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a
- . Abstract
The naﬁfstatigha;} Kinetic theory of Israel and Stewart
[16] is extended from the case of a 9as consisting of only
one species of particlie to the case whgre the gas consists
of an arbitrary number of species. 5 particular species may
have non-zero or zero rest mass 1e.g. electrons or photons) .
I't will be shown that generalized, fitting conditions, which
determine the temperature and relativistic chemical
potential of each species. are *equ}réﬂ to adequately treat
the physics of éhe gas, which nevertheless will be
~dependent of the choice of the fitting conditions to first
order . Equations which describe the transport of thermal and
viscous effects will be derived; and coefficients of thermal
coductivity, bulk viscosity, and shear viscosity will be
defined. We shall also abta1n the entropy production for any

particle species.
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1. Introduction

Irrg;ersible relativistic thermodynamics has undergone,

in the last fourteen years, an extension QF its

. applicability. Originally, it was a stationary theory in
which gradients of the macroscopic deviations from
equilibrium, such as Heat flux ;%d viscous stresgés. were
considered negligible on the scale of the mean free path.
However, this theory had one great defect. It predicted
infinite’speeds of propagation of thermal and viscous
effects whereas we would expect such speeds to be about the
mean molecular speed and certainly not greater than the |
speed of light (Israel[14]).

Early attempts at resolving this prablem were focused
on, the heat transport equation (Fourier’s law) and consisted
of the addition of ad hoc terms to convert it from a
parabolic to a hyperbolic differential equation (infinite
"versus finite propagation speeds Fespe;tivezii. The
suggestions of Cattaneo [5] and Vernotte [39] were further
discussed by Kranys‘LZOI. These authors proposed that a term
proportional to the timg derivative of the heat flux be
added to Fourier’'s law and showed that the resulting
eqdation was hyperbolic with finite pféﬁaéatiéﬁ speeds.

In a paper on non-relativistic thermodymamics, Muller
[28] suggested that the expression for the entr@pyzwas
incomplete and, in addition to the number density, pressure,

and energy density, must dinclide as independent variables

the heat flux and viscous stresses. This suggestion is in



facf the Féundatigﬁ of the successful relativistic theory
and is essentially an extension of the theory Fr;m the
stationary to the ngaestatianary regime. Muller went on to
show that hyperbolic equations of transport resulted as a
consequence DF this formalism.

Subdequent discussions of the pragagatién speed problem
focussed on the h@ﬁéstaii@nary aspect of-the relativistic
theory via'fhe relativistic Grad method of moments . ?raﬁys
[21,22]) extended Chernikov’ s [7.8] thirteen moment
xstatiénaﬁy theory to the non-stationary case and ‘obtained

hyperbolic prggégatigﬁ Speeds. Stewarty [33] showed that b
retention of non-stationary terms in the Fcurteen=mamenff¥
theory, the upper bound on propagation speeds was /375 ¢.
Discussions of thé fourteen moment case were also presented
independently by Marle [27] and Kranys [23].

The discussions cited above were in the realm of
Kinetic theory. Within the context of relativistic
phenomenoliogical theory, however, the problem DFAE causal
theory which predicted finite propa gation speeds was not
resolved until Israel [14) fﬁdepéndently rediscovered and
extended the idea of Muller to the relativistic case. This
thewory was later combihed and compared with the fourteen
moment Kinetic theory by Israel and Stewart (15,16]. An
analysis of the propagation speeds of thermal and viscous
effects by an examination of the characteristics of the
transport equations was reported by Stewart [34] srael

and Stewart [17]). An analysis via Fourier analysis of-the

-



traﬁsport equations was performed by Kra%ys fEd], The upper
bound on the speed of prépagati@n of thermal and viscous
effects appears to Ee eétablished as Y375 ¢ [15] The
extension of this thearyhtc polarizable meqfﬂ in the
presence of_ electric and magnetic f?é]ds has bééﬁagerfarmed
We shall not discuss that theory héFéTh but refer the reader
to a recent article by Israel and Stewart [ 18] which
perfoéms this extension and also discusses the background of
this theory. ¢ .

‘ .In summary, we have at the present time a
phenomeqolog1ca theory for relativistic simple media and
mixtures which takes into acééunt transient effectsiand
predicts ?\Q1te ?rapigagibnfspeeds of thermal and viscous
effects; we atsd have a relativistic transient Kinetic
theory for single species gases. There are astrophysical
situations, however, where this Tattér theory is not
applicable'bécauSe we have to deal with plasmas. For
example, such situations are: the accretion of matter -
through the boundary betwebn a star and a hypotheticatl
neutron star or black hole in the star’s core [38]; ,

accretion disks around neutron stars or black holes; and the

leptonic era in the early history of the universe. In these

o

situations we imperatively requ ire an extension of transient

3
]

Kinetic theory to the case of mixtures. This extension j

- — —_—— = - =

erformed in this thesis. Furthermore: we apply the extended

theory to a case of special astrophysical interest: a

mixture of matter and zero-mass particles (photons or



nedtrinos): that is, we study relativistic radiative
transport with the inclusion of traQsient'éffectgg

" To illustrate the need for transient theory as ppposed
io quasi-stationary theo}y‘in'astrophysical,situatiansi we
shall briefl& diSCUssfaccretion disks and the ]epténic EFa;
"in the eanﬁy History o? the universe’ Consider a bldck hole

19

which is accreting\matter. If-izé accreting matter has a
large amount of.angular momentum then an accreéien d%sk*is
formed [4]. The principal model ‘discussed in the 1iterature
is the.thin disk model where the half thickness of the disk,
h, is much smalier than the distance to the black h@1éi r,
i,e. hAr<< 1. The matter in the»disk moves in Keplerian
ocbits and viscosity between adjacent - rings transports
aﬁaular momentum outward and‘matter inward. The viscosity
aliP acts as the péincipal source of heating in the disk.
Most of the radiation is prodyced in a small region near the
black hole and ionizes the infalling matter to distances
beyond the‘accretjon radius of .the black hole. Thus the disk
consists wholely of a highly ionized{plasma. The disk has
three’ zones of interest: the outer zone wHere Fhe pressuré
is dominated by the matter pressure and‘the ma jor source of
opacity is due to free-%ree collisions (BremSStrah]ung!; the
middle region where gas pressure still dominates but the:
major_source of‘opacity is due to etectron scattering; and

the inner zone where the radiation pressure dominates and

opacity is due mainly to electron scattering.



The vertical structure of the disk is determined by a
balance between compressional tidal forces and the outward
pressure and_radiation Fiuxi The optical depth 1 is given by
T=h/X [25]) where } is the mean free path of the photons.
~The half thickness of the diski h, is a distance gcale of
instabilities and fluctuations in the disk [25,32]. Normally
a stationary radiatisg diffusion equation is employed to
help find the vertical structure of the disk. In the
optically thick case, ©>1 and in the optically thin case,

T <<l this equation is valid; however, when 1=1 that is, the
disk is neither g@ticailggghigk or thin, then we are in the
' non-stationary regime and we must use tfansieﬁt theory.

Novikov and Thgﬁﬁé [30] have developed a mode!l of a
thin disk. In this model they note that in the outer and
middlie zones, the disk is optically thick. However they
specify a solution in which a small region in théaiﬁner zone
is optically thin. In this model therefore, there must be a
transition zone between the optically thick and optically
thin regions where we must employ transient theory to
determine the vertical structure. Eardly et al. [9] have
also constructed a disk model in which they find the inner
region of the disk to be marginally optically thin to )
electron scattering. Hence we should apply transient theory
to this model! as well. Other models may also require
transient ihé@?y because thin disk models are seguiarlyg
unstable in the inner zone so that the thin disk model may

be invalid in the inner zone The disk problably



becomes. in this regyon., a small cloud ground the black
hole; in this case the optical depth could be close to one.

/
Also, convectiw urbylence may cause the disk to thicken so
that the half thiCkness o i could become the same

size as the photon mean free path [19]. We conclude
therefore that transient theory is a valid or a necessary
approach to accretion di§k physics.

The history of the universe is uségily divided into
four eras: the hadronic era when the temperature, T, was
greater than 10!? °k ; the leptonic era when
1012 °k > T > 1010 °g . the radiation dominated era when
101% °K > T > 10" °k ; and the matter dominated era when
T <10 °k . This last era comﬁrises 99.9% of the history of
the Qniverse. We restrict our attention to the leptonic era.
At this time the universe consisted of a mixture of
electrons, muons, neutrinos, photons, and their
anti-particles. We can estimate the temperature when .
transient effects become impoFtant by comparing the rate of
expansidn of the universe, H, to the rate of interactions ,

o.,n . wher-evowk is the weak interaction cross-section and

wk
N is the lepton density. As the universe expands the
partlcles will tend to go out of equilibrium with each other
but thekr interactions tend to restore that equ111br1um
Equilibrium will be maintained when owknn1>1 (rate of
ekpansibn is less than rate of interactions) but equilibrium

will not be maintained when c&knﬂi< 1. We conclude that

transient theory will become important'whentxﬁnhiz 1

-



Weinberg [43] has computed this ratio:
o.n ' - '
wk =J;} {__1012_‘K}
H. (1QID-K exp T ) (11)

This ratio is unity for T = 1.3 x 101! °k Hence trarisient
effects will become important when the temperature of the
universe drops below this value.

We shall now summarize the phenomenological theory for
a simple (single component) fluid in a gravitational field;
this summary allows us to illustrate the principai features
of the non-stationary theory and to idéntiFy the essential
difference between quasi-stationary and non-stationary
theory. An arbitrary state of the fluid is described by
three primary variables. These are the Eﬁtrgéy flux %, the
energy-momentum tensor T*! | and the number flux X° . The
number flux and the energy-momentum tensor are assumed to be
conserved and the entropy production is assumed to be |

positive:

N®, -0 TQA' -0 SE 0 (1.2)

where the single stroke denotes covariant differentiation.
The equilibrium state of the fluid (denoted by a

superscript O):is characterized by four properties. First,

the‘entropy production is zero: ;“h;- 0. Secondly, there |

exists a unique time-like unit four vector uv* which we call

the flow vector, such that we have



N

[ 0]

e = N #
e . & ) ®  _ . _
s% = su® ; N® = nu? : Tﬁgipuaugikﬁ'éﬁs : (1.3)

that is, the entropy flux, number flux, and the
energy-momentum tensor are spatially isotropic. Here S is

the entropy, n is the number density, p is the energy

u®? + %8s the spatial

density, P is the pressure. and éas

‘projection operator of y¢ Thirdly, each equilibrium state is

characterized by an equation of state $=S(n,p) which
determines the entropy and from which we can find the

pressure by
S=( +P)/T-an , 7 (1.4)

where 7 is the temperature and a« is the relativistic
chemical potential of the equilibrium state. Finally, the
flow vector u® is shear free and expansionless; and thé
relativistic chemical potential is constant:

N AGAA =0 . " (1.5)

T = _
la B0 T 0 ey

The covariant formulation of the equilibrium form of

the entropy flux may be expréssed as

s¥ = pg¥ - ¥ - g1 ¥ . (1.8)



9
where g zgﬁYI, Equation (1.6) implies that
dgu!eadﬁ BdTAu . (1.7)
/
where the differentials are constrained to displacements
between equilibrium states.

To investigate non-equilibrium states we release the
constraints on the differentials in equation (1.7) and
assume that they apply to displacements from equilibrium
states to arbitrary nearby states:

as¥ « - aan - SxaTAu;. (1.8)
Here a and EAare the variables of a nearby equilibrium
state such that the deviations from equilibrium N°-8® and
%8 _ pof are small quantities compared to N°® and Tasand
are said to be of first order. E ion (1.8) suggests that
equation (1.6) be generalized tg

s = paut - o - g TV Q¥ (1.9)

where P is the pressure of a nearby equilibrium state and
Q" is some unspecified second order term.

Now the essential difference between quasi-stationary
theory and non-stationary theory resides in the treatment DF
|1}

Q In general, q" will depend in some fashion on the

macroscopic deviations from equilibrium. 1f these deviations



10
from equilibrium vary over large distance scales compared to
the mean free path. then their space-time gradients are
negligible to first order and hence Qj, will be negligible
to second order. Therefore QTU will not c?ﬁtribute to the
entropy production which ‘is calculated‘tcrsecand order; and
we may therefore neglect 0" in equation (1.9). In
non-stationary theory, however, the deviations from
equilibrium vary over a length scale comparable with the
mean free path. Consequently their space-time gradients are

.not negligible to first order and then QﬂJis not negligibie
tgzsegéﬁd order. In this case, QTU contributes to the
entropy production and neglect @f 0" in equation (1.9) is
not justified: that is, in the non-stationary theory, Q"
must be retained.

In equilibrium, the unit time-1like vector paraliel to
the number flux,uy, and the unit time-1ike eigenvector of
the energy-momentum tensor, ug, coincide. In non-equilibrium
they differ by a small angle of first order. We can choose
an arbitrary velocity y* within a small cone whose angle is
of first order and includes u; and ug. Ther the number
density, the energy density, the éressurei and the entropy
are independent of the choice of u* to first order.
Furthermore, for a given choice of u® we can decompose the

number flux and energy-momentum tensor uniquely:
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N - nu” + ju . jugu =0 ;
™ . suvu“ + (P + f)Au“ * hpuv + hvgu + . (1.10)
“AEA -0, “x“xu =0, ﬁx; =0 ; A" = MV 4 g

Here 1% is particle drift, »* is the momentum flux, # is the
bulk stress, °f are the viscous stresses, and 2% is the
spatial projection operator of u® . The particle drift and
momentum flux change in first order if the choice of u*
changes. Consider however, the heat flux {;whigh we define
as the energy flux relative to the particle flow: it is

given by
a hgie*?’ja! (1.11)

Then if the choice of % changes, qu is Uﬁéhaﬁééd to first
order.

A crucial aspect of transient phenomenological theory
is the specification of Q" in equation (1.9). To obtain’
linear phenomenological iaws it is suff1c1ent to assume that}
Q"'- is a quadratic function cf the macroscopic deviations K
from equilibrium =n, ®etc. In particular, the simplest
approximation which leads to hyperbolic phenomenotogical
laws is thé hydrodynamical description which assumes that an
arbitrary state of the gas close to equilibrium can be

specified completely by the number flux and the



»
energy-momentum tensor. Hence, the entropy flux is a

function solely of the number flux and the energy -momen t um

tensor. In this case Q% is given by

TQ" - % u¥( Bym? + Equql + Ezﬁagﬁaé ) | (1.12)

_ v A_u T 1. v Aw
ao‘ﬂq t'xquT1 +p¥P(27hlh',u + hn ),

where ay, a,, 80'81’ and 8, are undetermined
thermodynamical functions. We require that 1%Quf0 which
implies, for all states characterized by a given number and
energy density, that equilibrium has the largest entropy;
furthermore, it can be show to imply that!the fluid is
dissipative, that is, it has positive relaxation times.

The phenomenological laws (transport equations) may be

postive, sTaio if we assume there ‘is a linear relationship
be tween W,qxf and 7°f and their gradients, the gradients of
the thermodynamical variables and the flow vector, the
shear, and the volume expansion. Consequently with the

choice ua-ug we obtain
T a2 (W@ + BT - aq® )
: 3% (Ut By 09 |o?
qu-KTAuA(—rlT—--u éB&%’ﬂffﬁ’Fﬁﬁyr 5‘ (1.13)
p+ P |2 P1%a oA T Ty )8

v = ~284( YEeulv> ¥ Bz*uu - a1q§u1u§ ); ;

where tv is the bulk viscosity, x is the thermal
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cgnductivity.zsis shear viscosity, and the angular brackets
denote the trace free spatial part of the tensor enc losed by
them. 1f we had chosen xf%us we would have obtained a set of
equations similar to those above but with some of the
coefficients slightly changed. These equations are
hyperbolic and predict finite propagation speeds.

The Kinetic theory of a single species gas duplicates
the features presented above for the phenamenological
theory. Briefly, kinetic theory postulates a distribution
function for the gas and the Boltzmann equation which
governs the distributi@n function. Then, in terms of this
distribution function, the number flux, the energy -momentum
tensor, and the entropy flux can be defined. The requirement
Sigtﬂ for equilibrium uniquely specifies the distribution
function as a function of the temperature, the relativistic
chemical potential, and the flow vector u® . The transition
to non-equilibrium states of the gas close to equilibrium is
achieved via the relativistic Grad fourteen momen t
approximation method, which assumes that the distribution
function is Exﬁressab1e in terms of an equilibrium
distribution fUﬁCtiéﬁ and a first order quadratic function
of the particle four-momentum. We can then find the
distribution function in terms of the structures given in
equations (1.10) and (1.11). Consequently the entropy flux
ts found to have the structure given by equations (1.9) and
(1.12). -THe transport laws may be derived and come from the

conservation laws for number flux and energy-momentum and



the balance equation for the third tensor moment of the
distribution function., which we herein call the
double-momen}um flux. An important aspect of the Kinetic
theory as opposed to the phenomenological theory ;s that we
can actually specify the functional form of the transpori

a, B

coefficients and relaxation times a g8,, and f% for

0* "1’ "o' M1
a gas.

The problem considered in this thesis is the extension
of the relativistic Kinetic theory.las presented in the
formulation of Israel and Stewart [16], from the single
species gas to a gas which contains many particle species.
We do not wish to restrict the analysis to species which
have only non-zero rest mass, but also wish to consider
species which have zero rest mass, such as photons and
neutrinos. The theory of israel and Stewart is suited only
for non-zero rest mass particle species; ho@ever. we shall
extend the theory in an appropriate fashion to handle zero
mass particle species.

One might expect that we shall find the structure of
the entropy flux to be similar to equations (1.9) and (1.12)
for each component of the gas. Futhermore, one m{ght expect
that we should obtain transpofi laws that resemble equation
(1.]3) although of a more complex nature. Also, one migﬁ\ ‘
expect that there are more functioqs to be specified like

a etc. Indeed, the derivation of all of these details

0' ull
is a major task to be carried out in this thesis.
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We shall briefly outline the format of the thesis and
the major points of each chapter. The méiﬁ body of our
thesis consists of six chapters plus two appendices. Chapter
Il consists of the fundamentals of Boltzmann Kinetic theory.
This consists of specifying the Boltzmann equatign and
deriving the master balance equation, special cases of which
are the mass and number fluxes, the energy-momentum tensor
and the entropy flux. Chapter I11 applies this theory to the
equilibrium situation. The two important aspécts of this
Chapter are the introduction of the thermodynamic functions
necessary for all of the subsequent analysis of the physics,
and the equilibrium structures of the number flux, the
energy -momentum tensor, and the entropy flux. The material
presented in these two chapters is not new but its
presentation is necessary to provide the foundation upon
which the subsequent analysis relies.

In chapter 1V we analyse the non-equilibrium situation
. of the gas via the Grad fourteen moment approximation. It is
here that we shall introduce the idea of fitting and frame
changes under which the mathematical description of the
physics will be shown to be invariant to first order. Also
the deviations from equilibrium are solved for, in terms of
physical quantities such as heat flux and the viscous
str%sses. by a method which differs from the approach
normally used (Israel[12], Israel and Stewart [15,16]). This
approach leads to a more aesthetic and compact notation. In

terms of this solution, we shall then obtain an expression
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for the entropy flux.

- Chapter V examines the non-stationary (tran;iEﬁt)
aspects of the theory. It is here that we compute the
derivatives of physical quantities such as {he mass flux and
the energy-momentum tensor. We also compute the derivative
of the entropy flux for any particle SDEEiESi that is, we
compute the entropy production for each species in the gas.
These computations proceed by a different, although
equivalent, approach than that of Israel and Stewart [16]
for the single species case. FUFthEFm@FE.VthE equations of
transport of thermal and viscous effeéts for non-zero rest
mass particle species are derived: and the coefficients of
thermal conductivity, bulk viscosity, and shear viscosity
for each species are defined.

Chapter VI considers the problem of extending the Grad
method of moments to zero rest méss particle species such as
photons and neutrinos. The solution for the deviations from
equilibrium in terms of physically meaningful quantities
leads to, when inserted into the Boltzmann equation, the
non-stationary transport equations. Finally, we examine the
entropy flux and define the coefficients of héat )
conductivity, shear viscosity, and bulk viscosity for zero
rest mass particle species. The scenario envisioned in this
chapter is a mixture of matter and radiation, that is, this
chapter deals Nith:tréﬁSiEﬁt radiaiive transfer. We noted
earlier that this situation is of special astrophysical

interest and would be applicable to important situations,
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e.g. accretion disks and the lepton era of the universe.

Chapter VII deals with the computation of quantities
which depend upon the collision cross sections and the
deviations from equilibrium; these quantities are necessary
for the solution of the transport equations. This chapter
should really be regarded as a super appendix because it
deals with a very complicated analysis to provide minor
although necessary information for the discussion of the
physics.

The first appendix deals with the functional form of
the thermodymanic functions introduced in chapter II1.
Various relationships between these functions are cited and
some other frequently used results are stated.

The second appendix is a list of the symbols emp loyed
in this thesis. It is arranged alphabetically, Latin letters
first Faiiéﬁed by Greek letters. The 1f§t is necessary
hecause so many symbols are used fhat the reader may lose
traék of the meaning of a particular symbol. ihstéad of
trying to find the meaning in the text, all he or she has to
do is refer to this list for a quick reminder. |

"~ As a final note, we declare our space-time convention.
In a local Lorentz frame the metric takes the following
form: '
Bap = Mgp = diag (1,1,1,-1) . (1.14)
The space-time coordinates x" have the Euclidean-Minkowsk:i

form



x? = (x,y,z,ct) ; a=1, 2, 3, 4, (1.15)

As a consequence of thisg conventieﬁz four vectors are
time-1ike, null, or space-like if their lengths are
negative, zero, or positive, respectively. Fipally,
throughout this thesis, we shaill adopt units such that the
speed of light, ¢, and Planck’'s constant, h, are unity

{h=c=1).



II. Boltzmann Kinetic Theory

A1l of the calculations in this thesis are per formed
within the context of Boltzmann Kinetic theory. Before we
cah examine the main topics of this thesis we must pfesent
the notation employed and the fundamentals of the Kinetic
theory. this is ihe purpose of this chapter.

First we shall present the notation emﬁloyed and some
basic definitions._TBen we shall define the distribution
function NA and present the Boltzmann equation as the
equakion which governs the evolution of the distribution
function; at this point.‘lllhall also discuss the role of
collisions of the gas particles. Once we have specified the
Boltzmann equation we may derive from it a master balance
"eqpation which is thén applied to find the balance equations

for s&i}ab]y defined quantities such as energy-momentum and
entropy. Finally_yé/aﬁscuss how these quantities may be
decdmposed with respect to an arbitrary comoving observer.
A. The Boltzmann Equation

Let us consider a multi-component gas. Each component
of this gas is a particle species which we will identify by
an Arabic number. These numbers will be geRerically
represented by capital letters, for example, A = 1,2,3 etc.,
and used as’ subscripts on our mathematical symbols.

