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1 Introduction

D ifferentia l geometry involves the lengths o f paths in  space, which are given 

by a metric. Finsler geomery involves the study o f Finsler metrics and the ir 

associated properties: induced m etric tensor, connections, etc. Unlike Rie- 

mannian metrics, Finsler metrics depend on ^  as well as the position x ; they 

provide a more detailed analysis o f the system under consideration.

When used in  applications, a Finsler m anifold may be interpreted as the 

configuration space o f the system in  question, and the m etric as the energy 

cost to  go from  one state to another in  the system. An example o f such an 

interpretation is found in  [3], in  which the authors used a Finsler mth root 

m etric, F (x ,y ) =  eaixl+a2x2{{yl )m +  (y2)m)™, and its  associated tensors and 

scalars to  model the predator prey interactions between the crown o f thorns 

starfish, A. planci, and the Great Barrier Reef in  Australia.

There is an expanded version o f the m etric above:

F(x ,y )  =  eaia'1+aa*2+x'ton_1^ ((y i) " *  +  (y2)m)£ ,

where Ltan~1 ̂  is a measure o f diversity. Due to  the com plexity o f the cal­

culations, th is expanded m etric has not yet been studied. Recently, however, 

a Finsler computing package, based on Maple, has been developed, and the 

purpose o f th is thesis is to  investigate the expanded mth root m etric using 

the Finsler package, to obtain values for such things as the Gauss-Berwald

1
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curvature, the Berwald connection coefficients, and the Douglas tensor. The 

focus here is p rim arily  on d ifferentia l geometry rather than on applications.

The main result is an extension o f a theorem found in  [3], which states th a t 

the Douglas tensor associated w ith  the expanded m etric is 0 i f  and only i f  

m =  2. From an applications point o f view, th is means th a t the starfish/coral 

interaction is in trins ica lly  social unless m — 2.

The firs t section covers the background inform ation necessary to  cover the 

geometry involved. The second is a discussion o f a special case o f the An- 

tone lli mth root metric. F inally, the th ird  section covers calculations done 

for the more general case o f the m etric mentioned above, a comparison o f the 

known value o f the Gauss-Berwald curvature w ith  the value obtained using 

the Finsler program is made, and the new theorem is stated.

2
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1.1 Background Information

D e fin itio n  1.1.1 An a tlas  is a collection o f coordinate charts {U \, h \ } \ eA 

on a m anifold satisfying the follow ing conditions:

•  h\ : U\ —y V\ C Rn is a homeomorphism, where V\ is an open set,

•  for a ll a, (3 e A, ha o h j 1 e C°° when restricted to  hp(Ua f j  Up).

A  m a x im a l atlas is an atlas not contained in  any other atlas.

An n -d im e n s io n a l d iffe re n tia b le  m a n ifo ld , M n, is a separable Haus- 

dorff space w ith  a maximal atlas.

The torus, the sphere Sn and real projective n-space RPn are examples o f 

differentiable manifolds.

N o ta tio n  1.1.2 A  coordinate chart A is assumed and coordinates are im ­

posed from  V\. Given x e U\ C M ,  identified w ith  h\(x), the Euclidean 

coordinates of Kn \Vx are interpreted as coordinates on M n. {-£ j}  is the 

induced coordinate basis on the tangent space o f M n] vectors in  th is tan­

gent space can be w ritten  y =  Y ^=i V1̂ -  Coordinates in  T M n are given 

by (x1, ...,xn,y 1,...,yn), which is abbreviated (x,y). Functions F defined on 

TM  can therefore locally be expressed as F (x l , ..., xn, y1, ..., yn).

D e fin itio n  1.1.3 A  re a l v e c to r b u n d le  £ =  is a 5-tuple,

where:

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•  E and B are topological spaces called the total space and the base 

space, respectively.

•  7r : E  —y B  is called the projection map, i t  is continuous and surjec- 

tive.

•  +  : E  0  E  :=  {(e, e') e E  x E  | 7r(e) =  7r(e')} i— > E ,  (adds elements in  

the same fiber).

•  • : R  x E  -y E, : (t, e) i— y t • e

+  and • are continuous and the restrictions to 7r_1(6), beB, make 7r_1(6) in to  

a real vector space; 7r-1 (6) is called the fib e r over b.

A  vector bundle is a special case o f a fibre bundle, which is a map /  : E  —y B  

such th a t every point in  the base space, beB  , has an open neighborhood U 

such tha t f ~ l (U) is homeomorphic to  U  x F.  Namely, i f  [9]

h : f - \ U )  -y U x F

is the homeomorphism, then

7Tu °  h =  f  |/-!((/)

The homeomorphisms which commute w ith  projection are called local triv- 

ializations o f the fibre bundle f; E looks locally like the product B  x  F.

Example 1.1.4 The Mobius s trip , (M2, S'1,7r), is an example o f a nontriv ia l 

(not a global product) fibre bundle. I t  has the circle for a base space and the 

fibers are intervals in  R, o f the form  (-1,1).

4
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D e fin itio n  1.1.5 Given M n, a m anifold and x  a point in  M n, we define a 

ta n g e n t v e c to r £ at x  to  be an assignment o f an n-tuple o f numbers for 

every A e A, denoted for i e { 1 , n} ,  such tha t i t  obeys the relation:

£/? °  ha )

where D is the derivative.

The ta n g e n t space a t x  e M n, denoted TxM n, is a real vector space of 

tangent vectors at x. The ta n g e n t b u n d le  o f M n, (T M n, M n, 7r,+ , •), as 

a set, is the union of a ll TxM n. I t  has a natural projection 7r : T M  -»  M ,  

mapping TXM  onto x. The topology on the tangent bundle is defined by 

the pre-image o f the projection o f a ll the open sets U  C M ,  namely 7r_1(t/)- 

In  th is way, the projection mapping is C 00. The tangent space can also be 

shown to be a 2n-dimensional, C°° m anifold [4].

The s lit  ta n g e n t bund le , T M ,  is an open region o f T M n that:

•  does not contain (x,0),

•  contains (x,Ay), A >  0, i f  i t  contains (x,y). This is known as a positive 

cone.

D e fin itio n  1.1.6 A  section  o f a fibre bundle gives an element o f the fibre 

over every point in  B. I t  is a C°° map o : B  -»  E  such th a t 7r o a is the 

iden tity  on B.

5
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E xam p le  1.1.7 The zero se c tio n  o f a vector bundle consists o f a ll the zero 

vectors; those w ith  length zero and therefore w ith  a ll components equal to  

zero.

We can see tha t the s lit tangent bundle is sim ply the tangent bundle w ith  at 

least the zero section removed.

N o ta tio n  1.1.8 Throughout, E in s te in  su m m a tio n  is used to s im plify  no­

ta tion . This means th a t repeated upper and lower indices are summed 

over { l, . . . ,n } .  For example, given two tensors Rijk and y \  then Rijky* =  

R - ijk V 1-

D e fin itio n  1.1.9 Tensors are generalizations o f scalars, vectors, and ma­

trices. W hile these objects have 0, 1 or 2 indices, respectively, a tensor can 

have any fin ite  number o f indices.

Furthermore, a covariant tensor o f rank 1, Tr , associated w ith  a po in t P, 

transforms according to the equation

T '    r p  d x s
>r =  1  e
r  s d x  r

about the point P.

S im ilarly, a contravariant tensor o f rank 1 transforms according to  the equa­

tion

rp > r  _  rp s  8 x ' r 
d x s

6
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Following the same pattern, a mixed tensor o f rank 3, fo r example, trans­

forms according to

r p ' r   n n m  d x  r  d x n d x p
s t ~~ * n p d x m d x '3 d x  *

See [15] fo r more inform ation on tensors.

Notation 1.1.10 By diF , we mean

By diF, we mean or J£ , (which one is meant w ill be clear from  the

context).

Definition 1.1.11 A  C°°, real-valued function /  on Rn is positively ho­

mogeneous of degree d i f  /(A y ) =  Adf(y )  for any A >  0.

Example 1.1.12 F (y ) =  {(y1)m +  (y2)m}m is p-homogeneous o f degree 1

and

F(y) =  is p-homogeneous of degree zero in  y.

Definition 1.1.13 I f  F (x x, ...,xn,y 1, ...yn), where y% =  is a Finsler met­

ric, then F  has the follow ing properties:

•  F : T M  —> R is C°° on T M  and is continuous an a ll o f TM .

•  F(x, y) >  0 for y /  0.

•  F(x,Ay) =  AF(x,y), for a ll A >  0.

F(x, y) is also called the fundamental function o f the Finsler space.

7
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D e fin itio n  1.1.14 A  Finsler space is called a B e rw a ld  space i f  the connec­

tion  coefficients Gjk (see page 21) are functions o f x1 alone, in  some coordinate 

system. I f  th is is true in  one coordinate chart o f the atlas, then it  is true for 

a ll charts o f the atlas.

