
“To see a world in a grain of sand,

And a heaven in a wild flower,

Hold infinity in the palm of your hand,

And eternity in an hour.”

–William Blake

“Science is organized knowledge. Wisdom is organized life.”
–Immanuel Kant



University of Alberta

Computational Properties of Unconstrained Linear Distributed

Model Predictive Control

by

Shuning Li

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in
Process Control

Department of Chemical and Materials Engineering

c©Shuning Li
Edmonton, Alberta

Fall 2013

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to

lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or

otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except

as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise

reproduced in any material form whatsoever without the author’s prior written permission.



To Those I Have Loved and Lost. R. I. P.



Abstract

Typical chemical plants are large-scale systems composed of a number of processing units,

which are integrated with each other via material, energy and information flows. To achieve

optimal plant operation, various control strategies have been developed. Although central-

ized control provides the best performance, its fragile fault tolerance makes it impractical

to implement. In industrial practice, such large-scale systems are operated by decentral-

ized controllers, which do not have the implementation problems of centralized controllers;

however, the decentralized controllers, in general, most often give suboptimal performance

and may lead to loss of closed-loop stability. These concerns motivate the recent interest in

the development of distributed control schemes, particularly distributed model predictive

control (DMPC).

DMPC methods are applied to existing decentralized control networks and aim to bring

their control performance closer to the centralized performance. Often iteratively, the local

controllers in a distributed control network communicate with each other or a coordinator to

adjust their actions. Since interactions between subsystems can be taken into consideration

via information exchange, DMPCs are able to improve decentralized performance or even

reproduce the centralized performance. Nevertheless, iterative communication also implies

that DMPCs may have high computational and communication costs, which are seldom

studied in the literature.

The focus of this thesis is the computational properties, mainly convergence and com-

putational complexity, of two linear coordinated DMPCs: prediction-driven coordinated

DMPC and price-driven coordinated DMPC. First, by restricting the study to linear uncon-

strained systems, the DMPC algorithms are transformed into iterative forms. Subsequently,

explicit expressions for their convergence accuracy, convergence rates and the computational

complexities are derived. A series of numerical experiments were also conducted to study the

two DMPC methods’ empirical computational complexity. It was discovered that DMPC

methods’ computational load is closely related to the local MPC design as well as factors

like size and number of subsystems.
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Chapter 1

Introduction

1.1 Motivation

Typical chemical plants are large-scale systems with a number of operation units, or sub-

systems, that are connected to each other via material, energy and information flows. The

increasing requirement in process safety and environmental regulations, as well as the pur-

suit of profits and productivity have led to more complex and integrated plant operations,

which challenges control engineers to create new methods to improve plant performance.

Over the past forty years, various advanced control strategies have been developed to

improve plant operation. Based on their different control structures, these optimal control

strategies can be broadly classified into three categories, namely: centralized, decentralized,

and distributed control schemes. Among them, distributed control, in the context of model

predictive control (MPC), has recently received intensive attention from both academia and

industry, because it has the potential to achieve the centralized control performance while

maintaining the flexibility of a decentralized control scheme.

Thanks to the inter-unit communication in a distributed control system, interactions

between subsystems are taken into account, which can iteratively improve the distributed

control performance to the optimal; however, this also implies that a distributed control

scheme may have high communication and computation costs, which may reduce the ap-

plicability of the scheme. Therefore, it is desirable to investigate the interplay between the

performance improvement and the increased communication and computational costs of dis-

tributed control schemes, which is seldom studied in the literature. A clear understanding

of the communication and computational properties can help us to design practical plant-

wide control systems. This thesis is aimed to investigate these properties in two different

distributed control schemes.
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1.2 Different Control Structures

This section will introduce each of the three different control structures, with their advan-

tages and drawbacks. Moreover, since it is distributed model predictive control (DMPC)

that is addressed in this thesis, the section also provides a short review of the existing

DMPC literature.

Centralized Control Scheme

In the centralized control scheme, the entire plant is modelled as a whole and the centralized

controller solves a monolithic control problem. An illustration of centralized control, where

MPC is used to operate a plant with two subsystems, is presented in Figure 1.1. The model

Figure 1.1: Illustration of centralized control scheme, when two subsystems are present in the
plant.

built in the centralized control contains all of the interaction information between subsys-

tems. Although centralized control gives the best possible control performance, there are

difficulties when it comes to industrial implementation. According to Lu, 2003, centralized

control lacks of flexibility and exhibits fragile fault tolerance to equipment failure. If for

any reason the monolithic controller is shut down, the entire plant will be running without

automatic control. It is also a difficult task to tune, maintain and improve the performance

of local processing units under a centralized controller.

Decentralized Control Scheme

Traditionally, and in practice, decentralized control schemes are used to operate the large-

scale, integrated systems, where the operation units are modelled and controlled separately.
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Figure 1.2 shows an illustration of a decentralized control scheme, where both of the two

operating units in the plant are operated by MPCs. Since each operating unit has its

Figure 1.2: Illustration of decentralized control scheme, when two subsystems are present in the
plant.

own controller, decentralized control is easy to implement and flexible in terms of system

operation, controller tuning, equipment maintenance, etc.; however, the interaction between

units are usually not included in the subsystems’ models. For this reason, the decentralized

control performance is often suboptimal. Only truly decoupled subsystems can achieve the

centralized, optimal performance with a decentralized control network. In addition, when

strong interactions exist between local processes, the entire plant is at risk of losing closed-

loop stability (Lu, 2003; Sun and El-Farra, 2008; Rawlings and Stewart, 2008; Marcos, 2011).

Distributed Control Scheme

The above concerns for decentralized and centralized control motivate recent interest on the

distributed control, which is an alternative to the two approaches. Distributed control is

applied on an existing decentralized control network, aiming to bring the plant performance

closer to the centralized performance. This ensures that flexibility of the decentralized con-

trol is inherited by the distributed control system. Although existing distributed control

schemes vary in control formulations and communication structures, they share the char-

acteristic that information exchange exists between local controllers (Marcos, 2011). From

the exchanged information, the local controllers are aware of other subsystems’ intended

control actions so that they can negotiate until a final ‘agreement’ is made. Appropriately

designed communication content and structures will lead to improvement in distributed

control performance, and the communication is often iterative. Among all the distributed

control schemes proposed in recent years, the majority are distributed model predictive

3



(a) The cooperative DMPC, when two sub-
systems are present in the plant. The lo-
cal controllers operate their units, and also
communicate with each other.

(b) The coordinated DMPC, when two sub-
systems are present in the plant. The local
controllers operate their units, and also com-
municate with the coordinator.

Figure 1.3: Illustrations of cooperative DMPC and coordinated DMPC

control (DMPC), which is also the focus of our research. For this reason, the following

discussion on two classes of distributed control schemes will focus on DMPC.

There are two categories of DMPC schemes that will be emphasized in this work among

different DMPC methods: cooperative DMPC and coordinated DMPC. In a cooperative

DMPC, the local controllers communicate with each other iteratively until consensus is

reached. A coordinated DMPC has a two-layer hierarchical structure, where an extra

computing node called the ‘coordinator’ exists. The exchanged information flows between

the coordinator and the local controllers to aid the local controllers in deciding their next

move. The information exchange continues until the coordinator terminates the process.

Figures 1.3a and 1.3b show the structures of the cooperative and coordinated DMPC,

respectively.

Cooperative DMPC

Reviews of cooperative DMPC can be found in Camponogara et al., 2002; Rawlings and

Stewart, 2008; Scattolini, 2009; Christofides et al., 2013; Christofides et al., 2011. The

goal of this DMPC approach is to bring the decentralized control performance closer to

the plant-wide optimal performance. To achieve this goal, a plant-wide control objective

function is used in all the local controllers and a complete plant model is contained in each

4



of the local controllers. Cooperative DMPC was first introduced by Venkat et al., 2005 and

then extended by Stewart et al., 2010, where linear systems were considered. If a sufficient

number of iterations are allowed at each sampling time, their methods will give the corre-

sponding centralized solution. In Stewart et al., 2011, the cooperative method was extended

to nonlinear systems but without guaranteeing convergence to the optimal solution. The

methods all have proved closed-loop stability for any intermediate termination.

The work in Liu et al., 2009 and Liu et al., 2010b proposes cooperative DMPC schemes

for general nonlinear systems, wherein the local MPC controllers were developed via Lya-

punov techniques. These cooperative methods feature in stable and feasible solutions, as well

as the capability to handle asynchronous and delayed measurements (Liu et al., 2010a; Liu

et al., 2012). Although general convergence to the optimal cannot be guaranteed, these

DMPC approaches have shown convergence for linear systems (Christofides et al., 2011).

Coordinated DMPC

Compared to cooperative DMPC, coordinated DMPC has a smaller literature. Recently,

a comprehensive study of coordinated DMPC was made in Mohseni, 2013, which provided

more insight into this area. Coordinated DMPC is designed based on the mathematical

foundation of hierarchical multilevel system theories, which can be found in Mesarovic et

al., 1970. The purpose of the coordinated DMPC is to reproduce the optimal performance

that would be achieved via centralized MPC. In the coordinated DMPC method, the coor-

dinator uses intervention parameters (Mahmoud et al., 1977), or equivalently coordinating

variables (Mohseni, 2013) to influence the local controllers. It should be emphasized that

the coordinator does not determine the local controller solutions; the role of the coordinator

is more of advising the local controller about the next step.

The two-level hierarchical structure was applied in the area of control as early as

the 1970s (Mahmoud, 1977 and Mahmoud et al., 1977); however, not until recently in

Cheng, 2007 and Cheng et al., 2007 was the first attempt made to apply it on a distributed

MPC network. In their work, the price-driven coordination method was applied to a decom-

posed, large-scale MPC. A price vector was used by the coordinator to adjust local controller

behavior. Aske et al., 2008 implemented the same coordinated MPC technique on the maxi-

mum throughput problem. Marcos, 2011 extended the price-driven coordination method for

existing decentralized MPC networks, where the local processes are interconnected with each

other. Inspired by Cohen, 1977, Marcos, 2011 also developed the prediction-driven coordi-

nation technique for Linear Quadratic (LQ) optimal control of large-scale, continuous-time,
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linear systems based on the Interaction Prediction Principle in Mesarovic et al., 1970. More-

over, the prediction-driven coordinated method was applied to an unconstrained DMPC

network in Marcos, 2011. Dual-rate coordinated DMPC problems were discussed, as well,

in Marcos, 2011. Mohseni, 2013 reviewed three prevailing coordinated DMPCs: the Goal

Coordination, the Interaction Prediction Coordination and the Modified Pseudo-Model Co-

ordination methods. The aforementioned price-driven coordinated DMPC is a special case

of the Goal Coordination method, while the prediction-driven method can be viewed as a

variant of the Interaction Prediction Coordination method. Mohseni, 2013 also discussed

the coordinated DMPC application where uncertainty and nonlinearity exist.

Other Non-coordinated DMPC

There are several other important existing DMPC studies. An analysis was made in Al-

Gherwi et al., 2011 of the DMPC to address the uncertainties in model, where a robust

approach was developed. In Maestre et al., 2011, the local systems were only coupled

through inputs and the proposed DMPC technique was based on negotiations between

agents. DMPCs of linear systems based on dissipativity conditions were proposed in Tippett

and Bao, 2013. Scheu and Marquardt, 2011 discussed a sensitivity-based linear DMPC

where convergence of the proposed algorithm was shown.

The majority of the above studies on DMPC focused on addressing closed-loop stability

and performance. The computational properties of DMPC has received little attention.

1.3 Research Scope

This thesis is intended to provide some insight into the computational properties of DM-

PCs. Moreover, the research is restricted to linear and unconstrained Coordinated DMPC

(CDMPC). With these restrictions, we are able to reach explicit iterative formulations so

that the computational properties, mainly the convergence and complexity, can be analyzed

theoretically.

For convenience of analysis, some assumptions are made regarding the large-scale system

itself as well as modelling and control of the system. The assumptions are:

• the process has subsystems that are geographically distributed and interact with each

other;

• the process has no noise and disturbance;
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• the process and subsystems can be described using linear time-invariant discrete state-

space systems with the same sampling time;

• the control instants of all units are the same as the sampling instants so that all

control actions of the subsystems are taken at the same time;

• there is no plant-model mismatch in the modelling;

• all subsystems in the process have same prediction and control horizons;

• the control parameters do not change over time, the list of which include the sampling

time, the setpoint, the prediction and control horizons of local MPCs;

• all the plant states are available for measurement and the outputs of the process are

the same as the states;

• the objective of the plant-wide performance is the sum of all objectives of the local

MPC controllers.

A CDMPC algorithm works iteratively during the interval between two sampling times,

and it is the algorithm’s convergence and complexity that is of our interest. In this thesis,

the scope of time is the interval between two sampling times ‘k’ and ‘k + 1’. Therefore, in

the convergence and complexity analyses, the control step indicator ‘(k)’ in the argument

of the plant’s predicted states X(k), input changes ∆U(k), etc. is often omitted (especially

in the two main chapters). An iteration for the coordinator and the local controllers to

exchange information is called a communication cycle. It is also assumed that the time

interval between k and k + 1 is long enough so that sufficient communication cycles can

take place and no premature termination occurs. Figure 1.4 illustrates the time scope of

the thesis.

Figure 1.4: The scope of time of this research, which is marked by the dotted circle.

Since the performance of centralized MPC is the best possible, even though it is not

physically practical, the centralized MPC is used as the benchmark of the DMPCs. Com-

monly in the literature, the comparison between DMPC performance and centralized MPC
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performance is for the control application as the sampling time k increases. ‘Convergence

to centralized MPC’ in that context means that as the sampling time k → ∞, the control

action determined by DMPC is the same as that solved by the centralized MPC. In our

research, ‘convergence to centralized MPC’ indicates that at the end of any kth control

interval, the DMPC algorithm will converge to the solution of centralized MPC at time k.

Note that our definition of ‘convergence’ is stronger than the more common one, and if a

DMPC is able to converge to the centralized MPC solution at the end of each sampling

time, the convergence is guaranteed when the sampling time k →∞.

Throughout this thesis, the term unconstrained MPC problem should be understood

to mean that the MPC problem does not contain any inequality constraints. It is understood

that the resulting optimization problem will be equality constrained.

1.4 Thesis Outline and Contributions

Before the core content is presented, a preliminary chapter provides the terms, notation and

conventions in the thesis. It also describes the plant model and the MPC formulation that

will be used throughout the thesis. At the end of the chapter, the structure of CDMPC

and the general formulation of the local MPCs are introduced.

There are two main chapters in the thesis, each discussing the computational properties

of a certain type of CDMPC. Chapter 3 first presents the prediction-driven CDMPC as

developed in Marcos, 2011, where the coordinator predicts all the process states and inputs

within the plant. The algorithm is then written as an iterative function in the control action

of the plant. Using theory for iterative methods, convergence condition and convergence

rate of prediction-driven CDMPC algorithm are reached. The complexity of the CDMPC

method is analyzed both theoretically and empirically to understand its computational load.

Chapter 4 introduces the price-driven CDMPC, in which the price vector is used to coordi-

nate local MPC controllers. Convergence conditions, convergence rate and computational

complexity of the price-driven CDMPC are analyzed applying the same methodology as in

Chapter 3.

The last chapter, Chapter 5, reviews the main results of the thesis and discusses the

possible choices of future research work.

The contribution of the thesis can be summarized as:

• for unconstrained prediction-driven CDMPC, an explicit expression of convergence

condition is reached, which is useful in judging whether or not a CDMPC design is
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applicable;

• unconstrained price-driven CDMPC is proved to converge to the centralized MPC for

any system;

• the convergence rates of both CDMPCs are given, and, to the best of our knowledge,

it is the first time that a convergence rate is derived for a DMPC algorithm;

• for unconstrained prediction-driven CDMPC, a reliable estimation of the required

number of communication cycles is given; for the unconstrained price-driven CDMPC,

the number of communication cycles is proved to be two;

• it has been found that the complexity of the prediction-driven CDMPC is not only

determined by the size of the plant and the size of the maximum subsystem, but also

the number of communication cycles, which is closely related to the algorithm’s rate

of convergence. Since this number is a very complicated mapping from the available

information to the set of positive real numbers, and may be very large as plant size

increases, it is the key contributor for the prediction-driven CDMPC’s complexity;

• it is shown that the complexity of the unconstrained price-driven CDMPC is poly-

nomial in the size of the plant and the size of the maximum subsystem. When the

number of subsystem is large enough, this CDMPC algorithm is more efficient than

centralized MPC.
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Chapter 2

Preliminaries

2.1 Notation

In this thesis, all scalars, vectors and matrices and functions are restricted to the real space

R, if not specified. The blackboard bold font, (e.g., R) generally denotes sets. For example,

if a matrix is said to be in Rn×m, it has a dimension of n ×m where all its elements are

real. The superscript ‘n ×m’ denotes the Cartesian product of the domain. R+ is the set

of positive real numbers. In addition to R, the complex space C also occurs in the thesis.

A bold 0 denotes a column vector with all entries being zero, and if its dimension is

known, the information will be put at the subscript. For example, 0p means that it is a

p× 1 zero vector.

A zero matrix is either left blank or denoted by a bold, mathematical O. Its dimensional

information will be shown in the subscript when needed. For example, in the block-diagonal

matrix

M =

[
M1

M2

]

, (2.1)

the off-diagonal matrices are zero matrices and are left blank. A matrix written as Ol×m is

a l ×m zero matrix, and Ol represents a square, l × l matrix.

The convention of distinguishing scalars, vectors and matrices by different fonts are

followed in the thesis, though some exceptions do exist. Scalars are denoted using the

default math font. For example, the control interval k, the number of plant states n and

the prediction horizon Hp are all scalars. Vectors are usually denoted by bold math font

with lower case alphabet, such as the states in a system x, the price vector p(s) and the

Lagrange multiplier λ. The exceptions here, are the predicted state vector X, predicted

input change vector ∆U , the predicted interaction V and the interaction error vector E,

which are denoted by upper case but unbold font. Matrices are represented by bold font with

upper case alphabet. Examples are the system state matrix A, MPC weighting matrices Q
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and R.

If the eigenvalues of a square matrix M ∈ Cm×m are: λ1, ..., λm, then the spectral

radius of M is defined as:

ρ(M) = max
i=1,...,m

(|λi|). (2.2)

In this work, we reserve the greek alphabet ρ to denote spectral radius, whether or not the

associated matrix is specified.

The ‘diag’ operator is used to build a block-diagonal matrix. For example, M =

diag(M1,M2) is equivalent to the matrix presented in (2.1).

If something needs to be defined, usually the phrase ‘define as’ will be used. Sometimes

for coherency or simplicity, the ‘,’ symbol will be used in equations.

2.2 Terms and Definitions

Some of the key terms used in this thesis are listed and explained in this section to avoid

possible misunderstandings.

A large-scale system, or a plant, refers to the system that consists of multiple subsys-

tems that interact with each other, where subsystems are the geographically distributed

operating units with their own controllers as described in §1.1. When the word local is used,

the subsystems are addressed. Examples are local controllers, local process models,

etc.

In this thesis, a control network is used to describe the set of controllers that operates

the entire plant. It could be: a decentralized control network, which is the existing

control network; a centralized control network, where the plant is controlled by an ideal,

imaginary controller; or a distributed control network, which features the communica-

tion between network nodes and is considered to be a modification of the decentralized

network. A node in the control network is able to carry out computation and communicate

with other nodes in the network. In the CDMPC network, all local controllers and the

coordinator are nodes.

A centralized control problem is used to refer the problem that optimizes the plant-

wide objective function subject to all local process models and all of the interactions between

subsystems. The centralized solution, or interchangeably, the optimal solution, or the

optimal operation is the solution of the centralized control problem.

For a CDMPC network, the term communication cycle represents the iterative pro-

cess of the coordinator and local controllers exchanging information, where one cycle in-
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cludes a loop for the information flow. The iteration for the nodes in a DMPC network to

communicate will be referred to as ‘cycle’ to distinguish it from the more general iteration

in a numerical method, such as the iteration in the interior-point method, which is discussed

in §3.3.1 and §4.3.1.
Since techniques drawn from computational science are applied to study the compu-

tational properties of DMPC in this thesis, in the analysis a CDMPC method is often

treated as an algorithm. Therefore, CDMPC algorithm may be used interchangeably

with CDMPC method, which means a particular CDMPC design that is implementable on

a decentralized control network.

Some abbreviations that will be used in the thesis are listed here: MPC is an acronym

for model predictive control; DMPC for distributed model predictive control; CDMPC

for coordinated, distributed model predictive control; and RHS and LHS stand for the

right hand side and the left hand side of an equation, respectively.

2.3 Plant Model

In this work, the entire plant will be described by the following discrete-time state-space

model:

x(k + 1) = Ax(k) + Bu(k), (2.3)

where x(k) ∈ Rn is the plant state vector and u(k) ∈ Rq is the plant input vector. Note

that all process variables are in deviation form with respect to the steady-state value and

are given at a specific time, e.g., k. It is considered that within the plant there are N

interconnected subsystems, each with ni states and qi inputs, i = 1, ..., N . This implies

that:

x(k)T =
[
x1(k)T ,x2(k)T ...,xN (k)T

]T
, (2.4)

u(k)T =
[
u1(k)T ,u2(k)T ...,uN (k)T

]T
, (2.5)

where xi ∈ Rni and ui ∈ Rqi are the state and input vectors of the ith subsystem, respec-

tively. The plant’s state matrix A and input matrix B can be partitioned in the following

block-wise fashion:

A =








A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
. . .

...
AN1 AN2 · · · ANN








,B =








B11 B12 · · · B1N

B21 B22 · · · B2N
...

...
. . .

...
BN1 BN2 · · · BNN








, (2.6)
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where Aij ∈ Rni×nj , Bij ∈ Rni×qj , i, j = 1, ..., N . The ith subsystem can be represented by

the state space model:

xi(k + 1) = Aiixi(k) + Biiui(k) +
∑

i6=j

(Aijxj(k) + Bijuj(k)). (2.7)

The first part, Aiixi(k)+Biiui(k) in equation (2.7) denotes the local dynamics of subsystem

i. Aijxj(k)+Bijuj(k), j 6= i represents the impact of interaction on the ith subsystem from

another subsystem j.

2.4 MPC Formulation

Model predictive control is a model-based optimal control technique, which optimizes the

predicted system performance over a finite horizon (called the ‘prediction horizon’) and

solves for the best control action over a time period (called the ‘control horizon’) in each

control interval1. The first control action of the input trajectory solution is applied to the

process while the others are discarded. At the next control interval, the prediction and

control horizons are shifted forward by one sampling time and the optimization is repeated

based on the updated process measurements. MPC is widely accepted in industry as it can

deal with multivariable control problems and is capable of handling constraints, etc.. In

this work, the MPCs will be formulated as quadratic programming problems as described in

Maciejowski, 2002, where the objective penalizes the state deviation from a given trajectory

and the change of control input.

As stated in §1.2, it is assumed that each of the subsystems in the plant has been

operated by a decentralized MPC controller. The DMPC schemes applied to these local

controllers will modify the original decentralized design. For example, the coordinated

DMPC schemes adds a modification term to the decentralized local MPC objective, so

that the subsystem can exchange information with and be coordinated by the coordinator.

The performance of DMPC control schemes are to be compared with the centralized MPC

performance. The formulation of the centralized MPC and the decentralized local MPCs

will be introduced in the following sections.

Also, since the scope of this work is restricted to unconstrained systems, in the quadratic

optimization problems there are only equality constraints representing the predictions using

the system models (2.3) and (2.7).

1Since the scope of the thesis is discretized systems, the MPC introduced here is discrete-time MPC.
Those who are interested in continuous-time MPC can refer to Wang, 2009

13



Centralized MPC Formulation

The centralized MPC problem can be formulated as the following QP:

min
X̃,∆Ũ

J =
1

2





Hp∑

l=1

(x̂(k + l|k)− r(l))T Q(l)(x̂(k + l|k)− r(l))+

Hu−1∑

p=0

(∆û(k + p|k)T R(p)∆û(k + p|k))





(2.8a)

subject to:

x̂(k + l + 1|k) = Ax̂(k + l|k) + B

(
l∑

a=0

∆û(k + l|k) + u(k − 1)

)

,
(2.8b)







l = 0, 1, ...,Hp − 1,

∆û(k + l|k) = û(k + l|k)− û(k + l − 1|k),

û(k − 1|k) = u(k − 1),

∆û(k + b|k) = 0,Hu ≤ b ≤ Hp − 1

x̂(k|k) = x(k),

(2.8c)

where: Hp and Hu are the prediction and control horizon, respectively: X̃ = [x̂(k +

1|k)T , ..., x̂(k + Hp|k)T ]T and ∆Ũ = [∆û(k|k)T , ...,∆û(k + Hu − 1|k)T ]T are the predicted

states and inputs, respectively; r(l) is the given reference trajectory at time k + l for the

predicted states x̂(k + l|k), l = 1, ...,Hp; Q(l) is a positive definite matrix penalizing the

deviation of x̂(k + l|k) from r(l); and R(p) is the weighting matrix penalizing the predicted

input changes ∆û(k + p|k), p = 0, ...,Hu − 1, and is positive definite.

