
Neural Networks Model Compression
The Static, the Dynamic and the Shallow

by

Sara Elkerdawy

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science
University of Alberta

© Sara Elkerdawy, 2022

Abstract

Deep neural networks (DNN) have emerged as the state-of-the-art method in several

research areas. DNN is yet to fully permeate resource-constrained computing plat-

forms, such as mobile phones. Accurate DNN models being deeper and wider take

considerable memory and time to execute on small devices posing challenges to many

significant real-time applications, e.g., robotics and augmented reality applications.

Considerations for memory and power consumption are as important for low-end de-

vices as they are for cloud-based with multiple graphical processing units (GPUs). In

cloud-based solutions, factors such as performance-per-watt, performance-per-dollar,

and throughput are important. Recently, different techniques were proposed to tackle

the computational and memory issues inherent in DNN. We focus on neural network

model pruning and distillation for inference and training acceleration respectively.

First, early work in model pruning often relied on performing sensitivity analysis

before pruning to set the pruning ratio per layer. This process is computationally

expensive and hinders scalability for deeper, larger, and more connectivity complex

models. We propose to train a binary mask for each convolutional filter that acts

as a learnable pruning gate. In training, we encourage smaller models by inducing

sparsity by minimizing the ℓ1-norm of the masks. The task and pruning loss are

trained jointly to allow for end-to-end fine-tuning and pruning.

Second, we present a layer pruning framework for hardware-friendly pruned mod-

els optimized for latency reduction. Our layer pruning framework is a twofold contri-

bution. One, we present a one-shot accuracy approximation by imprinting for layer

ranking. We rank layers based on the difference between their approximated accuracy

ii

and that of the previous layer. Second, we adopt statistical criteria from filter prun-

ing literature for layer ranking and examined both iterative filter pruning and layer

pruning training paradigms under similar importance criteria in terms of accuracy

and latency reduction.

Third, we propose a dynamic filter pruning inference method to tackle diminish-

ing accuracy gain from adding more neurons. Motivated by the popular saying in

neuroscience: “neurons that fire together wire together”, we propose to equip each

convolution layer with a binary mask predictor that selects a handful of filters to

process in the next layer given the input feature maps. We pose the problem as a

supervised binary classification problem. Each mask predictor module is trained to

estimate the log-likelihood for each filter in the next layer to belong to the top-k

activated filters.

Finally, we propose a distillation pipeline to accelerate the training of vision trans-

formers. We adopt 1) self-distillation loss, and 2) query efficient teacher-study distil-

lation loss. In self-distillation training, early layers mimic the output of the final layer

within the same model. This achieves 2.8x speedup in comparison to teacher-student

distillation with matched accuracy in many cases. We also propose a simple yet effec-

tive query-efficient distillation in case a trained teacher is available to further boost the

accuracy. We query the teacher model (CNN) only when the student (transformer)

fails to predict the correct output. This simple criterion not only saves computational

resources but also achieves higher accuracy than a full query teacher-student.

iii

Preface

This thesis is an original work by Sara Elkerdawy. The research project, of which

this thesis is a part, was funded by Huawei’s Toronto Heterogenous Compiler Lab.

iv

Acknowledgments

“Whoever has not thanked people, has not thanked Allah.”— The Prophet Muham-

mad, peace and blessings be upon him.

I would like to thank my supervisor committee Nilanjan Ray, Hong Zhang, and

Martha White for their support throughout this tough journey. I would also like to

thank my examining committee for their constructive feedback and insightful discus-

sion. I would not have been able to finish the thesis if not for Mostafa Elhoushi whose

feedback and broad knowledge guided me in establishing my work. He was a great

mentor and collaborator that I truly appreciate.

The kindred people who received my constant rants and temper with tenderness

and great love are my Mom, aunt, sister, brother, and their little rascals (a.k.a nieces

and nephews) who were able to make me laugh which is a tough task. I also want to

thank my comfort zone friends Omnia ElSaadany, Sara Nada, and Amany Hisham.

Finally, to my special person who would have loved seeing me moving forward and

instilled loving science in me, to my Dad, may he rest in peace.

v

Table of Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Published Papers . 5

2 Background and Related Work 7

2.1 Background . 7

2.1.1 Neural Network Architecture Design 7

2.1.2 Quantization . 9

2.1.3 Design of Hardware and Accelerators 9

2.1.4 Knowledge Distillation . 10

2.1.5 Model Pruning . 10

2.1.6 Cloud versus Embedded . 11

2.1.7 Key Metrics . 12

2.2 Related Work . 14

2.2.1 Weight pruning . 14

2.2.2 Hardware-agnostic filter pruning 15

2.2.3 Hardware-aware filter pruning 16

2.2.4 Layer pruning . 18

2.2.5 Dynamic inference . 19

2.2.6 Knowledge Distillation Training Acceleration 19

vi

3 Joint End-to-End Filter Pruning 21

3.1 Motivation . 21

3.2 Proposed Method . 22

3.2.1 Preliminary . 22

3.2.2 Joint Training Losses . 22

3.2.3 Forward and Backward Passes 25

3.3 Experiments and Analysis . 25

3.4 Conclusion . 27

4 Accuracy Approximation by Imprinting for Layer Pruning 28

4.1 Motivation . 28

4.2 Proposed Method . 31

4.2.1 Weights imprinting. 31

4.2.2 Layer importance. 32

4.3 Experiments and Analysis . 32

4.3.1 Random filters vs. Random layers 33

4.3.2 CIFAR100 . 34

4.3.3 ImageNet . 35

4.4 Conclusion . 38

5 Generalized Layer Pruning with LayerPrune Framework 39

5.1 Motivation . 39

5.2 Proposed Method . 40

5.2.1 Pruning Criteria . 42

5.3 Experiments and Analysis . 43

5.3.1 Training Setup . 43

5.3.2 CIFAR . 43

5.3.3 ImageNet . 47

5.3.4 Ablation Study . 48

vii

5.4 Conclusion . 55

6 Fire Together Wire Together: A Dynamic Pruning Approach 57

6.1 Motivation . 57

6.2 Proposed Method . 58

6.2.1 Preliminary . 58

6.2.2 Channel Gating . 61

6.2.3 Self-Supervised Binary Gating 62

6.2.4 Prediction Head Design . 64

6.3 Experiments and Analysis . 65

6.3.1 Experiments on CIFAR . 65

6.3.2 Experiments on ImageNet . 70

6.3.3 Ablation Study . 71

6.3.4 Theoretical vs Practical Speedup 74

6.4 Conclusion . 75

7 Query Efficient and Self Knowledge Distillation 77

7.1 Motivation . 77

7.2 Proposed Method . 79

7.2.1 Preliminaries . 79

7.2.2 Self-distillation . 81

7.2.3 Query-efficient Distillation . 82

7.2.4 Auxiliary Classifier Design . 83

7.3 Experiments . 84

7.3.1 CIFAR . 84

7.3.2 ImageNet . 85

7.4 Conclusion . 86

viii

8 Conclusion and Future Work 87

8.1 Summary of Contributions . 87

8.2 Future Work . 89

8.3 Closing Remarks . 90

Bibliography 93

ix

List of Tables

3.1 Comparison on Eigen split. In dataset, K indicates training on

Kitti [85] and CS indicates Cityscapes [90]. Our models compress more

than 70% the original model with small drop in accuracy. *pp post-

processing done by [81] but requires two forward passes. 26

4.1 Pruning results on CIFAR100 showing best and second best in

each criterion. Latency reduction is measured on 1080Ti GPU across

1000 runs. 35

4.2 Pruning results on ImageNet showing best and second best in each

criterion. Latency reduction is measured on 1080Ti GPU across 1000

runs with batch size=1. 38

5.1 Comparison of different pruning methods on ResNet56 CIFAR-

10/100. The accuracy for baseline model is shown in parentheses. LR

and bs stands for latency reduction and batch size respectively. x in

LayerPrunex indicates number of blocks removed. 45

5.2 Comparison of different pruning methods on ResNet50 Im-

ageNet. * manual pre-defined signatures. ** same pruned model

optimized for 1080Ti latency consumption model in ECC optimization 49

5.3 Evaluation of iterative and one-shot filter pruning. Baseline accuracy

indicates in parentheses. 50

5.4 Spearman rank correlation between one-shot and iterative ranking with

imprinting. 51

x

5.5 Architectures of different pruning methods on VGG19-BN CIFAR-100.

x in Layer pruningx indicates number of layers removed. Number of

filters per layer is shown where 0 indicates removed layers and ’M’

indicates max pooling operation. 52

5.6 Accuracy of our ResNet50 pruned models trained from scratch and

fine-tuned. 55

6.1 Diminishing returns to adding more FLOPs. Double the computation

is needed for ≈ 2% gains . 58

6.2 Results on CIFAR-10. FLOPs red. indicates reduction in FLOPs

in percentage. r in our method states the hyperparameter ratio in

Algorithm 1. x in FTWTx indicates joint (J) or decoupled (D) training. 66

6.3 Results on ImageNet. Baseline accuracy for each method is reported

along with the pruned model’s accuracy and accuracy change from

baseline. FLOPs red. represents reduction in FLOPs in percentage.

Negative delta indicates increase in accuracy from the baseline. r in

our method states the hyperparameter ratio in Algorithm 1 71

6.4 Dataset shift experiments: Numbers represent Brier score on CIFAR-

10 VGG16 . 72

6.5 Accuracy comparison of dynamic routing with a pre-defined signature

and its counterpart with static inference. 73

6.6 Estimated FLOPs before training under different thresholds (indicated

in parentheses) vs final FLOPs achieved after training. 74

6.7 Realistic speedup vs theoretical speedup on ImageNet on AMD Ryzen

Threadripper 2970WX CPU with batch size of 1 on a single thread. . 75

7.1 Independently training classifiers from scratch vs our auxiliary classi-

fiers from one training. 84

7.2 Evaluation on CIFAR. 85

xi

7.3 Evaluation on ImageNet. Self indicates using proposed Lc. Self + QE

indicates using Lc + Lqe. 86

xii

List of Figures

2.1 Overview of efficient CNN categories. Inspired from [28] 8

2.2 Neural network pruning process. 10

2.3 The number of MAC operations in various DNN models versus latency

measured on Pixel phone. (Figure from [51]) 13

2.4 Illustration of achieving N :M structure sparsity (Left) In a weight

matrix of 2:4 sparse neural network, whose shape is R x C (e.g.,R =

output channels and C = input channels in a linear layer), at least two

entries would be zero in each group of 4 consecutive weights. (Middle

& Right) The process that the original matrix is compressed, which

enables processing of the matrix to be further accelerated by designated

processing units (e.g.,Nvidia A100). Figure from [52]. 15

2.5 Illustration of discrimination-aware channel pruning. Here, Lp
S denotes

the discrimination-aware loss (e.g., cross-entropy loss) in the Lp-th

layer, LM denotes the reconstruction loss, and Lf denotes the final

loss. Figure from [59]. 16

2.6 NetAdapt automatically adapts a pretrained network to a mobile plat-

form given a resource budget. Figure from [18]. 17

2.7 SSS architecture with different pruning granularity. Gray block, group

and neuron mean they are inactive and can be pruned since their cor-

responding scaling factors are 0. Figure from [69]. 18

3.1 MonoDepth training. Image from [81]. 23

xiii

3.2 Proposed joint end-to-end pruning. Red and grey filters indicate pruned

or kept respectively. A real-valued mask mr
i is learned through STE

[82] from its corresponding binary mb
i estimation. The binary mask is

multiplied by the input feature maps Fi to drop the corresponding fil-

ter contribution. The new masked feature maps Fm
i (e.g black features

zeroed out) are the new input for the next layer. We apply sigmoid

function σ on mr
i,j to limit the range of the real-values and simplify

threshold selection in binarize function. ℓ1 loss on all masks and task

loss are jointly optimized. 23

3.3 Depth predictions on KITTI Eigen compared with LRC [81] 31.6M,

ours VGG+Ltotal 5.9M, PyD-Net 1.9M [89] from top to bottom. Our

pruned model produces good quality smooth output compared to PyD-

Net but still with small accuracy drop (e.g pole in first column). Small

models better regularize scenes with fewer data in the training (e.g a

turn in third column) . 27

4.1 Example of 100 randomly pruned models per boxplot generated from

different architectures. The plot shows layer pruned models have a

wider range of attainable latency reduction consistently across architec-

tures and different hardware platforms (1080Ti and Xavier). Latency

is estimated using 224x224 input image and batch size=1. 29

xiv

4.2 Proposed layer-wise accuracy prediction by imprinting. Feature maps

are flattened to the same embedding length N in all layers using adap-

tive average pooling. First phase implements weights imprinting using

training data, where a proxy classifier is estimated after each candi-

date layer for pruning. Each column (i.e class) in the weights matrix is

imprinted as the average embedding for all samples belonging to that

class. Second phase uses the imprinted weights to estimate layer-wise

class predictions (ŷ) using a validation set. Finally, layers are ranked

based on their accuracy difference to be pruned. 30

4.3 Example of 100 random filter pruned and layer pruned models gener-

ated from VGG19-BN (Top-1=73.11%). Accuracy mean and standard

deviation is shown in parentheses. Latency is calculated on 1080Ti

with batch size 8. 33

4.4 Layer-wise accuracy, rounded for better visualization, using proposed

proxy classifier for VGG19 on CIFAR100. GT shows the actual accu-

racy of the full model. 34

4.5 ResNet50 architecture. 36

4.6 Layer-wise accuracy using proposed proxy classifier for ResNet-50 on

ImageNet. GT shows the actual accuracy of the full model. Log scaling

is used on y-axis for better visualization. 37

5.1 Evaluation on ImageNet between our LayerPrune framework, hand-

crafted architectures (dots) and pruning methods on ResNet50 (crosses).

Inference time is measured on 1080Ti GPU. 40

xv

5.2 Illustrates the difference between typical iterative filter pruning and

the proposed LayerPrune framework. Filter pruning (top) produces

thinner architecture in an iterative process while LayerPrune (bottom)

prunes whole layers in one-shot. In LayerPrune, layer’s importance is

calculated as the average importance of each filter f in all filters F at

that layer. 41

5.3 Latency reduction of different filter pruning methods under different

pruning ratios. Star in each method indicates the lowest pruning ra-

tio (starting point). Dots are connected based on ascending order of

number of filters pruned. 46

5.4 Plots of block importance using different layer criterion on CIFAR-10

ResNet56. Legend on each sub-plot shows sorted blocks in ascending

order based on importance. 53

5.5 Plots of block importance using different layer criterion on CIFAR-100

ResNet56. Legend on each sub-plot shows sorted blocks in ascending

order based on importance. 54

6.1 FLOPs reduction vs accuracy drop from baselines for various dynamic

and static models on ResNet34 ImageNet. 59

6.2 Maximum activations in all features at the last convolutional layer

and a middle layer in mobilenetv1 CIFAR-10. Each row in a subplot

represents an input sample. Samples that belong to the same class

activate the same group of filters. Better visualized in color. 60

xvi

6.3 Proposed pipeline for training dynamic routing for one layer. For a

layer l, prediction head f l
p(I

l;Wp
l) takes an input I l, applies global

max pooling (GMP), normalizes with Softmax, then feeds to 1x1 con-

volution to generate logits P l for the binary mask M l. Binary Cross

Entropy (BCEWithLogits) loss penalizes the mask prediction based on

the top-k obtained from the unpruned feature maps Ol. 61

6.4 Proposed pipeline in testing time. For each layer, only filters with

mask prediction=1 are selected and computed while the rest is pruned. 62

6.5 Binary mask ground truth generation. 64

6.6 MobileNetV1 CIFAR10 distributions 68

6.7 Heatmap visualization of random input samples from CIFAR for the

10th layer in MobileNetV1. Each triplet represents input image, base-

line heatmap, pruned heatmap. FLOPs reduction in the layer is ≈

70%, yet the pruned heatmap highly approximate the heatmap with

fully activated filters. 69

6.8 MobileNetV1/V2 on CIFAR10. 70

7.1 Comparison between teacher-student knowledge distillation and pro-

posed self-distillation for transformers. Training time is reduced by

2.8x factor. Baseline without any distillation takes 2.1 days. 78

7.2 ViT architecture [122]. 79

7.3 Proposed self-distillation loss. Given a transformer model with depth

D, C classifiers are inserted each D
C

blocks. Each auxiliary classi-

fier outputs a probability distribution qc. The auxiliary classifiers are

trained using a weighted sum of distillation loss and task loss with

ground truth y. Final classifier is trained using the task loss only. . . 81

7.4 Auxiliary classifier design. 83

8.1 Practical guidelines to apply pruning on different deployment setups. 91

xvii

8.2 An attempt to draw a big-picture with a practical guideline under

different inference scenarios. 92

xviii

Chapter 1

Introduction

Convolutional Neural Networks (CNN) have become the state-of-the-art in various

computer vision tasks, e.g., image classification [1], object detection [2], depth estima-

tion [3]. These CNN models are designed with deeper [4] and wider [5] convolutional

layers with a large number of parameters and convolutional operations. These ar-

chitectures hinder deployment on low-power devices, e.g, phones, robots, wearable

devices as well as real-time critical applications, such as autonomous driving. As

a result, computationally efficient models are becoming increasingly important and

multiple paradigms have been proposed to minimize the complexity of CNNs.

One paradigm is to manually design networks with a small footprint from the

start such as [6–10]. This direction does not only require expert knowledge and

multiple trials (e.g., up to 1000 neural architectures explored manually [11]), but also

does not benefit from available, pre-trained large models. Quantization [12, 13] and

distillation [14, 15] are two other techniques, which utilize the pre-trained models

to obtain good quality light-weight models. Quantization reduces the bit-width of

parameters and feature maps, and thus decreases memory footprint, but requires

specialized hardware instructions to achieve latency reduction. While distillation

trains a pre-defined smaller model (student) with guidance from a larger pre-trained

model (teacher) [14]. Finally, model pruning aims to automatically remove the least

important filters (or weights) to reduce the number of parameters or FLOPs (i.e.,

1

indirect measures). We present a thorough investigation of the challenges, myths,

and solutions to model compression. Throughout the thesis, we focus mainly on

model pruning and explore deeply its challenges and solutions. Then we touch on

distillation and quantization for further field coverage.

1.1 Motivation

Electronics and computing allowed for unprecedented complex services in this age

of the Internet of Things (IoT). Unfortunately, these advanced services run with

computing-intensive machine learning methods. This comes of significant cost to the

environment to the point where training an AI model can emit as much carbon as

five cars in their lifetimes [16].

Convolutional Neural Networks pruning have achieved outstanding performance

on different tasks such as image classification [17–19] and object detection [20]. A

commonly reported metric in literature to assess the pruned model quality is the

floating-point operations (FLOPs). However, prior work in model pruning [18, 21,

22] showed that neither number of pruned parameters nor FLOPs reduction directly

correlate with latency (i.e., a direct measure). Latency reduction, in that case, de-

pends on various aspects, such as the number of filters per layer (signature) and the

deployment device. Most GPU programming tools require careful compute kernels1

tuning for different matrices shapes (e.g., convolution weights) [23, 24]. These aspects

introduce non-linearity in modeling latency with respect to the number of filters per

layer. Recognizing the limitations in terms of latency or energy by simply pruning

away filters, recent works [18, 19, 21] proposed optimizing directly over these direct

measures. These methods require per hardware and NN architecture latency mea-

surements collection to create lookup tables or latency prediction models which can

be time-intensive. In addition, the filter pruned methods are bounded by the model’s

1A compute kernel refers to a function such as convolution operation that runs on a high through-
put accelerator such as GPU

2

depth and can only reach a limited goal for latency consumption. On the other hand,

filter pruning has finer search space in terms of memory consumption than layer prun-

ing. This fine gradual decrease in memory consumption allows for a more articulated

setup in terms of memory. Memory consumption is directly related to FLOPs and

the number of parameters metrics, thus by reducing these indirect measures, we are

gaining benefits in terms of memory.