A particle which is a member of species A will have a

mass m a charge e and a spin s, (plus any other

A’ A’

distinguishing characteristics) which are common to all

19
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particles of species A. Each particle has its own wor ld-1ine
x:(TA) where T, is the world line parameter: we assume that
T, is an affine parameter for geodesics. Also, each t:ar‘tic:l-e
has its own velocity w,(1) = dx3/dr,. and Kinetic momentum P
We shall denote p: = mAw: where m, = ;:A. "’:"Af -1 for non-zero
rest mass particles and m, = 1, w:wm = 0 for zero rest mass
particles. We shall refer tg non-zerc rest mass partictles as
massive particles; also, we shall r'efer to zero rest mass
particles as massless particles.

At each space-time'point x* we construct a —
four-dimensional momentum space, whose co-ordinates are the
components of momentum p: , and which is a subspace of the
eight-dimensional phase space '(xa,p:) for species A. Not all
of this momentum space is acce;sible to a parti:1%. The
condition p:pA(l‘ -;i ;onfines the particle to the surface of
a pseudo-sphere in the momentum space. We say that the
particle is on-shell.

We choose, at x* , an arbitrary space-likeéiement of
three volume dr with surface normal n® . The element of
volume of the accessible momentum space dv, is the .chur‘;
dimensional volume element /=g d"p: 'mﬁltiplied by the
on-shell condition G(p:pAa+ ;i) e(p:) [17.

The invariant distribution function for species‘éii
NA(xa,pz) is defined by stating that [11] the number of world
lines of particles of species A ;hich cross éi in the
positive sense of the unit normal with momenta in the range

of v, is given by
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NA(xa,p:)(nu»vK)(nvn“)dEVA . 2.1

We postulate that the behaviour of NACQipi) , and
hence qf the gas, is-deséribed by an equation of continuity

in phase space with sources and sinks:

("A‘iﬁ)m i

A
Hefe ¥, is the abbreviated form for the distribution
~function, || wmeans covariant differentiation holding
momentum fixed by parallel propagation, 3/gp2 means
differentiation with respect to momentum holding position
fixed, and Gp:hhr is the rate of change of momentum along a
particle’s world line. Equation (2.2) may be regarded in a
different manner. The left hand side is just the Liouville
operator acting on the distribﬁtiaﬁ function, and describes
the rate of change of N, along the streamliines in phase
space [13]. In the absence of collisions this rate of change
is -zero. The right hand side is therefore a correction to
the Liouville equation to .account for collisions. Equation
(2.2) is our Boltzmann equation.

Unless otherwise stated, we shail assume that there are

no external fields other than gravity, so that the rate of

change of momentum between collisions is zero, that is

spa/8T = 0.



Consider two particles of speciga A and B which undergo
a collision. The incoming parti:‘re momenta pi and pg.

and the outgoing particles have momenta ;: and ;g . The

i‘a *q *a *

collision conserves momentum: P, + P, =p. + The transition
A B Pp 7P

a
B 7
probability for this collision is denoted by H(pA;pﬂlgAi%),
This transition probability is a scalar funtion of

a a * g

Py, » Pg s Py » Pg, and has the property that [40]
ko k " . Lk % 7 '

We shall also assume that the transition probability
satisfies the bilateral normalization property which appears
here in a form suggested by Weinberg [42]:

- &k ok ok k&
IHCPA‘pBlPA’PB)AAAEdvAde (2.4)

'7 k& a2
= | W(py.pylp,,pp)A, AV av,

i

In equation (2.4) we have B,% g te, N, with g,=2 for zero
rest mass particles, B\=28,+1 for non-zero rest mass
particles, and g,~1 for classical particies: e,1  for bosons,
e -1 for fermions, and €,=0 for classical particles. For
classical ﬁarticlesi equation (2.4) reduces to the form of
the bilateral normalization as stated by de Groot et. al.
[11] and can be derived from the unitarity of the scattering
matrix in quantum mechanics [40]. We note that equation
(2.4) is more general than the assumption of detgi]éd

balancing since the latter immediately implies the former.
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We can now write out the source and sink terms for the
Boltzmann equation. Unless otherwise stated, we shall only
consider binary collisions, which automatically preserve the
number of particles of each species. The source terms are
the number of particles created in a momentum cell by
collisions: and the sink terms are the number of particles
destroyed by collisions in that cell. The difference between

the two terms (source minus sinKk) is- D _.N
coll A

collNA = g I V(PA-PBIPA.PB) AAEdVBdV dV .

g [ N, N W(pA,pBlpA,pB) AdeBav dV
The 5 terms in equation (2.5) account for the Fermi

exclusion and stimulated emission quantum effects.

B. The Conservation Equations
A master balance equation can now be derived from
equation (2.2). We let £, \PAd@A/dﬁ; where ¥, is any tensor

function of position or momentum and ﬂk is a function of N,
alone. We multiply equation (2.2) by £, and integrate over

the accessible momentum spacg:

“a Nav, 2.6)
IYA ™, & T f“ADcalinAﬂvA . 2. ¢

After some algebra, we obtain our master balance

equation
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v v L o s __ A I . n -
{[ ‘A’A'AdvA}[g [ LA [ EaPeo11Ma0Y, (2.7)

where the single stroke on the left hand side means
covariant differentiation.

The expanded form of the last term in equation (2.7) is

given by

p . Nav, = T | £ NN L . .p)A A dYY
} Ealeo11MadVs = EANANEY (P sPglPyapp) 8, Ay

B oy

12.8)

ST ENN WL, lp o) A Y .
L) CAAR PArPRIPAPy Als ;

iv.dv_d *av?
d,AdVB ’vAde'

where d%v
When we relabel the variables in the first term in

equation (2.8) we obtain the following expression:

-

e v = T [ e NN N o ot e a (2.9)
] *aPco11™adVs - EpmEAIN AN 287 (P 1Py Py o P R

From equation (2.9) we see that if E,=f, , that is, &,

o~

is a collisional invariant, then the right hand side of
equation (2.9) is zero. If £, is not a collisional
invariant, we sum over all species so that equation (2.7)

becomes .

s

. 8y ’
o . * 77A, - i ~ _
Z{ I @AvAwAde } - E f @Ag;stA + E [ EPeo11MadY, + (2.10)

A 4



The last term in equation (2.10) becomes, via
relabelling of variables in equation (2.8) and using

equation (2.3),

[ o 1 o Y. 7 ,
E f EaPco11a%Ys = 7 11 JIEINANBAAAEwAjth : t2.11)

: _ * & i _ . .
where [E]EEEA+£3*!EAE§B. 1f is a summational invariant of

the collision, then [£] = 0.

The “familiar conservation laws are now just particular
cases of equations (2.7) and (2.10). We shall discuss each
of these in turn.

The number flux Niis defined by

x
o
1y

N _ 0
fNAHA v, . (2.12)
With =N, and ¥, 1 ., equations (2.7) and (2.9) give us the

ﬁbmber flux conservation equation:
f 3

a o
HA"‘I!D . (213)

We note that this result depends heavily upon our decision

to consider only elastic binary collisions.

The mass flux M, is defined by

>

a " a ~
A 42.14)

X
11

We let ¢,-N,  and Y.~ m, : consequently equations (2.7) and
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(2.9) give us the mass flux conservation equation:
ﬂ = L K
HAIE-D . ! (2.15)

The energy-momentum tensor of particle species A is

defined by

pe . [ a8 . o e
o :[nApAwA v, | (2.16)

3B _ v _aB , _
™" = ZTA . 7 (2.17)

Noting that[pA]- 0 for collisions we select ¢, = N and

?Ai!PE . Then equations (2.10) and (2.11) give us the

energy-momentum conservation equation:

-0 | | (2.18)

In contrast to this, equation (2.7) gives us the following
result:
ag _ [ a . :
T, T I Pa Deorr™a V4 - - (2.18)
A useful physical tensor denoted by UiBY » and which we

shall call the double-momentum flux, is defined by

—-



af e t:VB » . .
UA, IHAPA AHA dV . (2.20)

With the choices ¢, = N, and ¥, = Pivr . equation (2.7) gives

us the following result:

+aBA i'aB -
A 2" [ PAA Peo11Ma 99, -

The entropy flux for species A is defined by

]
i

I{N 1n (N, /gA) £ ln(A ISA)*(E* I)NA}wAdVA : (2.22)

and the total entropy flux is defined by

(2.23)

o
1]

e ]
w

» R

where 'K is Boltzmann’s constant. The first two terms in
hra;eszin equation (2.22) together comprise the familgar
definition of entropy for fermions and bosons as reported by
Nordheim [29]. The physical justification for these terms is
that we must not only count particles but "holes" when we
calculate the entropy [36]). The thirg term in braces in
equation (2.22) is zero for fermions or bosons but for
classical particles effectively subtracts the number flux
from the usual definition of the entropy flux. Since the

number flux is conserved, this term adds nothing to the
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entropy product ion Sifa This term is also useful
mathematically because when we choose

. . - S Lo , o2 )
QA HAln(NA/gA) EAAAln(AA/gA) + (EA l)NA . . (2.24)

we obtain d¢,/dN.- In(N,/4,) for all types of particles.
Then, with ‘P’As -k, equations (2.10) and (2.11) give us the 7
entropy production equation:
23 _ vl by 7
Sla ™ 7k g 2 [ llﬂ(H/A)]NANBAAAEWABd v . (2.25)
A Boltzmann H t esécan now be derived. We multiply
equation (2.4) by N N, and integrate over both momentum
variables. When we r:&_}ame of our variables in the

resulting expression, we obtain the following result:
\

%

1 LI T o
g[ (E - 1IN, N A AW, 4" = 0 ; (2.26)
where we have set = : (NANB/AAAB) R B/AAAB) . We nd® add

equation (2.26) to equation (2.25); consequently we obtain

s? la =~ % ) [{ln(i) -Z+ 1}HANBAAAEH d“v. | (2.27)
a 5 | -

We note that nf 0. Also, fo 0 is requﬁ-ed by the exclusion
pa"iﬁcip]e for fermions, and is obvious for classical

particles and bosons [12]. Therefore 20 and hence

[

In(Z) - £+ 1 30. Consequently, equation (2.27) tells us that
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Sula 20 which is Boltzmann’s H theorem. When the entropy
production is zero, Sa]a =0, we say that the gas is in

equilibrium.

C. General Decompositions

Let us consider an arbitrary time-1like vector field

u® (") ' saeuaua =-1. We can decompose the covariant

derivative of u® by [31]

U =-uu,+w, +0 4%[\ , ('2528)7»

al8 ] a B aB af aB

— - x 3 _ P _ _ ® ,
where AuB =g *+ u ug, e:u“ is the volume expansion,

B T 1 AT . - A T s
ouB - B —?GBA )u(alB) s the shear, Cag Au AB u[ng] '8

the vorti'city, and 60 = ua“uA is the acceleration.

¥

Y]

(8 *a
a

In general, we can decompose the mass flux Hi with

respect to u° by

a_ a_,.a - o |

My=mu + 4, ] (2.29)
~ A a _ ,a - )

nAz-ulHA . jA:AxHM . ‘23@)

The quantity n, is called the mass density and the vector
JA" is called the particle drift.
Similarily, decompostion of the energy-momentum tensor

with respect to u® gives us that
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uv - R = uv L BV Vv ou Hv .
TA pyuu + PAA + hAu + hAu + LI
6 Zuu TV . p =1 LHV | y
Pp Euu T, 5P =3 Au\iTA ; (2.31)
w3 - _aa AT A TR Moy 1 Luv, AT
hA = =A A“TIA : WA = (A 1& 3 A AAT)TA .

The energy density is p, , the momentum flux is hi ., the

viscous stresges are ﬁig and we shall call EA the bulik

pressure. This quantity is the thermodynamic pressure L

only in equilibrium [14]. . 7
The decomposition of the mass flux and the
energy-momentum tensor of species A presented above are
convenient for the analysis of the equilibrium and
non-equilibrium states of the gas. We shall consider

equilibrium first; it will be discussed in chapter 111.



.

ITI. Equilibrium

In Kinetic theory, equflibrium maintained via
collisions has a a special role: this role arises because
the distribution function may be specified exactly. The
specification of the equilibrium distribution function
allows us to calculate the mass flux, the energy-momentum
tensor, etc. exactly. These quantities and their balance
equations describe the equilibrium behaviour of the gas and
provide a foundation for the investigation of the physics of
a gas in a state close to equilibrium.

In this chapter we shall discuss equilibrium. We shall
first specify the equilibrium distribution function and
define the chemical potentials and the temperature. . <
Se;ondly, we shall examine the restrictions on the gradients
of the thermal potentials and the temperature imposed by the
Boltzmann equation itself. We shall define some standard
integrals of the equilibrium distribution function which
allow us to calculate the mass flux, the energy-momentum
tensor etc., immediately. This analysis provides us with the
functional forms for the mass densities, energy densities,
partial pressures, and entropy in terms of the thermal

potentials and the temperature. Consequenfly'we may obtain a

Gibbs’ relation in equilibrium. Finally we obtain some
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A. The Equilibrium Distribution Function
We have defined equilibrium to be that state for which
the entropy production is zero. Let us denote the
equilibrium situation by a SuﬁEFSEFipt’Q. When we examine
quation (2.27) we note that zefo entropy production
Lquires that [ln(‘;lfg)] = 0. Thus 1n(§/3) is a collisional
invariant. The most general form for 1n(§A/EA) is given by

[33]
e o S LA, _ ) ,
In(N,/8,) = a,(x) + B8 (x)p,, - . | ~+3:1)

Equation (3.1) now implies that

,- i’l
o B o gpexp(-a,-f Pax) I
My h s A AT (5 )

DI SN NP S
exp(-a,-87p,,)-€, exp(-a, prm,} ‘A

The coefficients a, and B, have physical
interpretations. The coefficient a, is the relativistic
chemical potential and is related to the classical chemical

potential u by [14] _ /

-

a, = (mA/T)( 1+ LIA./\‘;2 ) , (c.g.s. units). ' | (3.3)

To avoid confusion between the two types of chemical '
potential we shall refer to a, as the thermal potential of

species A.
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We define a temperature T(x) by ééleI where égoéléﬂ'
We must have that 8 be time-like so that integrals of the

distrtbution. function converge.. We also define a unit flow

® by u* = 6%/8 : hence 8 = Bu’. The unit flow vector

“vector u
u® may also be considered to be the velocity of an observer
moving with the fluid (comoving observer). For convenience

- ~a

_ ) s -
mAB and BA mAB .

we also define BA
In equilibrium, the form of the distribution function

implies that D.o11Na = 0. The Boltzmann equation now places

restrictions on a, and 8:

A u A g . o
CalVa t B pPy vy =0 . (3.4)

This must hold true for arbitrary time-like or null momenta.
.Hence QA[XSD for all species. If the gas consists of only
massless particles we conclude that éa is conformal Killing:
- 1

CMIV) uvsll 7
gas consists of massive particles, then g% is a Kilking

However, if at least one component of our

vector: Thus the space-time is stationary.

B(ulv)igi
Since E is a Killing vector we conclude, after some
algebraic man1pulatlcn that Bl Bu . grus 0, and =0, Hence
H

the gas is also shear free and expansionless.
-
B. Standard Integrals and Functions
In equilibrium, all moments of the distribution
function can be expanded in terms of a set of standard

o :
integrals of the equilibrium distribution function. These
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standard integrals are defined by

v

..oy o1 N ;%1 _On .
I T el J NaPp ov- Py AV, 5
A o
(3.5)
aje..ap - 1 S 5 o_ay L S
JA = ——;*;:T f NAAAPA <er Py dVé
BA"A

These integrals single out only one direction in space-time,
I'4

u . SO that they must be constructed out of scalars, the

metric tensor, and the flow vector u® . Therefore, we define

the following quantities [13]:

(105 Auziflazq %2q+1 on)
- u .

ml:=-% = p v s (3.6)
(q) ' - ,
’

- [ n . - ;

84 ° (Zq) (2q-1)1! ‘ (3.7)
where 2qsn. We then have the following orthogonality
relation:

ay...an - (-1)0 Y (3.8
*y H(q.) ' n(q)ul...an (-1) (2q+1)6qq' (Zq) ) )
Exﬁanding equation (3.5) gives us
ay...a “fz ay...q, (3.9)
IA - o aanAan(q) 3 A .
q'
a)...a nfz 01..'.(1n ‘ (3 -”:”
JA - aan H(q) . J.1

q=0



Contracting equations (3.9} and (3.10) with (3.6) and

employing the orthogonality relations (3.8) produces

G M Y n ; (3.11)
Ang (2q+1)1! “a (q)ﬂlg..aﬁ -

=
[

(-1 TR T . e
Ang (q )|| J, 1 n(q)ali!!% (3.12)

Integral representations for these coefficients are deduced
in Appendix A. Appendix A also includes general differential
and recursion relations between these coefficients which are

extremely useful.

C. The Physics of the Equilibrium
We can now examine the equilibrium form of the moments

introduced in chapter II. In equiiibrium,NAzsﬁA. so that
for the mass flux we obtain H: siii IA:H;,L:El When we apply the
decampésitigﬁ (2.29) w{th respect to the flow vector u, . we
conc lude that n, = I,,0and jzio i furthermore, the number

density becomes o, = IAID'/“A‘

Similarily, for the energy-momentum tensor we obtain
uv uv _ IRTRAVI WY e . e Sab gl
T, =1, = I0u ¢ -FIAZib . Comparing this result with the
decomposition (2.31) with respect to the flow vector u*, we

obtain p = 1,,0, ¥, P, = T,,, + hi =0, and vr:E =0 . We define

the bulk stress to be wAIB%ZFA-IAﬂ so that in equilibrium m,~0.
In equilibrium %, (N,)as given by equation (2.24) is

L



.2 e ZA _ . °
O(N,) = N.(a, +B8p,. )+ (e?-1)N
oA e A (3.13)
, . +8> P
+ EAEAIJE( 1- EAE A) ) .,
Employing this expression in equation (2.22) gives us the
entropy flux in equilibrium:

- _1 . | o Aa R I .
Sy = k(gA + €} 1)n - kB, T, *+5S, (3.14)
~a - a . = e _
SA = SAu . SA = kgAEAJ ln{l £ exp(ﬁ +B w, )}d (3.15)
Israel and Stewart [16] have shown that s = R

= ’2 1
Sy kEAB I1 - The
entropy is defined by Sa Euasi . Noting that

(zi = 1)(;A - EPA)—G for all species we then have that

SA - sk{ an, - S(DA + PA) } .

(3.16)
Defining ©,= ka,/n, we deduce that
TSA+TeAnAipAiPA . (3.17)

When we differentiate equation (3

(A19) to P, (i.e. I,,; ). we obtain the following result:

.16) and apply relationship
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- reAcmL . (3.18)

The differentials appearing in this and subsequent eﬁuati@ﬁs
in this chapter are constrained to virtual displacements
between equilibrium states only. Multiplying equation (3.18)
by the arbitrary parameter v and using (3.17) gives us the

\ ; Ny

Gibbs relation

Td(SAV) = d(ﬁ:AV) + P dv - TSAd(ﬂAV) ) (3.19)

il

When we perform a Legendre transformation L (ﬂiﬁl)ﬁf we

obtain an alternative form of equation (3.19): )
Td(S,V) = dH, - VaP, - T0,d(n,v) . (3.20) |

Let us now choose V=1/n where n= ZnA . We then define
: A

the specific entropy per unit mass by o= ESAha . the enthalpy

by H §(§A+PA)/':1 » the internal energy by U= EpAln , and

HA =n,/n which is the fractional proportion by mass of
species A. Employing these definitions and summing equations
(3.19) and (3.20) over all species A produces the following
forms for the Gibbs relation:

Tdo = dU + PV - TZO,dn, | )
AR - (3.21)

= dH - vdP - TEEAdnA .
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For constant chemical composition diAiD . This requires that

A0 @y "aTa0 B 4 (3.22)

Any  Jao VO a0 T

Consequently, by equation (L17) applied to Jyq, we cbtaih

J I =~ cm,J
(P)= = - %1—“23? +% 3‘ Az}(JﬂDnA—JQD)dT ; (3.23)
R Al V AlO

where n, is defined by equation (A22). Summing this equation
over all species and rearranging the result gives us the

relation

L e k4P +adT s ) (3.24)

v

where the isothermal compressibility is

_ 1fav 1 Ja21Ta10 L
k-], ;== ] 2522 (3.25)
v(aP)T S JAlO

and the coefficient of volume expansion is

= 1v) By Malan o .
a_"’éT)P K?E T Ta10"™aJaz0) - (3.26)

Inserting equation (3.24) into (3.23) allows us to conclude

that
(@p - Ta2itaio
A n, JAlO . _
7 (3.27)
B [ ®ata21 v JannTaro Ta )L
T T Yo a0 T Ty S T
Al0 A0 B



For a gas consisting only of classical particles,

IAnq: Jhm . SO we obtain, after some algebra, that

(dPA)EA,P = 0. Hence, constant pressure implies that the
partial pWessures are constant for a gas of classical
particles,

along with

When we emplioy equation (A19) for 120

equation (3.22) we obtain
(.

J .. I . .~ o m, D
a0 D,
(do); = - ] AZALO AV, %{ [ A0 } aT 3 (3.28)
A A “AlQ v A TAlO

where D,  is defined by equation (A21). Inserting equation
(3.24) into (3.28) gives us an alternative form of equation

(3.28):

J 1.
(dD)g =K ) ‘A%Q—Alg dp
A A “Al0
B mADA;Q . JAZOIAlﬁ Y (3.29)
17 ) 3. "Ly 9t .
A AlQ A “Al0

The specific heat at constant volume is now defined and

given by

- ;.3;“.) iléz?}z’?@ ; (3.30)
QV,nA ’(BTV‘; nT A JAID )

The specific heat at constant pressure is defined by

) = = ﬁ ! = v Bi i 4 aéi ': -
Phy (3T)p a V(BT)F ;e P)(BT)P ;- 133
i *UA B\ |,

Via equations (3.29) and (3.26) we obtain

- —I, =

a . B"AZD AL0 3 7

C. - =0 = -+—-{ p+ P - } . (3.32)
,nA CV,nA n JAlD )
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The adiabatic index v is defined by

~
1l

'31n (P) : . |
, (m)g . (3.33)
5.5,

After some algebra we obtain the familiar result that

1 R ;
Y= CP,EA; CV,EA . (3.34)

The calculations from equations (3.22) to {3.34) only
apply to a system not containing photons| This‘ii‘because,
as the tem§2rature increases, the number of photons in a
fixed volume iﬁCFEESEs: Hence the proportion by mass of
photons increases, that is, dEA# 0 for photons. Thus, for a
gas of matter and photons, we apply the above calculations
to the matter part of the gas and employ the procedure
reported by Chandrasekhar [6] to compute specific heats.

