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Abstract

This thesis investigates the dynamics underlying the alpha-rhythm of the human
electroencephalogram (EEG) and here reports evidence that the dynamics is chaotic as
given by the modem theory of Chaos.

Within this theory, Takens' Theorem provided a means for multi-dimensional
dynamical analysis of the system from a time series in only one variable. This is
accomplished by reconstructin? an attractor that has the same dynamical properties as the
attractor underlying the original time senies. Further dvnamical understanding can be gained
by classifying this reconstructec attractor with the correlation exponent and the largest
Lyapunov exponent. These measures of dimensionality were calculated on a VAN 117750
computer.

The calculated values of the largest Lyapunov exponents for both the filtered and
unfiltered alpha-rhythm EEG were positive, thereby providing evidence that the underlying
dynamics of the alpha-rhythm EEG is chaotic. Supporting evidence for chaotic dynamics is
also provided by the saturation of corre.ation exponents with increasing phase-space
dimensions. Moreover, Fourier analysis of the EEG showed that the alpha-rhythm EEG is
not multipeniodic.

The results presented in this thesis suggest that the underlying mechanism cannot bhe
as siniple as supposed by the current hypothesis that the alpha-rhythm artses from the
synchronization of the pyramidal cells by the thalamus. For, if we accept the
synchronization hypothesis, it will be necessary to explain why these cells are being
synchronized in a chaotic manner. The results also furnish an estimate of the lower bound
of the system's degrees of freedom and for the dimensionality of the alpha attractor. Based

upon these results, a new hypothesis on brain dynamics is presented.



Preface

Since all that is leaves us "+ . ‘handed,
The only return from all that is, loss and ruin,
It can be supposed that what the world has not, is,

And what it nas, is not.
The Ruba’ivat of Omar Khavvam
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Chapter 1: Introduction

"...twentieth-c “nuury science will be remembered for just three things:

relativity, quantum mechanics and chaos."!

*...and chaos is as common as daffodils in the spring"?2

The human brain is singularly concerned with thought processes, memory,
imagination, creativity, learning and consciousness (Carpenter, 1978). Besides these
higher functions, all information about the surrounding environment is transmitted to the
brain by sensory organs. This information is then processed, in a largely unknown
manner, and actions are taken as a result. Thus the brain is a highly complex dynamical
system; uniquely, it is the only system complex enough to ponder its complexity (Shipton,
1975) and it is widely thought that understanding the human brain is one of the most
formidable scientific endeavors ever pursued (Gevins, 1984). Presumably, such
understanding is likely to emerge only from a wide range of individual investigations. The
present study investigates the dynamics underlying the alpha-rhythm of the human
electroencephalogram (EEG); the results provide evidence that the dynamics is "chaotic” in
the sense given by the mathematical Theory of Chaos.

As is well known, brain research has thus far been largely dominated by a
reductionist approach which has been notably successful in elucidating the dynamics of the
neuron. The reductionist approach, however, has not yielded insights into the dynamical
behaviour of the brain as a whole because it is the interactions among the elementary
dynamical units that lead to macroscopic brain behaviour. Typically these biological
interactions differ from the random interactions studied in statistical mechanics where the
dynamical elements are assumed to regain statistical independence after random collision-

interactions. Moreover, biological svstems typically show hierarchic organization and thus

1J. Gleirk, 1987. Chaos: Making a New Science, Viking, N.Y ., p6.
2J. Ford, 1986. "Chaos: solving thc unsolvable, predicting the unpredictablei”, Chaotic Dynamics and
Fractals, (M. F. Bamsley and S. G. Demko eds.), Academic Press, p 3.
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have holistic properties. In other words, we cannot deduce the brain's behaviour as a total
system from the dynamical properties of its elementary neural constituents (Stuart et al.,
1978. 1979). Instead, we must take into account the emergence of new modes of
organization arising from nonlinear cooperative interactions among the dynamical
constituents. Therefore the brain must be studied as a nonlinear dynamical system.

A natural variable for macroscopic investigation into the dynamical behaviour of the
brain is the electroencephalogram (EEG). Introduced by Hans Berger in 1929, the EEG
provides a means to quantify or describe ongoing brain activities (Shipton 1975). If all
information transfers in the brain are mediated by electrical phenomena, then the EEG can
be considered a measure of the activity of the brain. (A more detailed description of the
EEG can be found in Chapter Two of this thesis.) The EEG, being a macrovariable, was at
first expected to provide a window into the functions of the mind. Although there now
exists a massive literature on the EEG, little or no insight has been gained into its
underlying dynamical properties. Attempts, so far, to use the EEG as a method for
understanding mental processes or as a tool in the fundamental behavioural sciences have
failed (Shipton 1975). This lack of progress is due mainly to two reasons.

1) Much of the research has been phenomenological in character, directed towards the
modelling of the EEG data with autoregressive and other probabilistic methods
(Gevins, 1984). Though useful in clinical diagnosis, this line of research seems
unlikely to illuminate the underlying dynamics of the brain. What is nceded now is
a move beyond phenomenological research, a move to dynamical studies of the
brain.

2) Until recently, mathematical methods were not available for the study of nonlincar
systems; the standard procedure was to approximate nonlinear systems by lincar
systems. Because biological systems are typically highly nonlinear (Stuart, 1987),
tae linear approximation did not give any new significant insights into the

dynamical properties.
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The last 15 years have seen an explosion in the field of nonlinea. dynamics. The
repercussions are being felt in such areas as hydrodynamics (Brandstater et al., 1983),
chemistry (Roux eral., 1983) climatic variability (Lin and Lian, 1986; Nicolis and Nicolis,
1986; Nicolis and Nicolis, 1984), biochemistry (Markus ez al., 1985; 1984), ecology
(Schaffer, 1985), cardiology (Glass et al., 1986) and neurobiology (Babloyantz and
Destexhe, 1986, Aihara and Matsumoto, 1986). The pinnacle of this explosion is a new
theory that treats deterministic but ‘random’ systems macroscopically: the . heory of
Chaos.

The main idea of this new theory is to investigate the behaviour of limit sets. In
practice, only attracting limit sets (“attractors”) are of interest since nonattracting limit sets
cannot be observed in physical systems or simulations (Mandelbrot, 1977). An attractor is
then the object on which the trajectories of a deterministic dynamical system accumulate. As
we shall see later, if an attractor is sensitive to initial conditions then it is a "chaotic
attractor”. Two initial conditions that are arbitrarily close together on a chaotic attractor will,
in time, diverge, but this implies that no matter how precisely the initial condition is
known, U.2 long-time behaviour of the system can never be predicted (Haken, 1983). This
unpredictability is the hallmark of chaotic systems: deterministic 'randomness'.

At first glance, deterministic randomness appears to be a contradictory idea; a
system is either deterministic or it is random. Mathematical ideas developed within this new
theory, however, have now shown that there exists 2 :mportant area of overlap between
these two apparently polar ideas, where a system may have both random and deterministic
properties. There are three possibilities how this may arise:

1) The system is originally deterministic, but with the passage of time this determinism
weakens and the system eventually becomes a random system;
2) The system is originally random, but spontaneous interactions between elementary

dynamical elements lead to stabilities having deterministic character.



3) Determinism and randomness coexists in the same system. i.e. the system is
weakly deterministic with an element of chance embedded within it.
Intuitively, these possibilities pertain to the system's complexity. It may be hoped that
chaos theory will eventually distinguish these possibilities in a systematic manner. This is
an important desideratum since it would serve to clanify the notion of "complexity”.

With respect to our current understanding of the human brain, one cannot assert that
the brain is dynamically random, nor can one assert that it is dynamically deterministic. On
the one hand, we have, within modem neural network theory. a notion of randomness
associated with the brain; on the other hand, the consistent reaction of the brain to external
stimuli betokens an element of determinism. It therefore seems reasonable to make the
overall hypothesis that brain dynamics includes both random and deterministic features.
Under such a hypothesis, the methodological appropriateness of chaos theory seems self-
evident.

Clearly, we cannot expect to investigate the overall hypothesis, stated above, with
respect to all brain activity. So we concern ourselves with a single phenomenon - the alpha-
rhythm EEG. This phenomenon was selected because

i) it has a relatively "simple” waveform,
i1) it is a phenomenon familiar to all brain researchers,
iil) it is widely considered to reflect a "ground state” or "resting state” of the brain.

Methodologically, the study incorporates three mutually exclusive hypotheses:

1) The system is chaotic (i.e. deterministically random),

2) The system is random only, hence not chaotic,

3) The system is deterministic only, hence not chaotic,
of which only hypothesis 1 is in conformity witt the overall hypothesis stated previously.
The investigation should provide insights that will be useful for the construction of
mathematical models, for example, the system's minimum number of degrees of freedom.

This thesis, however, is in no way a thesis about mathematical models of the brain; no



attempt will be made to construct a mathematical model of the brain or of the alpha-rhythm
EEG. Indeed, given our present lack of knowledge as to the underlying dynamics, it would
seem that the time is far from ripe enough for the construction of mathematical models
capable of explaining the alpha rhy'rm.

Before we go on to study the dynamics of the alpha-rhythm, some account of the
present theories on the physiological correlates of the EEG is necessary; this is given in
Chapter Two, not as a detailed investigation into the physiology of the human brain, but
rather as common ground for the discussion of the dynamical investigation that follows. It
should be noted that, though the EEG is routinely used to infer and hence diagnose brain
conditions, the mathematical analysis of this thesis applies strictly to the observed trace.
While some biological inferences of its results are mentioned, the thesis does not pretend to

reach authonitatively into the biological realm itsel;.
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Chapter 2: Physiological correlates of the FEG
2:1 Introduction

Most physiologists who have investigated the human brain have adopted a
reductionist view of nature. Although it has led to a detailed understanding of the ncuron,
this method of investigation has intrinsic limitations of the kind mentioned in the
introduction. This chapter will discuss current hypotheses concerning the human EEG.

2:2 Gross anatomy of the brain

Although dynamical understanding is unlikely to come from neuroanatomical
considerations alone, a working knowledge of the brain’s structure and interconnections is
necessary for a comprehensive understanding of the EEG.

The elementary dynamical units of the human brain are the ncurons.
Morphologically, neurons are notable for their variety of form and size. Since the early
studies of Ramén y Cajal, the three major regions of the neuron - dendrites, soma (cell
body) and axons - have been regarded as standard equipment of fully developed neurons
(Palay and Chan-Palay, 1977). The dendrites are the information reception regions of the
cell. The information transfer is mediated by neurotransmitters at synapses (and in a more
subtle manner at ephaptic junctions). Schematically, one may say that synapses, form
between axons and dendrites, the former transferring information to the latter which, in
turn, pass the information on to the cell body or soma. The cell body of the nerve cell
consists of the neucleus surrounded by cytoplasm which contains organelles that sustain
the cell: it is the metabolic and synthetic center of the cell. The axons of the neuron are the
transmission lines of the cell. These spread forth from the cell body and form synapses
with other neurons. Some axons are myelinated by oligodendrocytes in the central nervous
system or Schwann cells in the peripheral nerves. Myelination increases the speed of
transmission of the action potential but whether this is the only function of the
oligodendrocytes and Schwann cells is unknown. It must be stressed that, upon closer

inspection, the traditional morphological subdivision of the nerve cell into three distinct



regions cannot be upheld. For example, there exist in the human brain neurons that lack a
single characteristic process that can be called an axon (Palay and Chan-Palay, 1977).
Nevertheless, for our purpose, the adaptation of the simpler view of three distinct regions
is sufficient.

The human brain, which is constructed from neurons and other supporting cells,
can be divided into three basic units: the cerebellum, the brain stem and the cerebral
hemispheres. The cerebellum develops from the rhombic lip and is a denvative of the
metencephalon. The brain stem can be further divided into four distinct regions: the
diencephalon, the mesencephalon, the metencephalon and the mvelencephalon. The
diencephalon consists of the thalamus and the hypothalamus. It is the most rostral of the
brain stem segments and is intimately related to the telece; halon (forebrain). The
mesencephalon consists of the supenor and inferior colliculli, midbrain reticular formation
and cerebral peduncles. 1t is *he smallest and least differentiated brain stem segment. The
metencephalon consists of the tegmentum, and the pons. Together with the most caudal
brain stem segment, the medulla oblongata (metencephalon), it forms the hind brain. The
cerebral hemispheres are the massive paired lobes that developed from the telencephalon.
The paired hemispheres are nearly mirror images of each other, and they consist of a highly
convoluted gray cortex, the cerebral cortex, on top of a layer of massive white matter and
deeply located basal ganglia.

2:3 The cerebral cortex

The neurons of the cerebral cortex are arranged in layers which are divided into
three regions: archicortex, paleocortex and neocortex (Martin, 1985). The archicortex and
the paleocortex contain only three cell-layers and are more primitive than the neocortex,
which contains six cell-layers. The neocortex is a sheet of cells, with a surface area of
about 2 200 cm?2 and a thickness of 1.3 to 4.5mm, that forms a cap over much of the
cerebrum (Schmidt,1978). The estimated 1010 neurons within this sheet are wrinkled into a

complex pattern of sulci and gyni (Carpenter, 1984).



When freshly cut, the neocortex has a striped appearance due to layers of somata
alternating with layers containing mainly axons (Martin, 1985). Functionally, neurons that
are related are aggregated together and interconnections within the aggregate are principally
up and down along the columnar axis (Kuffer ez al,, 1984). In layer 11 of the neocortex are
associational neurons for intercolumn communic: tions. Other intemeurons are also present
to mediate intercolumn communication but, uniike the associational neurons, they cross
several layers of the neocortex. Although vances methods have heen used to study these
interconnections, the resolutions of these studie:. - 1nsufficient to determine the fine grain
of neuronal interconncctions.

