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Abstract

Recent  shifts  towards  spatial  issues  within  education  are  examined,  and  mapping  is

identified as particularly important.   The multidisciplinary  trend of complexity science

is surveyed, in turn, through the lens of physics and education research.  The provincial

education system of Alberta is considered to be a complex system.  Network theory is

proposed as a spatial metaphor that effectively describes many complex systems.  Amal-

gamating spatial and complexity thinking from both physics and education, a generaliz-

able  network  approach  is  presented  to  describe  and  explore  the  organization  of  one

global aspect of education in Alberta: the courses.  By imagining every course as a node,

and by linking each course with those that are required as prerequisites, a directed net-

work  representing  kindergarten  through  undergraduate  studies  is  constructed  in a tai-

lored  computing  environment,  called  Calendar  Navigator.   Important  products  from

such  a  network  description  are  illustrative  visuals,  which  are  intuitively  informative.

These network  graphics  and animations  can serve as an interactive,  dynamic map for

students  of  their  local  academic  surroundings  while  traveling  through  the  education

system, by making clear where they have come from, where they are, and where they

can go.  A selection of metrics drawn from social network analysis and physics litera-

ture, and some here devised especially for course networks, are applied and interpreted.

An analytical  understanding of the global structure and shape of the education system

via network theory can help inform administrators  and policy makers to better under-

stand and manage their educational institutions.

Keywords:   spatial,  complexity,  education,  network,  visualization,  map,  calendar,
course, prerequisite, structure.
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1.  Introduction to the Research

1.1  Context

The ancient Indian legend of the blind men and the elephant is told in several
versions  but  all  reveal  the difficulties  of observing,  interpreting,  and understanding  a
multifarious phenomenon with limited information.  The tale is an account of a group of
blind men who hear of an extraordinary  beast  that has arrived in their  village.   They
resolve to gain the personal  knowledge  that  will  satisfy their  curiosity  by feeling the
elephant  – the only  possibility  open  to them.  As the group gathers  around the large
elephant, they carefully touch its body, but in dissimilar places.  One blind man pats its
leg and considers the elephant pillar-like,  warm, rough to the touch, and yet strangely
soft;  his blind friend rubs its tusk and reckons the elephant  is like a plowshare:  cool,
smooth,  and hard.   Another  blind man grabs  its trunk  and determines  an elephant  is
snake-like,  another holds its ear which feels like a large fan.  Others compare the ele-
phant to a wall, a throne, a rope, a brush, and otherwise, depending on what part of the
huge animal they encounter.  All variations of the tale conclude without the blind men
agreeing as to what the elephant is really like.  It appears, despite each blind man accu-
rately describing the aspect of the elephant he encounters,  the blind men are unable to
achieve a wider perspective on the characteristics of the elephant due to the absence of a
global framework to relate their local findings.

The Education system of Alberta is also a large, multifarious phenomena which
presents daunting challenges for any researcher to approach.  A reasonable response is
specialization,  which limits  research to a local part of the wider system.  Researchers
typically  don  methodological  and  theoretical  "blinders"  to  isolate  themselves  within
their specializations.  They deliberately become one of the "blind men", undistracted by
all detail except what they reach out to touch, with the aim of at least gaining an inti-
mate understanding of some small aspect of their large subject.  But, instead of trying to
achieve  a thorough  understanding  of a local  part  of the Education  system,  this thesis
attempts to gain a partial understanding of a global aspect of the Education system.  In
terms of the legend, this is akin to an Indian villager with access to (only) an X-ray of
the  legendary  elephant,  which  displays  the  skeleton.   Little  of  the  rich,  local,  tactile
knowledge gained by the sensitive blind men is apparent.  Moreover, other global sys-
tems of the elephant,  such as, its  muscular,  vascular,  or neurological  systems,  remain
hidden too.   But  gained is  information  from a fundamentally  unique perspective  that
partially overlaps, and can be used to partially contextualize, all other local descriptions
of the elephant.  A villager whose experience of an elephant is limited to an X-ray could
still  provide  valuable  insights  in conversations  with  the blind men,  and perhaps  even
bring a kind of unity to their disparate experiences.   So, at its worst, this thesis is just
another incomplete examination of Alberta's Education system from a man with blind-
ers, albeit unusual in the choice of the systemic aspects it describes.  At its best, it both
serves as an rich, partial description with equal standing along others plus an introduc-
tion to a global framework that can orient other local descriptions.
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1.2 Purpose

This thesis aims to address one aspect of formal education in Alberta on a sys-
tem-wide scale to provide theoretical and practical tools for administrators and students:
the courses.  Capturing a comprehensive, "big picture" view of even a single feature of
something so large and multifaceted as Alberta's Education system is difficult but desir-
able.  For students, information is plentiful but poorly arranged and presented for easy
use.   For  example,  course  selection  at  the  provincial  University  is  basically  a  'brute
force'  search of the large course catalogue (Moreno 2009, ch.  3).  For administrators,
relevant literature is spread across topics which can have few connections (Borner et al.
2003).  But, administrators looking at one domain of education cannot have an adequate
understanding  of its relation to the whole.  That is to say, there are many interwoven
dependencies  in the Education system with which people like students and administra-
tors need to work.  But often, only the relationship information among local elements is
provided  or  apparent  through  experience,  resulting  in little  opportunity  to understand
complex global dependencies.

Visual representations of dependencies  can provide a effective means to under-
stand complicated  relationships  (Wainer  2005).   Visualization  of information  exploits
the enormous  natural  abilities  of the  human  visual  perception  in  order  to understand
textual data that are not necessarily visual or spatial in nature (Ware 2000, ch. 2).  The
recent U. of A. graduate from the Departments of English and Art and Design, Stanley
Ruecker  (2003),  suggests  in his interdisciplinary  thesis in Humanities  Computing  that
people have natural acumen for finding prospects in a "landscape",  and are capable of
quickly identifying opportunities for action in that environment.  This thesis presents a
map of all  the  courses  in Alberta's  education  system,  from K-16,  associated  by their
dependencies on prior knowledge from other courses.  The rational is that students can
quickly become familiar with the course map and the associated adaptive computational
tools, take meaning from them, and find prospects for action, better and faster than with
the present textual description of courses and their relations presently available.

This thesis is an occasion to create a mathematical model with strong visual and
spatial  interpretive  power  of  a  central  global  aspect  of  the  education  system  for  the
practical and theoretical service of students and administrators.  The model is based on
the ubiquitous concept of the course in education, plus necessary prior knowledge rela-
tionships between courses.  An original computational tool to visualize the prerequisite
relationships among all courses from Kindergarten through undergraduate university in
Alberta, called Calendar Navigator, is presented as an assist to course planning tasks for
students  and  councillors.   The  analytical  capabilities  of  the  Calendar  Navigator  are
presented as a means for administrators and academics to study and interpret the system-
wide relationships among courses, departments, and faculties via a network based model.
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1.3 Research Thesis, Question, Objective, and Hypothesis

At its  heart,  this  thesis is  about networks,  a topic  introduced  to the author  by
Professor  Brent Davis in a graduate couses called "Cognition and Curriculum",  where
they appeared  well  suited to describe interactive  happenings  in Education.   Networks
have been especially insightful  when applied to phenomena thought to be products of
adaptive or cumulative  mechanisms,  usually contained within a recognizably complex
environment (Araujo & Mendes 2000; Almaas 2007).  This implies any adequate justifi-
cation for a network approach into Educational phenomena demands at least an address-
ing  of  the  issue  of  complexity  in  Education.   Also,  networks  themselves  are  quite
abstract,  mathematical,  and quantitative,  thus  placing  any  research  based  on them in
contrast to present Education research which is often phenomenological,  narrative, and
qualitative.  To bridge the gap, an appeal to a common epistemological framework, what
Bruner (1986: 11) might call a "way of knowing", is made towards the spatial.  Think-
ing in spatial terms is becoming an influential paradigm within the social sciences and
education, where it is developed as complementary to a pervasive narrative mode, which
is fundamentally influenced by issues surrounding time (see for example, Warf & Arias
2008a).   Inherent  to the spatial  attitude is a special  concern for maps,  including their
construction,  manipulation,  and  use  (Ruitenberg  2007).   Networks  are  contemporary
examples  of maps,  par excellence,  because  of their  flexible,  dynamic,  and interactive
properties.  Therefore, the central theoretical interest of the thesis is regarding networks;
the justification for their use is the presence of complexity;  the input data and context
for  results  is  Education;  the  methods  and  tools  are  those  from  Physics;  and,  the
employed  metaphors  and products  of research  common to all  are spatial.   Thus,  the
thesis may be stated: Education in Alberta, from K-16, is a complex system mani-
festing a course structure profitably described as a network, such that, its mapping
yields  benefits  to  students  and  administrators,  and its  analysis  offers  significant
insight for researchers of complexity from Physics or Education.

The  above  formal  thesis  statement  has  its  origins  in  the  contemplation  of  a
succinct question: what is the shape of the course structure in Alberta's Education sys-
tem?   To  apprehend  the  shape  of  anything  complicated  is  to  trace  the  contours  and
boundaries over and around what composes it.  For a designed or engineered system, the
composition  and  the  careful  organization  of  the  parts  reflect  its  purposes.   "It  is  the
pervading law of all things . . . ", asserts Sullivan (1896) in a famous modernist state-
ment, "that form ever follows function."  But, for a natural system within a Darwinian
context,  usually  its  function  cannot  implore  its  form  –  that's  Lamarckism.   Instead,
preceding variations in form are selected by the environment for their functionality (van
der  Meulen  & Huiskes  2002).   Thus,  contemporary  scientists  commonly  accept  that
"function  follows form" (see for example,  Lauder  1981; Burley 2000; Shepherd et al.
2005; Finn & Fokin 2010), or that the issue of primacy is irrelevant as form and function
are not really separate entities but, rather, are intimately tied to each other in an adaptive
cycle: function follows form follows function, and so on.  Within the complexity para-
digm, any perceived dichotomy between form and function is removed by a synthesis of
form  and  function  into  an  inseparable,  more  inclusive  concept.   When  considered
together they are an example of what Davis & Sumara (2006: ch. 8) call a simultaneity
because both form and function are concepts operating at the same time.  So, regardless
of the precedence between form and function, considerations of shape (form) has implica-
tions for research because as a cause, consequence, or concurrence, shape directly points
to system capacity (function).   For the specific  case of courses in Alberta's  education
system, students within them are expected to learn "the knowledge, skills and abilities to
be successful in the 21st  century" (Stelmach 2010).  The capacity of the course structure
to develop, maintain,  and communicate  that academic knowledge,  either as a designed
or self-organized system, is reflected in its form.  The detection, tracing, and articulation
of the shape of the overall course structure in Alberta, and its use in discussing function
are central to what follows in this thesis.

The practical objective of the thesis is to satisfy the formal administrative guide-
lines for an interdisciplinary degree (Faculty of Graduate Studies and Research 2001) at
the University of Alberta.  These guidelines suggest a marker of success is the ability to
publish articles from the research in the scholarly journals of both disciplines.  Thus, a
goal of this thesis is to produce findings that are clearly scientific and consistent with
Physics, which is a certain kind of study that can be recognized as research based, mathe-
matically  and  often  computationally  supported,  usually  experimentally  or  empirically
driven, and interested in fundamentals.  The twin goal for the thesis is to make conclu-
sions and products that have a grounding in, and applicability for, Education with a level
of insight and germaneness achievable only by a scholar from the discipline.  These dual
aims have common roots in Professor Denis Sumara's graduate course, called Advanced
Research Seminar in Secondary Education,  where a "complexivist"  sensibility towards
education was encouraged.   The newly introduced topic of "complexity  science" reso-
nated with the author's background in Physics.  So it became a challenge and ambition
to  actually  'do'  complexity  science  in  education,  and  not  just  educational  research
'informed' by complexity thinking.

Due to the lack of precedence for published network research into course struc-
tures, the central hypothesis of the thesis has a few practical concerns.  At the outset, it
is  hypothesized  that:  1)  comprehensive  administrative  source  documents  exist  with
enough  meaningful  information,  once  assembled,  for  substantial  categorization  and
characterization of the courses and their interrelationships based on prerequisite knowl-
edge; 2) engagement with the data by the processes of mathematization and modelling
via networks results in credible objectification of the phenomena of courses throughout
the province-wide  Education system; 3) new insights into the wide-scale  shape of the
course network produce communicable and meaningful information to students; and, 4)
results of model analysis can be compared and contrasted for consequential engagement
with accepted ideas within Education research.  Overall, the majority of labor invested
in the doctoral research is directed towards mapping how courses in Alberta's education
system  are  linked  together  by  their  prerequisite  relationships  into  a  network  model,
which is visualized and measured with a variety of approaches to construct  an under-
standing and articulation of its shape.  While the importance and applicability of simply
knowing  the  course  network  shape  are  presented  and  discussed,  analysis  is  also
extended  to include  the  student  learning  processes  that  occur  on the course  network.
The most sophisticated  and involved results  of the thesis eventually  describe how the
course network's shape and the various learning processes occurring within each course
imply the capacity of groups of courses to enable individual and systemic knowing.  So,
the last  statement  to be appended  to the hypothesis  is theoretical:  5) the form  of the
course network constrains student learning processes and reflects its systemic function.
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digm, any perceived dichotomy between form and function is removed by a synthesis of
form  and  function  into  an  inseparable,  more  inclusive  concept.   When  considered
together they are an example of what Davis & Sumara (2006: ch. 8) call a simultaneity
because both form and function are concepts operating at the same time.  So, regardless
of the precedence between form and function, considerations of shape (form) has implica-
tions for research because as a cause, consequence, or concurrence, shape directly points
to system capacity (function).   For the specific  case of courses in Alberta's  education
system, students within them are expected to learn "the knowledge, skills and abilities to
be successful in the 21st  century" (Stelmach 2010).  The capacity of the course structure
to develop, maintain,  and communicate  that academic knowledge,  either as a designed
or self-organized system, is reflected in its form.  The detection, tracing, and articulation
of the shape of the overall course structure in Alberta, and its use in discussing function
are central to what follows in this thesis.

The practical objective of the thesis is to satisfy the formal administrative guide-
lines for an interdisciplinary degree (Faculty of Graduate Studies and Research 2001) at
the University of Alberta.  These guidelines suggest a marker of success is the ability to
publish articles from the research in the scholarly journals of both disciplines.  Thus, a
goal of this thesis is to produce findings that are clearly scientific and consistent with
Physics, which is a certain kind of study that can be recognized as research based, mathe-
matically  and  often  computationally  supported,  usually  experimentally  or  empirically
driven, and interested in fundamentals.  The twin goal for the thesis is to make conclu-
sions and products that have a grounding in, and applicability for, Education with a level
of insight and germaneness achievable only by a scholar from the discipline.  These dual
aims have common roots in Professor Denis Sumara's graduate course, called Advanced
Research Seminar in Secondary Education,  where a "complexivist"  sensibility towards
education was encouraged.   The newly introduced topic of "complexity  science" reso-
nated with the author's background in Physics.  So it became a challenge and ambition
to  actually  'do'  complexity  science  in  education,  and  not  just  educational  research
'informed' by complexity thinking.

Due to the lack of precedence for published network research into course struc-
tures, the central hypothesis of the thesis has a few practical concerns.  At the outset, it
is  hypothesized  that:  1)  comprehensive  administrative  source  documents  exist  with
enough  meaningful  information,  once  assembled,  for  substantial  categorization  and
characterization of the courses and their interrelationships based on prerequisite knowl-
edge; 2) engagement with the data by the processes of mathematization and modelling
via networks results in credible objectification of the phenomena of courses throughout
the province-wide  Education system; 3) new insights into the wide-scale  shape of the
course network produce communicable and meaningful information to students; and, 4)
results of model analysis can be compared and contrasted for consequential engagement
with accepted ideas within Education research.  Overall, the majority of labor invested
in the doctoral research is directed towards mapping how courses in Alberta's education
system  are  linked  together  by  their  prerequisite  relationships  into  a  network  model,
which is visualized and measured with a variety of approaches to construct  an under-
standing and articulation of its shape.  While the importance and applicability of simply
knowing  the  course  network  shape  are  presented  and  discussed,  analysis  is  also
extended  to include  the  student  learning  processes  that  occur  on the course  network.
The most sophisticated  and involved results  of the thesis eventually  describe how the
course network's shape and the various learning processes occurring within each course
imply the capacity of groups of courses to enable individual and systemic knowing.  So,
the last  statement  to be appended  to the hypothesis  is theoretical:  5) the form  of the
course network constrains student learning processes and reflects its systemic function.

1.4  Guide

This  thesis  is  a  product  of  an  extended  exercise  in  interdisciplinary  research
bridging a pair of departments not often considered related.  The earlier versions were
too long and indicative of an apprehensive approach to gain the endorsement of both the
Departments of Secondary Education and Physics by trying to 'cover all the bases', and
consequently  provided too much detail.  Previously included sections describing some
mathematics  developed  into a model,  snippets  of original  programming  code used for
data  analysis,  extra diagrams  to  explain  results,  and a long comprehensive  data table
have  all  been shunted to  an associated  supplementary  file  available  to  the researcher
who  requires  more  information.   Yet,  the  final  document  remains  quite  long  and
involved and still contains some aspects that should be noted for the reader.  First, there
is a glossary at the back defining important terms which appear underlined in the text at
the point  of their  first  significant  usage.   Additionally,  two types of quotes  are used:
'single quotes' which imply an indirect quote or an appeal to common knowledge,  and
"double quotes", which are always taken directly from a referenced text.  Diagrams are a
dominant feature of the thesis, are depended upon to carry forward arguments, and are
persistently referred to; diagrams appear as a series at the end of each section.  Despite
the length of the document, many sections are deliberately brief.  The research yielded
too many results for anything but a succinct description and discussion of each.  While
there is an overall movement in emphasis from theory, to methods, to analysis, towards
interpretation within the thesis, many sections in the latter chapters establish their own
rhythm.  Within each of these sections, an analytic technique is introduced or developed,
the  technique  is  applied  to  data,  and,  results  are  reported  and  briefly  discussed  in  a
format not unlike a condensed research article.
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2.  Related Literature and Theoretical Framework

2.1  The Spatial

‡ 2.1.1  Initiatory Narrative

A graduate degree in physics imparts an extensive and nuanced view of space,
both physical  and abstract.   Along with  a few other  basic  concepts,  such  as, charge,
mass, energy, and time, the concept is fundamental and pervasive.  Within the university
lecture halls,  I was acquainted with "linear" space as formalized in linear algebra and
analytical mechanics, and the "directed" space of vector calculus and classical mechan-
ics.   Spaces  of minute  to vast sizes,  and low to high dimension were studied in sub-
atomic,  astro-,  solid state,  and particle  physics,  respectively.   Various elaborations  on
the concept of "field" space were used in electrodynamics.   Space became "curved" in
relativity,  "discrete" in quantum mechanics,   "deformed" in topology, and "imaginary"
with complex variables.  I also considered the fuzzy, "probabilistic" space of statistical
mechanics,  the  changing,  "dynamic"  space  of  differential  equations,  and  even  the
between,  "broken"  space described by fractals.   Closely associated  with each view of
space came a set of perspectives, guiding metaphors, formalizations,  and mathematical
tools for problem solving and precise description.

The educational experience itself was a happening through space(s) (see Figure
2.1.1-1).   Most  basically,  subject  and place  separated  students  and shaped the educa-
tional experience.  From high school, I remember how certain architectural spaces were
dedicated to a particular subject matter: there was a room for music, art, science, drama,
and physical education, each with its own atmosphere and repertoire of expected behav-
iors.  The hallways were a less supervised, public collision of students, yet, therein, each
student had a place of their own – a private locker.  At the University of Alberta, subject
and structure are also aligned, but less so.  As a first year physics student, I was sepa-
rated  from  the  freshman  engineers  more  by  building  location  than  course  content.
Despite sharing the same coupled buildings with the first year chemistry students, there
was comparatively less overlap of subject matter; we passed through the same physical
space, but contacted less within academic space.  Other students seemed in some way
more transparent when we did not share the same knowledge since there was less aca-
demic interaction and fewer points of social contact.  Shared knowledge was an impor-
tant  factor  affecting  the  size  and  shape  of  social  space.   The  profession  of  creating
personal  and shared knowledge is education,  thus education is critical in affecting the
structure of our social space.
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Figure 2.1.1-1  A restricted map of the University of Alberta campus, circa 1998.  Labelled are many
of the formative occurances in the author's university experience to form a kind of individualized
'educational  geography'.   A  large  majority  of  classes  happened  within  one,  connected  structure
comprised of CAB, V-Wing, and Physics buildings.  The class events are even more extended and
dense considering  many of  the physics,  chemistry,  and biology courses had substantial  laboratory
components, also offered in the same buildings.  Large first- and second-year classes were most often
taught in the open, sloped lecture halls of V-Wing.  Upper-level courses usually occured closer to the
corresponding department administrative offices.  Maps are suited to communicate spatial aspects of
experience and complement narrative forms.
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‡ 2.1.2  The General "Spatial Turn" in the Social Sciences 
and Humanities

Contemporary  books sporting such titles as "Mappings",  "Social Cartography",
"Spatial Theories of Education", "Spatially Integrated Social Science", and "The Spatial
Turn" herald an upsurge of interest  in spatial  arguments and the language of mapping
for use in the social sciences and humanities.  At a simple level, this shift is expressed in
basic  sematic  terms  by  the  frequency  in  the  literal  and  metaphorical  leveraging  of
"space",  "landscapes",  "place",  "mapping",  "trajectories",  and  like  terms  to  denote  a
spatial, or geographic, dimension as a key element of social theory.  These newly popu-
lar spatial metaphors are a vehicle to connect the known and the unknown, and so pro-
vide insight into society's changing cultural calculus (Smith & Katz 1993; Harley 1989).
At a more fundamental level, spatial concepts are seen to matter "because where things
happen is critical to knowing how and why they happen [italics in the original]" (Warf &
Arias 2008b).  While empty space by itself explains very little in the social sciences, the
spatial patterning of behavior is viewed as a key to understanding and explaining much
social behavior.  The structure of space is said to form a normative landscape in which
the appropriateness of belonging to a place and the relations occurring among places are
constructed,  maintained,  and  modified  (Creswell  1996:  ch.  1).   The  appearance  of  a
large,  active,  and  well  funded  institute,  such  as  the  "Center  for  Spatially  Integrated
Social  Science",  indicates  there  is  willingness,  support,  and aptitude  to  apply  spatial
thinking into active social science research (Janelle et et. 2005).

A concern of when things happen has consistently been of primary focus in the
social sciences for the last one hundred fifty years, or so, and takes the form of histori-
cism (Soja 1989: 10).   Therein, the world is primarily comprehended through the dynam-
ics arising from the nature of social being and becoming in the interpretive contexts of
time.  A central form of communicating an account of how something comes to pass is
the narrative,  often with a well  defined chronology  or diachronic timeline.   Narrative
discourse typically emphasizes temporality, that is, the sense of how events and experi-
ences occur through time, and are sometimes said to be meaningful only to that extent
(Ricoeur et al. 1984: 52).  But, the regimen of a sequentially,  linearly unfolding narra-
tive predisposes the reader to think historically,  making it difficult to use the text as a
map,  a  genealogy,  or  a  survey  of  simultaneous  relations  and  meanings  that  are  tied
together by spatial  as well as temporal logic.  Concern with the spatial,  especially the
explicit use of cartographic representation, complements narrative priorities about time.
If  space  as  well  as  time  is  considered  to  be  a  fundamental  perspective  into  human
inquiry and experience,  then,  as there was a preoccupation  with history,  so is there a
renewed interest  in geography,  for example human geography (Warf & Arias 2008b),
and its tools,  such as cartography (Goodchild  et al.  2000).  In this way, a product of
spatial reasoning, such as the visualization of a landscape can be analogous to a product
of temporal reasoning, like a narrative (Hill 1996), each especially capable of describing
certain aspects of a social subject.
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spatial reasoning, such as the visualization of a landscape can be analogous to a product
of temporal reasoning, like a narrative (Hill 1996), each especially capable of describing
certain aspects of a social subject.

Since the individual tends to occupy only one, or at least a small portion, of the
many  possible  spaces  at  once,  attention  can  drift  away  from the  individual  towards
systems  composing  or  containing  the  individual.   Spatial  questions  of  where  things
happen inevitably lead to questions of structure and pattern while meaning is sought in
regularities  and  exceptions  to  arrangement,  location,  composition,  and  distribution  in
space.  The discourse of structuralism, which privileges synchronic treatments (Sturrock
1986: p. 57) of pattern, appears well equipped to frame spatial issues and perhaps what
Davis & Sumara (2006: ch. 8) call simultaneities  – events or phenomena that exist or
operate  at  the  same  time.   But,  as  reported  by  Cosgrove  (1999b:  p.  7),  the  "widely
acknowledged  'spatial  turn'  across  the  arts  and  sciences"  corresponds  with  a  rise  in
poststructuralist  sensibilities.   While,  an early and common criticism of structuralism,
was that it was rigid and ahistorical, favoring structural forces over the ability of individ-
ual people to act (Belsey 2002: ch.  2), later  poststructuralist  criticisms focused on its
deterministic  and unifying tendencies (Sturrock 1986: 166-183).  So despite structural-
ism's  capacity  for  explanation  of  transforming,  self-regulating  "wholes"  (Piaget  &
Maschler  1970:  Part  I),  it missed being especially  associated  with spatial  concerns  in
social science twice: once when it was popular but spatial theories were not, and, pres-
ently  when spatial  theories  are popular  but structuralism itself  is not.   In the field of
physics, and perhaps all the natural sciences, it may be that structuralism is obligatory,
in so far as physics is impossible  to pursue non-structurally,  free from the concern of
organizations whose components stand in formal relationships; therefore, alas, structural-
ism still remains disregarded even as it is used because structuralism is an assumption
and not a distinction among physicists.

The defining properties of space have changed for authors in the social sciences
over  time  (Ventriss  1994;  Wertheim  2000:  17-43).   During  and  after  the  European
voyages of discovery, the globe was laid onto a fixed grid of latitude and longitude for
amenable  rationalization  and  calculation,  for  facilitation  of  control,  �and  for  sailing
across, making "space seem like a surface" (Massey 2005: 4).  Cartographic products of
the  day  offered  an  objective  representation  for  symbolic  and  practical  mastery  over
space  from  which  Euclidian  distance  could  be  measured  and  trade  routes  managed
(Brotton 1999).  Present views of space are seen to be most influenced by two factors:
globalization brought on by capable and cheap transportation, and ubiquitous integrated
communication  systems  including  the  internet  (Warf  2008).   Under  these  influences,
conventional  geographic  concentration  on proximity as measured by absolute distance
collapses as all points are potentially brought close together by unprecedented flows of
knowledge,  technology,  commodities,  people,  cultural  exchange,  etcetera  (Appadurai
1996:  Part I).  Alternative measures  of relative separation based on information,  cost,
and social access become important.   Location is now more entangled with means of
production, access to technology, and negotiation rather than being given a priori (Soja
1989: ch. 3).  For Foucault (1986), "space takes for us the form of relations among sites"
and is better described as a network of interactions, mobilities, and flows.  Such flows,
by definition, involve more than one place, hence, places have little meaning as isolated
entities.
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‡ 2.1.3  Some Spatial Discourses in Education

Educational  theory  moves  by  fits  and  starts,  and  often  takes  its
developmental cues from other disciplines.  It is not that educational-
ists are incapable of generating original thought that might lead to
application  elsewhere  in  the  disciplinary  spectrum,  but  more  that
they  tend  to  be  the  followers  of  broad  epistemological  trends  or
'turns' rather than their creators.

Gulson, K. & Symes, C. (2007b) Knowing One's Place: Educational
Theory, Policy, and the Spatial Turn, in Gulson, K. & Symes,
C. (eds.), Spatial  Theories of Education:  Policy and Geogra-
phy Matters (New York: Routledge), p. 1.

A changing perception of space in the social sciences generally, has influenced
education as a subset or applied field of the humanities or social sciences (Ruitenberg
2007).  But "an absence of a well-defined field devoted to examining the 'spatial' ques-
tions and dimensions  of education" (Gulson & Symes 2007b) suggests  that space and
place  are  integral,  yet  hitherto  under  examined  and  under  theorized,  components  of
education  research.   Ruitenberg  (2007)  describes  the  specific  spatial  practice  of
"cartography as largely uncharted territory in educational theory."  This relative lack of
reported interest is surprising given the importance of space in the organization of teach-
ing and learning.  Opportunities exist to extend spatial concepts into and through educa-
tional theory offering new directions for educational researchers and policy makers.  A
review of the education centered literature that is present suggests space cannot be dealt
with as if it were mere a passive, abstract arena on which things happen.  For example,
Davis (2004: 102) notes a shift in education from considering space as a prestructured
emptiness to be contained and filled, towards space as a relational quality arising from
the  relationships  and  interdependencies  among  things.   For  until  recently,  especially
influential  was  the  Newtonian  view  of  a  featureless,  simultaneous  "absolute  space"
(Jammer 1993), which, along with the Platonist tendencies of the common mathematical
view  of  space,  retarded  an  appreciation  of  space  in  social  terms  (Gulson  &  Symes
2007c).  The "spatial turn", then, tends to emphasize the transient and social nature of
space, that space is a construct and not a given, and in turn, social relations are always
constituted relative to space (Lefebvre & Enders 1976).