We now have a number of useful formulae which enable us
to examine the non-equilibrium case, which is treated in

chapter 1V,



IV. Non-equilibrium

Thg non-equilibrium state is much more complex than
equilibrium and discussion of it will take the remainder of
this thesis. In this chapter we wish té:discuss the approach
we will employ, namely, the fourteen moment relativistic
Grad method. d

We shall begin our analysis by specifying the
distribution function in the fourteen moment approximation.
This distribution function will then be employed to find the
mass flux and energy-momentum tensor in terms of the
deviations from equilibrium which appear in the distribution
function. However, the mass flux and energy-momentum tensor
may be decomposed in terms of mass density, energy densityi
heat flux, etc. Hence we can specify the relationship
between these physica) quantities and the deviations of the
distribution function from equilibrium. This relationship is
then used to find the structures of the double-momentum flux
and the entropy flux in terms of thermodynamic functions and
the physical quaﬁtitfes appearing in the mass flux and
energy-momentum tensor. Our non-equilibrium solution permits
us to compare the actual distribution function with an
arbitrarily chosen nearby equilibrium distribution function.
Thus, in the fina) section of this chapter we are motivated
to show that our description of the gas is independent of

this choice.
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A. The Grad fburteen Mcmem Me thod

The equilibrium state does not manifest some
interesting physical phenomena such as shear viscosity, bulk
viscosity, and heat flux. To describe such phenomena we must
discuss the non-equilibrium state.

To examine non-equilibrium, we employ the relativistic

Grad method of moments. We let
y (N = ln(HAIAA) - ln(NA/AA) +f, {4.1)

where lnCIEA/tSA') is given by equation (3.1) with g* (common
to al} species) replaced by éi (unique for each of the

species). We also have EA = éA“i , u:umi -1 and BA = mABAE The

quantity fA is assumed to be small compared to 1n<§A/EA) and
is said to be first order (Ql) ; this informs us that we are
"close” to equilibrium. |

The relativistic Grad fourteen moment approximation is
obtained by assuming that £, is a quadratic function of
momentum:

. s ey AT, i 1 9
£, gA(:) + bA(;)vAA + I\ (I)HAAHAT . . (4.2)

] o c e s ZA TAT
The quantities 8 bA N

variables which describe the deviation from equilibrium. We

are unknown first order

may assume that c:T is trace free because 8 non-zero trace

can be absorbed into a, .
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To facilitate computation. we define the following
Quantities: .

PA T UaPA 5 Bag T B0y |

N ca u M (4.3)

A T UaUATCA  Cag T 8agaYaLSa
- = Elf 1 A
“AaB ~ éAEAAAITEA ) EAAAGS *

af

A A
these definitions we may rewrite equations (4.2) and (4.1)

Note that bl , c? , and ¢ are an orthogonal to uf . With

as
-a 3 @,
fA = a + (vbAuA + bA)ﬁAa 7
’ (4.4)
aB laB, . a B B a af oL
+ { CAluUy * 38, - (equ i+ clul) + e) } YAa¥Ag’

s A s 4 LN sy 2@ a,
1n(HA/AA) - (aA + aA) ﬁ [(B.=b )u + bA]HALj

AAA (4.5)
i A ] ] ) 4
., a B l,a8, a8 B as aBl o
+ { CAliAUA * 30 - (equy +cu)) 4 e }“Au“AB :

When we examine equation (4.5) we note that it is
invariant under two classes of transformations of order one.

The first class of transformations are frame changes:

(4.6)
b, =b’ - B6u, .
0 A a
The second class of transformations we shall call fitting

changes and consists of two separate types:

= a’ + 8a.
a ay Sa,

A Ala,ig,‘“s&: H (47)

A A A
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BA = BA + SBA 3 bA = bi + SEA . (4.8)

Since the individual species are close to a common

equilibrium, we expect that all of the uiis are close to a

0l yPell _ . La . Y S
u,= 1;+§A where SA is Dl. We therefarer
nge

equation (4.6), to adjust

common u® | that is
employ the frame chan
equations (4.4) and (4.5) so that we have a common u* for
all species. Once we have done this however, we still have

the freedom of frame changes v

uuiuiafktsuﬂ . u'tf'h-lm‘D2 ; bzibAG“B Su s (4.9)

applied to all species.

These first order transformations do not carry any
phfsicaI content. The specification of an equilibrium
distribution function close to the actual distribution
function is not unique. The first order transformations
allow us to transform to a different choice of the i
equilibrium distribution.function. Our choice of this
function, which we "match” to the actual one, is therefore
just a matter of mathematical convenijence.

We define the deviation from equilibrium, 6N , of the

d1str1but1§n function N, by

N, = N + &N . (4.10)



Then, when we regard equation (4.1) as a Taylor series

-

expansion of In(N./A) about the equilibrium value
m(ﬁA/ZA) in terms of ‘S"A to first order, we have

L. oy .
s rae . & L4 . “A .
1n(NA/AA) L,ﬁ(‘HA/AA) + ENA ié‘NA . , (4.11)
2 IN =N
A A

Henée we can immediately identify §ﬁA: R

N, A ;
" A A . 3
@Ai’é‘grﬁfA . v (4.12)

Furthermore, we have for AA the first order expansion

~f . (4.13)

B. The Non-equilibrium Tensor Structures

We now have all the information necessary to deduce the '

e;pressians for the mass flux, energy-momentum tensor, etc.,
to first order.

From the definition for mass flux, quatian (2.14) and
employing equations (4.10), (4.12), the detailed structure
of f,, and thé definitions (3.5), we obtain the-faligwiﬁg
intermediate result: .

a a A a AT, a

{ = I a.J + b'J + e L, (4.14)
My m It oyt e d,,

Now, using the definitions (4.3) and the detailed structure

{
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of equations (3.9) and (3.10). and comparing the results

with equation (2.29) allows us to identify

where 6“A is given by ‘ .
- ' ~

S0y = Ja10% * Ta20Pa * U * Ta31)¢

(4.15)

 (a.18)

=

—

(4.17)

We may split the mass flux into zeroth and first order

parts:
a °a a . . v
MA = HA‘.‘ SHA » "
where
£
[}
°a a
MA - IAlO“ ’
a a a
GHA - GnAu + JA A

This split will facilitate computations later on.

(4.18)

(4.19)

(4.20)

In a mathematical treatment similar to that above we

, obtain for the energy-momentum tensor the following



intermediate result:

aB aB GB
A . A A A )

“A af TAT ag
bAJ % + ) JAA . (4

Expanding equation (4.21) via equations (3.9) and (3. 10),

.21)

and conparmg the result with equation (2.31) allows usgé

obtain the follow1ng results:

Pa = Tazo + S0, (4
60, = Jpp0%s * Jp30ba ¥ Wpso * T2, 3 (4
‘ Ty = a8, + M, qb, + (37 Aol * 5Tpu00¢, s (4.
h: A31b + 2JAélci ’ (4.
" o gy, e (4

We split the energy-momentum tensor into zeroth and

first order parts by letting

aB _ *aB ap
TA 'I'A + GTA

(4

.22)

.23)

24)

.26)

.27)
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where

T3 = 1, w®f 4 1, %8 . (4.28)

+ hAu' + hfa“ + 128 (4.29)

Let us define the heat flux q, by

® = h® - n 4% | ! . (4.30)

This quantity Ys invariant to first order under frame
changes, equation (4.9), (Israel and Stewart[16]). Then,
from equations (4.16) and (4.25) we have

(4.31)

where A, is given by

2 | ’ (4.32&

=
[

A T Pa31/Ia31 = Tau1/9a01 -

The physically measurable quantities in our theory are

the mass density n the energy density Pyt the bulk

A’ y
stress =, , the momentum flux hi » the heat flux 47 , and
the viscous stresses “EE . If we specify the variables a,
and B, for each species then equations (4.15) and (4.22)

specify §ﬂAiaﬁﬂ SFA - Conversely, if we specify én, and 5PA
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then we can find a, and B, We call these the fitting
conditions. This justifies FET]iﬁg the transformations
(4.7), (4.8) Fitiing changes. We choose to let our fitting
conditions remain arbitrary so that our subsequent analysis

remains independent of any choice of the fitting conditions.

C. The Solution for the Deviations from Equilibrium

For massive particles, equations (4.17), (4.23¢,
(4.24), (4.25), (4.26), and (4.31) relate the four teen
unknown variables (a,, VA‘EA bi.!i,; ) to the Fgurtéen Kryown
variables ﬁhA,§pA,ﬂA. A,qg. EB) We now have a fourteen
dimensional linear algebraic system of equations which is
conveniently expressible as a six dimensional

transformation:

réﬁ: AT Ta2o Tazot a0 O o ][]

Se, Ia20 a0 Jasot Tasr O 0 0 Pa

", 3001 Mag1 Yty O 0 0 Al (4 a3)
qz 0 0 0 0 23,,,A, 0 c,

ﬁis 0 0 0 0 0 21,0 [e2f .
B JL°

In the case of massless particles, the energy-momentum

tensor is trace-free, that is Tix‘ 0. This condition, via

equation (2.31), requires o~ BI;A and hence §pA -,
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Therefore, we only have thirteen equations relating the
fourteen variables (a,, b,, c,, b2, c°, c;®) to the thirteen
variables (én,, 80, hi, qi, -n:a) Hence the problem is not
solvable with the given information. We shall have to employ
a different approach to the massless case. Hence, we shall
defer discussion of massless particles to chapter VI. It
will now be understood that, in what follows, we are dealing
solely with massive particles for all species.

Let us denote the inverse matrix of the matrix
appearing in equation (4.33) by (2) with matrix elements
f%dj (1,1 = 1+6). Then the inverse relation to equation (4.33)

is given by

[ ] @ . a. o o o] [én]

A A11 “A12 YA13 : A

Pa Bp21 Y22 B3 0 0 0 S0,

<\ 2,4, Qgy B3 O 0 o LA . (4.34)
bz — 0 0 0 8, 8, O hz

¢y o 0 0 0 8, 0 a,
:-:z ] 6 0o 0 0 o QAEE fij

Let us define Q, by

a = a61910%23179020%4300* 3031 Ga21 w30 a20%an s (4.35)
. ,A - N B o - S - - - - . ' !

Ja42Pa20 -

Then the coefficients QAij appearing in equation (4.34) are
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given by
303331944077 A30" Tag1) ¥ 39319041 = as0aaz
0 - 4_1 DO ~ i - 5 (4.36)
' as2a20%
Ia20039041* STau2) = 3p31Upa0%,90)
QAlZ = R A A - (4,37)
At.z Dr20*a -
-~ Ja30Ya30Ma91) - Ia20¢ asotair’
~QA13 25 q : (4.38)
AL2” AZD A
.fAzo(3JA41+5JA52) " 21 Ypsot A&l) e
“AL42 AQG A
=z
02198304310 7 Ia10@aa1tSe) ‘2 A
2,,, - A3 10 7 a617 > (4.40)
Ta42"a20%
JA10(3h40+JA41) = Ta20Ya30" Tazr) » ,
Q423 = %3 Q. ; (4.41)
A42Pa20% |
300217430 7a207A31) .-
Q31 = 4., b0 - &%)
a420a20"% S
3(J ) o
Ta107a317a207a21 ,
_ A42Pa20%
4, = —1/(4JA429A) ; (4.44)



Taas = 19,3 s (4.45)

LSRR ,  (4.46)

Lol
[ ]

A4s = " Jas

Q... = 1/(23 (4.47)

L L]

az1ta?

Raee = 1/(23,,,) . . _ © (4.48)
The structures of the mass flux and energy -momen tum
tensor have completely determined the variables appearing in
£, - Therefore, the structures of all other moments of the
distribution function are completely determined by the
structures of the mass flux and the energy-momentum tensor.
This is the hydrodynamical description of the gas as

described by Israel and Stewart [16].

D. The Double Momentum and Entropy Fluxes

We shall now discuss the two other moments which are of
physical interest. These are the double momentum flux and
the .entropy flux. Let us discuss the structure of the double

momentum flux first.
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We define the variables Yy &, by

As before, we

fa

Z, = - A u u%BY . (4.49)

aBy
uu,ul A ag¥yYa

a By A ’

use our Knowledge of the structure of N, and

to deduce the intermediate result
aBy _ ,aBy aBy afy - “At aBy e
v, I+ a,J, o+ bAJAA + e Jang : {4,50)

which reduces

where we have

aBy

Ua

= VvVuuu + =—
3

after some algebra to

a By 1 r (UQABT + uEAGT + uvAaE) _ }

A A

(u uBbY + %" bA + uBquz)

+ 2JA51(uqu8cY + UGEYEB + usu c ) ’ (4_51)A

A A

Al‘z(Aaﬁby + AaybE + AETb )

af vy ay_B8 By a
+ ZJASZ(A e+ A e, * A tA)

By 4+ 4B & uve®fy . -,

MESICTALECA A TR

Uy = Tp3p * 8y, ;5 Su, - J,430%2* a40°% +(JA5D+JA§1)C ; (4.52)
©a " a3 Y05, ‘ ,

(4.53)
ch - 33 A313A + 3JA41b + (3J JASE)EA .

Since contraction over any two indices @Fthnsv gives u5i4§

we

infer that



We may rewrite 5§A in terms ofe <5nA , cSaA , and L via

equation (4.34). This gives us

5§A = U1A§“A + UgAﬁpA LI (4.55)

where

Q

W1 b M (33,69 + 5 )0 ;. (4.56)

as1 b a8

o
1]

m =M 21t

a1z ¥ Mpaafann * Bdgsy + 57,6009,

(4.57)
24 = Mgy 4.57)

=1
[

o) " (4.58)

‘A13 + 3

3

Usp = 3u3y

Tan1faos * asy + 59,6004
Let us now use equation (4.34) to rewrite equation (4.51)
while at the same time splitting it into first and zeroth

order parts. We have, therefore, that

A A }

u2BY o gOBY 4 gyofY | S (4.59)



- paBy _

Ua

su*BY

1 _1,,,aBy
*iS(USA ﬁA)(A G+ 87 q, + A

(Tp10*3Tp3p )0 0w’ + 1,4

a B y + 1 I(EEAET+HEA37*BTABB) :

o (R AR aBy 1 _a,By _B,ay v,.af,
- (ﬁpA+6§A)u uu' 4+ §£§A(u A +u AT +u'ATD)

.a B vy ay.B. Bryoa
*,UQA(“ uBhA +uu hA + uu hA)

- a B y ay B B v _a,
+ USA(u u'q, +uulq +uu qA)

1. _1 A38, Y Aay, B By a
+ E{ggg' nA)(A ghA + A hy + 4 hA)

ay B BY a
A" q,)
,A'

A

Y, “ET“B + ﬁBTuﬂ)

. aB .
* Uealmy v AY YTy ;

where the coefficients Uia (1=4,5,6) are given by

Usa

Fmtions (4.55) to (4.64)

. +aBy
of UA .

Ine1aus
Taa1Mss + 2451055
245266 -

The entropy flux structure is a little harder to

deduce. The reason for this is that we shall need the

55

(4.60)

(4.61)

(4.62)

(4.83)

(4.64)

together comprise the structure
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entropy flux to second order to properly discuss the
transient thermodynamics of the gas (lsrael and Stewart
[16]). This will be clarified in chapter V.

Néﬁ consider the function @(HA) as given by equation
(2.24) which we expand in a Taylor series to second order in

§HA:

?A(NA) = QACHA) * lﬂ(ﬁA/AA)‘SHA T (‘SN ) - (4.65)

Evaluating this expression further gives us

- 2 _ )N
@ (H ) (a + BAWAA)NA + (zA 1)NA

(4.66)

| Do

B =
I
I :
-
>
L

4
>

- €,8, g, 1n{1- EAgxp(aA+BAwAA)} + =

which reduces to the expression (3.13) in equi librium.

Inserting this expression into equation (2.22) gives us

a . _ - a .. Lo A u_,! a | 657
A" KL Bu - ka,N, - kB,T,, Q, (4.67)

where we have defined the second order tensor Qz by

N
sl M 2o

Introducing the expressions for the mass flux, the
energy-momentum tensor, and the double-momentum tensor we

obtain an alternative form for the entropy flux:
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a a_ .a, a4 o

Sy = Spu - O3, +h/T, - Q ) (4.69)
where

Sy = kB, (1,,, + P - Op, - (4.70)

The problem of deducing the structure of the entropy
flux now reduces to deducing the structure of Qz . We employ
expression (4.2) to replace just one of the fAE;appearing
in the right-hand side of equation (4.68). We obtain, after

some algebra, that
QZ - X { aAm: + ]ZiﬁT;’ + ;hzsuM: } . (4.71)
We re-express equation (4.71) via equatiéﬁsx?ﬁ.ED). (4.29),
(4.61) and the definition (4.3);: b
{nAQ: - u"{ apbmy + cybn, + b6p, + 2 ¢ 60,
'+ oy + ZﬁéAE:)}:AA + zu&;iqu Vgath " Ah‘}
+ { a,/n, +b, + (c,/3) (40, - 1/n,) } A
.+ (ﬂA/3)b§ + { /a + (e /3)(AUSA+ 1/n, )}w

_al

2 a . _g

tIONC T Wy e F 5 (U, - Uney A "o
2 a < Aa

+5 WUgy * 1/nde, gy + b, m
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To help re-express equation (4.72) we note the

following three relationships:

A 2
8a°A = M/ Ia3y s

A
bA + 20

aA/nA +b, + (CA/3)(4U4A - I/HA) = "A/(3JA31) H

2
- ay/n, + (e, /U, + 1/n,) = Ras™al3 + 305568,

¥

We now use equations (4.34), (4.55) and the three

relationships immediately above to re-express equation

(4.72) and thereby obtain Q: in its final form:

a 1 aof 12 2 2 3.2 4ot
=2V { QA Wy T Ghyhy, + Qi
5 6. 2 7 8, 9. 2
+ QA"A§DA + QAGDA + QAwAénA + QAGpAénA + QAﬁﬁA}

10 a 11 a 12 2 a
T QA Qb+ QT

13.) a 14 a 15 a
T Mt Q) 00y, + Q700 q,

where the coefficients Q: are given by

wn
oo

(4.74)

(4.75)

. (4.76)

(4.77)

(4.78)
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&
H (4.79)
: ) (4.80)
H (4.81)
4 ] .
30305 %3 9A33U2A} ; (4*8_‘2’
2 4.83)
* 3 a0 (4.83)
bo uo L4 ] . (4.84
a13 ¥ 33 3 0gyU5, + 3 QABBULA} ; -84)
Q.
R I S u 1(4_85}
D12 * F31 + 3 KU + 3 QAJZUIA} - o
4 ] (4.86)
{QAll tiha t3 nABluLA} ;
: , (4.87)

Kk 2 )
= ;A(QAloS/ 3+ 305,65) s



N e R

"A B, 3 JA31 *
[~ 12 _ Kk
QQ - { USAQASS +- (U At1/M)8 66 +

A

1/n-)Q 1

e
-
Rk
n
\I "
P,
[
o,
Lo
|

a4 k2
Q = w,3 Upafass s
15 k2, )
, Q ° m,3 Upafyss -

E. Invariance to First Order

5 4a T MM e * z AG4

60
(4.88)
L
. ,
Egm} : (4.89)

}-k 1 (4.90)

m,J A31
_(4.91)
;‘ff» -

(4.92)

We haveﬁﬂedgced the non-equilibrium structures of the

mass flux, the energyimamentum tensor,

the double-momentum

tensor, and the entropy flux. These four tensors describe

all of the physics of our multi-component gas. The -

description of the physics must, however, be independent nf<

N

how we separate these tensors 1ﬁtD Zeroth and first arder

parts, that is, the description must be invariant under the

first order frame and fitting changes.

L

) & )
Let n represent the number of species in our gas.

_ & i _ L .
Suppose we are given 2n sets of (measured) data (s 0,)  We

) * ) , o »
select 2n numbers (&A,SA) and a rest frame u° such that the



; T

fitting conditions specify the 2A numbers (6n,, 60,) and our
choice of u® specifies GZ‘ h:) : 7

The fitting %haﬁges and the frame changes tell us that
our selection of (r:Ai BA) is not unique to first order. We
could have specified another set ((1;; ’Bi) and another u'®
Since these are different from our first set by order one,

let us set

. . . ] - L ox . gt a a a9 )
a, a, + GGA ; BA BA + GBA i u u + &u . (?QEES)
Then, invariance of ln(HAfAA) requires that
' - - - . - # 3 'A 5 X A 3 ,V o Q4
) fo= £, 66, of Sa, + (88,u” + B SuDw,, . {4.94)

Let us put equations (4.93) into ﬁ; . We obtain

S i,i’?,i - i s Va1, ) ) )
N, 2* +Al>1A where ANA (HAAAIEA)&A’ Similarly, we can shﬁg

that*expression (4.12) becomes Eﬂvé = tS“A!MA. Thus

N, - ﬁA+6NA - §A+6NA is'invariant under fitting and frame
changes. This decomposition of N, is precisely the one used
to.obtain expressions for the mass flux, the energy-momentum
tensor, and the double-momentum tensor . Hence, these tensors
are invariant under fitting and frame changes.

‘ The case of the entropy flux is more subtle because it

is evaluated to second order. Equation (4.65) may be written

in the primed system as
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- &' v ' .
¢A(NA) °A0 + °A1 + °A2 :
(4.95)
o' - O (ﬁv).,-. o' - 1n(§|/2v)w' ) - l_g_A_ 6“'2
AO A A ’ Al A A A ’ A2 2 o'o' A .
v N
A A
Agaip. we expand the primed variables in terms of the

unprimed variables via equation (4.93). Then we have that

g
e 1 B 2
°Ao %0 * 1n(ﬁA/AA)ANA +3 ) L
Aa (4.96)
o o Bp B 2 '
* - -
%1 = %01 ln(NA/AA)ANA+§K aN, ON, O N,
A A A A
g, - g
S A 1 _"A 2
°A2 °A2+§Zs ANAGNA+2§Z ANA
A"A A A

Addition of the last three equat{ons above now tell us that

AN = Pttt Tt e, (4.97)
Therefore the entropy flux is invariant to second 6rder
under fitting and frame changes.

We conclude that our description of the physics is
independent of our choice of (a,, BA,\f5 to first order.
Consequently, we can choose any set of these quantities
which is most convenient. However, Qe note that it is
impossible to choose, in general, a frame such that all of
thé j:'- or the h:'s are zero.

There are two fitting choices that are most convenient .