The neocortex receives almost all of ... subcortical afferents from the
thalamocortical tracts (Schmidt, 1978). Inputs from other parts of the nervous system and
the sense organs travel through a fine relay station at the thalamus before entering the
neocortex. There is, however, one sensory pathway that does not pass through the
thalamus: the olfactory tract (Guyton, 1981). Of all the afferent nerves that pass through the
thalamus, most form synapses with pyramidal cells in the neocortex. Therefore, one can
view the thalamus as a modifier to the output of the neocortex. But it is important to view
the neocortex and the thalamus as one working unit and not to view the thalamus as merely
a relay station.

The neurons forming the neocortex can be divided into two categories by their
morphology: pyramidal and stellate cells (Martin, 1985). The pyramidal cells are the
excitatory cells of the cortex; they project their axons to other areas of the brain and spinal
cord. In particular, the main efferent outputs from pyramidal cells of layer V go to
subcortical destinations (Carpenter, 1984). These cells have a resting potential of -50 to
-70 mV and an action potential of approximately 100 mV. Because the hyperpolarization
after an action potential is small, pyramidal cells can fire at frequencies up to 100 Hz. Their
dendrites often cross several layers and are oriented mainly perpendicularly to the surface

of the brain but they can also have horizontal projections. This organization enables inputs
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from many different layers to enter at different levels of ‘ndritic tree. Moreover,
booster zones exist in the dendrites that enable remote ¢ y inputs to be actively
conducted to the trigger zones of the axon.

The stellate cells are neurons with round-shaped cell-bodies. The axons of these
cells terminate on nearby neurons and never leave the cortex (Martin, 1985). Thus, stellate
cells form interneurons between cortical columns. Among the important types of stellate
cells are the basket cells, which wrap around the soma of the postsynaptic neurons forming
dense synaptic connections. Basket cells are inhibitory cells and they act to isolate one
column of pyramidal cells from neighbouring columns. Another important type of stellate
cells has its axons oriented vertically; they transmit information from the thalamus to
interneurons or to the pyramidal cells.

Within the neocortex are cells of another type - the glia cells. Glia cells do not
manifest any action potentials (Kuffler ez a/., 1984 ) and are recognized as the metabolic
supporting cells of the brain (although this may not be their only function). There are
approximately 10 times more glia cells than there are neurons (Martin, 1985). The cellular
membrane of the glia cell is sensitive to K*; thus, they are postulated to take up the excess
K+ from the neurons during neuronal activity.

2:4 The electroencephalogram

Neuronal activities produces changes in the electric field which can be measured as
electrical voltage fluctuations on the surface of the neocortex or on the surt «:e of the scalp.
The former is called the electrocortiogram, ECoG, and the latter 1s known as the
electroencephalogram, EEG. The frequencies in the EEG range from 1 to 50 Hz, with
amplitudes of 20 to 100 uV. The amplitudes of the recordings are attenuated by the scalp
and the skull, as demonstrated by the amplitude of the ECoG being greater than the EEG by
a factor of approximately 10 (Schmidt, 1978). The bulk of the potentials recorded from the
scalp or the surface of the corte': are postulated to be the results of the extracellular current

flows associated with the neuronal activities of numerous neurons (Martin, 1985). For



example, it has been calculated that an electrode on the surface of the neocortex with a
surface area of 1 mm? is in contact with 100 000 neurons down to a depth of (.S mm
(Schmidt, 1978). With EEG recordings, the electrode is in contact with approximately ten
times as many neurons.

Early authors considered that the FEG represented the summed action potentials of
cortical neurons (Adrian and Yamagiva, 1935). However, by the carly sixties, it was
generally accepted that the EEG chiefly reflects slow changes in the membrane potentials of
cortical neurons (Chang, 1951: Caspers, 1959), particularly the postsynaptic excitatory and
inhibitory potentials of vertically oriented pyramidal cells (Martin, 1985). Unlike that of the
motomneurons of the spinal cord, ti.c postsynaptic potential of cortical cells lasts for a long
time (Curtis and Eccles, 1959; Creutzfeldt er al., 1966), but existence of activity ir the
deeper layers of the cortex during certain EEG waves emphasized that deeper structures
were also important in the genesis of the EEG (Bishop and Clare, 1932).

There are many experiments that suggest a pnmary role for pyramidal cells in the
genesis of the EEG. Scheibel and Scheibel (1964) demonstrated that, during ontogenesis,
the EEG waves develop at a comparable time to the morphological differentiation of apical
dendrites. In addition, most of the specific thalamocortical afferent fibres terminate at layers
IIT and 1V, where the pyramidal cells are located, further supporting the hypothesis that
apical dendrites of the cortical pyramidal cells play an important role in EEC peneration
(Creutzfeldt and Houchin, 1974). The dendrites of pyramidal cells are also oriented
perpendicular to the surface of the neocortex (Martin, 1985). Therefore, a synaptic potential
on the dendrites is recorded with relatively little attenuation because the sources and sinks
are perpendicular to the surface of the neocortex. Glia cells, on the other hand, have no
specific orientation and their contributions to the EEG are probably insignificant (Martin,
1985). Further evidence that pyramidal cells are involved in the genesis of the EEG s seen
through the correlation between the post-synaptic cellular depolarization and the surface

negative potential. The correlation, however, is not absolute and a slight vanat.:in in the



degree of correlation occurs because the thalamic relay nuclei are not absolutely
synchronous (Verzeano and Negiski, 1960; Verzeano er al., 1970; Andersen and
Andersson 1968).
2:S Single cell recordings

Before going on to the cellular origins of the EEG, the voltage recordings from a
singie neuron need to be discussed. The net ionic current generated by the cell can he
recorded as a voltage across the resistance of the extracellular space. For a single excitatory
post-synaptic potential, there 1s a current i flowing inward through the post-synaptic
membrane and outward along a large area of the cellular membrane, completing the circuit.
There are tour resistors in the circuit: two representing the membrane resistance, Ry, one
for the intracellular resistance, Rip, and one for the extracellular resistance, Rex. For an
intracellular recording, the voltage recorded, Vijp, is given by

Vin =(Rm + Rex)i
(Martin, 1985). Since the membrane resistance is much larger than the extracellular
resistance, the voltage measured is approximately the voltage drop across the membrane
resistance. For an extracellular electrode, the voltage measured, Ve, is simply

Vex = i.Rex
Because the membrane resistance is much less than that of the extracellular resistance, the
voltage so measured is much smaller than that measured by the intracellular electrode. This
small voltage poses a large hardware problem in extracellular recordings -- e.g. the EEG.

To record an EEG at least two electrodes are needed: one reference electrode and
one or more active electrodes. The recorded voltage is then the voltage difference between
an actuive electrode and the reference electrode. The reference electrode thus plays a key role
in the voltages recorded in the EEG. Great care must be taken to choose the proper
placement of the reference. There is, as yet, no recognized ideal placement of the reference
electrode: any placement must be seen as interfering with the EEG. Hence a great deal of

effort has been spent in the last ten years to cstimate the activity of the reference electrode.
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Methods such as removal of the global average and radial current density studics have their
associated problems. So far little progress has been made (Nunez, 1981).
2:6 Physiological correlates of the EEG

The physiological correlates of the EEG are such that an excitatory postsynaptic
potential located on the distal end of the pyramidal ceti will cause a negative potential to be
recorded (Martin, 1985; Creutzfeldt and Houchin, 1974). This excitatory potertial will
cause a site of inward current, a "sink", at the distal end of the dendrite and a flow of
outward current along the large expanses of the extrasynaptic membrane. The extracellular
space near the sink, at the surface of the neocortex, will ther be negative and this will in
turn cause a negative, upward deflection on the EEG recorder. (By convention, a positive
voltage is a downward deflection.) For an excitatory postsynaptic potential located on the
proximal end of the dendritic tree of the pyramidal cell, a sink will then be generated at the
proximal end of the dendrite and a flow of outward current along the expanse of membrane
at the distal end. This will then cause the extracellular space near the surface of the
neocortex to be positive and a positive deflection will be recorded on the EEG. An
inhibitory postsynaptic potential on the distal end »f dendrite will cause a site of outward
current, a "source”, at the distal end and a flow of invvard current along the large memorane
expanse at the proximal end. The extracellular space near the surface of the neocortex will,
therefore, be positive. Hence, the EEG recorded will be positive. On the other hand, an
inhibitory postsynaptic potential at the proximal =nd of the dendrite causes the genesis of a
source there and a flow of inward current along the expense of membrane near the distal
end. The potential at the surface of the neocortex will therefore be poitive and the EEG
recording will show a positive deflection. It can now be seen that cortical synaptic events
cannot be determined uniquely from the sign of the EEG alone (Martin, 1985). It must be
stressed that so far only single cell activities have been discussed and that the EEG

represents the activities of thousands of neurons.
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The depth profile recordings further support this causal relationship between the
EEG and synaptic activity. Depth profiles of cortical potential have shown that the polarity
is reversed between the surface and deep layers of the cortex (Creutzfeldt and Houchin,
1974). This demonstrates that there is a source and sink configuration along the columnar
axis of the cortex implying that the electrical activities of the pyramidal « ‘lls are involved.

Because of the importance ot sources and sinks in the generation of the EEG, a
large amount of effort has been spent within the last decade in locating neural sources and
sinks. These enquiries appear to be of little significance since the summation of two or
more spatially distinct generators gives arbitrary positions to the sources and sinks,
depending on the relative strength of the generators (Creutzfeldt and Houchin, 1974).

In 1963 Jung postulated that the EEG is a result of an oscillating dipole. However,
neither the dipole theory nor the dendritic potential theory fully explain the EEG
phenomenon (Creutzfeldt and Houchin, 1974). The data relacding cellular activity and gross
activity is indirect and much more data is needed before a causal relationship can be
considered.

2:7 Alpha-rhythm EEG

A specific pattern of EEG commonly observed is the alpha-rhythm. Alpha waves
are associated with a state of relaxed wakefulness, and they are most predominant in the
parietal and the occipital lobes of the neocortex (Martin, 1985). The main cellular correlates
of the alpha-rhythm seem to be excitatory postsynaptic potentials (Creutzfeldt and Houchin,
1974). Inhibitory postsynaptic potentials appear not to be of significance during alpha
episodes. This is most likely because the excitatory postsynaptic potentials during alpha
often do not reach threshold and little inhibition is necessary.

Frequency analysis of the alpha-rhythm has shown that the power spectrum
contair. a predominantly broad peak between 8 and 13 Hz. Consequently, the
alpha-rhythm is defined as the EEG recorded between 8 and 13 Hz from a relaxed but alert

individual with eyes closed. This definition can be interpreted in two ways. One can
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interpret the alpha-rhythm as the EEG signal in which the irequency range of 8-13 Hz

dominates (Figure 2.1), or one could consider the alpha-rhythm as strictly a signal of 8-13

Hz with any otiaer frequencies present regarded as noise. With respect to the second

definition, the power of the frequencies outside the 8 to 13 Hz range can be reduced

significantly by band-pass filtering. A pictorial representation of the resulting signal can be

found in Figure 2.2.
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Figure 2.1: Alpha-rthythm EEG trace from a normal 45-years-old male.
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Figure 2.2: Raised cosine-filtered alpha-rhythm. The original signal used was the same as
that in Figure 2.1

The synchronous appearance of the alpha-rhythm between 8 and 13 Hz has been

postulated as the result of the synchronization of the neocortex by the thalamus (Guyton,

1981; Schmidt 1978; Andersen and Andersson, 1968). This postulation was based upon



the experimental observation that the alpha-rhythm is destroyed with the removal of the
thalamocortical pathway or the removal of the thalamus, while the rhythm of the thalamus
survives the interruption of the thalamocortical pathway and the removal of the neocortex
(Schmidt, 1978). Moreover, the signals from the thalamus are carried along by fibres that
terminate around layers Il and IV (Carpenter, 1981). When these thalamic connections are
cut, the functions of the corresponding cortical area are almost entirely absent (Guyton,
1981, Creutzfeldt and Struck 1962) and the postsynaptic excitatory potential is virtually
nonexistent (Watanabe and Creutzfeldt, 1966). The appearance of the alpha-rhythm thus
seems highly dependent on the synchronous signals sent by the thalamus.

During the desynchronization of the alpha-rhythm (for example during periods of
arousal), simultancous recordings from nearby neurons show little or no correlation
between their activities (Creutzfeldt and Houchin, 1974). Intracellular recordings show
that, during desynchronization, sub-threshold postsynaptic activities still occur. Therefore,
desynchronization must be due to neurons firing in a random manner and not to a lack of
postsynaptic potentials. This reorganization of neuronal activity may or may not be
accompanied by an increase in neuronal activity. This suggests that a possible mechanism
for the disappearance of alpha and appearance of non-rhythmical slow waves under
pathological conditions is the disturbance of the thalamus resulting in the loss of the
alpha-rhythm (Mergenhagen et al., 1968).

It is important to realize that the source of the alpha-rhythm has only been
postulated to be the result of synchronization by the thalamus. The evidence today suggests
that this is a possible mechanism but is by no means a proven fact. Nunez (1981) presented
some reservations about this mechanism. His objection is based on six points:

1 The experimental evidence was gathered with anesthetized cats, and cats do

not manifest an alpha-rhythm normally;

v

Quantitative correlation between cortical and thalamic potentials has not yet

been shown;
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3 Strong thalamic interactions do not necessarily imply thalamic pacemaking;

4 Isolated cortex experiments do not necessarily support the pacemaker idea
because the EEG may require continuous random input;

5 The spatial EEG data do not appear to support the idea of a fixed spatial
pattern;

6 Anatomical evidence shows that most of the input to a region of the cortex

is from other cortical regions.