D e fin itio n  1.1.15 A  Finsler space (M , F n) is called lo c a lly  M in k o w s k i i f

there exists a coordinate system in  which the fundamental function F depends 

on yl alone. This coordinate system is called adap ted  in  F n.

Locally M inkowski spaces are also Berwald spaces.

E xa m p le  1.1.16 F  — eaiX‘ [(t/1)2 +  (y2)2]^ is loca lly Minkowski.

D e fin itio n  1.1.17 Given a Finsler m etric F,  the m e tric  te n so r associated 

w ith  F is given by

ft ,  =  1 didjF*

This induced m etric tensor is symmetric and is required to be nondegenerate, 

ensuring has an inverse. I t  is also homogeneous o f degree zero in  y.

The inverse m etric tensor gli is defined by the relationship gikgjk — Sj, where 

8j is the Kronecker delta:

I f  is interpreted as a m atrix,

8

1 i f  i =  j
<

0 otherwise 

then is the m a trix  inverse.
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Notation 1.1.18 The indices o f a tensor can be raised or lowered via  the 

m etric tensor. Given tensors and Rijk, then Ajk =  guAlA  and Bipk =

A m  T>
9  *Hjk

Theorem 1.1.19 (Euler’s Theorem) A  C°°, real-valued function /  is p- 

homogeneous of degree d i f  and only i f

& f ( v )  ■vi =  d ■ f(y )

Proof: Prom [5], suppose /  is p-homogeneous o f degree d, then i t  satisfies

/(A y ) =  Adf(y )  for a ll A >  0.

D ifferentiating w ith  respect to  the parameter A, we get

Setting A =  1 in the above gives the required result.

Conversely, assume the above holds. I f  we evaluate /  at Ay, we get

df(Xy) =  dfyi |Aj, Ay* =  Xdf(Xy)dX.

For fixed y, le t g(A) =  /(A y ) =  dg{X)dX which is separable. Prom

this, we get g{X) =  Xdg(l) => /(A y ) =  Ad/(y ) , and /  is p-homogeneous o f 

degree d.

9
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1.2 Sprays

Definition 1.2.1 A vector field on a differentiable m anifold M  is a C°° 

cross-section £ : M  —> T M  o f the tangent bundle. That is, £ is C°°, lies in  

TXM  fo r each x e M ,  and 7T o £ =  id.

Definition 1.2.2 A  vector field S on TM  is a second order differential 

equation (or SODE) i f  the Jacobian map

D i r : T T M  -+ T M

has the property

Dir o S(£) =  £ for a ll £ e T M .

A  SODE is a section o f T T M .

Definition 1.2.3 [10] I f  /  : X  -»  X '  is a C°° diffeomorphism, then we define 

T ( f )  : T (X )  -)■ T (X ')  to  be Tx(f )  on each fiber Tx(X).

Locally, we may assume th a t X  and X '  are open in  vector spaces E  and E '. 

Txf  =  f '(x )  is the derivative. Then T f  is given by

T f{x ,  £) =  ( /(& ) ,/'(a :)£) for x e X ,  £ e E.

Below, we w rite  /*  instead o f T f  for the induced map, which is also called 

the tangent map.

10
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Definition 1.2.4 A spray is a SODE satisfying certain properties. Namely, 

given a positive real number A and the to ta l space of a C°°-vector bundle, 

define A : E  —>■ E  by scalar m u ltip lica tion  on each fiber.

The induced map on T E ,  A* : T M  —» T M ,  satisfies A*(£) =  A£.

Let E  =  T M .  I f  a given SODE satisfies S (\£ )  =  A*A£(£), for A >  0, then S 

is called a spray.

Definition 1.2.5 Let Sn C Rn be an open, connected region (a submanifold 

o f dimension n) w ith  a local coordinate system. A  parameterized curve 

in  Sn is identified w ith  a set o f equations 

x* f ( t ) ,

where the f l are C°°, not a ll constant. These are the so-called finite equations 

of a curve.

Example 1.2.6 •  From [6], the curve a  =  (cost, sin t ,t )  is a parame­

terized curve whose trace in R3 is a helix on the cylinder x2 +  y2 =  1.

•  The curve a  =  (t , |t|) is not a parameterized curve since \t\ is not 

differentiable at t =  0.

Definition 1.2.7 By a system  of paths in  Sn, we mean any system of 

curves w ith  fin ite  equations

=  f ( t , a ) ,  i =  1 ,. . . ,n

11
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o f C°° curves w ith  parameter t. The le tte r a denotes a set o f 2n -  2 

parameters which vary from  curve to  curve. The follow ing conditions must 

also hold:

•  There is a unique curve in  the system passing through any two given 

points in  Sn, sufficiently close.

•  There is a unique curve through any point xeSn, w ith  i =  1, ...,n , 

a direction at x, arb itrary.

T h e o rem  1.2.8 (D ou g las) A  system o f paths is a local spray; conversely, 

a local spray is a system o f paths.

Every Finsler m etric induces a spray, namely, the geodesic spray. On the 

other hand, not a ll sprays are o f the geodesic type.

A  global spray gives a fam ily o f smooth curves through each po in t o f M n, 

one in  each direction. Also, for any two points p,q e M ,  sufficiently close, 

there is a unique spray curve jo in ing  them. In  1928, Douglas showed tha t 

local sprays are systems o f paths in  the real analytic case, and in  1937, T .Y . 

Thomas showed the same for the C°° case.

1.3 Finsler Connections

Given a fundamental function F,  we can define the notion o f a ’’Finsler 

connection” . A  ’’ connection” , roughly, is a firs t order directional operator

12
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acting on vector fields; i t  is a path dependent map from  one tangent space 

o f a m anifold to  another.

There are many connections, but the Finsler notion was firs t introduced by 

L. Berwald. Just as different topologies on a space yield different types o f 

inform ation about tha t space, so do different connections on the tangent 

space o f a manifold.

The well known connections are the Berwald connection, the Levi-C iv ita  

connection of Riemannian geometry, and the Cartan connection. O nly the 

Berwald connection can be extended to  sprays, which are not necessarily 

Finsler geodesics; we w ill m ainly discuss the Berwald connection here. One 

is referred to  [1], [13] fo r a deeper discussion o f the various connections.

D e fin itio n  1.3.1 Given a smooth m anifold M n and the tangent space TXM ,  

a fra m e  £ at x is a basis o f TXM .  I t  is a set o f n linearly independent tangent 

vectors, z%, at x.

Let L be the set o f a ll frames at a ll points o f M n and define the mapping 

7tl : L ^  M ,  called the projection, such th a t ttl(z) — x. £ is called the 

o rig in  o f 2 .

The set o f a ll frames over x is w ritten  tt~1{x )\ i t  is called the fib e r over x 

and it  forms the group GL(n), the set o f a ll invertib le real square matrices.

D e fin itio n  1.3.2 Given a local coordinate system {U,x1} in  a neighbour­

hood U o f M n, every tangent vector za o f a frame z — (za) at x =  (x%) e U  is 

w ritten  z'Jpx*)* and we get a local coordinate system { ^ ( U ) ,  ( x \  zla)}  on

13
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L. This is the ca n on ica l co o rd in a te  system  o f L\ we can regard L  as a 

smooth m anifold [1].

D e fin itio n  1.3.3 L (M n) =  {L ,n L, M n}  is called the fra m e  b u n d le  o f the 

m anifold M n, where L  is the to ta l space and M  is the base space.

D e fin itio n  1.3.4 Given a frame bundle, we can consider the tangent space 

at a point z oi L  (note th a t th is ’po in t’ z is actually a frame, i.e. a set of 

vectors). We define the v e rtic a l subspace o f L, denoted L vz, to  be the kernel 

o f the projection ir'L from  the tangent space o f L onto L at a po in t z,

L i =  { X  e L , : *'L(X )  =  0}.

D e fin itio n  1.3.5 On a smooth m anifold M , a C°° map D  : x e M  —> Vx C 

TXM  is called a d is tr ib u tio n  in  M, where 14 is a subspace o f the tangent 

space TXM .

The horizontal subspace o f L is not well-defined, a p rio ri. I t  can be considered 

a complement of the vertica l subspace and can be defined via  a connection.

D e fin itio n  1.3.6 For a fixed g e GL(n), we have the mapping

f3g : z e L  -»  zg e L  ,

called r ig h t tra n s la tio n  o f L  by g. This means tha t

n l 1^ )  =  { z9,9  e GL(n)}

fo r a point z in

14
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Definition 1.3.7 A d istribu tion  T : z e L  —> C Lz in the to ta l space L  o f 

the frame bundle L (M n) is called a linear connection in  L, or on M n, i f  

the follow ing two conditions are satisfied:

•  Lz =  Yz © Lvz

•  Dpg{Tz) =  Tzg,geGL{n)

The space C L z is called the horizontal subspace. From th is i t  follows 

tha t a linear connection is the complement o f the vertical d is tribu tion  and is 

invariant under righ t translations.