Since x̂(k + l|k), l = 1, ...,Hp and ∆û(k + p|k), p = 0, ...,Hu − 1 can be written as:

x̂(k + l|k)T =
[
x̂1(k + l|k)T , x̂2(k + l|k)T ..., x̂N (k + l|k)T

]T
, (2.9)

∆û(k + p|k)T =
[
∆û1(k + p|k)T ,∆û2(k + p|k)T ...,∆ûN (k + p|k)T

]T
, (2.10)

then r(l) = [r1(l)
T , r2(l)

T , ..., rN (l)T ], Q(l) = diag(Q1(l),Q2(l), ...,QN (l)), l = 1, ...,Hp

and R(p) = diag(R1(p),R2(p), ...,RN (p)), p = 0, ...,Hu − 1, with Qi(l) and Ri(p) all posi-
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tive definite matrices. Therefore, problem (2.8) can also be written as:

min
X,∆U

J =
1

2

N∑

i=1





Hp∑

l=1

(x̂i(k + l|k)− ri(l))
T Qi(l)(x̂i(k + l|k)− ri(l))+

Hu−1∑

p=0

(∆ûi(k + p|k)T Ri(p)∆ûi(k + p|k))





(2.11a)

subject to:

x̂i(k + l + 1|k) =

(

Aiix̂i(k + l|k) + Bii(

l∑

a=0

∆ûi(k + l|k) + ui(k − 1))

)

+





j=N
∑

j=1,j 6=i

(αAijxj(k) + Bijuj(k − 1))



+

j=N
∑

j=1,j 6=i

(

(1− α)Aij x̂j(k + l|k) + Bij

l∑

a=0

∆ûj(k + a|k)

)

,

(2.11b)







l = 0, 1, ...,Hp − 1,

∆ûi(k + l|k) = ûi(k + l|k)− ûi(k + l − 1|k),

ûi(k − 1|k) = ui(k − 1),

∆ûi(k + b|k) = 0,Hu ≤ b ≤ Hp − 1

x̂i(k|k) = xi(k),

α =

{

1, if l = 0,

0, if l = 1, ...,Hp − 1,

i = 1, ..., N,

(2.11c)

where X = [XT
1 , ...,XT

N ]T , ∆U = [∆UT
1 , ...,∆UT

N ]T , and:

Xi = [x̂i(k + 1|k)T , x̂i(k + 2|k)T , ..., x̂i(k + Hp|k)T ]T , (2.12)

∆Ui = [∆ûi(k|k)T ,∆ûi(k + 1|k)T , ...,∆ûi(k + Hu − 1|k)T ]T . (2.13)

Problem (2.11) can be written in a compact matrix form as follows:

min
X,∆U

J =
1

2

(
(X − r)T Q(X − r) + ∆UT R∆U

)
(2.14a)

subject to:

G

[
X

∆U

]

= g,
(2.14b)

where r = [rT
1 , ..., rT

N ]T , Q = diag(Q1,Q2, ...,QN ), R = diag(R1,R2, ...,RN ) and:

ri = [ri(1)
T , ..., ri(Hp)

T ]T , i = 1, ...N, (2.15)

Qi = diag(Qi(1), ...,Qi(Hp)), i = 1, ...N, (2.16)

Ri = diag(Ri(0), ...Ri(Hu − 1)), i = 1, ...N. (2.17)
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Since all Qi(l), l = 1, ...,Hp and Ri(p), p = 1, ...,Hu are positive definite matrices, Q and R

are positive definite as well. Consequently, they are both symmetric matrices, i.e., Q = QT

and R = RT . G in the equality constraint (2.14b) is composed of two blocks, i.e., G =

[GA,GB ], where GA and GB have the following block-wise form:

GA =








GA11 GA12 · · · GA1N

GA21 GA22 · · · GA2N

...
...

. . .
...

GA1N
GA2N

· · · GANN








,GB =








GB11 GB12 · · · GB1N

GB21 GB22 · · · GB2N

...
...

. . .
...

GB1N
GB2N

· · · GBNN








. (2.18)

GAii
and GAij

, i 6= j can be written as:

GAii
=










Ini

−Aii Ini

−Aii Ini

. . .
. . .

−Aii Ini










︸ ︷︷ ︸

Hp×Hp blocks

, (2.19)

GAij
=










Onj×ni

−Aij Onj×ni

−Aij Onj×ni

. . .
. . .

−Aij Onj×ni










︸ ︷︷ ︸

Hp×Hp blocks

, (2.20)

while GBij
, i, j = 1, ..., N are uniformly defined as:

GBij
=








−Bij

−Bij −Bij
...

...
. . .

−Bij −Bij · · · −Bij








︸ ︷︷ ︸

Hp×Hu blocks

. (2.21)

The dimensions of GA and GB are Hpn×Hpn and Hpn×Huq, respectively. g in (2.14b)

is defined as:

g = [gT
1 ,gT

2 , ...,gT
N ]T , (2.22)

gi =

N∑

i=1

gij, (2.23)

where gij, i, j = 1, ..., N can be built following (2.24):

gij =








Aijxj(k) + Bijuj(k − 1)
Bijui(k − 1)

...
Bijui(k − 1)













(Hp − 1) times.

(2.24)
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Existing Decentralized MPC Formulation

The existing ith local MPC is formulated as the following optimization problem:

min
Xi,∆Ui

Ji =
1

2





Hp∑

l=1

(x̂i(k + l|k)− ri(l))
T Qi(l)(x̂i(k + l|k)− ri(l))+

Hu−1∑

p=0

(∆ûi(k + p|k)T Ri(p)∆ûi(k + p|k))





(2.25a)

subject to:

x̂i(k + l + 1|k) = Aiix̂i(k + l|k) + Bii

(
l∑

a=0

∆ûi(k + l|k) + ui(k − 1))

)

,
(2.25b)







l = 0, 1, ...,Hp − 1,

∆ûi(k + l|k) = ûi(k + l|k)− ûi(k + l − 1|k),

ûi(k − 1|k) = ui(k − 1),

∆ûi(k + b|k) = 0,Hu ≤ b ≤ Hp − 1,

x̂i(k|k) = xi(k),

(2.25c)

where: Xi and ∆Ui are the predicted states and input for the ith subsystem, and have

been defined in (2.12) and (2.13), respectively; ri(l) is the given reference trajectory for the

predicted states x̂i(k + l|k), l = 1, ...,Hp; Qi(l) penalizes the deviation of x̂i(k + l|k) from

ri(l); and Ri(p) penalizes the predicted input changes ∆ûi(k + p|k), p = 0, ...,Hu − 1.

As in the centralized MPC, problem (2.25) can be rearranged into a compact matrix

form:

min
Xi,∆Ui

Ji =
1

2

(
(Xi − ri)

T Qi(Xi − ri) + ∆UT
i Ri∆Ui

)
(2.26a)

subject to:

Gii

[
Xi

∆Ui

]

= gii,
(2.26b)

where ri, Qi and Ri have been defined in (2.15), (2.16) and (2.17) respectively. Gii consists

of two blocks, i.e.:

Gii = [GAii
,GBii

], (2.27)

where GAii
, GBii

and gii can be constructed following equations (2.19), (2.21) and (2.24),

respectively.

From equations (2.25b) and (2.25c), it can be seen that the constraints of decentralized

local MPC problem only have the information for local states and inputs. This indicates that

the ith local MPC controller is not aware of other subsystems’ existence and their actions.
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This lack of awareness will cause plant-wide performance to degrade when interaction is

present. Therefore, if the performance of centralized MPC (2.14) is to be achieved, the

decentralized MPC has to be modified. This has been done by both DMPCs in this work,

which will be introduced in the following chapters.

2.5 Coordinated, Distributed MPC

This section provides a short introduction to the basic structure of coordinated, distributed

MPC and hopes to give the readers some general idea of the DMPC scheme. Since CDMPC

is a two-level hierarchical control scheme, the design of a CDMPC also includes two parts:

one for the coordinator and the other for the local controllers. While the design of local

MPC controllers has a general formulation, the design of the coordinator varies in each

specific CDMPC method. §2.5.1 introduces the formulation of the local controllers and

§2.5.2 will provide a discussion of the general design of a CDMPC method.

2.5.1 General Formulation of Local Controllers in CDMPC

The general structure of the local controllers in a coordinated DMPC used in this thesis

is given in Mohseni, 2013. Adapting it to unconstrained systems yields, for the ith local

controller:

min
Xi,∆Ui

Ji =
1

2

(
(Xi − ri)

T Qi(Xi − ri) + ∆UT
i Ri∆Ui

)
+ {CoorTm}i (2.28a)

subject to:

x̂i(k + l + 1|k) =

(

Aiix̂i(k + l|k) + Bii(

l∑

a=0

∆ûi(k + l|k) + ui(k − 1))

)

+





j=N
∑

j=1,j 6=i

(αAijxj(k) + Bijuj(k − 1))



+ v̂i(k + l|k),

(2.28b)







l = 0, 1, ...,Hp − 1,

∆ûi(k + l|k) = ûi(k + l|k)− ûi(k + l − 1|k),

ûi(k − 1|k) = ui(k − 1),

∆ûi(k + b|k) = 0,Hu ≤ b ≤ Hp − 1

x̂i(k|k) = xi(k)

α =

{

1, if l = 0,

0, if l = 1, ...,Hp − 1,

(2.28c)

where {CoorTm}i is the so-called coordinating term(s) for the ith subsystem. The

purpose of adding this term to the original decentralized MPC objective (2.26a), is to
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create a connection between the local controller and the coordinator. {CoorTm}i contains

coordinating variables that are temporarily fixed in the local optimization problems.

The local controllers send their optimal solutions in the current communication cycle to

the coordinator, who, based on this information, will update the coordinating variables

and send them back to the local controllers. This process is repeated until a termination

criterion is met.

The equality constraint (2.28b), by comparison with the decentralized MPC constraints

(2.25b), has two additional terms:
(
∑j=N

j=1,j 6=i (αAijxj(k) + Bijuj(k − 1))
)

and v̂i(k + l|k).

The first term,
(
∑j=N

j=1,j 6=i (αAijxj(k) + Bijuj(k − 1))
)

, contains only measured informa-

tion for other subsystems at time k, and is referred to as the known interaction in

Mohseni, 2013. The second term v̂i(k + l|k) is the interaction variable of the ith subsystem,

which would be calculated either by the local controllers or the coordinator.

Note that, in (2.28b), if

v̂i(k + l|k) =

j=N
∑

j=1,j 6=i

(

(1− α)Aijx̂j(k + l|k) + Bij

l∑

a=0

∆ûj(k + a|k)

)

,







l = 0, 1, ...,Hp − 1,

α =

{

1, if l = 0,

0, if l = 1, ...,Hp − 1,

i = 1, ..., N,

(2.29)

the constraints (2.28b) and (2.28c) would be exactly the constraints (2.11b) and (2.11c) in

the plant-wide optimization problem; however, in a decentralized network, the ith controller

will not provide exactly the same prediction x̂j(k + l|k) for other subsystems as in (2.11a)

to (2.11c), unless each subsystem solves the centralized problem, which is certainly not the

case. In practice, v̂i(k + l|k) is an estimation of the predicted interaction from solving the

centralized problem as in the RHS of (2.29).

2.5.2 Design of CDMPC

As stated in Mohseni, 2013, the key in designing a CDMPC method is to answer the

following two questions: 1) how the coordinating terms {CoorTm}i’s are defined and 2)

how {CoorTm}i’s are calculated. The first question will lead to the modification of the

existing decentralized MPC network and the second to the development of the coordinator.

When the sum of the coordinating terms of the CDMPC network is put to zero, i.e.,
∑N

i=1 {CoorTm}i = 0, the aggregated objective of the distributed control network would

be exactly the same as the centralized control objective (2.14a). If it is the case, with the
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interaction variable v̂i(k + l|k) being the centralized predicted interaction as in the RHS of

(2.29), the aggregation of the distributed control problems (2.28) from i = 1 to N becomes

the centralized problem (2.14a) to (2.14b). Since in practice v̂i(k+ l|k) is only an estimation

of the interaction, {CoorTm}i should be able to compensate this estimation.

The task of the coordinator is to build a numerical path that can drive the sum of

{CoorTm}i to zero through the iterative communication between the coordinator and the

local controllers.

For the two types of CDMPC discussed in this thesis, the designs of the local controllers

and the coordinator will be introduced in §3.1 and §4.1, respectively.
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Chapter 3

Computational Properties of

Prediction-driven CDMPC

In this chapter, convergence conditions, rate of convergence and the computational complex-

ity are derived for unconstrained prediction-driven CDMPC. Before any derivation begins,

a short introduction to prediction-driven CDMPC is presented. Note that for prediction-

driven CDMPC, key information communicated between coordinator and local controllers

is the predicted states and inputs, as well as the price vector.

3.1 Prediction-driven CDMPC

In Marcos, 2011, a prediction-driven CDMPC for unconstrained linear systems was pro-

posed, where the {CoorTm}i in the general form (2.28a) is defined as p(s)TΘi

[
Xi

∆Ui

]

.

Following (Marcos, 2011), the local distributed MPC controller is formulated as follows:

min
Xi,∆Ui

Ji =
1

2

(
(Xi − ri)

T Qi(Xi − ri) + ∆UT
i Ri∆Ui

)
+ p(s)TΘi

[
Xi

∆Ui

]

(3.1a)

subject to:

Gii

[
Xi

∆Ui

]

= gi − Vi,
(3.1b)

where p(s), the estimation of centralized MPC problem’s Lagrange multipliers, is a Hpn× 1

vector and will be referred to as the ‘price vector’. Its superscript ‘(s)’ indicates that it

is a coordinating variable calculated by the coordinator at the sth communication cycle

and communicated back to the local controller. The price vector p(s) is the same for all

subsystems; therefore, it does not have subscript i. Θi is a Hpn × (Hpni + Huqi) matrix
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built in the following block-wise fashion:

Θi =











G1i
...
O
...

GNi











ith block is a
← Hpni × (Hpni + Huqi)

zero matrix,
(3.2)

where Gji = [GAji
,GBji

], j 6= i, and GAji
, GBji

were defined in equations (2.20) and

(2.21), with reversed subscript ‘i’ and ‘j’. Equation (3.1b) is the compact matrix form of

constraints (2.28b) and (2.28c), where Gii was defined in equations (2.27), and gi in (2.23).

Vi in equation (3.1b) is the estimated predicted interaction on the ith subsystem. It is

defined as Vi = [v̂i(k|k)T , ..., v̂i(k + Hp− 1|k)T ]T . In this CDMPC method, Vi is calculated

by the local controller with the following equation:

Vi =
∑

j 6=i

Gij

[

X
(s)
j

∆U
(s)
j

]

, (3.3)

where Gij = [GAij
,GBij

] and GAij
, GBij

are defined in equations (2.20) and (2.21). Note

that X
(s)
j and ∆U

(s)
j are both coordinating variables determined by coordinator. Equation

(3.3) is the matrix form adapted from equation (2.29). It uses the coordinator-predicted

states and inputs of other subsystems to estimate the RHS of (2.29).

After the ith local MPC problem is solved and optimal value for X∗
i(s), ∆U∗

i(s) are ob-

tained, the local controller sends ∆U∗
i(s) to the coordinator. The ‘(s)’ in the subscripts is

used to denote that these optimal values are calculted in the sth communication cycle by the

local controllers. This notation should not be confused with that of coordinating variables,

which put ‘(s)’ in the superscript.

The coordinator increases the cycle counter s← s+1, collects ∆U∗
i(s−1), i = 1, ..., N and

assigns

∆U
(s)
i = ∆U∗

i(s−1), (3.4)

∆U (s) =






∆U
(s)
1

...

∆U
(s)
N




 . (3.5)

Then, the states are predicted by the coordinator using the model of the entire plant model

(2.14b):

GAX(s) = g −GB∆U (s), (3.6)
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where GA and GB have been defined in equation (2.18). After the predicted states are

updated, the coordinator uses both X(s) and U (s) to obtain the updated price vector p(s):

GTp(s) = −
[

Q

R

] [
X(s)

∆U (s)

]

+

[
QT r

0Huq

]

, (3.7)

where G = [GA,GB].

It can be seen that (3.6) and (3.7) are derived from the first-order optimality conditions

of problem (2.14):







[

Q

R

][

X

∆U

]

−
[

QT r

0Huq

]

+ GTλ = 0Hpn+Huq,

G

[

X

∆U

]

= g,

(3.8)

where λ are the Lagrange multipliers of this optimization problem; however, unlike in (3.8)

where X, ∆U and λ are solved for simultaneously, only X(s) and p(s) are determined from

(3.6) and (3.7) and in the coordinator ∆U (s), X(s) and p(s) are obtained subsequently.

Therefore, while (3.8) is a system with equal number of equations and variables, (3.6) and

(3.7) is an overdetermined linear system, i.e., a system with more equations than variables.

Specifically, since X(s) is calculated first by

X(s) = G−1
A (g −GB∆U (s)), (3.9)

where GA is a full rank square matrix (for proof of GA being full rank, please refer to

Appendix A.1), only (3.7) is an overdetermined linear system. Therefore, p(s) can only

be obtained through approximation. The most common approximation technique is the

least-squares approximation, which will give:

p(s) = (GGT )−1G

([
QT r

0Huq

]

−
[

Q

R

] [
X(s)

∆U (s)

])

, (3.10)

where GGT is invertible since it has a full row rank. The detailed proof can be found in

Appendix A.2. Equation (3.10) can be written in a more concise manner, by eliminating

the zero matrices:

p(s) = (GGT )−1(GAQT r −GAQX(s) −GBR∆U (s))

= (GGT )−1(GAQr −GAQX(s) −GBR∆U (s)).
(3.11)

Note that in the previous chapter, it was shown that Q = QT .

After the coordinator calculates X(s) and p(s), it sends X(s), ∆U (s) and p(s) to the

local controllers. The ith local MPC controller then computes Vi according to (3.3) and
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solves optimization problem (3.1). It is assumed that the local controllers have all of the

information needed to partition X(s) and ∆U (s) (which is reasonable, since the ith controller

just needs to store GAij
and GBij

to calculate equation (3.3) and their dimensions can be

easily obtained), so that the coordinator does not need to go through the partition and

information selection for each specific subsystem as described in Marcos, 2011.

The above iteration process is terminated when the coordinator determines that ‖∆U (s)−
∆U (s−1)‖ < ǫ, where ǫ is a pre-defined accuracy threshold.

The general algorithm of this prediction-driven coordinated DMPC scheme comes is:

Algorithm 1 Implementation of Prediction-driven CDMPC

Initialization
Coordinator: Iteration counter s← 0.
Coordinator: The coordinating variables X(0), ∆U (0) and p(0) are arbitrarily determined.
repeat

Coordinator: X(s), ∆U (s) and p(s) are sent to to local controllers.
Local Controllers: Local optimization problem (3.1) is solved.
Local Controllers: The optimal solutions ∆U∗

i(s) are sent to coordinator.
Coordinator: Iteration counter s← s + 1.
Coordinator: Calculate ∆U (s), X(s) and p(s) based on (3.4) to (3.5), (3.6) and (3.7),

with respect.
until ‖∆U (s) −∆U (s−1)‖ < ǫ

3.2 Convergence Analysis

Though the convergence accuracy of prediction-driven, coordinated MPC has already been

studied and proved in Marcos, 2011, no work has been done regarding its rate of convergence,

another important feature in convergence analysis. In this section we begin with writing

the algorithm in the form of an iterative method, which will lead to an easy-to-compute

convergence condition and eventually the algorithm’s rate of convergence.

3.2.1 An Iterative Formulation

The prediction-driven CDMPC algorithm is iterative in nature. Specifically, the coordinat-

ing variable ∆U (s+1) can be written as a function solely dependent on ∆U (s):

∆U (s+1) = φ(∆U (s)). (3.12)

Since the research scope of this thesis is limited to unconstrained linear systems, an explicit

expression of function φ can be found, which is also linear. The following sections give a

detailed, step-by-step analysis to find out the expression of function φ.
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Local MPC Controllers

We begin with analysis of the local MPC controllers. In the sth communication cycle, X(s),

∆U (s) and p(s) are sent to local MPC controllers. Then, the coordinating term in the ith lo-

cal optimization problem is p(s)TΘi

[
Xi

∆Ui

]

and Vi in the constraint is
∑

j 6=i Gij

[

X
(s)
j

∆U
(s)
j

]

.

The optimal solution of problem (3.1) can be obtained by writing down its optimality con-

dition and solving the linear equations:







[

Qi

Ri

][

Xi

∆Ui

]

−
[

QT
i r

0Huqi

]

+ ΘT
i p(s) + GT

iiλi = 0Hpni+Huqi
,

Gii

[

Xi

∆Ui

]

= gi − Vi.

(3.13)

Note that Qi = QT
i . Using the partitions Gij = [GAij

,GBij
], Θi = [ΘAi

,ΘBi
] for i, j =

1, ..., N and replacing Vi with the RHS of equation (3.3), equation (3.13) can be rewritten

as:







−Qiri + QiXi + ΘT
Ai

p(s) + GT
Aii

λi = 0Hpni
,

Ri∆Ui + ΘT
Bi

p(s) + GT
Bii

λi = 0Huqi
,

GAii
Xi + GBii

∆Ui +
∑

j 6=i(GAij
X

(s)
j + GBij

∆U
(s)
j ) = gi.

(3.14)

where λi are the Lagrange multipliers of problem (3.1a) to (3.1b), and ΘAi
and ΘBi

are

defined as:

ΘAi
=











GA1i

...
OHpni×Hpni

...
GANi











,ΘBi
=











GB1i

...
OHpni×Huqi

...
GBNi











. (3.15)

Equation (3.14) can be aggregated from i = 1 to N and written in a plant-wide fashion, as:







−Qr + QXMPC + Θ̄T
Ap(s) + ḠT

AλMPC = 0Hpn,

R∆UMPC + Θ̄T
Bp(s) + ḠT

BλMPC = 0Huq,

ḠAXMPC + ḠB∆UMPC + Θ̄AX(s) + Θ̄B∆U (s) = g,

(3.16)

where XMPC = [XT
1 , · · · ,XT

N ]T , ∆UMPC = [∆UT
1 , · · · ,∆UT

N ]T and λMPC = [λT
1 , · · · ,λT

N ]T .

Their subscript ‘MPC’ distinguishes the solutions from the centralized solutions of the first-

order optimality condition (3.8) and indicates that they are the aggregation of local MPC

solutions.
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ḠA, ḠB , Θ̄A and Θ̄B are respectively defined as:

ḠA = diag(GA11 , ...,GANN
), (3.17)

ḠB = diag(GB11 , ...,GBNN
), (3.18)

Θ̄A = GA − ḠA, (3.19)

Θ̄B = GB − ḠB, (3.20)

where GAii
and GBii

have been defined in equations (2.19) and (2.21), respectively.

Equation (3.16) has an unique solution as long as the matrix:

W =





Q O ḠT
A

O R ḠT
B

ḠA ḠB O



 (3.21)

is invertible. Given the way that GAii
’s are built, it can be proven that W is invertible

(please refer to Appendix A.3 for detailed proof). Therefore, we are able to solve for the

unknown variables XMPC , ∆UMPC and λMPC .

First, XMPC and ∆UMPC are written as linear functions of λMPC , using the first two

equations in (3.16):

XMPC =−Q−1(Θ̄T
Ap(s) + ḠT

AλMPC) + r, (3.22)

∆UMPC =−R−1(Θ̄T
Bp(s) + ḠT

BλMPC), (3.23)

where Q and R are both positive definite and thus invertible. By substituting equations

(3.22), (3.23) into the third equation in (3.16), λMPC can be represented as a linear com-

bination of the coordinating variables X(s), ∆U (s) and p(s):

λMPC = Ψ−1(ḠAr −Ωp(s) + Θ̄AX(s) + Θ̄B∆U (s) − g), (3.24)

where:

Ψ = ḠAQ−1ḠT
A + ḠBR−1ḠT

B , (3.25)

Ω = ḠAQ−1Θ̄T
A + ḠBR−1Θ̄T

B . (3.26)

The invertibility of matrix Ψ is equivalent to that of matrix W , the detailed proof of which

can also be found in Appendix A.3.

