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 1 

Abstract 2 

This study investigated when the Bayesian cue combination of piloting and path 3 

integration occurs in human homing behaviors. The Bayesian cue combination was hypothesized 4 

to occur in estimating the home location or self-localization. In Experiment 1, the participants 5 

learned the locations of five objects (one located at the learning position) in the presence of distal 6 

landmarks before walking a two-leg path without viewing the landmarks and objects. At the end 7 

of the path, the participants indicated the original locations of the objects in four cue conditions: 8 

1) path integration only, 2) landmarks only where the participants were disoriented and the 9 

landmarks reappeared, 3) both path integration and the reappearing landmarks, and 4) path 10 

integration and conflicting landmarks rotated 45º. The participants’ heading, position, and 11 

homing estimations were calculated. The ratio of the length of the second leg to that of the first 12 

leg was manipulated to be 0.5, 1, or 2. The results showed evidence of the Bayesian cue 13 

combination for heading estimates in all leg ratios, and for homing estimates in a small leg ratio 14 

(0.5) but not in a large leg ratio (2). The following experiments replicated the results of  the 15 

Bayesian cue combination for heading but not for homing estimates for the large leg ratio (2) 16 

when participants did a typical homing task without learning the locations of objects 17 

(Experiment 2) and when proximal landmarks replaced distal landmarks (Experiments 3-4). 18 

These findings suggest that the Bayesian cue combination occurs in self-localization prior to 19 

homing. 20 

Keywords: Bayesian cue combination, path integration, piloting, navigation, homing 21 
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1. Introduction 1 

In navigation, humans update where they are located (i.e., position) and which direction 2 

they are facing (i.e., heading) relative to important items (e.g., home) in the environment. We 3 

refer to the process of updating the navigator’s position and heading as self-localization. In 4 

general, navigation relies on two primary methods: path integration and piloting (Gallistel, 1990; 5 

Gallistel & Matzel, 2013; Mou & Wang, 2015; see Geva-Sagiv, Las, Yovel, & Ulanovsky, 2015 6 

for more specific categories). Path integration is a process by which people estimate their 7 

position and heading relying on self-motion cues (Etienne & Jeffery, 2004; Etienne et al., 1998; 8 

Loomis, Klatzky, Golledge, & Philbeck, 1999; Mittelstaedt & Mittelstaedt, 1980). Piloting is a 9 

process by which people estimate their position and heading relying on perceived landmarks 10 

(Etienne, Maurer, Boulens, Levy, & Rowe, 2004; Foo, Warren, Duchon, & Tarr, 2005; Wehner, 11 

Michel, & Antonsen. 1996). In addition to the different input cues (self-motion cues vs. 12 

perceived landmarks), path integration is continuous, whereas piloting is intermittent (Etienne & 13 

Jeffery, 2004; Wehner, Michel, & Antonsen, 1996; but see Tcheang, Bülthoff, & Burgess, 2011). 14 

Homing, going back to the origin of a path (i.e., home), is one of the most important 15 

navigation behaviors (e.g., Loomis et al., 1993). To understand human spatial navigation, several 16 

studies have examined the interaction between path integration and piloting in human homing 17 

behaviors (Chen, McNamara, Kelly, & Wolbers, 2017; Mou & Zhang, 2014; Nardini, Jones, 18 

Bedford, & Braddick, 2008; Sjolund, Kelly, & McNamara, 2018; Zhang & Mou, 2017, 2019; 19 

Zhao & Warren, 2015).  20 

Some studies have investigated whether and how cue combinations of piloting and path 21 

integration occur to estimate home locations (Chen et al., 2017; Nardini et al., 2008; Sjolund et 22 

al., 2018; Zhao & Warren, 2015). In a typical paradigm, the participants start from the origin in 23 
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the presence of landmarks, and then walk a two-leg path with one turn. When they finish the 1 

outbound path, they walk back to the origin under the following different conditions. (1) In the 2 

path integration only condition (Path-Integration), the landmarks are removed before the 3 

participants walk back to the origin. (2) In the landmark only condition (Landmark), the 4 

participants are rotated for disorientation at the end of the outbound path and walk back to the 5 

origin in the presence of landmarks. (3) In the both cues condition (Both), the participants, 6 

without being disoriented, walk back to the origin in the presence of landmarks. (4) In the 7 

conflicting cues condition (Conflict), the participants, without being disoriented, walk back to the 8 

origin in the presence of the landmarks that have been rotated.  9 

Using this paradigm, researchers examined the variance of observed homing errors in 10 

these four cue conditions and also the relative proximity of the mean observed homing errors to 11 

the predicted homing errors from path integration and from piloting (referred to as the observed 12 

weights) in the Conflict condition (e.g., Chen et al., 2017; Nardini et al., 2008; Sjolund et al., 13 

2018; Zhao & Warren, 2015).  In general, the majority of past studies found that human adults 14 

could optimally or suboptimally combine (i.e., in a Bayesian manner) the homing estimates from 15 

piloting and path integration (Chen et al., 2017; Nardini et al., 2008; Sjolund et al., 2018; but see 16 

Petrini, Caradonna, Foster, Burgess, & Nardini, 2016; Zhao & Warren, 2015).  17 

Other studies have examined whether and how path integration and piloting interact in 18 

self-localization estimations prior to homing (Mou & Zhang, 2014; Zhang & Mou, 2017, 2019). 19 

Mou and Zhang (2014) showed that when the participants saw rotated distal landmarks after 20 

walking a path, their heading estimations were determined by the rotated landmarks, while their 21 

position estimations were still determined by path integration. Furthermore, Zhang and Mou 22 

(2017) reported that when the participants, after walking a path, saw a proximal visual landmark 23 
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that had been displaced to their testing position (at the end of the path), the participants’ position 1 

estimations were determined by the displaced landmarks while their heading estimations were 2 

still determined by path integration. In Zhang and Mou (2019), the participants drove the 3 

outbound path in large-scale virtual environments. This study demonstrated both (A) displaced 4 

proximal landmarks reset participants’ positions; (B) and rotated distal landmarks reset 5 

participants’ headings. All these results showed that cue competition occurs in human heading or 6 

position estimations prior to homing estimations.  7 

1.2 Homing hypothesis and self-localization hypothesis 8 

It is theoretically important to determine the stages during which a cue combination 9 

occurs in human homing behaviors. We propose two hypotheses stipulating different stages 10 

(homing or self-localization) (see Figure 1). According to the homing hypothesis, the Bayesian 11 

cue combination only occurs in homing estimations.1 Both path integration and piloting produce 12 

an independent homing estimate. These two homing estimates are then combined to form a final 13 

homing estimate. According to the self-localization hypothesis, the Bayesian cue combination 14 

occurs when determining the position and heading of the navigator (i.e., self-localization) prior 15 

to the homing estimation. Piloting and path integration do not produce two separate homing 16 

estimates. Instead, they produce separate position estimates and separate heading estimates that 17 

are then combined respectively. The combined position estimates and the combined heading 18 

estimates jointly determine the home location. We note that cue combination of self-localization 19 

estimates and cue combination of homing estimates both could occur either continuously or 20 

intermittently during the outbound path. We assume that path integration process occurs 21 

                                                           
1 The previous studies in the literature only stated that home estimates are produced by path 

integration and piloting (e.g., Chen et al., 2017; Nardini et al., 2008), and did not explicitly state 

whether there are heading or position estimates in each process.  
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continuously and piloting occurs intermittently during the outbound path (e.g., Zhang & Mou, 1 

2017). Consequently, cue combination occurs intermittently regardless of the estimates to be 2 

combined (self-localization estimates or homing estimates)2. 3 

These two hypotheses have different theoretical assumptions. The homing hypothesis 4 

implies that piloting and path integration are independent and use two different mental maps 5 

(Klatzky, 1998; Vickerstaff & Cheung, 2010). For example, while piloting uses an allocentric 6 

mental map consisting of spatial relations specified in terms of allocentric reference directions, 7 

path integration may use an egocentric mental map consisting of spatial relations specified in 8 

terms of egocentric reference directions (Benhamou, Sauvé, & Bovet, 1990; Fujita, Loomis, 9 

Klatzky, & Golledge, 1990; Wang & Spelke, 2002). Referring to the separate mental maps, path 10 

integration and piloting produce separate (independent) home location estimates. These two 11 

estimates are then combined to determine the home location.  12 

In contrast, the self-localization hypothesis implies that piloting and path integration may 13 

not be completely independent and may use the same mental map rather than two different 14 

mental maps of locations in the environment (Gallistel & Matzel, 2013; Tcheang, Bülthoff, & 15 

Burgess, 2011). Both piloting and path integration use the same mental map that specifies the 16 

spatial relations between locations in the environment (Zhang, Mou, & McNamara, 2011). 17 

Referring to the same mental map, people estimate their heading and position by combining the 18 

estimates from path integration and piloting, and then determine their home location using the 19 

estimated heading and position. Note that the current project does not specify or examine the 20 

exact form of spatial memories of locations. The form can be a single cognitive map (Tolman, 21 

                                                           
2 We are grateful to one anonymous reviewer for this suggestion. 
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1948), a cognitive collage (Tversky, 1993), or a cognitive graph (Chrastil & Warren, 2014). We 1 

use the mental map to refer to all possible forms of spatial memories of locations.  2 

The homing hypothesis is widely assumed by the studies examining cue combinations in 3 

human homing behaviors (e.g. Chen et al., 2017; Nardini et al., 2008; Sjolund et al., 2018). 4 

Moreover, the majority of studies have showed that homing errors for human adults in two-cue 5 

conditions (Both and Conflict conditions) can be predicted by the Bayesian cue combination of 6 

homing errors in single-cue conditions (Path-Integration and Landmark conditions). These 7 

findings are consistent with the homing hypothesis (Chen et al., 2017; Nardini et al., 2008; 8 

Sjolund et al., 2018; but see Zhao & Warren, 2015).  9 

The literature also shows evidence of cue interactions in heading/position estimations 10 

prior to homing estimations in human studies (Mou & Zhang, 2014; Zhang & Mou, 2017, 2019), 11 

which is more consistent with the self-localization hypothesis than the homing hypothesis. In 12 

addition, in a path integration model for ants, Wehner, Michel, and Antonsen (1996; see also 13 

Freas, Narendra, & Cheng, 2017) proposed that ants used a skylight compass to determine their 14 

headings before calculating the homing vector, indicating that for ants, piloting cues (skylights) 15 

affect heading estimations in path integration. Etienne et al. (2004) showed that hamsters, after 16 

briefly seeing rotated environmental cues, went to the nest that was consistent with the rotated 17 

environmental cues, although these cues were not perceivable during homing. This finding 18 

indicates that the piloting cues (the rotated environmental cues) reset the heading/position 19 

estimations in path integration prior to homing. Neuroscience literature also shows that either 20 

path integration cues or landmarks can activate rodents’ place cells or head direction cells 21 

(Muller, 1996; Taube, 2007). If we assume that rodents’ place cells are responsible in 22 

representing rodents’ positions and heading cells are responsible in representing rodents’ 23 
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headings, path integration and piloting jointly determine position estimates and heading 1 

estimates for rodents similar to humans (e.g. Zhang & Mou, 2019).   2 

As discussed above, the key difference between the homing hypothesis and the self-3 

localization hypothesis is the claim of the stage in which the Bayesian cue combination occurs 4 

(in homing estimation or in self-localization estimation). Therefore, the most direct dissociation 5 

between these two hypotheses is to empirically investigate whether the Bayesian cue 6 

combination occurs in human self-localization estimates (i.e., heading and position estimates) or 7 

homing estimates. We acknowledge that it is also plausible that the Bayesian cue combination 8 

occurs in both self-localization estimates and homing estimates, incorporating the self-9 

localization and the homing hypotheses. However, there is no study examining the Bayesian cue 10 

combination in homing and self-localization estimates simultaneously. Thus, at this point there is 11 

no empirical evidence that can directly dissociate the self-localization hypothesis from the 12 

homing hypothesis or incorporating these two hypotheses3. 13 

1.3 Current study 14 

The primary purpose of the current study was to distinguish between the homing 15 

hypothesis and the self-localization hypothesis by simultaneously examining the Bayesian cue 16 

combination of path integration and piloting in self-localization estimates and homing estimates. 17 

More evidence for the Bayesian cue combination in the self-localization estimates than in the 18 

homing estimates would favor the self-localization hypothesis. By contrast, more evidence for 19 

the Bayesian cue combination in the homing estimates than in the self-localization estimates 20 

would favor the homing hypothesis. 21 

                                                           
3 We are grateful to one anonymous reviewer for this suggestion. 
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Following the previous studies (e.g., Nardini et al, 2008), we qualify the Bayesian cue 1 

combination using two criteria: (1) variance reduction and (2) minimum variance in the two-cue 2 

conditions. We will specify the testing equations of these two criteria below. 3 

The Bayesian cue combination is the linearly weighted average of the estimates based on 4 

each single cue, which leads to the minimum variance of the combined estimate among all 5 

possible weights (Cheng, Shettleworth, Huttenlocher, & Rieser, 2007; Ernst & Banks, 2002). 6 

A general linear weighted average is illustrated in the following equation:  7 

E12 = 𝑊1× E1 + 𝑊2×E2        (1) 8 

where E12 is the combined estimate in the presence of both cues, and E1 and E2 are the estimates 9 

based on each single cue. 𝑊1 and 𝑊2 are the weights, ranging from 0 to 1, and 𝑊1 + 𝑊2 = 1. 10 

Assuming that the estimates based on each single cue are independent, the variance of the 11 

combined estimate can be calculated from the variances of each single cue: 12 

𝜎12
2  = 𝑊1

2× 𝜎1
2+ 𝑊2

2× 𝜎2
2        (2) 13 

where 𝜎12
2  is the variance of the combined estimate in the presence of both cues; 𝜎1

2
 and 𝜎2

2 are 14 

the variances of estimates based on each single cue. 15 

Because the Bayesian combination leads to the minimum variance, it should produce a 16 

variance reduction in the two-cue conditions (Both and Conflict conditions) compared with the 17 

single-cue conditions (Path-Integration and Landmark conditions). However, it is not always 18 

practical to test variance reductions in the two-cue conditions compared to both single-cue 19 

conditions (i.e. 𝜎12
2 < 𝜎1

2, and 𝜎12
2 < 𝜎2

2). When the estimation variability from one cue is much 20 

smaller than that from the other cue, the estimation variability in the two-cue conditions may not 21 
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be significantly smaller than that in the more precise single-cue condition (Rohde, Van Dam, & 1 

Ernst, 2016). In the most extreme case when one cue is valid but the other cue is not, the 2 

Bayesian combination predicts that only the estimate of the valid cue contributes to the combined 3 

estimate and the estimate from the invalid cue should be ignored. Therefore, in the current study, 4 

we qualify variance reduction by an estimation variability in the two-cue conditions that is 5 

significantly smaller than the less precise single-cue condition and no larger than the more 6 

precise single-cue condition. In short, Equation 3 tests the criterion of variance reduction (see the 7 

similar equation in Butler, Smith, Campos, & Bülthoff, 2010, Equation 9). We will discuss the 8 

implications of using this testing equation in the General Discussion.  9 

 𝜎12
2 ≤ min(𝜎1

2, 𝜎2
2)          (3) 10 

More strictly, in the Bayesian combination, the weight assigned to each cue is inversely 11 

proportional to the estimation variance based on the cue. The weight leading to the minimum 12 

variance (optimal variance) is termed the optimal weight. The following equations illustrate how 13 

to calculate the optimal weight and variance from the variance of the estimate based on each 14 

single cue. These two equations together test the criterion of minimum variance. In the extreme 15 

case when one cue is valid but the other cue is not, the variance of one cue is way larger than that 16 

of the other. Suppose 𝜎2
2 ≫ 𝜎1

2, thus 𝑊1𝑜𝑝𝑡𝑖𝑚𝑎𝑙
 = 1 and   𝜎12𝑜𝑝𝑡𝑖𝑚𝑎𝑙

2 = 𝜎1
2. 17 

𝑊1𝑜𝑝𝑡𝑖𝑚𝑎𝑙
 = 

𝜎2
2

𝜎1
2+ 𝜎2

2  ,   𝜎12𝑜𝑝𝑡𝑖𝑚𝑎𝑙

2 =
𝜎1

2×𝜎2
2

𝜎1
2+ 𝜎2

2      (4)  18 

1.3.1 General methods 19 

The current study used the same four cue conditions (Path-Integration, Landmark, Both, 20 

and Conflict) as in previous studies (Chen et al., 2017; Nardini et al., 2008; Sjolund et al., 2018; 21 

