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Abstract

Understanding how an artificial agent may represent, acquire, update, and use large amounts

of knowledge has long been an important research challenge in artificial intelligence. The

quantity of knowledge, or knowing a lot, may be nicely thought of as making and updat-

ing many predictions about many different courses of action. This predictive approach to

knowledge ensures the knowledge is grounded in and learned from low-level data generated

by an autonomous agent interacting with the world. Because predictive knowledge can be

maintained without human intervention, its acquisition can potentially scale with available

data and computing resources. The idea that knowledge might be expressed as prediction

has been explored by Cunningham (1972), Becker (1973), Drescher (1990), Sutton and

Tanner (2005), Rafols (2006), and Sutton (2009, 2012). Other uses of predictions include

representing state with predictions (Littman, Sutton &, Singh 2002; Boots et al. 2010) and

modeling partially observable domains (Talvitie & Singh 2011). Unfortunately, technical

challenges related to numerical instability, divergence under off-policy sampling, and com-

putational complexity have limited the applicability and scalability of predictive knowledge

acquisition in practice.

This thesis explores a new approach to representing and acquiring predictive knowledge

on a robot. The key idea is that value functions, from reinforcement learning, can be used

to represent policy-contingent declarative and goal-oriented predictive knowledge. We use

recently developed gradient-TD methods that are compatible with off-policy learning and

function approximation to explore the practicality of making and updating many predictions

in parallel, while the agent interacts with the world from continuous inputs on a robot.

The work described here includes both empirical demonstrations of the effectiveness of

our new approach and new algorithmic contributions useful for scaling prediction learning.

We demonstrate that our value functions are practically learnable and can encode a variety

of knowledge with several experiments—including a demonstration of the psychological
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phenomenon of nexting, learning predictions with refined termination conditions, learn-

ing policy-contingent predictions from off-policy samples, and learning procedural goal-

directed knowledge—all on two different robot platforms. Our results demonstrate the po-

tential scalability of our approach; making and updating thousands of predictions from hun-

dreds of thousands of multi-dimensional data samples, in realtime and on a robot—beyond

the scalability of related predictive approaches. We also introduce a new online estimate of

off-policy learning progress, and demonstrate its usefulness in tracking the performance of

thousands of predictions about hundreds of distinct policies. Finally, we conduct a novel

empirical investigation of one of our main learning algorithms, GTD(λ), revealing several

new insights of particular relevance to predictive knowledge acquisition. All told, the work

described here significantly develops the predictive approach to knowledge.
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Chapter 1

Introduction

Understanding how an artificial agent may represent, acquire, update, and use large amounts

of knowledge has long been an important research challenge in artificial intelligence. Intel-

ligent agents know a lot about their world. Humans know that the sun rises every day, how

long it will take to get to the bathroom, and that significant energy is required to lift a heavy

box. Artificial agents, such as Google’s self-driving car, know the regions that are drivable

and not, the likely future positions of moving objects, and what to do when a light turns

red. Future intelligent agents—such as a nanny bot to care for the elderly—may know how

to vacuum the floor, and what time you usually wake.

Much of what people believe to be everyday or common-sense knowledge may be

thought of as predictive. Knowing your keys are in the desk is to predict that you will

see the keys if you opened the desk drawer. Knowing about a chair is to predict the suc-

cess of attempting to sit on it. Knowing how a ball will feel in your hand is to predict the

sensations you should observe if you picked up the ball. We call these policy-contingent

predictions because they are statements about the outcome of a course of action; opening

the drawer, sitting, and picking up. The quantity of knowledge, or knowing a lot, can be

nicely thought of as making and updating many predictions about many different courses

of action.

Predictive knowledge acquisition is potentially more scalable than other forms of knowl-

edge that rely on correctness defined by people. Updating a prediction can be as simple as

making a prediction, following some course of action, observing the outcome, and refin-

ing the prediction—learning from an agent’s interaction with the world. A prediction’s

correctness is defined by how well it matches what actually occurs when the agent takes

the course of action corresponding to the prediction. In comparison, conventional objec-

tive knowledge—such as a database of logical facts—may be maintained correct by logical
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inference or human consistency checking. Unfortunately, as the size of the database of

knowledge increases, both human-driven and logical consistency checking become error

prone and computationally infeasible, respectively. Predictive knowledge acquisition, on

the other hand, may be scaled with computation and data. Computational resources con-

strain how many predictions the agent can store and how quickly those predictions may be

updated; experience governs the accuracy of the agent’s predictions. The potential scalabil-

ity of predictive knowledge acquisition has by and large remained an untested hypothesis.

This thesis explores the practicality of predictive representations of knowledge by at-

tempting to improve the applicability and scalability of prediction specification and ac-

quisition. The idea that knowledge might be expressed as prediction has been explored

by Cunningham (1972), Becker (1973), Drescher (1990), and Sutton (2009, 2012), but in

only small scale simulations. Other well-developed uses of prediction, including predictive

state representations (PSRs) (Littman et al., 2002; Singh et al., 2004; Bowling et al., 2006;

Wingate & Singh, 2008), temporal difference networks (TD-nets) (Sutton & Tanner, 2005;

Sutton et al., 2006), and prediction profiles (Talvitie & Singh, 2011) have also been lim-

ited to small, discrete simulations. More recently spectral learning techniques, from system

identification, have been used to learn the parameters of a PSR from continuous low-level

sensor data produced by a robot (Boots et al., 2010; Boots & Gordon, 2011). All told,

these prior demonstrations of prediction learning have been limited to making and updating

a few dozen predictions, and do not easily extend to updating predictions from continuous

inputs at the same time as the agent is interacting with the world. This thesis describes a

new approach to predictive knowledge based on ideas and algorithms from reinforcement

learning, and demonstrates for the first time making and updating thousands of predictions

from hours of high-dimensional sensor data produced by a mobile robot. Our new approach

improves the applicability and scalability of the predictive approach to knowledge.

1.1 Objective

This thesis seeks to answer the following question:

Can we develop a predictive approach to knowledge, improving the applicabil-

ity and scalability of incremental prediction learning?

Learning predictive knowledge is taken to mean approximating a mapping from ob-

served data to summary statements about the future. To acquire predictive knowledge is

to refine and update predictions based on the agent’s experience: the data generated by an
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agent exploring its world. We call this learning online, because the agent modifies its pre-

diction immediately after each new observation, using an incremental learning algorithm.

Our agent will learn many predictive mappings, each about the outcome of following a

target policy.

Improving the applicability of prediction learning refers to both prediction specification

and how the predictions are learned. This thesis investigates policy-contingent predictions:

what-if predictions about the outcomes of following a decision making policy. Such pre-

dictions can compactly summarize an observed outcome contingent on a closed-loop tem-

porally extended way of behaving (the policy), while abstracting away a potentially long

sequence of observations and decisions that are not relevant to the prediction’s outcome.

This thesis also investigates how to learn predictions from continuous data, such as a robot’s

sensor readings, and how predictions can be updated off-policy. In the off-policy setting,

we update a prediction about the observed outcome of following a target policy from data

generated while the agent follows another, potentially different, policy. This combination

of the policy-contingent prediction, learned off-policy from continuous inputs, has not been

previously demonstrated.

One of the main objectives of this thesis is to build agents that could know a lot, and

thus our work focuses on scaling predictive knowledge learning. Here we consider scaling

in two dimensions: scaling the length of data stream produced by the agent interacting with

the world, and scaling the number of unique predictions to be learned. Our objective is to

demonstrate learning more predictions, from more data than any other previous predictive

knowledge implementation, and to develop representations and learning algorithms that

facilitate scaling with available computational resources.

Overall, our aim is to broaden the class of predictions that may be posed, increase the

domains in which those predictions may be learned from data, and scale up the number of

things that can be predicted online during learning. The next section describes our approach

to achieving these objectives.

1.2 Approach

The approach explored in this thesis has three key components: (1) learning predictions

from and about low-level data produced by mobile robots, (2) framing the task of learn-

ing a prediction as one of estimating a value function, and (3) learning predictions with

incremental temporal difference (TD) off-policy learning algorithms from reinforcement
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learning.

Similar to prior work on PSRs and TD-nets, the agent’s task is to predict the low-

level data produced by its own interaction with the world. In this setting, the agent has no

access to data structures with externally defined semantics, such as a true state or a motion

model; rather, the agent only observes a stream of low-level data. As opposed to a task-

driven setting, our aim for the agent is for it to continually make and update many different

predictions about the future values of its own data stream.

Unlike almost all prior work in predictive knowledge learning, our agent will seek to

predict the sensor stream produced by a mobile robot. One of our robots, called the Crit-

terbot, produces a 53 dimensional vector of real-valued sensor readings roughly every 10

milliseconds (ms): 1.8x107 sensor readings an hour. Our agent’s task is to predict this

continuous-valued, low-level sensor stream on a moment-by-moment basis, making and

updating each prediction in realtime as the data are produced. This setup facilitates specifi-

cation of large numbers of predictions and generating ample data for learning and evaluating

each prediction.

We represent the problem of predicting future sensory data as a value estimation prob-

lem. Reinforcement learning is a problem formalism in which an agent learns a policy to

maximize a scalar reward signal, usually corresponding to some explicit goal or desired

behavior. Many reinforcement learning algorithms estimate a value function as an interme-

diary step inside iterative policy learning algorithms. A value function is an estimate of the

expected total future reward the agent would receive if it followed some policy from the

current state—it is a prediction of future reward. In this thesis, we develop the idea that

rewards need not be tied to some objective the agent is trying to achieve; rather a reward

may be taken to be any signal of interest that the agent wishes to predict, such as one of

the robot’s sensors. The agent’s task is to estimate a general value function (GVF), similar

to a conventional value function but defined with this broader view of reward, and a time-

varying definition of discounting and termination. One consequence of this approach is that

value function learning algorithms from reinforcement learning may be applied to the task

of learning predictive knowledge. Specifically, efficient, linear-complexity TD-based learn-

ing methods can be used to learn GVFs online and incrementally from continuous inputs via

function approximation. Our GVF-based problem formulation is similar to prior work on

option models and TD-nets. The main point of distinction is our use of modern off-policy

reinforcement learning methods and more general function approximation, which improves

applicability and substantially increases scalability compared to previous work.
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Our approach to GVF learning makes use of recently developed off-policy gradient-

TD methods. Off-policy updating facilitates asynchronous updating of multiple GVFs at

a time, enabling massive scaling of online prediction learning. Somewhat surprisingly,

conventional off-policy value function estimation methods, such as Q-learning, may di-

verge when used with function approximation (see Baird, 1995; Sutton & Barto, 1998).

In addition, prior off-policy learning methods based on importance sampling (Precup et

al. 2000, Sutton, Rafols & Koop, 2006) exhibited high variance, and thus the agent often

learned more slowly than if it had sequentially updated each prediction with on-policy data

(see Rafols, 2006). Recently, new TD methods were introduced which have convergence

guarantees under off-policy updating with function approximation, and do not exhibit the

same large variance under off-policy sampling. We use these new gradient-TD methods

to learn thousands of predictions represented as GVFs on two different mobile robot plat-

forms, demonstrating a measurable improvement in both the applicability and scalability of

predictive knowledge learning.

1.3 Contributions

This thesis contains five proposed contributions.

General value functions (Chapter 4)

We propose GVFs as a language for representing predictive knowledge. Although formally

presented in prior work (Maei & Sutton, 2010), we are the first to develop GVFs as a rep-

resentation for policy-contingent predictive knowledge. We describe how the discount rate

may be a function of the state and how rewards and discounting can be mixed, provid-

ing substantial additional flexibility and expressive power, compared to conventional value

functions. GVFs may be learned in parallel with efficient, off-policy gradient-TD methods

from continuous inputs using general function approximation architectures; an improve-

ment in both applicability and potential scalability over previous approaches to representing

and learning predictive knowledge.

Nexting (Chapter 5)

Psychologists refer to nexting as the propensity of people and many other animals to contin-

ually predict what will happen next in an immediate, local, and personal sense. We develop

a computational model of nexting based on GVFs, and present results with a robot that
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learns to next in realtime, making thousands of predictions about sensory input signals at

time scales from 0.1 to 8 seconds. We show that 6000 GVFs, each computed as a function

of 6000 features of the state, can be learned and updated online 10 times per second on a

laptop computer, using the standard TD(λ) algorithm with linear function approximation.

This approach is sufficiently computationally efficient to be used for realtime learning on

the robot and sufficiently data efficient to achieve substantial accuracy within 30 minutes.

Moreover, a single shared tile-coded feature representation suffices to accurately predict

many different signals over a significant range of time scales. Our nexting experiment

provides evidence for our claims regarding the expressiveness of GVFs as a language for

predictive knowledge and the practicality of our specific approach to learning.

GVF learning on robots (Chapter 6)

We move beyond the simple time scales used in on-policy predictions nexting, and demon-

strate learning GVFs of a significantly more general and expressive form, on two different

robot platforms. Specifically, our experiments provide concrete examples of learning GVFs

defined by mixtures of hard and soft terminations, outcome signals, and policy-contingent

predictions learned from off-policy samples. These experiments help further demonstrate

the representational capabilities of GVFs, and the practicality of learning GVFs with rein-

forcement learning methods on robots. This chapter contains both the first demonstrations

of GVF learning on robots, and some of the most extensive empirical investigations of the

practicality of off-policy gradient-TD learning on robots.

An empirical study of the GTD(λ) algorithm (Chapter 7)

Gradient-TD methods make exploring parallel, policy-contingent prediction learning prac-

tical for the first time, but our empirical experience with these new algorithms is limited.

In Chapter 7, we perform an extensive empirical study of one gradient-TD method, the

GTD(λ) algorithm. We investigate the secondary weight vector of GTD(λ) in several vari-

ants of a Markov chain task and one domain that causes divergence of conventional TD-

based learning methods. Our experiments provide new insight into how well these weights

are learned in practice, and how these weights affect the performance of the GTD(λ) algo-

rithm overall. Our experiments are the first to specifically investigate the secondary weights

and they reveal several new insights of particular relevance to predictive knowledge learn-

ing.
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RUPEE, a measure of off-policy learning progress (Chapter 8)

Estimating the accuracy of predictions learned off-policy may be done in several ways,

but many of these involve restricting the learning process in some way. We propose two

new estimates of off-policy learning progress, called RUPEE, that estimate the objective

function which gradient-TD methods optimize—the mean squared projected Bellman error

(MSPBE). Our new measures can be estimated incrementally during learning with linear

computational complexity and storage, and do not interfere with the learning process. We

empirically evaluate how well our new measures estimate the MSPBE on several experi-

ments in the Markov chain domain, and then show how both RUPEE measures provide a

surrogate measure of the prediction accuracy of hundreds of policy-contingent predictions

learned off-policy by GTD(λ) on a robot. Finally, we demonstrate one of the benefits of an

online estimate of progress using one of the new RUPEE measures to estimate the learning

progress of thousands of GVFs with hundreds of distinct policies on a robot.

This thesis also contains two smaller contributions. The first, found in Chapter 9, is a

demonstration of adapting the behavior policy on a robot, based on the learning errors of

multiple GVFs, similar to artificial curiosity. The second, found in Appendix A, is the

derivation of a new gradient-TD method, called Hybrid-TD(λ), that automatically performs

conventional TD updates when data are generated on policy, and performs corrected, off-

policy updates otherwise, ensuring convergence.

1.4 Thesis layout

This document contains 10 chapters, one that covers background material, one that de-

scribes the robot hardware and sensorimotor data, followed by six chapters of technical

content. This section provides selected descriptions of the contents of each chapter.

The second and third chapters can be viewed as background material that can be skipped

by some readers. Chapter 2 describes important concepts in reinforcement learning, specif-

ically value functions, function approximation, on-policy temporal difference learning, the

MSPBE and off-policy temporal difference learning. This second chapter is not essential,

as our problem formulation and notations will be defined in Chapter 4. Chapter 3 describes

the two robots used throughout our experiments and contains several visualizations of the

low-level sensory data produced by one of our robots. In the cases where some concept is

also explained in Chapters 2 and 3, we will explicitly point out the connection.
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Chapter 4 is divided into three main parts. The first part formally defines our predic-

tion learning problem, specifying the assumptions, notations, and naming conventions used

throughout the rest of the thesis. The second part defines GVFs and describes how pre-

dictions may be represented using GVFs. The third and final part discusses prior work on

representing and learning predictive knowledge, pointing out the similarities and differences

to GVFs.

Demonstrating the kinds of predictions that can be represented with GVFs and the prac-

ticality of learning GVFs on robots is the topic of Chapters 5 and 6. These chapters, along

with the remaining technical chapters of this thesis are, summarized in the previous section.

Chapter 10 concludes the thesis with a discussion of how successful we were in addressing

the research question posed above. Chapter 10 closes the thesis with a discussion of related

work, one idea corresponding to each technical chapter of the thesis.

1.5 Summary

In this chapter we introduced the topic of investigation tackled by this thesis, develop-

ing predictive knowledge learning, and described our approach based on learning policy-

contingent predictions, represented as value functions, from low-level sensory data pro-

duced by a robot. We outlined the five proposed contributions described in the pages of this

document, and closed with an outline of the thesis.
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Chapter 2

Background

This chapter introduces and describes basic concepts of reinforcement learning which will

be useful for understanding the rest of this document. We begin with the reinforcement

learning problem formulation and Markov decision processes, then move on to value func-

tions, linear function approximation, and algorithms for learning value functions from an

agent’s interaction with the world. We describe the off-policy learning problem, divergence

of temporal difference methods, an objective function for off-policy learning, and a new

family of gradient TD methods for learning value functions from off-policy samples. We

finish the chapter with brief overviews of algorithms for learning policies to maximize re-

ward, recent algorithmic advances in reinforcement learning, and option models.

The contents of this chapter are meant to serve as background only. Our precise problem

formulation and notations will be described in Chapter 4. Readers familiar with estimating

value functions, the mean squared projected Bellman error, and gradient temporal difference

learning algorithms should feel free to skip this chapter.

2.1 Reinforcement learning

The decision maker and learner is called the agent and the entity the agent interacts with

(and in fact everything that is not directly under the control of the agent) is called the

environment. An agent’s interaction with the world can be represented using the agent-

environment interaction model of reinforcement learning (see Sutton and Barto, 1998). The

agent’s interaction with the environment occurs in discrete time steps. At the beginning of

each time-step t = 1, 2, 3, . . ., the agent receives a representation of the environment’s state

St ∈ S, where S is a finite set of possible states. Based on St the agent selects an action

denoted by At, stochastically according to the target policy π : S×A→ [0, 1], where A is

a finite set of possible actions available to the agent. We denote the probability of selecting

9



action a in state s under π with π(s, a). On the next time-step, the agent receives a scalar

reward Rt+1 ∈ R, and environment transitions to a new state St+1 based, in part, on the

agent’s action At. This interaction, depicted in Figure 2.1, continues producing a temporal

interaction stream of random states, actions, and rewards:

S1, A1, S2, R2, A2, S3, R3, . . . . (2.1)

Often, the agent-environment interaction continues forever without interruption, which

is referred to as continuing. Sometimes, there may be natural divisions in time where some

goal is achieved, causing a transition into a terminal state ST ∈ S, at time T . In this episodic

setting, time is divided into discrete, not necessarily equal length chunks called episodes.

The specification of the environment’s state-transition dynamics and reward function spec-

ifies an instance of a reinforcement learning task.

agent

environment

action
At

state
St

reward
Rt

St+1

Rt+1

Figure 2.1: An reinforcement learning agent’s interaction with an unknown environment.

An important concept underlying the design of many reinforcement learning algorithms

is called the Markov property. The state, environment, and learning task are said to be

Markov if the environment’s state transition and reward at time t + 1 depend only on the

previous state and action:

Pr{Rt+1, St+1|S1, A1, R2, . . . , St−1, At−1, Rt, St, At} = Pr{Rt+1, St+1|St, At},

for all possible histories of states, actions, and rewards. In other words, the state is said to

be Markov if knowledge of the current state and action are sufficient for predicting the next

state and expected next reward.

One special class of reinforcement learning tasks are Markov Decision Processes, or

MDPs. If the state and action spaces are finite and the state is Markov, then the learning

problem can be represented as a finite MDP. Here we define an MDP with a set of states

and actions, and a specification of the one-step transition dynamics P : S×A× S→ [0, 1]

where p(s, a, s′) is the probability of transitioning into state s′, when taking action a in state
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s. Additionally, the expected next reward is given by

r(s′)
def
= E[Rt+1|St+1 = s′].

Oftentimes, the expected next reward is defined as r(s, a, s′) def
= E[Rt+1|St+1 = s′, At =

a, St = s], instead of (2.1). We use this slightly less general definition of expected next

reward, and consequently slightly less general formulation of MDPs, because it will be

sufficient for our purposes and is more simple. At this point, it is also convenient to define

the state transition dynamics while following policy π as: P π : S × S → [0, 1] where

P π(s, s′)
def
=

∑
a∈A π(s, a)P (s, a, s′).

MDPs are a subclass of reinforcement learning problems, and provide the theoretical

framework on which most modern reinforcement learning algorithms are based. All the

algorithms used in this thesis assume that the world (which a robot operates in) corresponds

to some unknown, possibly massive MDP. As you will see later, this is not as limiting as it

appears. In fact, we can use the MDP framework to design learning algorithms with asymp-

totic guarantees, even in cases where the agent has access to an incomplete representation

of the environment’s state.

2.2 Value functions

Many reinforcement learning algorithms estimate the discounted sum of future rewards

called the return. The return Gt ∈ R, at time t is defined by:

Gt
def
= Rt+1 + γRt+2 + γ2Rt+3 + . . . =

∞∑
k=0

γkRt+k+1, (2.2)

where the discount factor γ ∈ (0, 1] discounts the contribution of future rewards as a func-

tion of time, ensuring the infinite sum is bounded. In episodic domains, the sum in Equation

2.2 terminates at a random time T , and γ is typically set to one indicating that all rewards are

equally valuable. We can define the return to cover both continuing and episodic problems:

Gt
def
=

T−t−1∑
k=0

γkRt+k+1,

where T may be∞.

The agent might compute a value function in order to estimate how good a particular

state is, in terms of future reward. A state-value function is a function vπ : S → R, that

maps states to expected returns. The value of state s is equal to the discounted sum of
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future rewards the agent would observe, starting in state s, and selecting actions according

to policy π and transitioning according to the dynamics of the MDP is defined by:

vπ(s)
def
=

∑
s′∈S

P π(s′|s)r(s′) + γvπ(s′) (2.3)

= EAt:∞∼π,St+1:∞∼P [Gt|St = s]

= Eπ

[
T−t−1∑
k=0

γkRt+k+1|St = s

]
. (2.4)

The notation in the subscript of the expectation is somewhat awkward, but is useful to

explain how things are sampled. The expectation is computed over future states, which are

generated by selecting actions according to π and state transitions according to P . From

now on, we will use the shorthand Eπ. Equation 2.3 is known as the Bellman equation for

vπ, and specifies the recursive relationship between the value of state s and the value of the

next state s′.

The state-action value function, qπ : S × A → R, maps states and actions to expected

returns. The state-action value of state s and action a is equal to the discounted sum of future

rewards the agent would observe, starting in state s, selecting the action a, and selecting

actions according to policy π thereafter transitioning according to the dynamics of the MDP

is defined by:

q(s, a)
def
=

∑
s′∈S

P (s, a, s′)r(s′) +
∑
a′∈A

π(s′, a′)
∑
s′′∈S

P (s′′|s′, a′)r(s′′) + γqπ(s′′, a′)

(2.5)

= Eπ[Gt|St = s,At = a]

= Eπ

[
T−t−1∑
k=0

γkRt+k+1|St = s,At = a

]
. (2.6)

Equation 2.5 is known as the Bellman equation for qπ.

2.3 Function approximation

In domains where there are a large number of states, it can be challenging to compute a value

function. In order to store and update an estimate of the value function, the agent must fill in

a table with one entry for each state or for each state or state-action pair. What if we wish to

estimate value functions based on high dimensional and continuous robot sensor data? The

state space may be very large and the state is likely unobservable by the agent. The agent

may never observe the same state twice; filling in the table may take considerable time and

memory. In such domains, we seek to generalize the values of previously observed states to
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other states. In order to generalize, we can use samples of the desired function (usually the

value function) to construct an approximation of the entire function. We approximate the

value function. Function approximation is an instance of supervised learning and therefore,

in principle, many supervised methods such as artificial neural networks, decision trees, and

multi-variate regression can be used to approximate the value function.

In this thesis we use linear function approximation. We do not assume the agent can

directly observe the state of the environment; instead the agent’s learning is based on a

vector representation of the state called a feature vector. Corresponding to every state,

s ∈ S, there is a column vector of features

x
def
= x(s)

def
= (f (1)(s), f (2)(s), . . . , f (n)(s))>, (2.7)

where the f (i) : S → R are called feature functions. The size of the feature vector, x, is

denoted by n� |S|. This mapping is usually not one-to-one: many underlying MDP states

may correspond to the same feature vector. The feature may be constructed from incomplete

and noisy observations of the state, for example robot sensor readings or a history of sensor

readings. We denote the current feature vector by xt
def
= x(St).

In the linear function approximation setting, the value function estimate v̂ : S× Rn →

R, is a linear function of a modifiable weight vector w ∈ Rn. The approximate state value

function v̂ is defined by:

v(s;π) ≈ v̂(s,w)
def
= w>x(s),

and the agent’s current estimate of the value for state S at time t is defined by:

w>t xt =
n∑
i=1

f (i)(St)wt(i).

Usually, the agent’s approximation of the value function is limited by the approximation

architecture, perhaps because the number of feature functions is much less than the number

of states in S or because v is not a linear function. As a consequence, we must balance the

agent’s limited resources—the finite set of modifiable weights. We may be forced to decide

in which situations a higher approximation error is acceptable, and in which situations a

more accurate value estimation is needed.

In the case of approximate state-action value functions, the feature vector is defined in

a slightly different way. Corresponding to every state, s ∈ S, and action, a ∈ A there is a

column vector of features:

xa
def
= f(s, a)

def
= (f (1)(s, a), f (2)(s, a), . . . , f (m)(s, a))>, (2.8)
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and the f (i) : S × A → R are feature functions. The size of the state-action feature

vector, xa, is denoted by m � |S|. The state-action feature vector for the current state

and action is denoted by xa,t
def
= x(St, At). The approximate state-action value function

q̂ : S×A× Rm → R, is defined by:

q(s, a;π) ≈ q̂(s, a,w)
def
= w>x(s, a),

with a modifiable weight vector w ∈ Rm. The agent’s current estimate of the value for

state s and action a at time t is defined by:

w>t xa,t =
m∑
i=1

f (i)(s, a)w(i).

Linear approximation architectures have several attributes that make them attractive for

learning value functions in large and continuous domains. Linear architectures are simple

to implement and debug. One can determine which feature components have the highest

and lowest contributions to the approximate value function by comparing the learned pa-

rameter values, which can help with feature function engineering. Many of the theoretical

guarantees for reinforcement learning algorithms apply to the case of linear function ap-

proximation (see Sutton and Barto, 1998). Linear architectures, however, are unable to

represent many functions that can be represented by non-linear approximation architectures

like neural networks. This limitation can sometimes be overcome by using non-linear basis

functions f (i)(S), as we do in tile coding, which is described next. In this case, the approx-

imate value function is still linear in w, but the representation capacity may be improved.

Tile coding is a technique for converting continuous variables into sparse feature vec-

tors, and this approach is well suited for learning while interacting with the environment.

The inputs are taken in small groups and partitioned into non-overlapping regions called

tiles. One example tiling over two continuous sensor readings is shown on the left side of

Figure 2.3. In tile coding, the feature vector is binary and sparse: x ∈ [0, 1]n. The number

of active components or ones is constant and thus the norm of the feature vector remains

constant. The approximate value function can be efficiently queried by only accessing the

small set of active indices. We can query v̂(s,w) by:

v̂(s,w) =
∑
i∈F

w(i).

We can query q̂(s, a,w) by:

q̂(s, a,w) =
∑
i∈M

w(i),
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Figure 2.2: This is an example of how tile coding can be used to map continuous sensor
data into a binary feature vector. On the left we see a single tiling of the continuous 2D
space corresponding to the output of two distance sensors. The space was tiled into four
intervals in each dimension, for 16 tiles overall. On the right we see all four tilings, each
offset by a different negative amount such that they were equally spaced, with the first tiling
starting at the lower left of the sensor space (as shown on the left) and the last tiling ending
at the upper right of the space. A sensor reading input to the tile coder is a point in the
space, like that shown by the white dot. The output of tile coding is the indices of the four
tiles that contain the point, as shown on the right. These tiles are said to be active, and their
corresponding components take on the value one, while all the non-active tiles correspond
to feature components with the value zero. Note how the four tilings provide a dense grid
of lines, each a distinction that can be made between input points, yet the four active tiles
together span a substantial portion of the sensor space. In this way, multiple tilings provides
a binary representation that enables both fine resolution and broad generalization.

where F and M denote the indices of the active tiles for x or xa. In tile coding, the size

of the feature vector corresponds to the total number of tiles, not the dimensionality of that

state space. The agent is thus free to use available computational resources in whatever

way best suits the task at hand: using fewer tiles when a small number of components is

sufficient for learning, and the maximum allowable computation as desired.

Tile coding is considerably more powerful than a simple discretization of the states.

Multiple overlapping tilings can be offset from each other, as shown in the right side of

Figure 2.3. An input (e.g., the white dot in the figure) activates a single tile in each tiling.

The resolution of the tile coding is finer than that of the individual tilings, as can be seen by

the greater density of lines in Figure 2.3 (right). With four tilings, the effective resolution

is roughly four times that of the original tiling. The advantage of the multiple tilings over

a single tiling with four times the resolution is that generalization will be broader with

multiple tilings, which typically leads to much faster learning. With tile coding, one can

quickly learn a coarse approximation to the desired mapping and then refine it with further
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data, simultaneously obtaining the benefits of both coarse and fine discretizations.

2.4 Estimating the value function

An agent can learn an estimate of the state value function from samples generated by in-

teraction with the environment. On each time-step, the agent observes a sample transition

{x(St), Rt+1,x(St+1)}, from which the agent can update its estimate of v̂(St,w) by adapt-

ing the modifiable weight vector w:

δt = Rt+1 + γw>t x(St+1)−w>t x(St) (2.9)

wt+1 = wt + αδtx(St) (2.10)

where α > 0 is the step-size parameter and δt is a random variable. This algorithm is called

linear temporal difference learning of linear TD(0).

The TD error δt, is the target of the learning rule; it is the quantity we wish to make

zero. In this case, the target is formed by a difference between the value estimate in state

St and value estimate in state St+1, plus the reward for the transition into St+1. Loosely

speaking, the algorithm is trying to make successive value estimates close. More precisely,

the TD error will be zero if v̂(St,w) = v̂(St+1,w) +Rt+1, and the algorithm would make

no update to w. The update of linear TD(0) is said to bootstrap its estimate of the value of

one state with the value of the next state.

At convergence, as t→∞, the weight vector learned by linear TD(0) satisfies:

Eπ[δtx(St)]
def
=

∑
st∈S

dπ(st)
∑
st+1∈S

P (st, st+1)
(
r(st+1)

+ γx(st+1)>wt − x(st)
>wt

)
x(st)

= 0,

called the TD(0) fixed point. The expectation is weighted by the stationary distribution

under the policy, dπ : S→ [0, 1]. This is the state occupation probability for each state s ∈

S, equal to the limiting distribution produced by π and P : dπ(s)
def
= limt→Pr(St = s).

Instead of bootstrapping the estimate between two states, we can use the TD error of

several state transitions in the weight vector w. The linear TD(λ) algorithm (Sutton, 1988)

is specified as follows:

δt = rt+1 + γw>t x(St+1)−w>t x(St)

wt+1 = wt + αδtet

et = et−1γλ+ x(St),
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where e ∈ Rn is called the eligibility trace, e0 = ~0, and λ ∈ [0, 1] is the bootstrapping

parameter. The eligibility trace can be updated in a number of ways. The equation above,

which we use, is called an accumulating trace. The linear TD(λ) algorithm spans a spec-

trum from Monte Carlo methods, when λ is one, to one-step TD methods at the other, when

λ is zero. For values of λ in between, TD(λ) becomes of intermediate method that is often

better than either extreme (see Sutton & Barto, 1998). The algorithm uses O(n) storage

and computation per update. In the limit of infinite sampling, the linear TD(λ) can find the

weight vector wt that satisfies:

Eπ[δtet] = 0, (2.11)

called the TD(λ) fixed point. The proof of the convergence of linear TD(λ) algorithm to the

TD(λ) fixed point depends on several technical conditions on α, the mixing characteristics

of the MDP and policy π, and that linear function approximation is used (see Szepesvari,

2010 for precise details). In practice, the linear TD(λ) algorithm can outperform the well-

known least mean squares rule (also known as Widrow-Hoff algorithm) on temporal predic-

tion tasks (Sutton, 1988), and has been successfully applied to more complex domains like

Backgammon (Tesauro, 1995), Computer GO (Silver et al., 2007), and elevator scheduling

(Crites & Barto, 1996).

Instead of incrementally updating the modifiable weight vector from a sequence of

agent- environment interactions, we can directly compute the solution to the TD fixed point

using least squares. Given a finite batch of T samples, we wish to make the error zero:
1
T

∑T
t=1 δtet = 0. Here δt ∈ R refers to the non-random sample of the TD error from

time-step t:

δt = rt+1 + γw>t x(st+1)−w>t x(st).

We form a linear system of equations,

ATwT = bT , (2.12)

where bT
def
= 1

T

∑T
t=1 rt+1et, b ∈ Rn, AT

def
= 1

T

∑T
t=1(−et(xt − γxt+1)>), and

AT ∈ Rn×n. Assuming A is non-singular, then:

wT = A−1
T bT

gives the solution equal to the weight vector to which the linear TD(λ) converges. This

algorithm is called least-squares temporal difference learning or LSTD(λ) due to Boyan
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(2002),1 The LSTD(λ) algorithm has an incremental form:

et = γλet−1 + x(St)

bt+1 = bt + etRt+1

y = x(St)− γx(St+1)

Ât+1 = Ât −
(Âtet)(y

>Ât)

1 + (y>Ât)et
.

The matrix Â0 can be initialized equal to the identity matrix times a scalar, Iη, η ∈ R,

to improve the stability of the algorithm in early learning when few samples have been

observed. Aside from this optional initialization, there are no learning rate parameters for

this incremental form of the LSTD(λ). This update procedure uses the Sherman-Morrison

formula to incrementally compute the inverse of the A matrix, which we denoted by Â.

This algorithm uses O(n2) computation and storage per update.

The LSTD(λ) algorithm can be substantially more sample efficient than the TD(λ) al-

gorithm (Boyan, 1999; Boyan, 2002; Xu et al., 2002; Geramifard et al., 2006). This may

not be too surprising given LSTD(λ) computes the solution to which the TD(λ) algorithm

converges. In some domains, particularly non-stationary ones, the TD(λ) algorithm can

outperform LSTD(λ).

2.5 Off-policy learning

The agent can learn about some policy other than the one used to generate actions. In rein-

forcement learning, the actions are chosen according to some behavior policy µ : S×A→

[0, 1], while the objective of learning is to estimate the value function vπ. The expectation

in the definition of the value function is conditioned on actions selected according π. This

is the target of the agent’s learning, and thus π is the target policy. In the usual, on-policy

setting, the target and behavior policies are the same. In off-policy learning, the target and

behavior policies differ.

One challenge in off-policy reinforcement learning is to estimate the value function for

the target policy with samples generated from the behavior policy. The behavior policy

may choose actions differently than the target policy in some states. To correct for potential

mis-matches between π and µ, we can compute the likelihood ratio of the probability of

choosing action At in state St under both policies:

ρt
def
=

π(St, At)

µ(St, At)
. (2.13)

1The LSTD(0) algorithm was introduced by Bradtke & Barto (1996).
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The expectation of ρt is one under the behavior policy:

Eµ[ρt|St = s] =
∑
a∈A

µ(s, a)
π(s, a)

µ(s, a)
=
∑
a∈A

π(s, a) = 1.

The likelihood ratio will be exactly one for on-policy transitions and greater than zero on

off-policy transitions. Note that µ(St, At) is always greater than zero. Using the likelihood

ratios, we can construct a linear off-policy TD(0) update:

wt+1 = wt + ρtαδtx(St), (2.14)

where δt is the same as before.

Unfortunately, temporal difference methods, like the linear off-policy TD(0) algorithm

described above, can be shown to diverge under off-policy sampling in the case of linear

function approximation. Baird (1995) provided a counterexample that causes the linear

TD(0) update to become unstable with off-policy updating, and the modifiable weight vec-

tor to diverge to infinity. Another example of divergence is given by Bertsekas and Tsitsiklis

(1996), example 6.7. Counterexamples for convergence exist for other temporal difference

methods including Q-learning (Baird, 1995) and TD(0) in the case of non-linear function

approximation (Bertsekas & Tsitsiklis, 1996).

Recently a new family of algorithms was introduced that can be shown to not diverge

under off-policy sampling in the case of linear function approximation. These methods

minimize the mean squared projected Bellman error or MSPBE:

MSPBE(w)
def
= ||Xw −ΠT γλXw||2B, (2.15)

first introduced by Antos et al. (2008).

At this point, it is convenient to use matrix notation to explain the terms inside the

MSPBE. Let X ∈ R|S|×n be a matrix with |S| rows, one for each s ∈ S, and each row of

X is equal to x(s). The approximation of the value of each state is given by the column

vector V π def
= Xw ∈ R|S|, one entry for each state in S. The matrix B ∈ R|S|×|S| is a

diagonal matrix whose diagonal enteries correspond to the stationary distribution under the

behavior policy: B(s, s)
def
= dµ(s) ∀ s ∈ S. The projection matrix Π ∈ R|S|×|S| is equal to

X(X>BX)−1X>B. The Bellman operator T γλ : R|S| → R|S| helps to define the Bellman

equation of the value function, in matrix form:

V π def
= R + γP πV π (2.16)
def
= T γλV π, (2.17)
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where R ∈ R|S| is a column vector with each component equal to E[Rt+1|St = s]. Finally,

the norm is weighted by the matrix B: ||y||2B
def
= y>By.