From equations (3.24) and (3.23), we have:

∆UMPC = −R−1Θ̄T
Bp(s) −R−1ḠT

BΨ−1(ḠAr −Ωp(s) + Θ̄AX(s) + Θ̄B∆U (s) − g). (3.27)
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Note that the procedure for solving λMPC , ∆UMPC and XMPC sequentially presented

here is equivalent to solving them simultaneously using the inversion of W :





XMPC

∆UMPC

λMPC



 = W−1





Qr − Θ̄T
Ap(s)

−Θ̄T
Bp(s)

g − Θ̄T
AX(s) − Θ̄T

B∆U (s)



 , (3.28)

because the dimensions of XMPC , ∆UMPC and λMPC are the same as those of the first,

second and third equation in (3.16), respectively. It is easier to compute and to understand

each step when the unknown variables are solved for sequentially.

∆UMPC obtained from (3.27) will be sent to the coordinator, where it will be taken as

∆U (s+1). Therefore, equation (3.27) can be rewritten with ∆U (s+1) being a linear function

of ∆U (s), X(s) and p(s):

∆U (s+1) =−R−1ḠT
BΨ−1Θ̄B∆U (s) −R−1ḠT

BΨ−1Θ̄AX(s)+

R−1(ḠT
BΨ−1Ω− Θ̄T

B)p(s) + R−1ḠT
BΨ−1(g − ḠAr).

(3.29)

Equation (3.29) shows the structure of iteration, in which the predicted input in a new

communication cycle (∆U (s+1)) is determined from the variables in the current cycle (∆U (s),

X(s) and p(s)). While only the first term contains ∆U (s) among the RHS terms of equation

(3.29), X(s) and p(s) can be represented in terms of ∆U (s) from the computation in the

coordinator. This will lead to an iterative formulation with ∆U (s) being the only variable,

as will be seen in the following section.

Coordinator

In §3.1 it was discussed that in the coordinator, the plant-wide predicted states X(s) are

calculated by equation (3.9) and the predicted price p(s) is calculated by (3.11). Equation

(3.9) shows that X(s) is a linear function of ∆U (s). The price vector p(s) can be written as

a linear function of ∆U (s) as well, if equation (3.9) is substituted into (3.11):

p(s) = (GGT )−1GAQ(r −G−1
A g) + (GGT )−1(GAQG−1

A GB −GBR)∆U (s). (3.30)

By replacing X(s) and p(s) in equation (3.29) with the RHS of equation (3.9) and equation

(3.30), we get the iterative formulation of ∆U (s), as previously mentioned:

∆U (s+1) = c1 + C2∆U (s), (3.31)

where:
c1 =R−1ḠT

BΨ−1(g − Θ̄AG−1
A g − ḠAr)

−R−1(ḠT
BΨ−1Ω− Θ̄T

B)(GGT )−1GAQ(G−1
A g − r)

(3.32)
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and :
C2 =R−1ḠT

BΨ−1(Θ̄AG−1
A GB − Θ̄B)

+ R−1(ḠT
BΨ−1Ω− Θ̄T

B)(GGT )−1(GAQG−1
A GB −GBR).

(3.33)

In equation (3.31), the coefficient vector c1 is only dependent on A,B,Q,R,Hp,Hu and

g, while the coefficient matrix C2 only depends on A,B,Q,R,Hp,Hu, i.e.:

c1 = c1(A,B,Q,R,Hp,Hu,g), (3.34)

and:

C2 = C2(A,B,Q,R,Hp,Hu). (3.35)

Among the parameters of c1 and C2, A and B represent system properties and remain

unchanged for a linear time-invariant system. Q,R,Hp and Hu come from the local MPC

design, which are fixed for an existing decentralized network. g contains information for

xi(k) and ui(k − 1), i = 1, ..., N and is constant in the kth control interval. Therefore the

linear coefficients c1 and C2 are constant during the kth control interval, which would make

(3.31) a linear iterative method. Moreover, the coefficient matrix C2 will not change as the

time changes from k to k +1. The time invariance of C2 is a key feature in the convergence

analysis of prediction-driven CDMPC.

3.2.2 Convergence Condition

It has been proved that when the prediction-driven CDMPC converges, i.e., ∆U (s) →
∆U (∞) as s → ∞, the limit ∆U (∞) equals the centralized solution ∆U∗ (Marcos, 2011).

Though in (Marcos, 2011) the convergence condition is given, it is presented as an abstract

function in ∆U and therefore not easy to verify. In this section, a different, explicit con-

vergence condition is provided as in Theorem 3.2.1. Prior to presenting this convergence

condition, Lemma 3.2.1 is introduced first as a requirement to prove it.

Lemma 3.2.1. (Quarteroni et al., 2000) Let M ∈ Cl×l be a complex valued matrix and

ρ(M) is its spectral radius; then

lim
k→∞

Mk = O if and only if ρ(M) < 1.

Theorem 3.2.1. In the prediction-driven CDMPC algorithm Algorithm 1, ∆U (s) will

converge to the centralized solution ∆U∗ if and only if the spectral radius of C2 is smaller

than 1 (C2 defined in (3.33)), i.e., ρ(C2) < 1,regardless of the selection of ∆U (0).
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Proof From the result in (Marcos, 2011), the limit ∆U (∞) , lims→∞ ∆U (s) is equal to

∆U∗. So to prove Theorem 3.2.1, we need to prove that the limit ∆U (∞) exists if and

only if ρ(C2) < 1.

From equation (3.31):

∆U (s+1) −∆U (s) = C2(∆U (s) −∆U (s−1)), s ≥ 1, (3.36)

which indicates that:

∆U (s+1) −∆U (s) = C2
s(∆U (1) −∆U (0)). (3.37)

If ρ(C2) < 1, according to Lemma 3.2.1:

lim
s→∞

C2
s = O. (3.38)

Then for (3.37):

lim
s→∞

LHS = lim
s→∞

RHS = O(∆U (s) −∆U (s−1)) = 0, (3.39)

i.e.:

lim
s→∞

∆U (s+1) = lim
s→∞

∆U (s), (3.40)

which proves the existence of ∆U (∞), as the limit of ∆U (s) as s→∞.

When the iterative method converges to the limit,

∆U (∞) = c1 + C2∆U (∞). (3.41)

Subtract equation (3.41) for (3.31) and denote:

e(s) = ∆U (s) −∆U (∞),

then we have:

e(s+1) = C2e
(s), (3.42)

which implies by recursion that:

e(s) = C2
se(0). (3.43)

If ρ(C2) ≥ 1, then there exists at least one eigenvalue with its module no less than one.

Denote this eigenvalue as λ. Without loss of generality, suppose e(0) is the eigenvector

associated with λ, then we have C2e
(0) = λe(0) and e(s) = λse(0). Since in general e(0) 6= 0,

we have:

lim
s→∞

e(s) = lim
s→∞

λse(0) =

{

e(0), if λ = 1,

∞, if λ > 1,
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but by definition lims→∞ e(s) = ∆U (∞)−∆U (∞) = 0, which is a contradiction. Therefore it

is proved that the iterative algorithm will converge to a limit ∆U (∞) only if ρ(C2) < 1.

Since the matrix C2 is time invariant, the convergence can be checked off-line if the

prediction-driven CDMPC algorithm is to be implemented on a given decentralized network.

3.2.3 Rate of Convergence

Convergence of the prediction-driven algorithm is a basic requirement of successful imple-

mentation; however, it may take a long time for the coordinating algorithm to converge,

even though the condition in Theorem 3.2.1 is satisfied. Thus, the rate of convergence

of an iterative method, which describes the speed of the method converging to its limit, is

essential as well. In numerical testing, we found those examples that are slow to converge

always have large spectral radius for C2, while those are faster with smaller spectral radius.

As would be expected, the rate of convergence is closely related to ρ(C2).

To quantify the relation between the convergence rate and spectral radius, the analyzing

procedure in Quarteroni et al., 2000 is followed. First we introduce Lemma 3.2.2:

Lemma 3.2.2. (Quarteroni et al., 2000) For any matrix norm ‖ · ‖ and square matrix M ,

there is:

ρ(M) = lim
k→∞

‖Mk‖1/k.

Next the following definition is given:

Definition 3.2.1. In a linear iterative formula z(k+1) = Hz(k)+f , Rk(H) = − 1
k log ‖Hk‖

is called its average convergence rate after k steps.

The average convergence rate is usually expensive to compute, because Hk has to be

calculated in advance and it varies with k; however, with Lemma 3.2.2 it is easy to

compute the limit of Rk, which is defined as the asymptotic convergence rate:

R(H) = lim
k→∞

Rk(H) = − log ρ(H). (3.44)

R(H) represents the average convergence rate as the number of iterations goes to infinity,

and is more commonly used.

Since the prediction-driven CDMPC algorithm can be formulated as an iterative method

by equation (3.31), its asymptotic convergence rate is:

R(C2) = − log ρ(C2), (3.45)
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where C2 is define in §3.2.1 . As we have expected, with larger ρ(C2) (closer to 1), the

value of R(C2) is smaller, indicating the algorithm converges slower.

Remark 3.2.1. For a sequence of scalars {y(0), y(1), ...}, if the limit y exists, the rate of

convergence can be defined with the ratio of two successive errors:

R = lim
k→∞

|e(k+1)|
|e(k)| , (3.46)

where e(k) = y(k) − y. For example, in the sequence y(k+1) = 1
2y(k) + 3, the following

relationship exists:

e(k+1) =
1

2
e(k). (3.47)

Therefore,

R = lim
k→∞

|e(k+1)|
|e(k)| =

1
2e(k)

e(k)
=

1

2
. (3.48)

In a multi-dimensional case as in the sequence z(k+1) = Hz(k) +f , the successive errors

follow the relationship

e(k+s) = Hse(k), (3.49)

where e(k) = z(k) − z and z is the limit of z(k). To measure the ratio of errors, the norm

operation can be employed similarly to the absolute value operation. It can be seen that Hs is

a factor that decides how much e(k) reduces in s steps, so the average convergence rate may

be defined with ‖Hs‖ 1
s . Note that in a scalar sequence, if the rate of convergence is smaller

(closer to 0), the sequence converges faster. The situation is different in iterative methods,

where a larger rate means faster convergence. This is only a matter of convention, and

can be changed into concordance by reversing the numerator and denominator in equation

(3.46). Since this work is discussed within the context of iterative methods, the way of

defining convergence rate in this context is used, which is presented in equation (3.44).

Remark 3.2.2. When k < ∞, there is ‖Ak‖1/k ≥ ρ(A) for any matrix norm, so the

asymptotic convergence rate in equation (3.44) will always overestimate the actual conver-

gence rate in practice. This will also affect estimation of the number of communication

cycles in the next section.

3.3 Computational Complexity

Computational complexity of an algorithm is used to describe the computational resources

needed to solve a problem using that particular algorithm. Generally, the resourse of inter-

est is the computing time, so the complexity T can be measured by the execution time of
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an algorithm as a function of problem size n. The basic assumption of complexity theory

suggests that it takes exactly the same time to perform an arithmetic operation on any

computing platform, so measuring T can also be done by counting the number of required

arithmetic operations. In practice, the number of operations is a more consistent measure-

ment than the execution time, since real comupting platforms vary in speed. We denote

T = F (n) to be the function relating the number of arithmetic operations to the problem

size.

In most cases, we are only interested in the asymptotic behavior of F (n), i.e., the func-

tion behavior as problem size goes to infinity. Among different types of notation developed

to quantify this behavior, the most frequently used one is the O-notation, which describes

an algorithm’s asymptotic upper bound (Cormen, 2009). It is a useful tool to measure

an algorithm’s efficiency, as well as its relative behavior with other algorithms. Therefore,

the O-notation will be used as the complexity analysis tool in this section. For the mathe-

matical background of O-notation, please refer to Appendix B. Typically, if the complexity

of an algorithm can be bounded by a polynomial, i.e., it can be written as O(nc), c ∈ R+,

then the algorithm is said to have a polynomial-time complexity. A polynomial-time algo-

rithm is considered to be efficiently solvable (Goldreich, 2008), indicating that the increased

computating time, as the problem size grows, can be handled by a computer. It is a desired

characteristic for DMPC algorithms.

3.3.1 Theoretical Analysis

According to Cheng, 2007, two different parts contribute to the total complexity of a co-

ordinated DMPC algorithm: 1) the complexity within each communication cycle, which is

denoted as TNonCo; and 2) the number of communication cycles (CCN) needed for conver-

gence. Since a parallel computing environment is assumed (i.e., each local MPC is solved on

its own computer), the complexity within a single communication cycle can be represented

as the sum of coordinator complexity and the maximum local MPC complexity within one

cycle. Therefore, the complexity T of a coordinated DMPC can be represented as:

T = TNonCo × CCN

= (Tcoor + max
i

Ti)× CCN,
(3.50)

where: Tcoor represents the coordinator complexity in one cycle; Ti the complexity of the

ith subsystem in one cycle; and CCN the number of communication cycles. Tcoor, Ti and

CCN will be discussed in the following sections.
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It is assumed that throughout this section Hp and Hu are fixed finite integers and that

Hp ≥ Hu, ni ≥ qi and n ≥ q.

Local MPCs: Solved Analytically

For a prediction-driven CDMPC, the ith local MPC solves optimization problem (3.1) in

each communication cycle. Since the problem is unconstrained, the solution can be obtained

analytically through solving (3.14), which is equivalent to the following equation:





Xi

∆Ui

λi



 = W−1
i βi, (3.51)

where

βi =






Qiri −ΘT
Ai

p(s)

−ΘT
Bi

p(s)

gi −
∑

j 6=i

(

GAij
X

(s)
j + GBij

∆U
(s)
j

)




 , (3.52)

Wi =





Qi O GT
Aii

O Ri GT
Bii

GAii
GBii

O



 . (3.53)

The matrix Wi is time invariant, so its inverse can be calculated off-line and stored as

a constant coefficient matrix. Therefore, only matrix multiplication and summation are

needed to compute equation (3.51). It is assumed that each arithmetic operation with one

matrix entry has complexity O(1), then two k × l matrices adding together require O(kl)

complexity, and a k × l matrix multiplied by a l × m matrix has O(klm) complexity. In

each communication cycle, we need to update the coordinating variables in βi first, then

do the matrix multiplication W−1
i βi. Table 3.1 shows the detailed steps for analytically

solving the ith local MPC problem, the dimensions of parameters in the computation and

the complexity of each step.

The four steps listed in Table 3.1 are performed sequentially, so the complexity of the

ith local MPC is calculated by adding the complexities for each of the four steps together,

as stated in Property B.0.3 in Appendix B. Since complexity analysis focuses on the case

when problem size is very large, only the step with largest complexity contributes to the

overall complexity as the problem size goes to infinity, and complexity of other steps are

neglected(Property B.0.4). From Table 3.1, it can be seen that the complexity of step 3

is smaller than that of step 4, so it does not need to be taken into consideration when the
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Table 3.1: Local MPC (Solved Analytically) Complexity in Prediction-driven CDMPC: Step by
Step

Step Description
Parameters and
Dimensions

Step Complexity

1. Calculate

θi =

[
ΘT

Ai

ΘT
Bi

]

p(s)

ΘAi
: Hpn×Hpni,

ΘBi
: Hpn×Huqi,

p(s) : Hpn× 1

O(Hpn(Hpni + Huqi))

2. Calculate

Vi =
∑

j 6=i

(

GAij
X

(s)
j +

GBij
∆U

(s)
j

)

GAij
: Hpni ×Hpnj,

GBij
: Hpni ×Huqj,

X
(s)
j : Hpnj × 1,

∆U
(s)
j : Huqj × 1

O
(

(Hpni)
∑

j 6=i(Hpnj + Huqj)
)

3. Calculate

βi =





Qiri

0Huqi

gi



−
[

θi

Vi

] θi : (Hpni + Huqi)× 1,
Vi : Hpni × 1

O(2Hpni + Huqi)

4. Calculate




Xi

∆Ui

λi



 = W−1
i βi

Wi : (2Hpni + Huqi)
2,

βi : (2Hpni + Huqi)× 1
O
(
(2Hpni + Huqi)

2
)

addition is performed. Therefore, Ti is:

Ti =O



(Hpni)
∑

j 6=i

(Hpnj + Huqj) + (Hpn)(Hpni + Huqi) + (2Hpni + Huqi)
2





=O
(
H2

p (nin− n2
i ) + HpHu(niq − niqi) + H2

pnin + HpHuqin + 4H2
pn2

i +

4HpHuniqi + H2
uq2

i

)

(3.54)

Since it is assumed qi ≤ ni, q ≤ n and Hu ≤ Hp:

0 ≤ H2
p (nin− n2

i ) ≤H2
pnin,

0 ≤ HpHu(niq − niqi) ≤ HpHuniq ≤ HpHunin ≤H2
pnin,

0 ≤ HpHuqin ≤ HpHunin ≤H2
pnin,

0 ≤ H2
uq2

i ≤ HpHuniqi ≤H2
pn2

i .

According to Property B.0.4, the terms in the O-notation representing Ti can be reduced

to:

Ti = O(H2
pnin + 4H2

pn2
i ),
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but H2
pn2

i ≤ H2
pnin, so:

Ti = O(H2
pnin + 4H2

pnin) = O(5H2
pnin).

The constant is omitted according to Property B.0.3, and the complexity of the analyti-

cally solved ith local MPC is:

Tianl
= O(nin). (3.55)

Note that equation (3.51) has redundant computation for solving the ith local MPC,

since only ∆Ui is sent to coordinator for coordination. Also, the implementation of MPC

control needs only the first move on the control horizon, for which knowing ∆Ui would be

adequate. Indeed, ∆Ui can be solved by the following equation:

∆U∗
i(s) =−R−1

i GT
Bii

Ψ−1
i

∑

i6=j

(

GBij
∆U

(s)
j + GAij

X
(s)
j

)

+

R−1
i (GT

Bii
Ψ−1

i Ωi −
∑

i6=j

GT
Bij

)p(s) + R−1
i GT

Bii
Ψ−1

i (gi −GAii
ri),

(3.56)

where :

Ψi = GAii
Q−1

i GT
Aii

+ GBii
R−1

i GT
Bii

, (3.57)

Ωi = GAii
Q−1

i

∑

i6=j

GT
Aij

+ GBii
R−1

i

∑

i6=j

GT
Bij

. (3.58)

The dimensions of coefficient matrices in equation (3.56) are smaller than Wi; however, the

complexity analysis would be the same as what have been presented, and would yield the

same result of Tianl
= O(nin).

Local MPC: Solved Numerically

In real plants, most MPC problems cannot be solved analytically due to the presence of

constraints, and complexity analysis for these situations depends upon the particular al-

gorithms chosen to solve the constrained optimization problem. To remove this additional

consideration, we have limited our investigations to the unconstrained case and expect that

our work will provide some insight into practice.

The ith MPC problem (3.1) is essentially a QP. Among the alternative solution methods

for QP, the interior point method (IPM) is often used based on its proven polynomial

complexity and efficiency in application. In this work it is assumed that the local MPC is

numerically solved using IPM. The results of IPM complexity analysis usually vary with

specific assumptions and different algorithms, but the purpose of this discussion is to provide
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general insight into complexity rather than give highly accurate results. For this reason, we

will refer to the results from the literature.

As a numerical method, IPM involves iteration and would finally reach an ε-optimal

solution, where ε is a pre-defined accuracy threshold. Specifically, if an IPM is to solve the

following QP problem:

min
z

1

2
zT Hz + hTz

subject to: F z = f ,

z ≥ 0,

(3.59)

where: F ∈ Rl×m with a full row rank l ≤ m; H ∈ Rm×m is a positive semidefinite matrix;

and z ∈ Rm. The dual problem of (3.59), is:

max
y,s
−1

2
zT Hz + fT y

subject to: F T y + s−Hz = h,

s ≥ 0,

(3.60)

where s ∈ Rm and y ∈ Rl. The first-order optimality conditions of the primal-dual problem

is:
F z = f ,

F Ty + s−Hz = h,

zisi = 0, i = 1, ...,m,

z, s ≥ 0.

(3.61)

The interior-point method would perturb the third equation in (3.61), called the compli-

mentary condition, with a parameter µ, and we would rewrite (3.61) as:

F z = f ,

F Ty + s−Hz = h,

zisi = µ, i = 1, ...,m,

z, s ≥ 0.

(3.62)

Then an IPM iteratively drives µ in the linear system (3.62) to zero, as the number of

iteration grows. In each iteration, Newton’s method is used to solve for the Newton direction

in 2m + l dimensions. The complexity of IPM is therefore composed of two parts: 1) the

number of iterations required, and 2) the complexity of Newton’s method within each

iteration. It is stated in (Gondzio, 2012) that the best known IPM for linear and quadratic

programming has a proven upper bound to find the ε-optimal solution in O(
√

m ln(1/ε))

iterations. In our case, Newton’s method is used for solving a linear system, which requires
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O((2m + l)3) operation (Cheng, 2007; Nash and Sofer, 1996). With l ≤ m, the complexity

of Newton’s method is O(m3). Therefore, the overall complexity for an IPM to solve the

QP (3.59) is O(m3.5 ln(1/ε))

The ith local MPC problem is transformed into the general form (3.59), which would

give m = Hpni + Huqi, l = Hpni. Thus, the process of actually solving the QP requires

O((Hpni + Huqi)
3.5 ln(1/ε)) operations. With the assumption of qi ≤ ni, the IPM procedure

has a complexity of O
(
n3.5

i ln(1/ε)
)
.

Prior to actually solving the problem (3.1) using IPM, the updating steps 1 to 3 in Table

3.1 still need to be performed. The complexity of the three steps added together is:

Tiup =O



(Hpni)
∑

j 6=i

(Hpnj + Huqj) + (Hpn)(Hpni + Huqi) + (2Hpni + Huqi)





=O
(
H2

p(nin− n2
i ) + HpHu(niq − niqi) + H2

pnin + HpHuqin + 2Hpni + Huqi

)

=O
(
max

(
H2

p(nin− n2
i ),HpHu(niq − niqi),H

2
pnin,HpHuqin, 2Hpni,Huqi

))

=O(Hp2nin)

=O(nin).

(3.63)

Therefore, the complexity of numerically solving the ith local MPC in total is:

Tinum =Tiup + TiIPM

=O
(
nin + n3.5

i ln(1/ε)
)
.

(3.64)

In (3.64), if n
ni

< ∞, TiIPM
will finally exceed Tiup , i.e., O(n3.5

i ln(1/ε)) > O(nin) when

ni, n → ∞. This can be applied to any real plant, so we conclude that the complexity of

the ith local MPC, if it is solved numerically, is:

Tinum = O
(
n3.5

i ln(1/ε)
)
. (3.65)

Coordinator

Equations (3.9) and (3.11) are the computations carried out in the coordinator. It can

be seen that the coordinator’s computation involves only matrix multiplication and matrix

addition, whether the local MPCs use analytical or numerical methods. For ease of analysis,

we rewrite these two equations into the form:

X(s) = γ1 − Γ1∆U (s), (3.66)

p(s) = γ2 − Γ2X
(s) − Γ3∆U (s), (3.67)
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where

γ1 = G−1
A g,

γ2 = (GGT )−1GAQr,

Γ1 = G−1
A GB,

Γ2 = (GGT )−1GAQ,

Γ3 = (GGT )−1GBR.

In the above equations, γ1, γ2, Γ1, Γ2 and Γ3 are all constant matrices (vectors), which

could be computed and stored beforehand. As in the analysis of local MPCs, the complexity

of each computation step and the dimensions of related parameters of equations (3.66) and

(3.67) are listed in Table 3.2.

Table 3.2: Coordinator Complexity in Prediction-driven CDMPC: Step by Step

Step Description
Parameters and
Dimensions

Step Complexity

1. Calculate

X(s) = γ1 − Γ1∆U (s)

γ1 : (Hpn)× 1,
Γ1 : Hpn×Huq,

∆U (s) : Huq × 1

O(HpHunq + Hpn)

2. Calculate

p(s) =γ2 − Γ2X
(s)−

Γ3∆U (s)

γ2 : Hpn× 1,
Γ2 : (Hpn)2,

X(s) : Hpn× 1,
Γ3 : Hpn×Huq,

∆U (s) : Huq × 1

O
(
(Hpn)2 + HpHunq + Hpn

)

From Table 3.2, the complexity of coordinator can be derived as follows:

Tcoor =O(HpHunq + Hpn + Hpn
2 + HpHunq + HpHunq)

=O
(
max

(
HpHunq,Hpn,H2

pn2,HpHunq,HpHunq
))

=O(H2
pn2)

=O(n2).

(3.68)

Communication Cycle Number

The number of required communication cycles, or CCN , of prediction-driven CDMPC

algorithm is closely related to the algorithm’s rate of convergence, which was discussed in

§3.2.3. Although we are not able to obtain an upper bound on CCN , it is possible to give

estimations of the number. When deriving an estimation of CCN , the condition ρ(C2) < 1

is always assumed.
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From (3.43), there is:

‖e(s)‖ = ‖C2
se(0)‖ ≤ ‖C2

s‖‖e(0)‖.

