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Department of Mathematical and Statistical Sciences
University of Alberta

Edmonton AB T6G 2G1 Canada

Mark A. Lewis1

Department of Mathematical and Statistical Sciences

Department of Biological Sciences
University of Alberta

Edmonton AB T6G 2G1 Canada

Abstract. We use an evolutionary approach to find “most appropriate” dis-

persal models for ecological applications. From a random walk with locally or
nonlocally defined transition probabilities we derive a family of diffusion equa-
tions. We assume a monotonic dependence of its diffusion coefficient on the
local population fitness and search for a model within this class that can invade

populations with other dispersal type from the same class but is not invad-
able itself. We propose an optimization technique using numerically obtained
principal eigenvalue of the invasion problem and obtain two candidates for
evolutionary stable dispersal strategy: Fokker-Planck equation with diffusion

coefficient decreasing with fitness and Attractive Diffusion equation (Okubo
and Levin, 2001) with diffusion coefficient increasing with fitness. For FP case
the transition probabilities are defined by the departure point and for AD case

by the destination point. We show that for the case of small spatial variability
of the population growth rate both models are close to the model for ideal free
distribution by Cantrell et al. (2008).

1. Introduction. Mathematical models for animal movement patterns have been
the focus of much research [14, 19]. Typically the small-scale motion of an indi-
vidual is described by random walk. Then, on a larger scale, the change in the
expected population density of individuals is approximated by a partial differential
equation. Depending on the details of the random walk, this equation may take
several diffusion-type forms, ranging from classical diffusion equation, with a Fick-
ian diffusive flux, to the Fokker-Planck (FP) equation, with a non-Fickian diffusive
flux [2] (see also Section 2).

If the properties of the random walk are uniform in space, then the different
formulations coincide to yield a simple diffusion equation with a constant diffusion
coefficient, and there is no practical difference between the formulations. However,
when the properties of the random walk vary according to spatial location, the
different formulations can give very different outcomes. For example, the Fickian
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diffusion model tends to equalize expected population density in different parts
of the habitat. By way of contrast, the Fokker-Planck equation allows accumula-
tion of the expected population density in spatial locations where motility (the FP
equivalent of diffusion coefficient) is lower. The latter model appears biologically
reasonable, and a number of authors have suggested that FP equation should be the
more appropriate model for describing animal movement in spatially heterogeneous
regions [19].

One approach to comparing and contrasting movement models is to employ an
evolutionary approach, assessing which movement rules confer the highest fitness
to the individuals undertaking them. For example, consider the competition of two
interacting strains that have identical population dynamics but different dispersal
mechanisms, described by different movement rules. If we allow the two strains to
compete spatially and one strain outcompetes the other, then it is reasonable to con-
clude that the winner of the competitive interaction possesses a superior dispersal
strategy. This approach has been proposed for determining the most advantageous
value of a diffusion coefficient for a species in inhomogeneous but favorable habitat
[6] and subsequently has been used to determine whether hypothesized dispersal
mechanisms are evolutionarily stable strategies (ESS), e.g. [10].

To determine which dispersal mechanism is evolutionarily stable, it is necessary
to define the dependence of the diffusion coefficient, or motility, on habitat charac-
teristics. A commonly accepted measure of habitat quality is an individual’s fitness,
as measured by local per capita growth rate Φ = N−1dN/dt. Good quality habitat
means high birth rates and low mortality and predation rates. Conversely, poor
quality habitat lacks of the resources for high birth rates, and has higher mortality
and predation rates. The per capita growth rate is typically density-dependent,
often decreasing with population density. If the per capita growth rate is density-
dependent then there is a feedback between habitat quality and population size. In
this case, an evolutionarily stable dispersal strategy may give rise to an ideal free
distribution (IFD), where individuals arrange themselves spatially so as to mirror
the distribution of available resources [7, 8, 9, 11].

In the absence of dispersal, Φ = 0 yields an equilibrium for N . If Φ > 0 at a given
location then it is a source, while if Φ < 0 it is a sink. Fickian diffusion transfers
individuals spatially, with a net flow from sources to sinks. At equilibrium, local
fitnesses typically are nonzero. However, the spatially averaged population fitness
⟨ΦN⟩ will equal zero, assuming no net immigration or emigration of individuals
across the domain boundary. As we will show in this paper, non-Fickian diffusion
allows for a more nuanced behavioral response to spatial variations in local fitness
and need not give rise to a net flow from sources to sinks.

When modeling non-Fickian diffusion, it is reasonable to expect that the intensity
of an individuals’ movement will depend on local habitat quality. Predation risk
also may stimulate individuals to move faster to escape the dangerous places or to
“freeze” to become less visible to predators, e.g. [3]. One of the ways to model
this type of behaviour may be to assume that parameters of the small-scale random
walk depend on local fitness of individuals, which implies dependence of the diffusion
coefficient or motility on local fitness.

In this paper we start with a random walk model where transition probabilities,
from one location to the next, depending on local fitness values. Following [2], we
consider three possibilities as to where the local values are measured: at the start-
ing point of the transition, at the end point of the transition, or at some point in
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between. In the first case, individuals choose to leave areas of low fitness (repul-
sive transition [14]). In the second case, individuals choose to move towards areas
of higher fitness (attractive transition). We refer to the third case as the neutral
transition, at least for the special case where measurement takes place at the mid-
point between starting and end points. As we will show in Section 2, applying
the standard random walk derivation of a diffusion-type equation to these cases
leads to a family of diffusion-type equations which has the FP equation (via repul-
sive transitions), the Fickian diffusion equation (via neutral transitions) and the
attractive dispersal (AD) equation (via attractive transitions) as special outcomes.
We approach the question of finding an evolutionarily stable dispersal strategy as
searching within this family of movement models for a model that cannot be in-
vaded by any other model from the same family. We undertake this search using a
hybrid analytical/numerical approach.

As described above, our family of dispersal models includes the simpler model of
a constant diffusion coefficient in an environment with a spatially variable growth
rate [6] as a special case. Dockery et al. [6] proved that the ESS for this simpler
model is the minimum possible value, thus selecting against dispersal. However,
our overall conclusions are different than those found in [6] because individuals in
our model are not restricted to constant diffusion, but can choose more complex
movement behaviours of the type described in the previous paragraph.