Zhao & Warren, 2015). In an immersive virtual environment, participants walked two-leg paths 22 
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with the presence of landmarks. After walking, participants indicated the home location in the 1 

conditions of Path-Integration, Landmark, Both, and Conflict. In the Conflict condition, the 2 

landmarks were rotated around the testing position (i.e., the end of the second leg).  3 

There are two more characteristics in the methods of the current study. First, following 4 

Mou and Zhang (2014), the current study asked participants to remember the locations of five 5 

objects (one at the origin) and then indicate the original locations of these objects after 6 

navigation in order to simultaneously measure heading error, position error, and homing error. 7 

Second, the current study manipulated the leg ratio of the second leg (L2) to the first leg (L1) of 8 

a path (L2/L1). These two characteristics were inspired by a mathematical model elaborating on 9 

the self-localization hypothesis.  10 

The first premise of this model states that the heading error (η) and the position angular 11 

error (π) jointly determine the homing angular error (θ) according to the following equation. 12 

Explanations and derivations of this equation are shown in Figure 2 (see also Mou & Zhang, 13 

2014; Zhang & Mou, 2017, 2019).  14 

𝜃 =  𝜋 –  𝜂          (5) 15 

In a typical homing paradigm, participants only reported the home location, producing 16 

only the measure of θ (Chen et al., 2017; Nardini et al., 2008; Sjolund et al., 2018; Zhao & 17 

Warren, 2015). According to Equation 5, we cannot determine two unknown errors (i.e., π and η) 18 

from one measured error (i.e., θ). To calculate the position and heading errors in addition to the 19 

homing error, Mou and Zhang (2014) developed a method to calculate the position and heading 20 

errors from the replaced locations of five objects (see Mou & Zhang, 2014; Zhang and Mou, 21 

2017 for the method details; see the Matlab code implementing this method at 22 
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https://doi.org/10.7939/R3FT8F06G). However, the method of Mou and Zhang (2014) only 1 

measured the angular errors but did not measure two-dimensional locational errors. A two-2 

dimensional locational error is comprised of both angular and length errors. Thus, the current 3 

study did not use the method of Mou and Zhang (2014). 4 

Instead, the current study used bidimensional regression (Friedman & Kohler, 2003) to 5 

calculate participants’ estimated positions (P’) and headings (h’)4. Figure 3 illustrates the general 6 

ideas used to implement the bidimensional regression (see the Matlab code online 7 

https://doi.org/10.7939/r3-2tj7-xq22). Briefly, the bidimensional regression technique established 8 

a regression model to predict the original locations of objects (e.g., O, a dependent variable) 9 

from the replaced locations of objects (e.g., O’, an independent variable). The regression model 10 

can be described as O ≈ f (O’). f is the prediction function. We assume that the relationship 11 

between the replaced locations of objects (O’) and the testing positon/heading (P/h) is similar to 12 

the relationship between the original locations of objects (O) and the estimated position/heading 13 

(P’/h’). Hence, the regression model also predicted the estimated position and heading from each 14 

participant’s testing position and heading respectively, i.e. P’ = f (P), h’ = f (h). 15 

The second premise of the mathematical model states that in path integration, the position 16 

angular error (𝜋𝑃𝐼) depends on the heading error (𝜂𝑃𝐼) (see Figure 4). This is because the position 17 

angular error (𝜋𝑃𝐼) depends on the error made when estimating the turning angle between the 18 

first and second legs in the outbound path (i.e., the walking direction of the second leg, see Fujita 19 

et al., 1993), and the heading error (𝜂𝑃𝐼) measures the error made when estimating the turning 20 

angle. Furthermore, the position angular error’s dependence on the heading error increases with 21 

                                                           
4 The bidimensional regression method yielded the same results as the method of Mou and 

Zhang (2014) in terms of the angular errors only. 

https://doi.org/10.7939/R3FT8F06G
https://doi.org/10.7939/r3-2tj7-xq22
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the path’s leg ratio (L2/L1) Three examples in Figure 4 illustrate this idea. Generalizing from 1 

these examples, we assume that the position error (𝜋𝑃𝐼) and the heading error both from path 2 

integration (𝜂𝑃𝐼) follow a linear relationship5:  3 

𝜋𝑃𝐼 =  𝑎 × 𝜂𝑃𝐼        (6) 4 

𝑎 is the slope of the linear relationship. Slope 𝑎 is assumed to increase with the leg ratio 5 

(e.g., 𝑎 is 0, 0.5, and 1 for the leg ratio of 0, 1, and ∞, respectively). 6 

Based on these two premises, the mathematical model can be fully developed (see the full 7 

details of the mathematical model in Appendix 1). This model predicts that variance reduction 8 

occurs in heading estimates but not in homing estimates when the leg ratio is large. Here, we 9 

illustrate this prediction using one example (see the detailed explanations and derivations in 10 

Appendix 2).  11 

This example has experimental procedures similar to those in previous studies (e.g., 12 

Nardini et al, 2008), except for one modification. Different from the previous study, distal 13 

landmarks are placed far from participants such that landmarks do not indicate participants’ 14 

positions. Hence, the distal landmarks do not contribute to the position errors. As in the previous 15 

studies, the participants walk towards the testing position in all four cue conditions. Therefore, 16 

they use path integration to update their position representations in the outbound path before 17 

ending at the testing position in all cue conditions. Moreover, in the Landmark condition, the 18 

                                                           
5  According to trigonometry, the position angular error (πPI) and the heading error both from 

path integration (ηPI) do not necessarily follow a linear relationship for all leg ratios although the 

linear relationships hold in these three examples. We use a linear relationship for the sake of 

simplicity of modelling, assuming it is valid for human path integration regardless of the leg ratio 

(see Maurer & Séguinot, 1995). 
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participants are disoriented in place at the testing position. Consequently, after disorientation, the 1 

position estimate from path integration is intact although the heading estimate from path 2 

integration is disrupted (Mou & Zhang, 2014). Hence, the position error in the Landmark, Both, 3 

and Conflict conditions is the same as that in the Path-Integration condition (i.e., 𝜋𝐵𝑜𝑡ℎ =  𝜋𝑃𝐼 , 4 

𝜋𝐿𝑀 =  𝜋𝑃𝐼 , 𝜋𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 =  𝜋𝑃𝐼). 5 

As shown in Figure 4, when the leg ratio (L2/L1) is large, the position angular error from 6 

path integration (𝜋𝑃𝐼) is highly dependent on the heading error from path integration (𝜂𝑃𝐼). To 7 

reflect this high dependence, suppose 𝜋𝑃𝐼 =  0.7 × 𝜂𝑃𝐼. We also suppose that the variance of 8 

heading estimates is significantly smaller in the Landmark condition than in the Path-Integration 9 

condition (e.g., Zhao & Warren, 2015). To reflect the variance, suppose 𝜎ηLM 
2 =  0.25 ×  𝜎ηPI 

2 . 10 

According to the self-localization hypothesis, the Bayesian combination occurs in the heading 11 

estimates. Thus, 𝑊𝐿𝑀 = 4 × 𝑊𝑃𝐼  (see Equation 4). As a result, 𝜂𝐵𝑜𝑡ℎ =  0.2 × 𝜂𝑃𝐼 +  0.8 ×12 

 𝜂𝐿𝑀. According to Equation 5 (i.e., 𝜃 =  𝜋 –  𝜂), 𝜃𝑃𝐼  =  𝜋𝑃𝐼 – 𝜂𝑃𝐼 =  0.7 × 𝜂𝑃𝐼 – 𝜂𝑃𝐼 = −0.3 ×13 

 𝜂𝑃𝐼. Thus, 𝜎θPI
2 = 0.09 × 𝜎ηPI

2 . This example suggests that 𝜎θPI  
2 can be very small when 𝜋𝑃𝐼 14 

highly depends on 𝜂𝑃𝐼  (i.e., when the leg ratio is large). Conceptually, it occurs because 𝜋𝑃𝐼 and 15 

𝜂𝑃𝐼 share a large error (0.7 × 𝜂𝑃𝐼) and this shared error is cancelled out in calculating 𝜃𝑃𝐼. Maurer 16 

and Séguinot (1995, Figure 8) reported that the homing angular error (𝜃𝑃𝐼) linearly decreases 17 

with the increase of the segment ratio (L2/L1) in the homing behaviors of mammals without 18 

vision. 19 

In contrast, 𝜃𝐵𝑜𝑡ℎ  =  𝜋𝐵𝑜𝑡ℎ – 𝜂𝐵𝑜𝑡ℎ = 𝜋𝑃𝐼 – 𝜂𝐵𝑜𝑡ℎ =  0.7 × 𝜂𝑃𝐼 – (0.2 × 𝜂𝑃𝐼 +  0.8 ×20 

 𝜂𝐿𝑀) =  0.5 × 𝜂𝑃𝐼  – 0.8 × 𝜂𝐿𝑀.  Note that 𝜂𝑃𝐼 and 𝜂𝐿𝑀  are independent. 𝜎θBoth
2 = 0.25 ×21 

 𝜎ηPI
2 +  0.64 × 𝜎ηLM

2 . As assumed above, 𝜎ηLM 
2 = 0.25 ×  𝜎ηPI 

2 . Thus, 𝜎θBoth
2 = 0.25 ×22 

https://www.sciencedirect.com/science/article/pii/S0022519385701543#!
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 𝜎ηPI
2 +  0.16 × 𝜎ηPI

2 = 0.41 × 𝜎ηPI
2 .  We get 𝜎θBoth  

2 > 𝜎θPI
2 . Conceptually, due to the 1 

combination in heading estimation (η𝐵𝑜𝑡ℎ =  0.2 × 𝜂𝑃𝐼 +  0.8 × 𝜂𝐿𝑀) and the independence 2 

between 𝜂𝑃𝐼 and 𝜂𝐿𝑀, only a small proportion (i.e., 0.2 × 𝜂𝑃𝐼) of contributions of 𝜋𝐵𝑜𝑡ℎ and 𝜂𝐵𝑜𝑡ℎ  3 

to 𝜃𝐵𝑜𝑡ℎ  can be cancelled out. 4 

In this example, when the leg ratio (L2/L1) is large, we get 𝜎θBoth  
2 > 𝜎θPI

2 , indicating no 5 

variance reduction (i.e., 𝜎12
2 > min(𝜎1

2, 𝜎2
2), meaning no Bayesian combination) in homing 6 

estimates. 7 

When the leg ratio (L2/L1) is small, as discussed above, there is a low dependency 8 

between 𝜋𝑃𝐼 and 𝜂𝑃𝐼. To reflect that low dependency, suppose 𝜋𝑃𝐼 =  0.3 × 𝜂𝑃𝐼. Then, 𝜃𝑃𝐼  =9 

 𝜋𝑃𝐼 – 𝜂𝑃𝐼 =  0.3 × 𝜂𝑃𝐼 – 𝜂𝑃𝐼 = −0.7 × 𝜂𝑃𝐼. As a result, 𝜎θPI
2 = 0.49 × 𝜎ηPI

2 . In contrast, 10 

𝜃𝐵𝑜𝑡ℎ  =  𝜋𝐵𝑜𝑡ℎ – 𝜂𝐵𝑜𝑡ℎ = 𝜋𝑃𝐼  – 𝜂𝐵𝑜𝑡ℎ =  0.3 × 𝜂𝑃𝐼 – (0.2 × 𝜂𝑃𝐼 +  0.8 × 𝜂𝐿𝑀) =  0.1 ×11 

 𝜂𝑃𝐼 – 0.8 × 𝜂𝐿𝑀. Thus 𝜎θBoth
2 = 0.01 × 𝜎ηPI

2 +  0.64 ×  𝜎ηLM
2 . Note that 𝜎ηLM 

2 = 0.25 ×  𝜎ηPI 
2 . 12 

Consequently,  𝜎θBoth
2 = 0.01 × 𝜎ηPI

2 +  0.16 × 𝜎ηPI
2 = 0.17 ×  𝜎ηPI

2 . We get 𝜎θBoth  
2 < 𝜎θPI 

2 . In 13 

addition, 𝜃𝐿𝑀  =  𝜋𝐿𝑀 – 𝜂𝐿𝑀 = 𝜋𝑃𝐼 – 𝜂𝐿𝑀 =  0.3 × 𝜂𝑃𝐼 – 𝜂𝐿𝑀. Thus, 𝜎θLM
2 = 0.09 × 𝜎ηPI

2 +14 

  𝜎ηLM
2 . As a result,  𝜎θLM

2 = 0.09 × 𝜎ηPI
2 +  0.25 ×  𝜎ηPI

2 = 0.34 × 𝜎ηPI
2 . We get 𝜎θBoth  

2 < 15 

𝜎θLM 
2 as well. As 𝜎θBoth  

2 < 𝜎θPI 
2  and 𝜎θBoth  

2 < 𝜎θLM 
2 , this indicates a variance reduction (i.e., 16 

𝜎12
2 ≤ min(𝜎1

2, 𝜎2
2), a signature of the Bayesian cue combination) in homing estimates.  17 

A simulation based on this mathematical model in Appendix 2 also demonstrates that 18 

when the leg ratio (L2/L1) is large, the Bayesian combination in heading estimates likely leads to 19 

no variance reduction in homing estimates whereas when the leg ratio is small, the Bayesian 20 

combination in heading estimates likely leads to reduced variances in homing estimates. 21 

Therefore, in the current study, we manipulated the leg ratio to dissociate the self-localization 22 
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hypothesis from the homing hypothesis. The self-localization hypothesis predicts that heading 1 

estimates follow the Bayesian combination in all leg ratios. The homing estimates will not follow 2 

the Bayesian combination, especially for a large leg ratio. In contrast, the homing hypothesis 3 

predicts that homing estimates follow the Bayesian combination in all leg ratios. However, it 4 

does not predict the Bayesian cue combination for heading estimates in any leg ratio. As the first 5 

attempt to dissociate the self-localization hypothesis from the homing hypothesis, to easily 6 

contrast the homing and the self-localization hypotheses, the current study systematically 7 

examined the Bayesian cue combination in heading and homing estimates but not in position 8 

estimates. 9 

2. Experiment 1 10 

Following the example discussed above, Experiment 1 dissociated the self-localization 11 

hypothesis from the homing hypothesis by manipulating the leg ratio. The participants learned 12 

the locations of five objects in the presence of the distal landmarks at the path origin (O in Figure 13 

5A) in an immersive virtual reality environment. The participants then physically walked two-leg 14 

paths (O-T-P) after the objects and the distal landmarks were removed. After walking each path, 15 

the participants indicated the original locations of the five objects in the four cue conditions. 16 

Importantly, three groups of participants had different leg ratios of the second leg over the first 17 

leg (i.e., L2/L1 = 0.5, 1, and 2). We examined whether Bayesian cue combination occurred in 18 

heading or homing estimates in different leg ratio groups. The Bayesian cue combination for 19 

heading estimates in all leg ratios and no Bayesian cue combination for homing estimates in the 20 

large leg ratio would support the self-localization hypothesis. By contrast, the Bayesian cue 21 

combination for homing estimates in all leg ratios and no Bayesian cue combination for heading 22 

estimates in any leg ratio would support the homing hypothesis. 23 
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2.1 Method 1 

2.1.1 Participants 2 

Eighty-four university students6 (42 men and 42 women) participated in the experiment 3 

