’Response’.

This field along with several other fields is used to find all the tail/end

event of each univariate alarm.

3. Area & Tag ID: The tag ID identifies each unique component that is

monitored and the area is usually the location of that unique component.

A univariate alarm is then defined as a set of instances with the same

area and tag ID. Case identification requires sorting the heads/starting

points and tails/ending points for each unique area and tag ID.
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4. Parameter: Indicates one of four possible outcomes:

(a) ALM: an indication that an alarm has been raised.

(b) CMD: an operation action was performed.

(c) RTN: an indication that an alarm has returned to normal.

(d) Status: a change in the status of a tag. Some commonly found

states associated with status include ’Error’, ’Open’, ’Close’, and

’Reset’. Some of these events with the status parameter can also

be treated as an operator action since a command is required to

change the status.

5. State: Indicates the type of alarm raised. For most tags, three different

levels below the nominal operating point and three different levels above

the nominal operating point are set in place: (LO, LOLO, LOLOLO,

HI, HIHIHI, HIHIHI). Both the annunciation and return to normal for

any tag will display the same state within the A&E log.

6. Priority: Usually ranges from 0-3 to separate the normal alarms with

the alarm that requires immediate attention. The alarm priority distri-

bution standards can be found under ISA 18.2, a standard used by most

industries for the management of alarm systems.

Other issues related to A&E logs includes missing, incorrect and unclear

data. Techniques such as inserting extra zeroes, spaces or symbols can correct

missing and improper data. However, unclear data or over generalized data

cannot be corrected through pre-processing. Most A&E logs are set up in such

a manner, although they may slightly differ in the number of attributes. To

summarize, we can refer to the imperfection patterns discussed in [31].

Table 2.2: Imperfection pattern found in A&E logs

Imperfection pattern Data quality dimensions Effect

Same time stamp Imprecise data Reducing the temporal ordering of events
Unanchored events Imprecise data, Incorrect data Algorithms cannot interpret Events

Elusive case Missing data Events do not contain case ID
Polluted label Data is too precise Too many unique events

The first step to pre-processing is removing the following from each field:
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1. Leading spaces, tailing spaces and duplicate spaces.

2. Symbols: commas, periods, brackets, dashes, and so on.

2.3 Data segmentation

The head of a trace indicates the alarm annunciation of any tag and the

tail refers to the return to normal of the same tag. All information between the

head and the tail corresponding to that tag is assigned the same trace ID. The

goal of Algorithm 1 is to search the whole A&E log and assign trace numbers

to all the events; this process is refered to as data segmentation. Depending

on how the A&E log was recorded, the algorithm to find the head and tail will

vary. In the industrial pipeline data used, two examples of commonly found

alarms are shown below.

Table 2.3: ALM and RTN of a univariate alarm example 1

Time Stamp Type Area Tag ID Parameter State Priority

01-Jan-17 10:01:13 Alarm Pump 1 P 001 Flow ALM LO 0
01-Jan-17 10:01:34 Alarm Pump 1 P 001 Flow ALM LOLO 0
01-Jan-17 10:01:58 Alarm Pump 1 P 001 Flow ALM LOLOLO 0
01-Jan-17 10:06:01 Response Pump 1 P 001 Flow CMD Limit Change 0
01-Jan-17 10:06:01 Alarm Pump 1 P 001 Flow RTN LO 0
01-Jan-17 10:06:01 Alarm Pump 1 P 001 Flow RTN LOLO 0
01-Jan-17 10:06:01 Alarm Pump 1 P 001 Flow RTN LOLOLO 0

Table 2.4: ALM and RTN of an univariate alarm example 2

Time Stamp Type Area Tag ID Parameter State Priority

01-Jan-17 11:01:01 Alarm Valve 1 V 001 Pressure ALM Hi 3
01-Jan-17 11:01:51 Alarm Valve 1 V 001 Pressure RTN Hi 3

For the first type of univariate alarms, ’RTN’ in the parameter column of

the A&E indicated the tail of a trace. The corresponding ALM will have the

same Area, Tag ID and State (columns 3, 4 and 6) as the tail. In this particular

case it can be noticed that the operator took approximately four minutes to

address the alarms. Again, the issue of events with the same time stamp is

present. The second type of alarm contains single head and tail without any

operator action in between which provides no additional knowledge about the
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process. This type of univariate alarms will be removed before applying any

process discovery algorithms.

Table 2.5: Operator action example

Time Stamp Type Area Tag ID Parameter State Priority

13-Jan-17 11:00:01 Response Valve 1 V 001 Status CLOSED 3
13-Jan-17 11:01:51 Response Valve 1 V 002 Status RESET 2
13-Jan-17 11:01:51 Response Valve 1 V 003 Status RESET 2

The figure below displays a typical continuous alarm sequence. It also is

very common for alarms to repeat, therefore only the location between the

last repeating alarm and return is recorded.