First, as we show in Section 3, it appears that the Fokker-Planck (FP) dispersal
and attractive dispersal (AD) can invade any other dispersal type. In the case
of a favourable but nonuniform habitat (the local intrinsic growth rate r (x) > 0
everywhere), as in [6], the ESS exhibits spatial variations of motility or diffusion
coefficient reflecting the variations of local habitat quality with the mean value much
higher than the minimum possible motility. The constant and minimum motility
found in [6] did emerge as a local optimum, but not a global optimum, within our
model family.

In case when habitat contains adverse parts (r (x) < 0), the result changes dra-
matically: the ESS yields a threshold dependence of motility on fitness: with the
smallest possible motility in favourable locations (r (x) > 0) and the highest pos-
sible motility at the adverse locations (r (x) < 0) for FP dispersal and vice-versa
for AD dispersal. Therefore, the environment, as described by the habitat type,
determines the evolutionarily stable dispersal strategy, in agreement with ecological
theories [12].

2. Model development and analysis methods. In this section we first consider
several key assumptions of our model, and then formulate the full model.

2.1. Random walk with intermediate decision point on a lattice and θ-
dispersal diffusion-type term. Consider an individual moving randomly on a
discrete lattice with the spatial step δ and time step τ (Fig. 1). We assume that
the probability of moving right, from x to x + δ, depends on coordinate at some
intermediate point x+θδ, 0 ≤ θ ≤ 1; similarly the probability of moving left depends
on coordinate at the point x − θδ. The probabilities at each time step of moving
right R, left L, and staying put S depend on conditions at the coordinate. Using a
standard approach (e.g. [14, 19], see Appendix for details) one can derive equation
governing the probability distribution for the individual u (x, t) in the limit δ, τ → 0:

∂u

∂t
=

∂

∂x

(
−c (x)u+ (1− 2θ)D′ (x)u+D (x)

∂u

∂x

)
,
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Figure 1. Scheme of random walk with decision depending on
different locations.

where

c (x) = lim
δ,τ→0

δ

τ
(R (x)− L (x))

is the advection speed and

D (x) = lim
δ,τ→0

δ2

2τ
(R (x) + L (x)) ,

is diffusion coefficient. We assume that both limits exist. For the sake of focusing on
the motility component of the random walk we ignore the bias term and assume that
the advection c (x) = 0. For notational brevity we denote ux = ∂u/∂x. Assuming
also that for θ > 0.5, D (x) ̸= 0, the equation can be written in divergence form,

ut =
(
D2θ

(
D1−2θu

)
x

)
x
. (1)

From this expression it follows that the flux is J = −D2θ
(
D1−2θu

)
x
.

Now we can see that the values θ = 0, 0.5, 1 correspond to known cases [19, 14]:

• θ = 0: ut = (Du)xx, Fokker-Planck equation arising from a repulsive transi-
tion according to [14] classification;

• θ = 0.5: ut = (Dux)x, Fickian diffusion equation arising from a neutral
transition;

• θ = 1: ut =
(
D2 (u/D)x

)
x
, attractive dispersal (AD) equation arising from

an attractive transition.

Equation (1) includes all three cases into a one-parameter family of dispersal
models, which we shall call the θ-diffusion equation. The parameter θ reflects the
way individuals make decision, and hence it may be a trait of individuals and
subject to mutation and selection. We cannot exclude existence of strategy where
dispersal should be described by (1) with a range of different θ values. Potentially
this situation could be quite complicated, and within one strain there could be a
mixture of individuals dispersing according to different rules. However, we shall not
consider such generalizations here, and will focus on pure strategies where θ attains
a single value.

2.2. Local population dynamics and full model. We assume that the modeled
population can be described by an expected population density u (x, t). We assume
that fitness of per capita reproduction and mortality can be described by a linear
function of u,

Φ (x, u) = r (x)−m (x)u, (2)
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Figure 2. Examples of behaviour of u(x, t) at the interface be-
tween habitats with positive (good habitat) and negative (bad habi-
tat) intrinsic growth rates for different D1/D2 and θ. For θ ̸= 0.5
the interface appears to be “active”, it creates additional flow of in-
dividuals from one side to the other. In some cases it is favourable
for the species (“pumping” from a bad habitat into a good one,
panels a and f), in other cases it is adverse (“pumping” from a
good habitat into a bad one, panels b and e). See Section 2.2 and
Appendix for the details.

where r is the intrinsic growth rate and m is the density-dependent reduction in
growth rate. If the local birth rate for a rare population is greater than mortality
then r (x) > 0. If not then r (x) ≤ 0. The term m (x)u describes the density-
dependent increase in mortality or decrease in birth rate, and we assume m (x) > 0.
In numerical calculations presented in Section 3 we used a spatially varying growth
rate

r (x) = rmin +A sin2 (2πx/L) , m = 1, (3)

with rmin +A > 0 so as to prevent the population from going extinct.



6 ALEX POTAPOV AND ULRIKE E. SCHLÄGEL AND MARK A. LEWIS

The full population model that we consider is

ut =
(
D2θ

(
D1−2θu

)
x

)
x
+Φ(x, u)u, 0 < x < L, t > 0, u (0) = u0 (x) .

(4)
For simplicity we assume zero flux boundary conditions, which for D > 0 are(

D1−2θu
)
x

∣∣
x=0,L

= 0. (5)

When the diffusion coefficient is spatially uniform, the diffusion equation ceases
to depend on θ: in all cases we have the equation ut = Duxx + Φ(x, u)u. The
interpretation is clear: if there is no spatial dependence, all types of decision making
give the same outcome. However, any spatial dependence changes the situation and
the choice of model may strongly influence the properties of the solution.