That is:
‖e(s)‖
‖e(0)‖ ≤ ‖C2

s‖. (3.69)

If the algorithm is to reduce the initial error by a factor σ, i.e., it is required that:

‖e(CCN)‖
‖e(0)‖ ≤ σ, (3.70)

the requirement (3.70) can be satisfied when:

‖C2
CCN‖ ≤ σ, or CCN ≥ − log σ/RCCN (C2), (3.71)

where RCCN (C2) = − 1
CCN log ‖C2

CCN‖ is defined in Definition 3.2.1. Note that the

inequality (3.71) is nonlinear in CCN and there is no simple way to extract CCN from

‖C2
CCN‖, but if the asymptotic convergence rate is used to approximate the average rate,

the estimated value of CCN can be obtained, as:

ĈCN1 ≈ − log σ/R(C2) = log σ/ log ρ(C2). (3.72)

The estimation (3.72) may present difficulties in application, because it is hard to de-

termine whether or not ‖e(s)‖

‖e(0)‖
≤ σ is satisfied. If (3.70) is used as stopping criteria, ∆U (∞)

is required first and numerically solving for ∆U (∞) is moot; however, estimation (3.72) can

be linked to the stopping criterion ‖∆U (CCN+1) −∆U (CCN)‖ < ǫ discussed in §3.1.2. The

equation (3.37) gives that:

∆U (s+1) −∆U (s) = C2
s(∆U1 −∆U0),

which indicates that for ‖∆U (s+1) −∆U (s)‖ the relationship:

‖∆U (s+1) −∆U (s)‖
‖∆U (1) −∆U (0)‖ ≤ ‖C2

s‖

also exists. Then there is:

‖∆U (s+1) −∆U (s)‖ ≤ ‖C2
s‖‖∆U (1) −∆U (0)‖. (3.73)

Therefore, ‖C2
s‖ ≤ σ would guarantee ‖∆U (s+1) − ∆U (s)‖ ≤ σ‖∆U (1) − ∆U (0)‖. If we

denote δ = ‖∆U (1) −∆U (0)‖ and σ = ǫ/δ, then the algorithm terminates once:

CCN ≥ −(log ǫ/δ)/RCCN (C2). (3.74)
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Again we use R(C2) to approximate RCCN (C2) and get:

ĈCN2 ≈
−(log ǫ− log δ)

R(C2)
=

log ǫ− log δ

log ρ(C2)
. (3.75)

From here, (3.75) is the formula that will be used for estimating CCN .

As stated in Remark 3.2.2, ‖Ak‖1/k ≥ ρ(A) when k <∞, which means log σ/Rs(C2) ≥
log ε/R(C2). Therefore, the estimation in (3.72) and (3.75) are not upper bounds on com-

munication cycle numbers. Figure 3.1 shows a comparison of estimated versus real CCN

taken from a set of numerical experiments. It is clear that the estimated CCN can be

smaller or larger than the real value in different cases. For this reason, CCN cannot be

presented in O-notation.
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Figure 3.1: Estimated versus real communication cycle numbers. The result is obtained from 51
randomly generated system. x axis and y axis are σ = ǫ/δ and ρ(C2), respectively.

What can also be seen from Figure 3.1 is that for the tested examples, none of the

estimated communication cycle numbers deviate more than one order of magnitude from

its real value. Therefore, the estimation given in (3.75) is sufficient to capture the main

behavior in the communication cycles.
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Algorithm Complexity and a Comparison with Centralized Complexity

The above analysis for Tcoor, maxi Ti and CCN are summarized in Table 3.3. Since the

Table 3.3: Complexity of Prediction-driven CDMPC and Centralized MPC

Complexity Type Solving Analytically Solving Numerically

Tcoor O(n2) O(n2)

maxi Ti O(max(ni)n) O(max(ni)
3.5 ln(1/ε))

CCN ≈ (log ǫ− log δ) / log ρ(C2)

TCEN O(n2) O(n3.5 ln(1/ε))

upper bound of communication cycle numbers is unavailable, the conclusion of the overall

complexity cannot be written in the O-notation and as a result, is an estimation as well:

TPRED = (Tcoor + max
i

Ti)× CCN

=

(

O(n2) + max
i

O(nin)

)

× CCN

≈
{(

O(n2 + max(ni)n)
)
× log ǫ−log δ

log ρ(C2) ,MPC solved analytically,
(
O(n2 + max(ni)

3.5 ln(1/ε))
)
× log ǫ−log δ

log ρ(C2) ,MPC solved numerically.

(3.76)

Other than the complexity of the prediction-driven CDMPC algorithm, we are also

interested in its comparison with the complexity of centralized MPC. Since a parallel com-

putating environment is assumed, the DMPCs are actually distributing the computation

load to more processing nodes, with the inter-unit communications as the trade-off. We

would like to know whether or not this trade-off is acceptable. For this purpose, the com-

plexity of centralized MPC, TCEN , is also listed in Table 3.3. This complexity can be

obtained by replacing max(ni) with n in the maximum local MPC complexity maxi Ti.

When the MPCs are solved analytically, TCEN and Tcoor each has a complexity of O(n2).

This means that their complexity is on a same level. By counting the arithmetic operations

in the coordinator and the centralized MPC respectively, we found that they have the ratio

r = Tcoor

TCEN
=

H2
pn2+2HpHunq

(H2
p+1)n2+(HpHu+1)nq

, as n, q → ∞. The value of the ratio depends on the

actual values of Hp, Hu, n and q. r < 1 requires q < n
HpHu−1 , which normally means that

q ≪ n. Note that in this comparison, the maximum subsystem and communication cycles

are not included, making it more difficult for the prediction-driven CDMPC algorithm to

be more efficient that the centralized MPC.

In the case that the MPCs are solved numerically, TCEN becomes O(n3.5 ln(1/ε)) while

Tcoor remains to be O(n2). The prediction-driven CDMPC algorithm in a single commu-

nication cycle is more efficient than the centralized MPC as n → ∞. To see this, assume
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that the maximum subsystem size max(ni) = n − 1, which is the largest subsystem size

we can have. Despite this, Tcoor is still smaller than the difference between TCEN and

maxi(Ti): the function f(x) = nx − (n − 1)x is monotonically increasing when n > 1 and

n3 − (n − 1)3 = O(n2), so n3.5 − (n − 1)3.5 = O(nq), where q > 2; therefore, the difference

between TCEN = O(n3.5 ln(1/ε)) and maxi(Ti) = O(max(ni)
3.5 ln(1/ε)) is at least O(nq),

which is larger than Tcoor when n → ∞. If the communication cycle number is small,

the prediction-driven CDMPC algorithm will be more computationally favorable than the

centralized MPC.

3.3.2 Empirical Analysis

Several numerical experiments were designed and conducted to study the properties of

empirical complexity of prediction-driven CDMPC. The theoretical complexity results listed

in Table 3.3 and how the parameters such as the plant state size n, subsystem state size

ni, etc. will affect the algorithm’s complexity in practice, were investigated in this study.

Each experiment was done with a set of Monte Carlo simulations, where a class of plants

and MPC controllers were generated randomly. The details of how the system and MPC

parameters are generated can be found in Appendix C.1.

As stated in §3.3.1, computational complexity of an algorithm can be measured by

the execution time of the algorithm. Therefore, the prediction-driven CDMPC algorithm’s

execution time tPRED is used to represent its empirical complexity. Specifically, we record

the communication cycle number CCN , the accumulated execution time of coordinator
∑

tcoor and the accumulated execution time of the maximum-sized subsystem
∑

timax for

the complexity analysis’ three component parts, as in Table 3.3. Tcoor, maxi Ti and TPRED

can then be represented by tcoor, timax and tPRED, which are calculated as follows:

tcoor =
∑

tcoor/CCN (3.77)

timax =
∑

timax/CCN (3.78)

tNonCo = tcoor + timax (3.79)

tPRED =
∑

tcoor +
∑

timax (3.80)

The experiments were all done using the MATLABR© 2011b platform, with an IntelR©

CoreTMi5-2500K machine with 3.3 GHz processor speed and 8 GB of RAM memory. The

experiments inherited all the assumptions given in Chapter 1, as well as those made before

the theoretical analysis in §3.3.1. It is further assumed in all the experiments that:

• A is stable;
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• Bij are zero matrices;

• Q and R are both diagonal matrices.

The major objective of the empirical study is to verify the theoretical complexity results

listed in Table 3.3 through the numerical experiments. Note that Tcoor is only determined

by n, the number of states in the plant. maxi Ti, if the local MPCs are solved analytically,

is dependent on n and max(ni), which is the largest state number among all subsystems. If

local MPCs are solved numerically, maxi Ti is determined by max(ni) and the pre-defined

accuracy threshold ε. Experiment 1 and Experiment 2 are therefore designed to identify

the relationships between plant/largest subsystem size and the empirical complexities. For

both experiments, there will be one scenario that solves the MPCs analytically and another

numerically.

The communication cycle number is a more complicated case. Although an estimation of

CCN is already given, the variables in the estimation, initial error δ, and the spectral radius

ρ, need to be calculated via complex matrix operations. Therefore, it is almost impossible

to derive an analytical size-to-CCN mapping. It is expected that CCN will increase as

the plant/subsystem size increases, because the difficulty of coordination in these cases will

increase as well. Since the smallest stopping threshold ǫ for the prediction-driven CDMPC is

10−5, while the tolerance for MATLABR© IPM solver is 10−8, the optimal ∆U∗
i(s)num can be

considered the same as ∆U∗
i(s)anl. Therefore, whether or not MPCs are solved numerically

will not change the required number of communication cycles, and the discussion of CCN

in the two scenarios will be combined, for both Experiment 1 and Experiment 2.

Experiment 1: Empirical Complexity Varying With Number of Subsystems

In Experiment 1, all subsystems were fixed to have 2 states and 2 inputs, i.e., max(ni) = 2.

The number of subsystems N ∈ N, where

N = {2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70

80, 90, 100, 110, 120, 130, 140, 150, 160} .
(3.81)

The number of states in the plant is therefore n = 2N and would vary accordingly to N .

The Monte Carlo experiment is repeated 100 times for each element in set N.

Scenario 1: In this scenario, the results are obtained when the MPC problems are

solved analytically. As can be seen from Figure 3.2, tcoor and tCEN have a similar growth

rate, with tcoor always larger than tCEN . This result shows that even in a single communi-

cation cycle, coordination is less efficient than the centralized MPC, if the MPC is solved
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analytically. Then, the prediction-driven CDMPC algorithm will take a longer total execu-

tion time than the centralized MPC. We also did least-squares fitting for the coordinator

and the centralized MPC to determine whether they present second-order characteristics as

predicted. If the curves are assumed to be second-order polynomials, the fitting results are:

tcoor =(4.3407 ± 0.81780) × 10−9n2+

(4.8260 ± 2.5379) × 10−7n + (5.0758 ± 1.4234) × 10−5,
(3.82)

tCEN =(3.5080 ± 0.53005) × 10−9n2+

(0.99160 ± 1.6449) × 10−7n + (9.8237 ± 9.2256) × 10−6,
(3.83)

where the number after ‘±’ shows the 95% confidence interval of the fitted parameter. If

they are assumed to be third-order polynomials, the fitting results are:

tcoor =(−1.6682 ± 0.61989) × 10−11n3 + (1.2158 ± 0.29500) × 10−9n2+

(−4.4644 ± 3.8045) × 10−7n + (6.9631 ± 1.1384) × 10−5
(3.84)

tCEN =(−2.7902 ± 6.4267) × 10−12n3 + (4.8154 ± 3.0584) × 10−9n2+

(−0.56226 ± 3.9443) × 10−7n + (1.2980 ± 1.1803) × 10−5.
(3.85)

For the centralized MPC execution time, the parameters of the third-order terms contains

0 in its 95% confidence interval, meaning that we cannot claim with 95% confidence that

tCEN is a third-order polynomial. For the coordinator execution time, though the fitted

third-order coefficient does not contain 0 in the 95% confidence interval, it is negative. With

this fitting, tcoor → −∞ as n→∞, which is clearly invalid. Therefore, both tcoor and tCEN

should be considered statistically second-order polynomials, which matches the hypothesis

for them.

Figure 3.3 shows the longest execution time taken by the subsystems in one cycle. The

hypothesis is that Tianl
= O(nin), so when max(ni) is fixed, the execution time of subsystem

is expected to grow with the plant size n, as can be seen in Figure 3.3. A least-squares

fitting is also done for this data set, which, according to the hypothesis, should be linear

in n. The result of the fitting, if assuming timax to be linear, quadratic and cubic function

respectively, are presented as follows:

timax = (6.1443 ± 0.32662) × 10−7n + (3.9015 ± 0.39015) × 10−5, (3.86)

timax = (7.7160 ± 1.5772) × 10−10n2+

(3.6127 ± 0.53162) × 10−7n + (5.2617 ± 0.35303) × 10−5,
(3.87)

timax =(−1.6181 ± 1.8730) × 10−12n3 + (1.5887 ± 0.95735) × 10−9n2+

(2.4848 ± 1.3976) × 10−7n + (5.6206 ± 0.53126) × 10−5
(3.88)
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Figure 3.2: Prediction-driven CDMPC Experiment 1. Execution time of coordinator in one cycle
versus execution time of centralized MPC, when MPCs are solved analytically. The solid line rep-
resents tcoor and the dash-dot line represents tCEN . x axis is the plant state size and y axis is the
execution time in seconds.

From equations (3.86) to (3.88), it is clear that timax is not statistically a third-order polyno-

mial in n because the third-order coefficient contains 0 within its 95% confidence interval.

Equation (3.87) indicates that empirically timax may be a second-order polynomial in n

when MPCs are solved analytically.

Scenario 2: In this scenario, the MPC problems are solved numerically. Figure 3.4

shows the time taken by coordinator in one cycle and centralized MPC, respectively. It can

be seen that, when the centralized MPC is solved by the interior-point method, tcoor < tCEN .

This is not surprising because our analysis shows that TCENnum = O(n3.5 ln(1/ε)) and

Tcoor = O(n2).

The execution time of subsystems is plotted against the plant size in Figure 3.5. From

equation (3.64) it can be seen that if ni is fixed, Tinum will also have a complexity of O(nin),

indicating timax should be a linear function in n. As can be seen from the result, timax is

increasing with n, although it appears to be sublinear. A possible reason for this mismatch

with theory is due to the iteration feature of numerical methods. Each time when the

optimization problem is solved, the computer needs to initialize a process such as read from

memory and allocate new variables. The cost of initialization process is unknown, and is

not included within the theoretical analysis. These are expected to influence the execution
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Figure 3.3: Prediction-driven CDMPC Experiment 1. The longest execution time of subsystems,
when MPCs are solved analytically. x axis is the plant state size and y axis is the execution time in
seconds.
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Figure 3.4: Prediction-driven CDMPC Experiment 1. Execution time of coordinator in one cycle
versus execution time of centralized MPC, when MPC problems are solved numerically using the
interior-point method. The solid line represents tcoor and the dash-dot line represents tCEN . x axis
is the plant state size and y axis is the execution time in seconds.
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time more when the problem size is small.
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Figure 3.5: Prediction-driven CDMPC Experiment 1. Longest execution time of subsystems, when
MPC problems are solved numerically using the interior-point method. x axis is the plant state size
and y axis is the execution time in seconds.

In this scenario, tNonCo is calculated according to equation (3.79) and compared with

tCEN , as is shown in Figure 3.6. When n is small, tNonCo is larger than tCEN , but it

will cross tCEN as the number of subsystem grows. This matches the analysis in §3.3.1
and indicates that if the number of communication cycles does not grow too quickly, the

prediction-driven CDMPC is computationally more favorable than the centralized MPC

when n is large.

Figure 3.7 shows the median levels of communication cycle numbers and Figure 3.8

shows CCN for all of the systems generated in this experiment. The subplots of Figure

3.8 zoom in on the y-axis successively to show how the distribution of CCN changes as n

changes. It can be seen from Figure 3.7 and 3.8 that: (a) CCN tends to grow as the plant

size increases; (b) the median level of CCN grows at a reasonable rate; and (c) there is

higher probability of encountering a system with a very large CCN , when the plant size is

large. As an additional remark to (c), there is still information outside the figure. As can be

seen from Appendix C, in the system generation stage of these experiments, only systems

with ρ(C2) < 1 will be considered as candidates for the DMPC algorithm. The difficulty

in generating systems that meet this convergence condition increases as n increases.
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Figure 3.6: Prediction-driven CDMPC Experiment 1. Execution time of the prediction-driven
CDMPC in a single cycle versus the execution time of centralized MPC, when MPC problems are
solved numerically using the interior-point method. The solid line represents tNonCo and the dash-
dot line represents tCEN . x axis is the plant state size and y axis is the execution time in seconds.
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Figure 3.7: Prediction-driven CDMPC Experiment 1. The median of CCN at each experiment
mode in Experiment 1, including all data points from Scenario 1 and Scenario 2, where the number
of plant states n ∈ N.
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Figure 3.8: Prediction-driven CDMPC Experiment 1. All CCNs for every repetition in Experiment
1, including all data points from Scenario 1 and Scenario 2. The plots are zoomed successively. Top
left: the original plot. Top right: the zoomed plot, where only CCN between 0 and 2000 are shown.
Bottom left: the zoomed plot, where only CCN between 0 and 500 are shown. Bottom right: the
zoomed plot, where only CCN between 0 and 100 are shown.

Experiment 2: Empirical Complexity Varying With the Maximum Subsystem
Size

In Experiment 2, the plant sizes were fixed to be n = q = 160, i.e., there were a total

of 160 states and 160 inputs in the plant. The number of subsystems, N , was also fixed

to be 80. For each subsystem i, there is ni = qi, but the maximum ni varies in different

tests. Specifically, the subsystems’ sizes were sequentially chosen from the following set of

combinations:

NI =






{2, 2, 2, ..., 2
︸ ︷︷ ︸

80 2’s

}, {7, 2, ..., 2
︸ ︷︷ ︸

74 2’s

1, ..., 1
︸ ︷︷ ︸

5 1’s

},

{12, 2, ..., 2
︸ ︷︷ ︸

69 2’s

1, ..., 1
︸ ︷︷ ︸

10 1’s

}, {17, 2, ..., 2
︸ ︷︷ ︸

64 2’s

1, ..., 1
︸ ︷︷ ︸

15 1’s

},

..., {77, 2, 2, 2, 2 1, 1, ..., 1
︸ ︷︷ ︸

75 1’s

, }{81, 1, 1, ..., 1
︸ ︷︷ ︸

79 1’s

}






,

(3.89)

so the maximum subsystem size would vary from 2 to 81.

Scenario 1: The local MPCs and the centralized MPC were solved analytically in

Scenario 1. Figure 3.9 presents the coordinator execution time in a single communication
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cycle, tcoor versus the centralized MPC execution time, tCEN . It can be seen that both

curves fluctuate with no obvious trends. The least-squares regression technique is used to

fit linear relationships between tcoor and max(ni), tCEN and max(ni), respectively. The

resulting expressions are:

tcoor = (0.32067 ± 8.0533) × 10−7 max(ni) + (4.2955 ± 0.39076) × 10−4, (3.90)

tCEN = (−0.18427 ± 1.4072) × 10−6 max(ni) + (1.9373 ± 0.68282) × 10−4. (3.91)

The two fitted equations (3.90) and (3.91) each has a very small estimated slope with

the 95% confidence interval containing zero. Therefore, we cannot say with 95% percent

confidence that the slopes of tcoor and tCEN with respect to max(ni) are not zero. Given the

‘almost zero’ estimates, it can be concluded that tcoor and tCEN are statistically constant

when max(ni) varies but n is fixed. These results match the the theoretical complexity

analysis for Tcoor and TCENanl
, which states that their complexities are only related to the

plant size n.
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Figure 3.9: Prediction-driven CDMPC Experiment 2. Execution time of coordinator in one cycle
versus execution time of centralized MPC, when MPCs are solved analytically. The solid line repre-
sents tcoor and the dash-dot line represents tCEN . x axis is the maximum subsystem size and y axis
is the execution time in seconds.

Figure 3.10 shows how timax varies when the maximum subsystem size increases. Accord-

ing to §3.3.1, Tianl
= O(nin), so the expected execution time of the maximum subsystem

should be linear in max(ni). To test this hypothesis, we assume timax to be first- and
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second-order polynomials with respect to max(ni) and did the linear regression. The fitting

results are:

timax = (2.8926 ± 0.41814) × 10−6 max(ni) + (2.0714 ± 0.20289) × 10−4,

timax = (0.56671 ± 1.9967) × 10−8 max(ni)
2+

(3.3664 ± 1.7236) × 10−6 max(ni) + (2.0061 ± 0.31046) × 10−4,

(3.92)

where the second-order coefficient of the quadratic contains 0 in its 95% confidence interval.

Thus, timax is statistically not a quadratic function of max(ni) but a linear one, which

matches the hypothesis.
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Figure 3.10: Prediction-driven CDMPC Experiment 2. The longest execution time of subsystems,
when MPCs are solved analytically. x axis is the maximum subsystem state size and y axis is the
execution time in seconds.

Scenario 2: The local and centralized MPCs are all solved numerically in Scenario

2. In Figure 3.11, the the coordinator execution time in one cycle tcoor and the centralized

MPC excution time tCEN are shown. The trend of tcoor is similar to that in Scenario 1,

where the data points fluctuate around a certain value; however, this is not the case for

tCEN . From §3.3.1 we observed that the theoretical complexity of the centralized MPC

is TCENnum = O(n3 ln(1/ε)) and expect tCENnum to stay almost constant when n is fixed,

but in the empirical test tCEN presents polynomial characteristics and increases with the

growth of the maximum subsystem size. This mismatch is possibly due to the ‘presolve’ step

in the MATLABR© IPM solver, which aims to simplify the optimization’s constraints and
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remove redundancies. If a linear equality constraint has only one variable and is feasible,

it would be solved first and removed from the optimization problem in this step. When

the subsystems are more balanced, i.e., the maximum subsystem size is smaller, it is easier

to have such linear constraints and the IPM solver is actually solving a problem with size

ñ < n.
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Figure 3.11: Prediction-driven CDMPC Experiment 2. Execution time of coordinator in one cycle
versus execution time of centralized MPC, when MPC problems are solved numerically using the
interior-point method. The solid line represents tcoor and the dash-dot line represents tCEN . x axis
is the maximum subsystem state size and y axis is the execution time in seconds.

Figure 3.12 shows how the maximum execution time of the subsystems increases as the

size of the largest subsystem increases. A preliminary attempt to fit the curve suggests that

it is likely a third-order or fourth-order polynomial, since the second-order fitting of the

curve has large residuals and the fifth-order fitting has a negative highest order coefficient.

The fitting results of third and fourth-order polynomials are:

timax =(5.6440 ± 1.4142) × 10−8 max(ni)
3 + (−4.5488 ± 1.7910) × 10−6 max(ni)

2+

(8.8064 ± 6.3862) × 10−7 max(ni) + (1.4120 ± 0.060670) × 10−2,
(3.93)

timax =(9.3357 ± 4.2955) × 10−10 max(ni)
4 + (−9.8622 ± 7.1883) × 10−8 max(ni)

3+

(3.7160 ± 3.9615) × 10−6 max(ni)
2 + (−6.3644 ± 8.0244) × 10−5 max(ni)+

(1.4737 ± 0.047094) × 10−2.

(3.94)
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Although (3.94) has dubious second- and first- order coefficients, its highest order shows that

the curve is still possibly fourth-order. Since Timaxnum
was shown to be O(max(ni)

3.5 ln(1/ε)),

the fitting results are in concordance the prediction.
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Figure 3.12: Prediction-driven CDMPC Experiment 2. Longest execution time of subsystems,
when MPC problems are solved numerically using the interior-point method. x axis is the maximum
subsystem size and y axis is the execution time in seconds.

As in the second scenario of Experiment 1, here tNonCo is compared with tCEN , and is

presented in Figure 3.13. The curve of the prediction-driven CDMPC algorithm is at first

above that of the centralized algorithm, but the two curves cross each other as the size of

the maximum system grows.

The median levels of communication cycle numbers of all tests in Experiment 2 are

presented in Figure 3.14, and all CCN datapoints in this experiment are plotted against

the maximum subsystem size in Figure 3.15. From the two figures we observe that the

number of communication cycles does increase as the maximum subsystem size grows, but

this increase is slow. If they are compared with Figure 3.7 and Figure 3.8, it can be

concluded that the maximum subsystem size is not a key factor that affects CCN .