Even if the alpha-rhythm is synchronized by the thalamus, the reductionist
investigations into its origins have not given a satisfactory reason for the sy: nronization
process. Moreover, there would remain the question as to why there is a neural pacemaker
and what purpose it may serve. In the case of the human heart, it is intuitively nvious that
a pacemaker 1s necessary to coordinate the contraction of the cardiac muscic for the
propulsion of the blood. In the case of the alpha rhythm, however, no such equivalent
function is intuitively visible.

Lippold (1973) suggested another physiological mechanism be ind the
alpha-rhythm in his book, The Origin of the Alpha-rhythm. He postulated that the
alpha-rhythm is not generated by the pyramidal cells but rather by the electrical activity
generated in the extraocular muscles. This picture, however, is not consistent with the
spatial location of the alpha-rthythm (Nunez, 1981). If the extraocular muscles were
involved, the alpha-rhythm should be predominantly close to the orbital fissure. Instead,
alpha is more prominent in the occipital regions of the brain. Furthermore, this idea
contradicts volume -nduction considerations of depth recordings of human alpha-rhythm
(Nunez, 1981). Hogan and Fitzpatrick (1988) have shown convincing evidence that
extraocular muscles activities are not the source of the alpha-rhythm. The persistence of the
alpha-rhythm in isolated canine brain preparation during normoxia and its destruction
during hypoxia have confirmed the neural origins of the alpha-rhythm. Moreover, EEG

recordings from the isolated brain are free from extraneural influences and exclude the
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possibility that alpha activity is caused or influenced by the electrocardiogram, EKG, or the
clectromagnetogram, EMG. The hypothesis that the alpha-rhythm is caused by resonance
of the intracranial tissue induced by the cerebral blood flow is also excluded because
cerebral blood flow is non-pulsatile.
2:8 EEG's from other areas of the brain

Spontaneous EEG can also be recorded from the cerebellum, allocortical areas of
the hippocampus and pyriform area. The rhythmic 8 waves of the hippocampus are caused
by rhythmical discharges of the septal nuclei (Briicke, 1959; Petsche et al., 1962; 1965;
Stumpf et al., 1962; Apostol and Creutzfeldt, 1974). For the prepyriform cortex, it is
assumed that it is driven by the olfactory bulb (Creutzfeldt and Houchin, 1974). For the
cerebellar EEG, the main generators are probably the Purkinje cells.
2:9 EEG's from different species

EEG can be recorded from various species with distinctively varying patterns. The
differences in the EEG across species can be attributed to the difference in the folding of the
neocortex (Creutzfeldt and Houchin, 1974). The data, however, are inadequate for a
comparative study.
2:10 Conclusion

From the preceding discussion, it is apparent that very little is known about the
physiological origins of the EEG. The central stumbling block appears to be the transition
from the microscopic picture to the macroscopic picture. With the reductionist method of
investigation adopted in the past, the voltage recordings from a single neuron are well
understood. But there has not been much advancement made in understanding the
aggregate voltage recording from a large number of neurons (EEG). As stated in the
Introduction, this lack of advancement seems to betoken an inherent limitation in
reductionist methodology. A more holistic approach now seems to be possible throuth
recent developments in nonlinear dynamics, but we should also consider the likelihood of

success through classical dynamics.
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Chapter 3: Brain Dynamics
3:1 Introduction

In the nineteenth century, "all physicists ... [saw in classical dynamics| a firm and
final foundation ... for all natural sciences"!. On that basis physicists, like biologists,
adopted a reductionist view of nature. As a result, the classical method of investigation into
dynamical systems is to determine the equation of motion for each elementary dynamical
unit. The collected set of differential equations gives the behaviour of the dynamical
system. Hence the problem of analyzing dynamical systems is reduced to the integration of
these equations of motion. Since this set of equations is completely deterministic, the
emphasis is on the study of exact, nonrandom, solutions. The possibility of obtaining
random solutions from any deterministic system is considered absurd because randomness
and determinism are contradictory ideas. Therefore, classical physics concentrates on exact
solutions from integrable systems.

Unfortunately, real systems are typically non-linear, and analytically nonintegrable.
Mathematics has not yet advanced sufficiently to solve many nonlinear systems analytically;
the standard approach is that of linear approximation, but, with highly nonlinear systems,
linear approximations is rarely effective. Therefore, many physicists in the past avoided
nonlinear problems. With the advent of modern computers, numerical integration can now
generate solutions as accurately as is needed to solve most practical problems. This
computation, however, hinges on one assumption: that arbitrary accuracy of the solution
can be calculated from arbitrarily accurate initial conditions (Tomita and Kai, 1978). In
other words, states that are similar initially will be similar for all time, i.e., there 1s "orbital
stability”. As will be evident later, this assumption is not met by most nonlinear dynamical
systems. The use of classical dynamics to understand complex systems, such as the human

brain, is thus questionable.

1A, Einstein, 1949. "Einstein's Autobiography”, in Albert Einstein: Philosopher-Scientist (P. A. Schilpp
ed.), The Library of Living Philosophers, Inc., p 21.
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3:2 The beginnings of nonlinear dynamics

An indication that classical dynamics cannot be used to gain an understanding of
complex dynamical systems can be found as early as 1889 in the work of Poincaré.
Throughout the nineteenth century, the study of classical dynamics was dominated by a
search for integrable systems. These are systems in which a canonical transformation
replaces the Hamiltonian in the coordinate and the momentum variables by ones expressed
solely in action-angle variables. Hamiltonians expressed in this form eliminate
consideration of the potential energy. However, generalizing an earlier treatment of the
3-body probicm by Hans Bruns, Poincaré showed in 1889 that the 3-body system and
systems of grea:: - o Hlexity are analytically nonintegrable. This result was referred to as
the "Poincaré catastrophe”, being catastrophic in the sense that it virtually brought to a halt
the further developnent of classical dynamics (Prigogine, 19%0).

The Poincaré catastrophe demonstrated that even classically deterministic systemns
may exhibit extreme sensitivity to initial conditions, which contradicts the a~amption of
orbital stabi.ity. Hence such a system's behaviour becomes random, making prediction
impossible, or, in the words of Poincaré, "we have fortuitous phenomena”!. In terms of
perturbation theory, Poincaré's result showed that arbitrarily small deviations from a stable
orbit in celestial mechanics car lead to drastically different orbits having unpredictable
behaviour. This arises because resonances affect conditionally periodic behaviour,
destroying the original simplicity of the motion by transferring large amounts of energy
from one degree of freedom to another, ultimately leading to random behaviour.

These aberrant orbits are said to be "homoclinic” and the Poincaré catastrophe
amounts to a demonstration that even Hamiltonian systems can exhibit homoclinic orbits.
Poincaré was himself deeply disturbed by this finding and did not pursue the matter

further.

IPoincar¢, H., 1903. "Scicnce and Mcthod”, in The Foundations of Science, (trans. G. B. Halsted, 1946; J.
McKeen Caticll, ed.), The Science Press, Lancaster, p397.
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Even though nonlinear phenomena were known to be important in fluid dynamics,
little progress was made in this field after the death of Poincaré. The Navier-Stokes
Equation, although deterministic, is not, in general, solvable. Thus no connection was
made between the onset of turbulence in fluid mechanics and the onset of randomness in
celestial mechanics investigated by Poincaré. Interest in nonlinear problems then abat:d, to
be rekindled in the 1950s in connection with the solitons, but general nonlinear methods
were still undeveloped at that time.

3:3 Modern era of nonlinear dynamical analysis

The modern era of dynamical analysis began in 1963 when Lorenz observed that, in
a completely deterministic system, all solutions were hounded but unstable. Ruelle and
Takens (1971), without the knowledge of Lorenz's work, used the words "strange
attractor” to describe this type of dynamical behaviour in turbulent flow. The field of
dynamical studies continued in the 1970s with researchers working in isolated groups on
different problems. Eventually, towards the latter half of the 1970s, their work began o
merge together into a powerful new "Theory of Chaos".

This renewed interest in nonlinearity focussed attention on Poincaré’s recognition
of the close relationship between dynamics and topology. This led to the generalization of
homoclinic orbits in terms of hyperbolic sets. These sets are defined on an n-dimensional
phase space in which certain axes become stretched and others contracted. This situation
captures Poincaré's notion of sensitivity to initial conditions because points initially close
together on a hyperbolic set may become widely separated as a result of the topological
distortion induced by this stretching and contraction. It is precisely this topological
distortion of an attractor that makes its behaviour chaotic.

3:4 Conclusion

Attempts at understanding the human brain via methods of classical dynamics have

not been very successful, and it is at least plausible that the lack of success anses from the

classical requirement of understanding dynamical systems through analytical solutions of
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deterministic equations. It remains to be seen whether the new theory of chaos will prove
more able to unlock some of the brain's secrets, but there are reasonable grounds for

exploring this possibility.
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Chapter 4: Chaos Theory
4:1 Introduction

Apart from invasive procedures, the only measures of brain activity are the
electroencephalogram (EEG) and the magnetoencephalogram (MEG). The MEG, however,
is available in only a few centres and is technically very difficult to achieve. The EEG, on
the other hand, is a very common clinical technique. But it is a time-series of only one
variable - the electrical potential at the surface of the scalp - an.. very little is known about
its underlying dynamics.

The alpha-rhythm EEG is considered to represent an alert but relatively quiescent
mental state of the brain. Some general inferences about the alpha-rhythm can be made
from phenomenological evidence. In the case of the well known phenomenon of
alpha-blocking, there is the circumstance that the rhythm typically returns if external
stimulation or purposeful mental activity is abated. Thus, so far as an alertly restful mental
state is concerned, it seems reasonable to regard the alpha-rhythm as corresponding to an
cquilibrium condition to which the system returns following transitory perturbations. This
seems to correspond to an attractor state in chaos theory. In other words, if the alpha state
arises from a dynamical system with d degrees of freedom, then it can be modelled by a set
of d differential equations and the dynamics of the system will stabilize on an attractor,
which is a bounded subregion of the d-dimensional phase-space. For the alpha-rhythm,
however, the degrees of freedom of the system are unknown. This chapter will explore
how modem developments in nonlinear dynamical theory (as introduced in section 3:3) can
be used to gain insights into the dynamical behaviour of the alpha-rhythm EEG, with
particular emphasis on characterizing the attractor and determining the minimum number of
degrees of freedom for the system.

4:2 Reconstruction of the attractor
Since the EEG is a time-series in only one variable, an obvious question is whether

multi-dimensional dynamical understanding can be obtained from the EEG alone. Taken's
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theorem gives a method for the reconstruction of the multidimensional phase-space and the
attractor from a single time-series (Takens, 1981). It is important to understand that this
reconstruction does not recreate the underlying attractor; it constructs another attractor that
has the same dynamical properties. Consider, for example, a digitized time-series {x(t),
x(t+7), x(14+21), ... x(t+n1)}. From this time-series and for integers f and m much less than
n, vectors of f-dimension can be constructed:

x(t) = {x(1), x(t+m1), x(t+2m7), . . . x(t+(f-1)m7)},

x(t+mt) = x(t+m7T), x(t+2m7), x(t+3m1), . . . x(t+fm71)},

X(t+2m7T) = {x(t+2mT), x(t+3m7T), x(t+4m7), . . . x(t+(f+ n71)},

CIAR|

m being referred to as the time-delay. Takens (1981) proved that there exists a determunistic
dynamical system, F, such that a one-to-one correspondence exists between the dynamical
properties of x(t) = F (x(t + mt)) and the dynamical properties of the system that generated
the time-series, in particular, with invariant dimensionality and Lyapunov exponents.
Theoretically, almost any time-delay (m) can be used, but there are three practical
limitations (Parker and Chua, 1987; Froehling ez al., 1981). If m is too small, then the
attractor will be restricted to the diagonal of the phase-space. If m is too large, then the
structure of the attractor disappears. If m is too close to some period of the system, then the
components of that period will be under-represented in the reconstruction.

When plotted on the f-dimensional phase-space, the set of vectors give:  digized
sample of the phase-space trajectory. Alternatively, these vectors can be the result of an
f-dimensiona :rence equation. Thus, the dynamics of the EEG can be analyzed as a set
of difference equations instead of a set of differential equations. For an example of a
difference equation, consider a 1-dimensional nonlinear difference equation (or mapping)
of the form

Xt+1 = F(Xp), (4.2)

the simplest of which is the logistic equation,
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Xi+1 = oX((1 - Xy). (4.3)

For nontrivial dynamics, Equation 4.3 must be restrictedto 0 < X <land 1 <a < 4. A
natural question to ask at this point is the location of fixed points or equilibrium points (x).
In other words, we wish to determine points of fixed dynamics, points where X+1 = Xj.
This can be done easily by solving the equation

x =ax(l - x). (4.4)

In this case, two such points exist: the trivial point O and the point x; =1 - 1/a. Itis also
of some interest to determine periodic points of period p. For example, periodic points of
peniod 2 are points satisfying the following equation

x2 = FoF(x7). 4.5)

For convenience, we introduce the notations F? 1o denote the composite function FoF,
F3) to denote FoFoF, et seq.. Fixed points, we might note, are just a special case of
periodic points.