Imagining space not like a smooth, given expanse, but a transient and negotiated
phenomena highlights education as an influential  social institution that plays a central
role  in  the  social  positioning  of  students  and  types  of  knowledge.   When  the  social
mechanisms of position are spatially represented and analyzed, they are revealed, visual-
ized, and seen in a new way, allowing different questions to be raised about the effects
of the education system.  For instance,  Fain (2004) stresses that the intentional  act of
curriculum  design  is  intimately  related  to  the construction  of spaces,  which have the
potential  to  be  emancipating  or  controlling,  such  that,  paradoxically,  as  opposed  to
naturally or automatically arising, "free" space must be "deliberately created".  Educa-
tional programs define trajectories through material spaces – buildings, classrooms, and
laboratories  – to  bring  students  into  contact  with  representations  of other  spaces  and
times,  such as, textbooks,  equations,  lectures,  lab equipment,  and so on, that partially
make those distent spaces present (Nespor 1994: ch. 3).  Educators may find especially
provocative  Nespor's  suggestion  that  degree  programs  that  most  tightly  organize  and
constrain students' use of space and time are the most successful at transforming newcom-
ers into proficient practitioners (ch. 6).
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While it might be common to think of space somehow being a barrier by separat-
ing knowledge,  Goodchild  & Janelle  (2004b)  stress  the value of space  as a basis  for
integrating knowledge from what are otherwise distinct disciplines,  such as education,
political science, economics,  etcetera.  But just within the discipline of education, Lin-
gard (2007) is concerned with issues of scale whereby spatial categories are translated
into hierarchical categories (e.g. local/global or public/private) and power relations, such
that,  education policy making is said to be a multiscalar  process (see Figure 2.1.3-1).
Therefore, to integrate knowledge and address important issues in a multiscalar educa-
tion context, an ability to effectively move or think across different spatial scales, to be
adept at "level-jumping", is implied (Davis & Sumara 2006: ch. 6 & fig. 2.3).  Towards
the widest  spatial  scale  in education  research  and policy is  the  concept  described  by
Rutten  et  al.  (2003)  called  the  "learning  region"  -  a  broad  set  of  innovation-related
regional  actors, strongly but flexibly interconnected,  who share educational  infrastruc-
ture and a common educational policy.  Near the narrowest spatial scale plastic, distrib-
uted modules of cortical columns within the brain are being understood as vital struc-
tures to understand brain function (Mountcastle 1997); while not an issue within Educa-
tion proper, aligning teaching (if possible) with the biological basis for learning prom-
ises  benefits  (Zull  2002:  Part  II).†   Obviously  bridging  such spatial  scales  to  form a
comprehensive theory of education or practice of teaching is impossible but at least an
awareness of how ranged the influences are, and the capability to be informed by them,
quickens educational discourse.

__________________________________
†  One receptive,  but critical,  reviewer has stated though,  "a good book of educational
neuroscience has yet to be written" (Geake 2004).
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Figure  2.1.3-1   The  many  spatial  scales  or  levels  of  interest  for  the  educational
researcher and teacher as modified from Davis & Sumara (2006: 28).  From a sensitiv-
ity to global citizenship initiatives within "learning regions" (Rutten et al. 2003), to
national  education  policies,  to  provincial  funding  changes,  to  district  implementa-
tion, to the status of her institution, to issues within the department, a teacher might
be influenced by events far removed from her classroom and students.  At each scale,
phenomena occur with affects that ripple into adjacent scales besides simply affect-
ing their own; according to Nespor (2004), "events, settings, and processes are not
neatly and uniquely situated, but are entangled in multiple, alternative scale-construc-
tions".

Spatial  language  and conceptual  metaphors  are already  present  and becoming
more  frequent  within  educational  writing,  but  the  use  of  sophisticated  metaphorical
visualizations  is  less  common.   Two significant  barriers  to the  immediate  and  wide-
spread use of the visual tools and products of spatial approaches are pointed to by Ruiten-
berg (2007).  First, most people within education simply lack cartographic literacy to the
same degree they possess textual literacy.  Second, any of the required computer skills,
effective  computer  programs,  capable  CPUs,  or digital  storage requirements  could  be
lacking  in  the  education  research  environment  to  create,  edit,  manipulate,  keep,  and
exchange the large and sophisticated computer graphic files modern mapping and visual-
ization  implies.   The  presence  of  either  barrier  would  reduce  the  development  and
potency of visual products and arguments from a spatial perspective.  But, from a devel-
opmental point of view, Newcombe & Huttenlocher (2000) suggest that "spatial compe-
tence" is a central aspect of human adaptation and education provides an opportunity for
various sorts of "spatial development",  such as, acumen with the hierarchical combina-
tion of information.  And, Monmonier (1993) shows how maps have an important role
in communicating ideas about locations, social or otherwise, as geographers have long
realized.  He asserts that literacy (writing), articulacy (speech), numeracy (mathematics),
and graphicacy  (visual  arts)  are all important  elements  of knowledge  communication,
and therefore education.   What follows this general introduction of spatial influences on
education discourse are three specific examples of successful,  distinctively educational
uses of spatial thinking in research and practice.
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ization  implies.   The  presence  of  either  barrier  would  reduce  the  development  and
potency of visual products and arguments from a spatial perspective.  But, from a devel-
opmental point of view, Newcombe & Huttenlocher (2000) suggest that "spatial compe-
tence" is a central aspect of human adaptation and education provides an opportunity for
various sorts of "spatial development",  such as, acumen with the hierarchical combina-
tion of information.  And, Monmonier (1993) shows how maps have an important role
in communicating ideas about locations, social or otherwise, as geographers have long
realized.  He asserts that literacy (writing), articulacy (speech), numeracy (mathematics),
and graphicacy  (visual  arts)  are all important  elements  of knowledge  communication,
and therefore education.   What follows this general introduction of spatial influences on
education discourse are three specific examples of successful,  distinctively educational
uses of spatial thinking in research and practice.

ü 2.1.3.1  Social Cartography

Social cartography will also be useful to convert increasing flows of
data  into  usable  information.  This  will  help  comparativists
[comparative education researchers] recognise patterns and relation-
ships in spatial contexts from the local to the global.  In conceptual
terms,  cartographic  visualization  can  also  provide  a link  between
what were once viewed as incommensurable  epistemological  para-
digms or perspectives, now presented as nodes within shifting inter-
textual fields.

Paulston,  Rolland G. (1997)  Mapping  Visual  Culture in Compara-
tive  Education  Discourse,  Compare:  a  Journal  of  Compara-
tive Education, 27(2): p. 143.

Most of the literature regarding social cartography originates from the study of
comparative education, which needs to be briefly described to appreciate the capabilities
of social cartography.  Comparative education is centered upon the international compari-
son  of  education  systems  between  countries  and  the  social,  economic,  and  political
forces that shape them.  The breadth of comparative education across scales of distance
and concern  implies  an iterative  dialectic  between the global  and the local,  requiring
diverse methods studying a wide range of topics and contexts (Kubow & Fossum 2007:
ch. 1).  Besides the traditional  core of cross-cultural  comparison of national practises,
comparative education now harbors researchers who identify with what they consider to
be the related fields of comparative literature, comparative politics, comparative linguis-
tics,  comparative  sociology,  etcetera,  and  their  common  interdisciplinary  pursuit  of
cultural theory and "situated knowledge processes" (Price 1996).  As a mode of inquiry,
specifically developed for comparisons of multiple view points and contested codes in a
representational  construct,  social  cartography  is  suitable  for  research  in  comparative
education and has been introduced and applied effectively.

Social cartography is the writing and reading of metaphorical  maps addressing
questions in the social milieu of location,  position, distance,  relation, and composition
that can be less tangible and direct than the parameters  and elements of a more tradi-
tional  geographical  map  (Paulston  & Liebman  1996).   By  mapping  pedological  and
ideological space in comparative education, researchers access some of the effectiveness
and history of maps.  By combining utility and aesthetics in a compact visual language,
maps  can reflect  and shape  the perception  of things  (Flaherty  2005).   Maps have an
important  role  in  revealing  and  communicating  ideas,  but,  because  maps  must  be
reduced  in  scale,  selective  in  the  information  presented  (thus  hiding  what  is  not
included), drawn with a certain projection, and generalized to capture a chosen view of
reality, they are necessarily "deceptive" (Monmonier 1996: ch. 2).  A single map is only
one possible  view of data and that overall,  it may give an erroneous impression,  but,
since the most common experiences  with maps,  such as a road map or building floor
plan, tend to be successful,  they are viewed as authoritative generally.  To mitigate the
influences  of any one kind of map,  multiple  map presentations  should be considered
(Flaherty 2005; Monmonier 1993: ch. 5).
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Crossley  (1999)  describes  how  comparative  education  researchers  are  well
positioned  to use social  cartography  since they routinely  consider  multiple interpreta-
tions of social and educational life.  Social cartography offers comparative educators a
new  method  for  visually  demonstrating  the  attributes,  capacities,  development,  and
perceptions of people and cultures operating within the social milieu Paulston (1996b).
The process of mapping is said assist the inclusion of views from the margins to further
enlarge the scope of the comparative visions and the diversity of representations (Paul-
ston 2003b).  Social cartography seeks to be inclusive by recognizing and interrelating
all text and arguments claiming space in knowledge debates (Paulston 2000).  Paulston
(2003a)  positions  social  cartography  within postmodernism  and argues for "a shift  in
research from time to space, from facts to interpretations, and from testing propositions
to mapping  difference."   Given the postmodern  point  of view wherein  all knowledge
claims  are  problematic,  opposing  views  and  a  comprehensive  sampling  need  to  be
consciously incorporated in any credible mapping (see Figure 2.1.3.1-1).  Social cartogra-
phy as a space of juxtapositions suggests an opening of dialogue among diverse social
players,  including  those  individuals  and  cultural  clusters  who  want  their  narratives
included  in  the  visual  dialogue.   The book  by Paulston  (1996a)  promotes  the use  of
social  cartography  to depict  the spatial  relationships  among the many perspectives  in
comparative education and assumes that these views share a broader social context with
regard to the production of knowledge whose deciphering makes the perspectives more
understandable.   Less interested in comprehensiveness  and integration,  the author Fox
(1996), is more advocative of ethnic, ecological and regional groups creating alternative
maps that disrupt or reject the truth claims of central authority.  Such "resistance" maps
seek to avoid capture in established power grids, to create counter mapping that presents
alternative world views, and to open new rhetorical spaces.       

An ongoing concern within the discourse of social cartography is the extent to
which the formalization of the technique should be pursued (Seppi 1996).  A survey of
the literature indicates that for most advocates,  social cartography reflects the premise
that  the  constructed  social  world  cannot  be  reliably  or  validly  measured  but  only
viewed,  reported,  and  compared.   Yet  without  effective  and  somewhat  standardized
measurement,  it  seems  the  relative  status  and  evolution  of  educational  phenomena
cannot be well inspected,  compared, or contrasted.   And, if criteria and measurements
are  needed,  so  is  the  need  to  theorize  and  to  argue  across  different  disciplinary  and
paradigmatic  borders.   The maps of social cartography as an eclectic metaphor cannot
replace  theory,  and  should  be,  themselves,  analyzed  from  a  theoretical  perspective
(Torres 1996).
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An ongoing concern within the discourse of social cartography is the extent to
which the formalization of the technique should be pursued (Seppi 1996).  A survey of
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Figure 2.1.3.1-1   A visual comparison of types of knowledge positions constituting
the comparative  education  discourse  as  an example  of  applied  social  cartography.
This metaphorical  "intertextual  mapping" has two axes of comparison for situating
the genres  to create  a patterning  within  a "space  of imagination";  arrows indicate
"intellectual  flows";  figure used with permission  and taken from Paulston (2003b).
This  heuristic  map identifies  intellectual  communities  and relationships,  illustrates
domains, suggests a field of interactive ideas, and opens space to include all proposi-
tions  and  ways  of  seeing  comparative  education.   What  appears  as  empty  areas
within the global representation is space that can be claimed by intellectual communi-
ties  whose discourse  is  not  yet  represented  on the map.   By situating  the mapper
(Rolland Paulston), as marked by a star symbol near the center-left, and locating the
field of social cartography itself, an attempt is made to indicate an awareness of the
biases from which the map was written and that social cartography as a field is not
privileged.
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ü 2.1.3.2  Concept Maps

A sophisticated topic of spatial thinking, developed and applied within education
research, having deep theoretical as well as practical applications is the concept map – a
spatially organized diagram which indicates the significant relationships among a collec-
tion of interconnected concepts.  Concepts themselves are defined as "perceived regulari-
ties in events or objects" which take the form of visually isolated, often framed, words
or phrases on the map (Novak 1998: 22).  Concepts are joined with arrows, in a down-
ward-branching hierarchical  structure, with more inclusive,  general concepts at the top
and  progressively  specific  concepts  at  the  bottom (Ahlbertg  2004).   The relationship
between concepts is articulated by a linking phrase labelling each arrow, such as, "is a
member of", "implies", or "is required by" (see Figure 2.1.3.2-1).  The smallest meaning-
ful unit of a concept  map is called a proposition,  which consists  of two concepts  and
their relationship (Novak 1998: 38).  The purpose of a concept map is understanding of
a situation or event through the spatial  organization of knowledge,  and is usually ori-
ented by some guiding question (Novak & Canas 2006).  The development of sophisti-
cated concept maps applied to education began in the 1970's (Novak & Musonda 1991)
and was quickly established as an important area of research (Al-Kunifed & Wandersee
1990; Nesbit 2006).  

Figure 2.1.3.2-1   A concept map describing the key features of concept maps.  It is
hierarchic in the sense that movement  is from the superordinate concept  at the top
through several cascades of subordinate concepts below.  Concept maps are acyclic
since all paths move downwards or laterally, but no paths lead to concepts already
visited, thus there are no loops.  An example of a proposition from the concept map
is  the  triad:  "Concept  Maps"–"represent"Ø"Organized  Knowledge".   Figure  taken
from Novak & Canas (2007), p. 30 (used with permission).
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Education researchers have used concept maps as knowledge representation and
interpretation  tools  for  instruction  (Ferry  et  al.  1998;  Clark  2007),  learning  (Novak
1990; Skemp 1993), and evaluation (Jonassen et al. 1997).  Some educational theorists
regard concept mapping,  over writing texts in words, as more "closely resembling the
way the mind works" (Preston 2007) from a constructivist point of view.  Others con-
sider  the concept  map as a spatial,  isomorphic representation  of the knowledge  struc-
tures that humans store in their minds (McAleese 1998).  Implied from diverse sources
of research  is  that  our brain  attempts  to organize  knowledge  into  hierarchical  frame-
works, and methods that facilitate this process significantly enhance learning capability
(Bransford et al. 1999, ch. 2).  Concept maps help students learn new information (Nes-
bit 2006) by integrating each new idea into their  existing body of knowledge using a
"psychologically sound" approach of sequencing comprehensive concepts first, hierarchi-
cally above subsequent restricted concepts in a knowledge framework (Novak & Canas
2007).   Students  are  reported  to  "recall  more  central  ideas"  when they  learn  from a
concept  map  because  it  "makes  the  macrostructure  of  a  body  of  information  more
salient" than when they learn from text, especially those students with low verbal ability
(O'Donnell et al. 2002).  While Kommers (1997) considers concept mapping as part of a
trend questioning the efficiency of "traditional linear text based upon natural language",
Robinson (2002) sees the concept map as a "spatial text adjunct" to help students detect
the unseen structures that lie within text.  As well, the process of concept mapping can
create  an "analogical  space"  (Wandersee  1990)  for  curriculum development  to occur,
such that, the teacher or committee: gains a clearer understanding of the key concepts to
be learned, sees potential gaps in relations between concepts (Moen & Boersma 1997),
and receives guidance for the appropriate learning sequence (Starr & Krajcik 1990).

Current issues in education research of concept maps include some theoretical,
technical,  and applied  problems.   As introduced  here  and most  commonly  described,
concept maps have an acyclic structure.  This type of structure logically implies a static
relationship between the concepts within the map, and that all paths are predetermined.
But  the  authors,  Safayeni  et  al.  (2005),  recently  elaborated  upon  this  standard  map
structure and called for more research.  They described the foundations of "cyclic con-
cept maps", which include feedback loops to more effectively represent dynamic relation-
ships  between  concepts.   Loops  within  maps  can  capture  and  represent  a  functional
interdependency between two or more concepts, thus complementing the feed-forward,
linear dependencies of hierarchic structures.  These cyclic concept maps are reported to
stimulate  "dynamic  thinking"  (Derbentseva  et  al.  2007)  and  help  in  the  instruction,
learning, and assessment of "systems thinking" in science education for the tricky topics
of integrated systems (Sibley et al. 2007).  Finally, education researchers and computer
programmers  are  providing  new computer  tools,  such  as  Semantica  and  CmapTools,
with  comprehensive  and  advanced  features  to  construct,  visualize,  and  manipulate
concept  maps  (Semantic  Research  2008;  Institute  for Human and Machine  Cognition
2008).

17



Current issues in education research of concept maps include some theoretical,
technical,  and applied  problems.   As introduced  here  and most  commonly  described,
concept maps have an acyclic structure.  This type of structure logically implies a static
relationship between the concepts within the map, and that all paths are predetermined.
But  the  authors,  Safayeni  et  al.  (2005),  recently  elaborated  upon  this  standard  map
structure and called for more research.  They described the foundations of "cyclic con-
cept maps", which include feedback loops to more effectively represent dynamic relation-
ships  between  concepts.   Loops  within  maps  can  capture  and  represent  a  functional
interdependency between two or more concepts, thus complementing the feed-forward,
linear dependencies of hierarchic structures.  These cyclic concept maps are reported to
stimulate  "dynamic  thinking"  (Derbentseva  et  al.  2007)  and  help  in  the  instruction,
learning, and assessment of "systems thinking" in science education for the tricky topics
of integrated systems (Sibley et al. 2007).  Finally, education researchers and computer
programmers  are  providing  new computer  tools,  such  as  Semantica  and  CmapTools,
with  comprehensive  and  advanced  features  to  construct,  visualize,  and  manipulate
concept  maps  (Semantic  Research  2008;  Institute  for Human and Machine  Cognition
2008).

ü 2.1.3.3  Curriculum Mapping

A  thoroughly  practical  manifestation  of  thinking  with  a  spatial  dimension  in
education  is  the process of curriculum mapping.  It  is  a procedure  for collecting  and
structuring data about the operational curriculum in a subject, grade, school, or district,
referenced directly to the calendar (Jacobs 1997: ch. 1).  To make sense of students' and
teachers'  experience  over "spatialized  time" (Nespor 2007),  the calendar-like  structure
fragments  and tracks movement  through time as movement  through the spaces  of the
curriculum maps, wherein unit titles, concepts, assignments,  projects, locations, books,
and materials used may be briefly listed (Paechter 2003).  At least three levels of focus
are common: a large-scale view of the years' curriculum for a subject within a grade or
course  (see Figure 2.1.3.3-1),  a mid-scale  overview of an entire  grade  or course (see
Figure 2.1.3.3-2),  and a small-scale  (wide)  appreciation of the K-12 perspective  espe-
cially useful for administrative meetings.   With a matrix-like structure of text, data on
the curriculum map can be examined both horizontally  through the course of any one
academic year, and vertically over the student's K-12 experience.  A survey of the litera-
ture indicates curriculum maps are intended for long-range planning, short term prepara-
tion, and clear visual-spatial communication by creating a device from which informa-
tion can be quickly gained, and where gaps, repetitions, and potential areas for integra-
tion  are  identified.   As  well,  curriculum  mapping  is  used  to  match  assessment  with
standards,  and to review the budgeting of time against the proliferation of knowledge
(Glass 2007: ch. 2).

Curriculum mapping is useful to addresses some important utilitarian questions
for  work  teams  in  educations,  such  as  tracking  who is  doing  what,  how educational
work aligns with stated goals, and whether or not members are operating efficiently and
effectively.   Heidi Jacobs (2004a) calls curriculum mapping "a tool to 'clean house' of
ineffective methods and materials" by helping find "gaps, redundancies,  and misalign-
ments" in the organized and structured data contained on the curriculum maps in conjunc-
tion  with  assessment  information  about  students.   Besides  serving  as  an overarching
organizational  structure  for  teachers  to use in practice,  curriculum maps  are valuable
communication tools at administrative conferences or district meetings, where, accord-
ing to Jacobs (1997: ch. 1), a broader,  "macro  level" context is usually poorly articu-
lated.   Finally,  Kathy Glass  suggests  that  a  curriculum  map is  important  as  a visual
"marketing  and  communications  tool"  for  teachers  with  parents,  or  principals  with
community members, as the map intermediates and serves to "illustrate teachers' profes-
sionalism" (p. 6).

A current trend in curriculum mapping is exploring the possibilities provided by
new technology through computerization of the maps themselves and use of the internet
to  visualize,  create,  store,  and  share  information  about  curriculum,  instruction,  and
assessment  (Kallick  &  Willson  III  2004).   Heidi  Jacobs  (2004b)  imagines  a  central
database,  freely  accessible  via  the  internet,  which  will  eventually  become  "a  hub"
whereat mapping becomes an integrating force to address curriculum issues.  The latest
versions  of  software  packages,  such  as  Techpaths  (Performance  Pathways  2008)  are
beginning to allow for ease of curriculum map creation, search, comparison, review, and
revision.
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Figure 2.1.3.3-1 (above)   An example of a single course curriculum map for grade
five mathematics,  showing  the planning  that goes into one area of the curriculum
(Jacobs 1997: Appendix III, used with permission of ASCD Publications).

Figure 2.1.3.3-2 (below)  An example of an integrated curriculum map for a primary
grade containing all courses over the entire year.  All subjects in the curriculum are
shown alongside, across the year.  The primary emphasis here is on content entries
(Jacobs 1997: Appendix III, used with permission of ASCD Publications).

ü Summary

The attention to, and use of, space is entrenched in physics (Jammer 1993) and is
being reemphasized in the social sciences.  A consistent metaphor and practical device
utilized within various contexts in education research is that of the map.  Research into
educational  phenomena  based  on spatial  concerns,  especially  via maps,  has an estab-
lished literature and a receptive following with which to engage.
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2.2  The Complex

‡ 2.2.1 Initiatory Narrative

A graduate  degree  in physics  imparts  an innate  fear  of complexity  and offers
sophisticated  ways to skirt  it.   During  my studies,  I  learned  physics  is the discipline
devoted to understanding nature in a very general sense.  The usual approach is reduction-
ism and the usual goal is the discovery of fundamental principles.  The utility, breadth,
fecundity, and theoretical traction of simple heuristic arrangements, such as the free-parti-
cle,  the  two-body  central  force  configuration,  and  the  simple  harmonic  oscillator,  in
various  contexts  was  profound  and  reassuring.   These  reoccurring  examples  helped
maintain a naive positivist  enthusiasm among junior students.    In the honors physics
undergraduate program, at about third year, the first hints of the complexity at the fron-
tiers  of physics  became apparent.   Small  chapters,  usually not covered,  at  the end of
each text book, branded with titles such as "Degenerate Cases" and "A Survey of Nonlin-
ear Problems", began to appear.  Some of the professors introduced methods and prob-
lems not solvable, or at least not solvable in the way we were accustomed: closed-form
analytic solutions.  The students mostly recoiled from this stress to their standard toolkit
of methods and ingrained worldview.  These problems of a new kind appeared foreign,
seemingly  imposed on them by malevolent  professors  intent on exposing them to the
messiness of real world physics.  To cleanse the turbulent pollution of complexity foul-
ing the serene intellectual  space, we applied methods of renormalization,  perturbation,
linearization,  approximation,  interpolation,  idealization,  assumed equilibriums,  Markov
chains, statistics,  and asymptotic methods for obtaining approximate solutions to prob-
lems of mathematical physics that could not be solved exactly or at least in closed form.
Upon reflection, maybe the widespread student reaction of unease to the encroachment
of  complexity,  instead  of,  say,  fascination,  indicates  the  type  of  student  attracted  to
physics  in  the  first  place.   Perhaps,  the  field has  coevolved  with  the  students  into  a
paradigm that reveres linearity, symmetry, simplicity, and elegance.  Physics is character-
ized  by  these  properties,  and  attracts  students  who  are  biased  towards  appreciating
selfsame attributes, and, who, as scholars, go onto perpetuate their primacy.

There is a reason physicists do not study frogs, and it is not because some are
not interested:  they cannot.   They don't  know how.  The frog is simply too complex.
Physicists like to know simple things very well, and have developed and adapted their
investigative  tools of mathematical  theory and experiment.   But a growing movement
towards addressing complex phenomena head on grows within the field of Physics and
extends towards other fields where researchers are doing the same.  For example, during
a recent public lecture at the Physics Department (27 April 2010) titled, "Higher-Dimen-
sional Algebra,  Biological  Abstractions,  and Life",  Edward Rietman of the Center for
Cancer  Systems  Biology  at  Dana-Farber  Cancer  Institute,  Harvard  University,  asked,
"what is the real difference between living and nonliving matter?"  He declared it to be a
valid physics question, with a fairly long history that includes Francis Crick (who stud-
ied Physics to the PhD. level) and Erwin Schrodinger's  influential book, What is Life?
(1944).  Feeling inspired but unsure, a meek voice in the back of my mind wonders just
loud enough to be heard, "how does 'social matter' organize itself to sustain knowledge
and facilitate learning?", and I wonder how that might be a Physics question too.

A summer spent at the Santa Fe Institute  as a member of the Summer School
2005 immersed me in the scholarly study of complexity and revealed the breadth, prom-
ise, and pitfalls of a grand undertaking in its infancy.  The Institute is a private, indepen-
dent research and education center founded in 1984, for multidisciplinary collaborations
in the physical, biological, computational, and social sciences.  Its purpose is the under-
standing of complex adaptive systems, and there was a vital role for physicists to lead
the research.  Indeed, information theory, nonlinear dynamics, chaos, and discrete sys-
tems provided techniques and approaches to problem solving that are useful across the
sciences, and served as points of departure for the recognition of new principles.  Things
like,  for  example,  how the  laws of nature  we most  often  care about  emerge  through
collective self-organization and really do not require detailed knowledge of their compo-
nent parts to be comprehended and exploited, that is, nature is regulated not only by a
microscopic rule base, but by powerful and general principles of organization.  Some of
these macroscopic principles are known, but the vast majority are not (Laughlin 2005:
preface & ch. 1).

A  graduate  degree  in  Secondary  Education  is  a  reenforcement  that  a  teacher
deals with a continuously dynamic, and pervasively complex, circumstances.  Educators
do  more  than  study  frogs,  in  fact,  many  biology  teachers  include  frogs  within  their
syllabus.   Teachers  teach about frogs to a collection of students – each more Gordian
than a frog – deep within an multilayered education system (review Figure 2.1.3-1) for
purposes stated without consensus.   Perhaps the malfunction of many earlier scientific
approaches into education research originating from without, came from their inability
to address the thorough complexity of the subject.  In starting with physics and moving
into education, I have observed that the extent to which a scientific approach has been
successful  at  discovering  mathematical  expressions  capturing  regularities  has  been
graded, to put it mildly.  Aspects of human society are far more complex than the non-hu-
man, natural world, plus human planning and understanding makes for individual varia-
tion that disrupts our best attempts at discovering statistical regularities or steady forms.
Students, society, and our knowledge is so combinatorially rich and self-referential that
prediction  becomes  ineffectual.   Indeed,  sometimes  complexity  can  manifest  itself  in
even very simple systems (see Figure 2.2-1), but, while the complexity barrier certainly
is central to the story, it does not imply that we shall never discover describable useful
regularities  underlying  in our learning  behavior  and knowldege  producing  institutions
using different approaches.
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ear Problems", began to appear.  Some of the professors introduced methods and prob-
lems not solvable, or at least not solvable in the way we were accustomed: closed-form
analytic solutions.  The students mostly recoiled from this stress to their standard toolkit
of methods and ingrained worldview.  These problems of a new kind appeared foreign,
seemingly  imposed on them by malevolent  professors  intent on exposing them to the
messiness of real world physics.  To cleanse the turbulent pollution of complexity foul-
ing the serene intellectual  space, we applied methods of renormalization,  perturbation,
linearization,  approximation,  interpolation,  idealization,  assumed equilibriums,  Markov
chains, statistics,  and asymptotic methods for obtaining approximate solutions to prob-
lems of mathematical physics that could not be solved exactly or at least in closed form.
Upon reflection, maybe the widespread student reaction of unease to the encroachment
of  complexity,  instead  of,  say,  fascination,  indicates  the  type  of  student  attracted  to
physics  in  the  first  place.   Perhaps,  the  field has  coevolved  with  the  students  into  a
paradigm that reveres linearity, symmetry, simplicity, and elegance.  Physics is character-
ized  by  these  properties,  and  attracts  students  who  are  biased  towards  appreciating
selfsame attributes, and, who, as scholars, go onto perpetuate their primacy.

There is a reason physicists do not study frogs, and it is not because some are
not interested:  they cannot.   They don't  know how.  The frog is simply too complex.
Physicists like to know simple things very well, and have developed and adapted their
investigative  tools of mathematical  theory and experiment.   But a growing movement
towards addressing complex phenomena head on grows within the field of Physics and
extends towards other fields where researchers are doing the same.  For example, during
a recent public lecture at the Physics Department (27 April 2010) titled, "Higher-Dimen-
sional Algebra,  Biological  Abstractions,  and Life",  Edward Rietman of the Center for
Cancer  Systems  Biology  at  Dana-Farber  Cancer  Institute,  Harvard  University,  asked,
"what is the real difference between living and nonliving matter?"  He declared it to be a
valid physics question, with a fairly long history that includes Francis Crick (who stud-
ied Physics to the PhD. level) and Erwin Schrodinger's  influential book, What is Life?
(1944).  Feeling inspired but unsure, a meek voice in the back of my mind wonders just
loud enough to be heard, "how does 'social matter' organize itself to sustain knowledge
and facilitate learning?", and I wonder how that might be a Physics question too.