The projection matrix and weighting by the stationary distribution probabilities have

important practical consequences. First, the projection matrix projects the points in the

value space back into the space of representable functions defined by X. This means the

optimal value function, with respect to the MSPBE, is guaranteed to be representable by

the function approximator, and that we can achieve MSPBE(w) equal to zero even if the

features cannot precisely represent the true, un-approximated value function vπ. Second,

the MSPBE in each state are scaled by the probability of each state under stationary distri-

bution, induced by the behavior policy. States that are never visited contribute zero error;

errors in states that are infrequently visited contribute less to the MSPBE than errors in

states visited frequently.

The MSPBE can also be written in terms of expectations (as originally shown by Maei

2011), which is a more useful form to derive incremental learning algorithms:

MSPBE(w) = Eµ[δtet]
>Eµ[x(St)x(St)

>]−1Eµ[δtet]. (2.18)

Taking the gradient of the objective function, we get:

−1

2
∇MSPBE(wt) = Eµ[δtet]− Eµ[γ(1− λ)x(St+1)e>t ]Eµ[x(St)x(St)

>]−1Eµ[δtet],

where et
def
= ρt(γλet−1 + x(St)) (see Maei, 2011, page 72). In order to design an online

algorithm for minimizing the MSPBE, we need to sample the gradient, which is challenging

due to the product of expectations. We can let the last two terms equal a secondary weight

vector h ∈ Rn, and sample the remaining terms:

∆wt+1 ∝
(
δtet − γ(1− λ)x(St+1)(e>t ht)

)
. (2.19)

Maei (2011, page 72) shows that

ht ∝ Eµ[x(St)x(St)
>]−1Eµ[δtet] = Eµ[x(St)x(St)

>]−1Eµ[δλρt x(St)],

where δλρt ∈ R is called the off-policy truncated forward-viewed TD error, defined using

future states and rewards. Now, notice that Eµ[x(St)x(St)
>]−1 Eµ[δλρt x(St)] is of the

same form as a least squares problem: h = (X>X)−1 X>y, where X = x(St) and

y = δλρt . This means we can form an incremental update rule for ht using a least mean

squared (LMS) rule (due to Widrow & Stearns, 1985):

∆ht+1 = αh

[
(δλρt − (h>t x(St)))x(St)

]
,
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where αh > 0 is a step size parameter. The above LMS rule, however, uses future states

and rewards to compute δλρt , so we exploit that Eµ[δλρt x(St)] = Eµ[δtet] and get an update

for the secondary weights:

∆ht+1 = αh

(
δtet − (h>t x(St))x(St)

)
.

Putting it all together, we get a MSPBE-based, off-policy, value estimation algorithm

called gradient TD(λ) or GTD(λ). The following equations specify the algorithm:

et = ρt(et−1γλ+ x(St))

wt+1 = wt + α
(
δtet − γ(1− λ)x(St+1)(e>t ht)

)
ht+1 = ht + αh

(
δtet − (h>t x(St))x(St)

)
,

where ρt and δt are the same as before. This algorithm is due to Maei (2011). The algorithm

converges to the minimum of the MSPBE under off-policy sampling, given several techni-

cal conditions including that the trace vector, et, is bounded (Maei, 2011). The GTD(λ)

algorithm, like TD(λ), uses O(n) memory computation per update step.

There is also a gradient temporal difference algorithm for approximating state-action

value functions, called GQ(λ), specified by the following equations:

δt = Rt+1 + γwtxt+1 −w>t x(St, At)

et = ρtet−1γλ+ x(St)

wt+1 = wt + α
(
δtet − γ(1− λ)xt+1(e>t ht)

)
ht+1 = ht + αh

(
δtet − (h>t x(St, At))x(St, At)

)
.

The xt term denotes the expected next feature vector:

xt
def
=

∑
a∈A

π(St, a)x(St, a).

The GQ(λ) algorithm has been proven to converge under off-policy sampling in the case

of linear function approximation (see Maei & Sutton, 2010). The algorithm uses O(m)

computation and storage per step, linear in the size of the state-action feature vector. Note

that we have omitted the interest function I : S → [0, 1], included in Maei and Sutton’s

(2010) original specification of the algorithm.

There are other reinforcement learning algorithms with convergence guarantees under

off-policy sampling and linear function approximation. The first is equivalent to GTD(λ)

with λ equal to zero, which we call TDC for historical reasons, and is due to Sutton et
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al. (2009). Another algorithm called GTD2 minimizes the MSPBE, but is produced by a

different derivation strategy compared to the GTD(λ) algorithm, and does not make use of

eligibility traces. The following equations specify the GTD2 algorithm:

δt = Rt+1 + γw>t x(St+1)−w>t x(St)

wt+1 = wt + α(x(St)− γx(St))(x(St)
>ht)

ht+1 = ht + αh(δt − h>t x(St))x(St).

The original GTD algorithm minimizes a different objective:

NEU(w)
def
= Eµ[δtx(St)]

>Eµ[δtx(St)].

The algorithm is due to Sutton et al. (2009) and is specified by the following equations:

δt = Rt+1 + γw>t x(St+1)−w>t x(St)

wt+1 = wt + α(x(St)− γx(St+1))x(St)
>ht

ht+1 = ht + αh(δtx(St)− ht).

The TDC, GTD, and GTD2 algorithms have convergence results, and use computation and

storage that is linear in the size of the feature vector. In practice, the empirical results in

the literature (Sutton et al., 2009) suggest that TDC is superior to GTD and GTD2 in both

Markov chains and computer GO.

Finally, the non-linear versions of GTD2 and TDC converge to a local optimum of a

non-linear variant of the MSPBE, enabling, for the first time, convergence of a temporal

difference method with smooth value function approximation, such as neural networks.

Two different models have been used over the years to develop off-policy TD algo-

rithms. The GTD(λ) algorithm and other MSPBE minimization methods make use of

the excursion model for off-policy learning. In this model, the state-value function is

defined as the expected discounted return of executing the target policy from the cur-

rent state. For example, if the behavior policy were random and the target policy were

go-to-nearest-wall, then the value function would estimate the expected, discounted

sum of rewards if the agent ran the go-to-nearest-wall policy, in the current state.

Prior work on off-policy TD algorithms used the alternative-life model, where the value

function is defined as the expected, discounted sum of rewards, assuming the agent had

been following the target policy since the beginning of time. In practice, the algorithms

derived under the alternative-life model exhibit large variance (demonstrated by Precup et

al., 2001; Precup et al., 2006; Rafols, 2006).
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2.6 Computing the MSPBE

Given the parameters of the MDP, we can compute the MSPBE for the weight vector learned

by a gradient TD algorithm. This can be useful for experiments. The following describes

how we arrive at our final equation for the MSPBE.

We begin with an expansion of Eµ[δtet]:

Eµ[δtet] =
∑
s

dµ(s)Eµ[et(rt+1 + (γxt+1 − x(St))
>wt)|St = s]

=
∑
s

dµ(s)Eµ[et|St = s]Eµ[rt+1 + (γxt+1 − x(St))
>wt)|St = s]

=
∑
s

dµ(s)Eµ

[
t∑

m=−∞
(γλ)t−mx(Sm)|St = s

]
·

Eµ

rt+1 +

(
γ(
∑
s′∈S

P π(st, s
′)x(s′))− x(St)

)>
wt|St = s


=
∑
s

dµ(s)Eµ

[
t∑

m=−∞
(γλ)t−mx(Sm)|St = s

]
1(St = s)>(R + γP πXwt −Xwt).

Let xt
def
=
∑

a∈A π(St, a)x(St). Now, we can simplify the eligibility trace using matrices.

Considering the sum over states before St:

Eµ

[
t∑

m=−∞
(γλ)t−mx(Sm)|St = s

]
= x(s) + γλ

∑
st−1∈S

P π(st−1, s)x(st−1)

+ (γλ)2
∑
st−1∈S

P π(st−1, s)
∑
st−2∈S

P π(st−2, st−1)x(st−2) + . . .

= X>1(St = s) + γλ(P πX)>1(St = s) + (γλ)2((P π)2X)>1(St = s) + . . .

= X>(

∞∑
m=0

(γλ)m(P π)m)>1(St = s) = X>(I − γλP π)−>1(St = s).

Since 1(St = s)1(St = s)> is simply a matrix with precisely a single one on the diagonal

corresponding to state s, (I − γλP π)−>1(St = s)1(St = s)> selects the row in (I −

γλP π)−> corresponding to s. Similarly, 1(St = s)1(St = s)>(I − γλP π)−1 selects the

column in (I − γλP π)−1 corresponding to s. Therefore, (I − γλP π)−>1(St = s)1(St =
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s)> = 1(St = s)1(St = s)>(I − γλP π)−1, and we obtain:

Eµ[δtet] =
∑
s

dµ(s)X>(I − γλP π)−>1(St = s)1(St = s)>(R + γP πXwt −Xwt)

=
∑
s

X>dµ(s)1(St = s)1(St = s)>(I − γλP π)−1(R + γP πXwt −Xwt)

= X>B(I − γλP π)−1(R + γP πXwt −Xwt)

= X>B(I − λγP π)−1R−X>B(I − λγP π)−1(I − γP π)Xwt. (2.20)

Now using the expectation-based defintion of the MSPBE(w), we get:

MSPBE(wt) = (−Aπwt + bπ)>C−1(−Aπwt + bπ)

whereC = X>BX,A = X>B(I−λγP π)−1(I−γP π)X, and b = X>B(I−λγP π)−1R.

Now, given access to P π, γ, and R, we can compute the MSPBE for our algorithms.

2.7 Recent algorithmic advances

During the development of this document, several reinforcement learning algorithms have

been improved in non-trivial ways. These new algorithms could likely be integrated into

my learning systems without much trouble.

One of these new algorithmic developments involves methods for computing eligibility

traces in TD learning. The derivation of the linear TD(λ) algorithm uses the theoretical con-

structs of forward and backward views (see Sutton and Barto, 1998 for additional details).

The forward view specifies how a learning algorithm should update the value function on

each time-step using information about future rewards, from the current time-step. To gen-

erate incremental algorithms that do not rely on future data, the forward view is converted

into a backward view, which uses data from the past to make updates on each time-step

using the eligibility traces, et. It was previously believed that this conversion from for-

ward to backward views could only be approximate (Sutton & Barto, 1998), and thus the

linear TD(λ) algorithm only approximately implements the corresponding forward view.

Recently, however, it has been shown that this conversion can be made equivalent in the

interim (see van Seijen & Sutton, 2014). The new conversion yields a new linear TD(λ) al-

gorithm called True Online TD(λ) and a new form of eligibility. True Online TD(λ) appears

to always equal or outperform linear TD(λ), and the control version, true online Sarsa(λ),

shows great promise as well.

New True Online off-policy learning algorithms have also been recently introduced

(van Hasselt, Mahmood & Sutton, 2014). Empirical studies show that these new off-policy

24



algorithms can out-perform the GTD(λ) algorithm in some simulation tasks. These new

off-policy algorithms use computation and storage that is still linear in the size of the fea-

ture vector. It will be intriguing to investigate if these new algorithms result in noticeable

improvements in sample efficiency or prediction accuracy on robot data.

2.8 Learning policies

The work in this thesis almost exclusively focuses on the case of value function estimation

or prediction learning. However, reinforcement learning methods are perhaps best known

for learning policies that maximize reward, like finding the shortest path in a maze. Tem-

poral difference value-function learning methods can be used iteratively, in concert with a

policy improvement step, to improve the agent’s policy over time. This process is called

generalized policy iteration, and like value function estimation methods, these algorithms

come in two flavors: on- and off-policy. On-policy, TD-based policy iteration methods

include the well-known Sarsa(λ) algorithm (Rummery, 1995), and the expected Sarsa(λ)

algorithm (van Seijen et al., 2009). Off-policy, policy iteration methods find a policy to

maximize reward, while selecting actions according to some other, possibly exploratory,

behavior policy. Q-learning (Watkins, 1989) is an example of an off-policy, TD-based, pol-

icy iteration algorithm, and is perhaps the best known algorithm for reinforcement learning.

Unfortunately, the update of the Q-learning algorithm can diverge (see Baird, 1995 and

Boyan & Moore, 1995). A policy learning variant of the GQ(λ) algorithm, called greedy-

GQ(λ) (Maei et al., 2010b), provides some convergence guarantees and solves Baird’s

Q-learning counterexample. This thesis includes one demonstration of off-policy policy

learning on a robot in Chapter 6, while the rest of our results and demonstrations focus on

prediction learning for fixed behavior policies.

2.9 Options

An option is a generalization of actions to include extended courses of action (Sutton, Pre-

cup & Singh, 1999). An option, denoted by o, is defined by a tuple 〈π, β, I〉, where π is

called the option policy, β : S→ [0, 1] is the termination function where β(St) denotes the

probability of π terminating in state St, and I ⊆ S is the set of states in which the option

policy is applicable. A MDP with options included in the action set becomes a discrete

time, semi-MDP, which is like an MDP with variable-length time steps. An option is like a

closed-loop control rule that enables temporal abstraction: abstraction of action rather than
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state.

For example, one might define a pass-through-door option. In this case, π selects

the forward action in every state, β equals one once the agent passes through a doorway,

and I includes all states where the agent is facing toward the doorway. Every primitive

MDP action is also an option. For example, the hypothetical up action is an option, where

π(s, up) = 1 and β(s) = 1 ∀ s ∈ S (indicating certain termination after one step), and

I = S.

An agent can use options in several different ways. Given a set of options, the agent can

learn an approximate state-action value function and policy over a mixture of MDP actions

and options policies. The agent can also learn the transition and reward models of an option.

The transition model gives the probability than the option policy will terminate at any other

state (given an input state) and the reward model gives of the expected total reward over

the option policies’ execution. The agent can update an option value function and option

model, without ever executing the option’s policy to termination, using off-policy learning

methods. Finally, the agent can learn the policies inside options, learning how to execute

an option to a achieve a subgoal, defined by a special subgoal terminal reward.

2.10 Summary

This chapter covered basic concepts in reinforcement learning, which will be useful for

understanding the rest of this document. Our survey covered the reinforcement learning

problem formulation and MDPs. We introduced value functions, linear function approxi-

mation, and described algorithms for learning value functions from an agent’s interaction

with the world. We discussed the off-policy learning problem, divergence of TD methods,

the MSPBE objective function, and the family of gradient TD methods for learning value

functions from off-policy samples. We closed the chapter with a brief overview of pol-

icy learning algorithms, recent algorithmic advances in reinforcement learning, and option

models.
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Chapter 3

Sensorimotor data streams and
robots

In this chapter, we describe the target of our predictive knowledge learning approach: learn-

ing predictions from and about low-level data produced by robots. We describe two robots

capable of generating data suitable for our efforts, which are used in the prediction learning

experiments throughout this document. We finish the chapter with an investigation of the

data stream produced by one of our robots.

In this thesis we use mobile robots as a platform for demonstrating how our approach

improves the applicability and scalability of predictive knowledge learning. Our robots are

capable of generating multi-dimensional sensor vectors of continuous numbers, multiple

times a second, producing data streams that are longer and of higher dimension than any

used in prior investigations of predictive knowledge learning. The main aim of this chapter

is to introduce these robots and give the reader an idea of what these data streams look like.

3.1 Learning about sensorimotor data

We follow in the footsteps of previous work on predictive representations of state and tem-

poral difference networks, using low-level interaction data as the target of learning in our

approach to predictive knowledge. Specifically, the data will be a stream of instantaneous,

uninterpreted sensor readings (including low-level motor commands) generated by a mo-

bile robot interacting with a real physical environment. This sensorimotor data is low-level,

fine-grained, and rapidly changing. Our agent will seek to predict the sensorimotor data

itself—future values of its sensor readings—and not things external to the data stream such

as the robot’s x−y−θ position in 3D space. In Chapter 4 we will more precisely formalize

how we form predictions about future sensorimotor data. In addition, the agent’s learning
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will be exclusively based on the sensorimotor data stream, and its predictions will not rely

of constructs with special external semantics. For example, our agent cannot use human

defined hidden states or motion models, but we do allow feature vectors generated by an al-

gorithm because the features can be used without external interpretation. These restrictions

are enforced to guarantee that the contents of the agent’s knowledge can always be checked

for correctness by comparing the predictions with the data stream.

We seek to give our agent access to the robot’s hardware at the lowest level reason-

ably possible. The nature of how an agent’s action choices are manifest in observed con-

sequences in the world relates to the difficulty of the agent’s prediction task. If there is

significant delay between action selection and observed consequences, then learning can be

more challenging, as longer delays are more difficult to predict. If the agent’s actions are

converted into motor commands by some complex subsystem, then accurately predicting

the effects of actions may involve modeling the complex action processing procedure. Of

course delayed and unexpected action consequences are a fact of life. We want to learn

about the consequences of the robots’ interaction with the world, and reduce unnecessary

preprocessing and internal abstractions.

We are not the first to attempt to learn predictive knowledge from data produced by

a robot (see Boots et al., 2010), but we are the first to attempt to learn in realtime while

the robot is operating. The sensorimotor data is collected and presented to our agent at a

semi-regular cycle time. The variability in the cycle time is primarily due to the variability

in wireless communication, when it is used. From the agent’s perspective, the cycle length

is strictly enforced. The agent must process the sensory data, perform learning updates,

and generate a new motor command (its action) within the cycle time. If the agent fails

to select a new action in time, the robot executes the most recent command issued by the

agent and delivers a new batch of sensor readings to the agent. Our learning agent learns its

predictions online.

The next two sections describe our two robot platforms. One is a commercial product

based on the Roomba, and the other is a custom built robot that enables low-level hardware

access and fast cycle times.

3.2 The iRobot Create

The iRobot Create is a commercially produced robot based on the Roomba vacuum robot.

The Create can run multiple times a day, for weeks on end, with inconsequential wear and
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tear. This robustness is partially due to the low speed wheelchair drive system. Bump-

ing into objects at maximal velocity results in no apparent damage, although the bumpers

eventually wear out. Damaging motor overheating is rare. Only once did we observe some

melted body plastic due to the robot driving into a corner for over an hour (same action

while staying in place). The drive system of the Create can repeatedly perform the same

forward and backward movements reliably with little translational variance, even over a

couple of meters. The Create’s built-in find-charger routine can autonomously find

and connect with its charger using a simple infrared sensor and charging station infrared

beacon. The update cycle of the Create can be as fast as 30 ms. Communication with the

robot can be wireless via bluetooth to a nearby computer, or hard wired using a small com-

puter, such as a Raspberry Pi connected to the robot’s serial port and battery. Like many

mobile robots, the Create experiences wheel slippage, communication interruptions, and

occasional erratic sensor readings. This robot is robust, reliable, and simple to program.

side IR wall sensor

IR beacon sensor

bump sensors

Figure 3.1: The top-view of an iRobot Create. This small wheelchair drive robot can rotate
and move forward and backward at a maximum speed of 0.5 meters per second. The front
left and right bump sensors are marked with blue on the figure, and report binary values.
An additional virtual sensor provides a binary indication if both bump sensors are activated.
The side-facing infrared (IR) sensor reports the nearby obstacles (approximately two inch
range) as an integer from zero to 255. The IR beacon sensor reports integer values from
zero to 255, and is used to detect IR emittance from the robot’s charger and button presses
on the Create’s remote control.

The Create has limited sensing abilities. The robot’s sensors include nine external read-

ings and basic wheel odometry, described in Figures 3.1 and 3.2. The Create will report

unique sensor readings when it is beside a wall, bumping an object, near its charger, and
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IR drop-off sensors

wheelchair drive

non-powered
slide wheel

Figure 3.2: A view of the underside of the iRobot Create. Two powered wheels and a
rotating non-powered slide wheel comprise the wheelchair drive system. The drive velocity,
measured in wheel rotations, and rotation direction of each of the two powered wheels, are
reported by the robot. The four downward facing IR cliff sensors are located along the front
bumper of the robot and report integer values between zero and 255.

near a drop-off in the floor (e.g., top of the stairs). Using only its sensor readings, the Create

cannot tell where it is, once it loses sensor contact with the walls and is outside its charge

beacon’s range. Although this robot’s sensor set seems ill-suited for conventional robot

tasks, such as mapping and navigating an unknown environment, there are many predictive

questions we can pose and learn from and about the Create’s sensorimotor data stream.

3.3 The Critterbot

We built a custom robot designed specifically for learning about the sensorimotor stream

of a robot.1 This robot is called the RLAI Critterbot, and can be seen in Figure 3.3. The

majority of our experiments with the Critterbot and the Create were conducted inside a

small pen. The pen is a two meter by two meter box with short walls (about the hight

of the Critterbot), and either smooth or carpeted floor (it can be easily changed). The

Critterbot’s charger is located in one corner of the pen. The pen (1) reduces annoyance to

the humans occupying the lab, (2) prevents potentially dangerous unplanned human-robot

interaction, and (3) limits the complexity of the robot’s environment, enabling interesting
1The Critterbot was designed by Richard Sutton and Mike Sokolsky, and constructed by Mike Sokolsky.
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but constrained experiments. All our experiments with the Critterbot were run on a laptop

computer communicating with the robot in realtime over a wireless link.

batteries
magnetic charge connectorsmotor housing

wireless antenna

ARM sensor 
processing board

LEDIR distance sensors

batteries

IR distance 
sensor

Figure 3.3: Side and front views of the Critterbot. The labels indicate the locations of
several IR distance sensors, the charger connection points, two of the robot’s three batteries,
a motor drive housing, the sensor board responsible for polling the sensors, the wireless
antenna, and the ring of LED lights on top of the robot used for basic communication. The
Critterbot is composed of three plates, and each support a computing board. The top-plate
contains an arm processor and the light, thermal, acceleration, magnetic, and gyroscope
sensors. The middle plate contains the IR distance sensors and a Linux computer. The
bottom plate contains the three motor housing, three motor controllers, and three batteries.
An external skin (not shown) can be attached to prevent piercing the internals of the robot.

The Critterbot is outfitted with a reasonably large, heterogeneous sensor set. The robot

has five groups of external sensors, and six groups of internal sensors. The external sen-

sors measure distance via IR reflectance distance (ten), ambient light (four), thermal energy

(eight), magnetic field strength (three-axis) and IR light (eight). The external sensors, ex-

cluding the magnetic sensor, are arranged in circular pattern around the robot to provide

sensing in multiple directions. Internally, the robot reports its power source, charge state,

bus voltage, acceleration (three-axis), rotational velocity, and wheel and motor informa-

tion (motor current, motor command, motor speed, and motor temperature) for each of the
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three motors. In all, 52 sensor readings are pooled and made available every 10 millisec-

onds. Figure 3.3 shows the locations of several sensors in the robot, and Figure 3.4 gives an

overhead view of the sensor layout.

+X

motor 0

motor 1

motor 2

ambient light

IR distance

thermal &
IR beacon

+Y

Figure 3.4: A view top and bottom of the Critterbot. In the left figure we can see how the
IR distance, light, thermal, and IR light sensors are arranged. The right figure shows the
robot’s wheel layout, and the frame of reference for robot control. Three wheels are offset
by 120 degrees and each wheel contains many rollers. One wheel can act as a slider while
the other two wheels rotate for translation motion. Commands can be sent using one of
three modes. In wheel velocity control mode, the desired wheel velocity of each wheel is
sent to the motor controllers and achieved (if possible by PID control). In robot velocity
or X-Y-θ mode, the command is specified as a forward velocity (+/-) in the X direction,
sideways velocity in the Y direction, and rotational velocity or θ. In voltage mode, each
dimension of the command specifies a voltage sent to each wheel. Voltage mode, aside
from overheating control, is the only mode that does not use an intermediate controller, and
thus is the lowest level of control possible on the Critterbot. The bottom-most figure shows
the motor controller board, the motors, and wheels in detail.

The Critterbot sensors provide a kind of awareness and sense of location in the pen. The

Critterbot reports unique sensory information when it is impacted, lifted off the ground,

flipped over, pushed across the ground, pushing a heavy object, or driving on different
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surfaces. External to itself, the robot reports when it is near a large magnetic or heat source,

an object like a wall, when it is connected to its charger, and when lights are turned on. The

Critterbot might even perceive large vibrations on its accelerometer from a heavy object

dropped on the floor or a heavy footed person nearby. Equally, Figure 3.5 illustrates how

the robot’s sensors can help distinguish many interesting situations.

The Critterbot’s was designed to be robust to physical interaction with other objects in

the world. The robot is assembled from three aluminum plates locked together with a steel

frame to protect sensory equipment and on-board computers from collision. The holonomic

drive system allows the robot to rotate in place and translate in a number of directions

regardless of the robot’s initial pose. Commands can be sent to the robot as low-level motor

currents, desired wheel velocity (converted into motor currents by a proportional-integral-

derivative [PID] controller), or in a X-Y-θ mode (also by a PID). The robot is shaped like a

comma with a a rigid tail to facilitate basic object interaction, such as moving or shooting a

ball.

The Critterbot’s translational movements, in X-Y-θ control, have greater variance in

comparison to the Create’s movements. This is partially due to the differences between

wheelchair drives and omni-drives, but also due the Critterbot’s wheel design. The wheels

of the Critterbot are 3D printed, and due to the strain of motion, warp fairly quickly. The

consequence of this is slightly curved translational movements (that change over time), and

many hours of the authors time spent printing and installing new wheels.

The Critterbot was designed to run for many hours a day and for multiple days on end.

The robot’s charger emits a IR pulse at 50 times per second, which is visible to the robot

through its IR light sensors. This pulse can be used to determine the position of the robot

relative to the charger, facilitating autonomous connection and recharging. The robot does

not sleep during charging, with all sensors continuing to report while the robot is connected

to the charger. On average, the Critterbot can run for six to eight hours continuously, de-

pending on its activity level and motor speeds. Figure 3.4 provides a view of the Critterbot’s

omni-wheels and drive system.

3.4 Critterbot sensorimotor data

The aim of this section is twofold. The first is to give the reader a sense of what the

sensorimotor data stream of the Critterbot looks like. Our secondary aim is to discuss why

the Critterbot’s sensorimotor stream might be useful for developing our predictive approach
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Figure 3.5: These figures provide a sense of the distinctiveness of the Critterbot’s sensor readings
in a variety of orientations and locations in the pen. The Critterbot was photographed once per
second, on one day, for over an hour while moving about the pen. Using the batch of photos and
the corresponding sensor-log, we overlay the pictures of the robot corresponding to different sensor
ranges. The images above show six such compositions. (a) The front ambient light sensor reading
greater than 200 corresponds to the corner of the pen, facing toward the wall: the brightest location
in the pen. (b) A low reading on the magnetic x-axis sensor was recorded in the middle of the
pen. (c) Highest infrared light was recorded when the robot faced the dock. (d) The front IR
distance sensor was near its max when the robot was pressed against the wall. (e) Large negative
accelerations occurred when the robot impacted the wall with its tail during a backward motion. (f)
A compositional condition where front infrared-distance was high and magnetic x-axis reading was
low corresponds to facing the wall in two distinct locations in the pen: an intersection of image (b)
and image (d).
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to knowledge.

The Critterbot can facilitate the generation of an enormous amount of data. Assuming

a 100 ms update cycle, the Critterbot can produce over 19 million sensor readings an hour,

over 150 million readings a day (assuming 8 hour runs), and 5.57×1010 readings a year—

that is over 222 Gigabytes of raw sensor data a year. We can get a sense of the scale and

complexity of the data generated by the Critterbot by looking at a snapshot over several

seconds in Figure 3.6, and over an entire year (see Figure 3.7). The Critterbot can produce

sufficient data for updating and evaluating a large number of predictions.
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Figure 3.6: A plot of the sensorimotor data stream produced by the Critterbot. Fifty sensor
readings are plotted over several seconds, sampled every 100 ms. Several sensor readings,
such as the thermal readings, are well off the scale.

The sensorimotor data produced by the Critterbot exhibits different regularities depend-

ing on how the robot’s actions are selected. For instance, if the robot executes persistent

movements as in Figure 3.8, then the sensor readings change in expected, certainly non-

random ways. The data in Figure 3.8 suggest that our agent might hope to predict the

consequences of these basic movements. In Figure 3.9, we can see that different policies

produce very different sensorimotor data streams.2 Sometimes the data exhibits repeated

patterns, such as the light and magnetic readings from the wall-following policy. Sometimes

there appears to be almost no regularity regardless of the policy, as seen in the rotational

velocity plots. The data exhibits predictable regularity over seconds (e.g., Figures 3.9 and
2The Brownian motion dataset was collected by Joseph Modayil.
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Figure 3.7: A summary of one year’s worth of ambient light readings from the Critterbot.
The heat map shows the light intensity with time of day on the x-axis and month of year
on the y-axis, displaying one reading every ten minutes. Bright red-orange indicates high
ambient light, and dark blue indicates low light. White indicates no data was available, typi-
cally when the robot was broken and powered down. Notice the seasonal change in the light
intensity over the months. There is a faint light reading during most nights, corresponding
to the LED lights flashing during charging.

3.8), days, and years (e.g., Figure 3.7). There are a great diversity of things to predict in

the sensorimotor stream of the Critterbot, and those things are potentially predictable and

exhibit non-random and non-trivial variations.

3.5 Summary

In this chapter we introduced the target of our predictive knowledge learning approach:

learning about low-level sensorimotor data produced by a robot interacting with its world.

We described the two robot platforms that will be used in the experiments throughout this

thesis: the iRobot Create and the RLAI Critterbot. Finally, we provided several plots of the

sensorimotor stream generated by the Critterbot, under several different polices, along the

way highlighting the potential benefits of predicting a sensorimotor data.

The hardware platforms introduced in this chapter are useful for demonstrating our

contributions to predictive knowledge learning. The majority of prior work on predictive

knowledge (e.g., Drescher, 1991; Sutton, 2009; Sutton, 2011) has focused on small, discrete

simulation worlds, with the notable exception of the work of Boots et al. (2010) on predic-

tive representations of state. The robots described in this chapter, are capable of generating

dozens of sensor readings many times per second for hours, and potentially days, on end.

The ability to accurately predict data of this kind would represent a development in both the
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(c) (d) inside tail IR

Figure 3.8: This figure shows variations in sensor readings from the Critterbot during per-
sistent movements in its pen. The lefthand side of each subfigure provides a cartoon illus-
tration of what the robot was doing, and the righthand side plots several sensor readings that
occur over the course of the movement. (a) The robot executed a southward translation, with
the front of the robot facing the north wall of the pen. Correspondingly, the front-facing, IR
distance reading decreased while the back-facing, tail IR reading increased. (b) A counter-
clockwise rotation near the east wall. The robot initially contacted the wall, reducing the
rotational velocity (which pushes the robot westward), and then the robot freely rotated at
a constant velocity completing a full rotation. (c) A westward translation while facing the
north wall. The front and rear IR distance readings remained within a bounded range. The
right-side IR reading dropped slowly, while the left side IR reading slowly increased. (d)
A northward translation, followed by a wall impact which caused a negative spike in accel-
eration and then near zero acceleration. After impact, the robot continued pushing against
the wall causing a slow counter-clockwise rotation and a small increase in the inside-tail,
IR distance reading.
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Figure 3.9: This figure describes how the action selection mechanism can affect the sensor
patterns observed on the Critterbot. Each row above corresponds to a different policy, in-
cluding the one-second duration random actions policy, extended duration random actions
policy (selecting the same action for 50 consecutive time steps), hand-coded wall follow-
ing policy, and random walk in motor-voltage space via Brownian motion. Each column
corresponds to one of three different sensors of interest, including ambient light (all four),
magnetic x-axis, and rotational velocity. All four policies selected actions every 100 ms.
The wall following policy yielded roughly cyclic patterns, while the data from the one-
second duration random action policy did not yield obvious patterns. The wall following
policy rotation data exhibited many small adjustments to keep the robot parallel to the wall,
and periodic large changes corresponding to each corner of the pen. In summary, different
methods for selecting actions can produce noticeably different sensorimotor data streams
on the Critterbot.
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applicability and scalability of predictive knowledge learning. The next chapter describes

our approach to learning predictive knowledge from and about a robot’s sensorimotor data

stream.
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Chapter 4

General Value Functions1

This chapter describes general value functions (GVFs), our proposed approach to represent-

ing predictive knowledge. The main idea is to adapt conventional value functions from re-

inforcement learning in order to (a) represent potentially useful predictive knowledge about

the world, and (b) leverage the strengths of conventional value function learning methods.

Compared to other predictive knowledge systems and other well-developed uses of pre-

diction, the relative strength of GVFs is the practicality and scalability of learning. Con-

siderable progress has been made in demonstrating the potential compactness of predictive

representations of knowledge (Littman, Sutton, & Singh, 2000; Talvitie & Singh, 2011),

learning compositional predictions (Sutton & Tanner, 2005), learning temporally abstract

predictions (Sutton et al., 2006), and learning predictive knowledge from continuous in-

puts (Boots et al., 2010). Our GVFs build on prior work, and make an important step

towards improving both the applicability of prediction specification and the scalability of

prediction learning via value function estimation algorithms from reinforcement learning.

Consequently, GVFs are learnable from continuous-valued inputs, such as robot sensors,

and can be incrementally updated online and in parallel. In addition, GVFs can represent

a broad class of predictive knowledge similar to PSRs (Littman, Sutton, & Singh, 2000),

TD-nets (Sutton & Tanner, 2005), TPSRs (Boots et al., 2010), and prediction profile models

(Talvitie & Singh, 2011).

The focus of this chapter is to introduce and explain GVFs. We demonstrate the poten-

tial benefits of representing predictions as GVFs in later chapters. The contributions of this

chapter are a description of how GVFs may represent predictive knowledge and a discus-

sion of how GVFs relate to the literature. We begin by formalizing the setting under which
1General value functions were first introduced by Maei & Sutton (2010), and proposed as an approach for

predictive knowledge in two papers coauthored by this author (Sutton et al., 2011; Modayil, White & Sutton,
2014 ). The formalisms and text contained in this chapter are either adapted from co-authored sections of these
two papers or originally composed for this document.
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we propose to learn GVFs. The second part of this chapter describes GVFs and how multi-

ple GVFs may be organized and learned in parallel. The third and final part of this chapter

summarizes related work, highlighting the similarities and points of distinction compared

to GVFs.

4.1 The setting

The algorithmic and experimental work described in this thesis apply to a simple interface

depicted in Figure 4.1, similar to the agent-environment interaction from reinforcement

learning. On each discrete time-step t = 1, 2, ..., the agent observes a new feature vector

and action. The feature vector is a real vector of n elements, where xt ∈ Rn denotes the

feature vector at time instance t. The action is an integer in a finite set: At ∈ {1, 2, ..., k}.

......, (xt, At), (xt+1, At+1), (xt+2, At+2), (xt+3, At+3), ......

Figure 4.1: The learning setting: the agent passively observes an unending stream of feature
vectors and discrete actions.

The objective of our learning system is to estimate a scalar signal Gt ∈ R, called

the target. We consider the case in which a new estimate is made repeatedly, at regular

intervals, on each time-step. The estimate of the target is called the agent’s prediction, and

is denoted by Vt ∈ R. The extent to which Vt matches Gt defines the accuracy of the

agent’s prediction. The target may be thought of as specifying a question about the agent’s

interaction with the world, and the agent’s prediction is the agent’s answer to the target’s

question.

The target is a summary of the future. The target is computed from two other signals.

The first is called the cumulant Zt ∈ R, and plays a similar role to reward as used in re-

inforcement learning. As the name suggests, the target accumulates future values of the

cumulant. The cumulant signal is weighted by a termination signal γt ∈ [0, 1], that we

previously defined as the discount factor in Chapter 2. The termination signal has a dif-

ferent interpretation compared to the discount factor in reinforcement learning, and will be

explained in the following section. Gt is computed from the future values of the cumulant
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and termination signal, beyond the current time-step:

Gt = Zt+1 + γt+1Zt+2 + γt+1γt+2Zt+3 + γt+1γt+2γt+3Zt+4 + . . . . (4.1)

The target therefore summarizes future values of the cumulant. The system’s interaction

evolves in a straightforward manner: on each time-step, the agent observes the current xt

and At, and produces a prediction Vt to estimate Gt.

It is useful to think of the cumulant, termination, and feature vector as the outputs

of functions of an unobservable MDP state. The termination function γ : S → [0, 1],

outputs the termination signal based on the agent’s observation of the MDP state (defined

in Section 2.1) and γt
def
= γ(St). The cumulant function, z : S → R, and the feature

function, x : S → Rn, are defined similarly. We may also view the actions as produced by

some mapping from states to actions, µ : S × A → [0, 1], called the behavior policy. We

will use these state-based definitions to define our general value functions.

The sensorimotor data stream produced by our robots, and discussed in Chapter 3, is

manifested in the feature vectors, cumulants, and termination signals. In practice, Zt and γt

may be computed from any information available to the agent at the current time, including

the sensorimotor data and the components of xt. Similarly, xt may be computed from

available state information.

To make things more concrete, consider a simple example of predicting a robot’s light

sensor as it drives around a room. In this case, the feature vector could be constructed from

the robot’s external sensor readings, and the actions might correspond to a finite set of motor

commands. The cumulant could be the current light sensor reading and the time-step could

be one second long. The target could be the total future light, with future light readings

weighted exponentially less each second in the future. In this example, our aim is to predict

the total discounted future light based on the robot’s sensors.

4.2 Cumulants

Usually in reinforcement learning, the objective of learning is to maximize a scalar reward

signal. The agent approximates a value function, because an estimate of the value function

is helpful for adapting the agent’s policy to accumulate more reward. Predictions of future

reward are used as an intermediary step inside policy learning algorithms.

Our cumulant signal plays a similar role to the reward in construction of the target, but

the agent does not necessarily maximize the cumulant. The cumulant is similar to reward in

that it is used to define the target, and that target is computed by summing cumulants into
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the future, just as a reward. Our chief concern is predicting future cumulants rather than

maximizing the cumulant signal. The cumulant may be any signal observable by the agent,

even ones that may not make much sense to maximize. In fact, we may specify multiple

cumulant signals for an agent to learn about, even if the agent’s behavior maximizes a

conventional reward signal. A cumulant could equal any scalar signal that the agent wishes

to predict via the target.