To see this we consider a simple example. Assume that the species’ habitat
consists of two subdomains. Within subdomain 1 the diffusion coefficient is spatially
uniform and equal toD1. Within subdomain 2 it is also spatially uniform, but equals
D2 ̸= D1. How does the solution look in the vicinity of the boundary between the
domains? The properties of the solution can be derived from the requirement of
continuity and differentiability of the terms in the equation. Therefore, both terms
D1−2θu and D2θ

(
D1−2θu

)
x
should be continuous at the boundary, that is their

values to the right and to the left of the boundary should coincide. We denote the
value of u and ux near the boundary within each domain as u1, u2, u1x, u2x. Also
note that within each domain, due to uniformness of D, D2θ

(
D1−2θu

)
x
= Dux.

Continuity means that D1−2θ
1 u1 = D1−2θ

2 u2 and D1u1x = D2u2x. They can be
written as

u2
u1

=

(
D1

D2

)1−2θ

,
u2x
u1x

=
D1

D2
. (6)

Therefore, near the boundary separating D1 and D2 there always is a change of
slope of the u (x) profile. In case of θ ̸= 0.5 there should also be a jump in u values,
that is the profile u (x) should be discontinuous at the boundary, see Fig. 2 and
Appendix.

The discontinuity means that the boundary between the two values of diffusion
coefficient is partially attractive from one side and partially reflective from the other.
This feature may help individuals to stay in better habitat with r > 0, Fig. 2a,f, or,
on the contrary, push them out to worse one with r < 0, Fig. 2b,e. For θ < 0.5, e.g.
in case of FP equation, individuals concentrate in the domain of smaller D, while
for θ > 0.5 they are attracted to greater D values. Assuming that individuals tend
to concentrate in better habitat (IFD-like behaviour), the first case corresponds to a
species where individuals move only slightly in good conditions, but try to actively
escape from adverse ones, like fish (Fig. 2a). The second case corresponds to a
species which is in a constant motion in good conditions, e.g. looking for food, but
is almost stationary in adverse ones, e.g. to be less visible to predators, like some
bottom crawling insects do (Fig. 2f).

A detailed analysis of discontinuities at a boundary for a different model of
random walk, with equal right or left transition probabilities but different right and
left step length can be found in [15].

2.3. Diffusion coefficient and fitness. We assume that individuals may move
differently when their local fitness Φ changes, see e.g. [5, 1]. For example, when
habitat is good, that is there are enough resources and predation is low, individuals
may stay put with greater probability. On the other hand, when habitat is adverse,



EVOLUTIONARILY STABLE DIFFUSIVE DISPERSAL 7

they may have greater probability to change their location. At the same time they
cannot stop moving totally, and there is a natural limit to their motility. Therefore
we assume that D is always nonzero and bounded

0 < Dmin ≤ D (Φ) ≤ Dmax <∞.

A second assumption is that D (Φ) does not have maxima or minima. It should
take one of three forms: a decreasing function of fitness, a constant, or an increasing
function of fitness. When we implement the model numerically we approximate this
relationship by a sigmoid curve

D (Φ) = S (Φ) = Dmin +
Dmax −Dmin

1 + exp (a− bΦ)
. (7)

This expression approaches a constant diffusion coefficient if b/a → 0 (neutral
transition with respect to fitness). It is a decreasing function (decreased motility
under higher fitness conditions) if b < 0 and an increasing one (increased motility
under higher fitness conditions) if b > 0. Proper adjustment of a and b can give
both a smooth gradually changing function (b/a small) or a step-like dependence
with a threshold (b/a large). This appears to be sufficient for a qualitative study
of the problem.

2.4. Temporal variations of diffusion coefficient and individuals’ decision
making. When D is a function of local fitness, and the local fitness changes with
time, there is a possibility of an instantaneous feedback loop: the redistribution
of individuals changes fitness, and the changes in fitness instantly cause new re-
distribution of individuals. This can lead to development of an instability, either
in the model or in its discrete numerical approximation. Biologically we also ex-
pect that the assumption of an instantaneous response to local conditions will not
hold. Specifically, there will be a slower time scale over which behaviour adjusts
to changing environmental conditions. We allowed a characteristic relaxation time
scale γ−1 for behavioural changes to occur, and instead of employing (7) directly,
we introduced D (x, t) satisfying

Dt = γ (S (Φ (x, u))−D) , (8)

where γ is the relaxation rate, which is inversely proportional to time needed for
individuals to assess the current situation. This equation adds a low-pass filter, and
prevents short-time instabilities. In numerical calculations we chose γ such that the
model eventually converged to a steady state. For γ → ∞ one obtains (7).

2.5. Searching for the Evolutionarily Stable Strategy. The standard test for
dispersal strategy being an ESS [10] involves bringing the system (4) to the steady
state u∗ (x) so that (

D2θ
(
D1−2θu∗

)
x

)
x
+Φ(x, u∗)u∗ = 0, (9)

0 < x < L,
(
D1−2θu∗

)
x

∣∣
x=0,L

= 0.

and then introducing a small amount of a probe competing species v (x, t) obeying

the same local population dynamics Φ (u+ v, x) v, but having different D̂ (Φ) and

θ̂. The joint dynamics of the two species is then described by system

ut =
(
D2θ

(
D1−2θu

)
x

)
x
+Φ(x, u+ v)u, (10)

vt =
(
D̂2θ̂

(
D̂1−2θ̂v

)
x

)
x
+Φ(x, u+ v) v, (11)
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and boundary conditions (5) for both u and v. If ∥v∥ ≪ ∥u∥, then u+ v ≈ u ≈ u∗,
Φ (x, u+ v) ≈ Φ(x, u∗), and system (10), (11) splits into two: equation (4) for u
and equation for v:

vt =
(
D̂2θ̂

(
D̂1−2θ̂v

)
x

)
x
+Φ(x, u∗) v. (12)

The invader diffusion coefficient, D̂, is calculated as as D̂ = Ŝ (Φ (x, u∗)), see (7).