(28 for each leg ratio group with 14 men and 14 women) to fulfill a partial requirement for an 4 

introductory psychology course. Before the experiment, all participants signed the consent form 5 

approved by the University of Alberta Research Ethics Board.  6 

In Nardini et al. (2008), Cohen’s ds indicating variance reduction in the Both condition 7 

compared with single-cue conditions were 0.92 (Both vs. Landmark) and 2.33 (Both vs. Path-8 

Integration).7 Assuming Cohen’s d = 0.92, we used 28 participants for each leg ratio group to get 9 

a power value of 0.91 at the 0.05 level (for two-tailed paired t test) to detect the variance 10 

reduction in the Both condition. 11 

2.1.2 Materials and Design 12 

 The experiment was conducted in a 4-by-4m physical room. A virtual environment 13 

containing a grass-textured field and a distal circular wall was rendered using the Worldviz 14 

Vizard (http://www.worldviz.com/, Santa Barbara, California). The virtual environment was 15 

displayed in stereo with an nVisor SX60 head-mounted display (HMD) (NVIS, Inc. Virginia). 16 

The HMD had dual SXGA microdisplays with 1280x1024 24-bit color pixels per eye and a 60º 17 

diagonal field-of-view. The refresh rate was 60Hz. The head motion of participants was tracked 18 

with an InterSense IS-900 motion tracking system (InterSense, Inc., Massachusetts). The 19 

sampling rate was 180Hz and the resolution was 0.75mm and 0.05º.  20 

                                                           
6 About 20% participants dropped out due to motion sickness and were replaced. 
7 Cohen’s d was calculated by 𝑡√(

2

𝑁
). In Nardini et al. (2008), the t value was 6.8 for the contrast 

between Both and Path-Integration and 2.7 for the contrast between Both and Landmark. N was 

17.  

http://www.worldviz.com/
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Three shapes (a circle, rectangle, and polygon) on a circular wall with a radius of 50m 1 

and a height of 10m served as distal landmarks (Figures 5A and 5B). A virtual blue stick was 2 

connected to an InterSense IS-900 wand for pointing. Similar to moving a cursor by controlling a 3 

mouse on the computer screen, the participants could move the wand to control the movement of 4 

the virtual stick to point to positions in the virtual environment. 5 

For each path, the origin (O) and the turning point (T) were indicated by two red poles, 6 

and the testing position (P) was indicated by a green pole. All poles were 2m in height, and 7 

0.05m in radius. The poles were presented in sequence to guide the participants’ walking (Zhao 8 

& Warren, 2015). The poles disappeared once the participants arrived at their positions.  9 

The object configuration, which participants learned at O (Figure 5A) and rebuilt after 10 

they had walked a path (while standing at the testing position P and adopting the testing heading 11 

h, Figure 5B), included five objects (a ball, brush, clock, mug, and phone). One object was 12 

located at the origin (O in Figure 5C). The other four objects (X1 to X4 in Figure 5C) were 13 

located 1.41m from O in the directions of 45°, 135°, 225°, and 315° clockwise from the direction 14 

of the first leg. The associations between objects and positions were random across participants 15 

but were consistent across trials for each participant.  16 

There were three leg ratios for paths (L2/L1 =2, 1, and 0.5). For L2/L1 =2 (Figure 5D), 17 

the 1st leg was 0.9m and the 2nd leg was 1.8m. For L2/L1 =1, both legs were 1.8m (Figure 5E). 18 

For L2/L1 = 0.5, the 1st leg was 1.8m and the 2nd leg was 0.9m (Figure 5F). The turning angle 19 

could be 50° or 130° clockwise or counter-clockwise, forming four paths for each leg ratio.  20 

The shapes on the wall (i.e., the distal landmarks) were removed when the participants 21 

reached the turning point (T), although the bare wall remained. Whether and how the shapes 22 
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reappeared depended on the cue condition. The four cue conditions differed only after 1 

participants reached the testing position (P). In the Path-Integration condition, the participants 2 

only undertook a counting task (repeatedly subtracting three from a starting number) for eight 3 

seconds. In the Landmark condition, the participants were rotated in a spinning chair (~90° per 4 

second) while counting. After the counting task, the shapes on the wall reappeared. In the Both 5 

condition, the shapes reappeared after the counting task.  6 

The Conflict condition was the same as the Both condition, except that the shapes 7 

reappeared at 45° clockwise or counter-clockwise from the original direction (the counter-8 

clockwise rotation is shown in Figure 5B). The rotation direction of the shapes was the same for 9 

each participant, while it was clockwise for half of the participants. As we wanted to examine the 10 

Bayesian cue combination of path integration and piloting whether in self-localization or 11 

homing, we shifted landmarks 45° in the Conflict condition. We speculated that a 45° conflicting 12 

direction was not too large to see the Bayesian cue combination whether it occurs in homing or 13 

heading/position estimations. It is believed that the Bayesian cue combination occurs when 14 

landmarks are slightly or moderately shifted, whereas cue competition occurs when the 15 

predictions from the two cues differ significantly (Körding et al., 2007; Sjolund et al., 2018; 16 

Zhao & Warren, 2015). Meanwhile, 45° was not too small of a shift to detect a weighted average 17 

in cue combination. If the shift angle was too small, then the experiment might not be able to 18 

detect the difference of a weighted average from either of the predictions based on landmarks 19 

and path integration.  20 

 Twenty-eight participants (14 men and 14 women) were randomly assigned to each of the 21 

three leg-ratio groups (L2/L1 = 0.5, 1, or 2). All participants completed the four paths for their 22 
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group in each of the four cue conditions (16 trials in total). For each participant, the 16 trials 1 

were randomly ordered. For each trial, the five indicated locations were recorded. 2 

2.1.3 Procedure 3 

For each experimental trial, there was a learning phase and a testing phase. The 4 

participants first looked for a red pole that was placed in the origin (O) in the grass-textured field 5 

and walked towards it. Once they reached the pole, it disappeared, and the second red pole that 6 

was placed in the turning point (T) appeared. The participants were instructed to turn to face the 7 

second pole to adopt their learning orientation, which was the same as the first walking leg. After 8 

the participants faced the second red pole, it disappeared.  9 

The learning phase then started. The wall with the shapes and five objects appeared. The 10 

participants learned the directions of the shapes and the locations of the objects (for three 11 

minutes in the first trial and 30 seconds in the remaining 15 trials, as the landmarks and objects 12 

remained at the same locations in all trials). During learning, participants stayed at the learning 13 

location (O) and retained their learning orientation (facing the first walking leg, the direction 14 

from O to T) although they were allowed to view the landmarks and objects over their shoulder if 15 

necessary. 16 

Afterwards, the landmarks and objects were removed. The participants were asked to use 17 

the wand to indicated the locations of the five objects and the directions of the three landmarks, 18 

probed by a small model of each at the bottom left corner of the HMD in a random order, by 19 

pointing the virtual stick toward the remembered locations of the objects or directions of the 20 

shapes. Feedback was given by presenting the probed object or shape at the correct location for 21 

five seconds. The participants had two rounds of such replacing and feedback (for all 16 trials to 22 

make sure they had an accurate memory of the objects’ locations at each trial).  23 
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After the learning phase, the objects disappeared and the participants started to walk the 1 

path. A red pole appeared at the turning position (T in Figures 5D, 5E, and 5F) and guided the 2 

participants to walk towards it. Once the participants reached the pole, the shapes on the wall 3 

(i.e., the landmarks) as well as the pole disappeared. A green pole at the testing position 4 

(illustrated as P in Figures 5D, 5E, and 5F) appeared and guided the participants to walk towards 5 

it. Once they reached it, it disappeared. The procedure so far was the same for all cue conditions 6 

and differed afterwards. In the Path-Integration, Both, and Conflict conditions, the participants 7 

completed the counting task for eight seconds while they stood at P. In the Landmark condition, 8 

the participants sat in a swivel chair and were rotated for 8s while they were completing the 9 

counting task. In the Landmark, Both, and Conflict conditions, the shapes reappeared after the 10 

eight seconds. For all cue conditions, the participants indicated the locations of all five objects, 11 

probed in a random order, using the wand. No feedback was given. Participants were allowed to 12 

turn their bodies while indicating the original locations of the objects. 13 

After the participants indicated the locations of all objects, all visual items in the virtual 14 

environment except the grass-textured field disappeared and the participants were led to a 15 

random location in the physical room. A red pole was placed at the origin of the next path to start 16 

the next trial. 17 

Before the experimental trials, to familiarize themselves with the procedure, the 18 

participants did a practice trial with different objects and a different path. 19 

2.1.4 Data Analysis 20 

2.1.4.1 Measuring estimates of position and heading 21 

We used the bidimensional regression (Friedman & Kolner, 2003) to model the 22 

relationship between the correct locations (dependent variable) and replaced locations 23 
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(independent variable) of the five objects for each trial (i.e., path) (Figure 3). The preliminary 1 

analyses of the data showed that the mean r2 for the regression models across paths and 2 

participants was larger than .80 in the experiments conducted for the current study. This indicates 3 

a very high coherence in responses across objects within individual paths. More important, it 4 

confirmed our assumption that the participants used the remembered original locations of objects 5 

(e.g., O, X1 to X4) from the estimated position (P’) and heading (h’) to guide their responses of 6 

replacing objects (e.g., O’, X1’ to X4’) from their testing position (P) and heading (h). 7 

Consequently, the prediction function (f) of the bidimensional regression model for each trial was 8 

used to calculate the estimated position (P’) and heading (h’) using the participants’ testing 9 

position (P) and heading (h) as the independent values respectively (P’ = f(P), h’=f(h)). 10 

2.1.4.2 Measuring estimation errors including angular, distance, and length errors 11 

We calculated the angular error for all heading, position, and homing estimates (η, π, θ, 12 

see Figure 2). For the position and homing estimates, we calculated the two-dimensional distance 13 

errors (the distance differences between the estimated and correct locations in both x and y 14 

coordinates).  We also calculated the length error (the difference between the correct and 15 

estimated lengths, i.e., ||𝑃𝑂’⃗⃗ ⃗⃗ ⃗⃗  || - ||𝑃𝑂⃗⃗⃗⃗  ⃗|| for homing length errors, ||𝑂𝑃’⃗⃗ ⃗⃗ ⃗⃗  || - ||𝑂𝑃⃗⃗⃗⃗  ⃗|| for position length 16 

errors). Specifically, for the homing estimates, we transformed the coordinate system (using 17 

rotation, translation, and uniform scale) such that the original home location O was (0, 0) and the 18 

testing position P was (0, -1) in the new coordinate system. Hence, each individual homing two-19 

dimensional distance error was represented by the coordinate (x, y) of the replaced location of 20 

the home location, i.e. O’, in the new coordinate system for different paths and different cue 21 

conditions in the standardized way. The length error was represented by the distance from P to O’ 22 
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subtracting that from P to O (i.e., ||𝑃𝑂’⃗⃗ ⃗⃗ ⃗⃗  || - 1). Similarly, for the position estimates, we transformed 1 

the coordinate system such that P was (0, 0) and O was (0, -1). 2 

In the Conflict condition, we flipped the sign of the individual angular error (i.e., heading 3 

error, position error, and homing error) for the participants who experienced the clockwise 4 

rotation of the landmarks. Therefore, the predicted heading error (η) indicated by the rotated 5 

distal landmarks (all rotated -45° now) would be 45°. The homing angular error (θ) indicated by 6 

the rotated distal landmarks would be -45°. For the distance errors of homing estimates, as the 7 

landmarks were rotated around the testing position P (0, -1) in the new coordinate system, we 8 

changed (x, y) to (-x, y). Hence, for all participants, the predicted home location indicated by the 9 

rotated distal landmarks would be (sin(−45), cos(−45) − 1). Note that the rotation of the 10 

landmark around the testing position should not have any effect on the length error. 11 

We then calculated each participant’s estimation bias in the Conflict condition for angular 12 

and distance errors and estimation variability in each cue condition for angular, distance, and 13 

length errors.  14 

For angular errors, each participant’s estimation bias was the circular mean of errors 15 

across paths. The estimation variability was the circular standard deviation (SD) of errors across 16 

paths. We used the following equation to calculate the observed weight assigned to the landmark 17 

cue (the observed landmark weight, 𝑊E𝐿𝑀−𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
) in heading or homing estimations in the 18 

Conflict condition for each participant8. The estimate predicted by the landmark 19 

                                                           
8 Due to noise, the observed means of errors of individual participants may lie outside the range 

of the predictions. Accordingly, we allowed the observed weight for each participant to be larger 

than one or smaller than zero. However, the mean observed weights for all groups were 

confirmed to be in the range of 0 and 1.  
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cue, ELM−predict, was 45° for heading errors and -45° for homing errors. The estimate predicted 1 

by path integration, EPI−predict , was 0°. EConflict−observed 
 was the observed estimate in the 2 

Conflict condition. 3 

𝑊E𝐿𝑀−𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 = 

EConflict−observed− EPI−predict 

 ELM−predict −  EPI−predict 
= 

EConflict−observed 

 ELM−predict 
   (7) 4 

For two-dimensional distance errors, each participant’s estimation bias was the signed 5 

means estimates across paths (�̅�, �̅�). This bias was used to calculate the relative proximity in the 6 

Conflict condition as did in the previous studies (e.g. Nardini et al., 2008). Estimation variability 7 

was the square root of the mean squared distance from individual estimates (x, y) to (�̅�, �̅�), the 8 

same as √𝜎x
2 + 𝜎y

2. For length errors, estimation variability was the SD of errors across paths. 9 

Preliminary analyses showed that participants tended to overshoot the distances between 10 

the objects and their testing positions. This occurred because the length of the virtual stick used 11 

to indicate the locations of the objects might have been underestimated in the virtual 12 

environments (Mou & Zhang, 2014, p. 556). As a result, each response home, O’ (x, y), within 13 

each cue condition was moved towards or outwards from P (0, -1) with the same scale factor so 14 

that the average length of 𝑃𝑂’⃗⃗ ⃗⃗ ⃗⃗   across different paths within each cue condition was one (the same 15 

as the correct length in the transformed coordinate). This adjustment did not change the direction 16 

of 𝑃𝑂’⃗⃗ ⃗⃗ ⃗⃗   . The adjusted O’ (x, y) was then used to calculate the estimation variability for distance 17 

errors and length errors. The adjusted O’ (x, y) in the Conflict condition was also used to 18 

calculate the relative proximity of observed O’ to the original O (0, 0) and to the displaced O 19 

(sin(−45), cos(−45) − 1) predicted by the rotated landmark. This relative proximity measured 20 

the cue weights for two-dimensional distance errors. 21 
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The participants’ estimation bias in the Conflict condition (indicating cue weights) and 1 

estimation variability in each cue condition were then used for the Bayesian cue combination 2 

analyses.  3 

We examined the Bayesian cue combination primarily for heading and homing errors. 4 

The Bayesian cue combination analyses for position errors are not meaningful because in all cue 5 

conditions, the position error was only from path integration (𝜋𝐵𝑜𝑡ℎ =  𝜋𝑃𝐼 , 𝜋𝐿𝑀 =  𝜋𝑃𝐼 , 6 

𝜋𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 =  𝜋𝑃𝐼). The observed SDs of position estimates should be the same across all cue 7 

conditions. Therefore, no Bayesian cue combination for position estimations was expected. We 8 

present the SDs of position estimates only to check if they were the same across the cue 9 

conditions. 10 

2.2 Results 11 

In this and all following experiments, the length errors for position and homing estimates 12 

were the same across all cue conditions, thus not useful to test the Bayesian cue combination.  13 

The results of the two-dimensional distance errors were generally similar to the results of the 14 

angular errors for position and homing estimates (see the details in the supplementary materials 15 

and Table S1). In addition, there were only angular errors for heading estimates. In the interest of 16 

brevity, we only present the cue combination analyses for the angular errors. The results of the 17 

two dimensional distance errors and length errors are presented in the supplementary materials.  18 