To make these ideas more concrete, consider an agent driving a car from one location

to another. The policy that generates actions may be learned by reinforcement learning,

with a constant negative reward on each time-step. We may specify several cumulants, such

as a cumulant equal to the continuous fuel consumption of the car, or a cumulant equal

to one when the car is too close to the car in front of it. A third cumulant could equal to

the temperature outside the car. This third cumulant is not obviously related to the goal

of driving from one location to another quickly, but predicting future temperature may be

useful for other tasks, or might be best thought of as general knowledge of the agent’s

environment.

4.3 Termination

In conventional reinforcement learning, γ is a discount factor that weights the value of

future rewards. In continuing tasks, the target would become infinite without discounting

future rewards; thus, each reward in the sum must be weighted by powers of γ, and γ must

be less than one. The concept has reasonable intuition: rewards in the near future are more

valuable to the agent than rewards in the distant future. In episodic tasks, the discount factor

is one because the episodes are always a finite length and the target is bounded, meaning all

rewards are considered equally valuable.

It is useful to think of discounting as a constant probability of terminating or continuing

on each time-step. In episodic tasks, γ is one on each time-step, indicating the certainty of

continuing the episode on the current step t. When the agent reaches a terminating state

ST , γ becomes equal to zero, indicating zero probability of continuing the episode beyond

step T . We call this hard termination. In a continuing task, the discount is a constant and

is less than one, indicating a γ probability of continuing on the current step and 1 − γ

probability of the trajectory terminating on the current step. This may be thought of as

a constant probability of terminating on each step of the trajectory, which we call soft

termination. In reinforcement learning, γ is usually treated as a binary signal that only
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changes on termination, not during an episode. Relating termination and continuation of a

trajectory to γ makes it easier to think about γ changing with time, which we discuss next.

Hypothetical terminations, reflected by γt, may occur at any time. Termination con-

ventionally refers to an interruption in the normal flow of state transitions and a reset to

a starting state or starting-state distribution. On the other hand, a GVF’s termination sig-

nal, γt, does not directly interrupt the state transitions. The behavior policy may still have

real terminations, different from the hypothetical terminations defined by γt. Just as with

cumulants, we may specify many different termination signals.

Let us continue the car driving example to solidify the concepts of hypothetical ter-

mination. The policy controlling the car may experience a real termination when the car

reaches its destination. We can define a valid termination signal that becomes zero at the

half-way mark of the car’s route, or when it begins to rain, or when the car’s remaining fuel

falls below some threshold. Instead of these hard, binary terminations, we could define soft

terminations. For example, a constant γt corresponding to the target’s time horizon—larger

values corresponding to longer horizons—or a value of γ related to the remaining fuel in

the gas tank. The termination signal may take on any values between zero and one, based

the data stream. The termination signal also facilitates mixing soft and hard terminations;

for example, a γt equal to zero when the are arrives at its destination, and equal to 0.9 oth-

erwise. In Chapter 6, we provide several different examples of cumulants and termination

signals. We formalize this concept in the next section.

In the special case where γt is less than one and constant the termination signal maps

to prediction time scale in the following way. Recall that 1− γ(St) corresponds to the ter-

mination probability upon entry into state St. The expected termination time for a constant

γ prediction is ∆t
1−γt . This is like the expected number of roles of a dice to get a particular

outcome: if we had a fair six sided dice we would expect to role it six times before ob-

serving a three. The ∆t simply corresponds to the update cycle of the agent-environment

interaction. Using this language we can talk about a prediction with γt = 0.95 and ∆t = 1

as corresponding to a 20 step prediction.

4.4 General Value functions

The goal of this section is to describe a particular kind of value function that is well suited

for representing predictive knowledge of the world. The first step is to define the GVF’s

target which the agent must estimate. With a constant discount factor γ, the targets are
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restricted to simple time scales in which the cumulants are weighted geometrically less

the more each one is delayed, as was given by the earlier definition of the return in the

background chapter. With time-variable termination signals, the weighting is not by simple

powers of γ, but by products of γt:

Gt
def
=

∞∑
k=0

(
Πk
j=1γt+j

)
Zt+k+1. (4.2)

This small change results in a significant increase in the kinds of targets that may be ex-

pressed as you will see in our experiments later (and in the literature, including Sutton,

1995; Sutton et al., 2011; Modayil, White & Sutton, 2014). If γt is taken to be a constant,

then
∏k
j=1 γt+j = γk, and 4.2 becomes the familiar discounted sum used in reinforcement

learning. Note that for the first term in the sum of 4.2, we define
∏0
j=1 γt+j = γ0 = 1.

Formally, we define a general value function, or GVF, as a function v : S → R, with

three auxiliary functional inputs: a target policy π : S × A → [0, 1], γ : S → [0, 1], and

z : S → R. A GVF specifies the expected value of the target, given actions are generated

according to the target policy:

v(s;π, γ, z)
def
= Eπ [Gt|St = s] , (4.3)

where Gt is defined by 4.2, but now with respect to the given functions; the Eπ was intro-

duced in Equation 2.3 of Chapter 2. Using the state-based definitions of the cumulant and

termination functions, we can ensure the expectation in 4.3 is well defined. The expectation

is conditioned on the future states produced by the state-transition dynamics of the under-

lying MDP (P ) and the actions selected by π. We can write the GVF’s definition in terms

of these state-based functions:

v(s;π, γ, z) = Eπ

[ ∞∑
k=0

(
Πk
j=1γ(St+j)

)
z(St+k+1)|St = s

]
(4.4)

=
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)z(s′) + γ(s′)v(s′;π, γ, z). (4.5)

Equation (4.5) is called the GVF’s Bellman equation. We can also define a state-action

GVF as a function q : S×A→ R, again with three auxiliary functional inputs: inputs π, γ,

and z:

q(s, a;π, γ, z)
def
= Eπ [Gt|St = s,At = a] . (4.6)

A GVF specifies a precise question about the agent’s interaction with the world, and the

prediction is the agent’s learned approximate answer to that question. The three question

functions, π, γ, and z, are referred to collectively as the GVF’s question functions. Note
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that conventional value functions remain a special case of GVFs. In section 4.1, we referred

to the target Gt as specifying a question. The precise question is defined by the GVF: the

expected value of the target given actions are selected according to the target policy. The

next section describes how we can learn approximate answers to a GVF’s question.

4.5 Learning GVFs

We begin by introducing approximate GVFs. Our approximate GVFs, denoted v̂ : S ×

Rn → R, approximates the expected value of the target Gt:

v̂(s,w) ≈ v(s;π, γ, z), (4.7)

where w ∈ Rn is the weight vector to be learned. Similarly, the approximate state-action

GVF, q̂ : S×A× Rm → R, approximates the state-action GVF:

q̂(s, a,w) ≈ q(s, a;π, z, γ). (4.8)

Note the weight vector for the state-action function can be a different size than the weight

vector for the state function; for convenience we overload w in this way.

Our approximate GVFs are linear in the feature vector. That is, we assume that the state

of the world at time t is characterized by the feature vector, xt = x(St) with x : S → Rn,

and v̂ is approximated with a finite number of weights, w ∈ Rn, giving prediction Vt:

Vt
def
= v̂(St,wt) = x>t wt. (4.9)

Similarly, the approximate state-action GVF is also a linear function of a feature vector

xa,t = x(St, At) with x : S×A→ Rm, giving the prediction:

Qt
def
= q̂(s, a,wt) = xa,t

>wt. (4.10)

In conventional reinforcement learning, Vt and Qt are referred to as the agent’s state value

estimate and the state-action value estimate, respectively. From here on, we refer to Qt

as simply the agent’s prediction. We adopt a linear approach to function approximation,

common in reinforcement learning; this is a convenient special case, but is not essential to

our approach.

An approximate GVF can be learned using temporal difference learning algorithms

from reinforcement learning. A GVF is similar to a conventional value function, except

the termination signal may change over time. The learning algorithms remain unchanged

46



in form and computational complexity. All the temporal difference learning methods de-

scribed in the background chapter remain the same, except γ is replaced by γt or γt+1, and

Zt+1 replaces Rt+1. The TD(λ) algorithm for learning approximate state GVFs from a se-

quence of feature vectors and actions is given by (introduced in Modayil, White & Sutton

2014):

wt+1 = wt + α(Zt+1 + γt+1x
>
t+1wt − x>t wt)et

et = γtλet−1 + xt.

The GTD(λ) algorithm for learning state GVFs from a sequence of feature vectors and

actions is given by (introduced in Maei 2011):

δt = Zt+1 + γt+1x
>
t+1wt − x>t wt

wt+1 = wt + α
(
δtet − γt+1(1− λ)(e>t ht)xt+1

)
ht+1 = ht + αh

(
δtet − (h>t xt)xt

)
et = ρt(γtλet−1 + xt).

Finally, the GQ(λ) algorithm for learning state-action GVFs from a sequence of feature

vectors and actions is given by (introduced in Maei & Sutton 2010):

δt = Zt+1 + γt+1x
>
t+1wt − xa

>
,twt

wt+1 = wt + α
(
δtet − γt+1(1− λ)(e>t ht)xt+1

)
ht+1 = ht + αh

(
δtet − (h>t xa,t)xa,t

)
et = ρtγtλet−1 + xa,t,

where xt
def
=
∑

a∈A π(St, a)x(St).

The nature of the agent’s approximation of a GVF is governed by the feature vector

generation scheme, the eligibility trace-decay rate, λ, and the behavior policy which can

be thought of as functions of state. The current state feature vector2 can be defined as the

output of a feature generating function x : S → Rn where xt = x(St), as described in

Chapter 2. Similarly, λ can be defined as a function λ : S → R where λt = λ(St) In all

our experiments we will consider the special case where lambda is a constant function. For

simplicity we have not included a time index on λ in any of our equations to highlight our

focus on this special case.
2We define the state-action feature function in an analogous way.
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We call these three functions the answer functions. The majority of the experiments

contained in this thesis focus on the case where these three functions are given in the exper-

imental design—the setting we introduced in the beginning of this chapter.

Learning approximate GVFs does not necessitate the invention of new learning algo-

rithms; we can learn the predictive knowledge specified by a GVF with existing value

function learning algorithms from reinforcement learning. Specifically, we use temporal

difference methods that minimize the mean squared projected Bellman error (MSPBE) and

require linear computation per time-step (in the size of the feature vector): TD(λ) and

GTD(λ) to approximate state GVFs (v(s;π, γ, z)), and GQ(λ) to approximate state-action

GVFs (q(s, a;π, γ, z)). These methods have several desirable properties, including incre-

mental updating during interaction, robustness to non-stationary settings, compatibility with

off-policy sampling, convergence guarantees, and compatibility with linear and non-linear

function approximation. Chapter 5 discusses the possibility of using quadratic temporal

difference methods that also minimize the MSPBE (e.g., LSTD(λ)) for GVF learning, and

Appendix B contains a discussion on the possibility of using algorithms that minimize a

different objective, the mean-square Bellman error or MSBE.

4.6 Independence of predictive span

An important computational property of incremental multi-step prediction learning algo-

rithms is independence of the span of a prediction. The span of a prediction is the number

of time-steps elapsing between when the prediction is made and when its target value is

known. In this thesis, the time-step is taken as discrete, and therefore the span is always an

integer. An example span would be seven days or less, if the agent’s prediction was about

rain at the end of the week. An algorithm achieves span-independent computation if the

computation and storage used to update and make each prediction on each time step are

independent of the span of the prediction. Span independence is a computational statement;

it is not a statement regarding how much data is needed to learn an accurate prediction.

The significance of independence of predictive span was first introduced by Sutton & van

Hasselt (in prep.).

Let us consider a particular learning algorithm that does not achieve independence of

span in it’s update mechanism. Consider predicting the precise value of the cumulant Z at

some termination time T . The learning procedure begins at time t equals zero and proceeds

in the usual way with the agent observing a feature vector, xt, and making predictions, Vt,
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on each time-step until Z is observed at time T . Once Z is observed, we could update all

the previous predictions, V0 through to VT−1, toward Z using an LMS rule:

wt+1 = wt + α(Z −w>t xt)xt t = 0, 1, ..., T − 1.

The algorithm cannot update any of the predictions until Z is observed. If the algorithm

waits for Z to be known, then the agent must remember T previous feature vectors and

make all the updates at once, and that is not span independent 3.

An algorithm may also violate span independence in the way it computes or makes

new predictions. One-step prediction models, popular in time-series forecasting (Ljung,

1998), are not span independent if they are iterated to form multi-step predictions. Consider

predicting rainfall. As before, the learning procedure begins at time zero and proceeds

with the agent observing the amount of rainfall Zt, and making predictions Vt+1 about the

amount of rainfall to be observed on the next time-step Zt+1. Instead of using a feature

vector for prediction, the algorithm keeps a finite-length history of previously observed

rainfall, [Zt, Zt−1, ..., Zt−k]. We can construct a one-step prediction model M that outputs

an estimate of what the rainfall will be on the next time-step based on the history:

M([Zt, Zt−1, ..., Zt−k]) = Vt+1 ≈ Zt+1.

In order to estimate rainfall two steps into the future, we iterate the model, using the model’s

estimate of rainfall on time-step t+ 1 as a stand-in for Zt+1:

M([Vt+1, Zt, Zt−1, ..., Zt−k+1]) = Vt+2 ≈ Zt+2.

Producing a k-step prediction typically involves iterating the model k-steps, and again that

is dependent on the span of the prediction.

Span independence is a useful attribute for an algorithm to have. Although available

computation continues to grow yearly, our agent’s resources will be limited. A learning and

prediction making algorithm that is not span independent may have to balance the span and

number of predictions it learns. In addition, a non-span independent algorithm may take

considerable time just to output a prediction, if the span of the prediction is large.

Estimating GVFs with temporal difference methods and making predictions with ap-

proximate GVFs is span independent. The GVF’s termination signal, γt, determines the

span of a GVF’s prediction. The computation and storage needed to estimate a value func-

tion (learning w) is independent of γt. Because of the recursive definition of a GVF given
3This case cannot be handled independent of span with GVFs either. Nevertheless, we can form a GVF

whose prediction terminates upon observing some event (as you will see in Chapter 6).

49



by the Bellman equation (4.5), the value function can be estimated incrementally with con-

stant computation per step with temporal difference learning methods (e.g., the TD(λ) al-

gorithm). In addition, producing a new prediction (e.g., computing Vt) involves the com-

putation of a simple dot product, and is clearly span independent. A temporal difference

based algorithm pays the same computational price for updating and making both short and

long term predictions. Span independence is a desirable property, and it is achievable with

temporal difference methods.

4.7 A Horde of Demons

In the conventional on-policy setting, the GVF’s question is about the course of actions

specified by the behavior policy, and thus π = µ. In the off-policy setting, π 6= µ, and the

GVF’s question is about a hypothetical course of action defined by the target policy π. Just

as we may define multiple termination signals for the same stream of experience generated

by the agent’s behavior, we may also define multiple target policies. Each GVF specifies a

policy-contingent question about the expected future cumulant if the agent were to execute

some target policy π. The agent’s prediction answers the what-if question specified by a

GVF.

Let us continue with the car driving example to solidify the concepts of hypothetical

policies. As we drive home we might think about how long it would take the to reach the

store if we deviated from the current course, or how long it will take to get home if we

took a different route. Finally, we may consider other target policies completely unrelated

to driving. For example, am I likely to feel pain in the next couple minutes if I attempt

to shave while the car is moving? Figure 4.2 provides several other concrete examples of

GVF, specified by different cumulants, terminations, and target policies.

Off-policy learning methods, such as GTD(λ) and GQ(λ) update the agent’s approxi-

mation to the GVF using snippets of experience where the actions selected by the behavior

policy are similar to the actions that the target policy would take. For example, we can

update the prediction about how long it takes to get to the store as we drive home, because

the store is along the way; we are getting relevant experience about driving to the store as

we drive home. At any given time, multiple target policies corresponding to multiple GVFs

may match the behavior’s action choices, and in this case, multiple approximate GVFs can

be updated off-policy and in parallel.

The Horde architecture consists of a main agent composed of many sub-agents, called
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Figure 4.2: Several GVFs can be specified for a robot exploring it’s world. The red text
specifies the cumulant signal, the green text specifies the termination signal, and the blue
text specifies the target policy for each GVF. In this example, the behavior policy is random,
selecting from a discrete set of actions with equal probability. We can specify several GVFs
and approximate each in parallel from a single interaction stream produced by one robot.

demons. Each demon is an independent reinforcement-learning agent responsible for learn-

ing one piece of predictive knowledge about the main agent’s interaction with its environ-

ment. Each demon learns an approximation to the GVF that corresponds to the setting of

the three question functions, π, γ, and z. Each demon learns it’s approximate GVF using

a temporal difference method: TD(λ) for on-policy demons, and GTD(λ) or GQ(λ) for

off-policy demons.

We consider two kinds of demons. A prediction demon learns an approximate GVF

given a target policy π; the target policy is not learned. A control demon learns its target

policy. For example, a greedy policy with respect to its own approximate state-action GVF

(i.e., π = greedy(q̂), or π(St, argmaxa∈A q̂(St, a,w)) = 1). Control demons can learn

and represent how to achieve goals, whereas the knowledge in prediction demons is better

thought of as declarative facts.

The Horde architecture supports parallel demon learning. Each demon updates it’s
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corresponding approximate GVF. Each demon may use an independent feature vector gen-

eration process, but in all the experiments in this document, the demons used a common

shared feature vector. Finally, all demons update their approximate GVFs from a shared

common sequence of actions produced by the behavior policy. Given parallel computing

hardware, many demons can be updated in parallel. Figure 6 provides a diagram of how

many demons might be arranged in a single learning system.

The demons in the Horde architecture are nearly independent, but we do allow them

to interact in two ways. One way in which the demons are not completely independent

is that one demon can reference the approximate GVF or target policy of another demon.

For example, in this way we could ask questions such as “If I follow this wall as long as

I can, will my light sensor then have a high reading?”. In this case, a prediction demon is

referencing the target policy of a control demon. Demons may also use each others answers

in their questions. For example, one demon might learn a prediction of near obstacle: the

probability of a high proximity-sensor reading after executing a random wander. Then a

second demon could learn a different prediction dependent on the first demon’s prediction.

For example, “If I follow this wall to its end, will I then be near an obstacle?”. This can be

encoded using the first demon’s approximate GVF in the second demon’s cumulant function

(e.g., z(St) = (1 − γt) maxa∈A q̂(St, a,wfirst demon) and γt = 1 during wall following

and γt = 0 at competition). This is an example of a compositional prediction: a prediction

about the outcome of another prediction.

The second way in which the demons are not completely independent is that the predic-

tions of one or more demons may be used as input to the feature vector generation process.

The prediction, Zt, of a prediction demon from time-step tmay participate in the generation

of the next feature vector xt+1. If the feature vector was produced by tile coding a robot’s

instantaneous sensor readings, for example, then Zt could participate in the generation of

xt+1 by tile coding Zt with the sensor readings observed on time-step t + 1. This method

of generating feature vectors may be thought of as a form of predictive state representation.

Figure 4.3 illustrates how predictions can participate in feature vector generation. Chap-

ter 6 presents a robot learning experiment where predictions are used as input to feature

generation process to improve off-policy prediction learning.
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Figure 4.3: A Horde of demons. This diagram shows a possible arrangement of multiple
prediction and control demons, each updating their approximate GVFs from a shared fea-
ture vector. The feature vector in this example is produced by a sparse recoding of input
sensory data (such as tile coding). Some of the predictions are fed into the sparse re-coder,
enabling predictions to participate in the generation of the next feature vector.

4.8 Related approaches

In this section we review prior work on predictive knowledge learning, highlighting the

similarities to our approach based on GVFs. We conclude the review with a summary

of how our approach is distinct from prior work, and how we extend the practicality and

scalability of predictive knowledge learning.

The idea that an agent’s knowledge may be represented as predictions dates back to at

least the work of Cunningham (1972) and Becker (1973), who investigated constructivist

approaches to learning and cognition. One of the main ideas behind constructivism is that

the agent constructs its own understanding of the world, rather than a human building it

in. One of the early computer simulations of prediction learning and constructivism was

performed by Drescher (1991). Drescher built a computer program to simulate an infant

learning, inspired by the developmental learning stages described by Piaget. The simu-

lation contained a movable hand, an eye, and two moveable objects in a grid. Drescher

reported on a single run of his program, lasting a couple hours before it ran out of memory.

Although Drescher’s thought experiments were more advanced than his computer simula-

tions, his program exhibited acquisition of several high-level concepts, such as the expected

outcome when closing the hand around an object. Drescher’s schemas are similar to GVFs

conditioned on abstract actions about abstract outcomes (both given a priori) rather than

weighted sums of cumulants.

Another approach involves modeling the world solely in terms of predictions about the

low-level data stream produced by an agent’s interaction with the world. This approach was

53



explored as predictive state representations or PSRs (Littman, Sutton & Singh, 2002) and

the closely related observable operator models (Jaeger, 1997). A PSR represents the state of

the world by a real-valued vector of predictions about the outcomes of experiments or tests.

A test is a sequence of actions and observations. The agent can compute the probability of

any test succeeding, starting at the current time-step, via a linear or non-linear projection

from the probability of success of each of a minimal set of core tests. The vector probabil-

ities of each core test succeeding provides a complete summary of the entire history of the

agent’s interaction with the world, and are thus called state. PSRs are strictly more general

than other models for partially observable domains including partially observable MDPs

(POMDPs) and k-Markov models (Singh, James, & Rudary, 2004), and potentially more

compact (Littman, Sutton & Singh, 2002; Singh, James & Rudary, 2004). Because a PSR is

defined using only observable quantities, unlike a POMDP with hidden states, PSR param-

eter learning can occur without human specified models, and should be less susceptible to

local minima compared to POMDPs (Singh, James, & Rudary, 2004). Learning the parame-

ters of a PSR involves learning the weights used in the projection (see Wolf, James & Singh,

2005). Finding the minimal set of core tests involves a combinatorial search (McCracken

& Bowling, 2006). GVFs are different from PSRs in that a GVF specifies an expectation

about the future values of a single cumulant signal, whereas a PSR is a models the success

of all possible length tests, given the history. A demon’s feature vector may include com-

ponents computed from other demon’s predictions, enabling predictive representations, but

unlike PSRs, a demon’s feature vector can contain non-predictive components as well.

Another approach to low-level prediction learning, called transformed PSRs or TPSRs,

attempts to improve PSR parameter learning using a singular-value decomposition (SVD)

and features instead of action-observation primitives. A TPSR transforms the learning prob-

lem by multiplying the matrix test probabilities, learned from data, by a matrix produced

by an SVD. Learning with continuous inputs is achieved by estimating the probabilities of

sequences of feature vectors, rather than a sequence of observations as in PSRs. The TPSR

approach reduces the dimensionality of PSR learning with a SVD and then computes the

parameters of the TPSRs based on a batch of data. This approach was pioneered in sub-

space identification (Van Overschee & Moor, 1996), where SVD-based approaches achieve

state-of-the-art modeling (e.g., the N4SID method). TPSRs have been applied to high-

dimensional continuous observation systems such as robots (Boots et al., 2010). Recent

extensions enable online parameter estimation during learning (Boots & Gordon, 2011),

though the system has never been used in this way due to the computational cost of TPSR
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learning algorithms.

To improve both the efficiency and scalability of prediction learning, local modeling

techniques have also been explored. Both PSRs and TPSRs specify a complete represen-

tation of an agent’s interaction with an unknown environment. The core tests can be used

to predict any length action-observation sequences: a PSR learns and makes all possible

predictions. In many domains it may be either infeasible to learn this full model, or it may

not be practically useful for the agent. For example, a robot with infrared distance sensors

may predict how long it takes to cross the room without representing the dynamics of the

overhead lights in the room. Recently, Talvatie and Singh (2011) explored learning a subset

of a PSR’s tests called prediction profile models rather than learning the full PSR. A predic-

tion profile model is similar to a demon, in that it specifies a single independent predictive

question of interest, and a collection of demons forms a kind of distributed model of the

agent’s interaction with an unknown world, like a collection of prediction profile models.

Temporal difference networks, or TD-nets, are another approach to learning predictions

about the agents interaction with the world. A TD-net represents and estimates a collec-

tion of scalar predictions arranged in an interconnected network (Sutton & Tanner, 2005).

Network nodes represent primitive observations, or predictions. Each non-primitive node

predicts the output of another node, conditioned on a discrete action. This arrangement

enables compositional predictions where one node may predict the output of another node,

which in turn predicts the output of another node, and so on. In addition, a node’s predic-

tion may be conditioned on an option policy and updated off-policy (as in Sutton, Rafols &

Koop, 2006). The arrangement of nodes in the network defines each prediction’s question,

and is called the question network. The approximation architecture and learning rules used

to compute the estimates of the predictions define the answers to the prediction’s question,

and is called the answer network. A TD-net’s predictions can be compositional and policy

contingent, just like a GVF. The main algorithmic differences between TD-nets and Horde

is that Horde has a more straightforward handling of state and function approximation, and

Horde uses more efficient algorithms for off-policy learning (Maei & Sutton 2010; Maei

2011).

Option models, from reinforcement learning, are similar to GVFs. An option model

is a partial model of the world that consists of predictions about which states the option

terminates in, and the cumulative reward observed during the option. An agent may learn

many option models, and update them in parallel using off-policy learning algorithms (as

done by Singh, Barto & Chentanez, 2005). Option models use a single global reward signal,
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whereas each GVF has its own cumulant. To construct an option to achieve a goal, we

define a special goal reward function. A GVF can achieve the same effect using a specific

instantiation of the cumulant signal (discussed in Chapter 6)4, without the need for a special

outcome variable in the update equations of the learning algorithm.

Horde builds on prior work, achieving online and off-policy learning from continuous

sensor streams generated by a robot. Previous work was done in small simulations, with

the work on TPSRs being the notable exception. In comparison with Horde, TPSRs do

not support policy-contingent prediction, and empirical demonstrations have been limited

to learning from a few thousands samples off-line (not learning while collecting data). Our

results with Horde demonstrate incrementally learning thousands of predictions, on- and

off-policy, from hours of data, while maintaining a 100 ms update cycle. Later chapters of

this thesis demonstrate the practicality and scalability of our architecture with experiments

on two robot platforms as well as simulation worlds. Although we make no formal argu-

ments of the representational ability of GVFs, our empirical demonstrations illustrate that

GVFs can capture much predictive knowledge. Taken together, our approach and empirical

demonstrations further the development of predictive knowledge learning.

4.9 Summary

In this chapter we formalized the setting under which we propose to learning predictive

knowledge. We introduced GVFs, a new way to represent predictive knowledge. We de-

scribed how many GVFs can be organized and learned by a Horde of demons. The chapter

closed with a description of previous efforts to represent and learn knowledge that is pre-

dictive.

A variety of predictions may be represented by a general kind of value function called

a GVF. Because GVF are value functions, they can be learned online with computationally

efficient value function estimation algorithms that are compatible with function approxi-

mation. Compared with other predictive representations of knowledge, GVFs appear to be

more suitable for online, incremental updating from continuous outputs, and are potentially

more scalable because of the linear, span-independent computation and parallel updating

of value function learning. At this point, these supposed benefits remain, for the most part,

theoretical. The next few chapters provide more concrete illustrations of the usefulness of

GVFs for representing predictive knowledge, with experiments on robots.

4This simplification was first observed by Joseph Modayil.

56



Chapter 5

Nexting1

The term nexting has been used by psychologists to refer to the natural inclination of people

and many animals to continually predict what will happen next. In this chapter, we describe

how a robot can learn to next in realtime, making 6000 predictions, each computed as a

function of 6000 features of the state. These predictions are formulated as GVFs. The

results presented in this chapter demonstrate how GVFs can be used to represent an inter-

esting and important class of predictions, and that these predictions can be learned, at scale,

using conventional value-function learning algorithms with function approximation.

5.1 Predicting what will happen next

Psychologists conjecture that people and animals continually make large numbers of short-

term predictions about their sensory input (Gilbert, 2006; Brogden, 1939; Pezzulo, 2008;

Carlsson et al., 2000). When a person hears a melody they might predict what the next note

will be or when the next downbeat will occur. When you see an object in flight, hear your

own footsteps, or handle an object, you seem to continually make and confirm multiple pre-

dictions about our sensory input. Our surprise and disappointment when these predictions

are disconfirmed—an unexpected note or a sudden change in direction—suggests we are

engaged in continual prediction. When you ride a bike you have finely tuned moment-by-

moment predictions of whether you will fall and of how your trajectory will change as a

result. In all these examples, we continually predict what will happen to us next. Mak-

ing predictions of this simple, personal, short-term kind has been called nexting by Gilbert

(2006).
1The approach to nexting, experimental results, and text contained in this chapter are either adapted from

co-authored sections of several papers (Modayil, White, Pilarski & Sutton, 2012; Modayil, White, Pilarski &
Sutton, 2012b; Modayil, White & Sutton, 2012; Modayil, White & Sutton, 2014) or originally generated for
this document.
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Figure 5.1: Examples of the variance of sensorimotor data at different time scales on the
robot: (a) acceleration varying over tenths of a second, (b) motor current varying over
fractions of a second, (c) infrared distance varying over seconds, and (d) ambient light
varying over tens of seconds. The ranges of the sensorimotor data vary across the different
sensor types.

Nexting predictions are specific to one individual’s environment, capabilities, and ex-

periences. Predictions of the stock market, of political events, or of technological trends

seem to involve cultural and communal knowledge, are fewer in number, and are about

much longer time scales. Nexting, on the other hand, is the continual process of making

massive numbers of short-term predictions in parallel. Nexting prediction appear to happen

automatically and unconsciously. Moreover, nexting predictions seem to be made simulta-

neously at multiple time scales. When we read, for example, it seems likely that we next

at the letter, word, and sentence levels, each involving substantially different time scales

(Gilbert 2006). In a similar fashion to these regularities in a person or animal’s experience,

our robot observes predictable regularities at time scales ranging from tenths of seconds to

tens of seconds (Figure 5.1).

The ability to predict and anticipate has often been proposed as a key part of human

and animal intelligence (e.g., Tolman, 1951; Hawkins & Blakeslee, 2004; Butz, Sigaud &

Gérard, 2003; Wolpert, Ghahramani & Jordan, 1995; Clark, 2012). The modern view of the

basic learning and behavioral modification known as classical conditioning says that people
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and a wide variety of animals learn and make simple predictions at a range of short time

scales (Rescorla, 1980; Pavlov, 1927). In a standard classical conditioning experiment,

an animal is repeatedly given a neutral sensory cue followed by a special stimulus that

invokes a built-in reflex response. For example, the sound of a bell might be followed

by a shock to the paw, which causes the animal retract its limb. After a while the limb

starts to be retracted early, in response to the bell. This is interpreted as the bell causing a

prediction of the shock, which then triggers limb retraction. In other experiments, known as

sensory preconditioning (Brogden, 1939; Rescorla, 1980), it has been shown that animals

learn predictive relationships between neutral stimuli (e.g., light or tone). These stimuli

that are neither inherently good or bad (unlike food or shock) and not connected to an

built-in response. In this case, the animal still makes predictive associations between the

stimuli even though there is no behavioral evidence of the association; later experiments

must be performed to show prediction is occurring. Animals seem to be wired to learn

many predictive relationships in their world.

To be able to next is to have a basic kind of knowledge about how the world works in

interaction with one’s body. It is to have a limited form of forward model (Jordan & Rumel-

hart, 1992) of the world’s dynamics, specifically, “What will happen next if I continue my

current course of action?”. In the next section, we show how nexting predictions can be

represented as state GVFs and learned using the TD(λ) algorithm.

5.2 Nexting as multiple value functions

We will represent each nexting prediction with a GVF, learned by a prediction demon. We

are interested in learning to predict the multi-dimensional sensorimotor data produced by a

robot interacting with the world (see Figure 5.2). The data is multi-dimensional, and thus

we must specify multiple cumulant signals. The value at time t of the cumulant signal

pertaining to the ith GVF is denoted Z(i)
t ∈ R. The ith prediction itself, denoted V (i)

t ∈ R,

is meant to estimate a GVF with a constant termination signal denoted γ(i) ∈ [0, 1) , and

actions selected by π:

V
(i)
t ≈ Eπ

[ ∞∑
k=0

(γ(i))kZ
(i)
t+k+1

∣∣St = s

]
= Eπ[G

(i)
t |St = s], (5.1)

where G(i)
t denotes the current value of the target of the ith GVF. In this on-policy setting,

the behavior policy is equal to the target policy π. In experimental results, the cumulant

corresponded to one of the robot’s sensors or else a component of a feature vector, and the
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termination signal was one of four fixed values, γ(i) = {0, 0.8, 0.95, 0.9875}, correspond-

ing to time scales (T values) of 0.1, 0.5, 2, or 8 seconds. In the following experiments the

update cycle of our robot was set to 10 times a second, and thus our {1, 5, 20, 80} step

predictions correspond to 0.1, 0.5, 2, or 8 seconds.

Each demon’s prediction V (i)
t is formed as an inner product of xt with a corresponding

weight vector w(i)
t :

V
(i)
t = x>t w

(i)
t =

n∑
j=1

xt(j)w
(i)
t (j).

In our experiments, the feature vectors had n = 6065 components, but only a fraction of

them were nonzero, so the sums could be very cheaply computed.

We used linear TD(λ) inside each prediction demon for learning the weight vectors:

w
(i)
t+1 = w

(i)
t + α

(
Z

(i)
t+1 + γ(i)x>t+1w

(i)
t − x>t w

(i)
t

)
e

(i)
t , (5.2)

where a common step-size parameter and feature vector is shared amongst all demons, and

e
(i)
t is the eligibility trace vector for each demon. As usual, e(i)

t is initially set to zero and

then updated on each step by:

e
(i)
t = γ(i)λe

(i)
t−1 + xt, (5.3)

where trace-decay parameter λ ∈ [0, 1] is shared amongst all demons.

The TD(λ) algorithm has been used as a model of classical conditioning (Sutton &

Barto, 1990) within which various different stimuli are viewed as playing the role of reward

in the learning algorithm. The approach to nexting taken here can be seen as taking this

approach to the extreme, using GVFs to predict a large number of a great variety of reward-

like time series at many time scales (cf. Sutton 1995, Sutton & Tanner 2005).

Under common assumptions and a decreasing step-size parameter, TD(λ) with λ =

1 converges asymptotically to the weight vector that minimizes the mean squared error

between the prediction and the target (5.1). In practice, smaller values of λ are almost

always used because they can result in significantly faster learning (e.g., see Sutton & Barto

1998, Figure 8.15), but the λ = 1 case still provides an important theoretical touchstone.

In this case we can define the best static weight vector w
(i)
∗ as that which minimizes the

squared error over the first N predictions:

w
(i)
∗ = arg min

w

N∑
t=1

(
x>tw −G

(i)
t

)2
. (5.4)

The best static weight vector can be computed offline by standard algorithms for solving

large least-squares regression problems. In the experiments that follow, we computed the
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least-squares solution for the best static weight vector, using an eigen decomposition to

invert the sample covariance matrix of feature vectors. We reduced the dimension of the

system by thresholding based on the eigenvalues. This algorithm uses O(n2) memory and

O(Nn2) computation (because N is much larger than n), per prediction, and is just barely

tractable for offline use at the scale we consider here (in which n = 6065). Although this

algorithm is not practical for online use, its solution w
(i)
∗ provides a useful performance

standard. Note that even the best static weight vector will incur some error. It is even

theoretically possible that an online learning algorithm could perform better than w
(i)
∗ , by

adapting to gradual changes in the world or robot.

5.3 A scaling experiment

To explore the practicality of our approach to nexting as described above, we performed a

large scale experiment where thousands of prediction demons are learned from thousands

of features in realtime on the Critterbot. The robot’s interaction with its environment was

structured in a tight loop with a 100 millisecond (ms) time-step. At each step, the sensory

information was used to select one of seven actions corresponding to basic movements of

the robot (forward, backward, slide right, slide left, turn right, turn left, and stop). Each

action caused a different set of voltage commands to be sent to the three motors driving the

wheels. The state of the robot was characterized by 53 real or virtual sensors of 13 types,

as summarized in the first two columns of Table 5.1.

The experiment was conducted in the robot’s pen with a lamp on one edge (Figure 5.2).

The robot selected actions according to a fixed stochastic policy that caused it to gener-

ally follow a wall on its right side. The policy selected the forward action by default, the

slide-left or slide-right action when the right-side-facing IR distance sensor exceeded or fell

below given thresholds, and selected the backward action when the front IR distance sen-

sor exceeded another threshold (indicating an obstacle ahead). The thresholds were chosen

such that the robot rarely collided with the wall and rarely strayed more than half a meter

from the wall. By design, the backward action also caused the robot to turn slightly to the

left, facilitating the many left turns needed for wall following on the right. To inject some

variability into the behavior, on 5% of the time steps, the policy instead chose an action at

random from the seven possibilities with equal probability. Following this policy, the robot

usually completed a circuit of the pen in about 40 seconds. A circuit took significantly

longer if the motors overheated and temporarily shut themselves down. In this case the
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sensor type num of tiling num of num of
sensors type intervals tilings

IRdistance 10 1D 8 8
1D 2 4
2D 4 4

2D+1 4 4
Light 4 1D 4 8

2D 4 1
IRlight 8 1D 8 6

1D 4 1
2D 8 1

2D+1 8 1
Thermal 4(8) 1D 8 4
RotationalVelocity 1 1D 8 8
Magnetic 3 1D 8 8
Acceleration 3 1D 8 8
MotorSpeed 3 1D 8 4

2D 8 8
MotorVoltage 3 1D 8 2
MotorCurrent 3 1D 8 2
MotorTemperature 3 1D 4 4
LastMotorRequest 3 1D 6 4
OverheatingFlag 1 1D 2 4

Table 5.1: Summary of the tile-coding strategy used to produce feature vectors from sen-
sorimotor data. For each sensor of a given type, its tilings were either 1-dimensional or
2-dimensional, with the given number of intervals. Only the first four of the robot’s eight
thermal sensors were included in the tile coding due to a coding error.
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Figure 5.2: An illustration of the wall-following behavior that generated the data. The
circuits around the pen involved substantial random variation, but almost always included
passing the bright light on the lower-left side.

robot did not move, irrespective of the action chosen by the policy. Shut downs occurred

approximately every eight minutes and lasted for about seven minutes. This simple policy

was sufficient for the robot to reliably follow the wall for hours.