Besides targeted resources and metrics, a recent direction in pruning tackles the

problem from the data perspective. Large models are needed for a small portion of

the data (hard samples) while we can most of the time perform fairly well using a

lightweight model. For example, MobileNetv1 [7] requires almost double the com-

putations than MobileNetv1 75 with only 2.2% accuracy gain. This is known as the

diminishing returns i.e.,high computational needs to eke out small additional gains.

This motivates the concept of dynamic pruning, where sub-networks from the large

model are processed depending on the input sample [25–27]. The current dynamic

pruning methods learn the routing in an unsupervised way and lack direct relation

between computation saving and hyperparameter tuning.

1.2 Contributions

Motivated by these points, we propose multiple approaches to tackle each limitation

and leverage strengths from a different perspective. The contributions along with the

thesis organization are presented as follows:

• Chapter 2 presents background and related work.

• Chapter 3 proposes a joint end-to-end filter pruning for FLOPs and pa-

rameters reduction. The method tackles the issue with early-work literature on

pre-defining a pruning ratio per layer which hindered scalability to very deep

networks. We present an end-to-end joint training pruning by learning pruning

3

binary masks per layer. Our method imposes a sparsity regularization on the

learnable binary masks along with the task loss. We showed how pruning ben-

efits training small models compared to training from scratch, especially with

limited data.

• Chapter 4 focuses on latency reduction by noting that filter pruning methods

achieve limited speedup gain. We explore higher pruning granularity through

layer pruning resulting in depth shrinking. We introduce a novel one-shot

layer-wise accuracy approximation criterion for layer pruning. Moti-

vated by imprinting in few-shot literature, we equip each layer with a proxy

classifier to rank layers by their approximate gain in accuracy. Our criterion is

one-shot, unlike the iterative criterion evaluation adopted in filter pruning. We

show that our layer pruned models achieve much better latency reduction than

the state-of-the-art filter pruning methods.

• Chapter 5 further extends our evaluation to go beyond accuracy approxima-

tion by imprinting as a layer ranking method. We present LayerPrune frame-

work in which we compare filter and layer pruning paradigms under different

statistical criteria, batch sizes, and hardware platforms. We demonstrate the

effectiveness of layer pruned models as hardware-agnostic models. That means

reaching computational budgets such as latency without tailoring to different

inference setups. Budget constrained filter pruning requires re-training with a

hardware-aware optimization jointly with the task to reach a budget.

• Chapter 6 highlights the fact that small models perform fairly well in most

cases as presented in our previous works. We tackle in this chapter dynamic

pruning in which different sub-networks are routed in inference time per input

sample. We present a novel formulation for dynamic model pruning

that poses the pruning decision as a supervised binary classification

problem. Similar to other dynamic pruning methods, we equip a cheap decision

4

head to the original convolutional layer. However, we propose to train the

decision heads in a self-supervised paradigm instead of adding a regularization

term. Decision heads predict the most likely to be highly activated filters given

the layer’s input activation. The masks are trained using a binary cross-entropy

loss decoupled from the task loss to remove loss interference.

• Chapter 7, unlike previous chapters, the goal is to reduce the model’s computa-

tion at inference time, this chapter focuses on training acceleration. In specifics,

we focus on training acceleration for knowledge distillation training paradigm

on vision transformers as a case study. We propose a self-distillation train-

ing pipeline for efficient vision transformer. We also show simple query-

efficient distillation in the case of pre-trained teacher availability. Auxiliary

lightweight classifiers are inserted at different depths in the transformer back-

bone. These classifiers are trained using a weighted sum between task loss and

distillation loss. The distillation loss enforces these classifiers to mimic the out-

put of the final classifier in a self-supervision way. We show that self-distillation

achieved 2.8x speedup over teacher-student distillation while achieving on-bar

accuracy in most cases.

1.3 Published Papers

Some extracts from this thesis appear in the following authored publications and

preprints.

• Elkerdawy, Sara, et al. ”Fire Together Wire Together: A Dynamic Pruning Ap-

proach with Self-Supervised Mask Prediction.” Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR 2022).

• Liu, Hongyang, et al. ”Layer Importance Estimation with Imprinting for Neu-

ral Network Quantization.” Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPRW 2021).

5

• Elkerdawy, Sara, et al. ”To filter prune, or to layer prune, that is the question.”

Proceedings of the Asian Conference on Computer Vision (ACCV 2020).

• Elkerdawy, Sara, et al. ”One-shot layer-wise accuracy approximation for layer

pruning.” 2020 IEEE International Conference on Image Processing (ICIP

2020).

• Elkerdawy, Sara, Hong Zhang, and Nilanjan Ray. ”Lightweight monocular

depth estimation model by joint end-to-end filter pruning.” 2019 IEEE Inter-

national Conference on Image Processing (ICIP 2019).

6

Chapter 2

Background and Related Work

2.1 Background

There is a variety of methodologies to tackle the efficiency of processing Deep Neural

Networks (DNN). We first draw the big picture of the field for completeness and then

dive more into details for model pruning in specific as the main area of interest. We

also touch on knowledge distillation training acceleration. Figure 2.1 shows the broad

categorization to address CNN efficiency.

2.1.1 Neural Network Architecture Design

New architectures have gone a long way from simple sequential AlexNet and VGG to

more sophisticated structures with smaller components and more complex connections

such as ResNet, ShuffleNet, MobileNet, and Squeeze-and-Excitation Networks. This

direction does not only require expert knowledge and multiple trials, (e.g., up to

1000 neural architectures explored manually [11]), but also does not benefit from

available, pre-trained large models. Another point that is worth mentioning is the

lack of efficiency gain metric in most of these works. The reported metric is mainly

in FLOPs which is not necessarily an indication for efficient processing. There is an

increasing effort to benchmark architectures across different hardware targets such

as DeepBench [29], MLPerf [30] and DAWNBench [31]. The key point here is that

different inference setups such as hardware targets, batch size, and backend libraries

7

Figure 2.1: Overview of efficient CNN categories. Inspired from [28]

require different architecture. For example, a matrix multiplication based on the size

of the matrices being multiplied and the kernel implementation may be compute-

bound based on processing units available in hardware, memory-bound based on

cache levels and memory available, or streaming occupancy-bound based on level of

parallelism. Each architecture uses these operations with different parameters and

thus the optimization space for hardware and software targeting deep learning is large

and underspecified. To tackle some of these issues, Neural Architecture Search (NAS)

for automatic design is a growing research area. Such works [32–35] involve defining

search space for different components and connections inspired from manual designs so

far. The cost function can be modeled for metrics of interest such as FLOPs, latency,

memory, energy, etc. This direction certainly reduced human intervention and added

flexibility on modeling cost functions to accommodate different needs. However, the

computing power needed in training is tremendous due to the large search space.

8

2.1.2 Quantization

Model quantization focuses on reducing the bit-width of the operations, hence, re-

ducing memory consumption and latency of operations. Researchers showed that

using half-precision is sufficient in training deep neural networks and is resilient to

the errors in the back-propagation phase [36–39]. There are mainly two paradigms

for model quantization: 1) Post-training quantization, and 2) Training-aware quanti-

zation. The former quantizes a pre-trained 32-bit floating-point model, thus enabling

available off-the-shelf model exploitation. The latter performs quantization within

training for gradual loss optimization. A limitation of quantization is how tightly

dependable it is on hardware vendors and back-end libraries. The hardware target

needs to support processing low-bit precision through instruction sets and the ability

to implement back-end kernels using these instructions. Many works in the literature

show only the theoretical gain on mixed-precision or lower than 8-bit quantization.

Advances in quantization and hardware design go hand in hand which can be limiting

deployment with currently available hardware platforms.

2.1.3 Design of Hardware and Accelerators

As briefly mentioned in the quantization section, the design of hardware plays a big

role in exploiting and enabling performance gain of theoretical literature work. Fea-

tures that target DNN processing are being developed in new hardware platforms.

For instance, Intel’s Knights Mill [40] processor introduced a special number of in-

structions such as fused multiply-accumulate operations heavily used in DNN. The

Nvidia PASCAL GP100 GPU [41] features a 16-bit floating-point (FP16) arithmetic

support to perform two FP16 operations on a single-precision core for faster compu-

tation. In addition to special instructions, new accelerators such as Eyeriss [42] and

simulators such as [43–45] exploit efficient processing of sparsity and dynamic pre-

cision requirement. We also note the constant supply of specialized neural compute

sticks such as Intel’s Movidius, Google’s Coral, and Nvidia’s Jetson line of boards to

9

Figure 2.2: Neural network pruning process.

bring accelerated AI on the edge. Systems for large-scale efficient training are also

increasingly built such as Cerebras [46].

2.1.4 Knowledge Distillation

Knowledge distillation is a training pipeline that poses a loss in training a small

model (student) from the knowledge of a pre-trained large model (teacher). Dif-

ferent approaches to knowledge transfer are proposed such as softmax probability

approximation, feature maps mimicking, and statistical properties transfer. Distil-

lation showed effectiveness in transfer between similarly designed architecture (e.g

ResNet101 as teacher and ResNet18 as a student). While distillation is a beneficial

training pipeline, it increases training time in comparison to training students alone.

The benefit of distillation is the usage of the available trained model zoo and no

additional cost in inference as there is no special operations or change in architecture.

2.1.5 Model Pruning

Recent research showed that model over-parameterization usually makes training eas-

ier [47, 48]; thus many of the weights in DNN models exhibit high redundancy and

10

can be removed in inference without reducing accuracy. There are different levels

of sparsity (granularity) such as weight sparsity, filter pruning, and layer pruning.

Model pruning algorithms tend to follow the same process which is shown in Fig-

ure 2.2. First, weight initialization stage which can start from scratch (i.e., random

weight or trained for a few epochs) or initialize from a pre-trained dense model. Then,

based on pruning granularity, pruning candidates are sorted based on an importance

criteria to evaluate their significance to the task. Next, the pruning ratio per layer

(referred to as model signature) is determined to remove the least important weight-

s/filters. Signatures in early work of model pruning were based on a pre-processing

step called sensitivity analysis. It involves evaluating the sensitivity of each layer

independently to decide the pruning ratio per layer. This analysis is computation-

ally expensive to conduct and becomes even less feasible for deeper models. Later

work proposes global importance criteria that can evaluate weights and filters across

different layers. However, results using such approaches can be sensitive to different

CNN architecture and statistical properties per layer. Finally, a fine-tuning step is

performed on the newly pruned network to recover accuracy from pruning. A recent

direction branched from model pruning is called dynamic inference. The previously

explained pruning pipeline produces a static pruned model. Static models treat all

input samples the same in terms of computations. Yet, different input samples might

require different computational needs. For instance, a small faraway object requires

more complex feature extraction (e.g deeper network evaluation) than a large clear

near object. Also, samples that belong to vehicles activate a different group of filters

than that of animals.

2.1.6 Cloud versus Embedded

The various stages in DNN processing (training versus inference) or applications

(e.g.,robotics, surveillance, or recommendation systems) have different computational

needs. Training is typically done in the cloud where offline processing of large available

11

datasets is performed. Inference, on the other hand, can happen in a wider spectrum

of platforms ranging from cloud to low-power edge devices. In many applications,

it is desirable to perform locally on the edge to reduce communication costs from-to

the cloud. For instance, measuring wait time in stores or granting access to a gated

parking lot. In other applications, such as robotics and autonomous driving, local

processing is desirable as the latency and security risks of relying on cloud processing

are too high. Products such as Apple Siri and Amazon Alexa voice services are done

on the cloud, yet it is desirable to perform locally on the device to increase security.

Some work divides the processing of a neural network between cloud and edge such

as Neurosurgeon [49] or split the problem formulation into a Two-Phase Predictions

format such as adopted in Google Home [50], which are activated by a wake word

and can then respond to commands. This problem can be split into an initial cheap

model that listens for a wake word, and a more complex model for the more complex

speech commands.

2.1.7 Key Metrics

In this section, we discuss the evaluation metrics usually reported in papers and

operational metrics that are of interest at deployment time and the gap between

these two sets of metrics.

Accuracy Accuracy is used to indicate the quality of the output for a given task,

thus it differs based on the task. For instance, in image classification, papers report

top-1 and top-5 accuracy which indicate the number of samples that are correctly

classified within the first or five top predictions, respectively. In object detection,

mAP (mean average precision) is reported to assess the quality of the bounding box

prediction.

FLOPs and Parameters The quality of the computationally efficient model is

measured by the number of parameters and number of floating-point operations

12

Figure 2.3: The number of MAC operations in various DNN models versus latency
measured on Pixel phone. (Figure from [51])

FLOPs or Multiply-and-Accumulate (MACs) per image. These metrics are referred

to as indirect metrics. The number of FLOPs and parameters do not encapsulate

many computational concerns such as memory transfers, number of processing units,

caching levels, and back-end variations. Figure 2.3 shows that the number of MACs

is a poor proxy for latency. On the other hand, FLOPs are still considered a good

estimation of memory consumption as the metric is parameterized in both the weights

and size of feature maps.

Throughput and Latency Throughput and latency are often assumed to be di-

rectly derivable from each other. However, they are indicating different deployment

needs and measures. Throughput is used to indicate the amount of data or number

of clients that can be processed/served in a given time frame. Latency, however,

indicates the time needed to process input from time of arrival to results genera-

tion. An example to show the distinct difference is for instance when batching input

(i.e.,multiple data points are batched and processed together) to better utilize re-

sources. At 30 frames per second input streaming and batch size of 128 results in a

13

latency delay for some input points to 4.2 seconds. This trade-off between low latency

and high throughput with maximally utilized resources can be challenging. In some

of our work, we focus on latency as a direct metric for online streaming setup rather

than throughput which can be more beneficial in cloud-based deployments. Yet, we

wanted to display the differences so give a more thorough big picture of different

deployment metrics.

Energy Efficiency Energy efficiency is a direct measurement indicating the num-

ber of data points that can be processed in a given energy unit. It is usually reported

as the number of operations per joule. Unlike latency and throughput, energy mea-

surement requires power consumption readings through voltage monitor tools. This

restricts accessibility and widens the gap between deployment and metrics reporting.

2.2 Related Work

We dive more into model pruning literature as the main focus of our work and touch

on training acceleration for knowledge distillation.

We divide existing pruning methods into four categories: weight pruning, hardware-

agnostic filter pruning, hardware-aware filter pruning and layer pruning.

2.2.1 Weight pruning

An early major category in pruning is individual weight pruning (unstructured prun-

ing). Weight pruning methods leverage the fact that some weights have minimal

effect on the task accuracy and thus can be zeroed out. In [53], weights with small

magnitude are removed, and in [54], quantization is further applied to achieve more

model compression. Another data-free pruning is [55] where neurons are removed it-

eratively from fully connected layers. L0-regularization based method [56] is proposed

to encourage network sparsity in training. Finally, in the lottery ticket hypothesis

14

Figure 2.4: Illustration of achieving N :M structure sparsity (Left) In a weight matrix
of 2:4 sparse neural network, whose shape is R x C (e.g.,R = output channels and C
= input channels in a linear layer), at least two entries would be zero in each group
of 4 consecutive weights. (Middle & Right) The process that the original matrix
is compressed, which enables processing of the matrix to be further accelerated by
designated processing units (e.g.,Nvidia A100). Figure from [52].

[57], the authors propose a method of finding winning tickets which are sub-networks

from random initialization that achieve higher accuracy than the dense model. The

limitation of the unstructured weight pruning is that dedicated hardware and libraries

[58] are needed to achieve speedup from the compression. Even with dedicated sparse

compute, unstructured sparsity fails to utilize vector processing architectures. This

reduces latency with random memory access. To add more structure to such fine-

grained sparsity, a recent Nvidia Ampere architecture [52] found in A100 GPUs are

equipped with Sparse Tensor Cores to accelerate 2:4 (Figure 2.4 structured sparsity.

2.2.2 Hardware-agnostic filter pruning

Methods in this category (also known as structured pruning) aim to reduce the foot-

print of a model by pruning filters without any knowledge of the inference resource

consumption. Examples of these are [60–64], which focus on removing the least im-

portant filters and obtaining a slimmer model. Earlier filter-pruning methods [62,

64] required layer-wise sensitivity analysis to generate the signature (i.e., number

15

Figure 2.5: Illustration of discrimination-aware channel pruning. Here, Lp
S denotes

the discrimination-aware loss (e.g., cross-entropy loss) in the Lp-th layer, LM denotes
the reconstruction loss, and Lf denotes the final loss. Figure from [59].

of filters per layer) as a prior and remove filters based on a filter criterion. The

sensitivity analysis is computationally expensive to conduct and becomes even less

feasible for deeper models. Recent methods [60, 61, 63] learn a global importance

measure removing the need for sensitivity analysis. Molchanov et al. [60] propose a

Taylor approximation of the network’s weights where the filter’s gradients and norm

are used to approximate its global importance score. Liu et al. [61] and Wen et al.

[63] propose sparsity loss for training along with the classification’s cross-entropy loss.

Filters with importance less than a threshold are removed and the pruned model is

finally fine-tuned. Zhao et al. [65] introduce channel saliency that is parameterized as

Gaussian distribution and optimized in the training process. After training, channels

with a small mean and variance are pruned. DCP [66] utilizes multiple losses such as

discrimination loss, feature reconstruction loss, and task loss as shown in Figure 2.5.

In general, methods with sparsity loss lack a simple approach to respect a resource

consumption target and require hyperparameter tuning to balance different losses.

2.2.3 Hardware-aware filter pruning

To respect a resource consumption budget, recent works [18, 19, 67, 68] have been

proposed to take into consideration a resource target within the optimization pro-

16

Figure 2.6: NetAdapt automatically adapts a pretrained network to a mobile platform
given a resource budget. Figure from [18].

cess. NetAdapt [18] prunes a model to meet a target budget using heuristic greedy

search. A lookup table is built for latency prediction and then multiple candidates are

generated at each pruning iteration by pruning a ratio of filters from each layer inde-

pendently as shown in Figure 2.6. The candidate with the highest accuracy is then

selected and the process continues to the next pruning iteration with a progressively

increasing ratio. On the other hand, AMC [68] and ECC [19] propose an end-to-end

constrained pruning. AMC utilizes reinforcement learning to select a model’s sig-

nature by trial and error. ECC simplifies the latency reduction model as a bilinear

per-layer model. The training utilizes the alternating direction method of multiplier

(ADMM) to perform constrained optimization. ADMM alternates between network

weight optimization and learnable dual variables that control layer-wise pruning ra-

tio. Although these methods incorporate resource consumption as a constraint in the

training process, the range of attainable budgets is limited by the depth of the model.

In addition, generating data measurements to model resource consumption per hard-

ware and architecture can be expensive, especially on low-end hardware platforms.

17

Figure 2.7: SSS architecture with different pruning granularity. Gray block, group
and neuron mean they are inactive and can be pruned since their corresponding
scaling factors are 0. Figure from [69].

2.2.4 Layer pruning

Unlike filter pruning, little attention is paid to shallower CNNs in the pruning litera-

ture. In SSS [69], the authors propose to train a scaling factor for structure selection

such as neurons, blocks, and groups. A limitation of their method is the joint pruning

and fine-tuning which limits the types of architectures to produce shallower models.

Shallower models are only possible with architectures with residual connections as

shown in Figure 2.7. That is to allow data flow in the optimization process with

joint pruning and fine-tuning. Closest to our work for a general (i.e.,not constrained

by architecture type) layer pruning approach is the work done by Chen et al. [70].

In their method, linear classifier probes are utilized and trained independently per

layer for layer ranking. After the layer ranking learning stage, they prune the least

important layers and fine-tune the shallower model. In our work, we propose an ef-

ficient accuracy approximation for layer pruning in one-shot (Sec 4). We also give

a thorough comparison between filter and layer pruned models in terms of latency

reduction under different inference setups (Sec 5).

18

2.2.5 Dynamic inference

Previous methods produce a static pruned model in which all input samples are

processed with the same operations. In dynamic or conditional inference, samples are

processed using different routes (i.e dynamic pruning) or using variant depth of the

network (i.e early-exit). In Runtime Neural Pruning (RNP) [26], a decision unit is

modeled as a global recurrent layer, which generates discrete actions corresponding to

four preset channel selection groups. The group selection is trained with reinforcement

learning. Similarly in BlockDrop [71], a policy network is trained to skip residual

blocks in residual networks instead of only channels. D2NN [72] defines a variant set

of conditional branches in DNN, and uses Q-learning to train the branching policies.