Here Ŝ denotes S being calculated for different values of a = â and b = b̂. Now (12)
is a linear equation for v, and growth or decay of v is described by the eigenvalue
problem(

D̂2θ̂
(
D̂1−2θ̂w

)
x

)
x
+Φ(x, u∗)w = λw,

(
D̂1−2θ̂w

)
x

∣∣∣
x=0,L

= 0, (13)

which is equivalent to

D̂1−2θ̂
(
D̂2θ̂ψx

)
x
+Φ(x, u∗)ψ = λψ, ψx|x=0,L = 0, ψ = D̂1−2θ̂w (14)

since D ≥ Dmin > 0. According to the version of Krein-Rutman theorem by
Cantrell and Cosner [4], the principal eigenvalue of (13), (14) λmax is real and the
associated eigenvector w can be chosen to be positive. By definition of the principal
eigenvalue, all other eigenvalues λ satisfy Reλ < λmax, see e.g. [13] for a similar
problem.

As described above, we consider the case when D depends on two parameters,
a and b (7). The steady state u∗(x) to equation (4) depends on parameters a, b,
and θ, and this steady state appears in the eigenvalue equation for the dynamics of
the invader (13). Thus we denote the dependence of the maximum eigenvalue on

these parameters by writing λmax

(
â, b̂, θ̂|a, b, θ

)
. Here we assume that values for

the parameters are on the closed intervals amin ≤ a, â ≤ amax, bmin ≤ b, b̂ ≤ bmax,

and 0 ≤ θ, θ̂ ≤ 1 where amin, bmin < 0 and amax, bmax > 0.

If λmax

(
â, b̂, θ̂|a, b, θ

)
> 0, then the new species can invade the population and

the original dispersal strategy a, b, θ is not an ESS. If, on the other hand, the
maximum over all possible dispersal strategies

max
â,b̂,θ̂

λmax

(
â, b̂, θ̂|a, b, θ

)
= 0, (15)

then the dispersal strategy, a, b, θ, is an ESS. Note that this maximum cannot be

negative because, for â = a, b̂ = b, θ̂ = θ, (13) always has the zero eigenvalue

corresponding to w = u∗ and therefore maxâ,b̂,θ̂ λmax

(
â, b̂, θ̂|a, b, θ

)
≥ 0. Therefore

(15) becomes optimization problem over three resident parameters: a, b, θ, where
each parameter is taken to be on the closed intervals described above, and three

invader parameters â, b̂, θ̂, over which the maximization occurs. These invader
parameters are also taken to be on the closed intervals described above. The weaker

case where (15) is satisfied for â, b̂, θ̂ in some local neighborhood of a, b, θ is referred
to as a local ESS. In general, the condition (15) for an ESS can occur when the
parameters a, b and θ are in the interior of the closed parameter sets (interior ESS)
or can occur when the parameters are on a boundary of the closed parameter sets
(boundary ESS).

As a reminder, the behavioural interpretations of the parameters are given: θ rep-
resents the degree to which movement decisions are made on purely local conditions
(θ = 0) or nonlocal conditions (θ = 1), the sign of b represents attractivity/repulsion
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in the random walk towards regions of higher fitness and b/a represents the sensi-
tivity of the random walk to fitness (see (7)). As described earlier, the case b < 0
and θ = 0 describes repulsion from low fitness regions whereas the case b > 0 and
θ = 1 describes attraction towards high fitness regions.

Numerically it is most efficient not to solve the full eigenvalue problem (13),
but to use the technique resembling calculation of Lyapunov exponents. We set
an initial guess, say, v = u∗, and then solve (12), periodically renormalizing v →
v/ ∥v∥. After long enough time period tC the spatial profile of v (x, tC) converges
to the eigenfunction w1 (x) corresponding to the largest eigenvalue λLE with the
required accuracy ϵw, because λmax is strictly greater than the real part of all other
eigenvalues [4]. Then, since λmax is real, v (x, tC + T ) = ∥v (x, tC)∥ · wmax (x) ·
exp (λmaxT ), T > 0, and hence

λmax ≈ T−1 log (∥v (x, tC + T )∥ / ∥v (x, tC)∥) . (16)

In numerical calculations below ϵw = 10−6 and T = 10.
Our initial numerical investigations showed that local evolutionarily stable strate-

gies were found on the parameter boundaries (local boundary ESSs). In particular,
they gave either b = bmin and θ = 0 (repulsive transition) or b = bmax and θ = 1
(attractive transition). These local boundary ESSs remained on the boundary even
as bmin was lowered and bmax was raised. Thus, to understand this phenomenon
we gradually varied b and generated pairwise invasibility plots as a function of b.
Specificially, we first set b, at various values, bi that were incremented between bmin

and bmax. Then, for each value bi we applied the following numerical algorithm.

1. Set an initial guess for the parameters a0, θ0.
2. Find the steady state solution u∗ (x|ak, bi, θk).
3. Find ak+1, θk+1 that give the greatest value of λmax (ak+1, bi, θk+1|ak, bi, θk).

For this step we use the combination of random search and optimization rou-
tine optim from R [17]. First we do 100 steps of hide-and-seek algorithm
[18, 16], then use its best result as initial guess for optim.

4. If |ak+1 − ak|+ |θk+1 − θk| > ϵtol, return to step 2.

In our implementation of the numerical algorithm we chose ϵtol = 10−6.
If this algorithm converges and in step 3 the global maximum is found, then

the species with resulting dispersal cannot be invaded by any other species from
the same dispersal class, and hence the ESS is found within a class of diffusion
coefficients with fixed fitness attractivity bi. This ESS is described by a value of
a = ai and θ = θi associated with the fixed fitness attractivity bi, and is denoted
by ESS(bi). The parameters a = ai and b = bi then determine the functional
relationship between motility D and fitness ϕ(x, u) described in (7). Substitution
into (9) along with parameter θ = θi then yields a steady state u∗ associated with
ESS(bi).

We then chose the ESS (ai, bi, θi), as calculated for the fixed bi, to be the resident
b-strategy, and evaluated the maximum eigenvalue associated with other levels of
attractivity bj , that is estimated λmax (aj , bj , θj |ai, bi, θi) in (16) to see if any other
b-strategy could invade. This was used to generate pairwise invasibility plots based
on the level of attraction/repulsion of the random walk to fitness levels, as measured
by the parameter b.