To produce the feature vectors needed for each demon, the sensorimotor data were

coarsely coded according to a tile-coding strategy as summarized in Table 5.1. Most of the

tilings were 1-dimensional (1D), that is, over a single sensor’s output, in which case a tile

was simply an interval of the sensor’s output value. For some sensors, 2-dimensional (2D)

tilings were used by taking neighboring sensors in pairs. This enabled the robot’s features

to distinguish between, for example, a wall and a corner. To provide further discriminatory

power, for some sensor types, 2-dimensional tilings from pairs consisting of a sensor and

its second-neighboring sensor were used. These are indicated as 2D+1 tilings in Table

1. Finally, a tiling with a single tile that covered the entire sensor space and thus whose

corresponding feature, called the bias feature, was always active. Altogether, the tile-coding

strategy used 457 tilings, producing feature vectors with n = 6065 components, most of

which were zeros, but exactly 457 of which were ones. See Chapter 2 (background) for a

description of tile coding.

Each nexting prediction was formalized as a GVF with the question functions defined as

follows: a target policy equal to the behavior, a cumulant equal to a sensor reading or feature

vector component, and a constant termination signal. The cumulant Z(i)
t of each GVF
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corresponded to each of the 53 sensors and a random selection of 487 from the 6064 non-

bias feature vector components. For each, four GVFs were learned with the four values of

the termination signal γ(i) = 0, 0.8, 0.95, and 0.9875, corresponding to time scales of 0.1,

0.5, 2, and 8 seconds respectively. Thus, we want to update a total of (53+487)×4 = 2160

prediction demons.

Temporal difference learning was used in all 2160 prediction demons. The answer func-

tions were the same for every demon: a hand-designed behavior policy for wall following,

a feature vector produced by multiple independent tilings of the robot’s sensors, and a con-

stant λ = 0.9. The parameters of TD( λ) were α = 0.1
457 (as there are 457 active features),

and the initial weight vector was zero. Data was logged to disk for later analysis. The total

run time for this experiment was approximately three hours and twenty minutes (120,000

time steps).

We can now address the main question: is realtime nexting practical at this scale? This

comes down to whether or not all the computations for making and learning so many com-

plex predictions can be reliably completed within the robot’s 100 ms time-step. The wall-

following policy, tile-coding, and TD(λ) were all implemented in Java and run on a laptop

computer connected to the robot by a dedicated wireless link. The laptop used an Intel Core

2 Duo processor with a 2.4GHz clock cycle, 3MB of shared L3 cache, and 4GB DDR3

RAM. Four threads were used for the learning code. The total memory consumption was

400MB. With this setup, the time required to make and update all 2160 predictions was

55ms, well within the 100ms duty cycle of the robot. This demonstrates that it is indeed

practical to do large-scale nexting on a robot with conventional computational resources.

Later, a newer laptop computer (Intel Core i7, 2.7 Ghz quad core, 8GB 1600 Mhz

DDR3 RAM, 8 threads), with the same style of predictions and the same features, was able

to make 8000 predictions in 85ms. This shows that with more computational resources, the

number of predictions (or the size of the feature vectors) can be increased proportionally.

This strategy for nexting easily scales to millions of predictions with foreseeable increases

in computing power over the next decade.

The experiment described above and the robot experiments of Chapter 6 and 8 were

implemented in a publicly available framework for reinforcement learning called RL-Park.2

2RL-Park was developed by Thomas Degris, with contributions from this author and several others. The
framework supports plugins for interfacing with the Critterbot and the iRobot Create. The code can be down-
loaded from http://rlpark.github.io/
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5.4 Accuracy of learned predictions

All learning algorithms used in this thesis are available within RL-Park.

The predictions were learned with substantial accuracy. For example, consider the

eight-second prediction whose cumulant is the third light-sensor data (Light3). Notice that

there is a bright lamp in the lower-left corner of the pen (Figure 5.2). On each trip around

the pen, the output from this light sensor increased to its maximal level and then fell back

to a low level, as shown in the upper portion of Figure 5.3. If the features are sufficiently

informative, then the robot should be able to anticipate the rising and falling of this sensor’s

output. Also shown in the figure is the target for the data, G(i)
t , computed retrospectively

from the subsequent output produced by the light sensor. Of course no incremental pre-

diction algorithm could achieve this without access to future data—our learning algorithms

seek to approximate this ‘clairvoyant’ prediction using only the sensorimotor data available

in the current feature vector.

The prediction made by TD(λ) is shown in the lower portion of Figure 5.3, along with

the prediction made by the best static weight vector w(i)
∗ computed retrospectively as de-

scribed in Section 2. The key result is that the TD(λ) prediction anticipates both the rise and

fall of the light. Both the learned prediction and the best static prediction track the target,

though with visible fluctuations.

To remove these fluctuations and highlight the general trends in the eight-second pre-

dictions of Light3, we can average the predictions over 100 circuits around the pen, aligning

each circuit’s data to the time of initial saturation of the light sensor. The average of the

target, TD(λ) prediction, and best-static-weight-vector prediction for 15 seconds near the

time of saturation are shown in Figure 5.4. All three averages rise in anticipation of the

onset of Light3 saturation and fall rapidly afterwards. The target peaks before saturation,

because the Light3 output regularly became elevated prior to saturation. The two learned

predictions are roughly similar to the target and to each other, but there are substantial dif-

ferences. These differences do not necessarily indicate error or essential characteristics of

the algorithms. For example, such differences can arise because the average is over a biased

sample of data—those time steps that preceded a large rise in the cumulant. We have es-

tablished that some of the differences are due to the motor shutdowns. Notably, if the data

from the shutdowns are excluded, then the prominent bump in the best-static-w prediction

(in Figure 5.4) at the time of saturation onset disappears.

Accessing the quality of the eight-second Light3 prediction as it evolves over time and

65



0 20 40 60 80 100 120
0

20,000

40,000

60,000

0 20 40 60 80 100 120
0,000

20,000

40,000

60,000

0

512

1024

 prediction 
of best static wTD(λ) 

prediction

Light3
cumulant
(right scale)8s Light3

target
(left scale)

1024

512

0

seconds

8s Light3 
target

Figure 5.3: Predictions of the Light3 cumulant at the eight-second time scale. The upper
graph shows the Light3 sensor data spiking and saturating on three circuits around the
pen and the corresponding target (computed afterwards from the future cumulants). Note
that the target shows the signature of nexting—a substantial increase prior to the spikes
in cumulant. The lower graph shows the same target compared to the prediction of the
TD(λ) algorithm and of the prediction of the best static weight vector. These feature-based
predictions are more variable, but substantially track the target.
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Figure 5.4: Average of Light3 predictions (like those in the lower portion of Figure 5.3)
over 100 circuits around the pen and aligned at the onset of Light3 saturation.
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Figure 5.5: Learning curves for eight-second Light3 predictions made by various algorithms
over the full data set. Each point is the RMSE of the prediction of the algorithm up to that
time. Most algorithms use only the data available up to that time, but the best-static-w and
best-constant algorithms use knowledge of the whole data set. The errors of all algorithms
increased at about 130 and 150 minutes because the motors overheated and shutdown at
those times while the robot was passing near the light, causing an unusual pattern in the
sensorimotor data. In spite of the unusual events, the RMSE of TD(λ) still approached that
of the best static weight vector. See text for the other algorithms.

0 30 60 90 120 150 180
0.1

1.0

10

100

1000

0 30 60 90 120 150 180
0.0

0.5

1.0

1.5

2.0

minutesminutes

normalized 
MSE of TD(λ) 

predictions
(both graphs)

mean w/ average subtracted 

mean

8s Light3

2s AccelY

0.1s AccelX

median

Figure 5.6: Learning curves for the 212 predictions whose cumulant corresponds to each
sensor. The median and several representative learning curves are shown on a linear scale
on the left, and the mean learning curve is shown on a logarithmic scale on the right. The
mean curve is high because of a minority of the sensors whose absolute values are high
and whose variance is low. If the experiment is rerun using cumulants with their average
value subtracted out, then the mean performance is greatly improved, as shown on the right,
explaining 78% of the variance in the target by the end of the data set.
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data is relatively straightforward. As a measure of the quality of a prediction sequence

{V (i)
t } up through time T , we can use the root mean squared error, defined as:

RMSE(i, T ) =

√√√√ 1

T

T∑
t=1

(V
(i)
t −G

(i)
t )2.

Figure 5.5 shows the RMSE of the eight-second Light3 predictions for various algorithms.

For TD(λ), the parameters were set as described above. For all the other algorithms, their

parameters were tuned manually to optimize the final RMSE. The other algorithms included

TD(λ) for λ = 0 and λ = 1, both of which performed slightly worse than λ = 0.9. Also

shown is the RMSE of the prediction of the best static weight vector and of the best constant

prediction. In these cases, the prediction function does not actually change over time, but

the RMSE measure varies as harder or easier situations from which to make predictions

are encountered. Note that the RMSE of the TD(λ) prediction comes to closely approach

that of the best static weight vector after about 90 minutes. This demonstrates that online

learning on robots can be effective in realtime with a few hours of experience, even with a

large feature vector.

The benefits of a large representation are shown in Figure 5.5 by the substantially im-

proved performance over the ‘Bias’ algorithm, which was TD(0) with a trivial representa-

tion consisting only of the bias feature (the single feature that is always 1). As an additional

performance standard, also shown is the RMSE of a multi-step (non-iterated) variation of

the autoregressive algorithm (e.g., see Box, Jenkins & Reinsel, 2011) that uses previous

output of the Light3 sensor as features of a linear predictor, with the weights trained ac-

cording to the least-mean-square rule. To incrementally train the autoregressive model,

the learning was delayed by 600 time steps to compute the target. The best performance

of this algorithm was obtained using a model of order 300, meaning the last 300 Light3

sensor readings were used. The autoregressive model performed much worse than all the

algorithms that used a rich feature representation.

Moving beyond the single prediction of one light sensor at one time scale, we would like

to evaluate the accuracy of all 212 GVF about sensors at various time scales. To measure the

accuracy of predictions with different magnitudes, we can use a normalized mean squared

error:

NMSE(i, t) =
RMSE2(i, t)

var(i)
,

in which the mean squared error is scaled by var(i), the sample variance of the targets G(i)
t

over all the time steps. This error measure can be interpreted as the percent of variance not
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explained by the prediction. It is equal to one when the prediction is constant at the average

target value, but can be much larger than one.

Learning curves using the NMSE measure for the 212 prediction demons whose cu-

mulant corresponds to a sensor are shown in Figure 5.6. The left panel shows the median

learning curve and curves for a selection of individual prediction demons. In most cases,

the error decreased rapidly over time, falling substantially below the unit variance line. The

median prediction explained 80% of the variance at the end of training and 71% of the

variance after just 30 minutes. In many cases the decrease in error was not monotonic,

sometimes rising sharply (presumably as a new part of the state space was encountered)

before falling further. In some cases, such as the 2-second Y-acceleration GVF shown, the

sensor was never effectively predicted, evidenced by its NMSE never falling below one.

This cumulant was simply unpredictable given the feature representation provided.

The mean learning curve, shown in the right panel of Figure 5.6 on a log scale, fell

rapidly but was always substantially above one. This was due to a minority of the sensors

(mainly the thermal sensors) whose values were far from zero but whose variance was

small. The learning curves for the corresponding predictions were all very high (and do not

appear in the left panel because they were well off the scale). Why did this happen? Note

that the prediction algorithm was biased in that all the initial predictions were zero (because

the weight vector was initialized to zero). When the cumulants are large relative to their

variance, this bias can result in a very large NMSE that takes a long time to subside. One

way to eliminate the bias is to modify the cumulant by subtracting from each sensor value

the average of its values up to that time (e.g., the first cumulant is always zero). This average

was computed as a long-run sample average, not a moving or windowed average. This is

easily computed and uses only information readily available at the time. Most importantly,

choosing the initial predictions to be zero is no longer a bias but simply the right choice.

When we modified our cumulants in this way and reran TD(λ) on the logged data, we

obtained the much lower mean learning curve shown in Figure 5.6 (right). In the mean, the

prediction learned with the average subtracted explained 78% of the variance of the target

by the end of the data set.

Finally, consider the majority of the prediction demons whose cumulant was one of the

binary features making up the feature vector. There were 170 constant features among the

487 binary features that were selected to be cumulants, and thus with the average subtracted,

both the targets and the learned predictions were constant at zero. For these constant pre-

dictions, the RMSE was zero and the variance was zero, and we excluded these predictions
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from further analysis. For the remainder of the prediction demons, both the median and

mean explained 30% of the variance of the target by the end of the data set.

5.5 Unmodeled situations

When learning and interacting on a real physical hardware, there are often unexpected

events and unknowns that are not considered ahead of time. For example, the magnetic

sensors of the robot were designed to give the robot a rough sense of direction. However,

when we inspect the magnetic data from the robot (see Figure 5.7) we can observe an un-

usual pattern in the data that does not correspond with our a priori expectations. There

appears to be something in the floor of one corner of the pen, perhaps a power cable, that

dramatically affected the magnetic sensor reading. This little unexpected regularity in the

sensorimotor stream was discovered and eventually predicted by our robot.
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Figure 5.7: Predictions of the MagneticX sensor at the eight-second time scale. The TD(λ)
prediction was close to the target, explaining 91 percent of its variance.

5.6 Linear and quadratic computation

We have demonstrated that the nexting predictions learned by TD(λ) obtained good accu-

racy compared to several important baselines, but what about the computational require-

ments of nexting? We used the TD(λ) algorithm to learn nexting predictions because the
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algorithm’s linear memory and computational footprint were deemed essential for real-time

updating of thousands of predictions. In problems where quadratic computation can be ac-

commodated, the LSTD(λ) algorithm is sometimes preferred to TD(λ) due to its potentially

superior data efficiency. Could we learn thousands of nexting predictions in realtime updat-

ing each demon with LSTD(λ)? The aim of this section is to answer to this question.

First let us make some rough calculations on the computational demands of nexting.

Our setup with TD(λ), was capable of learning over 6000 predictions, with a 6065 dimen-

sional feature vector at 10 times a second, requiring approximately 364 million operations

a second, using dense vector computations. LSTD(λ), in contrast, would perform approxi-

mately 2.2× 1012 dense vector operations per second. In our nexting experiment, we used

sparse-vector optimizations, reducing TD(λ)’s computation to approximately 327 million

operations per second. A sparse implement of LSTD(λ), with incremental matrix inver-

sion, would perform 1.1 × 1012 operations per second to achieve nexting-scale prediction

learning.

Let us move beyond rough calculations and perform a timing experiment to directly

compare prediction learning with TD(0) and LSTD(0). We exclude traces for simplicity.

The problem is one of learning a single nexting prediction using a binary feature vector,

which is generated randomly with 10% of xt equal to one on each time-step. This problem

has a single cumulant equal to the Light3 sensor from the log of the nexting experiment

and a constant termination equal to 0.9875. In this experiment we tested matlab and java

implementations of the TD(0) and LSTD(0) algorithms (with sparse operations optimized).

Each algorithm was timed with different feature vector sizes ranging from 1 to 316228.

Then the experiment was repeated for 100 runs. The random seed was initialized to the

same value for all algorithm instances at the beginning of each group of 100 runs. For

each run, the runtime for each feature vector length was recorded and averaged over runs

to produce the curves shown in Figure 5.8. These results do not simulate other costs, such

as queuing the function approximator, communicating with the robot, or imperfect parallel

execution. These runtimes should be considered an upper limit on what is achievable with

a full prediction learning system.

Next, we used the timing results in the timing experiment to approximate the number

of nexting demons the java implementations of TD(0) and LSTD(0) could update within

the time-step of our robot. Using the runtime measurements of each implementation, and

assuming perfect parallelism on a four core CPU, we can compute the number of predictions

that could be updated in a 100 millisecond time-step for a given feature vector length.
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Figure 5.9 plots theses results. The results indicate that the LSTD(0) algorithm can only

update a single prediction within the time-step of our robot, using the same size feature

vector as we used in the nexting experiment.
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Figure 5.8: A plot of the average runtime used by the TD(0) and LSTD(0) algorithms to up-
date a single nexting demon with different feature vector lengths on a simulated problem.
Note the log scale. This graph also includes extrapolations of the runtimes exhibited by
each algorithm. Both TD(0) implementation fit a linear trend, which we then extrapolated
to estimate the runtime for larger feature vector lengths. The two LSTD(0) implementations
exhibit a quadratic trend, which is used to extrapolate the runtime of the LSTD implemen-
tations. See text for a description of the experimental setup.

We conclude from these results that nexting with a quadratic learning method, like

LSTD(0), is not computationally feasible given the feature vectors we used. Our approach

to nexting involves learning many predictions in real-time with large feature vectors. For

our approach of nexting, we conclude that a linear-complexity TD method is more suitable,

from a computational perspective.

We might hope to improve upon the efficiency of LSTD(λ) in several ways. For in-

stance, nexting predictions could share data structures. In particular, the A matrix and

eligibility trace vector of LSTD(λ) could be shared amongst any demons with the same

termination signal. This approach is of limited value because, as highlighted by our timing

results, we cannot update even one nexting prediction with LSTD(λ). Another option is to

use lower-dimensional random projections to estimate LSTD’sAmatrix, therefore reducing

computation. This optimization, like sharing data structures, would involve more complex

implementations of LSTD(λ), whereas our conventional implementation of TD(λ) enabled

large-scale, realtime parallel updating and accurate prediction.
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Figure 5.9: This graph shows an estimate of number of nexting predictions that could be
updated in a 100 millisecond time-step, assuming perfect parallelism on a four core CPU.
Note the log scale. These runtimes should be considered an approximation of what is
achievable with a full prediction learning system on a robot.

5.7 Other ways to encode nexting predictions

Using a constant γ geometrically down-weights the contribution of future cumulant values

in the computation of the target, just as in conventional discounting down-weights future

reward in reinforcement learning. This usage of γ can be called dispersive, because it

smoothly blurs the cumulants over time, whereas a non-dispersive γ might place all the

weight at precisely one time-step in the future. The weighting of cumulants due to γ,

follows an exponential profile. Although, not easily represented as a GVF, we might be

interested in other non-exponential weightings of future cumulants, including a rectangle

weighting, or a Gaussian weighting. Figure 5.10 shows several different weightings, both

dispersive and specific.

In order to better access these alternative weightings, and examine their usefulness of

nexting let us use each to form targets using data from the Critterbot. In Figure 5.11, we

see several different targets, each with a different weighting, plotted over time based on

IR beacon data from the Critterbot (no learned predictions are included, just the targets).

The by-k weighting illustrates that perfect precision using non-dispersive weightings may

not always be desirable, especially with low-level robot data. The target fluctuates widely

from time-step to time-step, which may make accurate prediction challenging. The other

weightings summarize future data in a more smooth fashion, while providing an intuitive

demonstration of anticipation—predicting the rise and fall of the cumulant in advance of
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now

Figure 5.10: Possible weightings for future cumulants. Consider the zero on the X-axis to
be the current time labelled “now”. Weighting (a) corresponds to the classical prediction by
k = 80 steps from now with no averaging or smoothing. A rectangle weighting (b) can be
used to generate different windowed averages the cumulant. The red weighting results in a
uniform weighting of the data cumulants 20 steps centered at 80 steps into the future. The
green weighting equally averages all observed cumulants up until 80 steps into the future
and the blue weighting averages a window of cumulants starting at 80 steps. Continuous
weightings, like the gaussian function (c), can place more weight on the near term cumu-
lants (green) or in the future (blue). Finally (d) the exponential weighting, produced by
a constant γ, always weights near term cumulants highest and cumulants in the far future
exponentially less.

changes. Interestingly, given different parameterizations, the dispersive weightings provide

fairly similar summaries of future data.

Predictions formed using exponential weightings, or GVFs with constant γ, can be in-

crementally updated with computation independent of span. These exponential weightings

have a recursive form that allows computation of the target with with constant computation

and storage per step. The Gaussian weighting, on the other hand, does not have a recur-

sive form, and must be re-computed on each time-step (Mozer, 2001). Of the weightings

discussed so far, only the exponential can be updated with constant work. Nexting predic-

tions, represented as GVFs with constant γ, can be efficiently updated and appear to provide

similar representations of the target as other weightings when applied to Critterbot data.

5.8 Distinctiveness of nexting

From the perspective of conventional robotics research, there are three aspects of our nex-

ting robot that are distinctive. The first is that the robot updates a very large number of

predictions, in real time, about diverse aspects of its experience, giving it a distinctively

rich awareness of its surroundings. This contrasts with the conventional approach to robot

engineering, in which designers identify the minimal set of state variables needed to solve a

specific task, and the robot is oblivious to all others. This approach is perhaps the source of
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Figure 5.11: The target computed using several different cumulant weightings with Crit-
terbot data, over time. The IR beacon sensor values are plotted in black. The IR sensor’s
output has three large ‘humps’ as the robot drives past its charger (which pulses IR light
50 times a second). The pulsing, however, also causes significant variability in the cumu-
lant signal. The inset figures correspond to the weighting used in each target computation.
In this example, we see the challenge of learning and using a prediction about a single
time-step—the prediction by-k weighting. The exponential weighting—corresponding to
constant γ values—smooths out the cumulant, but also provide a clear sense of anticipa-
tion. The target rises and fails in advance of change in the data series. Different time scales
of prediction can be achieved with different parameterizations of the exponential weighting
(i.e. different γ values). Faster decays represent near term predictions and slower decays
represent longer term predictions. Finally note that the rectangle, gaussian, and exponential
weightings can produce similar target plots depending on their parameter values.
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the popular notion that to perform a task “like a robot” is to do it with minimal awareness

and understanding.

Nowadays, it is not unusual for advanced robots to have a substantial awareness of their

environment. The premier example of this is probably self-driving cars (e.g., Wang, Thorpe

& Thrun, 2003; Markoff, 2010). These systems can simultaneously track many objects

including cars, people, bicycles, and traffic signs. Self-driving cars are highly engineered,

and the things predicted by the underlying algorithms are strongly interrelated and cover a

few structured types. This contrasts with our approach to nexting, in which no prior model

is used and each prediction is formed independently of the others. Our realization of nexting

facilitates scaling to large numbers of sensors of arbitrary types.

The second way in which our nexting robot is distinctive is that it learns to make its

predictions online, during its normal operation. Most learning robots complete their learn-

ing before being put into use, in special training sessions requiring information that will not

be available during use, such as human-provided labels, demonstrations, or calibrations.

Most of the learning in self-driving cars and in SLAM robots is of this sort, with impor-

tant final tuning and local mapping done online. Classical state-estimation methods, such

as Kalman filters, adapt only low-dimensional gain parameters online. Finally, there have

been a handful of works with reinforcement learning robots that learn value functions or

policies online (e.g., Peters & Schaal, 2008; Tedrake, Zhang & Seung, 2005; Degris et al.,

2012). In all cases, the online learning is limited in its scale and diversity; learning a single

value function.

The third way in which our nexting robot is distinctive is that its predictions are rela-

tively long-term, extending significantly beyond a single time-step. Although prediction is

widely used in modern control theory, it is almost always limited to one-step (or differen-

tial) predictions (e.g., conventional Kalman filtering (Welch & Bishop, 1995) and system

identification (Ljung, 1998)). In time-series prediction, similar to nexting, one attempts to

make predictions about the future values of temporally correlated data series (e.g., classi-

cal autoregressive methods). These prediction methods are typically applied off-line (after

data collection), to shorter (hundreds to thousands of samples), and stationary (after pre-

processing) time series. Often, one-step time series prediction models are iterated to make

multi-step predictions. That can work well, but it does not scale to long time scales (not

span independent) or to large numbers of predictions such as we have used here. Recent

work has explored direct multistep time series prediction (Bontempi, 1999; Bontempi &

Taieb, 2011; Coulibaly, 2000; Zhang & Qi, 2005; Wong, 2010, Parlos, 2000; Cheng et al.,
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2006; Chevillon & Hendry, 2005). Nevertheless, time series prediction attempts to pre-

dict data at precise instances in time, as apposed to the dispersive predictions defined by

a GVF’s target. It is not entirely clear how to predict GVF targets with conventional time

series prediction methods without computing the targets ahead of time.

Compared to previous AI research on predictive knowledge validated from experience,

our work is distinctive in showing practicality and scalability with a physical robot. The

supposition that knowledge might be expressed in terms of predictions has been explored

by Cunningham (1972), Becker (1973), Drescher (1990), and Sutton (2009, 2012), but only

in small scale simulations, and in most cases with substantial abstractions given a priori.

5.9 Summary

We have successfully implemented a robot version of the psychological phenomenon of

nexting. The robot learned to predict thousands of aspects of its near future experience

ten times each second. It predicted at a range of time scales, from one-tenth of a second

to eight seconds. Perhaps our most important result was to show that robot nexting is not

only possible, but practical. Using computationally inexpensive methods such as TD(λ),

linear function approximation, and tile coding, we showed that the nexting computations

easily scale to thousands of predictions based on thousands of features on a small computer.

Although these algorithms are computationally cheap, they worked well. An extensive

analysis of a subset of the learned predictions found them to be substantially accurate within

30 minutes of real-time training—fast enough for frequent retraining or adaptation to new

sensors or environments. It is also notable that we used a single set of parameters and a

single set of features for all predictions, despite variations in signal scales, signal variability,

and time scales. Being able to treat all predictions uniformly in these ways facilitates the

general application of nexting.

This chapter provides our first piece of evidence that our approach to predictive knowl-

edge enables practical, large-scale learning. Our study of nexting shows that GVFs can rep-

resent an interesting and important class of predictive knowledge, and that this knowledge

can be learned at scale and on a robot with a value function learning algorithm from rein-

forcement learning. Our results show that a predictive approach to knowledge is practical

on a physical robot from the level of sensors and motors, using features that are constructed

from the same.

The next chapter continues our experimentation with learning GVFs on robots. In
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particular, the next chapter provides demonstrations of time-varying termination signals,

cumulants that mix terminations with observed signals, off-policy updating, and learning

control—all on robots.
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Chapter 6

Experiments with GVFs on robots1

The nexting experiment of the previous chapter illustrated how GVFs capture an interesting

class of predictions, and that those GVFs can be learned accurately and at scale from data

generated by a mobile robot. The aim of this chapter is to provide additional empirical evi-

dence that GVFs and Horde increase the applicability and practicality of predictive knowl-

edge learning. Specifically, this chapter contains experiments illustrating learning both state

and state-action GVFs with more complex, time-varying termination signals. These GVFs

were learned with a variety of feature generation schemes, with three different learning

algorithms, on two different robot platforms, and from data generated by wall following,

simple hand-coded behaviors, and human tele-operated behaviors. The results indicate our

reinforcement learning-based approach to predictive knowledge learning works across a

range of feature representations, parameters, questions, and goals. This chapter contains a

series of prediction demon experiments, and one off-policy control-demon learning exper-

iment. The chapter concludes with a discussion of other demonstrations of GVF learning

from the literature.

The experiments in this chapter illustrate some of the possibilities for specifying GVFs.

In many cases the examples are designed to have a straight forward objective meaning to

make it easier for the reader to follow. Whereas our robots could certainly learn predictive

questions with little objective to meaning to humans. The topic of automatically generating

GVFs is beyond the scope of this work.
1The experimental results and text of this chapter were both adapted from co-authored sections of several

papers (Sutton et al., 2011; Modayil, White, Pilarski & Sutton, 2012b; Modayil, White & Sutton, 2012; and
Modayil, White & Sutton, 2014) or originally generated for this document.
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6.1 Experiments with more complex terminations

A GVF’s ability to represent interesting predictions about the world is related to the defini-

tion of the cumulant and termination signals. In our nexting experiments, we investigated

the case where γ is taken to be a constant, and less than one. With a constant termination

signal, predictions are restricted to simple time scales in which cumulants are weighted ge-

ometrically less the longer they are delayed. In this section, we move beyond these simple

time scales, and describe variable termination signals.

The aim of this section is to apply and demonstrate these generalized terminations with

TD(λ) in three examples of nexting on a robot. All three experiments involved applying

TD(λ) to the log of data collected during the nexting experiment of the previous chapter.

Therefore, all three examples will make use of prediction demons and on-policy updating.

Up to now, the termination signal, γ(i), has been varied only from prediction to predic-

tion; for the ith prediction, γ(i) was constant and determined its time scale. Now we will

consider the case where the termination signal for an individual prediction varies over time

depending on the state the robot finds itself in. We can rewrite the definition of the target

given in Equation 4.2 of Chapter 4, to include both terminations that vary with time and

multiple GVF indexed by i = 1, 2, . . . :

G
(i)
t =

∞∑
k=0

(
Πk
j=1γ

(i)
t+j

)
Z

(i)
t+k+1, (6.1)

and our ith prediction, as before, is V (i)
t ≈ Eπ[G

(i)
t |St = s]. Technically, γ changes with

time because it is a function of state.

Event triggered termination

In our first experiment, consider a termination signal that is usually constant and near one,

but falls to zero when some designated event occurs:

γ
(i)
t =

{
0 if Light3 is saturated at time t;
0.9875 otherwise.

As long as Light3 is not saturated, this termination signal works like a simple eight-second

time scale—cumulants are weighted by 0.9875 carried to the power of how many steps they

are delayed. But if Light3 becomes saturated, then all cumulants after that time are given

zero weight. This kind of termination enables us to predict how much of something will

occur prior to a designated event (in this case, prior to Light3 saturation).
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The cumulant, in this first experiment, is a measure of the total power consumption of

the Critterbot’s three motors,

Z
(i)
t =

3∑
j=1

|MotorVoltaget(j)×MotorCurrentt(j)|.

As shown in Figure 6.1, power consumption tended to vary between 1000 and 3000 de-

pending on how many motors were active. The target Gt (defined in Equation6.1), also

shown in Figure 6.1, was similar to that of a simple eight-second time scale for much of the

time, but notice how it falls all the way to zero during Light3 saturation. Even though there

was substantial power consumption within the subsequent eight seconds, this has no effect

on the target because of the saturation triggered termination.

The target policy was the same as in nexting, the hand-designed wall following policy.

The answer functions are the same as the ones used in the nexting experiment: the wall fol-

lowing behavior policy (equal to the target policy, and thus on-policy), tile coding features,

and λ = 0.9.

Figure 6.1 shows that the TD(λ) demon performed well (after training on the previous

150 minutes of experience): over the entire data set the predictions captured approximately

88% of the variance in the target.

Predicting outcomes

The target Gt in the above experiment, like those of simple time scales, always weights

delayed cumulants less than immediate ones. It cannot put higher weight on the cumulants

received later than it puts on those received immediately. This limitation is inherent in the

definition of the target (Equation 6.1) together with the restriction of the termination signal

to [0, 1]. However, it is only a limitation with respect to the cumulant; if signals are mixed

into the cumulant in the right way, then predictions about the signals can be made with

different temporal profiles. Our next experiment demonstrates one possible mixture.

This experiment demonstrates how a demon can predict the value of a signal at the time

some event occurs. Suppose we have some signal Ot whose value we wish to predict, not

in the short term, but rather at the time of some event. To do this, we define a termination

signal γ(i)
t that is one up until the event has occurred, then is zero. The cumulant is then

constructed as follows:

Z
(i)
t = (1− γ(i)

t )Ot (6.2)

This cumulant is forced to be zero prior to the event (because 1 − γ
(i)
t is zero) and thus

nothing that happens during this time can affect the target. The target will be exactly the
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Figure 6.1: A demon’s prediction of total power consumption over an eight-second time
scale or up until the Light3 sensor value is saturated. This corresponds to how much power
will be used to reach light saturation or the effective end of the time horizon. To express
this kind of prediction, the termination signal must vary with time (in this case dropping to
zero upon Light3 saturation).

value ofOt at the time γ(i)
t first becomes zero. The definition of the target remains the same

as Equation 6.1.

For our second experiment, we made Ot equal to the indicator function for an event

(equal to one during it, and zero otherwise) and γ(i)
t is a constant less than one prior to

the event (and zero during the event). In this configuration, the prediction will be of how

imminent the onset of the event is. More precisely, we specified a single demon with the

question functions defined as: γ(i)
t prior to an event was 0.8 (corresponding to a half-second

time scale) and 0 otherwise, the cumulant defined in (6.2) with Ot equal to one during the

event and zero otherwise, and the target policy the same as before. The event was defined

as the right-facing IR sensor exceeding a threshold (corresponding to being within 12cm

of the wall). The answer functions were the same as the previous experiment. Figure 6.2

shows results of the demon’s learning using the data from the Critterbot.

Soft termination

Constructing the cumulant by (6.2) has several possible interpretations depending on the

exact form of Ot and γ(i)
t . In our final experiment of this section, shown in Figure 6.3, we
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Figure 6.2: Predictions of the imminence of the onset of an event regardless of its duration.
The event here is being too close (<≈12cm) to a side wall of the pen, and imminence is
with respect to a half-second time scale. The demon’s learned predictions rise before the
event and follow the shape of the target. Overall, the normalized mean squared error of this
prediction was 23%.

illustrate the use of signals Ot that are not binary and termination signals γ(i)
t that do not

fall all the way to zero—a soft termination. The idea here is to predict what the four light-

sensor readings will be as the robot rounds the next corner of the pen. Four demons are

specified—one for each light sensor. The question functions of each demon were defined

as follows. The outcome signal is equal to the sensor reading: O(i)
t = Light(i). The

termination signal, γ(i)
t , of each demon is set equal to 0.9875 (an eight-second time scale)

unless the robot rounded a corner, during which time the termination signal changed to 0.3.

Because the termination signal is greater than zero during the event, the light readings from

several time steps contribute to the target, G(i)
t , as the corner is entered. Rounding a corner

is an event indicated by a value from the side IR distance sensor corresponding to a large

distance (>≈25cm). This typically occurs for several seconds during the corner turn’s. The

target policy is equal to the behavior, which completes our specification of the question

functions. Figure 6.3 shows each demon’s prediction, learned from the nexting log file. In

this experiment, the future cumulants that are observed in the next corner the robot will

encounter, have the largest contribution to the target. The target gives non-zero weight to

only a few cumulants beyond the next corner, but not so much that the target would include
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Figure 6.3: Predictions of what each of the four light-sensor outputs will be when the
robot rounds its next corner. The greyed time steps indicate those in which the robot was
considered to be rounding a corner. Because the termination signal is greater than zero
during the event, the light data from several time steps contribute to the target as the corner
is entered. The normalized mean squared errors for the four predictions were 6%, 10%,
10%, and 11% over the course of the data set.

light two corners ahead in time.

6.2 Off-policy prediction learning

The experiments of the previous section were all learned via on-policy TD(λ). In this

section, we provide four examples of off-policy prediction learning on two different robots:

the Critterbot and the iRobot Create. These examples demonstrate realtime learning of both

state-action GVFs with GQ(λ), and state GVFs with GTD(λ).

The remaining experiments in this chapter were conducted before the nexting experi-

ment of the previous chapter. At the time these experiments were conducted we were just

beginning to understand how to effectively use the new gradient-TD methods on robots. In

the following experiments you will notice how we used different time-step, feature vectors,

and learning parameters in each experiment as we sought to find the best ways to achieve

stable learning. As a result of the nexting experiment and the experiments described in

Chapters 7 and 8, we have a clearer understanding of how to set the parameters for off-

policy learning on robots.

84



6.2.1 Experiments on the Critterbot

We performed two experiments to examine demon learning with GQ(λ) on the Critterbot.2

In both experiments, the robot’s sensors and actions were tiled to form a state-action feature

vector xa. A discrete set of actions were selected. Both experiments involve a single

prediction demon. The time-step used in these experiments was approximately 30 ms.

Our first off-policy experiment involved a single demon that might be useful in ensuring

safety: “How much time will pass before the robot hits an obstacle, if the robot drives

straight forward?”. The question functions for this demon were: π(s, FORWARD) = 1 ∀ s ∈

S, Zt = 1, and γt = 0 if the value of the Critterbot’s front-pointing IR proximity sensor

was over a fixed threshold, else γt = 1. The answer functions were λ = 0.4 and the

features were generated from a single tiling into twenty-six regions of the robot’s front IR

sensor (therefore xa has a single active component). The behavior policy cycled between

three actions: driving forward, driving in reverse, and resting. The GQ(λ) step sizes were

α = 0.3 and αw = 0.00001.

Figure 6.4 shows a comparison between predicted and observed time steps needed to

reach obstacles (the wall) when driving forward. Shown is the demon’s prediction Qt on

each visit (bold line) and the target from that step, Gt (thin line), in one of three regions.

Each of the three regions corresponds to non-overlapping discretization of the the front

IR sensor. The regions were only used for evaluation and visualization purposes—only a

single prediction demon was used. A visit to a region corresponds to a time-step in which

the IR sensor reading was within the corresponding range. Note as the robot drives forward

and passes through a region multiple visits are recorded (both the current prediction and a

sample of the target) and plotted in Figure 6.4.

Our second off-policy experiment also involved a single demon that might be useful in

ensuring robot safety: “How much time does the robot need to stop?”. We defined a single

demon to predict the number of time steps until one of the robot’s wheels approaches zero

velocity (i.e., comes to a complete stop) under current environmental conditions.

The question functions for this demon were: π(s, STOP) = 1 ∀ s ∈ S, Zt = 1, and

γt = 0 0 if the wheel’s velocity sensor was below a fixed threshold, else γt = 1. The

answer functions were λ = 0.1 and the features were generated from a single tiling into

eight regions of the wheel’s velocity sensor. The behavior policy alternates at fixed intervals

between spinning at full speed and resting. The floor surface, and thus the nature of the
2Both experiments were run by Patrick Pilarski.
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GQ(λ) predictiontarget

visits

Figure 6.4: Predicting time-to-obstacle on the Critterbot. The robot was repeatedly driven
toward a wall at a constant wheel speed. For each of three regions of the sensor space, for
each time-step spent in that region, we plot the prediction, Qt = q̂(St, At,w), on that step
(bold line) and the target from that step (thin line).

stopping problem, was changed after visits 338 and 534. The GQ(λ) step sizes were α =

0.1 and αw = 0.001.