These methods train their policy functions by reinforcement learning which can be a

non-trivial optimization task along with the CNN backbone. Feature Boosting and

Suppression (FBS) [73] method generates continuous channel saliency. Wang et al.

[74] proposed to obtain a discrete action from N learned group of channels sampled

from Gumbel distribution. They adopt annealing temperature to stabilize training

and introduce diversity in the learned routes. These dynamic inference methods

require additional careful tuning to stabilize training either from policy gradients or

learning diverse routes in an unsupervised way. Hence, we propose to formulate the

channel selection as a supervised binary classification in which routes are learned and

simply trained with SGD (Sec 6).

2.2.6 Knowledge Distillation Training Acceleration

Previous sections focus on generating a lightweight model for inference acceleration.

Knowledge distillation (KD) is an approximation loss used in training a small model to

improve its accuracy. However, a classical knowledge distillation requires a pre-trained

teacher as a prior. We focus on accelerating the training part for the knowledge

19

distillation training paradigm. Recent works explore training acceleration by either

1) removing the dependence on a trained teacher, or 2) reducing query calls to the

teacher while training the student. For example, [75] introduces an active mixup

augmentation strategy that selects hard samples to query the teacher. This query

efficient teacher-student distillation reduces the number of calls to the teacher during

student training. In [76], the knowledge distillation operates in a few-shot training

setup where the available training data is limited. While there is still an accuracy

gap to reach the distillation accuracy with the full data, the speedup to using only

a few images (e.g.,up to 10 images only) is promising. Another direction explores

self-distillation [77] to reduce the overhead of training a teacher model and teacher’s

labels query in training the student. Auxiliary classifiers are inserted at different

depths in the backbone to mimic the behavior of the final classifier. Knowledge

distillation is also beneficial to vision transformers especially in training small and

medium-sized datasets. DeiT [78] applies knowledge distillation [79] by adding a

KD token distillation that matches the output of a CNN pre-trained teacher. DeiT

queries each batch to both the CNN teacher and the transformer student to match

their outputs; This can be memory-demanding and time-consuming. We explore the

training acceleration, particularly for vision transformer as a use case.

20

Chapter 3

Joint End-to-End Filter Pruning

3.1 Motivation

Early work in model pruning often relied on performing sensitivity analysis before

pruning to set the pruning ratio per layer. Sensitivity analysis involves iterating over

all layers independently and tuning the pruning ratio for each layer such that we are

able to rank layers by their sensitivity to pruning. This process is computationally

expensive and hinders scalability for deeper, larger, and connectivity complex models.

In this work, we propose to automatically generate a slimmer model from a pre-

trained dense model in an end-to-end training pipeline. Our end-to-end training

automatically selects the pruning ratio per layer which scales better to deep models

such as in depth estimation vision tasks. We propose to train a binary mask for

each convolutional filter that performs gating that allows filter contribution or not.

In training, we encourage smaller models by inducing sparsity by minimizing the ℓ1-

norm of the masks. To take into account the task loss as well, the masks are trained

with both ℓ1 loss and the depth estimation loss. Closest to our proposed pruning

method is [17] in the gating aspect, however, we must emphasize that our masks are

learned jointly on the whole network. Learnable masks allow for removal to preset

compression rate per layer or computing layerwise sensitivity analysis as in [80]. In

[17], the authors set the compression rate for each layer and adopt layer by layer

pruning where each prune is followed by a fine-tune. Both of these points obstruct

21

scalability for large datasets and models such as encoding-decoding (i.e hourglass)

architectures with images as inputs and outputs. These hourglass models are twice

the size of classification models. All of these issues motivated us to train an end-

to-end joint pruning method that can be adopted in large-scale models and datasets

suitable for depth estimation.

Key points: We propose an end-to-end solution to learn the pruning ratio and

mask per layer jointly with the task training. This joint training mitigates the need

for a pre-defined pruning ratio per layer. Hence, it removes the manual tuning by an

expert and simplifies the scalability to other deep neural architectures.

3.2 Proposed Method

3.2.1 Preliminary

In this work, we showcase the pruning method for the vision task monocular depth

estimation. Our baseline deep models are trained based on LRC [81] casting the

problem as image reconstruction from stereo input pairs in an unsupervised setup.

Figure 3.1 summarizes the detailed monocular depth estimation. Stereo input images

I l and Ir are utilized to encourage the reconstructed images Î
l

and Î
r

to appear

similar to the corresponding training input. Dense disparity images dl and dr define

the displacements between corresponding points. Multiple training losses are utilized

in the depth estimation such as reconstruction error, left-right consistency loss, and

smoothness loss. In our proposed pruning, we refer to all these losses inherent in the

task as task loss. Detailed definitions of these losses are defined in the next section.

3.2.2 Joint Training Losses

In this section, we describe our end-to-end joint pruning method for monocular depth

estimation. We base our solution on the unsupervised image reconstruction proposi-

tion by Godard et al. [81].

The pipeline contains two main losses: 1) Task loss, and 2) sparsity loss. Task loss

22

Figure 3.1: MonoDepth training. Image from [81].

Figure 3.2: Proposed joint end-to-end pruning. Red and grey filters indicate pruned
or kept respectively. A real-valued mask mr

i is learned through STE [82] from its
corresponding binary mb

i estimation. The binary mask is multiplied by the input
feature maps Fi to drop the corresponding filter contribution. The new masked
feature maps Fm

i (e.g black features zeroed out) are the new input for the next layer.
We apply sigmoid function σ on mr

i,j to limit the range of the real-values and simplify
threshold selection in binarize function. ℓ1 loss on all masks and task loss are jointly
optimized.

23

includes all losses with image reconstruction, disparity smoothness, and lr-consistency.

The sparsity loss is applied on the masks with ℓ1-norm to encourage our model with

fewer features.

Task loss . We train all the models with three weighted losses contributing to the

final task loss as formulated in [81].

Ltask = αap(L
l
ap+Lr

ap) + αds(L
l
ds+Lr

ds) + αlr(L
l
lr+Lr

lr) (3.1)

Each loss term is calculated for both left and right images in the stereo input pair.

The first term Lap calculates the reconstruction loss between the original image and

the warped image using SSIM [83] and L1 difference. The second term Lds encourages

disparity discontinuities only at the gradient δI. Finally, the left-right consistency

term Llr enforces coherence between predicted left disparity dl and predicted right

disparity dr.

Mask sparsity loss . This loss term controls the model size. Before diving into

the sparsity loss, we explain the masking formulation. First, we initialize real-valued

mask mr
i ∈ Rni for each layer i with ni filters. A binary function is then applied on

the real-valued masks to get mb
i based on a threshold t (e.g mr

i,j ⩾ t outputs 1 and 0

otherwise). Finally, ℓ1 is applied on all the masks to form a sparsity loss term:

Lmask =

∑︁N
i ∥ mb

i ∥1∑︁N
i ni

(3.2)

where N is the total number of layers in the network. Looking carefully at (3.2),

as mb
i vectors are binary, the loss term is calculating the ratio between the total

number of filters in the new model and the original large model. Minimizing this loss

is equivalent to maximizing the compression rate. Our total loss is then given by

Ltotal = Ltask + Lmask (3.3)

24

3.2.3 Forward and Backward Passes

Forward pass. Let Fi,j be the j-th feature map of the i-th layer, the new feature

map Fm
i,j and binary mask mb

i,j are thus given by:

mb
i,j = Binarize(Sigmoid(mr

i,j), 0.5)

Fm
i,j,h,w = Fi,j,h,w ⊙mb

i,j

(3.4)

We apply a sigmoid function on our real-valued masks to transfer the input into [0,1]

range before passing through binarization. This simplifies the selection of threshold t

as a sensible choice would be 0.5. Finally, Fm
i,j is passed as the new (i + 1)-th layer’s

input which corresponds to either Fi,j or 0. Zeroing out a feature map Fi,j simulates

dropping the corresponding filter fi,j. Figure 3.2 shows the masking block embedded

within the network summarizing the forward pass.

Backward pass. In the backward pass, we update the convolutional kernels

and mr
i,j for each layer. As Binarize is a conditional non-differentiable function, we

backpropagate the gradients to mr
i,j utilizing the straight-through-estimator (STE)

proposed in [82]. They showed that we can approximate the gradient of a real-

valued weight with the gradient of its discretization. Even though gradients calculated

through such a function (e.g Binarize) are noisy, they serve as regularizers and are

acceptable approximations of the true gradients to the real-valued masks. Using STE

and from (3.4), we have the gradients as:

δmb
i,j ≜

∂Ltotal

∂mb
i,j

=
H∑︂
h

W∑︂
w

δFm
i,j,h,w · Fi,j,h,w

δmr
i,j = δmb

i,j · Sigmoid(mr
i,j) · (1− Sigmoid(mr

i,j))

(3.5)

The double sum stems from the fact that mb
i,j is shared among all spatial locations

in Fi,j.

3.3 Experiments and Analysis

Results are compared using different depth metrics commonly used for monocular

depth estimation and adopted from [84] on KITTI dataset [85].

25

Eigen split. Table 3.1 shows evaluation on Eigen split with the other methods

reporting on Eigen. Our smaller models achieve better accuracy than the supervised

methods [84, 86] and unsupervised method [87]. Interestingly, the gap in accuracy

(e.g 5th column) between our pruned model and PyD-Net differs based on the training

data. As small models require a large amount of data (e.g CS+K) to achieve good

results, our method on the other hand benefits from the pre-trained large model even

when trained with KITTI dataset only. This shows the benefit of pruning rather than

training from scratch, especially with limited training data.

Ours Lower is better Higher is better

Method Supervised Dataset Abs Rel RMS RMSlog δ < 1.25 δ < 1.252 δ < 1.253 Params

Eigen et al. [84] Yes K 0.203 6.307 0.282 0.702 0.890 0.958 54.2M

Liu et al. [86] Yes K 0.201 6.471 0.273 0.680 0.898 0.967 40.0M

Zhou et al. [87] No K 0.208 6.856 0.283 0.678 0.885 0.957 34.2M

LRC + VGG [81] No K 0.148 5.927 0.247 0.803 0.922 0.964 31.6M

VGG + Ltotal No K 0.1356 5.891 0.236 0.827 0.927 0.965 5.7M ↓ 81.8%

PyD-Net No K 0.163 6.253 0.262 0.759 0.911 0.961 1.9M

DORN ResNet101 [88] Yes ILSVRC+K 0.072 2.727 0.120 0.932 0.984 0.994 NA

Zhou et al. [87] No CS+K 0.198 6.565 0.275 0.718 0.901 0.960 34.2M

LRC + VGG [81] No CS+K 0.124 5.311 0.219 0.847 0.942 0.973 31.6

VGG + Ltask No CS+K 0.124 5.280 ↓ 0.03 0.219 0.848 0.942 0.973 30.8M ↓ 2%

VGG + Ltotal No CS+K 0.1452 ↑ 0.02 5.835 ↑ 0.524 0.239 0.815 0.927 0.967 5.9M ↓ 81.1%

LRC + ResNet50 pp* [81] No CS+K 0.114 4.935 0.206 0.861 0.949 0.976 58.4M

PyD-Net [89] No CS+K 0.148 5.929 0.244 0.800 0.925 0.967 1.9M

Table 3.1: Comparison on Eigen split. In dataset, K indicates training on Kitti
[85] and CS indicates Cityscapes [90]. Our models compress more than 70% the
original model with small drop in accuracy. *pp post-processing done by [81] but
requires two forward passes.

Qualitative results Figure 3.3 shows some qualitative comparison to LRC [81]

and PyDNet [89]. Although our pruned model is 5x smaller than LRC, they still

produce similar good quality smooth output. Our model benefits from the pre-trained

VGG model to produce smooth output and not as noisy as the case with a similar

small-sized model PyDNet. It is worth noting that small models (ours and PyDNet)

better regularize scenes with fewer data in the training unlike LRC as shown in the

third column. However, the pruned model shows an accuracy drop with small objects

26

Figure 3.3: Depth predictions on KITTI Eigen compared with LRC [81] 31.6M, ours
VGG+Ltotal 5.9M, PyD-Net 1.9M [89] from top to bottom. Our pruned model pro-
duces good quality smooth output compared to PyD-Net but still with small accuracy
drop (e.g pole in first column). Small models better regularize scenes with fewer data
in the training (e.g a turn in third column)

(e.g poles).

3.4 Conclusion

We proposed a lightweight model for monocular depth estimation motivated by prun-

ing literature. Our joint end-to-end pruning is scalable for deep models adopted in

depth estimation. We learn binary masks within the network to drop filters jointly

without pre-defined layer-wise compression rates. We showed how pruning benefits

small model training compared to training from scratch, especially with limited data.

27

Chapter 4

Accuracy Approximation by
Imprinting for Layer Pruning

4.1 Motivation

Pruned model quality is assessed based on the drop in accuracy under different mem-

ory budgets (as shown in Sec 3) and FLOPs reduction. However, these metrics are

indirect metrics and ignore many aspects that affect performance. In this work, we

show the limitations of filter pruning methods in terms of latency reduction. Aspects

such as memory transfer, cache capacity, model parallelism, and hardware architec-

ture affect latency but are not reflected in FLOPs metric. The speedup gain in

filter pruning is also dependent on the pruned model signature (i.e.,pruning ratio per

layer). To remedy these issues, we explore a more hardware-friendly pruning through

layer pruning. Fig. 4.1 shows the range of attainable latency reduction on randomly

generated models. Each box bar summarizes the latency reduction of 100 random

models with filter and layer pruning on different network architectures and hardware

platforms. For each filter pruned model i, a random pruning ratio pi,j per layer j

such that 0 ≤ pi,j ≤ 0.9 is generated; thus models differ in width. For each layer

pruned model, M layers out of total L layers (dependent on the network) are ran-

domly selected for retention such that 1 ≤M ≤ L thus models differ in depth. As to

be expected, layer pruning has a higher upper bound in latency reduction compared

to filter pruning, especially on modern complex architectures with residual blocks.

28

Wide ResNet (1080Ti)
ResNet50 (1080Ti)

VGG19_BN (1080Ti)
Wide ResNet (Xavier)

ResNet50 (Xavier)
VGG19_BN (Xavier)

Architecture (Hardware)

0

20

40

60

80
Le

te
nc

y
re

du
ct

io
n

(\%
)

Latency reduction on different architectures and hardware
Filter pruning
Layer pruning

Figure 4.1: Example of 100 randomly pruned models per boxplot generated from
different architectures. The plot shows layer pruned models have a wider range of
attainable latency reduction consistently across architectures and different hardware
platforms (1080Ti and Xavier). Latency is estimated using 224x224 input image and
batch size=1.

However, we want to highlight quantitatively in the plot the discrepancy of attain-

able latency reduction using both methods. Filter pruning is not only constrained by

the depth of the model but also by the connection dependency in the architecture.

An example of such connection dependency is the element-wise sum operation in the

residual block between identity connection and residual connection. Filter pruning

methods commonly prune in-between convolution layers in a residual to respect the

number of channels and spatial dimensions. BAR [91] proposed an atypical residual

block that allows mixed connectivity between blocks to tackle the issue. However,

this requires special implementations to leverage the speedup gain and results in sub-

29

Proxy
classifier

Proxy
classifier

Weights imprinting
pass

Layer importance
pass ŷ = argmax (

LabelsBatch

Feature maps

Adaptive
Pooling Imprinting

Adaptive
Pooling Weights (

Layer

A
cc

u
ra

cy

Classes

Weights N

T

c ∈ C

Figure 4.2: Proposed layer-wise accuracy prediction by imprinting. Feature maps
are flattened to the same embedding length N in all layers using adaptive average
pooling. First phase implements weights imprinting using training data, where a
proxy classifier is estimated after each candidate layer for pruning. Each column (i.e
class) in the weights matrix is imprinted as the average embedding for all samples
belonging to that class. Second phase uses the imprinted weights to estimate layer-
wise class predictions (ŷ) using a validation set. Finally, layers are ranked based on
their accuracy difference to be pruned.

optimal memory access. Another limitation in filter pruning is the iterative process.

Filter pruning adopts iteratively there steps: 1) filter ranking, 2) prune, and 3) short

fine-tune. That is to allow for filter ranking re-evaluation after incremental pruning.

This process is constrained to keep a minimum number of filters per layer during op-

timization to allow for data passing. In some cases with a high pruning ratio, layers

collapse to one filter depending on the ranking criteria.

Motivated by these points, what remains to ask is how well layer pruned models

perform in terms of accuracy compared to filter pruned methods. Another

question is how to evaluate layer importance in an efficient way.

Key points: We study pruning granularity and its effect on latency and FLOPs

30

reduction. In specifics, we show that layer pruned models have higher latency reduc-

tion and are more hardware-friendly than filter pruning commonly proposed in the

literature. We propose a novel layer ranking criterion based on accuracy approxima-

tion using imprinting.

4.2 Proposed Method

The brute-force way to check if a layer contributes to the model’s representative power

would be to check accuracy with and without the layer. However, this approach would

be combinatorial and expensive to evaluate. We propose to apply a proxy classifier

after each pruning candidate layer (e.g convolutional layers, fully connected layers,

or residual blocks) in a one-shot pass by imprinting. Imprinting is used in the few-

shot learning [92, 93] to approximate a classifier’s weights when only a few training

samples are available. Although we have adequate training samples, we are inspired

by the efficiency of imprinting and utilize it to approximate the accuracy up to each

layer. Fig. 4.2 shows the pipeline of our proposed method consisting of 1) weights

imprinting pass and 2) layer importance pass.

4.2.1 Weights imprinting.

In this phase, training data is used to imprint the classifier weight matrix for each

pruning candidate layer. Since each layer has a different output feature shape, we ap-

ply adaptive average pooling to simplify our method and unify the embedding length

so that each layer produces roughly an output of the same size. Specifically, the

pooling is done as follows:

d = round(

√︄
N

fi
)

Ei = AdaptiveAvgPool(Fi, d),

(4.1)

31

where N is the embedding length, fi is layer i’s number of filters, Fi is layer i’s output

feature map, and AdaptiveAvgPool [94] reduces Fi to embedding Ei ∈ Rd×d×fi . Fi-

nally, embedding per layer is flattened to be used in imprinting. Imprinting calculates

the weights matrix Wi used for classification as follows:

Wi[:, c] =
1

Nc

N∑︂
j=1

I[cj==c]Ej (4.2)

where c is the class id, Nc is the number of samples in class c, and N is the total

number of samples.

4.2.2 Layer importance.

In this phase, validation data is used to calculate the accuracy per layer given the

imprinted weight matrix. The prediction for each sample j is calculated for each layer

i as:

ŷj = argmax
c∈{1,...,C}

Wi[:, c]
TEj, (4.3)

where Ej is calculated as shown in Eq.4.1. This is equivalent to finding the nearest

class from the imprinted weights in the embedding space. After acquiring accuracy for

each layer, we rank the layers based on their accuracy difference from the preceding

pruning candidate. We prune layers with the least till a budget is achieved.

4.3 Experiments and Analysis

We compare our method with several state-of-the-art methods: Taylor [60], ECC

[19], masking [3], slimming [61] and ThiNet [62]. We set learning rate to 0.1 with

SGD optimizer for all methods except for ECC, where we use their default setup with

Adam optimizer. We add our proxy classifier after transformations (e.g BatchNorm)

and non-linearity (e.g ReLU) that follow convolutional or fully connected layers. In

all experiments, we set N in Eq 4.1 to the length of the last layer of the architecture.

32

10 20 30 40 50 60
Latency reduction (%)

40

45

50

55

60

65

70

75

To
p-

1
ac

cu
ra

cy
 (%

)

CIFAR-100 VGG19-BN

Random layer pruning(=72.93, =1.45)
Random filter pruning(=65.48, =5.47)

Figure 4.3: Example of 100 random filter pruned and layer pruned models generated
from VGG19-BN (Top-1=73.11%). Accuracy mean and standard deviation is shown
in parentheses. Latency is calculated on 1080Ti with batch size 8.