A summer spent at the Santa Fe Institute  as a member of the Summer School
2005 immersed me in the scholarly study of complexity and revealed the breadth, prom-
ise, and pitfalls of a grand undertaking in its infancy.  The Institute is a private, indepen-
dent research and education center founded in 1984, for multidisciplinary collaborations
in the physical, biological, computational, and social sciences.  Its purpose is the under-
standing of complex adaptive systems, and there was a vital role for physicists to lead
the research.  Indeed, information theory, nonlinear dynamics, chaos, and discrete sys-
tems provided techniques and approaches to problem solving that are useful across the
sciences, and served as points of departure for the recognition of new principles.  Things
like,  for  example,  how the  laws of nature  we most  often  care about  emerge  through
collective self-organization and really do not require detailed knowledge of their compo-
nent parts to be comprehended and exploited, that is, nature is regulated not only by a
microscopic rule base, but by powerful and general principles of organization.  Some of
these macroscopic principles are known, but the vast majority are not (Laughlin 2005:
preface & ch. 1).

A  graduate  degree  in  Secondary  Education  is  a  reenforcement  that  a  teacher
deals with a continuously dynamic, and pervasively complex, circumstances.  Educators
do  more  than  study  frogs,  in  fact,  many  biology  teachers  include  frogs  within  their
syllabus.   Teachers  teach about frogs to a collection of students – each more Gordian
than a frog – deep within an multilayered education system (review Figure 2.1.3-1) for
purposes stated without consensus.   Perhaps the malfunction of many earlier scientific
approaches into education research originating from without, came from their inability
to address the thorough complexity of the subject.  In starting with physics and moving
into education, I have observed that the extent to which a scientific approach has been
successful  at  discovering  mathematical  expressions  capturing  regularities  has  been
graded, to put it mildly.  Aspects of human society are far more complex than the non-hu-
man, natural world, plus human planning and understanding makes for individual varia-
tion that disrupts our best attempts at discovering statistical regularities or steady forms.
Students, society, and our knowledge is so combinatorially rich and self-referential that
prediction  becomes  ineffectual.   Indeed,  sometimes  complexity  can  manifest  itself  in
even very simple systems (see Figure 2.2-1), but, while the complexity barrier certainly
is central to the story, it does not imply that we shall never discover describable useful
regularities  underlying  in our learning  behavior  and knowldege  producing  institutions
using different approaches.
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Figure 2.2-1   A 1-D cellular  automata  representation  of  six-hundred  (downward)
generations from a single "seed" (top) using "rule 30" (Wolfram 2002: ch. 2), made
with Mathematica.  Cellular automata provide a convenient way to represent many
kinds of systems in which the values of cells in an array are updated in discrete steps
according to a local spatial rule.  A 1-D cellular automata is a exemplar of the stuctur-
alist paradigm.   For instance,  the state of the system across any row is completely
determined by the state of the system at the row above, in a self-referential recussion
whereby  structure  begets  structure.   Time  is  reduced  to  an  iteration  counter  and
completely  subsumed into the second spatial  direction (downwards),  such that,  the
history of the process is embedded in the overall structure of the system.  Despite the
absolutely certain and trivial initial conditions at the peak, and simplicity of the local
rule based on the states of nearest  neighbors,  this completely  deterministic  system
exhibits sophisticated structure.  Observe the left third of the diagram to be organized
and patterned,  the right  third to be randomly arranged,  while the central  third dis-
plays a border region transitory between order and randomness.
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‡ 2.2.2 Introduction to the Use of Complexity in Physics 
Research

There are really three ultimate frontiers of physics: the very small,
the  very  large,  and  the  very  complex.   It  is  only  comparatively
recently  that  complex  systems have received systematic  study as a
physical science.

Davies,  Paul  C.  W.   (1989)  The  New  Physics:  a  Synthesis,  in
Davies,  P.  (ed.)  The  New  Physics  (Cambridge,  UK:  Cam-
bridge University Press), p. 4.

Although there is no universally accepted definition of a complex system (Zieme-
lis  & Allen  2001),  Boccara  (2004:  viii)  describes  as  complex  a system of  connected
agents that exhibits an emergent global behavior not imposed by a central controller, but
resulting from the interactions between many agents.  In his book, Modeling Complex
Systems, he reports  that describing the emergent  global behavior  in a large system of
interacting agents using traditional analytic methods is usually hopeless, and researchers
therefore  must  rely on computer-based  methods.   Apart  from a few exceptions,  most
properties of spatially extended systems have been obtained from the analysis of numeri-
cal  modeling  (Wolfram  2002:  737-751).   Although  simulations  of  interacting  multi-
agent systems are thought experiments, the aim is usually not to study comprehensively
accurate representations of theses systems.  The main purpose of a model is to broaden
the understanding of general principles valid for the largest variety of systems, such that
models have to be a simple as possible (Hatcher 1990: 35) while preserving the proper-
ties of interest.  To summarize, complex systems exhibit some common characteristics,
such as: a) they consist of a large number of interacting agents;  b) they exhibit emer-
gence; that is, a self-organizing collective behavior difficult to anticipate from the knowl-
edge of the agents' behavior; 3) their emergent behavior does not result from the exist-
ence of a central controller (Boccara 2004: 3).

 The remarkable propensity for matter and energy to self-organize into coherent
structures and patterns is only very recently becoming appreciated by physicists.  Partly
this is because of the longstanding emphasis that physicists have given to linear systems.
The many achievements  of physics  over the last  few centuries  were mostly based on
reductionist  approaches,  whereby the system of interest  is reduced to a small, isolated
portion  of  the  world,  with  full  control  of  the  parameters  involved  (e.g.,  temperature,
pressure,  electric  field).   An interesting  instance  of  reductionism,  is  the  modeling  of
non-linear phenomena with linear models by restricting the parameters and variables in
terms  of  a  linear  approximation  plus  perturbations.   Nevertheless,  with  reductionist
approaches only limited classes of real-world systems may be treated, for the complex-
ity inherent in naturally-occurring phenomena cannot be encompassed in the theoretical
analysis (Costa et al. 2008).  There is now a trend in physics to extend an austere scien-
tific method to become more integrationist and deal explicitly with complex approaches.
Self-organization  (Blazis 2002) and the related subject of chaos (Kauffman & Johnsen
1991) are essentially nonlinear in nature (Nicolis 1989) with the "presence of constraints
maintaining  the system far  from equilibrium."   As a result,  they are harder to under-
stand, but they possess a richer variety of behavior (Krackauer 2005; Edelman & Gally
2001).

 
Physics is the study of patterns in nature conducted in order to understand how

phenomena  and the universe  behave,  and these regularities  are expressed  using some
sort of mathematics.  As complex phenomena become sufficiently well understood to be
represented  and  analyzed  formally  they  attract  more  attention  from  physicists  who
recognize the need for a modification of a strict reductionist classical model of science
yet wish to remain grounded in the scientific tradition (Morcol 2001).  Very often such
natural patterns are inherently spatial, occurring in extended matter for example, or can
be made spatial via abstraction of the phenomena by geometric tools such as graphing.
The concept of what is nature, and what is natural, is rather inclusive in the naturalistic
assumptions  of the thesis.  Along with Davis & Sumara (2006: 47) who propose "the
very  same  organizing  principles  seem  to  be  at  work  in  both  the  physical-biological
world and the social-cultural world", it is here assumed that many (if not all) aspects of
the Education system – be they physical, biological, social, or cultural – can be thought
of as natural.  And, to the author of this thesis at least, when possible, natural phenom-
ena are best examined,  in principal,  by appropriate variations and extensions of scien-
tific thinking (see Stinchcombe 2005 for support).  For the specific case of course struc-
ture in Alberta's  Education  system, a pilot  project  within  the paradigm of complexity
science is contrived over the remaining pages.  In physics, the approach to understand-
ing systems observed to be complex is characterized by Davis & Sumara (2006: 21-23)
as "hard complexity science" (see also, Richardson & Cilliers 2001), and it is important
to  recognize  that  for  contemporary  physicists,  complexity  is  an  explanatory  concept
(Kauffman 1993).  According to Phelan (2001), hard complexity science "posits simple
causes for complex effects.   At the heart of complexity science is the assumption that
complexity  in  the  world  arises  from  simple  rules."   Also,  its  assumed  "there  exist
'universal' features" analogous to those understood in statistical physics (Ball 2003), so
that often the "details do not matter" since certain aspects of complex phenomena tran-
scend the particulars  and are expected in any system of a multitude of simultaneously
interacting  components.   To invoke  complexity  science  when referring  to  a  complex
system is to explain how a particular structure or pattern of behavior has arisen.  Explana-
tion follows from an appeal  to a broader set of mechanisms than reductionism alone,
such as, upward causation, downward causation, or even distributed causation (Holland
1993).  A complexity account often takes the form of explaining wide-scale patterns or
even  global  structures  by  the  behavior  and  interactive  properties  of  individual  units
interacting with the immediate neighbors in their environment (Wolfram : ch. 1).

Physicists have always been drawn to fundamentals, and from them a significant
portion  of  complexity  science  has  come  forth.   Yet,  many  tendencies  in  complexity
studies point towards a necessary sensitivity to context (Allen 2001); so lodged within
complexity  are  the  roots  of  a  key  postmodern  theme  – situated  knowledge  (Koertge
2000).   For  example,  there  are  systems  where  both  the  properties  of  the  individual
components and the nature of their interactions are reasonably well understood, yet the
collective  behavior  of  the  ensemble  can  still  defy  simple  explanation  (Debendetti  &
Stillinger  2001).   But,  physicists  seem to  have  a  successful  habit  of  steering  around
particulars.   For  example,  if  contextual  rules  (Gershenson  2007:  13)  seem to emerge
spontaneously, the physicist may ask something like, "what are the principles and bound-
ary conditions  governing  the  emergence  of context  specific  rules?" (see for example,
Guerin & Kunkle 2004).  For a physicist, given any specific system, there is always a
possibility for appeal, upwards or downwards, to a simplifying and unifying framework
of explanation, such as to ask, "what are the general rules of the emergence and submer-
gence governing this phenomena?"  On the other hand, there are systems in which the
microscopic properties and processes can be immensely complex and seemingly noisy,
yet on larger scales they exhibit certain classes of simple behavior that seem insensitive
to the mechanistic details (Sentha 2001).  For example, fundamental scaling laws (Stan-
ley 1999) exist that make the behavior and properties of broad categories of phenomena
predictable in a limited fashion (Bianlonski et al. 2010).  But, the theoretical physicist's
primary strategy of mathematical modeling and the accompanying needs of tractability
might give rise to assumptions that are demonstrably antithetical to a correct understand-
ing  and  theorizing  of  human  social  constructs,  such  as  the  education  system and  its
knowledges,  especially due to its interaction with an external fluctuating environment.
In the study of complex systems generally, social systems more specifically, and aspects
of education for instance, care must be taken to identify assumptions and adapt investiga-
tive  methods  to  manage  how  far  the  investigated  complex  phenomena  have  to  be
"warped to fit the tractability constraints" (Henrickson & McKelvey 2002). 
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particulars.   For  example,  if  contextual  rules  (Gershenson  2007:  13)  seem to emerge
spontaneously, the physicist may ask something like, "what are the principles and bound-
ary conditions  governing  the  emergence  of context  specific  rules?" (see for example,
Guerin & Kunkle 2004).  For a physicist, given any specific system, there is always a
possibility for appeal, upwards or downwards, to a simplifying and unifying framework
of explanation, such as to ask, "what are the general rules of the emergence and submer-
gence governing this phenomena?"  On the other hand, there are systems in which the
microscopic properties and processes can be immensely complex and seemingly noisy,
yet on larger scales they exhibit certain classes of simple behavior that seem insensitive
to the mechanistic details (Sentha 2001).  For example, fundamental scaling laws (Stan-
ley 1999) exist that make the behavior and properties of broad categories of phenomena
predictable in a limited fashion (Bianlonski et al. 2010).  But, the theoretical physicist's
primary strategy of mathematical modeling and the accompanying needs of tractability
might give rise to assumptions that are demonstrably antithetical to a correct understand-
ing  and  theorizing  of  human  social  constructs,  such  as  the  education  system and  its
knowledges,  especially due to its interaction with an external fluctuating environment.
In the study of complex systems generally, social systems more specifically, and aspects
of education for instance, care must be taken to identify assumptions and adapt investiga-
tive  methods  to  manage  how  far  the  investigated  complex  phenomena  have  to  be
"warped to fit the tractability constraints" (Henrickson & McKelvey 2002). 
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‡ 2.2.3  On the Use of Complexity in Education Research

In order  for a complexity  perspective  to begin  to  have any practical  teaching
significance or theoretical implications,  an understanding of the applicability of a com-
plexity science approach,  versus (especially  for a physicist)  a reductionist  approach is
helpful.  Reductionism, as a guiding principle, is tremendously powerful – most of the
past two centuries of success in physics is a testament – but the assumption that it is the
only principle is limiting.  Reductionism becomes less effective when the act of dividing
a problem into its parts leads to loss of important information about the whole by disre-
garding  component-component  interactions  and  the  resulting  dynamics  and  structure
(see Figure 2.2.3-1).  As a general rule, reductionism is less helpful for systems where
interactions  between components  dominate  the components  themselves  in shaping the
system-wide  behavior.   After  some forays and failures  into the social  sciences,  tradi-
tional  analytic science,  with its central  assumptions  of reductionism developed a, per-
haps deserved, reputation among many within certain areas of the arts, humanities, and
social  sciences  as a hindrance  to insight  within  their  fields  rather  than a means  to it
(Davis 2004, p. 93).

Many practices and concepts included in a complexity approach may not be new
to educational researchers and teachers.  Educational traditions such as discourse analy-
sis, narrative inquiry, critical studies, and social cartography bring multi-faceted think-
ing to educational research as a response to the demands of the complex subject and as
philosophical belief that the world (including students), and the experience of the world,
is dynamic and interactive (Hayles 1991).  Unlike modern complexity theory, however,
human intuition and observation primarily serve as the basis for advancing educational
knowledge,  without  significant  implementation  of  contemporary  mathematical  and
advanced  computational  tools.   But,  the  widespread  benefits  of  complexity  theory
applied to education has at least several barriers  to overcome.  The mathematical  and
computational  tools  are  available  but  still  immature  (Wolfram  2002,  ch.  1).   As
observed by Nespor (2003), the many layers and surprisingly wide scope of the webs of
relationships that affect the educational experience need to be elaborated in detail.  Yet,
a feasible and cost-effective means to acquire comprehensive data across multiple tempo-
ral and spatial conditions without causing teacher/student  inconvenience and excessive
costs need to be developed.   Currently,  integrated tracking of technology use, such as
computers  and cell  phones,  is  leading  spatio-temporal  research  in the social  sciences
(Goodchild & Janelle 2004b).  But, complex analysis is inherently a long-term, broad-
based  research  endeavor  that  discourages  researchers  accustomed  to  results  within  a
predictable  timeframe (Ahn et al.  2006).  The challenges  of incorporating  complexity
science  into  education  are  difficult  but  maybe  not  insurmountable,  especially  given
enough  time  and  judicious  borrowing  of  knowledge  and  techniques,  such  as,  from
ecology (Sole & Montoya 2001).  Or, for example, systems biologists, who at times deal
with huge numbers of contextually sensitive, diverse, and interacting genes and proteins,
and so facing formidable complexity issues, though not nearing that of an educational
researcher  or  teacher.   Nevertheless,  systems  biologists  and  ecologists  recognize  the
necessity  of  a  complexity  science  perspective  (Alon  2007),  and  it  may  be  time  that
educational researchers do the same and produce autochthonous approaches.
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Figure  2.2.3-1   A  metaphorical  comparison  between  scientific  educational
approaches  motivated  by  reductionism  versus  complexity.   Differences  in  educa-
tional  activities,  sensitivities,  and approaches  stem from divergent  problem-solving
tactics and theory.  Reductionism focuses on components and, in the process, tends,
sometimes deliberately, to lose information about time, space, and context.  Complex-
ity science focuses as much on the interactions and so apportions less time studying
individual system components (Jorg et al. 2007).
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‡ 2.2.4  Some Relevant Institutional Facts About Alberta's 
Wide-scale Education System

Mr.  Taylor:  "Can the  minister  disclose  the  rationale  for  setting a
target  of  a  mere  1 per  cent  improvement  in  student  learning  out-
comes over a five-year period?"
Mr. Hancock: "Mr. Speaker, when you're doing exceptionally  well,
it's hard to get even better."

A small  part  of  an  exchange  between  opposition  member  Taylor,
and  education  minister  Hancock  regarding  student  achieve-
ment  goals  during  question  period  at  the  Legislature  of
Alberta, circa December 2010.  Transcript available online at
<http://www.davehancock.ca/2010/12/question-period-provinc
ial-ach-1.html>.

Alberta's school system is a provincially administered organization that includes
more  than  two-thousand  schools  where  more  than six-hundred  thousand  students  can
spend thirteen years before graduating with a high school diploma, and wherein, nearly
thirty-seven thousand teaching professionals and about five thousand support staff spend
entire careers (Alberta Teachers' Association 2007).  In Alberta, there are 1 317 separate
courses in the school system that can lead to a high school diploma, and of those, there
are 137 courses that can contribute to University of Alberta admission (Alberta Educa-
tion  2006).   The  budget  for  the  Provincial  Ministry  of  Education  is  over  $6  billion
(Alberta  Education  2010).   Since  1995,  in  the  performance  on the  international  tests
PISA, TIMMS, and PIRLS†, Canada ranks well within the world's top ten (Ruzzi 2005,
Wantanabe  et  al.  2006),  and  Alberta's  students  consistently  rank  near  the  top  of  the
country  (see  for  example,  Alberta  Education  2007  &  Alberta  Education  2008;  The
Economist  2006).   Approximately  thirty-seven  thousand  students  are  enrolled  at  the
provincial University, guided by 3 644 academic staff (University of Alberta 2008).  The
University of Alberta sustains more than four-thousand undergraduate  courses, and the
Faculty  of  Science  alone  offers  more  than  seventy  distinct  degrees  (University  of
Alberta  2006).   The publication,  Times Higher  Education  (THE),  World  Universities
Ranking  2009,  places  University  of  Alberta  at  the  fifty-ninth  position  and  its  recent
trajectory is upward.  In summary, Alberta's education system is here observed to be a
huge, successful knowledge producing social structure that deserves some attention and
study,  but,  regardless  of experience,  no student,  teacher,  counsellor,  administrator,  or
researcher  ever  meaningfully  encounters  more  than a small  portion of it  (Bell  1980).
This thesis also focuses on only a small portion of the education system – the courses
and their prerequisite interrelationships – but it is a ubiquitous, internal, uniting portion
that offers system-wide apprehensions.   Addressing the courses as substance is to steer
analysis  toward  actual  operations  and  student  experiences  and  away  from the  stated
goals, assumptions, and purported purposes of education (Clark 1984).
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______________________________
†  PISA: Programme for International  Student Assessment;  TIMMS: Trends in Interna-
tional Mathematics and Science Study; PIRLS: Progress in International Reading Liter-
acy Study.

‡ 2.2.5  An Education System as a Learning System

A knower is a physical system that might be described as a stable
pattern in a stream of matter; a body of knowledge is an ideational
system and might be understood in terms of stabilized but mutable
patterns  of acting that are manifest  by a knower.   ...   Throughout
this text, we have been using the word learning to refer to ongoing
transformations  of both knowledge-producing  systems  and systems
of knowledge produced.

Davis  & Sumara  (2006) Complexity  and Education:  Inquiries  into
Learning, Teaching, and Research, p. 155.

Education is viewed in this thesis as the structuring of a situation in ways that
help students change, through learning, in intentional ways.  This is done at many levels,
but certainly situation structuring through teacher instruction within classrooms and the
administrative  ordering  of  courses  themselves  affect  learning.   Learning  within  the
education system is defined by Adebayo (2009) as "a change within the student that is
brought about by the instructional program of a school".  As far as teaching is concerned
to  be  a  project  of  "prompting  learners  away  from  certain  activities  or  attitudes  and
toward others" (Jorg et al. 2007), learning can be observed as a change in the student
after instruction has taken place.  Alberta's education system is at least a particular set of
processes  and structures  that  result  from the social  organization  of people,  resources,
and information resulting in the development of academic knowledge and its learning by
students.

Let the activity of students enrolled in courses, as an example of a "knowledge-
producing  system",  be  called  academic  learning.   Consider  learning  for  students  to
generally be the acquiring of new knowledge,  behaviors,  skills,  values,  preferences or
understanding, which may involve synthesizing different types of information involving
complex cognitive processes such as perception, communication, association and reason-
ing.  The general view of academic learning adopted in this thesis is explained simply
by Reagans & McEvily (2003) when they write "that people learn new ideas by associat-
ing those ideas with what they already know".  While,  Tzanakis  & Thomaidis  (2000)
offer  a  more  sophisticated  and directly  applicable  view of  academic  learning  as  "the
creation by the learner of links between new information and his or her already-existing
conceptual framework.  In this way, new information acquires a meaning and becomes
knowledge".   So, meaning of information does not just reside in the code of the mes-
sage, but stems from the shared interpretation of those symbols coming from culturally
situated minds of the sender and receiver (Hofstadter 1979: ch. 6).  That is, an appropri-
ate  context  is  crucial  to  the  interpretation  of  new information  (McCarty  1995);  says
Cohen & Stewart (1994: 293), "meaning is a matter of context, not content."  This view
of learning for students is supported by other authors (Means & Voss 1985; McNamara
&  Kintsch  1996)  who  empirically  measure  the  effects  of  "prior  knowledge"  and
"background knowledge" to facilitate comprehension of new material.  To neurologists,
higher level brain functions depend on neuronal networks having "energy efficiency and
the  capability  for  dynamic  reorganization"  in  response  to  stimulation  (Laughlin  &
Sejnowski 2003).  In computer science, artificial neural networks learn tasks by adjust-
ing the connection strengths among internal elements according to a contextual fitness
criteria (Rumelhart & McClelland 1986; Rujan & Marchand 1989).  Therefore, let it be
recognized here that learning for students requires, at least, an appropriate, preexisting,
mental,  and "ideational"  context  (Eid 2004) within which to engage new information,
and learning results  in attuned changes to both the learner's  held knowledge  structure
and the structure of their physical being (Davis & Sumara 2006: 13).

To be more formal  and in an attempt  to functionalize,  though  not define,  the
concepts of knowledge and learning for quantitative work later in the thesis, let learning
for  students  in the education  system be considered  a process  of change  in what  they

know, written as, o  Ø


  , where o  represents what a student knows before enroll-
ment in a course,  symbolizes the process of learning in the course, and  represents
what a student knows after course completion.  Since, as described above, learning for a
student is at least a function of previous knowledge and new information, let  = (o,
, x), where  is the information introduced to a student during a course, and x repre-
sents all other unexamined factors influencing a student's learning (including teaching,
student effort, etcetera).  Further assume that during academic learning new information
is introduced  to students  as part  of education  in proportion to the value of the credit
weight  assigned  to  a  course  by  administration;  in  University,  the  credit  weight  of  a
course is associated  with a star symbol with most courses assigned three credits (¯3),
while  in  high  school,  many  courses  have  five  credits;  therefore,  let    ∝  ¯  for  any
course.  Important for arguments developed further in this thesis is the acceptance there
needs to be an affective coupling for the new information in any course, , to transform
the  student's  prior  knowledge,  o,  otherwise,  at  the  end  of  the  course,  the  student's
academic knowledge regarding the subject will be little changed,  ≈ o.  Specifically,
the  absence  of  prerequisite  knowledge  for  a  student  in  a  course,  o  é  prerequisite ,
implies  that  little  of  the  learning  objectives  will  be  achieved  save  for  extraordinary
influence from other factors, x.  By assuming that students generally follow university
regulations  by  indeed  having  the  required  prerequisite  knowledge  for  each course  in
which  they  enroll,  o  û  prerequisite ,  and  by  assuming  all  other  unexamined  factors
influencing learning are distributed among students, say x = constant, the analysis in this
thesis is limited to tracking and accounting for the awarding of academic credits through-
out the education system, so that the changes in a students' knowledge upon completion
of a course, or the amount a course contributes to the "system of knowledge produced",
is proportional to its academic credits, such that, D ∝ ¯, on average.  For example, a
student who completes a ¯3 credit course is generally expected to learn half as much as
a student who completes a ¯6 credit course or two three credit courses.

A goal of education is to teach people to function in the society of which they
are a part.   Not only individuals  reap the fruits of a good education,  the society itself
benefits from well-educated people.  An education system can thus be seen as a combina-
tion of what is beneficial for the development of the individual and what is beneficial for
the society in which the system is implemented.  Alberta's education system is an exam-
ple of a decentralized (Becher & Kogan 1992: ch. 4), "self-regulating" social institution
that structures the experience of individuals in a dual manner, both limiting and enabling
their personal  agency (Taylor 2004: ch. 11; Giddens 1984b; Hargreaves  1995).  Such
institutions  are paradoxical  in some ways, according to Chowers (2004: 1-8), because
they  are  the  lingering  result  of  a  historical  process  whereby  the  personal  agency  of
previous individuals  has set up enduring social  structures  that both capture and assist
later generations, thus governing their personal agency in a social feedback loop.  That
social  structure  and  personal  agency  are  always  present  and  affecting  each  other  in
education,  permit  the  structure/agency  pair  to  be  collectively  considered  and  called,
following arguments made by Davis & Sumara (2006: ch. 8), a "simultaneity".