The first choice is 6n, = 60,=0 for all species. This means



63

that IAlO and I,,0 2re the actual number density n, and
energy density p, respectively. This has the advantage that
QAQ is greatly simplified. However. we obtain a different
temperature for each component. From this first fitting
choice we may obtain the second choice by fitting changes to
obtain a common é for all species, which means that we will
have a common temperature for all species. lLet (;.A, éA) be
the values which imply that én, 5, =0 . Employing the first

L.

two equations in (4.93) tells us that

Oy = Ip10%% - Ta20%6, |
(4.98)

80p = T205% = Jp3058, ,
We wish to maintain én,=0 . This implies that

daA - (JAZO/JAIO)GBA so that §9A = - (DAEG Am)‘SB . We specify

é by requiring that

ZpA-z 120(@s8) < [, =0 . (4.99)

A

o ey

[ J
Since SBA-nA(é.éA) , equation (4.99) implies that

B = {E(DAZOBA)/JAID } + {gc 2,20/ Ia10 } ) (4.100)

This completes our discussion of the non-equilibrium
structures and the invariance of the physics. We shall now
turn our attention to the discussion of the transient
thermodynamics of the gas for massive species. This is

performed in chapter V.



V. Transient Thermodynamics
So far, in our discussion of the gas, we have not

considered the detailed structure of the covariant
dggisatlves of the mass flux, the energy-momentum tensor,
the’ doub 1e-momentum flux, or thé entropy flux. A full
discussion of those structures will require us to compute
covariant derivatives of the first order quantities
a a aB)

éoA, n,h ,q,, T

A’ Pas Qs T, The retention of these

(GnA.
derivatives in our calculations is a feature of transient
thermodynamics ;s opposed to quasi-stationary theory.
Transient theory versus quasi-stationary thealy may be
schematically explained in terms of length sca1esb[15.34].
Let X represent the mean free path, the average distance a
particle tfaveﬁs before it suffers a collision. Let L be the
characteriétic length over which macroscopic variables such
as the number and energy densities change. We expect that,
schematically,I/pruﬂﬁlg. Now let L’ be the characteristic '
distance over which first order quantities such as 5nA and

6o, change appreciably. We expect th't.l/Li%pquf/fg The,

A
relative importance of these scales m y be deduced from a
schematic analysis of the Boltzmann uation. For a single

collision term in the

species gas of classical particles t

Boltzmann equation is i)couNm'H’grjf ~Nf/h where o is the

collision cross section. The Boltzmann equation is then

schematically represented as p“7!iﬂeﬂffk With the

subst1tut1onli- Nﬂﬁf)for classical particles we have

1
L

64
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p"(V N/N) + PUVE/DE 4 oMW NI e (5.1)
In terms of our length scales this may be written as
/L + £/1°+ £/L~ 1 This shows that £ A/L <<1: thus first
order quantities are about the size of the ratio of the mean
free path and the characteristic length scale of macroscopic
quantities. The third term is of the size,S/Lz which is much
smaller than order one and negligible. Now if L' is about
the same size as L then the second term is also negligible:
this is the realm of Quasi-stationary theory. On the other
hand, if L' is about the size of the mean free path, then
the second term is also of size 1/L and is not negligible;
this is the realm of transient theory. In summary therefore,
when first order quantities change over a scale which is
large compared to the mean free path then they are
negligible and we are in the realm of quagi-statignary
theory. However, if they change over a scale which is
comparable to the mean free path then they are not

negligible and we are in the realm of transient thearyi;

A. Preliminary Discussign
Let us begin our discussion by defining some

terminology which will be useful later on. If we let xiﬁﬂ

represent any tensor function where a(n) a...a then the

time derivative and spatial derivative of xz&ﬂ are given by
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ta(n) _ a(n) u ,ﬁ('ﬁ) = A A a(n) \

a(n)

" is a scalar function of a, and BA.

In particular, if ¥

then the chain rule gives us

3% 9y, \
v . of_CA WA -
Xalu " BuA)gAlu "(’a’BA)BAlu . (5.3)

Now ch

of the comparison equilibrium distribution function. In

and EA are defined in non-equilibrium by the choice

eamhl:;riurp we noted that G"Alu = 0, BA(qu) =0, and
BAIn‘ eAﬁ'u; In a non-equilibrium state which is close to
equilibrium we therefore expect that E‘Alu = 0y, BA(ul'u) =0y,

and Eﬁlui 5A§u+@ . Hence equation (5.3) may be rewritten as

-

Xalu = Xal, * 0 (5.4)

where we have defined

_ ) axA , .

The time derivative of X, may now be seen to be of order
one: iA(aA. B)=0,. This property, along with definition

(5.5) and equation (5.4) will simplify the computation of

the derivative of the double-momentum tensor.
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Let us also define the quantity n, by J
n, =B, 2 (1/n) . .’..(5.5)
A~ FAB T

Let us also note a number of useful relationships:
he - ﬁiuAua + -’f{; NI (5.7)
F

:?: = éiuAug+ A® J\qA ; qA - - ézuﬁ - : (5.8)
Ty =0, 5 A e Ao  (5.9)

oa B A Jx B A i
. o= “u + . - N H
J;lmus\:'“"hA hywy, + 0, ; 8 ug¥%a, quuy, + 0,
i

11‘ i sua'rrulsk%,lsk(j? . (5.11)

We define the symmetric, spatial, trace free part of an

, . . af .
arbitrary second rank tensor Xy, by’

<af> _ .a B ., .a ,B _2 aB, At - (B qm)
X, = (a PP A 7 8,.8 )xA . (5:12)

Then, for example, Yealg> ™ EGEB; We have completed our

preliminary discussion and shall now consider the major
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topics of “this chapter.

B. The Derivatives of the Physical Tensors

The first and zeroth order parts of the mass flux as
given by equations (4.19) and (4.20) may be differentiated
and contracted té give us the following two equations,

correct to order one:

éE . - " ) ) i )
Mala ™ Tato * Ta10® . (5.13)

=y

a * .a = o
Myla = S0+ Ipla - (5.14)

We may solve for ji in terms of h: and q, via equation
(4.30). Differentiation and contraction of that solution now

informs us that
Iala = MORL|, = /npag), + R 08 - oD (5.15)

where we have employed definition (5.6) and equation (5.4)
to produce the last term. Substituting equation (5.15) into
equation (5.14) produces

a

h ‘f‘)&u. (5.16)

. S L 1 2 A X
&M la ™ 6n, + (1’“A)hA|g ﬁ‘(11115)%]‘@;l + ﬂA(WA’qA

Ala

i

The zeroth and first order parts of the energy -momen tum

tensor as given by equations (4.28) and (4.29) may be
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differentiated and contracted to produce expressions for

sal
Ta | x
with u®and 8" to produce four equations, correct to first

A ¥ X . . .
and éTA IS These two expressions are now contracted
order:

: al . _ _ ' .
-ng = Lo * MIa0® 5 : (5.17)

A‘”ﬂ =V I +n.I

Cwata [T Ywtazn T Mataroty (5.18)

o 'y Las e
=u76T §pA+hAlA+hADE H K (5,19)

8, éTA I = 3Vt G, + TTAIB){JH (520)

, . A A ]
+ AulhA,A - hAmAu + TTAP [» 3

where we have used relationships (5.7) and (5.9).
The case of the double-momentum tensor is treated
similarly to the energy-momentum case above. We

differentiate and contract equations (4.60) and (4.61) to
obtain expressions for {IEBTIT and &u° BYIT . These two

expressions are contracted with ugug s uh o, and

AuaAvB -3 AuuAaB ; this gives us six equations:

EEET - x _ 7 = . 7 7
uugl, Iy (IAlo + IAlDe) + (BiAgi + SIAale) ; (§,!!1)
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*
i}  *qgfBy - 7 1 - _ o -
Aua“BgA ly - 3VMIA31 + (IALG + SIABl)uu ; (5.22)
: -1y oA ygeBY L, \ . (5.23)
(Auabvsf ?uuﬁas) Ay IABi“{pIu; ’ -23
wu Y Lsn 4 st 42U+ T Yhta
a B A |y o\ A CTT4A T TAA AN
. (5.24)
+ U, + 0. 0q%, + U0 4+ NN
TUSA T O TSATTATA T TAATA SA7A[X
CoeeBY 1 3 . R
BuatgUx |y = 3 U080, + F80u, 4 U, A R
. R : - =) o A . A ’
\ - - (5.25)
* Usallada ~ Uaaha®hy ~ Usaduy,
i A < . = A=
* Usa™u |2t Wep + Tg 1, Cuy
- ; . , EEY - 1 . .
(AuﬁAuB 3 AuuAaB)gu IT IA31 { EABDv-ﬁuhAu}
+ tABlvgquui + tABZBA{u“u> (5.26)
+t,..q, U _ +t..,T - 2e,.m A :
A33%Avs T A3 Ma<uvs T 28434 acw Yovs

where we have used relationships (5.8), (5.10), (5.11) and

definition (5.12) as well as defining the following -

CéeffitiéﬁtS:g
tAaog't’;’s%mAA”if“ﬁ o Y (5.27)
A3l - ' . : » :
1 1, . ' ‘ oy
t = (U, +1/n) (5.28)
A3l T 1., 5°75A A

£



"
11

A32 T T

j

1 1, , . | = < n
{ 50, + 1/n) + U, + (@, +n )} : (5.30)

A33 T .0 ,

(5.31)

I
3 m [

ta3g C Usa’Tpaqy " 1 -

In equations (5.24) and (5.25) y§\have r;tained 5:;A and
vu5;A for the sake of simplicity. Ugéﬁéﬁ obtain expressions
for these quantities by differentiating equation (4.55). we
~then have, correct to first order, the following two

results:

6, = U, b6n. + U, GEA +U,.W : . ' (5.32)

Vu§§A = UlAvuéﬂA + Ué’vuﬁpA + UEAvu

+,{ ulAtsnA + UZAégA + UBA”A } u s

m,
A

(5.33)
where we have taken into account that ﬁiA ig order one and

we have used equation (5.4).

C. The Entropy Production l

We now have sufficient information from the above
calculations to inte]]i;entiy discuss the entropy
production, Szlﬂ » for spécies A. As a first step, we shall

consider Qilﬁ . We shall require all computations of Qilu to



be correct to second order.
To compute Q‘ we consider equation (4.77).
Straightforward differentiation and contraction and using

definition (5.2) provides us with the following result:

/ a 1 3 ar 4 _aRs
Ula = Q" ATt QAquA + Qyhh,  + Q2 "Aae
+ 1% 8o, Q n 66 4+ Q66p 66 Q " én
2 W™ A"A%PA A ATAA
1

+ = QA'nAénA + = QAGQAGnA + = %QGDAénA + QA§ﬁA§ﬁA

10 a a = a- =
T O Myl t QA "Al%]a * QA "ads"

(5.34)
11 a 11 a =11 a- )
T aldfa t U aPaje * Q0 TaRaY,

12 _ai 12 _a) “12 _a) -
MR U A AL P PR LA T

13 _al 13 _al ul =

+Q, A [\Paa ¥ Q7 TA Pagfa t Q Ta e

14 14 a = a-*
*Q qA6°Ala *Q Gppa,, t QA 800934

15 a
Q" %y,

+

15 a =15 a-
t Q) Onaa, 1, * Q) Snyq,u

We can, however, compute Q:h,by another method. If we
differentiate the original definition of Q:. equation

(4.68), we obtain the following expression: .

Ala L3 [ {(N A /g )£ }” w dV ; (5.35)

where we have brought the covariant derivative inside the
integral. The integrand may be expressed as

N

AA a A A a2 =
(NAAAfA/S )|| " = ZfA{"EZ—fA}Ila"A - {—EZ_}IIo“AfA . (5.36)



73

The second term on the right-hand side of this last equat}bn
<

. ‘may be rewritten as ‘\\

d(N A)
{ } ¥ = fi’gA d(ln(N 78 )Td“‘"A/A BTN

8A dfln(NA/AA) Alu

(5.37)

+ 28 'v)v )\i

A(u

Since a and BA(uh» are both first order quantities, we

Alu

see that the guantity expressed by equation (5.37) is. of
ch :
order three and therefore negligible. Therefore, from the

the three equations immediately above, we conclude that

3

a .
I f (ﬁAﬁAfA/gA)”uwA v, . (5.38)

a

QAla
Let us now re-express the undifferentiated £, in equation
(5.38) via,equation (4.2): this allows us to bring the

covariant derivative outside the integral. We eventuaily

obtain the following result:

‘J

a k a TAT a '
v QAIB = 'a { !AGHAI + b GTAA I (:A GUAAT ’0 } . (539)

We may rearrange this last equatién in terms of quantities

that we have already derived:
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a k . a , Y. |
Ule = !—{ (: - EAIB) SHAIG +b, ( -uA(STA 'E)

A

+-% S (u §UEBT| ) + b, 4, 5TEB

A Ya"8%"A A |8 )
§.40)"
PP R afBy
+ 2 EA ( A”g B(SU |7)
{(A Y A A, )5UEET' ]

8

We now substitute into equation (5.40) equations (5.16),
(5.19), (5.20), (5.24), (5.25), and (5.26): we also replace
the remaining variables via eﬁuatigﬁ (4.34). The resulting
Express1gﬁ which is too complicated to reproduce here, must
agree wi th the right hand side of equation (5.34). A
detailed comparison provides us with a small number of new

relationships:

15 k 4 .
7% " a, 3 IRV o
. F £ 15-41)
=X @ . +4g ) " i
m, A23 7 3 “A33 24’
M }, 7 .%. i [y] )
2 U =, 3 43173 é
’ (5.42)
ke ] )
= m, (B4 # 2,13 3 QA.EBULA) ;
1 . ¥
1 8 k ,_ 4
7 % "o Oy 3 317500 -
A (5.43)
k — 4 )
N (12 * Qg0 + 3 85,000 .



Q, _
210 k [ s . Ya33 o
5 -5 { Aalgs * 52240205, + B, + 7)) (5.44)
\ = s
* Pas m g (Ty, + 50,0 } ;
A w3 T T3 0, Y Ug) -y 3 )
| 612 L S RS ' tianflie, = 20, (U + O ) : (5.46)
A T ac 1 TTa"a30"ase T Zss(Ugy * Ugy ; -3t
=13 k|, i E am)
U T a Tananaes (5.47)
14 % f - A32 Y 4
Q= Z"{ My + 737 [4Q2Ug, + ) + 0]
A (5.48)
i : - 5
* s T 255 Wp, + 3 0,)) } ;
L o o
<15 k[ - A31,, ]
W "w, { "B ¥ 342U, + T+, )
s : (5.49)
= 5 \
T 2hss Ui + 3 Ug0) }

At this point, we shou'ld note that even though Q) is
second order, its derivative pﬁadueeé second order
quantities. Hence, we needed to know the entropy flux to
second order to correctly compute the entropy production to
second order . : !

Let us now compute the entropy production for species
A. Equation (4.67) may be differentiated to give us

.a [k n @ La | S grr _ .G ) En)
sAlu'{qlulﬂA“ T e BT }lqulg (5.50)



Performing the differentiation on the first term in this

equation eventually leads to the following result:
a _k L, af
SA'E )

>
f
:bP

x + X s B (5.51)

i
| ] ‘l‘ e
™
e

e
o
Q
]
|~
1
3
+

I~

o

) “ a
|

un
f=]

>

To check this expression, we compute the entropy prgductiéﬁg

by another method. From the definition of the entropy flux

1

we have

o

@ Fa s a
SA'E = I {¢A(NA)}"EWA dVA : -

(:2§/£ ¢, (N,)) is given by equation (2.24). Since we have that

{'QA,CHA)}”E = {1E(NA/AA)}NAHE , ‘ (5.53)

(5.52)

A
then equation (5.52) may be written, via equations (4.1) and

(4.2), as

(5.54)

B |
>

We can separate out Qzla in equation (554%%3' virtue of

equation (5.39);
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a k 2 A, @
SAIC! = -k(a, + lm ) I + A* B, ( TA;\ ' 6T,Al Iﬂ
kK A° k_ -
S a b, la) * ﬁ;’b (-4, TA |8’ ,
A (5.55)
AL gy baBY 2K o paBY
- 3 ﬁA(uﬁ“EUA |7) o, €, ( a E[A 'T)
k AT 1 s 3By a
T w A [€8)08:8 = 3 BarBagdVs |y %la

We may now substitute into equation (5.55) equations (5.13),
(5.17), (5.18), (5.19), (5.21), (5.22), and (5.23) as well
as emﬁleyiﬁg equation (4.34) to replace the remaining
variables. This whole procedure produces equation (5.51).
Hence we confirm that equation (5.51) is the correct
expression for the entropy production.

Equation (5.51) may be re-expressed for better clarity.
We add equations (5.18) and (5.20) and tearrange the result

to obtain the following expression:

.. . O 1 a
- a = kol 2y
Vula2n * Malato¥ = ATa o { 3 A 7
. (5.56)
. - A ANt A A - A :
+ (cSpA + 3)uu + AplhA - hAmAu T I\

We now substitute this expression into equation (5.51) to

obtain the following result:

!,a k I 1 Ao - k . _aB 1 lv
S, =-—PBn6B/3+= q'VO -2 Bg - —— h'%.n
Ala m, "A'A nA ADTA  mw, "AaBA Jy3p AXA
(8, + /3)— L :&A S b %&Ac‘; (5.57)
A31 ’ “A31 8 "A y
1 ,AT=n k A_ a a
+=6p, B +——n'r * _Eglt Q%
AR T A m, AA |a Ala
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In the case of the siﬁglé species gas, T:NA! 0,

- equation (5;57f reduces to the result as given by Israel and
Stewart [16]. Also, when we neglect the transient terms, we
obtain precisely the stationary result in Kinetic theory

given by Israel [12].

D. Transport Equation Preliminaries
Let us now consider the transport equations which are

obtained from the three components of Uisﬂx' that is

af . -9 . _ 1 \ OB A
uauBUA '1 s Au&uBUA l;\i and (AUBAUB 3 AH\JAQB)UA l)‘ Be
we can derive these, we must re-express equations (5.21) and
(5.22) in appropriate forms.

We begin by adding equations (5.13) and (5. 16) and

rearranging the result to produce the following expression:

A10 Tr10% - omy a

e - 61;7 - Cl/ﬂA)hi' 5 56
5.58

oy O Y. | a,*
+ (1/ﬁA)qAIg = Ny - aduy
Similarily, we add equations (5.17) and (5.19) to obtain the
following result:

_—_— TR T TR (5.59
Ta20 = = MaTa10? = 6y Pala 7 Pala T YTy I 9

Now, let us note three thermodynamical relationships

which are special cases of equation (A19):

b (5.60)



= Ja30by

A30 " Ta30% = 40P

i

(5.61)

(5.62)

Equations (5\60) and (5.61) may be used to solve for &A and

(5.63)

Substituting this solution into equation (5.62) tells us

that

where we have

Usa

]

Uga

"A31

_ . +
Y7ala10 *

defined

3

A30°A31
y,

3

30 0107a01

Ugalazo 5 (5.64)

(5.65)

= In207a41° Pazo

vy

(5.66)

)/D,,

= Ja207a317Paz20

When equations (5.58) and (5.59) are inserted into equation

(5.64), we find that



\
i
——™

80
Mp3r + 5Tp318 = 144,20 - U, 6n,
= USAsﬁA - ( UEA /ﬂ )h ' 7
(5.67)
a =
Y Usa M Gafa © (Ugy * MU, MRS
as u TGA
a7 W 7 TeaYaTa |2
where ﬁA is given by
By = Ta10%7a * MIa10Vsa) /Tp3y = 5 ’ (5.68)

and is identical to expression (4.35).

In equation (5.21) we may now substitute for the second
term in parentheses via equation (5.67). Also, we may
substitute in for the first term ip parentheses via equation
(5.58). Therefore equation (5.21) Qgéémes the following
expression:

uu UGBT

oA o= " 1+ Uy)6n, - Ugpadey - 1 ;'9,6

7A

- [UEA + (1+U )/n ]hA,

, T 4 : a ) - T a=

+ [(l+U7A)/nA]qAIE = [Ugatn, (14U, ) Ih u
n(1 +U.))q% -uU 7oA

MY 747%% ~ VgAY’ |2

let us now re-express equation (5.22). In equation

(5.56) we solve for tile ﬁu on the lgftéhand side:
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|
. Usa { o 1
u & 4 VI _ _ 4+=Vq
Moo Tapo*Ta U owA21 T3 Tua
+ (§pA + 7 /3)u + h A + “Ap |1 {56.70)
A A ,al
- hA U T uu Ta |2 }

This is one relation that we shall require. The other
relation that we require is obtained by noting that the

thermodynamical relationship (Israe] [12])

2 B - - L
( AA +n,) a1, ,, - Ny 9,q; = AzlAA da, , (5.71)
may be rewritten by expressing the differentials as spatial
derivatives: : .
U, VI, - mIY da 5.72
Tulann = VAV Taz1 - Gppahy/ny)v da, (5.72)
We now substitute equations (5.70) and (5.72) directly into
the right-hand side of equation (5.22). We eventually obtain

the following expression:

s 0B e n G AV a -y Ly,
’AuauBUA IT (JAglAA/nA)VHQA U&A{ 3 VLIHA (5.73)

)\ A al
+ (6};B + 7 /3)u + A h, = hw w t ﬁAuil - AHQTA lx}‘
We now have all the information we need, in the appropriate

form, to compute the transport equations. -



E. The First Transport Equation
To obtain the first transport equation, we add

equations (5.69) and (5.24). We then have that

- aBy aXg S .
u UBUA Iy + UBAU TA‘ - - IABIQA{ 6 + EAlC’éﬁA

= L A

* %At ta12"a t tarstaa . (5.

A , B L A )

T tataaln o tarshy t tAlEunA} ;

where we have defined
tar0 = (Vg = Uyp) /(1,4 ) (5.
ta11 = Uy = U/ (15190 | (5.
s? Ry

ta12 /(IA31 20 | ~ (5
tas t { Usa = Bga = 1Q3405,0/n,) } PR (5.
tais = { Uga + [(1+0, ) /n, ] } 3 (IABI ) (5.

’

tas © { 20, + U, = Ug, - n, (140,.) } (1,400 (5.

74)

75)

76)

78)

79)

80)
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t = { 20, + O, + n, (140, ) } t (1,00 . (5.81)

The coefficients introduced here (and later on in our
discussion) are figuratively of the form Caty - The indices

i and j mean that EAij is the jth coefficient in the ith

transport equation.