Figure 6.5 demonstrates a demon’s ability to accurately predict stopping times on dif-

ferent surfaces. Shown is the prediction Qt = q̂(St, At;π, γ, z) made on visits to a region

of high velocity while stopping (bold line), together with the target computed from that visit

(thin line). As illustrated in Figure 6.5, this demon learned to correctly predict the target

(time steps to stopping) on carpet, then adapted its prediction when the surface was changed

to air and then changed to wood flooring.

6.2.2 Experiments on the Create

We performed two experiments to examine GVF learning with GTD(λ) on the iRobot Cre-

ate. In both experiments, the robot’s sensors and actions were tiled to form a state feature

vector x. A discrete set of actions were selected, matching the formulation of the GTD(λ)

algorithm. The first experiment involves a single prediction demon, and the second exper-

iment involves several prediction demons learned in parallel. The time-step used in these

experiment was approximately 0.5 seconds in length.

The previous experiments of this chapter provide a quantitative assessment of demon

prediction learning. In the following two experiments we take a qualitative approach to
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Figure 6.5: Predicting time-to-stop on the Critterbot. The robot was repeatedly rotated up
to a standard wheel speed, then switched to a policy that always took the STOP action, on
each of three different floor surfaces. Shown is the prediction Qt made on visits to a region
of high velocity while stopping (bold line) together with the target computed from that visit
(thin line). The floor surface was changed after visits 338 and 534.

evaluating prediction learning, specifically we will visually inspect and assess each predic-

tion to evaluate each prediction’s correctness during a teleoperation phase after learning is

complete. This style of prediction evaluation is of interest because a quantitative measures,

during learning, may not always represent the whole story. For example, the predictions

may behave erratically or not as expected in new situations, even if a quantitative measure

indicates low prediction error during learning. By visualizing the learning in a qualitative

way, we can further validate the prediction accuracy claims from the quantitative measures.

Predictive feature components

Our first Create prediction experiment was designed to illustrate how a demon’s prediction

can participate in the generation of the feature vector. This experiment’s demon was also

related to robot safety, and can be loosely interpreted as: “How imminent is bumping, if

the robot were to drive toward the wall?”. The question functions for this demon were: a

target policy that always selects the forward action , Zt equal to one if either bumper is

activated and zero otherwise, and γt equal to zero if the value of the Create’s front bumper

sensor was activated, and otherwise γt = 0.8 corresponding to a 2.5 second time scale. The

robot always remained essentially perpendicular to the wall (due to the specification of the
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behavior policy, described below), and thus driving forward will eventually lead to a bump

while driving backward will not induce a bump.

Unlike our previous experiments, the feature vector in this experiment includes pre-

dictive components. The feature vector xt is a binary vector with two components which

encode if bumping was detected or not, three components to encode the previous time-step’s

action (forward, backward, or pause), 128 components produced by tile coding the demon’s

prediction of bumping from the previous time-step, and a bias unit. Specifically, 128 com-

ponents of xt were produced by tile-coding Vt−1 = v̂(St−1,w) with eight one-dimensional

tilings into 16 regions. Overall xt contains 134 binary components, and 11 components are

non-zero on each time-step. Due to the Create’s limited sensory apparatus directly sensing

the distance to the wall is not often possible. This feature vector was used to disambiguate

the robot’s current situation.

The remaining answer functions were λ = 0.9, and the behavior policy was fixed,

probabilistically switching between driving forward (60%) and driving backward (40%),

and thus keeping the robot near the wall. The behavior never included rotation actions.

The robot’s movement with respect to the wall can be seen in the screen captures in Figure

6.6. The GTD(λ) algorithm’s learning-rate parameters were set to α = 0.1/11 and αw =

0.0001.

In order to test the accuracy of the robot’s prediction, we controlled the robot with a

remote and recorded the predictions. The prediction demon learned an estimate of the im-

minence of the onset of a bump from approximately three minutes of interaction generated

by the behavior policy. After learning, the demon’s learning was disabled and the robot was

tele-operated for approximately two minutes. The robot was driven toward and away from

the wall, and the demon’s predictions were recorded. Figure 6.6 shows several represen-

tative frames from a video of the robot under human control. The demon’s prediction of

imminence of the onset of bumping is included with each frame along with an indication if

bumping was detected. The intensity of the color of the prediction represents the magnitude

of the demon’s prediction.

We conclude from the results in Figure 6.6 that the demon’s predictions of the immi-

nence of the bumping are substantially correct. Here we take correctness to mean matching

our human expectations of how the prediction should change with the robot’s actions. The

prediction is high when the robot is near the wall, low when the robot is far from the wall,

and rises and falls as the robot moves forward and backward. Thus, the predictions match

our expectations.
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Figure 6.6: Predicting the imminence of the onset of a front bump on the iRobot Create.
This figure includes a set of representative frames gathered while testing a single demon’s
predictions. Each of the six frames above includes a video still of the robot under human
remote control, a visualization of whether one of the bumpers was active (lefthand box
labelled ‘bump state’), a visualization of the demon’s prediction (righthand box labeled
‘GTD(λ) prediction’), and a visualization of the current action (forward and backward with
a gray arrow, no action with gray pause symbol). For the bump state, blue indicates no
bump detected and green indicates bump detected. For the predictions, blue indicates low
prediction magnitude, green indicates high prediction magnitude, and blue-green indicates
an intermediate prediction magnitude. Above, we see the robot driving toward the wall (
frames #0, #1, #3) and the demon’s prediction rising in anticipation of bump. As the robot
backs away from the wall (frames #2 and #5) the prediction falls. A bump event occurs in
frame #1. Even on an interrupted attempt (frame #4), the prediction recedes as the robot
then begins to back away from the wall (frame #5).

Multiple predictions

Our second Create prediction experiment was designed to illustrate multiple prediction

learning in parallel. In this experiment, we used three prediction demons corresponding

to the robot’s orientation with respect to the wall, and can be loosely interpreted as: “How

imminent is bumping in the current configuration, with respect to each bump sensor, if the

robot were to drive forward?”. In this experiment, the robot was allowed to rotate, chang-

ing its orientation with respect to the wall. Depending on the robot’s orientation, driving

forward will cause a left bump, right bump, left and right bump, or no bump.

Each GVF was about a different bump sensor: left bumper, right bumper, and both
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bumpers. The question functions corresponding to the first demons were: π(1) continu-

ously selects the forward action, Z(1)
t equal to the binary left bumper reading, and γ(1)

t

equal to zero if the left bumper was activated, else γ(1)
t equal to 0.5 corresponding to a 0.5

second time scale. The second demon’s question functions were defined in a similar way:

π(2) equal to the forward policy, Z(2)
t equal to the right bumper reading, and γ(2)

t equal to

zero if the right bumper was active, and 0.5 otherwise. Finally, the third demon’s question

functions were: π(3) equal to the forward policy, Z(3)
t equal to ones and γ(3)

t equal to zero if

either left or right bumper was active, and Z(3)
t equal zero and γ(3)

t equal to 0.5 otherwise.

All three prediction demons used the same answer functions. The robot’s behavior

policy in this experiment was generated by human tele-operated control. The robot was

controlled with a remote control switching between rotating back and forth and driving

forward, producing a three minute log of data. Because the behavior was generated by

human inputs, we set µ(St, At) equal to one. 3 During learning, the Create remained close

to the wall, never facing away from the wall. The downward-facing IR sensor’s reading of a

black strip of tape along the ground near the wall provided the robot with a noisy indication

of the robot’s current orientation (electrical tape gives a distinctive IR output compared to

the rest of the floor). The feature vector included six two-dimensional tile codings of all

pairwise combinations of the four IR sensors, each using four tilings into eight regions of

the downward IR sensors. The feature vector also included four components encoding the

state of the left and right bump sensors, four components encoding the previous time-step’s

action (forward, backward, rotate right, rotate left), and a bias unit. In total the feature

vector contained 1545 components, 27 of which were equal to 1 on at each time-step. The

λ function was set to a constant value of 0.9. The parameters to GTD(λ) were α = 0.1/27

and αh = 0.0001. We trained the three prediction demons off-line and off-policy in five

passes over the training set.

Figure 6.7 shows several representative frames from a video of the robot under human

tele-operation in various configurations near the wall, the current bump readings, and the

three demon predictions. As before, we tested the predictions by controlling the robot by

remote, while recording the predictions, after learning. The predictions were not perfect;

for example the prediction in frame #3 was not 1.0, and the predictions when the robot was

facing away from the wall were not precisely zero. Overall, we conclude that the three pre-

dictions are substantially correct, illustrating that the demons can predict imminence of the
3This choice technically introduces bias, causing the algorithm to converge to a different solution. In this

case the final predictions were reasonable, but this is more generally a challenge due to using behavior generated
by human control.
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Figure 6.7: Three demon’s predictions of the imminence of the onset of a front bump
learned on the iRobot Create. This figure includes a set of representative frames gathered
while testing the robot’s prediction. Each of the seven frames above includes a video still
of the robot under human remote control, a visualization of current bump state (left three
boxes), a visualization of each demon’s prediction (right-hand three boxes labeled ‘GTD(λ)
prediction’), and a visualization of the current action with gray arrows and pause symbols.
The orientation of the robot is marked with a red line. The blue and green colors have the
same interpretation as they did in Figure 6.6. Above we see the robot bumping into the wall
(frames #3, #4 and #5), facing the wall and high prediction of imminence of bump onset if
the forward action were taken (frames #0, #1, #2 and #7), and facing away from the wall
with a low prediction of imminence of bump onset (frame #6).

onset of bumping according to each bump sensor in a variety of positions. More generally

these results indicate that multiple GVFs can be learned off-policy from robot data, and

that those predictions are reasonably accurate when tested in a variety of configurations,

different from the training data.
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6.3 Off-policy control learning

Our final experiment in this chapter examined whether a control demon, using GQ(λ), could

learn a goal-directed policy when given a much greater breadth of experience. The objective

was to learn how-to knowledge about maximizing the light sensor reading. We used a large

discrete action set with 27 possible actions corresponding to velocities for the robot’s three

wheels (e.g., {{10,10,10} , {10,10, 0} , ..., {-10,-10,-10}}). The time-step corresponded to

approximately 500 ms.

The question functions corresponding to the goal of maximizing the near-term value of

the front light sensor of the Critterbot (Light0): π = greedy(q̂), γt = 0.9, Zt equal to a

scaled reading from Light0. The answer functions were λ = 0.9, a behavior policy that

picks randomly from the set of 27 actions, and the state-action feature vector was produced

by tile coding the light sensor readings. In particular, 32 individual tilings over each of the

four light sensors, where each tile covers about 1/8th of the range. With the addition of a

bias unit, this made for a total of 27, 675 binary features components, of which 129 were

active on each time step. The parameters to GQ(λ) were α = 0.1/129 and αh = 0.0.4

Using the random behavior policy, we collected a training set of 61,200 time steps (ap-

proximately 8.5 hours) with a bright light at nearly floor level on one side of the Critterbot’s

pen. During this time, the robot wandered all over the pen in many orientations. We trained

the control demon off-line and off- policy in two passes over the training set. To assess

what had been learned, we then placed the robot in the middle of the pen facing away from

the light and gave control to the demon’s learned policy. The robot would typically turn

immediately and drive toward the light, as shown in the first panel of Figure 6.8. We eval-

uated the learned policy with eight independent runs, four with the light on the south side

of the pen and four with the light on the west side of the pen. In all eight trials the robot

successfully navigated to and stayed at the light.

We conclude that the results of this experiment demonstrate that a demon can learn an

effective goal-directed behavior from substantially different training behavior.
4Setting αh = 0.0 means the secondary weights are not used in the GQ(λ) update. In practice we have

found that very small αh = 0.0 results in faster learning compared to αh values closer in magnitude to α.
The experiments of Chapter 7 show that αh = 0.0 can lead to divergence, and thus setting αh very small
is a dangerous choice for a predictive knowledge aquisition. Nevertheless, at the time this experiment was
conducted this setting produced the best result for the particular GVF we specified.
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Figure 6.8: Learning light-seeking behavior from random behavior. Shown are superim-
posed images of robot positions: Left) In testing, the robot under control of the target
policy turns and drives straight to the light source at the bottom of the image; Middle) Un-
der control of the random behavior policy for the same amount of time, the robot instead
wanders all over the pen; Right) Light sensor outputs averaged over seven such pairs of
runs, showing much higher values for the learned target policy.

6.4 Other demonstrations of GVF learning

The experiments described in this Chapter and our paper (Sutton et al., 2011) were the first

empirical demonstrations of GVF learning, but they also inspired several other empirical

studies on GVF learning. This section summarizes these other works, adding further sup-

porting evidence of the usefulness of GVFs as a language for predictive knowledge and the

evidence of the practicality of learning GVFs with reinforcement learning methods.

On-policy GVF learning has been explored in other robot domains, demonstrating con-

crete benefits of predicting what will happen next. In the domain of adaptive prosthetics,

GVFs have been used to represent predictions about a multi degree-of-freedom robotic arm

(Pilarski et al., 2012). Each prediction was represented as a constant termination GVF and

learned on-policy and in parallel with the TD(λ) algorithm and tile coding function approx-

imation. After learning, the predictions were then used to adapt the switching order of the

robot arm to significantly improve upon task completion efficiency. Later work showed that

these nexting predictions can be learned online while a human amputee generated the be-

havior data, significantly improving the amputee’s user experience (Edwards et al., 2014).

This adaptive prosthetics work is important because it provides another demonstration of

our basic learning scheme—linear temporal difference learning and large binary feature

representations—working on a very different robot platform. Their work also goes beyond

the experiments of this chapter, demonstrating a concrete application of GVF learning: im-

proving the performance of switching time. Our experiments (in this chapter and Sutton et

93



al., 2011), remain the only ones combining off-policy GVF learning on robots.

General value function learning has also been studied in simulated robot domains. For

example, nexting predictions of laser welding-process sensors were learned in simulation

from a multi-level representation computed from simulated camera images (Gunther et al.,

2014). General value function learning has also been explored in RoboCup 3D soccer

simulation league environment: where a set of control demons were used to learn the role

assignment of each robot in order to maximize winnings of the team (Abeyruwan et al.,

2014).

Beyond the results of this chapter, the practicality of learning GVFs and representational

abilities of GVFs have been demonstrated in small simulation worlds. The work of Degris

et al. (2012) contains the most extensive investigation of control demon learning, with four

different off-policy reinforcement learning methods compared in three continuous-state do-

mains. The results of Degris’s study indicate that control policies learned off-policy from

randomly generated behavior can effectively solve several simulated cost-to-go problems.

Recently, multi-step predictions represented as GVFs were compared to PSRs for represent-

ing partially observable domains (Schaul & Ring, 2013). Specifically, the study compared

estimating a state-action value function for navigating a discrete maze with features com-

puted from a set of GVF predictions and features computed from a set of PSR predictions.

The results showed that predictive features based on GVF predictions were more useful than

predictive features based on PSR features, although the predictions were given not learned.

6.5 Summary

This chapter presented several demonstrations of GVF learning on robots: three on-policy

prediction learning experiments on the Critterbot, two off-policy prediction learning exper-

iments on the Critterbot, two off-policy prediction learning experiments on the Create, and

one off-policy control learning experiment on the Critterbot. The chapter closed with an

discussion of experiments with GVF learning from the literature.

The aim of this chapter was to demonstrate how many different predictions can be for-

mulated as GVFs, and that these GVFs can be practically learned from samples generated

by a robot. To achieve this goal we conducted several robot experiments demonstrating

demon learning with Horde. Our experiments covered a wide variety of configurations in-

cluding on-policy updating, off-policy updating, learning state GVFs, learning state-action

GVFs, learning policies, different feature representations, predicting many different signals
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with time varying termination, and three different temporal difference learning methods,

on two different robots. In each configuration, the approximate GVFs were learned to ac-

ceptable levels of accuracy using simple linear function approximation. The results of this

chapter provide evidence of the contribution of GVFs and Horde towards developing pre-

dictive knowledge.
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Chapter 7

Experiments with gradient-TD
learning

Gradient-TD methods make exploring parallel demon learning practical for the first time,

but our empirical experience with these new algorithms is limited. Gradient-TD methods,

in theory, have all the right attributes for large scale prediction learning, but like any new

algorithm, experimental validation is needed.1 This chapter contributes new experimental

results and insights to the growing body of experimental work on linear-complexity, off-

policy reinforcement learning (see Sutton et al., 2009; Delp, 2010; Hackman, 2012; Geist

& Scherrer, 2014; Dann et al., 2014).

The experiments of this chapter focus on the GTD(λ) algorithm. The GTD(λ) algo-

rithm, as our experiments in Chapter 6 show, can be effective for learning state GVFs on

robots. To improve our understanding, we test the GTD(λ) algorithm in more controlled

empirical settings, which is difficult to do on a robot. In particular, our experiments in-

vestigate the role of the secondary weight vector of the GTD(λ) algorithm. Prior studies

have cast some small doubt on the benefit of the secondary weights in practice (specifically

Delp, 2010; Hackman, 2012; Degris et al., 2012), suggesting that in some domains, a large

learning-rate for the secondary weights, αh, can slow learning. Our experiments investigate

how well the GTD(λ) algorithm learns its secondary weights in a Markov chain domain and

Baird’s counterexample. Our experiments also investigate how well the GTD(λ) algorithm

can minimize the MSPBE when the secondary weights are ignored, when the secondary

weights are replaced by their correct (unlearned) values, and when the secondary weights

are learned in the usual way. Taken together, the experiments of this chapter provide new
1Appendix B contains a discussion of other GVF learning methods besides ones that minimize the MSPBE

and a summary of the evidence for and against the MSPBE as an objective function for GVF learning.
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insights into how the performance of the GTD(λ) algorithm relates to variations in its pa-

rameter values.

All the experiments of this chapter focus on state GVF estimation and linear function

approximation. We begin with experiments in a Markov chain problem and then move to

Baird’s counterexample.

7.1 Experiments on Markov chains

We begin our experimental exploration of GTD(λ) and its secondary weight vector on the

Markov chain problem, previously used in other empirical explorations of gradient-TD

learning methods (e.g., Sutton et al., 2009; Maei, 2011; Hackman, 2012).

7.1.1 Problem

We use a Markov chain task, depicted in Figure 7.1, to perform experiments to better un-

derstand secondary weights of the GTD(λ) algorithm. The chain has two actions, left and

right, and two terminal states at the ends of the chain, with the left termination producing

a cumulant of -1 and the right termination producing a cumulant of +1. Cumulant values

on all other transitions are zero. Upon entry into one of the termination states, the agent is

teleported to the middle state in the chain.

0 1 2 3 4 5 6
+1-1

1
0
0

1/√2
1/√2
0

1/√3
1/√3
1/√3

0
1/√2
1/√2

0
0
1

0
0
0

0
0
0

Figure 7.1: The Markov chain domain with discrete states and actions. The nonzero cumu-
lants are labelled in red, and the feature vector corresponding to each state is given below
each state.

The learning problem is specified by the three question functions. The target policy

selects the right action with probability p, and the left action with probability 1 − p. The

cumulants are given by the definition of the problem, and γt becomes zero upon entry into

either terminal state and is 1.0 otherwise.

The answer functions are: λ is a constant function equal to 0.9, and the behavior policy,

97



like the target policy, takes the right action with probability p and the left action with prob-

ability 1− p. Depending on the value of p for the target and behavior policies, an instance

of the chain problem can be on- or off-policy. The feature vectors are given in Figure 7.1.

Note that the feature vector is of lower dimension than the number of states in the chain,

and the representation is insufficient to exactly represent the value function.

The chain domain enables direct computation of the optimal value of ht, given the cur-

rent estimate of wt which we denote h?. We can compute h? directly from the parameters

of the MDP and current estimate wt:

h?t = C−1(−Aπwt + bπ), (7.1)

where C = X>BX, Aπ = X>B(I − λγP π)−1(I − γP π)Xwt, and bπ = X>B(I −

λγP π)−1R. See section 2.6 for the derivation of this equation.

We can also compute the least squares solution for the secondary weights, denoted by

hGTD. This approximation is computed from the data generated by the demon’s interaction

with the Markov chain task and wt:

hGTD−LS
t =

(
xx>

)−1
δte, (7.2)

where · denotes the sample average. Note that hGTD−LS
t estimates h?t by sampling the

expectations: Eµ[x(St)fs(St)
>]−1Eµ[δtet] . Computing hGTD−LS

t via Equation 7.2 makes

use of the complete history of sample transitions, (xt, ρt, rt+1,xt+1), to recompute Eµ[δtet]

on each time-step. This computation is needed because δt is a function of the current wt.

7.1.2 Learning h

Our first set of experiments seeks to answer a basic question: “Are the secondary weights

learned by GTD(λ) similar to their theoretical values (h?), if the parameters of GTD(λ)

are tuned to minimize projected bellman error?”. We are interested in the case where the

parameters of GTD(λ) are tuned to minimize MSPBE because this represents the usual use

case for GTD(λ). That is, informally, we are interested in how well the GTD(λ) algorithm

learns the h vector under normal use. Similarity will be defined below.

The prior experimental work on gradient-TD learning did not address the question

stated above. Several studies reported good results when the secondary weights are learned

slowly, using a small value for αh compared to α (Sutton et al., 2009; Degris et al., 2012;

Hackman, 2013). This is perplexing because we might expect it to be difficult for the update

of h to track the moving target Eµ[δtet], when αh is smaller than α. Recall that GTD(λ)
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uses an LMS rule to learn h based in part on the TD errors produced by the update to the

primary weight vector wt. On the other hand, Maei’s (2011) experiments with GTD(0) on

Baird’s counterexample used a value of αh much larger than α, but those experiments did

not investigate or report if h approximated h? well.

Based on prior evidence, we hypothesize that the GTD(λ) algorithm’s best performance

will be achieved with small values of αh relative to α, and thus the secondary weights will

not match what the theory tells us h should be.

Experiment

The task of our first experiment was to find the values of α and αh that produce the the

lowest MSPBE over the last 50 episodes of a 200 episode experiment on five instances of

the chain problem. We tested 72 instances of GTD, each with a different combination of

α and αh: all combinations of α ∈ {0.0025, 0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32}

and αh ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 0.25, 0.5, 0.75, 1.0}. The five problem instances

included two on-policy instances and three off-policy instances. Each algorithm instance

was initialized with w = ~0 and h = ~0, and then run for 200 episodes. Then the whole

thing was repeated for 100 runs. The random seed was initialized to the same value for all

algorithm instances at the beginning of each group of 100 runs. We used the MSPBE as a

measure of performance like many previous studies of gradient-TD methods (e.g., Sutton

et al., 2009; Maei, 2011; Hackman, 2012). For each run, the root MSPBE or RMSPBE

was recorded at the end of each episode and averaged over runs. At the beginning of each

run, the weight vectors of the GTD(λ) were both set to zero. We selected the α and αh that

achieved the best total RMSPBE over the last 50 episodes.

The values of α and αh that achieved the best total RMSPBE over the last 50 episodes

are given in Table 7.1. Small values of αh yielded the best RMSPBE, but the smallest

available value, αh = 0.00001, did not produce the lowest average RMSPBE in an chain

instance.

chain pµ = 0.5 pµ = 0.5 pµ = 0.5 pµ = 0.6 pµ = 0.95
instance pπ = 0.5 pπ = 0.25 pπ = 0.75 pπ = 0.4 pπ = 0.95

α 0.01 0.01 0.01 0.01 0.08
αh 0.01 0.1 0.0001 0.01 0.01

Table 7.1: The values for α and αh found to minimize RMSPBE on average, in each in-
stance of the chain problem. Each instance is defined by the combination of target policy
and behavior policy. The probability of taking the right action for the target policy is de-
noted by pπ, and likewise for the behavior: pµ. See text for a description of the experiment.
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cosine-similarity(a,b) x>By√
x>Bx

√
y>By

, where x = Xa, y = Xb

weighted-difference(a,b)
√∑

s∈S d(s)[(a− b)>x(s)]2 =√
(X(a− b))>B(X(a− b))

correction-difference(a,b)
∣∣e>t a− e>t b

∣∣
Table 7.2: Three different ways to measure the similarity of the secondary weights of
GTD(λ) and their optimal values given by the parameters of the MDP.

We now turn to describing how we measured the similarity of h to h?, in order to an-

swer our question specified in Section 7.1.2. We used three measures summarized in Table

7.2. The first was the cosine-similarity which measures the angle between two vectors,

weighted by the state visitation probabilities induced by the behavior policy and the transi-

tion dynamics of the MDP. The cosine-similarity takes on values between -1 and +1, with -1

indicating the two vectors point in opposite directions, +1 indicating the two vectors point

in precisely the same direction, and 0 indicating the two vectors are orthogonal.

The second measure, the weighted-difference, measures the 2-norm difference between

two vectors, again weighted by the distribution of state visitation. The minimum value of

the weighted-difference is zero, indicating high similarity, while higher values indicate low

similarity. In all our experiments the weighted-difference was always less than one.

The third measure, the correction-difference, computes the absolute difference in the

correction term used in the GTD(λ) algorithm’s update, h>et. Again, the minimum value

of the correction-difference is zero, indicating high similarity, while higher values indicate

low similarity.

To answer our question, we performed an experiment using the parameter settings from

Table 7.1. One instance of GTD(λ) was run on each of the five chain problem instances.

Each algorithm instance was initialized with w = ~0 and h = ~0, and the values of α and

αh were set according to Table 7.1. Each combination was run for 200 episodes. Then

the whole thing was repeated for 200 runs. For each run, the similarity of h to h? and the

similarity of hGTD−LS and h? (according to our three measures) were recorded at the end of

each of the 200 episodes and averaged over runs. We also recorded the `2-norm of the h

and h? for each problem instance, at the end of each episode, again averaged over 200 runs.

Figure 7.2 presents the results.
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Results and conclusions

The results in Figure 7.2 show that over five problem instances, the similarity of h to h? was

low compared to the similarity of hGTD−LS to h?. The cosine-similarity of hGTD−LS to

h? approached its max value of 1.0 after only a few episodes, and the weighted-difference

of hGTD−LS to h? quickly decreased to its min-value after a few episodes. In comparison,

the cosine-similarity of h and h? seemed to get worse with each episode. The weighted-

difference and correction-difference of h and h? appeared to improve over time.

The smallest weighted-difference and correction-difference between h and h? were

achieved in the last problem instance, which featured on-policy updates and a behavior that

nearly always selected the right action. The cosine-similarity was low for this problem

instance. The plot of the norm indicates that both the learned h and h? did not change

much from zero, perhaps due to the speed of learning the primary weights (due to the high

α = 0.08 value). Good reduction in weighted-difference and correction-difference was

also observed in the (pµ = 0.5, pπ = 0.75) problem instance. In this instance, αh was

small, equal to 0.0001, and h was initialized to the zero vector. Therefore, h was never

changed far from the zero vector, which can be seen in the plot of the norm of h. In this

instance, the reduction in the norm of h? over time seems to account for the shape of the

weighted-difference and weight-correction plots.

Overall, we conclude that the secondary weights learned by the GTD(λ) algorithm

do not match their theoretical values (h?) well, when compared to how well hGTD−LS

matched h?. However, our results do suggest that the similarity between the secondary

weights and h? can improve over time, but not according to the cosine similarity. The over-

all similarity is typically highest when αhα > 1.0, meaning that h can track changes in δt,

caused by more slowly changing wt, as observed in our results.

7.1.3 Tuning GTD(λ) for similarity

Our next question is: “Does the similarity between h and h? improve if we tune α and

αh to optimize some measure of similarity?”. There are no related experiments in the

literature to give us insight into the answer of this question. One might expect that directly

optimizing for similarity should improve similarity, but we will be limited by our ability to

define a useful measure to optimize the learning rate parameters of the GTD(λ) algorithm.

In addition, we cannot guarantee that the GTD(λ) algorithm will be able to learn h well

in the chain instances we have chosen. Therefore, we hypothesize a small improvement in

similarity over the results of the previous section.
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Figure 7.2: The similarity of h to h? and hGTD−LS to h? when the parameters of the
GTD(λ) algorithm were tuned to minimize the MSPBE on several instances of the Markov
chain domain. Each column corresponds to one of five chain problem instances. The first
three rows corresponds to one of the three similarity measures described in text. Each
subfigure in the first three rows plot the similarity of h to h? (plotted with green lines) and
hGTD−LS to h? (plotted with red lines) over 200 episodes on one instance of the chain task.
The last row of figures plots the `2-norm of h (in green) and h? (in red) for each problem
instance. The results for the correction-difference between hGTD−LS and h? were always
near zero and were excluded from the results presentation. Note that the cosine-similarity
of hGTD−LS to h? quickly approaches one—high similarity—but it is difficult to see in the
first row of results.

Experiment

We used the same five instances of the Markov chain tasks, and conducted an experiment

to find values of α and αh that optimize the overall similarity. We created a total-difference

measure that attempts to balance the cosine-similarity and weighted-difference measures

used in the previous experiment:

total− difference(a,b) =
weighted− difference(a,b)

ecosine−similarity(a,b)
. (7.3)

The total-difference measures how well two vectors match in both magnitude and direction,

while incorporating the weighting by the stationary distribution included the definitions of

the weighted-difference and the cosine-similarity. The exponential accounts for the cosine-

similarity taking on values less than zero. The correction-difference was not included be-

cause it did not seem to contribute much more information than the weighted-difference,
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in the previous experiment. If the total-difference is zero, its minimum value, then the two

vectors are the same.

Our first task was to find values of α and αh that produce the the lowest total-difference

over the first 100 episodes on five instances in the chain problem. We choose to optimize

the parameters over the first 100 episodes because manual exploration revealed that near the

end of the 200 episodes, h?t begins moving toward the zero vector. We were more interested

in early learning when ht is not zero, and thus our optimization criteria focused on the first

100 episodes.

We tested 72 instances of GTD, each with a different combination of α and αh sampled

from the same sets as the previous experiment. The experiment was run exactly as before,

running 200 episodes per run and 100 runs for each algorithm instance on each problem

instance. For each run, the mean total-difference over the first 100 episodes was recorded

and averaged over runs.

The values of α and αh that achieved the lowest total-difference over the first 100

episodes are given in Table 7.3. In all problem instances tested, αh > α produced the

lowest total-difference.

chain pµ = 0.5 pµ = 0.5 pµ = 0.5 pµ = 0.6 pµ = 0.95
instance pπ = 0.5 pπ = 0.25 pπ = 0.75 pπ = 0.4 pπ = 0.95

α 0.0025 0.005 0.005 0.0025 0.04
αh 0.01 0.01 0.01 0.01 0.1

Table 7.3: The values for α and αh found to minimize total-difference on average, in each
instance of the chain problem.

Given these values of α and αh, we ran an experiment to discover the similarity of h

compared to h? on the chain problem. The experiment was run exactly as before, except

the values of α and αh for each problem instance were set according to Table 7.3. Figure

7.3 summarizes the results.

Results and conclusions

The results of this experiment (see Figure 7.3) illustrate some improvement in similarity

between h and h?, by all three measures, in comparison with the results found in Figure

7.2. Specifically, the weighted-difference and correction-difference improved in the first

two chain instances. The weighted-difference and correction-difference improved steadily

over time for the (pµ = 0.5, pπ = 0.75) instance, but the norm of h was not zero as in Fig-

ure 7.2. Overall, the cosine-similarity showed the most significant improvement compared
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to the results in Figure 7.2, and the norm of h aligned well with the norm of h? in every task,

after an initial transient period. Overall, we conclude that, in the chain problem instances
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Figure 7.3: The similarity of h to h? and hGTD−LS to h? when the parameters of the
GTD(λ) algorithm were tuned to optimize similarity on several instances of the Markov
chain domain. The format, organization, and notational conventions of these graph are the
same as those established in Figure 7.2.

tested here, and when the parameters of the GTD(λ) algorithm are tuned to optimize our

total-difference measure, the secondary weights learned by the GTD(λ) algorithm match

their theoretical values (h?) well in comparison to the results of the previous section’s ex-

periments (Section 7.1.2). We can force the secondary weights to better match their optimal

values through optimization of similarity, at least in the configurations tested. The ratio of
αh
α , which was found to optimize similarity, for each of the five problem instances, was

always larger than 1.0. We speculate that the h vector can more easily track the changes in

its non stationary update target, the error due to current value of the primary weights (δtet),

when αh ≥ α.

7.1.4 MSPBE minimization and h

Prior experimental studies of gradient-TD methods (e.g., Sutton et al., 2009; Degris et

al., 2012; Hackman, 2013; Dann et al., 2014) demonstrated that αh values near zero can

achieve good performance in terms of MSPBE optimization and reward maximization (see

Degris et al.’s (2012) policy-learning experiments). Perhaps the GTD(λ) algorithm works
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best when not using the secondary weights at all (αh = 0). Our experiments so far suggest

that the values of α and αh that optimize the similarity of h to h? can be very different than

the ones found to optimize the MSPBE.

Our next question is long but simple: “How does the performance of GTD(λ) with α

and αh optimized for similarity compare to the performance of GTD(λ) with (1) α and αh

optimized to minimize the MSPBE, (2) αh = 0 and α optimized to minimize the MSPBE,

and (3) ht = h?t and α optimized to minimize the MSPBE?”. Based on the experimental

evidence from the literature, we hypothesize that the variant of GTD(λ) with αh equals zero

and the variant that uses h? will yield the best MSPBE minimization.

Experiment

We used the same five problem instances as the proceeding experiments, but this time we

compared the performance of four variants of the GTD(λ) algorithm. The first variant used

the settings for α and αh given in Table 7.1. The second variant of GTD(λ) used the

settings for α and αh given in Table 7.1. The third variant used αh = 0 and α optimized

for minimum RMSPBE (same range and setup as previous experiments). The final variant

used h?t instead ht in the update of of GTD(λ) and α optimized for minimum RMSPBE.

The first and second variants of GTD(λ) correspond to optimizing MSPBE and similar-

ity. The third variant corresponds to not using the secondary weights in the update, and the

final variant uses the theoretically optimal h vector given the current estimate of wt and the

parameters of the MDP.

In our final experiment with the chain problem, we tested each variant of GTD(λ) on

each of the five chain problem instances. Our experimental setup was similar to before.

Each algorithm instance was initialized with w = ~0 and h = ~0, and then run for 200

episodes. Then the whole thing was repeated for 1000 runs. For each run, the RMSPBE

was recorded at the end of each of the 200 episodes and averaged over runs to produce the

learning curves in Figure 7.4.

Results and conclusions

The results show that the GTD(λ) algorithm with αh = 0 produced the best learning curve

in each of the five problem instances. In addition, the variant of GTD(λ) with αh tuned to

minimize RMSPBE was at least as good across the five problems as the variant of GTD(λ)

that used h?. Finally, the variant of the GTD(λ) algorithm with αh tuned to optimize
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similarity was the slowest to learn in all five problem instances, but did approach the per-

formance of the other algorithm variants by the end of the experiment, in three problem

instances.
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Figure 7.4: The RMSPBE curves for four instances of the GTD(λ) algorithm on five in-
stances of the Markov chain domain. We have labelled each variant of GTD(λ) in the figure
itself. See text for a description of the experiment and discussion of the results.

Our main conclusion from these results is that learning the secondary weights with

GTD(λ) and α and αh set to minimize RMSPBE performs quite well compared to not using

the secondary weights at all (i.e., αh = 0), and compared to using the optimal secondary

weights (i.e., h? instead of h). We also conclude that tuning the learning rate parameters

of GTD(λ) to optimize similarity results in a noticeable performance penalty in terms of

MSPBE reduction over time. However, it appears that there is less of a performance penalty

106



in problem instances with more deterministic behavior policies. Finally, we also conclude

that the variant of GTD(λ) with αh = 0 can perform better in initial learning than the variant

that used h?. We conjecture that, in problem instances where this is true, the correction term

is not needed for convergence and the correction term actually slows learning, even when

h? is used. Verifying this conjecture requires future experiments which we leave to future

work.

7.1.5 Overall conclusions

Overall we make several conclusion, from our experiments on the Markov chain problem.

The first is that optimizing the parameters of GTD(λ) for low MSPBE will not necessarily

facilitate learning a secondary weight vector that is near equal to h?. It appears that learning

the secondary weights, albeit with αh
α < 1.0, yields similar MSPBE learning curves as

using the secondary weight vector specified by h?. If, on the other hand, αh
α > 1.0 is true,

then the learned secondary weights can approximate h? better but not perfectly, and the

algorithm will typically yield slower MSPBE minimization.

7.2 Experiments on Baird’s counterexample

There is some uncertainty surrounding the importance, in practice, of the secondary weights

in problems featuring off-policy sampling. Prior experiment studies have demonstrated that

both off-policy linear TD(0) and expected Sarsa(0) can outperform their gradient-TD coun-

terparts (Sutton et al., 2009; Maei, 2011; Hackman, 2012) in on-policy simulation prob-

lems, and expected Sarsa(0) can outperform GQ(0) in some off-policy domains (see Hack-

man, 2012) . Our experiments in this chapter show that fast learning can be achieved using

GTD(λ) with the secondary weights equal to ~0 under off-policy sampling. Our experiments

with learning off-policy on robots in the previous chapter showed accurate predictions and

that policies can be learned with αh small and even zero. On the other hand, there are

known counterexamples for convergence of linear off-policy TD(0) with function approxi-

mation (Baird, 1995), with non-linear function approximation (Maei, 2011), and Q-learning

(Baird, 1993). Each of these counterexamples have been solved by gradient-TD learning

methods.