Our initial investigations used a more complex version of this algorithm, where b
was also allowed to vary, as well as a and θ. However, the hierarchical approach to
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Table 1. Model parameters
Parameter
or term

Meaning and reference Values in calculations

r (x) intrinsic growth rate, (2), (3) rmin +A sin2 (2πx/L)
m (x) density-dependent mortality, (2) 1
rmin minimum growth rate, (3) −2, 0, 1
A magnitude of growth rate change, (3) 3, 1, 0.1
θ type of random walk producing diffu-

sion, (1)
0 ≤ θ ≤ 1

Dmin minimum diffusion coefficient D (Φ),
see (7)

0.1

Dmax maximum diffusion coefficient D (Φ),
see (7)

1

a determines D (0), see (7) varies
b determines maximum steepness of

D (Φ), see (7)
varies

ESS analysis, where b is first fixed for the ESS analysis, and then was systematically
varied, generated results that were more robust and straightforward to interpret.

3. Results. In numerical calculations presented here, the ranges of dispersal pa-
rameters we used were Dmin = 0.1, Dmax = 1, amin = −30, amax = 30, bmin = −20,
bmax = 20, θmin = 0, and θmax = 1, see Table 1. In calculations for the steady state,
the initial value was γ = 5. If convergence to the steady state was not reached
during first 100 time units, then γ was divided by 2. After each 100 time units γ
was decreased again until convergence to the steady state was reached. Fitness did
not change during invasibiliy tests, so there was no need in the relaxation calcu-
lations of D. The parameters describing the spatial environment were as follows:
the domain length L = 10 and in the relation for the local growth rate (3) a vari-
ety of values for rmin (negative, zero and positive values) and A (positive values of
different magnitude) was used, see Table 1. The fitness function (2) used r(x) as
described by equation (3) and used density-dependent mortality m(x) = 1.

For fixed b, the dispersal strategy optimization algorithm typically converged in
about 10 iterations. The type of the resulting ESS(b) dispersal strategy depended on
b. Figure 3 shows the type of the ESS(b) strategy for each habitat in our simulations.

If |b| was small, then the dispersal strategy converged toD ≈ Dmin, with b/a close
to zero in equation (7) (see Figure 3). The solid line shows maximum attained value
of the diffusion coefficient over all possible values of x, maxD (Φ). For the dispersal
strategy with constant diffusion coefficient D = Dmin, maxxD (Φ) = Dmin. This
corresponds to the flat part in Figure 3 with fitness attractivity values b near b = 0.
If b was larger and negative, the algorithm always converged to the case θ = 0, that
is to the Fokker-Planck (FP) equation (repulsive transition). Alternatively, if b was
larger and positive, the algorithm always converged to the case θ = 1, that is to the
AD equation (attractive transition). Both the repulsive transition and attractive
transition dispersal give higher values of maxD (Φ). Circles in Figure 3 show the
value of θ, for the left part of the plot ESS always corresponds to FP or repulsive
transition dispersal with θ = 0, the right part corresponds to AD dispersal with
θ = 1. The portion with D = Dmin gives a dispersal strategy D that is constant
and independent of fitness Φ. Hence it is also independent of spatial location. Thus
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Figure 3. Maximum diffusion coefficient maxxD (Φ (u∗ (x))) and
the random walk type θ for numerically obtained ESS(b) disper-
sal for fitness attractivity b = −20, −19, . . ., 20. The types of
habitat are determined by the local intrinsic growth rate r(x) =
rmin + A sin(2πx/L)2 (3): a) rmin = −2, A = 3; b) rmin = 0,
A = 1; c) rmin = 1, A = 0.1. In each panel there are three parts
corresponding to three different dispersal strategies: big negative
b correspond to FP or repulsive transition dispersal (θ = 0), the
middle part around b = 0 corresponds to constant D = Dmin = 0.1
(for constant D the equation (4) does not depend on θ and numer-
ically obtained values vary), big positive b correspond to attractive
transition (AD) dispersal (θ = 1).

the equation (4) ceases to depend on θ, so optimization can yield various θ values
between 0 and 1 (Figure 3). This simple diffusion strategy is independent of the
value for θ (see equation (4)). As can be seen from Figure 3, the calculated θ values
are highly variable when D ≈ Dmin.
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Therefore, ESS(b) gives three potential global ESS candidates: the minimum
constant diffusion equation, the FP equation and the AD equation. They differ in
sensitivity to the local fitness: no sensitivity, negative sensitivity with θ = 0, and
positive sensitivity with θ = 1. Actually, this could be expected from the profiles
in Fig. 2a,f.

The corresponding steady state profiles u∗(x) and dispersal coefficients D(Φ(x))
are shown in Figure 4 for the FP case (b = −20) and in Figure 5 for the AD case
(b = 20). Notice how D(Φ(x)) correlates negatively with r(x) for the FP case and
positively with r(x) for the AD case. Both figures show the case of a mixture of
good and strongly adverse habitat (panel a, A = 3, rmin = −2), a good habitat of
strongly varied quality (panel b, A = 1, rmin = 0), and a good habitat with slightly
varied quality (panel c, A = 0.1, rmin = 1). In panel a we see strong variations
of diffusion coefficient D (x) with respect to the habitat quality, while in panel c
only slight variations. The same is true about the variation of the local fitness.
The relationship between D and Φ given in the three profiles in Fig.4 and Fig.5, is
shown in Figure 6, panels a and b respectively.

The next step was to test mutual invasibility of the obtained ESS(b) strategies.
Although an exhaustive study would require an analytical technique, our approach
was to employ a numerical investigation. Here, we calculated λmax (aj , bj , θj |ai, bi, θi)
for each pair of bi, bj numerically. The results for mutual invasibility are presented
in Figure 7, panels a, b, and c correspond to the same habitat types as in Figures
3, 4, and 5. Each panel shows b for the resident species along x-axis and b for
the invader along y-axis. Filled black circles on the plot shows a situation when
the invader can invade (λmax > 0); empty circles correspond to a situation when
invasion fails (λmax < 0); finally the grey circles corresponds to a neutral situation
(λmax = 0), when the invader neither grows nor goes extinct, or when it is impos-
sible to distinguish the situation numerically (|λmax| ≤ 10−6). The results depend
on the habitat and the type of the pair resident–invader and can be summarized as
follows.