The left hand side of (5.74) must be evaluated via

equation (2.21). Since this procedure is rather complex, the

evaluation of the right hand side of equation (2.21) is
deferred to chapter VII. From chapter VII, therefore, the
left-hand side of equation (5.74) may be rewritten via

equations (7.58) and (7.56). We therefore have that

¢
aBl - . 9 ]
“aUBUa |2t Uaa%aTa 2 T Xao , A h

, A (5.82)

* g { Xap1%7p + Xapp00p * Xyp3my } ;

where we have defined -
Xa0 = Xap = Ugalao (5.83)
XaBi = Xapg - Ugalagy » 1= 1,2, 3. . (5.84)

Let us now replage the left-hand side of equation (5.74) by
we ,

the right-hand side of equation (5.82). This gives us our

first transport equation:

ea



Xa0 * g (Xpp160p * Xupa8Pp *+ Xzp37p)
RPN { O % tr10%4 * Ta1180, * a5
* ,J -
A A o A- ) A=
YEatala t fanaan t EarstaYy *t ta1e9,0, }
F. The Second Transport Equation

=

'To obtain the second transport equation we add
equations (5.73) and (5.25); we therefore have that

- _.aB) . aX - (1 . A
wa s |2 T UaaluaTa |2 T Gazita/ny) { Vu%
: +t vV

..V 8n
+t n 2227,

A20 v A + EﬂlvuépA

_ . i o - . li
-+ <EA235ﬂA+tA§4§pA*EA25“A)“u * 268,

A - A:
- t,, .qw _ + ' + . “u
"A26%A% T Fa27Tau |a Y 08"Ay U2 }

where we have defined

4

1
i
]

420 = 73 Ual Uagafy/np) s

1 L
A21 ERr TSV IUNAR A
1

t
1]
1

v

£ A22 ERTS N A CTUNA R I

L
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(5.86)

(5.87)

(5.88)

(5.89)
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A P oy . or
t,h 301 - 3(51;LA + ULA)]ICJﬂlAA/nA) : (5.90)
, . 1,,. A , N
g G [UéA - §{5u2A + UZA)],(JAzlAA/ﬂA) P (5.91)
e S0, - S50, + 0,01/00.. A /n) . (5.92)
tA25 3 4 T 30038t Ugy A21"a’™? )

, 3
taze = Usp/ Typ0hy/ny) (5.93)
ta27 = Wgp = Ugp) /G ppihy/nyp) (5.94)

+ UEA)/(JAzlAA/nA)

e
1K

6A

The left-hand side of equation (5.86) may be rewritten via
equations (7.57) and (7.59). Thus we have

. aBy . al - o o
808" |y * Usa¥aTa P gcxﬁahau * Xaps9py) (5.96)

where we, have defined

XpBt XaBg " Usalapg » 1= 4 5. _ (5.97)
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Then, replacing the left-hand side of equation (5.86) by the
rightihand side of equatiaﬁ (5.96), we deduce the second

transport equation:

+ Azz? T, +(tA23§nA+:AlﬁﬁpA§tA25 A)

+ (A q q ) t i § A S N | AG,
VIALT Fot PN A27 Au [2TTA28"Ap Yaf -

G. The Third Transport Equation
The third transport equation is obtained by adding

equations (5.23) and (5.26) which gives us an expression for

|

ua vB uv af’ A
by equation (7.60). Equating these two expressions presents

(A A _ -=4A A JUEBTL ; however, this quantity is also given
Y

us with the third trdnsport equation:

%XAEéﬁBuv = IABl{ufulu;*tABDh&<u|u§+tA31qA<u|u§ (5.99)

* tABEhAfuéu>*tA3BqA{uﬁu}*tA34(%Afu|u>-2ﬁA{uAmAu>)} :

We may formally solve for the bulk stress, the heat
flux, and the viscous stresses by noting that the transport
equations are matrix equations in the species indices A and
B. Therii if we assume ‘that X\B1 (1=3,5,6) has a matrix
inverse ﬁi (1-3,5,6) . we multiply the transport equations
by these inverse matrices to obtain the following three

versions of the transport equations:
sl



A e ] ,
B15 B * tnsqnux} (5.100)

o A
T t313"8[a * tR14%p))

Zan:axm Zz(xnsxsclé“ * xuaxncz‘sp) ;

ot S22Vt (Eppalng + tp, 800 + by, MU " S
: (5.101)
+eo (A Y +tom 2 |
B26 "w I8 T W7 * 27Ty |2
s e =1
* t528"By UA} B gé XaBsXBc4Pcy
TAuv igg VAB { “eplv> * tB30MBey|v>
. (5.102)

* 3198 Beu|v> ¥ tp3aMpe s * *B33%B<p¥y>
/

, s A
+ EESA“E*:U\::: B EEBBAﬁEiu Yrv> } :

where we have defined the bulk viscosity matrix, the heat
conductivity matrix, and the viscosity matrix respectively

by

(5.103)

"AB xusz pfy
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|
1

a8 = XasTaihyy 5 : (5.104)

=1 . [ B £

>
(-]

The three transport equations above reduce, for a
single species ga#%, to the forms reported by lsrael and
Stewart [16] provided we apply the fitting conditions
§nA = 6;:3A =0 and choose u” by setting hzso. We also note that-
the transport equations are linear, first order, coupled
differential equations which in the single specizs case are
hyperbolic and lead to propagation speeds of viscous and

thermal effects less than that of light (Stewart[34]). This

suggests that for the multi-component gas the transport
equations are hyperbolic %hd describe causal propagations of
the heat fluxes and viscous stresses; however, a proof of
thts is beyond the scope of this thesis. Our discussion of .
the massive components of the gas is complete. We now turn
our attention to the light-like components which we will

discuss in chapter VI.



VI. Massless Particles

Massless particles, "such as photons or neutrinos,
possess zero length four velocities, that iésﬁﬂéiia (we
. reserye the symbol L for massless particles). T@is cendition
immediately implies that the energy-momentum tensor for
these pakticl;;. as defined by equation k2i15)i is trace
free. We have already noted in chapter 1V that this result
deprives.us of one of the conditions necessary to obtain ;
*unique solution of the non-equiltbrium situation, for
massless particles, in the Grad fourteen moment
approximation; thTs is because the number of linear
fourteen to thirteeh in the case of massless particles.
Hence, we must modify-the fourteen moment relativistic Grad
method in an appFDpFiaEE manner to obtain such a solution.

In this chapter we shall discuss precisely how to
modify the fourteen moment method to obtain the
non-equilibrium solution for massless particles. To achieve
this we shall presént our discussion as a miniature version
of the previous chapter; on massive particles. We will stért
out by specifying how the Boltzmann équatiéﬁ must be
modified to account for the interactions between massless
‘and massive particles. We introduce a change of variables to
fagilitate subsquent calculations by expressing thé
mégsless pagticlé’s four -mdmentum in terms of a frequency
and a unit spatial vector, both of which are defined with

respect to the flow vector * . This change of variable

89
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allows us to describe  the physics in a frequency. dependent
format. The equi]ibrium;distributign function for massless
particles allows us to define freﬁuenzy dependent integrals
and thermodynamic functns which will be employed to
analyse the non-equilibrium form of the distribution
function. This distribution #nction is calculated via a
frequency dEpEﬁdent version of the relat1v1st1c Grad methad;
this 1is abtawﬁed by assuming that the coefficients in the
power series expansion in the particle’s four-momentum
dependsiaﬁ frequency as well és on position. The

non-equilibrium form of the distribution function, when

3

inserted into the Boltzmann equation, leads directly to the

transport equat1cns .Fipally, we shall derive the entropy

production and define the coefficients of bulk viscosity,

~ shear viscosity, and heat flux.

A. Creation and Annihilation Processes
Let us begin our analysis by considering the Boltzmann
equation for massléss particles. The collision term,

D11 @S stated in chapter 11, only takes into: account

bfﬁary collisions. Binary collisions, by themsé?ves. do not
adequately describe massless partiélesi For example, the

number of photons in an!equilibrium state is a function of
the temperature, that is, the number of photons from state
to state is not conserved. We therefore introduce into our
description of the gés creation and annihilation préCESSES

in which the number of massless particles is not conserved



[1]. These processes are figuratiely of the form
A+B+L + Ax4+p* (annihilation or .absorption) and a+p -+ A*4B*+],
lcreation).

We describe annihilation and creation processes for
massless particles by the tﬂansitiaﬁ probabilities

] * & . * & .

¥(p,,Pg.Py [Py .pp) and  W(p,,pylp,.pp.p;)  respectively. Then,
following our analysis of chapter II, the contribution to
Deo11ML by these processes is given by

T(N ) =

,' Ly
L' pLdV

"U\

J N 'AAA‘BALW(pA'pBIP

&

(6.1}

f NANBN A AEH(pA.PB.pLIPA.pE) d*V ; .

=

where 4%y = avAadeid%E Then the Boltzmann equation for

massless particles is given by

F
-
- —h

’ﬁ J iir T(H - 7,7
NLI'GHL = DoriMp = BON)) + T(?L) : (6.2)

where BUE) , the contribution due to binary collisions, is
given by the right hand side of equation (2.5) for A=L and
the sum is taken over all massive particles. We are assuming
here that interactions between massless particles are
negligible (e.g. phptcn=ph§tcngand photon-neutrino
processes) .

For the sake of consistency, we shoufﬂ also add the
contribution of EFEEtiGﬁ>aﬁd absorption processes to
D.s11Ny for massive particles. This contribution is given
by [1,12]



. Then the Boltzmann equation for massive particles is

a
NAIIGVA f Dcoll"h

-

zZ»

§ N A § .- ,I : P )
AVBNLOAEW (Py+Py P 1P, Py YAV, AV aV av)

=77 | N NN AR 1P, pe)dV_d¥ a¥_av
ANENL 2088 ¥ (P Py.Py 1P, 4Py B9 A BYL

WO v ab o
ANBOALRALY (P, 1Py 1P, . Py, P )AV AV, AV V)

22 NNZ* .[* * 3 *
EE AT AlBA V(PP IR, sPysP YAV AV AV AV, .

*
- B(NA) + T(NA) H

where B(N)) "§# given by-®quation ¢2.5].

(6.
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4)

o

L3

% master balance equation (2.7) retains its validity

here. We just have to ensure that p N includes T(N ) or
! cort L

*
Tan)

As a consequence of these extra terms, the master

ba]ance'equation implies that the massless particle number

Amass) flux is not conserved but the number and mass fluxes

for massive particies are conserved. Furthermore, the

. energy-momen tum tensor of the whole gas is sti'll conserved

and- the Boltzmann H theorem is still valid [12]. Then the

equilibrium situation as described in chapter Il remains

valid. The equilibrium restrictions on the thermal

potentials a, require @ =0 if we include creation and

annhi lation processes. Hence, for massless particles we f

shall take o - 0.

3
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B. Spectral Analysis o
Let.us begin the technical discussion of massiess ¢
particles by defining the frequency v, lor energy in units

such that.h=1) and the spatial vector k' by

a A : 3
'L‘A“L/“L—; (6.5)

<
=

Hi

1

e
%<
o

a1

so that l{kt.a? 1. In terms of v , L‘z ., and u® we .decompose

the null-like four-mcmentum by

w:-vL( ua+i..fz) e . ' (55)

In a local Lorentz frame >

Bap = Tla[; ; ut = 52’. k; = (8inBcos¢,sinbsind,cosb,0), (6f7) ‘

-4

the four dimensional vc]q’nefdﬁl may be written as

i‘ 7;‘ )
dVL - dedeQL : dﬂL = fined8d¢ H (6.8)

- where 42, is the differential of solid angle. Integration of
an odd number of l{': yields zero whereas integration over
a

an even number of kL's does not [1,2]. In particular ,«we
have that

[l{dﬂL - I klﬂkfi{aQL -0 IkLuksdﬂL : 4; 208 :

[ KB | = 2T a%EAY g p3VpBHy



/

a
Spectral (frequgﬁ:x dependent) forms of the number flux

and energy-momentum te%sor may be defined as

a, a . ’ . A
NL(\:L) f NLHL\;LdQL ; o | . ( (6.10)

J HLHLuLuLdﬁL . T (6.11)

*ﬂgfu 3

When we integrate over frequency v

r we just obtain the usual

nUmber flux and energy-momentum tensor :
N2 - I (v ddv, ; T%F = f 28 (v, )dv . (6.12)
L LULTL L L L S e
We may extend the decompositions (2.23) and (2.31) to
the spectral case: b , .
a, Y. N . )
N (v,) = o (v iu + L) s S
1, . ,aB \ ' (6.13)

af e n (v Y2 B L1
TL (\.JL) » pL(uL)u u + 3 EL(\JL)A

+ h;(uL)uB + hgcuL)uG + ﬁEE(uL) ;

where we have ‘incorporated the requirement thati%A(ﬂ).: 0.
Here the spectral number density, particle drift, energy

density, momentum flux, and viscous stresses are given by
n ), 316D, 0 ), h(sy) s and o)

sO that we extend the

-Fespectiveiy.
In equilibrium, NLE NL ,
definitions (3.57 tothe frequency dependent case:

=
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(6.14)

. g :

Then, integration over the frequency just produces equation
(3.5). Applying the analysis of chapter I1l to this case
tells us that the intégrals (6.14) have the structures (3.9)
and (3.10) provided we FEE]%QE %mq ahd.%mq by their

spectral forms:

DT a)
g™ = @D L™ Tgya(n) )
(-1yP , (6.15)
. I G2 sa(n),
JI..nq(\)L) (2q+1)!! JL(“L)E H(q)g(n)

Expressions for these coefficients are produced in Appendi x
A,

In equilibrium we therefore have

NP = o s 19 -1 o) (6. 16)

Comparing these results with (6.13) now requires that, for

equi librium,

- o . ;
nL(VL) - ILID (UL) . jL (\IL) - 0 : 7
| ' a (6.17)



L

I
C. The Modified Grad Method aﬁd Non- equ111br1um
We may ﬁcw‘CDﬂ51dEF the description of the devxat1cﬁs
from equilibrium. We shall assume that the flow vector u®
has been chosen via frame changes to be common to all
speciesi\we expand 1nﬁﬁfél) » a8s in the massive particle

case, by
In(N, A - 1n(N /AL) £, 3 (6.18)
where we assume that f, is given by ,

L ;’L (x,v ) + b (x,uL)uLA + ‘1 (x,v, )u W s (6.19)

o
[E1]

where ééf may be assumed to be trace free. The crucial
assumption here is that the coefficients a.L Ii , and ;{T
whjch appear here are also functions of frequencx as well as
of position, whereas in the massive case (Grad‘fourteen
moment approximation) they were assumed to be functions of

position alone.

If we apply the decomposition (6.6) for v’ in equation
(6.19) we obtain | »
fL = EL(:‘“L') + bL(xf‘uL')kLl'*i < (x,uL)kLAkLT : (6.20)

where we have defined
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A 4 2 At
M AP S U
27T a -

+ ZvLi uAAT H (6.21)

B 1 ,aB, )
which now become our Primagy variables appearing in fL X The
decomposition (6.20) is essentially a spherical harmonic
expression of 51[162],

The number of unknown \;ar’iables

herein is nine as compared to fourteen

in the massive case.

In terms of f we may write N, as

c o I anlv)

b AN - &N = (N r = 120 L7 29)
N, - N+ (SNL ; BN, (NLAL/gL)fL - > £ (6.22)
L

When we insert this expression alaag with (6.20) into (6.11)

and employ definitions (5.14) and (6.15) we obtain an
expression for the non- equfhbmum spectral energy- rﬁ:merntun
tensor. Comparison Df this result with the decomposition

(6.13) tells us that

pL(vL) - ’LED(“ ) + Gp (u ) ; SQL(vL) = JL?G(“L)EL 5
(6.23)
RO = 53,0008 5 80) = 3 1,00
Solving equation (6.23) for a bzi and :EB

we find for £
the following expression:

1

[

1 15 aB,o v o g
fL - :I_L:mi(? {Sp (\J ) + BhL(\l )kL + 2 TI' ( )k.LﬂkLB}(524)
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. !
Therefore, the deviation from equilibrium is completely

specified by the spectral energy-momentum tensor .
.The spectral number flux may be evaluated in terms of
3
equations (6.22) and (6.24):. comparing the result with

expression_ (6.13) gives us

=
A = Ty + e vy - e
. : | (6.25)
Snp (vp) = L3000 /35000180, (v)) = 8oy (v ) /v,
- jZ(}JL) - rJmevL)/JmevL:)]hich) - igf(uL)/vL

, I R i T a4 & oy . . IR
We shall assume herein that &H}UL)iéglﬁﬁ), %L(“L)‘
h;(uL) , and ﬁ%B(vL) become. zero for v =0 Or v = .
Integration of the structures (6.23) and (6.25) over
frequency produces the structures’(2.29) and (2.31) for the
Ty

number flux and energy-momentum tensor where we define

.2

]
L=
7]

L - [ p vy 6o, = J Spp (v dav | |
' T (6.26)
J“L(“L)“‘“L ; 6o, = f §n, (v)dv,

a

a _ .a 5 .
3 [jL(uL)duL 3 hy

L
"The invariange of (6.18) and (6.22) under the fitting -~

l"“:‘
o

(2

c.ag _ [ _aB, .
(uL)d\:? s = I n (uL)d\lL

T

W."F-

changes
Id

Swy = 0 (a = 0) , B = B+ 0B .  (8.27)

L

requires that

6912(\11') - tSQL(uL) - JLBD(“L)‘SBi ; . (6.28)
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_

which in turn requires, from equation (6.25), that

' = &n_ ( = J A o Y= i
GnL(\;L) 6n1(vL) JI.ZD(“L)(S% (6.29)
Integration of these two relationships over frequency and
employing definitions (6.26) produces the usual fitting
relationships (4.98). Mdthough we may choose B, sken that
én; = 8o, = 0 no choice of 8, can make §nLhi) or &p, (v))
equal to zero.

For each massless component of the gas we define the
radiation temperature T+ B -:.’L/’l,ar:I‘LR to be given by the
fitting conditions &HfﬁpLiD. We consider the matterd;Z{} of

the gas to consist only of massive particles. Theref&Re we
define the matter temperature Ly éH-sIJkTH to be given by
the fitting conditions 6nAiD,Eég§4L where the sum is taken
over all massive particle 5pé§ies@ This case was previously
discus:?d in chapter IV. We also define the Eckart

temperdture TE’EEiiljkTE by the fitting cénditions

’ - -~ . [ - .
lén, +]6n =0; 76, +)6 =0 . (6.30)
. A A L L A A L L

These conditions are the generalization of the Eckart
titting conditions (Weinberg [41], Eckart [10]) én = & = 0
applied to the whole gas. The relationship between the
Eckart temperature, the matter temperature, and the v
radiation temperatures may be found via fitting chakggsx)TD

show that the conditions (6.30) are realizable we choose
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Soy == 1 Ién (B = 3 0881 L A=1
;L ”!‘ = =
AL R T - (6.31)

B, =B - B ; 8B, =8 -8B
Then the first of the conditions in (S,BO)FEE satisfied. We

emp loy (533?) to express 6p , 6pf~ in term§ é?%iéA and S%j

S _ : F B — 1 = T 3 ] k = .

8oy (Bp) = b0, (B - Ire Sny (BL) = Jpp88 )y A= 1 g
Jy20 1 _—

o | 7 | (6.32)

épA(BE) = SDA(SH) - (D AED/ Al@}ésA , A4 1

ép (QE) = &p (BL) - 3130581 . .

The second restr1ct1§n in (6.30) now implies that

z = ez.;i, IJ B + :gi; 25’ )
{B"Aﬂ r20a10 Tip20 £ 20T Tya0 1 L (6.33)
) . LI 1 h
-1(8p -7 'EL)} {Z Dyon/I an + Z(J : )}
L8971 308, & Pa20" a0 130" T (1y00. 120

If there are no massless particles in the gas, then Tg = Ty
v _

D. The Spectral Transport Equations _

Let us ncw‘de;ive the transport equations for massless .
particles. Our procedure 'shall consist of examining the
conditions imposed by the Boltzmann equation on the
‘deviations from equilibrium. These conditions will
eventually produce the transport equations, in spectral
form, and may be integrated to produce the actual transport

equations. Before delving into this, let us discuss some
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prel{;iﬁariesi : )
Let us differentiate v, and k' as given by equation i
(6.5). This provides us with two very uséfﬁ]‘results
4 , \ - ’

. - | : . 1

“Lila T 7 e (6.34)

i - A, § ’ o
Mallu T Ny PR Ca e - (6.35)

Contraction with ws produces

, SO , B, A o aB ) . (& ap
,\JL”GHL-a ui{?SFkI.u;\-FUEBk:ﬁ} H . (6.36)

+

Ce

| @
=
I
E

j»

y 1

>
[ ’
<

o

b

iy

a

1o = { -5,
+ CEQGA M Guukgkz)(ua * kLa)}

Let"ﬁsbe an arbitrary function of position and

(6.37)

momentum, . x, -i*xL(:.wE) . Equation (6.5) for v, and k;f
constitute a change of variable, so that we may write

X, = % (v ,k) . Differention of X holding momentum fixed
by parallel propagation may be written in terms of these

variables as [2]

3 X, AN\ .
3 P - ; . e ; —ﬂr . - i .
;XLHH XL;U*<B\’L) “Ll Iu +(3 Q) kLHU ; (6.38)

where the semi-colon means covariant differentiation holding

-



v and k% fixed. If X, is a function only of position and

frequency. then the last term in equation (6.38) is zero. In

this case, diffentiation holding frequency and ksfixed has

the usefyl property that \
N
f XL;EdednL = [ 47 XL;d\JL = 47 { [ )(LduL}l . (6.39)

-~

In terms of the semi-colon operator, we define the spectral

time and spatial derivatives by

v = 2. Uy =, A . =~ A
XL = XL;EL! ¥ VUXL = XL;AA u i (540)
\ g™ 7

which produce upon 1nt§grat1aﬁ over Frequenéy via
relat1onsh1p (6.39), the usual time and spatial derivative
as defined by equation (5.2).

To facilitate caﬁ;utatién. we shall denote

‘x*‘lzcaijau) (6.41)

( L I L :::ikz
'Provided XL is zé?giigfxis © and-%fa we have the following

property:

- f xLuLdu, = [ };Ldvn . B (Ei{g)
Combining equations (6.22) and (6.25) gives us a
convenient expression for the distributi§ﬁ>FuﬁctiQné

\.

.
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r 4
p.(v,) . \ | : '
‘L"L° 1 D W 15 A1, L - A
N = ;; 5+ —3 {Zhl(“l_“l.; 5 (vL)kILAkLT} . (6.43)
N v ey .
L L
To obtain an expression for the left hand side of the
Boltzmann equation (6.2) we differentiate (6.43) and
contract it with ez : e
a P I a
Nl fa¥L = T (V) /Gy T vy
C 1, =30 af.A, 15 X,
* ot )Ilu“L{BhL("L)"‘LA P ("L)kmkr.-r} (6.44)
+ 3‘3’ b v ) e + RNk w®
LR L A% AN KT PR A RSV T
. 15 - ui a AT . ) a
o *’B3{H¢HJW,(%)Haﬁd+zﬁ;(%9HJHnHuﬂ,}n
( T!\J.L

To proceed further, we shall re-express (6.44) term b9

term and then assemble the resulting expressions to find the
desired expression for equation (6.44).
To compute the first two terms, it is helpful to know

that

v
L

-3y el [ Aty & B3 - .45)
(vL )'IEHL 3 { 8 + kLCBuA) + kikL(z uf&ls?) } . (6.45]
With the help of this expression and equations (6.38),
(6.40), and (6.41), the first term in equation (6.44) is

given by ‘ )

R N0 S S S O va Yoo N o N
[DL(VL)/("W\JL)Q' la¥L ™ :r? {{DL(\JL)'F ’3[39L(UL)——\JLQL(\!L)]B]
s L .
CoLagr e o . . ) _
+ i {V o (b)) + [3p, (v) - vaL(vL)]ug} (B.46)
Bra oo 1
. k?lL{BDL(“L) - vetv)} g Y<a| B> . .
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The second term becomes, with the aid of egquation (6.45), _
. .
20D ] o, + B 2o )

_1 a, B S L& By, 45
Tl { kEkLtghLa(uL)gB] + kszkL[ "asfVL Yu ]}
"L

(6.47) -

For the remaining terms in equation (6.44) we obtain

) 3 C 1\
‘{“u‘“ﬁng L " { kLrhmhL)], .