4.3.1 Random filters vs. Random layers

Initial hypothesis verification is to generate random filter and random layer pruned

models, then train them to compare their accuracy and latency reduction. Random

models generation follows the same setup as explained in Section (4.1). Each model

is trained with SGD optimization for 164 epochs with a learning rate 0.1 that decays

by 0.1 at epochs 81, 121, and 151. Figure 4.3 shows the latency-accuracy plot for

both random pruning methods. Layer pruned models outperform filter pruned ones

in accuracy by 7.09% on average and can achieve up to 60% latency reduction. In

addition, within the same latency budget, filter pruning shows a higher variance in ac-

curacy than layer pruning. This suggests that latency-constrained optimization with

filter pruning is complex and requires careful per-layer pruning ratio selection. On

33

co
nv

01
co

nv
02

co
nv

03
co

nv
04

co
nv

05
co

nv
06

co
nv

07
co

nv
08

co
nv

09
co

nv
10

co
nv

11
co

nv
12

co
nv

13
co

nv
14

co
nv

15
co

nv
16 G
T

0

10

20

30

40

50

60

70

A
cc

ur
ac

y

12
17

22

29
33

42

52

64

71 72

63
59 61

67
72 73 73

Figure 4.4: Layer-wise accuracy, rounded for better visualization, using proposed
proxy classifier for VGG19 on CIFAR100. GT shows the actual accuracy of the full
model.

the other hand, layer pruning has small accuracy variation, in general within a budget.

4.3.2 CIFAR100

Fig. 4.4 shows layer-wise accuracy using our proposed proxy classifier for VGG19-BN

on CIFAR100. It is worth noting that both the proxy classifier from the last layer,

conv16, and the actual model classifier, GT, have the same accuracy, showing how

the proxy classifier is a plausible approximation to the converged classifier. We see

a drop in accuracy followed by an increasing trend from conv10 to conv14. This is

likely because the number of features is the same from conv10 to conv12. We start

to observe an accuracy increase only at conv13 that follows a max-pooling layer and

has twice as many features. This shows the importance of pooling and the increase in

the number of features at this point of the model. We train the pruned model after

removing layers conv11-14. Table 4.1 compares the competing filter pruning methods

34

in terms of accuracy and latency reduction. Our method improves on the previously

reported accuracy by 1.18% while achieving a 43.70% latency reduction over VGG19

and a 16.95% speed up over [3]. We also compare with random layer pruning to eval-

uate the quality of our selection of unimportant layers. We outperform the average

of 10 randomly layer-pruned models of similar latency reduction as ours (≈ 40%) by

5.43% in accuracy.

Method Accuracy N layers Params (1e6) Latency reduction (%)

VGG19 baseline 73.11 16 20.09 0

Random layer pruning 68.95 - - 40.00

Layer-wise proxy (ours) 74.38 12 9.28 43.70

Slimming [61] 72.32 16 5.00 25.26

Masking [3] 73.2 16 4.20 26.75

Taylor [60] 72.61 16 4.79 23.24

ECC [19] 72.71 16 7.86 25.17

Table 4.1: Pruning results on CIFAR100 showing best and second best in each
criterion. Latency reduction is measured on 1080Ti GPU across 1000 runs.

4.3.3 ImageNet

We also evaluate our method on the challenging ImageNet (ILSVRC2012) dataset on

ResNet-50 architecture. For all experiments in this section, we start from pre-trained

models available in PyTorch [95] and follow the same training setup as [60]. Similar to

the previous setup, we insert a proxy classifier after each pruning candidate. We revise

ResNet-50 architecture in Figure 4.5. As can be seen, ResNet-50 consists of multiple

blocks where each branch into a residual part and identity part. This creates a tensor

shape dependency between the two branches, we experiment with two variants of our

method. First, we only treat each residual block as a pruning candidate, so that we

prune by removing a block instead of a layer. Second, we treat residual layers as

normal layers and remove identity connections when layers within the residual block

are pruned.

35

Figure 4.5: ResNet50 architecture.

Figure 4.6 shows layer-wise (bars) and block-wise (color-coded) accuracy with our

method. Analyzing the block-wise accuracy will lead us to remove block 3 (no ac-

curacy improvement from block 2). Block 3 is the last block that operates on 56x56

input images. Similar to our previous experiment on CIFAR100, accuracy tends to

saturate till an input size downscaling by pooling or stride is applied. Numerical re-

sults are presented in Table 4.2. Pruning block 3 results in 16% latency reduction with

slight accuracy improvement. On the other hand, we also observe a repeated drop in

accuracy in the feature upscaling layers (second to last layers in blocks). Pruning 3

of these layers caused a 1.14% drop in total accuracy. This can be explained by the

fact that these residual features are added to the input feature maps. Thus, their

accuracy cannot be compared to the previous block’s output on their own but only

as residuals to input (block output). From these results, we proceeded with pruning

blocks as a whole instead of layers.

36

conv02 conv03 conv04 conv05 conv06 conv07 conv08

Layers

0

1

2

3

4
A

cc
ur

ac
y

4

2 2

3

5 5

4

6 6

5

6

7 7

4

7

4

5

8 8 8

9

8

7

10

14

16

6

14
1515

17

14
13

19

15
14

21

16
15

23

18

15

28

38

50

22

43

53
5755

66
7071

76
conv1
block01
block02
block03
block04
block05
block06
block07
block08
block09
block10
block11
block12
block13
block14
block15
block16
GT

Figure 4.6: Layer-wise accuracy using proposed proxy classifier for ResNet-50 on
ImageNet. GT shows the actual accuracy of the full model. Log scaling is used on
y-axis for better visualization.

We challenged our method by pruning more blocks and compare with manually

designed ResNet variants with similar latency reduction. Our method outperforms

ResNet-41 by 0.9% and ResNet-34 by 1.44%. It is also worth noting that the minimal

model that can be achieved by filter pruning methods such as ECC achieves 11.56%

latency reduction. The minimal model is one with the same depth as the dense

37

model but with one filter per each prunable layer. This model will likely result in

GPU under-utilization and very low accuracy. In comparison, we can achieve up to

39% latency reduction by pruning layers with a 60.1% accuracy gain.

Method Accuracy N layers Params (1e6) Latency reduction (%)

ResNet-50 baseline 76.14 53 25.5 0

Layer-wise proxy - 1 block (ours) 76.72 50 25.4 16.06

Layer-wise proxy - 1 block + 3 layers (ours) 75.0 44 24.1 24.02

ThinNet [62] 72.04 53 16.94 10.52

Taylor [60] 76.43 53 22.6 2.73

ECC [19] 74.88 53 23.5 1.93

ECC minimal model 16.3 53 6.14 11.56

Layer-wise proxy - 4 blocks (ours) 76.40 41 24.8 25

ResNet-41 [69] 75.50 44 25.3 25

Layer-wise proxy - 6 blocks (ours) 74.74 35 23.4 39

ResNet-34 [4] 73.30 37 21.7 39

Table 4.2: Pruning results on ImageNet showing best and second best in each
criterion. Latency reduction is measured on 1080Ti GPU across 1000 runs with
batch size=1.

4.4 Conclusion

We have proposed a novel method to apply a one-shot proxy classifier by weight

imprinting to evaluate the classification accuracy per layer. We have demonstrated

that our layer pruning method achieves much better latency reduction than the state-

of-the-art filter pruning methods. A thorough evaluation on different inference setups

such as deployment hardware platforms and batch sizes are explored. In addition to

adopting filter criteria proposed in the literature in a layer-pruning pipeline.

38

Chapter 5

Generalized Layer Pruning with
LayerPrune Framework

5.1 Motivation

In this work, we extend the idea of layer pruning presented in Sec 4 and propose a

LayerPrune framework. LayerPrune presents a set of layer pruning methods based

on different criteria that are adopted from filter pruning literature. The goal of this

work is to compare layer pruning and filter pruning under different inference setups

such as hardware platform, batch size, and importance criteria.

Fig. 5.1 shows accuracy and images per second between our LayerPrune and

several state-of-the-art pruning methods, as well as, several handcrafted architectures.

In general, pruning methods tend to find better quality models than handcrafted

architectures. It is worth noting that filter pruning methods such as ThiNet [62] and

Taylor [60] show a small speedup gain as more filters are pruned compared to depth

pruning such as our LayerPrune and SSS [69]. This shows the limitation of filter

pruning methods on latency reduction.

Key points: We extend the work from chapter 4 to generalize a layer pruning

framework. We present a thorough study on filter vs layer pruning under different

ranking criteria, batch sizes, and hardware. In addition to efficient inference, our

layer pruned models accelerate fine-tuning as well. In filter pruning iterative training,

binary masks simulate dropping filters in terms of task optimization but will not have

39

50 100 150 200 250 300 350 400
Images Per Second

69
70
71
72
73
74
75
76
77

To
p-

1
Ac

cu
ra

cy
 (%

)

LayerPrune-ResNet50 (ours)
LayerPrune-ResNet34 (ours)
Taylor [24]
ThiNet [23]
SSS [25]
Channel pruning [46]
ECC [21]

Feature Maps [42]
HRank [43]
Weight norm[26]
DenseNet-121 [9]
MNASNet [8]
MSDNet [10]

MobileNet V2 [7]
Shufflenet V2[6]
ResNet18 [4]
ResNet34 [4]
ResNet50 [4]
Squeeze-Excitation

Figure 5.1: Evaluation on ImageNet between our LayerPrune framework, handcrafted
architectures (dots) and pruning methods on ResNet50 (crosses). Inference time is
measured on 1080Ti GPU.

actual performance gain in training. However, our layer pruned model prunes the

layers in one-shot by replacing them with identity blocks. Fine-tuning for the layer

pruned models has accelerated thanks to identity replacement and one-shot pruning.

5.2 Proposed Method

In this section, we describe in detail LayerPrune for layer pruning using existing filter

criteria along with a novel layer-wise accuracy approximation. A typical filter pruning

method follows a three-stage pipeline as illustrated in Figure 5.2. Filter importance

is iteratively re-evaluated after each pruning step based on a pruning meta-parameter

such as pruning N filters or pruning those with importance ≤ threshold. In Layer-

Prune, we remove the need for the iterative pruning step and show that using the

40

LayerPrune

Figure 5.2: Illustrates the difference between typical iterative filter pruning and the
proposed LayerPrune framework. Filter pruning (top) produces thinner architecture
in an iterative process while LayerPrune (bottom) prunes whole layers in one-shot. In
LayerPrune, layer’s importance is calculated as the average importance of each filter
f in all filters F at that layer.

same filter criterion, we can remove layers in one-shot to respect a budget. This

simplifies the pruning step to a hyper-parameter-free process and is computationally

efficient. Layer importance is calculated as the average of filter importance in this

layer.

Although existing filter pruning methods are different in algorithms and optimiza-

tion used, they focus more on finding the optimal per-layer number of filters and

share common filter criteria. We divide the methods based on the filter criterion used

and propose their layer importance counterpart used in LayerPrune.

41

5.2.1 Pruning Criteria

Preliminary notion. Consider a network with L layers, each layer l has weight

matrix W (l) ∈ RNl×Fl×Kl×Kl with Nl input channels, Fl number of filters and Kl is

the size of the filters at this channel. Evaluated criteria and methods are:

Weight statistics. [19, 53, 64] differ in the optimization algorithm but share

weight statistics as a filter ranking. Layer pruning for this criteria is calculated as:

weights-layer-importance[l] =
1

Fl

Fl∑︂
i=1

⃦⃦
W (l)[:, i, :, :]

⃦⃦
2

(5.1)

Taylor weights. Taylor method [60] is slightly different from previous criterion

in that the gradients are included in the ranking as well. Filter f ranking is based

on
∑︁

s(gsws)
2 where s iterates over all individual weights in f , g is the gradient, w is

the weight value. Similarly, layer ranking can be expressed as:

taylor-layer-importance[l] =
1

Fl

Fl∑︂
i=1

⃦⃦
G(l)[:, i, :, :]⊙W (l)[:, i, :, :]

⃦⃦
2

(5.2)

where ⊙ is element-wise product and G(l) ∈ RNl×Fl×Kl×Kl is the gradient of loss

with respect to weights W (l).

Feature map based heuristics. [62, 96, 97] rank filters based on statistics from

output of layer. In [62], ranking is based on the effect on the next layer while [96],

similar to Taylor weights, utilizes gradients and norm but on feature maps.

Channel saliency. In this criterion, a scalar is multiplied by the feature maps and

optimized within a typical training cycle with task loss and sparsity regularization

loss to encourage sparsity. Slimming [61] utilizes Batch Normalization scale γ as the

channel saliency. Similarly, we use Batch Normalization scale parameter to calculate

layer importance for this criteria, specifically:

BN-layer-importance[l] =
1

Fl

Fl∑︂
i=1

(γ
(l)
i)2 (5.3)

42

Ensemble. We also consider diverse ensemble of layer ranks where the ensemble

rank of each layer is the sum of its rank per method, more specifically:

ensemble-rank[l] =
∑︂

m∈{1...M}

(LayerRank(m, l)) (5.4)

where l is the layer’s index, M is the number of all criteria and LayerRank indicates

the order of layer l in the sorted list for criterion m.

5.3 Experiments and Analysis

5.3.1 Training Setup

We follow standard hyperparameters used for fine-tuning [20, 60, 69]: 30 epoch learn-

ing rate 1e−3 on SGD optimizer. An exception is the comparison with Chen et al.

[70] as the authors train the pruned model with the standard hyperparameters used

for training from scratch: 160 epochs with an initial learning rate of 0.1 and decays

on epoch [81, 122] by 0.1.

Layer pruning: For layer pruning, we calculate layer importance as explained in

Section 5.2.1 using a one-shot pass over the training set.

Filter pruning: For filter pruning, we prune total 500 and 100 filters in VGG19

and ResNet56 respectively for global-based filter importance criteria such as weight

norm, Taylor approximation, and feature maps. We follow the same iterative prun-

ing hyperparameter setup as Taylor [60]. We prune 100 filters each 10 mini-batches.

For other pruning methods, we report results using their published code with default

setup setting such as slimming [61] and ECC[19].

5.3.2 CIFAR

We evaluate CIFAR-10 and CIFAR-100 on ResNet-56 [4].

43

ResNet56

We compare on the the complex architecture ResNet-56 on CIFAR-10 and CIFAR-100

in Table 5.1. On a similar latency reduction, LayerPrune outperforms [70] by 0.54%

and 1.23% on CIFAR-10 and CIFAR-100 respectively. On the other hand, within

each filter criterion, LayerPrune outperforms filter pruning and is on par with the

baseline in accuracy. In addition, filter pruning can result in a latency increase (i.e

negative LR) with specific hardware targets and batch sizes [98] as shown with batch

size 8. However, LayerPrune consistently shows latency reduction under different

environmental setups. We also compare with larger batch sizes to further encour-

age filter pruned models to better utilize the resources. Still, we found LayerPrune

achieves overall better latency reduction with a large batch size. Latency reduction

variance, LR var, between different batch sizes within the same hardware platform is

shown as well. Consistent with previous results on VGG, LayerPrune is less sensitive

to changes in criterion, batch size, and hardware than filter pruning. We also show

results up to 2.5x latency reduction with less than 2% accuracy drop.

Latency vs Number of Filters

We show accuracy degradation on aggressive filter pruning and the achieved latency

reduction compared to LayerPrune. Fig. 5.3 shows filter pruning under different

number of filters pruned (i.e 100:400) and latency reduction on GPU 1080Ti on batch

size=64. Dots are connected based on ascending order of the number of filters pruned.

It is apparent that pruning more filters doesn’t necessarily decrease latency and the

relationship between pruned filters and latency reduction is non-linear. In CIFAR-

100, a latency reduction of ≈ 8% results in a large drop in accuracy from 71.2% to

67%. It is worth noting that LayerPrune is able to achieve up to 35% latency reduc-

tion with accuracy 71%. Similarly on CIFAR-10, pruning 50% of the filters can only

achieve around 5% latency reduction.

44

Method Shallower? Top1-accuracy (%)
LR (%)

1080Ti bs=8

LR (%)

1080Ti bs=64

LR (%)

Xavier bs=8

LR (%)

Xavier bs = 64

CIFAR-10 ResNet-56 baseline (93.55%)

Chen et al. [70] ✓ 93.09 26.60 26.31 26.96 25.66

LayerPrune8-Imprint ✓ 93.63 26.41 26.32 27.30 29.11

Taylor weight [60] ✗ 93.15 0.31 5.28 -0.11 2.67

LayerPrune1 ✓ 93.49 2.864 3.80 5.97 5.82

LayerPrune2 ✓ 93.35 6.46 8.12 9.33 11.38

Weight norm [53] ✗ 92.95 -0.90 5.22 1.49 3.87

L1 norm [64] ✗ 93.30 -1.09 -0.48 2.31 1.64

LayerPrune1 ✓ 93.50 2.72 3.88 7.08 5.67

LayerPrune2 ✓ 93.39 5.84 7.94 10.63 11.45

Feature maps [96] ✗ 92.7 -0.79 6.17 1.09 8.38

LayerPrune1 ✓ 92.61 3.29 2.40 7.77 2.76

LayerPrune2 ✓ 92.28 6.68 5.63 11.11 5.05

Batch Normalization [61] ✗ 93.00 0.6 3.85 2.26 1.42

LayerPrune1 ✓ 93.49 2.86 3.88 7.08 5.67

LayerPrune2 ✓ 93.35 6.46 7.94 10.63 11.31

LayerPrune18-Imprint ✓ 92.49 57.31 55.14 57.57 63.27

CIFAR-100 ResNet-56 baseline (71.2%)

Chen et al. [70] ✓ 69.77 38.30 34.31 38.53 39.38

LayerPrune11-Imprint ✓ 71.00 38.68 35.83 39.52 54.29

Taylor weight [60] ✗ 71.03 2.13 5.23 -1.1 3.75

LayerPrune1 ✓ 71.15 3.07 3.74 3.66 5.50

LayerPrune2 ✓ 70.82 6.44 7.18 7.30 11.00

Weight norm [53] ✗ 71.00 2.52 6.46 -0.3 3.86

L1 norm [64] ✗ 70.65 -1.04 4.06 0.58 1.34

LayerPrune1 ✓ 71.26 3.10 3.68 4.22 5.47

LayerPrune2 ✓ 71.01 6.59 7.03 8.00 10.94

Feature maps [96] ✗ 70.00 1.22 9.49 -1.27 7.94

LayerPrune1 ✓ 71.10 2.81 3.24 4.46 5.56

LayerPrune2 ✓ 70.36 6.06 6.70 7.72 7.85

Batch Normalization [61] ✗ 70.71 0.37 2.26 -1.02 2.89

LayerPrune1 ✓ 71.26 3.10 3.68 4.22 5.47

LayerPrune2 ✓ 70.97 6.36 6.78 7.59 10.94

LayerPrune18-Imprint ✓ 68.45 60.69 57.15 61.32 71.65

Table 5.1: Comparison of different pruning methods on ResNet56 CIFAR-
10/100. The accuracy for baseline model is shown in parentheses. LR and bs stands
for latency reduction and batch size respectively. x in LayerPrunex indicates number
of blocks removed.

As for VGG19, the maximally achieved pruning latency reduction is 20% to main-

tain the accuracy from baseline. On the other hand, LayerPrune finds better models

45

than baseline and filter pruned methods. On comparison with the random experiment

shown in Section 4.3.1, filter pruning methods hover around baseline accuracy and

fail to discover other regularized models compared to layer pruning.