Definition 1.3.8 A spray connection N  in  the to ta l space T  o f the tan­

gent bundle T ( M n) is a d istribu tion  yeT -*• N y c T y which satisfies the direct 

sum sp littin g  Ty =  N y @Ty. This is also called a Nonlinear Connection.

Definition 1.3.9 Given 7r : E  —> B, a bundle, and a continuous map /  : 

B' -> B, then the pullback, (or induced bundle) is given by

/ * ( 7r) - .E ' -^ B '

where

E' =  { (e, b ) e E x B ' : f ( b )  =  7r(e)} 

and / * ( 7r) is the restriction o f the projection map to  B'.

15
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E' E

/ * ( * ) 7T

B ' B

/ * ( 7r) is said to  be the pullback o f 7r by f.

D e fin itio n  1.3.10 Given the follow ing diagram

TVj
F ( M ) L (M )

7Ti

T ( M ) M
7Tj1

the sp ray b u n d le  i t i (F (M ))  is the pullback of -kl by -ttt- I t  is denoted 

F { M n) =  { F , tti,T } .  The to ta l space o f the spray bundle is given by

F  =  {(2/>z) e T  x L  : irT(y) =  1t l ( z ) } .

In  other words, F  is the set o f a ll pairs (y, z) such tha t y is a tangent vector 

at a po in t o f x and 2; is a frame at the same point x.

The projection tti is given by

16
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u =  ( y , z ) e F  ^ y e T .

7Ti is the restriction o f the projection map to  T.  This is analogous to  the 

definition o f pullback.

Just as in  the definitions o f linear and spray connections, we get the direct 

sum relation for the spray bundle

Fu =  © F ” , where u =  (y, z),

sp littin g  the bundle in to  horizontal and vertical subbundles.

The horizontal subspace Tu can further be sp lit into subspaces, giving the 

relation,

r „  =  r : © r £ .

r£  and r£  are called horizontally and vertically horizontal subspaces respec­

tive ly  (or h-horizontal and v-horizontal subspaces).

D e fin itio n  1.3.11 [4] A  p re -F in s le r co n ne ctio n  FT  in  the to ta l space F  

o f the spray bundle F ( M n) is a pair (F, N )  o f a linear connection F in  F, 

and a spray connection N  in  the to ta l space T  o f T (M n).

Locally, a pre-Finsler connection is denoted by the triad  (Ffk, N -, Vki). These 

functions are called the connection coefficients of the pre-Finsler connection. 

Loosely speaking, F  can be viewed as a horizontal connection, V  as a vertical 

connection, and N  is a nonlinear (or spray) connection.

Returning to  the discussion o f sprays, assume a local spray is given. We 

express th is as a second order differential equation o f the form  [4]

17
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%j£ +  2Gi =  0, for z =  1, n

where the Gi are C°° in  x and y — x and p-homogeneous o f degree 2 in  y =  x. 

Now define the nonlinear connection

where each pair o f i , j  run from  1 to  n\. This is called the sp ray connection . 

Taking one more derivative, define [4]

G)kix ,y) =  Ip --

Prom Euler’s theorem, we have tha t Gj  is p-homogeneous o f degree 1 in  y 

and Gjk are homogeneous o f degree 0 in  y. Therefore the Gs are allowed to 

depend on ratios o f y% (see 1.3.19 below).

D e fin itio n  1.3.12 Given the spray connection, G*•, we define B e rw a ld ’s 

n o n lin e a r o p e ra to r by

S i - d i -  G)dj

Hence, i f  f ( x , y ) is C°°, 8if transforms as a covariant vector. This is the 

Finsler notion o f the gradient operator.

Given the notion o f a connnection, we can define the h- (or short bar) and 

v- (or long bar) covariant derivatives.

D e fin itio n  1.3.13 The h -co va ria n t d e riv a tiv e , V ftT , o f a (1,1) type ten­

sor T j , w ith  respect to  a pre-Finsler connection, is given loca lly by

18
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Tjik =  ^  +  TTFtt -  TiFJt

=  6kT ij + T T F ik - T ‘F ^

Definition 1.3.14 The v-covariant derivative, V VT, o f a (1,1) type ten­

sor Tj w ith  respect to  a pre-Finsler connection, is given loca lly by

i jU  =  & z j + i 7 v ? , - i ; v 7 t

S im ilar equations hold for the covariant derivative o f a tensor o f a rb itra ry 

rank, see [1].

D e fin itio n  1.3.15 The components o f the d e fle c tio n  te n so r fie ld  D  o f a

pre-Finsler connection are given by

Dj =  yrFrj — Nj

N o ta tio n  1.3.16 The symbol (j \k) means tha t a ll terms appearing before 

i t  are to be added w ith  the j  and k reversed.

For example, Y)k +  (j \k) =  V)k +  Tlkj

Given a linear connection T, we obtain five torsion tensor fields and three 

curvature tensor fields for the pre-Finsler connection FT  [4]:

•  h-torsion T: T ljk =  Ffi -  (j \k )

•  h-torsion R 1 : Rfi =  8kNj — (j \ k)

•  hv-torsion V  : V-k

19
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•  hv-torsion P 1 : P-jk =  dkNlj -  Fkj

•  v-torsion S1 : Sljk =  Vfk -  (j\k)

•  h-curvature R2 : R{jk =  K lhjk +  V£rRrjk 

where K lhjk =  5kF lhj +  F rhjF lrk -  (j\k)

•  hv-curvature P 2 : P lhjk =  F lhjk -  V*k{j +  V ^ P rjk 

where F[jk =

•  v-curvature S2 : S[jk -  dkVfo +  V^V;k -  (j \ k )

Given a Finsler space with fundamental function F(x,y) ,  we can introduce a 

pre-Finsler connection based on F. This is called a Finsler connection.

Definition 1.3.17 Given a Finsler m etric and hence an induced m etric ten­

sor, the Levi-Civita symbol of the first kind is given by:

'Y ijk  —  2 i .^ j9 ik  “ I "  & k 9 ij  @ i9 jk )

I t  is p-homogeneous o f degree 0.

The Levi-Civita symbol of the second kind is given by

Y jk  =  9 isT s jk  

I t  is also homogeneous o f degree 0.

20
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D e fin itio n  1.3.18 According to  physical analogies, the geodesics o f a 

space are the paths followed by a non-accelerating particle. In  the plane, 

they are the straight lines, on the sphere, the great circles. The geodesics o f 

a space depend on the m etric o f th a t space. Given the Levi-C iv ita  symbols, 

the geodesic equations for F  can be w ritten :

( f i x 1 i % dx* d x k    n

ds2 i j k  ds ds ~  U ’

7 *fc is not a connection in  Finsler space, though i t  is in  Riemannian geometry. 

For a Finsler space (M , F),  there is a canonical spray w ith  local coefficients 

G \  given by [2]

  1 „ i i (  d 2F 2 ..m    9 F 2 )
2 "  \ d y * d x m "  d x *

This term  was mentioned in the discussion o f local sprays (see page 17). 

Equivalently, we can define Gl as follows

Gi = h %yj vk-

The geodesic equations can therefore be w ritten :

+  2 G* =  0.

The Gl term  is called the sp ray fu n c tio n .

D e fin itio n  1.3.19 From the canonical spray, we get the lo c a l sp ray con­

n e c tio n , or lo ca l n o n lin e a r connection , JVj by

N] -  djG \
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I t  is p-homogeneous o f degree 1 and i t  w ill be labelled G*-. The spray 

connection coefficients are given by

G)k =  dkG).

These are also called the Berwald connection coefficients. They are 

p-homogeneous o f degree 0.

The Berwald connection BY =  (G*-fc,G*-,0) is determined from  the fun­

damental function F  by the five axioms o f S. Okada [4]:

•  V /lF =  0 (th is is known as ” F-m etrical” )

•  T  =  0 (h-symmetric, i.e. no h-torsion)

•  D  =  0

•  P 1 =  0

•  V  =  0

Also, since VJk =  0 for BY , the P 2 curvature reduces to G \ik =  dkGlj k. This 

is known as the Douglas tensor, D lhjk =  dhG)k.

Note th a t D  =  0 i f  and only i f  the connection coefficients are independent of 

y (affine linear). D  is known as the spray curvature.