2.2.1 Homing angular errors  19 

The circular means of the homing angular errors (Table 1) showed clear biases for the 20 

Conflict conditions in all of the leg ratio groups. According to the 95% confidence interval, the 21 

circular means significantly differed from 0º.  22 
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The SDs of homing angular errors were analyzed using mixed-model ANOVAs, with a 1 

within-participant variable of the cue condition and a between-participant variable of the leg 2 

ratio. Figure 6 plots the mean SDs of homing errors for the four cue conditions and the three 3 

different leg ratios. Mean optimal SDs are also plotted.  4 

The main effect of the cue condition was significant, F (3, 243) = 3.89, p = .01. MSE = 5 

292.83, ηp
2 = .05. The main effect of the ratio was not significant, F (1, 81) = 1.89, p = .16. MSE 6 

= 843.93, ηp
2 = .05. The interaction between the cue condition and leg ratio was significant, F (6, 7 

243) = 4.46, p < .001. MSE = 292.83, ηp
2 = .10. 8 

Because there was an interaction between the cue condition and leg ratio, repeated 9 

measures ANOVAs were used to analyze the cue effect for each leg ratio group.  10 

For the group of L2/L1=2, the main effect of the cue condition was significant, F (3, 81) 11 

= 4.51, p < .01. MSE = 272.44, ηp
2 = .14. Planned contrasts showed that the mean SD in the Both 12 

condition was significantly larger than that in the Path-Integration condition, t (27) = 2.40, p 13 

= .02, Cohen’s d = 0.64.  The mean SD in the Both condition was not significantly different from 14 

that in the Landmark condition, t (27) = 0.31, p = .76, Cohen’s d = 0.08. For this and all null 15 

effects of comparisons below, we calculated the Bayesian Factor (BF01) favoring the null effect 16 

over the alternative. If the BF01 was larger than 3, then it favored the null effect. If the BF01 was 17 

smaller than 1/3, then it favored the alternative (Rouder et al., 2009). The BF01 for this null effect 18 

was 6.53. The mean SD in the Conflict condition was significantly larger than that in the Path-19 

Integration condition, t (27) = 3.60, p < .01, Cohen’s d = 0.96.  The mean SD in the Conflict 20 

condition was not significantly different from that in the Landmark condition, t (27) = 0.28, p 21 

= .78, Cohen’s d = 0.07, BF01 = 6.60. These results indicate no variance reduction. As described 22 
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in the Introduction (Equation 3), variance reduction is one of the two signatures of the Bayesian 1 

cue combination. 2 

The mean SD in the Both condition was significantly larger than the mean optimal SD, t 3 

(27) = 3.73, p < .01, Cohen’s d = 1.00. The mean SD in the Conflict condition was significantly 4 

larger than the mean optimal SD, t (27) = 5.43, p < .001, Cohen’s d = 1.45. The mean observed 5 

landmark weight (0.57) was not significantly different from the mean optimal landmark weight 6 

(0.37), t (27) = 2.05, p = .05, Cohen’s d = 0.55, BF01 = 1.03. These results indicate no minimum 7 

variance. As described in the Introduction (Equation 4), minimum variance is the other signature 8 

of the Bayesian cue combination. 9 

For the group of L2/L1=1, the main effect of the cue condition was significant, F (3, 81) 10 

= 3.98, p < .05. MSE = 265.66, ηp
2 = .13. Planned contrasts showed that the mean SD in the Both 11 

condition was not significantly different from that in the Path-Integration condition, t (27) = 12 

0.09, p = .93, Cohen’s d = 0.02, BF01 = 6.83. The mean SD in the Both condition was 13 

significantly smaller than that in the Landmark condition, t (27) = 2.68, p = .01, Cohen’s d = 14 

0.72. The mean SD in the Conflict condition was not significantly different from that in the Path-15 

Integration condition, t (27) = 1.48, p = .15, Cohen’s d = 0.40, BF01 = 2.45.  The mean SD in the 16 

Conflict condition was not significantly different from that in the Landmark condition, t (27) = 17 

1.17, p = .25, Cohen’s d = 0.31, BF01 = 3.59. These results indicate variance reduction for the 18 

Both condition but no reduction for the Conflict condition.  19 

The mean SD in the Both condition was significantly larger than the mean optimal SD, t 20 

(27) = 2.57, p = .02, Cohen’s d = 0.69. The mean SD in the Conflict condition was significantly 21 

larger than the mean optimal SD, t (27) = 3.69, p < .01, Cohen’s d = 0.99. The mean observed 22 

landmark weight (0.46) was not significantly different from the mean optimal landmark weight 23 
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(0.38), t (27) = 0.70, p = .49, Cohen’s d = 0.19, BF01 = 5.43. These results indicate that no 1 

minimum variance was produced. 2 

For the group of L2/L1=0.5, the main effect of the cue condition was significant, F (3, 3 

81) = 4.30, p < .01. MSE = 340.39, ηp
2 = .14. Planned contrasts showed that the mean SD in the 4 

Both condition was significantly smaller than that in the Path-Integration condition, t (27) = 3.74, 5 

p < .01, Cohen’s d = 1.00.  The mean SD in the Both condition was significantly smaller than 6 

that in the Landmark condition, t (27) = 2.63, p = .01, Cohen’s d = 0.70. The mean SD in the 7 

Conflict condition was significantly smaller than that in the Path-Integration condition, t (27) = 8 

2.22, p = .04, Cohen’s d = 0.59. The mean SD in the Conflict condition was not significantly 9 

different from that in the Landmark condition, t (27) = 1.42, p = .17, Cohen’s d = 0.38, BF01 = 10 

2.67. These results indicate variance reduction for the Both and Conflict conditions. 11 

The mean SD in the Both condition was not significantly different from the mean optimal 12 

SD, t (27) = 0.18, p = .86, Cohen’s d = 0.05, BF01 = 6.75. The mean SD in the Conflict condition 13 

was not significantly different from the mean optimal SD, t (27) = 0.66, p = .52, Cohen’s d = 14 

0.18, BF01 = 5.56. The mean observed landmark weight (0.65) was not significantly different 15 

from the mean optimal landmark weight (0.56), t (27) = 0.63, p = .54, Cohen’s d = 0.17, BF01 = 16 

5.66. These results indicate that the minimum variance was produced. 17 

2.2.2 Heading errors 18 

The circular means of the heading errors (Table 1) showed clear biases for the Conflict 19 

conditions in all of the leg ratio groups. According to the 95% confidence interval, the circular 20 

means significantly differed from 0º.  21 



29 
 

SDs of heading errors were analyzed using mixed-model ANOVAs, with a within-1 

participant variable of the cue condition and a between-participant variable of the leg ratio. 2 

Figure 7 plots the mean SDs of heading errors for the four cue conditions and the three different 3 

leg ratios. Mean optimal SDs are also plotted.  4 

The main effect of the cue condition was significant, F (3, 243) = 46.08, p < .001. MSE = 5 

171.35, ηp
2 = .36. The main effect of the leg ratio was not significant, F (1, 81) = 2.14, p = .13. 6 

MSE = 497.50, ηp
2 = .05. The interaction between the cue condition and leg ratio was not 7 

significant, F (6, 243) = 1.83, p = .09, MSE = 171.35, ηp
2 = .04. Planned contrasts showed that 8 

the mean SD in the Both condition was significantly smaller than that in the Path-Integration 9 

condition, t (83) = 10.09, p < .001, Cohen’s d = 1.56.  The mean SD in the Both condition was 10 

not significantly different from that in the Landmark condition, t (83) = 1.61, p = .11, Cohen’s d 11 

= 0.25, BF01 = 3.29. The mean SD in the Conflict condition was significantly smaller than that in 12 

the Path-Integration condition, t (83) = 8.54, p < .001, Cohen’s d = 1.32. The mean SD in the 13 

Conflict condition was not significantly different from that in the Landmark condition, t (83) = 14 

1.18, p = .24, Cohen’s d = 0.18, BF01 = 5.87. These results indicate variance reduction for the 15 

Both and Conflict conditions. 16 

As there was no main effect of the leg ratio, mean SDs in the Both and Conflict 17 

conditions across the leg ratio groups were compared with mean optimal SDs across the leg ratio 18 

groups. The difference for the Both condition was not significant, t (83) = 1.05, p = .30, Cohen’s 19 

d = 0.16, BF01 = 6.74. The difference for the Conflict condition was not significant, t (83) = 1.78, 20 

p = .08, Cohen’s d = 0.27, BF01 = 2.51. The landmark weight was analyzed using mixed-model 21 

ANOVAs, with a within-participant variable of the observed optimal difference (observed vs. 22 

optimal) and a between-participant variable of the leg ratio. The main effect of the observed 23 
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optimal difference was not significant, F (1, 81) = 0.00, p = .99, MSE = 0.14, ηp
2 = .00. The main 1 

effect of the leg ratio was not significant, F (1, 81) = 2.03, p = .14, MSE = 0.15, ηp
2 = .05. The 2 

interaction between the observed optimal difference and leg ratio was not significant, F (1, 81) = 3 

0.61, p = .54, MSE = 0.14, ηp
2 = .02. These results indicate that the minimum variance was 4 

produced for the Both and Conflict conditions. 5 

2.2.3 Position angular errors  6 

SDs of position angular errors were analyzed using mixed-model ANOVAs, with a 7 

within-participant variable of the cue condition and a between-participant variable of the leg 8 

ratio. Figure 8 plots the mean SDs of homing errors for the four cue conditions and the three 9 

different leg ratios.  10 

The main effect of the cue condition was not significant, F (3, 243) = 1.91, p = .13, MSE 11 

= 190.17, ηp
2 = .02. The main effect of the leg ratio was significant, F (1, 81) = 4.02, p = .02, 12 

MSE = 701.22, ηp
2 = .09. The interaction between the cue condition and leg ratio was not 13 

significant, F (6, 243) = 0.88, p = .51, MSE = 190.17, ηp
2 = .02. These results confirm that the 14 

SDs of position estimates were the same across different cue conditions, consistent with our 15 

conjecture that errors of position estimates in all of the cue conditions were attributed to errors 16 

from path integration. 17 

2.2.4 Fit the model to observed homing angular variability  18 

We also tested whether the observed SDs of the homing angular errors (θ) could be 19 

predicted by the mathematical model based on the self-localization hypothesis as listed in Table 20 

A1 in Appendix 1.  21 
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For each participant, we conducted a linear regression between individual position 1 

angular errors (π) and heading errors (η) across four paths in the Path-Integration condition. 2 

Figure 9 plots the regression line for each participant and the mean regression line for each leg 3 

ratio group. The mean coefficients (slope and intercept) and the squared mean Pearson r are also 4 

presented in the figure. Mean slopes (0.79, 0.58, and 0.27 for L2/L1 = 2, 1, 0.5 respectively) 5 

were significantly different across the three groups, F (2, 81) = 5.10, p < .01, MSE = 0.38, ηp
2 6 

= .11.  The mean Pearson rs (0.76, 0.57, and 0.49 for L2/L1 = 2, 1, 0.5 respectively) were 7 

significantly different across the three groups, F (2, 81) = 3.30, p = .04, MSE = 0.16, ηp
2 = .08, 8 

and also different from 0 for all three groups, ts (27) ≥ 5.77, ps < .001. These results support our 9 

conjectures that the position error depends on the heading error (𝜋𝑃𝐼 =  𝑎 × 𝜂𝑃𝐼) and the 10 

dependency (slope 𝑎 and r2) increases with the leg ratio. 11 

For each leg ratio group, using the linear regression of heading error and position angular 12 

error in the Path-Integration condition (Figure 9), we obtained the estimates of slope a and 𝜎𝑢𝑒
2 , 13 

which is (mean observed SDs of position error) 2 × (1- (mean r)2). Table 2 summarizes these 14 

estimates.  15 

Following the equations in Table A1B, we calculated the predicted homing SD in each 16 

cue condition for each participant in each leg ratio group. Specifically, we used the observed 17 

heading SD in the Path-Integration and Landmark conditions (𝜎ηPI
2 , 𝜎ηLM

2 ) from each participant 18 

and the group parameters including slope a and unexplained variability (𝜎𝑢𝑒
2 ) from the 19 

corresponding group (Table 2). In addition, for the Both condition, we used the mean of the 20 

optimal weight for heading estimations (𝑊ηPI
, 𝑊ηLM

) in each group, whereas for the Conflict 21 

condition, we used the mean of the observed weight for heading estimations in the Conflict 22 

condition in each group.  23 
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The mean observed and predicted SDs of homing angular errors for all cue conditions 1 

and all of the leg ratio groups are plotted in Figure 10. Mixed-model ANOVAs, with within-2 

participant variables of the predicted observed difference (predicted vs. observed) and the cue 3 

condition, and a between-participant variable of the leg ratio, showed no main effect of the 4 

predicted observed difference, F (1, 81) = 0.16, p = .69, MSE = 486.00, ηp
2 < .01.  There was no 5 

interaction between the predicted observed difference and any other variables. These results 6 

indicate that the model fit the data well. 7 

We also contrasted the homing hypothesis with the self-localization hypothesis by 8 

examining their ability to explain the observed SDs of the homing angular error in the Both and 9 

Conflict conditions respectively. In particular, according to the homing hypothesis, the observed 10 

SDs of the homing angular errors in the two-cue conditions (Both and Conflict) should be the 11 

same as the optimal SDs of the homing angular errors. In contrast, according to the self-12 

localization hypothesis, the observed SDs of the homing errors in the two-cue conditions should 13 

be the same as the predicted values using the mathematical model as described above. The 14 

models were fit by maximizing the likelihood of the data using the generalized linear mixed 15 

model in SPSS (IBM SPSS statistics, 2017). The fits were compared using the Bayesian 16 

Information Criterion (BIC), a common model comparison criterion. The BIC values for the 17 

homing hypothesis and the self-localization hypothesis are listed in Table 3. The difference in 18 

BIC values (∆BIC) can be converted to an approximation of the BF, ln(BF) = ∆BIC/2 19 

(Wagenmakers, 2007). As a result, BFs are also listed in Table 3. 20 

The hypothesis with the smaller BIC is favored if the BF > 3 (or BF < 1/3) and strongly 21 

favored if the BF > 10 (or BF < 1/10) (Rouder et al., 2009). According to Table 3, the self-22 

localization hypothesis is strongly favored by the data in the Both and Conflict conditions for the 23 
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group of L2/L1=2. The self-localization hypothesis is strongly favored by the data in the Conflict 1 

condition and is favored by the data in the Both condition for the group of L2/L1=1. There was 2 

no evidence to favor either hypothesis for the group of L2/L1=0.5. 3 

Consistent with results of the comparisons that test variance reduction and minimum 4 

variance, the BFs also favor the mathematical model of the self-localization hypothesis over the 5 

homing hypothesis for the groups of L2/L1=2 and L2/L1=1. The mathematical model predicts 6 

that the homing variability for the group of L2/L1=0.5 appears to follow the Bayesian cue 7 

combination. Therefore, it is not surprising that the Bayes factors of the group of L2/L1=0.5 8 

could not differentiate the mathematical model of the self-localization hypothesis from the 9 

homing hypothesis. 10 

2.3 Discussion 11 

In all of the leg ratio groups, the evidence of variance reduction and minimum variance 12 

was obtained for heading estimates, consistent with the Bayesian cue combination. The evidence 13 

consistent with the Bayesian cue combination for homing estimates was only clear in the group 14 

of L2/L1=0.5 but not in the other two groups. These results favor the self-localization hypothesis 15 

over the homing hypothesis. Furthermore, it is difficult for the homing hypothesis to explain why 16 

the Bayesian model can explain the homing variability for the group of L2/L1=0.5 but not for the 17 

other two groups. In contrast, the mathematical model based on the self-localization hypothesis 18 

can well explain all of these findings.  19 

3. Experiment 2 20 

The participants in Experiment 1 learned objects before walking a path and indicated the 21 

original locations of the objects after walking the path in order to calculate position errors and 22 
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heading errors. In contrast, a typical homing paradigm does not involve learning the locations of 1 

objects and replacing objects (Chen et al., 2017). Thus, the Experiment 1’s conclusion may not 2 

be generalized to the typical homing paradigm. The purpose of Experiment 2 was to differentiate 3 

the self-localization hypothesis from the homing hypothesis in a typical homing paradigm. As the 4 

homing errors in the group of L2/L1=2 clearly differentiate the self-localization hypothesis from 5 

the homing hypothesis, we only used L2/L1=2 in this experiment. Without learning any of the 6 

objects’ locations, the participants walked the paths with a leg ratio of 2 (L2/L1=2) and then 7 

pointed to the origins of the paths in the four cue conditions. Note that, as in a typical homing 8 

paradigm, neither position nor heading estimates were derived or analyzed.  9 

The participants did not learn any objects, which saved experimental time. Consequently, 10 

for each participant we doubled the number of paths (from four to eight) in each cue condition to 11 

reduce the variance in estimating circular means and SDs in all cue conditions.  12 