0 2 4 6 8 35
Latency Reduction (%)

64

65

66

67

68

69

70

71

To
p-

1
Ac

cu
ra

cy
 (%

)

Batchnorm
Feature maps
Taylor
Weight norm
LayerPrune
Baseline

(a) CIFAR-100/ResNet56

0 5 10 15 20 25
Latency Reduction (%)

89

90

91

92

93

To
p-

1
Ac

cu
ra

cy
 (%

)

Batchnorm
Feature maps
Taylor
Weight norm
LayerPrune
Baseline

(b) CIFAR-10/ResNet56

0 10 20 30 40 50
Latency Reduction (%)

72.5

73.0

73.5

74.0

74.5

To
p-

1
Ac

cu
ra

cy
 (%

)

Batchnorm
Feature maps
Taylor
Weight norm
LayerPrune
Baseline

(c) CIFAR-100/VGG19-BN

Figure 5.3: Latency reduction of different filter pruning methods under different
pruning ratios. Star in each method indicates the lowest pruning ratio (starting
point). Dots are connected based on ascending order of number of filters pruned.

46

5.3.3 ImageNet

We evaluate the methods on the challenging ImageNet dataset for classification. For

all experiments in this section, PyTorch pre-trained models are used as starting point

for network pruning. We follow the same setup as in [60] where we prune 100 filters

for each 30 mini-batches for 10 pruning iterations. The pruned model is then fine-

tuned with a learning rate 1e−3 using SGD optimizer and 256 batch size. Results on

ResNet50 are presented in Table 5.2.

In general, LayerPrune methods improve accuracy over the baseline and their coun-

terpart filter pruning methods. Although feature maps criterion [96] achieves better

accuracy by 0.92% over LayerPrune1, LayerPrune has a higher latency reduction that

exceeds by 5.7%. It is worth mentioning that the latency aware optimization ECC has

an upper bound latency reduction of 11.56%, on 1080Ti, with an accuracy of 16.3%.

This stems from the fact that iterative filter pruning is bounded by the network’s

depth and structure dependency within the network, thus not all layers are consid-

ered for pruning such as the gates at residual blocks. In addition, we compare with

ECC which is a hardware-aware pruning method. ECC builds a layer-wise bilinear

model to approximate the latency of a model given the number of input channels and

output filters per layer. This simplifies the non-linear relationship between the num-

ber of filters per layer and latency. We show latency reduction on Xavier for an ECC

pruned model optimized for 1080Ti, and this pruned model results in latency increase

on batch size 1 and the lowest latency reduction on batch size 64. This suggests that

a hardware-aware filter pruned model for one hardware architecture might perform

worse on another hardware than even a hardware-agnostic filter pruning method.

It is worth noting that the filter pruning HRank [97] with 2.6x FLOPs reduction

shows large accuracy degradation compared to LayerPrune (71.98 vs 74.31). Even

with aggressive filter pruning, speed up is noticeable with large batch size but shows

small speed gain with small batch size. Within shallower models, LayerPrune out-

47

performs SSS on the same latency budget even when SSS supports block pruning for

ResNet50, which shows the effectiveness of accuracy approximation as layer impor-

tance.

In the Xavier edge device case, we observe a lower latency reduction on batch

size 64 in all methods than on batch size 1. The reason for that, as the batch size

increases, the feature map dimensions increase as well, this results in extra overload

for data transfer between different storage memory. Nonetheless, the manually pre-

defined architecture used in ThiNet [62] suffer less from this data transfer overhead

with a large batch size due to the uniform pruning ratio. Yet, accuracy suffers from

that uniform pruning and results in a sub-optimal pruned model. This opens the

door for future interesting research questions such as, how can we utilize uniform

filter pruning to serve as an initial model for layer pruning? A joint uniform filter

pruning and layer pruning would result in a hardware-friendly pruning technique. Or

how to achieve a certain memory and latency budget jointly utilizing both pruning

paradigms within a simple one-shot pass?

5.3.4 Ablation Study

One-shot vs Iterative

We conducted experiments on one-shot vs iterative filter pruning to be comparable

with our one-shot LayerPrune pruning step. Our reported results on iterative filter

pruning follow the same setup used in literature [60], that is prune 10% each pruning

iteration. In one-shot filter pruning, the hyperparameter total number of filters is

pruned at once. Table 5.3 shows results of iterative vs one-shot. Consistent with

[20, 60], iterative pruning (i.e re-evaluating criterion of filter after each prune) gives

a slightly better accuracy. That shows that it is mandatory for filter pruning to be

iterative.

We also analyzed the sensitivity of ranking by imprinting on layer pruned models

in one-shot and iterative ranking. We calculated Spearman’s rank-order correlation

48

ResNet50 baseline (76.14)

Method Shallower? Top1-accuracy (%)
LR(%)

1080Ti bs=1

LR (%)

1080Ti bs=64

LR (%)

Xavier bs=1

LR (%)

Xavier bs = 64

Weight norm [53] ✗ 76.50 6.79 3.46 6.57 8.06

ECC [19] ✗ 75.88 13.52 1.59 -4.91** 3.09**

LayerPrune1 ✓ 76.70 15.95 4.81 21.38 6.01

LayerPrune2 ✓ 76.52 20.32 13.23 26.14 13.20

Batch Normalization ✗ 75.23 2.49 1.61 -2.79 4.13

LayerPrune1 ✓ 76.70 15.95 4.81 21.38 6.01

LayerPrune2 ✓ 76.52 20.41 8.36 25.11 9.96

Taylor [60] ✗ 76.4 2.73 3.6 -1.97 6.60

LayerPrune1 ✓ 76.48 15.79 3.01 21.52 4.85

LayerPrune2 ✓ 75.61 21.35 6.18 27.33 8.42

Feature maps [96] ✗ 75.92 10.86 3.86 20.25 8.74

Channel pruning* [17] ✗ 72.26 3.54 6.13 2.70 7.42

ThiNet* [62] ✗ 72.05 10.76 10.96 15.52 17.06

LayerPrune1 ✓ 75.00 16.56 2.54 23.82 4.49

LayerPrune2 ✓ 71.90 22.15 5.73 29.66 8.03

SSS-ResNet41 [69] ✓ 75.50 25.58 24.17 31.39 21.76

LayerPrune3-Imprint ✓ 76.40 22.63 25.73 30.44 20.38

LayerPrune4-Imprint ✓ 75.82 30.75 27.64 33.93 25.43

SSS-ResNet32 [69] ✓ 74.20 41.16 29.69 42.05 29.59

LayerPrune6-Imprint ✓ 74.74 40.02 36.59 41.22 34.50

HRank-2.6x-FLOPs* [97] ✗ 71.98 11.89 36.09 20.63 40.09

LayerPrune7-Imprint ✓ 74.31 44.26 41.01 41.01 38.39

Table 5.2: Comparison of different pruning methods on ResNet50 Ima-
geNet. * manual pre-defined signatures. ** same pruned model optimized for 1080Ti
latency consumption model in ECC optimization

49

Dataset/Model Pruning ratio Criterion Iterative One-shot

CIFAR100/ResNet56 (71.20%)

20%

Weight Norm 70.18 70.00

Feature Maps 67.77 67.7

Taylor 70.51 70.01

Batchnorm 70.79 70.36

Median 70.34 70.00

30%

Weight Norm 70.36 69.1

Feature Maps 67.25 66.34

Taylor 70.46 68.27

Batchnorm 70.14 69.4

Median 70.25 68.68

CIFAR10/ResNet56 (93.55%) 20%

Weight Norm 92.35 92.31

Feature Maps 91.94 91.9

Taylor 92.88 92.8

Batchnorm 92.79 92.76

Median 92.57 92.53

Table 5.3: Evaluation of iterative and one-shot filter pruning. Baseline accuracy
indicates in parentheses.

50

CIFAR-10 ResNet-56 (93.55%) CIFAR-100 ResNet-56 (71.2%)

N pruned One-shot (%) Iterative (%) Spearman One-shot (%) Iterative (%) Spearman

1 93.32 93.32 0.99 71.10 71.10 0.96

2 93.28 93.31 0.97 70.93 70.94 0.97

3 93.17 93.15 0.96 70.88 70.86 0.94

4 93.10 93.03 0.96 70.64 70.71 0.91

Table 5.4: Spearman rank correlation between one-shot and iterative ranking with
imprinting.

between layer ranking by one-shot (as explained in Section 4.2) and layer ranking by

re-calculating ranks iteratively after each pruning step. Table 5.4 shows the accuracy

of one-shot and iterative layer pruning and their ranking correlation. The Spear-

man column indicates a high positive relationship between both ranking methods

demonstrating the robustness of ranking by imprinting. We observed the difference

in ranking is between similarly important layers and this explains why accuracy is

not significantly affected even as correlation decreases, and it shows the sufficiency of

one-shot rank estimation with imprinting.

Discussion on Architectures

VGG19-BN Pruned architectures for results on VGG19-BN are presented in Table

5.5. All layer pruning methods mostly agree on removing same layers. While in filter

pruning methods, as minimum number of filters are required per layer, the early layers

are pruned as well and thus hurting accuracy.

ResNet56 has 3 groups of 9 basic blocks where each basic block has two 3x3

convolution layers. We show block importance based on each criterion for CIFAR-10

in Fig. 5.4 and CIFAR-100 in Fig. 5.5. Weight magnitude, Batch Normalization,

and Taylor magnitude criteria have similar block ordering that focuses more on the

early layers. On the other hand, the feature maps criterion is more biased toward

pruning the deeper layers. This stems from the fact that as we go deeper, feature

51

Method Accuracy Architecture

VGG19 (baseline) 73.11 [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 512, 512, ’M’, 512, 512, 512, 512, ’M’]

Weight norm [53] 73.01 [47, 64, ’M’, 127, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 508, 494, 472, ’M’, 502, 512, 499, 509, ’M’]

ECC [19] 72.71 [50, 23, ’M’, 128, 128, ’M’, 254, 254, 254, 254, ’M’, 508, 311, 164, 131, ’M’, 158, 319, 509, 64, ’M’]

Layer pruning2 73.60 [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 512, 512, ’M’, 0, 0, 512, 512,’M’]

Layer pruning5 74.80 [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 0, 0, ’M’, 0, 0, 0, 512, ’M’]

Slimming [61] 72.32 [42, 64, ’M’, 125, 128, ’M’, 255, 256, 255, 256, ’M’, 433, 291, 82, 46, ’M’, 45, 44, 62, 367, ’M’]

Layer pruning2 73.60 [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 512, 512, ’M’, 0, 0, 512, 512,’M’]

Layer pruning5 74.80 [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 0, 0, ’M’, 0, 0, 0, 512, ’M’]

Taylor [60] 72.61 [61, 64, ’M’, 127, 128,’M’, 256, 256, 256, 256,’M’, 512, 505, 383, 205,’M’, 109, 118, 422,482, ’M’]

Layer pruning2 73.60 [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 512, 0, ’M’, 0, 512, 512, 512,’M’]

Layer pruning5 74.80 [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 0, 0, ’M’, 0, 0, 0, 512, ’M’]

Table 5.5: Architectures of different pruning methods on VGG19-BN CIFAR-100. x
in Layer pruningx indicates number of layers removed. Number of filters per layer is
shown where 0 indicates removed layers and ’M’ indicates max pooling operation.

maps tend to be sparser and so their importance calculated using Taylor on feature

maps [96] will lead to a bias and failure in deeper models. Ensemble selects layers

that are constantly voted as not important (e.g CIFAR-10 blocks 6,4,5), however, it

is sensitive to individual errors. For example in CIFAR-10, the ensemble prioritizes

pruning block17 over block7 even when the latter has lower ranks in most of the

criteria but the large ranking gap in one criterion, that is feature maps criterion,

resulted in block17 having a lower rank.

This diversity in criteria calls for a deeper study of a wide range of networks.

Different ranking criterion could be optimal for one architecture but fails in another.

Training from Scratch

Training from scratch for ImageNet is done for 90 epochs with 0.1 initial lr, 0.1 lr

decay each 30 epochs. Fine-tuning is done for 30 epochs with 1e−3 initial lr, 0.1 lr

decay each 10 epoch. In Table 5.6, we compare our LayerPrune models trained from

scratch and fine-tuned. Fine-tuned models consistently outperform training from

scratch of the same pruned architecture.

52

(a) Weight norm (b) Weight Taylor

(c) Batch Normalization (d) Batch Normalization Taylor

(e) Feature maps (f) Ensemble

Figure 5.4: Plots of block importance using different layer criterion on CIFAR-10
ResNet56. Legend on each sub-plot shows sorted blocks in ascending order based on
importance. 53

(a) Weight norm (b) Weight Taylor

(c) Batch Normalization (d) Batch Normalization Taylor

(e) Feature maps (f) Ensemble

Figure 5.5: Plots of block importance using different layer criterion on CIFAR-100
ResNet56. Legend on each sub-plot shows sorted blocks in ascending order based on
importance. 54

N Blocks pruned Fine-tuned Scratch

1 76.72 75.70

2 76.53 75.96

3 76.40 75.80

4 75.82 75.0

Table 5.6: Accuracy of our ResNet50 pruned models trained from scratch and fine-
tuned.

Training Speed

End-to-end optimization filter pruning methods such as slimming require training

from scratch with sparsity-inducing terms in the training. This requires 90 epochs in

ImageNet. All methods, including ours, were fine-tuned for 30 epochs. Hence, our

layer-pruning is 4 times faster than these methods.

For iterative filter pruning methods, we observed an average 1.9x speedup in the fine-

tuning phase in layer-pruned models compared to fine-tuning phase in filter pruning.

The training is conducted on 4 x V100 GPUs.

5.4 Conclusion

We presented a LayerPrune framework that includes a set of layer pruning methods.

We show the benefits of LayerPrune on latency reduction compared to filter pruning.

The key findings of this paper are the following:

• For a filter criterion, training a LayerPrune model based on this criterion

achieves the same, if not better, accuracy as the filter pruned model obtained

by using the same criterion.

• Filter pruning compresses the number of convolution operations per layer and

thus latency reduction depends on hardware architecture, while LayerPrune

removes the whole layer. As a result, filter pruned models might produce non-

optimal matrix shapes for the compute kernels that can lead even to latency

55

increase on some hardware targets and batch sizes.

• Filter pruned models within a latency budget have a larger variance in accu-

racy than LayerPrune. This stems from the fact that the relation between

latency and the number of filters is non-linear and optimization constrained by

a resource budget requires complex per-layer pruning ratios selection.

• We also showed the importance of incorporating accuracy approximation in

layer ranking by imprinting.

56

Chapter 6

Fire Together Wire Together: A
Dynamic Pruning Approach

6.1 Motivation

Static pruning advanced the neural network compression area, however, as we have

seen in Figure 5.1, we could fairly perform well using a light-weight model. The

full model is needed to correctly predict the complex hard samples. In addition,

considering the manually designed architectures in Table 6.1, we usually demand

double the FLOPs for approximately 2% gain in accuracy.

Ideally, we would like to be able to distinguish the hard and easy samples at run-

time and apply different computation budgets accordingly. This recent perspective

allowed for what is known as conditional inference or dynamic pruning. The idea is

that instead of a lightweight static network for all input samples, sub-networks are

processed conditioned on the input instead. This allows for a higher degree of freedom

and the ability to preserve the full ability of the original network. However, training

multiple routes or sub-networks within the same network is challenging. In dynamic

or conditional inference, samples are processed using different routes (i.e dynamic

pruning) or using variant depth of the network (i.e early-exit).

Key points: A typical dynamic filter pruning method equips a decision gate to

select a handful of filters to compute per each sample. This decision gate usually

is trained through a regularization with continuous channel saliency learning or pre-

57

Model Accuracy FLOPs Accuracy gain FLOPs increase

ResNet18 69.76% 1.8B – –

ResNet34 73.31% 3.6B 3.55 2.1x

MobileNetv1 70.6% 569M – –

MobileNetv1 75 68.4% 325M 2.2 1.75x

Inception v3 78.00 7B – –

Inception v4 80.2 16B 2.2 2.2x

Table 6.1: Diminishing returns to adding more FLOPs. Double the computation is
needed for ≈ 2% gains

defined N group of filters. These training techniques result in a training instability

as balancing the multi-loss training (i.e.,decision gates regularization and task loss

becomes challenging. In our method, we decouple the two losses to eliminate gradient

interference from one loss to another. We achieve this by self-supervised training for

the decision gates while updating the model’s weights with the task loss.

6.2 Proposed Method

6.2.1 Preliminary

Current dynamic filter pruning approaches typically introduce a regularization term

to induce sparsity over a continuous parameter for channel gating/masking [73, 74,

99]. Others adopt policy gradient introduced in reinforcement learning [100] to learn

different routes. These methods require careful tuning in training to tackle issues

such as training stability with schedule annealing [74], biased training handling [101],

or predefined pruning ratio per layer [26, 73].

Also, as noted in [99], additional sparsity loss degrades task loss as it is difficult

to balance the task loss and the pruning loss. That is especially evident under a

high pruning ratio as shown in Figure 6.1. Moreover, the FLOPs reduction of these

dynamic methods is dependent on the selected sparsity weight hyperparameter. This

58

25 30 35 40 45 50
FLOPs Reduction (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
cc

ur
ac

y
dr

op
 (%

)

FTWT (ours)
Taylor
LCCL
SFP
FPGM
ResNet18

Figure 6.1: FLOPs reduction vs accuracy drop from baselines for various dynamic
and static models on ResNet34 ImageNet.

hyperparameter selection lacks transparent relation between sparsity weight and the

reached FLOPs; thus, hinders practical efficient training with many iterations of trial

and error to achieve a target FLOPs reduction.

In our method, we tackle these issues by formulating the problem as a self-supervised

binary classification task. We generate the binary mask of the current layer (wiring)

based on the activation (firing) of the previous layer. We draw inspiration from the

Hebbian theory [102] in Neuroscience with a twist that we enforce this wiring-firing

relation instead of a study of causation as in the theory. Figure 6.2 displays the

maximum response for each filter (x-axis) of the last convolutional layer and a mid-

dle layer of MobileNet-V1 for random input samples (y-axis) grouped by their class.

The plot shows that samples that belong to the same class tend to activate the same

combination of filters and thus we only need to process a handful of the filters. Our

method relies on the predictability assumption that given the response of the layer’s

input, we can predict the top-k activation of the output. It is worth noting that the

number of clusters varies per layer. Similar to other dynamic pruning methods, we

learn a decision head for channel gating. However, we learn the gating using binary

59

car

deer

horse

truck

ship

plane bird

dogcat

frog

0.0

0.2

0.4

0.6

0.8

1.0

Activation per filter

In
pu

t s
am

pl
e

(a) Last convolutional layer

frog

car

horse

deercat

bird

ship

plane

truck

dog

0.0

0.2

0.4

0.6

0.8

1.0

Activation per filter

In
pu

t s
am

pl
e

(b) 8th depthwise convolutional layer

Figure 6.2: Maximum activations in all features at the last convolutional layer and
a middle layer in mobilenetv1 CIFAR-10. Each row in a subplot represents an input
sample. Samples that belong to the same class activate the same group of filters.
Better visualized in color.

cross-entropy loss per channel. Each layer predicts the filters which are most likely to

be highly activated given the layer’s input activations. We generate ground truth bi-

nary masks per layer based on the mass of the heatmap per sample. This formulation

provides advantages in two aspects. First, the channel gating loss implicitly complies

and adapts to the backbone’s status which stabilizes training in comparison to the

case with sparsity regularization or RL-based training. Second, reduction in FLOPs

can be estimated before training, as the target mask is controlled by the generated

ground truth mask which gives an estimate on the reduction. This simplifies the hy-

perparameter selection that controls the pruning ratio. The main contributions are

summarized as follows:

• A novel loss formulation with self-supervised ground truth mask generation that

is stochastic gradient descent (SGD) friendly with no gradient weighting tricks.

• We propose a novel dynamic signature based on the heatmap mass without a

pre-defined pruning ratio per layer.

• Simple hyperparameter selection that enables FLOPs reduction estimation be-

60

fore training. This simplifies realizing a prior budget target with bounded hy-

perparameter search space.

Figure 6.3: Proposed pipeline for training dynamic routing for one layer. For a layer
l, prediction head f l

p(I
l;Wp

l) takes an input I l, applies global max pooling (GMP),
normalizes with Softmax, then feeds to 1x1 convolution to generate logits P l for the
binary mask M l. Binary Cross Entropy (BCEWithLogits) loss penalizes the mask
prediction based on the top-k obtained from the unpruned feature maps Ol.