Now the geodesic equations can be w ritten

d2x l I /mi dxi dxk   a
ds2 +  ^ j k  ds ~ds ~  U

Where Gk =  ksyrys implies tha t
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didj(2Gk) =  didj(jrSyrys) 

which, upon differentiation, yields

Gij = 7 i j +  d ilr it f  +  9j^isyS +  \d A lrsV ryS-

Since 7 ^  is p-homogeneous o f degree 0 in  y, we have by Euler’s theorem tha t 

di'Yr)yr =  dj7iaya =  Hence

G-j =  7 § +  \d idn rSyrys-

Note tha t i f  the 7 ^  are independent o f y, then G\j — 7 ^.

T heo rem  1.3.20 A  Finsler space is locally Minkowski i f  and only i f  the 

spray curvature and the h-curvature are equal to  0 in  BT.

P ro o f

(=0
Locally Minkowski = > F  =  F(y)

=>G{ =  0 since 2 &  =  -  &

=>G}k =  0

=► £4#* =  ^  =  0

(<=)

D \jk =  0 

=► =  G ^a r)

=> We have a Berwald space

=s- =  GlfiU ~ G^Gii =  0

23
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In  some coordinate system, G%ik  =  0 

=> Gj =  0 by Euler’s Theorem 

For a connection coefficient, i f  T  =  0, and the iV j are given, we have Gijk — 

\{&k9ij +  fiidkj — $j9ik)- In  a Berwald space, the 5s reduce to  ds, and since

G% =  o>

0  — 2 (Pk9ij d- @i9kj dj9ik)

^  9 i j=  9ij(y)- 

Since g%jy%yi =  2F, F  =  F(y) ,  and the proof is complete.

Definition 1.3.21 The Cartan Torsion Tensor is defined as

Gijk ~  5 k9ij

I f  th is tensor is equal to  0, then we have Riemannian geometry. In  other 

words: y-dependence of the metric tensor is the difference between Finsler 

and Riemannian geometry.

Definition 1.3.22 The Cartan Connection Coefficients are given by 

r * i  =  9il(lijk -  CljmG™ -  CjkmG f  +  ClkmG ?) 

or equivalently,

r* l =  19 il(Sjgik +  Skgij -  Sigjk)

which is sim ilar to  the definition o f the Christoffel symbols, except we use 5 

instead o f d.

The Cartan connection CT =  (P ^ , G*, C^)  is determined from  the funda­

mental function F by the five axioms o f M. Matsumoto [4]:

24
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•  V hg =  0 (th is is known as ” h-m etrical” )

•  V u<7 =  0 (” v -m e trica r)

•  D  =  0

•  P 1 =  0

•  T  =  0 (h-symmetric, i.e. symmetric in  the lower indices)

•  S'1 — 0 (v-symmetric)

The firs t two conditions together give us tha t CT  is ’’m etrical” .

Since, for CT, S1 =  0, we have tha t Cjk is symmetric in  its  lower indices. 

From this, we have tha t the S-curvature reduces to CrhjC lrk — CkkC^j. Fur­

thermore, i f  the Finsler space is 2-dimensional, then a ll indices are either 1 

or 2, and the S-curvature reduces to  0 identically.

Berwald’s pre-Finsler connection is not m etrical, in  general, but i t  is m etrical 

in  Berwald spaces [1].

The Berwald connection is im portant, however, since it  is in trins ic  to  spray 

theory and to the study o f the geometry of a rb itra ry SODEs given locally 

by +  f l (x, x, s) =  0. The geometry o f such a system is known as KCC 

theory, after Kosambi, Cartan, and Chern [1].

1.4 Curvatures

H istorically, the study o f the curvature o f curves in  two- and three-space 

led to  the Frenet formulas, which describe a curve in  terms o f its  curvature,
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torsion, and in itia l starting point and direction [9]. The Frenet equations 

can be viewed as ’’ structure equations” for 1-dimensional submanifolds o f 

R3. They determine one and only one curve up to  its  position in  space [14]. 

Likewise, the study o f surfaces in  three-space led to the notions Gauss- 

Berwald curvature K  and the consequent structure equations, known as the 

Gauss-Weingarten equations and the Gauss-Codazzi equations [14]. These 

equations determine one and only one surface, up to  its  position in  space. 

The Gauss-Weingarten and the Gauss-Codazzi equations are the Riemannian 

versions o f the Finsler structure equations, which, in  the case o f a linear 

connection, define the torsion and curvature tensor fields mentioned earlier. 

For a more in  depth discussion of the various structure equations, see [1], [4], 

[6], [14],

Most im portant here is the Gauss-Berwald curvature K ,  which measures the 

rate o f change o f the direction o f the normal vector, N ,  a t a point p e M n. 

In tu itive ly , K  measures how N  pulls away from  N(p) in  a neighbourhood of 

P-

The Gauss-Berwald curvature is im portant because i t  is invariant under 

isometries, which are distance preserving, bijective maps between m etric 

spaces. I t  can therefore help to classify various structures up to  isometry.

D e fin itio n  1.4.1 Given a linear connection (for example, the Berwald con­

nection), we define the R iem ann  cu rv a tu re  te n so r to  be

flij, = W ‘jt  -  st G -  G'jtG‘rt
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This is the R2 tensor field, given on page 19, for the Berwald connection, 

where Fjk =  G)k and Vjk =  0.

Definition 1.4.2 In  a two dimensional Finsler space, the Gauss-Berwald 

curvature is given by [4]

_  R \2 \2
911922— fll2 fl21

where the denominator is the determ inant o f the m etric tensor

Examples of surfaces w ith  constant Gauss-Berwald curvature include the 

sphere, the cone, the plane, and the pseudosphere. O f these, the sphere has 

curvature K  — r  the radius, the pseudosphere has K  =  — 1, and the cone 

and the plane have 0 Gauss-Berwald curvature.

An example o f a Finsler space w ith  constant Gauss-Berwald curvature is 

given by the m etric [5]

F  =  (y1)2 +  sinh2^ 1) ^ 2)2 +  y1 ta n h ^ 1)

This space has curvature K  — —

2 m th Root Metrics

Definition 2.0.3 A  Finsler m etric F(aa) is called a one-form metric i f

F(a“ ) is a p-homogeneous of degree one function o f n arguments aa(x,y).

Definition 2.0.4 We follow [4], section 5.4. The function L, given by,
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L  — { (y 1)7”  +  (y2)m +  — +  (yn)m}™ > m > 3 ,  m an integer, 

is known as the mth root metric.

Definition 2.0.5 Given an n-dimensional Finsler space F n — (M n, F ),  w ith  

m etric function

F  =  e^L, where <j) =  a iX 1 w ith  o-j constant, usually >  0,

the m etric F is known as Antonelli’s mth root ecological metric [4]. The 

coordinates {xl , ...,xn,yx, ...,yn) are called adapted [1].

The mth root m etric has been used in  the study o f coral reef ecology on the 

Great Barrier Reef, to  specify certain morphological tra its  in  a certain coral 

genus, see [3].

F  can be w ritten :

F  =  {(a x)m +  (a2)m +  ... +  (a")™ }1/™

where

a% =  e^y1, fo r i =  1 ,..., n.

We can see th a t A ntone lli’s m etric is a special one-form m etric, i t  is also 

locally M inkowski fo r m =  2, since K  =  0. For m >  3, however, i t  is not 

locally M inkowski since the Gauss-Berwald curvature K  is not equal to  0 

identically (see p. 28).
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The m otivation here is to  take an expanded version o f the mth root met­

ric  which has a diversity term , L  tan -1 ( ^ ) ,  in  the exponential, and to  use 

computer software to  obtain the spray functions G \  the Berwald connection 

coefficients Gjk, and the Gauss-Berwald curvature K.

3 Results

3.1 The FINSLER package

The FINSLER package w ritten  on Maple (see [8]) by Solange F. Rutz and 

Renato Portugal (see [1], [12]), allows tensorial m anipulation and component­

wise calculations. There are many b u ilt-in  tensors and commands in  the 

package, some o f which are already defined in  the R IEM ANN package (see 

[11]), upon which the FINSLER package was developed. The commands and 

tensors which were im portant in  my calculations are defined here [1]:

•  The command show evaluates, assigns and prints the values o f the 

components o f a tensor. I f  the indices given are numerical or have 

component names, the value o f a specific component w ill be returned.

•  co o rd in a te s defines the coordinate names. The number o f arguments 

must be equal to  the value o f the variable d im ens ion , a positive integer 

which must already have been specified.

•  D coo rd ina tes  defines the names o f the directional coordinates, or the

yl-
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•  metricfunction derives the components o f the m etric tensor using as 

input the square o f the m etric function.

•  The spray coefficients G[i] are defined as Gl =  \Y l-ky^yk, where T)k are 

the C hristoffel symbols o f the second kind, corresponding to  the m etric 

function, when defined.