Figure 2.2: Example of an alarm sequence: amplitude of 1 indicates an alarm
and amplitude of 0 indicates a return to normal

After the data segmentation, the process mining algorithm can then be

applied to the A&E log. In Algorithm 1, UniqueTags contains all the unique

tag IDs and Location stores the locations between each individual head and

tail. For this particular input data, 13917 events are recorded over an one

year period. 38 unique tag IDs and 2883 traces are mined from the A&E log.
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Algorithm 1 Algorithm to mine univariate relationships

1: procedure
2: for i = 1 : length(EventLog) do
3: for j = 1 : length(UniqueTags) do
4: Find all alarms within UniqueTags(j) in EventLog
5: Store the location in variable head
6: Find all RTN with tag UniqueTags(j) in EventLog
7: Store the location in variable tail
8: end for
9: end for
10: f, k, h = 1
11: while K ≤ length(head) ∧ h ≤ length(tail) do
12: if K < length(head) ∧Head(k + 1) < Tail(h) then
13: Skip or remove head(k)
14: k = k+1
15: else
16: if Head(k) > Tail(h) then
17: Skip or remove Tail(h)
18: h = h+1
19: else
20: if Head(k) < Tail(h) then
21: Store all locations between head(k) ∧ tail(h) in Loca-

tion{f}
22: f=f+1
23: end if
24: end if
25: end if
26: k=k+1
27: h=h+1
28: end while
29: for i = 1 : length(Location) do
30: w=1
31: while W ≤ length(Location{i}) do
32: Compare the tag ID of the head with the rest of the tag IDs in

Location{i}
33: if The tag ID matches with the head then
34: W=W+1
35: else
36: if It is not a match then
37: Remove from Location{i}
38: end if
39: end if
40: end while
41: end for
42: end procedure
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In order to segment the data the start of an alarm always ends with the

return to normal, we then consider this as a trace. In between the head

and tail contains operator actions and status updates. Occasionally there are

traces where no useful information can be mined, such a trace contains only a

single head and tail. However in multivariate analysis, some of theses traces

containing two events can be related to other events. This scenario will be

covered in Chapter 3 of this thesis. Algorithm 1 can be divided into 3 main

section:

1. The loop from lines 1 to 9 in Algorithm 1 searches through the entire

event log for the locations of all unique tags. Depending on how the

events are recorded, the way to identify the annunciation and clearing

of an alarm will differ. The locations for all the tags will be unique and

will range from 1 to the length of the A&E log.

2. The loop from lines 11 to 28 in Algorithm 1 attempts to sort through

the locations of the heads and tails. The conditions are set up to capture

the locations as described in Figure 2.2. To simply state it, the head of

a trace should always occur before the tails and no other heads or tails

should occur in-between. This information is then stored in variable

Locations{N}, where N is the total number of unique tags.

3. The loop from lines 29 to 42 extracts the useful information from variable

Locations. Since this is an algorithm to capture univariate relationships,

only events with the same tagID as the head and tail will be retained.

Therefore each individual traces will contain the same tagID. The issue

of completeness is evident after implementing Algorithm 1. With an

industrial A&E log of 13917 events, only 6805 events were considered

to create the process model in Figure 2.3 and Figure 2.5. No conclu-

sions can be made whether the removed events contain any additional

information but improvement should be made to consider all the given

information.

Table 2.6 shows an example of the A&E log after applying Algorithm 1.
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Table 2.6: Example of A&E log after data segmentation

Time Stamp Tag ID Case ID

15-01-01 06:55:49 ST1.HI.ALM 1
15-01-01 06:56:55 ST1.HIHI.ALM 1
15-01-01 06:58:30 ST1.HIHIHI.ALM 1
15-01-01 07:34:21 ST1.Limit Change.CMD 1
15-01-01 07:34:21 ST1.HIHIHI.RTN 1
15-01-01 07:34:21 ST1.HIHI.RTN 1
15-01-01 07:34:21 ST1.HI.RTN 1
15-01-01 08:02:08 ST1.HI.ALM 2
15-01-01 08:13:34 ST1.Limit Change.CMD 2
15-01-01 08:13:34 ST1.HI.RTN 2
15-01-03 11:01:51 ST3.LO.ALM 3
15-01-03 11:02:34 ST3.MANUAL INPUT.CMD 3
15-01-03 11:02:34 ST3.PUT IN SCAN.CMD 3
15-01-03 11:02:34 ST3.LO.RTN 3

2.4 Graphical representation

Firstly some research containing the graphical representation of alarm data

will be covered. The high density alarm plot (HDAP) and alarm similarity

color map (ASCM) have been utilized for the purpose of alarm rationalization

[41]. HDAP examines the alarm count for all unique tags over a time window.