Due  to  the  education  system's  shear  size  and  its  decentralized,  social  nature
arising from the interactions of so many people concerned with the production, mainte-
nance,  and  communication  of  academic  knowledge,  many  authors  have  explicitly
argued  it  is  inherently  complex  (see  Jorg  et  al.  2007;  Clark  1993;  Goldspink  2007;
Fleener 2002a: 143).  For example, Yoon & Klopfer (2006) see education as a complex
system,  due to the prevalent  feedback,  adaptive,  and self-organizing  processes,  which
needs to be recognized  and worked within as such.  Ben-Baruch (1983) stresses  how
schools act in, and react to, an environment  of geographical,  historical, economic, and
cultural  aspects  which  "constantly  interact  and  create  a  state  of  diffusiveness  and
change".  In §2.1.3 (please briefly review Figure 2.1.3-1), many nested spatial scales or
levels of affect in education are briefly sketched based on Davis & Sumara (2006: 28) –
wherein  an  interdependence  between  the  lower  and  higher  levels  in  the  educational
hierarchy is suggested.   This dependence does not only work bottom-up, from student
achievement to school achievement to provincial achievement; it also works top-down:
at the organizational level in the system, policy makers directly influence the processesthat occur within schools.  One interactive level of interest in the thesis is curriculum, which a few authorsidentify as a complex subsystem in education (for example, Fleener 2002a: 174) becauseof its openness  to influence (Doll et al. 2006: 168) and its changing structures (Klein2004).   Davis  &  Simmt  (2006)  say  curriculum  is  a  "nested"  layer  between  "formalschooling" and, subject knowledge (such as "formal mathematics").  From these authors,it is assumed the curriculum structure itself reflects the complex nature of the educationsystem.  Courses are features of curriculum structure since they occasion student encoun-ters  with  specific  subject  knowledges  and represent  a basic  unit  of interface  betweenstudents  and academics.   The question of whether curriculum remains complex at thelevel of courses is specifically addressed in §4.1.1.2.Commonly cited factors aggravating complexity in education are the increase indisciplinary  knowledges  (Stokstad  2001)  and  the  number  of  students  entering  highereducation.   The  entire  curriculum,  from  K-12  through  undergraduate  university,  asdescribed by Klein (2002: 3) is "bulging at the seams", leading to the popular image ofthis  phenomenon  as  a  "knowledge  explosion".   She  describes  how  the  "staggeringincrease in the amount of knowledge and information" has made it impossible to teacheverything, even in a single subject.  Simultaneously,  a dramatic increase in enrolmentfor higher education  beginning in the mid-to-late  twentieth  century has resulted in anuncoordinated  expansion of universities  (Shattock 1996;  Clark 1984).  Accompanyingthe demands of knowledge management due to the rapid ascendance of the importanceof knowledge and widespread access in the new information age, according to McClel-lan et al. (2006), are the required technologies and associated IT knowledge resulting ina phenomena they call "technological bloat", exemplified by the increased use of comput-ers and commuter mediated communication in education institutions, which can some-times  add  to  the  complexity  experienced  by  students,  teachers,  and  administrators.Cohen & Stewart (1994: 352) view this complexification of the environment as a resultof our social ability to "store knowledge  in our culture rather than in our brains" andthey  label  this  in  all  its  forms  as  "information  technology".   Taken  together,  theseauthors describe education as a system with high "throughput" of students and informa-tion.   For Hubler  (2005b),  the defining criterion  for all  complex systems is that their"throughput"  is  increased  beyond  a certain  threshold,  so that  the  "flow of a mediumthrough the open system is large".  Thus Hubler's concise characterization of a complexsystem can be used for the basis of a reasonable assumption taken here that the educa-tion  system  is  necessarily  complex  because  of  the  great  streams  of  information  andpeople  flowing through it,  such that unexpected  patterns  and properties  emerge.   Thespecific patterns of emergence most under scrutiny in this thesis are among the coursesand their prerequisite dependencies.Given  that  education  in Alberta  is  an example  of  a complex social  system atleast partially comprised of concrete, tangible things such as persons, equipment, build-ings, even information (see Smolin & Oppenheim (2006) for an example of how informa-tion is viewed as tangible by physicists), does not imply that it is concrete and tangibleas  an  organization.   The  education  system  generally,  and  schools  in  particular,  aredescribed by Ben-Baruch (1983: Part I) as essentially social artifacts which are "abstractcontrived phenomena" regulated by goals, roles, satisfaction, power, beliefs, leadership,relationships,  and communication.   The influence  of these notional  concepts  result  in"an organized, non-random interrelatedness among parts that constitute a whole" (p. 34).Similarly for Cartwright (1968: 1), social organizations are defined by the "arrangementof their interdependent parts, each having a special function with respect to the whole".Thus, to understand important characteristics of education as a social system requires anunderstanding of the defining relationships and patterns of interactions among the parts,which in turn is linked to its productivity, information processing, and adaptation (Frank&  Fahrbach  1999),  otherwise  summarized  by  Davis  &  Sumara  (2006:  p.  99)  as"structurally determined behavior".Culminating  to  this  point  in  the  subsection,  Alberta's  education  system  isdescribed  as  a large,  adaptive,  self-organizing,  complex  social  system sensitive  to  itsenvironment with important characteristics determined by the organized relations amonginternal components.  This description falls within the category some pioneering research-ers in Education have coined "learning systems" (for example, Hargreaves 2003: ch. 9;Davis  & Simmt  2003;  Davis  & Sumara  2006:  ch.  5),  which appears  similar  to whatKauffman  (1990)  calls  "complex  information  processing  systems".   Davis  & Sumara(2006: 12) say that adequately  complex systems learn through appropriate  "structural"transformations  to  adapt  their  capabilities;  for  them:  "adaptation  –  that  is  learning".Likewise, Giddens (1984b) describes how "social actors . . . adapt their actions to theirevolving understandings",  while Maturana & Varela (1998: 170) write how "learning"and  "adaptation"  are  merely  different  perspectives  on what  they  call  "structural  cou-pling"  of  a  learner  responding  to  the  environment.   For  Kauffman,  the  equivalencebetween learning and adaptation is so evident he just blankly equates the two when hewrites, "adaptive evolution or learning", and moves on.  Therefore, from theses authors,learning is accepted here as an adaptive process by a generalized learner open to informa-tion or stimulus that results in changes to internal knowledge and physical structures."Learning systems" is a category that explicitly  includes collectives  as well asindividual  learners.   Besides  students,  Davis  et  al.  (2004)  list  "classroom collectives,schools,  student bodies, communities,  societies,  and cultures" as other nested, learningphenomena of concern to educators and educational researchers.  Similar to learning inindividuals but at a broader scale, as the structures of organization change in response toexogenous  shocks,  a  social  organization  "learns"  from  its  environment  (MacDonald1995; Gafiychuk et al. 1997; Wilson 1997).  Exogenous shocks cause learning at twolevels.  First, individuals within learn as they are exposed to new information, which, inturn, changes their "sentiments and interactions".  Second, changes in the overall distribu-tion of sentiment and pattern of interaction (including resources) constitute learning atthe organization level (Stynme 1970).  Conversely, the organizational structures at anygiven time affect how the organization absorbs information.  Thus organizational learn-ing is generally a function of the interaction of exogenous shocks and the existing organi-zational  structures  that are partly functions of previous shocks (Hedberg 1981).   Thisview is  supported  in computer  science,  where  group learning  can be measured  as anincrease  of  constraints  that  limit  degrees  of  freedom of  individual  agents  (Guerin  &Kunkle  2004)  as  the  collective  adapts  to  the  environment.   Specifically,  learning  inagent based models can occurs through (a) changes in agent interaction patterns (Gamb-hir et al. 2004), (b) changes in agents' internal rules, or (c) changes to potential informa-tion stored in the environment  by the collective,  e.g. pheromone trail following in antforaging systems (Bonabeau et al.1999: ch. 2).In this section learning is described as occurring within organizations as well asindividuals.   In all cases it is an recursive process whereby the learner adapts to newinformation from its environment (Carley 1995); learning results in "structural" changesto the ideational and the physical (and/or social) systems of the learner, which were theresult of previous learning.  Knowledge is represented in learners by their internal struc-ture, either  physical  or social.   An important  and ubiquitous  part of education are thecourses,  each  which  acts  as  a  locus  bringing  together  students,  teacher,  and  specificsubject knowledge.  A "basic functioning of the education system", according to Clark(1984),  is  the  organization  and  "packaging"  of  appropriate  academic  knowledge  intocourses.  It is here hypothesized the structure of courses are the result of simultaneous,adaptive processes between the knowledge-producing  education system and the systemof academic  knowledge  produced.   An understanding  and interpretation  of the coursestructure  as a kind of coarse-grained  fingerprint  of the complex  social  and ideationalinfluences can offer valuable insights into both.
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Education is viewed in this thesis as the structuring of a situation in ways that
help students change, through learning, in intentional ways.  This is done at many levels,
but certainly situation structuring through teacher instruction within classrooms and the
administrative  ordering  of  courses  themselves  affect  learning.   Learning  within  the
education system is defined by Adebayo (2009) as "a change within the student that is
brought about by the instructional program of a school".  As far as teaching is concerned
to  be  a  project  of  "prompting  learners  away  from  certain  activities  or  attitudes  and
toward others" (Jorg et al. 2007), learning can be observed as a change in the student
after instruction has taken place.  Alberta's education system is at least a particular set of
processes  and structures  that  result  from the social  organization  of people,  resources,
and information resulting in the development of academic knowledge and its learning by
students.

Let the activity of students enrolled in courses, as an example of a "knowledge-
producing  system",  be  called  academic  learning.   Consider  learning  for  students  to
generally be the acquiring of new knowledge,  behaviors,  skills,  values,  preferences or
understanding, which may involve synthesizing different types of information involving
complex cognitive processes such as perception, communication, association and reason-
ing.  The general view of academic learning adopted in this thesis is explained simply
by Reagans & McEvily (2003) when they write "that people learn new ideas by associat-
ing those ideas with what they already know".  While,  Tzanakis  & Thomaidis  (2000)
offer  a  more  sophisticated  and directly  applicable  view of  academic  learning  as  "the
creation by the learner of links between new information and his or her already-existing
conceptual framework.  In this way, new information acquires a meaning and becomes
knowledge".   So, meaning of information does not just reside in the code of the mes-
sage, but stems from the shared interpretation of those symbols coming from culturally
situated minds of the sender and receiver (Hofstadter 1979: ch. 6).  That is, an appropri-
ate  context  is  crucial  to  the  interpretation  of  new information  (McCarty  1995);  says
Cohen & Stewart (1994: 293), "meaning is a matter of context, not content."  This view
of learning for students is supported by other authors (Means & Voss 1985; McNamara
&  Kintsch  1996)  who  empirically  measure  the  effects  of  "prior  knowledge"  and
"background knowledge" to facilitate comprehension of new material.  To neurologists,
higher level brain functions depend on neuronal networks having "energy efficiency and
the  capability  for  dynamic  reorganization"  in  response  to  stimulation  (Laughlin  &
Sejnowski 2003).  In computer science, artificial neural networks learn tasks by adjust-
ing the connection strengths among internal elements according to a contextual fitness
criteria (Rumelhart & McClelland 1986; Rujan & Marchand 1989).  Therefore, let it be
recognized here that learning for students requires, at least, an appropriate, preexisting,
mental,  and "ideational"  context  (Eid 2004) within which to engage new information,
and learning results  in attuned changes to both the learner's  held knowledge  structure
and the structure of their physical being (Davis & Sumara 2006: 13).

To be more formal  and in an attempt  to functionalize,  though  not define,  the
concepts of knowledge and learning for quantitative work later in the thesis, let learning
for  students  in the education  system be considered  a process  of change  in what  they

know, written as, o  Ø


  , where o  represents what a student knows before enroll-
ment in a course,  symbolizes the process of learning in the course, and  represents
what a student knows after course completion.  Since, as described above, learning for a
student is at least a function of previous knowledge and new information, let  = (o,
, x), where  is the information introduced to a student during a course, and x repre-
sents all other unexamined factors influencing a student's learning (including teaching,
student effort, etcetera).  Further assume that during academic learning new information
is introduced  to students  as part  of education  in proportion to the value of the credit
weight  assigned  to  a  course  by  administration;  in  University,  the  credit  weight  of  a
course is associated  with a star symbol with most courses assigned three credits (¯3),
while  in  high  school,  many  courses  have  five  credits;  therefore,  let    ∝  ¯  for  any
course.  Important for arguments developed further in this thesis is the acceptance there
needs to be an affective coupling for the new information in any course, , to transform
the  student's  prior  knowledge,  o,  otherwise,  at  the  end  of  the  course,  the  student's
academic knowledge regarding the subject will be little changed,  ≈ o.  Specifically,
the  absence  of  prerequisite  knowledge  for  a  student  in  a  course,  o  é  prerequisite ,
implies  that  little  of  the  learning  objectives  will  be  achieved  save  for  extraordinary
influence from other factors, x.  By assuming that students generally follow university
regulations  by  indeed  having  the  required  prerequisite  knowledge  for  each course  in
which  they  enroll,  o  û  prerequisite ,  and  by  assuming  all  other  unexamined  factors
influencing learning are distributed among students, say x = constant, the analysis in this
thesis is limited to tracking and accounting for the awarding of academic credits through-
out the education system, so that the changes in a students' knowledge upon completion
of a course, or the amount a course contributes to the "system of knowledge produced",
is proportional to its academic credits, such that, D ∝ ¯, on average.  For example, a
student who completes a ¯3 credit course is generally expected to learn half as much as
a student who completes a ¯6 credit course or two three credit courses.

A goal of education is to teach people to function in the society of which they
are a part.   Not only individuals  reap the fruits of a good education,  the society itself
benefits from well-educated people.  An education system can thus be seen as a combina-
tion of what is beneficial for the development of the individual and what is beneficial for
the society in which the system is implemented.  Alberta's education system is an exam-
ple of a decentralized (Becher & Kogan 1992: ch. 4), "self-regulating" social institution
that structures the experience of individuals in a dual manner, both limiting and enabling
their personal  agency (Taylor 2004: ch. 11; Giddens 1984b; Hargreaves  1995).  Such
institutions  are paradoxical  in some ways, according to Chowers (2004: 1-8), because
they  are  the  lingering  result  of  a  historical  process  whereby  the  personal  agency  of
previous individuals  has set up enduring social  structures  that both capture and assist
later generations, thus governing their personal agency in a social feedback loop.  That
social  structure  and  personal  agency  are  always  present  and  affecting  each  other  in
education,  permit  the  structure/agency  pair  to  be  collectively  considered  and  called,
following arguments made by Davis & Sumara (2006: ch. 8), a "simultaneity".

Due  to  the  education  system's  shear  size  and  its  decentralized,  social  nature
arising from the interactions of so many people concerned with the production, mainte-
nance,  and  communication  of  academic  knowledge,  many  authors  have  explicitly
argued  it  is  inherently  complex  (see  Jorg  et  al.  2007;  Clark  1993;  Goldspink  2007;
Fleener 2002a: 143).  For example, Yoon & Klopfer (2006) see education as a complex
system,  due to the prevalent  feedback,  adaptive,  and self-organizing  processes,  which
needs to be recognized  and worked within as such.  Ben-Baruch (1983) stresses  how
schools act in, and react to, an environment  of geographical,  historical, economic, and
cultural  aspects  which  "constantly  interact  and  create  a  state  of  diffusiveness  and
change".  In §2.1.3 (please briefly review Figure 2.1.3-1), many nested spatial scales or
levels of affect in education are briefly sketched based on Davis & Sumara (2006: 28) –
wherein  an  interdependence  between  the  lower  and  higher  levels  in  the  educational
hierarchy is suggested.   This dependence does not only work bottom-up, from student
achievement to school achievement to provincial achievement; it also works top-down:
at the organizational level in the system, policy makers directly influence the processes
that occur within schools.  

One interactive level of interest in the thesis is curriculum, which a few authors
identify as a complex subsystem in education (for example, Fleener 2002a: 174) because
of its openness  to influence (Doll et al. 2006: 168) and its changing structures (Klein
2004).   Davis  &  Simmt  (2006)  say  curriculum  is  a  "nested"  layer  between  "formal
schooling" and, subject knowledge (such as "formal mathematics").  From these authors,
it is assumed the curriculum structure itself reflects the complex nature of the education
system.  Courses are features of curriculum structure since they occasion student encoun-
ters  with  specific  subject  knowledges  and represent  a basic  unit  of interface  between
students  and academics.   The question of whether curriculum remains complex at the
level of courses is specifically addressed in §4.1.1.2.

Commonly cited factors aggravating complexity in education are the increase in
disciplinary  knowledges  (Stokstad  2001)  and  the  number  of  students  entering  higher
education.   The  entire  curriculum,  from  K-12  through  undergraduate  university,  as
described by Klein (2002: 3) is "bulging at the seams", leading to the popular image of
this  phenomenon  as  a  "knowledge  explosion".   She  describes  how  the  "staggering
increase in the amount of knowledge and information" has made it impossible to teach
everything, even in a single subject.  Simultaneously,  a dramatic increase in enrolment
for higher education  beginning in the mid-to-late  twentieth  century has resulted in an
uncoordinated  expansion of universities  (Shattock 1996;  Clark 1984).  Accompanying
the demands of knowledge management due to the rapid ascendance of the importance
of knowledge and widespread access in the new information age, according to McClel-
lan et al. (2006), are the required technologies and associated IT knowledge resulting in
a phenomena they call "technological bloat", exemplified by the increased use of comput-
ers and commuter mediated communication in education institutions, which can some-
times  add  to  the  complexity  experienced  by  students,  teachers,  and  administrators.
Cohen & Stewart (1994: 352) view this complexification of the environment as a result
of our social ability to "store knowledge  in our culture rather than in our brains" and
they  label  this  in  all  its  forms  as  "information  technology".   Taken  together,  these
authors describe education as a system with high "throughput" of students and informa-
tion.   For Hubler  (2005b),  the defining criterion  for all  complex systems is that their
"throughput"  is  increased  beyond  a certain  threshold,  so that  the  "flow of a medium
through the open system is large".  Thus Hubler's concise characterization of a complex
system can be used for the basis of a reasonable assumption taken here that the educa-
tion  system  is  necessarily  complex  because  of  the  great  streams  of  information  and
people  flowing through it,  such that unexpected  patterns  and properties  emerge.   The
specific patterns of emergence most under scrutiny in this thesis are among the courses
and their prerequisite dependencies.

Given  that  education  in Alberta  is  an example  of  a complex social  system at
least partially comprised of concrete, tangible things such as persons, equipment, build-ings, even information (see Smolin & Oppenheim (2006) for an example of how informa-tion is viewed as tangible by physicists), does not imply that it is concrete and tangibleas  an  organization.   The  education  system  generally,  and  schools  in  particular,  aredescribed by Ben-Baruch (1983: Part I) as essentially social artifacts which are "abstractcontrived phenomena" regulated by goals, roles, satisfaction, power, beliefs, leadership,relationships,  and communication.   The influence  of these notional  concepts  result  in"an organized, non-random interrelatedness among parts that constitute a whole" (p. 34).Similarly for Cartwright (1968: 1), social organizations are defined by the "arrangementof their interdependent parts, each having a special function with respect to the whole".Thus, to understand important characteristics of education as a social system requires anunderstanding of the defining relationships and patterns of interactions among the parts,which in turn is linked to its productivity, information processing, and adaptation (Frank&  Fahrbach  1999),  otherwise  summarized  by  Davis  &  Sumara  (2006:  p.  99)  as"structurally determined behavior".Culminating  to  this  point  in  the  subsection,  Alberta's  education  system  isdescribed  as  a large,  adaptive,  self-organizing,  complex  social  system sensitive  to  itsenvironment with important characteristics determined by the organized relations amonginternal components.  This description falls within the category some pioneering research-ers in Education have coined "learning systems" (for example, Hargreaves 2003: ch. 9;Davis  & Simmt  2003;  Davis  & Sumara  2006:  ch.  5),  which appears  similar  to whatKauffman  (1990)  calls  "complex  information  processing  systems".   Davis  & Sumara(2006: 12) say that adequately  complex systems learn through appropriate  "structural"transformations  to  adapt  their  capabilities;  for  them:  "adaptation  –  that  is  learning".Likewise, Giddens (1984b) describes how "social actors . . . adapt their actions to theirevolving understandings",  while Maturana & Varela (1998: 170) write how "learning"and  "adaptation"  are  merely  different  perspectives  on what  they  call  "structural  cou-pling"  of  a  learner  responding  to  the  environment.   For  Kauffman,  the  equivalencebetween learning and adaptation is so evident he just blankly equates the two when hewrites, "adaptive evolution or learning", and moves on.  Therefore, from theses authors,learning is accepted here as an adaptive process by a generalized learner open to informa-tion or stimulus that results in changes to internal knowledge and physical structures."Learning systems" is a category that explicitly  includes collectives  as well asindividual  learners.   Besides  students,  Davis  et  al.  (2004)  list  "classroom collectives,schools,  student bodies, communities,  societies,  and cultures" as other nested, learningphenomena of concern to educators and educational researchers.  Similar to learning inindividuals but at a broader scale, as the structures of organization change in response toexogenous  shocks,  a  social  organization  "learns"  from  its  environment  (MacDonald1995; Gafiychuk et al. 1997; Wilson 1997).  Exogenous shocks cause learning at twolevels.  First, individuals within learn as they are exposed to new information, which, inturn, changes their "sentiments and interactions".  Second, changes in the overall distribu-tion of sentiment and pattern of interaction (including resources) constitute learning atthe organization level (Stynme 1970).  Conversely, the organizational structures at anygiven time affect how the organization absorbs information.  Thus organizational learn-ing is generally a function of the interaction of exogenous shocks and the existing organi-zational  structures  that are partly functions of previous shocks (Hedberg 1981).   Thisview is  supported  in computer  science,  where  group learning  can be measured  as anincrease  of  constraints  that  limit  degrees  of  freedom of  individual  agents  (Guerin  &Kunkle  2004)  as  the  collective  adapts  to  the  environment.   Specifically,  learning  inagent based models can occurs through (a) changes in agent interaction patterns (Gamb-hir et al. 2004), (b) changes in agents' internal rules, or (c) changes to potential informa-tion stored in the environment  by the collective,  e.g. pheromone trail following in antforaging systems (Bonabeau et al.1999: ch. 2).In this section learning is described as occurring within organizations as well asindividuals.   In all cases it is an recursive process whereby the learner adapts to newinformation from its environment (Carley 1995); learning results in "structural" changesto the ideational and the physical (and/or social) systems of the learner, which were theresult of previous learning.  Knowledge is represented in learners by their internal struc-ture, either  physical  or social.   An important  and ubiquitous  part of education are thecourses,  each  which  acts  as  a  locus  bringing  together  students,  teacher,  and  specificsubject knowledge.  A "basic functioning of the education system", according to Clark(1984),  is  the  organization  and  "packaging"  of  appropriate  academic  knowledge  intocourses.  It is here hypothesized the structure of courses are the result of simultaneous,adaptive processes between the knowledge-producing  education system and the systemof academic  knowledge  produced.   An understanding  and interpretation  of the coursestructure  as a kind of coarse-grained  fingerprint  of the complex  social  and ideationalinfluences can offer valuable insights into both.
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Education is viewed in this thesis as the structuring of a situation in ways that
help students change, through learning, in intentional ways.  This is done at many levels,
but certainly situation structuring through teacher instruction within classrooms and the
administrative  ordering  of  courses  themselves  affect  learning.   Learning  within  the
education system is defined by Adebayo (2009) as "a change within the student that is
brought about by the instructional program of a school".  As far as teaching is concerned
to  be  a  project  of  "prompting  learners  away  from  certain  activities  or  attitudes  and
toward others" (Jorg et al. 2007), learning can be observed as a change in the student
after instruction has taken place.  Alberta's education system is at least a particular set of
processes  and structures  that  result  from the social  organization  of people,  resources,
and information resulting in the development of academic knowledge and its learning by
students.

Let the activity of students enrolled in courses, as an example of a "knowledge-
producing  system",  be  called  academic  learning.   Consider  learning  for  students  to
generally be the acquiring of new knowledge,  behaviors,  skills,  values,  preferences or
understanding, which may involve synthesizing different types of information involving
complex cognitive processes such as perception, communication, association and reason-
ing.  The general view of academic learning adopted in this thesis is explained simply
by Reagans & McEvily (2003) when they write "that people learn new ideas by associat-
ing those ideas with what they already know".  While,  Tzanakis  & Thomaidis  (2000)
offer  a  more  sophisticated  and directly  applicable  view of  academic  learning  as  "the
creation by the learner of links between new information and his or her already-existing
conceptual framework.  In this way, new information acquires a meaning and becomes
knowledge".   So, meaning of information does not just reside in the code of the mes-
sage, but stems from the shared interpretation of those symbols coming from culturally
situated minds of the sender and receiver (Hofstadter 1979: ch. 6).  That is, an appropri-
ate  context  is  crucial  to  the  interpretation  of  new information  (McCarty  1995);  says
Cohen & Stewart (1994: 293), "meaning is a matter of context, not content."  This view
of learning for students is supported by other authors (Means & Voss 1985; McNamara
&  Kintsch  1996)  who  empirically  measure  the  effects  of  "prior  knowledge"  and
"background knowledge" to facilitate comprehension of new material.  To neurologists,
higher level brain functions depend on neuronal networks having "energy efficiency and
the  capability  for  dynamic  reorganization"  in  response  to  stimulation  (Laughlin  &
Sejnowski 2003).  In computer science, artificial neural networks learn tasks by adjust-
ing the connection strengths among internal elements according to a contextual fitness
criteria (Rumelhart & McClelland 1986; Rujan & Marchand 1989).  Therefore, let it be
recognized here that learning for students requires, at least, an appropriate, preexisting,
mental,  and "ideational"  context  (Eid 2004) within which to engage new information,
and learning results  in attuned changes to both the learner's  held knowledge  structure
and the structure of their physical being (Davis & Sumara 2006: 13).

To be more formal  and in an attempt  to functionalize,  though  not define,  the
concepts of knowledge and learning for quantitative work later in the thesis, let learning
for  students  in the education  system be considered  a process  of change  in what  they

know, written as, o  Ø


  , where o  represents what a student knows before enroll-
ment in a course,  symbolizes the process of learning in the course, and  represents
what a student knows after course completion.  Since, as described above, learning for a
student is at least a function of previous knowledge and new information, let  = (o,
, x), where  is the information introduced to a student during a course, and x repre-
sents all other unexamined factors influencing a student's learning (including teaching,
student effort, etcetera).  Further assume that during academic learning new information
is introduced  to students  as part  of education  in proportion to the value of the credit
weight  assigned  to  a  course  by  administration;  in  University,  the  credit  weight  of  a
course is associated  with a star symbol with most courses assigned three credits (¯3),
while  in  high  school,  many  courses  have  five  credits;  therefore,  let    ∝  ¯  for  any
course.  Important for arguments developed further in this thesis is the acceptance there
needs to be an affective coupling for the new information in any course, , to transform
the  student's  prior  knowledge,  o,  otherwise,  at  the  end  of  the  course,  the  student's
academic knowledge regarding the subject will be little changed,  ≈ o.  Specifically,
the  absence  of  prerequisite  knowledge  for  a  student  in  a  course,  o  é  prerequisite ,
implies  that  little  of  the  learning  objectives  will  be  achieved  save  for  extraordinary
influence from other factors, x.  By assuming that students generally follow university
regulations  by  indeed  having  the  required  prerequisite  knowledge  for  each course  in
which  they  enroll,  o  û  prerequisite ,  and  by  assuming  all  other  unexamined  factors
influencing learning are distributed among students, say x = constant, the analysis in this
thesis is limited to tracking and accounting for the awarding of academic credits through-
out the education system, so that the changes in a students' knowledge upon completion
of a course, or the amount a course contributes to the "system of knowledge produced",
is proportional to its academic credits, such that, D ∝ ¯, on average.  For example, a
student who completes a ¯3 credit course is generally expected to learn half as much as
a student who completes a ¯6 credit course or two three credit courses.

A goal of education is to teach people to function in the society of which they
are a part.   Not only individuals  reap the fruits of a good education,  the society itself
benefits from well-educated people.  An education system can thus be seen as a combina-
tion of what is beneficial for the development of the individual and what is beneficial for
the society in which the system is implemented.  Alberta's education system is an exam-
ple of a decentralized (Becher & Kogan 1992: ch. 4), "self-regulating" social institution
that structures the experience of individuals in a dual manner, both limiting and enabling
their personal  agency (Taylor 2004: ch. 11; Giddens 1984b; Hargreaves  1995).  Such
institutions  are paradoxical  in some ways, according to Chowers (2004: 1-8), because
they  are  the  lingering  result  of  a  historical  process  whereby  the  personal  agency  of
previous individuals  has set up enduring social  structures  that both capture and assist
later generations, thus governing their personal agency in a social feedback loop.  That
social  structure  and  personal  agency  are  always  present  and  affecting  each  other  in
education,  permit  the  structure/agency  pair  to  be  collectively  considered  and  called,
following arguments made by Davis & Sumara (2006: ch. 8), a "simultaneity".

Due  to  the  education  system's  shear  size  and  its  decentralized,  social  nature
arising from the interactions of so many people concerned with the production, mainte-
nance,  and  communication  of  academic  knowledge,  many  authors  have  explicitly
argued  it  is  inherently  complex  (see  Jorg  et  al.  2007;  Clark  1993;  Goldspink  2007;
Fleener 2002a: 143).  For example, Yoon & Klopfer (2006) see education as a complex
system,  due to the prevalent  feedback,  adaptive,  and self-organizing  processes,  which
needs to be recognized  and worked within as such.  Ben-Baruch (1983) stresses  how
schools act in, and react to, an environment  of geographical,  historical, economic, and
cultural  aspects  which  "constantly  interact  and  create  a  state  of  diffusiveness  and
change".  In §2.1.3 (please briefly review Figure 2.1.3-1), many nested spatial scales or
levels of affect in education are briefly sketched based on Davis & Sumara (2006: 28) –
wherein  an  interdependence  between  the  lower  and  higher  levels  in  the  educational
hierarchy is suggested.   This dependence does not only work bottom-up, from student
achievement to school achievement to provincial achievement; it also works top-down:
at the organizational level in the system, policy makers directly influence the processes
that occur within schools.  

One interactive level of interest in the thesis is curriculum, which a few authors
identify as a complex subsystem in education (for example, Fleener 2002a: 174) because
of its openness  to influence (Doll et al. 2006: 168) and its changing structures (Klein
2004).   Davis  &  Simmt  (2006)  say  curriculum  is  a  "nested"  layer  between  "formal
schooling" and, subject knowledge (such as "formal mathematics").  From these authors,
it is assumed the curriculum structure itself reflects the complex nature of the education
system.  Courses are features of curriculum structure since they occasion student encoun-
ters  with  specific  subject  knowledges  and represent  a basic  unit  of interface  between
students  and academics.   The question of whether curriculum remains complex at the
level of courses is specifically addressed in §4.1.1.2.

Commonly cited factors aggravating complexity in education are the increase in
disciplinary  knowledges  (Stokstad  2001)  and  the  number  of  students  entering  higher
education.   The  entire  curriculum,  from  K-12  through  undergraduate  university,  as
described by Klein (2002: 3) is "bulging at the seams", leading to the popular image of
this  phenomenon  as  a  "knowledge  explosion".   She  describes  how  the  "staggering
increase in the amount of knowledge and information" has made it impossible to teach
everything, even in a single subject.  Simultaneously,  a dramatic increase in enrolment
for higher education  beginning in the mid-to-late  twentieth  century has resulted in an
uncoordinated  expansion of universities  (Shattock 1996;  Clark 1984).  Accompanying
the demands of knowledge management due to the rapid ascendance of the importance
of knowledge and widespread access in the new information age, according to McClel-
lan et al. (2006), are the required technologies and associated IT knowledge resulting in
a phenomena they call "technological bloat", exemplified by the increased use of comput-
ers and commuter mediated communication in education institutions, which can some-
times  add  to  the  complexity  experienced  by  students,  teachers,  and  administrators.
Cohen & Stewart (1994: 352) view this complexification of the environment as a result
of our social ability to "store knowledge  in our culture rather than in our brains" and
they  label  this  in  all  its  forms  as  "information  technology".   Taken  together,  these
authors describe education as a system with high "throughput" of students and informa-
tion.   For Hubler  (2005b),  the defining criterion  for all  complex systems is that their
"throughput"  is  increased  beyond  a certain  threshold,  so that  the  "flow of a medium
through the open system is large".  Thus Hubler's concise characterization of a complex
system can be used for the basis of a reasonable assumption taken here that the educa-
tion  system  is  necessarily  complex  because  of  the  great  streams  of  information  and
people  flowing through it,  such that unexpected  patterns  and properties  emerge.   The
specific patterns of emergence most under scrutiny in this thesis are among the courses
and their prerequisite dependencies.