In order to gain some new understanding about the importance of the secondary weights

in off-policy domains, we performed several experiments with the GTD(λ) algorithm on

Baird’s counterexample: an MDP that causes linear off-policy TD(0)’s value estimates to

diverge.
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7.2.1 Problem

We use a variant of Baird’s counterexample (Baird, 1995) described by Maei (2011) and

shown in Figure 7.5. We will refer to this problem slightly inaccurately as Baird’s coun-

terexample. This MDP contains seven discrete states and no terminal states; it is a contin-

uing problem. There are two actions available in each state: action one (solid arrow) and

action two (dashed arrow). Action one moves the demon to state seven from every state,

including from state seven. The second action, in states one to six, moves the demon to a

new state from one to six randomly with equal probability, but never to state seven. The

second action, in state seven, moves the demon to any state from one to six, randomly with

equal probability, but never to state seven.
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Figure 7.5: A variation of Baird’s counterexample due to Maei (2011).

The learning problem is specified by the question functions. The target policy selects

action one deterministically in every state. The cumulants are zero on every transition, and

γt is constant and equal to 0.99. This setting of the question functions specifies a single

GVF to learn.

The answer functions for this task are straightforward. The behavior policy selects

action one with probability 1/7, and action two with probability 6/7, in every state. The

feature vectors for each state are given in Figure 7.5. The λ value is a constant function

equal to 0.0. The learning task specified by these question functions has a solution of

v(s;π, γ, z) = 0 for all states, with w = ~0 and w = [−2, 1, 1, 1, 1, 1, 1, 4]c where c ∈ R:

an infinite number of solutions.
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The combination of question and answer functions causes the parameter value estimates

of TD(0 ≤ λ < 1) to diverge to infinity. The difficulty is due to the interaction of the

initialization of the weight vector, w0 = [1, 1, 1, 1, 1, 1, 1, 10]>, the large value of γ, the

feature component shared amongst all states, and the mis-match between the target and

behavior policies.

Let us trace some transitions through the MDP and see what happens to the off-policy

linear TD(0) algorithm, described in Chapter 2. Consider the first transition into state seven.

The weight vector wt will still equal [1, 1, 1, 1, 1, 1, 1, 10] because any transitions from

states one through six are off-policy, with ρt = 0, and cause no update. The TD error for

the transition from state six to seven will be:

δt = zt + γt+1x
>
t+1wt + x>t wt = 0 + 0.99(2 + 10)− (1 + 2) = 8.88.

Assuming α = 0.1, then wt+1 becomes [7.216, 1, 1, 1, 1, 1, 13.432, 10]>:

wt+1 = wt + αρtδtxt = wt + 0.1(7.0)8.88xt.

Next, the behavior will likely transition the demon into some other state from one to six,

with a TD error of zero and no update. The demon will jump around between states one

through six (again with no updates to wt) and then eventually transition to state seven

again. Every time the demon transitions from a state to state seven for the first time, w(1)t

is increased along with the component of wt corresponding to the state the transition origi-

nated. Subsequent repeated transitions into state seven (e.g., six to seven from the example

above) will cause alternating small magnitude negative and positive updates to w(0)t and

no changes to w(8)t. Only a transition from state seven to seven will depress w(8)t. For

example, if such a transition happened next:

δt = 0 + 0.99(24.432)− 24.432 = −0.24432,

then wt = [6.873952, 1, 1, 1, 1, 1, 13.432, 9.828976]>. These seven to seven transitions are

rare and produce smaller magnitude updates compared to the transitions into state seven.

Overtime, the magnitude of δt and wt grow larger and larger causing divergence in the

value estimates.

7.2.2 The role of h

The ambition of these experiments, is to investigate the contribution of the secondary

weights and the parameter sensitivity of the GTD(λ) in a problem in which the TD(λ)
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algorithm will surely diverge. Specifically, we seek to answer two questions: “(1) How

will GTD(0) perform on a known counterexample (a) if we learn the secondary weights as

usual, and (b) if αh = 0, and (c) if we use h? instead of h?”; (2) “What is the parameter

sensitivity of GTD(λ) with respect to λ, α, and αh on a known counterexample?”.

We hypothesize that the answer to question one will be that GTD(0) with αh = 0 will

diverge, but it is unclear which of the other two variants will perform best. The answer to

the second question is a mystery, as no prior work has attempted this specific study.

Our first task was to find the best parameters for the three variants of GTD(0) on Baird’s

counterexample. We ran an experiment, sweeping over many settings of the learning rate

parameters. The first variant of GTD(0) had its α and αh parameters determined by a pa-

rameter sweep. The second variant used αh = 0 and a value of α determined by a parameter

sweep. The final variant used h? instead of h (as before) and a value of α determined by

a parameter sweep. The parameters α and αh (when applicable) were sampled from all

combinations of α ∈ (.1) ∗ 2{−1,−2,...,−20} and αh = η ∗ α, where η ∈ 1.5{−2,−1,...,12}.

Each combination of algorithm instance, α, and αh was initialized with w = ~0 and h = ~0,

and then run for 5000 steps. Then the whole thing was repeated for 200 runs. The random

seed was initialized to the same value for all algorithm instances at the beginning of each

group of 200 runs. For each run, the mean RMSPBE over all 5000 steps was recorded and

averaged over runs. The best parameter settings for each algorithm variant was used in the

next experiment.

Next we ran the experiment with the three variants of GTD(0), each with its α and η

value found to be best in the parameter sweep. All values of α tested caused divergence for

the variant of GTD(0) with αh = 0; we used α = 0.0125 (the learning rate parameter value

that was best for the GTD(λ) variant with αh > 0). Again we ran each variant for 5000

steps and repeated the experiment 200 times recording the RMSPBE on each step averaged

over runs to produce the learning curves in Figure 7.6.

We also investigated the parameter sensitivity of the GTD(λ) algorithm. We tested

GTD(λ) with λ equal to 0.0, 0.5, and 0.9, and the same combinations of α and η described

above. Again we ran each variant combination of λ, α, and η for 5000 steps, and repeated

the experiment 200 times recording the mean RMSPBE over all 5000 steps, and averaged

over runs. The results of this experiment are summarized in the heat maps in Figure 7.7.
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Results, analysis, and conclusions

The results of our experiment show that GTD(0) with αh = 0 diverged, GTD(0) with

learned h did not diverge, and GTD(0) with h? performed best over 5000 steps on Baird’s

counterexample. The best performance of the variant of GTD(0) with learned h was

achieved with α = 0.0125 and αh = 3.37500 ∗ α. The best performance of GTD(0)

with h = h? was achieved with α = 0.025.
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Figure 7.6: The learning curves for three variants of GTD on Baird’s counterexample. Plot-
ted is the RMSPBE verses time-step with a log-scale on the x-axis. Each variant uses the
best parameter’s found over a large systematic sweep.

Consider the updates of the GTD(0) algorithm in Baird’s counterexample. Recall that

the GTD(0) algorithm updates the primary weights, wt+1, corresponding to the next state’s

feature vector by a correction term:

wt+1 = wt + αρt[δtxt − γt+1(x>t ht)xt+1],

since λ = 0. In Baird’s counterexample, the correction helps by depressing the value

of w(8). The GTD(0) algorithm’s estimate of δt ≈ x>t ht will become large after several

transitions into state seven. Once x>t ht becomes large, w(8) will be decreased proportional

to (−αt(x>t ht)xt+1) on each transition into state seven. In this problem, the correction

helps prevent divergence and helps GTD(0) find a close approximation to the correct weight

vector, as supported by the results in Figure 7.6.

From these results in Figure 7.6 we conclude that the secondary weights of GTD(0) are
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useful for avoiding divergence in Baird’s counterexample, and that learning is faster if the

theoretically optimal secondary weights (h?) are used, compared to learning the secondary

weights in the usual way.

The results of the parameter sweep showed that the average RMSPBE achieved by

GTD(λ) in this domain were worse for the two values of λ larger than zero. Also, the range

of α and η values that did not cause divergence appeared to become smaller for the larger λ

settings. The individual learning curves of GTD(λ = 0.9), for various parameter settings,

exhibited highly erratic performance (not shown), and all parameter combinations caused

divergence, even for α as small as .1 ∗ 2−20.
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Figure 7.7: The average RMSPBE of GTD(λ) on Baird’s counterexample, for three dif-
ferent values of λ. Each heat-map shows the mean RMSPBE (color) over 5000 steps for
different combinations of α and η. White corresponds to massive errors, dark red (near
black) regions correspond to low RMSPBE, and lighter colors indicate large RMSPBE.

One explanation for the performance of the GTD(λ) algorithm on Baird’s counterex-

ample might be large weight updates, caused by large likelihood ratios multiplying in the

trace update. In this problem, the traces are frequently cleared by the off-policy transitions.

However, in the unlikely event that several self transitions are made in state seven, the trace

updates of the GTD(λ) algorithm can grow large quickly. To see this, consider successive

state seven→ state seven transitions and λ = 0.9, assuming et−1 = xt−1 because ρt−1 = 0:

et =ρt(γλet−1 + xt) = 7(0.99 ∗ .9xt−1 + xt) = 6.236xt−1 + 7xt

et+1 =ρt+1(γλet + xt+1) = 7(0.99 ∗ .9(6.236xt−1 + 7xt) + xt+1)

= 41.31xt−1 + 43.659xt + 7xt+1

et+2 =ρt+2(γλet+1 + xt+2) = 7(0.99 ∗ 0.9(41.31xt−1 + 43.659xt + 7xt+1) + xt+2)

= 357.65xt−1 + 272.30xt + 43.659xt+1 + 7xt+2.

The effect of such sequences, though rare, is a large update which causes instability in the
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GTD(λ) algorithm. Larger λ values lead to larger possible updates. Individual runs of the

GTD(λ) algorithm on Baird’s counterexample can exhibit large spikes in RMSPE due to

these large updates, causing the performance of the algorithm to suffer in practice. This

instability did not arise in our experiments with the Markov chain, because the likelihood

ratio was never greater than 1.5 and the episodic structure of the problem precludes large

traces.

Another item of interest concerns the diminished role of the GTD(λ) algorithm’s cor-

rection term in Baird’s counterexample when λ is large. The update of the primary weights

in the GTD(λ) algorithm is corrected by −γt+1(1 − λ)(h>t et)xt+1, and thus as λ be-

comes large the correction becomes smaller. Additional experiments are needed to con-

clude whether (1) the large updates are due to the traces, or (2) the smaller magnitude

gradient corrections are the primary cause for the unsatisfactory performance we observed

on Baird’s counterexample with large λ.

These experiments shed light on a potential sensitivity problem of the GTD(λ) algo-

rithm, previously unreported in the literature. Our experiments also highlight why the proof

of convergence for the GQ(λ) algorithm—the action-value variant of GTD(λ)—includes a

condition regarding the boundedness of the eligibility traces (see Maei & Sutton, 2010).

7.2.3 Similarity measures of h

In our final experiment of this chapter, we return to investigating vector similarity. Our

previous experiments on the Markov chain suggest that the similarity between h and h?

may be low when the parameters of GTD(λ) algorithm are optimized to minimize MSPBE.

Our experiments on Baird’s counterexample suggest that the secondary weights of GTD(0)

were important for avoiding divergence. The question we seek to answer with our final

experiment is: “How similar is the h learned by GTD(0) compared to h? in Baird’s coun-

terexample?”.

Based on all our previous experiments, our hypothesis is that even when α and αh are

tuned to optimize RMSPBE, the similarity of h and h? will be high in Baird’s counterex-

ample.

Experiment

We conducted an experiment to test the similarity of ht to h?(wt) on Baird’s counterexam-

ple. We tested the GTD(0) algorithm with values of α and αh found to be best in the previ-

ous experiment, recording the similarity according to our three measures. The experiment
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lasted for 5000 steps, and was repeated 400 times recording the mean cosine-similarity,

mean weighted-difference, and mean correction-difference on each of the 5000 steps, and

averaged over runs. The results of this experiment are summarized in the similarity curves

in Figure 7.8.

Results and Conclusions

We conclude that, in Baird’s counterexample, the h vector learned by GTD(0) matches h?

well. Across all three measures, h was quite similar to h?, in comparison to the previous

similarity results (see Figure 7.3), except for the cosine similarity measure. This high sim-

ilarity, however, was achieved without tuning α and αh to optimize similarity. This is not
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Figure 7.8: The similarity between the secondary weight vector h, learned by GTD(0) and
h? measured on Baird’s counterexample. As before, we measure the correction-difference,
the weighted-difference, and the cosine-similarity (defined in Table 7.2).

entirely surprising given our previous results with this problem, and the fact that αh was

over seven times larger than α—therefore ht can track the changes in its update target over

time.

7.3 Related Work

Much of the experimental work on gradient-TD methods has rightly focused on the question

of overall performance in comparison to other methods. Sutton et al. (2009) provided the

first positive demonstrations of the GTD2 and TDC algorithms on on-policy Markov chains,
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Boyan’s chain, Baird’s counterexample, and even computer go. Degris et al. (2012) com-

pared the greedy-GQ(λ) algorithm to Q-learning and an off-policy actor critic algorithm

for learning control policies in three simulation domains, demonstrating that sometimes

greedy-GQ(λ) can perform poorly. Finally, Maei (2011) contributed experiments illustrat-

ing convergence of non-linear GTD(0) and greedy-GQ(λ) on counterexamples.

There have also been several studies for the parameter sensitivity of off-policy learning

methods. The largest of these studies was by Dann et al. (2014), comparing nine value

function estimation methods on six simulation domains (including Baird’s counterexam-

ple). Dann’s work provides insights into the role of λ, α, and αh in several off-policy

domains, but the results are difficult to trust because the parameter sweeps were based on

only three repetitions of their experiment. Geist and Scherrer (2014) compared the role

of λ in eight value function estimation algorithms (including TD(λ) and GTD(λ)) on two

randomly generated MDPs. The result of that particular experiment was inconclusive (as

noted by the authors), but their remaining experiments showed that MSPBE minimiza-

tion methods, such as GTD(λ) and LSTD(λ), outperformed bellman error minimization

methods across 200 random MDPs. Hackman (2012) contributed an impressive set of ex-

periments concerning state-action value function estimation in the Markov chain domain

(slightly different than ours) with GQ(0) and expected Sarsa(0). Hackman found that the η

parameter (αh = α ∗ η) had little effect on the RMSPBE achieved by a variant of GQ(0) in

on-policy problem instances. Delp (2011) studied the parameter sensitivity of state-action

value function estimation with GQ(λ) in a discrete gridworld with linear function approx-

imation. Delp found that when λ = 0 or 0.5, αh equal to zero performed best, just as in

our Markov chain results. Finally, a recently proposed gradient-TD method was compared

empirically with the GTD(λ) algorithm, including a sweep of λ and α (van Hasselt et al.,

2014). The results showed that high values of λ and α yield high value function error in a

random walk, whereas the new method produced good results over a wide range of λ and α

values.

The experiments in this chapter are distinct in three ways. First, our experiments are

the first to study a gradient-TD method’s ability to learn the secondary weights. Second,

we are the first to compare learning the secondary weights with not using them at all, and

with using the optimal secondary weights given by the parameters of the MDP. Third and

finally, our experiments are the first to empirically demonstrate the instability of the GTD(λ)

algorithm with λ greater than zero in Baird’s counterexample.

Finally, although we cannot claim our results and insights encompass other gradient-TD
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methods (e.g., GQ(λ)), the questions we posed and results generated may provide clues and

a starting place for the study of other related methods.

7.4 Summary

In this chapter, we presented a series of experiments designed to provide insight into the

inner workings of one gradient-TD learning algorithm, GTD(λ). Our first set of experi-

ments used variants of a Markov chain and studied how well the GTD(λ) algorithm learns

the secondary weight vector. We then tested how well GTD(λ) minimized RMSPBE with

different variations on how the secondary weights were learned. Our second batch of ex-

periments focused on a variant of Baird’s counterexample. Again we studied RMSPBE

minimization with different variations on how the secondary weights were learned, and

we tested the sensitivity of the GTD(λ) algorithm to variations in its parameter settings.

Finally we investigated how well GTD(λ) learned the secondary weight vector in Baird’s

counterexample.

The overall conclusion from all our experiments is: in some problems the secondary

weights of the GTD(λ) algorithm are important, but in other problems the correction can

slow learning. In the chain, the fact that the secondary weights were not learned well did not

effect overall MSPBE optimization, agreeing with many of the experimental results in the

literature. On the other hand, in Baird’s counterexample, a large value of αh is needed to

achieve stable learning and the secondary weights are important for preventing divergence.

Reducing the influence of the secondary weights and using longer eligibility traces caused

the GTD(λ) algorithm to perform poorly in Baird’s counterexample. In addition, our ex-

periments demonstrate that the GTD(λ) algorithm can achieve good performance with very

different parameter settings, depending on the problem. Without a prior knowledge of the

problems our learning agents will face, it can be difficult to set the learning rate parame-

ter values of this algorithm. There are several possible approaches we could take to make

the GTD(λ) algorithm more robust, including heuristic rules to adjust α, αh, and λ during

learning, but this topic is left to future research.

Off-policy updating is a key aspect of our approach to predictive knowledge learning,

and understanding one of our learning methods is important for legitimizing the practicality

of our approach. It is only recently that efficient, linear complexity, and non-divergent

off-policy algorithms like GTD(λ) were invented. New insight and understanding of a key

algorithm for GVF learning contributes a better understanding of the stability and overall
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practicality of our approach to predictive knowledge.
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Chapter 8

Estimating off-policy progress1

Tracking the learning progress of a large collection of demons is both useful and non-trivial.

In the off-policy setting, gradient temporal difference methods can be used to update and

refine each demon’s prediction over time, but the algorithms themselves do not provide a

measure of how much learning progress has been made by each demon. As an experi-

menter, we often want to know which demons are learning, which demons are not learning

(no progress), which demons need significantly more time to learn, and which demons are

nearly done learning. Developing a predictive approach to knowledge involves experimen-

tation and testing; a measure of the learning progress is important for demonstrating the

practicality of our approach. We have demonstrated several different approaches to mea-

sure off-policy learning progress on a robot in earlier chapters. As you will see later, these

approaches are difficult to use with a large number of demons and a large number of distinct

target policies.

This chapter introduces a new approach to measuring learning progress based on esti-

mating the RMSPBE. We demonstrate empirically that our new measure provides a useful

measure of learning progress with experiments on a Markov chain and the Critterbot.

8.1 Measuring progress on a robot

Estimating the off-policy learning progress on a robot is particularly challenging, as our

previous experiments illustrate. On a robot, we do not have access to the parameters of the

MDP, so we cannot exactly compute the MSPBE or the true value function, v(s;πγ, z).

We must estimate progress in some other way. In on-policy learning, estimating progress is

more straightforward because all the data generated for learning is also useful for progress
1Some of the text and results contained in this chapter also appear in a conference paper (White, Modayil

& Sutton, 2013). That paper was drafted in its entirety and its experiments conducted by this author.

118



evaluation, but this is not necessarily the case in off-policy learning. We have already tried

several approaches to measuring off-policy learning progress. We estimated the target Gt

and then computed the RMSE for each demon by forcing the behavior policy to execute

long sequences of actions according to each target policy. This method was used in Chapter

6, experiments 6.4 and 6.5. We also tried a training-testing split, where the robot followed

the behavior and updated the demons. Then, after learning, the demons were tested by

executing each demon’s target policy in turn. We used this approach in experiments 6.6,

6.7, and 6.8 of Chapter 6. A testing-training split may not be ideal because we cannot

measure learning progress on each step during learning and thus debugging and improving

the system may become time consuming and frustrating. A final approach involves inter-

spersing the tests during learning, and periodically pausing learning to generate a trajectory

to evaluate a demon’s prediction. We demonstrate this approach on the Critterbot in this

chapter.

All of the approaches induce a trade-off between how much time we devote to updating

the demons and how much time we want to devote to progress estimation. If the measures

are updated too infrequently, then the estimates of learning progress may become out-of-

date and potentially highly variant. As the number of unique target policies grows large, it

will typically take more time to evaluate each demon’s progress, thus potentially reducing

the amount of samples of learning or the timeliness of the estimate of progress.

We now specify a set of criteria for an estimate of learning progress that be useful for

large-scale demon learning on a robot. First, ideally the measure should be online, updated

after each learning step, and thus always up-to-date for each demon. The measure should

be updated on each step with linear (or less) computation and storage (linear in the number

of feature components) to ensure the scalability of Horde. The estimate should not place

strong requirements on the behavior policy; the system could then be free to learn on every

interaction step with no interruptions for testing. Finally, the estimate should provide an

accurate estimate of learning progress, and in particular be robust to non-stationarity, which

is common on real hardware systems, such as robots. In the next section we propose a new

estimate of learning progress that we believe meets all four of these criteria.

8.2 A new proposal

Instead of using prediction accuracy or value error, we propose to estimate learning progress

by estimating the mean squared projected bellman error of a demon’s learned weight vector
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w:

MSPBE(w) = ||Xw −ΠT γλXw||2B,

originally defined in Chapter 2. This measure of progress does not always correspond

to prediction accuracy. Our notion of learning progress does, however, indicate when a

demon’s predictions are approaching their best estimates, given the setting of the demon’s

answer functions. Additionally, in the case where the features can perfectly represent the

true GVF, the MSPBE will correspond to the closeness of the demon’s estimate to the true

GVF: (v(s;π, γ, z) − v̂(s,w))2 weighted by the distribution over states induced by the

behavior. We choose to estimate the MSPBE, because that is the objective that the demons

attempt to optimize.

Our aim is to estimate the learning progress for any value function estimation algorithm

that minimizes the MSPBE, by estimating the RMPSBE.2 Recall that the secondary weight

vector of GTD(λ) is equal to part of the gradient of the MSPBE,

h = Eµ[x(St)x(St)
>]Eµ[δtet],

which can be learned by an LMS rule,

ht+1 = ht + αh[δtet − (h>t xt)xt],

the same LMS rule used in the update of the GTD(λ) algorithm. The MSPBE of wt is equal

to Eµ[δtet]ht using the forward backward equivalence described in the background chapter.

Therefore, we can sample Eµ[δtet], and form an estimate of the RMSPBE for each demon,

on each time-step t, by:

RMSPBE(wt) ≈ RUPEEvec(wt)
def
=

√∣∣∣ĥt>δeβ∣∣∣, (8.1)

or

RMSPBE(wt) ≈ RUPEEscalar(wt)
def
=

√√√√∣∣∣∣∣ĥt>δeβ
∣∣∣∣∣. (8.2)

These measures are Recent Unsigned Projected Error Estimates, and thus we call them

both RUPEE. The first measure, RUPEEvec, stores a moving average of δe, and the second

measure RUPEEscalar makes use of an average of a single scalar. Both estimators use an

independent and additional weight vector, ĥt ∈ Rn, updated by the same LMS rule as
2In intrinsically motivated reinforcement learning learning progress is often defined as the derivative of the

prediction error (see Oudeyer et al., 2007). Our notion of progress is simply an estimate of the MSPBE. We do
not claim our notion of progress is more or less effective for intrinsically motivated reinforcement learning, but
simply highlight the terminology difference compared to the literature.
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GTD(λ), but not used by the GTD(λ) algorithm. This duplication of weights enables each

estimator’s learning-rate parameter αĥ ∈ R to be tuned independently of αh.

The moving average of δe in RMSPBEvec is computed using a variant of an exponential

moving average with an unbiased initialization,

τt+1 = (1− β0)τt + β0

β =
β0

τt+1

δet+1 = (1− β)δet + βδtet,

where β0 > 0 is the user-specified averaging constant for the trace of δe and τ0 = 0. This

method acts like a sample average when t is small, and smoothly transitions to a normal

exponentially weighted moving average when t grows large. The moving average inside

RUPEEscalar is computed in a similar fashion, as are all moving averages computed in this

thesis.

Estimating the RMSPBE using either estimator provides a notion of learning progress

contingent on the representational and data constraints induced by the choice of the de-

mon’s answer functions. The RMSPBE can be zero even when the demon’s approximate

GVF is very different than the true GVF, and even when the demon’s predictions are not

accurate in comparison to samples of the target Gt. The RMSPBE can be zero in these

cases both because it is a projected objective and because the objective is weighted by dµ

(both discussed in the background chapter). In other words, the RMSPBE does not care

about states the behavior never visits or value functions outside the representational class

of the features, and neither do our RUPEE measures.

The TD error could be used to measure demon progress, but it is not ideal in our setting

for two reasons. The squared TD error can be used to form an unbiased estimate of the mean

squared Bellman error (MSBE). However, our TD-based demons optimize the MSPBE,

and thus the MSBE would be a surrogate measure of MSPBE optimization. In addition,

it is not clear how to use the TD error to estimate the MSBE when λ is greater than zero.

Regardless of the relative merits and weaknesses of using an estimate of the RMSPBE to

measure learning progress, a major benefit of the RMSPBE is that it is computable from

observable quantities (see Appendix B for a discussion of objective functions for value

function estimation).

Our new progress measures appear to satisfy the first three criteria we specified in the

previous section. Both RUPEE measures can be updated on every time-step with com-

putation and storage that is linear for each demon. They can be computed online from
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immediately available data and is thus always up-to-date with recent experience. We do not

need to interrupt learning with tests or use train and test phases, and thus the behavior is un-

restricted, producing data for both learning and updating our estimates of the RMSPBE on

every time-step. The the accuracy of these new RUPEE measures and their usefulness for

measuring the progress of many demons is still unclear, and this is subject of the remaining

sections of this chapter.

8.3 Experiments on the Markov chain

In our first set of experiments, we are primarily concerned with how well our RUPEE

measures estimate the RMSPBE of the GTD(λ) algorithm in several simple simulation

problems. In addition, we also investigate how well our new measures tracks the RMSPBE

of the GTD(λ) algorithm when a large change occurs which causes a spike in the MSPBE.

In later sections of this chapter we will investigate how well both RUPEE measures relate

empirically with prediction accuracy, and investigate estimating the RMSPBE of thousands

of demons on a robot. We begin with an experiment to investigate both RUPEE measures

in a simulation domain that affords exact computation of the RMSPBE.

8.3.1 Comparing RUPEE and the RMSPBE

Our first experiment seeks to answer the question: “How well do both RUPEE measures

estimate the RMSPBE of the GTD(λ) algorithm compared to several other possible estima-

tors?”. By “other possible estimators” we mean different ways to compute RUPEE, as well

as other ways to estimate the RMSPBE that use either parameters of the MDP or more than

linear computation and storage. Our experiments on the GTD(λ) algorithm suggest that

the secondary weights can be learned well at the expense of slightly higher RMSPBE, and

thus we might expect that both RUPEE measures, which are based on GTD(λ), might do a

good job approximating the RMSPBE. We hypothesize that the estimators of the RMSPBE

that use the parameters of the MDP or greater than linear computation will do a better job

approximating the RMSPBE than either variation of RUPEE.

Experiment

The problem specification, question functions, and answer functions were the same as those

used in the experiments of Chapter 7. We used the Markov chain domain, with the same

five combinations of behavior and target policy probabilities, and the same feature vectors

given in our original problem description. In all experiments, λ was taken to be a constant
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function equal to 0.9. A single state GVF was learned (for each problem instance) by a

single prediction demon using the GTD(λ) algorithm with α and αh set to the values that

minimize the RMSPBE found in the parameter sweep described in Chapter 7 (Table 7.1,

specifically).

In order to access the performance of proposed measures, we defined four alternative

estimates of the MSPBE. The first three estimators use computation and storage that is

greater than linear:

• RMSPBE1(wt) =

√∣∣∣(δe)>(xx>)−1δe
∣∣∣

• RMSPBE2(wt) =

√∣∣∣(δeβ)>h?t

∣∣∣
• RMSPBE3(wt) =

√∣∣∣Eµ[eδ]>ĥt

∣∣∣.
The RMSPBE1 estimator computes the least squares estimate of the RMSPBE from a his-

tory of all previously observed features and cumulants. The · denotes the sample long run

average. The RMSPBE2 estimator combines a linear estimator of Eµ[δtet] with the value of

h?t = E[xtx
>
t ]−1Eµ[δtet] as defined by the parameters of the MDP. Finally, the RMSPBE3

estimator combines the true value of Eµ[etδt] with an estimate of E[xtx
>
t ]−1Eµ[δtet] com-

puted similarly to RUPEEvec (an LMS rule).

The remaining estimator can be considered an alternative implementation for RUPEE:

RMSPBE4(wt) =

√∣∣∣ĥt>δtet∣∣∣
The RMSPBE4 estimator uses only instantaneous samples to estimate the RMSPBE, which

might yield less bias but higher variance compared to RUPEEvec and RUPEEscalar in some

domains. RMSPBE4 has no memory term, compared to the O(n) storage of RUPEEvec.

In our first experiment, we performed a parameter sweep to find the best parameters

values for each estimator, in each instance of the Markov chain problem. The parame-

ters were chosen from αĥ ∈ {10−5, 10−4, 10−3, 10−2, 0.05, 10−1,0.25 ,0.5, 0.75, 1.0} and

β0 ∈ {0.001, 0.012, 0.023, 0.034, 0.045, 0.056, 0.067, 0.078, 0.089, 0.1, 0.25, 0.5, 0.75,

1.0}. Each parameter combination was evaluated at the end of 200 episodes using all 200

RMSPBEs and estimator values observed during the run:

estimator-strength(θ̂) =

the correlation between RMSPBE and θ̂ after 200 episodes

the total squared difference between RMSPBE and θ̂ over 200 episodes
, (8.3)
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The parameter estimate θ̂ ∈ R was one of {RMSPBE1, RMSPBE2, RMSPBE3, RM-

SPBE4, RUPEEvec, RUPEEscalar}. An estimator performs well when the estimator strength

is large and positive. We defined 8.3 in order to provide one metric to optimize the param-

eter’s of RUPEE and the other estimators for comparison. Once the best parameters were

selected we investigated several measures of performance.

All six estimators of the GTD(λ) algorithm’s RMSPBE were run on each of the five

problem instances, and then run for 200 episodes. Then the whole thing was repeated for

100 runs. The random seed was initialized to the same value for each estimator instances at

the beginning of each group of 100 runs. The GTD(λ) algorithm’s weight vectors and the

vectors and averages of each estimator (including RUPEEvec and RUPEEscalar) were all

set to zero at the beginning of each run. For each run, the estimator’s strength (according

to Equation 8.3) was recorded and averaged over runs. We selected the β0 and αĥ that

achieved the best estimator’s strength for each estimator, on each problem instance.

To answer our question posed at the beginning of this section, we performed an experi-

ment using the parameter settings found in the previous experiment. In this experiment, the

GTD(λ) algorithm was run on each of problem instance for 200 episodes with the RMSPBE

estimate of each of the six estimators recorded at the end of each episode. Then the whole

thing was repeated for 200 runs. We recorded the closeness of each estimator to the true

RMSPBE of the GTD(λ) algorithm, after each episode i, using three different measures:

• empirical-bias(θ̂i) = θ̂i− (RMSPBE at the end of episode i)

• squared-error(θ̂i) = (empirical-bias(θ̂i))2

• correlation(θ̂i) = the correlation between RMSPBE and θ̂i up to episode i.

Each of the three measures for each of the six estimators (including RUPEEvec and RUPEEscalar)

was averaged over runs, and the weight vectors of the GTD(λ) algorithm and data structures

of all the estimators were set to zero at the beginning of each run. Figure 8.1 presents the

results. We also include a plot of the RMSPBE of the GTD(λ) algorithm and the estimates

of the RMPBSE according to RUPEEvec, RUPEEscalar, RMSPBE1, and RMSPBE4 over

episodes.
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Results and conclusions

The results show that RUPEEvec achieved lower empirical bias, lower squared error, and

higher correlation than the RMSPBE4 and RUPEEscalar estimators. The RMSPBE1 es-

timator (dashed line) performed best across all five problems and all three measures. The

RMSPBE2 (cyan) and RMSPBE3 (purple) estimators achieved better empirical bias, squared

difference, and correlation on the problem instances where the target policy was less ran-

dom, but in problem instances (pµ = 0.5, pπ = 0.5) and (pµ = 0.6, pπ = 0.4) the

RUPEEvec was nearly as good, especially according to the correlation measure. The RMPSBE4

(red) estimator performed the worst according to all measures in all problem instance. All

estimators besides RMSPBE1 and RMSPBE2 exhibited non-vanishing bias in problem in-

stances (pµ = 0.6, pπ = 0.4), while only RMSPBE1 and RUPEEvec exhibited diminishing

bias in problem instances (pµ = 0.5, pπ = 0.5). This may be due to limited sampling (not

enough episodes), and optimizing the estimator’s parameters, over a window of episodes.

The plots of the estimators over episodes shows that RUPEEvec (blue) tracks the RMSPBE

(black) well, and that the RMSPBE1 estimator is nearly equal to the RMSPBE.

Overall we conclude from these results that RUPEEvec estimates the RMSPBE well

across several problem instances compared to several other estimators. RUPEEvec per-

formed better than the other two more computationally frugal estimators, RMSPBE4 and

RUPEEscalar. The RMSPBE4 performed particularly badly, suggesting that the averaging

performed in both RUPEE measures is helpful. The RMSPBE1 estimator performed best

overall, but it uses substantial computation and storage which would make it difficult to

update quickly with many demons. The RMSPBE2 performed next best overall, indicat-

ing that knowledge of h?(wt) = Eµ[x(St)x(St)]
−1Eµ[etδt] helps more than knowledge of

Eµ[etδt] in these problem instances.

8.3.2 A non-stationary domain

Our next experimental question concerns “How well does RUPEEvec track the RMSPBE

of the GTD(λ) algorithm when a demon experiences a single change which invalidates its

current predictions?”. This question is motivated by a situation that might occur while

learning many GVFs on a robot: perhaps, the robot’s wheels malfunction, or a human turns

off the lights in the lab. In either case, several of the demon’s predictions may become

incorrect, and it would be useful if our estimate of the RMSPBE could reflect the change

in the world. This would be useful to human experimenters enabling analysis of what

happened, and it would be useful to the robot so that the robot might change its behavior in
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Figure 8.1: An evaluation of RUPEEvec and RUPEEscalar compared to four other estimators
for estimating the RMSPBE of GTD(λ) on five instances of the Markov chain task. Each
row of the figure correspond to an instance of the Markov chain problem. Each of the first
three columns corresponds to a different evaluation measure, while the last column simply
plots the RMSPBE of the GTD(λ) algorithm and several estimates of the RMSPBE versus
episode number. See text for a description of the experiment and discussion of the results.

an effort to more efficiently relearn the inaccurate predictions.

The key challenge for RUPEEvec here is to detect the large increase in the RMSPBE

of the GTD(λ) algorithm via observations of the GTD(λ)’s TD error, before relearning

returns the RMSPBE to normal pre-change levels. It is difficult to hypothesize how quickly

RUPEEvec will track the change in RMSPBE, however we are optimistic that the linear

LMS rule and the moving average used inside RUPEEvec should adapt fairly quickly. We

omitted RUPEEscalar from this experiment because RUPEEvec outperformed RUPEEscalar

in all five variants of the chain domain in the previous experiment.
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Experiment

In this experiment we compared RUPEEvec’s estimate of the RMSPBE to the true RMSPBE

of the GTD(λ) algorithm in each of the five chain problem instances over 400 episodes. As

before, a single demon was used to learn the state GVF. This time, the w vector of the

GTD(λ) algorithm was negated at the beginning of the 200th episode, w200 = −w200, to

simulate a large change in the environment. Aside from this modification, the experiment

was run as before. The αĥ and β0 parameters were the same as those used in the previous

experiment, except for the fourth chain instance where we increased the value of β0 slightly.

Each combination of problem instance and RUPEEvec was run for 400 episodes. Then the

whole thing was repeated for 400 runs, with the weight vectors of GTD(λ), (w, h), and the

ĥ and δe
β

of RUPEEvec all initialized to zero at the beginning of each run. Figure 8.2 plots

the RUPEEvec and the true RMPSBE after each episode, averaged over runs.

Results and conclusions

The results indicate that RUPEEvec tracks the true RMSPBE of the GTD(λ) algorithm in

each of the five Markov chain problem instances. The RUPEEvec measure reacts to the

change in the TD errors of the GTD(λ) algorithm, increasing its estimate of the RMPSBE

well before the true RMSPBE is suppressed by relearning.

We conclude from this experiment that RUPEEvec can react to changes in the world

that cause an increase in the RMSPBE. Any changes in the accuracy of the GTD(λ) algo-

rithm’s predictions are immediately reflected in the RMSPBE. In comparison, RUPEEvec

uses linear complexity operations and two simple memories (the exponential average and

the ĥ vector) of the TD errors to estimate and track changes in the RMSPBE. Overall, in

these chain tasks, it seems RUPEEvec provides a reasonable estimate of RMSPBE, espe-

cially given that it meets our somewhat restrictive criteria of being always up-to-date and

computationally efficient.

8.4 Experiments on the Critterbot

Consider the task of learning and accessing the learning progress of many prediction demons,

perhaps thousands of demons, on a robot. On a robot, we do not have access to the parame-

ters of the MDP, so we cannot compute the RMSPBE. In addition, our computation is very

limited, and thus it is not practical to compute the least squares estimate of the RMSPBE

(e.g., RMSPBE1 from the previous section) for more than a handful of demons. In this
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Figure 8.2: A comparison of the RMSPBE of the GTD(λ) algorithm (black) and the
RUPEEvec measure’s estimate of the RMSPBE (blue) on a non-stationary variant of the
Markov chain domain. Each subplot corresponds to each of five Markov chain problem
instances. The GTD(λ) algorithm learned for 200 episodes, and then the primary weight
vector was modified: w200 = −(w200). See text for a description of the experiment and
discussion of the results.

setting, we can estimate learning progress by using either RUPEE measure or some other

method that is not based on the RMSPBE.

Another method for estimating progress in this scenario is to compute the accuracy of

each demon’s predictions. If we could sample each demon’s target (Gt), then we could

compute the RMSE of each prediction. Estimating prediction accuracy in this way on a

robot, however, is not ideal in many ways, as you will see in the following experiments. If

the prediction accuracy and the RUPEE measures exhibited similar empirical convergence

profiles and both indicated a plateau in performance improvement at roughly the same time,

then we might avoid these problematic prediction accuracy estimates and just use one of the
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RUPEE measures. The experiments of this section investigate the empirical relationship

between RUPEEvec, RUPEEscalar, and prediction accuracy across hundred of demons.