6.2.2 Channel Gating

Let I l, W l be the input features, and weights of a convolution layer l, respectively,

where I l ∈ Rcl−1×wl×hl , W l ∈ Rcl×cl−1×kl×kl , and cl is the number of filters in layer

l. A typical CNN block consists of a convolution operation (∗), batch normalization

(BN), and an activation function (f) such as the commonly used ReLU. Without loss

of generality, we ignore the bias term because of BN inclusion, thus, the output feature

map Ol can be written as Ol = f(BN(I l∗W l)). We predict a binary mask M l ∈ Rcl

denoting the highly activated output feature maps Ol from the input activation map

I l by applying a decision head f l
p with learnable parameters W l

p. Masked output

I l+1 is then represented as I l+1 = Ol⊙Binarize(f l
p(I

l;Wp)). Binarize(.) function

61

Figure 6.4: Proposed pipeline in testing time. For each layer, only filters with mask
prediction=1 are selected and computed while the rest is pruned.

is round(Sigmoid(.)) to convert logits to a binary mask. The prediction of the highly

activated output feature maps allows for processing filters f where M l
f = 1 in the

inference time and skipping the rest.

6.2.3 Self-Supervised Binary Gating

Our proposed method as shown in Figure 6.4 learns this dynamic routing in a self-

supervised way by inserting a predictor head after each convolutional block to predict

the highly k activated filters of the next layer. The k value is automatically calculated

per input based on the mass of heatmap.

Loss function The ground truth binary mask of the highly activated features is

attainable by sorting the norm of the features. The overall training objective is:

min
{W ,Wp}

Ltotal =Lent(fn(x;W),yk)

+ Lpred({f l
p(I

l;Wp
l), gl}L)

(6.1)

where fn is the backbone of the baseline model, Lent is the cross-entropy task loss,

62

Lpred is the total predictor loss for all layers l ∈ 1...L. In details, we define Lpred as

follows:

Lpred({P l, gl}L) =

L∑︂
l

Fl∑︂
f

BCEWithLogits(P l
f , g

l
f)

(6.2)

where P l is the output of the decision head f l
p(I

l;Wp
l), gl is the generated ground

truth mask based on the top-k highly activated output Ol, BCEWithLogits is a

Sigmoid(σ) followed by the binary cross entropy loss:

BCEWithLogits(p, g) = − [g · log σ(p) + (1− g) · log(1− σ(p))] (6.3)

Algorithm 1 Binary mask ground truth generation

Input: I1 . . . IL, r
Output: g binary ground truth with 0 as to prune
1: gt← ones(L, cl)
2: for l← 1 to L do
3: acts ← GMP((

⃓⃓
Ol

⃓⃓
))

4: normalized ← acts/
∑︁

acts
5: sorted, idx ← sort(normalized, “descend”)
6: cumulative ← cumsum(sorted)
7: prune idx ← where(cumulative > r)
8: gt[l][prune idx]← 0
9: end for

Number of activated k We automatically calculate k by keeping a constant per-

centage r of the mass of heatmap. For each channel i = 1, ..., cl, we keep the maximum

response by applying a global maximum pooling (GMP) (GMP(
⃓⃓
Ol

i

⃓⃓
). For each input

example, k is the number of filters kept such that the cumulative mass of the sorted

heatmaps reaches r%. The ground truth generation algorithm is shown in Algorithm

1. We use the same r for all layers, however, each sample will have a different pruning

ratio per layer based on its activation. As the target binary ground-truth is gener-

ated from the activations of the unmasked filters, FLOPs reduction can be loosely

63

estimated prior to training to adjust r accordingly. This advantage adds to the practi-

cality of our method which does not rely on indirect hyperparameter tuning to reach

a budget target in FLOPs reduction. It is also worth mentioning that r = 1 is a

special case that indicates the decision head will predict the completely deactivated

features (e.g maximum response is zero). This enables maintaining the accuracy of

baseline with ideally trained decision heads for highly sparse backbones. A visual

representation for binary mask generation is shown in Figure 6.5

Figure 6.5: Binary mask ground truth generation.

6.2.4 Prediction Head Design

Prediction head design should be modeled in a simple way to reduce overhead over

the baseline network. In forward pass, we apply GMP that reduces feature map

Il per layer to El ∈ Rcl−1×1×1. Next, we apply 1x1 convolution on the flattened

embedding El to produce the mask’s logits. We experiment with two training modes:

1) decoupled, and 2) joint. In both modes, we train backbone weights and those

of decision heads in parallel. The distinction is whether we do a fully differentiable

training (joint) or stop gradients from heads to backpropagate to the backbone and

vice versa (decoupled). In joint training, the decision head is fully differentiable

except at the binarization part. Similar to previous works [3, 103, 104], we utilize

straight-through estimator (STE) to bypass the non-differentiable function. An issue

to consider is loss interference with multiple losses at different depths in the network

64

as pointed out in [10]. Losses interference indicates that layers can be biased towards

achieving high accuracy to local tasks more than the overall architecture. Unlike other

methods that rely on careful training tuning to manage gradients from different losses,

we train the heads along with the backbone in parallel yet collaboratively as the masks

are generated from the current status of the model. The ground-truth binary masks

are explicitly adjusted by the updated backbone weights, thus, implicitly complying

with the backbone learning speed.

6.3 Experiments and Analysis

We evaluate our method on CIFAR [105] and ImageNet [106] datasets on a variety of

architectures such as VGG [107], ResNet [108] and MobileNet [7]. In all architectures,

ground truth masks are generated after each conv-BN-ReLU block. For training the

baseline dense models, we follow the same setup in [108]. For CIFAR models, we train

for 200 epochs using a batch size of 128 with SGD optimizer. The initial learning

rate (lr) 0.1 is divided by 10 at epochs 80, 120, and 150. We use a momentum of 0.9

with a weight decay of 5−4. For ImageNet, we use the pre-trained models in PyTorch

[109] as baselines. Weights of decision heads are updated with an initial learning rate

of 0.1 and the same learning rate schedule as the backbone. We use a 4 V100-GPU

machine in our experiments.

6.3.1 Experiments on CIFAR

We follow similar training settings used in baseline for dynamic training, but we

train all models with initial learning rate of 1e−2. We report the average accuracy

over three repeated experiments and FLOPs reduction on CIFAR-10 on multiple

architectures in Table 6.2. Our method (FTWT) achieves higher FLOPs reduction

on similar top1-accuracy than static and dynamic pruning methods. We achieve up to

66% FLOPs reduction on VGG-16 and ResNet-56, that is higher than dynamic filter

pruning methods RNP [26], FBS[73], LCS [74] by up to 15%. Joint training performs

65

Model Dynamic? Top-1 Acc. (%) FLOPs red. (%)

VGG16-BN

Baseline – 93.82 —

L1-norm [80] N 93.00 34

ThiNet [62] N 93.36 50

CP [17] N 93.18 50

Taylor-50 [60] N 92.00 51

RNP [26] Y 92.65 50

FBS [73] Y 93.03 50

LCS [74] Y 93.45 50

FTWTJ (r = 0.92) Y 93.55 65

FTWTD (r = 0.92) Y 93.73 56

Taylor-59 [60] N 91.50 59

FTWTD (r = 0.85) Y 93.19 73

FTWTJ (r = 0.88) Y 92.65 74

ResNet56

Baseline – 93.66 –

Uniform from [74] N 74.39 50

ThiNet [62] N 91.98 50

SFP [110] N 92.56 48

LCS [74] Y 92.57 52

FTWTD (r = 0.80) Y 92.63 66

FTWTJ (r = 0.88) Y 92.28 54

MobileNetV1

Baseline – 90.89 –

MobileNet 75 [7] N 89.79 42

MobileNet 50 [7] N 87.58 73

FTWTD (r = 1.0) Y 91.06 78

FTWTJ (r = 1.0) Y 91.21 78

Table 6.2: Results on CIFAR-10. FLOPs red. indicates reduction in FLOPs in
percentage. r in our method states the hyperparameter ratio in Algorithm 1. x in
FTWTx indicates joint (J) or decoupled (D) training.

equally well as decoupled training on high r thresholds. However, the accuracy drops

in comparison to decoupled training on lower thresholds. That is due to conflict

66

increase between losses as can be seen on ≈ 73% FLOPs reduction on VGG. We

further achieve a 73% FLOPs reduction on VGG with only a 0.63% accuracy drop.

Moreover, FTWT outperforms smaller variants of MobileNet in accuracy by 3.42%

with higher FLOPs reduction.

Visualization We visualize the number of the unique combinations of filters (clus-

ters) that are activated over the whole dataset D and the pruning ratio per layer in

Figure 6.6. Meaning that, each sample i that produces a binary mask mi,j per layer j,

the unique clusters per layer is set(m0,j, ...,mi,j, ...m|D|,j). In LCS and RNP, a fixed

number of clusters is preset as a hyperparameter for all layers, we show in Figure

6.6a that layers differ in the number of diverse clusters. Our method adjusts the

different number of clusters per layer automatically due to the self-supervised mask

generation mechanism. For easier visualization, the y-axis is shown on a log scale.

Early layers have small diversity in the group of filters activated, thus, acting similar

to static pruning. This is sensible as early layers detect low-level features and have

less dependency on the input. On the other hand, the number of clusters increases

as we go deeper into the network. It is worth mentioning that these different clusters

are fine-grained, which means clusters can differ in one filter only. We also calculated

the percentage of core filters that are shared among all clusters per layer. We found

that the range of the percentage of core filters with respect to total filters varies from

40% to 100%. This gives insight into why static pruning methods result in a large

drop in accuracy with large pruning. As the attainable pruning ratio is limited by

the number of core filters and further pruning will limit the model’s capacity. An in-

teresting future research question would be if we can determine the compressibility of

a model based on the core filters ratio notion. Finally, Figure 6.6b shows the pruning

ratio per layer, as to be expected, the later layers are more heavily pruned than early

layers as layers get wider and more compressible. We notice heavy pruning reaching

85% in the middle layers with a sequence of layers with 512 filters.

67

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Layer ID

0

2

4

6

8

10
N

um
be

r o
f c

lu
st

er
s

(lo
g)

0 1 2 3 4 5 6 7 8 9
0

1

2

N
 c

lu
st

er
s

(a) Number of unique group of filters (clusters) per layer.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Layer ID

0.0

0.2

0.4

0.6

0.8

P
ru

ni
ng

 R
at

io

(b) Pruning ratio per layer.

Figure 6.6: MobileNetV1 CIFAR10 distributions
68

We visualize the heatmap of a highly pruned layer in comparison to the baseline

model. Figure 6.7 shows the comparison between the heatmap from the baseline

with all filters activated and the heatmap of dynamically selected filters. As can be

seen, dynamic pruning approximates the baseline with high attention to foreground

objects. This shows that even with a 70% pruning ratio in that layer, we are able to

approximate the behavior of the original model.

Figure 6.7: Heatmap visualization of random input samples from CIFAR for the 10th
layer in MobileNetV1. Each triplet represents input image, baseline heatmap, pruned
heatmap. FLOPs reduction in the layer is ≈ 70%, yet the pruned heatmap highly
approximate the heatmap with fully activated filters.

Different pruning ratio We compare our method on MobileNetv1/v2 under dif-

ferent pruning ratio with other pruning methods such as EagleEye [111], SCOP [112]

and DCP [59]. Note that EagleEye reports the best out of two candidate models

different in signature, thus double the training time. We outperform SOTA by 37%

higher FLOPs reduction on similar accuracy as shown in Figure 6.8.

69

30 40 50 60 70 80 90
FLOPs Reduction (%)(higher is better)

0

1

2

3

4

A
cc

ur
ac

y
ga

p
(%

)(
lo

w
er

 is
 b

et
te

r) Mbnetv1-FTWT (ours)

Mbnetv1-EagleEye

Mbnetv1-50

Mbnetv1-25

Mbnetv2-FTWT (ours)

Mbnetv2-SCOP

Mbnetv2-DCP

Mbnetv2-25

Mbnetv2-50

Figure 6.8: MobileNetV1/V2 on CIFAR10.

6.3.2 Experiments on ImageNet

For ImageNet, we train for 90 epochs with an initial learning rate of 10−2 that decays

every 30 epochs by 0.1. Experiments on ImageNet are done with the decoupled

training mode. Table 6.3 shows a drop in accuracy from baseline for each method to

account for training differences due to augmentations. Results show that our method

achieves a smaller drop in accuracy with higher FLOPs reduction in comparison

to other SOTA methods. We achieve a similar accuracy reduction as LCCL with

13% higher FLOPs reduction on ResNet34. On the other hand, on similar FLOPs

reduction (≈ 25), we have a minimal drop in accuracy (≈ 0.05%). We achieve a

higher compression rate on ResNet18 with similar accuracy as FBS which uses a

predefined number of filters per layer. This shows the effectiveness of our dynamic

signature using the ratio of heatmap mass. We also compare with architecture’s

smaller variants such as ResNet18 and MobileNet-75. We outperform ResNet18 and

MobileNet-75 by ≈ 2% in accuracy on a similar computation budget.

70

Method Dynamic? Top-1 Acc. (%) FLOPs red. (%)

Baseline Pruned Delta

ResNet34

Taylor [60] N 73.31 72.83 0.48 22.25

LCCL [99] Y 73.42 72.99 0.43 24.80

FTWT (r = 0.97) Y 73.30 73.25 0.05 25.86

FTWT (r = 0.95) Y 73.30 72.79 0.51 37.77

SFP [110] N 73.92 71.83 2.09 41.10

FPGM [113] N 73.92 72.54 1.38 41.10

FTWT (r = 0.93) Y 73.30 72.17 1.13 47.42

ResNet18 [108] N 73.30 69.76 3.54 50.04

FTWT (r = 0.92) Y 73.30 71.71 1.59 52.24

ResNet18

PFP-B [114] N 69.74 65.65 4.09 43.12

SFP [110] N 70.28 67.10 3.18 41.80

LCCL [99] Y 69.98 66.33 3.65 34.60

FBS [73] Y 70.70 68.20 2.50 49.49

FTWT (r = 0.91) Y 69.76 67.49 2.27 51.56

MobileNetV1
MobileNetV1-75 [7] N 69.76 67.00 2.76 42.85

FTWT (r = 1) Y 69.57 69.66 -0.09 41.07

Table 6.3: Results on ImageNet. Baseline accuracy for each method is reported
along with the pruned model’s accuracy and accuracy change from baseline. FLOPs
red. represents reduction in FLOPs in percentage. Negative delta indicates increase
in accuracy from the baseline. r in our method states the hyperparameter ratio in
Algorithm 1

6.3.3 Ablation Study

Uncertainty under Dataset Shift

In this section, we measure the sensitivity of our routing to dataset shift. Metrics

under dataset shift are rarely inspected in model pruning literature. We believe

in its importance as inference complexity increases and thus would like to initiate

reporting such comparisons. We conduct experiments for VGG16-bn CIFAR-10 with

a high pruning ratio of 73% for all pruned models. Inspired by [115], we report

71

Brier score [116] under different type of noise such as Gaussian blur Table 6.4a and

additive noise Table 6.4b with baseline dense model as a reference. As can be seen,

our method is more resilient than static Taylor pruning with lower brier scores. We

also compare with static uniform pruning, we achieve a similar (sometimes slightly

lower) Brier score. This shows the resilience of our model to data shift even when

compared with static pruning decision that is not data-dependent. Finally, as to be

expected, the dense model is the most resilient to noise. However, our method still

shows a fair quality matching overall. We attribute this distribution stability to the

softmax in the head. The softmax acts as a normalizer which reduces sensitivity to

distribution shift. We compare our method with and without softmax normalization

in the decision head to verify this hypothesis. Table 6.4c shows Brier scores with

additive and blurring noise for this comparison. As can be seen, indeed, the normalizer

stabilizes the decision masks output, especially in the case of blurring. We also tried

σ
Dense

model

FTWT

(ours)

Taylor

Pruning

Uniform

Pruning

0.5 0.11 0.12 0.20 0.12

0.7 0.16 0.18 0.39 0.19

0.9 0.38 0.39 0.57 0.42

1.09 0.69 0.58 0.66 0.61

1.27 0.74 0.68 0.69 0.71

1.45 0.76 0.73 0.74 0.75

(a) Gaussian blur noise.

σ
Dense

model

FTWT

(ours)

Taylor

Pruning

Uniform

Pruning

0.00 0.11 0.12 0.16 0.12

0.02 0.11 0.12 0.16 0.12

0.05 0.11 0.12 0.17 0.13

0.11 0.13 0.14 0.20 0.15

0.14 0.19 0.21 0.30 0.22

0.20 0.39 0.43 0.51 0.42

(b) Additive Gaussian noise.

Gaussian Blur Additive Noise

FTWT

with normalization

FTWT

without normalization

FTWT

with normalization

FTWT

without normalization

0.12 0.19 0.12 0.12

0.18 0.48 0.12 0.13

0.39 0.73 0.14 0.15

0.58 0.85 0.21 0.24

0.68 0.90 0.43 0.47

(c) Our method with and without softmax normalization in decision heads.

Table 6.4: Dataset shift experiments: Numbers represent Brier score on CIFAR-10
VGG16

72

to compare with other publicly available methods such as BN scalars norm [61] and

weights norm [53] but the pruned network collapsed (i.e many layers collapsed to 1

filter) when trying to achieve a high pruning ratio.

Dynamic Signature and Dynamic Routing

We investigate decoupling the effect from the dynamic signature (i.e. pruning ratio per

layer) per sample from the dynamic routing (i.e group of filters to be activated). We

explore the effectiveness of dynamic routing with a pre-defined signature for all inputs.

In these experiments, the signature is pre-defined using Taylor criteria proposed in

[60] as a case study. As in the previous setup, we select the highly activated k features

where k is defined by the signature while samples differ in which k filters are selected.

Table 6.5 shows results of dynamic routing under different pruning ratios. As can

be seen, dynamic routing performs better than static inference especially on high

pruning ratio by up to 4%. Training setup is the same for CIFAR as explained in the

paper, however, we train ImageNet models for 30 epochs using finetune setup instead

of training setup with 90 epochs as differentiated in [20] to accelerate the experiment.

Dataset Model
FLOPs

(%)

Top-1 acc. (%)

Static Dynamic

CIFAR-10
VGG16-BN

50 92.00 93.80

85 91.12 92.75

ResNet56 70 91.61 92.09

CIFAR-100 VGG16-BN

30 72.65 73.67

65 68.17 72.18

93 58.74 60.05

ImageNet ResNet18 45 64.89 65.11

Table 6.5: Accuracy comparison of dynamic routing with a pre-defined signature and
its counterpart with static inference.

73

Model
Est.

FLOPs (%)

Final

FLOPs (%)

MobileNet(1.0) 42.3 41.07

Resnet34(0.97) 23.32 25.86

Resnet34(0.95) 31.77 37.77

Table 6.6: Estimated FLOPs before training under different thresholds (indicated in
parentheses) vs final FLOPs achieved after training.

Hyperparameter r selection

The hyperparameter r (i.e mass ratio) is selected based on a simple evaluation before

training. We freeze the dense model and obtain the expected FLOPs reduction using

the generated ground truth on the training data (one-shot pass). Subsequently, we

can get an estimate of the FLOPs reduction under different r values before the train-

ing is initiated. This simplifies hyperparameter selection to achieve a target FLOPs

reduction. On the other hand, a sparse regularization hyperparameter is usually fine-

tuned with a cross-validation process and requires a trial and error of multiple full

training to achieve a target budget. There is no direct relation between the regulariza-

tion weight and the final achieved FLOPs reduction knowingly before training. Our

method simplifies the selection and makes it a more practical option when a target

budget is given as a prior. Table 6.6 shows the estimated FLOPs before training using

different thresholds, r, and the actual reached FLOPs reduction after training. The

difference in reduction is due to the inaccuracy of the decision heads. Nonetheless,

the estimated FLOPs give a good approximation to the final reached FLOPs and thus

reduce the hyperparameter search.

