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1 Introduction

Differential geometry involves the lengths of paths in space, which are given -
by a metric. Finsler geomery involves the study of Finsler metrics and their
associated properties: induced metric tensor, connectiohs, etc. Unlike Rie-
mannian metrics, Finsler metrics depend on ‘% as well as the position z; they

provide a more detailed analysis of the system under consideration.

When used in applications, a Finsler manifold may be interpreted as the
configuration space of the system in question, and the metric as the energy
cost to go from one state to another in the system. An example of such an
interpretation is found in [3], in which the authors used a Finsler m** root
metric, F(z,y) = e 2% ((y1)™ + (y2)™)=, and its associated tensors and
scalars to model the predator prey interactions between the crown of thorns

starfish, A. planci, and the Great Barrier Reef in Australia.

There is an expanded version of the metric above:
F(ZL‘ y) — ea1m1+a2x2+Ltan‘1§-;((y1)m + (y2)m)#

where Ltan‘”é; is a measure of diversity. Due to the complexity of the cal-
culations, this expanded metric has not yet been studied. Recently, however,
a Finsler computing package, based on Maple, has been developed, and the
purpose of this thesis is to investigate the expanded m®™ root metric using

the Finsler package, to obtain values for such things as the Gauss-Berwald
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curvature, the Berwald connection coeflicients, and the Douglas tensor. The

focus here is primarily on differential geometry rather than on applications.

The main result is an extension of a theorem found in [3], which states that
the Douglas tensor associated with the expanded metric is 0 if and only if
m = 2. From an applications point of view, this means that the starfish/coral

interaction is intrinsically social unless m = 2.

The first section covers the background information necessary to cover the
geometry involved. The second is a discussion of a special case of the An-
tonelli m™ root metric. Finally, the third section covers calculations done
for the more general case of the metric mentioned above, a comparison of the
known value of the Gauss-Berwald curvature with the value obtained using

the Finsler program is made, and the new theorem is stated.
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1.1 Background Information

Definition 1.1.1 An atlas is a collection of coordinate charts {Uy, hx}rea

on a manifold satisfying the following conditions:

e hy : Uy — V), CR" is a homeomorphism, where V) is an open set,

o for all a, Be A, hg 0 b3 € C* when restricted to hg(Us () Up).

A maximal atlas is an atlas not contained in any other atlas.
An n-dimensional differentiable manifold, M™, is a separable Haus-

dorff space with a maximal atlas.

The torus, the sphere S™ and real projective n-space RP™ are examples of

differentiable manifolds.

Notation 1.1.2 A coordinate chart A is assumed and coordinates are im-
posed from V. Given x ¢ U, C M, identified with hy(z), the Euclidean
coordinates of R" |y, are interpreted as coordinates on M™. {2} is the
induced coordinate basis on the tangent space of M"; vectors in this tan-
gent space can be written y = Y o | yib%r. Coordinates in TM™ are given
by (zt,..., 2™y, ...,y™), which is abbreviated (z,y). Functions 'F defined on

TM can therefore locally be expressed as F(z?, ..., z", v, ..., y™).

Definition 1.1.3 A real vector bundle { = (E, B, 7, +,-) is a 5-tuple,

where:

7 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e E and B are topological spaces called the total space and the base

space, respectively.

e 7 : E — B is called the projection map, it is continuous and surjec-

tive.

o +:EQE :={(e,e)eE x E|r(e) =n(e)} — E, (adds elements in

the same fiber).
o :RXE—E, :(t,e)r—rt-e

+ and - are continuous and the restrictions to 7~*(b), be B, make w~1(b) into
a real vector space; 71(b) is called the fiber over b.

A vector bundle is a special case of a fibre bundle, whichisamap f: F — B
such that every point in the base space, be B , has an open neighborhood U

such that f~1(U) is homeomorphic to U x F. Namely, if [9]
h: fY(U) > UxF
is the homeomorphism, then
Ty © h=f 1)

The homeomorphisms which commute with projection are called local triv-

ializations of the fibre bundle f; E looks locally like the product B x F.

Example 1.1.4 The Mobius strip, (M2, S!,r), is an example of a nontrivial
(not a global product) fibre bundle. It has the circle for a base space and the

fibers are intervals in R, of the form (-1,1).
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Definition 1.1.5 Given M™", a manifold and x a point in M™, we define a
tangent vector ¢ at x to be an assignment of an n-tuple of numbers for

every ) € A, denoted &, for i € {1, ...,n}, such that it obeys the relation:

& = D(hg o h3') |ho(z) “bas

where D is the derivative.

The tangent space at x ¢ M", denoted T, M", is a real vector space of
tangent vectors at x. The tangent bundle of M", (TM™, M", 7, +,-), as
a set, is the union of all T,M™. It has a natural projection 7 : TM — M,
mapping Ty M onto x. The topology on the tangent bundle is defined by
the pre-image of the projection of all the open sets U C M, namely 7~ *(U).
In this way, the projection mapping is C®. The tangent space can also be
shown to be a 2n-dimensional, C* manifold [4].

The slit tangent bundle, T\]\//I, is an open region of TM™ that:

e does not contain (x,0),

e contains (x,Ay), A > 0, if it contains (x,y). This is known as a positive

cone.

Definition 1.1.6 A section of a fibre bundle gives an element of the fibre
over every point in B. It is a C*° map o : B — E such that 7 o ¢ is the

identity on B.
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Example 1.1.7 The zero section of a vector bundle consists of all the zero
vectors; those with length zero and therefore with all components equal to

Zero.

We can see that the slit tangent bundle is simply the tangent bundle with at

least the zero section removed.

Notation 1.1.8 Throughout, Einstein summation is used to simplify no-
tation. This means that repeated upper and lower indices are summed

over {1,...,n}. For example, given two tensors R, and y°, then Ryy® =

22;1 Rijkyi-

Definition 1.1.9 Tensors are generalizations of scalars, vectors, and ma-
trices. While these objects have 0, 1 or 2 indices, respectively, a tensor can
have any finite number of indices.

Furthermore, a covariant tensor of rank 1, T, associated with a point P,

transforms according to the equation

about the point P.

Similarly, a contravariant tensor of rank 1 transforms according to the equa-

tion

'r _ misdzT
T =T Sor
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Following the same pattern, a mixed tensor of rank 3, for example, trans-

forms according to

—_ maa: T dz" dxP
T T"P dz™ 3z’s 3zt

See [15] for more information on tensors.

Notation 1.1.10 By J;F, we mean gf:

OF

By 6,-F, we mean .~ Or a F. (which one is meant will be clear from the

context).

Definition 1.1.11 A C*, real-valued function f on R" is positively ho-
mogeneous of degree d if f(\y) = A?f(y) for any A > 0.

Example 1.1.12 F(y) = {(y})™ + (y®)™}= is p-homogeneous of degree 1
and

F(y) = g‘—’%; is p-homogeneous of degree zero in y.

Definition 1.1.13 If F(z!, ..., 2", 3!, ...y"), where y* = dt , is a Finsler met-

ric, then F has the following properties:
e F:TM - Ris C’°° on TM and is continuous an all of TM.
e F(z,y) >0 fory#0.

e F(x,\y) = AF(x,y), for all A > 0.