The results are then examined to find potential chattering alarms, redundant

alarms and plant instability. ASCM examines the alarm sequence of all tags

and applies the Jaccard similarity measure [42] to find potentially redundant

or related alarms. Workflow models [26] are another visualization tool based

on textual message to monitor procedual compliance and process safety [32].

It is important to distinguish between workflow nets and petri-net models due

to their similarity. Workflow nets are petri nets with a single source and a

single sink: this means all process start with the same event and end with

the same event. Representing univariate alarms will always be in the form of

workflow nets since all events begin with an alarm and end with a return to
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normal. Petri nets, widely used models for the execution of events, were also

utilized in A&E logs [30].

Some new notations are created to construct the process model. In the

new graphical representation two main parts are defined:

1. Nodes: indicate the type of events that have occurred. These events can

be separated into alarms, actions, and return to normal. Three levels

of alarm annunciation are observed in Figure 2.4. A yellow downwards

triangle indicates the annunciation of an alarm in the High state, while

its counter part, the return to normal of an alarm in the high state

is indicated by the upwards yellow triangle. The same logic applies

to HIHI alarms and returns indicated by orange triangles and HIHIHI

alarms and returns by red triangles. Three levels of alarms are also

defined for low alarms. Low alarms are indicated be downwards light

blue triangle. LOLO and LOLOLO alarms are indicated by purple and

dark blue downwards arrows respectively. If more than three alarm

levels are utilized, then more colors would have to be defined for each

level. Operator actions and status updates are indicated by oval nodes.

No clear distinctions are made between action and status due to two

main reasons. First, it can be difficult to distinguish between action and

status due to the lack of expert knowledge. Second, operator actions are

usually followed by a status update even if the operator action was not

recorded. A node with solid color indicates that a self loop is present,

this suggests that repeating of the same event was found in the event

log.

2. Edges: Three types of edges are defined in this graphical representation.

A green arrow indicates a forward occurrence while a red arrow indicates

a reverse or feedback event. In most cases, a well structured or ideal

process model should not contain self loops and reverse events. A dashed

line indicates a partial process model and another dashed line of the

same color connects both models. Dashed lines are useful for large and

complex process models.

The list below summarizes the notations for the representation of A&E

logs:

• �: The return to normal of an tag. Light blue indicates low state,
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purple indicates LOLO states, and dark blue indicates LOLOLO states.

Yellow indicates hi states, orange indicates HIHI states, and red indicates

HIHIHI states.

• �: The alarm annunciation for an individual tag. The same color scheme

as the return to normal will be utilized.

• �: The return to normal of an tag with a feedback. The same color

scheme will be used.

• �: The annunciation of an individual tag with a feedback. The same

color scheme will be utilized.

• −→: The connection of two events in the forward direction.

• ←−: The connection of two events in the reverse direction.

• · · · : The connection of two partial process models.

• - - -: The connection of two incomplete process models. This suggests

that one or more events are missing between the symbols.

• : The indication that an operator action or status update has oc-

curred. A solid symbol indicates that a feedback is present.

2.5 Modeling univariate relationships

Several process mining software are available to model traces. ProM, Disco,

Celonis, myInvenio and Minit are just a few of the many process mining

software tools. In this thesis ProM, a commonly used process mining software

in academic research will be used to model the univariate behavior.
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Figure 2.3: Fuzzy model to capture univariate relationships
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By inpecting Figure 2.3, the model is quite structured and all events begin

with ALM and end with RTN which reconfirms Algorithm 1. Some key results

can be concluded from the fuzzy model.

• The sequences Tag HI→ Tag HIHI→ Tag HIHIHI→ Operator Action

→ Tag HIHIHI CL→ Tag HIHI CL→ Tag HI CL is very common.

Intuitively this is reasonable, if an alarm variable reaches high alarm

threshold it is very likely that it will continue to escalate to HIHI and

HIHIHI. Also, the clearing of an alarm will always occur in the same

order because the last alarm will always be cleared before any previous

alarms.

• There are cases where the same set of operator actions are able to clear

multiple different alarm variables. in 2.3 ST1.Limit.Change.CMD is able

to clear both alarms in the high and low states of tag ST1.

• Two sets of operator actions are able to clear the same alarm variable.

• Some events tend to repeat by observing the self feedback in the fuzzy

model.