Given  that  education  in Alberta  is  an example  of  a complex social  system at
least partially comprised of concrete, tangible things such as persons, equipment, build-
ings, even information (see Smolin & Oppenheim (2006) for an example of how informa-
tion is viewed as tangible by physicists), does not imply that it is concrete and tangible
as  an  organization.   The  education  system  generally,  and  schools  in  particular,  are
described by Ben-Baruch (1983: Part I) as essentially social artifacts which are "abstract
contrived phenomena" regulated by goals, roles, satisfaction, power, beliefs, leadership,
relationships,  and communication.   The influence  of these notional  concepts  result  in
"an organized, non-random interrelatedness among parts that constitute a whole" (p. 34).
Similarly for Cartwright (1968: 1), social organizations are defined by the "arrangement
of their interdependent parts, each having a special function with respect to the whole".
Thus, to understand important characteristics of education as a social system requires an
understanding of the defining relationships and patterns of interactions among the parts,
which in turn is linked to its productivity, information processing, and adaptation (Frank
&  Fahrbach  1999),  otherwise  summarized  by  Davis  &  Sumara  (2006:  p.  99)  as
"structurally determined behavior".

Culminating  to  this  point  in  the  subsection,  Alberta's  education  system  is
described  as  a large,  adaptive,  self-organizing,  complex  social  system sensitive  to  its
environment with important characteristics determined by the organized relations among
internal components.  This description falls within the category some pioneering research-
ers in Education have coined "learning systems" (for example, Hargreaves 2003: ch. 9;
Davis  & Simmt  2003;  Davis  & Sumara  2006:  ch.  5),  which appears  similar  to what
Kauffman  (1990)  calls  "complex  information  processing  systems".   Davis  & Sumara
(2006: 12) say that adequately  complex systems learn through appropriate  "structural"
transformations  to  adapt  their  capabilities;  for  them:  "adaptation  –  that  is  learning".
Likewise, Giddens (1984b) describes how "social actors . . . adapt their actions to their
evolving understandings",  while Maturana & Varela (1998: 170) write how "learning"
and  "adaptation"  are  merely  different  perspectives  on what  they  call  "structural  cou-
pling"  of  a  learner  responding  to  the  environment.   For  Kauffman,  the  equivalence
between learning and adaptation is so evident he just blankly equates the two when he
writes, "adaptive evolution or learning", and moves on.  Therefore, from theses authors,
learning is accepted here as an adaptive process by a generalized learner open to informa-
tion or stimulus that results in changes to internal knowledge and physical structures.

"Learning systems" is a category that explicitly  includes collectives  as well as
individual  learners.   Besides  students,  Davis  et  al.  (2004)  list  "classroom collectives,
schools,  student bodies, communities,  societies,  and cultures" as other nested, learning
phenomena of concern to educators and educational researchers.  Similar to learning in
individuals but at a broader scale, as the structures of organization change in response to
exogenous  shocks,  a  social  organization  "learns"  from  its  environment  (MacDonald
1995; Gafiychuk et al. 1997; Wilson 1997).  Exogenous shocks cause learning at two
levels.  First, individuals within learn as they are exposed to new information, which, in
turn, changes their "sentiments and interactions".  Second, changes in the overall distribu-tion of sentiment and pattern of interaction (including resources) constitute learning atthe organization level (Stynme 1970).  Conversely, the organizational structures at anygiven time affect how the organization absorbs information.  Thus organizational learn-ing is generally a function of the interaction of exogenous shocks and the existing organi-zational  structures  that are partly functions of previous shocks (Hedberg 1981).   Thisview is  supported  in computer  science,  where  group learning  can be measured  as anincrease  of  constraints  that  limit  degrees  of  freedom of  individual  agents  (Guerin  &Kunkle  2004)  as  the  collective  adapts  to  the  environment.   Specifically,  learning  inagent based models can occurs through (a) changes in agent interaction patterns (Gamb-hir et al. 2004), (b) changes in agents' internal rules, or (c) changes to potential informa-tion stored in the environment  by the collective,  e.g. pheromone trail following in antforaging systems (Bonabeau et al.1999: ch. 2).In this section learning is described as occurring within organizations as well asindividuals.   In all cases it is an recursive process whereby the learner adapts to newinformation from its environment (Carley 1995); learning results in "structural" changesto the ideational and the physical (and/or social) systems of the learner, which were theresult of previous learning.  Knowledge is represented in learners by their internal struc-ture, either  physical  or social.   An important  and ubiquitous  part of education are thecourses,  each  which  acts  as  a  locus  bringing  together  students,  teacher,  and  specificsubject knowledge.  A "basic functioning of the education system", according to Clark(1984),  is  the  organization  and  "packaging"  of  appropriate  academic  knowledge  intocourses.  It is here hypothesized the structure of courses are the result of simultaneous,adaptive processes between the knowledge-producing  education system and the systemof academic  knowledge  produced.   An understanding  and interpretation  of the coursestructure  as a kind of coarse-grained  fingerprint  of the complex  social  and ideationalinfluences can offer valuable insights into both.
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Education is viewed in this thesis as the structuring of a situation in ways that
help students change, through learning, in intentional ways.  This is done at many levels,
but certainly situation structuring through teacher instruction within classrooms and the
administrative  ordering  of  courses  themselves  affect  learning.   Learning  within  the
education system is defined by Adebayo (2009) as "a change within the student that is
brought about by the instructional program of a school".  As far as teaching is concerned
to  be  a  project  of  "prompting  learners  away  from  certain  activities  or  attitudes  and
toward others" (Jorg et al. 2007), learning can be observed as a change in the student
after instruction has taken place.  Alberta's education system is at least a particular set of
processes  and structures  that  result  from the social  organization  of people,  resources,
and information resulting in the development of academic knowledge and its learning by
students.

Let the activity of students enrolled in courses, as an example of a "knowledge-
producing  system",  be  called  academic  learning.   Consider  learning  for  students  to
generally be the acquiring of new knowledge,  behaviors,  skills,  values,  preferences or
understanding, which may involve synthesizing different types of information involving
complex cognitive processes such as perception, communication, association and reason-
ing.  The general view of academic learning adopted in this thesis is explained simply
by Reagans & McEvily (2003) when they write "that people learn new ideas by associat-
ing those ideas with what they already know".  While,  Tzanakis  & Thomaidis  (2000)
offer  a  more  sophisticated  and directly  applicable  view of  academic  learning  as  "the
creation by the learner of links between new information and his or her already-existing
conceptual framework.  In this way, new information acquires a meaning and becomes
knowledge".   So, meaning of information does not just reside in the code of the mes-
sage, but stems from the shared interpretation of those symbols coming from culturally
situated minds of the sender and receiver (Hofstadter 1979: ch. 6).  That is, an appropri-
ate  context  is  crucial  to  the  interpretation  of  new information  (McCarty  1995);  says
Cohen & Stewart (1994: 293), "meaning is a matter of context, not content."  This view
of learning for students is supported by other authors (Means & Voss 1985; McNamara
&  Kintsch  1996)  who  empirically  measure  the  effects  of  "prior  knowledge"  and
"background knowledge" to facilitate comprehension of new material.  To neurologists,
higher level brain functions depend on neuronal networks having "energy efficiency and
the  capability  for  dynamic  reorganization"  in  response  to  stimulation  (Laughlin  &
Sejnowski 2003).  In computer science, artificial neural networks learn tasks by adjust-
ing the connection strengths among internal elements according to a contextual fitness
criteria (Rumelhart & McClelland 1986; Rujan & Marchand 1989).  Therefore, let it be
recognized here that learning for students requires, at least, an appropriate, preexisting,
mental,  and "ideational"  context  (Eid 2004) within which to engage new information,
and learning results  in attuned changes to both the learner's  held knowledge  structure
and the structure of their physical being (Davis & Sumara 2006: 13).

To be more formal  and in an attempt  to functionalize,  though  not define,  the
concepts of knowledge and learning for quantitative work later in the thesis, let learning
for  students  in the education  system be considered  a process  of change  in what  they

know, written as, o  Ø


  , where o  represents what a student knows before enroll-
ment in a course,  symbolizes the process of learning in the course, and  represents
what a student knows after course completion.  Since, as described above, learning for a
student is at least a function of previous knowledge and new information, let  = (o,
, x), where  is the information introduced to a student during a course, and x repre-
sents all other unexamined factors influencing a student's learning (including teaching,
student effort, etcetera).  Further assume that during academic learning new information
is introduced  to students  as part  of education  in proportion to the value of the credit
weight  assigned  to  a  course  by  administration;  in  University,  the  credit  weight  of  a
course is associated  with a star symbol with most courses assigned three credits (¯3),
while  in  high  school,  many  courses  have  five  credits;  therefore,  let    ∝  ¯  for  any
course.  Important for arguments developed further in this thesis is the acceptance there
needs to be an affective coupling for the new information in any course, , to transform
the  student's  prior  knowledge,  o,  otherwise,  at  the  end  of  the  course,  the  student's
academic knowledge regarding the subject will be little changed,  ≈ o.  Specifically,
the  absence  of  prerequisite  knowledge  for  a  student  in  a  course,  o  é  prerequisite ,
implies  that  little  of  the  learning  objectives  will  be  achieved  save  for  extraordinary
influence from other factors, x.  By assuming that students generally follow university
regulations  by  indeed  having  the  required  prerequisite  knowledge  for  each course  in
which  they  enroll,  o  û  prerequisite ,  and  by  assuming  all  other  unexamined  factors
influencing learning are distributed among students, say x = constant, the analysis in this
thesis is limited to tracking and accounting for the awarding of academic credits through-
out the education system, so that the changes in a students' knowledge upon completion
of a course, or the amount a course contributes to the "system of knowledge produced",
is proportional to its academic credits, such that, D ∝ ¯, on average.  For example, a
student who completes a ¯3 credit course is generally expected to learn half as much as
a student who completes a ¯6 credit course or two three credit courses.

A goal of education is to teach people to function in the society of which they
are a part.   Not only individuals  reap the fruits of a good education,  the society itself
benefits from well-educated people.  An education system can thus be seen as a combina-
tion of what is beneficial for the development of the individual and what is beneficial for
the society in which the system is implemented.  Alberta's education system is an exam-
ple of a decentralized (Becher & Kogan 1992: ch. 4), "self-regulating" social institution
that structures the experience of individuals in a dual manner, both limiting and enabling
their personal  agency (Taylor 2004: ch. 11; Giddens 1984b; Hargreaves  1995).  Such
institutions  are paradoxical  in some ways, according to Chowers (2004: 1-8), because
they  are  the  lingering  result  of  a  historical  process  whereby  the  personal  agency  of
previous individuals  has set up enduring social  structures  that both capture and assist
later generations, thus governing their personal agency in a social feedback loop.  That
social  structure  and  personal  agency  are  always  present  and  affecting  each  other  in
education,  permit  the  structure/agency  pair  to  be  collectively  considered  and  called,
following arguments made by Davis & Sumara (2006: ch. 8), a "simultaneity".

Due  to  the  education  system's  shear  size  and  its  decentralized,  social  nature
arising from the interactions of so many people concerned with the production, mainte-
nance,  and  communication  of  academic  knowledge,  many  authors  have  explicitly
argued  it  is  inherently  complex  (see  Jorg  et  al.  2007;  Clark  1993;  Goldspink  2007;
Fleener 2002a: 143).  For example, Yoon & Klopfer (2006) see education as a complex
system,  due to the prevalent  feedback,  adaptive,  and self-organizing  processes,  which
needs to be recognized  and worked within as such.  Ben-Baruch (1983) stresses  how
schools act in, and react to, an environment  of geographical,  historical, economic, and
cultural  aspects  which  "constantly  interact  and  create  a  state  of  diffusiveness  and
change".  In §2.1.3 (please briefly review Figure 2.1.3-1), many nested spatial scales or
levels of affect in education are briefly sketched based on Davis & Sumara (2006: 28) –
wherein  an  interdependence  between  the  lower  and  higher  levels  in  the  educational
hierarchy is suggested.   This dependence does not only work bottom-up, from student
achievement to school achievement to provincial achievement; it also works top-down:
at the organizational level in the system, policy makers directly influence the processes
that occur within schools.  

One interactive level of interest in the thesis is curriculum, which a few authors
identify as a complex subsystem in education (for example, Fleener 2002a: 174) because
of its openness  to influence (Doll et al. 2006: 168) and its changing structures (Klein
2004).   Davis  &  Simmt  (2006)  say  curriculum  is  a  "nested"  layer  between  "formal
schooling" and, subject knowledge (such as "formal mathematics").  From these authors,
it is assumed the curriculum structure itself reflects the complex nature of the education
system.  Courses are features of curriculum structure since they occasion student encoun-
ters  with  specific  subject  knowledges  and represent  a basic  unit  of interface  between
students  and academics.   The question of whether curriculum remains complex at the
level of courses is specifically addressed in §4.1.1.2.

Commonly cited factors aggravating complexity in education are the increase in
disciplinary  knowledges  (Stokstad  2001)  and  the  number  of  students  entering  higher
education.   The  entire  curriculum,  from  K-12  through  undergraduate  university,  as
described by Klein (2002: 3) is "bulging at the seams", leading to the popular image of
this  phenomenon  as  a  "knowledge  explosion".   She  describes  how  the  "staggering
increase in the amount of knowledge and information" has made it impossible to teach
everything, even in a single subject.  Simultaneously,  a dramatic increase in enrolment
for higher education  beginning in the mid-to-late  twentieth  century has resulted in an
uncoordinated  expansion of universities  (Shattock 1996;  Clark 1984).  Accompanying
the demands of knowledge management due to the rapid ascendance of the importance
of knowledge and widespread access in the new information age, according to McClel-
lan et al. (2006), are the required technologies and associated IT knowledge resulting in
a phenomena they call "technological bloat", exemplified by the increased use of comput-
ers and commuter mediated communication in education institutions, which can some-
times  add  to  the  complexity  experienced  by  students,  teachers,  and  administrators.
Cohen & Stewart (1994: 352) view this complexification of the environment as a result
of our social ability to "store knowledge  in our culture rather than in our brains" and
they  label  this  in  all  its  forms  as  "information  technology".   Taken  together,  these
authors describe education as a system with high "throughput" of students and informa-
tion.   For Hubler  (2005b),  the defining criterion  for all  complex systems is that their
"throughput"  is  increased  beyond  a certain  threshold,  so that  the  "flow of a medium
through the open system is large".  Thus Hubler's concise characterization of a complex
system can be used for the basis of a reasonable assumption taken here that the educa-
tion  system  is  necessarily  complex  because  of  the  great  streams  of  information  and
people  flowing through it,  such that unexpected  patterns  and properties  emerge.   The
specific patterns of emergence most under scrutiny in this thesis are among the courses
and their prerequisite dependencies.

Given  that  education  in Alberta  is  an example  of  a complex social  system at
least partially comprised of concrete, tangible things such as persons, equipment, build-
ings, even information (see Smolin & Oppenheim (2006) for an example of how informa-
tion is viewed as tangible by physicists), does not imply that it is concrete and tangible
as  an  organization.   The  education  system  generally,  and  schools  in  particular,  are
described by Ben-Baruch (1983: Part I) as essentially social artifacts which are "abstract
contrived phenomena" regulated by goals, roles, satisfaction, power, beliefs, leadership,
relationships,  and communication.   The influence  of these notional  concepts  result  in
"an organized, non-random interrelatedness among parts that constitute a whole" (p. 34).
Similarly for Cartwright (1968: 1), social organizations are defined by the "arrangement
of their interdependent parts, each having a special function with respect to the whole".
Thus, to understand important characteristics of education as a social system requires an
understanding of the defining relationships and patterns of interactions among the parts,
which in turn is linked to its productivity, information processing, and adaptation (Frank
&  Fahrbach  1999),  otherwise  summarized  by  Davis  &  Sumara  (2006:  p.  99)  as
"structurally determined behavior".

Culminating  to  this  point  in  the  subsection,  Alberta's  education  system  is
described  as  a large,  adaptive,  self-organizing,  complex  social  system sensitive  to  its
environment with important characteristics determined by the organized relations among
internal components.  This description falls within the category some pioneering research-
ers in Education have coined "learning systems" (for example, Hargreaves 2003: ch. 9;
Davis  & Simmt  2003;  Davis  & Sumara  2006:  ch.  5),  which appears  similar  to what
Kauffman  (1990)  calls  "complex  information  processing  systems".   Davis  & Sumara
(2006: 12) say that adequately  complex systems learn through appropriate  "structural"
transformations  to  adapt  their  capabilities;  for  them:  "adaptation  –  that  is  learning".
Likewise, Giddens (1984b) describes how "social actors . . . adapt their actions to their
evolving understandings",  while Maturana & Varela (1998: 170) write how "learning"
and  "adaptation"  are  merely  different  perspectives  on what  they  call  "structural  cou-
pling"  of  a  learner  responding  to  the  environment.   For  Kauffman,  the  equivalence
between learning and adaptation is so evident he just blankly equates the two when he
writes, "adaptive evolution or learning", and moves on.  Therefore, from theses authors,
learning is accepted here as an adaptive process by a generalized learner open to informa-
tion or stimulus that results in changes to internal knowledge and physical structures.

"Learning systems" is a category that explicitly  includes collectives  as well as
individual  learners.   Besides  students,  Davis  et  al.  (2004)  list  "classroom collectives,
schools,  student bodies, communities,  societies,  and cultures" as other nested, learning
phenomena of concern to educators and educational researchers.  Similar to learning in
individuals but at a broader scale, as the structures of organization change in response to
exogenous  shocks,  a  social  organization  "learns"  from  its  environment  (MacDonald
1995; Gafiychuk et al. 1997; Wilson 1997).  Exogenous shocks cause learning at two
levels.  First, individuals within learn as they are exposed to new information, which, in
turn, changes their "sentiments and interactions".  Second, changes in the overall distribu-
tion of sentiment and pattern of interaction (including resources) constitute learning at
the organization level (Stynme 1970).  Conversely, the organizational structures at any
given time affect how the organization absorbs information.  Thus organizational learn-
ing is generally a function of the interaction of exogenous shocks and the existing organi-
zational  structures  that are partly functions of previous shocks (Hedberg 1981).   This
view is  supported  in computer  science,  where  group learning  can be measured  as an
increase  of  constraints  that  limit  degrees  of  freedom of  individual  agents  (Guerin  &
Kunkle  2004)  as  the  collective  adapts  to  the  environment.   Specifically,  learning  in
agent based models can occurs through (a) changes in agent interaction patterns (Gamb-
hir et al. 2004), (b) changes in agents' internal rules, or (c) changes to potential informa-
tion stored in the environment  by the collective,  e.g. pheromone trail following in ant
foraging systems (Bonabeau et al.1999: ch. 2).

In this section learning is described as occurring within organizations as well as
individuals.   In all cases it is an recursive process whereby the learner adapts to new
information from its environment (Carley 1995); learning results in "structural" changes
to the ideational and the physical (and/or social) systems of the learner, which were the
result of previous learning.  Knowledge is represented in learners by their internal struc-
ture, either  physical  or social.   An important  and ubiquitous  part of education are the
courses,  each  which  acts  as  a  locus  bringing  together  students,  teacher,  and  specific
subject knowledge.  A "basic functioning of the education system", according to Clark
(1984),  is  the  organization  and  "packaging"  of  appropriate  academic  knowledge  into
courses.  It is here hypothesized the structure of courses are the result of simultaneous,
adaptive processes between the knowledge-producing  education system and the system
of academic  knowledge  produced.   An understanding  and interpretation  of the course
structure  as a kind of coarse-grained  fingerprint  of the complex  social  and ideational
influences can offer valuable insights into both.
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Education is viewed in this thesis as the structuring of a situation in ways thathelp students change, through learning, in intentional ways.  This is done at many levels,but certainly situation structuring through teacher instruction within classrooms and theadministrative  ordering  of  courses  themselves  affect  learning.   Learning  within  theeducation system is defined by Adebayo (2009) as "a change within the student that isbrought about by the instructional program of a school".  As far as teaching is concernedto  be  a  project  of  "prompting  learners  away  from  certain  activities  or  attitudes  andtoward others" (Jorg et al. 2007), learning can be observed as a change in the studentafter instruction has taken place.  Alberta's education system is at least a particular set ofprocesses  and structures  that  result  from the social  organization  of people,  resources,and information resulting in the development of academic knowledge and its learning bystudents.
Let the activity of students enrolled in courses, as an example of a "knowledge-

producing  system",  be  called  academic  learning.   Consider  learning  for  students  to
generally be the acquiring of new knowledge,  behaviors,  skills,  values,  preferences or
understanding, which may involve synthesizing different types of information involving
complex cognitive processes such as perception, communication, association and reason-
ing.  The general view of academic learning adopted in this thesis is explained simply
by Reagans & McEvily (2003) when they write "that people learn new ideas by associat-
ing those ideas with what they already know".  While,  Tzanakis  & Thomaidis  (2000)
offer  a  more  sophisticated  and directly  applicable  view of  academic  learning  as  "the
creation by the learner of links between new information and his or her already-existing
conceptual framework.  In this way, new information acquires a meaning and becomes
knowledge".   So, meaning of information does not just reside in the code of the mes-
sage, but stems from the shared interpretation of those symbols coming from culturally
situated minds of the sender and receiver (Hofstadter 1979: ch. 6).  That is, an appropri-
ate  context  is  crucial  to  the  interpretation  of  new information  (McCarty  1995);  says
Cohen & Stewart (1994: 293), "meaning is a matter of context, not content."  This view
of learning for students is supported by other authors (Means & Voss 1985; McNamara
&  Kintsch  1996)  who  empirically  measure  the  effects  of  "prior  knowledge"  and
"background knowledge" to facilitate comprehension of new material.  To neurologists,
higher level brain functions depend on neuronal networks having "energy efficiency and
the  capability  for  dynamic  reorganization"  in  response  to  stimulation  (Laughlin  &
Sejnowski 2003).  In computer science, artificial neural networks learn tasks by adjust-
ing the connection strengths among internal elements according to a contextual fitness
criteria (Rumelhart & McClelland 1986; Rujan & Marchand 1989).  Therefore, let it be
recognized here that learning for students requires, at least, an appropriate, preexisting,
mental,  and "ideational"  context  (Eid 2004) within which to engage new information,
and learning results  in attuned changes to both the learner's  held knowledge  structure
and the structure of their physical being (Davis & Sumara 2006: 13).

To be more formal  and in an attempt  to functionalize,  though  not define,  the
concepts of knowledge and learning for quantitative work later in the thesis, let learning
for  students  in the education  system be considered  a process  of change  in what  they

know, written as, o  Ø


  , where o  represents what a student knows before enroll-
ment in a course,  symbolizes the process of learning in the course, and  represents
what a student knows after course completion.  Since, as described above, learning for a
student is at least a function of previous knowledge and new information, let  = (o,
, x), where  is the information introduced to a student during a course, and x repre-
sents all other unexamined factors influencing a student's learning (including teaching,
student effort, etcetera).  Further assume that during academic learning new information
is introduced  to students  as part  of education  in proportion to the value of the credit
weight  assigned  to  a  course  by  administration;  in  University,  the  credit  weight  of  a
course is associated  with a star symbol with most courses assigned three credits (¯3),
while  in  high  school,  many  courses  have  five  credits;  therefore,  let    ∝  ¯  for  any
course.  Important for arguments developed further in this thesis is the acceptance there
needs to be an affective coupling for the new information in any course, , to transform
the  student's  prior  knowledge,  o,  otherwise,  at  the  end  of  the  course,  the  student's
academic knowledge regarding the subject will be little changed,  ≈ o.  Specifically,
the  absence  of  prerequisite  knowledge  for  a  student  in  a  course,  o  é  prerequisite ,
implies  that  little  of  the  learning  objectives  will  be  achieved  save  for  extraordinary
influence from other factors, x.  By assuming that students generally follow university
regulations  by  indeed  having  the  required  prerequisite  knowledge  for  each course  in
which  they  enroll,  o  û  prerequisite ,  and  by  assuming  all  other  unexamined  factors
influencing learning are distributed among students, say x = constant, the analysis in this
thesis is limited to tracking and accounting for the awarding of academic credits through-
out the education system, so that the changes in a students' knowledge upon completion
of a course, or the amount a course contributes to the "system of knowledge produced",
is proportional to its academic credits, such that, D ∝ ¯, on average.  For example, a
student who completes a ¯3 credit course is generally expected to learn half as much as
a student who completes a ¯6 credit course or two three credit courses.

A goal of education is to teach people to function in the society of which they
are a part.   Not only individuals  reap the fruits of a good education,  the society itself
benefits from well-educated people.  An education system can thus be seen as a combina-
tion of what is beneficial for the development of the individual and what is beneficial for
the society in which the system is implemented.  Alberta's education system is an exam-
ple of a decentralized (Becher & Kogan 1992: ch. 4), "self-regulating" social institution
that structures the experience of individuals in a dual manner, both limiting and enabling
their personal  agency (Taylor 2004: ch. 11; Giddens 1984b; Hargreaves  1995).  Such
institutions  are paradoxical  in some ways, according to Chowers (2004: 1-8), because
they  are  the  lingering  result  of  a  historical  process  whereby  the  personal  agency  of
previous individuals  has set up enduring social  structures  that both capture and assist
later generations, thus governing their personal agency in a social feedback loop.  That
social  structure  and  personal  agency  are  always  present  and  affecting  each  other  in
education,  permit  the  structure/agency  pair  to  be  collectively  considered  and  called,
following arguments made by Davis & Sumara (2006: ch. 8), a "simultaneity".

Due  to  the  education  system's  shear  size  and  its  decentralized,  social  nature
arising from the interactions of so many people concerned with the production, mainte-
nance,  and  communication  of  academic  knowledge,  many  authors  have  explicitly
argued  it  is  inherently  complex  (see  Jorg  et  al.  2007;  Clark  1993;  Goldspink  2007;
Fleener 2002a: 143).  For example, Yoon & Klopfer (2006) see education as a complex
system,  due to the prevalent  feedback,  adaptive,  and self-organizing  processes,  which
needs to be recognized  and worked within as such.  Ben-Baruch (1983) stresses  how
schools act in, and react to, an environment  of geographical,  historical, economic, and
cultural  aspects  which  "constantly  interact  and  create  a  state  of  diffusiveness  and
change".  In §2.1.3 (please briefly review Figure 2.1.3-1), many nested spatial scales or
levels of affect in education are briefly sketched based on Davis & Sumara (2006: 28) –
wherein  an  interdependence  between  the  lower  and  higher  levels  in  the  educational
hierarchy is suggested.   This dependence does not only work bottom-up, from student
achievement to school achievement to provincial achievement; it also works top-down:
at the organizational level in the system, policy makers directly influence the processes
that occur within schools.  

One interactive level of interest in the thesis is curriculum, which a few authors
identify as a complex subsystem in education (for example, Fleener 2002a: 174) because
of its openness  to influence (Doll et al. 2006: 168) and its changing structures (Klein
2004).   Davis  &  Simmt  (2006)  say  curriculum  is  a  "nested"  layer  between  "formal
schooling" and, subject knowledge (such as "formal mathematics").  From these authors,
it is assumed the curriculum structure itself reflects the complex nature of the education
system.  Courses are features of curriculum structure since they occasion student encoun-
ters  with  specific  subject  knowledges  and represent  a basic  unit  of interface  between
students  and academics.   The question of whether curriculum remains complex at the
level of courses is specifically addressed in §4.1.1.2.

Commonly cited factors aggravating complexity in education are the increase in
disciplinary  knowledges  (Stokstad  2001)  and  the  number  of  students  entering  higher
education.   The  entire  curriculum,  from  K-12  through  undergraduate  university,  as
described by Klein (2002: 3) is "bulging at the seams", leading to the popular image of
this  phenomenon  as  a  "knowledge  explosion".   She  describes  how  the  "staggering
increase in the amount of knowledge and information" has made it impossible to teach
everything, even in a single subject.  Simultaneously,  a dramatic increase in enrolment
for higher education  beginning in the mid-to-late  twentieth  century has resulted in an
uncoordinated  expansion of universities  (Shattock 1996;  Clark 1984).  Accompanying
the demands of knowledge management due to the rapid ascendance of the importance
of knowledge and widespread access in the new information age, according to McClel-
lan et al. (2006), are the required technologies and associated IT knowledge resulting in
a phenomena they call "technological bloat", exemplified by the increased use of comput-
ers and commuter mediated communication in education institutions, which can some-
times  add  to  the  complexity  experienced  by  students,  teachers,  and  administrators.
Cohen & Stewart (1994: 352) view this complexification of the environment as a result
of our social ability to "store knowledge  in our culture rather than in our brains" and
they  label  this  in  all  its  forms  as  "information  technology".   Taken  together,  these
authors describe education as a system with high "throughput" of students and informa-
tion.   For Hubler  (2005b),  the defining criterion  for all  complex systems is that their
"throughput"  is  increased  beyond  a certain  threshold,  so that  the  "flow of a medium
through the open system is large".  Thus Hubler's concise characterization of a complex
system can be used for the basis of a reasonable assumption taken here that the educa-
tion  system  is  necessarily  complex  because  of  the  great  streams  of  information  and
people  flowing through it,  such that unexpected  patterns  and properties  emerge.   The
specific patterns of emergence most under scrutiny in this thesis are among the courses
and their prerequisite dependencies.