3.1 Methods  13 

3.1.1 Participants 14 

Twenty-eight university students (14 men and 14 women) participated in the experiment 15 

to fulfill a partial requirement for an introductory psychology course. Before the experiment, all 16 

participants signed the consent form approved by the University of Alberta Research Ethics 17 

Board. 18 

3.1.2 Materials, Design, and Procedure 19 

 Experiment 2 was similar to Experiment 1 except for the following changes. First, this 20 

experiment only included one leg ratio group (L2/L1 = 2). Second, participants did not learn the 21 

locations of any objects or indicate the original locations of objects. After walking a path, they 22 

were asked to use the wand to point to the origin (O). Finally, there were eight, instead of four, 23 
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path configurations for each cue condition. While keeping the turning angles 50º and 130º in 1 

Experiment 1, we added two more turning angles avoiding the right angle (90º). One is 30º larger 2 

than 50º (i.e., 80º) and the other is 30º smaller than 130º (i.e., 100º). 3 

3.2 Results  4 

The circular mean of the homing angular errors (Table 1) showed a clear bias for the 5 

Conflict condition. According to the 95% confidence interval, the circular mean significantly 6 

differed from 0º.  7 

A repeated measures ANOVA was used to analyze the cue effect on the homing angular 8 

errors. Figure 11 plots the mean SDs for the four cue conditions and the mean optimal SD.  9 

The main effect of the cue condition is significant, F (3, 81) = 12.23, p < .001. MSE = 10 

198.40, ηp
2 = .31. Planned contrasts showed that the mean SD in the Both condition was 11 

significantly larger than that in the Path-Integration condition, t (27) = 4.54, p < .01, Cohen’s d = 12 

1.21. The mean SD in the Both condition was not significantly different from that in the 13 

Landmark condition, t (27) = 1.97, p = .06, Cohen’s d = 0.53, BF01 = 1.18. The mean SD in the 14 

Conflict condition was significantly larger than that in the Path-Integration condition, t (27) = 15 

3.35, p < .01, Cohen’s d = 0.89. The mean SD in the Conflict condition was significantly smaller 16 

than that in the Landmark condition, t (27) = 3.44, p < 0.01, Cohen’s d = 0.92. These results 17 

indicate no variance reduction.  18 

The mean SD in the Both condition was significantly larger than the mean optimal SD, t 19 

(27) = 6.67, p < .001, Cohen’s d = 1.78. The mean SD in the Conflict condition was significantly 20 

larger than the mean optimal SD, t (27) = 5.90, p < .001, Cohen’s d = 1.58. The mean observed 21 

weight to assigned to the landmark cue (0.33) was not significantly different from the mean 22 
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optimal landmark weight (0.31), t (27) = 0.18, p = .86, Cohen’s d = 0.05, BF01 = 6.75. These 1 

results indicate that no minimum variance was produced. 2 

3.3 Discussion  3 

Experiment 2 replicated the result of no Bayesian combination in homing estimates for 4 

the L2/L1=2 group in Experiment 1, indicating that this result is not specific to the paradigm of 5 

learning the locations of objects. 6 

It is important to note that Experiment 1 (and 2) provided a special situation to 7 

distinguish between the homing hypothesis and the self-localization hypothesis. With the distal 8 

landmarks, piloting cannot produce a positioning estimate, thus cannot produce a homing 9 

estimate.  Without two independent homing estimates to combine, is Experiment 1 still able to 10 

test the homing hypothesis? 9  11 

We argue that Experiment 1 is still capable of testing the homing hypothesis by 12 

examining the Bayesian cue combination in homing estimates. The homing hypothesis predicts 13 

that piloting will not be functional to estimate the home in Experiment 1. Consequently, the 14 

homing estimation for the Landmark condition will be random; homing estimations for the two-15 

cue conditions (Both and Conflict) will only rely on path integration (i.e. A weight of 1 is 16 

assigned to home estimates from path integration). The relationships among homing variances 17 

for all conditions can be written as 𝜎θBoth  
2 = 𝜎θPI

2 , 𝜎θConflict  
2 = 𝜎θPI

2 , 𝜎θLandmark 
2 ≫ 𝜎θPI

2 . From 18 

these relationships, we still have 𝜎θBoth 
2 =  𝜎θConflict  

2 ≤ min(𝜎θPI
2 , 𝜎θLandmark  

2 ) (the variance 19 

reduction criterion, see Equation 3). Because 𝜎θLandmark 
2 ≫ 𝜎θPI

2 , the optimal weight assigned to 20 

path integration and variance for the two-cue conditions should be 𝑊𝑃𝐼 = 1 and 𝜎θOptimal  
2 = 𝜎θPI

2  21 

                                                           
9 We are grateful to one anonymous reviewer for this suggestion. 
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(see Equation 4).  Because 𝜎θBoth  
2 = 𝜎θPI

2 , 𝜎θConflict  
2 = 𝜎θPI

2 , and 𝜎θOptimal  
2 = 𝜎θPI

2 , we get 1 

𝜎θBoth  
2 = 𝜎θConflict  

2 = 𝜎θOptimal  
2  (the minimum variance criterion, see Equation 4). Thus, the 2 

homing hypothesis can still be applied to Experiment 1 by incorporating the criteria of variance 3 

reduction and minimum variance. Because the data in Experiment 1 did not fit these two criteria, 4 

the homing hypothesis was disconfirmed in the situation when only path integration can indicate 5 

the home. 6 

We acknowledge that this conclusion may not necessarily be generalized to the situations 7 

where both piloting and path integration can indicate the home. Experiments 3 and 4 addressed 8 

this concern. 9 

4. Experiment 3 10 

The purpose of Experiment 3 was to differentiate the self-localization hypothesis from 11 

the homing hypothesis when the distal landmarks were replaced by proximal landmarks. 12 

Although distal landmarks alone in the previous experiments are not able to indicate the home 13 

locations, proximal landmarks alone could specify the home locations. As the estimated positions 14 

were produced both from path integration and piloting, we also had opportunity to examine the 15 

Bayesian combination for position estimates as well as for homing and heading estimates.  16 

The mathematical model of the self-localization hypothesis assumes that distal landmarks 17 

(indicating orientations but not positions) are used. However, conceptually, the model seems 18 

applicable to situations when proximal landmarks are used. According to the model, when the leg 19 

ratio is large (i.e., L2/L1=2), the position angular error (𝜋𝑃𝐼) is strongly dependent on the 20 

heading error (𝜂𝑃𝐼) in path integration. These strongly dependent errors were cancelled out in 21 

contributing to the homing angular error (𝜃𝑃𝐼 = 𝜋𝑃𝐼 – 𝜂𝑃𝐼), yielding a very small homing 22 
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variability in the Path-Integration condition (See Figure A1A). It might be hard to observe an 1 

even smaller homing variability in the two-cue (Both/Conflict) conditions to produce evidence of 2 

variance reduction (one signature of the Bayesian combination) even when the proximal 3 

landmark is used.  4 

4.1 Method 5 

4.1.1 Participants 6 

Twenty-eight university students (14 men and 14 women) participated in the experiment 7 

to fulfill a partial requirement for an introductory psychology course. Before the experiment, all 8 

participants signed the consent form approved by the University of Alberta Research Ethics 9 

Board. 10 

4.1.2 Materials, Design, and Procedure 11 

  The materials, design, and procedure were the same as for those in the group of L2/L1=2 12 

of Experiment 1 except for the following changes. The shapes (landmarks) were presented on a 13 

much smaller circular wall with a radius of 5m and a height of 1m instead of the 50m-radius 14 

circular wall in Experiment 1. Note that in Experiments 1 and 2, the distal landmarks alone only 15 

indicated participants’ testing heading but not their testing positions. Thus, the rotation of the 16 

distal landmark, whether around the origin (i.e., O) or around the testing position (i.e., P), only 17 

affected estimates of headings but not positions. However, the proximal landmarks alone 18 

indicated the testing position. The rotation of the proximal landmarks around the origin (i.e., O) 19 

and around the testing position (i.e., P) would have different impacts on position estimates. 20 

Following the previous studies (e.g., Chen et al., 2017; Nardini et al., 2008), we varied the origin 21 

of the path (i.e., O), but kept the testing position (i.e., P) constant across paths (by switching O 22 
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and P in Figure 5F). The testing position was the same as the center of the wall so that the 1 

landmarks rotated around the testing position (P) in the Conflict condition. 2 

4.2 Results  3 

4.2.1 Homing angular errors 4 

The circular mean of the homing angular errors (Table 1) showed a clear bias for the 5 

Conflict condition. According to the 95% confidence interval, the circular mean significantly 6 

differed from 0º.  7 

A repeated measures ANOVA was used to analyze the cue effect on the homing angular 8 

errors. Figure 12 plots the mean SDs for the four cue conditions and the optimal SD. The main 9 

effect of the cue condition was not significant, F (3, 81) = 1.11, p = .35. MSE = 229.84, ηp
2 = .04. 10 

This indicates no variance reduction. 11 

The mean SD in the Both condition was significantly larger than the mean optimal SD, t 12 

(27) = 2.52, p = .02, Cohen’s d = 0.67. The mean SD in the Conflict condition was not 13 

significantly different from the mean optimal SD, t (27) = 1.96, p = .06, Cohen’s d = 0.52, BF01 14 

= 1.19. The mean observed landmark weight (0.50) was not significantly different from the mean 15 

optimal landmark weight (0.54), t (27) = 0.22, p = .83, Cohen’s d = 0.06, BF01 = 6.69. These 16 

results indicate that no minimum variance was produced for the Both condition and there was no 17 

clear evidence for the Conflict condition. 18 

4.2.2 Heading errors 19 

The circular mean of the heading errors (Table 1) showed a clear bias for the Conflict 20 

condition. According to the 95% confidence interval, the circular mean significantly differed 21 

from 0º.  22 
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A repeated measures ANOVA analyzed the cue effect on the heading errors. Figure 13 1 

plots the mean SDs for the four cue conditions and the optimal SD.  2 

The main effect of the cue condition was significant, F (3, 81) = 8.97, p < .001. MSE = 3 

309.14, ηp
2 = .25. Planned contrasts showed that the mean SD in the Both condition was 4 

significantly smaller than that in the Path-Integration condition, t (27) = 4.61, p < .001, Cohen’s 5 

d = 1.23. The mean SD in the Both condition was not significantly different from that in the 6 

Landmark condition, t (27) = 1.43, p = .16, Cohen’s d = 0.38, BF01 = 2.63. The mean SD in the 7 

Conflict condition was significantly smaller than that in the Path-Integration condition, t (27) = 8 

4.55, p < .001, Cohen’s d = 1.22. The mean SD in the Conflict condition was not significantly 9 

different from that in the Landmark condition, t (27) = 1.21, p = .24, Cohen’s d = 0.32, BF01 = 10 

3.43. These results indicate a variance reduction for the Both and Conflict conditions. 11 

The mean SD in the Both condition was not significantly different from the mean optimal 12 

SD, t (27) = 1.11, p = .28, Cohen’s d = 0.30, BF01 = 3.80. The mean SD in the Conflict condition 13 

was not significantly different from the mean optimal SD, t (27) = 1.31, p = .20, Cohen’s d = 14 

0.35, BF01 = 3.07. The mean observed landmark weight (0.72) was not significantly different 15 

from the mean optimal landmark weight (0.65), t (27) = 0.58, p = .57, Cohen’s d = 0.16, BF01 = 16 

5.82. These results indicate that the minimum variance was produced. 17 

4.2.3 Position angular errors  18 

A repeated measures ANOVA was used to analyze the cue effect on the position angular 19 

errors. Figure 14 plots the mean SDs of position angular errors for the four cue conditions. The 20 

main effect of the cue condition was not significant, F (3, 81) = 2.16, p = .10, MSE = 293.77, ηp
2 21 

= .07. These results indicate no variance reduction. 22 
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The mean SD in the Both condition was significantly larger than the mean optimal SD, t 1 

(27) = 2.90, p = .007, Cohen’s d = 0.78. The mean SD in the Conflict condition was significantly 2 

larger than the mean optimal SD, t (27) = 3.48, p = .002, Cohen’s d = 0.93. These results indicate 3 

that no minimum variance was produced. Note that in the Conflict condition, the landmarks were 4 

rotated around the testing position (P), so there was no discrepancy between the testing positions 5 

predicted by path integration and piloting. Thus, we could not test whether participants used the 6 

optimal weight in position estimates.  7 

4.3 Discussion 8 

The evidence consistent with the Bayesian cue combination was obtained for heading 9 

estimates but not for homing estimates. These findings favor the self-localization hypothesis over 10 

the homing hypothesis even when the proximal landmarks replaced the distal landmarks in the 11 

previous experiments. These findings suggest that people combine self-localization estimates 12 

from piloting and from path integration but do not combine homing estimates even when both 13 

piloting and path integration can produce separate homing estimates. 14 

Although the current study distinguishes between self-localization hypothesis and the 15 

homing hypothesis by primarily examining the Bayesian cue combination for heading and 16 

homing estimates to, it is worth noting that Experiment 3 did not provide evidence of the 17 

Bayesian cue combination for position estimates. 18 

No Bayesian cue combination for position estimates might be due to the specific 19 

experiment design. In the Landmark condition, the participants were disoriented by spinning in 20 

place at the end of the path. As a result, disorientation could not disrupt the position estimate 21 

from path integration. As both path integration and piloting contributed to the position estimate 22 
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for the Landmark condition, this experiment may not be able to examine the cue combination for 1 

position estimations.  2 

Experiment 4 addressed this issue. In addition, replicating findings for homing and 3 

heading estimates in Experiment 3 is important as Experiment 3 is the single experiment that 4 

showed evidence consistent with the Bayesian cue combination in heading estimates but not in 5 

homing estimates in situations when both piloting and path integration indicate the home. 6 

5. Experiment 4 7 

In Experiment 4, instead of disorienting the participants in the Landmark condition at the 8 

end of the path, we disoriented them at the turning position (T in Figure 5F, note that as in 9 

Experiment 3, O and P in Figure 5F were switched) of the two-leg path. As shown in past 10 

studies, path integration cannot produce accurate position estimates during any further walking 11 

after disorientation (Mou & Zhang, 2014). Therefore, participants only could use piloting in the 12 

Landmark condition. As the estimated positions were independent in the Path-Integration and 13 

Landmark conditions, this design could examine the Bayesian combination for position 14 

estimates.  15 

5.1 Method 16 

5.1.1 Participants 17 

Twenty-eight university students (14 men and 14 women) participated in the experiment 18 

to fulfill a partial requirement for an introductory psychology course. Before the experiment, all 19 

participants signed the consent form approved by the University of Alberta Research Ethics 20 

Board. 21 
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5.1.2 Materials, Design & Procedure 1 

Experiment 4 was very similar to Experiment 3 except for the Landmark condition. The 2 

participants were disoriented at the turning position (T in Figure 5F). After disorientation they 3 

were asked to search for a green pole, which indicated the testing position (P), and walk towards 4 

it.  5 

5.2 Results  6 

5.2.1 Homing angular errors 7 

The circular mean of the homing angular errors (Table 1) showed a clear bias for the 8 