• Operator action Manual Input.CMD is always followed my Put In Scan.CMD

By examining the log summary, some unique characteristics about the

A&E log are listed below:

• The total number of process instances/traces is 1536.

• The total number of events is 6805, which indicates that more than half

of the events are removed through pre-processing.

• On average, only 4 events are within each trace with a maximum of 15

event.

Out of 2883 traces, only 4-5 useful sets of relationships are mined out

of a total of 7 process models. This is due to two main reasons, first, the

mining algorithm is restricting the trace search to only events with the same

tag ID. Second, the fuzzy mining algorithm tends to over generalize the input

data thereby removes less frequently occurring traces. This problem will be

examined in multivariate design of event logs in the next chapter.
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Using the new notation discussed in section 2.4, Figure 2.4 was constructed.

Figure 2.4: New graphical representation to capture univariate relationships

To reconfirm the results collected from the fuzzy model, a heuristics miner

is applied to the data. Using the default parameters set by ProM, a heuristics

net is produced in Figure 2.5.
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Table 2.7: Default parameters of the heuristics miner

Parameters Percentage

Relative to Best 5
Direct Dependency 90

Length-Two Dependency 90
Long Distance Dependency 90

The general structure of the model remained consistent and feedbacks ob-

served in the fuzzy model were removed. More connections were made between

operator actions and alarms/returns. Overall the heuristics net provided a

more detailed relationship while keeping the model manageable. For these

reasons the foundation of multivariate analysis will be based on the heuristics

miner algorithm.
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Figure 2.5: Heuristics net of univariate relationships
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This chapters examined the common attributes of an A&E logs and pro-

vided some pre-processing techniques for imperfection patterns. The algo-

rithm for case identification based on predefined parameters was presented

in Algorithm 1. Finally, two process mining algorithms were used on the

data to compile the process models. In the next chapter, methods to extracts

multi-variate alarm relationships will be examined.
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Chapter 3

Process discovery for
multivariate alarms

3.1 Introduction

Process mining of multivariate alarms involves examining the relationships

between alarms of different tag IDs. In most industrial processes, many process

variables being monitored are physically interconnected. It was mentioned in

[30] that for industrial A&E logs alarms and actions are often related to many

processes. Due to such inter-dependent relationships in industrial plants, the

dependencies among all variables should be examined. To the authors knowl-

edge, this work on multivariate alarms is the first of its kind. Unlike univari-

ate analysis, there is no ”head” or ”tail” in multivariate process mining. The

whole event log is treated as a sequence and bivariate relationships are ex-

tracted based on frequencies of occurrence. Simple preprocessing techniques

similar to univariate analysis are applies for consistency in the data.

Several notations will be introduced [20, 23]:

Let W be an A&E log of length T.

• A > B iff within the event log W = t1 t2 t3 . . . tT there exsists i ∈
{1, 2, . . . , T − 1} such that ti = A and ti+1 = B.

• A � B iff within the event log W = t1 t2 t3 . . . tT there exsists i ∈
{1, 2, . . . , T − 2} such that ti = A , ti+1 = B and ti+2 = A.

• A ≫ B iff within the event log W = t1 t2 t3 . . . tT there exsists i<j

such that ti = A and tj = B.
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A simple example demonstrates how the notations are applied to an event

log W. Given event log W=ACBACACCBAAA where A B and C are unique

events, the table below shows the frequencies of occurrence between any two

events.

Table 3.1: Frequencies of the occurrence table

> A B C
A 2 1 2
B 3 0 0
C 0 2 1

Dependency is then defined as the presence of certain variables tends to

imply the presence of other variables. To be more specific, within the heuristics

miner algorithm, 5 types of dependencies are defined [20, 23].

1. Direct Dependency: The occurrence of one event directly causes an-

other event to occur. A value close to 1 will indicate a strong bi-variate

relationship between A and B:

A→ B =
|A > B| − |B > A|

|A > B|+ |B > A|+ 1
(3.1)

2. Self Dependency: The occurrence of the same event consecutively within

an event log. This type of dependency usually occurs when the same

alarm is raised multiple times in succession.

A→ A =
|A > A|

|A > A|+ 1
(3.2)

3. Length-Two Dependency: This type of dependency can be regarded as

a feedback system. The occurrence of A followed by B is followed again

by A (ABA):

A→2 B =
|A� B| − |B � A|

|A� B|+ |B � A|+ 1
(3.3)

4. Long Distance Dependency: similar to direct dependency except A is

followed by B within a set window size.