1. Both repulsive transition (FP) dispersal and attractive transition (AD) dis-
persal strategies can invade the dispersal with constant D = Dmin, while the
latter can not invade repulsive transition or attractive transition dispersal
with |b| exceeding a certain threshold, depending on the habitat type.

2. When the invader and resident are both of the same type FP or AD, then
the strategy corresponding to the greater |b| can invade the strategy with the
smaller |b|.

3. In good habitat FP-dispersal can invade AD-dispersal with smaller |b|, and
vice-versa (panels b and c in Fig. 7).

4. In a combination of good and bad habitat (panel a in Fig. 7) AD-dispersal typ-
ically can invade FP-dispersal, but FP-dispersal can only invade AD-dispersal
with small b.

When we first obtained the result that D = Dmin is not an ESS, we thoroughly
tested it to exclude numerical error. The examples of solutions shown in Figs. 4c
and 5c satisfy the conditions of the theorem in [6], however D is slightly oscillating
near the mean value, with a mean value of approximately 3Dmin, which is quite far
fromDmin. We tested each obtained ESS profile to invasibility by a species withD =
Dmin (the value θ in this case does not matter) by calculating λmax (16). In all cases
λmax < 0, but small, ≈ −10−3. For a few profiles we made numerical calculations
of explicit competition of the two species in the system (10), (11) starting with
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Figure 4. Examples of steady-state profiles for numerically ob-
tained ESS(b) dispersal for b = −20. Solid line u∗(x), dashed line
D(Φ(x)), gray dotted line r(x). In all shown cases iterations con-
verged to θ = 0 or Fokker-Planck (FP) dispersal. Parameter a and
the resulting motility depend on r(x), that is on the properties of
the habitat. a) rmin = −2, A = 3, a = 3.34; b) rmin = 0, A = 1,
a = 2.08; c) rmin = 1, A = 0.1, a = 1.49.
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0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

location (x)

de
ns

ity
 (

u)
, g

ro
w

th
 (

r)
 a

nd
 d

iff
us

io
n 

(D
)

a)

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

location (x)

de
ns

ity
 (

u)
, g

ro
w

th
 (

r)
 a

nd
 d

iff
us

io
n 

(D
)

b)

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

location (x)

de
ns

ity
 (

u)
, g

ro
w

th
 (

r)
 a

nd
 d

iff
us

io
n 

(D
)

c)

Figure 5. Examples of steady-state profiles for numerically ob-
tained ESS(b) dispersal for b = 20. Solid line u∗(x), dashed line
D(Φ(x)), gray dotted line r(x). In all shown cases iterations con-
verged to θ = 1 or attractive transition (AD-dispersal). Parameter
a and the resulting motility depend on r(x) = rmin+A sin(2πx/L)2,
that is on the properties of the habitat. a) rmin = −2, A = 3,
a = 0.16; b) rmin = 0, A = 1, a = 0.92; c) rmin = 1, A = 0.1,
a = 1.47.
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Figure 6. Numerically obtained D(Φ) for the three profiles in
Fig.4 (panel a) and Fig.5 (panel b). In panel a lower to upper
curves correspond to Fig.4a,b,c respectively. In panel b upper to
lower curves correspond to Fig.5a,b,c. Shown only the part of the
plot near Φ = 0 and only for those values of Φ, which arise in the
actual solution.

identical initial conditions for each species: u (x, 0) = v (x, 0) = 0.5 r (x) /m (x).
The competitive outcomes took a long time to simulate (approximately 105 time
units) but eventually the species with fitness-driven dispersal drove the competitor
with D = Dmin to extinction.

4. Discussion. Our numerical investigations lead us to several general insights,
given below.

Connection between global ESS dispersal strategies. There appear to
be two candidates for the “global ESS dispersal strategy”, that is the dispersal
strategy that can invade any other dispersal strategy within the same class: Fokker-
Planck (repulsive transition) dispersal (θ = 0) with decreasing D (Φ) and Attractive
Dispersal (attractive transition) (θ = 1) with increasing D (Φ). Both of these can
be written in similar form,

ut = (Dux)x ± (uDx)x +Φ(x, u)u. (17)

Here the ‘+’ sign corresponds to θ = 0 and ‘−’ sign to θ = 1. Another similarity is
in the fact that both equations can generate spatially nonuniform profiles in case of
spatially nonuniform diffusion coefficient. In the absence of growth term and in case
of zero flux boundary conditions the FP equation has the steady state u∗ ∝ D−1

and, because of this in particular, P. Turchin suggested that FP equation may be
most suitable to ecological movement with complex behavioural strategies [19]. As
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Figure 7. The results of the test on mutual invasibility for numer-
ically obtained ESS(b) dispersal for fitness attractivity parameter
b = −20, −19, ..., 20. x-axis shows b for the resident species, y-axis
shows b for the invader. Black circle denotes successful invasion
(λmax > 0), white dot denotes failed invasion (λmax < 0), gray dot
denotes coexistence or neutral case (λ1 = 0) or situations numer-
ically indistinguishable from it (|λmax| < 10−6). a) rmin = −2,
A = 3; b) rmin = 0, A = 1; c) rmin = 1, A = 0.1. The gray square
in the centre corresponds to constant D = Dmin = 0.1 dispersal,
there is the same dispersal strategy for a range of b values near
zero.

we have shown here, the AD equation has a similar property; its solution under
the same conditions is u∗ ∝ D, and it appears that it may be as good in ecological
applications as the FP equation. Moreover, if we substitute D = D (Φ), then both
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Figure 8. Examples of ⟨|Φ|⟩∗ plots (19) for numerically obtained
ESS(b) dispersal for the steepness parameter b = −20, −19, . . ., 20.
a) rmin = −2, A = 3; b) rmin = 0, A = 1; c) rmin = 1, A = 0.1. The
smaller ⟨|Φ|⟩∗ is, the closer is the profile to ideal free distribution
(IFD), for which ⟨|Φ|⟩∗ = 0. Comparison with Fig. 7 allows us to
conjecture that dispersal strategies with smaller ⟨|Φ|⟩∗ can invade
those with greater ⟨|Φ|⟩∗.

equations turn into a single equation,

ut = (Dux)x − (u |DΦ|Φx)x +Φ(x, u)u, (18)

since we have DΦ < 0 for FP case and DΦ > 0 for AD case. Therefore, in the
case of fitness-dependent ESS dispersal, both equations describe Fickian diffusion
augmented with taxis along the gradient of local fitness. However, in spite of very
similar mathematical form, the FP and AD equations correspond to very different
behavioural strategies, both of which appear to be competitive. Profiles of u∗ (x)
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in Figs. 4a and 5a also have some difference: in AD case the values of u∗ (x) in
adverse habitat parts are smaller, which gives less intensive population sink.