8.4.1 Prediction accuracy of many demons

In order to compare RMSPBE estimation and prediction accuracy, we first develop a frame-

work for estimating the prediction accuracy of policy-contingent predictions on a robot. In

this experiment, we use interspersed on-policy test excursions during learning to evaluate

the accuracy of each demon’s prediction. We attempt to answer a simple question: “Can the

robot learn hundreds of prediction demons in realtime, while measuring prediction accuracy

with on-policy test excursions?”. Off-policy state GVF learning of hundreds of predictions

on a robot has never been demonstrated before. Our first experiment concerns learning

many off-policy GVFs with performance evaluated using test excursions, not with RUPEE.

Later we will use the same setup to investigate measuring progress with RUPEE compared

to test excursions.

Problem

The robot’s interaction with its environment was structured in a 100 millisecond (ms) time-

step. At each step, the sensory information was used to select one of five actions corre-

sponding to basic movements of the robot (forward, backward, turn right, turn left, and

stop). Each action caused a different set of voltage commands to be sent to the three motors

driving the wheels. The state of the robot was characterized by 49 real or virtual sensors of

13 types, summarized in the first two columns of Table 5.1 of Chapter 5. We exclude the

stall flag and the previous wheel commands which were used in the nexting experiment).

The question functions of each demon are specified as follows. The ith demon is con-

structed using one of five possible target polices, each one corresponding to execution of

one of the robot’s actions repeatedly (e.g., π(i)(s, forward) = 1∀s ∈ S), which we call

a constant-action policy. The termination signal of the ith demon was a constant function

taking on one of three possible values: {0.0, 0.5, 0.8} corresponding to time scales of 0.1

sec, 0.3 seconds, and 0.5 seconds. The cumulant of the ith demon, Z(i)
t , corresponds to

one of the robot’s 49 sensors, for example Z(i)
t = IRDistance0t, just as in the nexting ex-

periment. The question asked here is what will happen next if the robot were to execute a

target policy differing from nexting in that the predictions are about many different ways of

behaving. In total we have 735 prediction demons.
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The answer functions are similar to the nexting experiment except for the behavior pol-

icy. The behavior policy selects one of the five actions randomly with equal probability,

and then repeatedly executes the selected action with probability 0.5, and with 0.5 proba-

bility randomly selects a new action. The feature vector is constructed in the same way as

in the nexting experiment, except the tile coding of the thermal sensors was corrected to

include all eight sensors, producing a binary feature vector of length 6065, of which 473

components are equal to one on each time-step (see Table 5.1 of Chapter 5 to refresh your

memory). Finally, the λ function was again constant and equal to 0.9.

Experiment

In order to evaluate the prediction accuracy, we interspersed on-policy tests into the be-

havior policy. During each test, the robot selects actions in agreement with one of the five

target policies (on-policy), selected randomly at the beginning of the test and called the test-

ing policy. While the testing policy was executing, we calculated a truncated sample of the

target for precisely 147 of the demons whose target policy was equal to the testing policy.

To do this, the test policy was followed for a fixed number of steps that was long enough

to compute a reasonably accurate truncated sample of the target for each of the three termi-

nation signals {0, 0.5, 0.8}. The length for the test was set to 50 steps. This number was

produced by calculating the number of steps T , for which the value of (0.8)T in the estima-

tion of the target, G(i)
t , would be less than a small tolerance level (equal to 0.00001 by the

formula ln(0.00001)
ln(0.8) and rounding up). At the beginning of the kth test phase, we recorded

the demon’s prediction, denoted V (i)
k ∈ R, for each of the 147 demons, and incrementally

computed a truncated sample of each demon’s target, denoted Ĝ(i)
k ∈ R:

Ĝ(i)
k =

50∑
j=0

(γ
(i)
t )jZ

(i)
t+j+1,

where t denotes the time-step of the beginning of the test. After 50 test steps, indexed above

by j, each prediction was compared to its truncated sample of the target and the squared

error, recorded (Ĝ(i)
k − V

(i)
k )2. As a measure of the quality of the prediction sequence

{V (i)
k } of demon i up through test number K, we can use the root mean squared error,

defined as:

RMSE(i,K) =

√
(V (i) − Ĝ(i))2

β

,

where β is the averaging parameter of the moving average incrementally computed from

samples. The β0 parameter of moving average was equal to 0.001 in this experiment. We
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use a different definition of RMSE from the one used in Chapter 5 because we have signif-

icantly less samples to compute errors from (>100,000 in nexting, verses hundreds here).

This means the RMSE curves of each demon may be slightly more noisy and the average

will overcome initial errors more quickly.

After every test, the robot followed a hand-coded recovery policy to move the robot

back to the center of the pen. This recovery phase did not last longer than two seconds,

and during this time learning was disabled. The recovery policy was found to be useful

to balance the amount of training time the robot spent in free space and near the walls.

Algorithm 8.4.1 provides pseudo code for how the behavior, on-policy test excursions, and

recovery occurred during our experiment. No learning occurs during test excursions or

recovery.

Algorithm 1 Off-policy demon training with interspersed on-policy tests
let x be the initial feature vector
for each time-step t ≈ 100ms do

if (not testing) then
## following the behavior policy and learn
A← µ(x, ·)
take action A and observe next feature vector x′

update each demon using sample (x, A,x′)
x← x′

interrupt learning probabilistically
## start test
select test policy π(j) from set of five target policies
for each demon i whose π(i) = π(j) do

record predictions: V (i) = x>w(i)

Ĝ(i) = 0
k = 0; testing = true

else
## on-policy test following target policy j
a← π(j)

for each demon with π(i) = π(j) do
update truncated target: Ĝ(i) ← Ĝ(i) + (w(i))kZ

(i)
k+t+1

k ← k + 1
if k ≥ 50 then

## test concluded
testing = false
for each demon with π(i) = π(j) do

record MSE: (V (i) − Ĝ(i))
execute recovery policy and observe current feature vector x after recovery

end if
end if

end for
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In order to to evaluate the accuracy of all 749 predictions about sensors at various time

scales, we aggregated the performance across all predictions. To measure the accuracy of

predictions with different magnitudes, we used a normalized mean squared error,

NMSE(i, k) =
RMSE2(i, k)

var(i)
,

in which the mean squared error is scaled by var(i) (the sample variance of the truncated

targets from allK tests of the ith demon’s prediction). This error measure can be interpreted

as the percent of variance not explained by the prediction. It is equal to one when the

prediction is constant at the average target value, but can be much larger than one. Several

demon’s curves were excluded from the results because their truncated targets were always

constant and had zero variance (e.g., the ones corresponding to the motor current of motor

two).

In addition to the NMSE, we also recorded another aggregate measure of accuracy based

on the absolute error. The symmetric mean absolute percentage error, or SMAPE,

SMAPE(i, k) =

(
|V (i)
k − Ĝ(i)

k|

|V (i)
k |+ |Ĝ(i)

k|

)β
, (8.4)

where β is the parameter to the moving average over tests, and β was equal to 0.001 in our

experiments. The SMAPE is bounded between zero and one. The SMAPE is undefined

if |V (i)
k | + |Ĝ(i)

k| is zero, and this situation arose for 15 demons (again the predictions of

future motor current of motor two). These predictions were excluded from the calculations

involving SMAPE.

We ran the Critterbot for 6.7 hours, updating 749 demons with the parameters of GTD(λ)

equal to: α = (1 − λ)(α0)/||x|| = (1 − .9)(.1)/473 and αh = 0.01α. The run produced

238,000 samples, and approximately half of the time was spent performing test excursions.

Data was logged to disk for later analysis. Each prediction was tested 400 times, yielding

the aggregate learning curves for NMSE and SMAPE shown in Figure 8.3.

Results and conclusions

The results of this experiment indicate that hundreds of predictions can be updated and

tested in realtime on the Critterbot. The randomized behavior policy, tile-coding, test ex-

cursions, recovery policy, and GTD(λ) were all implemented in Java and run on a laptop

computer connected to the robot by a dedicated wireless link. The laptop used an Intel

quad-core processor with a 2.7GHz clock cycle, and 16GB of DDR3 RAM. Eight threads
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Figure 8.3: Aggregate learning curves for the 749 predictions whose cumulant corresponds
to each sensor and one of five constant-action target policies. Each point in each subgraph
is the aggregate error of the prediction of the demons up to that test. The top left plot shows
the median NMSE curve, and the bottom plot shows the mean and median SMAPE curves.
The top right curve shows what the the mean NMSE would be if the experiment were rerun
using cumulants with their average value subtracted out.

were used for the learning code. With this setup, the time required to make and update all

749 predictions was 2.2 ms, well within the 100 ms cycle of the Critterbot.

The results in Figure 8.3 report the overall accuracy of the predictions learned by each

demon. The top left plot reports the median NRMSE computed from the individual pre-

dictions, achieving 40% variance explained by the end of training. The learning curve in

the top right plot reports the average NSME, when the cumulant reward of each prediction

was adjusted by the mean of the cumulant (as done in Chapter 5). When we modified our

cumulants in this way, we reran GTD(λ) on the logged data. In the mean, the prediction

learned with the average subtracted explained 49% of the variance of the target by the end

of the data set. The bottom plot reports the average and median prediction SMAPE curves.

The SMAPE value at the end of the data set was 15.8% and 0.67% for the average and

median aggregations, respectively.

We also recorded accuracy measures for predictions aggregated by sensor group. The

predictions whose cumulant (not mean adjusted) was an external sensor (Thermal, IRLight,
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IRDistance, Mag, Light) explained 52% of the variance by the end of the run, while the pre-

dictions whose cumulant was an internal sensor (motor information, acceleration, rotational

velocity, etc.) explained only 24% of the variance at the end of the run. Using absolute er-

ror to aggregate prediction accuracy, the external sensor predictions achieved 5.8% median

SMAPE, and the internal sensor predictions achieved 42% median SMAPE by the end of

the run.

In conclusion, these results indicate that it is indeed practical to do large-scale prediction

learning, off-policy, and on a robot with conventional computational resources, and that the

prediction accuracy can be measured by on-policy test excursions. Overall, no divergence

was observed, and the predictions achieved reasonable accuracy.

These policy-contingent predictions are not as accurate as the nexting predictions learned

in Chapter 5. We used the same robot, a similar learning algorithm, and the same feature

generation mechanism, but the important difference was the policies. In the nexting exper-

iment, the robot generated long trajectories of experience (several minutes between over-

heating stalls), observing similar sensory patterns with each loop around the pen. Each

sample generated by the robot was relevant to every single demon on every time-step. In

the off-policy experiment, the data generated by behavior was only ever relevant to a subset

of demons at any one time. In addition, the behavior produced short trajectories of on-

policy experience before switching to another policy: just snippets of experience to update

each demon. Of course there may have been other factors at play, but it seems the simple

answer is the off-policy learning problem was more challenging than the task of on-policy

nexting.

8.4.2 Comparing RUPEE and prediction accuracy

Although it may not be apparent from the results of the previous section, estimating predic-

tion accuracy using interspersed on-policy test excursions is not entirely compatible with

what we mean by large-scale prediction learning on a robot. The first source of incompati-

bility is caused by the need to follow each target policy many times, limiting the number of

target policies the robot can learn about at one time. Second, this test excursion framework

limits us to consider GVFs with short time scales (γ). We must test each target policy, and

thus we must run each test long enough to form a reasonable approximation of the infinite

sum of the target. A prediction defined by an eight second time scale, for example, would

need at least a 90 second test. Using on-policy tests for evaluation restricts scaling by lim-

iting the number of distinct what if questions we can ask, and the span of each prediction.
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Using on-policy test excursions to evaluate policy-contingent predictions makes our ex-

periment apparatus unnecessarily complex. We need to take care that the tests are long

enough, and frequent enough to ensure the estimated accuracy is up to date and reflective of

the robot’s learning progress. If tests are frequently started near a wall, but most behavior

data was generated in open space, then the prediction accuracy might indicate no learning

has occurred. On the other hand, frequent testing consumes valuable robot time that could

have been used more effectively by the behavior policy, and striking the right balance be-

tween testing and training is hard. Perhaps we can use one of RUPEEvec or RUPEEscalar

to estimate learning progress and avoid many of these difficulties.

The question we seek to answer with our next experiment is: “Does the learning progress

of prediction demons measured by RUPEEvec and RUPEEscalar empirically correspond

to the prediction accuracy measured by the RMSE?”. Our previous experiments with

RUPEEvec show that it corresponds well with the RMSPBE on simulation domains. In

our next experiment we seek to compare our new measures to RMSE of predictions learned

on a robot.

Experiment

In this experiment, we simply used the log file produced by the last experiment to gener-

ate aggregate plots of RUPEEvec, RUPEEscalar, and the RMSE for comparison. The log

file contained approximately six hours of data: two hours and 52 minutes of the log cor-

responded to time-steps where the behavior policy was in control and the demons were

updated (or 103,200 time-steps). For this experiment, we consider a subset of only 245

demons corresponding to the longest time scale, γt = 0.8. In addition, all the cumulants

are scaled between zero and one, using the minimum and maximum values for each sensor

observed in the log. We used a subset of demons and scaled cumulants in order to facilitate

aggregating many MSE and RUPEE curves for comparison.3 As before, each demon was

tasked to predict the future values of a sensor, if actions were selected according to one of

the five constant-action target policies. Each demon used the GTD(λ) algorithm to update

its prediction incrementally from the log file, and the parameters of GTD(λ) were the same

as the previous experiment.

We compared RUPEEvec, RUPEEscalar, and the RMSE from test excursions, all com-

puted from the log of data. RUPEEvec and RUPEEscalar of each demon was recorded for
3We cannot compute a variance unexplained variant of RUPEE, thus comparing aggregate (e.g., median)

NMSE curves and RUPEE curves would be miss-leading.
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every time-step in the log file, but only updated on every non-test time-step. The RMSE

was also recorded for every demon on each time-step, only updated after the completion

of each test. The averaging parameter of RUPEEvec was set to β0 = (1 − λ)α0/30, and

the averaging parameter of RUPEEscalar was set to β0 = (1 − λ)α0/20. Both RUPEE

measures used αĥ = 5α. The averaging parameter β, for the RMSE, was set to 0.0005.

Mirroring our experiments in the Markov chain, we reset the primary weight vector

of each demon, w(i) = −w(i), at the halfway point of the log to induce a sudden and

unexpected change. The reset caused each demon to predict the opposite of what it had

learned up to the halfway point, and should significantly perturb both the prediction accu-

racy and RMPBSE of all the demons. Figure 8.4 plots the median RMSE, RUPEEvec, and

RUPEEscalar curves computed from the log file, sampled on the time-step that the behavior

policy was in control in the original experiment.

Results and conclusions

The results in Figure 8.4 show that the RMSE from test excursions and both RUPEE mea-

sures have roughly the same overall shape, aggregating via the mean, and all three react

similarly to the reset of the weights at the halfway point of the experiment. Using the

median to aggregate errors resulted in similar curves, which was expected because the cu-

mulants were scaled to the zero-one range.

Notice that the mean RMSE, mean RUPEEvec, and mean RUPEEscalar though similar

in profile are not equal in magnitude. The RMSE does not equal the two RUPEE measures

because they estimate different quantities: the prediction error and the RMSPBE. Given

enough data the RUPEE measures should both approach zero. The RMSE, on the other

hand, will likely never achieve zero on robot data for a number of reasons including but

not limited too (1) the features do not capture the state of the environment, and (2) the

testing regiment does not precisely reflect the true accuracy of the predictions (e.g., the

tests sometimes occur in situations which have correspondingly less training data). The

two RUPEE measures achieve similar magnitude but are not exactly equal either because

they used different averaging schemes and thus will likely have different biases. There may

be cases when all three measure are nearly equal (e.g., tabular features), but that is not the

case here. We have plotted each measure separately to focus of the shape of the curves

rather than the precise magnitude, which are expected to differ in general.

We conclude from the results of this experiment, that the estimates of the RMSPBE
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Figure 8.4: Off-policy learning progress of 245 predictions learned by the GTD(λ) algo-
rithm, as measured by the RMSE from on policy test excursions and two estimates of the
RMSPBE. The figure shows the mean RMSE, mean RUPEEvec, and mean RUPEEscalar
plotted against time. The mean of each curve was computed from the learning curves of
245 predictions. A sudden change (marked by the gray vertical line at the mid-way point)
was simulated by reseting each prediction’s primary weight vector, w(i) = −w(i). The
change caused the demon’s predictions to become inaccurate and cause all three measures
to increase dramatically.

of the GTD(λ) algorithm and the RMSE of its predictions exhibit similar profiles. Fur-

thermore, the RMSPBE estimates seem to react just as quickly as the RMSE to a sudden

change in the accuracy of the demon’s predictions. Our experiment provides evidence that

both RUPEE measures can track the learning progress of many demons on a robot, and the

RUPEE measures can also track the improvement in prediction accuracy of those demons

over time.

8.4.3 Many demons and many target policies

Our last experimental investigation concerns scalability of RMSPBE estimation. So far, our

experiments have explored learning about only a few target policies at a time. Given enough

computation and sufficient training data, we may be able to learn about many different

target policies in realtime and in parallel. Using RUPEEvec, we may be able to estimate the

learning progress of each demon, and thus we may be able to greatly scale up the number

of distinct target policies without ever having to run a single on-policy test excursion. We
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seek to answer: “Is it practical to perform the GTD(λ) update and estimate RUPEEvec

for many demons with many distinct target policies, all within the update cycle time of

the Critterbot?”. Additionally, can we do it with at least as many demons as the nexting

experiments of Chapter 5? Our final experiment seeks the answer to these questions.

Problem

In order to generate a large number of distinct target policies, we use randomly parameter-

ized probabilistic policies. Each policy is represented as a discrete distribution over actions.

The next action is sampled probabilistically on each time-step from a discrete-action lin-

early parameterized Gibbs distribution,

π(i)(x, a) =
e(x>u(i)(a))∑

a′∈A e
(x>u(i)(a′))

,

where u ∈ Rn|A| is a vector of policy parameters and u(a) ∈ Rn. Each policy is generated

by selecting 50 components of u(a) at random at the beginning the experiment and then

assigning each component a value independently drawn from a normal distribution with

mean zero and variance one. In our experiment we generated 300 different probabilistic

policies.

The only other significant change from our previous experiments was how the robot

behaved. We eliminated the on-policy test excursions, and periodically invoked the recovery

policy to ensure the robot’s behavior was not concentrated near the walls of the pen. The

behavior policy and the λ function were exactly the same as before.

Experiment

We instantiated 2500 prediction demons by randomly combining one of the 300 target poli-

cies, a cumulant equal to one of the robot’s sensors, and a constant termination signal from

the set {0.0, 0.5, 0.8, 0.95}. The randomization process checked to ensure that each demon

was created with a unique combination of π(i), γ(i), andZ(i). Each demon used the GTD(λ)

with α = (1− λ)α0/||x|| = (1− .9)(0.05)/473, and αh = 0.001α.

The robot was run for six hours, updating 2500 demons and estimating learning progress

with RUPEEvec.The RUPEEvec estimator was used with β0 = (1 − λ)α0/100 and αĥ =

5 ∗ α0. Figure 8.5 shows the estimated mean and median RMSPBE curves aggregated over

all 300 demons, and a sampling of estimated RMSPBE curves for 30 demons.
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Results and conclusions

The time required to make and update all 2500 predictions was 91 ms, well within the 100

ms cycle of the Critterbot. Roughly a quarter of the demons used γ = 0.95, which would

need a 22 second excursion to estimate the RMSE under the on-policy testing framework.

Appendix D contains additional timing results and a discussion of the parallel scalability

of Horde. It is not entirely appropriate to compute the median and mean RMSPBE curves

because the demons have very different time scales and cumulant ranges. Nevertheless, we

do so to give an idea of overall RMSPBE reduction, as well as plotting the RMSPBE curves

for several demons individually. Afterwards, we reprocessed the data using RUPEEscalar to

estimate the RMSPBE, yielding qualitatively similar RMSPBE curves for both individual

demons and in the aggregate. Using RUPEEscalar, we could update 3000 demons in 77.96

ms per step, on average.
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Figure 8.5: Scaling off-policy learning to 2500 demons and 300 distinct target policies on
a robot, with progress measured using RUPEEvec. The bottom plot shows the estimated
RMSPBE versus time for a selection of 30 of the 2500 demons. The top two plots show
the mean and median estimated RMSPBE curves computed over all 2500 demons. The
median estimated RMSPBE is higher than the previous experiment because the individual
cumulants were not scaled to be between zero and one.

The plots in Figure 8.5 show that the estimated RMSPBE, via RUPEEvec, in the aggre-

gate and for individual demons reduces significantly during the course of the experiment.
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Assuming that the accuracy of each demon’s prediction (or RMSE) follows the same pro-

file as the estimate of the RMSPBE—as it did in the previous experiment—then the overall

prediction accuracy also reduces significantly during the course of the experiment.

In conclusion, these results suggest that learning predictions about the consequences of

many different target policies is feasible in realtime and on a robot. The ability to monitor

and track the learning progress of many different demons and target policies is only possible

due to the availability of the an online estimate of RMSPBE using RUPEEvec.

8.5 Summary

In this chapter we introduced two new methods for estimating off-policy learning progress

for gradient temporal difference learning methods, called RUPEEvec and RUPEEscalar. We

conducted a series of experiments on the Markov chain domain, which aimed to empirically

test the practicality of estimating the RMSPBE of the GTD(λ) algorithm in a domain that

affords exact calculation of the MSPBE, using our two RUPEE measures. We then moved

to the Critterbot to investigate how well our RUPEE measures compared to the prediction

accuracy of hundreds of prediction demons. Our final experiment provided a demonstra-

tion of learning thousands of prediction demons, with hundreds of distinct target policies,

measuring learning progress with RUPEEvec, all on a robot.

Overall, RUPEEvec appears to be a reasonable estimator of the RMSPBE, given its

light memory and computational footprint compared to computing a least-squares solution

(e.g., RMSPBE1). It also appears that the empirical convergence profile of both RUPEEvec

and RUPEEscalar are similar to the empirical convergence profile of the prediction accu-

racy, computed from interspersed test excursions. Scaling the number of predictions about

distinct target policies on a robot was made easier using a computationally frugal online

performance estimate, such as RUPEEvec.

Our new estimators are useful for experimentation and analysis of predictive knowl-

edge architectures like Horde. The accuracy and correctness of the predictive knowledge

is essentially private and uninterpretable by humans, and thus an estimate of the MSPBE

facilitates monitoring the learning progress of a large collection of demons individually and

in the aggregate, without human intervention, testing, or expensive computations.
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Chapter 9

Adapting the behavior policy1

Up to now, our agent has operated in a passive regime: observing an unending sequence

of feature vectors and actions, and predicting future cumulants. In all our experiments so

far, the behavior policy has been hand-coded ahead of time by humans, who use imperfect

knowledge of the situations the agent might face in the future. Even in the restricted world

of the wooden pen, the robot encountered unexpected things, like the strange magnetic

readings in the floor. The behavior policy is an answer function, and just like the other

answer functions its definition determines the nature of each demon’s approximation of

its GVF. Improving the answer functions could improve a demon’s approximation. An

improved behavior policy might be one that adapts action selection during learning, perhaps

specializing to each demon’s unique requirements, in order to improve prediction accuracy

and improve overall system responsiveness.

This chapter investigates how feedback from several demons can be used to adapt the

behavior policy of a robot, demonstrating one possible use of our demons. Other systems

have used predictions as components of state representations, as in predictive state repre-

sentations (Littman, Sutton & Singh, 2002; Singh, James & Rudary, 2004; Boots, Siddiqi

& Gordon, 2011; Sutton & Tanner, 2005). Cunningham (1972), Becker (1973), Drescher

(1990), and Sutton (2009, 2012) explored representing knowledge adapting behavior based

on predictions, but only in small scale simulations. The potential uses of Horde’s demons

are too many and too varied to treat properly in a single chapter. Nevertheless, we propose

a simple scheme for behavior adaption and conduct a small-scale experiment on a robot,

contributing both the first demonstration of behavior adaption based on demon feedback on

a robot, and a concrete demonstration of the potential usefulness of prediction demons. Our
1Some of the experiments and text in this chapter are borrowed from a workshop paper (White, Modayil

& Sutton, 2014). The text of that paper and the experiments within were almost exclusively produced by this
author.
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demonstrations constitutes further development of the predictive approach to knowledge.

9.1 Unexpected demon error

One way to adapt the behavior is to listen to the feedback of the demons: triggering behavior

change when one or more of the demons encounters an unexpected error. This idea is

motivated by situations where something unexpected happens, and situations where the

robot encounters a new and previously not encountered situation. In these cases, we might

want the robot to investigate the situation. The purpose of the robot’s investigation might be

to update predictions that have become inaccurate due to a change in the world, or to learn,

for the first time, about a new part of the world. After some updating and exploration, the

robot might move on and do something else. These changes in the robot’s behavior could

be triggered by changes in the error of each demon’s predictions. In particular, we could

track each demon’s learning, recording whenever a demon’s predictions were unexpectedly

inaccurate.

In the previous chapter we developed a measure of learning progress. Here we are

interested in a measure of sudden or unexpected change in the demon’s regular learning,

which is different. Learning progress, as measured by RUPEE, reflects how much learning

has occurred and how much learning remains, that is updated on the same time scale as

the learning occurs. Unexpected error, on the other hand, is a measure of some unexpected

event, which we wish to recognize and react to before the base learning accounts for the

change.

We can define a measure of Unexpected Demon Error, or UDE, based on the internal

error of each demon’s approximate GVF i,

UDE(i)
t =

∣∣∣∣∣∣ δ(i)
β√

var[δ(i)] + ε

∣∣∣∣∣∣ , (9.1)

where ·β denotes the moving average, δ(i) ∈ R is the TD error of each demon, and ε ∈ R in

a small constant to avoid division by zero. In all our experiments, we used β0 equal to 10

times the learning rate of the demon’s learning algorithm (α). The variance is incrementally

computed with a long run sample average. We take the absolute value of the measure

because equal magnitude unexpected errors, either positive or negative, are considered the

same. The UDE is independent of cumulant scale, and can aggregate the performance of

many demons. Updating the UDE requires O(1) computation and storage per demon.

Consider how the UDE responds to changes if applied to zero mean error generated by
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a symmetric unimodal distribution, shown in Figure 9.1. When the error signal becomes

unexpectedly large, the moving average becomes larger than the sample standard deviation,

and the UDE is large. The error is unexpected because it is much larger than the sample

standard deviation. If the fluctuations in the error are expected, again, in comparison to

the sample standard deviation then, the UDE is small. A high value of UDE will become

small if the TD error, becomes small, or it remains large long enough such that the sample

standard deviation becomes large. In either case, the UDE will decrease.

samples

sustained perturbation 

spurious outlier 

UDEerrors

 + �휎

 - �휎

Figure 9.1: A plot of UDE and an error signal sampled from a normal distribution: δt ∼
N(0, 1.0). In the top panel, we see the UDE fluctuates close to zero, taking on a value close
to zero, compared with the confidence bounds equal to +σ and −σ plotted in green and
red. The fluctuations in the errors are small and so is the UDE. In the middle panel, we see
the outcome of a single spurious error that is significantly outside the confidence bounds.
The bottom panel shows a large sustained perturbation of the error signal, causing a large
increase in UDE that does not vanish for an extended period of time.

As a second illustration, we computed the UDE of TD(λ) from the log file of the nexting

experiment of Chapter 5. In Figure 9.2 we see the UDE of the Light3 prediction. After over

an hour of learning (corresponding zero on the x-axis), we see the TD(λ) predictions were

well aligned with the Light3 target and consequently the UDE was small, but not zero. After

the 80 second mark, the robot stalled in front of the light source, saturating its Light3 sensor.

Usually, the light reading would subside as the robot drove past (which can be seen by the

small down tick in the robot’s light prediction highlighted in the graph). In this case, the

UDE shot up and remained high and only began to decay as the the Light3 prediction began
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to match the robot’s new reality. In the next section, we describe an experiment where the

robot is allowed to change its action selection based on unexpected demon error.
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0.4 Figure 9.2: The UDE measure computed from the TD error of the TD(λ) algorithm’s eight
second prediction of future light from the nexting data set. Both graphs share the same x-
axis. During the first 80 seconds, the predictions are accurate and the UDE is low. After the
80 second mark, the robot stalls in front of the light source, and the prediction of future light
become substantially different from the target: highly inaccurate predictions and the UDE
becomes large. The zoomed-in section of the graph shows the TD(λ) initially go down in
anticipation of passing the light.

9.2 Adapt the behavior policy of a robot

This section describes and demonstrates one simple way to use UDE to adapt a robot’s

behavior. We consider the case where each demon’s learning has plateaued, and then an

event occurs that causes a substantial and sustained increase in the UDE of only one of the

demons. We attempt to demonstrate how the behavior can be adapted in response to the

increase in UDE, in order to improve the demon’s prediction. Specifically, we place a five

pound weight on the back of an iRobot Create causing one demon’s prediction about future

battery current to become inaccurate. The behavior responds by continually rotating until
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the demon’s prediction about battery current becomes accurate again and the UDE goes

down. This following sections describe the experiment in detail.

9.2.1 Problem

The robot’s interaction with its environment is structured in a loop with a 30 ms time-step.

We use the iRobot Create with a top-mounted, front-facing USB camera and all computing

performed onboard via a Raspberry Pi computer. The action set contains four discrete

actions, {forward, backward, rotate clockwise, rotate counter-clockwise, stop}, which are

mapped to constant wheel-velocity commands on the robot. The 120 × 160 USB camera

images are sampled at 30 frames per second, and the actions are also polled every 30 ms.

The learning task is specified by two different prediction demons, each with different

question functions. The first demon’s question corresponds to a prediction about the number

of time steps until the onset of bumping: “How many time steps until the robot bumps or

the effective end of the time horizon is reached, if the robot were to drive forward?”. This

question is encoded by the question functions: a target policy, π(1), that always selects the

forward action, Z(1) equal to one, and γ(1)(s) equal to zero if either bump sensor equals

one, and γ(1)(s) equal to 0.9 otherwise ( corresponding to three second time scale). We shall

refer to this first demon as the forward demon. The second demon’s question corresponds

to a prediction about the total discounted future battery current draw if the robot rotates

in place (similar to a nexting prediction with the target policy equal to constant rotation).

This question is encoded by the question functions: a target policy, π(2), that continuously

rotates counter clockwise, Z(2) = battery-current, and the constant function γ(2)(s) equal

to 0.8 (corresponding to 1.5 second time scale). We will refer to the second demon as the

rotation demon.

Each demon uses a distinct feature vector generation method. The forward demon’s

feature vector is constructed from the most recent camera image. At the start of the ex-

periment, 100 pixels are selected at random, and from these pixels either the luminance or

color channel is selected equally and at random. Figure 9.3 demonstrates the random pixel

sampling scheme. Each pixel value (between 0 and 255) is independently binned into 16

non-overlapping bins of width 16, producing a binary feature vector with 16,000 compo-

nents, of which 100 are non-zero on each time-step. The second demon’s feature vector is

constructed by discretizing a decaying trace of the battery current reading, scaled to be be-

tween zero and one, with bin widths of 1/16th. The rotation demons feature vector contains

16 components, of which only one is active on each time-step.
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Figure 9.3: A visualization of how the pixels from the USB camera image are randomly
sampled and binned to create the forward demon’s feature vector. On the left side, we see
the 100 randomly sampled color components (red and blue) and luminance components
(green) sampled from the current 120 by 160 image. The selection is performed at the
beginning of each experiment, and the mapping remains fixed throughout the experiment.
The right hand side shows a visualization intended to give the reader an idea of the demon’s
view of the world using this feature construction method.

The remaining answer functions were shared by both demons. The λ function was a

constant function and equal to 0.9. Both demons share a common behavior policy, but the

behavior is comprised of two distinct policies. The first policy, called the non-reactive be-

havior, alternates between driving forward until bumping and rotating counter clockwise in

free space (not against the wall). The non-reactive behavior performs the same sequence

of actions every time the robot bumps into a wall: stop, reversing for five steps, rotating

clockwise (probabilistic duration), and then driving forward again until the next bump or

and interruption. The forward movement is probabilistically interrupted to initiate an ex-

tended and probabilistic duration counter-clockwise rotation. Figure 9.4 shows a snapshot

of the non-reactive behavior.

Figure 9.4: The iRobot Create selecting actions according to the non-reactive behavior
policy in its pen.

The second policy, called adaptive behavior, is rule-based and adapts action selection
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based on the UDE of each demon. The adaptive behavior is designed to be very similar

to the non-reactive behavior. The only difference is that instead of probabilistically inter-

rupting forward movement with a rotation, the adaptive behavior decides to continue the

forward movement or start an extended counter-clockwise rotation based on the UDE of

each demon. Algorithm 2 contains the pseudo code for the target policy selection mecha-

nism. Once the adaptive behavior selects one of the demons’ target policies, it follows that

Algorithm 2

j = argmaxj 6=iUDE(j)
t

if UDE(j)
t < 0.2 then

pick j randomly
end if
µ = π(j)

select actions according to µ for 120 consecutive steps

policy for 120 consecutive steps, unless it is interrupted by a bump. If 120 steps occur and

no bump is observed, then the adaptive behavior policy decides whether to continue select-

ing actions according to π(i) for another 120 steps, or switch to different target π(j) based

on the UDE of each demon. If all demons UDE measures are below the 0.2 threshold, a

target policy is selected at random. The adaptive behavior policy enables selecting actions

according to the same target policy, for many steps consecutively. When the UDE of each

demon is below 0.2, the adaptive behavior will act almost identically to the non-reactive

behavior, except the duration of rotations under the adaptive behavior is fixed to 120 steps.2

9.2.2 Experiment

All learning, feature processing, and data collection was done on the Raspberry Pi directly

connected to an iRobot Create, within the 30 ms update cycle of the robot. Both demons

used separate instances of the GTD(λ) algorithm for learning with the same learning-rate

parameter values: α = 0.05 and αh = α/100. The code for this experiment was based

on a publicly available c programming interface for the iRobot create (Mahmood & Sutton,

2013).

Our experiment involved three phases. During the first phase (typically four to six min-

utes), the robot followed the non-reactive behavior policy. After the UDE of both demons
2The threshold of 0.2 was determined via trial and error and worked well for our robot and the particular

GVFs specified. The demonstration of this chapter is meant to simply highlight one use of learning multiple
GVFs. As such our adaptive behavior algorithm is functionally useful for our purposes, but perhaps not as
general as it could be. Much more worked in needed to determine a general purpose algorithm for adapting
behavior based on parallel GVF learning.
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decreased substantially, the behavior policy was switched to the adaptive behavior (Algo-

rithm 2), beginning the second phase. After approximately two minutes, the robot (includ-

ing learning) was paused and a five pound load was placed in the cargo bay of the Create.

Then the robot resumed following the adaptive behavior and learning. The load had a sig-

nificant effect on the battery current draw, but was not heavy enough to affect the robot’s

ability to achieve the requested wheel velocity for the forward policy. This experiment was

repeated several times, varying the lighting conditions, wall-clock duration of each phase,

and camera orientation on the robot. Figures 9.5 and 9.6 show the results of one such run.

9.2.3 Results and conclusions

adaptive
behav

loaded
non-reactive behavior

time steps

UDE of
forward demon

UDE of 
rotation demon

Figure 9.5: A plot of the UDE measure for the forward demon (top) and rotation demon
(bottom). Both graphs show the three phases of the experiment: (1) initial learning under
the non-reactive behavior, (2) learning under the adaptive behavior, and (3) learning under
the adaptive behavior after the load was added to the robot. The dotted line on the bottom
plot marks the 0.2 threshold used by the adaptive behavior to switch target policies. The
light red vertical shaded region marks when the robot (and learning) were paused to place
the load on the robot. A large spike in the UDE measure of the rotation demon, occurs after
the load is added in phase three. The UDE reduces quickly thereafter, because the robot
continuously rotates providing data to update the demon’s prediction of battery current. In
this particular run, a second spike in UDE occurs after the initial spike. The robot’s initial
rotation due to the increase in UDE continued until the UDE was suppressed below the
0.2 threshold. After several seconds, the rotation demon encountered a new situation—
according to its feature vector—where its prediction of battery current was still incorrect,
and thus the UDE spiked again. This caused another extended, but shorter, rotation.

Figure 9.5 shows the UDE of each demon. There was no noticeable change in the UDE
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Figure 9.6: These two plots show the action selection choices of the adaptive behavior
policy before and after the load was added to the robot (marked pause). The top figure shows
which demon’s policy was followed by the behavior as a binary time course. At times,
neither policy is followed because the robot automatically reverses and counter-clockwise
rotates after bumping which is not part of either target policy. The bottom histogram shows
the number of time steps on which the rotation action was selected over the same time
period. The upper plot shows that the robot continually selected actions in accordance with
the rotation demon’s target policy after the load was added, and then returned to normal
operation. The second extended rotation is also visible. The lower plot illustrates the same
phenomenon, and also shows the variability in the number of rotations throughout the run.

of either demon when the behavior policy was changed at the end of phase one. After the

load was added to the robot in phase three, the UDE of the forward demon was largely

unaffected. The UDE of the rotation demon, on the other hand, shot up quickly after the

load was added to the robot, but reduced back down to a low level in comparison to UDE

reduction during the beginning of the experiment. The decrease in the rotation demon’s

UDE under continual rotation (with the load added) was faster than the decrease of UDE

observed during initial learning, when rotation occurred sporadically.

The extra load generated a clear and obvious change in the robot’s behavior, as shown

in Figure 9.6 and observed by the experimenters. During phase two, when neither demon’s

UDE measure exceeded the threshold, the adaptive behavior only occasionally executed

rotations in free space. The first time the adaptive behavior selected a counter-clockwise

rotation, after the load was added in phase three, a large increase in UDE was produced
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by the rotation demon. The increased UDE caused the adaptive behavior to produce an

extended counter-clockwise rotation: a very distinctive change in behavior. Figure 9.6

provides two quantitative measures of how the actions were selected during phase two and

phase three. After several seconds of rotation, the UDE of the rotate demon subsided below

0.2, constant rotation ceased, and the behavior returned to normal operation (in comparison

to phase two).