A→l B =
|A ≫ B| − |B ≫ A|

|A ≫ B|+ |B ≫ A|+ 1
(3.4)
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5. AND/XOR Dependency: If an event has multiple direct dependencies

then those events must be either be AND or XOR dependencies. For

example, A is followed by B and A is followed by C, an AND relationship

suggests that both B and C will occur after A. XOR dependency suggests

that A followed by B and A followed by C are two separate events with

no relation:

A→ B ∧ C =
||B > C| − |C > B||
|A > B|+ |A > C| (3.5)

Table 3.2: Default parameters for the heuristics miner

Parameter Value
Length One Dependency (L1D) 0.9

Relative to Best (RTB) 0.05
Length-Two Dependency (L2D) 0.9

Long Distance Dependency (LDD) 0.9

Several key parameters can be adjusted to fit the user’s requirement. High

restrictions on all three dependencies will result in over generalized or par-

tial models, while low restrictions will result in unwanted relationships. The

user’s expert knowledge about the process and interpretation skills can greatly

improve the results. Given the following direct dependency and length-two de-

pendency matrices, we can construct a process model.

The direct dependency matrix is calculated from equations (3.1) and (3.2)

and are based on the frequencies of occurrence table. Self dependency is only

displayed on the diagonals of the direct dependency matrix. Any dependency

that is negative will not be considered in the heuristics miner algorithm and

are be treated as zero. If these negative dependencies are not treated as ze-

roes then the dependency matrix is skew-symmetric. This statement can be

verified by examining equation (3.1). Dependencies highlighted in green are

relationships that are the highest in their respective row or column; however

they do not meet the direct dependency threshold of 0.9. Dependencies high-

lighted in red and orange are relationships that are accepted or ’mined’ from

the direct dependency matrix. Dependencies that are in orange are not the

highest values in their respective row or column, but they are accepted due

to the relative to best threshold of 0.05. This means that any dependency

within a range of 0.05 to the highest dependency of that row or column will
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Table 3.3: Direct dependency matrix

→ A B C D E F G H I J K L
A 0 .991 .982 0 0 0 0 0 .988 0 0 .175
B 0 .902 .114 .911 .985 0 0 0 .323 .384 0 0
C 0 0 0 .328 .272 .981 .542 0 .912 0 0 0
D 0 0 0 0 0 .650 0 0 0 0 .833 .130
E 0 0 0 0 0.75 0 .620 0 0 0 0 .345
F 0 0 0 0 .125 0 0 .940 .084 0 0 0
G 0 0 0 0 0 0 0 0 0 0 0 .485
H 0 .012 0 0 0 0 0 .905 .205 0 0 0
I 0 0 0 .073 0 0 .845 0 0 0 0 0
J 0 0 0 .435 0 0 .062 .144 0 0 0 0
K 0 0 0 .134 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 .21 0 0 0 0

be collected and used for process modeling. If the highest dependency does

not meet the minimum requirement of 0.9 then the relative to best threshold

will not be considered for that row or column. Length-two dependency will

also be examined to capture any feedback relationships. By applying equation

(3.3) with the frequency of occurrence table the following matrix is calculated.

Table 3.5: XOR/AND dependencies for multiple outgoing edges

Notation XOR/AND Dependency

A→ B ∧ C 0.058
A→ B ∧ I 0.163
A→ C ∧ I 0.482
B → E ∧D 0
F → D ∧H 0
C → F ∧ I 0.044

For the purpose of demonstration and simplicity, long distance dependency

will not be considered for the final process model. As we will see in industrial

case studies, long distance dependencies tend to over complicated the process

model. By examining the process model several conclusions can be made:

• All traces begins with event A.

• Three main sets of traces are observed in the model.
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Table 3.4: Length-two dependency matrix

→ A B C D E F G H I J K L
A 0 0 .042 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 .412 0
E 0 0 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0 0 .080
H 0 0 0 0 0 0 0 0 0 0 0 0
I 0 0 0 .120 0 0 .842 0 0 0 0 0
J 0 0 0 0 0 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 .341 0 0 0 0

• There are multiple inter-dependencies among all three sets of traces.

• Some events (B and H) tends to repeat in a traces which can potentially

indicated chattering.

Figure 3.1: Process model based on direct and length-two dependency matrix

3.2 Heuristics miner algorithm

The key parameters in the heuristics miner algorithm are applied to the

event log to extract a frequency based matrix. Several predefined variables

are use in this algorithm which were from Algorithm 1.
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• TagState: The string combination of Area, Tag ID and state. For ex-

ample, ’ST5.LOLO’ is a TagState indicating that this alarm contains a

Area named ST5 and the current state is LOLO(low low) compared to

the normal operating limit.

• Locations: Contain n number of individual cells, where n is the num-

ber of unique TagStates. Each cell will contain the locations of all the

corresponding tagstate. The size of each cell will vary depending on the

frequency of occurrence for each tagstate.