3.4 Conclusions

In this chapter, the computational properties, namely the convergence condition, the rate of

convergence and computational complexity of the unconstrained prediction-driven CDMPC
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Figure 3.13: Prediction-driven CDMPC Experiment 2. Execution time of the prediction-driven
CDMPC in a single cycle versus the execution time of centralized MPC, when MPC problems are
solved numerically using the interior-point method. The solid line represents tNonCo and the dash-
dot line represents tCEN . x axis is the plant state size and y axis is the execution time in seconds.
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Figure 3.14: Prediction-driven CDMPC Experiment 2. The median of CCN at each experiment
mode in Experiment 1, including all data points from Scenario 1 and Scenario 2, where the number
of plant states n ∈ N.
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Figure 3.15: Prediction-driven CDMPC Experiment 2. All CCNs for every repetition in Experi-
ment 2, including all data points from Scenario 1 and Scenario 2. The plots are zoomed successively.
Top left: the original plot. Top right: the zoomed plot, where only CCN between 0 and 2000 are
shown. Bottom left: the zoomed plot, where only CCN between 0 and 500 are shown. Bottom
right: the zoomed plot, where only CCN between 0 and 100 are shown.

were investigated. For a given prediction-driven CDMPC algorithm, its convergence con-

dition and rate of convergence are controlled by the spectral radius of a coefficient matrix

defined in (3.33), which is determined only by system properties and local MPC designs.

The spectral radius also affects the required communication cycle numbers of the CDMPC

algorithm, which is a component part of the CDMPC algorithm’s complexity. The upper

bound of CCN is unknown, but a reasonable estimate is derived.

From both the theoretical and empirical analysis, the complexity of the prediction-

driven CDMPC in a single communication cycle is polynomial in the problem size. In

particular, when the MPC problems are solved numerically, the complexity of the single-

cycled CDMPC has a lower growth rate with respect to the problem size than that of

the centralized MPC, indicating that the CDMPC can get to the optimal solution more

efficiently than the centralized MPC for sufficiently large-scale systems, if CCN does not

grows too quickly. Empirical tests of a number of systems show that, although CCN in

general has a reasonable growth rate with problem size, there is a higher probability of

encountering a system with very large CCN when the problem size increases. Due to this,

CCN can be considered to be the bottleneck in the computational complexity of prediction-
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driven CDMPC algorithm. The experiments also show that the total number of subsystems

affects CCN more than the sizes of subsystems.

The results given in this chapter can be used to judge whether a specific prediction-

driven CDMPC would converge or not. They may also be applied to estimate the computa-

tional costs of such a CDMPC method, and to determine when CDMPC may provide some

computational advantage to centralized MPC.
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Chapter 4

Computational Properties of

Price-driven CDMPC

This chapter studies the computational properties of another type of coordinated DMPC,

which is the price-driven CDMPC. With an analysis that parallels to Chapter 2, the uncon-

strained price-driven CDMPC is shown to have guaranteed convergence to the centralized

MPC within two communication cycles. This fast convergence results in a low computa-

tional load, especially for a large-scale system.

4.1 Price-driven CDMPC

The price-driven Coordinated Distributed MPC (Marcos, 2011), or the Goal Coordinated

Distributed MPC in (Mohseni, 2013) has the coordinating term {CoorTm}i in the general

local MPC formulation (2.28a) to be p(s)TΦi





Xi

∆Ui

Vi



. As in prediction-driven CDMPC,

p(s) is the so-called price vector and is fixed in the local MPC controller. The matrix Φi is

an Hpn× (2Hpni + Huqi) matrix formulated as follows:

Φi =












GA1i
GB1i

O

...

O O −I
...

GANi
GBNi

O












=











G1i O
...

...

O −I
...

...

GNi O











. (4.1)

The GAji
and GBji

matrices in (4.1) were defined in (2.20) and (2.21), respectively. The

vectors Xi and ∆Ui were defined in (2.12) and (2.13), respectively. The vecotr Vi, as in the

prediction-driven CDMPC, is the interaction vector and is defined as Vi = [v̂i(k|k), ..., v̂i(k+

Hp − 1|k)]T and now it is determined by the ith local MPC controller as an optimization
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variable. The local MPC controller in the price-driven CDMPC method is then given as:

min
Xi,∆Ui,Vi

Ji =
1

2

(
(Xi − ri)

T Qi(Xi − ri) + ∆UT
i Ri∆Ui

)
+ p(s)TΦi





Xi

∆Ui

Vi



 (4.2a)

subject to:

[

Gii I
]





Xi

∆Ui

Vi



 = gi.
(4.2b)

The product Φi





Xi

∆Ui

Vi



 is denoted as Ei, which is called the local interaction error

vector (Marcos, 2011; Mohseni, 2013). If Ei is summed from i = 1 to N , the summation

is the overall interaction error vector E, i.e.,

E =

N∑

i=1

Ei =

N∑

i=1

Φi





Xi

∆Ui

Vi



. (4.3)

Note that if, in the equation (2.29), LHS is subtracted from the RHS and is written in

matrix form, it would be:

N∑

j=1,j 6=i

Gij

[
Xj

∆Uj

]

− Vi, i = 1, ..., N.

If the above difference is aggregated from i = 1 to N , the result is the overall interaction
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error vector E:













∑

j 6=1 G1j

[
Xj

∆Uj

]

− V1

∑

j 6=2 G2j

[
Xj

∆Uj

]

− V2

...
∑

j 6=N GNj

[
Xj

∆Uj

]

− VN














=












−V1

G21

[
X1

∆U1

]

...

GN1

[
X1

∆U1

]












+












G12

[
X2

∆U2

]

−V2
...

GN2

[
X2

∆U2

]












+ · · ·+












G1N

[
XN

∆UN

]

G2N

[
XN

∆UN

]

...
−VN












=Φ1





X1

∆U1

V1



+ Φ2





X2

∆U2

V2



+ · · ·+ ΦN





XN

∆UN

VN





=
N∑

i=1

Ei

=E.

(4.4)

Therefore, by penalizing the ‘local part’ of the overall interaction error vector E using a

properly designed coordinating variable p(s), the CDMPC algorithm is expected to itera-

tively drive E to 0 so that the aggregation of the N distributed MPC controllers would be

equivalent to the centralized MPC problem (2.14).

Remark 4.1.1. The formulation of local MPC controllers in the price-driven CDMPC

method is similar to that in the prediction-driven method. Their main difference arises

from whether or not Vi’s are treated as the optimization variables in the local MPCs. Note

that Φi is closely related to the Θi matrix, which is defined in §3.1.2. If Ĩi is used to denote

the following matrix:










O
...
I
...
O











ith block is a
← Hpni ×Hpni,

identity matrix,

then (3.57) can be rewritten as:

Φi =
[

Θi −Ĩi

]
.

If in the local MPC problem (4.2), the vector Vi is excluded from the optimization variables,

then the objective (4.2a) would be equivalent to the objective (3.1a), since the block −Ĩi
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can be eliminated from the matrix Φi. Φi





Xi

∆Ui

Vi



 is constructed using the information in

equation (2.29), so if Vi is deleted from the objective function, another equation is needed to

represent that part of information, which results in (3.3) in the prediction driven CDMPC

method.

After the optimal solutions X∗
i(s), ∆U∗

i(s) and V ∗
i (s) of the local MPC problem (4.2)

are determined, the local MPCs need to conduct additional computations for the coordi-

nator to successfully update the price vector p(s). The first matrix calculated is called the

sensitivity matrix, which is defined as:

∇pZi =
dZi

dp
, (4.5)

where Zi ,





Xi

∆Ui

Vi



. According to Cheng, 2007 and Marcos, 2011, the sensitivity matrix

can be obtained from the following equation1:

Λi

[
∇pZi

∇pλi

]

=

[
−ΦT

i

OHpni×Hpn

]

, (4.6)

where:

Λi =









Qi GT
Aii

Ri GT
Bii

OHpni
IHpni

GAii
GBii

IHpni









(4.7)

and λi are the Lagrange multipliers associated with the constraint (4.2b). Equation (4.6) is

obtained by differentiating the first-order optimality condition of the ith local MPC problem

with respect to p(s). It can be proved that for the unconstrained MPC problem (4.2), Λi is

invertible (for a detailed proof, please refer to Appendix A.4). Therefore, ∇pZi is the first

2Hpni + Huqi rows of the matrix:

Λ−1
i

[
−ΦT

i

OHpni×Hpn

]

. (4.8)

The local MPCs must also calculate the optimal local interaction error vector E∗
i(s) and the

optimal local Hessian matrix H∗
i(s), which are linear combinations of Z∗

i(s) and ∇pZ∗
i(s),

respectively:

E∗
i(s) = ΦiZ

∗
i(s), (4.9)

H∗
i(s) = Φi∇pZ∗

i(s). (4.10)

1The sensitivity matrix presented here is for unconstrained MPC problems. In Cheng, 2007 and Marcos,
2011, the formulation of the sensitivity matrix for the more general, constrained price-driven CDMPC
method is discussed.
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Then, E∗
i(s) and H∗

i(s) are sent to the coordinator.

In the coordinator, E(s) =
∑N

i=1 E∗
i(s) and the Hessian matrix:

H(s) =

N∑

i=1

H∗
i(s) (4.11)

are calculated. The price vector is updated by equation (4.12):

p(s+1) = p(s) −H(s)−1
E(s). (4.12)

Then the iteration counter is increased by one: s ← s + 1, and the coordinator sends the

updated p(s) to the local MPC controllers. The communication between the local controllers

and the coordinator is repeated iteratively, until the coordinator finds ‖E(s)‖ to be smaller

than ǫ, which is a pre-defined accuracy level.

Remark 4.1.2. The coordinator is designed from solving the dual optimization problem

of the aggregated MPC problem:

min
X,∆U,V

J =
N∑

i=1

Ji (4.13a)

subject to:

[

Gii I
]





Xi

∆Ui

Vi



 = gi,

i = 1, ..., N,

(4.13b)

where X, ∆U and V are the concatenations of Xi’s, ∆Ui’s and Vi’s, respectively:

X = [XT
1 ,XT

2 , ...,XT
N ]T , (4.14)

∆U = [∆UT
1 ,∆UT

2 , ...,∆T
N ]T , (4.15)

V = [V T
1 ,XT

2 , ...,XT
N ]T . (4.16)

The dual problem is presented as:

max
p

min
X,∆U,V

J (X,∆U, V,p)

subject to:

(4.13b), i = 1, ..., N,

(4.17)

which is an unconstrained convex maximization problem (Mohseni, 2013, Boyd and Vanden-

berghe, 2004). Therefore, its maximum can be found where the gradient of the optimization

problem, which is:

E =

N∑

i=1

Φi





Xi

∆Ui

Vi



 ,
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is zero (Mohseni, 2013). The Hessian of the dual problem can be obtained by:

H =
dE

dp
=

N∑

i=1

Φi

d





Xi

∆Ui

Vi





dp
=

N∑

i=1

Φi∇pZi.

These lead to equations (4.10) and (4.11). If Newton’s method is used to find the point

where the gradient E is 0, it would result in equation (4.12). In the constrained price-

driven CDMPC, Newton’s method has to be modified by an optimal step θ:

p(s+1) = p(s) − θH(s)−1
E(s), (4.18)

where 0 < θ ≤ 1 is the maximum value that will not cause a change in the set of active

constraints. In the context of unconstrained DMPC, however, the active set change is not

a concern and a full Newton’s step will always be taken.

An implementable algorithm of the unconstrained price-driven CDMPC is described as

follows:

Algorithm 2 Implementation of Price-driven CDMPC

Initialization
Coordinator: Iteration counter s← 0.
Coordinator: The coordinating variable p(0) is arbitrarily determined.
repeat

Coordinator: p(s) is sent to to local controllers.
Local Controllers: Local optimization problem (4.2) are solved.
Local Controllers: Local controllers calculates ∇pZi, E∗

i(s) and H∗
i(s) according to

equations (4.6), (4.9) and (4.10), respectively.
Local Controllers: The vector E∗

i(s) and the matrix H∗
i(s) are sent to coordinator.

Coordinator: Calculate p(s) based on (4.12).
Coordinator: Iteration counter s← s + 1.

until ‖E(s) − E(s−1)‖ < ǫ

4.2 Convergence Analysis

The price-driven CDMPC method has been observed to converge quickly. Specifically, in

Marcos, 2011 it is mentioned that when there is no change in active set, convergence occurs

at the second communication cycle; however, there was no mathematical analysis to support

this claim. In this section, we will follow a similar approach as in §3.2 and discover why the

fast convergence of the unconstrained price-driven CDMPC occurs. Moreover, the rate of

convergence of the method will also be given.
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4.2.1 An Iterative Formulation

As its name indicates, in the price-driven DMPC method it is the price vector p(s) that is

transmitted between the coordinator and local MPCs and updated in each communication

cycle. The algorithm can therefore be written as:

p(s+1) = ϕ(p(s)). (4.19)

In this subsection, the explicit expression of ϕ will be derived. We will see that when the

local MPCs are unconstrained, the function ϕ is linear and remains unchanged within the

kth control interval.

Local MPC Controllers

As in the analysis of §3.2.1, the first optimality condition of the ith local MPC optimization

problem in the sth communication cycle can be written as:











Qi

Ri

OHpni











Xi

∆Ui

Vi




−






QT
i r

0Huqi

0Hpni




+ ΦT

i p(s) +
[

Gii I
]T

λi = 02Hpni+Huqi
,

[

Gii I
]






Xi

∆Ui

Vi




 = gi,

(4.20)

where p(s) is the fixed coordinating variable and λi are the Lagrange multipliers of the

optimization problem (4.2). The QT
i = Qi relationship is still applicable in (4.20). Applying

the partitions Φi =
[

Θi −Ĩi

]
, Θi = [ΘAi

,ΘBi
] and Gij = [GAij

,GBij
], the zero matrices

in (4.20) can be eliminated and the equation set can be rewritten as:







−Qiri + QiXi + ΘT
Ai

p(s) + GT
Aii

λi = 0Hpni
,

Ri∆Ui + ΘT
Bi

p(s) + GT
Bii

λi = 0Huqi
,

−ĨT
i p(s) + λi = 0Hpni

,

GAii
Xi + GBii

∆Ui + Vi = gi.

(4.21)

Equation (4.21) can be further written in compact matrix form as:







Qi GT
Aii

Ri GT
Bii

OHpni
IHpni

GAii
GBii

IHpni













Xi

∆Ui

Vi

λi







=







Qiri −ΘT
Ai

p(s)

−ΘT
Bi

p(s)

ĨT
i p(s)

gi







, (4.22)

where the coefficient matrix on the LHS is Λi, and as stated in §4.1, it is invertible. Therefore

the optimal solution exists and is unique.

63



For convenience of analysis, the optimality condition (4.21) is aggregated from i = 1 to

N : 





−Qr + QXMPC + Θ̄T
Ap(s) + ḠT

AλMPC = 0Hpn,

R∆UMPC + Θ̄T
Bp(s) + ḠT

BλMPC = 0Huq,

−p(s) + λMPC = 0Hpn,

ḠAXMPC + ḠB∆UMPC + VMPC = g,

(4.23)

where ḠA, ḠB, Θ̄A and Θ̄B are identically defined as in equations (3.17), (3.18), (3.19)

and (3.20), respectively. The corresponding matrix formulation of (4.23) is:

Λ







XMPC

∆UMPC

VMPC

λMPC







=







Qr − Θ̄T
Ap(s)

−Θ̄T
Bp(s)

IT
Hpnp(s)

g







, (4.24)

where:

Λ =







Q ḠT
A

R ḠT
B

OHpn IHpn

ḠA ḠB IHpn







, (4.25)

and, as Λi, Λ is also invertible. For the derivation to be understood more clearly, rather

than using Λ−1 to solve for the unknown variables, we will follow the step-by-step fashion

used in §3.2.1 to express XMPC , ∆UMPC ,VMPC and λMPC in p(s) explicitly.

From the third equation in (4.23) it can be directly obtained that:

λMPC = p(s), (4.26)

which is substituted back to the first and second equations in (4.23). Because of the rela-

tionships GA = ḠA + Θ̄A and GB = ḠB + Θ̄B , the two equations then become:

QXMPC = −GT
Ap(s) + Qr, (4.27)

R∆UMPC = −GT
Bp(s). (4.28)

Both (4.27) and (4.28) are systems with equal number of unknown variables and linearly

independent equations, therefore, the solutions are:

XMPC = −Q−1GT
Ap(s) + r, (4.29)

∆UMPC = −R−1GT
Bp(s), (4.30)

where Q and R are both positive definite matrices and thus invertible. (4.29) and (4.30)

are substituted into the last equation of (4.23), and VMPC is:

VMPC =− (ḠAXMPC + ḠB∆UMPC + g)

=− ḠAr + ḠAQ−1GT
Ap(s) + ḠBR−1GT

Bp(s) − g

=(ḠAQ−1GT
A + ḠBR−1GT

B)p(s) − ḠAr − g.

(4.31)
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Up to this point, all the optimization variables have been represented as linear functions of

p(s). The focus will move to the coordinator to see how p(s+1) is expressed in p(s).

Coordinator

From equation (4.12) it can be seen that the two key matrices to calculate p(s+1) are E(s)

and H(s). How are they presented in p(s)? The overall interaction error E(s) is the sum of

ΦiZ
∗
i(s), where Z∗

i(s) =






X∗
i(s)

∆U∗
i(s)

V ∗
i(s)




 is a linear function in p(s) from the previous analysis.

Therefore, E(s) is a linear function in p(s) as well. Specifically:

E(s) =

N∑

i=1

ΦiZ
∗
i(s) =

N∑

i=1

[

ΘAi
ΘBi

−Ĩi

]






X∗
i(s)

∆U∗
i(s)

V ∗
i(s)






=
N∑

i=1

(ΘAi
X∗

i(s) + ΘBi
∆U∗

i(s) − ĨiV
∗
i(s)).

(4.32)

The sum-of-product
∑N

i=1 ΘAi
X∗

i(s) can be re-written in the following matrix multiplication:

N∑

i=1

ΘAi
X∗

i(s) =
[

ΘA1 ΘA2 · · · ΘAN

]









X∗
1(s)

X∗
2(s)
...

X∗
N(s)









= Θ̄AXMPC . (4.33)

Similarly,
∑N

i=1 ΘBi
∆U∗

i(s) and
∑N

i=1 ĨiV
∗
i(s) can be represented as:

N∑

i=1

ΘBi
∆U∗

i(s) =Θ̄B∆UMPC , (4.34)

−
N∑

i=1

ĨiV
∗
i(s) =− IHpnVMPC = −VMPC . (4.35)

Then, substituting equations (4.33) to (4.35) into (4.32) and using the p(s)-representation

of XMPC , ∆UMPC and VMPC , equation (4.32) can be transformed as:

E(s) =Θ̄AXMPC + Θ̄B∆UMPC − VMPC

=Θ̄Ar − Θ̄AQ−1GT
Ap(s) − Θ̄BR−1GT

Bp(s)−

(ḠAQ−1GT
A + ḠBR−1GT

B)p(s) + ḠAr + g

=− (Θ̄A + ḠA)Q−1GT
Ap(s) − (Θ̄B + ḠB)R−1GT

Bp(s)+

(Θ̄A + ḠA)r + g

=− (GAQ−1GT
A + GBR−1GT

B)p(s) + GAr + g.

(4.36)

65



It is stated in §4.1 that the local Hessian matrices Hi can be obtained from equations

(4.6) and (4.10); however, the calculation involves matrix inversion so it is not intuitive.

Since the gradient vector E(s) is already explicitly linear in p(s), the Hessian H(s) follows

directly by taking the derivative of E(s) with respect to p(s). This will give us:

H(s) =
dE(s)

dp(s)
= −(GAQ−1GT

A + GBR−1GT
B), (4.37)

or we can write:

E(s) = H(s)p(s) + GAr + g.

As H(s) is invertible (proof provided in Appendix A.5), according to (4.12), there is:

p(s+1) =p(s) −H(s)−1
E(s)

=p(s) −H(s)−1
[

H(s)p(s) + GAr + g
]

=p(s) − p(s) −H(s)−1
(GAr + g)

=(GAQ−1GT
A + GBR−1GT

B)−1(GAr + g)

,χ,

(4.38)

where: GA and GB are composed of system matrices; Q, R and r are fixed once the MPC

controllers are designed; and g remains constant within the kth control interval. Therefore,

vector χ is constant within the kth control interval. In equation (4.38), since p(s) is added

and subtracted, p(s+1) will always be χ, s = 0, 1, ..., i.e., p(1) = p(2) = ... = χ. This

indicates that no matter how p(0) is initialized, after one communication cycle p would be

exactly the solution. That proves the observation of the second-iteration convergence of the

price-driven CDMPC method, when there is no active set change.

4.2.2 Convergence Condition and Rate of Convergence

After obtaining p(s)’s value for s ≥ 1, we are in a position to present Theorem 4.2.1:

Theorem 4.2.1. When the local MPCs are all unconstrained, if the solution of the cen-

tralized MPC exists, the price-driven CDMPC is guaranteed to converge to the centralized

MPC, regardless of the selection of p(0).

Proof The optimal predicted states of centralized MPC are denoted to be X∗, the optimal

predicted input changes to be ∆U∗ and the associated Lagrange multipliers to be λ∗. It was

proved in Marcos, 2011 that when ‖E(s)‖ → 0, there are XMPC = X∗, ∆UMPC = ∆U∗ and

p(s) = λ∗. Therefore, the proof of Theorem 4.2.1 only needs to show that the stopping
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criterion ‖E(s)‖ → 0 is guaranteed. To see this, we substitute (4.38) into (4.36) and get:

E(s) =− (GAQ−1GT
A + GBR−1GT

B)p(s) + GAr + g

=H(s)p(s) + GAr + g

=H(s)
[

−H(s)−1
(GAr + g)

]

+ GAr + g

=0,∀s ≥ 1.

(4.39)

When E(s) = 0, there is ‖E(s)‖ = 0 and the convergence to the centralized MPC follows.

The proof also supports the observation that the unconstrained price-driven CDMPC

method takes two communication cycles to converge. Particularly, if Algorithm 2 is

applied, the algorithm will not stop until p(2) is calculated and the iteration counter will be

2 when the algorithm terminates. It should also be noted that the required communication

cycle may vary by 1 depending on how a specific algorithm is designed. In Cheng, 2007 the

algorithm requires three iteration to converge when there is no active set change.

Theorem 4.2.1 can also be interpreted in the context of iterative method. Though

p(s) is a constant vector after the initialization step, it can still be viewed as a special case

of linear iterative method:

p(s+1) = d1 + D2p(s), (4.40)

with D2 = O. Therefore, the convergence of the price-driven CDMPC method can also be

analyzed using the techniques of iterative method analysis. In §3.2.2 it was proved that the

prediction driven CDMPC converges to the centralized solution if and only if ρ(C2) < 1,

where C2 is defined in (3.33). The analogy stands true for the price-driven CDMPC as well.

A price-driven CDMPC can be formulated as (4.40) and will converge to the centralized

solution if and only if ρ(D2) < 1. This statement can be proved using the same approach as

in §3.2.2, so the proof is omitted here. The coefficient matrix D2 is O, making ρ(D2) = 0.

Consequently, the convergence condition ρ(D2) < 1 is always satisfied, which guarantees

the convergence.

We are also curious about the rate of convergence of the price-driven CDMPC method.

In this case, there would be some difficulties in the analysis when using the iterative method

approach. According to Definition 3.2.1, the average convergence rate of (4.40) after s

steps is

Rs(D2) = −1

s
log ‖D2

s‖, (4.41)

and the asymptotic convergence rate is

R(D2) = − log ρ(D2), (4.42)
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which would both be ∞ because D2 is a zero matrix. A similar situation arises in the

attempt to use the definition mentioned in Remark 3.2.1, where the rate of convergence

is defined as the limit of two successive errors. If we define the difference between p(s) and

its limit p(∞) to be the error vector e(s) and use matrix norm to measure the ‘length’ of

error, there is

R = lim
s→∞

‖e(s+1)‖
‖e(s)‖ . (4.43)

As shown in (4.38), p(s) = p(∞), ∀s ≥ 1. The error vector e(s) therefore remains 0 after

the first step, resulting in the ‘0 over 0’ structure in equation (4.43). The reason for these

difficulties is that the concept of convergence rate is developed for sequences that tend to

have infinite number of members, or algorithms with infinite steps. For example, in the

prediction-driven CDMPC, the rate of convergence gives us some insight into how far it is

from the limit and how many iterations are needed to be accurate enough. If an algorithm

always reaches the exact solution in a few steps, these will be certain information and will

not be our concern.

If the two rate of convergence results are compared against each other, the one obtained

in the iterative method framework is more preferable than the other. Though a specific rate

does not exist, the result ‘∞’ can be interpreted as ‘converges very fast’.

4.3 Computational Complexity

The fast-convergence of the price-driven CDMPC gives us a taste of its efficiency for the

unconstrained MPCs. In this section, we will discuss the complexity of the price-driven

CDMPC to see how much computational effort it requires to reach the centralized solution

and whether or not it is indeed a computational preferable method.