• N[i,-j], the nonlinear connection, is defined as iV j =

c)G*
the spray connection, is defined as Gljk =

•  B[i,-j], the deviation tensor, is defined as £?* =  2djG1 +  2GrGjr — 

yrdrG) -  GiGrj.

Note th a t B 1- =  R%-klykyl, see page 24.

•  K (v l,v 2 ) ,  the Gauss-Berwald curvature, is defined as

K ( v i v i \  =  B j f K Y *  ^
^ ' ( 9 i j 9 k l - 9 i l 9 j k ) V l V ) y ky l '

Also im portant when dealing w ith  such large expressions are Maple’s sim pli­

fication routines. The im portant ones tha t used are listed below [7].

•  normal(x,expanded) simplifies rational functions. The argument x 

represents an expression, and the second argument, ’expanded’ , returns 

a result in  which the numerator and denominator are expanded poly­

nomials, sim plified when possible.
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•  s im p lify (x ,s y m b o lic ) allows symbolic m anipulation o f expressions, 

ignoring the issue o f branches for m ulti-valued functions. This means 

th a t an expression like sq rt(ir2) simplifies to  x  under the symbolic op­

tion , ignoring the possible values o f the sign o f x.

The accepted value of K  fo r the mth root ecological m etric is given by [4]:

K  _  m(m—2) f «i(*m~1-s f)2(*ro+1)2-, aV
4 (m —l ) 2 I  z 2 m - l  } p 2

where F  is the mth root ecological m etric and z =

Using the FINSLER package, the Gauss-Berwald curvature for A n tone lli’s 

mth root ecological m etric was obtained; the result was compared to  th a t 

given in  [4], and they matched. The comparison was done by calculating 

the curvature using the package, and subtracting from  it  the known value in

[4]. There was no difference between the known and the computed values. 

The sample calculation and comparison to  the curvature in  [1] are found in 

A p p e n d ix  A .

Due to  the in trinsic complexity in  the sim plification and m anipulation o f large 

expressions, a direct comparison between the obtained and known results 

was avoided. The issue o f what is apparently “simple” is not a tr iv ia l one in  

symbolic computing. In  the above expression, for instance, F actually stands 

for

p  =  e&ixl +b2x2{ ( yl)m  +  (y 2 )m }^
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fo r which Maple would substitute once the m etric function is defined. A ll 

tensorial expressions are derived from  the m etric function. This results in  

expressions given as functions o f the positional and directional coordinates. 

Also, i f  terms like (a +  b)2 are not expanded, the command Normal is not as 

effective when dealing w ith  long polynom ial denominators.

Once an expression is sim plified, i t  may be m anipulated to satisfy such human 

demands as compactness, for example, w ith  the commands Collect, Com­

bine, Convert, Factor, etc. The com putational cost of doing so should be 

considered, however, especially when an expression may be checked against 

known results by means o f a subtraction which sim plifies to  0, proving the 

correctness of the result. This was the case for the Gauss-Berwald curvature 

mentioned above.

A lte ring  the m etric to  read:

F  =  eai*1+aa!B2+Lten_1(55)((yl)"» +

the spray coefficients, G \  Berwald’s connection coefficients, and the Gauss- 

Berwald curvature were obtained (see A p p e n d ix  B ).

Since there are no accepted values for the curvature w ith  L  ^  0, a comparison 

w ith  known values was made by substitu ting L — 0 in to  the new expression 

fo r curvature, and comparing w ith  the result given in [4]. This yielded a 

match, ind icating th a t the new value for K  is correct.

Also calculated were the components o f the Douglas tensor, which led to 

a new theorem:
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T heorem  3.1.1 (A n to n e lli/M u rp h y , 2004)

For the mixed (L , m) m etric o f th is thesis, D l-kl =  0 i f  and only i f  m  =  2.

This is an expanded version o f a sim ila r theorem in  [4], which states th a t 

D jkl — 0 i f  and only i f  m =  2 for the m etric in  which L =  0.

The proof can be found in  A p p e n d ix  C , which shows the calculations and 

comparisons o f the various components o f the tensor w ith  the known values, 

but an outline is given here.

F irst m =  2 was substituted in to  the expanded m etric F ,  and the Douglas 

tensor was calculated. I t  turned out to  be 0.

Next, i t  was assumed th a t m ^  2, and the D l-kl was calculated. Then, 

L =  0 was substituted in to  the components o f the Douglas tensor, and each 

component reduced to  the value given in  [4]. This means th a t the D l]kl for 

the expanded m etric contain those o f the simpler m etric. Since we already 

have th a t D jkl for the m etric in  which L  =  0 vanish only when m — 2, we 

know th a t the new values for the D  tensor w ill vanish only when m =  2.

3.2 Conclusions

Just as any predator prey interaction is complicated, so too are the models 

created to  describe it. W ith  greater detail in  the model comes greater d iffi­

culty in calculating its various characteristics; as such, there are m any useful
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Finsler metrics whose properties have not yet been investigated.

Computer calculations, although re lative ly new to  the field, can be a very 

powerful too l in  geometry. They provide an effective means to  verify previous 

results and to  expand upon them, as was the case w ith  the ecological m etric.

Specifically, the Finsler package was useful in  confirm ing the known values 

for the Gauss-Berwald curvature and the Douglas tensor found in  [3]. Fur­

thermore, when applied to  the more general mth root m etric, the program 

helped to expand upon a known theory, namely th a t the starfish/coral reef 

interaction is in trins ica lly  social unless m =  2 (theorem 3.1.1).
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4 Appendices

A

Here is the calculation o f the Gauss-Berwald curvature for the mth root eco­

logical m etric. Also obtained are the spray connections, the Berwald connec­

tions and the m etric tensor.

> resta r t;

> libname := ‘D:/ f i n s l e r ' , libname:

> w ith (F in s ler );

Warning, the protected name apply has been redefined and unprotected

Warning, the name in it  has been redefined

[Dcoordinates, Hdiff, K, connection, init, metricfunction, tddiff]

W hat follows is the sim plification procedure which, once defined by the 
commend Simpfcn, is performed in  every step o f each calculation through­
out the session. I t  was the most effective in  sim plifying the obtained 
expressions so tha t the ir difference from  known expressions sim plifies to 
zero.

> simp: = (x->sim plify(norm al(x,expanded).sym bolic)); sim pfcn(sim p);
simp :=  x —¥ s im plify (normal (x, expanded), symbolic)

> D im ensions 2:

> co o rd in a te s(x l,x 2 ):
The coordinates are :
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X  1 =  x l  

X  2 =  x 2

> D coord in ates(y l,y2 ):

‘Y assigned to DCoordinateName‘

The d — coordinates are :

Y  1 =  yl

Y  2 =  yS

> F:= exp(bl*xl+b2*x2)*(yl'‘m+y2''m)'~(l/m):

> F2:=F~2:

> m etricfunction(F2):

The components of the metric are :

e (2bl  x l+ 2b 2x 2)  ( y l m  +  (^(2m ) +  _  y l m y 2 m j

1:1 xl  ~  y l  (2+2 m) + 2  y l  (2+m) y 2 m +  y I 2 y 2  C2 ™)

e(2 bl x l + 2  b2 x2) (yl m +  yl  ™ y 2 m (_ 2 +  m )

9  Xl X & ~  y l  (1+2to) y 2  +  2  ^ (l+m ) y 2 ( l + m )  +  y l  y 2 ( l + 2 m )

e(2blxl+2b2x2) (y lm +  yJgm)(£) (^(2m ) +  y l mm y2m _  y l™ y2mj

cZ x2 ~  y22 y l (2m) +  2 y2(2+m) y l m +  y2(2+2m)
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> show(G[i]);

G xl =
xl _  y l (2 bl y2m — y l 2 bl m +  y l 2 bl — yl y2b2m

2 (m  — 1)

2 —n9. n1 h i  m. — n9,2 hi
G =

x2 _  —y2 yl bl m — y22 b2m +  y22 b2 +  y2^2 m ̂b2 y l ’
2 (m  — 1)

> show(G[i, - j , -k ]);

G xl xl xl =  -m) b* +  y i (- m) bl y2m +  bl

2 _  y2{-2~mH 2  y l ^ 2+m) m
G  x l  Xl — ----------------------------- n -------------------------

G
xl m (—2 y l  ̂ m+1  ̂y2TO bl +  yl^ y2m bl m +  y2 b2)

xl xS =  2 y 2 ( m -  1)

G
x2 m (yl bl — 2 y2  ̂ m+1  ̂b2 y lm +  y2( m+1  ̂y l m b2 m)

xl xZ ~  2 y l ( m -  1)

^  _  bl yl<?-m'> y2(~2+m) m
G X2 x2 — „

G x2 x2 x2 =  - y2i m)6f  yim m  +  b2 +  y2( -m> b2 y l ’

This is the result Maple returned for the Gauss-Berwald curvature.