F(z,y) is also called the fundamental function of the Finsler space.
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Definition 1.1.14 A Finsler space is called a Berwald space if the connec-
tion coefficients Gj-k (see page 21) are functions of z* alone, in some coordinate
system. If this is true in one coordinate chart of the atlas, then it is true for

all charts of the atlas.

Definition 1.1.15 A Finsler space (M, F") is called locally Minkowski if
there exists a coordinate system in which the fundamental function F depends
on y* alone. This coordinate system is called adapted in F™.

Locally Minkowski spaces are also Berwald spaces.
Example 1.1.16 F = e%*'[(y")? + (4)?] is locally Minkowski.

Definition 1.1.17 Given a Finsler metric F', the metric tensor associated

with F is given by
gij = 30,0, F"

This induced metric tensor is symmetric and is required to be nondegenerate,
ensuring g;; has an inverse. It is also homogeneous of degree zero in y.
The inverse metric tensor g¥ is defined by the relationship g™g;, = &%, where
8% is the Kronecker delta:

1 ifi=j

Fi
0 otherwise

If g;; is interpreted as a matrix, then g% is the matrix inverse.
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Notation 1.1.18 The indices of a tensor can be raised or lowered via the
metric tensor. Given tensors A% and R, then A{k = gy AY* and R% =

9™ R;jn

Theorem 1.1.19 (Euler’s Theorem) A C*, real-valued function f is p-

homogeneous of degree d if and only if
i) v =d- f(y)
Proof: From [5], suppose f is p-homogeneous of degree d, then it satisfies |
f(Ay) = Xf(y) for all A > 0.
Differentiating with respect to the parameter A, we get
(2 f ())y' = dA1f(y).

Setting A = 1 in the above gives the required result.

Conversely, assume the above holds. If we evaluate f at Ay, we get
df (Ay) = Byt |y M = AOF(Ay)OA.

For fixed y, let g(A) = f(\y) = ﬂg/\& = 9g(A)OX which is separable. From
this, we get g(A) = Ag(1) = f(Ay) = A%f(y), and f is p-homogeneous of

degree d.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.2 Sprays

Definition 1.2.1 A vector field on a differentiable manifold M is a C*
cross-section £ : M — TM of the tangent bundle. That is, £ is C*, lies in
T, M for each z€e M, and wo £ = id.

Definition 1.2.2 A vector field S on TM is a second order differential

equation (or SODE) if the Jacobian map
Dr:TTM —-TM
has the property
DroS(¢)=¢forall EeTM.
A SODKE is a section of TT M.

Definition 1.2.3 [10] If f : X — X'is a C* diffeomorphism, then we define
T(f): T(X) > T(X") to be T,(f) on each fiber T,,(X).
Locally, we may assume that X and X' are open in vector spaces F and F'.

Ty f = f'(z) is the derivative. Then T'f is given by

Tf(z,€) = (f(x), f'(2)€) for z ¢ X, £ ¢ E.

Below, we write f, instead of T'f for the induced map, which is also called

the tangent map.

10
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Definition 1.2.4 A spray is a SODE satisfying certain properties. Namely,
given a positive real number A and the total space of a C'°-vector bundle,
define A : E — E by scalar multiplication on each fiber.

The induced map on TE, A, : TM — TM, satisfies A (§) = AE.

Let E = TM. If a given SODE satisfies S(A) = A\ AS(§), for A > 0, then S

is called a spray.

Definition 1.2.5 Let S, C R"® be an open, connected region (a submanifold
of dimension n) with a local coordinate system. A parameterized curve
in S, is identified with a set of equations

' = fi(t),
where the f¢ are C™, not all constant. These are the so-called finite equations

of a curve.

Example 1.2.6 o From [6], the curve a = (cos t,sin t,t) is a parame-

terized curve whose trace in R3 is a helix on the cylinder z? + y% = 1.

e The curve @ = (¢,[t|) is not a parameterized curve since [t| is not

differentiable at ¢ = 0.

Definition 1.2.7 By a system of paths in S,, we mean any system of

curves with finite equations

7t = fi(t,a), i=1,..,n

11
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of C*® curves with parameter t. The letter a denotes a set of 2n — 2
parameters which vary from curve to curve. The following conditions must

also hold:

e There is a unique curve in the system passing through any two given

points in S, sufficiently close.

e There is a unique curve through any point x € .S,,, with %, i=1,..,n,

a direction at x, arbitrary.

Theorem 1.2.8 (Douglas) A system of paths is a local spray; conversely,

a local spray is a system of paths.

Every Finsler metric induces a spray, namely, the geodesic spray. On the

other hand, not all sprays are of the geodesic type.

A global spray gives a family of smooth curves through each point of M",
one in each direction. Also, for any two points p,q ¢ M, sufficiently close,
there is a unique spray curve joining them. In 1928, Douglas showed that
local sprays are systems of paths in the real analytic case, and in 1937, T.Y.

Thomas showed the same for the C* case.

1.3 Finsler Connections

Given a fundamental function F', we can define the notion of a ”Finsler

connection” . A ”connection”, roughly, is a first order directional operator

12
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acting on vector fields; it is a path dependent map from one tangent space
of a manifold to another.

There are many connections, but the Finsler notion was first introduced by
L. Berwald. Just as different topologies on a space yield different types of
information about that space, so do different connections on the tangent
space of a manifold.

The well known connections are the Berwald connection, the Levi-Civita
connection of Riemannian geometry, and the Cartan connection. Only the
Berwald connection can be extended to sprays, which are not necessarily
Finsler geodesics; we will mainly discuss the Berwald connection here. One

is referred to [1], [13] for a deeper discussion of the various connections.

Definition 1.3.1 Given a smooth manifold M™ and the tangent space T, M,
a frame z at z is a basis of T, M. It is a set of n linearly independent tangent
vectors, 2%, at .

Let L be the set of all frames at all points of M™ and define the mapping
7y : L — M, called the projection, such that 7(z) = z. z is called the
origin of z.

The set of all frames over z is written 7~ 1(z); it is called the fiber over z

and it forms the group GL(n), the set of all invertible real square matrices.

Definition 1.3.2 Given a local coordinate system {U,z'} in a neighbour-
hood U of M™, every tangent vector z, of a frame z = (z,) at z = (z%) e U is

written 2%(0,:), and we get a local coordinate system {7 '(U), (z*, 2.)} on

13
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L. This is the canonical coordinate system of L; we can regard L as a

smooth manifold [1].

Definition 1.3.3 L(M™) = {L, 7, M"} is called the frame bundle of the

manifold M™, where L is the total space and M is the base space.

Definition 1.3.4 Given a frame bundle, we can consider the tangent space
at a point z of L (note that this 'point’ z is actually a frame, i.e. a set of
vectors). We define the vertical subspace of L, denoted L?, to be the kernel

of the projection 7}, from the tangent space of L onto L at a point z,
L'={XeL,:n}(X)=0}.

Definition 1.3.5 On a smooth manifold M, a C® map D:zeM — V, C
T,M is called a distribution in M, where V;, is a subspace of the tangent

space T, M.

The horizontal subspace of L is not well-defined, a priori. It can be considered

a complement of the vertical subspace and can be defined via a connection.
Definition 1.3.6 For a fixed g ¢ GL(n), we have the mapping
Bg:zeL —zgel,
called right translation of L by g. This means that
7' (z) = {29,9 ¢ GL(n)}

for a point z in 7! (x).