Conflict condition. According to the 95% confidence interval, the circular mean significantly 9 

differed from 0º.  10 

A repeated measures ANOVA was used to analyze the cue effect on the homing angular 11 

errors. Figure 12 plots the mean SDs for the four cue conditions and the optimal SD. The main 12 

effect of the cue condition was significant, F (3, 81) = 3.75, p < .05. MSE = 117.59, ηp
2 = .12. 13 

Planned contrasts showed that the mean SD in the Both condition was not significantly different 14 

from that in the Path-Integration condition, t (27) = 0.55, p = .59, Cohen’s d = 0.15, BF01 = 5.93. 15 

The mean SD in the Both condition was not significantly different from that in the Landmark 16 

condition, t (27) = 0.56, p = .58, Cohen’s d = 0.15, BF01 = 5.90. The mean SD in the Conflict 17 

condition was significantly larger than that in the Path-Integration condition, t (27) = 2.32, p 18 

< .05, Cohen’s d = 0.62. The mean SD in the Conflict condition was significantly larger than that 19 

in the Landmark condition, t (27) = 2.72, p < .05, Cohen’s d = 0.73. These results indicate no 20 

variance reduction. 21 

The mean SD in the Both condition was significantly larger than the mean optimal SD, t 22 

(27) = 5.26, p < .001, Cohen’s d = 1.41. The mean SD in the Conflict condition was significantly 23 
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larger than the mean optimal SD, t (27) = 5.55, p < .001, Cohen’s d = 1.48. The mean observed 1 

landmark weight (0.74) was significantly larger than the mean optimal landmark weight (0.49), t 2 

(27) = 2.75, p < .05, Cohen’s d = 0.73. These results indicate no minimum variance produced. 3 

5.2.2 Heading errors 4 

The circular mean of the heading errors (Table 1) showed a clear bias for the Conflict 5 

condition. According to the 95% confidence interval, the circular mean significantly differed 6 

from 0º.  7 

A repeated measures ANOVA analyzed the cue effect on the heading errors. Figure 13 8 

plots the mean SDs for the four cue conditions and the optimal SD.  9 

The main effect of the cue condition was significant, F (3, 81) = 4.78, p = .004. MSE = 10 

328.01, ηp
2 = .15. Planned contrasts showed that the mean SD in the Both condition was 11 

significantly smaller than that in the Path-Integration condition, t (27) = 3.44, p = .002, Cohen’s 12 

d = 0.92. The mean SD in the Both condition was significantly smaller than that in the Landmark 13 

condition, t (27) = 3.24, p = .003, Cohen’s d = 0.87. The mean SD in the Conflict condition was 14 

significantly smaller than that in the Path-Integration condition, t (27) = 2.12, p = .04, Cohen’s d 15 

= 0.57. The mean SD in the Conflict condition was not significantly different from that in the 16 

Landmark condition, t (27) = 1.14, p = .26, Cohen’s d = 0.31, BF01 = 3.69. These results indicate 17 

a variance reduction for the Both and Conflict conditions. 18 

The mean SD in the Both condition was not significantly different from the mean optimal 19 

SD, t (27) = 0.97, p = .34, Cohen’s d = 0.26, BF01 = 4.38. The mean SD in the Conflict condition 20 

was not significantly different from the mean optimal SD, t (27) = 1.69, p = .10, Cohen’s d = 21 

0.45, BF01 = 1.83. The mean observed landmark weight (0.70) was not significantly different 22 
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from the mean optimal landmark weight (0.56), t (27) = 1.16, p = .26, Cohen’s d = 0.31, BF01 = 1 

3.62. These results indicate that the minimum variance was produced. 2 

5.2.3 Position angular errors  3 

A repeated measures ANOVA was used to analyze the cue effect on the position angular 4 

errors. Figure 14 plots the mean SDs of position angular errors for the four cue conditions. The 5 

main effect of the cue condition was significant, F (3, 81) = 2.65, p = .05, MSE = 339.61, ηp
2 6 

= .09. 7 

Planned contrasts showed that the mean SD in the Both condition was significantly 8 

smaller than that in the Path-Integration condition, t (27) = 2.63, p = .01, Cohen’s d = 0.70. The 9 

mean SD in the Both condition was not significantly different from that in the Landmark 10 

condition, t (27) = 1.51, p = .14, Cohen’s d = 0.40, BF01 = 2.38. The mean SD in the Conflict 11 

condition was not significantly different from that in the Path-Integration condition, t (27) = 12 

1.39, p = .18, Cohen’s d = 0.37, BF01 = 2.75. The mean SD in the Conflict condition was not 13 

significantly different from that in the Landmark condition, t (27) = 0.11, p = .91, Cohen’s d = 14 

0.03, BF01 = 6.81. These results indicate a variance reduction for the Both but not for Conflict 15 

conditions. 16 

The mean SD in the Both condition was not significantly different from the mean optimal 17 

SD, t (27) = 1.61, p = .12, Cohen’s d = 0.43, BF01 = 2.07. The mean SD in the Conflict condition 18 

was significantly larger than the mean optimal SD, t (27) = 2.60, p = .02, Cohen’s d = 0.69. 19 

These results indicate that minimum variance was produced for the Both but not for the Conflict 20 

conditions. 21 
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5.3 Discussion 1 

The findings of this experiment replicated evidence consistent with the Bayesian cue 2 

combination for heading estimates but not for homing estimates in Experiment 3, further 3 

favoring the self-localization hypothesis over the homing hypothesis in the situation when 4 

proximal landmarks indicate the home.  5 

For the position estimations, we also find evidence consistent with the Bayesian 6 

combination for the Both condition. Note that the landmarks rotated with respect to the testing 7 

position (P) in the Conflict condition. As a result, there were no conflicting predictions for the 8 

position estimates. Hence, analyzing the Bayesian combination for the Conflict condition is not 9 

conclusive. 10 

6. General Discussion 11 

 The purpose of the current study was to investigate when the Bayesian cue combination 12 

of piloting and path integration occurs in human homing behaviors. The self-localization 13 

hypothesis stipulated that the Bayesian cue combination would occur when the participants were 14 

estimating their self-localization. The homing hypothesis stipulated that the Bayesian cue 15 

combination would occur when the participants were estimating their home location. The 16 

findings of all four experiments showed evidence consistent with the Bayesian cue combination 17 

for heading estimates for all leg ratios and both landmark types (distal or proximal), but no 18 

evidence consistent with the Bayesian cue combination for homing estimates in the leg-ratio-of-2 19 

group regardless of the landmark type. Thus, these findings favor the self-localization hypothesis 20 

over the homing hypothesis. 21 
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Although there was evidence consistent with the Bayesian cue combination in the homing 1 

estimations for the leg-ratio-of-0.5 group in Experiment 1, it is very hard for the homing 2 

hypothesis to explain why people combine homing estimates for a small leg ratio (L2/L1=0.5) 3 

but not for a large leg ratio (L2/L1=1 and 2). By contrast, the mathematical model of the self-4 

localization hypothesis clearly predicted that the Bayesian cue combination for heading estimates 5 

could lead to the variance reduction for homing estimates when the leg ratio was small but would 6 

lead to no reduction (even increase) for homing estimates when the leg ratio was large. Indeed, 7 

as illustrated by Figure 10, the mathematical model of the self-localization hypothesis clearly 8 

explained the observed homing variability in the group with the leg ratio of 0.5 as well as other 9 

leg ratio groups (L2/L1=1 and L2/L1=2).  Therefore, the overall findings of the current study 10 

favor the self-localization hypothesis over the homing hypothesis. 11 

One may be concerned that evidence favoring the self-localization hypothesis over the 12 

homing hypothesis in Experiments 1, 3, and 4 was specific to the experiment paradigm used. The 13 

participants learned objects at the origin of the path and indicated the locations of the objects at 14 

the end of the path. This experimental paradigm was very different from the typical homing 15 

paradigm used in previous studies (Chen et al., 2017; Nardini et al., 2008). This concern was 16 

partially addressed by the finding in Experiment 2. Similar to the typical homing paradigm, the 17 

participants walked the path with a leg ratio of 2 (L2/L1=2) and pointed to the origin without 18 

learning any object array in Experiment 2. The results still showed the absence of the Bayesian 19 

cue combination for the homing estimations. Therefore, evidence favoring the self-localization 20 

hypothesis over the homing hypothesis in Experiments 1, 3, and 4 is not specific to the paradigm 21 

of learning locations of objects. 22 
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The self-localization hypothesis was consistent with findings in non-human studies. For 1 

example, head direction cells and place cells can be activated by both landmarks and inertial cues 2 

(Taube, 2007). The self-localization hypothesis was also consistent with previous human studies 3 

showing that visual landmarks reset heading or position estimates from path integration (Mou & 4 

Zhang, 2014; Zhang & Mou, 2017). However, no prior study has examined the Bayesian cue 5 

combination in both self-localization estimations (i.e., heading/position estimations) and homing 6 

estimations. For the first time, the current study demonstrates that for human adults, the Bayesian 7 

cue combination occurs in self-localization estimations rather than in homing estimations. 8 

Previous studies showed that homing estimations of human adults could be explained by 9 

the Bayesian cue combination model (e.g., Chen et al., 2017; Nardini et al., 2008; Sjolund et al., 10 

2018; but see Zhao & Warren, 2015). We speculate that these findings might have occurred 11 

because these studies used various leg ratios and analyzed the data by collapsing all leg ratios. In 12 

the current study, evidence for the Bayesian cue combination for homing estimates existed when 13 

the leg ratio was 0.5 but not when the leg ratio was 2.  Evidence in the group with the leg ratio of 14 

1 was in between (e.g. variance reduction but no minimum variance for the Both condition). 15 

Thus, it would be possible to obtain the evidence of the Bayesian cue combination if collapsed 16 

data across all leg ratios had been analyzed in the previous studies.  We acknowledge our 17 

paradigm of Experiment 2 was similar but not identical to the paradigm used in the past studies 18 

(Nardini et al., 2008). Hence, it is plausible that the Bayesian cue combination model may work 19 

in the exact paradigm of the past work. Future studies should examine this possibility. 20 

Nevertheless, the findings of the current study at least suggest that we should examine 21 

heading/position estimations in addition to homing estimations when we study cue interaction in 22 

human navigation. 23 
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We note that in the current study, variance reduction for the heading estimates in the 1 

both-cue conditions occurred relative to the Path-Integration condition in Experiments 1 and 3 2 

(variance reduction relative to the Landmark condition was also observed in Experiment 4). We 3 

speculate that when the heading estimation variability from landmarks is much smaller than that 4 

from path integration, the estimation variability in the two-cue conditions may not be 5 

significantly smaller than that in the Landmark condition. The other explanation is that in the 6 

two-cue conditions, participants might have only used the heading estimates from piloting and 7 

ignored the estimates from path integration in the manner of the landmark dominance cue 8 

combination reported by Zhao & Warren (2015). The landmark dominance cue combination 9 

specifies that the landmark weight is the value of one whereas the path integration weight is the 10 

value of zero (Zhao & Warren, 2015). We compared the mean of the observed landmark weight 11 

for heading estimates in the Conflict conditions to 1 for all experiments. As illustrated in Table 4, 12 

all comparisons but one (L2/L1 = 0.5 in Experiment 1) indicated that the mean of the observed 13 

landmark weights was significantly smaller than 1. These findings suggest that the participants 14 

might have weighed cues in the Bayesian manner rather than a landmark dominance cue 15 

combination.  16 

Similarly, it is interesting to test whether a landmark dominance cue combination can 17 

explain the observed homing variability as suggested by by Zhao and Warren (2015). We 18 

compared the mean of the observed landmark weight for homing estimations (homing angular 19 

errors) in the Conflict conditions to 1 for all experiments. As illustrated in Table 4, all 20 

comparisons indicated that the mean of the observed landmark weights was significantly smaller 21 

than 1. Consequently, these findings do not agree with the landmark dominance cue combination 22 

for homing estimations, which was possible as reported by Zhao and Warren (2015). 23 
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It is important to note that although the primary purpose of the current study was to 1 

examine the stage in which the Bayesian cue combination between path integration and piloting 2 

occurs, the more general question is when cue interaction, including cue combination and cue 3 

competition (i.e., landmark dominance, Zhao & Warren, 2015), occurs. To dissociate the self-4 

localization hypothesis from the homing hypothesis, we used a rather small angular distance in 5 

the Conflict condition (45º) so that the Bayesian cue combination could occur either for heading 6 

estimations or homing estimations. The findings suggest that the Bayesian cue combination 7 

occurs in self-localization estimations prior to homing estimations. However, we never exclude 8 

the possibility of cue competition in self-localization estimations. As we discussed in the 9 

Introduction, cue competitions (i.e., landmark dominance) in heading/position estimations were 10 

reported in our previous studies (Mou & Zhang, 2014; Zhang & Mou, 2017; see also Zhao & 11 

Warren, 2015). In addition, we note that the 2D shapes (i.e., a circle, rectangle, and polygon) 12 

used as landmarks in the current study are relatively weak orientation cues. They might have 13 

encouraged participants to also use cues from path integration rather than only use landmark cues 14 

as reported by Zhang and Warren (2015). Indeed, any evidence of cue competition, just like the 15 

Bayesian cue combination, in heading estimations but not in homing estimations, supports rather 16 

than undermines the self-localization hypothesis.  17 

Some findings in previous studies have already challenged the possibility that a real cue 18 

competition occurs at homing estimations. For example, Zhao and Warren (2015) reported that 19 

the mean of the homing estimates in the Conflict condition was determined by landmark only, 20 

whereas variances of the homing estimates in the Both and Conflict conditions were smaller than 21 

those in the single-cue conditions. A real cue competition model specifying landmark dominance 22 

would predict not only that the mean of the observed homing errors in the Conflict condition was 23 
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determined by landmark only (i.e., landmark weight = 1) but also that the observed homing 1 

variability in the Conflict condition should be the same as that in the Landmark condition. 2 

Hence, the reduced (smaller) variability in the Conflict condition relative to single-cue 3 

conditions in Zhao and Warren’s study was at odds with a real cue combination model for 4 

homing estimates.  5 

Elaborating on the self-localization hypothesis, we developed a mathematical model that 6 

quantitatively describes how people use path integration and piloting to guide homing behavior 7 

when distal landmarks are used (see Table A1).  As far as we know, for the first time, a 8 

mathematical model quantitatively describing the relations between position, heading, and 9 

homing errors in terms of variability has been proposed and empirically confirmed. This model 10 

accurately predicted homing angular variability in Experiment 1 (Figure 10). The regression 11 

analyses shown in Figure 9 clearly support the assumption that the position error linearly 12 

depends on the heading error in path integration and that the dependency increases with the leg 13 

ratio. Furthermore, the simulation based on this model in Figure A1 predicts that when L2/L1 14 

increases, the homing variability in the Both condition more likely departs from the prediction 15 

based on the Bayesian cue combination and may be even larger than the homing variability in the 16 

Path-Integration condition. This prediction was confirmed by the finding in Experiment 1 17 

(Figure 6, L2/L1=2).   18 

 In the current study, to easily contrast the homing and the self-localization hypotheses, 19 

we only systematically examined the Bayesian cue combination for the heading error and the 20 

homing error but not the position error. We deliberately made the position errors in all cue 21 

conditions were the same in Experiments 1 and 2. We also disoriented participants in the 22 

Landmark condition in Experiment 3, so did not remove the position representation from path 23 
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integration in the Landmark condition. In addition, we rotated landmarks with respect to the 1 

participants’ testing position in the Conflict condition (Chen et al., 2017; Nardini et al., 2008; 2 

Zhao & Warren, 2015). This manipulation objectively made the heading and homing estimates 3 

from piloting and path integration in the Conflict condition discrepant in a predicted degree (i.e., 4 