The question arises as to the stability of the periodic points. Following Devaney
(1986), a periodic point of period p, Xp» is stable (an attractor) if IF(p)'(xp)I < | (where
F(")'(xp) is the derivative of F‘p)(x) with respect to x evaluated at xp), or is unstable (a
repeller) if IF(”)'(xp)l >1. It is now apparent that as a increases from 1 to 3, the equilibrium
point, xq, is stable. As a further increases beyond 3, that point becomes unstable but two
new stable periodic points of period 2 are born. As the parameter continues to increase, the
stable periodic points of period 2 become unstable and bifurcate to give four initially stable
periodic points of period 4. These in turn will become unstable and give way to stable
periodic points of period 8 which bifurcate to period 16, 32, ... 2" upon further increases
ir . Howeve- the increment of parameter o where any one cycle is stable become
progressively smaller (May, 1976). Thereiare, even though this bifurcation process is an
infinite process, it will be bounded above by some critical parameter value. In other words,

a will converge onto this upper bound with the rate of convergence and the quantitative

location of the stability set given by universal constants - the Feigenbaum numbers
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(Feigenbaum, 1979; Feigenbaum, 1977). For the case of equation 4.3 this upper bound
occurs at the parameter value of 3.5700... (May, 1976). As the parameter a is increased
beyond this point, there appears an infinite number of periodic points with periods of all
value. There also exists here an uncountable number of initial conditions that never lead to
periodic behaviour but are ncvertheless bounded. This is the region where chaos can be
found. Thus we have the following definition of chaos

A map F:V — V is chaotic if F has sensitive dependence on initial

conditions, F is topologically transitive and periodic points are dense in V

(Devaney, 1986).
This transition from periodicity to chaos is called the period-doubling route to chaos. May
(1976) gives an excellent introductory account of the finer structure of the chaotic regime.

One of the more powerful methods for studying chaotic dynamics is to determine
whether the map is topologically conjugate to maps of known dvnamical behaviour because
mappings that are topologically conjugate are completely equivalent in terms of their
dynamics. Two maps, f:A — A and g:B — B, are then said to be topologically conjugate if
there exists a homeomorphism h:A - * <uch that hof = goh. It can be easily shown that for
a =4, Equation 4.2 is topologically c. ;;ugate to

Yi+1 =2Y, mod 1), (4.6)
where

X; = sin2nY, (4.7)
is the topological conjugacy map. The proof of existence and uniqueness for equation 4.6
is trivial (Ford, 1986) and the solution is

Y1 =2tY (4.8)
where Y is the initial condition of the system. The initial condition can also be written as a
binary digit string in sequence space, X7, which is then the sequence space on the two
symbols 0 and 1 if

X2 = {s = (sos182s3...)l 5§ = 0,1}. (4.9)
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It then becomes apparent that equation 4.6 is just a shift map: a map 0:X2 — X2 given by
o(s0s15283...) = 515283.... Hence, the shift map deletes the first entry of the sequence.

What happens to determinism (existence and uniqueness of solutions) for equation
4.6 after the transformation to symbol space? It is apparent that determinism takes on
meaning only if we can specify the initial condition to arbitrary accuracy by some
experimental or theoretical means. But is this possible? The binary sequence representing
the initial condition could also be a representation of a semi-infinite coin toss fo: which 0
represents heads and 1 represents tails (Ford, 1986). The set of all initial conditions then
represents the set of all possible random coin toss sequences. Since there does not exist a
finite algorithm or experiment that can compute or measure random digit strings, the initial
condition cannot be constructed with arbitrary accuracy. This implies that the solution to
equation 4.3 cannot be constructed. Thus we arrive at a critical halimark of chaos:
deterministic randomness (hence the usage of the words 'deterministic chios’ to describe
this phenomenon): deterministic because equation 4.6 satisfies an existence and uniqueness
theorem, random because the future behaviors of the system are the results of random
processes. This led Ford (1986) to equate chaos with randomness. But he stressed that the
word random must not be assumed to imply only a uniform probability distribution.
Chaos, for example, does not preclude loaded dice. The association of chaos with
randomness, however, complicates the issue because of preconceived ideas about
randomness and chaos will hamper understanding these deterministic but random’
systems. It might be more appropriate to use a completely new word to describe
random-looking solutions from deterministic systems.

From the preceding discussion, it might be supposed that, with a knowledge of the
set of difference equations for the EEG, mathematical tools within the theory of chaos can
be used to gain some understanding of the dynamical behaviour of the system. But in the
case of the EEG this set of equations is still unknown. Nevertheless, insights into the

dynamics might still be gained by characterizing the reconstructed attractor. As will be
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evident later, this characterization will also determine the number of degrees of freedom for
the dynamical system underlying the EEG.

4:3 Classification of attractors

4:3.1 What is an attractor?

An attractor is a compact subregion of the phase-space for which phase-space
trajectories that begin initially within some neighbourhood of the subregion will, in time, be
within this subregion. An attractor therefore attracts nearby phase-space orbits. To define
an attractor precisely, let S be a compact metric space, f a homeomorphism and A a subset
of S which is positively invariant under f. A is then an attractor if

1. there exists a neighbourhood U of A such that

A=()fu

t20

and

2. fla is topologically transitive

(Steeb and Louw, 1986). Different types of attractors are known, the simplest being a point
attractor and the most complex a chaotic attractor. Attractors which have fractional (fractal)
dimensionality are known as "strange attractors”. Most strange attractors are chaotic. A
chaotic attractor is one that shows sensitive dependence on initial conditions. In this way,
chaotic behaviours of attractors then refer to the underlying dynamics and not to the
geometry of the attractor. Chaotic attractors represent nonperiodic behaviour, and so, the
phase-space trajectories never cross; but they do come arbitrarily close to each other.
Geometrically the orbit is an infinitely long line confined in a finite arca. The
neighbourhood of an attractor in which orbits are attracted is known as the "basin of the
attractor”.

4:3.2 Classifying attractors



The question then arises as to what are the dynamical properties of the reconstructed
EEG attractor? In order to answer this question, the reconstructed attractor needs to be
classified. The central concept in classifying attractors is that of their complexity, which is
usually discussed in terms of the attractor's dimensionality. Traditionally, dimensionality is
identified with the number of degrees of freedom of a system. This traditional view,
however, is not enough for attractor classitication because an attractor's dimensionality also
refers to the topology of the attractor and the complexity of the phase-space trajectories on
the attractor. Thus, classification of the attractor gives insights into the complexity of the
dynamics and the topology of the attractor. From another point of view, the dimension of
an attractor is the amount of information necessary to specify the position of a point on the
attractor to a given accuracy (Barnett and Chen, 1988). Methods for attractor classification
are still at an early stage of development and so there exists, in literature, many different
measures of dimensionality. These measures can be separated into two groups: those that
require only a concept of distance (a metric) and those that require both a metric and a
probability (natural) measure. The following definitions of dimensionality are as given by
Farmer et al. (1983).
4:3.3 Metric dimensions

Two concepts of dimensionality can be defined for sets which have a metric:
Hausdorff dimension and Kolmogorov capacity.
4.3.3a Hausdorff dimension

A familiar measure of dimensionality is the Hausdorff dimension, Dy introduced in
1919. Unlike the dimensionality of regular geometric objects, the dimensions of chaotic
sets can be noninteger. An intuitive idea of the Hausdorff dimension can be obtained by
considering a regular geometric object such as a cube. If each side of the cube is linearly
doubled, the volume of the cube will be eight times larger than the original one because 23
= 8. More generally, if each spatial dimension of an arbitrary D-dimensional object is

multiplied by j. its volume will be k = jD times that of the original. Reversing this, the
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dimension of an object can be taken as
In(k)

—4 1—.—
() 1.10)

In this way, D is no longer restricted to integer values.
To define the Hausdorff dimension precisely, cover the p-dimensional set (the
attractor) with a collection of p-dimensional cubes of variable sides €; and define
. d
1,(e) = mfz € .,
! (4.11)

and

ld = é,l)n(‘)l ld(E). 312)

where the infimum is to be understood to extend over all possible coverings subject to the
constraint that £; < €. It can be shown that there exists a unique d* such that
*
d<d =1 =c

d>d =1,=0.
(4.13)

This unique d* is called the Hausdorff dimension (i.e. d* = Dyy).
4:3.3b Kolmogorov capacity

The Kolmogorov capacity, D¢, is similar to the Hausdorff dimension. To calculate
the Kolmogorov capacity, one employs a box-counting algorithm. The phase-space is
divided into small cubes of size € and one counts the number of cells, N(€) that contain at

least one point of the attractor. The Kolmogorov capacity is then given by:

D = Lim ———log[N(e)]
¢ -0 1
] —
o]

If the location of the N(€) cubes covering the attractor are specified, then the location of the

(4.14)

attractor is specified to an accuracy € (Farmer et al., 1983)The Kolmogorov capacity thus

measures the amount of information necessary to specify the location of the attractor 10 a



given accuracy, €, because, for small €, log[N(€)] = D¢ log[€e!].
4:3.3¢ Fractal dimension

Current evidence tends to support the conjecture that the Hausdorff dimensions and
the Kolmogorov capacity take on a common value (Farmer et al., 1983). Under such a
conjecture, this common value is called the fractal dimension (DF). This definition of the
fractal dimension is different from that given by Mandelbrot (1982) In his book The
Fractal Geometry of Nature, Mandelbrot defines the fractal dimension as the Hausdorff
dimension regardless of any commonality with Kolmogorov capacity.
4:3.4 Probabilistic dimensions

In order to characterize the dynamical properties of an attractor, one must also take
into account the density of trajectories within the attractor. To this end, a measure of the
relative frequency with which an orbit visits different parts of the attractor, the "natural
measure”, (u(c)), must be introduced.

For a precise definition of the natural measure, let pu(x,C) be the fraction of time that
the trajectories originating from an initial condition, x, in the basin of attraction spend in a
cube, C, of the attractor. In particular,

n(x,C) = Lim u (x,C)
o= (4.15)

where p¢(x,C) is the fraction of some finite time T that the trajectories spend in C. If almost
every x gives the same p(x,C), then the natural measure of the attractor is equal to p(x,C).
The natural measure thus measures the relative time-averaged probability of occupancy by
the trajectories at different regions of the attractor.

If an attractor has a well defined metric and a natural measure, it can be
characterized by four other measures of dimensionality: the information dimension, the 8-
capacity, the 8-Hausdorff dimension, and the pointwise dimension.
4:3.4a Information dimension

As introduced by Balatoni and Renyi (1956), the information dimension, df, is
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given by
d, = Lim —2
£--0 1
log[“]
€ (4.16)
where
N(e 1
I(e) = i P, l()g|"p—]
=1 (4.17)
Fi = n(Ci) (4.18)

and Cj is the i3l cube of side €. If I(€) < log|N(€)], as is the case for uncqual probabilities,
then D¢ 2 dJ.

In information theory, I(€) is the amount of information necessary to describe the
state of a system to an accuracy € (Shannon, 1948). In other words, it is the informition

gained in making a measurement that is uncertain by an amount €. For small ¢,

1
I(e) = d, log[—] .
€ (4.19)

Consequently, the information dimension quantifies the speed at which the information
necessary to specify a point on the attractor increases as € decreases.
4:3.4b 0-capacity

The @-capacity is, essentially, the capacity of that part of the attractor which has the
highest probability of being visited by a trajectory. Consequently, consider a quantity
N(g;0) which is the minimum number of cubes of side € needed to cover at least a fraction,

0, of the natural measure of the attractor. The 8-capacity, dc(0), is given by

log| N(&:6) ]
log[%:l

It is then obvious that the N(g:0) cubes must be chosen such that their combined natural

©®= g

(4.20)

measure is greater than or equal to 6.



4:3.4c 9-Hausdorff dimension

As the O-capacity is related to the Kolmogorov capacity, the 8-Hausdorff

dimension is related to the Hausdorff dimension. Let
) d
ld(t;O) = mfz £ .
1

where the infimum extends over all possible €; < € which covers a fraction 8 of the total

(4.21)

probability of the set. There then exists a value of d and a dg such that
1,(8)=00 d<d,
1,0)=0 d>d,

where

1.(0)= Lim I (€;8) .
d £ d (423)

The value dg is then known as the 8-Hausdorff dimension (dy(0)). In this way, the
0-Hausdorff dimension is a probability dimension that is based upon the Hausdorff
dimension.
4:3.4d Pointwise dimension

Another probability dimension in use is the pointwise dimension, dp. It measures
the rate of decrease of the probability that a trajectory will visit a sphere as the radius of the
sphere decreases. Expressly, the pointwise dimension is the exponent with which that
probability decreases. To define the pointwise dimension, let

 log| K(B 0]
GOTE T
(4.24)

where U is the natural probability measure on the attractor and Bg(x) is a sphere witt rudius
£ centered about x. If dp(x) 1s constant for all x with respect to the measure y, then dp(x) is

the pointwise dimension and dp = dp(x).
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4:3.4¢ Dimension of the natural measure
Current evidence is in agreement with the conjecture that all the dimensional
measures that depend upon bcth metric and probability properties take on a common value

(Farmer er al. 1983). If this conjecture is satisfied for a particular dynamical system, then

this common value is called the dimension of the natural measure (Dy). Typically, the
measure Dy < Df. A more detailed discussion and review of the relationships between
these measures can be found in Farmer e al. (1983)
4:4 Practical measures of dimensionality
4:4.1 Correlation exponent

"he calculation of most of the measures of dimensionality defined in section 4:3 are
time consuming and almost impossible for phase-space dimensions larger than two. A
more efficient method of classifying the reconstructed attractor from an experimental
time-series in one variable is the correlation exponent, v, as defined by Grassberger and
Procaccia (1983a; 1983b; 1983c). It can be shown that the correlation exponent is a lower
bound of the Hausdorff dimension (Grassberger and Procaccia; 1983c¢). The error
associated with this calculation is discussed by Holzfuss and Mayer-Kress (1986).

To enable us to define the correlation exponent, consider a ime-series {x(t), x(1471),

x(t+27), ... x(t+nT)}. Let xi(t) be a point in d-dimensional phase-space with coordinates

{x(tj), x(ti+mT), . .. x(t; +(d -1)mn }. The "correlation integral” is then given by
1 n
C(r) Eki_inm = Z@(r - g, -_)sjl)
n ij=1
T
Ej d’r E(r)
0

(4.25a)

where @(x) is the Heaviside function and E(r') is the "standard correlation function”

1
E(r) = Lim— 2 &'~ x; - x)
no (4.25b)
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(Grassberger and Procaccia, 1983, 1983b; 1983c). The correlation integral is said to

measure the spatial correlation of the points on the attractor. For small values of r,

v

where v is called the correlation exponent. As shown, though not rigorously, by
Grassberger and Procaccia (1983a; 1983b, 1983c), this correlation exponent is also a lower
bound for the Hausdorff dimension and the information dimension.