> Gauss:=simp(K(vl,v2));

Gauss :=  (~~2bl xl~2bSx2) ( y l m +  y£m)(~m) m(yl^2m  ̂y,g(~2m+2) m b22
-  2 y i (2m) yg (-2m+2) yg(-2m+2) m &S2
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—2 y l (2m) y^(_2m+2) b22—2 y l^ ™ ) y2^~m+v> bl b2 m+2 y2^2~m̂ y l mm b22 

_l_4 yi{^+™) y2^~m+v> bl b2—4 y2^2~m̂ y lm b22+ m  y l2 b l2—4 bl y2 y l b2 m 

+  m y22 b22 — 2 y l 2 612 +  8 bl y 2 y l b2 — 2 y22 b22 +  2 yl (2~ m) b l2m 

- 2  yl ( - ro+1) bl m b2 -4  y2m yl (2~m) bl 2+4  y2{l+m) yl (~m+1> 61 62

+  y2^2m'> y l (_2m+2) b l2m — 2 y 2 ^  y l^ m + 2) b l2) / (m 2 -  2 m +  1)

Defining Gaussl to  be the curvature given in  [4] and subtracting from  the 

expression Gauss above, we obtain th a t the two expressions match fo r any 

value o f m. Note tha t the F given in  Gaussl is the orig inal mth root m etric.

> z := y 2 /y l;
 y2

z ' yi

> Gaussl := (m *(m -2 )*b l''2 *(i+ z ~ m )~ 2 *(z ~ (m -l)-b 2 /b l)'s2 * (y l* y 2 ) ) /  

(4 * (m -1)~2*(F)~2*z~ (2 *m -l)) ;

J m ( - 2  +  m) bl2 (1 +  Arf (A -̂" - A  y i y t
Gaussl  --------------------------------- - ------------ - ----------------- --------------

( m -  l ) 2 (e(blxl+h2x2))2 {{y lm +  y2m) ^ ) 2 {— )M + 2m)
yi

> zero:=sim p(G auss-G aussl);

zero : =  0

In  using the Simp function above, defined before the step which determined 

the sim plification procedure to  be applied in  the session by means o f the 

Simpfcn command, we are applying the same sim plification procedure to 

calculate the difference zero, which actually sim plified to 0. Note th a t i t  may
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have been given in  many more complex ways, such as sin2(x) +  cos2 (a:)
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B

This is the Maple session which derives the expression for the the Gauss- 

Berwald curvature for the extended mth root m etric, as well as the expressions 

for the spray coefficients. The Berwald connection coefficients were also 

obtained, but the length o f the ir expressios made i t  im practical to  include 

them here.

> r e s ta r t ;

> libname := ‘D : / f in s le r ' , libname:

> w ith (F in s ler ):

Warning, the protected name apply has been redefined and unprotected

Warning, the name in it  has been redefined

> D im ensions 2:

> co o rd in a tes(x l,x 2 ):
The coordinates are :

X  1 =  xl 

X  2 =  x2

> D coord in ates(y l,y2):

‘Y assigned to DCoordinateName‘

The d — coordinates are :
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This is the expanded m etric function. I t  is the same as the previous mth 

root m etric except tha t now there is an L arctan{^ |) in  the exponential.

> F:= exp(bl*xl+b2*x2+L*arctan(yl/y2))*(yl''m+y2''m)''(l/m):

> F2:=F~2:

> m etricfunction(F2):

The components of the metric are :

9 xl * 1 =  {e{bl ^ ^ a r c t a n ( f f )))2 +  y2™)(±))2{2 L2 V22 y l 2 (y l m)2

+  4 L y 2 3 (y l m)2 yl  + 2  Ly2 {y l m)2 y l 3 — 2 L y2 y l 3 (y2m)2 +  y l mm y24 $ 
+  y l m m y l 4 y2m — 2 y i m y£2 y l 2 y2m +  4L 2 y£2 y l 2 y l m y2m +  A Ly23 yl 
+  2 y l mmy22 y l 2 y2m -  y l m y24 y2m -  y l m y l 4 y2m +  (y l m)2 y24 +  { y l1

+  2 { y l m)2 y22 y l 2) / { { y 2 2 +  y l 2)2 y l 2 {y l m +  y;2m)2)

9 xi x2 =  - ( e^ +62l2+iarctan^ » ) 2 {{y lm +  y2m) ^ ) 2(2L2 y22 y l 2 ( y lm 

4 -3 L y 2 3 (y lm) 2 yl +  Ly2  (y lm)2 y l3 -  3 Ly2 y l 3 (y2m)2 +  y lmm y2 4 y2 

+  y lmm y l4 y2m — 4 y l m y22 y l 2 y2m +  AL2 y22 y l 2 y lm y2m +  2 L  y23 yl 
- 2  L y 2 y l my l3 y2m +  2 y lmm y22 y l 2 y2m -  2 y lm y24 y2m - 2  y l m y l 4

-  L y23 (y2m)2 y l ) J{y2 {y22 +  y l2)2 {y lm +  y2m)2 y l )

41
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9 ** x* =  ie b̂l a:i+62a:2+£'arctan(fi)^ )2 {{y lm +  y2m) ^ ' ))2{2 L2 y22 y l2 {y lm)2 +  2 L 2 y22 y l 2 (y2m) 
+  2 L y 2 3 {y l m)2 y l -  A L y 2 y  l 3 {y2m)2 +  y lmm y2* y2m +  y l m m y  1* y2m 

-  2 y lm y22 y l 2 y2m +  4 L2 y22 y l 2 y lm y2m - 4 Ly2  y lm y l 3 y2m 

+  2 y lmm y22 y l 2 y2m — y l m y2*  y2m — y lm y l4 y2m —  2 L y 2 3 (y2m)2 yl +  yU4 (y2m)2

+  y l 4 (y2m)2 4- 2 2/S2 y i2 (y£m)2) / ( y 2 2 (y22 +  y l 2)2 ( y l m +  y2m)2)

Following are the spray coefficients.

> show(G[i]);

G xl — yl (b2 y24 L {yl mf  yl -  b2 y22 L ( y l m)2 y l 3 +  2bl y l 2 L  y23 {y lm)2

— bl y l y l m y24 y2m +  b2 y2 y lm m y l*  y2m +  2 bl y l3 y lm m y22 y2m
+  2 b2 y23 y l mm y l2 y2m — 2b2 y22 L y l m y l3 y2m + 4  bl y l 2 L  y23 y l m y2m 
+  b2 y25 y l mm y2m — bl y l b y lm y2m +  2 b2 y24 L y l m yl y2m — 2 bl y l 3 y l m y22 y2m 
+  bl y l 5 y l mm y2m +  bl yl y lmm y24 y£m +  2 bl y l2 L y23 (y2m)2

-  62 y22 L  y l3 (y2m)2 +  b2 y24 L  (y2m)2 yl -  bl y l 5 {y2m)2 -  bl y l y24 (y£m)2

-  2bl y l 3 y22 {y2m)2) / (2 (2L y23 {y lm)2 yl +  L 2 y22 y l 2 {y lm)2 -  y i m yS4 y2m

— y lm y l*  y2m +  2 y lmm y22 y l 2 y2m - 2 y l m y22 y l 2 y2m -  2 L y 2  y l m y l 3 y2m 
+  2 L 2 y22 y l 2 y l my2m +  y l mm y2* y2m +  2 L y 2 3 y lm yl y2m +  y l mm y l*  y2m 
+  L2 y22 y l 2 (y2m)2 - 2  L y 2 y l 3 {y2m)2))
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G x2 =  y2(bl y l2 L y23 ( y lm)2 -  2 b2 y23 ( y lTO)2 y i2 -  62 yjg ( y lm)2 y i4 

- 2 b 2  y22 L  {y lmf  y l z - b 2 y 2 h {y lmf  -  bl y l 4Ly2 {y lm)2 -  b2 y2 y l m y l4 y2m 

— 2 bl y l4Ly2  y lm y2m +  bl y l 5 y lmm y2m +  bl y l y lmm y24 y2m 
+  2b2 y2z y l mm y l2 y2m -  b2 y26 y lm y2m +  2 bl y l 3 y l mm y22 y2m 
-A b 2  y22 L y lm y l 3 y2m +  2 bl y l2 L y2z y l m y2m +  b2 y25 y lmm y2m 
- 2 b 2  y2z y l my l 2 y2m +  b 2 y 2 y lmr n y l4 y2m - b l y l 4Ly2  {y2mf

+  bl y l 2 L y 2 z {y2m)2 -  2 b2 y22 L y l 3 (y2mf ) / {2{2  L y2z { y l mf  yl

+  L2 y22 y l 2 (y lm)2 — y l m y24 y2m — y l m y l4 y2m +  2 y lmm y22 y l 2 y2m 