Given  that  education  in Alberta  is  an example  of  a complex social  system at
least partially comprised of concrete, tangible things such as persons, equipment, build-
ings, even information (see Smolin & Oppenheim (2006) for an example of how informa-
tion is viewed as tangible by physicists), does not imply that it is concrete and tangible
as  an  organization.   The  education  system  generally,  and  schools  in  particular,  are
described by Ben-Baruch (1983: Part I) as essentially social artifacts which are "abstract
contrived phenomena" regulated by goals, roles, satisfaction, power, beliefs, leadership,
relationships,  and communication.   The influence  of these notional  concepts  result  in
"an organized, non-random interrelatedness among parts that constitute a whole" (p. 34).
Similarly for Cartwright (1968: 1), social organizations are defined by the "arrangement
of their interdependent parts, each having a special function with respect to the whole".
Thus, to understand important characteristics of education as a social system requires an
understanding of the defining relationships and patterns of interactions among the parts,
which in turn is linked to its productivity, information processing, and adaptation (Frank
&  Fahrbach  1999),  otherwise  summarized  by  Davis  &  Sumara  (2006:  p.  99)  as
"structurally determined behavior".

Culminating  to  this  point  in  the  subsection,  Alberta's  education  system  is
described  as  a large,  adaptive,  self-organizing,  complex  social  system sensitive  to  its
environment with important characteristics determined by the organized relations among
internal components.  This description falls within the category some pioneering research-
ers in Education have coined "learning systems" (for example, Hargreaves 2003: ch. 9;
Davis  & Simmt  2003;  Davis  & Sumara  2006:  ch.  5),  which appears  similar  to what
Kauffman  (1990)  calls  "complex  information  processing  systems".   Davis  & Sumara
(2006: 12) say that adequately  complex systems learn through appropriate  "structural"
transformations  to  adapt  their  capabilities;  for  them:  "adaptation  –  that  is  learning".
Likewise, Giddens (1984b) describes how "social actors . . . adapt their actions to their
evolving understandings",  while Maturana & Varela (1998: 170) write how "learning"
and  "adaptation"  are  merely  different  perspectives  on what  they  call  "structural  cou-
pling"  of  a  learner  responding  to  the  environment.   For  Kauffman,  the  equivalence
between learning and adaptation is so evident he just blankly equates the two when he
writes, "adaptive evolution or learning", and moves on.  Therefore, from theses authors,
learning is accepted here as an adaptive process by a generalized learner open to informa-
tion or stimulus that results in changes to internal knowledge and physical structures.

"Learning systems" is a category that explicitly  includes collectives  as well as
individual  learners.   Besides  students,  Davis  et  al.  (2004)  list  "classroom collectives,
schools,  student bodies, communities,  societies,  and cultures" as other nested, learning
phenomena of concern to educators and educational researchers.  Similar to learning in
individuals but at a broader scale, as the structures of organization change in response to
exogenous  shocks,  a  social  organization  "learns"  from  its  environment  (MacDonald
1995; Gafiychuk et al. 1997; Wilson 1997).  Exogenous shocks cause learning at two
levels.  First, individuals within learn as they are exposed to new information, which, in
turn, changes their "sentiments and interactions".  Second, changes in the overall distribu-
tion of sentiment and pattern of interaction (including resources) constitute learning at
the organization level (Stynme 1970).  Conversely, the organizational structures at any
given time affect how the organization absorbs information.  Thus organizational learn-
ing is generally a function of the interaction of exogenous shocks and the existing organi-
zational  structures  that are partly functions of previous shocks (Hedberg 1981).   This
view is  supported  in computer  science,  where  group learning  can be measured  as an
increase  of  constraints  that  limit  degrees  of  freedom of  individual  agents  (Guerin  &
Kunkle  2004)  as  the  collective  adapts  to  the  environment.   Specifically,  learning  in
agent based models can occurs through (a) changes in agent interaction patterns (Gamb-
hir et al. 2004), (b) changes in agents' internal rules, or (c) changes to potential informa-
tion stored in the environment  by the collective,  e.g. pheromone trail following in ant
foraging systems (Bonabeau et al.1999: ch. 2).

In this section learning is described as occurring within organizations as well as
individuals.   In all cases it is an recursive process whereby the learner adapts to new
information from its environment (Carley 1995); learning results in "structural" changes
to the ideational and the physical (and/or social) systems of the learner, which were the
result of previous learning.  Knowledge is represented in learners by their internal struc-
ture, either  physical  or social.   An important  and ubiquitous  part of education are the
courses,  each  which  acts  as  a  locus  bringing  together  students,  teacher,  and  specific
subject knowledge.  A "basic functioning of the education system", according to Clark
(1984),  is  the  organization  and  "packaging"  of  appropriate  academic  knowledge  into
courses.  It is here hypothesized the structure of courses are the result of simultaneous,
adaptive processes between the knowledge-producing  education system and the system
of academic  knowledge  produced.   An understanding  and interpretation  of the course
structure  as a kind of coarse-grained  fingerprint  of the complex  social  and ideational
influences can offer valuable insights into both.
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Education is viewed in this thesis as the structuring of a situation in ways thathelp students change, through learning, in intentional ways.  This is done at many levels,but certainly situation structuring through teacher instruction within classrooms and theadministrative  ordering  of  courses  themselves  affect  learning.   Learning  within  theeducation system is defined by Adebayo (2009) as "a change within the student that isbrought about by the instructional program of a school".  As far as teaching is concernedto  be  a  project  of  "prompting  learners  away  from  certain  activities  or  attitudes  andtoward others" (Jorg et al. 2007), learning can be observed as a change in the studentafter instruction has taken place.  Alberta's education system is at least a particular set ofprocesses  and structures  that  result  from the social  organization  of people,  resources,and information resulting in the development of academic knowledge and its learning bystudents.Let the activity of students enrolled in courses, as an example of a "knowledge-producing  system",  be  called  academic  learning.   Consider  learning  for  students  togenerally be the acquiring of new knowledge,  behaviors,  skills,  values,  preferences orunderstanding, which may involve synthesizing different types of information involvingcomplex cognitive processes such as perception, communication, association and reason-ing.  The general view of academic learning adopted in this thesis is explained simplyby Reagans & McEvily (2003) when they write "that people learn new ideas by associat-ing those ideas with what they already know".  While,  Tzanakis  & Thomaidis  (2000)offer  a  more  sophisticated  and directly  applicable  view of  academic  learning  as  "thecreation by the learner of links between new information and his or her already-existingconceptual framework.  In this way, new information acquires a meaning and becomesknowledge".   So, meaning of information does not just reside in the code of the mes-sage, but stems from the shared interpretation of those symbols coming from culturallysituated minds of the sender and receiver (Hofstadter 1979: ch. 6).  That is, an appropri-ate  context  is  crucial  to  the  interpretation  of  new information  (McCarty  1995);  saysCohen & Stewart (1994: 293), "meaning is a matter of context, not content."  This viewof learning for students is supported by other authors (Means & Voss 1985; McNamara&  Kintsch  1996)  who  empirically  measure  the  effects  of  "prior  knowledge"  and"background knowledge" to facilitate comprehension of new material.  To neurologists,higher level brain functions depend on neuronal networks having "energy efficiency andthe  capability  for  dynamic  reorganization"  in  response  to  stimulation  (Laughlin  &Sejnowski 2003).  In computer science, artificial neural networks learn tasks by adjust-ing the connection strengths among internal elements according to a contextual fitnesscriteria (Rumelhart & McClelland 1986; Rujan & Marchand 1989).  Therefore, let it berecognized here that learning for students requires, at least, an appropriate, preexisting,mental,  and "ideational"  context  (Eid 2004) within which to engage new information,and learning results  in attuned changes to both the learner's  held knowledge  structureand the structure of their physical being (Davis & Sumara 2006: 13).To be more formal  and in an attempt  to functionalize,  though  not define,  theconcepts of knowledge and learning for quantitative work later in the thesis, let learningfor  students  in the education  system be considered  a process  of change  in what  theyknow, written as, o  Ø   , where o  represents what a student knows before enroll-ment in a course,  symbolizes the process of learning in the course, and  representswhat a student knows after course completion.  Since, as described above, learning for astudent is at least a function of previous knowledge and new information, let  = (o,, x), where  is the information introduced to a student during a course, and x repre-sents all other unexamined factors influencing a student's learning (including teaching,student effort, etcetera).  Further assume that during academic learning new informationis introduced  to students  as part  of education  in proportion to the value of the creditweight  assigned  to  a  course  by  administration;  in  University,  the  credit  weight  of  acourse is associated  with a star symbol with most courses assigned three credits (¯3),
while  in  high  school,  many  courses  have  five  credits;  therefore,  let    ∝  ¯  for  any
course.  Important for arguments developed further in this thesis is the acceptance there
needs to be an affective coupling for the new information in any course, , to transform
the  student's  prior  knowledge,  o,  otherwise,  at  the  end  of  the  course,  the  student's
academic knowledge regarding the subject will be little changed,  ≈ o.  Specifically,
the  absence  of  prerequisite  knowledge  for  a  student  in  a  course,  o  é  prerequisite ,
implies  that  little  of  the  learning  objectives  will  be  achieved  save  for  extraordinary
influence from other factors, x.  By assuming that students generally follow university
regulations  by  indeed  having  the  required  prerequisite  knowledge  for  each course  in
which  they  enroll,  o  û  prerequisite ,  and  by  assuming  all  other  unexamined  factors
influencing learning are distributed among students, say x = constant, the analysis in this
thesis is limited to tracking and accounting for the awarding of academic credits through-
out the education system, so that the changes in a students' knowledge upon completion
of a course, or the amount a course contributes to the "system of knowledge produced",
is proportional to its academic credits, such that, D ∝ ¯, on average.  For example, a
student who completes a ¯3 credit course is generally expected to learn half as much as
a student who completes a ¯6 credit course or two three credit courses.

A goal of education is to teach people to function in the society of which they
are a part.   Not only individuals  reap the fruits of a good education,  the society itself
benefits from well-educated people.  An education system can thus be seen as a combina-
tion of what is beneficial for the development of the individual and what is beneficial for
the society in which the system is implemented.  Alberta's education system is an exam-
ple of a decentralized (Becher & Kogan 1992: ch. 4), "self-regulating" social institution
that structures the experience of individuals in a dual manner, both limiting and enabling
their personal  agency (Taylor 2004: ch. 11; Giddens 1984b; Hargreaves  1995).  Such
institutions  are paradoxical  in some ways, according to Chowers (2004: 1-8), because
they  are  the  lingering  result  of  a  historical  process  whereby  the  personal  agency  of
previous individuals  has set up enduring social  structures  that both capture and assist
later generations, thus governing their personal agency in a social feedback loop.  That
social  structure  and  personal  agency  are  always  present  and  affecting  each  other  in
education,  permit  the  structure/agency  pair  to  be  collectively  considered  and  called,
following arguments made by Davis & Sumara (2006: ch. 8), a "simultaneity".

Due  to  the  education  system's  shear  size  and  its  decentralized,  social  nature
arising from the interactions of so many people concerned with the production, mainte-
nance,  and  communication  of  academic  knowledge,  many  authors  have  explicitly
argued  it  is  inherently  complex  (see  Jorg  et  al.  2007;  Clark  1993;  Goldspink  2007;
Fleener 2002a: 143).  For example, Yoon & Klopfer (2006) see education as a complex
system,  due to the prevalent  feedback,  adaptive,  and self-organizing  processes,  which
needs to be recognized  and worked within as such.  Ben-Baruch (1983) stresses  how
schools act in, and react to, an environment  of geographical,  historical, economic, and
cultural  aspects  which  "constantly  interact  and  create  a  state  of  diffusiveness  and
change".  In §2.1.3 (please briefly review Figure 2.1.3-1), many nested spatial scales or
levels of affect in education are briefly sketched based on Davis & Sumara (2006: 28) –
wherein  an  interdependence  between  the  lower  and  higher  levels  in  the  educational
hierarchy is suggested.   This dependence does not only work bottom-up, from student
achievement to school achievement to provincial achievement; it also works top-down:
at the organizational level in the system, policy makers directly influence the processes
that occur within schools.  

One interactive level of interest in the thesis is curriculum, which a few authors
identify as a complex subsystem in education (for example, Fleener 2002a: 174) because
of its openness  to influence (Doll et al. 2006: 168) and its changing structures (Klein
2004).   Davis  &  Simmt  (2006)  say  curriculum  is  a  "nested"  layer  between  "formal
schooling" and, subject knowledge (such as "formal mathematics").  From these authors,
it is assumed the curriculum structure itself reflects the complex nature of the education
system.  Courses are features of curriculum structure since they occasion student encoun-
ters  with  specific  subject  knowledges  and represent  a basic  unit  of interface  between
students  and academics.   The question of whether curriculum remains complex at the
level of courses is specifically addressed in §4.1.1.2.

Commonly cited factors aggravating complexity in education are the increase in
disciplinary  knowledges  (Stokstad  2001)  and  the  number  of  students  entering  higher
education.   The  entire  curriculum,  from  K-12  through  undergraduate  university,  as
described by Klein (2002: 3) is "bulging at the seams", leading to the popular image of
this  phenomenon  as  a  "knowledge  explosion".   She  describes  how  the  "staggering
increase in the amount of knowledge and information" has made it impossible to teach
everything, even in a single subject.  Simultaneously,  a dramatic increase in enrolment
for higher education  beginning in the mid-to-late  twentieth  century has resulted in an
uncoordinated  expansion of universities  (Shattock 1996;  Clark 1984).  Accompanying
the demands of knowledge management due to the rapid ascendance of the importance
of knowledge and widespread access in the new information age, according to McClel-
lan et al. (2006), are the required technologies and associated IT knowledge resulting in
a phenomena they call "technological bloat", exemplified by the increased use of comput-
ers and commuter mediated communication in education institutions, which can some-
times  add  to  the  complexity  experienced  by  students,  teachers,  and  administrators.
Cohen & Stewart (1994: 352) view this complexification of the environment as a result
of our social ability to "store knowledge  in our culture rather than in our brains" and
they  label  this  in  all  its  forms  as  "information  technology".   Taken  together,  these
authors describe education as a system with high "throughput" of students and informa-
tion.   For Hubler  (2005b),  the defining criterion  for all  complex systems is that their
"throughput"  is  increased  beyond  a certain  threshold,  so that  the  "flow of a medium
through the open system is large".  Thus Hubler's concise characterization of a complex
system can be used for the basis of a reasonable assumption taken here that the educa-
tion  system  is  necessarily  complex  because  of  the  great  streams  of  information  and
people  flowing through it,  such that unexpected  patterns  and properties  emerge.   The
specific patterns of emergence most under scrutiny in this thesis are among the courses
and their prerequisite dependencies.

Given  that  education  in Alberta  is  an example  of  a complex social  system at
least partially comprised of concrete, tangible things such as persons, equipment, build-
ings, even information (see Smolin & Oppenheim (2006) for an example of how informa-
tion is viewed as tangible by physicists), does not imply that it is concrete and tangible
as  an  organization.   The  education  system  generally,  and  schools  in  particular,  are
described by Ben-Baruch (1983: Part I) as essentially social artifacts which are "abstract
contrived phenomena" regulated by goals, roles, satisfaction, power, beliefs, leadership,
relationships,  and communication.   The influence  of these notional  concepts  result  in
"an organized, non-random interrelatedness among parts that constitute a whole" (p. 34).
Similarly for Cartwright (1968: 1), social organizations are defined by the "arrangement
of their interdependent parts, each having a special function with respect to the whole".
Thus, to understand important characteristics of education as a social system requires an
understanding of the defining relationships and patterns of interactions among the parts,
which in turn is linked to its productivity, information processing, and adaptation (Frank
&  Fahrbach  1999),  otherwise  summarized  by  Davis  &  Sumara  (2006:  p.  99)  as
"structurally determined behavior".

Culminating  to  this  point  in  the  subsection,  Alberta's  education  system  is
described  as  a large,  adaptive,  self-organizing,  complex  social  system sensitive  to  its
environment with important characteristics determined by the organized relations among
internal components.  This description falls within the category some pioneering research-
ers in Education have coined "learning systems" (for example, Hargreaves 2003: ch. 9;
Davis  & Simmt  2003;  Davis  & Sumara  2006:  ch.  5),  which appears  similar  to what
Kauffman  (1990)  calls  "complex  information  processing  systems".   Davis  & Sumara
(2006: 12) say that adequately  complex systems learn through appropriate  "structural"
transformations  to  adapt  their  capabilities;  for  them:  "adaptation  –  that  is  learning".
Likewise, Giddens (1984b) describes how "social actors . . . adapt their actions to their
evolving understandings",  while Maturana & Varela (1998: 170) write how "learning"
and  "adaptation"  are  merely  different  perspectives  on what  they  call  "structural  cou-
pling"  of  a  learner  responding  to  the  environment.   For  Kauffman,  the  equivalence
between learning and adaptation is so evident he just blankly equates the two when he
writes, "adaptive evolution or learning", and moves on.  Therefore, from theses authors,
learning is accepted here as an adaptive process by a generalized learner open to informa-
tion or stimulus that results in changes to internal knowledge and physical structures.

"Learning systems" is a category that explicitly  includes collectives  as well as
individual  learners.   Besides  students,  Davis  et  al.  (2004)  list  "classroom collectives,
schools,  student bodies, communities,  societies,  and cultures" as other nested, learning
phenomena of concern to educators and educational researchers.  Similar to learning in
individuals but at a broader scale, as the structures of organization change in response to
exogenous  shocks,  a  social  organization  "learns"  from  its  environment  (MacDonald
1995; Gafiychuk et al. 1997; Wilson 1997).  Exogenous shocks cause learning at two
levels.  First, individuals within learn as they are exposed to new information, which, in
turn, changes their "sentiments and interactions".  Second, changes in the overall distribu-
tion of sentiment and pattern of interaction (including resources) constitute learning at
the organization level (Stynme 1970).  Conversely, the organizational structures at any
given time affect how the organization absorbs information.  Thus organizational learn-
ing is generally a function of the interaction of exogenous shocks and the existing organi-
zational  structures  that are partly functions of previous shocks (Hedberg 1981).   This
view is  supported  in computer  science,  where  group learning  can be measured  as an
increase  of  constraints  that  limit  degrees  of  freedom of  individual  agents  (Guerin  &
Kunkle  2004)  as  the  collective  adapts  to  the  environment.   Specifically,  learning  in
agent based models can occurs through (a) changes in agent interaction patterns (Gamb-
hir et al. 2004), (b) changes in agents' internal rules, or (c) changes to potential informa-
tion stored in the environment  by the collective,  e.g. pheromone trail following in ant
foraging systems (Bonabeau et al.1999: ch. 2).

In this section learning is described as occurring within organizations as well as
individuals.   In all cases it is an recursive process whereby the learner adapts to new
information from its environment (Carley 1995); learning results in "structural" changes
to the ideational and the physical (and/or social) systems of the learner, which were the
result of previous learning.  Knowledge is represented in learners by their internal struc-
ture, either  physical  or social.   An important  and ubiquitous  part of education are the
courses,  each  which  acts  as  a  locus  bringing  together  students,  teacher,  and  specific
subject knowledge.  A "basic functioning of the education system", according to Clark
(1984),  is  the  organization  and  "packaging"  of  appropriate  academic  knowledge  into
courses.  It is here hypothesized the structure of courses are the result of simultaneous,
adaptive processes between the knowledge-producing  education system and the system
of academic  knowledge  produced.   An understanding  and interpretation  of the course
structure  as a kind of coarse-grained  fingerprint  of the complex  social  and ideational
influences can offer valuable insights into both.
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2.3  The Networked

Instead then, of thinking of places as areas with boundaries around,
they can be imagined as articulated moments in networks of social
relations and understandings.

Nespor, Jan (1994) Knowledge in Motion: Space, Time, and Curricu-
lum in Undergraduate  Physics and Management  (New York:
Routledge), p. 3.

‡ 2.3.1  Initiatory Narrative

While attending school and especially university, I sometimes sensed that I was
engrossed in some sort of framework that I couldn't see but was certainly affecting the
direction and form of my educational  experience,  through the institutional  constraints,
motivations, barriers, and opportunities for learning.  I felt as though I was both trapped
by the  burdens  and  blessed  by  the  knowledge  and  agency  of  those  who had  passed
before me and who, in turn, became part of the system that was educating me.  Recently,
I have been thinking about what remains after all of the students, all of the professors
and teachers, all of the books, buildings, and other physical trappings are removed from
our idea of what a university or a school is.  The elusive residue is a collection of admin-
istrative  conditions,  expectations,  social  relations,  academic  subjects,  and  connected
ideas that so affects a student's  education,  but seems difficult  to describe.  I use tools
from the newly developing field of network theory to describe, analyze, spatialize, and
visualize a part of this remaining complex social fabric of Alberta's education system.
What follows is the product of my thoughts and efforts on the issue.

‡ 2.3.2  Introduction to Network Theory as an Approach to 
Understanding Complex Systems

Complex systems can be found in many aspects of our world and they span the
relatively micro scale, such as molecules of water organizing to form Benard cells in the
presence of a heat gradient (Bruce & Wallace 1989), to the more macro scales, such as
schools, where there are, what might be called, information gradients.  Despite variation
in physical components  or agents, complex systems can be expected when large num-
bers of interconnected elements, parts or individuals, communicate in non-linear ways.  

The patterns of interactions are said to form a collective network of relationships exhibit-
ing emergent  properties  (Bianconi  et  al.  2005),  so that "many real systems cannot be
fully understood without accounting for their complex network structure."  The connec-
tivity of networks is found to be decisive in constraining and defining many aspects of
systems dynamics (Stewart 2004).  By understanding the properties of networks, authors
such as Jasny & Ray (2003), Boccaletti et al. (2006), and Costa et al. (2007) report how
network architecture affects the function of its components, and how network structure
is associated with systemic performance (Gupte et al. 2005).

Complex networks have recently been applied to describe a wide range of com-
plex systems in nature and society (Costa et al. 2008).  The flexible language and con-
cepts of networks provide the vocabulary and metaphors for effective qualitative descrip-
tion of the myriad interactions and connections, on one hand, plus the theoretical tools
for formal research into social as well as physical systems.  The generic applicability of
complex networks is a consequence of their capacity to represent virtually any interact-
ing, discrete system whose organization and evolution, as well as dynamical processes
on them, involve non-linear models and effects (White 2003).  Three main components
of network analysis, according to Zhao & Strotmann (2008), are (a) the objects of analy-
sis, (b) the functional relationships between these objects, and (c) the mapping or visual-
ization tools, where the former two correspond to the nodes and links of a network, and
the latter  to methods  for spatially  representing  the resulting  network  in an intuitively
graspable  manner  for  simple  viewing  or  interactive  exploration.   For  this  thesis,  the
"objects  of  analysis"  are the  individual,  administratively  identified  courses  offered  in
Alberta's  Provincial  education  system,  the  "functional  relationships"  shaping  the  net-
work are the administratively identified prerequisite requirements between courses, and
the  mapping  and  visualization  tools  are  contained  within  a  program  called  Calendar
Navigator.   Even though the courses in education are considered as discrete units, no
individual course is studied in isolation; instead, the thesis focuses on how the structure
of prerequisite knowledge ties affect each course and their relationships to greater bod-
ies of academic knowledge.
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The patterns of interactions are said to form a collective network of relationships exhibit-
ing emergent  properties  (Bianconi  et  al.  2005),  so that "many real systems cannot be
fully understood without accounting for their complex network structure."  The connec-
tivity of networks is found to be decisive in constraining and defining many aspects of
systems dynamics (Stewart 2004).  By understanding the properties of networks, authors
such as Jasny & Ray (2003), Boccaletti et al. (2006), and Costa et al. (2007) report how
network architecture affects the function of its components, and how network structure
is associated with systemic performance (Gupte et al. 2005).

Complex networks have recently been applied to describe a wide range of com-
plex systems in nature and society (Costa et al. 2008).  The flexible language and con-
cepts of networks provide the vocabulary and metaphors for effective qualitative descrip-
tion of the myriad interactions and connections, on one hand, plus the theoretical tools
for formal research into social as well as physical systems.  The generic applicability of
complex networks is a consequence of their capacity to represent virtually any interact-
ing, discrete system whose organization and evolution, as well as dynamical processes
on them, involve non-linear models and effects (White 2003).  Three main components
of network analysis, according to Zhao & Strotmann (2008), are (a) the objects of analy-
sis, (b) the functional relationships between these objects, and (c) the mapping or visual-
ization tools, where the former two correspond to the nodes and links of a network, and
the latter  to methods  for spatially  representing  the resulting  network  in an intuitively
graspable  manner  for  simple  viewing  or  interactive  exploration.   For  this  thesis,  the
"objects  of  analysis"  are the  individual,  administratively  identified  courses  offered  in
Alberta's  Provincial  education  system,  the  "functional  relationships"  shaping  the  net-
work are the administratively identified prerequisite requirements between courses, and
the  mapping  and  visualization  tools  are  contained  within  a  program  called  Calendar
Navigator.   Even though the courses in education are considered as discrete units, no
individual course is studied in isolation; instead, the thesis focuses on how the structure
of prerequisite knowledge ties affect each course and their relationships to greater bod-
ies of academic knowledge.

ü 2.3.2.1  Mathematical  and Computational Representation of 
Networks

The eminent physicist and network theorist, Mark Newman, started his series of
lectures  at  the  Sante  Fe  Institute's  Summer  School  2005,  with  the  droll  statement,
"networks are just what you think: dots joined by lines."  At their most basic level, free
from any attempt at interpretation,  especially in discrete mathematics, such "dots" are
referred  to  as vertices  and the  "lines"  are  called  edges.   Graph theory,  is  the formal
mathematical study of the properties of graphs – constructions comprised of vertices and
edges.  The formal definition of a graph is G = {V,E}; a set, G, consisting, in turn, of a
set of vertices, V, and a set of edges, E.  Two vertices, i and j, form an edge of the graph
if {i, j}œE (see Figure 2.3.2.1-1).  Network theory is an extension of graph theory, such
that, the abstract  mathematical  notion of the graph is placed in a real context, given a
physical interpretation,  and imparted with expanded properties (Stewart 2004).  In this
milieu,  especially  among  physicists  and  computer  scientists,  graphs  are  often  called
networks, vertices are often called nodes and edges are often called links.  Throughout
the academic  literature,  the  closer  the  discussion  surrounds  the  real objects  and their
relations being represented, the more likely the language of networks is used, while the
more abstract and focused on mathematics the discussion becomes, the more likely the
vocabulary around graphs is in use.  Similarly, for this thesis, the terms networks, nodes,
and links are mostly used for consistency unless the basic mathematical foundations of
graph  theory  are  being  invoked,  then  the  vocabulary  from that  field  is  briefly  used,
especially  in  sections  8.4  & 8.5.   So,  let  the  notation  G(M,N)  represent  an arbitrary
network (graph), where M is the number of links (edges) in the network, called the size,
and N is the number of nodes (vertices), called the order of the network.

An initial step to a simplifying  network description of a complex system is to
define  the  category  of  nodes  –  those  distinct  entities  between  which  the  relation  of
interest occurs (Butts 2009).  In this thesis, courses serve as the network nodes, which is
justified  based  on their  perspicuous  administrative  status  in education  and their  clear
role in categorizing subject knowledge in teaching, especially from high school through
undergraduate university.  Aside from ad hoc exceptions, courses serve as the standard
by which prerequisite  knowledge  requirements  – the relations  of interest  – are estab-
lished regarding academic learning.  Prerequisite knowledge relationships are interesting
in education because they account for necessary  knowledge  'flows'  occurring between
courses.  These knowledge points and linkages are fairly stable over the period of time a
student is at the primary,  secondary,  or undergraduate  levels of education, yet enough
entry  and exit  of  courses  "churn"  the network  (Karnstedt  et  al.  2010),  allowing it  to
grow, age, and change over the decades.

Central to the study of any network is the issue of topology (Donetti et al. 2005),
defined  as  the  interconnection  of  the  various  elements  (links,  nodes,  etc.).   Network
topology is determined by the number of network elements and how they are connected,
including the density of connections and their arrangement (see Figure 2.3.2.1-2).  Under-
standing the topology of a network is to understand its effective shape and size – basic
spatial features fundamental to any object of research.  The ultimate goal when studying
the structure of networks is to understand and explain their origin plus the workings of
systems built upon those networks (Newman 2003a).  It would be nice, for instance, to
understand how the topology of networks in education arise, how they affect a student's
learning inside the classroom and their overall learning trajectories,  or how, for exam-
ple, the structure of social networks at school affects the spread of academic informa-
tion,  or  even  how  the  structure  of  disciplines  and  administration  affects  knowledge
dynamics, and so forth.  Thus, the next logical step after developing models of network
structure  is to look at their  creation and the behavior  of models of physical  or social
processes occurring on those networks.  But, to retreat a little, first comes recognizing,
measuring, and elucidating structure for any network of interest, which in turn implies
topology.

A fundamental property of a network is whether or not it is directed.  Undirected
networks are the result of a symmetrical  relationship between elements.   If {i, j} œ E
implies that {j, i} œ E, then G is an undirected network, otherwise, it is a directed net-
work  (Newman  2008).   The former  is  drawn using  line segments,  while  the latter  is
drawn with  arrows.   For  example,  a  transportation  system may be represented  by an
undirected  network  if  traffic  can  flow in  both  directions  between  locations,  such  as
between two cities.  A passenger riding the train from city A to city B can depend on
making the return journey.  On the other hand, other types of networks are asymmetrical
and are represented using a directed network.   For instance, hyperlinked pages on the
internet are best represented by a directed network since a link from page A to page B
does not imply there is a link in the opposite direction.