This simple experiment demonstrates one way to usefully adapt a robot’s behavior based

on the feedback of several demons. We have demonstrated that a change in the robot’s

environment, that causes a substantial change in a single demon’s prediction accuracy, can

be detected using our UDE measure, and that the increase in UDE can be used to adapt the

robot’s behavior to help relearn the demon’s predictions.

9.3 Discussion

Our simple adaptive behavior corresponds to a limited form of artificial curiosity. In our

experiment, the behavior would focus its action selection on one of the target policies if

the robot happened to stumble across a situation that caused a increase in UDE—in this

case, a human loading the robot. The robot would continue to focus on the new error-

generating situation until learning caused the UDE to decrease, eventually permitting the

robot to return to normal operation. This behavior is curious and reactive to situations that

result in increased demon error, becoming temporarily fixated and then moving on.

Our approach is limited because the behavior policy is not permitted to select a UDE

maximizing action on each time-step. The adaptive behavior only periodically queries the

UDE measures, and only permits following a single target policy for several consecutive

time steps. This means the robot cannot actively search out new situations that yield high

UDE, instead relying on happening upon high UDE inducing situations. In addition, the

robot cannot discover unique sequences of actions different than those produced by the

target policies that might reduce the ODE of many demons simultaneously.

The ideas and demonstrations in this chapter are related to and inspired by the rich his-

tory of work in intrinsically motivated reinforcement learning (IMRL). Many IMRL sys-

tems make use of an additional intrinsic reward function computed from things internal to

the agent, such as value function change (Simsek & Barto, 2006; Schembri et al., 2007),

model error (Schmidhuber, 1991; Lopes et al., 2012), and prediction error (Singh et al.,

2005; Oudeyer et al., 2007). These internal rewards can be used to encourage the agent to
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select actions it would not normally select under the external reward, in order to facilitate

learning more generally applicable policies or increase the speed of learning on tasks en-

countered in the future. This approach views internal motivations and curiosity as a tool to

help improve the agent performance. Internal rewards can also be used to simulate artificial

curiosity, where the agent takes actions to generate new experiences solely for the sake of

exploring (e.g., Oudeyer et al., 2007). Finally, a recent and significant departure from previ-

ous IMRL work takes the view that all reward functions are both internal and external, and

these functions are produced by an evolutionary search (see Singh et al., 2010). Table 1 in

Appendix C summaries several studies of artificial curiosity and IMRL, focusing in partic-

ular on each system’s definition of internal and external reward. In addition, Baldassarre &

Mirolli (2013) provide an excellent survey of work in intrinsic motivation in reinforcement

learning and psychology.

There are similarities between previous work on IMRL and our behavior adaption

demonstration on the Create. Several studies demonstrated the utility of IMRL for multiple

value functions and policies learning (Singh et al., 2005; Simsek & Barto, 2006; Oudeyer

et al., 2007; Schembri et al., 2007; Singh et al., 2010), like our parallel demon learning,

and several others also used either prediction error or TD error as a measure of learning

(Schmidhuber, 1991; Singh et al., 2005; Schembri et al., 2007), including the one work

that included demonstrations on a real robot (Oudeyer et al., 2007). The learning system of

Singh et al. (2005) is most related to ours: they also used parallel off-policy reinforcement

learning methods (Q-learning) to learn value functions and defined internal rewards equal

to prediction errors. We could improve our own system by using a reinforcement learning

algorithm to learn a behavior policy that maximizes the sum UDE over all the demons—an

intrinsic reward. Such a behavior might seek out situations where the demons knowledge

was incorrect, similar to Oudeyer’s robot (2007). Our demonstration is the first demon-

stration combining off-policy reinforcement learning, function approximation and behavior

adaption on a robot.

9.4 Summary

In this chapter we investigated how feedback from several demons could be used to adapt

the behavior policy of a robot. First we introduced a measure of unexpected demon error,

which captures when a demon’s predictions become unaligned with recent experience. Next

we described a simple behavior policy, which periodically selects actions according to the
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demon with highest UDE. We then demonstrated the usefulness of our approach on the

iRobot create, showing the robot could effectively adapt its behavior due to a dramatic

increase in UDE, when a load was placed on the top of the robot. The chapter closed with a

discussion of prior work related to UDE and adapting behavior based on demon feedback.

This experiment provides a demonstration of how feedback from a Horde of demons

can be used to improve learning. In addition, our demonstration also constitutes the first

demonstration of predictive knowledge learning and online behavior adaption on a robot.

The work described in this chapter makes a small addition to the development of predictive

knowledge learning. There remain many interesting questions regarding how to use predic-

tions and other feedback from demons to adapt the behavior policy. These items are left to

future work.
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Chapter 10

Perspectives and Future Work

This thesis investigated the problem of representing an agent’s knowledge of the world

with predictions. The aim was to develop the predictive approach to knowledge, improving

both applicability and scalability of learning with a novel application of value functions and

learning algorithms from reinforcement learning. Towards this goal, we claim progress has

been demonstrated in three areas. First, GVFs have been proposed as a new representation

for predictive knowledge that is expressive and potentially learnable with computationally

efficient value function learning algorithms. GVF learning has been demonstrated at large

scale from long, high-dimensional, continuous data streams with several experiments on

mobile robots. Second, a new measure called RUPEE has been presented for estimating

off-policy learning progress in situations where measuring prediction accuracy is practi-

cally challenging, such as learning about many distinct target policies on a robot. Third,

several issues have been exposed and investigated regarding the empirical performance of

the GTD(λ) algorithm, including the role of the secondary weight vector and the algo-

rithm’s parameter sensitivity in on-policy and off-policy learning settings. We begin by

summarizing the three proposed contributions of our work, and close with future work.

10.1 General Value Functions

The application of GVFs to represent predictive knowledge facilitates posing a large diver-

sity of predictive questions. Through various combinations of target policies, cumulants,

and termination signals, we may pose a variety of predictive questions. In this thesis, we

investigated several such questions including, questions about what will happen next, such

as the future value of the magnetic sensor in the next 100 ms (see Chapter 5), policy-

contingent questions, such as the time to stop on different surfaces (see Chapter 6), and

questions about complex termination conditions, such as predicting light after rounding the
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next corner (see Chapter 6). Our approach is promising because GVFs make it possible to

capture policy-contingent declarative and goal-oriented predictive knowledge, and a large

amount of knowledge is of this form. Conventional knowledge representations that can

capture this kind of knowledge (e.g., high-level, symbolic methods such as rules, operators,

and production systems) are not as grounded and therefore not as learnable as GVFs.

Although value functions have always been potentially learnable, only recently have

scalable learning methods become available that make it practical to explore the idea of

GVFs with off-policy learning and function approximation. With small modifications for

parallel learning, temporal difference learning algorithms were used to make and update

predictions online, while the agent interacted with the world, from continuous inputs and

off-policy samples. In comparison, prior prediction learning systems are either not well

suited for continuous domains, or are difficult to scale to large numbers of predictions

and long data streams. We have demonstrated with our nexting (Chapter 5) and policy-

contingent prediction experiments on the Critterbot (Chapter 8) that GVF learning can be

scaled to learning thousands of predictions from hours of data, well beyond the demonstra-

tions of previous work.

10.2 Online off-policy progress estimation

One special challenge for large-scale off-policy learning on a robot, involves evaluating

learning progress of each individual prediction. Many approaches to progress estimation

use knowledge of the MDP parameters, limit the span of individual predictions, or limit

the number of distinct target policies that can be used to specify predictions. In Chapter 8,

we proposed an alternate approach based on estimating the MSPBE of each demon. Ex-

ploiting the fact that the secondary weights of the GTD(λ) algorithm estimate a portion of

the MSPBE, we developed two measures, called RUPEEvec and RUPEEscalar, that com-

bine GTD(λ)’s partial estimate of the MSPBE with a trace of recent errors. The resultant

measures can be updated incrementally with linear computation per demon, refining their

estimate of the MSPBE with each sample, and are both naturally parallelizable. These RU-

PEE measures do not require special testing phases, and thus may simplify the design and

implementation of the behavior policy.

Our RUPEE measures performed well in both a Markov chain domain and on the Crit-

terbot. One of our RUPEE measures provided a reasonable estimate of the MSPBE in

several variants of the Markov chain domain. In addition, both RUPEE measures seemed
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to provide a surrogate measure of aggregate prediction accuracy, measured by test excur-

sions, for hundreds of policy-contingent predictions learned on the Critterbot. It was also

empirically demonstrated that our measures can react quickly to changes, in both the chain

domain and robot prediction tasks. Finally, RUPEE was essential for our demonstration of

policy-contingent prediction learning on the Critterbot, providing an estimate of learning

progress for thousands of demons whose GVFs were contingent on hundreds of distinct tar-

get policies. Such a demonstration would not have been possible without an online measure

of learning progress.

10.3 Empirical study of GTD(λ)

Gradient-TD methods make exploring parallel demon learning practical for the first time,

but our empirical understanding of these new algorithms is limited. This thesis provides

new insights for one such algorithm, GTD(λ). The Markov chain experiments of Chapter 7

investigate a distinctive aspect of the GTD(λ) algorithm, the secondary weight vector and

gradient correction. Our experiments demonstrate that when GTD(λ) is tuned to optimize

MSPBE, the algorithm may not accurately learn the secondary weights. On the other hand,

when we optimized the learning-rate parameters of GTD(λ) to learn the secondary weights,

GTD(λ) more effectively learned these weights, and did not exhibit divergence. We also

demonstrated that GTD(λ) can learn efficiently without the secondary weights—even on

off-policy problem instances—but the performance of GTD(λ) with the secondary weights,

learned in the usual way, was competitive.

The gradient-TD methods are intended to prevent divergence under off-policy sam-

pling; to continue our study we moved to a variant of Baird’s (1995) counterexample that

causes divergence of linear off-policy TD. The results in this domain were different from

those in the chain domain: the secondary weights appear to be important for avoiding diver-

gence, and the default behavior of the algorithm (minimizing MSPBE) cause the secondary

weights to be learned well. In addition, our counterexample experiments revealed that large

values of λ can lead to instability in the GTD(λ) due to successive large importance sam-

pling corrections multiplying in the trace update. Our experiments in these two problems

illustrates that good performance for GTD(λ) can be produced with very different parameter

settings. Our results highlight limitations of the GTD(λ) algorithm, and suggest a starting

point for future algorithmic development.
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10.4 Limitations and future work

The investigation of GVFs as a representation for predictive knowledge begun here is far

from complete. We have opened or continued study on several topics, and much remains

to be done, including: (1) comparing the representation capabilities of GVFs with that

of PSRs, TPSRs, TD-nets, and prediction profile models, (2) empirically exploring using

predictive-state features with Horde, (3) a theoretical characterization of RUPEE, (4) de-

veloping algorithms for mitigating variance in off-policy learning attributed to large impor-

tance sampling corrections, and (5) combining on- and off-policy demon learning, control

demon learning, and behavior learning in a much larger experiment.

10.4.1 Comparing predictive representations of knowledge

Our discussion of related approaches in Chapter 4 was limited to high-level comparisons

with other representations of predictive knowledge. Our focus in this thesis was to ensure

our knowledge representation based on GVFs achieved certain desirable attributes present,

in part, in other predictive representations, including compatibility with predictive feature

components, compositional prediction, and policy contingent prediction. A possible direc-

tion for future work involves more direct and specific comparisons among GVFs and PSRs,

TPSRs, TD-nets, and prediction profile models. This could be done by characterizing what

types of predictions can be encoded and learned with each representation. It may also be

fruitful to analyze and relate the compactness of GVFs with other representations, similar

to how PSs have been compared with POMDPS models (Littman, Sutton & Singh, 2002;

Singh et al., 2004). Finally, the usefulness of predictive knowledge encoded as GVFs could

be evaluated against other representations, for example examining their usefulness as fea-

tures for policy learning, similar to the work of Rafols (2005) and Schaul and Ring (2013).

10.4.2 Predictive features and a Horde of demons

In Chapter 6, we provided a small demonstration of how predictions can participate in

feature generation, similar to the idea of predictive state representations. Our demonstration

was limited in that only a single prediction was used as part of the feature vector, and that

prediction was used only to improve its own learning. Although an interesting special case,

our demonstration was far from the other extreme where all the feature components are

computed from predictions, exemplified by PSRs. Horde enables part of the feature vector

to be predictive and part to be non-predictive. An initial subset of the predictions could
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be learned using only the non-predictive components of the feature vector, and then later,

once this subset of the predictions has become accurate, other more complex predictions

could be learned with the greater representational capacity afforded by the predictive feature

components. Future work could investigate expanding the representational power of the

feature vector through predictive features, with experiments in several domains with varying

degrees of partial state information.

10.4.3 A theoretical analysis of RUPEE

In Chapter 8, we proposed two ways to estimate the MSPBE. Our analysis of these new

estimators was limited to empirical studies in simulation domains and a robot, where these

new measures appeared to suit our purposes. In addition to empirical success, the bias,

consistency, and variance of these estimators is also of interest. Both our RUPEE measures

used the secondary weight vector that is updated by an LMS rule inside the GTD(λ) algo-

rithm. Much of the LMS literature is concerned with the statistical properties of the value

estimate x>h, compared to the estimate given the optimal weight vector x>h?, whereas in

RUPEE the quantity of interest is the vector h itself. A theoretical analysis of RUPEE could

potentially yield improvements in how we can estimate the MSPBE, and insights into how

the GTD(λ) algorithm could be improved.

10.4.4 Mitigating variance in off-policy learning

The experiments of Chapter 7 revealed a previously undocumented stability problem with

the GTD(λ) algorithm on Baird’s counterexample. At first it appeared we had come across

an example of divergence for an algorithm we believed to be convergent, given that a large

sweep of the learning rate parameters did not yield a non-divergent learning curve. In-

dependently, Sutton et al. (2015) encountered similar behavior with a different TD based

algorithm. Our empirical study of this issue was limited to a single counterexample, and

it remains unclear how pervasive such variance is in prediction tasks. Nevertheless, this

behavior is concerning because we would like to ensure, if at all possible, that no particular

predictive question causes a demon’s predictions to become unstable. A possible direction

for future work involves developing new learning algorithms that are robust to this setting.

One idea is to set λ as a function of state, allowing it to change with time, perhaps reduc-

ing λ to zero when the magnitude of the trace becomes large. The λ parameter is part of

the definition of the MSPBE, and thus making an objective function to enable optimiza-

tion of λ is not at all clear at this time. Another option would be to use some form of
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weighted importance sampling variant of GTD(λ), that should reduce variance. The details

of weighted importance sampling have been recently been worked out for off-policy LSTD

(Mahmood et al., 2014), but extensions to linear complexity learning methods remains an

open problem.

10.4.5 Putting it all together

Throughout this thesis we demonstrated several components of the Horde architecture, in-

cluding large-scale nexting predictions in Chapter 5, large-scale policy-contingent predic-

tion in Chapter 8, predictive state components in Chapter 6, and behavior adaption based

on demon learning in Chapter 9.1. Our experiments were limited to fixed linear func-

tion approximation architectures, and only learning from a few hours of data. A poten-

tially fruitful trajectory for future work involves running experiments with more data and

more adaption—including the learning the behavior policy and automatically generating

new features—and even more demons. These experiments could provide insight into how

many demons could be either exhaustively generated, or even adaptively generated (i.e.,

autonomous goal generation). Such experiments may require more advanced parallel im-

plementations of Horde, such as on GPUs and new robot platforms. Appendix C contains

one proposal for a scaling experiment.

10.5 Summary

This chapter closed the thesis with concluding thoughts, a discussion of the limitations of

our work, and possible directions for future work. We concluded with a recap of the three

areas in which progress can be claimed, owing to the work summarized in this document.

We closed the thesis with a discussion of topics for future work, including comparing dif-

ferent representations of predictive knowledge, investigating predictive feature components,

analysis of RUPEE, mitigating variance in off-policy learning, and further scaling up and

integrating prediction learning.
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Appendix

A A new hybrid-TD algorithm

Conventional temporal difference updating can be more data efficient than gradient tem-

poral difference updating, but the correction term used by gradient-TD methods helps pre-

vent divergence. Sutton’s (2009) results suggested that there are situations (specifically

on-policy) where linear TD(0) can outperform gradient TD methods, and Hackman (2012)

demonstrated that expected Sarsa(0) can outperform multiple variants of the GQ(0) algo-

rithm, even under off-policy sampling. Our own experiments on the Markov chain demon-

strated that a variant of GTD(λ), without gradient correction, can outperform GTD(λ) with

gradient correction. On the other hand, linear off-policy TD(0) and GTD(λ) without gradi-

ent correction diverged on Baird’s counter example.

The idea of hybrid-TD methods is to achieve sample efficiency closer to conventional TD

learning, while ensuring non-divergence under off-policy sampling. To achieve this, a hy-

brid algorithm could do conventional, uncorrected TD updates when the data is sampled

on-policy, and use gradient corrections when the data is sampled off-policy. This approach

was pioneered by Maei (2011), leading to the derivation of Hybrid Temporal Difference

learning, or HTD(0). Later, Hackman (2012) produced hybrid versions of the GQ(0) algo-

rithm. In this section, we derive the first hybrid temporal difference method to make use of

eligibility traces, called HTD(λ), using a derivation scheme similar to Maei (2011).

The key idea behind the derivation of hybrid temporal difference learning methods is to

modify the gradient of the MSPBE to produce a new learning algorithm. The gradient of

the MSPBE is:

−1

2
∇wMSPBE(wt) = Eπ[(x(St)− xπ,γ(St))e

>
t ]>Eµ[x(St)x(St)

>]Eµ[δtet],
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where

xπ,γ(s)
def
=
∑
a∈A

π(s, a)
∑
s′∈S

P (s′|s, a)γ(s′)x(s′).

Substituting C = Eµ[x(St)x(St)
>], Aπ = Eπ[(x(St) − xπ,γ(St))e

>
t ], b = Eπ[Rtx(St)],

and −Aπwt + b = Eµ[δtet] (see Maei 2011), we get the well known TD fixed point equa-

tion,

0 = −1

2
∇wtMSPBE(wt) = A>πC

−1(−Aπwt + b). (1)

The value of wt, for which 1 is zero, is the solution found by linear TD(λ) and LSTD(λ).

The gradient of the MSPBE yields an incremental learning rule with the following general

form (see Bertsekas & Tsitsiklis, 1996):

wt+1 = wt + α(Mwt + b),

where M = −AπC−1Aπ. The update rule, in the case of TD(λ), will yield stable conver-

gence if Aπ is positive definite (as shown by Tsitsiklis & Van Roy (1997)). In off-policy

learning, we require AπC−1Aπ to be positive definite to satisfy the conditions of the or-

dinary differential equation proof of convergence (Maei & Sutton, 2010), which holds be-

cause C−1 is positive definite and therefore AπC−1Aπ is positive definite, because Aπ is

full rank (true by assumption). See Sutton, Mahmood & White (2015) for a nice discussion

on why the Aπ matrix must be positive definite to ensure stable, non-divergent iteration.

The C matrix in Equation 1, can be replaced by any positive definite matrix and the fixed

point will be unaffected, but the rate of convergence will almost certainly change.

Instead of following the usual recipe for deriving GTD, let us try replacing C−1 with

A−>µ = Eµ[et(x(St)− xµ,γ(St))
>].

The matrix A−>µ is a positive definite matrix (proved by Bertsekas & Tsitsiklis, 1996).
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Plugging A−>µ into 1 results in the following expected update:

1

α
E[∆wt] = A>πA

−>
µ (−Aπwt + b)

= (A>µ −A>µ +A>π )A−>µ (−Aπwt + b)

= (A>µA
−>
µ )(−Aπwt + b) + (A>π −A>µ )A−>µ (−Aπwt + b)

= (−Aπwt + b) + (A>π −A>µ )A−>µ (−Aπwt + b)

= (−Aπwt + b)+(
Eµ[(x(St)− xπ,γ(St))e

>
t ]− Eµ[(x(St)− xµ,γ(St))e

>
t ]
)
A−>µ (−Aπwt + b)

= (−Aπwt + b)− Eµ[(xπ,γ(St)− xµ,γ(St))e
>
t ]A−>µ (−Aπwt + b)

= Eµ[δtet]−∑
st∈S

dµ(st)

(∑
a∈A

(π(st, a)− µ(st, a))
∑
s′∈S

P (s′|st, a)γ(s′)x(s′)

)
e>t


A−>µ (−Aπwt + b), (2)

where −Aπwt + b = Eµ[δtet] by definition (from Maei, 2011). As in the derivation of

GTD (see Maei 2011), let the vector ht form a quasi-stationary estimate of the final term:

A−>µ (−Aπwt + b).

Now multiplying the second term of 2 by µ(st,a)
µ(st,a) gives:

1

α
E[∆wt] = Eµ[δtet]−∑
st∈S

dµ(st)

(∑
a∈A

µ(st, a)
π(st, a)− µ(st, a)

µ(st, a)

∑
s′∈S

P (s′|st, a)γ(s′)x(s′)

)
et

ht. (3)

We can sample 3 according to dµ, µ and P , yielding the following stochastic update:

∆wt = α

(
δtet + γt+1

π(st, at)− µ(st, at)

µ(st, at)
(h>t et)xt+1

)
. (4)

The sample update for the eligibility trace is et = ρt(xt + γtλet−1) (see Maei, 2011,

Equation A.7).

In Equation 4, we have achieved the goal of creating a hybrid algorithm. Notice that when

the data is generated on-policy (π = µ),

π(st, a)− µ(st, a)

µ(st, a)
= 0

and ρt = 1, and thus the correction term disappears and we are left with precisely linear

TD(λ). When π 6= µ, the likelihood-ratio TD update is corrected as in GTD, and unsurpris-

ingly, the correction is slightly different but has the same basic form.
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To complete the derivation, we must derive an incremental update rule for ht. We have a

linear system, because

ht = A−>µ (−Aπwt + b)

=⇒ A>µht = −Aπwt + b.

It is well known that the expected update

ht+1 = ht + αh

(
(−Aπwt + b)> −A>µht

)
converges if A>µ is positive definite and αh is chosen appropriately (see Sutton, Mahmood

& White, 2015). To sample this update, recall

(−Aπwt + b)−A>µht = Eµ[δtet]− Eµ[(x(St)− xµ,γ(St))e
>
t ]ht

we can rearrange some terms and sample to update a stochastic update rule for ht:

∆ht = αh

[
δtet − (xt − γt+1xt+1)e>t ht

]
.

As in GTD, α and αh are step-size parameters, and δt = Rt+1+γt+1w
>
t xt+1−w>t xt. This

hybrid-TD algorithm should converge under off-policy sampling using a proof technique

similar to the one used for GQ(λ) (see Maei & Sutton, 2010), but this is not proven here.

Summary

In this chapter we derived a new TD algorithm, called HTD(λ). This state GVF estima-

tion algorithm performs conventional temporal difference updates when data is sampled

on-policy, and gradient corrected updates otherwise. This new algorithm should be non-

divergent, even in the off-policy case (not shown), and it is the first hybrid temporal dif-

ference method to make use of eligibility traces. Although not empirically validated here,

this new algorithm should improve the efficiency of off-policy GVF learning in practice.

We leave it to future work to more fully demonstrate HTD(λ)’s contribution to predictive

knowledge learning.
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B Algorithms for off-policy GVF learning

Our approach to learning predictive knowledge is based upon learning GVF with incremen-

tal, linear complexity, temporal difference learning methods. The experiments contained in

these pages have shown that these TD algorithms allow substantial scaling of GVF learning,

and these algorithms can learn accurate predictions from real robot data. There are other

value function learning algorithms from reinforcement learning that we could use instead

of temporal difference methods. This section discusses the merits and limitations of these

alternative methods, in the context of large-scale demon learning.

Although we have already discussed the scalability of least square temporal methods in

Chapter 5, there are important considerations concerning non-linear function approxima-

tion. Linear gradient temporal learning methods, such as GTD(λ), extend with little modi-

fication to smooth arbitrary function approximation, and convergence to a local minimum is

guaranteed (Maei et al., 2010). Least squares reinforcement learning methods, on the other

hand, are not applicable to non-linear function approximation by design. To see this recall

that LSTD computes the analytical solution to the MSPBE:

w? = argmin
w
||Xw −ΠT γλπ Xw||2B,

a least squares loss function. The projection matrix Π linearly transforms the updates to

the value function due to the application of the Bellman operator T γλπ , enabling algebraic

isolation and direct solution of w?. A non-linear function approximator, such as a neural

network, requires non-linear projection, in which case there is typically no closed form

solution for w.

Within the class of linear complexity value function learning algorithms, there are several

methods potentially suitable for GVF learning. One important requirement, in the context

of predictive knowledge acquisition, is non-divergence under off-policy sampling, which

facilitates parallel demon learning. Three families of linear-time complexity methods have

such convergence guarantees: 1) the new gradient TD methods that minimize the MSPBE,

2) residual gradient methods, and 3) incremental least-squares methods.

Residual gradient methods use the mean square Bellman error:

MSBE(w) = ||Xw − T λγXw||2B.

Temporal difference algorithms, including TD(λ), GTD(λ), and LSTD(λ), do not typically

converge to the minimum of the MSBE, with function approximation. Residual gradient
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(RG) algorithms, due to Biard (1995), are true stochastic gradient algorithms in that they

perform updates based on sample estimates of the gradient of the MSBE with respect to the

weight vector, and are guaranteed to converge under off-policy sampling. The RG algorithm

requires two independent samples of the next state feature vector (xt+1 and x′t+1), as can

be seen it the following update equation:

∆w = α(rt+1 + γw>t xt+1 −w>t xt)(γx
′
t+1 − xt).

Using a single sample of the next state can induce bias. To avoid this bias we could gen-

erate two independent samples of the next state with a simulator or restrict application to

deterministic domains where the two samples would be equal.

There has been some confusion in the community about which objective function, the

MSPBE or MSBE, is best for reinforcement learning. A reinforcement learning algorithm

may find a bad solution, in the sense that the value estimates, v̂(s,w), are significantly

different than the true un-approximated value function in a mean squared error sense (e.g.,∑
s∈S dµ(s)(v̂(s,w)−v(s;π, γ, z))2). This is not the same as divergence. There have been

several studies comparing MSBE minimization to MSPBE minimization. Scherrer (2010)

for instance, found that RG, on average on random MDPs, produced worse solutions than

TD(0), in comparison to the true value function. Scherrer also reported that worst perfor-

mance of TD(0) produced value function estimates that were further from the true value

function than the worst case estimates of RG. Scherrer called this “numerical instability” of

TD(0), but did not report divergence. Scherrer’s results, however, were obtained using the

two sample version of RG, and thus he did not compared the biased version of RG. Scherrer

also conjectured that using the MSPBE minimization algorithms with λ greater than zero

would eliminate the numerical instability issues. A later study confirmed this hypothesis

(Geist & Scherrer 2013), showing that LSTD(λ) did indeed outperform RG(λ) (a variant of

RG with eligibility traces) across a large set of random MDPs. Geist and Scherrer claimed

existence of a case of divergence for LSTD(λ), but this was in fact an example of a bad

solution not divergence, and could be avoided by changing the value of λ. A recent study of

value function approximation in reinforcement learning (Dann et al., 2013), reported no ev-

idence of “numerical instability” of TD, and found MSPBE minimization methods always

outperformed MSBE methods across 16 small simulation problems. We conclude, based on

the evidence from the literature, that MSPBE-based methods should be robust and efficient

for GVF learning.

Another class of learning algorithms of interest, which do minimize the MSPBE, attempt
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to achieve the sample efficiency of LSTD with computational requirements closer to that of

linear TD methods. The incremental-least squares temporal difference learning algorithm,

or iLSTD, (Geramifard et al.. 2006) method does indeed achieve O(n) computation—

though not as computationally frugal as TD(λ)—and requires O(n2) storage. In practice

iLSTD, like LSTD does not easily extend to non-linear function approximation, and so far

related extensions to the control case have not been found to be well suited to online use

(Bowling, Geramifard, & Wingate 2008).
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C Intrinsically motivated reinforcement learning

Exploration bonuses State-action-value is augmented: q̂(s, a) = q(s, a) +√
nc(s, a). nc(s, a) is a count of visits to a state-action

(Sutton 1990) Goal: maximize external reward & explore recently unex-
plored states

Maximizing error Reward to controller is rt = M(ot, θt−1) −M(ot, θt). M is
a forward model with parameters θ

(Schmidhuber 1991) Goal: take actions that induce large modeling errors

Option progress Behavior reward: rt = ret + rit. Internal reward rit = τ [1 −
Mπ
o (st+1|st)] if transition to salient state st+1. Mπ

o (st+1|st):
predicts probability of reaching st+1 from st under π.
Option-policy π maximizes external reward ret

(Singh et al., 2005) Goal: select actions to improve option training by reducing
salience, and maximize external reward on a complex hierar-
chical task

Value-function ∆ Behavior reward rit = τ +
∑

s∈S(vmaxt (s) − vmaxt−1 (s)):
vt(s) updated using external reward ret , and vmaxt (s) =
maxj≤t vj(s) is the max value observed over all previous vis-
its to s

(Simsek & Barto 2006) Goal: focus exploration in regions of the state space where
learning improves the value function

∆ in prediction error Behavior takes action of expert with max estimated progress
in current context. Experts progress is equal to rit = −(∆0 −
∆k): ∆k = 1/J

∑J
i=0 δt−i−k and δt = ||ot+1−M i(ot, at)||2

the one-step prediction error of expert i.
(Oudeyer et al., 2007) Goal: select expert’s action with highest expected change in

prediction error

Table 1: A summary of the different internal and external reward functions used in several in in-
trinsically motivated reinforcement learning systems. We use ri ∈ R to denote the internal reward,
re ∈ R to denote the external reward, and r ∈ R to denote total reward. Input data, either sen-
sorimotor data or observations are denoted with o ∈ R. Models, either one-step forward models
or multi-step option models are denoted by M . The δt corresponds generically to an instantaneous
error, such as TD error or squared one-step prediction error. Finally v(s) and q(s, a) refer to con-
ventional state and state-action value functions. Table continues in 2, on the next page.
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Subtask reward Behavior reward ret+1 = δit of selected expert i. Expert i
learns policy with internal reward: rit = M i(ot+1). M i

trained to predict external subtask reward from executing the
policy of expert-i.

(Schembri et al., 2007) Goal: select actions from expert with largest critic error

Evolved rewards Find the best reward function, on average, over a distribution
of agents and environments, with externally defined fitness.

(Singh et al., 2010) Goal: Search for rewards then compute reward maximizing
policy

Model progress Behavior reward equal to external task reward plus model im-
provement estimation. Model improvement is estimated by
log likelihood of data evaluated on all observed data and a
subset of the data.

(Lopes et al., 2012) Goal: Behavior gets a bonus for exploring state-action pairs
where expected progress is large

Table 2: A summary of the different internal and external reward functions used in several in in-
trinsically motivated reinforcement learning systems. We use ri ∈ R to denote the internal reward,
re ∈ R to denote the external reward, and r ∈ R to denote total reward. Input data, either sen-
sorimotor data or observations are denoted with o ∈ R. Models, either one-step forward models
or multi-step option models are denoted by M . The δt corresponds generically to an instantaneous
error, such as TD error or squared one-step prediction error. Finally v(s) and q(s, a) refer to con-
ventional state and state-action value functions.
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Thoughts on organizing predictive knowledge

This section addresses the question of how to we might organize and use the predictive

knowledge stored in our Horde of demons. Let us set aside the question of how to generate

new demons for the moment, and first consider how to organize different types of on-policy,

off-policy, exponential-form, and state-based GVFs. We can take further inspiration from

psychology and nexting, and imagine a demon organization scheme that could improve

demon learning and behavior adaption.

A fundamental characteristic of nexting knowledge, as argued by Gilbert (2007), is that

nexting-knowledge is a special form of knowledge of the future which is unconscious and

automatic. Nexting knowledge is also often related to the efficiency of the agent (in his

case, humans). For example, we next at the letter and word level while reading, which in

turn allowsfaster reading. We make predictions about the next locations of a ball—as it flies

through the air—which aids tracking and ultimately improves our chances of catching the

ball. As we bike down the road we predict future bumps resulting in better steering and

a smoother ride. These short instant-by-instant predictions seem to happen automatically

without deliberation. Nexting predictions might play a role in updating other predictions

and basic skill acquisition.
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Figure 1: A diagram of how many demon’s predictions could participate in the feature
vector generation process, and then indirectly the behavior. At the highest level (dotted lines
and gray box) we see the familiar reinforcement learning agent-environment interaction
diagram.
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One way to leverage nexting knowledge, is to allow nexting demon predictions to partici-

pate int the feature vector generation process. The feature vector can be constructed from

many different demon’s predictions, as we demonstrated in the iRobot Create experiments

of Chapter 6. All the demons have access to and share the feature vector, and thus any de-

mon can take advantage of the potential increased representational power afforded by this

form of predictive state feature vector. Figure 1 visualizes how the outputs of many demons

could interact.

On policy nexting predictions might be good candidates to generate predictive feature com-

ponents because they are easy to generate and are faster to learn than other forms of predic-

tion. The question of where do the demons come from is more straightforward to answer

in the case of on-policy nexting. Essentially we generate as many nexting demons that can

be updated given our computational budget: forming unique combinations of sensor and

feature component cumulants, with as many time scales as possible. Nexting predictions

obtain accuracy quickly compared to policy-contingent predictions, because all interaction

data is relevant and useful for learning, unlike off-policy learning.

The usefulness of an nexting-based feature component is related, in part, to the relevance

of the behavior each demon’s question. If the behavior data is not relevant to some demon’s

target policy then, we would expect that demon’s learning to be slowed. In addition, the

nexting-based feature components might not be useful either. The opposite should also

be true. If the behavior policy generates training data relevant to some demon, then we

might expect that the nexting predictions would also be relevant to that demon. Many

demon’s predictions could participate in the feature generation process, over time yielding

increasingly complex interactions between the behavior policy, feature vector generation,

and prediction learning.

Given the demon organization scheme outlined above, let us get back to the question of

how to generate new demons. Loosely speaking, an ambitious overall goal for Horde would

be to understand a simple and limited physical world, in some concrete measurable way.

For example, an agent that could predict the sensorimotor consequences of all its actions,

and attempt to control its sensorimotor stream. Predicting and controlling the world have

been referred to as mastery over ones environment (White 1965). White proposed that

(1) knowing what is possible in a particular environment and (2) bringing the environment

under one’s control are two important abilities of an autonomous agent. The idea of mastery

suggests an intriguing experiment and a straightforward way to generate tens of thousands
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of GVFs: predicting and controlling all of a robots sensors. This could be implemented

as a collection of control demons learning policies which maximize and minimize each of

the robots sensors, at several time scales. In addition we would specify prediction demons

using (1) each sensor, (2) several constant termination signals, and (3) each control demon’s

policy. All total this setup would produce approximately 90,000 demons. This experiment

could provide a concrete demonstration of a robot that is aware of its surroundings, and

knows about its environment in a real sense, even if the robot was restricted to a limited

space like the pen.
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D The parallel scalability of Horde

The Horde architecture is a parallel computing system, and thus we can analyze the speedup

and parallel scalability of its implementation. The majority of the operations within each

demon are easily parallelizable: we can update each target policy, reward function, GTD(λ)

instance, and RUPEEscalar measure asynchronously. Only the update of the tile coder and

communication with the robot are sequential. Amdahl’s law (see Pacheco 1997) specifies

the theoretical speedup possible using Pn ∈ [1, 2, ...] processors/cores, given the fraction

of operations requiring sequential processing, F ∈ [0, 1], equals:

S(Pn) =
1

F + 1
Pn(1− F )

,

where S(Pn) is the speedup possible with Pn processors. In addition, we can calculate

the total possible speedup; letting Pn go to infinity S(Pn) becomes 1
F . Our parallel ar-

chitecture, while updating 3000 demons, achieved F = 1% measured by the YourKit Java

profiler, meaning that 99% of the system’s operations are parallelizable. We should there-

fore, under ideal conditions, expect nearly 100 times speedup given enough parallel cores.

# Parallel Cores Runtime (ms) Speedup (SU) Theoretical SU
1 200.74 1.0 1.0
2 115.60 1.74 1.98
3 90.26 2.22 2.94
4 86.15 2.33 3.88
8 76.84 2.61 7.48

Table 3: Number of parallel cores verses time to perform a single update of 3000 off-policy
demons, the corresponding speedup, and theoretical speedup.

These calculations provide an upper bound on possible speedup, and are therefore some-

what idealistic because they do not account for cache coherence, communication, or other

implementation details. As a test we ran 3000 demons with 300 distinct target policies with

performance measured via RUPEEscalar. We used this measure because it only stores of

a scalar value, rather than the vector storage used by RUPEEvex, and thus RUPEEscalar is

more computationally frugal. We varied both the number of parallel cores and the number

of demons. Table D reports the results.

We do not achieve theoretical speedup. Our implementation achieves parallelization using

multithreading in java, which is not a classic parallel computing language like to C or C++

with OpenMP or message passing interface. Test machine had only four physical cores,
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# GVFs Runtime (ms) Linear trend
3000 77.96 77.96
1500 39.42 39.88
750 24.84 19.49
375 11.90 9.75

Table 4: Number of demons verses runtime on an eight parallel core machine.

using hyper threading to simulate eight virtual cores, and thus the results with eight cores

might not be representative of eight physical cores.

Table D reports how the update time changed as a function of the number of demons. As

the number of demons decreased, the computation time decreased almost linearly, as we

would expect. Once the number of demons became smaller than 750, F measured equal to

18%, potentially explaining the deviation from the linear trend.

The take home message is that the majority of operations involved in demon learning are

parallelizable. We predict that the number of demons updatable in realtime should continue

to scale, approaching tens or hundreds of thousands of in the next couple of years, as the

processing power of computing resources increases. Further scaling could be achieve using

vectorized GPU implementations and hybrid shared/distributed compute clusters requiring

message passing between nodes. These implementations are left to future research.
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