The following table shows the threshold parameters used in the heuristics

miner algorithm.

Table 3.6: Parameters for the heuristics miner

Parameter Value
Length One dependency (L1D) 0.7

Relative to best (RTB) 0.1
Length-two dependency (L2D) 0.7

Long distance dependency (LDD) 0.7
Positive observation (PO) 10

Long distance length 10

The dependency graphs are of size n× n where n is the number of unique

events. In this particular case n is equal to the length of Unique Tagstate.

Three dependency graphs are created using the hybrid heuristics miner al-

gorithm: Direct Dependency, Length-Two Dependency and Long Distance

Dependency.

Algorithm 2: Lines 1 to 5 checks each unique tagstate for meeting the

minimum positive observation count. If this condition is not met then these

tagstates will not be considered for the remaining algorithm. After the posi-

tive observation threshold is checked, lines 6 to 19 creates three dependency

graphs, namely, direct dependency, length-two dependency and long distance

dependency. This part of the algorithm can be divided into three main parts.

First, lines 10 to 14 calculates the direct dependency values along the diagonal;

these values differ from equation (3.1) and are referred to as self-dependency.

Second, lines 15 to 19 uses equation (3.1), (3.2) and (3.4) to calculate the

remaining dependency values. Finally, lines 20 to 15 checks for any negative

dependencies and removes them from the dependency matrix.
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Algorithm 2 Hybrid heuristics miner algorithm to create depedency matrix

1: for i = 1 : length(Locations) do
2: if length(locations{i}) ≤ PO threshold then
3: TagState will not be considered in rest of the algorithm
4: end if
5: end for
6: Create a three dependency graph of size length(Unique Tagstate) x

length(Unique Tagstate)
7: for x = 1 : length(Unique Tagstate) do
8: y=1
9: while y ≤ length(Unique Tagstate) do
10: if x = y then
11: Using algorithm 3.2 to calculate the self dependency values and

store in Direct Dependency(x,x)
12: A value of 0 is assigned to Length Two Depdency(x,x)
13: A value of 0 is assigned to Long Distance Dependency(x,x)
14: else
15: A=location{x}
16: B=location{y}
17: Using eqn 3.1 to calculate the direct dependency values and

store in Direct Dependency(x,y)
18: Using eqn 3.3 to calculated the length-two dependency value

and store in Length Two Depdency(x,y)
19: Using eqn 3.4 to calculate the long distance dependency values

and store in LDD Dependency(x,y)
20: if Direct Dependency value < 0 then
21: Set the direct dependency value to 0
22: end if
23: if Length Two Dependency value < 0 then
24: Set the length-two dependency value to 0
25: end if
26: end if
27: y=y+1
28: end while
29: end for
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Algorithm 3 Mining multivariate relationships from dependency graphs

1: for x = 1 : length(Unique Tagstate) do
2: Find the highest value within column x and row x of the direct depen-

dency graph
3: Find the highest value within column x and row x of the length-two

dependency graph
4: Find the highest value within column x and row x of the long distance

dependency graph
5: if The highest column value > L1Dthreshold then
6: Take all values greater than highest column value-RTB Threshold

and storing it into DDresult Follower{x}
7: else
8: no value will be assigned to DDresult Follower{x}
9: end if
10: if The highest row value > L1Dthreshold then
11: Take all values greater than highest row value-RTB Threshold and

storing it into DDresult Cause{x}
12: else
13: no value will be assigned to DDresult Cause{x}
14: end if
15: if The highest column value > L2Dthreshold then
16: Take all values greater than highest column value-RTB Threshold

and storing it into L2Dresult Follower{x}
17: else
18: no value will be assigned to L2Dresult Follower{x}
19: end if
20: if The highest row value > L2Dthreshold then
21: Take all values greater than highest row value-RTB Threshold and

storing it into L2Dresult Cause{x}
22: else
23: no value will be assigned to L2Dresult Cause{x}
24: end if
25: if The highest column value > LDDthreshold then
26: Take all values greater than highest column value-RTB Threshold

and storing it into LDDresult Follower{x}
27: else
28: no value will be assigned to LDDresult Follower{x}
29: end if
30: if The highest row value > L2Dthreshold then
31: Take all values greater than highest row value-RTB Threshold and

storing it into LDDresult Cause{x}
32: else
33: no value will be assigned to LDDresult Cause{x}
34: end if
35: end for
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36: x=1
37: for x = 1 : length(DDresultFollower do
38: if length(DDresultFollower1, x) > 1 then
39: Find all possible pairs of combinations in DDresult Follower{1,x}