14
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Definition 1.3.7 A distributionI': ze¢ L — I', C L, in the total space L of
the frame bundle L(M™") is called a linear connection in L, or on M™, if

the following two conditions are satisfied:
o L, =T,0L}
o DB,(T',) =T4g,9€¢GL(n)

The space I, C L, is called the horizontal subspace. From this it follows
that a linear connection is the complement of the vertical distribution and is

invariant under right translations.

Definition 1.3.8 A spray connection N in the total space T of the tan-
gent bundle T'(M™) is a distribution yeT' — N, C T, which satisfies the direct

sum splitting T, = N, & T;. This is also called a Nonlinear Connection.

Definition 1.3.9 Given 7 : £ — B, a bundle, and a continuous map f :

B' — B, then the pullback, (or induced bundle) is given by
fX(x): B' > B
where
E'={(e,b)e Ex B': f(b) =n(e)}

and f*(r) is the restriction of the projection map to B'.

15
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f*(r) is said to be the pullback of 7 by f.

Definition 1.3.10 Given the following diagram

%

F(M) L(M)

™ L

T(M) M
T

the spray bundle m(F(M)) is the pullback of 7y by np. It is denoted
F(M™) = {F,m,T}. The total space of the spray bundle is given by

F={(y,2) eT x L:7nr(y) =m(2)}.

In other words, F is the set of all pairs (y, z) such that y is a tangent vector
at a point of £ and z is a frame at the same point .

The projection m; is given by

16
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u=(y,2)e F > yeT.

w1 is the restriction of the projection map to 7. This is analogous to the

definition of pullback.

Just as in the definitions of linear and spray connections, we get the direct

sum relation for the spray bundle
F,=T.® F, where u = (y, 2),

splitting the bundle into horizontal and vertical subbundles.
The horizontal subspace I', can further be split into subspaces, giving the

relation,
r,=T'aTh

I'" and T'? are called horizontally and vertically horizontal subspaces respec-

tively (or h-horizontal and v-horizontal subspaces).

Definition 1.3.11 [4] A pre-Finsler connection FT in the total space F
of the spray bundle F(M") is a pair (I, N) of a linear connection I' in F,

and a spray connection N in the total space T' of T(M™).

Locally, a pre-Finsler connection is denoted by the triad (Fz’k, Nij , ijz) These
functions are called the connection coefficients of the pre-Finsler connection.
Loosely speaking, F' can be viewed as a horizontal connection, V as a vertical
connection, and NN is a nonlinear (or spray) connection.

Returning to the discussion of sprays, assume a local spray is given. We

express this as a second order differential equation of the form [4]

17
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S0 192G =0, fori=1,..,n

where the G* are C* in z and y = % and p-homogeneous of degree 2iny = .

Now define the nonlinear connection

i . 0G!
Gj = 5

where each pair of 4,5 run from 1 to n!. This is called the spray connection.

Taking one more derivative, define [4]

, G
G;k(.’L‘, y) = 'a—i—

Y

]

From Euler’s theorem, we have that Gj- is p-homogeneous of degree 1 in y
and G%, are homogeneous of degree 0 in y. Therefore the Gs are allowed to

depend on ratios of y* (see 1.3.19 below).

Definition 1.3.12 Given the spray connection, G;, we define Berwald’s

nonlinear operator by
8 = 0 — Gi0;

Hence, if f(z,y) is C*, &;f transforms as a covariant vector. This is the

Finsler notion of the gradient operator.

Given the notion of a connnection, we can define the h- (or short bar) and

v- (or long bar) covariant derivatives.

Definition 1.3.13 The h-covariant derivative, VT, of a (1,1) type ten-

sor T}, with respect to a pre-Finsler connection, is given locally by

18
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T = 06T} ~ BTIN; + Ty Py ~ TiF
=6’“T;+Tjr o= 1y Tk

Definition 1.3.14 The v-covariant derivative, VT, of a (1,1) type ten-

sor T; with respect to a pre-Finsler connection, is given locally by

Tl = 9T+ T}V, ~ TV

Similar equations hold for the covariant derivative of a tensor of arbitrary

rank, see [1].

Definition 1.3.15 The components of the deflection tensor field D of a

pre-Finsler connection are given by
Di=y'F;— N;

Notation 1.3.16 The symbol (j|k) means that all terms appearing before
it are to be added with the 7 and & reversed.

For example, '}, + (j|k) = T, + T},

Given a linear connection I', we obtain five torsion tensor fields and three

curvature tensor fields for the pre-Finsler connection FT' [4]:
e h-torsion T: T}, = Fj, — (j|k)
e h-torsion R' : R}, = 0N} — (jk)

e hv-torsion V : Vj,

19
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o hv-torsion P : P = 0, N — Fj;

e v-torsion ST : S =V} — (jlk)

e h-curvature R? : R%jk = ;i;,jk + V;Z}Rﬁ
where K}, = 0cFi; + Fi Fpy, — (j]k)

e hv-curvature P? : Pi; = Fp,; — V;fku + Vi Py,
where F} ;. = 04 Fy,

e v-curvature S? : S}, = 3kV;fj + ViV, — (3lk)

Given a Finsler space with fundamental function F(z,y), we can introduce a

pre-Finsler connection based on F. This is called a Finsler connection.

Definition 1.3.17 Given a Finsler metric and hence an induced metric ten-

sor, the Levi-Civita symbol of the first kind is given by:
Yijk = 3(0igix + Okgi; — Oigjr)

It is p-homogeneous of degree 0.

The Levi-Civita symbol of the second kind is given by
Tik = 9 Vst

It is also homogeneous of degree 0.

20
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Definition 1.3.18 According to physical analogies, the geodesics of a
space are the paths followed by a non-accelerating particle. In the plane,
they are the straight lines, on the sphere, the great circles. The geodesics of
a space depend on the metric of that space. Given the Levi-Civita symbols,

the geodesic equations for F' can be written:

@ | i dod dok _
& T Vik'as i = 0

'y;- % 1s not a connection in Finsler space, though it is in Riemannian geometry.
For a Finsler space (M, F'), there is a canonical spray with local coefficients

G, given by [2]

ij( _O*F? oF?
2G 2g](3y16:c"'y B3 )

This term was mentioned in the discussion of local sprays (see page 17).

Equivalently, we can define G' as follows
G* = 37hyiyk.
The geodesic equations can therefore be written:

&2 192G =0.

The G* term is called the spray function.

Definition 1.3.19 From the canonical spray, we get the local spray con-

nection, or local nonlinear connection, N; by

= 0;G".

21
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It is p-homogeneous of degree 1 and it will be labelled G; The spray

connection coefficients are given by

Gy = &G

7

These are also called the Berwald connection coefficients. They are
p-homogeneous of degree 0.
The Berwald connection BI' = (G¥%,, G%,0) is determined from the fun-

damental function F by the five axioms of S. Okada [4]:

e V*F= 0 (this is known as ”F-metrical”)

T = 0 (h-symmetric, i.e. no h-torsion)

e D=0
[ Pl_—_O
o V=

Also, since V%, =0 for BT, the P? curvature reduces to G, = 9, G%;. This
is known as the Douglas tensor, Dﬁjk = éhG§k.