4.3.1 Theoretical Analysis

Since CDMPCs all have the same computation hierarchy, the complexity of price-driven

CDMPC shares the same expression with that of prediction-driven CDMPC, which is

T = TNonCo × CCN

= (Tcoor + max
i

Ti)× CCN.

As discussed in §4.2.1, the communication cycle number is a fixed number when local MPCs

are all unconstrained, so CCN can be taken as a coefficient. According to the third rule of

Property B.0.3, CCN can be omitted when calculating the complexity of the price-driven
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CDMPC, which is thus presented as:

TPRI = Tcoor + max
i

Ti. (4.44)

As in §3.3.1, the two component parts will be analyzed respectively, where the situations of

MPCs solved analytically and numerically are discussed separately.

Local MPCs: Solved Analytically

From §4.1, the matrices sent from local MPC to the coordinator are the local interaction

error vector Ei(s) and the local Hessian matrix Hi(s), where Hi(s) = Φi∇pZi and ∇pZi is

the first 2Hpni + Huqi rows of:

Λ−1
i

[
−ΦT

i

OHpni×Hpn

]

Note that Λ−1
i and Φi are fixed matrices for an existing decentralized MPC network, so

both ∇pZi and Hi(s) can be calculated off-line beforehand and ‘(s)’ in the subscript of Hi(s)

can be eliminated from here. Therefore, the computations that take place in the ith local

distributed MPCs include: 1) updating the coordinating term p(s)TΦi; 2) solving the MPC

problem (4.2); 3) calculating the local interaction error vector Ei(s).

The optimal X∗
i(s), ∆U∗

i(s) and V ∗
i (s) are obtained from the problem’s first-order opti-

mality condition (4.20), which is equivalent to:







Xi

∆Ui

Vi

λi







= Λ−1
i







Qiri −ΘT
Ai

p(s)

−ΘT
Bi

p(s)

ĨT
i p(s)

gi







, (4.45)

as discussed in §4.2.1. The complexity of each step in the ith local MPC and the dimensions

of related parameters are listed in Table 4.1. Adding up the complexity of each step, there

is the complexity of the analytically-solved local MPC:

Tianl
=O

(
2Hpn(2Hpni + Huqi) + (3Hpni + Huqi) + (3Hpni + Huqi)

2
)

=O
(
max(4H2

pnni, 2HpHunqi, 9H
2
pn2

i , 6HpHuniqi,Huq2
i )
)
,

(4.46)

where:
0 ≤ HpHunqi ≤ H2

pnni,

0 ≤ Huq2
i ≤ HpHuniqi ≤ H2

pn2
i ,

0 ≤ H2
pn2

i ≤ H2
pnni.
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Table 4.1: Local MPC (Solved Analytically) Complexity in Price-driven CDMPC: Step by Step

Step Description
Parameters and
Dimensions

Step Complexity

1. Calculate

φi =





ΘT
Ai

ΘT
Bi

−ĨT
i



p(s)

ΘAi
: Hpn×Hpni,

ΘBi
: Hpn×Huqi,

Ĩi : Hpn×Hpni

p(s) : Hpn× 1

O(Hpn(2Hpni + Huqi))

2. Calculate

ηi =





Qiri

0Hpni+Huqi

gi





−
[

φi

0Hpni

]

φi : (2Hpni + Huqi)× 1 O(3Hpni + Huqi)

3. Calculate






Xi

∆Ui

Vi

λi







= Λ−1
i ηi

Λi : (3Hpni + Huqi)
2,

ηi : (3Hpni + Huqi)× 1
O
(
(3Hpni + Huqi)

2
)

4. Calculate

Ei(s) = Φi





Xi

∆Ui

Vi





Φi : Hpn×
(2Hpni + Huqi),
Xi : Hpni × 1,
∆Ui : Huqi × 1
Vi : Hpni × 1

O (Hpn(2Hpni + Huqi))

Equation (4.46) is then simplified to:

Tianl
=O

(
2H2

pnni + 9H2
pn2

i

)

=O(2H2
pnni + 9H2

pnni)

=O(nin).

(4.47)

The complexity result is the same as that of the analytically solved local MPC in the

prediction-driven CDMPC. This is reasonable, because when the local MPCs are solved

analytically, only matrix multiplications and summations are involved. Their complexities

of the two matrix operations can be obtained by counting the matrix dimensions. In both

cases, the matrices with the largest dimension are in their coordinating terms, which link

the local MPC to the coordinator. The resulting complexities therefore have ni coming

from the subsystems and n coming from the coordinator.
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Local MPCs: Solved Numerically

Complexity analysis of the local MPCs in the price-driven CDMPCs is also extended to a

more practical scenario, where the unconstrained MPC problems are solved by IPM. The

complexity of IPM for solving general QP problems was discussed in §3.3.1. Note that

in the price-driven CDMPC, the local MPC problems are still QPs, so all the complexity

analysis of IPM in §3.3.1 applies here. We know that solving an QP with the form of

(3.59) requires O(m3.5 ln(1/ε)) complexity, where m is the number of decisions variable and

ε is the pre-defined accuracy threshold of the IPM algorithm. When the MPC problem

(4.2) is transformed into the general QP problem (3.59), there is m = 2Hpni + Huqi, then

it takes the ith local MPC controller O((2Hpni + Huqi)
3.5 ln(1/ε)) operations to solve for

X∗
i(s), ∆U∗

i(s) and V ∗
i(s). As qi ≤ ni, the complexity of solving the ith local MPC problem

with IPM is:

TiIPM
= O(n3.5

i ln(1/ε)). (4.48)

Before and after X∗
i(s), ∆U∗

i(s) and V ∗
i(s) are solved, the local controllers need to update the

coordinating term and calculate the local interaction error Ei(s), respectively. That is to

say, the numerically solved local MPCs must also complete Step 1 and Step 4 in Table 4.1.

Then the complexity of the local MPC in total is:

Tinum =Tiup + TiIPM
+ TiE

=O
(
2Hpn(2Hpni + Huqi) + n3.5

i ln(1/ε)
)

=O
(
max(4H2

pnni, n
3.5
i ln(1/ε))

)
,

(4.49)

where TiIPM
> Tiup = TiE when n, ni → ∞ and n

ni
< ∞. Therefore, the complexity of the

ith local MPC when it is solved by IPM is:

Tinum = O
(
n3.5

i ln(1/ε)
)
. (4.50)

Coordinator

In each communication cycle, the coordinator updates the price vector according to equation

(4.12), where E(s) =
∑N

i=1 Ei(s) and H(s) =
∑N

i=1 Hi(s). As discussed in the analysis of

local MPCs, Hi(s) are fixed, so the Hessian H(s) remains unchanged when the local MPCs

are unconstrained. Consequently, the Hessian can be calculated off-line and its superscript

‘(s)’ will be omitted. Table 4.2 lists the computation steps in coordinator. Note that these

steps are the same in both situations when the local MPC problems are solved analytically

and numerically. The coordinator complexity is the summation of complexities from Step
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Table 4.2: Coordinator Complexity in Price-driven CDMPC: Step by Step

Step Description
Parameters and
Dimensions

Step Complexity

1. Calculate

E(s) =
∑N

i=1 Ei(s)
Ei(s) : Hpn× 1 O(NHpn)

2. Calculate

S(s) , −H−1E(s)
E(s) : Hpn× 1,
H : Hpn×Hpn

O(H2
pn2)

3. Calculate

p(s+1) = p(s) + S(s)
S(s) : Hpn× 1,

p(s) : Hpn× 1
O(Hpn)

1 to Step 3:
Tcoor =O(NHpn + H2

pn2 + Hpn)

=O(max(NHpn,H2
pn2,Hpn)).

(4.51)

In (4.51), there is always 0 ≤ N ≤ n, because each subsystem has at least one state. As a

result, 0 ≤ Hpn ≤ NHpn ≤ H2
pn2, so the complexity of the coordinator is:

Tcoor = O(H2
pn2) = O(n2). (4.52)

Algorithm Complexity and a Comparison with Centralized Complexity

Table 4.3 summarizes the above complexity analysis. The overall complexity of the price-

Table 4.3: Complexity of Price-driven CDMPC and Centralized MPC

Complexity Type Solving Analytically Solving Numerically

Tcoor O(n2) O(n2)

maxi Ti O(max(ni)n) O(max(ni)
3.5 ln(1/ε))

CCN constant coefficient

TCEN O(n2) O(n3.5 ln(1/ε))

driven CDMPC method is then:

TPRI =Tcoor + max
i

Ti

=

{

O(n2 + max(ni)n),MPC solved analytically,

O(n2 + max(ni)
3.5 ln(1/ε)),MPC solved numerically,

(4.53)

Table 4.3 also lists the complexity of centralized MPC as a comparison to the the price-

driven CDMPC. The number of communication cycles for the price-driven CDMPC is fixed

to be 2, making it more efficient than the prediction-driven DMPC. Within the parallel com-

puting environment, it is expected that a properly designed price-driven CDMPC network
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should have computational advantage over the centralized MPC for large-scale systems as

well.

When MPCs are solved analytically, the ratio of required operations between the coordi-

nator in one cycle and the centralized MPC is r = Tcoor

TCEN
=

H2
pn2

(H2
p+1)n2+(HpHu+1)nq when n, q →

∞. There is always r < 1 regardless of the value of Hp, Hq, n and q. The operations of the

ith subsystem in this case is (4H2
p + 1)nin + niq + 2HpHuqin + 9H2

pn2
i + 6HpHuniqi + H2

uq2
i .

Consequently, whether or not TPRI is smaller than TCEN depends on Hp, Hq, n, ni, q and

ni. Taking a simplified scenario as example, we assume ni = qi,∀i and Hp = Hu. Under

these assumptions, it requires:

2
(
H2

pn2 + (6H2
p + 2)max(ni)n + 16H2

p max(ni)
2
)

< (2H2
p + 2)n2 (4.54)

if the price-driven CDMPC is to be faster than the centralized MPC. Solving (4.54) for

max(ni) would yield

0 < max(ni) <

√

73H2
p + 6Hp + 1− (3H2

p + 1)

16H2
p

n,

where the upper bound is a monotonically increasing function with respect to Hp and has

limits of limHp→1

√
73H2

p+6Hp+1−(3H2
p+1)

16H2
p

n = 0.3090n, limHp→∞

√
73H2

p+6Hp+1−(3H2
p+1)

16H2
p

n =

0.3465n. The result shows that if the number of subsystems is large enough and the local

MPCs have balanced computational load, the price-driven CDMPC is computationally more

favorable than the centralized MPC.

For the case of numerically solved MPCs, the comparison is almost the same as in

the prediction-driven, coordinated DMPC because TcoorPRED
, TcoorPRI

are both O(n2) and

TiPRED
, TiPRI

are both O(n3.5
i ln(1/ε)). The only difference in the comparison is that CCN

in the price-driven CDMPC is a small constant, which can be removed from the analysis.

Therefore we conclude that the price-driven CDMPC algorithm is a preferable choice for a

large-scale system, when the MPCs are solved numerically.

4.3.2 Empirical Analysis

Two sets of experiments were conducted to study the empirical complexity of the price-

driven CDMPC and to verify the theoretical analysis in §4.3.1. In these two experiments,

the systems and parameters were generated using the same method as in the empirical com-

plexity study of the prediction-driven CDMPC. The experiments also share the assumptions

with the prediction-driven CDMPC experiments, as well as the computing environment and

platform, which were all described in §3.3.2. The empirical complexities of the coordinator
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in one cycle, the maximum-sized subsystem and the price-driven CDMPC algorithm are

respectively represented by tcoor, timax and tPRI , where tcoor was defined in (3.77), timax in

(3.78) and:

tPRI = (tcoor + timax)× CCN = 2(tcoor + timax). (4.55)

The execution time tCEN was also recorded to represent the empirical complexity of the

centralized MPC.

The objective of the first experiment was to discover how tcoor, timax , tPRI and tCEN scale

as the plant state size n grows. To achieve this goal, we chose identically sized subsystems

and gradually increased the number of the subsystems. The theoretical analysis predicts

that tcoor and tCEN should be quadratic in n while timax is a linear function of n, when the

MPCs are solved analytically. If the MPCs are solved numerically, tcoor and timax have the

same hypotheses as the other scenario; whereas tCEN is expected to increase polynomially

with an order higher than 3. Experiment 2 focused on the parameter max(ni), so the plant

state size n, plant input size q and the number of subsystems N are fixed. According to

Table 4.3, tcoor and tCEN should remain constant when n is fixed, no matter how the MPCs

are solved. For the subsystems, timaxanl
is expected to be linear in max(ni) and timaxnum

be

polynomial with an order higher than 3.

The theoretical result of CCN always being 2 can be tested by counting the commu-

nication cycle numbers in each repetition of the experiments. Since all the systems were

generated from the Monte Carlo simulations, we did not design an individual experiment

for CCN .

Experiment 1: Empirical Complexity Varying With Number of Subsystems

All subsystems are fixed to be 2 × 2 in Experiment 1. The number of subsystems N are

sequentially chosen from the set N, which was defined in 3.81. Details of the experiment

can be found in Appendix C.

Scenario 1: The MPCs are all solved analytically in Scenario 1. The execution times

of the coordinator in one communication cycle and the centralized MPC are compared in

Figure 4.1. If we substitute n = q, Hp = 2Hu into the coordinator-to-centralized ratio r,

which was introduced in §4.3.1, there is r = 1
2 . As can be seen from the figure, the curve of

tcoor is always below that of tCEN , where the ratio r is empirically about 0.3. Both curves

present polynomial characteristics. The least-squares fitting were performed to see if they

are second-order polynomials as predicted. Since there is a visible outlier in the curve of

tCEN , it is removed first before the fitting. When both curves are assumed to be quadratic,
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Figure 4.1: Price-driven CDMPC Experiment 1. Execution time of coordinator in one cycle versus
execution time of centralized MPC, when MPCs are solved analytically. The solid line represents
tcoor and the dash-dot line represents tCEN . x axis is the plant state size and y axis is the execution
time in seconds.

the fitting results are:

tcoor =(1.5632 ± 1.2054) × 10−9n2+

(2.0253 ± 3.7409) × 10−7n + (1.4788 ± 2.0981) × 10−5,
(4.56)

tCEN =(4.4648 ± 2.8710) × 10−9n2+

(8.5037 ± 8.9136) × 10−7n + (9.9568 ± 4.9992) × 10−5.
(4.57)

If tcoor and tCEN are assumed to be third-order polynomials, they are fitted as:

tcoor =(0.76901 ± 1.4466) × 10−11n3 + (−2.0402 ± 6.8842) × 10−9n2+

(6.3080 ± 8.8784) × 10−7n + (0.60882 ± 2.6566) × 10−5
(4.58)

tCEN =(−3.4597 ± 3.2486) × 10−11n3 + (2.0698 ± 1.5467) × 10−8n2+

(−1.0665 ± 1.9752) × 10−6n + (1.3817 ± 5.8252) × 10−4.
(4.59)

Note that both of the third-order fittings do not make sense: for tcoor, the third-order

coefficient contains 0 in its 95% interval; for tCEN , the third-order coefficient has negative

value. For these reasons, we say that tcoor, and tCEN are both statistically quadratic in n,

as predicted.

Figure 4.2 shows the maximum of the subsystem execution time . From Table 4.3, the

complexity of the analytically solved ith local MPC is O(nin). The linear and quadratic
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fitting of timax are:

timax = (7.7774 ± 1.2741) × 10−7n + (1.0341 ± 0.20701) × 10−4, (4.60)

timax = (−1.0076 ± 1.5626) × 10−9n2+

(1.0798 ± 0.48494) × 10−7n + (9.1795 ± 2.7198) × 10−5,
(4.61)

(4.62)

and the second-order fitting is apparently invalid due to the negative quadratic coefficient.

Therefore the empirical complexity timax can be concluded to be statistically linear in n.
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Figure 4.2: Price-driven CDMPC Experiment 1. The longest execution time of subsystems, when
MPCs are solved analytically. x axis is the plant state size and y axis is the execution time in
seconds.

In Figure 4.3, we present the execution time of the price-driven CDMPC in a single cycle

and the centralized MPC. As can be seen, tNonCo is above tCEN , and then the two curves

cross since tCEN grows more rapidly. Note that the number of communication cycles is only

two. When the number of subsystems grows larger, tPRI would eventually be smaller than

tCEN as well.

Scenario 2: For the scenario where the MPCs are solved numerically, the comparison

of tcoor and tCEN are presented in Figure 4.4. When least-squares regression is applied

to fit the curves, the first datapoint, which is a visible outlier, is removed from the set of
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Figure 4.3: Price-driven CDMPC Experiment 1. Execution time of the price-driven CDMPC
in a single cycle versus the execution time of centralized MPC, when MPC problems are solved
analytically. The solid line represents tNonCo and the dash-dot line represents tCEN . x axis is the
plant state size and y axis is the execution time in seconds.

datapoints. The second- and third-order fitting of tCEN are:

tCEN =(3.7132 ± 0.26204) × 10−7n2+

(−2.1573 ± 0.82791) × 10−5n + (3.9734 ± 0.48237) × 10−3,
(4.63)

tCEN =(1.5974 ± 3.1867) × 10−10n3 + (2.9527 ± 1.5395) × 10−7n2+

(−1.2229 ± 2.0401) × 10−5n + (3.7597 ± 0.64409) × 10−3,
(4.64)

respectively. For tcoor, the second- and third-order fitting results are:

tcoor =(1.0905 ± 0.14653) × 10−9n2+

(2.3599 ± 0.45474) × 10−7n + (7.1609 ± 2.5504) × 10−6,
(4.65)

tcoor =(−0.46838 ± 1.8009) × 10−12n3 + (1.3100 ± 0.85702) × 10−9n2+

(2.0990 ± 1.1053) × 10−7n + (7.6908 ± 3.3073) × 10−6,
(4.66)

Note that the third-order coefficient of the fitted polynomials contain 0 in their 95% con-

fidence intervals, so we conclude that the empirical complexities of the numerically solved

centralized MPC and the coordinator are both second-order polynomials.

According to the theoretical analysis, the maximum time taken by the local MPCs

should be linear to the plant size n, which is the same as in Scenario 1 when MPCs are

solved analytically. Figure 4.5 shows this and it indeed has a similar pattern as Figure 4.2.
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Figure 4.4: Price-driven CDMPC Experiment 1. Execution time of coordinator in one cycle versus
execution time of centralized MPC, when MPCs are solved numerically using the interior-point
method. The solid line represents tcoor and the dash-dot line represents tCEN . x axis is the plant
state size and y axis is the execution time in seconds.

Fitting timax with the assumptions that it is linear and quadratic functions in n, we have

timax = (1.4159 ± 0.28790) × 10−6n + (2.7644 ± 0.046777) × 10−3, (4.67)

timax = (−5.4213 ± 2.6836) × 10−9n2+

(3.0411 ± 0.83283) × 10−7n + (2.7019 ± 0.046709) × 10−3,
(4.68)

(4.69)

where the second-order fitting of timax would tend to −∞ as n→∞ and is therefore invalid.

Consequently, timax can be considered as linear in n when max(ni) is fixed, whether the

local MPCs are solved analytically or numerically, which matches the theoretical analysis.

The comparison of the single-cycle price-driven CDMPC and the centralized MPC in

execution time is presented in Figure 4.6. In this scenario, the curve of tCEN is always above

that of tNonCo and the difference between the two curves increases rapidly as n increases.

In Figure 4.7, the communication cycle numbers of every test in both Scenario 1 and 2

are shown. As predicted, all CCN are 2 in the unconstrained price-driven CDMPC, which

proves the theoretical analysis of it. With such a small constant CCN , the price-driven

CDMPC has advantage over the centralized MPC, especially when the MPCs are solved

numerically by the interior-point method.
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Figure 4.5: Price-driven CDMPC Experiment 1. The longest execution time of subsystems, when
MPCs are solved numerically. x axis is the plant state size and y axis is the execution time in
seconds.
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Figure 4.6: Price-driven CDMPC Experiment 1. Execution time of the prediction-driven CDMPC
in a single cycle versus the execution time of centralized MPC, when MPC problems are solved
numerically using the interior-point method. The solid line represents tNonCo and the dash-dot line
represents tCEN . x axis is the plant state size and y axis is the execution time in seconds.
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Figure 4.7: All CCNs for every repetition in Experiment 1, including all data points from Scenario
1 and Scenario 2.

Experiment 2: Empirical Complexity Varying With the Maximum Subsystem
Size

This second experiment has the same settings as Experiment 2 in the empirical complexity

study of the prediction-driven CDMPC, i.e., the plant sizes are fixed to be n = q = 160 while

the maximum subsystem size varies. The sizes of the 80 subsystems are chosen sequentially

from the set (3.89).

Scenario 1: The MPCs are solved analytically in Scenario 1. Figure 4.8 shows the

execution time of both the single-cycled coordinator and the centralized MPC. The two

curves both fluctuate without an obvious trend of increase or decrease. If they are assumed

to be linear functions in max(ni), the least-squares fitting results are:

tcoor = (0.39437 ± 1.4755) × 10−6 max(ni) + (4.2955 ± 0.39076) × 10−4, (4.70)

tCEN = (−0.29937 ± 2.6452) × 10−6 max(ni) + (8.9907 ± 7.1592) × 10−5. (4.71)

The linear coefficient in equations (4.70) and (4.71) both contain 0 in their 95% confidence

intervals. Therefore, we cannot say with 95% confidence that they are not zero. Additionally

both of the fitted linear coefficients are very small so that they can almost be treated as

0. This agrees well with the theoretical analysis that changing max(ni) will not affect the

complexity of the coordinator and the centralized MPC.
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Figure 4.8: Price-driven CDMPC Experiment 2. Execution time of coordinator in one cycle versus
execution time of centralized MPC, when MPCs are solved analytically. The solid line represents
tcoor and the dash-dot line represents tCEN . x axis is the maximum subsystem state size and y axis
is the execution time in seconds.

The variation of timax as max(ni) increases is plotted in Figure 4.9. As can be seen,

timax shows an increasing trend as max(ni) grows. According to the derivation presented

in §4.3.1, the analytically solved local MPCs have complexity of O(nin) and timax should

be linear in max(ni). We assume that timax is linear and quadratic functions of max(ni),

respectively, and have the least-squares fitting results:

timax = (2.5789 ± 0.93023) × 10−6 max(ni) + (2.9080 ± 0.45136) × 10−4,

timax = (−0.57261 ± 4.4884) × 10−8 max(ni)
2+

(3.0575 ± 3.8746) × 10−6 max(ni) + (2.8420 ± 0.69791) × 10−4.

(4.72)

Since the second-order fitting has a negative quadratic coefficient and the coefficient is

very small comparing to the 95% confidence interval, timax should not be considered to be

a quadratic function in max(ni), statistically. Therefore, we can say that the maximum

execution time of subsystems is statistically linear in max(ni), which goes well with the

hypothesis.

Scenario 2: When the MPCs are solved numerically using the interior-point method,

the comparison of tcoor and tCEN in execution time is shown in Figure 4.10. There are

two different y axes in Figure 4.10, because the two curves differ by about two orders of

magnitude. The curve of tcoor has a similar pattern as in Scenario 1, while that of tCEN
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Figure 4.9: Price-driven CDMPC Experiment 2. The longest execution time of subsystems, when
MPCs are solved analytically. x axis is the maximum subsystem state size and y axis is the execution
time in seconds.

shows an increasing trend as max(ni) gets bigger. The reason for this increase has been

discussed in §3.3.2, which is possibly due to the ‘presolve’ step of the MATLABR© IPM

solver.

The theoretical analysis in §4.3.1 predicted that the maximum execution time of sub-

systems should be a polynomial with order between 3 and 4 when local MPCs are solved

numerically, using IPM. The polynomial characteristic can be seen in Figure 4.11. Attempts

were made to fit timax as second- and third-order polynomials. The results are:

timax =(5.5767 ± 1.0243) × 10−7 max(ni)
2 + (−1.2426 ± 0.88418) × 10−5 max(ni)+

(3.3387 ± 0.15926) × 10−3.

(4.73)

timax =(0.77805 ± 5.1219) × 10−9 max(ni)
3 + (4.6048 ± 6.4865) × 10−7 max(ni)

2+

(−0.92024 ± 2.3129) × 10−5 max(ni) + (3.3168 ± 0.21973) × 10−3,
(4.74)

The cubic fitting has 0 in the 95% confidence interval of the third-order coefficient, whose

value is small compared to the size of the confidence interval. Therefore, the empirical

complexity of timax , when local MPCs are solved by IPM, is quadratic in max(ni).

The execution time of the price-driven CDMPC is compared with that of the centralized

MPC in Figure 4.12.
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Figure 4.10: Price-driven CDMPC Experiment 2. Execution time of coordinator in one cycle
versus execution time of centralized MPC, when MPCs are solved numerically using the interior-
point method. tcoor is represented by the solid line and corresponds to y axis on the left. tCEN is
represented by the dash-dot line and corresponds to y axis on the right. x axis is the maximum
subsystem state size.