However, the Grassberger and Procaccia definitions of C(r) as the correlation
integral and E(r') as the standard correlation function may be misleading. The double sum
in equation 4.25a counts the number of pairs of points that are within a distance r from each

other; n represents the total number of possible pairs. Thus,

is just the probability that a pair of points will be within a distance » from each other. In
other words, C(r) is a probability distribution function. We recall now the definition of the
probability density function, f(x)

d(F(x))
dx

f(x) = F(x) = jﬂu)du

where F(x) is the probability distribution function!. Then, by the integral relationship
between C(r) and E(r') in equation 4.25a and the definition of E(1') in equation 4.25b, it is
immediately apparent that E(r') satisfies the three properties of probability densities: in
particular

Er) 20, for all x,

”Eqwdﬂ'= 1,
]

IThe term probability distribution function is uscd in mathematical litcrature. Statisticians currently use the
term cumulative distribution function. An older term, the frequency function is a synonym for the density
function (Feller, 1968).
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and for any a,b (a < b)
b
pla<rsb) = [ E@) ur.

a
Thus, C(r) is a probability distribution function and E(r') is the probability density function
associated with that distribution.

The correlation exponent can distinguish between signals from a deterministic
chaotic system and a stochastic system (Grassberger and Procaccia, 1983¢). If the attractor
is a chaotic attractor then v saturates at some embedding phase-space dimension, while
random noise induces no saturation. The phase-space dimension at which saturation occurs
may be taken as defining the minimum number of variables, or the minimum number of
differential e tions, necessary to describe the dynamics of the system.

Mc-ecr any time-series such as an EEG, obtained from an experiment, will be
contamina some experimental noise, but the correlation exponent can disentangle
the chaotic attractor from the random noise. The algorithi: for determining v from a noisy
signal is as follows. First construct a plot of log|C(r)] versus log|r] for values of
phase-space dimension larger than the saturation dimension, which will produce a fan-
shaped plot. For length scales larger than the noise strength, all curves are linear with slope
equal to v, while the slope will be equal to d for length-scales iess than the noise strength,
the transition from a slope of d to a slope of L occurring at the saime length scale for all the
curves. The position of this break is of the order of the noise strength. Thus, this method
not only provides a method of characterizing the attractor but also gives an estimate of the
level of random noise in the experimental system (Ben-Mizrachi, 1984).

4:4.2 Lyapunov exponents

Lyapuriov exponents are the loganthms of Lyapunov numbers; the latter measure

the average stability properties of an orbit on an attractor. This circumstance provides a

quantitative basis for classifying attractors. In addition, there is a connection between
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average stability properties and dimension. The Lyapunov exponents, moreover, provide
an especially effective method for calculating an attractor's dimensionality (Farmer eral.,
1983; Wolf et al., 1985).

As regards the classification of attractors, the Lyapunov exponents measure the
average exponential rates of divergence (positive exponent) or convergence (negative
exponent) of nearby orbits in phase-space. In the presence of an attractor, phase-space
trajectories will converge toward a subset of the phase-space but, on the attractor itself,
neighbouring trajectories may diverge. Points close together in phase-space correspond to

nearly identical states: therefore, if the trajectories of initially nearby points move apart, the

corresponding states become different. The razc s whi''  » \eparat:on grows therefore
expresses the extent to which the system's dynamical beha our is sensitive to small
differences between the initial states. In this way, exponc. . nal divergence, manifested by a

positive Lyapunov exponent, represents extreme sensitivity to initial conditions; a positive
Lyapunov exponent, representing exponential divergence, thus serves as a functional
definition of chaos (Farmer er al., 1983; Wolf er al.. 1985). Therefore, any dynamical
system containing at least one positive Lyapunov exponent is chaotic and any attractor
containing one positive Lyapunov exponent is a chaotic attractor. Exponential expansion of
even one principal axis, however, is not consistent with the idea of bounded at.ractor
states. Hence, some sort of folding process must occur in the phase-space to bring widely
separated trajectories close together on a chaotic attractor. It is this foldging of the
phase-space that makes chaotic systems unpredictable and thcir orbits homoclinic.

A good account of Lyapunov exponents is given by Wolf et al., (1985). Given a
continuous dynamical system in an n-dimensional phase-space, the time evolution of an
infinitesimal n-sphere of initial conditions is monitored. The sphere, in time, will deform to
an n-ellipsoid because the growth of the sphere is not, in general, the same for all
dimensions. Hence if Pj(t) be the length of the ellipscidal principle axis at time t, the ith

dimensional Lyapunov exponent, A,. is Jiven by



P.(1)
A. = Lim T log Fi(—to—)

Lo o
(1.27)

It must be stressed that one cannot speak of a well-defined direction of the principal axis

because which of the axes is principal changes with time.

The sum of the Lyapunov exponents is thus the time-average divergence or
convergence of phase-space trajectories. Any dissipative system will have at least one
negative exponent and the sum of the exponents will be negative (Wolf et al., 1985). Since
the sum of the Lyapunov exponents corresponds to the time-average divergence (or
contraction) of phase-space velocity, a negative sum then corresponds to an average
contraction of the phase-spacc. Thus the post-transient motion of the trajectories will occur
on a zero-volume himit-set which is known as an attractor.

There is also a close link between Lyapunov numbers and information theory since
the Lyapunov number measures the rate at which the zystem creates or destroys
information. The negative exponents correspond to the loss of information and the positive
exponents correspond to the growth of information.

4:5 Conclusion

The preceding sections have assembled all the necessary apparatus to analyze an
experimental time-series. In particular, the correlation exponent and the Lyapunov exponent
will be used in the next two chapters to characterize the reconstructed attractor from the
alpha-rhythm time-series. Evidence will be provided showing that the underlying dynamics

of the alpha-rhythm EEG is chaotic.
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Chapter §: Chaos and the alpha-rhythm EEG
S:1 Introduction

Although nearly 60 years have passed since Berger introduced the EEG, little
progress has been made in understanding the underlying brain dynamics (Gevins, 1984).
For example, whereas a system's time evolution is traditionally studied within a
phase-space having dimensions equal to the system's dynamical degrees of freedom, we do
not know the degrees of freedom for the dynamics underlying the EEG. However, it is
now well established that the time-delay transformation of an experimental time-series in
one variable yields coordinates for the construction of an appropriate phase-space (Grebogi
et al., 1987; Babloyantz and Destexhe, 1986; Babloyantz er ! 19KS; Wolf er al., 198S;
Grassberger and Procaccia, 1983a; 1983b; 1983c; Takens, 1981). In these developments, a
central concern has been the characterization of attractor states. This approach was used
here in a preliminary study of the human EEG alpha-rhythm, and the results provide
preliminary evidence that the alpha-rhythm exhibits the properties of a chaotic attractor.

§:2 The chaotic approach
§:2.1 Method of time-delay reconstruction

In this method, the time-series (in, say, the electric potential, V) is expressed as a
sequence of N points separated by a fixed sampling interval, T For example, a
1-dimensional phase-space can be constructed from the deterministic map,
Viskt = f (Vs (k-1)1). where T is the fixed sampling interval, k = 1,2, N-1, and tas the
selected initial time. The map f provides a representation in discrete time of a dynamical
system which, in continuous time, is given by a first-order differential equation.

More generally, we can construct an n-component vector, Vi = [V(1), V(1+1),
V(1+21),..., V(t + (n-1)1)] by taking the first n terms of the discrete-time-series, where
n<<N. A second n-dimensional vector, V2, is then constructed from the terms [V(t+1), ..,
V(t+n1). By continuing this process, we obtain a series of time-delayed vectors, Vi, (1= 1,

2, ..., N-n), each a state-vector determining a point in n-dimensional phase-space, so that
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the series forms a dynamical, discrete time trajectory in n-dimensional space. If the system,
in time, converges on an attractor (i.e. a stable subregion of phase-space), then the
dynamics underlying the onginal time-series is dei>rministic in character. It is a remarkable
fact, established by Takens' theorem (Takens, 1981), that the attractor reconstructed by the
method of time-delayed coordinates is dynamically equivalent to that underlying the original
time-series. If the EEG alpha-rhythm can be viewed as an attractor, we can therefore expect
the time-delay method to be applicable to its investigation.
§:2.2 The validity of the chaotic approach

In order to investigate the validity of the chaotic approach, consider first the
traditional approaches to EEG studies, though it must be emyphasized that 1t would be
beyond the scope of this thesis to enter into a detailed discussion or general review of this
vast area; Nunez (1981), Gevins (1984; 1987) provide more detailed accounts.
5§:2.2a raditional approaches to EEG stu .ies

From a historical point of view, one of the first types of analyses performed on the
EFG was frequency analysis. At present, two distinctive types of analytical methods have
been used to obtain information about the frequency content of the background EEG
(Gevins, 1987). The first method measures the zero crossings of the EEG and sometimes
also the zero crossings of its first and second derivatives. The number and properties of the
wave, such as peak amplitude or area under the curve, are then tabulated with respect to
times between zero crossings. By presenting the data in this manner, one can obtain a
rough approximation of the power spectrum. The second and more commonly used method
applies Founer analysi to the EEG time-series. Mathematically. this process decomposes
the EEG as a familv of sines and cosines. It is, however, important not to interpret this
decomposition to mean that the EEG reflects separately generated sines and cosines, but
only that it can be m.. cally represented this way. Nevertheless, this decomposition
allows one to constr.. power spectrum of the signal. Hence, the processes of

computing the power speci.am are collectively known as spectral analyses. The use of
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spectral analysis has been shown to be useful in comparing short samples of data from
patients against age-matched normative values (John ez al., 1987), the quantfication of
drug effects (Gevins and Cutillo, 1987), metabolic effects (Smith, 1987), and various
disease states (Gotman, 1987).

With respect to the alpha-rhythm, the most popular method of power spectrum
estimation is the Fast Fourier Transform (FFT). The broad peak between 8 and 13 Hz
resulting from these analyses is known as the alpha power spectrum. The precise location
of this peak differs from subject to subject and, for the same subject, it may change over
time (for more detail see Nunez, 1981).

The FFT. however, praduces a power spectrum with high vanance. Whether this
variance is actually part of the data or an artifact due to the application of the algorithm s
unclear at the present time. As a result, calculation of the power specirum from
autoregressive (AR) models is becoming more popular becausc it tends to give a smoother
spectrum. For stationary signals and long data segments, the FFT and AR methods give the
same results. For shorter data segments, the AR method seems better since 1t does not
attempt to estimate as many parameters as the FFT method (Gevins, 1987). We will
discuss the AR model in more detail later.

As to the stationary nature of the EEG, the human brain is a dynamical system
interacting with the environment, and so the EEG cannot be considered stationary for long
periods of time. Even for short pcriods of time, the brain cannot be considered stationary
because there is too much internal brain activity. Nevertheless, statistical tests of
stationarity have shown the EEG being stationary for several seconds to several minutes
(McEwen, 1975; Gasser, 1977; Sugimoto et al., 1977). Therefore, the question as 1o the
exact length of time the EEG is stationary is still an open question.

Recently, a large amount of work has been done in the spatial analysis of the EEG.
In order to obtain spatial informati. about the EEG, multichannel recordings are

necessary. Because the potential at one point on the scalp is only defined relative to the
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potential at another point, the electric potential at a given point on the scalp is ambiguous.
Consequently, spatial analysis was introduced to provide a method of obtaining
unambiguous statements of the electric ficld that are reference-independent (Lehmann,
1987). These statcments can then be analyzed to give functional-physiological
interpretations of the data. The simplest analysis that can be preformed on the spatial data is
the construction of the equipotential maps of the EEG, which gives a clinically useful visual
representation of the data set (Lehmann, 1971). Paranjape (in preparation), using the
maximum entropy estimater, shows that clinically useful charactenzation of the EEG can be
obtained via a 2-dimensional power spectrum. Another advantage of multichannel analysis
1s the possibilty of obtaining reference-free data sets by the calculation of the radial current
density, which is the second spatial denivative. This computation, however, has received
very little attention until recently and has not yet been fully explored (LLehmann 1987).
Spatial analysis has also shown some promise in source localization (Nunez, 1981).

Another avenue of active research in the study of brain waves 18 feature extraction
and data standardization. The main purpose of these studies is to characterize the signal
properties most relevant to the hypothesis under consideration, by forming summary
indices called features and thereby effecting a reduction in the amount of data needed for
direct analysis. This can be accomplished by three methods: the heunistic, the statistical and
the classifier-direct.

1) The heunstic method uses summary features that are quantitative analogs to those
used in the traditional visual assessment of the EEG -trip chart. The major
disadvantage of this method is that validation studies are necessary to determine the
correlation between the summary features and the strip-chart characteristic.
Although this method has been useful in some studies, the tedi. .sness of such
analyses together with the lack of assurance that the maximum amount of
information has been extracted from the data probably contribute to its scarcity

(Gevins, 1987).
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2)  The most familiar statistical method is principal component factor analysis (PCA).
This method seems to be quite successful since fewer than 10 basis images account
for over 90% of the variance of the background EEG (Lazar, 1988). There are,
however, several drawbacks to this method (Gevins, 1987). During PCA, a
number of arbitrary decisions have to be made, such as the segment of time-series
to transform, whether to apply a digital low-pass filter, and what experimental
conditions to establish. Moreover, the small amount of residual variance of the EEG
may be crucial for the interpretation of the results. Finally, statistical methods of
feature extraction often do not derive the measures that best distinguish the clinical
categonies or conditions of the expenment.