Boundary ESS solutions. For both repulsive and attractive transition dis-
persal it appears that the greater is the steepness of the D (ϕ) profile, that is the
greater is absolute value of fitness attractivity |b|, the more competitive the disper-
sal strategy becomes. In our investigations, where b was constrained to lie between
bmin and bmax, this led to boundary ESS solutions. Therefore it is natural to assume
that the true optimum in the unconstrained case is |b| → ∞. That is, there is a
threshold fitness Φ0, such that for FP case D = Dmax for Φ < Φ0 and D = Dmin

for Φ > Φ0 (for AD case inequalities are the opposite). Mathematically this case
is complex to analyze, both analytically and numerically. However, biologically, at
the level of individual, it looks quite simple: just involving switching between two
types of behaviour, active and passive, due to some fitness-related cue.

There may, however, be a biologically-related limits on behaviour, giving rise
to bmax and bmin, due to the functioning of the behaviour-switching cues. In this
case, the boundary ESS value is determined by the biological limits to behavioural
switching.

Connecting to models for the IFD. The result of Dockery et al. in [6], that
give constant D = Dmin as the ESS when diffusion is restricted to being constant
in space, holds here also in the case when the species effectively cannot use the
dependence of D on fitness, that is |b| is restricted to small values. Then it appears
optimal to abandon the dependence of movement on fitness totally and to disperse
at the minimum rate (Fig. 3). Moreover, this strategy seems to remain valid even
in case when r (x) may attain zero or negative values as well (Fig. 3a,b). That is,
it appears to remain valid in a more general case than proven in [6]. However, this
strategy may be easily outcompeted by a species that has learned fitness-dependent
dispersal with large enough |b|.

The deviations of the diffusion coefficient from a constant in Figures 4c and 5c
are very small, and the profile looks almost constant. Then the question arises
as to why D = Dmin fails to be an optimum. Figure 6 suggests an approximate
consideration of this case. One can see that Φ for the case rmin = 1, A = 0.1 changes
within a very small range of values, such that instead of a full sigmoid “step” in
D (Φ) we see only a small piece close to a straight line. Therefore, we can use an
approximation D (Φ) ≈ D (0) + βΦ with β < 0 for FP dispersal and β > 0 for AD
one. Then DΦ = β and (18) in both FP and AD cases takes the form

ut = (Dux)x − |β| (uΦx)x +Φ(x, u)u,

and has a strong resemblance with the model for Ideal Free Distribution proposed
by Cantrell et al. [5], which uses advection along the gradient of fitness. Therefore,
it is natural to suggest that FP or AD dispersals are evolutionarily stable because
they provide a spatial distribution of individuals closer to IFD than the model with
just D = Dmin.

Understanding deviations away from the IDF. There is a possibility that
closeness to IFD could be an explanation for our ESS results: the closer the resulting
population density profile to IFD, the more competitive the dispersal strategy is.
The exact IFD at equilibrium u∗ (x) corresponds to Φ = 0 at the domains where
r (x) > 0 (maximum possible population density) and u∗ = 0 where r (x) ≤ 0; see
[5] for an example. Therefore, the product Φ (u∗)u∗ at equilibrium IFD is zero
everywhere. If we characterize the deviation away from the state Φu∗ = 0 as a
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mean value of |Φ| weighted by u∗(x), then, at the exact IFD,

⟨|Φ|⟩∗ =

∫ L

0

|Φ|u∗ (x) dx /
∫ L

0

u∗ (x) dx (19)

equals zero. The absolute value is taken because at the equilibrium due to zero

flux boundary conditions always
∫ L

0
Φu∗ (x) dx = 0 regardless of Φ deviating from

zero. Our numerical results showed that in presence of ESS dispersal ⟨|Φ|⟩∗ ̸= 0,
but we tested the evolution of ⟨|Φ|⟩∗ for the steady-state profiles in the iterations
of ESS search algorithm. In all cases the closer the profile was to ESS case, the
smaller ⟨|Φ|⟩∗ was . Moreover, the greater |b| was in our calculations, the smaller
the observed ESS value of ⟨|Φ|⟩∗ for the given habitat. We can conjecture that
⟨|Φ|⟩∗ measures the closeness of the equilibrium distribution of individuals to IFD,
and the closer it is, the greater is the species competitiveness in dispersal strategy.
Fig. 8 shows the profiles of ⟨|Φ|⟩∗ (b) for all our obtained ESS(b) dispersal strategies
illustrated in Figs. 3 and 7. One can see an amazing correspondence between the
skewness of ⟨|Φ|⟩∗ (b) in Fig. 8a and asymmetry of mutual invasibility between FP
and AD models in Fig. 7a. At the same time both ⟨|Φ|⟩∗ (b) in Fig. 8b,c and mutual
invasibility patterns in Fig. 7b,c are practically symmetric.

5. Conclusions. In this paper we derived a one-parameter family of diffusion-type
dispersal models (4), where the parameter θ corresponds to a type of decision-
making in the underlying random walk. Assuming that diffusion coefficient D
depends on the fitness of individuals and using its two-parameter approximation
(7), we attempted numerically to find an evolutionarily stable dispersal strategy
in the resulting 3-parameter family of models generalizing the results of [6]. We
developed a numerical algorithm for convergence to ESS dispersal. Our numerical
results show that ESS corresponds to one of the two equations: 1) Fokker-Planck
equation (θ = 0) with diffusion coefficient (motility) having a minimum at the best
parts of the domain and maximum at the worst ones and 2) AD equation (θ = 1)
with diffusion coefficient having minima at the worst parts of the habitat and max-
ima at the best ones. This finding agrees with the conjecture by P. Turchin [19]
according to FP equation and the ideas of the ideal-free distribution [7]. Moreover,
numerical results suggest that ESS dispersal strategy may correspond to population
equilibrium with minimum mean absolute fitness (19).