In the end, the CCNs of each test are presented in Figure 4.13. All except 8 among

3400 tests have CCNs being 2. The 8 datapoints can be treated as outliers. Some of

them are due to the floating point error of the computation machine, while some are due to

the ill-conditioned subsystem matrices such as Hi, Λi, etc. generated in the Monte Carlo

simulation. This can also explain why in (Cheng, 2007) some of the interior case CCNs

have small deviation above 3, but never below 3.

4.4 Conclusions

This chapter studied the computational properties of the unconstrained price-driven CDMPC.

It is an efficient method, with guaranteed convergence to the optimal solution within two

communication cycles, as long as the centralized solution exists. The computational com-

plexity of this CDMPC algorithm is polynomial in problem size. Moreover, it can reach

the centralized solution faster than the centralized MPC, especially when the number of

subsystems is large. The advantage is more obvious when the MPCs are solved numeri-

cally, which is the actual method used in practice. Compared with the prediction-driven

CDMPC, price-driven CDMPC is a better choice for implementation, because of the guar-
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Figure 4.11: Price-driven CDMPC Experiment 2. The longest execution time of subsystems, when
MPCs are solved analytically. x axis is the maximum subsystem state size and y axis is the execution
time in seconds.

anteed convergence and small CCN .
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Chapter 5

Conclusions

5.1 Summary

The development of DMPCs is motivated by the increasing competition and the pursuit of

profits in the process industry. The DMPC methods proposed in the literature seek to bring

distributed control performance closer to the centralized control performance, while main-

taining the flexibility of the decentralized control systems. Nonetheless, the improvement

in performance often requires iterative communications between the nodes in the control

network, which may result in high computation and communication costs, especially when

the plant is a large-scale system with interconnected operation units. Therefore, this thesis

has focused on DMPC features that have not received much prior attention.

In this work, the computational properties of two unconstrained linear coordinated,

distributed MPCs, which are prediction-driven CDMPC and price-driven CDMPC, are

studied. A thorough discussion including both theoretical analysis and empirical studies is

provided. For both of the two CDMPC methods, the addressed properties are convergence

conditions, rates of convergence and computational complexities, which are closely related

to each other.

The unconstrained CDMPCs are first written as iterative functions, which are found

to be linear in the coordinating variables. Whether or not a specific method would con-

verge and its rate of convergence are controlled by the spectral radius ρ of the coordinating

variable’s coefficient matrix. The spectral radius of the coefficient matrix influences con-

vergence as follows: the method will converge to the centralized MPC if and only if ρ is

smaller than 1; a smaller ρ results in higher rate of convergence; and ρ affects the compu-

tational complexity of a CDMPC method, because its value would influence the number of

communication cycles between the coordinator and local MPCs. If CCN is not taken into

consideration, which is to say, in a single communication cycle, the two discussed CDMPCs
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both have polynomial complexity. When MPCs are numerically solved, they both present

computational advantages over the numerically solved, centralized MPC. Despite this, the

overall complexity of the two CDMPCs have significant difference due to CCN behavior.

The price-driven CDMPC has a fixed CCN , so its complexity remains to be polynomial and

it has a reasonable increase in the rate of computational load with the growth of problem

size. On the contrary, the prediction-driven CDMPC has an indefinite CCN which can

only be estimated and whose upper bound is unknown. Empirical study shows that when

the problem size grows, there is a higher chance of encountering a system with very large

CCN . In this case, the computational load of the CDMPC method is so heavy that the

method may be impractical.

From the results obtained in this thesis, it is recommended that the price-driven method

should be considered prior to the prediction-driven method, as the former one has a guaran-

teed covergence. If the prediction-driven method needs to be implemented, the convergence

condition can be checked and the required CCN be estimated, which would provide a sense

of how much computational load is needed before implementation.

5.2 Directions for Future Work

Although this thesis provides a thorough discussion on the convergence and complexity of

two CDMPC methods, more challenges remain in the study of this topic.

From a theoretical perspecive, an immediate question arises for the prediction-driven

CDMPC method: is it possible to reduce CCN so that overall computational load can

be reduced as well? It is observed from Figure 3.1 that when ρ(C2) increases, CCN is

very likely to increase. In the estimation of CCN , (3.75) indicates that a large ρ(C2)

may result in a large CCN . Therefore, one possible way to achieve the goal of reducing

computational load is to minimize ρ(C2), where C2, as stated in §3.2.1, is only determined

by the properties of the plant and the design of local MPC controllers. The parameters

of C2 are listed in (3.35). While A and B cannot be changed, the rest are MPC tuning

parameters and can be adjusted to vary the value of ρ(C2). This implies that we can write

an optimization problem of the following form:

min
Q,R,Hp,Hu

ρ(C2), (5.1)

and get the smallest possible spectral radius of C2. Nevertheless, the objective function ρ

is not continuous in Hp and Hu, and the mapping from the matrix variables Q and R to

the scalar ρ is very complex. For these reasons, an extra in-depth study is needed to solve
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optizimization problem (5.1). The optimization would change the parameters in local MPC

controllers, indicating that a trade-off between MPC performance and computational load

may exist.

It is also of interest as to how the complexity varies with the ‘strength’ of interaction

between subsystems, which is an immediate follow-up of the empirical computational study

in the thesis. The biggest challenge in this study is how to measure the ‘strength’ of

interaction, which is another topic that requires further research.

Besides the above two issues, the following extensions of the work are recommended as

the possible direction of further research:

• As can be noticed, the research scope of this thesis is limited to unconstrained linear

systems. This restriction leaves out the computational properties of the more general

systems and makes them open problems. It is recommended that the scope of the

research be expanded to the constrained linear systems first, and possibly further to

the nonlinear systems.

• The scope of time in this thesis is limited within a control interval, which is assumed

to be long enough for convergence. This is of course an idealized situation. If the

result is to be put to application, the computational properties over a control time

period should be studied as well, where only a finite number of communication cycles

are allowed within each control interval. Analyzing approaches similar to the stability

analyses in the literature may be applied. It is expected that the computational

properties studied in this thesis will affect the properties over a control time period.

• Subsystems in this thesis are all synchronized with each other using a same sampling

time. In a real plant, operation units may have very different rates so that a single

sampling time is not suitable for every local process. For this reason, the computa-

tional properties for asynchronous subsystems is worth further investigation.

• The thesis only discusses the computational properties of two coordinated DMPC.

As discussed in Chapter 1, a considerable amount of DMPC techniques have been

developed in the past decade. The computational properties of other DMPC methods

are also of interest. When a number of DMPC methods can be applied to a control

network, knowing the computational loads of different DMPC methods can help us

to choose from the candidates.

• It is assumed throughout the thesis that all state measurements are availale in the
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control network at every sampling time, which is often not true. In industrial prac-

tice, some process variables have to be measured off-line and thus, values cannot be

obtained at each sampling time (a well-known example is the product concentration).

Also, some process variables do not have measurements available. These are the sit-

uations that observers are required to estimate the states, which may also affect the

DMPC algorithm’s computational properties.
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Appendix A

Proofs of Matrix Invertibility

This chapter provides proofs of invertibility of the following matrices: GA, which was defined

in §2.4; GGT , which was defined in §3.1; W and Ψ, which were defined in §3.2; Wi and

Ψi, which were defined in §3.3; Λi, which was defined in §4.1; and Λ and H, which were

defined in §4.2.
Prior to the proofs, the term Schur complement and some related lemmas are intro-

duced, which will be applied in most of the invertibility proofs in this chapter. Assume that

a square matrix M ∈ R(l+m)×(l+m) is partitioned into the following four blocks:

M =

[
S T

U V

]

, (A.1)

where S ∈ Rl×l, T ∈ Rl×m, U ∈ Rm×l and V ∈ Rm×m. If the square matrix S is

nonsingular, then:

M/S , V −US−1T (A.2)

is defined to be the Schur complement of M relative in S. Similarly, if the square

matrix V is nonsingular, the Schur complement of M relative in V is defined as:

M/V , S − TV −1U . (A.3)

The Schur complement is a very useful tool in matrix analysis. A commonly used

property of Schur complement is presented in Lemma A.0.1:

Lemma A.0.1. (Schur’s Formula (Zhang, 2005)) Let M ∈ R(l+m)×(l+m) be a square

matrix partitioned as in equation (A.1). If S is nonsingular, then:

det(M) = det(S) det(M/S). (A.4)

Similarly, if V is nonsingular, there is:

det(M) = det(V ) det(M/V ). (A.5)

90



When S (V ) is nonsingular, there is det(S) 6= 0 (det(V ) 6= 0). Then in equation (A.4)

(equation (A.5)), det(M) 6= 0 is equivalent to det(M/S) 6= 0 (det(M/V ) 6= 0), which

leads to Corollary A.0.1:

Corollary A.0.1. For the partitioned matrix M as in (A.1), if the block S (V ) is nonsin-

gular, then M is invertible if and only if the Schur complement M/S (M/V ) is invertible.

A.1 The Invertibility of GA

The matrix GA is a block-wise matrix defined as:

GA =








GA11 GA12 · · · GA1N

GA21 GA22 · · · GA2N

...
...

. . .
...

GA1N
GA2N

· · · GANN








=



































In1

−A11 In1 −A12 −A1N

. . .
. . .

. . . · · · . . .

−A11 In1 −A12 −A1N

In2

−A21 −A22 In2 −A2N

. . .
. . .

. . . · · · . . .

−A21 −A22 In2 −A2N

...
...

. . .
...

InN

−AN1 −AN2 −ANN InN

. . .
. . .

. . .
. . .

−AN1 −AN2 −ANN InN



































.

(A.6)

Note that the blocks of GA (GAii
’s and GAij

’s, where i, j = 1, ..., N and i 6= j) are them-

selves block matrices, with all of the non-zero elements on the lower half. The diagonal

blocks of GA, i.e., GAii
’s, are unit lower triangular matrices1. Although GAij

’s are not

square matrices, but the Hp × Hp blocks of them have a clear lower triangular structure

1A lower triangular matrix is a square matrix in which all elements above the diagonal are zero. For
example, let P ∈ R

l×l be a lower triangular matrix and pικ, ι, κ = 1, ..., l be its entries, then pικ = 0,∀ι < κ.
A unit lower triangular matrix is a lower triangular matrix with all diagonal elements being 1.(Horn and
Johnson, 2012)
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where all the diagonal blocks are zero matrices. We define such matrices to be strictly

block lower triangular matrices:

Definition A.1.1. Assume a l×m block matrix L has K×K blocks and has the following

structure:

L =








J11 J12 · · · J1K

J21 J22 · · · J21
...

...
. . .

...
JK1 JK2 · · · JKK








, (A.7)

where Jij ∈ Rli×mj , i, j = 1, ...K and Jij = O for all i ≥ j. Such a matrix is defined as a

strictly block lower triangular matrix.

To prove that GA is invertible, we first prove the invertibility of the matrix defined in

equation (A.8), which has the same structure as GA. The proof is built on properties of unit

lower triangular matrices and of strict lower block triangular matrices, Corollary A.0.1

and mathematical induction.

Assume that a block matrix BM ∈ Rm×m has the following structure:

BM =








P11 L12 · · · L1N

L21 P22 · · · L2N
...

...
. . .

...
LN1 LN2 · · · PNN








, (A.8)

where Pii, i = 1, ..., N are unit lower triangular matrices, and Lij, i, j = 1, ...N , i 6= j are

strictly block lower triangular matrices with S×S blocks. It is further assumed that: a) Lij

(or Pii if j = i) and Lik (or Pii if k = i) have the same partition in the row, and Lij (or Pjj

if i = j) and Lkj (or Pjj if k = j) have the same partition in the column, ∀i, j, k = 1, ..., N ;

and b) the α, βth block in Lij , denoted as Jijαβ
has the same number of columns as the

number of rows in Jjiβγ
, which is the β, αth block in Lji. For example, if the dimension of

Jijαβ
is lij(α)

×mij(β)
and the dimension of Jjiβγ

is lji(β)
×mji(γ)

, then there is mij(β)
= lji(β)

.

If assumptions b) is satisfied, we say that Lij and Ljk are compatible with each other,

∀i, j, k = 1, ..., N , i 6= j, j 6= k. Note that assumption a) and b) also indicate that Pii is

compatible with Lij and Lki, ∀i, j, k = 1, ..., N , i 6= j, i 6= k. The product LijLjk has the

same structure as Lik if i 6= k. If i = k, the product LijLji will be a square matrix and is

strictly lower triangular2.

To illustrate the above matrix structure more clearly, let M ∈ Rm×m be a matrix

following the structure in (A.8), with 3 × 3 blocks and each block is itself a 2 × 2 block

2A strictly lower triangular matrix is a lower triangular matrix with all diagonal elements being
0.(Horn and Johnson, 2012)
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matrix:

M =





P11 L12 L13

L21 P22 L23

L31 L32 P33





m11(1)
m11(2)

m12(1)
m12(2)

m13(1)
m13(2)

=












K1111 K1112 J1211 J1212 J1311 J1312

K1121 K1122 J1221 J1222 J1321 J1322

J2111 J2112 K2211 K2212 J2311 J2312

J2121 J2122 K2221 K2222 J2321 J2322

J3111 J3112 J3211 J3212 K3311 K3312

J3121 J3122 J3221 J3222 K3321 K3322












l11(1)

l11(2)

l21(1)

l21(2)

l31(1)

l31(2)

.

(A.9)

The dimensions of the 36 small blocks Jijαβ
and Kiiαβ

, i 6= j, i, j = 1, 2, 3, α, β = 1, 2, have

the following relationship and are re-labeled as:

p1 = l11(1)
= l12(1)

= l13(1)
= m11(1)

= m21(1)
= m31(1)

,

p2 = l11(2)
= l12(2)

= l13(2)
= m11(2)

= m21(2)
= m31(2)

,

p3 = l21(1)
= l22(1)

= l23(1)
= m12(1)

= m22(1)
= m32(1)

,

p4 = l21(2)
= l22(2)

= l23(2)
= m12(2)

= m22(2)
= m32(2)

,

p5 = l31(1)
= l32(1)

= l33(1)
= m13(1)

= m23(1)
= m33(1)

,

p6 = l31(2)
= l32(2)

= l33(2)
= m13(2)

= m23(2)
= m33(2)

.

If L31 is multiplied by L12, according to block matrix multiplication rule (Anton, 2006),

there is:

L31L12 =

[ ∑2
i=1 L311i

L12i1

∑2
i=1 L311i

L12i2∑2
i=1 L312i

L12i1

∑2
i=1 L312i

L12i2

]

=

[
Op5×p3 Op5×p4

Jp6×p3 Op6×p4

]

,

whose structure is exactly the same as L32. If L21 is multiplied by L12, following the same

derivation steps, there would be

L21L12 =

[
Op3×p3 Op3×p4

Jp4×p3 Op4×p4,

]

which is a strictly lower triangular matrix having the same dimension as P22.

Lemma A.1.1 and Lemma A.1.2 are required to prove the invertibility of the block

matrix BM defined in equation (A.8).

Lemma A.1.1. The product of a unit lower triangular matrix multiplied by a strictly block

lower triangular matrix is a strictly block lower triangular matrix, which has the same block-

structure as the original strictly block lower triangular matrix.
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Proof Assume that a strictly block lower triangular matrix L ∈ Rm×l has K ×K blocks

as follows:

L =










OL11

J21 OL22

...
...

. . .

JK1 JK2 · · · OLKK










,
[

Υ1 Υ2 · · · ΥK

]
,

(A.10)

where Jij , i, j = 1, ...,K and i > j are mi × lj matrices. OLij
denotes that the i, jth block

is a zero matrix, of which the dimension is mi × lj, i ≤ j. Let P be a m × m unit lower

triangular matrix and partition it into:

P =








P11

K21 P22

...
...

. . .

KK1 KK2 PKK








,










ΓT
1

ΓT
2

...

ΓT
K










,

(A.11)

where Pii ∈ Rmi×mi are also unit lower triangular matrices and Kij ∈ Rmi×lj , i, j =

1, ...,K, i > j. The i, jth block of P , if it is a zero matrix, is denoted as OPij
. The

dimension of OPij
is mi × lj, i < j.

The product of P multiplied by L can be represented as

T = P L =








T11 T12 · · · T1K

T21 T22 · · · T2K
...

...
. . .

...
TK1 TK2 · · · TKK








, (A.12)

where

Tαβ = ΓT
αΥβ. (A.13)
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When β ≥ α, there is

Tαβ =
[

Kα1 · · · Pαα OPα,α+1 · · · OPαK

]













OL1β

...
OLββ

Jβ+1,β
...

JKβ













=

α−1∑

γ=1

KαγOLγβ
+ PααOLαβ

+

K∑

γ=β

OPαγ Jγβ

= Omα×lβ ,

(A.14)

i.e., the matrix T has a following strictly block lower triangular structure:

T =








Om1×l1

T21 Om2×l2
...

...
. . .

TK1 TK2 · · · OmK×lK








=








OL11

T21 OL22

...
...

. . .

TK1 TK2 · · · OLKK








(A.15)

which proves the claim in Lemma A.1.1.

Lemma A.1.2. The inverse of a unit lower triangular matrix exists and is also a unit

lower triangular matrix.

Proposition A.1.1 and Proposition A.1.2 are introduced to help us prove Lemma

A.1.2.

Proposition A.1.1. The determinant of a triangular matrix (lower, upper or diagonal) is

the product of its diagonal elements.

For example, if U is a p× p upper triangular matrix defined as follows:

U =








u11 u12 · · · u1p

u22 · · · u2p

. . .
...

upp








, (A.16)

its determinant would be det(U) =
∏p

i=1 uii.

Proposition A.1.2. The inverse of an invertible lower (upper) triangular matrix is also a

lower (upper) triangular matrix
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For example, for the U matrix defined in A.16, if it is invertible, U−1 would be

U−1 =








ũ11 ũ12 · · · ũ1p

ũ22 · · · ũ2p

. . .
...

ũpp








. (A.17)

The statements in Proposition A.1.1 and Proposition A.1.2 are so well-known that

they can be found in many linear algebra textbooks such as Larson and Falvo, 2012 and

Anton, 2006. Therefore we will use them directly.

The readers also need to know Cramer’s rule and the definition of cofactor matrices

to understand the proof of Lemma A.1.2.

Definition A.1.2. The cofactor matrix of an l × l matrix

T =








t11 t12 · · · t1l

t21 t22 · · · t2l
...

...
. . .

...
tl1 tl2 · · · tll








, (A.18)

is defined as

cof(T ) =








cof(T )11 cof(T )12 · · · cof(T )1l

cof(T )21 cof(T )22 · · · cof(T )2l
...

...
. . .

...
cof(T )l1 cof(T )l2 · · · cof(T )ll








, (A.19)

where, cof(T )ij is called the i, jth cofactor of T . cof(T )ij is (−1)i+j multiplied by the

determinant of T ’s i, jth minor, which is a submatrix of T formed by deleting T ’s ith row

and jth column. The mathematical expression of the i, jth cofactor of T is:

cof(T )ij = det

























t11 · · · t1,j−1 t1,j+1 · · · t1l
...

. . .
...

...
. . .

...
ti−1,1 · · · ti−1,j−1 ti−1,j+1 · · · ti−1,l

ti+1,1 · · · ti+1,j−1 ti+1,j+1 · · · ti+1,l
...

. . .
...

...
. . .

...
tl1 · · · tl,j−1 tl,j+1 · · · tll

























(A.20)

Proposition A.1.3. (Cramer’s rule). The inverse of a matrix M can be calculated by

M−1 =
1

det(M)
× cof(M)T . (A.21)

With all the required propositions prepared above, we are ready for the proof of Lemma

A.1.2.
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Proof Assume P is a m×m unit lower matrix defined as follows:

P =








1
p21 1
...

...
. . .

pm1 pm2 · · · 1








. (A.22)

Since P is a triangular matrix, its determinant can be calculated by:

det(P ) =

N∏

i=1

pii =

N∏

i=1

1 = 1 6= 0, (A.23)

indicating that P is invertible. According to Proposition A.1.2, P−1 is a lower triangular

matrix. If all of its diagonal elements are 1, P−1 is a unit lower triangular matrix .

According to Cramer’s rule, the inverse of matrix P is:

P−1 =
1

det(P )
× cof(P )T = cof(P )T . (A.24)

The diagonal elements of cof(P ), cof(P )ii, i = 1, ...m are:

cof(P )ii = det



























1
...

. . .

pi−1,1
... 1

pi+1,1 · · · pi+1,i−1 1
...

. . .
...

...
. . .

pl1 · · · pl,i−1 pl,i+1 · · · 1



























× (−1)i+i

=
m−1∏

i=1

1× (−1)2i

= 1.

(A.25)

Therefore, all the diagonal elements of the lower triangular P−1 is 1, and Lemma A.1.2

is proved.

At the end of this section, we prove the invertibility GA by proving the following state-

ment:

Theorem A.1.1. The block matrix constructed in (A.8) is invertible.

Proof Mathematical induction:

i Base step: N = 2.

When N = 2, i.e., there are 2× 2 blocks, the block matrix BM is written as

BM (2) =

[
P11 L12

L21 P22

]

. (A.26)
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From Lemma A.1.2, P22 is invertible and P−1
22 is a unit lower triangular. The in-

vertibility of BM (2), based on Lemma A.0.1, is equivalent to its Schur complement

relative in P22:

BM (2)/P22 = P11 −L12P
−1
22 L21. (A.27)

According to Lemma A.1.1, L12P
−1
22 , L̃12 is a strictly block lower triangular matrix,

and it is compatible with L21. Therefore, the diagonal blocks of L12P
−1
22 L21 would be

L̃12ααL21αα = Onα×mαOmα×nα = Onα×nα , α = 1, ..., S (A.28)

which are square zero matrices. Therefore, the diagonal elements in L12P
−1
22 L21 are all

0, making it a strictly lower triangular matrix. Then the Schur complement becomes

BM (2)/P22 =P11 −L12P
−1
22 L21

=








1
∗ 1
...

...
. . .

∗ ∗ · · · 1







−








0
∗ 0
...

...
. . .

∗ ∗ · · · 0








=








1
∗ 1
...

...
. . .

∗ ∗ · · · 1








, (A.29)

which is a unit lower triangular matrix. The asterisks ∗ mean that the value of these ele-

ment will not change the fact that BM (2)/P22 is unit lower triangular and is invertible.

The invertibility of BM (2) is hence proved.

ii Induction steps: N = k > 2. Assume that a block matrix BM (k) with k × k blocks

is constructed after (A.8) and is invertible. We are to prove that the block matrix

BM (k+1), which also follows the structure of (A.8) and is defined as:

BM (k+1) =












P11 L12 · · · L1k L1,k+1

L21 P22 · · · L2k L2,k+1

...
...

. . .
...

...

Lk1 Lk2 · · · Pkk Lk,k+1

Lk+1,1 Lk+1,2 · · · Lk+1,k Pk+1,k+1












=

[
BM (k)

L1,k+1

Lk+1,1 Pk+1,k+1

]

,

(A.30)

is invertible.
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The Schur complement of BM (k+1) relative in Pk+1,k+1 is

BM (k+1)/Pk,k+1 =BM (k) − L1,k+1P
−1
k+1,k+1Lk+1,1

=BM (k) −






L1,k+1
...

Lk,k+1




P−1

k+1,k+1 [Lk+1,1 · · ·Lk+1,k]

=BM (k) −






L1,k+1P
−1
k+1,k+1Lk+1,1 · · · L1,k+1P

−1
k+1,k+1Lk+1,k

...
. . .

...

Lk,k+1P
−1
k+1,k+1Lk+1,1 · · · Lk,k+1P

−1
k+1,k+1Lk+1,k




 ,

(A.31)

where Li,k+1P
−1
k+1,k+1 is a strictly lower block triangular matrix having the same struc-

ture as Li,k+1, i = 1, ..., k. Since Li,k+1 and Lk+1,j, i, j = 1, ...k are compatible

with each other, the product Li,k+1P
−1
k+1,k+1Lk+1,j has the same structure as Lij,

i 6= j, i, j = 1, ..., k, and the product Li,k+1P
−1
k+1,k+1Lk+1,i is a strict lower triangular

matrix with the same dimension as Pii, i = 1, ..., k. The product Li,k+1P
−1
k+1,k+1Lk+1,j

is denoted to be L′
ij, ∀i, j = 1, ..., k, and then there is

BM (k+1)/Pk,k+1 =BM (k) −






L′
11 · · · L′

1k
...

. . .
...

L′
k1 · · · L′

kk






=






P11 −L′
11 · · · L1k −L′

1k
...

. . .
...