3) The classifier-direct method, via statistical pattern-recognition algorithms, has been
developed and used successfully in choosing features that are "opumal” for
hypothesis testing. These algorithms, however, can identify a large number of
features and the optimal classifier is often some combination of these features. The
only method available to determine which is the optimal combination is to try each
combination. But this is impossible if the number of feuures is large because of
"combinatoric explosion”. Therefore, some heuristic strategy must be used to
choose the optimal combination. The problem of determining the optimal
combinations remains an unsolved problem (Gevins, 19%7).

Mathematical modeling remains one of the most difficult and active areas of
research associated with the study of the EEG. The main emphasis, so far, is in
characterization of the signal in terms of a mathematical model determined by a set of
parameters. The justifications for employing a particular method are generally sought in
pragmatic arguments and not in theoretical arguments; a model is useful or valid if, for
example, it can distinguish between different states of the brain. In other words, if the set

of parameters for a particular model is different for each state of the brain, then the madel

has the potential of being clinically useful thus the justifies method. The main emphasis of



these studies, therefore, is not to construct an explanatory biophysical model. Indeed,
because of the pragmatic justifications, the link (if any) between the biophysical content and
the mathematical model has been described as neither specific nor essential (LLopes Da Silva
and Mars, 1987).

The most general parametric model is the Autoregressive Moving Average model
(ARMA). The basic model assumes that the process underlying the generation of the EEG
is filtered white noise and the signal is, in a wide sense, stationary. Because of the
difficulties in determining the coefficients of the ARMA model, the standard method is to
use the AR model as an approximation to the ARMA model. Tt is important to understand
that AR modeling 1y not just an approximation of the ARMA model: tor example. there
cxist processes that are strictly AR. Jansen et al. (1981), using the Akziikt-;s final prediction
error criterion, demonstrated that a fifth-order AR model can estimate EEG characteristics
in 90 percent of the cases but better characteristic estimation can be obtained using a tenth-
order AR model.

The main limitation of this method is that, whereas it is always possible to calculate
the AR model parameters, the biophysical or physiological interpretation of the results is
not always possible. The central issue here is that the ARMA only models the time-series
and not the dvnamical system that generates the time-series. Since an infinite number of
processes can generate the same time-series and ARMA models are not process-dependent,
very little information is gained about the dynamical system. Therefore, even if the model
generates a time-series that gives a 100% correlation to the observed EEG, it does not
imply that one has modelled the system, nor can one make any specific conclusion about
the dynamical system.

Implicit to the foregoing paragraph is a distinction which, though important in
principle, is not always easy to make in practice. The distinction is between mathematical

models for empirical data (as e.g., for a biological time-series), and empirical theories

about such data. In a narrow sense, a mathematical model may be considered as empirically



valid if it reproduces or closely approximates the empirical phenomenon in question. In that
regard, a given empirical data set might possibly be modeled in a vanety of ways
mathematically. Thus there is some degeneracy in going from the data set to mathematical
models - each of which may be mathematically valid so far as o+ ahility to account for the
data is concerned. Such degeneracy can be viewed as a caveat against the obviously
falacious assumption that processes generating the same outpu: “iust b dent Cal processes.
The concept of "explanation” in natural science is a notoriously complex one, and so the
concept of an "explanatory theory" can be no less complex. Nevertheless, it is probably fair
to say that most scientists are able to maintain a sufficiently clear distinction between the
idea of a phenomenological model and an explanatory tneory. So far as biophysics s
concerned, a biophysical theory is not just a mathematical construction, but rather an
embedding of biophysical concepts into a mathematical structure.

The objective in this thesis is not t« w« | the alpha-rhythm, but to ask whether we
can obtain some characterization of the k-t ., vignal, and its underlying dynamics, of a sor
that might be useful in realistic theoretical studies of these systems. cany, the interest
of empirical science involves our making a distinction between mathematiciai valid modeis
and those having theoretical usefulness. One of the current hopes about chios theory is that
it may help us in that direction by revealing more about the dynamics underlying ime-series
like the EEG than the "classical” approaches have thus far achieved.
5:2.2b A plausibility argument

The question now concerns the validity of the chaotic approach in considering the
EEG alpha-rhythm. This amounts to showing that the premise of Takens' theorem is
satisfied.

The premise of Takens' theorem is that the time-series is produced by a
deterministic dynamical system in which all sources of the system’s dynamics are
endogenized. :., the system itself produces its own dynamics. The central question is

then:
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Can the dynamical system underlying the alpha-rhythm EEC be considered

an endogenous deterministic dynamical system?

It is clear that the absolute answer to this question is unknown at present. A definite
proof that the dynamical system can or cannot be considered an endogenous deterministic
dynamical system does not yet exist in literature. However, one can make a plausible
argument that the dynamical system underlying the alpha-rhythm EEG can be considered an
endogenous deterministic dynamical system.

The alpha-rhythm of the human EEG appears as an oscillatory pattern within the
range 8-13 Hz. Typically, the alpha rhythm of a given individual has a stable frequency
within the range mentioned. usually with spindle-like appearance due to waxing and
waning of its amplitude. Its behavioral correlate is a state of alert relaxation with closed
eyes. Upon opening one's eyes or other sensory stimulation, or the subject's engagement
in purposeful mental activity, the alpha-rhythm gives way to a signal of lower amplitude
and higher frequency (so-called "alpha-blocking™).

The alpha-rhythm cannot be considered as representing an isolated dynamical
system but, from the pkenomenological observations given above, it does seem reasonable
to regard the rthythm as representing a distinctive type of braii state, at least so far as

accessibility through the EEG is concemed. The alpha: thythiaic 1o operatonally._isolated

as a quasi-stationary system, even though the totai bra:n is <.mmultancously active in .
other modes. The rhythm is considered the background EEG of the brain - as «.»p0sed to
evoked potentials (which occur in response 0 external stimuli). We can thus conside:
external influences to the alpha-rhythm as bein 2 ney;ligible, so that the system is in effect an
endogenous one, i.e. one producing its ow: dynamics. As regards the sysiem's
determinisin, one may argue as follows: With respact to our current understanding of the
human brain, one cannot assert that the braia s dyaamically random, nor can one assert
that it is dynamically deterministic. On the one hand, we have, within modern neural

network theory, a notion of randomness ass« iated with the brain; on the other hand, the



consistent reaction of the brain to external stimuli betokens an element of determinism. It
therefore seems reas-mable 10 make the overall hypothesis that brain dynamics may include
both random and deterministic features. This hypothesis is not as far-1etched as it might at
first seem. For the olfactory bulb, Skarda and Freeman (1987) constructed a mathematical
model which yielded sustained chaotic activity that was statistically indistinguishable from
the background EEG of resting animals. If we make the hypothesis stated above, the
methodological appropriateness of chaos theory seems virtually self-evident.

The issue can be put another way. In the absence of existing knowledge as to the
actual dynamics of the alpha-rhythm (or a generally accepted theory thereof), one may ask
what precise evidence or arguments manifestly rule out the very possibitity of the dvnamics
having deterministic character. One cannot say that the alpha-dynamics is indescribable, so
‘t 1s reasonable to suppose there exists some sct of variables of state, {x;), that will
describe the system. Since the argument above shows that the alpha-system generates s
own dynamics, it now follows that there exists somne function F such that

X = FXp:
in which case we have a dynamical equation!.

In summary taen - ve have provided plausibility argum..ts for:

1. considering the dynamical system as an endogenous systen;

2. the existence of the dynamical equation;

3. the dynamical equation to have deterministic properties.
Therefore, at least on plausibility grounds, the assumptions of Takens' theorem seem
satisfied and the chaotic approach appears to be valid.

Also, in connection with the phenomenon of alpha-blocking, it is well known that

1t is not always clear in the litcrature as to exactly what is meant by the term “dynamical system”.
Whereas in Physics the cxpression "dynamical system™ refers to the time-varying system of interest and/or
the kinetics and forces acting on the system, in Mathematics the expression refers 1o the system of
differential or difference cquations. To avoid confusion, I will use the expression “dynamical system” in the
Physics sense, to refer to the system of interest, and the expression “dynamica! cquation” to refer to the
system of differential or diffcrence equations.
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the rhythm typically returns, in quietly resting subjects, when external stimulation or
purposeful mental activity is abated. This suggests that, within the behavioral constraints
mentioned before, the alpha-rhythm arises from a dynamical state to which the system
returns following transitory perturbations. It, therefore, seems reasonable to consider the
alpha-rhythm as corresponding to an attractor state associated with a maintained condition
of alert relaxation.

§:2.3 Classification of the alpha-attractor

A central concept in classifying attractors is that of their complexity, which is
usually discussed in terms of dimensionality (Farmer er al.. 1983; section 4.3 of this
thesis). The simplest kind is a point attractor having a dimension of zero; a limit cycle has a
dimension of one. Those with fractional dimensionality are fractal objects known as strange
attractors, and most strange attractors are deterministically chaotic.

To explain the latter concept, we note first that the existence of an attractor in the
phase-space betokens a deterministic dynamics: we then note that phase-space trajectories
may diverge within the attractor itself. Since points close together in phase-space
correspond to nearly identical states, points with separating orbits become unlike each
other. The rate at which such separation grows therefore expresses the extent to which the
system's dynamical behaviour is sensitive to small differences in initial states. Exponential
divergence of the orbits, measured by a positive Lyapunov exponent, serves to define
chaos (Wolf et al., 1985; Farmer er al., 1983); i.e., any attractor with at least one positive
Lyapunov exponent is a chaotic attractor. Thus, a chaotic dynamics is globally deterministic
in that its trajectories remain on an attractor, but locally random in that there is an
exponentially fast loss of predictability concemning the details of behavinur within the
attractor. In that sense, chaos is a matter of deterministic randomness.

The currelation exponent, v, as defined by Grassberger and Procaccia (1983a;
1983c¢), provides a further method for classifying attractors. This measure of the attractor

was developed in direct response to the impossibilities of calculating the fractai dimension



for high embedding-phase-space dimensions (see Chapter 4). . ..¢ correlanon exponent
then provides a »thod of classifying attractors with phase-space dimension larger than
two.

Apart from its re: computational ease, the correlation exponent has the
advantage of disentang)...  -uotic behaviour from the random noise contaminating any
experimental signal (Ben-Mizrachi er al., 1983). If the attractos is deterministically chaotic,
then v reaches a stable value ("saturates") at some phasc-space dimension, while random
noise induces no saturation. The phase-space dimension at which saturation occurs, i.¢.,
the emb« .lding dimension, may be taken as defining the minimal dirsensionality of the
phase-space necessary for proper embedding of the reconstructed attractor. The embedding
dimension therefore equals the minimal number of degrees of freedom tor the original
dynamics sampled by the experimental time-series.

5:3 Three experiments

We recall from Chapter 1 that, methodologically, this study incorporates three

mutually exclusive hypotheses:

1) The system is chaotic (i.e. deterministically random),

2) The system is random only, not chaotic,

3) The system is deterministic only, not chaotic,
of which, only hypothesis 1 is effectively consistent with the overall hypothesis stated in
Chapter 1. The first experiment tests the validity of hypothesis 1 1in connection wath the
alpha-thythm EEG. Since these three hypotheses are mutually exclusive, it the
experimental findings support hypothesis 1, then they contradict hypotheses 2 and 3.
5:3.1 Experiment one
5:3.1a Introduction

The purpose of this experiment is to test the hypothesis that the dynamics
underlying the human alpha-rhythm correspond to a chaotic attractor.

if the dynamics underlying the alpha-rhythm EEG correspond to an attractor, then
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the correlation exponent. 2s a function of embedding-phase-space dimension, will saturate.
If the system has a chaotic dynamics, then the largest Lyapunov exponent will have
positive value.

Both filtered and unfiltered alpha-rhythm data were analyzed in this experiment.
These two different representations of data were chosen because there exist two ways in
which the definition of the alpha-rhythm can be interpreted (see Chapter 2). The
alpha-rhythm can be co- idered as the EEG signal in which the frequency range 8-13 Hz
dominates, or as a signal of stnictly 8-13 Hz with other frequencies present only as noise.
The unfiltered EEG data in this experiment corresponds to the first interpretation while the
filtered EEG data corresponds to the second interpretation.
5:3.1b Method

EEG data from two human subjects were obtained through an array of 32 channels
with a reference electrode positioned on the left ear (subject A is a 45-year-old male, and
subject B is a 32-year-old female). With respect to the very small number of subjects
included in this study, we point out that we are not here describing a statistically designed
experniment; our objective was the reconstruction and charactenization of an alpha-attractor,
which is achieved by completely deterministic methods.

A continuing problem in EEG analysis concerns the piacement of the reference
electrode. Since g priori knowledge of the location of the sources is not possible in EEG
studies, there does not exist an optimal location for the placement of the reference electrode.
Bipolar recordings, such as those analyzed in Mayer-Kress and Layne (1987a; 1987b) and
Babloyantz et al. (1985; 1986) have many disauvantages (see arguments in Nunez, 1981).
Although the lefi-ear reference does not eliminate the problems associated with the activity
of the reference electrode, it does have some advantages (for example, it is less
directionally selective).

Although the algorithms used in this experiment were relatively inexpensive

computationally co.apared to other algorithms in this field, they still require a long time to
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run (and are therefore computationally expensive). As a result, purely on pragmatic
grounds, a single channel was chosen for this preliminary study. Morcover, apart from the
issue of economy, this study asks "is there evidence that the alpha-rhythm arises tfrom a
chaotic dynamics?". Clearly, the question as to whether the findings reported here apply to
the spatial distribution of the alpha-rhythm is a separate question.