Note that D = 0 if and only if the connection coefficients are independent of
y (affine linear). D is known as the spray curvature.

Now the geodesic equations can be written

d?z’ i dzd dzk __
ds? +ij ds ds =0

Where G¥ = 4% y"y® implies that
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8:0;(2G*) = 0,0;(v2y"y°)

which, upon differentiation, yields
Gly =l + vy + 07y + 300y

Since 2 is p-homogeneous of degree 0 in y, we have by Euler’s theorem that
3i7ijr = 9jvLy* = 0. Hence

GY =t + 200570y,
Note that if the v}, are independent of y, then G = 5.
Theorem 1.3.20 A Finsler space is locally Minkowski if and only if the
spray curvature and the h-curvature are equal to 0 in BI‘T
Proof

=)

Locally Minkowski = F = F(y)

i . T _]___ a2F2 - an
= G' = 0 since 2G* = 2(6y16m'” 3;,;]')

= Gl =
=D, =R*=0
(«)
D}y =0
= G;"k = G;’k(x)
= We have a Berwald space

= R;'kt = GZjGik - ZkGij =0
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= In some coordinate system, G%, =0
= @ = 0 by Euler’s Theorem
For a connection coefficient, if T' = 0, and the N]’: are given, we have G =
%((5kgij + 8igkj — 0;9ic). In a Berwald space, the ds reduce to Js, and since
Gl =0,
0 = 3(Okgij + Oigrj — O;9ix)
= gij = 9i;(Y)-
Since g;;y'y? = 2F, F = F(y), and the proof is complete.
Definition 1.3.21 The Cartan Torsion Tensor is defined as

Cijk = 30kgij

If this tensor is equal to 0, then we have Riemannian geometry. In other
words: y-dependence of the metric tensor is the difference between Finsler

and Riemannian geometry.
Definition 1.3.22 The Cartan Connection Coefficients are given by
I = % (njk = ClimGR — CitmGP* + CremGTY)
or eqﬁivalently,
= 398590 + Okgi — G1gk)

which is similar to the definition of the Christoffel symbols, except we use §
instead of 9.

The Cartan connection CT = (T}, G%,C};) is determined from the funda-

mental function F by the five axioms of M. Matsumoto [4]:
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e Vhg =0 (this is known as "h-metrical”)

e V’g =0 ("v-metrical”)

e D=0

e Pl=90

e T =0 (h-symmetric, i.e. symmetric in the lower indices)

e 5! =0 (v-symmetric)
The first two conditions together give us that CT is "metrical”.
Since, for CT', S* = 0, we have that C;:k is symmetric in its lower indices.
From this, we have that the S-curvature reduces to Cj;C%, — Cp.Ct,. Fur-
thermore, if the Finsler space is 2-dimensional, then all indices are either 1
or 2, and the S-curvature reduces to 0 identically.
Berwald’s pre-Finsler connection is not metrical, in general, but it is metrical
in Berwald spaces [1].
The Berwald connection is important, however, since it is intrinsic to spray

theory and to the study of the geometry of arbitrary SODEs given locally
by

‘f;s‘ii + fi(z,%,8) = 0. The geometry of such a system is known as KCC

theory, after Kosambi, Cartan, and Chern [1].

1.4 Curvatures

Historically, the study of the curvature of curves in two- and three-space

led to the Frenet formulas, which describe a curve in terms of its curvature,
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torsion, and initial starting point and direction [9]. The Frenet equations
can be viewed as "structure equations” for 1-dimensional submanifolds of
R3. They determine one and only one curve up to its position in space [14].
Likewise, the study of surfaces in three-space led to the notions Gauss-
Berwald curvature K and the consequent structure equations, known as the
Gauss-Weingarten equations and the Gauss-Codazzi equations [14]. These
equations determine one and only one surface, up to its position in space.
The Gauss-Weingarten and the Gauss-Codazzi equations are the Riemannian
versions of the Finsler structure equations, which, in the case of a linear
connection, define the torsion and curvature tensor fields mentioned earlier.
For a more in depth discussion of the various structure equations, see {1}, [4],
6, [14].

Most important here is the Gauss-Berwald curvature K, which measures the
rate of change of the direction of the normal vector, N, at a point p e M™.
Intuitively, K measures how N pulls away from N(p) in a neighbourhood of
.

The Gauss-Berwald curvature is important because it is invariant under
isometries, which are distance preserving, bijective maps between metric

spaces. It can therefore help to classify various structures up to isometry.

Definition 1.4.1 Given a linear connection (for example, the Berwald con-

nection), we define the Riemann curvature tensor to be

Ryj = 8Gjy — 0Gy + GGl ~ GGy

J
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This is the R? tensor field, given on page 19, for the Berwald connection,

where F = G% and V};, = 0.

Definition 1.4.2 In a two dimensional Finsler space, the Gauss-Berwald

curvature is given by [4]

— Ri210
911922912921

where the denominator is the determinant of the metric tensor g;;.

Examples of surfaces with constant Gauss-Berwald curvature include the
sphere, the cone, the plane, and the pseudosphere. Of these, the sphere has
curvature K = }2, r the radius, the pseudosphere has K = —1, and the cone
and the plane have 0 Gauss-Berwald curvature.

An example of a Finsler space with constant Gauss-Berwald curvature is

given by the metric [5]

F = \/(yl)2 + sinh?(x!)(y2)? + y* tanh(z?)

This space has curvature K = —

N

2 m!" Root Metrics

Definition 2.0.3 A Finsler metric F(a®) is called a one-form metric if

F(a®) is a p-homogeneous of degree one function of n arguments a®(z, y).

" Definition 2.0.4 We follow {4], section 5.4. The function L, given by,

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L={E")"+ @)™ +... + (y")™}=, m > 3, m an integer,
is known as the m* root metric.

Definition 2.0.5 Given an n-dimensional Finsler space F" = (M™, F), with

metric function
F = ¢e®L, where ¢ = o; x* with o; constant, usually > 0,

the metric F is known as Antonelli’s m** root ecological metric [4]. The

coordinates (z!, ..., z", 4!, ...,y") are called adapted [1].

The m® root metric has been used in the study of coral reef ecology on the
Great Barrier Reef, to specify certain morphological traits in a certain coral
genus, see [3].

F' can be written:
F = {(a)™+ (@®)™ + ... + (a®)™}}/m
where
at =ebyl, fori=1,..,n.

We can see that Antonelli’s metric is a special one-form metric, it is also
locally Minkowski for m = 2, since K = 0. For m > 3, however, it is not
locally Minkowski since the Gauss-Berwald curvature K is not equal to 0

identically (see p. 28).
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The motivation here is to take an expanded version of the m* root met-
ric which has a diversity term, L tan“l(g—), in the exponential, and to use
computer software to obtain the spray functions G?, the Berwald connection

coefficients G%;, and the Gauss-Berwald curvature K.