The  representation  of  networks  takes  on  different  requirements  depending  on
whether the intended consumer is a person or a machine.  While people prefer a visualiza-
tion, computers digest networks best as a data structure, such as an adjacency matrix or
adjacency list (see Figure 2.3.2.1-3).  So even though networks are displayed throughout
the thesis visually, the underlying calculations on the computer all depend on either lists
or matrices representing node-node associations.  The directedness (or not) of a network
is  reflected  in  the  asymmetry  (or  symmetry)  of  the  adjacency  matrix  (see  Figure
2.3.2.1-4).  

A sophisticated  network  is  a  graph  together  with  a  function  which  assigns  a
positive real number to each edge, and perhaps each vertex, to represent some associated
attribute (Harary 1994).  For example, the strength of links between nodes, si, j , are one
such attribute, the size or weight of each node, wi , is another.  Networks add information
and concepts  that cannot be captured in graph theory on the basis of topology alone.
Instead,  the graph provides  a topological  medium in which individually  characterized
elements interact.  So, while (Davis & Sumara 2006 : 46) suggest "a recasting of mathe-
matics as a source of models and metaphors, rather than a source of actual descriptions
and explanations",  this thesis will use mathematics  as a source of models,  metaphors,
and "actual descriptions and explanations" to compete with other modes of description
and explanations, such as narratives.
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The eminent physicist and network theorist, Mark Newman, started his series of
lectures  at  the  Sante  Fe  Institute's  Summer  School  2005,  with  the  droll  statement,
"networks are just what you think: dots joined by lines."  At their most basic level, free
from any attempt at interpretation,  especially in discrete mathematics, such "dots" are
referred  to  as vertices  and the  "lines"  are  called  edges.   Graph theory,  is  the formal
mathematical study of the properties of graphs – constructions comprised of vertices and
edges.  The formal definition of a graph is G = {V,E}; a set, G, consisting, in turn, of a
set of vertices, V, and a set of edges, E.  Two vertices, i and j, form an edge of the graph
if {i, j}œE (see Figure 2.3.2.1-1).  Network theory is an extension of graph theory, such
that, the abstract  mathematical  notion of the graph is placed in a real context, given a
physical interpretation,  and imparted with expanded properties (Stewart 2004).  In this
milieu,  especially  among  physicists  and  computer  scientists,  graphs  are  often  called
networks, vertices are often called nodes and edges are often called links.  Throughout
the academic  literature,  the  closer  the  discussion  surrounds  the  real objects  and their
relations being represented, the more likely the language of networks is used, while the
more abstract and focused on mathematics the discussion becomes, the more likely the
vocabulary around graphs is in use.  Similarly, for this thesis, the terms networks, nodes,
and links are mostly used for consistency unless the basic mathematical foundations of
graph  theory  are  being  invoked,  then  the  vocabulary  from that  field  is  briefly  used,
especially  in  sections  8.4  & 8.5.   So,  let  the  notation  G(M,N)  represent  an arbitrary
network (graph), where M is the number of links (edges) in the network, called the size,
and N is the number of nodes (vertices), called the order of the network.

An initial step to a simplifying  network description of a complex system is to
define  the  category  of  nodes  –  those  distinct  entities  between  which  the  relation  of
interest occurs (Butts 2009).  In this thesis, courses serve as the network nodes, which is
justified  based  on their  perspicuous  administrative  status  in education  and their  clear
role in categorizing subject knowledge in teaching, especially from high school through
undergraduate university.  Aside from ad hoc exceptions, courses serve as the standard
by which prerequisite  knowledge  requirements  – the relations  of interest  – are estab-
lished regarding academic learning.  Prerequisite knowledge relationships are interesting
in education because they account for necessary  knowledge  'flows'  occurring between
courses.  These knowledge points and linkages are fairly stable over the period of time a
student is at the primary,  secondary,  or undergraduate  levels of education, yet enough
entry  and exit  of  courses  "churn"  the network  (Karnstedt  et  al.  2010),  allowing it  to
grow, age, and change over the decades.

Central to the study of any network is the issue of topology (Donetti et al. 2005),
defined  as  the  interconnection  of  the  various  elements  (links,  nodes,  etc.).   Network
topology is determined by the number of network elements and how they are connected,
including the density of connections and their arrangement (see Figure 2.3.2.1-2).  Under-
standing the topology of a network is to understand its effective shape and size – basic
spatial features fundamental to any object of research.  The ultimate goal when studying
the structure of networks is to understand and explain their origin plus the workings of
systems built upon those networks (Newman 2003a).  It would be nice, for instance, to
understand how the topology of networks in education arise, how they affect a student's
learning inside the classroom and their overall learning trajectories,  or how, for exam-
ple, the structure of social networks at school affects the spread of academic informa-
tion,  or  even  how  the  structure  of  disciplines  and  administration  affects  knowledge
dynamics, and so forth.  Thus, the next logical step after developing models of network
structure  is to look at their  creation and the behavior  of models of physical  or social
processes occurring on those networks.  But, to retreat a little, first comes recognizing,
measuring, and elucidating structure for any network of interest, which in turn implies
topology.

A fundamental property of a network is whether or not it is directed.  Undirected
networks are the result of a symmetrical  relationship between elements.   If {i, j} œ E
implies that {j, i} œ E, then G is an undirected network, otherwise, it is a directed net-
work  (Newman  2008).   The former  is  drawn using  line segments,  while  the latter  is
drawn with  arrows.   For  example,  a  transportation  system may be represented  by an
undirected  network  if  traffic  can  flow in  both  directions  between  locations,  such  as
between two cities.  A passenger riding the train from city A to city B can depend on
making the return journey.  On the other hand, other types of networks are asymmetrical
and are represented using a directed network.   For instance, hyperlinked pages on the
internet are best represented by a directed network since a link from page A to page B
does not imply there is a link in the opposite direction.

The  representation  of  networks  takes  on  different  requirements  depending  on
whether the intended consumer is a person or a machine.  While people prefer a visualiza-
tion, computers digest networks best as a data structure, such as an adjacency matrix or
adjacency list (see Figure 2.3.2.1-3).  So even though networks are displayed throughout
the thesis visually, the underlying calculations on the computer all depend on either lists
or matrices representing node-node associations.  The directedness (or not) of a network
is  reflected  in  the  asymmetry  (or  symmetry)  of  the  adjacency  matrix  (see  Figure
2.3.2.1-4).  

A sophisticated  network  is  a  graph  together  with  a  function  which  assigns  a
positive real number to each edge, and perhaps each vertex, to represent some associated
attribute (Harary 1994).  For example, the strength of links between nodes, si, j , are one
such attribute, the size or weight of each node, wi , is another.  Networks add information
and concepts  that cannot be captured in graph theory on the basis of topology alone.
Instead,  the graph provides  a topological  medium in which individually  characterized
elements interact.  So, while (Davis & Sumara 2006 : 46) suggest "a recasting of mathe-
matics as a source of models and metaphors, rather than a source of actual descriptions
and explanations",  this thesis will use mathematics  as a source of models,  metaphors,
and "actual descriptions and explanations" to compete with other modes of description
and explanations, such as narratives.
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The eminent physicist and network theorist, Mark Newman, started his series of
lectures  at  the  Sante  Fe  Institute's  Summer  School  2005,  with  the  droll  statement,
"networks are just what you think: dots joined by lines."  At their most basic level, free
from any attempt at interpretation,  especially in discrete mathematics, such "dots" are
referred  to  as vertices  and the  "lines"  are  called  edges.   Graph theory,  is  the formal
mathematical study of the properties of graphs – constructions comprised of vertices and
edges.  The formal definition of a graph is G = {V,E}; a set, G, consisting, in turn, of a
set of vertices, V, and a set of edges, E.  Two vertices, i and j, form an edge of the graph
if {i, j}œE (see Figure 2.3.2.1-1).  Network theory is an extension of graph theory, such
that, the abstract  mathematical  notion of the graph is placed in a real context, given a
physical interpretation,  and imparted with expanded properties (Stewart 2004).  In this
milieu,  especially  among  physicists  and  computer  scientists,  graphs  are  often  called
networks, vertices are often called nodes and edges are often called links.  Throughout
the academic  literature,  the  closer  the  discussion  surrounds  the  real objects  and their
relations being represented, the more likely the language of networks is used, while the
more abstract and focused on mathematics the discussion becomes, the more likely the
vocabulary around graphs is in use.  Similarly, for this thesis, the terms networks, nodes,
and links are mostly used for consistency unless the basic mathematical foundations of
graph  theory  are  being  invoked,  then  the  vocabulary  from that  field  is  briefly  used,
especially  in  sections  8.4  & 8.5.   So,  let  the  notation  G(M,N)  represent  an arbitrary
network (graph), where M is the number of links (edges) in the network, called the size,
and N is the number of nodes (vertices), called the order of the network.

An initial step to a simplifying  network description of a complex system is to
define  the  category  of  nodes  –  those  distinct  entities  between  which  the  relation  of
interest occurs (Butts 2009).  In this thesis, courses serve as the network nodes, which is
justified  based  on their  perspicuous  administrative  status  in education  and their  clear
role in categorizing subject knowledge in teaching, especially from high school through
undergraduate university.  Aside from ad hoc exceptions, courses serve as the standard
by which prerequisite  knowledge  requirements  – the relations  of interest  – are estab-
lished regarding academic learning.  Prerequisite knowledge relationships are interesting
in education because they account for necessary  knowledge  'flows'  occurring between
courses.  These knowledge points and linkages are fairly stable over the period of time a
student is at the primary,  secondary,  or undergraduate  levels of education, yet enough
entry  and exit  of  courses  "churn"  the network  (Karnstedt  et  al.  2010),  allowing it  to
grow, age, and change over the decades.

Central to the study of any network is the issue of topology (Donetti et al. 2005),
defined  as  the  interconnection  of  the  various  elements  (links,  nodes,  etc.).   Network
topology is determined by the number of network elements and how they are connected,
including the density of connections and their arrangement (see Figure 2.3.2.1-2).  Under-
standing the topology of a network is to understand its effective shape and size – basic
spatial features fundamental to any object of research.  The ultimate goal when studying
the structure of networks is to understand and explain their origin plus the workings of
systems built upon those networks (Newman 2003a).  It would be nice, for instance, to
understand how the topology of networks in education arise, how they affect a student's
learning inside the classroom and their overall learning trajectories,  or how, for exam-
ple, the structure of social networks at school affects the spread of academic informa-
tion,  or  even  how  the  structure  of  disciplines  and  administration  affects  knowledge
dynamics, and so forth.  Thus, the next logical step after developing models of network
structure  is to look at their  creation and the behavior  of models of physical  or social
processes occurring on those networks.  But, to retreat a little, first comes recognizing,
measuring, and elucidating structure for any network of interest, which in turn implies
topology.

A fundamental property of a network is whether or not it is directed.  Undirected
networks are the result of a symmetrical  relationship between elements.   If {i, j} œ E
implies that {j, i} œ E, then G is an undirected network, otherwise, it is a directed net-
work  (Newman  2008).   The former  is  drawn using  line segments,  while  the latter  is
drawn with  arrows.   For  example,  a  transportation  system may be represented  by an
undirected  network  if  traffic  can  flow in  both  directions  between  locations,  such  as
between two cities.  A passenger riding the train from city A to city B can depend on
making the return journey.  On the other hand, other types of networks are asymmetrical
and are represented using a directed network.   For instance, hyperlinked pages on the
internet are best represented by a directed network since a link from page A to page B
does not imply there is a link in the opposite direction.

The  representation  of  networks  takes  on  different  requirements  depending  on
whether the intended consumer is a person or a machine.  While people prefer a visualiza-
tion, computers digest networks best as a data structure, such as an adjacency matrix or
adjacency list (see Figure 2.3.2.1-3).  So even though networks are displayed throughout
the thesis visually, the underlying calculations on the computer all depend on either lists
or matrices representing node-node associations.  The directedness (or not) of a network
is  reflected  in  the  asymmetry  (or  symmetry)  of  the  adjacency  matrix  (see  Figure
2.3.2.1-4).  

A sophisticated  network  is  a  graph  together  with  a  function  which  assigns  a
positive real number to each edge, and perhaps each vertex, to represent some associated
attribute (Harary 1994).  For example, the strength of links between nodes, si, j , are one
such attribute, the size or weight of each node, wi , is another.  Networks add information
and concepts  that cannot be captured in graph theory on the basis of topology alone.
Instead,  the graph provides  a topological  medium in which individually  characterized
elements interact.  So, while (Davis & Sumara 2006 : 46) suggest "a recasting of mathe-
matics as a source of models and metaphors, rather than a source of actual descriptions
and explanations",  this thesis will use mathematics  as a source of models,  metaphors,
and "actual descriptions and explanations" to compete with other modes of description
and explanations, such as narratives.
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Figure 2.3.2.1-1  
A  simple  diagram  of  a  small
graph.   Graph  theory  is  a

growth  area  in  mathematical
research, and has a large special-
ized vocabulary.   This diagram
is  an  embedding,  or  for  the
present  purposes,  a  particular
visualization,  of  a  simple
graph.   The  total  number  of
vertices,  N,  is  defined  as  the
graph  order,  and  is  here  equal
to  nine.   The  total  number  of

edges, M, is the graph size, and
is  here  equal  to  eleven.   The

number  of  edges,  d,  connected
to  a  vertex  determines  the

degree  of  that  vertex,  as  indi-
cated  for  a  few vertices  in  the

diagram.  

A B C

D E F

Figure 2.3.2.1-2   Basic network paragons  with consistent  node placements.   Each
network is  representative  of a whole class of networks  that share some distinctive
topological property, and will be referred to throughout the thesis.  Notice the node
placement is consistent, so the topological differences between networks is solely an
attribute  of  the  connections.   A.  Lattice  network  – each  node  is  connected  to  its
nearest neighbors.  B. Complete network – each node is linked to every other node.
C.  Star  network  –  one node,  called the  hub,  is  exclusively  connected  to all  other
nodes.  D. Random network – each node has a constant probability to be linked to
any other node regardless  of location (Bollobas  2001: ch. 1).  E. Small-world net-
work – an initial lattice network with a small portion of the links randomly rewired
(Serra  et  al.  2004).   F.  Scale-free  network  –  the  presence  of  many  nodes  of  low
degree plus a some hub nodes of medium, large, and very large degree.
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Figure 2.3.2.1-2   Basic network paragons  with consistent  node placements.   Each
network is  representative  of a whole class of networks  that share some distinctive
topological property, and will be referred to throughout the thesis.  Notice the node
placement is consistent, so the topological differences between networks is solely an
attribute  of  the  connections.   A.  Lattice  network  – each  node  is  connected  to  its
nearest neighbors.  B. Complete network – each node is linked to every other node.
C.  Star  network  –  one node,  called the  hub,  is  exclusively  connected  to all  other
nodes.  D. Random network – each node has a constant probability to be linked to
any other node regardless  of location (Bollobas  2001: ch. 1).  E. Small-world net-
work – an initial lattice network with a small portion of the links randomly rewired
(Serra  et  al.  2004).   F.  Scale-free  network  –  the  presence  of  many  nodes  of  low
degree plus a some hub nodes of medium, large, and very large degree.
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Figure 2.3.2.1-3  Various representations of a directed network.  Consider a directed
network, G = {V, E} = {{1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 1}, {3, 4}}}.  The set of
edges, E, is also called the adjacency list; it represents a compact mathematical form
containing all of the relational information within the network, G.  Assuming that the
vertices have indices from 1 to n, that is, V = 81, 2, ..., n<, then the adjacency matrix
of G is an nµ n matrix, with entries aij = 1 if 8i, j< œ E  and aij = 0 otherwise.  For
example, here n = 4, and the asymmetrical adjacency matrix to the left, , represents
the same directed network as above.

 =

i

k

jjjjjjjjj

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

y

{

zzzzzzzzz
 
 

1

2

34

Figure 2.3.2.1-4   Various  representations  of  an undirected  network.   Consider  an
undirected network with definition, G = {V, E} = {{1, 2, 3, 4}, {{1, 2}, {1, 3}, {2,
1}, {2, 3}, {3, 1}, {3, 2}, {3, 4}, {4, 3}}}.  The adjacency matrix to the left, , is
symmetrical, with entries aij  = aji  = 1 if 8i, j< œ E and aij = 0 otherwise.  This kind
of network  is  also called  a "binary  network";  either  a standard  relationship  exists
between two nodes and there is a link, or not.
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Figure 2.3.2.1-5   A network  with links of variable strength  and nodes of variable
weight  (see Barrat  et al.  2004a.   The adjacency matrix,  ,  may have values other
than zero or one, say let aij  œ [0, 1], thus indicating relationships between nodes that
fall along a spectrum of values.  For example, the links {1, 2} = {3, 1} = 1/2 have a
lower strength than the other links, {2, 3} = {3, 4} = 1, and are rendered thinner and
paler in the diagram.   The nodes themselves  may be granted individual  values for
some characteristic by an associated vector.  Here, the weight vector, W”÷÷÷ , controls the
size of each node, such that, node 4 is twice as big as the others.   Any secondary
characteristic of the nodes, say color, can be tracked by another vector (not shown).
The effectiveness  of the network description  depends on the researcher's  ability to
establish  a  meaningful  correspondence  between  parameters  in  the  network  with
germane properties of the system being studied. 

ü 2.3.2.2  History of Networks in the Social Sciences

Networks have a long tradition of use in the social sciences as a tool for social
network analysis, especially applied to the field of sociology, but also later in anthropol-
ogy,  geography,  organizational  studies,  economics  (Scott  2000).   The  social  network
perspective  focuses  on  the  "patterning  of  relationships"  among  social  entities,  where
each node typically represents  an individual,  group, or organization that are linked by
one or more specific types of interdependency,  such as communications (Breiger 2004;
McCarty 2002).  The focus on relationships is an important addition to standard social
and behavioral research, which is primarily concerned with attributes of the social units,
such as psychology for example (Ball 2004), or the influence of a background of social
norms (Cialdini & Trost 1998).  Beyond simply mapping the patterning of relationships
within society,  network  analysts  contend that "the structure  of relations  among actors
and the location of individual actors in the network have important behavioral, percep-
tual, and attitudinal consequences both for the individual units and for the system as a
whole"  (Knoke  &  Kuklinski  1982:  13).   That  is,  behavior  and  processes  should  be
explained with reference to networks of social relations that link actors, since networks
have both enabling and constraining dimensions, favoring certain types of behavior and
restraining others (Emirbayer & Goodwin 1994).

"Network metaphors have long had great intuitive appeal for social thinkers and
social scientists",  says Breiger (2004), and have developed from the vague towards an
exacting  representation  of  at  least  some  central  elements  of  social  structure  (Fararo
2001;  Borgatti  et  al.  2009).   Freeman (2008b)  states  "the network  approach  .  .  .  has
involved two commitments: (1) it is guided by formal theory organized in mathematical
terms,  and (2) it is grounded in the systematic  analysis  of empirical  data."  With this
view,  the varying  attributes  of individual  actors  is  less  important  than their  ties  with
each other, and the shape, or form, of the social network determines the network's useful-
ness (or harm) to its members.   A family of node level properties relating to measure-
ments of the structural importance or prominence of a node in the network are used to
gauge the social capital (Borgatti  et al.  2009; Zhang 2010) an actor receives from the
network in terms of, say, access to what is available via the network because of close-
ness to other  actors,  or,  control  over  what  flows in the network  due to a position of
betweeness amid other nodes, or, prestige  due to a central position, or, membership  in
cliques and other social categories (see Figure 2.3.2.2-1).

A criticism towards standard social networks research concerns the potentially
inadequate conceptualization  of human agency and culture, and its structural determin-
ism, which can neglect the "potential causal role of actors' beliefs, values, and normative
commitments”(Emirbayer  &  Goodwin  1994).   Another  problem  of  social  network
analysis is the relatively "abstruse terminology and state-of-the-art mathematical sophisti-
cation" seems to have created outsiders  of other social theorists who not venture any-
where near it, thus reducing dialogue.   Nevertheless,  it seems social network analysis
often  tries  to  bridge  communication  gaps  and  overcome  its  reliance  on  quantitative
measures  by  combining  them with  more  common  ethnographic  and  qualitative  data,
taking into account the historical context of each case study (Breiger 2004).

A recent elaboration on social networks is "actor network theory", introduced by
Latour (2005, for example), wherein nonhuman artifacts, for example, a violin, a ship,
or even concepts, are included in a heterogenous network as nodes with agency (Smith
2003).  This allows actor-network theory (ANT) to map both relations that are material
(between  things)  and  'semiotic'  (between  concepts).   Finally,  networks  have  found  a
place in postmodern discourse, for they appear to offer a metaphor and image to explain
contemporary  ways  information  and  text  –  especially  electronically  mediated  text
(Landow 2006) – is encountered that supports the rhetoric of liberation with the associ-
ated  enthusiasm  for  anti-hierarchical  modes  of  representation  (Miall  1999),  abandon-
ment  of  linearity,  multiplicity  of  meaning,  and  blurring  of  boundaries  –  especially
"between  network  actors  and  connections,  between  agency  and  structure"  (Breiger
2004).
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Figure 2.3.2.2-1   A network  description  of friendships  at  an American  composite
school  taken  from  comprehensive  interview  data  (Moody  2001)  to  illustrate  an
application  of  network  theory  in  the  social  sciences  (used with  permission  of the
author).   There  is  a  clear  separation  of friendships  across  a (near)  horizontal  axis
between  the  upper  and  lower  halves  of  the  network,  which  aligns  well  with  the
students' membership in either the junior or senior high school sections of the school.
There  is  even  more  distinct  separation  of  friendships  to  either  side  of  the  (near)
vertical division.  The white nodes correspond to white students and strongly tend to
be  clustered  toward  the  left;  the  green  nodes  correspond  to  black  students  and
strongly tend to be clustered  toward the right; and, the pink nodes represent  other
students which tend to be more evenly distributed.   Network analysis and diagrams
powerfully  communicate  a  paradox  of  policies  that  strive  for  more  balanced  race
distributions in schools.  From a national sample of schools across the USA, Moody
concludes  there  is  a  positive  relation  between  race  heterogeneity  and  friendship
segregation since students show an increase in same-race preference with increasing
heterogeneity (to a point).  That is, small minorities integrate better through friend-
ships than large minorities  (observe  the rather  more even distribution  of the small
minority of pink nodes).  It seems, friendship segregation peaks in moderately heter-
ogenous schools,  but declines  in schools that are more homogeneous  or extremely
heterogeneous.
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ü 2.3.2.3  Contemporary Development of Networks in Physics

Everything that is not by its nature indivisible can be shown to have
a structure, to be a complex whole capable of analysis into its constit-
uent elements, these elements themselves being related to each other
according to rules also to be discovered.

Sturrock,  John  (1986)  Structuralism  (London,  Paladin  Grafton
Books), p. vii.

Many contemporary  theorists are developing and applying the physics of com-
plexity to social science discourse (Bloom 2000; Liljeros et al. 2001; Newman & Park
2003).  Appearing literature examines the overlaps and interplays between analyses of
physical  and  social  worlds,  forming,  what  Urray  (2000)  calls  "a  twenty-first  century
social  physics."   In  this  new  academic  configuration,  physicists  seeking  to  analyze
networks  generally,  partly  turn  to  the  foundations  of  social  networks  (Watts  2004b).
Cho (2009) reports how "physicists bring a special balance between mathematical rigor
and computational  approaches  and intuition"  for "problems  [which]  are more compli-
cated than most physicists assume, but less hopeless than most social scientists think".
"But, so far, a great many [social] network analysts have tended to view the physicists as
interlopers,  invading  our  territory",  reports  the  eminent  sociologist,  Freeman  (2008).
The "proselytising activities of the physicists" seem to annoy Scott (2009), who thinks
that they "have ignored or have been unaware of the vast amount of prior work on social
networks".  Using the ominous opening phrase, "enter the physicists", Freeman (2004),
seems resigned when describing how a cadre of physicists, "armed with excellent mathe-
matical and computational skills and, perhaps even more important, a tradition of mak-
ing  simplifying  models  of  natural  phenomena",  have  "recently  crashed  the  world  of
social  networks"  (Bonacich  2004).   In  reaction,  sociological  work  analyzing  global
processes  increasingly  deploys  the  physics  and  mathematics  of  complex,  non-linear
adaptive systems (Crossley 2008).

Extending  far  beyond  social  contexts,  networks  have  attracted  considerable
recent attention in physics as a foundation for the mathematical representation, at least
to some extent,  of a variety  of complex systems by modeling  the interactions  among
their components (Zhao et al. 2010).  Earlier this century (if it is not too soon to use that
phrase),  it was found by physicists  that the structure of different biological,  technical,
economical,  and social systems has the form of "complex networks" (Ravasz & Bara-
basi 2003; Albert  & Barabasi 2002; Strogatz 2001; Ebel et al. 2002).  In the physical
sciences, "a key research goal has been formulating universal characteristics of nonran-
dom networks" (Borgatti  et al. 2009).  Beyond the specific features displayed by each
network,  unifying concepts,  such as, the small-world property (addressed in §4.1.1.5),
scale-free  behavior  (addressed  in  §4.1.1.2),  and hierarchical  modularity  (addressed  in
§4.1.2.2),  now constitute  the basic  understanding  of the organization  of complex net-
worked systems, which appear in as diverse examples as the worldwide web, the social
networks, and the biochemical reaction networks inside cells (Berry 2003).  But, under-
standing networks deeply involves more than simply mapping out their structure,  thus
physicists  have  advanced  models  and  analysis  for  network  growth  (Strogatz  2005),
network  evolution  (Dorogovtsev  & Mendes  2002),  shifts  of network  structure  (phase
changes) (Bianconi & Barabasi 2001b), global properties of networks (Song et al. 2005;
Shinbrot  & Muzzio 2001; Guimera & Amaral  2005), and dynamics occurring on net-
works (Durand 2006; Sousa & Sanchez 2006; Ebel et al. 2002).

A common feature  of  complex  networks,  is  that  they are  built  up by gradual
adaptive  events  or  by  processes  of  self-organization  under  conditions  of  distributed
control.   Some complex networks  appear through growth by a process of preferential
attachment (Berger  et al. 2005; Cancho & Sole 2003) as new nodes tend to link with
already  well  linked  nodes,  or  through  a  competitive  process  as  particularly  fit  nodes
attract  more links in an evolving  network  (Berger  et  al.  2005).   Arenas  et  al.  (2007)
suggest  the  "organization  of  the  network  [is]  prescribed  by  functionalities",  and  for
dynamic and evolving networks,  the topology often results from some sort of process
optimized to available resources (Sole & Valverde 2004).  Since each link represents a
commitment  of resources  to  maintain  a  relationship  between  two nodes,  the network
topology reflects the adaptations made by the complex system (given its resources)  in
reaction to the selective pressures applied by the environment (Sole et al. 2003; Wilhelm
& Hanggi 2003).  Networks may undergo "topological phase transitions" (Derenyi et al.
2004;  Palla  et  al.  2004)  as  they  shift  from one network  category  to  another  through
adaptive responses to changing conditions (see Figure 2.3.2.3-2).

The upshot is, in the last ten years, sweeping changes in the theoretical
development,  breadth of application,  capabilities  of programming  tools, and analytical
sophistication of networks has been forwarded, above all, by physicists.  This explosive
growth is reflected in the proportion of network-based research published within leading
physics  journals  (see  Costa  et  al.  2006;  Costa  et  al.  2008)  and  the  establishment  of
entirely  new  interdisciplinary  fields  of  research,  such  as,  network  biology  wherein
physicists work (see Figure 2.3.2.3-2).
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network stress

complete random scale-free centralized broken

Figure 2.3.2.3-1  The placement of some exemplary network types along continua of
available resources and applied stress (adapted from Csermely 2009: 81).  Complete
networks allow for direct linkages between any two nodes, but at a maximum cost
(link density).  When the cost of links remains relatively low compared to network
resources,  and in the absence of a compelling stress,  linkage is essentially  random
among  nodes  (Denker  et  al.  1987).   Networks  exhibit  a  scale-free  structure  with
lower  average  connectivity  in  response  to  more  limited  resources  to  reduce  total
linkage costs,  while hubs appear due to differences  in node fitness under selection
pressure (Valverde  et al. 2002;  Wilhelm & Hanggi 2003).  A further squeezing of
resources precipitates a "condensation" towards a star network, which maintains full
connectivity  of  the  elements  with  the  fewest  possible  links  centered  on the fittest
node (Biely & Thurner 2006).  Under conditions of minimal resources or maximum
stress the network is unable to maintain its connectivity.
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Figure  2.3.2.3-2   A juxtaposition  of  two  neuroendocrine  and  immune  interaction
networks assembled from test subjects  with a healthy diagnosis,  a) NF, and with a
diagnosis of chronic fatigue syndrome, b) CFS.  For a complex chronic disease such
as CFS, a single factor is unlikely to be implicated.  Rather, multiple factors and the
interactions between them are suspected.  Consequently,  a perspective in which the
interactions and dynamics are centrally integrated into the analytical methods is well
suited.   By  considering  changes  in  the  overall  topology  of  a  neuroendocrine  and
immune  interaction  network  between  healthy  and  fatigued  subjects,  Fuite  et  al.
(2008)  seek  relational  causes  for  a  complex  disease  among  the  reorganization  of
many components instead of the dramatic malfunction of one (or a few).