’ _ , (6.48)
.a B o h® (v Vo T .
+ ik hLa(vL);B - uLhLﬁ(vL)uB]} ;
Ao\ a ' R PR |
LA UITRSERAS (EEIREN ' (6.49)
LA Y L L Be o * . -
R epug )+ K DY)
ap I - - P :
kLafLe™ L) |2 L L{ kR Mgy ] (6.50)
,7: B 77 _ - !
* k;ksklr "asVL) 5y T VLTLas (VLY ]} ;
#GB(v,)kL—' v - { kL[ - (V )U ]
kL™ L kg v - (6.51)

+ kikti - (“ L%yl * ‘Ekssz LEB(“L)E ]}

We may now substitute equations (6.46) to (6.51) into

(6.44). This procedure produces the required expression for



.
(6.44) :
2 ﬂ - 2] L0 By
s NL]I =D+ Dk LaBkIuiL LaﬁvkLékLkL
where we have set - .
Dy = by (o) + 3030 G)-vypr(v )0 - 2w da 5 (6.53)
Drg = Vo (v) + {30 (v)-vior(vI¥e + 3§LE(\;L) |
(6_541
- Ehii(ul)glla - 15 Ma (u )u' 3
1 .. S
] DL&B;{BQ (v) LL( L)}§U§Q'E§
+ 1zhL (u )u + 3h1 (u ) BUthg(UL)&E (6,55)
+£; (u)fl.S'n’ (\:)m H !
D :;Lé’fﬁr (v.)u - (v u + 1 _(v.) (6.56)
LaBy ~ 2 'LQB'LgvaLB L“’ LaB L 3yf"'°"

We must equate this expression to ﬁqu) o11ML . The
Tevaluat1on §F Do11ML in te;ms of the deviations from
equilibrium is rather complex; hence we shall defer this
calculation to chapter VII, which is devoted to such

calculations. We extract the result of that calculation from
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equation (7.109) and equate it with equation (6.52). We

\
obtain .

- a Ja.: aB 'aﬁ afBy
(DL—DL)+(bL-DL)H,u+(DL —DL )kLakLB+ DL k[,akL.BkL =o0. (6.57)

\
To extract the restrictions on the deviations from
equilibrium, we multiply equation (6.57) by 1, kL k{ks
l{‘lngL and mtegrate over da . We deduce that the four

restrictions obtained by this process are given by

b+ 1 Aae,,m _.{,L : < (6.58)
AMDLA + %._ DLaByA(aBAYu) - f)ﬁl - . (6.59)
‘b . : - _ (6.60)

Di<ag> = Drcap> 3

D, A‘“”A“" 7 D, a(aBpvpv) o (6.61)
aBy

When we substitute in the appropriate expressions, from
equations (6.53) to (6.56) and from (7.110) to(7.112), the

first three of these results become
. 1 ) ) , A
"L("x) + 5130, (v)) - vaL(ane'\mL(vL);A—thme)u .62}

- {“Lo * Kyt () + E(HLAIGnA+MLA2GDA+HLA3“A)} ;



) LA U e . AL ,
VP (V)* 3130, (“L)?LQL(“L) ]u;bﬂhL(vL) {(6.63)
. _ A, _,A,jE”;Z\'V .
Ry (v ¢ e (V) 5" M (VLY T T, (P,
"R - Z(HLAAEAQ * Miasdae)”

1 1 4
[30‘3 (U )=v LPL (\-' ]E fﬂlBi? + ?11{,@(\;1);5* ?IL-:!:(“L)UE:- |
1 .. ;' (6.64)
- ?LhL~£ﬂ(uL)uB 2' -:c;B:e(U ) - ﬂ (“ )m

. T TR L3 e M) Z Ma6"AaB

.

The fc:vur'th result may be rearranged to produce v
) 1
- 5 1 & 3 - Y
2 { SMap(V )Y - “L“Laa“x} * Ticap> (VL))
; , s L e - Yy ;
+2 { SMrar (Vg - “L“Lux“s} * Teear> (V)8 g (6.651
~ 7 . - ,‘, 7 - LY T — F
+ 2 { LBA(“L)“ - “L”LBA“u} Py e = 0
We may recover the stationary case, with magi'a , from
equations (6.62) to (6.64) by neglecting the transient
terms. Noting that
BILZD(“L) - “LEZG(“L) = EL'JLBD(“L) s (6.66)
we obtain for the stationary limit L
[ (u )/(kT )] T + [JLBD(uL)fBETL]B . 3
= Myt K 8e (V) - Z 0\, 00 NG TCLRNE
1 ..
3 [.J (\a )/kT ](vﬁTL+TLui:)
® (6.68) -

=" ZhL, L’ - E(HLAlohAQ +HLASqAC;|) ;



1 _ LT 7 ~r ac
L3/ ASKT ) Tu 1 g™ =K1 3™ p (V) E"hs“ms - 16.69)

If we choose T,=Ty, and neglect the deviations from
equilibrium of the massive particles, then we obtain, for

the case of.photons. the results reported by Straumann [35].

E. Frequency Averaging

To integrate the transport equations over frequency we
must define some way to average Kiq and M.y Over ffeqﬁéﬁcy!
In the stationary case for photons where the contributions
by massive particles is negligible, we would just divide
equations (6.67) to (6.69) by the appropriate KLy and

integrate. The appropriate average in that case is the

Rosseldnd mean [3,35]:

[ 1 aILzo(“',L‘ﬁL)f dv l[ 1 J. .. (v.)dv
SR £1 oy oYy WOV (6.70)
- = ~ : .
KLg 3T, 5o (Vs Ty) 7 3 I R T AN Rl
dv
AT, L

We shall carry this averaging technique over to the
transient case. , 7

Strictly speaking ELZ and ELB should be tensors instead
of scalars. However , . this is inconvenient and probably not
much more acgdrate than if they are scalars {(Anderson and
Spiegel [2]). Also, if these tensor absorption c@effiéients

are spatially isotropic, they will reduce essentially to a
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_ «
scalar coefficient. For these reasons we shall take all of
our absorption coefficients to be scalars.

Let us define the.following frequency averages:

1=0,1, 2, 3; (6.71)

a2 R

E:“
1]
| —
A5
[«
o
[
]
L
L%, ]
L ]
L*]
~)
M

H7 ~ .
" 7Y
Huszf a L (6.73)

4

Then, integration over frequency of equations (6.62) to

(6.65) produces

-
- A A-
PLt 3oyt o
) (6.74)
- ‘Ll{ Mo * Sop * {"hl‘sﬂﬂmﬁ%ﬁusﬂ)} J
: >
1. L - Y A
3 vupL 3t AgkhLS\ - hl.—mh * "a |2 B
’ (6.75)
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TN
,’/
4p .
L 1 . 1 - A
15 “<a|8> * 5 PLcald> * Pras> * 7 "L<ap> ~ "L<a®rp>
(6.76)
B X { "Lag * { "ue"Aas} ;
12 { ﬂL<aB>uA + 1rL<ux>u.8 + "L<Bx>ua } :
(6.77)

+ ﬂL(aB>IYAYA + WL<61>|7AYB + 'L<BX>[7AY0 =0 .

These are our transport equations. In the stationary limit,
with T =Ty - and neglecting the deviations frbm equilibrium
of the massive species, the first three of thes® equations
are identical with the results of Thomas [37] and Anderson
and Spiegel [2] recast into our notation, provided we assume

that all of the absorption coefficients are the same. We

also note that the fifst two of these equations are

al

L | respectively. T

expressions for -u T and A r

le
F. Coefficients for Dissipative, Processes

To(ﬁdentify the coefficients of bulk viscosity, shear
viséosity. and heat flux, we must examine the entropy flux
and entropy production. The entropy flux as defined by
equation (2.22) becomes |

a a £
Sp = kI, Bu -kB“L - ; | (6.78)



where Qi is given by- ] ) : ‘iﬁs
ds X 280 ok af
QL = 7 J (HLA1’ L)EL Ve 7 U { [5BL(UL)duL
[

w’J

k V V -
I L (vL)ﬁL B(vL)du } (6.79)

+3k[hL(“ )hll(“ )du
+ E(ﬁn (v, )hl (v, )dv, + BkJA(v yr  %(v.)dv
) L"L'hL L L ) hl 'L LA "L L

Since decomposition of @Lﬂ%j up to second order, equation
(4.95), is invariant under fitting and frame changes,
equations (4.96) and (4.97!, then equation (6.78) is also
invariant under these transformations. In this case, we have
Just reproduced the massive particle result for the entropy
flux, equation (4.67), except that in this case QE is given
by equation (6.79): héﬂévgr, this latter expression can not
be credibly integrated over frequency to produce an
expression like (4.77).

Let us compute the entropy ﬁFDﬂuEtiDﬁ; We simply

differentiate and contract (7.78). This produces

\l‘ L

G o - ‘,’ _
Snla = kép (B, - ale) kB u 'r (6.80)

P 7 M a . UV a )
*kh (9,8 - BL“;\) T RBOLVTL T Qe

Lh

Now equat1ans (6.75) and (6.76) may be written as

) ;% { - LBO(VEEL BL“ ) + 38 Luu + % VE‘SDL :
12 (6.81)
A

Baaby, =y, + "La IA} Z(HLAA Aa t "ugqm 3



41 ,
, B! 120 1 , .
Mag T 7 2 { 15 Y<alg> S Mcales * Ppcalps -
L3 : (6.82)
+ ;‘ - A I‘— -
2" L<aB> = "L<aa® g>[ L M a6 Lap

When we substitute these results into (6.80) we obtain

= £ 7 1 751 '
SLI - ktSpL(éL 5 8,0 - kB u 17 N e
+ (T 4T )(V“T + T uh)
+ v Gu“ +
u‘L ﬂuv' QL 4
where QLis given by -

v = _ o __k 05 prafl : 5 o u A
QL = _ QLIB - (vﬂgL ng ){ 3 VﬂﬁpL +3 6§Lug + AdthX»

Y N
"M%t e ot ‘Lzzmm aa*MasTa) (6.84)
S + EL { hj_e:;;'ﬁi’e hL-ic:ﬂB?* 32 L<aB>
L3 N o f

J -
T Mecar® g t ‘13% Mia6™aas]

and the coefficients of heat flux and shear viscosity are

given by

N 4 " A
A, = Lgol(ks ,T) (6.85)
;1 z sksfa'uo/(ls: ). B (6.86)

To determine the bulk viscosity we must examine the

3

entropy production of the whole gas. We shall assume for
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simplicity that the deviations from equilibrium for massive

particles are negligible. We shall also take T, =T, In this

case, equation (5.54) for species A becomes

a _ .zA_ a -
SAIE - —l;BHIA;\ la ° . (6.87)

When we sum this result over all massive species we obtain

the entropy production for the matter:

a -\ r; o
S Ve L ST (6.88)

Since the total energy-momentum tensor of the gas is e

conserved we must have that

~aA

,A M ’ _ _
TH ,1! = (5‘89)

a
T |a

[ wree |

Hence, summing equg&i%p (6.83) over all massless species and
B

adding it to equation (6.88) gives us the total entropy

production of the gas:

(6.90)

We may solve for 8o, with T, =Ty via equation (6.74). We

have that

J oo s o a 7@‘, 5?7
apL-+_—"3°caH—§sHe>-hEi“ -hfu“- s (6.91)
1 i “L1 L1 M

F N
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since ELD-Q for a common temperature. When we substitute

this expression into equation (6.90) and define

= =1, .a a- z 1.
Q = (<py) (8o + hLl +hu)(B, -3 B0 (6.92)

2
)
Tl

5714 = WL 50/R; ) (R, - %_éﬁa)z .7 ;,ﬁasﬁﬂg
’ - | (6.93)
T ‘:ﬁ) v 'T,' + T + IZ: Q‘L

f B . From equation

Let us now obtain an expression for EH
(5.63) for EA we obtain for species A the following result

?1 th SASBH D ’
SHJA[( A20”7a21 JAiD A317 941018 * b, AIA

Summtng this result over all massive sfecies A and emp loying

(6.94)

(6.89) we c::bt;ai,ﬁ

& D, -

. A20 : -

B = =By 1wy [0 00901790007 a31) Ta10!® -
A (6.95)

Q*’. - 11

‘,1 , which is given by the left

Uhen we, substitute for -u Ti

/

hand side of equation (6.74), we obtain

AZD
—_— % E" - (6ﬁ + + hu ) -
} ! "l Lo (6.96)

+ Bn{ zmA[chlDJA31-JAEDJA21)/JAID] +
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This expression may be more conveniently expressed.
When we hold the individual number densities constant, j.e.

dn, = 0 , we obtain for any thermodynamic change that

dy = 2, Upoo/Iare) 48 \ (6.97)

Applying this condition to the energy density gives us
Bp 7 S o
(a ) - m O iay - 7 : (6.98)
BH .
. LT L . ,
Since the actual thermodynamical pressure of species A is

Lo to order zero, we also have, via (6.97), that

) o
( ) amA[(JAAOJASfJ‘QGJQI)/JAlD]’ (6.99)

o8, /n,

Similarly, for the massless species we obtain |

3 5 i
(D) g (P) - ( (6.100)
aﬂﬂ 1.30 BBH L31 .

P

Let us now sum these expressions over all species in the

{

gas. This provides us with two convehient results: o

i_{‘z\.. ®, 50/ m>+zsL30} . (6.101)

ei)nx

ap | - S
2 1
(3§H)n { Z A Ux1074317 942078210 Ja10) *+ EJL31} ; (6.102)

/7
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. s
We may now substitute these two results intéﬁgnpr35$1an

< (6.96): therefore, we obtain the following result:

:, = :,77,7 S | A- 7;77 = _ L
fy = B OGP/20) - {%‘ﬁﬂn*hL1x+“L“A)}*(BQ’EEH)HA (6.103)

A
Consequently, we conclude that
[ : i i 1 s |
3 By = BH{-— - (3®/30)_ } 6 -
coY (6.104)
ST ST LA (R
) {E‘5EL+hL|;+h1“;} GACN I

We mayéngw obtain the coefficient of bulk viscosity. We
104) into (6.93) and obtain

ulw—w

substitute equation (6.

.a ¢ ~ _af_ 2
S - ) VOOt vbB )
L (6.105)

I an , \ : ,
5 = L3042 (1 _(aP o d A
Q = {E’é;’}zﬂul 3 (Bg)nA]{%(Gp;+hL|A+hL“A)}B‘(ap/aBH)nA
L (6.106)
| (2. o
+ (§p + +h u,  + (3p/R,) } +)Q,
L = hLIA hL BH fL
L1
and the coefficient of bulk viscosity is given by
A
(6.107)

' 12
. 2
b Bx{ ZJLBD/E’ }{ 3 - (BPfap)nA}

We note that in the stationary limit and for only one

2
[41]

massless component in the gas, we have precisely the result

for the coefficient-of bulk viscosity first derived by



Weinberg [41]. Hence our result is the generalization to the
case where more than one massless species is in the gas. We
note that if the matter is itself highly relativistic then
the matter pressure is about one-third the matter density,
i.e. P~ p/3, in this case the bulk viscosity vanishes.

We noted previously that, for the sake of consistency,
we must include the contribution of the interactions between

massive and massless particles in p Consequently,

c@lIHA )
such contributions must show up in the transport equations
for massive particles. This contribution is computed in
chapter VII and leads to equations (7.78) and (7.79). These
contributions have exactly the same structure as the
contributions due to massive particles, equations (7.41) and
(7.42). Thus, all we have to do is incorporate equations
(7.%0) and (7.71) into (7.41) and (7.42) by redefining the

L. and Xapi by

LAEi*‘LAsizifzgi ; (6.108)

-

X apt * Xapg * Xipg - (6.109)
Then the transport equations for massive particles retain
their structure as reported in chapter V except that now
they include interactions with massless particles.

This concludes our analysis of the massless case. We

must now perform those computations of the collisional
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structures that we deferred in this chapter and in chapter

V: these computations are performed in chapter VII.



VII. Non-equilibrium Conservation Laws

In chapters V and VI we requis a knowledge of the

b e L33 o aB)
structures cfls [ and UA I

probabilities and the deviations from equilibrium. These

in Wms of the collision

structures were employed to write out the final forms of the
transport equations. In this chapter it will be our task to
deduce what those 5tru¢tuﬁes are.

Our calculations in this chapter are of a highly

technical nature; thus we shall present a brief overview of

how our calculations done.
To perform our calculations we first specify some
assumptions and perform some preliminary calculations to
facilitate subsequent calculations. Then we shall split up
our discussion into three stages. The first stage consists

af
A2

al
TAIA

massive particles due to interactions between massive

of examining the collision structures of and v for
particles alone. The secaﬁd-stage consists of calculating
the additional terms necessary to include the intEFactigﬁs!
between massive and massless particles. The third stage
consists of determining the structure of D11y for
massless particles due to interactions between massless
particles and massive particles, é@ﬁsideriﬁg interactions
with other massless particles to be negligible.

In each of these stages cited above we will proceed by
expressing the distribution function in the collision
integrals via the appropriate relativistic Grad method. The

resulting expressions in terms of the equilibrium

119



distribution function and the deviation from equilibrium,

£ permits us to define several classes of integrals to
simplify the expressions. We analyse these integrals in .
terms of their irreducible structures. Finally, these
irreducible structures are introduced into the collision
integrals to obtain the final ExprESSiDﬁS‘FEQUiFEﬂ to obtain

the transport equations in the previous chapters.

~

A. Assumptions and Preliminary Calculations
Let us begin by assuming that we have detailed
balancing for all binary collisions, creation processes, and

absorption processes:

] I . - * & I e

T . Rk & .
W(p,,pgsPy [PysPy) = WP, ,pplp,.Py,p))

~ This assumption is justified by the microscopic
reversibility of these @ﬁgbgsses (Anderson [1]), Israel
[12]). For convenience we sﬁa]?‘ﬂen&te the transition
probablities by HAB_anﬂ WaBL In equilibrium, the
.assumptian of detailed balancing and the functional form of
the distribution funcion ﬁA implies that D o11Na=0 for all
gpecies. Consequent ly, Ti?x and tﬁsTA are idEﬁticéliy zero
in equilibrium. Therefore in n@n=equiliﬁrium we should
expect these quantities to be cfxgﬂﬁer one; furthermore, we
expect them to be expressible in terms of the deviations

L a L
from equilibrium épA » h, . etc.
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Before we enter into the main discussion. let us derive
some preliminary results. When we employ the most general
fitting conditions, each species has its own thermal
potential a, and inverse temperature éAi However , each
is close to a common é to first order, that is, we may write
éA = ékééA where (SéA is order one. Therefore we conclude,

after some algebra, that for binary collisions

. * O . ),/
{BA(HAA UAA)*BE(HBA—HBA)} = l+B (v w )+B ( BE“B (7.2)
where we have employed the relation érpll-g which implies
that the quantity which appears in the exponent in equation
(7.2) is order one. Since [0]=0 equation (7.2) implies that

A *X A .
AB A31+B 'A) fBEA(vE-vE)} . (7.3)

for all species. A similar analysis for absorption and

creation processes leads us to conclude that

,gi‘,-,ii s & i C i LE ]

> 2 Y VR S Vs P PO
%AA%%Ki AAAB{H V(wAi—wA)+BE,A(wB-vB)’BLAHL}; (7.4)

“HO xS O © e ¢ o Vix A , ’A ,r,l - ”'A, ' - .
N NgN 88 = NAHBALAAAB{l* ax (VA~¥p) By, (wp-wp)+B v b, (7.5)

for absorption and creation processes respectively.

-

Consider the decomposition of N, in terms of "A and £,

via equations (4.10) and (4.12). Employing these structures
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allows us to conclude for binary collisions that

x ° e o
HANBAAAB = NNy Aﬁz{ 1+ AA N

+ ABf /gB + EANAfA/gA + €. N f_ IgB}

Interchanging starred and uUnstarred var#ables, and using
(7.3) we obtain
t“‘, { Sk & “tt,i
NaNptalp = NANBAAAE 1+ 85078y + Byfpley " 7
(7.7)

, *)
+ e, N f A/gA + EBH f /gE + B (w -w ) + B ( vy )]

A similar analysis for absorption processes in which we

employ equation (7.4) gives us

7 * * - -] § ‘*E )
Np8p8y = N NN, £ AAE{l + AA A/8r * ABE /oy ,
| (7.8)
AL g N, A/gA + EB B 3’33} ;
a o & o egpey ok & T
NaNBALlalg = Ny NN A0 {0 + A, F /g, + Arf o/,
*oe NS/t EA Afa/By * €y BfB/gB (7.9)

+ ‘(v=ﬁ)+ (Hﬂ) ELA“}
Also, for creation processes, for which we employ equation

(7.5), we obtain

o wa A
N,Ngh; 8,8, = BALAAAE{l + AEAISA + Ayt ey

(7.10)
+ fLIEL + EA A A/gA + e, H f IgB} ;
NANBNLAAAB = §A§EZLEZE§{1 + A fa ISA + AEf /8y
+ 5LfL/EL MU A/EA te EEBIEB
+ B,, (w -, ) + B, ( E -vy 2y + BLA" y o (7.1

L
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Let us now subtract equation (7.6) from (7.7), (7.8)
from (7.9), and (7.10) from (7.11). We obtain for binary
collisions, absorptions and creations respectively
. NNSA Ay - NN A A
A B A A BA *(7.12)
e e ﬂi’!t{j, * )
= N NpA Agte, +fy-f, -y + BAA('AE“A)*BEA(‘E n)
Bty = N AL e
BOL8a%p = NuNpN BBy = N NN A AL #fo-f £ -f)
(7.13)
Ao A
+ By + By (wpvg) - Biw )
** R . 7 & & -i-a*a{
N\Ngh; 8,85 - N N A 8, Ay = BQLAAAB EAtEpte Ty Ty o
: (7.14)
12 SN0 YOS ) W W . A
* B vy) # By Gwpeg) + B W)

We may express the Baitzmanﬁ collision terms for
massive and massless species via equations (7.12), (7.13),
and (7.14). Let. us reserve the subscripts A, B for timelike
particles and the subscript L to refer to massless particles

only. Thus we have for massive particles

Peor1Ma = % I AAAE(fA+fB A~ s)“ABdVBdVAdvn
B _ L [ ] -i-i o
7.1
+ gJ“ANBAAAB(BAl(HA uA)+E (w -, )}w A av" de (7.15)
*DontVa i

where Di; ﬁw ., the contribution to DﬂﬂlHA from
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interactions with massless particles, is given by

f) N »X";;A*Hr** F 3 *
coll'a ~ & NANLAAAL(Ep+Ey ~f = F) OV, AV, dV, v

+ 7y N N_R Z*..%f*+f* £, -f —f )W AV _dv dv"
{p) ABLA A TBTIATI BT MA@V dV ,\dVgdVy

e ©o o L 148 3

* * . * %
- ngNAnBALAAAB(fA*fx+ 1A E IV OV AV OV, (7.16)

+ 1 [NRATANE M B avtay, av”
AL ALL1Bp (Wp v 048y, (v -y ALdVadvpdvy

° o epcy %)\ A *X A A * *
+ EEINA BNLAAAB{BAA('A'“s)+enx('B"B)'BLAVL}“ABLdVBdVAdVBdVL

® © oge

. N R W W TR w48 M av_aviaviav
o BALOA% 1B (7w )+ B, (upwp) 8w MW g dV AV aviav,

For massless particles we have that

\

e o on

NN A AT (e -f - )W _av av ey’
Dio1aM = E ANLOABL (yHEy -£ -f OV, Qv 4V, av

° o epey %) 2 *) A *_
M J“A RTCAL P A/RAC Gy W dv,dv, &v, (7.17)

. NN R A A (£ 4£% ¢ f —f )W _ av av_av’av”
+ Eg ANBNLAABR (E = f  ~f £ J¥, (5 4V, AV dV dV,
’ ® 0 o ogey ) 2 X 2 A : * &
+ EEINANBALAAAB Ban (A v +8g, (Vp—wp) =By \ vy Wy AV, 8V AV, AV,

Since our discussion now becomes more complex, we shall
discuss three cases. The first case is the consideration of
D 1184 .1grlvormg the contribution D.o11¥a - Then we shatll
examine the contribution f)collnA . Lastly, we shall discuss
the case of DmunL .