45º). However, it did not create discrepant estimates for the position estimates. Therefore, we 5 

could not systematically test the cue combination model in position estimations. Although 6 

Experiment 4 showed the preliminary evidence of the Bayesian cue combination for position 7 

estimates, future studies should systematically test the Bayesian cue combinations for position 8 

estimations as well as for heading and homing estimations. 9 

 Following the previous studies, which investigated cue combinations in human 10 

navigation (e.g., Nardini et al., 2008), the current study only used two-leg outbound paths before 11 

participants made responses. It also used a relatively simple environment. In real-life navigation, 12 

individuals often navigate by walking much more complicated paths (e.g., Baronchelli & 13 

Radicchi, 2013) in much more complex environments. We speculate that people still combine 14 

estimates produced by path integration and piloting in self-localization prior to homing (and 15 

localizing other invisible goals). However, the cue weights in combination might vary according 16 

to the reliability and stability of cues that people perceive in each specific navigation situation 17 

(Chen et al., 2017; Wang, Mou, & Dixon, 2018). Future studies should test the generalizability of 18 

the self-localization hypothesis. 19 

 Last but not least, although more evidence favoring the self-localization hypothesis over 20 

the homing hypothesis, we should be cautious to decisively conclude that heading estimates 21 

exactly follow the Bayesian cue combination. The strongest evidence of the Bayesian cue 22 

combination should show variance reduction relative to both single cue conditions. However, in 23 
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the current study, only Experiment 4 showed this evidence. Experiments 1 and 3 showed 1 

variance reduction relative to the Path-Integration condition but not the Landmark condition, the 2 

ambiguous category according to Rohde et al. (2016). This ambiguous situation is attributed to 3 

the fact of a much more precise heading estimate based on the landmarks than based on the path 4 

integration in the current study. Indeed, this fact might have provided the best opportunity 5 

differentiating the self-localization hypothesis from the homing hypothesis with a large distance 6 

between the weights producing the largest variance reduction for heading and homing estimates 7 

(see Figure A1 and Equation A5). Future studies should use more similar variance of heading 8 

estimates based on single cues to conclusively test the Bayesian cue combination for heading 9 

estimates. 10 

 In conclusion, the current findings support the self-localization hypothesis in human 11 

homing behaviors. People combine self-localization estimates (positions/headings estimates) 12 

from piloting and path integration and then use the combined self-localization estimates to 13 

determine the home location.  14 

  15 
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Appendix 1: Mathematical model of the self-localization hypothesis 1 

 According to the self-localization hypothesis, a cue combination occurs when the 2 

navigator estimates his/her position and heading. The combined position errors and combined 3 

heading errors then affect homing errors according to 𝜃 =  𝜋 –  𝜂   (See Equation 5). As a result, 4 

the following equation describes the general format of the self-localization hypothesis;  5 

𝜃 =  (𝑊𝝅𝑃𝐼
× 𝜋𝑃𝐼  +  𝑊𝝅𝐿𝑀

× 𝜋𝐿𝑀) – (𝑊𝜂𝑃𝐼
× 𝜂𝑃𝐼 + 𝑊𝜂𝐿𝑀

× 𝜂𝐿𝑀)      (A1)  6 

To simply the model, we designed experiments so that in all cue conditions, the position 7 

error was only from path integration (i.e., 𝑊𝝅𝑃𝐼
= 1,𝑊𝝅𝐿𝑀

= 0). Therefore, Equation A1 can be 8 

simplified to the following equation. 9 

𝜃 =  𝜋𝑃𝐼    – (𝑊𝜂𝑃𝐼
× 𝜂𝑃𝐼 + 𝑊𝜂𝐿𝑀

× 𝜂𝐿𝑀)                    (A2) 10 

Equation A2 can be used for each cue condition with specific weights in heading 11 

combinations (i.e., 𝑊𝜂LM). We list the specific format of Equation A2 for each cue condition in 12 

Table A1A. 13 

We assume that the position error (𝜋𝑃𝐼) and the heading error (𝜂𝑃𝐼) from path integration 14 

follow a linear relationship:  15 

𝜋𝑃𝐼  =  𝑎 × 𝜂𝑃𝐼  +  𝑢𝑒       (A3) 16 

𝑢𝑒 is the unexplained error, which is the portion of the position error that cannot be 17 

explained by the heading error from path integration. There are several possible reasons for the 18 

unexplained error: it could be due to a distance estimation error while walking the legs; or it 19 

could be due to other random errors in calculating position estimates from the lengths of the two 20 

legs and the turning angle (i.e., the heading).  21 
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𝑎 is the slope of the linear relationship. Slope 𝑎 is assumed to increase with the leg ratio 1 

(e.g., 𝑎 is 0, 0.5, and 1 for a leg ratio of 0, 1, and ∞, respectively, see Figure 4). 2 

Replacing 𝜋𝑃𝐼  in Equation A2 with 𝑎 × 𝜂𝑃𝐼  +  𝑢𝑒 according to Equation A3, we obtain 3 

the last equation of the mathematical model.  4 

𝜃 =  (𝑎 × 𝜂𝑃𝐼  +  𝑢𝑒) – (𝑊𝜂𝑃𝐼
× 𝜂𝑃𝐼 + 𝑊𝜂𝐿𝑀

× 𝜂𝐿𝑀)           (A4) 5 

Using the specific weights for each cue condition, we list the specific format of Equation 6 

A4 for each cue condition in Table A1A.Note that when 𝑊𝜂𝑃𝐼
 is not 0, both 𝜋 (i.e., 𝑎 × 𝜂𝑃𝐼  +7 

 𝑢𝑒) and 𝜂 (i.e., 𝑊𝜂𝑃𝐼
× 𝜂𝑃𝐼 + 𝑊𝜂𝐿𝑀

× 𝜂𝐿𝑀) have 𝜂𝑃𝐼. This shared potation of 𝜂𝑃𝐼 of π and η is 8 

cancelled out in calculating θ and 𝜎𝜃
2.  9 

We then calculate the variance of the predicted 𝜃 (𝜎𝜃
2) based on Equation A4 for each cue 10 

condition.  a is the slope of the linear regression between the observed heading error and position 11 

error in the Path-Integration condition. 𝑢𝑒 ∼ N(0, 𝜎𝑢𝑒
2 ). 𝜎𝑢𝑒

2  is the unexplained portion of the 12 

variance of the observed position error in the linear regression (𝜎𝑢𝑒
2 = 𝜎𝜋PI 

2 × (1 − 𝑟2)). 𝜂𝑃𝐼  13 

∼ N(0, 𝜎𝜂PI
2 ), 𝜂𝐿𝑀  ∼ N(0, 𝜎𝜂LM 

2 ). 𝜎𝜂PI
2  and 𝜎𝜂LM 

2  are the observed variance of heading errors in 14 

the conditions of Path-Integration and Landmark respectively. Furthermore, 𝑢𝑒, 𝜂𝑃𝐼 , and 𝜂𝐿𝑀   are 15 

independent of each other. In Table A1B, we specify all individual errors and their variances for 16 

all cue conditions.  17 

Consequently, we have all specifications of the mathematical model of the self-18 

localization hypothesis.   19 
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Appendix 2: Manipulation of the ratio of the lengths of two legs (L2/L1) 1 

To dissociate the self-localization hypothesis from the homing hypothesis, we are seeking 2 

evidence of a reduction in the variability of the heading error (𝜎𝜂Both

2 ≤ min(𝜎𝜂PI
2 , 𝜎𝜂LM

2 )) but not 3 

in the variability of the homing error (𝜎𝜃Both

2 > min(𝜎𝜃PI

2 , 𝜎𝜃LM

2 ))) as a result of the cue 4 

combination for heading estimates. As shown in Table A1B, both these variabilities 5 

(𝜎𝜂Both

2 , 𝜎𝜃Both
2 ) are a function of landmark weight used in the heading combination (𝑊𝜂𝐿𝑀

 ). 6 

Therefore, we are seeking a situation in which 𝑊𝜂𝐿𝑀
 could lead to a reduction in 𝜎𝜂Both

2
 but no 7 

reduction in 𝜎𝜃Both
2

. In short, we are seeking a situation in which the 𝑊𝜂𝐿𝑀
 for 8 

the minimum 𝜎𝜂Both

2  is far from the 𝑊𝜂𝐿𝑀
 for the minimum 𝜎𝜃Both

2 . When these two landmark 9 

weights are far from each other, the landmark weight in the heading estimation that reduces the 10 

heading variability is less likely to simultaneously reduce the homing variability.  11 

To implement this insight, we calculate the 𝑊𝜂𝐿𝑀
 that leads to the minimum heading 12 

variability in the two-cue condition (Both or Conflict). What we do is to find the minimum of 13 

𝜎𝜂
2 = 𝑊𝜂PI

2 × 𝜎𝜂PI
2 + 𝑊𝜂LM

2 × 𝜎𝜂LM
2 . It turns out to be  𝑊𝜂LM

=
𝜎𝜂PI

2

𝜎𝜂LM
2 + 𝜎𝜂PI

2 . We refer to this weight 14 

as the optimal landmark weight in the heading estimation (optimal 𝑊𝜂LM
). We also calculate the 15 

𝑊𝜂LM
 that leads to the minimum homing variability in the Both or Conflict condition. What we 16 

do is to find the minimum of 𝜎𝜃
2 = (𝑎 − 𝑊𝜂PI

)2 × 𝜎𝜂PI
2 + 𝑊𝜂LM

2 ×  𝜎𝜂LM
2 + 𝜎𝑢𝑒

2 . It turns out to be 17 

𝑊𝜂LM
=

𝜎𝜂PI  
2 × (1−𝑎)

𝜎𝜂LM
2 + 𝜎𝜂PI

2 , or (1 − 𝑎) × optimal 𝑊𝜂𝐿𝑀
. Therefore, the distance between these two 18 

landmark weights (referred to as Distance-of-Weight) can be calculated according to the 19 

following equation: 20 

Distance-of-Weight = a × optimal W𝜂LM
       (A5) 21 
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As shown in the equation, Distance-of-Weight increases with slope a. A larger Distance-1 

of-Weight means a lower likelihood of simultaneously obtaining the reduction of homing 2 

variability and heading variability. Thus using a larger slope, while we observe the Bayesian cue 3 

combination in heading variability, we are less likely to observe the Bayesian combination in 4 

homing variability, dissociating the self-localization hypothesis from the homing hypothesis.  5 

To further illustrate these insights, we conduct a simulation based on the equations of  6 

𝜎𝜂
2, 𝜎𝜋 

2 , and 𝜎𝜃
2 in Table A1B (see the Matlab codes of this simulation at 7 

https://doi.org/10.7939/R3QB9VM6J). This simulation assumes that the variability of the 8 

heading error is much smaller from piloting than from path integration (i.e., 𝜎𝜂LM
2 /𝜎𝜂PI

2 = 0.25), as 9 

distal landmarks may produce a much more precise heading estimate than path integration 10 

(Taube, 2007; Zhao & Warren, 2015). This simulation also assumes that the variance of ue is 11 

minimum (i.e., 𝜎𝑢𝑒
2 = 0)10. Three different assumed values of a (i.e., 0.66, 0.5, and 0.33) are 12 

used. As a result of the simulation, Figure A1 plots the predicted standard deviation (SD) for 13 

each error in the two-cue condition (Both or Conflict) as a function of the landmark weight that 14 

is used in combining heading estimates (i.e., 𝑊𝜂𝐿𝑀
). 15 

In general, the findings of this simulation indicate that for the heading variability, the 16 

largest reduction (i.e., the minimum SD) occurs when the landmark weight is 0.8 (the optimal 17 

landmark weight for heading estimation, which is the red dot on the x axis in Figure A1) 18 

regardless of slope a. Importantly, the landmark weight in heading estimations that produces the 19 

minimum SD of homing errors (see the green dot on the x axis in Figure A1; values are 0.27, 0.4, 20 

and 0.54 for Figures A1A, A1B, and A1C respectively) depends on slope a. Note that with an 21 

                                                           
10 The conclusion from the simulation does not depend on the assumption that 𝜎𝑢𝑒

2 = 0, because 

𝜎𝑢𝑒
2  is constant and independent of the landmark weight in the heading estimation. 

https://doi.org/10.7939/R3QB9VM6J
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increase of slope a, the distance between the landmark weights for the minimum SD of homing 1 

errors (green dots) and for the minimum SD of heading errors (red dots) increases (0.53, 0.4, 2 

0.26 for Figures A1A, A1B, and A1C respectively), consistent with Equation A5 (i.e., slope a × 3 

0.8). Therefore, with a larger a, we are less likely to obtain the reduction of the homing 4 

variability while the heading variability is reduced by the cue combination in heading estimates.  5 

Indeed, with a larger a, the homing variability due to the Bayesian combination for 6 

heading estimates (indicated by the red square in Figure A1A), could even be larger than the 7 

homing variability only from path integration (i.e., the SD of the homing error when the 8 

landmark weight is 0). Consequently, combining heading estimates from path integration and 9 

piloting to reduce the heading variability could increase (rather than reduce) the homing 10 

variability compared to the path integration condition. This is inconsistent with the Bayesian cue 11 

combination for homing estimations.  12 

As discussed above (see Figure 4), slope a, the slope of the linear relationship between 13 

the position error and heading error from path integration, increases with the leg ratio (L2/L1). 14 

Therefore, we could dissociate the self-localization hypothesis from the homing hypothesis by 15 

manipulating the leg ratio. These two hypotheses are more likely to be distinguished with a 16 

larger leg ratio. 17 



Table 1. The circular mean of participants’ observed circular means of homing angular errors (θ) and 

heading errors (η) across paths in the Conflict condition and its 95% confidence interval (CI) in all 

experiments. The circular mean of homing angular errors predicted by the landmark is -45° (i.e., 315°). 

The circular mean of heading angular errors predicted by the landmark is 45°. 

 

 Experiment Circular mean 95% CI 

Homing angular 

errors 

Exp 1: L2/L1 = 2 334.62° [328.09°, 341.14°] 

Exp 1: L2/L1 = 1 339.42° [329.29°, 349.55°] 

Exp 1: L2/L1 = 0.5 331.75° [322.09°, 341.40°] 

Exp 2 (L2/L1 = 2) 345.17° [338.92°, 351.42°] 

Exp 3 (L2/L1 = 2) 334.94° [323.14°, 346.74°] 

Exp 4 (L2/L1 = 2) 326.75° [319.42°, 334.07°] 

Heading errors Exp 1: L2/L1 = 2 29.85° [23.54°, 36.16°] 

Exp 1: L2/L1 = 1 31.09° [22.22°, 39.97°] 

Exp 1: L2/L1 = 0.5 38.18° [29.55°, 46.80°] 

Exp 3 (L2/L1 = 2) 35.42° [24.79°, 46.05°] 

Exp 4 (L2/L1 = 2) 32.29° [21.48°, 43.10°] 
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Table 2. Values of the squared mean observed SD of position angular errors (π) in the Path-Integration 

condition ((mean observed SD of πPI)
 2), the slope of the regression line between the position angular 

error and heading error (η) in the Path-Integration condition (a), the explained portion of the regression 

model (mean r)2, and variance of the unexplained error (𝜎𝑢𝑒
2 ) for the three leg ratio groups in Experiment 

1. 𝜎𝑢𝑒
2 = (mean observed SD of πPI)

 2 × (1- (mean r)2). 

 

Leg ratio a 
(mean observed 

SD of πPI)
 2 

(mean r)2 𝝈𝒖𝒆
𝟐  

L2/L1 = 2 0.79 1095.24 0.57 470.32 

L2/L1 = 1 0.58 1290.55 0.33 869.16 

L2/L1 = 0.5 0.27 606.32 0.23 469.31 

 

  



Table 3. BIC values in explaining the observed SDs of homing angular errors (θ) for the conditions of 

Both and Conflict with the predicted SDs based on different hypotheses and the Bayes Factors (self-

localization hypothesis over homing hypothesis) for all leg ratio groups in Experiment 1.  