A single channel positioned over the left posterior parictal region was selected for
analysis (Channel 2% in the array described in Koles er al., in press). This position was
selected because the alpha-rhythm is very robust in its area. The data were digitized to 12
bits with a sampiing rate of 120 Hz. Analyscs were based on: (1) untiltered data. (b)) the
same data subjected to a 5-15 Hz raised cosine filter, thus emphasizing the 8-13 1,
frequency range.

The algorithm developed by Grassberger and Procaccia (1983a; 1983¢) was used to
calculate the correlation exponent, using 8,000 points (= 67 s of data) of the recons'ructed
attractor. The slope of the linear region of this plot was determined with a method
essentially similar to that of Babloyantz and Destexhe (1986) and Mayer-Kress et al.
(1987). The largest Lyapunov exponent was calculated from 4,000 points (by the algorithm
given in Wolf et al. (1985), using a slightly modified version of the Fortran code in order
to accommodate our method of data storage from 32 channels.

A time delay of 1/120 s (= 9 ms) was chosen, giving the maximum number of data
points for our calculations. This value is just below the range of 10-40 ms used by Mayer-
Kress and Layne (1987a; 1987b) but, in light of their statement that their "results were
stable within fairly large ranges”!, we feel that this slight deviation would cause
insignificant differences in our calculations. Furthermore, cus chosen value of delay time is
typical for power-spectral analysis of the EEG; Froehling et al (1981) reccommend that the

delay time shoulc. be ~f the order of "typical sampling times used in power spectral

1G. Mayer-Kress and S.P. Laync, 1987. "Dimensionality of the human clectrocncephalogram™, in Ann N
Y. Acad. Sci., Vol. 504, p71
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analysi="1. All calculations reported here were pertormed on a VAX 11/750 computer with
a VMS 4.6 Operating System.
5:3.1c Results

A relatively simple method of gaining some qualitative understanding of the
dynamics is through the plotting of the phase portraits. The 2-dimensional phase-space
trajectories obtained from the filtered and unfiltered alpha-rhythm EEG are shown in Figure
5.1 and 5.2 respectively. These portraits were constructed in the phase-space spanned by
X(1) and X(1 + 1). Figure 5.1a shows that the flow of the phase-space trajectory 1s
clow hwise and that it spirals away from the centre of the ellipses. The trajectory reaches a
local maximum and then spirals toward the centre and flows around the small ellipse for a
~hile (Figure 5.1b). Figure S.1c shows the trajectory expanding once more to a medium
size ellipse. It then flows around this ellipse for a while (Figure 5.1d) and then spirals
toward a very small ellipses ' must be noted that these shifts between smaller and larger
ellips.  are aperiodic: thus, the presence of a chaotic dynamics is already suggested even in
these 2-dimensional portraits.

The phase-portraits of the unfiltered alpha-rhythm (Figure 5.2) have the same
general properties as that of Figure 5.1. However, the path of the trijectory in Figure 5.2 is
modulated by low frequency waves (< 3 Hz). Moreover, some high frequency oscillations
of the path is present because of the roughness of the trajectory. Thus it can be readily seen
that the phase portrait of the filtered alpha-rhythm shows more coherence than that of the
unfiltered alpha rhythm. This is of course an expected characteristic of filtered signals. It
must now by stress that we can only visualize these phase portraits at very low dimensions
(< 3), and thus very little specific information is gained about the underlying dynamics.

Nevenheless, they do allow for an intuitive feeling about the dynumics.

TH. Frochling, J.P. Cruwchficld, J.D. Farmer. N.H. Packard and R. Shaw, 1981. "On determining the
dimension of chaotic flows™, Physica. Vol. 3D, p611.
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Figure 5.1e)
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Figure 5.1: Two-dimensional phase portraits of the human alpha-rhythm
electroencephalogram filtered by a raised cosine filter set at S to 15 Hz fora) 1 < n < 50 h)

50 <n<100;¢) 100 <n < 150; d) 150 €n < 200; e) 200 < n < 251. The portraits are
drawn in computer units to facilitate later calculations.
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Figure 5.2b
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Figure 5.2: Phase portraits of human alpha-rhythm electroencephalogram in 2-dimensional
phase-space for a) 1 < n < 50;b) 50 <n<100; ¢) 100 <n < 150; d) 150 <n < 200,

e) 200 € n £251. The portraits are drawn in computer units to tacilitate later
calculations.



Evidence of the presence of an attractor is provided by the log[C(n)] vs log|r| curve,
shown in Figure 5.3. This curve contains three distinct regions: 1, a horizontal region for
small log|r] where, because of digital sampling, the phase points do not have any
neighbours within a circle of radius ry (where r; is very small): 2, a hr ar region for
intermediate values of log|r| where the correlation exponent is calculated (as described
above); 3, another horizontal region for large values of log|r] where all points are within a
radius ry of cach other (r; >>r;). Region 3 is indicative that the dynamics correspond to an
attractor since all points are confined to some subregion of the phase-space.

As mentioned earher, an important property of an attractor 1s 1ts dimensionahity. In
that regard, the results obtained in kxperiment 1 are shown in Iigure 5.4 and summanized

in Table 5.1.The corrclation exponents for the filtered data were found to saturate at

logi{Cin]

loglr]

Figure 5.3: A graph of log[C(r)] as a function of logir] from the unfiltered data of Subject
B. The reconstruction phase-space dimension is 32. The shape of this curve is typical for
all our alpha-rhythm data
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Figure 5.4: The correlation exponent for filtered white noise and for alpha-rhythm froma
45-year-old male (subject A) and a 32-year-old female (subject B) as a function of the
embedding-phase-space dimension.

Table 5.1: The saturation dimension, correlation exponent, and Lyapunov exponent for
filtered and non-filtered EEG alpha-rhythms obtained from two normal human subjects: a
45-year-old male (subject A) and a 32-year-old female (subject B):

Data saturation correlation Lyapunov exp.
dimension, d. exp., L. A

A: filtered 5 26101 +25+03

B: filtered 5 2.7+ 0] + 23402

A: unfiltered 27 7.8 +0.2 +2.8+0.6)~ 102

B: unfiltered 27 7.1 £0.1 +5.7+08) x 102

(Values for d and v were caiculated from 8,000 points of the reconstructed attractor, those
for A from 4,000 points. The errors cited are in units of the sample standard deviation.)



embedding dimension 5 for both subjects. The value of the correlation 2xponent given in
Table 5.1 gives a the lower bound to the Hausdorff dimension of the atira“tor. As
previously mentioned, such a saturation result means that the alnha ep: ode. in this
preliminary study correspond to attractor states arising from a deterministic {ynamics.
Table S'1 also shows that the filtered data were found to have a positive Lyapunov
exponent for each subject, so that the filtered alpha-rhythm data corresponds to a chaotic
attractor.

With respect to the unfiltered alpha-rhythm, the correlation exponent saturated at
cmbedding dimension 27 for both subjects (Table 5.1). Moreover, the unfiltered data were
found to have a small but positive Lyapunov exponent (Table 5.1). As stated before, such
results provide evidence that the dynamics of the unfiltered alpha-rhythm also corresponds
to a chaotic attractor.

§:3.2 Experiment 2
5:3.2a Introduction

This experiment was designed to test the hypothesis that the filtered alpha-rhythm
has the same dvnamics as a filtered white-noise signal havingthe same power spectrum as
the filicred alpha-rhythm.

As is well known, sources of a widely different character may yield one and the
same power spectrum. Because the filtered alpha-rhythm has a broadband power spectrum,
the possibility arises that the alpka-rhythm has a random dynamical source. Therefor, if a
signal having a known white-noise source is shaped to yield the same power spectrum as
the filtered alpha-rhythm, then subjected to the same measures as in Experiment 1, it will
provide a control experiment in testing the above hypothesis.
5:3.2b Method

A random white-noi~¢ signal generated by the VAX 11/750 random number
generator was filtered by a fifth-order autoregressive (AR) filter. A fifth-order filter was

chosen because it has been demonstrated that a fifth-order AR model is a good
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power-. pectrum estimator of the EEG (lansen ez al., 1981). The AR filter parameters were
calculated from 30 seconds of EEG data using the Burg's method (Kay, 1988). The
correlation exponent as a function of embedding-phase-space dimension was calculated by
the same methods as stated in section 5:3.1b.
5:3.2¢ Results

The power spectrum of the AR-filtered noise as compared to the filtered
alpha-rhythm is shown in Figure 5.5. The correlation exponent did not saturate for
phase-space dimension less than 18 (Figure 5.6), whereas filtered alpha saturated for a
phase-space dimension of 5 (Figure 5.4). This implies that the number of degrees of
freedom for the AR-filtered noise is at least three times greater than that of filtered
alpha-rhythm. But that would then imply that the dynamics underlying these data is vastly
different from that of the filtered alpha-rhythm. In other words, the dynamics underlying
the filtered alpha-rhythm is not the same as a filtered random white-noise signal with the

same power spectrum.

Power (db)
o
o
1

—— iltered noise

--------- filtered alpha

-200 ¥ L] v T M
0 10 20 30
Frequency (Hz)

Figure 5.5: The power spectrum of filtered alpha-rhythm as estimated by the FFFT and that
as estimated by a fifth-order AR model from 30 seconds of data. The spectrum is calcv'ated
from 0 to 60 Hz., of which only the 0 to 30 Hz. range is shown.
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Since the correlation exponent did not saturate, the Lyapunov exponent could not be
calculated because the embedding phase-space dimension could not be determined.
However, as can be seen from Figure 5.6, the curve of the correlation exponent as a
function of phase-space dimension shows early signs of saturation. This is not a surprising
result since the random romber generator in ...c VAX 11/750 computer is topologically
conjugate to the Baker map. Because the Baker map is a chaotic map (Devaney, 1986), the
random number generator is then a chaotic dynamical system. In this hight, one would
expect the correlation exponent to saturate at very high phase-space dimensions - high

dimensionality because the VAX random number generator is a very good random number

generator
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tipure 5.6: The correlation exponent as a function of embedding phase-space dimension
tor AR filtered white noise.

Freeman (1987) interpreted the saturation induced by "pseudo-random” signals as a
measure of the "curse of dimensionahity”: the lowest phase-spice dimension for which the

value of the correlation exponent is no longer equal to the embedding dimension defines the
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upper limit of resolution for that sample size. But this cannot be the correct mterpretation
since the random number generator is a chaotic dynamical system, and so saturation is
expected- the curve in Figure 5.6 will not be linear as would be expecied for a pure'y
random source.

From the preceding discussion, it will be recognized that Experiment 2 does not
constitute an ideal control experiment, since the control signal is notitselt derived from a
purely random source. But the results do serve to emphasize an important featre. Namely,
that in chaotic systems - where the =lement of randomness is always present - the degree of
randominess present is related to the complexity of the u. Lerlving dynamics and. hence, to
the saturation dimension of the attractor. Thus, .ne resu . obuned stronply sug gest that
the degree of randomness underlying the AR filtered white noise s mirkedIy greater than
that underlying the filtered alpha-rhyvthm. In tumn, this serves to emphasize the point, made
earlier, that similarity of power spectra does not provide evidence for similarity of the
dynamics underlying those spectra.

5.4.3 Experiment 3
5:3.3a Introduction

The puranse of this experiment was to test the hypothesis that the fltering process
irduceu the chaotic dynamics.

In v of the experimental iogic, this expeniment, like Experiment 2, may be
considered as a control experiment. We are here concerned with the pos~ibility that the
experimental methodology adopted in Experiment 1 created the observed chaotic dynamucs.
Thus, if a random white-noise signal is filtered with the same filter used in Experiment 1,
and is then subjected to the same measures as in Experiment 1, this experiment w | then
provide a control against the hypothesis stated ahove. For, if the calculated quantities are
closely similar for the two sets of data - EEG and control signals - then we cannot reject the

hypothesis stated above.



5:3.3b Method

A white noise signal was generated using the random number generator of the VAX
i 17750 computer. This signal was then digitally filtered with the same raised coine filter as
in Experiment 1; the correlation exponent as a function of embedding-phase-space
dimension was calculated via the same method as that outline in section 5:3.1b.
5:3.5¢ Results

White noise filtered by the same procedure as used on the EEG data did not show
saturation of the correlation exponent for phase-space dimension less than 1K (Figure 5.7).
As with Experiment 2, this again implies that the number of degrees of freedom of the
filiered white noise signal is at least 3 times greater than that of the filtered alpha-rhythm.
These results tend to reject the hypothesis stated in 5:3.3a and to support the hypothesis

that the dxnamics underlyving the alpha-rhythm is not similar to that of band-passed white

noise.
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Figure 5.7: The correlation expone ( for filtered white noise at various phase-space
cmbedding dimensions.
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much less sign of saturation (Figur: 5.5) than that of the AR filtered white noise (Figure
5.4). As stated in section 5:3.2¢, saturation of the correlation exponent s expected for
“pseudo-random” signal. Moreover, since the AR filter is a much more restrictive filter, the
phase-space dimension for which the correlation exponent saturates will be lower than that
for the band- pass-filtered noise.

As in Experiment 2, the Lyapunov exponent could not re calculated because the
dimension of the embedding phase-space could not be determined.
5:4 Discussion

The chaotic property of the alpha-rhythm is not attnbutable 1o noise since random
noise does not vield saturation of the correlation exponent (Babloyants and Destexhe, 1986,
Grassherger and Procaccia, 1983a: 1983b; 1983c). Nor is the chaos induced by the
filtering process since the correlation exponent for the unfiltered EEG data did siturate (see
sec -~ V1c), thus exhihiting the presence of chaos in the absence of filicring procedures,
whereas white noise filtered by the same procedure as the ELEG did not show sauration of
the correlation exponent for phase-space dimension les than 1¥ (see section 5:3.3¢).
Moreover, there is evidence that the dynamics underlying the alpha-rhythm is not that of
filtered white noise since AR-filtered white noise with the same power spectrum as the
alpha-rhythm did not saturate at phase-space dimension less than 18 (sce section 5:3.20).
Fourier analysis revealed a broadband power spectrum for the filtered alpha-rhythim (sce
section 5:3.2¢ and Figure 5.5), so that the dynamics does not arise trom a multipenodic
system (Grassberger and Procaccia, 1983c; Parker and Chua, 19¥7).