- 2  y lm y22 y l 2 y2m -  2 L  y2 y lm y l z y2m +  2 L2 y22 y l2 y lm y2m +  y l mm y24 y2m 

+  2 L y2z y l m yl y2m +  y lmm y l4 y2m +  L2 y22 y l2 (y2m)2 — 2 L y2 y l z (y2m)2))

> Gauss := (K (v l,v2)):

> Gauss := normal(Gauss, expanded):

> factor(G auss);

W hat follows is the Gauss-Berwald curvature for the metric. Given such a 

large expression for K , i t  was necessary to  perform some sort of check. F irst 

L =  0 was substituted in to  K . Then a comparison was made w ith  the value 

o f K  given in  [4], which was obtained from  the m etric in  which L =  0. They 

matched; th is indicaties th a t the expression for the curvature here is correct.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i ( i , 2 2 +  y l 2 ) 2 ( y l m  +  y 2 m f (  1 2  y 2 6 L 2 y l 2 ( y l m ) 4  +  3 6  y l 6  ( y l m ) 2  ( y 2 m ) 2 y 2 2 L 2

-  8  y l 6  ( y l m ) 2  ( y 2 m ) 2 y 2 2 m  +  1 6  ( y l m ) 3  y 2 m y 2 7 m L y l  -  2 2  ( y l m ) 3  y , 2 m  y 2 6 m  L 2 y l 2

+  8  ( y l m ) 2  ( y 2 m ) 2  m 3 y 2 6 L 2 y l 2 - 8  ( y l m ) 2 ( y 2 m f  y 2 6  m  y l 2  +  3 6  ( y l m ) 2  ( y 2 m ) 2  y 2 6  L 2 y l 2

-  4 4  ( y l m ) 2 ( y 2 m ) 2 y 2 6 m L 2 y l 2 - 2 2  y l m ( y 2 m ) 3 y 2 6  m Z 2  y l 2

-  2 4  ( y l m ) 2 ( y 2 m ) 2 m 2 y 2 7 L  y l  -  1 2  ( y l r o ) 3  y g r o  m 2  y 2 7  L  y l

+  8  ( y l m ) 2  ( y 2 m ) 2 m 3  y 2 7 L y l  +  1 6 ( y l m ) 2  ( y 2 m ) 2 y 2 7 m L y l  -  4 ( y l m ) 3  y 2 m m 3 y 2 7 L y l  

+  12 y l 7 y l m  ( y 2 m ) 3  m 2 y 2  L  +  4 y l 7 y l m ( y 2 m ) 3 m 3 y 2 L  +  y l 8 ( y l m ) 2 ( y 2 m ) 2 m 4

-  1 6  y l 7  y l m y  2  ( y 2 m f m L  +  2 4  y l 7 ( y l m ) 2  ( y 2 m ) 2  m 2 y 2 L  +  3 6  y l 6  y l m ( y 2 m ) 3 y 2 2 L 2

+  4  ( y l m ) 2  ( y 2 m ) 2 m 4 y 2 6 y l 2  -  1 6  ( y l r o ) 2  ( y g r o ) 2  m 3  y 2 6  y l 2  +  2 0  ( y l m ) 2  ( y £ m ) 2  m 2  y j g 6  y l 2

-  1 2  ( y l m ) 3  y 2 m m 2 y 2 6  L 2  y l 2  +  1 2  y l TO ( y 2 m ) 3  m 2  y 2 6  i 2  y l 2

+  3 6 y l 5 ( y l m ) 3  y 2 m m 2  y 2 3 L  — 4 y l 4 y l m ( y 2 m ) 3 m 3  y 2 4  L 2 + 4 y l 4 y l m  ( y 2 m ) 3  y 2 4  m L 2  

+  2 0  y l 6  ( y l m ) 2  ( y 2 m ) 2 m 2 y 2 2 -  4  y l 5  ( y l m ) 3  y 2 m  m 3  y 2 3 L  

+  1 1 2  y l 3  ( y l m ) 2  ( y 2 m ) 2 y 2 5 m L -  2 4 y l 3  ( y l m ) 2  ( y 2 m ) 2  m 2  y 2 5  L

-  8  y l 3  ( y l m ) 3  y 2 m  m 3  y 2 5  L  +  3 2  y l 3 ( y l m ) 3  y 2 m y 2 5 m L  +  2 4 y l 3  ( y l m ) 3  y 2 r o  m 2  y 2 5  L

-  1 1 2  y l 5  ( y l m ) 2  ( y 2 m ) 2 y 2 3 m L  +  9 6  y l 5  ( y l m ) 2  ( y 2 m ) 2 y 2 3 L  -  4  y l 8  ( y l TO) 2  ( y 2 T O ) 2  m 3

-  2 4  y l 5 y l m ( y 2 m ) 3 m 2 y 2 3 L  +  8 y l 5 y l m ( y 2 m f  m 3 y 2 3 L  +  4 8 y l 5 y l m ( y 2 m f  y 2 3 L  

+  5  y l 8  ( y l m ) 2  ( y 2 m ) 2 m 2 +  8  y l 3 ( y l m ) 2  ( y 2 m ) 2 m 3 y 2 5 L  -  4 8  y l 3  ( y l m ) 3  y 2 5 y 2 m L  

+  1 2  y l 6  y 2 2 ( y 2 m ) 4 L 2 - 9 6  y l 3  ( y l m ) 2  y . 2 5  ( y 2 m ) 2  L  -  3 2  y l 5  y l m  ( y 2 m ) 3  y 2 3  m L

-  8  y l 5  ( y l m ) 2  ( y 2 m ) 2 m 3 y 2 3 L  +  2 4  y  1 5  ( y l m ) 2  ( y £ m ) 2  m 2  y 2 3  L

+  4 8 y l 5 ( y l m ) 3 y 2 m y 2 3 L - 8 0 y l 5 ( y l m ) 3 y 2 m y 2 3 T n L - 2 y l s ( y l m ) 2 ( y 2 m ) 2 rn 

+  6  y l 4 ( y l m ) 2 , ( y 2 m ) 2 m 4 y 2 4 +  3 0  y l 4 ( y l m ) 2 ( y 2 m ) 2 m 2 y 2 4 -  1 2  y l 4 ( y l m ) 2 ( y 2 m ) 2 y 2 4 m  

+  1 6  y l 4 ( y l m ) 2  ( y 2 m ) 2 m 3 y 2 4 L 2 + 8  y l 4 ( y l m ) 2 ( y 2 m ) 2 y 2 4 m L 2 

+  4  y l 4 ( y l m ) 3 y 2 m y 2 4 m L 2 — 4  y l 4 ( y l m ) 3 y 2 m m 3 y 2 4 L 2 -  4 8  y l 3  y l m y 2 5 ( y 2 m ) 3 L  

+  8 0  y l 3 y l m ( y 2 m ) 3 y 2 5 m L -  3 6  y l 3 y l m ( y 2 m ) 3 m 2 y 2 5  L  +  4 y l 3 y l m ( y 2 m ) 3 m 3 y 2 5 L  

+  1 2  y l 6  ( y l m ) 3  y 2 m m 2 y 2 2 L 2 -  2  y l 6 ( y l m ) 3 y 2 m m 3 y 2 2 L 2 +  3 6  ( y l m ) 3 y 2 m y 2 6  L 2 y l 2

-  2 4  y l 4 ( y l m ) 2 ( y 2 m ) 2  m 3  y 2 4 +  4  y l 6  ( y l m ) 2  ( y 2 m ) 2 m 4 y 2 2 +  1 2  y l 6  ( y l T O) 3  y 2 m y 2 2 L 2 

+  1 2  y l m ( y 2 m ) 3 y 2 6 L 2 y l 2 -  22  y l 6  y l m ( y 2 m ) 3 y 2 2 m  L 2

-  1 2  y l 6  y l m ( y 2 m ) 3 m 2 y 2 2 L 2 - 2  ( y l m ) 3 y 2 m m 3 y 2 e I ?  y l 2

-  8  y l 7  ( y l m ) 2 ( y 2 m ) 2 m 3 y 2 L -  1 6  y l 7  ( y l r a ) 2  ( y 2 m ) 2 y 2 m L

-  1 6  y l 6  ( y l m ) 2  ( y 2 m ) 2 m 3 y 2 2 - 2  y l m ( y 2 m f  m 3 y 2 6  L 2 y l 2 

- 2  y l 6  y l m  ( y 2 m ) 3  m 3  y 2 2 L 2 -  4 4 y l 6  ( y l TO) 2  ( y 2 m ) 2  y 2 2  m l 2