 

Leg ratio Cue condition 

BIC 
Bayes Factor 

(likelihood ratio) 
Self-localization 

hypothesis 

Homing 

hypothesis  

L2/L1 = 2 Both  702.63 718.95 3498.19 

 Conflict 658.6 688.84 3685806.80 

L2/L1 = 1 Both  699.31 702.48 4.88 

 Conflict 714.78 726.43 338.66 

L2/L1 = 0.5 Both  649.13 648.98 0.93 

 Conflict 704.44  705.03 1.34 

 

  



Table 4. Comparisons between the observed landmark weights and the value of one assuming landmark 

dominance in the heading estimations and the homing estimations.  

 Experiment 
Observed 

weight 
t p Cohen's d 

Heading 

estimations 

 

Exp 1: L2/L1 = 2 0.66  4.70 < .001 1.26 

Exp 1: L2/L1 = 1 0.69 2.97 < .01 0.79 

Exp 1: L2/L1 = 0.5 0.86  1.41 0.17 0.38 

Exp 3 (L2/L1 = 2) 0.72 2.11 0.04 0.57 

Exp 4 (L2/L1 = 2) 0.70 2.40 0.02 0.64 

Homing 

estimations 

 

Exp 1: L2/L1 = 2 0.57  5.76  < .001 1.54  

Exp 1: L2/L1 = 1 0.46  4.64  < .001 1.24  

Exp 1: L2/L1 = 0.5 0.65  3.16  0.004 0.85  

Exp 2 (L2/L1 = 2) 0.33  9.33  < .001 2.49  

Exp 3 (L2/L1 = 2) 0.50  3.55  0.001 0.95  

Exp 4 (L2/L1 = 2) 0.74 3.06 0.005 0.82 

 

  



Table A1A. The specific formats of Equations A2 and A4 for different cue conditions in Experiment 1 by 

assigning 𝑊η𝐿𝑀
= 0 to the Path-Integration condition and  𝑊η𝐿𝑀

= 1 to the Landmark condition. θ,  π, 

and η are the homing angular error, position angular error, and heading error respectively.  𝑊η𝐿𝑀
 is the 

landmark weight and 𝑊η𝑃𝐼  is the weight assigned to path integration in combining heading estimates 

(𝑊η𝐿𝑀
+ 𝑊η𝑃𝐼

= 1). ue is the unexplained error and a is the slope of the linear relationship between the 

heading error and position angular error from path integration.  45 in the Conflict condition is the 

systematic error for heading estimates because the landmarks were rotated -45º. 

 Path-Integration (PI) Landmark (LM) Both Conflict 

Equation A2 

 
𝜃 =  𝜋𝑃𝐼    –  𝜂𝑃𝐼  𝜃 =  𝜋𝑃𝐼   –  𝜂𝐿𝑀 𝜃 

=  𝜋𝑃𝐼   –  (𝑊𝜂𝑃𝐼

× 𝜂𝑃𝐼 +  𝑊𝜂𝐿𝑀

× 𝜂𝐿𝑀) 

𝜃 
=  𝜋𝑃𝐼    – (𝑊𝜂𝑃𝐼

× 𝜂𝑃𝐼 +  𝑊𝜂𝐿𝑀

× (𝜂𝐿𝑀 + 45)) 
Equation A4 

 
𝜃 
=  𝑎 ×  𝜂𝑃𝐼  
+  𝑢𝑒    –  𝜂𝑃𝐼 

𝜃 
=  𝑎 × 𝜂𝑃𝐼  
+  𝑢𝑒    –   𝜂𝐿𝑀 

𝜃 
=  𝑎 ×  𝜂𝑃𝐼  
+  𝑢𝑒   – (𝑊𝜂𝑃𝐼

× 𝜂𝑃𝐼 +  𝑊𝜂𝐿𝑀

× 𝜂𝐿𝑀) 

𝜃 
=  𝑎 ×  𝜂𝑃𝐼  
+  𝑢𝑒 – (𝑊𝜂𝑃𝐼

×  𝜂𝑃𝐼 + 𝑊𝜂𝐿𝑀

×  (𝜂𝐿𝑀 + 45)) 

 

Table A1B. Heading error, position angular error, homing angular error, and their variances in different 

cue conditions predicted by the mathematical model elaborating on the self-localization hypothesis.  

 Path-Integration (PI) Landmark (LM) Both Conflict 

Heading 

error (η) 

 

𝜂𝑃𝐼 𝜂𝐿𝑀 𝑊𝜂𝑃𝐼
× 𝜂𝑃𝐼 +  𝑊𝜂𝐿𝑀

×  𝜂𝐿𝑀 

𝑊𝜂𝑃𝐼
×  𝜂𝑃𝐼 +  𝑊𝜂𝐿𝑀

×  (𝜂𝐿𝑀 + 45) 

Position 

error (π) 
𝑎 × 𝜂𝑃𝐼  +  𝑢𝑒  𝑎 × 𝜂𝑃𝐼  +  𝑢𝑒  𝑎 × 𝜂𝑃𝐼  +  𝑢𝑒  𝑎 ×  𝜂𝑃𝐼  +  𝑢𝑒  

Homing 

error (θ) 

(𝑎 − 1) × 𝜂𝑃𝐼  
+  𝑢𝑒  

𝑎 ×  𝜂𝑃𝐼  +  𝑢𝑒
− 𝜂𝐿𝑀  

 

 (𝑎 − 𝑊ηPI
)  × 𝜂𝑃𝐼  

+  𝑢𝑒 − 𝑊ηLM
× 𝜂𝐿𝑀  

 

 

(𝑎 − 𝑊ηPI
)  × 𝜂𝑃𝐼  

+  𝑢𝑒
− 𝑊ηLM

× (𝜂𝐿𝑀

+ 45)  

 

𝜎η
2 

 

𝜎ηPI
2  

 

𝜎ηLM
2  

 

 𝑊ηPI
2 × 𝜎ηPI

2 +

 𝑊ηLM
2 ×  𝜎ηLM

2  

 

 𝑊ηPI
2 × 𝜎ηPI

2 +

 𝑊ηLM
2 ×  𝜎ηLM

2  

 

𝜎π
2 
 

𝑎2 × 𝜎ηPI
2 + 𝜎𝑢𝑒

2   𝑎2 × 𝜎ηPI
2 + 𝜎𝑢𝑒

2   𝑎2 × 𝜎ηPI
2 + 𝜎𝑢𝑒

2   𝑎2 × 𝜎ηPI
2 + 𝜎𝑢𝑒

2   

𝜎θ
2 (𝑎 − 1)2 × 𝜎ηPI

2

+ 𝜎𝑢𝑒
2  

𝑎2 × 𝜎ηPI
2 + 𝜎ηLM

2

+ 𝜎𝑢𝑒
2  

(𝑎 − 𝑊ηPI
)2 ×

𝜎ηPI
2 + 𝑊ηLM

2 ×  

𝜎ηLM
2 + 𝜎𝑢𝑒

2  

(𝑎 − 𝑊ηPI
)2 ×

𝜎ηPI
2 + 𝑊ηLM

2 ×  

𝜎ηLM
2 + 𝜎𝑢𝑒

2  

 



Figure 1. Schematic diagrams of the two hypotheses. (A) Homing hypothesis. (B) Self-localization 

hypothesis. The boxes of path integration and piloting indicate the two navigation processes. Each 

process receives the input of self-motion cues or landmarks and produces estimates.  According to 

the homing hypothesis, each process produces an independent home estimate. According to the self-

localization hypothesis, each process produces independent estimates of positions and headings. The 

boxes of estimators produce estimates. The boxes of combiners combine individual estimates. 

A. Homing hypothesis 

 

 

 

 

 

 

 

 

 

 

B. Self-localization hypothesis 
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Figure 2. (A) A hypothetical participant represents his or her original position O (home) and heading 

n. After navigation, this participant ends at the position P and with the heading h. His or her estimates 

of P and h are P’ and h’. He or she points to O’ as the estimate of O. The angle φ from h to 𝑃𝑂’⃗⃗ ⃗⃗ ⃗⃗   is the 

pointing direction. The angle ρ from h’ to 𝑃’𝑂⃗⃗ ⃗⃗ ⃗⃗   is the remembered direction. These two directions are 

equal (φ = ρ) assuming that the pointing direction follows the remembered direction. All angular 

errors for homing, position, and heading estimates are specified by the angular differences between 

the estimated and correct vectors or headings. Homing angular error (θ) is the angle from 𝑃𝑂⃗⃗⃗⃗  ⃗ to 𝑃𝑂’⃗⃗ ⃗⃗ ⃗⃗  . 

Position angular error (π) is the angle from 𝑂𝑃⃗⃗⃗⃗  ⃗ to 𝑂𝑃’⃗⃗ ⃗⃗ ⃗⃗   . Heading error (η) is the angle from the 

direction h to the direction h’. (B) Suppose there is only position error π. h = h’ (i.e. η = 0). As φ = ρ 

and h = h’, lines PO’ and P’O are parallel. Thus, θ = π. (C) Suppose there is only heading error η. P’ 

= P (i.e., π = 0).  As φ – θ = ρ + η and φ = ρ, θ = - η. (D) Suppose there are both errors π and η. Let 

𝑃𝐿⃗⃗ ⃗⃗   = 𝑃’𝑂⃗⃗ ⃗⃗ ⃗⃗  . Thus, ∠OPL = π (see panel B). The angle ρ equals the angle from h’ to 𝑃𝐿⃗⃗ ⃗⃗  . As φ – ∠LPO’ 

= ρ + η and φ = ρ, ∠LPO’ = - η (see panel C). θ = ∠OPL + ∠LPO’ = π – η. We get equation 5. 

Conceptually, if we were to consider only the contribution of π, participants would point to L instead 

of O (θ1 = π). With the additional η, participants point to O’ instead of L (θ2 = – η). θ = θ1+ θ2.  
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Figure 3. Illustrations of using the bidimensional regression to calculate estimated positions and 

headings. A participant learns five objects in the original locations (e.g., O). After navigation, the 

participant replaces objects from the testing position P and heading h. Conceptually, the 

bidimensional regression produces a prediction function (a transformation matrix including uniform 

scale, rotation, and translation). The prediction function converts the replaced locations (e.g., O’) to 

the predicted locations so that the predicted locations overall have the shortest distance to the original 

locations (e.g., O) (Friedman & Kohler, 2003). The prediction function then calculates h’ and P’ 

using h and P as the values of the predictor respectively. The locations are connected by lines only to 

highlight the configuration of them so that the correspondences among the three configurations are 

clear to readers. 

  

  



Figure 4. Illustrations of the relationship between the position angular error (π) and the heading 

angular error (η) from path integration. A participant walks from O to T (the first leg, L1) and turns at 

T, and walks from T to P (the second leg, L2), facing h. P’ and h’ are the estimates of the testing 

position (P) and heading (h). This individual estimates the turning angle at T with an error, which is 

equal to the heading error (η). (A) Participants do not walk Leg 2 (i.e., L2 is 0). L2/L1 = 0, π = 0 × η. 

(B) Participants walk the same distance for Legs 1 and 2. L2/L1 = 1, π = 0.5 × η. Because 2×∠TOP’ 

+∠P’TO = 180 and 2×∠TOP + ∠PTO =180°, we get 2 × (∠TOP’ - ∠TOP) = ∠PTO - ∠P’TO. 2 × π = 

η. (C) Leg 2 is much longer than Leg 1 (similar to L1 is 0). L2/L1 = ∞, π = 1 × η.  
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Figure 5. Virtual envionrment and path configurations in Experiment 1. (A) Learning position O 

(also the home), and the distal landmarks (a circle, polygon, and rectangle attached to the wall with a 

radius of 50m). (B) Testing position P, and testing heading  h, in the Conflict condition with counter-

clockwise rotated landmarks. (C) The array of the five objects learned at O. (D, E, & F) The four 

paths (O-T-P) were respectively used in three different leg ratio groups. (D: L2/L1=2; E: L2/L1=1; 

F: L2/L1=0.5). Each P indicates one possible testing position at end of the second leg. Grid squares 

represent 1m2.  
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Figure 6. Mean observed SDs of the homing angular errors (θ) in the Path-Integration (PI), 

Landmark (LM), Both, and Conflict conditions, the optimal prediction by the Bayesian combination 

model (Optimal) when L2/L1 = 2, 1, and 0.5 in Experiment 1. Error bars represent ±1 SE.  
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Figure 7. Mean observed SDs of the heading errors (η) in the Path-Integration (PI), Landmark (LM), 

Both, and Conflict conditions, the optimal prediction by the Bayesian combination model (Optimal) 

when L2/L1 = 2, 1, and 0.5 in Experiment 1. Error bars represent ±1 SE. 
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Figure 8. Mean observed SDs of the position angular errors (π) in the Path-Integration (PI), 

Landmark (LM), Both, and Conflict conditions when L2/L1 = 2, 1, and 0.5 in Experiment 1. Error 

bars represent ±1 SE. 
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Figure 9. Scatter plots of position angular errors (π) and heading errors (η) in the Path-Integration 

condition, when L2/L1 = 2 (A), L2/L1 = 1 (B), and L2/L1 = 0.5 (C) in Experiment 1. Each dot 

represents a pair of heading errors and position errors for one path and one participant. Each solid 

line is the regression line across paths for each participant. The dashed line is the mean regression 

line using the mean slope and intercept across participants. 
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Figure 10. Mean SDs of homing errors (θ) observed and predicted by the self-localization hypothesis 

in the Path-Integration (PI), Landmark (LM), Both, and Conflict conditions, when the leg ratio 

(L2/L1) is 2 (A), 1 (B), and 0.5 (C) in Experiment 1. Error bars represent ±1 SE without removing 

the variance from the individual difference.  
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Figure 11. Mean observed SDs of the homing angular errors (θ) in the Path-Integration (PI), 

Landmark (LM), Both, and Conflict conditions, the optimal prediction by the Bayesian combination 

model (Optimal) in Experiment 2. Error bars represent ±1 SE.  
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Figure 12. Mean observed SDs of the homing angular errors (θ) in the Path-Integration (PI), 

Landmark (LM), Both and Conflict conditions, the optimal prediction by the Bayesian combination 

model (Optimal) in Experiments 3 and 4. Error bars represent ±1 SE.  
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Figure 13. Mean observed SDs of the heading errors (η) in the Path-Integration (PI), Landmark 

(LM), Both, and Conflict conditions, the optimal prediction by the Bayesian combination model 

(Optimal) in Experiments 3 and 4. Error bars represent ±1 SE.  
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Figure 14. Mean observed SDs of the position angular errors (π) in the Path-Integration (PI), 

Landmark (LM), Both, and Conflict conditions, the optimal prediction by the Bayesian combination 

model (Optimal) in Experiments 3 and 4. Error bars represent ±1 SE.  
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Figure A1. Simulation based on the equations in Table A1B. Predicted standard deviation (SD) of 

heading errors (η, the red line), position angular errors (π, the black line), and homing errors (θ,  the 

green line) in the Both/Conflict conditions as a function of the landmark weight used in combining 

heading estimates (𝑖. 𝑒. ,𝑊η𝐿𝑀
). We set 𝜎ηLM

= 40, 𝜎ηPI
= 20, and 𝜎𝑢𝑒 = 0. Slope a of the linear 

relationship of the position error and the heading error (π = a × η) from path integration is set to be 

0.66 (A), 0.5 (B) or 0.33 (C). The green dot and red dot on the x axis are 𝑊η𝐿𝑀
s that lead to the 

minimum SD of homing (𝜎𝛉) and heading errors (𝜎η), respectively. Note that the values of the red 

dots are always 0.8, whereas the value of the green dots varies. The distance between the green and 

the red dots increases with the value of slope a (i.e., a × 0.8; see equation A5). The red square on the 

green curve denotes the predicted SD of homing errors (𝜎𝛉) corresponding to the 𝑊η𝐿𝑀
 that produces 

the minimum SD of heading errors (𝜎η). 
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