Lk1 −L′
k1 · · · Pkk −L′

kk




 ,

(A.32)

where L̃ij , Lij − L′
ij maintains the structure of Lij, ∀i 6= j, i, j = 1, ..., k, because

L′
ij and Lij are strictly block lower triangular matrices sharing a same structure. The

matrices P̃ii , Pii − L′
ii are still unit lower triangular matrices, ∀i = 1, ..., k. Then

BM (k+1)/Pk,k+1 can be further represented as:

BM (k+1)/Pk,k+1 =






P̃11 · · · L̃1k
...

. . .
...

L̃k1 · · · P̃kk




 , B̃M

(k)
. (A.33)

In equation (A.33), ˜BM
(k)

is a block matrix with k×k blocks following the structure of

(A.8), which is invertible according to the assumption. Therefore, BM (k+1) is invertible

if BM (k) is invertible.

The invertibility of a matrix BM as constructed in (A.8) is hence proved.

Since GA is a matrix as structed in (A.8), it is invertible.
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A.2 The Invertibility of GGT

The concepts of positive semidefinte and positive definite matrices and Lemma A.2.1

are introduced first prior to the proof. A symmetric matrix S ∈ Rm×m is said to be positive

semidefinite if zT Sz ≥ 0,∀z ∈ Rm. Moreover, if zT Sz > 0,∀z 6= 0, S is said to be

positive definite. Positive semidefinite and positive definite matrices have many important

properties, some of which will be used in the invertibility proofs and are presented in

Property A.2.1 and Property A.2.2.

Property A.2.1. (Horn and Johnson, 2012) The eigenvalues of a positive semidefinite

matrix are all nonnegative. The eigenvalues of a positive definite matrix are all positive.

Property A.2.2. (Horn and Johnson, 2012) A positive semidefinite matrix S can always

be written as the product of some matrix multiplying its transpose, i.e., ∃Y such that S =

Y T Y . Conversely, the product XT X,∀real matrix X, is always positive semidefinite.

Lemma A.2.1. A positive semidefinite matrix S ∈ Rm×m is positive definite if and only if

it is invertible.

Proof Denote the m eigenvalues of S to be λi, i = 1, ...,m, from Property A.2.1 there

is λi ≥ 0,∀i = 1, ...,m.

If S is positive definite, there is λi > 0,∀i = 1, ...,m. Since det(S) =
∏m

i=1 λi (Horn and

Johnson, 2012), it can be easily seen that det(S) > 0 6= 0. Therefore S is invertible.

Assume that S is invertible but not positive definite. Then S has at least one eigenvalue

that is 0, which implies that det(S) =
∏m

i=1 λi = 0. S is therefore not invertible. This

contradicts the assumption that S is invertible, which leads to the conclusion that a positive

semidefinite matrix is invertible only if it is positive definite.

Theorem A.2.1. The matrix GGT is invertible, where G = [GA,GB], GA and GB are

defined in (2.18).

Proof Since G = [GA,GB ], there is

GGT = GAGT
A + GBGT

B . (A.34)

From Property A.2.2, it can be seen that GAGT
A and GBGT

B are both positive semidefi-

nite. Moreover, since GA is invertible as proved in §A.1, det(GA) 6= 0. Then:

det(GAGT
A) = det(GA) det(GT

A) = det(GA)2 > 0,
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implying that GAGT
A is positive definite. Therefore, zT GAGT

Az > 0,∀z 6= 0, and:

zT GGT z = zT (GAGT
A + GBGT

B)z

= zT GAGT
Az + zT GBGT

Bz > 0.
(A.35)

From the definition of positive definite matrix, the conclusion immediately follows that

GGT is positive definite, which is invertible according to Lemma A.2.1.

A.3 The Invertibility of W , Wi, Ψ and Ψi

The matrix W was defined as:

W =





Q O ḠT
A

O R ḠT
B

ḠA ḠB O





and Ψ as:

Ψ = ḠAQ−1ḠT
A + ḠBR−1ḠT

B

in §2.2.1. Note that −Ψ is the Schur complement of W relative in diag(Q,R). According to

Corollary A.0.1, the invertibility of W is equivalent to that of −Ψ, and hence equivalent

to that of Ψ.

Similarly, Wi and Ψi are defined as:

Wi =





Qi O GT
Aii

O Ri GT
Bii

GAii
GBii

O



 (A.36)

and:

Ψi = GAii
Q−1

i GT
Aii

+ GBii
R−1

i GT
Bii

, (A.37)

respectively. −Ψi is the Schur complement of Wi relative in diag(Qi,Ri), so the invertibility

of Wi and Ψi is equivalent as well.

Because of these equivalencies, only the invertibility proofs of Ψ and Ψi will be adequate.

Another property of positive definite matrices are required to build the proofs:

Property A.3.1. (Horn and Johnson, 2012) The inverse of a positive definite matrix is

also positive definite.

Theorem A.3.1. The matrices W , Wi, Ψ and Ψi as defined respectively in (3.21), (3.53),

(3.25) and (3.57) are invertible.
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Proof Matrices Qi and Ri are positive definite, therefore, their inverses are also positive

definite. According to Property A.2.2, there exist some matrices Xi and Yi such that

Q−1
i = XT

i Xi and R−1
i = Y T

i Yi. Then it can be seen that GAii
Q−1

i GT
Aii

= (XiG
T
Aii

)T (XiG
T
Aii

)

and GBii
R−1

i GT
Bii

= (YiG
T
Bii

)T (YiG
T
Bii

). Consequently, both of them are positive semidef-

inite.

Furthermore, the matrix GAii
, which is defined as

GAii
=










Ini

−Aii Ini

−Aii Ini

. . .
. . .

−Aii Ini










︸ ︷︷ ︸

Hp×Hp blocks

,

is a unit lower triangular matrix. This indicates that GAii
is invertible and has det(GAii

) 6=
0, which results in:

det(GAii
Q−1

i GT
Aii

) = det(GAii
)2 det(Q−1

i ) > 0. (A.38)

Therefore, GAii
Q−1

i GT
Aii

is positive definite. Then:

zT
i Ψizi = zT

i GAii
Q−1

i GT
Aii

zi + zT
i GBii

R−1
i GT

Bii
zi > 0 (A.39)

∀zi ∈ RHpni 6= 0. This proves that Ψi is positive definite, and its invertibility follows

immediately.

The invertibility proof of Ψ can be done in exactly the same way as Ψi, but note that:

Q = diag(Q1,Q2, ...,QN ),

R = diag(R1,R2, ...,RN ),

ḠA = diag(GA11 , ...,GANN
),

ḠB = diag(GB11 , ...,GBNN
).

The inverse of the block-diagonal matrices Q and R, are:

Q−1 = diag(Q−1
1 ,Q−1

2 , ...,Q−1
N ),

R−1 = diag(R−1
1 ,R−1

2 , ...,R−1
N ).

From the block-matrix multiplication rule, there is:

zT Ψz = zT (ḠAQ−1ḠT
A + ḠBR−1ḠT

B)z

=

N∑

i=1

zT
i GAii

Q−1
i GT

Aii
zi + zT

i GBii
R−1

i GT
Bii

zi > 0,
(A.40)
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∀z ∈ RHpn 6= 0, where z = [zT
1 ,zT

2 , ...,zT
N ]T and zi ∈ RHpni . This shows that Ψ is also a

positive definite matrix and thus invertible.

Since Ψi being invertible ensures the existence of Wi
−1, and Ψ ensures W−1, we con-

clude that all of the four matrices are invertible.

A.4 The Invertibility of Λi and Λ

The matrices Λi and Λ were defined as:

Λi =









Qi GT
Aii

Ri GT
Bii

OHpni
IHpni

GAii
GBii

IHpni









,

and:

Λ =







Q ḠT
A

R ḠT
B

OHpn IHpn

ḠA ḠB IHpn







,

in §4.1 and §4.2, respectively.

Theorem A.4.1. The matrices Λi and Λ as defined in (4.7) and (4.25) are invertible.

Proof Since Qi and Ri are positive definite, the matrix Υi , diag(Qi,Ri) is nonsingular.

According to Corollary A.0.1, the invertibility of Λi is equivalent to that of its Schur

complement relative in Υi:

Λi/Υi =

[
IHpni

IHpni

]

−
[

O O

GAii
GBii

] [
Q−1

i

R−1
i

] [
O GT

Aii

O GT
Bii

]

=

[
IHpni

IHpni
GAii

Q−1
i GT

Aii
+ GBii

R−1
i GT

Bii

]

=

[
IHpni

IHpni
Ψi

]

,

where Ψi was proved to be invertible in §A.3. We apply Corollary A.0.1 again and found

that the Schur complement Λi/Υi is invertible if and only if −(Ψi)
−1 is invertible, which

is readily given. Therefore, Λi is invertible.

The Schur complement of Λ relative inΥ , diag(Q,R) is:

Λ/Υ =

[
IHpn

IHpn Ψ

]

,

where the invertibility of Ψ was also given in §A.3. Similar to Λi, Λ can be proved to be

invertible applying Corollary A.0.1 twice.
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A.5 The Invertibility of H

The matrix H in the unconstrained context was defined as:

H = −(GAQ−1GT
A + GBR−1GT

B).

in equation (4.37).

Theorem A.5.1. The matrix H as defined in (4.37) is invertible.

Proof Since GA was proved to be nonsingular in §A.1, det(GA) 6= 0. Then there is

det(GAQ−1GT
A) = det(GA)2 det(Q−1) > 0. For ∀z 6= 0, the following inequality holds:

zT Hz = −zT GAQ−1GT
Az − zT GBR−1GT

Bz < 0, (A.41)

indicating that H is negative definite. Therefore, H is invertible.
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Appendix B

Mathematical Background of

Computational Complexity

The definitions and properties of O-notation in complexity analysis can be found in a number

of algorithm textbooks such as Wilf, 2002, Brassard and Bratley, 1996 and Cormen, 2009,

etc.. We refer to Brassard and Bratley, 1996 to introduce the concept of O-notation.

In this chapter, N denotes the set of natural numbers, i.e., {1, 2, 3, ...}, and R+ denotes

the set of positive real numbers.

Definition B.0.1. Assume that t ∈ N, and there are two functions f, g : N → R+. We

write:

f(t) = O(g(t)), t→∞, (B.1)

if ∃C > 0 and M ∈ N, such that f(t) < Cg(t), ∀n > M .

‘t → ∞’ is omitted since we are interested in a large t in our discussion. Note that

there is some abuse of notation in the way that we are writing f(t) = O(g(t)). From its

definition, O(g(t)) is a set and what ‘=’ really means is ‘∈’; however, it is the traditional

way to write ‘f(t) = O(g(t))’ and the convention will be followed.

From Definition B.0.1, Property B.0.1 and Property B.0.2 of O-notation can be

derived:

Property B.0.1. (Basic arithmetic)

(1) Sum If f1(t) = O(g1(t)), f2(t) = O(g2(t)), then f1(t) + f2(t) = O(g1(t) + g2(t));

(2) Product If f1(t) = O(g1(t)), f2(t) = O(g2(t)), then f1(t)f2(t) = O(f1(t)f2(t));

(3) Mutiplication with a Constant If f(t) = O(g(t)), then Kf(t) = O(g(t)) for ∀K 6= 0.

Property B.0.2. (Maximum rule)

O(f1(t) + f2(t)) = O(max(f1(t), f2(t))). (B.2)
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The sum-rule of O-notation is applied when the complexity of sequentially executed

codes is calculated, while the product-rule is required for iterative codes. Property B.0.2

indicates that the complexity of the sequentially executed codes is contributed by its most

time-consuming part, since the complexity of other parts are neglectable when t→∞.

If there are more than one variable to describe the problem size, O-notation is defined

as follows:

Definition B.0.2. Assume that t is a k × 1 vector with all ti ∈ N, i = 1, · · · , k and there

are two functions f, g : Nk → R+. We write:

f(t) = O(g(t)), t1, · · · , tk →∞, (B.3)

if ∃C > 0 and M ∈ N such that f(t) < Cg(t) for ∀t with ∀ti > M .

Consequently, the basic arithmetic and maximum rule for multivariable O-notation are

adapted as:

Property B.0.3. (Basic arithmetic for multiple variables)

(1) Sum If f1(t) = O(g1(t)), f2(t) = O(g2(t)), then f1(t) + f2(t) = O(g1(t) + g2(t));

(2) Product If f1(t) = O(g1(t)), f2(t) = O(g2(t)), then f1(t)f2(t) = O(f1(t)f2(t));

(3) Mutiplication with a Constant If f(t) = O(g(t)), then Kf(t) = O(g(t)) for ∀K 6= 0.

Property B.0.4. (Maximum rule for multiple variables)

O(g1(t) + g2(t)) = O(max(g1(t), g2(t))). (B.4)

Note that although Property B.0.3 and Property B.0.4 are presented for functions

with same sets of variables, they can also be applied to functions with different sets of

variables. To see this, assume that there are two functions f1(t) = O(g1(t)) and f2(s) =

O(g2(s)), where t = [t1, · · · , tm, l1, · · · , ln]T and s = [s1, · · · , so, l1, · · · , ln]T , with ti, lj , sk ∈
N(i = 1, ...,m; j = 1, ..., n; k = 1, ..., o). Define p to be p = [t1, · · · , tm, s1, · · · , so, l1, · · · , ln]T .

Then f1(t), f2(s), g1(t) and g2(s) can be transformed to:

f1(t) = f̃1(p) = f1(t) + 0T
o×1s;

f2(s) = f̃2(p) = f2(s) + 0T
m×1t;

g1(t) = g̃1(p) = g1(t) + 0T
o×1s;

g2(s) = g̃2(p) = g2(s) + 0T
m×1t.
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It can be proved that f1(t) = O(g1(t)) is equivalent to f̃1(p) = O(g̃1(p)), and f2(s) =

O(g2(s)) to f̃2(p) = O(g̃2(p)). Property B.0.3 and Property B.0.4 can then be applied

to the functions of p. For example, applying the summation rule in Property B.0.3, we

can conclude that f̃1(p) + f̃2(p) = O(g̃1(p) + g̃2(p)), which is the same as f1(t) + f2(s) =

O(g1(t) + g2(s)). The rest properties can be derived in the same way.
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Appendix C

Numerical Experiments

We designed two numerical experiments to learn the empirical complexity of the two

CDMPC methods, where the relationship between the sizes of systems and the complexity

is the focus of our study. Experiment 1 fixes the sizes of subsystems and varies the number

of subsystems, so that the overall plant size will change. Experiment 2 fixes the overall

plant size and the number of subsystems and varies the sizes of subsystems, so that the

computational load on each subsystem will change. Any selection from the various related

situations in an experiment, is called a ‘mode’ in the experiment. For example, in Experi-

ment 1, N = 2 is a mode. As stated in §3.3, Experiment 1 has 23 modes and Experiment

2 has 17 modes. Both experiments were conducted on both of the two addressed CDMPC

methods. Within each CDMPC method, two scenarios were considered (MPCs solved an-

alytically and numerically). For every scenario in each CDMPC method, each mode was

repeated 100 times.

The procedure of the numerical experiments is described as follows:

• Step 1. For a certain scenario in a certain experiment, the rth repitition of a spe-

cific mode is started. Based on the mode selection, an MPC network is generated.

In the experiments of prediction-driven CDMPC, the generated systems must have

ρ(C2) < 1, where C2 was defined in (3.33). Therefore, the generating programming

will continue to produce new MPC networks until it finds out that the requirement of

ρ(C2) is satisfied. System states and inputs are arbitrarily assigned to be their val-

ues at the kth sampling time. Parameters that are required to execute the CDMPC

algorithms are also generated.

• Step 2. The prediction-driven CDMPC (using Algorithm 1) or the price-driven

CDMPC (using Algorithm 2) coordinates the generated control network until the

termination criterion is met. When this happens, it is considered that the centralized
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solution is reached. A centralized controller also solves the same optimization problem.

In Scenario 1, the MPC solutions are calculated based on analytical formulations. In

Scenario 2, the MPC solutions are obtained by the MATLABR© IPM solver.

• Step 3. For the CDMPC algorithms, the number of communication cycles CCN(r),

the accumulated execution time of the coordinator
∑

tcoor(r) and the longest accumu-

lated execution time of subsystems
∑

timax(r) are recorded. The execution time of the

centralized MPC tCEN(r) is also recorded. At this point, the rth repitition is finished.

The execution time of the coordinator is tcoor(r) =
∑

tcoor(r)/CCN(r) and the longest

execution time of subsystems is timax(r) =
∑

timax(r)/CCN(r).

• Step 4. After a mode is repeated for 100 times, the averages of tcoor(r) and timax(r),

r = 1, ..., 100 are taken as tcoor and timax of this mode, respectively. Similarly, tCEN

of this mode is the average of tCEN(r), r = 1, ..., 100.

Note that the CDMPC algorithms were introduced in Chapter 3 and Chapter 4. All

of the other computations are arithmetic calculations. The only part that has not been

discussed is how the CDMPC network is generated, which will be presented in the following

section.

C.1 Parameter Generation

Generating a control network is essentially generating a list of parameters. According to

their properties, the parameters can generally be classified into three categories: a) system

parameters; b) local MPC design parameters; and c) CDMPC design parameters. System

parameters determine the properties of a system. Examples are A and B in equation (2.3),

the number of subsystems N , etc.. Local MPC design parameters determine the feature of

the MPC scheme. For example, the weighting matrices Qi and Ri in optimization problem

(2.28a) to (2.28c), etc.. CDMPC design parameters, such as the accuracy threshold ǫ, ensure

the CDMPC algorithm to run properly. A full list for the above three types of parameters

could be found in Table C.1, Table C.2 and Table C.3. Note that for the system parameters,

although knowing all of the subsystem information would be adequate to know the plant

model, we still list both the subsystem parameters and plant parameters. Most parameters

have their sets of values provided in the ‘Description’ column; however, the generation of

system matrices A and B requires more explanation, which will be discussed in §C.1.1
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C.1.1 System Parameters: A and B Matrices

The generation of system matrices A and B are done in two steps. First, the off-diagonal

matrices in A, i.e. Aij, i, j = 1, ..., N, i 6= j are generated. Second, all of the local state and

input matrices Aii and Bii, i = 1, ..., N , are generated. Note that Bij ’s are zero matrices,

so B is obtained after Bii, i = 1, ..., N are generated. If we denote the aggregation of the

diagonal matrices in A to be:

Ā =








A11

A22

. . .

ANN








(C.1)

and the aggregation of the off-diagonal matrices to be:

A = A− Ā =








O A12 · · · A1N

A21 O · · · A2N
...

...
. . .

...
AN1 AN2 · · · O








, (C.2)

then the first step can be described as to generate A, and the second step to generate Ā

and B. The spectral radius of the resulting A matrix, A = Ā + A, needs to be checked to

ensure that the system is stable.

Step 1, A: It is taken as a-priori knowledge in the numerical experiments that the

off-diagonoal matrix A is often sparse. The reason is that in a large-scale chemical plant,

the operation units are often linked together by sequential flows and a few recycle flows.

This results in a sparse feature of the plant model. The function to generate a sparse matrix

is described in Algorithm 3. In Algorithm 3, the sparse density is defined as d = k
nm for

an n×m matrix, where k is the number of nonzero elements in the matrix.

Algorithm 3 createSparse

function createSparse(n, m, d)
generate a random n×m matrix M , with sparse density d and whose nonzero elements

distributed uniformly on (−1, 1);
return M

end function

MATLABR© has a function sprand, where the non-zero elements are uniformly dis-

tributed on the interval (0, 1). In our experiments, the non-zero elements generated by

sprand is rescaled to be uniformly distributed on (−1, 1), and this modified function is

served as createSparse. The algorithm used to generate A is presented in Algorithm 4,

where dA is assigned to be 1/n.1

110



Algorithm 4 Algorithm to generate A

A = createSparse(n, n, dA),

set the elements corresponding to the spots of Ā to be 0,
return A.

Step 2, Ā and B: Since there is no special request for matrix B, the local input matrix

Bii are generated using Algorithm 3, where the sparse density dBii
is a random variable

uniformley distributed on the interval (0.5, 0.75). Nevertheless, for A the challenge is that

it must be stable, and Ā would affect ρ(A) more than the sparse off-diagonal matrix A.

If simple functions like Algorithm 3 are used to generate Aii’s, it would be very hard to

produce a stable A, according to some pre-tests. A stable A would be easier to generate if

Aii, i = 1, ..., N are all stable. It is also easier if Aii’s have fewer non-zero entries, i.e., to be

more sparse, especially when the size of Aii grows bigger. Based on these observations, we

developed the algorithm to generate Aii as is described in Algorithm 5. In Algorithm

5, Ui is the change of basis matrix for diag(vAii
). Ui is generated as follows: diag(vUi

) is

multiplied by a randomly generated permutation matrix, and then the product is added by

a perturbation matrix Ei.

Algorithm 5 createAii

function createAii(ni)
initialize Ui to be a ni × ni zero matrix,
randomly generate two ni×1 vectors vAii

, vUi
, with their elements on the open interval

(-1, 1),
randomly shuffle vector [1, ..., ni]

T to obtain an order vector o ∈ Rni ,
for α = 1→ ni do

Uioα,α ← vUioα
,

end for
Ei ← createSparse(ni, ni, dEi

)
Ui ← Ui + Ei

diagonalize vAii
to be DAii

,
Aii = UiDAii

U−1
i , return Aii

end function

After Aii’s are obtained, A is calculated by:

A = Ā + A = diag(A11, ..., ANN ) + A.

1In our experiments, since the sizes were the varied parameter, we tried to keep the interaction strength in
every repitition to be the same; however, the measurement of interaction strength is itself a difficult problem
that does not have a commonly accepted result. So in practice we uses the sparse density to represent the
strength of interaction. This sparse density presented here is obtained by trials and errors.
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If this A is found to be stable, this A and B will be used to perform the CDMPC algorithm;

if not, another set of A and B will be generated until a stable A is found.
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Table C.1: System Parameters

Name Dimension Description

N scalar The number of subsystems, either determined
by the mode in Experiment 1, or fixed to be 80
in Experiment 2

n scalar The number of states for the entire plant, in
the experiments the relationship n = 2N always
exists

q scalar The number of inputs for the entire plant, in the
experiments the relationship q = n always exists

ni, i = 1, ..., N scalar The number of states for the ith subsystem,
∑N

i ni = n; either fixed to be 2 in Experiment
1, or determined by the mode in Experiment 2

qi, i = 1, ..., N scalar The number of inputs for the ith

subsystem,
∑N

i qi = q; in the experiments
the relationship qi = ni always exists

A n× n matrix The state matrix for the entire plant, defined in
equation (2.3)

B n× q matrix The input matrix for the entire plant, defined in
equation (2.3)

Aii, i = 1, ..., N ni × ni matrix The state matrix for the ith subsystem, defined
in equation (2.11b)

Bii, i = 1, ..., N ni × qi matrix The input matrix for the ith subsystem, defined
in equation (2.11b)

Aij , i 6= j ni × nj matrix The state interaction matrix from the jth to the
ith subsystem, defined in equation (2.11b)

Bij, i 6= j ni × qj matrix The input interaction matrix from the jth to the
ith subsystem, defined in equation (2.11b)
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Table C.2: Local MPC Design Parameters

Name Dimension Description

Hp scalar Prediction horizon, fixed to be 2 in
the experiments

Hu scalar Control horizon, fixed to be 1 in the
experiments

Xisp , i = 1, ..., N (Hpni)× 1 vector The state set-point trajectory for
the ith subsystem throughout pre-
diction horizon, fixed to be 0 in the
experiments

Qi, i = 1, ..., N (Hpni)× (Hpni) matrix The weighting matrix of Xi, always
diagonal in the experiments where
each of the diagonal element is ran-
domly generated and uniformly dis-
tributed on the interval (0, 1000)

Ri, i = 1, ..., N (Huqi)× (Huqi) matrix The weighting matrix of ∆Ui, al-
ways diagonal in the experiments
where each of the diagonal ele-
ment is randomly generated and
uniformly distributed on the inter-
val (0, 1000)

xi(k), i = 1, ..., N ni × 1 vector The initial value of the states in the
ith subsystem at time k, arbitrarily
assigned to be 1 in the experiments

ui(0), i = 1, ..., N qi × 1 vector The initial value of the inputs in the
ith subsystem at time k, arbitrarily
assigned to be 0 in the experiments

Table C.3: CDMPC Design Parameters

Name Dimension Description

ǫ scalar The CDMPC methods’ accuracy threshold,
ǫ = 10ν , where ν is randomly gener-
ated and uniformly distributed on the set
{−1,−2,−3,−4,−5}

X(0) (Hpn)× 1 vector The initialization of the coordinator predicted
states, arbtrarily assigned to be 0 in the exper-
iments

∆U (0) (Huq)× 1 vector The initialization of the coordinator predicted
input changes, arbtrarily assigned to be 0 in the
experiments

p(0) (Hpn)× 1 vector The initialization of the price vector, arbtrarily
assigned to be 0 in the experiments
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