and store in variable Choose
40: for i = 1 : length(choose(:, 1) do
41: Apply algorithm 3.5 to find the XOR/AND dependency values

and store in XOR AND Result
42: end for
43: if XOR AND Resultxisnon− empty then
44: Find all values within XOR AND Result{x}>0.5 and store the

results in AND Result{z}
45: z=z+1
46: end if
47: end if
48: end for

Algorithm 3: The for loop from lines 1 to 4 selects the highest row and

column values from all three dependency matrices. Since the dependency

matrices are always square, each individual dependency can be called by their

respective x and y values. The remaining algorithm checks whether each of

the highest row or column values meet the threshold requirement. If this

condition is met then the algorithm selects all dependencies in that respective

row or column with dependencies greater than the highest row/column minus

the relative to best threshold.

3.3 Industrial case study

The A&E log data discussed in this section are obtained from industrial

facilities. This event log consists of 13917 instances over a period of one year.

Priority levels ranges from 0 to 4; however priority 4 was removed from the

data since it was only encountered 6 times and no actions were recorded.
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Table 3.7: Priority distribution for the industrial A&E log

Priority level Alarm Count Proportion
priority 0 9495 68.2%
priority 1 107 0.768%
priority 2 1769 12.71%
priority 3 2540 18.25%

Figure 3.2: Color map representation of direct dependency matrix

Since there are 134 unique events in this A&E log, the size of all the

dependency matrices are therefore 134 × 134. All dependencies greater than
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0.9 are highlighted in red and are used to create the process model. Two

interesting patterns are seen in the direct dependency matrix:

1. There is a high number of self-dependencies along the diagonals of the

matrix that are greater than the threshold of 0.9. This behavior can be

explained by examining equation 3.2. Since self dependency is directly

related to the occurrence of event repeating, if any event repeats more

than 8 times then self dependency will be greater than 0.9.

2. There are no dependencies between events 74 to 87. By going back into

the algorithm and examining variable ”location” it was concluded that

all the variables from 74 to 87 occurred less than the positive observation

threshold of 10. Therefore on both the horizontal and diagonal axes

events 74 to 87 contains no dependency relationships.
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Figure 3.3: Color map representation of length-two dependency matrix

The length-two dependency matrix contained fewer relationships compared

to the direct dependency matrix, however, a clear pattern is found between

events 46 to 47. This suggested that both events were related to most of the

other events in the log. These events corresponded to ’PCOUT FROM C1’

and ’PCOUT FROM C2’ in Figure 3.5 e). One explanation for this behavior

could be due to the over generalization of commands, where multiple different

operator actions are recorded in the same format.
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Figure 3.4: Color map representation of long distance dependency matrix

Although long distance dependency is not incorporated into the process

model, this matrix could be used to mine additional relationships. As ex-

pected, long distance dependency contains most relationships among all the

dependency graphs. If relationships are ’mined’ from the direct dependency

matrix, these relationships should also be found within the long distance ma-

trix.
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Figure 3.5: New graphical representation of multivariate relationships
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Although the XOR/AND dependency for A → C ∧ N is close to 0.5, the

threshold for AND dependency is >0.5. Therefore all outgoing arrows are

treated as XOR. As we will see in the later industrial examples, XOR/AND

dependencies are captured in the direct dependency matrix.

By observing Figure 3.5 a) we can see that there are two separate process

models. A close inspection tells us that both process models belong to the

same tag PT2. Sometimes a complete process model gets separated into many

parts due to the weak dependencies between events. The only way to fix partial

process models is to lower the dependency thresholds; but doing so can also

result in many unwanted relationships which can over complicated the process.

It can be concluded that two possible causes for this tag are P2 CLOSED and

V3 CLOSED. Operator actions P2 Open is presumably the best action to

clear the alarm and V3 CLOSED is unlikely to clear the alarm since this is

a direct effect of PT2 alarm. This is a practical solutions since opening the

same pump (P2) that causes the alarm will return it back to normal. Figure

3.5 c) contained a slightly more complicated but complete process model. We

can see that the alarm Var3 LO is caused by the closing of valve V3 from two

separate locations C1 and C2. Two very similar set of actions are used to

clear tag Var3:

1. P1 ClOSED → P2 CLOSE → V3 OPEN

2. P2 CLOSE → V3 OPEN

In Figure 3.5 b), a similar pattern (LO → LOLO → LOLOLO) found in uni-

variate analysis is also found here for tag Var1. Although this process model is

also slightly incomplete, operator action V2 OPEN followed by Var1 LIMIT CHANGE

clears Var1 LO, Var1 LOLO and Var1 LOLOLO.