+  8  y l 6  ( y l m ) 2  ( y ^ m ) 2  m 3  y 2 2  L 2  - 2 2  y l 6 ( y l m ) 3 y 2 m y 2 2 m L 2 -  2 ( y l m ) 2 ( y 2 m ) 2 y 2 8  m  

+  5  ( y l m ) 2  ( y 2 m ) 2 m 2  y 2 8  +  ( y l m ) 2  ( y . 2 m ) 2  m 4  y 2 8  -  4  ( y l m ) 2  ( y 2 m ) 2  m 3  y ^ 8 ) (

- y l 2  y 2  b l  y l m L  — y l 2 y 2  b l L y 2 m  +  y l 3  b l  y 2 m  +  y l  6 1  y g r a  y 2 2 -  y l  y 2 2  y l m L b 2

-  y l 2  6 , 2  y l m  y #  -  b2 y l m y 2 3 -  y l  y 2 2 L y 2 m b 2 ) 2 j ( ( e ( 6 1  * J + ‘ s * * + £ « - c t a n ( g ) ) j 2

( ( y l m  +  y 2 m ) ^ ) 2 ( 2 L y 2 3 ( y l m ) 2 y l  +  L 2 y 2 2 y l 2 ( y l m ) 2  -  y l m y 2 4 y 2 m -  y l m y l 4 y 2 m 

+  2 y l m m y 2 2 y l 2 y 2 m  -  2 y l m  y 2 2 y l 2 y 2 m - 2 L y 2  y l m y l 3 y 2 m 

+  2 L 2 y 2 2 y l 2 y l m y 2 m  +  y l m m y 2 4 y 2 m + 2 L y 2 3 y l m y l  y 2 m +  y l m m y l 4  y 2 m 

+  L 2 y 2 2 y l 2 ( y 2 m f  - 2  L y 2  y l 3 ( y 2 m ) 2 ) 4 )
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> GaussO := subs(L=0,Gauss):

> z := y2 /y l:

> Gaussl := (m*(m-2)*bl''2*(l+z~m)'s2* (z~ (m -l)-b 2 /b l)',2 * (y l* y 2 )) / 

(4*(m-1)"2*(F)~2*z~ (2*m-l) ):

> Gauss2 := subs(L=0,Gauss1):

> zero := GaussO -  Gauss2:

> zero := s im p lify(zero ,sym b olic);

zero :=  0
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T his Maple session shows tha t, fo r the expanded mth root m etric, the Douglas 

tensor vanishes for m =  2. A fte r defining the Dimension, Coordinates, and 

Dcoordinates as before, the m etric function is defined for m =  2.

> F:= exp(bl*xl+b2*x2+L*arctan(yl/y2))*(yl~2+y2's2 )" '(l/2 ) :

> F2:=F~2:

The m etric tensor is given, and the Douglas tensor is calculated, note tha t 

i t  is equal to  0 for m =  2.

Douglas tensor is calculated.

> m etricfunction(F2):

The components of the metric are :

9  x l  x l  —

(2 L2 y22 +  2 L y 2 y l  +  y l2 +  y22) [e{bl ^ + *W -^ rc ta n (^ )))2

y l2 +  y22

9  xl  xs —
(2 Ly2 yl — y22 +  y l2) L  (e(6i 

y l2 +  y22

9  x2 x2 —
(2 L2 y l 2 - 2  Ly2 yl +  y l2 +  y22) (e(bJ ^ + ^ + ^ rc ta n ( ff) ))2

y l2 +  y2

> s h o w (G [ i ,- j ,-k ,- l] );
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Now, assuming tha t m / 2 ,  the various components of the Douglas tensor 

were calculated. A fte r substituting L =  0 in to  the expression, each com­

ponent was compared to  the known value given in  [3], by obatining the 

difference, diff. The known value is labelled Dlllknown, fo r example.

> F:= exp(bl*xl+b2*x2+L*arctan(yl/y2))*(yl~m+y2'"m)''(l/m) :

> D l l l l  := s h o w (G [x l ,-x l ,-x l ,-x l] ) :

> D l l l l  := su b s(L = 0 ,D llll):

> Dllllknown := bl/2*m*(m-2)*y2''m/(yl''m)*l/yl:

> d i f f l  := D l l l l  -  Dllllknown:

> d i f f l  := norm al(diff1 ,expanded);

diffl :=  0

> D1121 := sh o w (G [x l,-x l,-x 2 ,-x l] ) :

> D1121 := subs(L=0,D1121):

> D1121known := -bl/2*m *(m -2)*y2~(in-T)/(yl~(m -T))*l/yl:

> d i f f 2 := D1121 -  D1121known:

> d i f f 2 := norm al(diff2 ,expanded);

diff2 :=  0
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> D1221 := sh o w (G [x l,-x 2 ,-x 2 ,-x l]):

> D1221 := subs(L=0,D1221):

> D1221known := bl/2*m *(m -2)*y2''(m -2)/(yl~(m -2))*l/yl:

> d i f f 3 := D1221 -  D1221known:

> d i f f 3 := norm al(diff3 ,expanded);

diff3 :=  0

> D1112 := sh o w (G [x l,-x l ,-x l,-x 2 ]) :

> D1112 := subs(L=0,D1112):

> D1112known := -b l/2*m *(m -2)*y2~(m -l)/(y l''(m -l))* l/y l

> d i f f 4 := D ll12 -  D1112known:

> d if f  4 := norm al(diff4 ,expanded);

diff4 :=  0

> D1122 := sh o w (G [x l,-x l,-x 2 ,-x 2 ]):

> D1122 := subs(L=0,D1122):

> D1122known := bl/2*m*(m-2)*y2's(m -2)/(y l's(m -2 ))* i/y i:

> d i f f 5 := D1122 -  D1122known:

> d i f f 5 := norm al(diff4 ,expanded);
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> D1222 := sh o w (G [x l,-x 2 ,-x 2 ,-x 2 ]):

> D1222 := subs(L=0,D1222):

> D1222known := -b l/2*m *(m -2)*y2~(m -3)/(yl~(m -3))*l/yl

> d i f f 6 := D1222 -  D1222known:

> d i f f 6 := norm al(diff4 ,expanded);

dim  :=  0

> D2111 := s h o w (G [x 2 ,-x l,-x l,-x l] ) :

> D2111 := subs(L=0,D2111):

> D2111known := -b2/2*m *(m -2)*yl~(m -3)/(y2''(m -3))*l/y2

> d i f f 7 := D2111 -  D2111known:

> d i f f 7 := norm al(diff7 ,expanded);

d im  :=  0

> D2211 := show(G[x2, -x 2 , - x l , - x l ] ):

> D2211 := subs(L=0,D2211):
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> D2211known := b2/2*m*(m-2)*yl~(m-2)/(y2'‘(m -2))* l/y2:

> d i f f 8 := D2211 -  D2211known:

> d i f f 8 := norm al(diff8 ,expanded);

diff8 :=  0

> D2221 := sh ow (G [x2 ,-x2 ,-x2 ,-x l]):

> D2221 := subs(L=0,D2221):

> D2221known := -b2/2*m*(m-2)*yl'‘(m -l)/(y 2 ''(m -l))* l/y 2

> d i f f 9 := D2221 -  D2221known:

> d i f f 9 := norm al(diff9 ,expanded);

diff9 :=  0

> D2112 := sh o w (G [x 2 ,-x l,-x l,-x 2 ]):

> D2112 := subs(L=0,D2112):

> D2112known := b2/2*m *(m -2)*yl''(m -2)/(y2~(m -2))*l/y2:

> d i f f 10 := D2112 -  D2112known:

> d i f f 10 := norm al(d iff10 ,expanded);

diffl0 :=  0
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> D2212 := show (G [x2,-x2,-xl,-x2] ):

> D2212 := subs(L=0,D2212):

> D2212known := -b2/2*m *(m -2)*yl~(m -i)/(y2'‘(m -T))*l/y2:

> d i f f 11 := D2212 -  D2212known:

> d i f f l l  := norm al(d iff11 ,expanded);

> d i f f l l  := norm al(diff11 ,expanded);

diffU :=  0

> D2222 := show (G [x2,-x2,-x2,-x2]):

> D2222 := subs(L=0,D2222):

> D2222known := b2/2*m*(m-2)*yl'‘m/(y2''m)*l/y2:

> d i f f 12 := D2222 -  D2222known:

> d i f f 12 := norm al(d iff12 ,expanded);

diffl2 :=  0

Notice that the difference between the calculated value for B>, and the known 

value is equal to 0 in each case. The Douglas tensor for the m th root metric, 

with L — 0, vanishes if and only if m =  2 [3]. Since the Douglas tensor for
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the 1 ^ 0  case reduces to  those o f the L  =  0 case upon substitu tion, we can 

say th a t the Douglas tensor fo r the expanded m etric is 0 i f  and only i f  m  =  2.
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