Babloyantz er al. (1985), using a time-senes of 4/MX) points sampled at 10O Hz
(40 s of data) and a time delay of 100 ms, did not find saturation of the correlanon
exponent up to embedding dimension 10. This choice of delay-time, however, s the same
as the period of the 10 Hz alpha-rhythm. Therefore, the components of that period will be
under-represented in the reconstruction (see discussion of the reconstruction time in

Chapter 4). Thus, the conclusions they draw may be questioned. Mayer-Kress and [Layne
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(1987a: 1987b), usin, a time-series of 10 - 30 s sampled at 500 Hz and a delay ... 10 -
40) ms, also did not observe saturation of the correlation exponent up to dimension 20. All
these studies were done with bipolar recording and, hence, are not directly comparable to
the results presented here. However, we also obtained no saturation for the unfilicred EEG
at dimensions < 2(0).

At this point, we should say something about the correlation exponent itself. Fora
circle, of radius r. set on an attractor, the Grassberger-Procaccia correlation integral. Cir),
measures the spatial correlation of points on the attractor obtained from a tme-series. bor
small r, it is known that C(r) behaves according to a power law. In a system with F degices
of freedom, C(r) scales as rF - a signal anising from noise, but as rV (with v < F) when
the signal arises from deterministic ¢!iaos (Grassberger and Procaccoin, 198 5¢).

Although our unfiltered EEG's had insufficient data points to obtain a reliable error
term fo - the saturation of u. saturation was nevertheles "ound 1w occur at embedding
dimension of ?7. To ensuic that we did observe saturation, valucs of v were calculated up
to diinension 34 The saturaion of the unfiltered signals provides evideace that
contributions from noise 0 the higi «fimension. ity do not mask the effects due to chaotic
dynamics of hi_ 1 complexity.

So far as external noise is concerned, it's presence hay been hown to yield two
charactenistic regions in a plot of log [C(r)} against log [r], whereas noise-free data do not
show this effect (Ben-Mizrachi er al., 1983; Grassberger and Procaccia, 1973¢) (see
discussion in Chapter 4). This external noise effect was absent in both the filtercd and the
unfiltered daia in our study; hence, the high dimensionalitv of the unfiltered EEG cannot be
attributed to the presence of external noise. The small but poutive Lyapunov exponents
calculated for the unfiltered data indicate that, whatever the reason for the high embedding
dimension for the correlation exponent, the chaotic dynamics 15 still discernible. These
findings thus suggest that the EEG is effectively a much less noisy signal than is often

supposed.
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We haive already explained why the alpha-rhythm may be anticipated to correspond
1o an attractor state but, in view of the structural regularity of the alpha signal, the question
naturally anses as to why the underlying dynamics should be ¢t tic. Interestingly, the
EEG of petit mal raises the converse question as to why an epileptic seizure, traditionally
viewed a< a "chaotic” breakdown of «reanized brain dynamics, should yield the well
known rej ularity of the "wave and spike” EEG.

In the one case we are asking why a regular signa! should arise from chao
dynamucs and, n the other case, why a “chaotic” dynamics should yield a cobicrent sy al
Clearly, this is not simply a svmmer rectie = of a single queston since the reference

is to different brain states. norn coth cgical, respectively. However, the latter

question is sharpened by the fact vret + .oyantz and Destexhe (1986) found a chaotic
attractor «ve and spike” EEG of petit mal seizure. The embedding dimension in
this cas’ . correlation exponent 2.05  0.09, and the largest Lyvapunov exponent
positive w; igaitude 2.9 £ (0.6. These values are close to those shown i Table >0 to

the filtered alpha-rhythm in our study, although what constitutes a signiticant ditferenee in
these values is not yet clear. Meanwhile, the circumstince that positive Lyapunoy
exponents are found for both petit mal and alpha EEG'S serves 1o symmetrize the guestions
raised above in the sense inat both situations appear to involve chaotic dyionies i tiw
rechnical sense.

As regards petit mal, a chaotic dynamics mean that the random element tradhtionally
associated with epileptic seizure is also determini~iic: this suggests that some mode of
cnenerative dynamics underlies the coherent pattern of the pett mal EEG. Simalarfy,
cooperative dvnamics seem tc underlie the alpha-rhythim This can be seen trom the
sigmoidal curve 1n Figure 5.3, In the first place, the curve reveals that the alpha rhaothm
corresponds to an attractor state.

More generaliy, just as a linear curve on these axcs would betoken a purely random

or noisy source, the sigmoidal curve is diagnostic of a chaotic attractor in that it reveals
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local randomness tor middle-range values of log[r] with global determinism for Lirge
logir], where by zlobal determinism we mean that the dynamical trajectories are bounded
within a subregion of the phase-space, so that the curve saturates for large log|r].

The plot 15 also recognizable as a typically "cooperative curve”, corresponding to
the spontancous emergence of macroscopic order from nonlinear 1nteractions among
clementary dynamical constituents of the system. Thus, a possibie explanation is that the
chaos arises 'rom unpredictable changes 1n the number and spatial disasbution of
clementary umit ontributing to the alpha-rhyvthm and 1n the dynanucal j atieras ot their
couphng imeracnons. This possibility arises because it is known that coupied hmit-cycle
oscillators may lead to a chaotic regime (Yamada and Fujisaka, 1978). Hence. the
dynamircs underlying the quz v« ~usmdal alpha-rhythm may corresp nd 10 N coupled Iimit
cycles. In any case, our f~dings suggest that the dvnamics cannot be a simple
synchronizaton effect driver b (e.g. thalamic) pacemaker cells.

It seems that, tor the alpha-rhythm and petit mal EEG alike, it is necessary 1o take
the role of the extracellular space into account ir arder to accommodite such cooperative
modes. Ir ot respect. we draw attention cumstio e that, ints dvnamical aspect,
the neuron has no define patial boundary (o wart ¢r ol 1978; 19 '9), the unboundcd
neuron can then be reparded as operating in an exchanee field which mediaies cooperative
modes of behaviour,

From a phvsiological point of view, the tindings presented here suggest the
coupling of stabtlity and instability, i.e., a stable attractor-state of alert relaxation coupied
with an instability evinced by positive Lyapunov exponents. Such a coupling would
correspond to a state of grear sensitivity to new sensory inputs that would throw th.
dvnamics from the alpha attractor to a new reg  es thls would be consonant with the ideas
p:oposed by Freeman and Viana ai Prisco (19%6) in their studies of mechanisms in the
olfactory bulb of the rabbit. It might be anticipated that the dynamics underlying such

processes may be studied in humans through the method of event-related potentials.
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5:5 Conclusion

In summary, the method used in this study has shed some light on dynanncal
a~pects of the human EEG alpha-rhythm. The hypothesis of section 5:3 1, that the alpha
state corresponds to an attract.” s supported. In addition, we have an estimate tor the
lower bound of the system's degrees of freedom and for the dimensionality ot the alpha
attractor. From the results in section 5:3.2, one can conclude that the dynan underlying
thc alpha aythni 1s different from wat of band-pass-filtered white noise, and that the
filtering process did . creawe the observed chaotic dynamics. In section = 3 3000 was
shown that filtered white noise with the same power spectrum did not have the same
underlying dvnamics as that of the filtered dpha rhythm. The three experiments together,
therefore, seem to provide evidence that the dynamics 15 indeed nonhinear and chaotie in the
technical sense.

It mus  however, be emphasized that this 1s a prc munany study based on only two
subjects. While 1t is true that this number compares favourably with existing reports in the
Iiterature concerning applications of chaos theory to the human EEG, it nevertheless
remains an open question as to how far the results reported here - and elsewhere will tn

out to be statistic ''v representative.
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Chapter 6 “onclusion

The main mouvation for undertaking this study was to ask wheher the pplication
of modern nonlinear dynamical theory to the I G alpha 1ty thm migt ‘h us something
unrevealed by more traditional studies of brain dynamics. The rati: pted here was
descnbed in Chapter 1.

It was seen in Chapter 2 that a central stumbling block a ' ne advancement of
our understanding of brain dynamics was in the transition from e mic scopic to the
macroscopic picture. This transiion was discussed 1n conne .on with the reductiontst
views that have dominated brain research over the past 60 years. The current conception is
that the alpha-rhvthm is the result of the synchronization of the neocortex by the thalamus.
This hypothesis, however, does not address the question as to why there should be a
neural pacemaker and what purpose it could cerve. In order to gain a better understanding
of the underlying dynamucs of the EEG, it was concluded that the brain must be studied
holistically.

There are at present two methods for studying dynamical sysiems: classical
dynam < and nonlincar dynanucs. In Chapter 3, it was argue. that classic»! dynamics is
inappropriate for analyzing the human brain because biclogical systems are typically
nonlincar and analyt cally nonintegrable. The standard procedure for studying such systems
15 that of numerical integration, but this hinges on the assumption of orbital stability.
However, as can be seen trom the work of Poincaré, even classically deterministic systems
may exhibit extreine sensitivity to initial conditions, which contradicts the assumption of
orbital stability.

Withir the iast 20 years, significant advances have been made in the field of
nonlinear dynsnucs, culminating in the development ot the theory of chaos. In Chapter 4 it
was shown taat Takens' theorem provides a means for multi-dimensional dynamical
analysis of ihe system from a time-series in only one variable. This is accomplished by

reconstructing an attractor that has the same dynamical properties as the attractor underlying
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the original time-series. Further dynamical understanding can be gained by clissitying this
reconstructed attractor w  the correlation exponent and the largest 1y apunov exponent.
These measures of dimensionality were chosen because calculations of other measures of
dimensionality are impractical for phase-space dimensions larger than two.

In Chapter S, the calculated values of the largest Lyapunov exponents for both the
filtered and unfiltered alph: rhythm EEG were shown to be positive, thereby providing
evidence that the underlying dynamics of the alpha-rhythm EEG are ch. tic. Supporting
<vidence for chaotic dynamics is also provided by the saturauon of correlation exponents
with increasing phase-space dimensions. Moreover, Fourier analysis of the EEG showed
that the alpha-rhythm EEG is not multiperiodic. Hence the underlying mechanisin cannot be
as stmple as synchronization of the pyramidal cells by the thatamus, for it we accept the
synchronization hypothesis. 1t will be necessary to explain why these cells are bemng
synchronized in a chaotic manner.

A more reasonable hypothesis 1s based upon the well known tact that a system of n
limit cycles can exhibit chaotic behaviour. The state of alert relaxation (the back ground state

of the cortex) may correspond to such a mixed state, with many hmit cycles. Exactly how

many limit cycles there are is presently unknown and may be regarded as a new avenue of

research. For ¢ sake of argument l=t us assume that each brain processis represented by
just one limit cycle. The dynamics of the brain then stabilizes onto one of these himitcycles
upon processing information. Which limit cycle it stabilizes on will then depend on the
process. The dynamics of these limit cycles can be studied through the method of event-
related potentials.

While working on the rabbit, Freeman and Viana di Prisco (19%6) postuliated a
similar mechanism for the olfactory bulb. They suggested that the hulbar background staie
is that of a chaotic attractor. This chaotic background state corresponds to that of great
sensitivity to new sensory inputs because it allows for easv transition to other auracior

states. With each inhalation, the rabbit makes a test of the environment that may result in
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the convergence of the bulbar mechanism to a limit cycle. The hynothesis presented here
for the alpha-rhythm differs from that presented by Freeman and Viana di Prisco in that the
chaotic dynamics underlying the alpha-rhythm is the result of n coupled limit cycles.
However, the two hypotheses are similar in that, when processing information, the
dynamics wil! diverge from the chaotic attractor and converge on a limit cycle. In any case,
we have shown that the alpha-rhythm of the human EEG reveals the presence of a
cooperative dynamics.

Although some insights into the dynamics underlying the alpha-rhythm EEG were
gained in this work, much more is still required for any significant understanding of the
human brain. The results presented here have, nevertheless, weakened current ideas about
the origins of the alpha-rhythm, and furnished an estimate of the lower bound of the
system's degrees of freedom and for the dimensior. ity of the alpha attractor. Moreover,
the methods have provided evidence that the dynamics is indeed nonlinear and chaotic in
the technical sense. Based upon these results, a new hypothesis on brain dynamics was
presented. Further studies can now be made to test this hypothesis.

More generally, two issues are brought into special focus by this study, both
suggesting avenues for further research. The first concemns the neurological interpretation
to be placed on the idea of sensitivity to initial conditions. The second concerns the critical
parameters underlying the cooperative dynamics shown to be present.

The theory of chaotic dynamics is still unfoiding, and it would be nAive 1O SUPpose
that the results obtained in the present study can carry the interpretational assurance yielded
by long-established traditional methods. On the other hand, chaos theory has already
revealed a number of interpretational complexities that went unrecognized in traditional
rhysics. We therefore have, on the one hand, the possibility that the results reported here
reveal a merely coincidental fit between EEG data and the evolving concepts of chaos
theory and, on the other hand, the possibility that these results show actual properties of a

sort not apparent through the use of traditional methods. In this situation it seems best to
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adopt the view that, at the very worst, the use of chaos theory has served to generate new
kinds of Questions about brain dynamics by drawing attention to possibilities not revealed

by traditional approaches.



87
6:1 Ribliography

Freeman, W.J. and G. Viana di Prisco, 1986. "EEG spatial pattern differences with
discriminated odors manifest chaotic and limit cycle attractors in olfactory
bulb of rabbits", in Brain Theory (C. Palm and A. Aertsen, eds.), Springer-
verlag, Berlin, p97-119.