6.3.4 Theoretical vs Practical Speedup

For all compression methods, including static and dynamic pruning, there is often a

wide gap between FLOPs reduction and realistic speedup due to other factors such

74

Model
FLOPs

reduction (%)

Latency

reduction (%)

ResNet34

52.18 27.17

37.77 19.78

25.86 11.08

Table 6.7: Realistic speedup vs theoretical speedup on ImageNet on AMD Ryzen
Threadripper 2970WX CPU with batch size of 1 on a single thread.

as I/O delays and BLAS libraries. Speedup is hardware and backend dependent as

shown in prior works [21, 22, 117]. We test the realistic speed on PyTorch [109] using

MKL backend on AMD CPU using a single thread. The results are shown in Table

6.7.

Limitations. Our realistic speedup is less than FLOPs reduction and that is

attributed to two factors: 1) Data transfer overhead from slicing the dense weight

matrix based on the mask prediction, which can be mitigated by backends with

efficient in-place sparse inference. 2) Speed up is dependent on the model’s signature

and hardware’s specs. Pruning from later layers that process smaller input resolution

might not achieve as much speedup as pruning from early layers. Constraint aware

optimization using Alternating Direction Method of Multipliers (ADMM) [118] such

as proposed in [119] can be further integrated with our method to optimizing over

latency instead of FLOPs.

6.4 Conclusion

In this paper, we propose a novel formulation for dynamic model pruning. Similar to

other dynamic pruning methods, we equip a cheap decision head to the original con-

volutional layer. However, we propose to train the decision heads in a self-supervised

paradigm. This head predicts the most likely to be highly activated filters given the

layer’s input activation. The masks are trained using a binary cross-entropy loss de-

75

coupled from the task loss to remove loss interference. We generate the mask ground

truth based on a novel criterion using the heatmap mass per input sample. In our

experiments, we showed results on various architectures on CIFAR and ImageNet

datasets, and our approach outperforms other dynamic and static pruning methods

under similar FLOPs reduction.

Broader Impact

Neural Network pruning has the potential to increase deployment efficiency in terms

of energy and response time. However, obtaining these pruned models is yet to be

optimized for a better overall computational consumption and more environment-

friendly. Moreover, pruning requires careful understanding of deployment scenarios

such as questioning out-of-distribution generalization [120] or altering the behavior of

networks in unfair ways [121]. We showed some results on the out-of-distribution shift

to tackle the first part. We did not investigate the fairness of the model’s prediction

as both datasets (i.e CIFAR and ImageNet) are balanced. Although, we prune based

on the mass of the heatmap equally for all samples. We hypothesize this trait can

give our method an advantage over the fixed pruning ratio which might hurt some

input samples over some others.

76

Chapter 7

Query Efficient and Self
Knowledge Distillation

7.1 Motivation

In previous chapters, we tackled model pruning to generate a lightweight model for

inference time. In this chapter, we wanted to explore training acceleration for the dis-

tillation training paradigm. We adopt vision transformers as a use case to accelerate

its training. Transformer models have been widely used in natural language process-

ing (NLP) tasks. Recently, transformers are gaining momentum to be adopted in

computer vision tasks such as image classification [78, 122, 123] and object detection

[78]. Convolutional neural networks (CNN) have been the fundamental off-the-shelf

models for vision tasks. As noted in [122], vision transformers relax the inductive bias

attached to each layer in convolution networks such as locality, 2D neighborhood, and

translation equivalence. These inductive biases are useful for smaller datasets but

can limit accuracy gain when large datasets are available. This reliance on large (i.e

90+M) datasets for training visual transformers limits its application on limited and

medium-sized datasets.

DeiT [78] proposes a teacher-student distillation loss to benefit from pre-trained

CNN models as teachers for data-efficient training. Knowledge distillation aims to

approximate the student’s output to that of the teacher. This requires training a CNN

teacher model on the dataset of interest and querying the teacher in each iteration

77

Figure 7.1: Comparison between teacher-student knowledge distillation and proposed
self-distillation for transformers. Training time is reduced by 2.8x factor. Baseline
without any distillation takes 2.1 days.

in the student’s training phase to match their outputs. Thus, this strategy is time-

consuming and memory intensive. In addition, we observed that teacher-student

distillation achieves up to 2% improvement over baselines. So, only a relatively small

amount of data benefits from the teacher-student query. This observation motivates

us to explore query efficient training where we approximate the teacher’s output for

a handful of inputs only. We address these issues by a two-fold contribution with

1) self-distillation loss and 2) optional query efficient teacher-study distillation loss.

First, we propose a self-distillation training in which early layers mimic the output of

the final layer within the same model. This achieves 2.8x speedup in comparison to

teacher-student distillation with matched accuracy as shown in Figure 7.1. We also

propose a simple yet effective query-efficient distillation in case a trained teacher is

available for further accuracy boost. We query the teacher model (CNN) only when

the student (transformer) fails to predict the correct output. This simple criterion

78

Figure 7.2: ViT architecture [122].

not only saves computational resources but also achieves higher accuracy than a full

query teacher-student. As training progresses, the student’s accuracy improves and

fewer inference calls to the teacher are made.

Key points: Unlike previous chapters, we aim to accelerate the training instead of

a lightweight model for efficient inference. We take vision transformers as a use case

given that it is more data hungry than CNN. We propose to adopt self-distillation to

increase the discrimination ability of early layers by mimicking the model’s prediction

by the final layer. This illuminates the need for CNN teacher inference as used in DeiT

for data-efficient training. In case of a trained teacher availability, we also explore

input sampling to reduce the number of query calls to the teacher model. A typical

student-teacher distillation feeds all input samples to both student and teacher which

increase the memory consumption and training time.

7.2 Proposed Method

7.2.1 Preliminaries

Vision Transformers. ViT [122] is the first application of transformers on large-

scale vision tasks. Although ViT shows promise of full-transformer architecture for

vision tasks, its performance is still inferior on small and medium-sized datasets such

as ImageNet [106]. Many variants followed with different architecture building blocks

79

such as [78, 123, 124]. In T2T [123], the authors borrow from the CNN architecture

and propose a mixed CNN-transformer architecture. Instead of a linear projection for

tokenization, CNN is adopted in the early stage for tokenization. Swin [124] proposes

a hierarchical transformer for multi-scale processing. On the other hand, DeiT [78]

introduces several training strategies to improve [122] for data-efficient training. DeiT

[78] applies knowledge distillation (KD) [79] by adding a KD token distillation that

matches the output of a CNN pre-trained teacher. However, this method requires us

to pre-train a teacher model on the task that might not be readily available in many

practical cases. Besides, during training, KD feeds each batch to the teacher and the

student to match their output. This can be memory-demanding and time-consuming.

Without losing generality, in any vision transformer, the input images are divided into

a sequence of patches P that are fed into a token extraction module. This tokenization

can be as simple as a linear projection with a fully-connected layer such as in [78, 122]

or a CNN architecture such as in [123]. A transformer network is then applied for

relationship modeling and feature aggregation. A transformer block usually consists

of a multi-head self-attention layer (MSA) and an MLP block. Layernorm (LN) is

applied before each layer and residual connections in both the self-attention layer and

MLP block. Figure 7.2 lays out the components of ViT [122] as an example. Our

training treats transformer block as a black box and can be utilized with different

backbone designs.

Knowledge Distillation. Model distillation is one of the most popular techniques

to boost lightweight models’ accuracy for model compression. One of the earliest

work [79] proposes to match the prediction distribution between a pre-trained model

and the student. A plethora of distillation loss is further studied in CNN [125–

127]. A recent direction is to adopt a self-distillation training on CNN to improve

the discriminative ability of early layers [77, 128]. Motivated by this direction, we

explore self-distillation on vision transformers.

80

Figure 7.3: Proposed self-distillation loss. Given a transformer model with depth D,
C classifiers are inserted each D

C
blocks. Each auxiliary classifier outputs a proba-

bility distribution qc. The auxiliary classifiers are trained using a weighted sum of
distillation loss and task loss with ground truth y. Final classifier is trained using the
task loss only.

7.2.2 Self-distillation

Given a model with depth D, we split the model into C parts. We insert a lightweight

classifier Θc after each split. Each classifier is defined by its own parameters, so that,

given N examples X = {xi}Ni=1, the logits output for a classifier Θc is zci = Θc(x
c
i). A

softmax layer is set after each classifier to produce M class probability qci ∈ RM:

qci =
exp(zci /T)∑︁c
j exp(zci /T)

(7.1)

where T is a temperature that is normally set to 1.

We train each classifier Θc with a weighted sum of self-distillation and cross-entropy

loss with true labels.

Lc = (1− α) · CrossEntropy(qc, ŷ) + α · CrossEntropy(qc, y) (7.2)

where ŷ is the transformer’s final prediction, y is the true labels and α is a weight

factor that starts with 1 and gradually decreases to 0. The motivation for the grad-

81

ual weight decrease is that when training with only the task loss, the layers tend

to greedily optimize for their local classifiers. This results in gradient interference

from different classifier heads and overall suboptimal performance. By starting with

a higher weight for the task loss, we benefit from faster convergence. As we gradu-

ally increase the weight towards distillation loss, we promote collaborative training

between classifier heads, because the distillation loss follows the classifier output by

the final layer. Figure 7.3 shows the full pipeline.

7.2.3 Query-efficient Distillation

In addition to self-distillation, we also propose an optional query-efficient distillation

loss. One of the issues of teacher-student distillation is pretraining the teacher on the

same task as a prerequisite. In some cases, pre-trained models are already available

in the public domain. However, feeding all input samples to the teacher alongside

the student can be computationally expensive and memory-intensive. We apply a

selective teacher-student distillation, in addition to the self-distillation, to further

boost the accuracy without compromising the training efficiency. We propose a simple

yet effective selection criterion based on the prediction output of the transformer.

We query the teacher only if the transformer fails to correctly predict the input. As

training progresses, fewer samples are fed to teachers saving up to 70% of inference

calls.

We adopt a distillation token d̂ similar to DeiT [78], but in contrast, we only

update using teacher-student for the misclassified samples ŷ ̸= y. Given a teacher Γ,

we calculate the query-efficient distillation loss as:

Lqe = CrossEntropy(d̂[ŷ ̸=y],Γ(x[ŷ ̸=y])) (7.3)

To sum up, the total loss function consists of three parts:

82

Figure 7.4: Auxiliary classifier design.

L =
C−1∑︂
c=1

Lc + Lqe + CrossEntropy(ŷ, y) (7.4)

Note that the last classifier is only trained with the task prediction loss.

7.2.4 Auxiliary Classifier Design

We adopt a lightweight classifier design to not comprise training speed. Figure 7.4

shows the classifier design. Given the embedding at the lth block xl
i ∈ RN∗P×d, we first

expand the features to 4∗d with linear projection to increase representation. Where N

is the number of samples, P is the number of patches and d is the embedding length.

Feature expansion is followed by an unfold operation to order the patches into CNN

friendly format xc
i ∈ RN×4∗d×

√
P×

√
P . Finally, a common CNN block with convolution,

batch norm, and GELU block is adopted and followed by a classification linear layer.

As the input is of small spatial size (e.g d = 192
√
P = 16), the computation overhead

83

is negligible.

7.3 Experiments

We evaluated our method on various transformer architectures on CIFAR [129] and

ImageNet [106] datasets. We train our models with the same training setup for each

architecture for a fair comparison. We set the number of classifiers C = 4. We use 4

V100 GPUs and train for 300 epochs using AdamW [130] as the optimizer and cosine

learning rate decay [131].

Classifier Classifier 4/4 Classifier 3/4 Classifier 2/4 Classifier 1/4
Total training time

in hours (speedup)

CIFAR-100
Deit-tiny (independent training) 85.46 85.31 83.33 75.83 18

Deit-tiny (Ours) 86.55 85.78 83.26 76.72 7 (2.5x)

ImageNet
Deit-tiny (independent training) 72.20 70.43 65.08 55.30 154

Deit-tiny (Ours) 73.60 71.10 67.43 57.59 55 (2.8x)

Table 7.1: Independently training classifiers from scratch vs our auxiliary classifiers
from one training.

7.3.1 CIFAR

We evaluate on CIFAR on DeiT [78] and T2T [123] and follow their training setup.

We finetune the pre-trained ImageNet model on CIFAR and resize the input image

to 224x224 to match the ImageNet input size as adopted in [78, 122]. Table 7.2

shows results on CIFAR-10/100. As can be seen, self-distillation consistently improves

the baseline accuracy by up to 1%. We also compare the accuracy of the auxiliary

classifiers in comparison to training independently custom models. Each model varies

in depth with the same number of blocks equivalent to the corresponding auxiliary

classifier. Table 7.1 shows that our self-distilled classifiers achieve higher accuracy

than if trained independently. Not only do these classifiers have higher accuracy, but

also save 2.5x of training time. Our training is able to provide multiple small models in

one training. This eases deployment under different inference computational budgets.

84

Model Teacher Accuracy (%)

CIFAR-100

Deit-tiny [78]
None 85.46

Self (Ours) 86.55

T2T-ViT-7 [123]
None 85.37

Self (Ours) 86.12

CIFAR-10

Deit-tiny [78]
None 98.10

Self (Ours) 98.30

T2T-ViT-7 [123]
None 97.81

Self (Ours) 98.01

Table 7.2: Evaluation on CIFAR.

7.3.2 ImageNet

We also evaluate our distillation method on the challenging ImageNet task across

variants of architectures as presented in Table 7.3. Self-distillation achieves up to

3% gain in accuracy and closes the gap with teacher-student distillation. As self-

distillation training does not require teacher pretraining or teacher queries, it saves

2.8x training time. DeiT with knowledge distillation takes 6.5 days, while our self-

distillation training reduces the time to 2.3 days. It is worth mentioning that baseline

without any distillation takes 2.1 days. This shows that the auxiliary classifiers add

negligible overhead. Also, as can be seen, the performance gain from teacher-student

training decreases as model size increases. There is only a 0.23% difference between

self-distillation and DeiT with a teacher in the case of Deit-small. This shows that

self-distillation in some cases is sufficient and computationally efficient. To further

boost the accuracy, we show results when query-efficient loss Lqe is added as well.

Interestingly, we saw an improvement in accuracy in comparison to a full query distil-

lation. We hypothesize the query selection based on the false prediction emphasizes

85

Model Teacher Accuracy (%)

Deit-tiny [78]

None 72.20

RegNetY-160 74.50

Self (ours) 73.60

Self + QE (Ours) 74.95

Deit-small [78]

None 79.90

RegNetY-160 81.20

Self (Ours) 80.97

Self + QE (Ours) 81.83

T2T-ViT-7 [123]
None 71.70

Self (Ours) 74.60

T2T-ViT-14 [123]
None 81.85

Self (Ours) 81.85

Table 7.3: Evaluation on ImageNet. Self indicates using proposed Lc. Self + QE
indicates using Lc + Lqe.

more distillation weight on the hard to learn samples. Full query distillation consists

of many small errors for the correctly classified samples and less weight is given to

the incorrect prediction. This can relate to the idea of focal loss [132] proposed to

treat imbalance between majority confidently classified samples and minority hard to

classify samples. Selection in query-efficient acts as a form of regularization.

7.4 Conclusion

We propose a self-distillation loss for data-efficient transformer training. We insert

auxiliary lightweight classifiers at different depths in the backbone. Classifiers are

trained using a weighted sum between task loss and distillation loss that matches

the prediction of the model’s final output. In addition, we propose a query efficient

distillation that inference the teacher in a selective manner. We show that our training

outperforms the SOTA while being computationally efficient.

86

Chapter 8

Conclusion and Future Work

In this chapter, we summarize our contribution and the future directions that can be

tackled moving forward with our conclusions. Throughout this thesis, we have thor-

oughly investigated model pruning literature as a neural network model compression

technique. We have further touched on knowledge distillation on vision transformers

as a use case for training acceleration.

8.1 Summary of Contributions

As a summary of the thesis contributions:

• Joint End-to-End Pruning: We have proposed a joint regularization-based

training to tackle the issue of pre-defining pruning ratio per layer. Our joint end-

to-end pruning is scalable for deep models such as adopted in depth estimation.

We learn binary masks per layer to drop filters jointly with task loss. We showed

how pruning benefits small model training compared to training from scratch,

especially with limited data.

• Layer Pruning: We questioned the speedup gain from filter pruning granu-

larity in comparison to filter pruning. In this line of work, our contribution is

two-fold. First, we proposed a novel accuracy criterion by weight imprinting to

evaluate each layer’s importance. We have demonstrated that our layer pruning

method achieves much better latency reduction than the state-of-the-art filter

87

pruning methods. Secondly, we further propose LayerPrune framework for a

thorough evaluation of both granularities under different inference setups. We

explore high-end and edge devices as a deployment hardware platform and dif-

ferent batch sizes. We conclude that for low batch size, filter pruning achieves

minimal gain in speedup for GPUs due to underutilization. While higher batch

size allows for better utilization, speedup gain is highly affected by filter pruning

ratio per layer. This complicates hardware-aware filter pruning optimization.

On the other hand, layer pruning allows for more hardware-agnostic pruning.

• Dynamic Pruning: A recent interest in deployment is conditional inference.

Lightweight models perform fairly well in most input cases. Dynamic pruning

allows for inference of different sub-networks which can be seen as online prun-

ing. We proposed a novel formulation for dynamic model pruning. Similar to

other dynamic pruning methods, we equip a cheap decision head to the original

convolutional layer. However, we proposed to train the decision heads in a self-

supervised paradigm instead of adding a regularization term. Decision heads

predict the most likely to be highly activated filters given the layer’s input acti-

vation. The masks are trained using a binary cross-entropy loss decoupled from

the task loss to remove loss interference. We generated the mask ground truth

based on a novel criterion using the heatmap mass per input sample. In our

experiments, reached similar accuracy to SOTA methods with 15% and 24%

higher FLOPs reduction on CIFAR. Similarly in ImageNet, we achieve a lower

drop in accuracy with up to 13% improvement in FLOPs reduction.

• Self-distillation: The previous contribution focused on model pruning with

the goal to increase the model’s efficiency at inference time. In this contribution,

we tackled training efficiency, especially that of vision transformers. One way

to fill the accuracy gap between vision transformers and convolution networks

for small datasets, in which the former underperforms the latter, is knowledge

88

distillation. However, model distillation requires 1) a pre-trained teacher, and

2) teacher inference while training the student. We proposed a self-distillation

loss for data-efficient transformer training. Auxiliary lightweight classifiers are

inserted at different depths in the transformer backbone. These classifiers are

trained using a weighted sum between task loss and distillation loss. The distil-

lation loss enforces these classifiers to mimic the output of the final classifier in a

self-supervision way. In addition, we also proposed a query efficient distillation

that inference the teacher in a selective manner. We showed that self-distillation

achieved 2.8x speedup over teacher-student distillation while achieving on-bar

accuracy in most cases. We also showed that in the case of pre-trained teacher

availability, selective occasional calls to the teacher are sufficient to reach the

full potential of distillation.

8.2 Future Work

For our future work we leave multiple research questions that we think are of signifi-

cance and have not been thoroughly tackled in the literature yet:

• Rethinking Model Compression Metrics: As we have seen, the commonly

reported metrics are indirect metrics such as FLOPs and the number of pa-

rameters. These metrics do not fill the gap between practical gain and may

contribute to misleading evaluations. A community drive hardware sharing or

closer to deployment workshops is growing but not yet fully present in papers

due to technical difficulty. Papers such as [133] provide a practical recipe for

INT8 quantization in specific. Such practical questions or recipes are a direction

we need to bring more in academic publications, especially model compression.

• Dynamic Inference: Conditional inference is another direction that is gain-

ing more attention. Some with ready-to-deploy pipelines such as [134, 135],

but the majority still do not reach their full potential due to hardware and

89

framework limitations. We think that conditional inference can benefit greatly

from advances in curriculum learning literature. In curriculum learning, meth-

ods define a difficulty measurer module to gradually include samples of harder

aspects. These measures can help motivate the way the network condition its

decisions. On the practical front, dynamic filter inference requires more back-

end framework development to allow for efficient dynamic slicing of different

filters. A thorough evaluation for different dynamic granularity such as filter vs

early exit, a cascade of independent lightweight models, or a hybrid edge-cloud

deployment is needed to layout promising tracks and raise research questions.