In Figure 3.5 d), the alarm for tag P1 is caused by the closing of pump

P2. However we can see that there are several events that causes pump P2

to close. This is similar to root cause analysis, where we try to extend the

process model as far back possible from the instance the alarm is raised to

figure out the source that caused this ripple effect. Therefore closing of valve

V3 is ultimately what caused tag P1 to go into the alarm state. Operator

actions to clear this alarms are relative simple: by resetting the same tag from

either location C1 or C2 will clear tag P1. Again, here we see an incomplete

process model since the operator action to reset tag P1 from C2 contains no

incoming arcs.
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There are two paths that occur after annunciation of Var5 LO→Var5 LOLO

→ Var5 LOLOLO. The first path is a simple operator action to open V2020

that clears all three alarms associated with tag Var5. The second path shows

a multivariate behavior, making connection between tag Var5 and Var1. This

type of behavior would have never been captured in univariate analysis. It

is also important to note that only tag Var5 in the low alarm state is con-

nected to the high alarms of tag Var1. The same cannot be said for any other

combinations. The following are the correct operating procedures with the

highest confidence level to clear both sets of alarms: Var5 Limit Change →
Open Valve V2001 → Open Pump PM001B → arrow Open Pump PM002B

→ PCOUT FROM C1 or C2.

This chapter adopted some of the dependency metrics from the heuristics

miner to capture how operators react to multi-variate alarms. Color map rep-

resentation of the dependency matrix as well as a new graphical visualization

was presented. Algorithms 2 and 3 presented in this chapter can be applied

to any event logs under the condition that the heads and tails for all traces

can be identified.
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Chapter 4

Conclusions and future work

4.1 Conclusions

This thesis established a framework for the process discovery of operator

actions in response to both univariate and multivariate alarms. Two algo-

rithms are studied in this thesis and their effectiveness is tested against in-

dustrial alarm and event logs. Suggestions to improve the existing process

are also mentioned in this thesis. Common imperfection patterns and method

to clean the messages into a standardized format are discussed in Chapters

2. Temporal ordering rules and ways to identify the head and tail of a trace

are established in both Chapters 2 and 3. This is followed by Trace label-

ing/Case Identification which is the main goal of Algorithm 1. The results

from Algorithm 1 are then the inputs into the process mining software ProM.

Two mining algorithms are used to compare the mined process model. The

limitations of Chapter 2 are outlined which motivated the work in the follow-

ing chapter. The concept of trace labeling is not incorporated into Chapter 3,

which is a major difference compared to existing research in this field. The de-

pendency metrics are adopted from [20] and [23] to form Algorithms 2 and 3.

The dependency matrices are then represented in color maps which are com-

monly used in correlation analysis [43] and root cause analysis [44]. Threshold

parameters are applied to the matrices to build the knowledge base for the

process models. Mined results and ways to enhance the process are outlined.

The major outcomes of this thesis are summarized below:

1. Developed methods to pre-process commonly found imperfection pat-

terns in alarm and event logs.
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2. Developed an algorithm to assign caseID based to temporal ordering

rules and tagID.

3. Discussed visualization of the mined traces using process mining software

ProM as well as a new visualization tool specifically designed for A&E

logs.

4. Developed an algorithm to mine multivariate relationships between alarm

tags as well as operator actions in response to both univariate and mul-

tivariate alarms.

5. The color map representation is used to visualize the dependency ma-

trices.

4.2 Future work

The possible future work in the field of process mining of A&E logs can be

summarized below:

1. Since locating the heads and tails for the univariate alarms are case

specific, finding a general algorithm still remains a challenge. Finding

a general solution seems to be a common problem among most process

mining research areas.

2. Numerous authors have suggested quality dimension metrics to measure

resulting process models [36, 34, 33, 35], however there is still no widely

accepted metric. It is also important to extend process discover of opera-

tor actions to cover conformance checking in real time and enhancement

of the process.

3. Ultimately the goal of this thesis is to used the mined results to assist

operators with decision making in real time. Extension of this thesis

can include average time duration for operators to clear alarms. Using

the average time duration as another threshold, users can specify the

maximum time an operator is allowed to clear an alarm.

4. Currently, it is possible to calculate the time duration for a single trace.

Finding the average time duration for all traces seems difficult with

the current algorithms. Additionally, verifying the mined results with
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expert knowledge will be beneficial. Occasionally, actions performed by

the operator will not be recorded in the A&E log, therefore having the

expert knowledge will greatly improve the completeness of the overall

process model.

5. If there exists only one definitive set of actions to clear an alarm then

these actions should be automated. This will save time and allow oper-

ators to focus on more complex alarm annunciations.
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