3 Results

3.1 The FINSLER package

The FINSLER package written on Maple (see [8]) by Solange F. Rutz and
Renato Portugal (see [1], [12]), allows tensorial manipulation and component-
wise calculations. There are many built-in tensors and commands in the
package, some of which are already defined in the RIEMANN package (see
[11]), upon which the FINSLER package was developed. The commands and

tensors which were important in my calculations are defined here [1]:

e The command show evaluates, assigns and prints the values of the
components of a tensor. If the indices given are numerical or have

component names, the value of a specific component will be returned.

e coordinates defines the coordinate names. The number of arguments
must be equal to the value of the variable dimension, a positive integer

which must already have been specified.

e Dcoordinates defines the names of the directional coordinates, or the

i

Y.
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e metricfunction derives the components of the metric tensor using as

input the square of the metric function.

o The spray coefficients G[i] are defined as G* = {T%,47y*, where I}, are
the Christoffel symbols of the second kind, corresponding to the metric

function, when defined.

e N[i,-j], the nonlinear connection, is defined as N} = %g—"}.

e Gli,-j,-k], the spray connection, is defined as G%; = g_j,:i_

e Bli,-j], the deviation tensor, is defined as B} = 20,G* + 2G"G}, —
y'8,Gi — GiG.

Note that B} = R, 5y, see page 24.

e K(v1,v2), the Gauss-Berwald curvature, is defined as

. . B;:Vivi
i ) = VIV
K(U U ) (9:59K1—9u958)ViVIiykyl

Also important when dealing with such large expressions are Maple’s simpli-

fication routines. The important ones that used are listed below [7].

e normal(x,expanded) simplifies rational functions. The argument x
represents an expression, and the second argument, ’expanded’, returns
a result in which the numerator and denominator are expanded poly-

nomials, simplified when possible.
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e simplify(x,symbolic) allows symbolic manipulation of expressions,
ignoring the issue of branches for multi-valued functions. This means
that an expression like sqrt(z?) simplifies to x under the symbolic op-

tion, ignoring the possible values of the sign of x.

The accepted value of K for the m*® root ecological metric is given by [4]:

o) 03z =222 (M4 1)2 | 1,2
K= Zz’r(n"ilig{ : zzml—1 }’y_FzL

. . . 2
where F is the m** root ecological metric and z = %..
yl

Using the FINSLER packagé, the Gauss-Berwald curvature for Antonelli’s
“m™ root ecological metric was obtained; the result was compared to that
given in [4], and they matched. The comparison was done by calculating
the curvature using the package, and subtracting from it the known value in
[4]. There was no difference between the known and the computed values.
The sample calculation and comparison to the curvature in [1] are found in
Appendix A.

Due to the intrinsic complexity in the simplification and manipulation of large
expressions, a direct comparison between the obtained and known results
was avoided. The issue of what is apparently “simple” is not a trivial one in

symbolic computing. In the above expression, for instance, F actually stands

for

F = eb1w1+b2az2{(y1)m + (yZ)m}#,
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for which Maple would substitute once the metric function is defined. All
tensorial expressions are derived from the metric function. This results in
expressions given as functions of the positional and directional coordinates.
Also, if terms like (a + b)? are not expanded, the command Normal is not as
effective when dealing with long polynomial denominators.

Once an expression is simplified, it may be manipulated to satisfy such human
demands as compactness, for example, with the commands Collect, Com-
bine, Convert, Factor, etc. The computational cost of doing so should be
considered, however, especially when an expression may be checked against
known results by means of a subtraction which simplifies to 0, proving the
correctness of the result. This was the case for the Gauss-Berwald curvature
mentioned above.

Altering the metric to read:
F = gnedma G () + @))%,

the spray coefficients, G*, Berwald’s connection coefficients, and the Gauss-
Berwald curvature were obtained (see Appendix B).
Since there are no accepted values for the curvature with L # 0, a comparison
with known values was made by substituting L = 0 into the new expression
for curvature, and comparing with the result given in [4]. This yielded a
match, indicating that the new value for K is correct.

Also calculated were the components of the Douglas tensor, which led to

a new theorem:
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Theorem 3.1.1 (Antonelli/Murphy, 2004)

For the mixed (L, m) metric of this thesis, D};, = 0 if and only if m = 2.

This is an expanded version of a similar theorem in [4], which states that

D}, = 0 if and only if m = 2 for the metric in which L = 0.

The proof can be found in Appendix C, which shows the calculations and
comparisons of the various components of the tensor with the known values,

but an outline is given here.

First m = 2 was substituted into the expanded metric F, and the Douglas

tensor was calculated. It turned out to be Q.

Next, it was assumed that m # 2, and the D;k, was calculated. Then,
L = 0 was substituted into the components of the Douglas tensor, and each
component reduced to the value given in [4]. This means that the Di,, for
the expanded metric contain those of the simpler metric. Since we already
have that Dj,, for the metric in which L = 0 vanish only when m = 2, we

know that the new values for the D tensor will vanish only when m = 2.

3.2 Conclusions

Just as any predator prey interaction is complicated, so too are the models
created to describe it. With greater detail in the model comes greater diffi-

culty in calculating its various characteristics; as such, there are many useful
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Finsler metrics whose properties have not yet been investigated.

Computer calculations, although relatively new to the field, can be a very
powerful tool in geometry. They provide an effective means to verify previous

results and to expand upon them, as was the case with the ecological metric.

Specifically, the Finsler package was useful in confirming the known values
for the Gauss-Berwald curvature and the Douglas tensor found in [3]. Fur-
thermore, when applied to the more general m™ root metric, the program
helped to expand upon a known theory, namely that the starfish/coral reef

interaction is intrinsically social unless m = 2 (theorem 3.1.1).
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4 Appendices

A

Here is the calculation of the Gauss-Berwald curvature for the m* root eco-
logical metric. Also obtained are the spray connections, the Berwald connec-

tions and the metric tensor.

> restart;
> 1libname := ‘D:/finsler‘, libname:

> with(Finsler);

Warning, the protected name apply has been redefined and unprotected

Warning, the name init has been redefined

[Dcoordinates, Hdiff, K, connection, init, metricfunction, tddiff]

What follows is the simplification procedure which, once defined by the
commend Simpfen, is performed in every step of each calculation through-
out the session. It was the most effective in simplifying the obtained
expressions so that their difference from known expressions simplifies to
Zero.

> simp:=(x->simplify(normal(x,expanded),symbolic)); simpfcn(simp);
simp := x — simplify(normal(z, ezpanded), symbolic)

> Dimension:= 2:

> coordinates(x1,x2):
The coordinates are :
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> Dcoordinates(yl,y2):
‘Y assigned to DCoordinateName‘

The d — coordinates are :

> F:= exp(bl*x1+b2*x2)*(y1 " m+y2°m) " (1/m):
> F2:=F~2:

> metricfunction(F2):

The components of the metric are :

e(2b1 z1+2 b2 22) (yIm + ygm)(—r%) (y1(2m) + yimmygm _ ylm ygm)

g z1 z1 = y1 (2+2m) + 2y1(2+m) ygm + y12 y2(2m)
_ _e(2 b1 £1+2 b2 z2) (y1™ + ygm)(%) yI™ y2™ (=2 + m)
g =1 z2 vl 1+2m) y2 + 2yl (1+m) y2(1+m) + y1 y2(1+2m)
. e(2b1 21422 52) (ylm + ygm)(%) (yg(zm) + yI™my2™ — y1™ ygm)
z2 22 —

y22 y1 (2m) +2 y2(2+m) yIm + y2(2+2m)
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> show(G[il);

oo _y1® ™ b1 y2™ — y1? bl m+ y1® b1 — y1 y2 b2m
2(m—1)