B. Case One: Massive Particles Alone _ X

We now consider equation (7.15) in uhich we Nnow assume
that D o11N4 18 negligible. This means that we are only
considering elastic binary collisions of massive particles
with other massive particles. If we multiply (7.15) by a

:quaﬁtity EA:EA(:,p:‘) and integrate we obtain

i N _ - - - * * i . ;v

J £APco11Ma9V) ~ gf 'y, Az(fffffg‘fs)i“ﬂd '
+ 18, [ AAAE@A_..A)gAuﬂa v (7.18)
R g - as e 7 ;7, 1 .. s Bys
+ g BEK[“A BAAAE('BE“E)EAHABd v

If we rewrite the right hand side of (7.18) by exchanging
starred and unstarred variables, employ equation (7.2), and
then add the result to (7.18) we obtain

\I =t

e . N . . sgp0y hv
| jEADcullnAdvA =3 g I pBaBy £+ *f A~ fR) (6y- EA)‘gd
1 o e
+5 1 BA)I ANpd AAB(“ -, )(EA EA)HM, , | (7.19)

+2i' BAIAB:A;(:QH;)(E E)w dv#.

L= Lo B -4 o |

For massive particles, the structure of fA , equation

{4.2), implies that

N A R AR T AR )
N Tl S L PPN A A *ﬁ’m B“'n) 7
\ (7.20)
= L2 L2 AT ok ) l?f
(HA N UAHA) + chf(w vp = HBHE)
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Equations (7.19) and (7.20) now suggest that, for

convenience, we should define an integra.l ng)(EA) by

B . _ l i - ] ‘*-i *
CaBCa(n) (52 =3 I ATp AAB{ “Ca_ o
. A ' ay n (7.21)
- wgal,i_ ﬁcai }(EA EA)HABd v

This integral is symmetric in the indices a(n) ihﬁ has the
following properties:
(8,) apc(&a)

g CABC *A’a(n)A18(m) - A'a(n)B(m)

(7.22)

8 Capc®Aar " 05 Cape™E)an) = ®Canca)atn)

For the case a(n)=a (one tensor index) we also have the

- following identity:

:ACABAE(EA) + !BCALBECEA) =0, (7.23)

which is based on the fact that the fouyr-momentum is a

summational invariant in collisions. When we substitute

equation (7.20) into (7.18) and employ equation (7.21), we

obtain an alternate expression for equation (7.18):

bC (£)

av = B ABBA 'CA

I SAPco11M 9V g asar (52 -

o

AT, \ AT, N
QATEABAH;EA) - % cp Capmar (EA? (7.24)

¥
I ey

{ EACALBAA AR BECABE (&p) x}

i
[- - Hae ]

A further simlifiﬁatiaﬁ is obtained if we define



CaBBa(n)(En) » A7 B

Cué(n)(EA) z ' - (?.25)
CAAAa(n) (gA)' + g CACAa(n) (EA) »A=B
The identity (7.23) implies that
&
Z'Bcua(EA) -=0.. B - (7.26) .

B

Thus (7.24) becomes, via (7.25), the following expression:

¥
I APco11™Ma Vs ~ - g { by Cym (&)
(7.27)
"Ar
4 e)TC, 5, (6) + BBCABACEA)} .

Two cases for EA are of interest to us. These are

a a B
EA v, and EA A

define the following four tensors:

To facilitate con'p‘utation let us

Ligar = Cama(Mao) 5 ) (7.28)
i
r
1 9
X aBrag = CamrMaaap) (7.29)
Fabre O™ 5o o (730
Xaparas - € Camar ™ Ad¥AS T (7-_31) /
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These tensors have the following properties:

A

AT, A AT -
XABATGB -

_ = : & T ®
g LABGAT =0 ¢ XABXTQ 0

=058
o8 . L ! (7.32)
& XaBatag " V3 Famaag " TaBa(ag) ¢ N

XABAta ~ XAB({T)Q i XABATQE = XAB(AT)(QE) )
In terms of these new tensors, equation (7.27) gives
a

for the thn: choices E; vi and EA:vAwf respectively that

I 7!7 - A “AT. by ) . ,
4 Taa T L Ol e g * By (7.33)

ﬁgasllx - % (bpXpBrap * é;TXABATdE * BgXABAEE) - (7.34)

To proceed further we must deduce the irreducible
structures C:F; the four tensors which are defined by
equations (7.28) to (7.31). These tensors must be
constructed out of scalars, the metric tensor, and the flow
vector u® . We note that our selection of a common flow
vector for all species has greatly simplified the complexity
of the tensor structures. We deduce the tensor structures by
writing down the most general form that the tensors can have
and then simplify by using the properties (7.32).

ECansequem]yi the irreducible tensor structures are given by

Lara = LaB20"A% * Lap21faa 5 (7.35)



L.Ajha = LABBD(U:\BT + éﬁ’h)ua +L

: 1, .
XaBrag = x_n@gg A(Ugtg + F80) + X paq (U, oBagtuglyy) o (7.37)

, ) 1, S |
XaBrtag = Xapao(MaUr + 3 4, ) (g + 5 8ag)
LY
+ XA,B&I(AZ\(:“TL'E + A.\,Bufgu + A'm AU E + A 8%2 Y, ) (7.38)
o 2 -~
+ XaB42 3888

where we have introduced an iﬁdéx notation to mimic the
notation of Imq and JAﬂq
The coefficients 113nq and XAEu; which appear here can,
in principle, be evaluated'prcvided Qe Know what the
transition probabilities are, which in turn requires that we
Know what the collision cross sections are. Furthermore, the

calculation of these coefficients depends upon the type of

- system being examined, for example, a binary mixture of

£

electrons and protons versus, say, a mixture of electrons,

protons, and neutrons. Let us therefore assume that these

" coefficients are, like the number and energy densities,

Known qaantitiés.

In terms of the structures (7.35) to (7.38) we may
rewrite equations (7.33) and (7.34) as #jf
Y S 4 e , '
Taa 2 " g { Crp20s * FLAr30°8 = Balap20)% o
CE (7.39)
* Lap21"8a * 2LaB31%8q } ’ 3
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A 4 a . ) 1 .
Uras lﬁ B g XpB30PB* 3XaB40%B~PrXAR30) (Ugtp * Foae) (7 40)

* Z{Xunba(a* IXAﬂéch(u}“B) + zxmﬁzcgasi :
‘B

We now substitute into these two equation for by .

etc., via equation (4.34), a process which leads to

ax £ ]l a
Ta I { Lao * E(LABlanB * Lup2%p + Lypa™s) } u (7.41)

- D Lagshy - I Lgedp
L Lapaty ~ L ABSTB

, ] . .
Uaag |2 { Xa0 * E(XAM‘S“B * Xap2®Pp

- 1 . f” N &

+. XAB3-"B)}(uauB + EAEB) = gczxAB&hB(nuE)) (7.42)

- %(zxusqn(a“s)) - ‘§~.\XABS’T:B@E ;
where we have defined

Lo = 1}3: Bglapio ° (7.43)
- 4 ] . o

La1 ® 7 Cap20%21 * 3 Lap3oear) (7.44)
- 4 . .

a2 T 7 Cameo2z * 3 Lapaoer) (7.45)

.
(7.46)

_ 4 o
Lags = 7 (upoofpa3 + 3 Lapsoe3y) ¢



1

Lyp2ifpas 5

LABZ 1n

7 B.x ;
£ "sXaB30

4 N
= Xap3gfiB21 * 3 Xamao'e31’

- 430822 * 3 XaB4o

45 * 2Lap31fpss

1}

4 Q.)

B32

4 ,
= (up30%823 * 3 Xapso™r3s)

Xa31%44

Xa831%845 + 2Xap41%855 3

2Xap42%B66

(7.

(7.

(7.

(7.

(7.

(7

(7.
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47)

49)

50)

52)

53)

vn

.48)

.54)

w
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We note that if we choose the fitting conditions to give us
a common inverse temperature B then L Lo -; o0 via the
identity (7.26). ‘

Equations (7.41) and (7.42) may be contracted with u®
and A%8 in various ways to produce the following five

convenient forms:

l§ﬁ3+ L_.6p_ + L; ,:?N) : (7.56)

i % = 1 -
uTA A Y Vs g (LAB AB2 "R AB3 B
A ad 3 . .
A oTa Ia = gc;@éhhﬂksqs) ; (7.57)

[

5 y%BA - : L , - .
UagYA 2T Xao * g (Xap1%7p + Xama®0p * X\g3"g} ; (7.58)

R LT oy e
uag%a 2T gi(XABAhBu Xapsdp,) (7.59)
Babug = 3 880" (7.60)

Tua VB uv af ]A - g XABEﬁBuu

These five equations are precisely those which are required
to write the transport equations in their final fqorm

(chapter V).
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_ C. Case Two: Massive and Massless Particle Interactidns
The five equations immediately above do not include the
interactions of the massive species A with massless

particles. We now wish to know how they must be modified if

we no longer consider D.o11¥y 1O be negligible. To calculate

this contribution we multiply Do11Ma by gA and integrate.

Denoting d’S‘VEd“Vd’VL we obtain
& & n*é

- _ 4
f 5ADED11NAdvA % J NANLAAAL(fA+f f,- fL)EAWALd v

-] -] E*ﬂ ' -
* ng BN, 8 AAB(fA+fB- A fB)gAwABLdsv
+ ZEI-A‘BZEA AB(fA*fB’fA 5L\ ¥ ap ™V
LB
B s %
LB ABLAAE AAQL (7.51)
-3 -] o E at
D IRRE NN L
+ % I°A° B:ZL{BAACQ )+51x(“ - )}w £,d4
* ZZ[ A'BBLE*ZB{ (:i‘“i)*gax( ) BLA“L}EA"ABL >
LL L A (a7va) By,
+ ZZJ N gy B3y (8, CA-wh 48 A wdyes, WMiEw  asv

When we relabel variables in equation (7.61) by exchanging
starred and unstarred variables, and employ equations (7.4)

and (7.5), we obtain for (7.61) the following expression:

? ) - *1; — -] -] a - L‘
J_EADcnllNA AT 2 E[“ BB (£ £) (Ey-E )W, 4V

&

7@ -] Ii i‘ ".
ETYW dbvy
an AL L(EA-E W, a4V
«fc © © saoy s'
gfnnu Baby (Ex+En=£, =€) (5, - EA)HAELd5V

.+ (next page)
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r---..
] fzJ BAZA AB(fA fB A B)CEA EA)HAELdSV

*
3| b
=~
1

NuNpN AABfL(EA EA)HABL

]
b3 |
I M\
]

(7.62)

E L] L] ﬂ*-

EAL AAEEL(EA ’A)"ABL

el ® ji L1y Y *A !7— - * J
) JHA e ALY ("A “'A)*B (“L_%)}(EA_EA)UV

LB

+
I | et
‘M‘

+
b |

Z)"[;A-B‘L AAB{BAA i A)+E (‘" )BLA L}(E E L%

+
mmw

+
Mgk I} [

ZZ[n =BZLEAAB{BAA(w:—w2)+EBA(:g-ug)+BLlwé}(gA,E:)wABLaSV .

In light of our previous arguments in this chapter, we

define four integrals which are given by

] , 1({*s ai‘ * *
CaLca(n) (6a) * 3 AAI(" " Vea,

(7.63)

=W, s W R sy .
Ca, Caﬁ)(EAng)wALd v

_ . . _ 1 - L] E*E* * *
CLaBCa(n) (62> = ?I N, 5( ’L+QT..) A% veg, * Vea, o
' ) (7.64)
- Yea,tt )(EA EIV, g 8%V

.2 a(n)
c (£,)

“LAB l[ ‘iBAéB(H g‘"‘)(E -g W, dSv ; (7.65)

2 ABL A "A" ABL

™ ey

]
1 -] -] -] B* 7 B V :
J Npd B, (up L wim) (E5E YW av . (7.66)

When we substitute equation (7.20) into (7.62) and

employ the integrals Just defined, equation (7.62) becomes
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T o . TAT .
I EADco11MdV, = - 1 {bACALAA(EA) * el CALAAT(EA)}
fl .1 .
' {bACLABAR(EA) + e\ Ol anare (83

L LA e s AT
+ bpCranea (€a) * S5 Clanmac (Ea )}

] ’
e
ot p~—1

ACaian (EQ) + BiC y (7.67
{EACALAA(EA) + BLCALLI(EA)} | (7.67)

A1 1 , 2 *
{BACLABAA(E ) + BBCLABBA B BLCLAEA(E )

; ) _ El.‘ﬁﬁ L
"LAB) " "A } XIHANLAAAL(EA EA)fLUALd v

f N Ng (4 - L)AAAB(E, E) VA dV

+
ot ‘l} [

+
s = L ]
B & B o™
3
)
—
s}
Mo

We may simplify equation (7.67) by defining

z dM e + ZZ o™y cma

cic“(“)(gA) z 4 Z c! d(“)(E ) ;C=8B,C4A,L (7.68)

LAB

3™ (g, - Z Za™, + z c3 3™ (g y;caL
b, .

in terms of which equation (7.67) takes on the following

form:
. v, ,
IEA aall“AﬂvA - g { by Cl (E ) * tB “ABAT (E ) }
P WY _
-1 EECACA(EA)
¢ (7.69)
+ E NNy :ALEL(EA EA)HALdkv
1 .
+§ng (%HQ%%EE AL L
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As before, we are primarily interested in the two cases

S

A ) We n@tice. however, that the first four

o
E’A = HA and E

Hence, we just have to repeat the subsequent analysis from

o hS ] ,
(7.27) onward, merely adding a superscript 1| to the

quantities defined therein. Then, if we denote the
o N J ~al agd  __ _jai 1282 -
contributions to TAlx and UAIA by T, Ix and Uy ]y we
obtain
1 2 1 1 1 1]
Tha |2 " { * )T (Lpp18ng + Lygdey ABB“B)}“.:
Sftlhe - Tl g ‘
- L ] -] ﬁ*-* *
+ ] [ NN QA E (v, v, W, d%Y =
£ A
+ 3 1IN, NN (& -N IBASE (v, e W, AN
2 {8 AL AAE L'"Aa YAa’"ABL :

1 A o1 N N by} : 1
Urag|r = {XAD+ I(XAslsnn*XAnzEDB+XA33“B}(“Q“5+ 3Pap)

B - - - . V 1]
- Taxloh o - T2xd o quny - Tyl o
XAB4"B (0" 8) XAB59B(a"8) ~ LXAB6"Bag s
B | B (X 71)
L -] ztlif ( * * " "
+ £ NN AL (Ve a¥AB™ Yaa¥ag YaLd Y
1 e [e & » ce o okex * * B 5
+ 7 %g JNANB(AL_HL)AAABfL(HAuHAB‘ “AEHAB)HABLdEV

We must now consider the structures of the integrals
containing f, in equations (7.70) and (7.71). When we
integrate over all variables except the variable pg in the
four integrals in (7.70) and (7.71), the résu1ts must be a
tensor function of position and pili Consequently we have

that



® & wang *
I N A4 (w, - LN )U dv dV dv

ALAL "Aa ALT AT AL
Ly (RN AN )8R w - & (7.72)
+ 3’% [ AU R RN LA L dVAdVAdV dv {7.72]

; ;] L& 38 ] i *
ANLOAAL (V) Vg™ “AEHAB)HALdvAdVAﬂVL

1 a a & ‘ ‘ i * i ) _ .
+ = 2 j A B(AL )A AB( AEHAS “AG“AS)VABLEVA&VA&VB“B (7.73)

1

"% JLlGC“L){ (ugugt Kigkpg) = VAL (ugky ghughy ) }

where kg is given by equation (6.5). The coefficients which
appear in (7.72) and (7.73) depend, since they are scalars,
upon position and the frequency vy -

We multiply (7.72) and (7.73) by_%é as given by
equation (6.25) and integrate over dv, , thereby obtaining
for the four integrals in question the following

expressions:

NN AAYE (v - % W a%v
NN AL E L (Vaa™ Yag)¥ard

1¢ (2o AL 1L S o -
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1 * - e B
Eg J N H (AL NL)AA%BEL("'A Va8~ “AB)VAELdSV (7.75)

Y1 &n (4 1 .
Xar2901 (ugugt Fh,0) - xALé(hL ugthy gue) = X7 Lag ;

where the average coefficients L‘Lle and xALi are deflned by

1 . = 1 = 1 = 2 3 F o - y 7E
LALgépL z JTLLtSpL(\bL)d\A b LapaPe G fTALh_LucuL)duL, (7.76)
—1 . = V 1l .o
XAP§9L = [ UALégL(BL) d\;L :

11 = 2 S - i . e
XaLaPLa = IUALth("L) v, 5 (7.77)

D
XAL6™LaB = T ! VAL Lap V1) dv,

Strictly speaking, L};LA , ;ig' , and xlALE should be tgﬁscrs
but we have assumed they are scalars for simplicity [Zl_i
Substituting (7.76) and (7.77) into equations (7.70)

and (7.71) now gives us

1 = {1l 1
Taa IA {L +Z( Lap1 5+ hAn2 805+ A s)}“

= 1 Linshpg = I LApstpq (7.78)
B B T N

- 1 3
*% Lo E*mhng ;
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) S T I o1 o1
Uaag |2 { Xpo * g C Xpp167p * Xm0

1

+ XAB3" )+ Z XALZ }(“ T T

-2 { g Xa34Pp(a¥p) * E XaLaPL (a%g) }

(7.79)

- 1 _ 1 - 1
zg XaB5%B(a!8) g XaB6"BaB g XAL6"La8

Various contractions with y* and %8 produce the five

equations which are the contributions to 'r”A and UGB?A due

to interactions with massless partocles:

- 1 l .

u TA IX +Z(LABl nB+LA326°B+LAB3 B) +ZLAL26°L . (7.80)
lﬂ - 1 . .

AUGTA g I‘ABAhBu Z Ath"Lp + z LABSQBH H (7.81 )

1980 oy ee”y o1 1 o1 .
UstgUs |2 " XA0+§(XABIGnB+XABZ6°B+XAB3“B) +EXAL260L ; (7.82)

]68 o - :

Bag¥s |2 " L Xm“n,. +] th;,u I Xipstp, 5 (7-83)
IGBA - - 1 _ 1

(8,48,4" 3 8,802 | g LA z XaLe Ly - (7-84)



140

D. Case Three: Massless Particles Alone
The last case we have to consider is the evaluation of

Let us reproduce equation (7.17) in a more

Y

Dcoll“L
convenient arrangement :

& O S465
LN =
Peo11™M E JNANLAAAL(fA fA)wALdVAdVAdv’

AB
- [2 = Zsﬁi,i, - £ % !
+ E [NA L2AALEL¥AL YV, O (7.85)
£ Z !HA AALE dvAdvAavL ‘

" § “ )

I [ i ot )

-] - B*B
+ E JN N, AAA.L{BAA A A)*eu(u -w, )}HALavAdvAde

& e o ey i Ai,,l Ay o
I A BALAAAB{EAA A A)+BEZ(“B_HB)=B,AHL}HABLd v .