Therefore, we can conclude that our results give evidence that Fokker-Planck
equation and attractive dispersal equation may be a better alternative to modeling
species dispersal than Fickian diffusion equation. Fitness-dependent diffusion coef-
ficient allows to obtain population density distribution reasonably close to ideal-free
distribution without minimizing diffusion coefficient, that is dispersal is working as
a valuable adaptive mechanism.
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Appendix.

Derivation of the diffusion equation for θ-random walk. Let us consider a
one-dimensional random walk of a particle on a uniform 1D grid space {...,−2δ,−δ, 0, δ, 2δ, ...}
with constant step length δ and time interval τ . Let denote:
v(x, t) := Prob(X(t) = x): probability of the particle being at location x at time t.
p(x, s; y, t) := Prob(X(t) = y|X(s) = x): transition probability from location x at
time s to y at time t.

From now on, we assume transition probabilities to be time-homogeneous, i.e.
the probability of moving from x to y in a time interval τ is p(x, t; y, t+τ) = p(x; y).

Let us assume that there are functions L (x), R (x), S (x), having at least two
continuous derivatives, such that for some 0 ≤ θ ≤ 1,

p(x;x+ δ) = R(x+ θδ), p(x;x− δ) = L(x− θδ)

and

p(x− δ;x) = R(x− (1− θ)δ), p(x+ δ;x) = L(x+ (1− θ)δ).

Then the master equation in terms of the new transition probabilities is

v(x, t+ τ) = R(x− (1− θ)δ) v(x− δ, t)

+L(x+ (1− θ)δ) v(x+ δ, t) + S(x) v(x, t),

and we additionally have the conservation law

R(x+ θδ) + L(x− θδ) + S(x) = 1.

Expanding both equations in Taylor series yields

v(x, t) + τ
∂v

∂t
+O(τ2)

=

(
v(x, t)− δ

∂v

∂x
+
δ2

2

∂2v

∂x2

)(
R(x)− δ (1− θ)

∂R

∂x
+
δ2

2
(1− θ)2

∂2R

∂x2

)
+

(
v(x, t) + δ

∂v

∂x
+
δ2

2

∂2v

∂x2

)(
L(x) + δ (1− θ)

∂L

∂x
+
δ2

2
(1− θ)2

∂2L

∂x2

)
+v(x, t)

(
1−R(x)− θδ

∂R

∂x
− θ2δ2

2

∂2R

∂x2
− L(x) + θδ

∂L

∂x
− θ2δ2

2

∂2L

∂x2

)
+O(δ3).

This simplifies to

∂v

∂t
+O(τ) =

∂

∂x

((
− δ
τ
(R(x)− L(x))

+(1− 2θ)
δ2

2τ

∂

∂x
(R(x) + L(x))

)
v(x, t)

)
+
∂

∂x

(
δ2

2τ
(R(x) + L(x))

∂v

∂x

)
+O

(
δ3

τ

)
.

Now, let τ → 0 and δ → 0, such that

c(x) = lim
δ,τ→0

δ

τ
(R(x)− L(x))

D(x) = lim
δ,τ→0

δ2

2τ
(R(x) + L(x)) .
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The advection-diffusion equation is then

∂v

∂t
=

∂

∂x

(
−c(x) v(x, t) + (1− 2θ)D′(x) v(x, t) +D(x)

∂v

∂x

)
.

or, assuming D ̸= 0,

∂v

∂t
=

∂

∂x

(
−c(x) v(x, t) +D2θ (x)

∂

∂x

(
D1−2θ(x)v(x, t)

))
.

For θ = 0, this is the Fokker-Planck equation or repulsive transition equation
[14]. For θ = 1, we obtain the attractive transition equation. If we set θ = 1

2 , the
middle term vanishes and we are left with Fickian diffusion or the neutral transition
equation.

Analytical model for interface between good an bad habitat. Let us assume
that to the left of the boundary xb = 0 there is a good habitat with local population
dynamics fL (u) = ru

(
1− u2

)
and dispersal coefficient D1 = 1, and to the right of

it fR (u) = −αu and D2 = D. Since within each subdomain the dispersal coefficient
is constant, the system dynamics is described by

ut = uxx + ru
(
1− u2

)
, x < xb,

ut = Duxx − αu, x > xb.

At x = xb we assume that the conditions (6) are satisfied.
We obtain the steady-state solution satisfying the conditions u → 1 at −∞ and

u→ 0 at +∞. To solve uxx + ru
(
1− u2

)
= 0 we multiply it by ux, then it can be

integrated once,
1

2
(ux)

2
+
r

2
u2 − r

4
u4 = C.

For x→ −∞ we have ux → 0, u→ 1, so C = r/4. Therefore,

(ux)
2
=
r

2

(
1− u2

)2
,

and since u decreases with x from 1 to zero, ux < 0 and

ux = −
√
r

2

(
1− u2

)
,

with the solution

uL (x) =
Ae−

√
2rx − 1

Ae−
√
2rx + 1

= 1− 2

Ae−
√
2rx + 1

, x < 0.

At the right hand side we have the equation Duxx − αu = 0 and the solution
satisfying u→ 0 at +∞ is

uR (x) = B exp

(
−
√
α

D
x

)
, x > 0.

At the interface we have two conditions for matching uL and uR:

uL (0) = D1−2θuR (0) , uLx (0) = DuRx (0) ,

or the system of equations for A and B

A− 1

A+ 1
= D1−2θB, − 2

√
2rA

(A+ 1)
2 = −D

√
α

D
B.
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Solving it we obtain

A =

√
2rD1−4θ

α
+ 1 +

√
2rD1−4θ

α
, B = D2θ−1A− 1

A+ 1
.

The results for α = 2, r = 4, θ = 0, 0.5, 1 and D = 2 and 0.5 are shown in Fig. 2.
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