G _TYRylbim-— y22 b2 m + y22 b2 + y2>~™ p2 y1™
B 2(m-1)

> show(G[i,-j,-k1);

1m) b1 yom
G ™ z! z1=_y 2y m+y1("m)b1y2m+b1

) y23 ™ pg 41 (2™
G*® zl z1 =& — 2

G = _ m(=2y1Cm) yompg 4 y1 D oMby 4+ 42 52)

g = _m(y1b1~2 y20mtD) pg g™ 4 y2(-mt) y 1™ h2 )
zl 22 2 y] (m — 1)

a L b1yl (2—m) yg(-—2+m) m
z2 z2 — 9

o2 y20™ b2 y1™m
G z2 T8 — 5

+ b2 + y20™ p2 y1™

This is the result Maple returned for the Gauss-Berwald curvature.
> Gauss:=simp(K(vi,v2));

Gauss = %e(-—Zbl z1-2b2 z2) (ylm + ygm)(—%) m(yl (2m) :'yg(—2m+2) m b22
-9 y1 (2m) yg(—2m+2) yg(—-2m+2) m b22
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—9y1@m) yp(-2m+2) pp2_9 1 (14m) yo(-m+l) p1 po 42 y2@—M) y1m y po?
+4 y1tm) yo(-m+1) b1 p9 4 y9C=m) 1™ p22 L 412 b1%—4 b1 y2 y1 b2 m
+my22b22 —2y12b1%2+8b1 y2 y1 b2 —2y22 b22 +2942m y1C"™ b1%m
—2 y2Hm) 1 =) h1m b2 —4 y2™ y1 C—™ p12 44 y2(+m) 41 (=m+1) b1 po
+ y2@m) 1 (-2m+2) p124n 9 y2Cm) 41 (=2m4D) h12) /(m? — 2m + 1)

Defining Gaussl to be the curvature given in [4] and subtracting from the
expression Gauss above, we obtain that the two expressions match for any

value of m. Note that the F given in Gaussl is the original m* root metric.

> z := y2/y1;
et
yl

> Gaussl := (m*(m-2)*b172%(1+z"m) "2%(z~ (m-1)-b2/b1) “2% (yi*y2))/

(4x(m-1)"2%(F)~2%z~ (2xm-1));

_ 201 4 (Y2 ymy2 (Y2 ym-1) _ D2\s
| m2bm) b 1+ (2 () o1 u2

Gaussl = - bé
(m — 1)2 (b1 a1+b222))2 (y1™ 4 yom) ()2 (9_1_)(—1+2m)
Y

> zero:=simp(Gauss-Gaussl);

zero =10

In using the Simp function above, defined before the step which determined
the simplification procedure to be applied in the session by means of the

Simpfecn command, we are applying the same simplification procedure to

calculate the difference zero, which actually simplified to 0. Note that it may
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have been given in many more complex ways, such as sin?(z) + cos?(z) — 1.
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B

This is the Maple session which derives the expression for the the Gauss-
Berwald curvature for the extended m®™ root metric, as well as the expressions
for the spray coefficients. The Berwald connection coeflicients were also
obtained, but the length of their expressios made it impractical to include

them here.

> restart;
> libname := ‘D:/finsler®, libname:

> with(Finsler):

Warning, the protected name apply has been redefined and unprotected

Warning, the name init has been redefined

> Dimension:= 2:

> coordinates(x1,x2):
The coordinates are :

X 1=1z1

X 2=122

> Dcoordinates(yl,y2):
‘Y assigned to DCoordinateName°

The d — coordinates are :
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This is the expanded metric function. It is the same as the previous mt*

root metric except that now there is an L arctan(yy—;) in the exponential.

> F:= exp(bl*x1+b2*x2+L*arctan(y1/y2))*(y1 " m+y2°m) " (1/m) :
> F2:=F"2:

> metricfunction(F2):

The components of the metric are :

g ot o = (b1 THORIALACECDN (o gm y yom)())2(2 L2 yo? y1? (y1™)? + 2 L2 y2? y1” (y2™)
+4Ly2% (y1™)2yl +2Ly2 (y1™)?y1® — 2L y2 y13 (y2™)2 + yI™ my2* y2™
+ylmmylty2™ —2yI™y22 y1? y2™ + 4 L2 y22 y1? y1™ y2™ + 4 L y23 y1™ y1 y2™
+2yImmy2? y1? y2™ — y1™ y2t y2™ — y1™ y1t y2™ + (y1™)? y2* + (y1™)? yi1*

+2(y1m) 22 y1%) /(922 + 912 y1? (y1™ + y2™)?)

g ol 2= _(e(bl z1+b2z2+Larctan(§§)))2 ((yIm + ygm)(%))z(Q L2 y22 y12 (y1 m)2 +92L2 ygz y12 (y,Q"
+3Ly2% (y1™)2y1 + Ly2 (y1™)? y1® -3 Ly2 y1® (y2™) + yI™ m y2* y2™

+yl™myly2™ —4yl™ y22 y12 2™ + 4 L2 g2 y12 y1™ y2™ + 2 L y23 y1™ yl y2™

—2Ly2 yI™y12y2™ + 2yI™my22 y1? y2™ — 2y1™ Y2t y2™ — 2y1™ y1* y2™

— Ly2% (y2™)*y1) /(yQ (y2% + y1%)? (1™ + y2™)? y1)

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1
)R- (6(b1 z1+b2 x2+Larcta,n(§?)))2 ((ylm + ygm)(i)y(z 12 y22 y12 (ylm)2 +912 y22 y12 (ygm)
+2Ly2% (y1™)?yl —4Ly2 y13 (y2™)? + yI™ my2t y2™ + y1™ my1t y2™
~2yl1™y22 y12 y2™ + A L2 y2% y1? y1™ y2™ — AL y2 y1™ y13 y2™
+2y1mmy2? y12yo™ — y1™ Y2t y2™ — y1™ y1t y2™ — 2L y23 (y2™)2 y1 + y2* (y2™)2
+y1* (y2™) + 2927 yr® (y2™)?) [ (y2® (y2* + y1®)? (y1™ + y2™)?)

Following are the spray coeflicients.

> show(G[i]);

G ™ =y1(b2y2* L (y1™)%yl — b2 y22 L (y1™)2y13 + 201 y1% L y23 (y1™)?

— b1yl yI™y2* y2™ + b2 y2 yI™ my1* y2™ + 2 b1 y13 y1™ m y22 y2™

+2b2y23 y1mmy1?y2™ — 202 y22 Ly1™ y1® y2™ + 4 b1 y12 L y23 y1™ y2™

+ b2 y2% yI™m y2™ — b1 y1° yI™ y2™ + 262 y2* L yI™ y1 y2™ — 2 b1 y13 y1™ y22 yom™
+ b1 y1oyI™ my2™ + b1 y1 yI™my2* y2™ + 2 b1 y1? L y2® (y2™)?