• Retraining for Different Budgets: Model pruning methods require retrain-

ing to reach different compute budgets, making the training process very expen-

sive. There are methods such as slimmable [136] that train multiple networks

with different widths in the same training. However, training from scratch of

the individual networks still outperform the joint training due to the complexity

to balance different objectives.

8.3 Closing Remarks

There has been a lot of development in the model compression literature. Unlike

other research problems, model compression includes many intersectionalities across

different areas including software and hardware. This results in a cloudy big-picture

in terms of practical gain and the expectation from different sub-problem. We close

this thesis with an attempt for such a practical recipe shown in Figures ?? and 8.2

for pruning and model compression respectively. We include only the most beneficial

tracks from personal experience under different inference setups in terms of speedup

gain. It is worth mentioning that distillation can be considered in all scenarios.

90

Figure 8.1: Practical guidelines to apply pruning on different deployment setups.

91

Figure 8.2: An attempt to draw a big-picture with a practical guideline under different
inference scenarios.

92

Bibliography

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 779–788.

[3] S. Elkerdawy, H. Zhang, and N. Ray, “Lightweight monocular depth estima-
tion model by joint end-to-end filter pruning,” in 2019 IEEE International
Conference on Image Processing (ICIP), IEEE, 2019, pp. 4290–4294.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE CVPR, 2016, pp. 770–778.

[5] Z. Wu, C. Shen, and A. Van Den Hengel, “Wider or deeper: Revisiting the
resnet model for visual recognition,” Pattern Recognition, pp. 119–133, 2019.

[6] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines
for efficient cnn architecture design,” in Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2018, pp. 116–131.

[7] A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[8] R. J. Wang, X. Li, and C. X. Ling, “Pelee: A real-time object detection system
on mobile devices,” in Advances in Neural Information Processing Systems,
2018, pp. 1963–1972.

[9] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2017, pp. 4700–4708.

[10] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q. Weinberger,
“Multi-scale dense networks for resource efficient image classification,” ICLR,
2018.

[11] e. a. Kurt Keutzer, “Abandoning the dark arts: Scientific approaches to effi-
cient deep learning,” The 5th Workshop on Energy Efficient Machine Learning
and Cognitive Computing , Conference on Neural Information Processing Sys-
tems, 2019.

93

[12] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware automated
quantization with mixed precision,” in Proceedings of the IEEE CVPR, 2019,
pp. 8612–8620.

[13] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quan-
tized neural networks: Training neural networks with low precision weights
and activations,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 6869–6898, 2017.

[14] C. Yang, L. Xie, C. Su, and A. L. Yuille, “Snapshot distillation: Teacher-
student optimization in one generation,” in Proceedings of the IEEE CVPR,
2019, pp. 2859–2868.

[15] X. Jin et al., “Knowledge distillation via route constrained optimization,” in
Proceedings of the IEEE ICCV, 2019, pp. 1345–1354.

[16] K. Hao, Training a single ai model can emit as much carbon as five cars in
their lifetimes, 2020.

[17] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep
neural networks,” in Proceedings of the IEEE ICCV, 2017, pp. 1389–1397.

[18] T.-J. Yang et al., “Netadapt: Platform-aware neural network adaptation for
mobile applications,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 285–300.

[19] H. Yang, Y. Zhu, and J. Liu, “Ecc: Platform-independent energy-constrained
deep neural network compression via a bilinear regression model,” in Proceed-
ings of the IEEE CVPR, 2019, pp. 11 206–11 215.

[20] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value of
network pruning,” in ICLR, 2019.

[21] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolutional
neural networks using energy-aware pruning,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2017, pp. 5687–5695.

[22] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark analysis of
representative deep neural network architectures,” IEEE Access, pp. 64 270–
64 277, 2018.

[23] B. van Werkhoven, “Kernel tuner: A search-optimizing gpu code auto-tuner,”
Future Generation Computer Systems, pp. 347–358, 2019.

[24] C. Nugteren and V. Codreanu, “Cltune: A generic auto-tuner for opencl ker-
nels,” in 2015 IEEE 9th International Symposium on Embedded Multicore/Many-
core Systems-on-Chip, IEEE, 2015, pp. 195–202.

[25] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “Skipnet: Learning
dynamic routing in convolutional networks,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 409–424.

[26] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” in Proceedings of
the 31st International Conference on Neural Information Processing Systems,
2017, pp. 2178–2188.

94

[27] W. Hua, Y. Zhou, C. M. De Sa, Z. Zhang, and G. E. Suh, “Channel gat-
ing neural networks,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R.
Garnett, Eds., vol. 32, Curran Associates, Inc., 2019.

[28] D. Ghimire, D. Kil, and S.-h. Kim, “A survey on efficient convolutional neural
networks and hardware acceleration,” Electronics, vol. 11, no. 6, p. 945, 2022.

[29] Baidu, Deepbench: Benchmarking deep learningoperations on different hard-
ware, https://github.com/baidu-research/DeepBench.

[30] Mlperf, https://mlperf.org/.

[31] C. Coleman et al., “Dawnbench: An end-to-end deep learning benchmark and
competition,” Training, vol. 100, no. 101, p. 102, 2017.

[32] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learn-
ing,” ICLR, 2017.

[33] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable archi-
tectures for scalable image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 8697–8710.

[34] M. Tan et al., “Mnasnet: Platform-aware neural architecture search for mo-
bile,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 2820–2828.

[35] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for all: Train one
network and specialize it for efficient deployment,” in International Conference
on Learning Representations, 2020.

[36] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learn-
ing with limited numerical precision,” in International conference on machine
learning, PMLR, 2015, pp. 1737–1746.

[37] P. Micikevicius et al., “Mixed precision training,” ICLR, 2017.

[38] U. Köster et al., “Flexpoint: An adaptive numerical format for efficient training
of deep neural networks,” NeurIPS, 2017.

[39] D. Das et al., “Mixed precision training of convolutional neural networks using
integer operations,” ICLR, 2018.

[40] Knights mill - microarchitectures - intel.

[41] N. DGX, With tesla v100 system architecture, 1.

[42] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible acceler-
ator for emerging deep neural networks on mobile devices,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 292–
308, 2019.

[43] S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and A. Moshovos, “Loom: Ex-
ploiting weight and activation precisions to accelerate convolutional neural
networks,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), IEEE, 2018, pp. 1–6.

95

https://github.com/baidu-research/DeepBench
https://mlperf.org/

[44] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), IEEE,
2016, pp. 1–12.

[45] A. D. Lascorz et al., “Shapeshifter: Enabling fine-grain data width adaptation
in deep learning,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 28–41.

[46] K. Rocki et al., “Fast stencil-code computation on a wafer-scale processor,” in
SC20: International Conference for High Performance Computing, Network-
ing, Storage and Analysis, IEEE, 2020, pp. 1–14.

[47] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature de-
tectors,” CoRR, 2012.

[48] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting lin-
ear structure within convolutional networks for efficient evaluation,” NeurIPS,
2014.

[49] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45, no. 1,
pp. 615–629, 2017.

[50] V. Lakshmanan, S. Robinson, and M. Munn, Machine learning design patterns.
” O’Reilly Media, Inc.”, 2020.

[51] B. Chen and J. M. Gilbert, Introducing the cvpr 2018 on-device visual intel-
ligencechallenge, google ai blog, 2018, https://ai.googleblog.com/2018/04/
introducing-cvpr-2018-on-device-visual.html.

[52] A. Zhou et al., “Learning n: M fine-grained structured sparse neural networks
from scratch,” ICLR, 2021.

[53] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections
for efficient neural network,” in Advances in neural information processing
systems, 2015, pp. 1135–1143.

[54] S Han, H Mao, and W. Dally, “Compressing deep neural networks with prun-
ing, trained quantization and huffman coding,” ICLR 2017, 2015.

[55] S. Srinivas and R. V. Babu, “Data-free parameter pruning for deep neural
networks,” BMVC, 2015.

[56] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural networks
through L 0 regularization,” ICLR, 2018.

[57] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” ICLR, 2019.

[58] S. Sharify et al., “Laconic deep learning inference acceleration,” in Proceedings
of the 46th International Symposium on Computer Architecture, 2019, pp. 304–
317.

96

https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html
https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html

[59] Z. Zhuang et al., “Discrimination-aware channel pruning for deep neural net-
works,” Advances in neural information processing systems, vol. 31, 2018.

[60] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance esti-
mation for neural network pruning,” in Proceedings of the IEEE CVPR, 2019,
pp. 11 264–11 272.

[61] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient
convolutional networks through network slimming,” in Proceedings of the IEEE
ICCV, 2017, pp. 2736–2744.

[62] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” in Proceedings of the IEEE ICCV, 2017,
pp. 5058–5066.

[63] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in
deep neural networks,” in Advances in neural information processing systems,
2016, pp. 2074–2082.

[64] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for
efficient convnets,” ICLR, 2017.

[65] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian, “Variational
convolutional neural network pruning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 2780–2789.

[66] J. Liu et al., “Discrimination-aware network pruning for deep model compres-
sion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[67] T.-W. Chin, C. Zhang, and D. Marculescu, “Layer-compensated pruning for
resource-constrained convolutional neural networks,” NeurIPS, 2018.

[68] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for
model compression and acceleration on mobile devices,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 784–800.

[69] Z. Huang and N. Wang, “Data-driven sparse structure selection for deep neural
networks,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 304–320.

[70] S. Chen and Q. Zhao, “Shallowing deep networks: Layer-wise pruning based on
feature representations,” IEEE transactions on pattern analysis and machine
intelligence, no. 12, pp. 3048–3056, 2018.

[71] Z. Wu et al., “Blockdrop: Dynamic inference paths in residual networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2018, pp. 8817–8826.

[72] L. Liu and J. Deng, “Dynamic deep neural networks: Optimizing accuracy-
efficiency trade-offs by selective execution,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 32, 2018.

[73] X. Gao, Y. Zhao, L. Dudziak, R. Mullins, and C.-z. Xu, “Dynamic channel
pruning: Feature boosting and suppression,” 7th International Conference on
Learning Representations, ICLR 2019, 2019.

97

[74] Y. Wang, X. Zhang, X. Hu, B. Zhang, and H. Su, “Dynamic network pruning
with interpretable layerwise channel selection,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, 2020, pp. 6299–6306.

[75] D. Wang, Y. Li, L. Wang, and B. Gong, “Neural networks are more productive
teachers than human raters: Active mixup for data-efficient knowledge distil-
lation from a blackbox model,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 1498–1507.

[76] C. Shen, X. Wang, Y. Yin, J. Song, S. Luo, and M. Song, “Progressive network
grafting for few-shot knowledge distillation,” AAAI, 2020.

[77] L. Zhang, C. Bao, and K. Ma, “Self-distillation: Towards efficient and com-
pact neural networks,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

[78] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou,
“Training data-efficient image transformers & distillation through attention,”
in International Conference on Machine Learning, PMLR, 2021, pp. 10 347–
10 357.

[79] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[80] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for
efficient convnets,” ICLR, 2016.

[81] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular
depth estimation with left-right consistency,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2017, pp. 270–279.

[82] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients
through stochastic neurons for conditional computation,” CoRR, 2013.

[83] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE transactions
on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[84] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp. 2650–
2658.

[85] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?
the kitti vision benchmark suite,” in Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, IEEE, 2012, pp. 3354–3361.

[86] F. Liu, C. Shen, G. Lin, and I. D. Reid, “Learning depth from single monocular
images using deep convolutional neural fields.,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 38, no. 10, pp. 2024–2039, 2016.

[87] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learning of
depth and ego-motion from video,” in CVPR, vol. 2, 2017, p. 7.

98

[88] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal re-
gression network for monocular depth estimation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 2002–2011.

[89] M. Poggi, F. Aleotti, F. Tosi, and S. Mattoccia, “Towards real-time unsuper-
vised monocular depth estimation on cpu,” IROS, 2018.

[90] M. Cordts et al., “The cityscapes dataset for semantic urban scene understand-
ing,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 3213–3223.

[91] C. Lemaire, A. Achkar, and P.-M. Jodoin, “Structured pruning of neural net-
works with budget-aware regularization,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2019, pp. 9108–9116.

[92] H. Qi, M. Brown, and D. G. Lowe, “Low-shot learning with imprinted weights,”
in Proceedings of the IEEE CVPR, 2018, pp. 5822–5830.

[93] M. Siam and B. Oreshkin, “Adaptive masked weight imprinting for few-shot
segmentation,” 2019.

[94] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep con-
volutional networks for visual recognition,” in Proceedings of the European
Conference on Computer Vision (ECCV), Springer International Publishing,
2014, pp. 346–361.

[95] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Auto-
matic differentiation in machine learning: A survey,” The Journal of Machine
Learning Research, no. 1, pp. 5595–5637, 2017.

[96] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolu-
tional neural networks for resource efficient transfer learning,” ICLR, 2017.

[97] M. Lin et al., “Hrank: Filter pruning using high-rank feature map,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2020, pp. 1529–1538.

[98] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105,
no. 12, pp. 2295–2329, 2017.

[99] X. Dong, J. Huang, Y. Yang, and S. Yan, “More is less: A more complicated
network with less inference complexity,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 5840–5848.

[100] R. J. Williams, “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256,
1992.

[101] W. Hua, Y. Zhou, C. De Sa, Z. Zhang, and G. E. Suh, “Channel gating neural
networks,” NeurIPS, 2018.

[102] S. Lowel and W. Singer, “Selection of intrinsic horizontal connections in the
visual cortex by correlated neuronal activity,” Science, vol. 255, no. 5041,
pp. 209–212, 1992.

99

[103] X. Ye et al., “Accelerating cnn training by pruning activation gradients,” in
European Conference on Computer Vision, Springer, 2020, pp. 322–338.

[104] A. Mallya and S. Lazebnik, “Piggyback: Adding multiple tasks to a single,
fixed network by learning to mask,” Proceedings of the European Conference
on Computer Vision (ECCV), 2018.

[105] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from
tiny images,” 2009.

[106] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE conference on computer
vision and pattern recognition, Ieee, 2009, pp. 248–255.

[107] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

[108] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[109] A. Paszke et al., “Pytorch: An imperative style, high-performance deep learn-
ing library,” NeurIPS, 2019.

[110] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for accel-
erating deep convolutional neural networks,” IJCAI, 2018.

[111] B. Li, B. Wu, J. Su, and G. Wang, “Eagleeye: Fast sub-net evaluation for
efficient neural network pruning,” in European conference on computer vision,
Springer, 2020, pp. 639–654.

[112] Y. Tang et al., “Scop: Scientific control for reliable neural network pruning,”
Advances in Neural Information Processing Systems, vol. 33, pp. 10 936–10 947,
2020.

[113] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric
median for deep convolutional neural networks acceleration,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 4340–4349.

[114] L. Liebenwein, C. Baykal, H. Lang, D. Feldman, and D. Rus, “Provable fil-
ter pruning for efficient neural networks,” in 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020, OpenReview.net, 2020.

[115] Y. Ovadia et al., “Can you trust your model’s uncertainty? evaluating predic-
tive uncertainty under dataset shift,” NeurIPS, 2019.

[116] G. W. Brier et al., “Verification of forecasts expressed in terms of probability,”
Monthly weather review, vol. 78, no. 1, pp. 1–3, 1950.

100

[117] S. Elkerdawy, M. Elhoushi, A. Singh, H. Zhang, and N. Ray, “To filter prune,
or to layer prune, that is the question,” in Proceedings of the Asian Conference
on Computer Vision, 2020.

[118] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical learn-
ing via the alternating direction method of multipliers. Now Publishers Inc,
2011.

[119] H. Yang, Y. Zhu, and J. Liu, “Ecc: Platform-independent energy-constrained
deep neural network compression via a bilinear regression model,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2019, pp. 11 206–11 215.

[120] L. Liebenwein, C. Baykal, B. Carter, D. Gifford, and D. Rus, “Lost in pruning:
The effects of pruning neural networks beyond test accuracy,” Proceedings of
Machine Learning and Systems, vol. 3, 2021.

[121] M. Paganini, “Prune responsibly,” arXiv preprint arXiv:2009.09936, 2020.

[122] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image
recognition at scale,” ICLR, 2021.

[123] L. Yuan et al., “Tokens-to-token vit: Training vision transformers from scratch
on imagenet,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 558–567.

[124] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, 2021, pp. 10 012–10 022.

[125] S. Ahn, S. X. Hu, A. Damianou, N. D. Lawrence, and Z. Dai, “Variational infor-
mation distillation for knowledge transfer,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 9163–9171.

[126] L. Yu, V. O. Yazici, X. Liu, J. v. d. Weijer, Y. Cheng, and A. Ramisa, “Learning
metrics from teachers: Compact networks for image embedding,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2019, pp. 2907–2916.

[127] L. Sun, J. Gou, B. Yu, L. Du, and D. Tao, “Collaborative teacher-student
learning via multiple knowledge transfer,” CoRR, 2021.

[128] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, “Be your own teacher:
Improve the performance of convolutional neural networks via self distillation,”
in Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion, 2019, pp. 3713–3722.

[129] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from
tiny images,” 2009.

[130] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” ICLR,
2019.

101

[131] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm
restarts,” ICLR, 2016.

[132] X. Li, W. Wang, X. Hu, J. Li, J. Tang, and J. Yang, “Generalized focal loss v2:
Learning reliable localization quality estimation for dense object detection,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 11 632–11 641.

[133] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer quantiza-
tion for deep learning inference: Principles and empirical evaluation,” arXiv
preprint arXiv:2004.09602, 2020.

[134] Y. Long, I. Chakraborty, and K. Roy, “Conditionally deep hybrid neural net-
works across edge and cloud,” arXiv preprint arXiv:2005.10851, 2020.

[135] R. G. Pacheco, K. Bochie, M. S. Gilbert, R. S. Couto, and M. E. M. Campista,
“Towards edge computing using early-exit convolutional neural networks,” In-
formation, vol. 12, no. 10, p. 431, 2021.

[136] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable neural networks,”
ICLR, 2018.

102

	Introduction
	Motivation
	Contributions
	Published Papers

	Background and Related Work
	Background
	Neural Network Architecture Design
	Quantization
	Design of Hardware and Accelerators
	Knowledge Distillation
	Model Pruning
	Cloud versus Embedded
	Key Metrics

	Related Work
	Weight pruning
	Hardware-agnostic filter pruning
	Hardware-aware filter pruning
	Layer pruning
	Dynamic inference
	Knowledge Distillation Training Acceleration

	Joint End-to-End Filter Pruning
	Motivation
	Proposed Method
	Preliminary
	Joint Training Losses
	Forward and Backward Passes

	Experiments and Analysis
	Conclusion

	Accuracy Approximation by Imprinting for Layer Pruning
	Motivation
	Proposed Method
	Weights imprinting.
	Layer importance.

	Experiments and Analysis
	Random filters vs. Random layers
	CIFAR100
	ImageNet

	Conclusion

	Generalized Layer Pruning with LayerPrune Framework
	Motivation
	Proposed Method
	Pruning Criteria

	Experiments and Analysis
	Training Setup
	CIFAR
	ImageNet
	Ablation Study

	Conclusion

	Fire Together Wire Together: A Dynamic Pruning Approach
	Motivation
	Proposed Method
	Preliminary
	Channel Gating
	Self-Supervised Binary Gating
	Prediction Head Design

	Experiments and Analysis
	Experiments on CIFAR
	Experiments on ImageNet
	Ablation Study
	Theoretical vs Practical Speedup

	Conclusion

	Query Efficient and Self Knowledge Distillation
	Motivation
	Proposed Method
	Preliminaries
	Self-distillation
	Query-efficient Distillation
	Auxiliary Classifier Design

	Experiments
	CIFAR
	ImageNet

	Conclusion

	Conclusion and Future Work
	Summary of Contributions
	Future Work
	Closing Remarks

	Bibliography