The structure of £, for massive particles suggests that we

+‘
I

define the following integrals:

Kiin)(Pg) Z 4nv I A‘L-:AL(H ...ﬁiﬂ (7.86)
- On o
vil... v )WALdVAdV de ;
Lala), a = 20w w AEAE *aq *a, -
. ELABCCPL) = AiuLI A B'LAAAB(HC vos WD ‘ {7.87)
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BN 4'vf{ZJ'GAEZB:HALdvAdvAdVL (7.88)

* ZZ[. IA;WABLd“V} ;

- _ o o -] Q*o*
Ka = - 4 1D ]NANBALA Agvy 3 ¥ap 4"
(7.89)
4n

V
L L8

2 [ ] o .*0 _
V2 Z In N, A AL(VLA 12 ¥ay Y av av,

A'LA AL" A" AL

Then equation (7.85) becomes in terms of these integrals and

the structure of N the following expression:

“AT

2 - -
4™ Deo11™ML E (ki * 4 Fuand
+Z):{l;X + T
LL 1 PaMLaBar * Ca Krasane
. - “AT -
-+ b;KLABBA * cp Kiammar } (7.90)
A A \
+ £§ { ByKan * BFama * B5Kiamm }
2 n Ay
- ArvKN £+ BLKLLA ' ,
2
+ 4wy E I ANL AALfL"ALdVAdVAde

If we define »

a(n) _ ,
Ko = ) (7.91)
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A

then equation (7.90) simplifies to
2y ! - e | %irf
Y™ P11y - E { PAKLax *€a KLAAT}
+ 78 .+ Rk, - 4tu2ﬂ £ (7.92)
T & TATLA B X LLH. e

+ 4mv2 ¥ NN AR N av avt av.
™ L NANLALLE Har 9V, 3V, 8V

To make further progress we must expressK, .. and K 3.
in terms of their irreducible structures. Since they are
tensor functions of position, momentum and the flow vector

u® .ﬂ:s obtain ‘
v - }1,, 22 3 ]
Kca = Fic¥s * Micfa ¢

it 5 \ oL o .
Kae = Realuyug + 3,k ) + Kia(uyu, +

(7.93)

toad |
P>

Vl\,r)

o5
+ KI.A(uAk‘I..T * ukal)'
Substituting these expressions into (7.92) we then have that

- T{ Rty R, 4 o, R
! + ZKI_,A‘::‘LL i‘I;ACA kLukLB } ~ )
(7.94)
Z AKLA ELKLL - 4m? ELHL L ‘

! l E *
I AL WALdV AdV Ade

+ 4wv2 z
Lég
Let us re-express b, , ¢,y etc. via equation (4.34). If

we define \gizi_éﬁsgs

a1

(7.95)

?—7
:
-
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Hmzx{ill_An + 4 @3, %mz} (7.96)
Mia3 = {K{A (‘LA fi.n) AZB} ; (7.97)
' v
Mico © ixl,c: » C=A L (7.98)
. Miag = - E%AQAAA 3 (7.99)
H‘LAESZ!{EEADAIIS*ZELSAQAES}*B . (7.100)
L2 - ,
Mae T TS Kalyes (7.101)
‘then we PMave for equation (7.94) the following result
:“r%fznl; A E { Mardo, + Mpapde, + M, T,
+3 HLAéhcALkL.ﬂ+3 M asIR g )
(7.102) ¥
"us AB“Lu“La} g Z M cobc
Z’“’LKLNL , + AtvLI!NAHLAAALfLH av, av av’ .

AL"A AL
f‘\

|
A simplification ofcurs if we define
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Mo T 1M 8, (7.103)
0 " ¢ LCo"C

This quintity is zero if all of the .inverse temperatures,

éc* ar the same.

We must now determine how to evaluate the last integral

variables p% , 3% , ;®  and in light of the structure of
Py + Py + P C

£, equation (6.25), this integral must be a function

solely of the variables p;:j and ;:;c:sitic:ﬁ. We conclude that

[35]

(7.104)
K18 (v ) - R°28%¢y YL . w-3,0B .
= - Kabe (v - _Klth("L)"‘Lg - K™ Pk kg

where theu coefficients l(r‘j must depend solely upon position
and Frequencyi
Equation (7.102) becomes in terms of (7.103) and
. L4

(7.104) the following expression:
. . o
=AM DeonaM " Mo * E { TV TPLIAL TR
& : )
+ BHLAAh:kLa + BHLASQCALk’Lu
15 98 2% N
2 Ma6™a k’LukLB} +ATRIN g

3_aB

s * RS )

(7.105)

oy,



(6.24). Hence, when we define
= 2 . Y -1 \ .
= ““LKL"L/JLzo("L”*E Ka
1
K2 = {“""LKLNL/JLzo(" V43 z Ki
= { 27§ k2
K 4 = lnvLKLN P+ IR
§ L
wé obtqin
2 N .
479D o1 D + D:."L +D ﬂkmkls ;

where we have defined the following coefficients:

\‘zé

(7.

(7.

(7.

(7.
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106)

107)

108)

109)

DL = - { HLO + KLIGOL + E(hlénAﬁmgéﬂAﬂl.ABﬁA) } ;(7.110)

Dy = - { <ahy (V) + zmut.h: * HLASq:)} ;
“aB _ 15 aB T . czs
P -7 { 3™ ) ¢ EHLAE A }

(7.

(7.

111)

112)

The expression above for D 11N is all that we require to
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‘solve for the massless particle case transport equations.

In summary, we have developed in this chapter three
sets of equations. The first set descéibes T:Tl and tﬁBTx of
the massive particle components excluding interactions with
massless particles. The second set of equations desiribes

the additional term§ which we have to include in T:TA and

agl
Ua [

particles with massless particles. Finally, the third set of

if we wish to include the reactions of massive

equations describesr%ollNLfor massless particles reacting

with massive particles, reactions with other massless

particles being considered as negligible. We have also shown
h 1 . . £ Tuk UaB)‘

that the plausible expansion o Alx* “A |a» and D 11Ny 1N

terms of the deviations frdm equilibrium is quite valid;

furthermore, the calculation indicates how the scalar

coefficients are related to the transition probabilities.



VIII. Summary

In this thesis we have aeve1éped a non-stationary
theory of mixtures within the context of Boltzmann Kinetic
theory. The two major results that we derived are, for each
component of the gas, the expression for the entropy
production, and the transport equations which describe the
behaviour of the thermal and viscous effects. These results
are important because the entropy production and the
transport equations, in conjunction with the balance
equations for the mass fiux and the energy-momentum tensor,
are just the equations we need to describe the macroscopic
behaviour of the gas.

The transport equations indicate the synergistic
effects in the gas. Neot only do the thermal F1uxe§ and
viscous stresses of a particular Séééiés depend upon purely
thermodynamical quantities defined with respect to that
species, but they also depend upon the thermadyﬁamical
quantities, heat fluxes, and viscous stresses of all the
other species in the gas. In addition, the transport
equations include relaxation terms to describe the transient
effects in the gas. These relaxation terms also appear in
the entropy flux and imply that, for any initial deviation
from equilibrium, the entropy is reduced, i.e. equilibrium
is a local maximum. This is a manifestation of positive
rgiaxatian times.

| Another feature of the transport equations is their

insensitivity to the nature of the collisional terms
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appearing in them. The transport equations may be written
schematically as TD=COLL where the lefthand side, TD
(thermodynamical), contains thermodynamical functions, ;Peir
derivatives, heat fluxes, and viScous Stresses etc. The
righthand side, COLL (collisional), are the collisional
structures formed from a linear combination of the
macroscopic deviations from equilibrium and coefficients
determined from the collision cross-sections. While these
collisional coefficients are sensitive to the nature of the
collisions involved in the gas, tﬁe general algebraic
stucture of COLL is not. Furthermore, our main result, for
both the massive and massless cases, is the specificatiaﬂ of
TD for all the transport equations. These structures are
independent of the details appearing in COLL and hence are
‘applicable to all situations whereas COLL will change
according to the system being considered.

Our theory of a multi-component gas with transient
effects is a generalization of, and an improvement over, the
single species non-stationary theory and the
quasi-stationary multi-component theory. Under the special
conditions of a gas consisting of only one massive particle
species, our theory is identical to the non-stationary
theory of Israel and Stewart [16]. On the other hand, when
we neglect the transient terms in our theory we
produce,assuming the vorticity is zero,uFB-(L the stationary
multi-component theory of Stewart [33]. Finally, for the

massless case, when the deviations from equilibrium for the
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matter may be neglected altogether, we obtain the
quasi-stationary results of Straumann [35] when we neglect
the transient terms in our thegﬁyi

Our theory is also an img:avngﬁt over the
quasi-stationary multi-component case and the single
component transient case because it has a wider range of
applicability. The situations envisioned here are cases
where a multicomponent approach is necessary and where a
quasi-stationary theory is inappropriate. Possible
applications for our theory which come to mind are of an
astrophysical nature: the accretion of matter through the
boundary between a star and a h&pﬂthetica1 neutron star or
black hole imbedded in the star’'s core (Thorne and Zytkow
[38]); accretion disks around black holes and neutron stars;
and the leptonic era in the early history of the universe.

In'conclusion, therefore, we have a non-stationary
theory of a multi-component gas containing massive and
massless particles which is a significant improvement over

previous theories; and this theory is applicable to

uations of continued interest to astrophysicists.
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Appendix A: The Standard Thermodynamic Functions

Let us consider the integration of IAnq. From equation

(3.5) we have that

. n °
I - (-1) { N (U pa)n‘zq %
ng el ¢

(A1)

Let us choose a local lLorentz frame such that

W’ = (0,0,0,1) . Ih this frame we have

pu- (pcosésinb,psin¢sin®,pcosh,E) This implies that

papc - E2_p2 and UQPG = -E . Then we have d%p° = E251n6666¢dEdp
where 054527, 050=w, 05p,ES = Then equation (A1) becomes

I - —_(—;)nﬂ.&_ [ { ___1_ (_E)n-Zq x
(A2)

" @™ logrny PE-a__

p2q+2 5(p2 -E2 4+ mz)e(E)dpdE

Integration over E gives us

(1) n rhg a?) [ (0-29-1)/2] 2q+1 4 (3]
0

I
nq -n-1(2q+1)!! exp{é(p2+ ;2)1/2_(1} - e

R
<

For I:H‘O we set p = msinhxy sO that dp = #coshxdx. Then
(p2+m2)1/2-mcoshx . For =0 we have (p2+- )-p2 and we set x=fp

In both cases 05 xS« Equation (A3) now becomes
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(2q+1)!! exp(Bcoshy - a) - ¢
0

dmo - Xﬁ+1 ‘o
e i —— S — e d' » I - D
2 (aqe1yry | e - @) - X F
\ eqriit o)

Eéetitign of the above calculation for Inq gives us

r .
1‘#153 _ [- (sinhy)” 2q+2 (Eashl)ﬁ qux , ; ¥0

(A4)

ed|
n
e

‘nq

¢ .
éfrrgmii Bccshx f _(sinhy) 2a+ ('t:ash )n Zq ﬁlD
) (2q+1) 1! [erp(Bcashx - a) - E]’ X B
I - ° (AS)
nq
i X~ n+l s
74?57 _ Erxii: Xn — dx ﬂl =0
n+2 . . Iy \ Y- '
gS (2q+1) !, ] [exp(x-a) - €]

For massive particles, the integrals for iﬂq and an

can be expressed in terms of a standard set of integrals

K (a, B) L (a, B) where [12,16]

X (e @) = B S (stahp?" —dy - 28]

Ka(o8) = (20-1) 1! Eaxprcn!hx ey e S (A6)

= _ g" (sinhy) coshy . : ) -1

n+1(g 8). = (2n-1)1! EEIP(EEQ:hx “a) - ¢ 9 - ' (A7)
’

For n = 1, 2 ... we have

(STB)B = Lrl H v . . {A8)



aL
T nt+l B O 3 8 ) - ) . 2n
(Bu ) g 35(8 ’n) - !ﬁ=1 + B Kn ’

and for n = 3
n 37 -1n_ - Eﬁ .
S E ) T Lt

Consequently, for gqsn/2, n = 0, 2, 4,

Tnq = 78R , (2q+1) 1Y \ " r ) qtr+l’
=0

(n/2)-q,, . /n
o orm Q2q2r+1) 1! (= —q), ~(
brgn’ T+ (2q+D) ! (2 r )Lq+r+1B

nt+l,q =0

(]
L]

J = 4%gm*
79 o r=0

and finally for

n-l_ -
+ (2q+1)( z - "’1) }Kq+ )

The I 's and J__
ng ng
relatfons. Algebraic manipulation of equations

give us

's obey some useful recyrs
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(A9)

(A10)

~latrel) . (a43)

P aprey (3 - :
) 2 ¢ Lqrr1B

T (2q D) I

(A4) and (A5)

(A15)



JfoZ;,q - E’jnq + (2q+3)jﬁ+2!q+1 ; (A16)

where ;ﬁﬂ for ;-D and ;:-1 for ;# 0.
Integration by parts of equation (A4) produces the

result, valid for all types of mass, that

(n-2q+D)1 4 1

n,gq-1 " (A17)

nt+l,q — g == .

or alternatively -
_ ()T 4 eI, . o
Totl,q T ———Rd o BoZugnl (A18)

Since the ;ﬂq's and Jﬂq‘s are functions of a, B , we
can obtain differential relations:

dI =J da - J d8 (A19)
ngq nq n+l,q , ‘

(o+2)3_ +3 i
da o ngn—z,q—lds?uzo)

e
where the second equation is obtained by differentiation of
equation (A17). )

We define the following functions for mathematjéai

convenience:

[ X]

D -3 ' (A21)

nq Jﬂfl;qjﬁ+l.q nq



=
1

(IZQ + Izl)liig - J31!J21 . (A22)

From equation (A4) and (A5) we may egprgss I

and J
q
for massless particles as

ngq

1 -rI (V)dv 7 : - (A23)
nq 0 nq .

J-r:mau ; S - . (A24)
ng o nq :

(A25)

%]
o~
[ ]
L0
it
~ |
]
1
[

— v (A26)
B2 a1y 11 (V70 - )2

Equations (A25) and (A26) are the specific forms of LN QD)
and an(v') as defined by equations (6.15) and (6.16).
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Appendix B: List of Symbols
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a, -a deéviation from equilibrium appearing in £, (p.
42 ).
2 -a numerical coefficient (p. 34 ).
b, -a deviation from equilibrium appearing in £, (p.
43 ).
b: -a deviation from equilibrium appearing in £,
. ) _
1;: ‘ -a deviation from equilibrium appearing in f, (p.
42 ), |
B(NA) -the collisional terms due to binary collisi;ms
alone (p. 91 ).
c -the speed of light (=1 in this thesis )(p. 17 ).
e, -a deviation from equilibrium appearing in f, (p.
43 ) .
c: -a deviation from equilibrium appearing in £, (p.
43 ).
cZB -a deviation from equilibrium appearing in £, (p.
43 ).
;ZB~ -a deviation from'equilibriun appearing in £, (p.
42,
CV;,E -the specific heat at constant volfme (p. 39).
c' - -the specific heat at constant pressure (p. 39 ).

c:;g)(CA) -a general collision integral (p. 126) (p. 134 ).

daz -the space-like element of three volume (p. 20 ).

av -the volume element in momentum space (p. 20 ).
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aa, -the element of solid angle (p. 91

an -a specific combination of an s (p.
D:(n)(uL) -a coefficient in the expansion of the Boltzmann

equation for massless particles (p./105).

Sa(ﬂ) (v

L ;) -a coefficient in the expansion of/the Boltzmann

equation for massliess particles-{p. 145).

I

' o117a -the collision term in the Boltzmann equation (p.

23 ).

€, -the electric charge of a particle (‘p. 19%)!

-the first order deviation from equilibrium

expressed as a power series in p,(p. 42 ).

g - -the determinant of the metric tensor (p. 20 ).

-the spin weight factor (p. 22 ).

g . -the metric tensor (p. 17 ).

h -Planck’'s constant (EQU!‘]S one in this thesis) (p.
18 ).

h, -the momentum flux (p. 30 ) (p. 11 ).

“(uL) -the spectral ‘momentum flux (p. 94 ).

H -the enthalpy (p. 37 ).

1,°® -3 standard integral (p. 34 ).

I -a standard thermodynamic function of a, and B, (p.
35). -

& -the particle drift (p. 30 ).

j:(\lL) -the spectral particle drift (p. 94 ).

J -a standard thermodynamic function of @, and B, (p.
35 ).

k -Boltzmann’'s constant (p. 37 ).
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Kifﬂ(pi) -a frequency dependent cgllision integral (p.
140 ).
Kzgé(?g) -a frequency dependent collision integral (p.
140 ).
K, (py) . -a frequency dependent collision integral (p.
140 ).
(p;) -a frequency dependent collision integral (p.
141 ).
-a frequency dependent collision coefficient (p.
141 ),
-a frequency averaged EDi]iSi@ﬁVCDeffiCiEnt (p.
144 ) .
kﬁ -an arbitrary spatial vector of unit length (p.
93 ),
L. -a collision coefficient (p. 128).
L. -a collision coefficient (p. 130).
-a collision integral (p. 127 ).
-the rest mass,of a particle (p. 19 ).
m -a generalized mass (p. 20 ).
-the mass flux (p. 25 ).
-the zeroth order part of the mass flux (p. 46 ).
Mg (V) -a spectral collision coefficient (p. 143).
M A -a frequency averaged collision coefficient (p.
109 ).
n -the mass density (coincides with number density
for massless particles) (p. 29 ).

;l -the number density (p. 35 ).
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EA -the fractional proportion by mass of species A
(p. 37 ).

a -the number of species in the gas (p. 60 ),

?;rﬁ}vL) -the spectral number density (p. 94!);
ra!;u -the time-like normal to the spatial surface dI

(p. 22 ).

N, -the distribution function (p. 20 ).

§A -the equilibrium distribution function (p. 32 ).

NL(VL) -the spectral distribution function for mass less
parficles (p. 97 ).

N: -the number flux (p. 25 ). \J

N;(%) -the spectral number flux (p. 44 ).

p: -the four momentum of a particle (p. 20 ).

P, : -the thermodyhamic pressure (p. 30 ).

§A -the bulk pressure (p. 30 ).

q, - ~ -the heat flux (p. 48 ).

Q: ~the second order tensor appearing in the entropy
f1ux (p. 56 ).

Q: -the thermodynamic functions appearing in Qz(p;

58 ).

5, -the scalar spin of a particle (p. 19 ),

S, -the entfcpy (p.

sz -the entropy f p. 27 ).

s -the total@entropy flux of the gas (p. 27 ).

T, -the temperature fospegies A (p. 33 ),

7



o]
g

-the Eckart te&%erature (p. 99 ).

-the matter temperature (p. 99 ).

-a frequency dependent collision term (p. 137).

-the energy-momentum tensor (p. 26 ),

“the total energy-momentum tensor of the gas (p.
26 ),

-the zeroth order part of the energy-momentum

tensor (p. 47 ).

-the spectral energy-momentum, tensor (p. 97 ),

-the thermodynamic Fuﬁcrtiéﬁs'appearing in the

transport equations (p. 83 ),

-the collision term in the Boltzmann equation for

massless particles due to annihilation and

creation processes (p. 91 ).

-the collision term in the Boltzmann equation for

massive particles due to creation and annihilation

processes (p. 92 ).

-the internal energy (p. 37 ).

-the unit flow vector or the four velocity of a

comoving observor (p. 24 ).

-the unit flow vector for species A (p. 42 ).

-the thermodynamic. functions associated with the

double momen tum flux (p. 54 ).

-a frequency dependent collision term (p. 137 ).

-the double momentum flux (p. 27 ).

-the zeroth order part of the double momentum flux

(p. 54 ).
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u (p. 44 ).
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v -an arbitrary parameter. also, a specific volume
(p. 37 ).

v: -the four velocity of a particle (p. 20 ).

W(p,opylPysPy) § Wy ~transition probability for
binary collisions (p. 22 ).

V(pA,pnlgA.;B,pL) P YanL -transition probability for
creation processes (p. 91 ). .

W(p, .PyoPy P, 0Pp) 5 W ,n -transition probability for
annihilation processes (p. 91 ).

<" -the space-time cmrdinates (p. 18).

Ya -the natural logarithm SfiﬂA/AA (p. 42 ),

;A -the natural logarithm of §A/ZA (p. 42 ).

a '-the thermal potential (p. 32 |.

a -the coefficient of volume expansion (p. 38 ).

B, -the mass times the linverse temperature (p. 32 ).

Be -the mass times the inverse of the Eckart
temperature (p. 99 ).

BH -the mass t%rnes the inverse of the matter
temperature (p. 99 ).

BA -the inverse of kT, . referred to as the inverse
temperature (p. 42 ).

f;: -the inverse teﬁnerature times the flow vector (p.

42 ), ’

B: -the flow vettor times 8, (p. 42 ). ‘

% -the adiabatic index (p. 40 ). |

5 -the difference ‘betweer\ uz and a common flow vector
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-a fitting and frame change of fAiﬁ, 61 ).
~the first order part of the mass density (p.

61 ).
-the first order part of the distribution function
(p. 44 ).
-the first order part of the mass flux (p. 46 ).
-the first order part of energy-momentum tensor
(p. 47 ).

-a frame change of v* , v® (p. 43 ).

A
-the first _order part of the double momentum flux
(p. 54 ).
-the Dirac delta function (p. 20 ).
-a fitting change of the thermal pcteatial!(pi
).
-a fitting change EfBA (p. 43 ).
-the first order part of the energy density (p.
47 ).
-the Bose enhancement or Fermi exclusion function
for collisions (p! 22 ).
-the spatial projection operator of u*(p. 29 ).
-a fitting and frame change of the distribution
function (p. 61 ).
-a variable defined by a cantracticﬁ of the double
momentum tensor (p. 53 ).
-the relativistic enthalpy (p. 38 ).
-a thermodynamic function defined via a derivative

of n,with respect to B,(p. 67 ).
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~the Minkowski flat space metric (p. 17 ).

8 -the volume expansion: an angular variable in
integrals (p. 24 ),

8(x) -the heaviside step function (p. 20 ),

0 | -the thermal potential per unit mass (p. 36 ).

K -the isothermal compressibility (p. 38).

KLyq -a sgeétra] coefficient of absorption (p. 145 ),

L1 -a frequency averaged coefficient of absorption
(p. 108),

A _ -the mean free path (p. 64 ),

AL -the coefficient of thermal conductivity for
massless particles (p. 112 ).

A -the heat conductivity matrix (p. 88 ).

A - -a thermodynamic function (p. 48 ).

116 ).

v . -the frequency (p. 93 ).

v -the shear viscosity matrix (p. 88 ).

v ~the shear viscosity for massless particles (p.
112 ).

v -the bulk viscosity matrix (p. 87 ).

£, -a combination of Y, and @A(ﬁu 23 ).

-a functibn of the distribution function (p. 28 ).

" - 3.14159...,; the bulk stress of the whole
11 ).

-the bulk stress of species A (p. 135 ).

=

H?s?) -a projection operator (p. 34 ).
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-the energy density (p. 30 ),

A
o, (V) -the spectral energy density (p. 9 ).
"o -the entropy per unit mass, the cross-section (p.
87 ).

af -the shear tensor (p. 30).

T -a particle’s world line parameter, the optical
depth (p. 20 ),

Yy -a variable defined by a contraction of the
momentum flux (p. 53 ) ..

¢ -an angular variable in iﬁtegréfs (p. 153 ).

°A i -a function solely of the distribution function
(p. 23 ).

X -a hyperbolic angle variable in integrals (p.

153,

x:ﬁ“ -an arbitrary thermodynamic function of position
(p. 65 ). _

iA -an arbitrary thermodynamic function (p. Eel)i

Xap1 -a collision coefficient (p. 85 ).

Xpn1 -a collision coefficient (p. 131).

XABg -a collision coefficient (p. 129).

WA -an arbitrary tensor function of position and
momentum (p. 23 ).

w®B -the vorticity tensor (p. 30 ).

2, -a thermodynamic function (p. 50 ).

‘Huj -a thermodynamic function associated with the

solution for the deviations from equilibrium (p.

51). ‘l
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Special Symbols

-the spatial derivative (p. 66 ).

-the time derivative (p. 66 ).

-over thermodynmical functfbns it represent a
derivative with respect to the inverse
temperature; over collision coefficients it

represents a frequency avaerage (p. 66 , p. 109).