— b2 y22 L y1® (y2™)? + b2 y2* L (y2™)% yI — b1 y15 (y2™)% — b1 y1 y2* (y2™)>

— 201 y1® y2? (42™)?) /(22 Ly2® (y1™) yt + L7 42° y1? (y1™)? — y1™ y2* yom
—yI™yl* y2™ + 2 y1™ my22 y1? y2™ — 2y1™ y22 y1% y2™ — 2 L y2 y1™ y13 y2m
+2L2y22 y1?2 y1™ y2™ 4 yI™ my2t y2™ + 2L y2% yI™ yl y2™ + y1™ m y1? y2m

+ L2 y2%y1? (y2™)® — 2 Ly2 y1® (y2™)?))
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G ™ =y2(b1 y1* Ly2® (y1™)> — 252 y23 (y1™)? y1% — b2 y2 (y1™)2 y1*

— 202922 L (y1™) y1® — b2 y2° (y1™)? — b1 y1* Ly2 (y1™)% — b2 y2 y1™ y1* yo™
—2b1 y1*Ly2 y1™ y2™ + b1 y1° y1™ m y2™ + b1 yl yI™ my2* y2™

+2b2y2° yI™my1? y2™ — b2 y2° y1™ y2™ + 2 b1 y13 y1™ m y22 y2m

—4b2y22 Ly1™y1®y2™ + 2b1 y12 L y23 y1™ y2™ + b2 y2° y1™ m y2™

—202y2° y1™ y1? y2™ + b2 y2 y1™ myl* y2™ — b1 y1* Ly2 (y2™)?

+ b1 y12 Ly2® (y2™)2 — 262 y22 L y1® (32™)?) / (2(2Ly23 (y1™)2 y1

+ L2 y22 y12 (yI1™)? — y1™ y2* y2™ — y1™ y1* y2™ + 2y1m my22 y1? y2™
—2y1™y22 y1? y2™ — 2 Ly2 y1™ y13 y2™ + 2 L2 y22 y12 yI™ y2™ + y1™ m y2* y2™
+2Ly23 y1™yl y2™ + y1™my1* y2™ + L2 y2% y1? (y2™)2 — 2 L y2 y13 (y2™)?))

(K(v1,v2)):

]

> Gauss :

> Gauss := normal(Gauss, expanded):

> factor(Gauss);

What follows is the Gauss-Berwald curvature for the metric. Given such a
large expression for K, it was necessary to perform some sort of check. First
L = 0 was substituted into K. Then a comparison was made with the value
of K given in [4], which was obtained from the metric in which L - 0. They

matched; this indicaties that the expression for the curvature here is correct.
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%(y22 +y1%)? (y1™ + y2™)2(12y2% L? y1® (y1™)* + 36 y1° (y1™)% (y2™)? y2° L2
—8y18 (y1™)? (y2™)2 y22m + 16 (yI1™)® y2™ y2 " m L y1 — 22 (y1™)3 y2™ y26 m L? y1°
+8(y1™)? (y2™)? m3 y2° L2 y1? - 8 (y1™)® (¥2™)? y2° m y1® + 36 (y1™)? (y2™)? y2° L2 y1?
— 44 (y1™)2 (y2™)2 y25 m L2 y12 ~ 22y1™ (y2™)% y28 m L2 y1?
~24 (y1™)? (2™ m2? y2" Lyl - 12(y1™)3 y2™m? y27 L y1
+8(y1™)2 (y2™)2 m3 y27 Lyl + 16 (y1™)? (y2™)2 y2 " m Lyl — 4 (y1™)3 y2™ m® y27 L y1
+ 12917 y1™ (y2™)P m2 y2 L+ 4y17 y1™ (y2™)3 m3 y2 L + y18 (y1™)2 (y2™)2 m*
— 16917 y1™ y2 (y2™)3 m L+ 24 y17 (y1™)? (y2™)2 m? y2 L + 36 y1% y1™ (y2™)3 y2° L2
+4(y1™)? (y2™)> m* y2° y1® — 16 (y1™) (y2™)2 m® y2° y1? + 20 (y1™)% (y2™)2 m? y26 y1?
~12(y1™)3 y2™ m2 y28 L2 y12 + 12 y1™ (y2™)3 m? y2° L2 y1?
+36y1° (yI™)YP y2mm? y23 L — 441t y1™ (y2™)° m® y2 L? + 4y1t y1™ (y2™)° y2* m L2
+20918 (y1™)% (¥2™)2m? y22 — 4 y1® (y1™)P y2mmd Y23 L
+ 112 y13 (y1™)? (y2™)2 Y25 m L — 24 y13 (y1™)? (y2™)? m? y2° L
—8y13 (y1™)3 y2™mm3 y25 L + 32913 (y1™)2 y2™ y25m L + 24 y13 (yI1™)3 y2™ m2 y25 L
—11291°% (y1™)? (y2™)2 y2° m L+ 96 y1° (y1™)? (y2™)% y23 L — 4 y1® (y1™)% (y2™)* m?
—24y1° y1™ (y2™¥ m? y23 L+ 8 y1° y1™ (y2™)3 m3 y23 L 4+ 48 y15 y1™ (y2™)2 y23 L
+5y1% (y1™)? (y2™)2 m® + 8y13 (y1™)? (y2™)? m® y2° L — 48y13 (y1™)® y2° y2™ L

L 12918 y2? (y2™) L2 — 96 y13 (y1™)2 y2°% (y2™)2 L — 32 y1® y1™ (y2™)3 y23 m L
—8y1® (y1™)2 (y2™)?mB y23 L + 24 y15 (y1™)? (y2™) 2 m? y23 L
+48y15 (y1™)3 y2™ y23 L — 80 y15 (y1™)3 y2™ 923 m L — 291® (y1™)% (¥2™)2m
+6y1* (y1™)?, (y2™) m* y2* + 301 (y1™)? (y2™)? m? y2t — 1291* (y1™)2 (2™)2 y2im
+ 16 yI* (y1™)2 (y2™)2 m3 y2* L2 + 8 y1* (y1™)? (y2™)? y24 m L2
+4y1* (y1™)3 y2™ y2tm L2 — 4 y1* (y1™)% y2™ m3 y2* L2 — 48 y13 y1™ y2° (y2™)3 L
+80y13y1™ (y2™)2 y2Sm L — 36 y13 y1™ (y2™)3 m? Y25 L + 4 y13 y1™ (y2™)3 m® y25 L
+12y1° (y1™)3 y2™ m? y22 L% — 2 y1°® (y1™)3 y2™ m3 y22 L2 4 36 (y1™)3 y2™ y28 L2 y1?
— 24 y1* (y1™)? (y2™)2 m® y2* + 4 91 (y1™)% (y2™)2 mt y2% + 12 y1® (y1™)3 y2™ Y22 L2
+12y1™ (y2™)2 y28 L2 y1? — 22 y1® y1™ (y2™)% y22 m L2
— 12918 y1™ (y2™)3 m2 Y22 L2 — 2 (y1™) y2™ m3 y26 L2 y12
—8y1” (y1™)? (y2™)2mP y2 L — 16 y17 (y1™)? (y2™)? y2m L
~16y1° (y1™)% (y2™)? m® y2% — 2y1™ (y2™)° m® y2° L? y12
—2y1% y1™ (y2™)3 m® Y22 L? — 44 y1° (y1™)? (y2™)2 y22 m L2
+8y1°% (y1™)? (y2™)2 m® y22 L? — 2291 (y1™)® y2™ y22 m L2 — 2 (y1™)? (y2™)? y28 m
+5(y1™)% (y2™)> m? y2® + (y1™)? (y2™)* m* y2° — 4 (yI™)? (y2™)% m3 y2°)(
—yl®y2 bl y1™ L —y1? y2 b1 L y2™ + y1® b1 y2™ + y1 b1 y2™ y22 — y1 y22 y1™ L b2
— y12 b2 yI™ y2 — b2 y1™ y23 — y1 y22 Ly2™ b2)? /((e(u z1+b2z2+Larctan(%)))2
((y1™ + y2™) )2 (2 L y2® (y1™)? yl + L2 y22 y12 (y1™)? — yI™ y2* y2™ — y1™ y14 yom
+2y1mmy22 y1? y2™ — 2y1™ y22 y1% 8™ — 2L y2 y1™ y13 yo
+2L2y22 412 yI™ y2™ 4 yI™my2t y2™ + 2L y23 yI™ y1 y2™ + yIm™mmy1tygm™
+ L2 y8% y1? (y2™)? — 2 L y2 y1® (y2™)?)*)
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> GaussO := subs(L=0,Gauss):
> z = y2/yl:

> Gaussl := (m*x(m-2)*b1°2%(1+z"°m) 2% (2"~ (m-1)-b2/b1) “2%(y1*y2))/
(4% (m-1)~2%(F) 2%z~ (2*m-1)):

> Gauss2 := subs(L=0,Gaussi):
> zero := Gauss0 - Gauss2:
> zero := simplify(zero,symbolic);
zero =0
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C

This Maple session shows that, for the expanded m® root metric, the Douglas
tensor vanishes for m = 2. After defining the Dimension, Coordinates, and

Dcoordinates as before, the metric function is defined for m = 2.
> F:= exp(blxx1+b2xx2+L*arctan(yl/y2))*(y1~2+y272)~(1/2):
> F2:=F"2:
_ The metric tensor is given, and the Douglas tensor is calculated, note that

it is equal to 0 for m = 2.

Douglas tensor is calculated.

> metricfunction(F2):

The components of the metric are :

_ (2L%y22 + 2L y2 y1 + y1* + y2?) (e(bz 1+b2 :02+Larcta,n(§—;-)))2

g st 1= y12+y22
— (2L y2 y1 — y22 + y1 2) L (e(bJ z1+b2 z2+Larctan(1%)))2
g z1 2= y12+y22
_ (2L%y1?—2Ly2 y1 + y1? + y2?) (b1 o140 22+Larctan(%)))2
T y1? + y2?
> ShOW(G[i,—j,—k,—l]);
G* jk1=0
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Now, assuming that m # 2, the various components of the Douglas tensor
were calculated. After substituting L = 0 into the expression, each com-
ponent was compared to the known value given in [3], by obatining the
difference, diff. The known value is labelled D111known, for example.

> F:= exp (b1*x1+b2*x2+L*arctan(y1/y2) )* (Yiﬁm"'y‘?*m) “(1/m):

> Di1111 :

show(G[x1,-x1,-x1,-x1]1):

> D1111 := subs(L=0,D1111):

> Di1liknown := b1l/2*m*(m-2)*y2°m/(y1l m)*1/y1l:

> diffl := D1111 - Dilliknown:

> diffl := normal(diff1,expanded);
difft :=0

> D1121 := show(G[x1,-x1,-x2,-x1]):

> D1121 := subs(L=0,D1121):

> Dii2iknown := ~b1/2¥m* (m-2)*y2~(m-1)/(y1~(m-1))*1/y1:

> diff2 :

D1121 - Di1i21known:

> diff2 :

normal (diff2,expanded) ;

diff2 =0
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> D1221 := show(G[x1,-x2,-x2,-x11):

> D1221 := subs(L=0,D1221):

> D1221known := bl/2*m*(m-2)*y2~ (m-2)/(y1~(m-2))*1/y1:

> diff3 := D1221 - D1221known:

> diff3 := normal(diff3,expanded);
diff3 :=0

> D1112 := show(G[x1,-x1,-x1,-x2]):

> D1112 := subs(L=0,D1112):

> D1112known := -b1/2km*(m~2)*y2~(m-1)/(y1~(m-1))*1/y1:

> diff4 := D1112 - D1112known:

> diff4 := normal(diff4,expanded);
difff{ :=0

> D1122 := show(G[x1,-x1,-x2,-x2]):

> D1122 := subs(L=0,D1122):

> D1122known := b1l/2*m* (m-2)*y2" (m-2)/(y1~ (m-2) ) *1/y1:

> diffb5 := D1122 - D1122known:

> diff5 := normal(diff4,expanded);
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diff5 :=0

> D1222 :

]

show(G[x1,-x2,-x2,-x2]):

> D1222

1]

subs (L=0,D1222) :

> D1222known := -bl/2¥m*(m-2)*y2~(m-3)/(y1"(m-3))*1/y1:

> diff6 := D1222 - D1222known:

> diff6 := normal(diff4,expanded);
diff6 == 0

> D2111 := show(G[x2,-x1,-x1,-x1]):

> D2111 := subs(L=0,D2111):

> D211lknown := -b2/2*m*(m-2)*yl~(m-3)/(y2~(m-3))*1/y2:

> diff7 := D2111 - D2iilknown:

> diff7 := normal(diff7,expanded);
diff7 =0

> D2211 := show(G[x2,-x2,-x1,-x1]):

> D2211 := subs(L=0,D2211):
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> D221iknown := b2/2km* (m-2)*y1~ (m~2)/(y2~ (m~-2))*1/y2:

> diff8 := D2211 - D2211known:

> diff8 := normal(diff8,expanded);
diff8 =0

> D2221 := show(G[x2,-x2,-x2,-x1]):

> D2221 := subs(L=0,D2221):

> D2221known := -b2/2*m* (m~2) *y1~ (m-1) / (y2~ (m-1) ) *1/y2:

> diff9 := D2221 - D2221known:

> diff9 := normal(diff9,expanded);
diff9 =0

> D2112 := show(G[x2,-x1,-x1,-x2]):

> D2112 := subs(L=0,D2112):

> D2112known := b2/2*m* (m-2)*y1~(m-2)/(y2~ (m-2))*1/y2:

> diff10 := D2112 - D2112known:

[

> diff10 :

normal (diff10,expanded) ;

diff10 :==0
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> D2212 :

[}

show(G[x2,-x2,-x1,-x2]):

> D2212 :

subs (L=0,D2212) :

> D2212known := -b2/2m*(m-2)*yi~(m-1)/(y2" (m~1))*1/y2:

> diffi1i := D2212 - D2212known:

> diffi1l := normal(diffil,expanded);

> diffil := normal(diffll,expanded);
diff11 = 0

> D2222 := show(G[x2,-x2,-x2,-x2]):

> D2222 := subs(L=0,D2222):

> D2222known := b2/2*m*(m-2)*yl~m/(y2"m)*1/y2:

> diff12 := D2222 - D2222known:

> diff12 := normal(diff12,expanded);

diff12 .= 0

Notice that the difference between the calculated value for D, and the known
value is equal to 0 in each case. The Douglas tensor for the m** root metric,

with L = 0, vanishes if and only if m = 2 [3]. Since the Douglas tensor for
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the L # 0 case reduces to those of the L = 0 case upon substitution, we can

say that the Douglas tensor for the expanded metric is 0 if and only if m = 2.
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