ü 2.3.2.4  Present Use of Networks in Education

Outside  of education,  the description,  analysis,  and modeling of complex sys-
tems as networks has been the focus of significant interdisciplinary interest.  The prod-
ucts are hundreds of papers in physics, mathematics, computer science, biology, econom-
ics, and sociology journals (Newman 2003), some shareware programs (e.g. Repast and
Pajek), and a handful of popular science books (Barabasi 2003; Buchanan 2002; Stro-
gatz 2003; Watts 2003), but until lately, few efforts directed at the education research
community.   As a large scholarly  discipline,  overall use of networks is uncommon in
Education.   For  instance,  in  a  current  article,  Mowat  & Davis  (2010)  say flatly  that
"network theory . . . has not been applied to the field of mathematics education", a field
which might otherwise be expected to be populated with 'early adopters' of mathemati-
cal  and  technological  methods  generally.   But within  the last  couple  of years,  a  few
authors have begun to introduce and apply networks to study important aspects of educa-
tion research (Carolan 2008; McFarland & Klopfer 2010).  Social network analysis has
been applied in a small number of studies into different aspects of school life and institu-
tions  (Thomas  2000;  Metcalfe  2006).   Recently,  some authors  began to  consider  the
knowledge within the education research community, and the curriculum, as a network
(Carolan & Natriello 2005).  They have theorized on the subject and proposed practical
schemes  to  address  this  view  (Penuel  et  al.  2009),  but  effectiveness  of  the  network
description depends on the researchers' ability to establish a meaningful correspondence
between parameters in the network with germane properties of the system being studied.
Locally,  graduate research in the Department  of Secondary Education at the U. of A.,
includes  studies  by  McFeetors  on  tracking  student  learning  trajectories  through  high
school mathematics curriculum towards graduation (see Figure 2.3.2.4-1).  Small, infor-
mal networks are already encountered in curriculum documents from Alberta Education
(see Figure 2.3.2.4-2), but, apparently, there are no large, analyzed network structures of
courses in the Education literature prior to Fuite (2008).

  Within education,  formal network theory has the longest and most developed
tradition inside Library and Information Studies, where it is used to track, structure, and
otherwise  manage  the  data  and  documents  of  our  knowledge  based  society.   When
studying how knowledge is generated, research has looked for patterns in the literature
among author citations (White & Griffith 1981; White & McCain 1998; Zhao & Strot-
mann 2008; Borner et al. 2005; Newman 2004a) and article citations between knowl-
edge domains (Small 1999; Moya-Anegon 2004).  An object of education is knowledge;
the achievement of some integrative objectives in education is aided by an understand-
ing of the manner in which the parts comprising the knowledge structure are connected.
One  of  the  most  powerful  means  is  the  graphical  display  of  a  characterizing  model
derived from empirical data (Grenander & Miller 1994).  The resulting network represen-
tations of knowledge from researchers in Library and Information Studies yield visualiza-
tions of information  in ways easier for the mind to understand,  and are contemporary
instances of the ongoing developments  in information visualization (Shiffrin & Borner
2004)

  
  Information  visualization  is  an approach to abstract  and communicate  other-

wise  hidden  patterns  in  the  complex  phenomena  of  reality  through  visible  messages
(Skupin 2004).  Computer-supported  environments  are particularly well suited because
they can be supplied with many time and memory saving features (Shneiderman 2004)
and made adaptable (Bender-deMoll 2006).  The purpose of information visualization is
to exploit the natural abilities of the human visual perception in order to understand data
that is not necessarily visual in nature, since visual characteristics  are processed much
faster than textual descriptions (Keller & Tergan 2005).  The use of information visualiza-
tion allows the viewer to comprehend huge amounts of data, and to identify emerging
properties  that are not evident  in textual  representations.   But significant  use of data-
based graphics did not gain popularity until the late eighteenth century.  Wainer (2005:
ch. 1) credits William Playfair (1759-1823) for inventing the pie-chart, and popularizing
the line and bar graph through economic data in his Commercial and Political Atlas of
England and Wales of 1786, while the scatter plot did not appear until the middle of the
nineteenth century.  Current uses of networks in education can be seen as a contempo-
rary addition to the historical development of information visualization methods.
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Outside  of education,  the description,  analysis,  and modeling of complex sys-
tems as networks has been the focus of significant interdisciplinary interest.  The prod-
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description depends on the researchers' ability to establish a meaningful correspondence
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mann 2008; Borner et al. 2005; Newman 2004a) and article citations between knowl-
edge domains (Small 1999; Moya-Anegon 2004).  An object of education is knowledge;
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instances of the ongoing developments  in information visualization (Shiffrin & Borner
2004)
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Figure 2.3.2.4-1  A network diagram to indicate the pathways travelled by a popula-
tion of  students  through  high  school  mathematics  courses  (used with  permission).
The nodes are weighted in size by total student enrollment and color coded by sec-
tion, while the thickness or strength of links indicates the flux of students between
course nodes.  Grade nine mathematics  is the common origin for all students from
where  they  branch  out  into  the  different  streams.   Enrollment  changes  based  on
student drop out and transfer between nodes.
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Figure 2.3.2.4-2  A course network visualization present in current Provincial docu-
mentation.   It is part  of a well  labelled,  thirty-three  course,  single-subject,  subnet-
work of communication technology courses as included in Alberta Education (2006)
descriptions of Career and Technology Studies (CTS) programs (used with permis-
sion).  A hierarchy of knowledge is directly indicated in the top left box node by a
star, which, in this context, points to a footnote stating the, "course provides a strong
foundation for further learning in this strand", and by the different types of links - a
dashed link shows the "recommended sequence" between courses,  and a solid link
connects to a mandatory "prerequisite".  The movement between the courses for the
student is obvious.  No documents attempt to bridge or overview the subnetworks.
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3.  Methodology and Methods

3.1 Mapping Alberta's Course Network

As many who have tried to find an unfamiliar destination will recog-
nize, often a combination of written directions and a map are help-
ful, because a visual overview and a sequential description present
different elements of human experience.  This applies not only to the
planning of  physical  trips,  but also to the planning of curriculum.
(After all,  the Latin curriculum  (from currere, to run) designated a
(chariot) racetrack or course.)

Ruitenberg, Claudia W. (2007) Here Be Dragons: Exploring Cartog-
raphy  in  Educational  Theory  and  Research,  Complicity:  An
International  Journal  of  Complexity  and Education,  4(1):  p.
15.

The  basic  idea  for  applying  wide-scale  network  mapping  techniques  to  the
education system comes from an article by Chandler (2007), titled The Network Struc-
ture of Supreme Court Jurisprudence.  Therein, Chandler, a lawyer, organizes the deci-
sions  brought  down by the  Supreme  Court  of  the  USA into a network  based  on the
citation  of  precedences  used  to  judge  each  case.   It  seems,  each  decision  the  USA
Supreme Court adjudicates is based on (at least) two factors: a) the particular details of
the case in question, and b) the precedences previous relevant cases have set forth.  It is
here hypothesized that in education an analogous process occurs: knowledge is created
by the confluence of new information introduced in a course with previous knowledge
from prerequisite  courses.   Whereas,  the a basic unit of law is the case and the basic
relationship between cases (if any) is the precedent, in education, as it is here addressed,
the basic unit of organization is the course and the basic relationship between courses (if
any) is the prerequisite.  The identity of courses and their immediate relationships can be
extracted  from  the  administrative  documents  and  organized  to  similarly  assemble  a
network for education in Alberta like that made by Chandler  for law in the USA.  A
furtherance  of Chandler's  work by Fowler (2008) in an article titled, The Authority of
Supreme Court Precedent, establishes a particular method of analysis to comment on the
relative influence, what he calls "authority",  of decisions made in the Supreme Court's
history (reported by by The Economist in 2005).  A major goal of this thesis research is
to establish homologous  methods of analysis to comment on course networks and the
roles  courses  fulfill  within  them to  provide  equally  interesting  insights  regarding  the
education system.
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‡ 3.1.1  Data Gathering and Preparation

The research materials providing the information on courses and prerequisites in
Alberta's  education  system  come  from  the  provincial  Ministry  of  Education  and  the
University of Alberta.  No single document provides more than a small fraction of the
information required for an overall view of the school system (for example, see Figure
3.1.1-1).   Instead,  dozens  of web pages,  each with sometimes  dozens  of linked files,
from the Alberta  Education  (2006) website  provide data on subsets  of closely related
school courses, or perhaps only one course, within a subject area, which require amal-
gamation and manual transfer onto an Excel spreadsheet.   Most often the relationship
between courses is summarized in text without addressing the overall structural relation-
ship between courses,  for example,  "The Mathematics  14-24 sequence is designed for
students  whose needs,  interests  and abilities  focus on basic  mathematical  understand-
ing."  Major divisions in the data that need to be carefully bridged are between univer-
sity  and  academic  high  school  courses,  between  non-academic  high  school  and  aca-
demic high school courses, and between the different, and fairly isolated, non-academic
programs.   Grades up to eight inclusive are treated as 'atomic' components  of the net-
work with the same status as courses and without reference to internal subjects,  since,
up to that point, students pass and fail entire grades – not individual subjects – and the
courses in grade ten refer to the performance in specific grade nine courses with regards
to streaming.

The comprehensive source for course information at the University of Alberta is
the Calendar (University of Alberta 2006), but thorough study of the document requires
many personal electronic mail and telephone exchanges with department undergraduate
coordinators  and others for additional  information  and clarifications.   A digitized ver-
sion of chapter 221, Course Listings, of the Calendar 2006-2007 was provided by data
managers  in  the  Office  of  the  Registrar.   Significant  programming  and  testing  is
required to translate the text file into a usable form.  In the Mathematica programming
environment,  pattern  recognition  routines  are  written,  modified,  and  applied  by  an
original program, Calendar Navigator, to the source file, which split course entries into
categories  of information,  such as, faculty  and department  membership,  subject  name
and number, prerequisites and corequisites, description, and credit weight.  Inconsisten-
cies in the layout and language of course entries contribute  to obstinate programming
difficulties and tedious proofreading.

The  original  data  file  from  the  Registrar's  office  lists  about  seven-thousand
courses at the University of Alberta.  The author does not read French well, so courses
from the Faculté Saint-Jean are discarded.  Courses from the Augustana Faculty appear
redundant  (as do Faculté  Saint-Jean  courses)  since they mostly  mirror  courses  in the
other faculties and are simply taught at a separate campus, so they are discarded.  The
Faculty of Extension and Open Studies appear to offer courses in atypical ways which
portend  complications  to  the research  approach  so the  few courses  specific  to theses
categories are discarded.  At the graduate level, course descriptions, including prerequi-
site  descriptions,  tend  to  be  sparse  or  nonexistent,  thus  implying  extra  work  for  the
researcher to investigate and understand relationships between any graduate course and
the  knowledge  of  other  courses,  therefore  this  large  Faculty  is  discarded.   After  the
above pruning, the course data set includes the 3 962 nonredundant courses composing a
nearly complete view of at least undergraduate  education at the University of Alberta.
But time restraints on the author allow for only partial cataloging of courses from the
Faculty of Medicine and Dentistry and the total neglect of the Faculties of Education,
Law, and Pharmacy, though these shortfalls would quickly be remedied upon the receipt
of a postdoctoral position.  The data set ultimately used in this study has 3 398 courses
from the University of Alberta which represent about 86% of the knowledge in under-
graduate  studies.   In  summary,  the  frequently  referred  to  "education  system,  K-16"
studied in this research includes all 1 317 school courses potentially offered in Alberta
public  schools,  plus the courses  potentially  offered in the included  faculties  from the
Provincial  University,  which combine for an 90% coverage.   The phrase,  "courses  of
Alberta's Provincial education system", is here defined as the courses taught in Provin-
cial public schools plus those in the Provincial  university:  University of Alberta – the
Province's largest university.  It is assumed the huge data set used for this study is com-
prehensive enough to well represent and characterize these key institutions, so is hereaf-
ter left unqualified.
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above pruning, the course data set includes the 3 962 nonredundant courses composing a
nearly complete view of at least undergraduate  education at the University of Alberta.
But time restraints on the author allow for only partial cataloging of courses from the
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Law, and Pharmacy, though these shortfalls would quickly be remedied upon the receipt
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Figure 3.1.1-1   An small  example  of school  course  information  used to form the
research  data  set.   Some  files  on  the  Alberta  Education  website  describe  related
courses with formatted text so the reader can form a solid impression of the implied
course network, such as above.  A sense of progression from left to right and top to
bottom is established so it is not difficult for the reader to link these courses.  The
sequence  remains  isolated  for  the  reader  because  there  are  no  association  with
courses beyond those listed.  School data used in this study are for the 2005/2006
academic year.
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‡ 3.1.2  Data Translation from Text to Network

Networks are a way to study large systems of interacting elements by formaliz-
ing and quantifying the binary relationships among the elements.  For this research, the
elements  considered  are  the  courses  offered  in  school  and  undergraduate  university,
while the binary relationships are the courses' status as prerequisites to each other.  The
University  Calendar  (p.  727)  calls  a  prerequisite  a  "preliminary  requirement,  usually
another course, which must be met or waived before a course can be taken."  Now, the
University Calendar does not expound this statement, but the assumption made here is
that a prerequisite is a statement of precondition for learning (Hubscher 2001) based on
prior knowledge – the material  of course i  is required by a learner for the material in
course j  to be learned to expectations  – and,  that prerequisites  exist  generally  for the
same purposes grade levels in school exist: they are a bureaucratic tool to impart consis-
tency (redundancy)  and predictability  in the pupils to avoid classroom disorder and to
align  student  capabilities  with  expectations  of  outcomes  (Bell  1980).   Both  of  these
aspects of the prerequisite relation between courses influence network construction and
use  in  this  report.   From  discrete  mathematics,  a  directed  acyclic  graph  defines  a
"precedence relation" (Pemmaraju & Skiena, 2003, ch. 8.5.1) on the vertices, if edge (i,
j) is taken as meaning that vertex i must occur before vertex j.  Ruecker (2003) describes
"a dependency between two objects" where the first requires the second to accomplish
some action, as a candidate for modelling by "adjacency relationships among elements"
represented by a directed graph.  The logical equivalence between a 'precedence relation'
from  mathematics  and  a  'prerequisite  relation'  from  Education,  both  as  'dependency
relations', motivates the choice of acyclic directed networks to model course structures
in this thesis.

A search of the education research literature does not reveal many docu-
ments  describing  the  most  common  criteria  by  which  course  prerequisites  are  deter-
mined  in  current  institutions.   But,  Hativa  (1995)  does  describe  how  the  series  of
"courses  that  are  prerequisite"  establish  the  "prerequisite  knowledge",  which  subse-
quently determines  the differing content and goals for courses in different  disciplines.
Within the study of nursing programs,  Potolsky  et al.  (2003) showed in "prerequisite
courses, students were evaluated on knowledge and retention of course content" and the
performance  of  students  in  following  nursing  courses  was  positively  correlated  with
their prerequisite  grades (see also,  Brennan et al. 1996).   Meanwhile,  Murray (1998)
offers  a model  for  a distributed  curriculum  supported  by the  internet  with  "units"  or
"components"  of knowledge that can be both comparable to and smaller than a typical
course,  which  are  carefully  connected  to  each  other  by  the  "knowledge  or  skills
involved".  Yet, to what level prior knowledge requirements determine course prerequi-
site requirements  at the University  of Alberta and in Alberta's  schools is unquantified
and requires further original research, possibly in the form of questionnaires to depart-
ment heads asking them upon what criteria (if not knowledge) prerequisites are assigned
for the courses in their department.  Prerequisites could serve various other administra-
tive functions  unrelated  to knowledge,  for example,  as mechanisms  to control  enroll-
ment streams or to limit class size, so could be assigned to a course on that basis.  Alter-
natively,  historical  precedence,  or  simply  administrative  friction  and  neglect,  might
leave  prerequisite  requirements  'on  (or  off)  the  books'  long  after  they  serve  any role
providing necessary prior knowledge, especially in institutions that are not computerized
and  actively  managed.   The  fidelity  between  the  prerequisite  relationships  among
courses  and  their  knowledge  relationships  despite  administrative  noise  remains
unknown.   But, a reactive force within the education  system that could reenforce  the
correlation  between  prerequisite  linkages  and  prior  knowledge  requirements  are  stu-
dents.   The considerable  investment  of their  time and money into scholarship,  makes
students sensitive to the presence of both superfluous and missing prerequisites based on
knowledge.   Students  will naturally resent the obstruction  of any prerequisite  require-
ment  they  sense  was  imposed  unnecessarily  to  learn  the  material  of  a  course;  con-
versely,  they will  feel unfairly  ambushed by a course with demands well  beyond the
prior knowledge  established in the stated prerequisites.   Either type of deviation from
the  alignment  between  functional  prior  knowledge  requirements  and  administrative
prerequisite  requirements  is  likely  to  result  in  persistent  student  dissatisfaction  and
complaints to administration.   The assumption that education in Alberta is a well man-
aged, knowledge based, knowledge driven, and knowledge structured organization, such
that, courses are primarily organized by prerequisite relationships based on prior knowl-
edge requirements, is here explicitly stated and emphasized.  Throughout the remainder
of the thesis, especially in sections 4.1 & 4.2, interpretations of wide-scale course struc-
tures  –  built  using  prerequisite  linkages  – while  using  terms  of  knowledge,  must  be
considered with respect to the believability of this presumption.

Some  school  documents  are  already  found  to  include  small
network diagrams explaining the course connections in some subnetwork of the school
system (see Figure 3.1.2-1).  But, it seems no documents unite any of the small subnet-
works,  describe  the  transition  from school  to  university,  or  illustrate  any  part  of  the
university course structure.  The present use of course networks, while useful, is limited
to small, static illustrations of a much more limited scale than developed in this thesis.
Usually, the text of each course description offers distinguishing information about itself
and partially implies how the course is associated  with other courses in the education
system.  The information is identified, split up, and used to form the network or at least
be  implanted  somewhere  within,  available  for  retrieval  by  a  graphical  user  interface
(GUI).   For example,  the course code and course number appear in networks as node
labels,  while  the  prerequisite  descriptions  determine  link strength  and  endpoints  (see
Figure 3.1.2-2).  Link strengths are designed to indicate the relative importance a course
places on another as a prerequisite.   Courses reached by links with strength unity are
vital to the referring course as prerequisites.  A link to a course with strength less than
unity indicates such a course may serve as a prerequisite, but there exist alternatives as
well.  The absence of a link between courses indicates that neither is necessary to the
learning which occurs in the other.  Two courses, i and j, are assigned a directed link of
strength sij  = 1/na , where na  œ 1  is the number of possible  courses that can satisfy
prerequisite  a  of course i,  such that, sij  œ  [0, 1] and sij  ≠ sji .   Besides being used to
determine  empirical  link strengths  between  courses,  the  prerequisites  more  obviously
imply  a  logical  structure  for  questions  of  access  to knowledge  within  a course.   For
example,  any specifically referred to prerequisite is necessary AND so are each of the
others.  But, when there is a choice among some courses that satisfy the same prerequi-
site, then any one of those is necessary OR any one of the others.  By way of illustration,
consider again Figure 3.1.2-2 and the prerequisites listed.  They determine access to the
knowledge of the course, BIOL 332, based on the following control statement:
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leave  prerequisite  requirements  'on  (or  off)  the  books'  long  after  they  serve  any role
providing necessary prior knowledge, especially in institutions that are not computerized
and  actively  managed.   The  fidelity  between  the  prerequisite  relationships  among
courses  and  their  knowledge  relationships  despite  administrative  noise  remains
unknown.   But, a reactive force within the education  system that could reenforce  the
correlation  between  prerequisite  linkages  and  prior  knowledge  requirements  are  stu-
dents.   The considerable  investment  of their  time and money into scholarship,  makes
students sensitive to the presence of both superfluous and missing prerequisites based on
knowledge.   Students  will naturally resent the obstruction  of any prerequisite  require-
ment  they  sense  was  imposed  unnecessarily  to  learn  the  material  of  a  course;  con-
versely,  they will  feel unfairly  ambushed by a course with demands well  beyond the
prior knowledge  established in the stated prerequisites.   Either type of deviation from
the  alignment  between  functional  prior  knowledge  requirements  and  administrative
prerequisite  requirements  is  likely  to  result  in  persistent  student  dissatisfaction  and
complaints to administration.   The assumption that education in Alberta is a well man-
aged, knowledge based, knowledge driven, and knowledge structured organization, such
that, courses are primarily organized by prerequisite relationships based on prior knowl-
edge requirements, is here explicitly stated and emphasized.  Throughout the remainder
of the thesis, especially in sections 4.1 & 4.2, interpretations of wide-scale course struc-
tures  –  built  using  prerequisite  linkages  – while  using  terms  of  knowledge,  must  be
considered with respect to the believability of this presumption.

Some  school  documents  are  already  found  to  include  small
network diagrams explaining the course connections in some subnetwork of the school
system (see Figure 3.1.2-1).  But, it seems no documents unite any of the small subnet-
works,  describe  the  transition  from school  to  university,  or  illustrate  any  part  of  the
university course structure.  The present use of course networks, while useful, is limited
to small, static illustrations of a much more limited scale than developed in this thesis.
Usually, the text of each course description offers distinguishing information about itself
and partially implies how the course is associated  with other courses in the education
system.  The information is identified, split up, and used to form the network or at least
be  implanted  somewhere  within,  available  for  retrieval  by  a  graphical  user  interface
(GUI).   For example,  the course code and course number appear in networks as node
labels,  while  the  prerequisite  descriptions  determine  link strength  and  endpoints  (see
Figure 3.1.2-2).  Link strengths are designed to indicate the relative importance a course
places on another as a prerequisite.   Courses reached by links with strength unity are
vital to the referring course as prerequisites.  A link to a course with strength less than
unity indicates such a course may serve as a prerequisite, but there exist alternatives as
well.  The absence of a link between courses indicates that neither is necessary to the
learning which occurs in the other.  Two courses, i and j, are assigned a directed link of
strength sij  = 1/na , where na  œ 1  is the number of possible  courses that can satisfy
prerequisite  a  of course i,  such that, sij  œ  [0, 1] and sij  ≠ sji .   Besides being used to
determine  empirical  link strengths  between  courses,  the  prerequisites  more  obviously
imply  a  logical  structure  for  questions  of  access  to knowledge  within  a course.   For
example,  any specifically referred to prerequisite is necessary AND so are each of the
others.  But, when there is a choice among some courses that satisfy the same prerequi-
site, then any one of those is necessary OR any one of the others.  By way of illustration,
consider again Figure 3.1.2-2 and the prerequisites listed.  They determine access to the
knowledge of the course, BIOL 332, based on the following control statement:
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Networks are a way to study large systems of interacting elements by formaliz-
ing and quantifying the binary relationships among the elements.  For this research, the
elements  considered  are  the  courses  offered  in  school  and  undergraduate  university,
while the binary relationships are the courses' status as prerequisites to each other.  The
University  Calendar  (p.  727)  calls  a  prerequisite  a  "preliminary  requirement,  usually
another course, which must be met or waived before a course can be taken."  Now, the
University Calendar does not expound this statement, but the assumption made here is
that a prerequisite is a statement of precondition for learning (Hubscher 2001) based on
prior knowledge – the material  of course i  is required by a learner for the material in
course j  to be learned to expectations  – and,  that prerequisites  exist  generally  for the
same purposes grade levels in school exist: they are a bureaucratic tool to impart consis-
tency (redundancy)  and predictability  in the pupils to avoid classroom disorder and to
align  student  capabilities  with  expectations  of  outcomes  (Bell  1980).   Both  of  these
aspects of the prerequisite relation between courses influence network construction and
use  in  this  report.   From  discrete  mathematics,  a  directed  acyclic  graph  defines  a
"precedence relation" (Pemmaraju & Skiena, 2003, ch. 8.5.1) on the vertices, if edge (i,
j) is taken as meaning that vertex i must occur before vertex j.  Ruecker (2003) describes
"a dependency between two objects" where the first requires the second to accomplish
some action, as a candidate for modelling by "adjacency relationships among elements"
represented by a directed graph.  The logical equivalence between a 'precedence relation'
from  mathematics  and  a  'prerequisite  relation'  from  Education,  both  as  'dependency
relations', motivates the choice of acyclic directed networks to model course structures
in this thesis.

A search of the education research literature does not reveal many docu-
ments  describing  the  most  common  criteria  by  which  course  prerequisites  are  deter-
mined  in  current  institutions.   But,  Hativa  (1995)  does  describe  how  the  series  of
"courses  that  are  prerequisite"  establish  the  "prerequisite  knowledge",  which  subse-
quently determines  the differing content and goals for courses in different  disciplines.
Within the study of nursing programs,  Potolsky  et al.  (2003) showed in "prerequisite
courses, students were evaluated on knowledge and retention of course content" and the
performance  of  students  in  following  nursing  courses  was  positively  correlated  with
their prerequisite  grades (see also,  Brennan et al. 1996).   Meanwhile,  Murray (1998)
offers  a model  for  a distributed  curriculum  supported  by the  internet  with  "units"  or
"components"  of knowledge that can be both comparable to and smaller than a typical
course,  which  are  carefully  connected  to  each  other  by  the  "knowledge  or  skills
involved".  Yet, to what level prior knowledge requirements determine course prerequi-
site requirements  at the University  of Alberta and in Alberta's  schools is unquantified
and requires further original research, possibly in the form of questionnaires to depart-
ment heads asking them upon what criteria (if not knowledge) prerequisites are assigned
for the courses in their department.  Prerequisites could serve various other administra-
tive functions  unrelated  to knowledge,  for example,  as mechanisms  to control  enroll-
ment streams or to limit class size, so could be assigned to a course on that basis.  Alter-
natively,  historical  precedence,  or  simply  administrative  friction  and  neglect,  might
leave  prerequisite  requirements  'on  (or  off)  the  books'  long  after  they  serve  any role
providing necessary prior knowledge, especially in institutions that are not computerized
and  actively  managed.   The  fidelity  between  the  prerequisite  relationships  among
courses  and  their  knowledge  relationships  despite  administrative  noise  remains
unknown.   But, a reactive force within the education  system that could reenforce  the
correlation  between  prerequisite  linkages  and  prior  knowledge  requirements  are  stu-
dents.   The considerable  investment  of their  time and money into scholarship,  makes
students sensitive to the presence of both superfluous and missing prerequisites based on
knowledge.   Students  will naturally resent the obstruction  of any prerequisite  require-
ment  they  sense  was  imposed  unnecessarily  to  learn  the  material  of  a  course;  con-
versely,  they will  feel unfairly  ambushed by a course with demands well  beyond the
prior knowledge  established in the stated prerequisites.   Either type of deviation from
the  alignment  between  functional  prior  knowledge  requirements  and  administrative
prerequisite  requirements  is  likely  to  result  in  persistent  student  dissatisfaction  and
complaints to administration.   The assumption that education in Alberta is a well man-
aged, knowledge based, knowledge driven, and knowledge structured organization, such
that, courses are primarily organized by prerequisite relationships based on prior knowl-
edge requirements, is here explicitly stated and emphasized.  Throughout the remainder
of the thesis, especially in sections 4.1 & 4.2, interpretations of wide-scale course struc-
tures  –  built  using  prerequisite  linkages  – while  using  terms  of  knowledge,  must  be
considered with respect to the believability of this presumption.

Some  school  documents  are  already  found  to  include  small
network diagrams explaining the course connections in some subnetwork of the school
system (see Figure 3.1.2-1).  But, it seems no documents unite any of the small subnet-
works,  describe  the  transition  from school  to  university,  or  illustrate  any  part  of  the
university course structure.  The present use of course networks, while useful, is limited
to small, static illustrations of a much more limited scale than developed in this thesis.
Usually, the text of each course description offers distinguishing information about itself
and partially implies how the course is associated  with other courses in the education
system.  The information is identified, split up, and used to form the network or at least
be  implanted  somewhere  within,  available  for  retrieval  by  a  graphical  user  interface
(GUI).   For example,  the course code and course number appear in networks as node
labels,  while  the  prerequisite  descriptions  determine  link strength  and  endpoints  (see
Figure 3.1.2-2).  Link strengths are designed to indicate the relative importance a course
places on another as a prerequisite.   Courses reached by links with strength unity are
vital to the referring course as prerequisites.  A link to a course with strength less than
unity indicates such a course may serve as a prerequisite, but there exist alternatives as
well.  The absence of a link between courses indicates that neither is necessary to the
learning which occurs in the other.  Two courses, i and j, are assigned a directed link of
strength sij  = 1/na , where na  œ 1  is the number of possible  courses that can satisfy
prerequisite  a  of course i,  such that, sij  œ  [0, 1] and sij  ≠ sji .   Besides being used to
determine  empirical  link strengths  between  courses,  the  prerequisites  more  obviously
imply  a  logical  structure  for  questions  of  access  to knowledge  within  a course.   For
example,  any specifically referred to prerequisite is necessary AND so are each of the
others.  But, when there is a choice among some courses that satisfy the same prerequi-
site, then any one of those is necessary OR any one of the others.  By way of illustration,
consider again Figure 3.1.2-2 and the prerequisites listed.  They determine access to the
knowledge of the course, BIOL 332, based on the following control statement:

If HBIOL 208 fl STAT 151 fl HMATH 113 fi MATH 115 fi MATH 120LL
then BIOL 332 elseŸ BIOL 332.

Therefore,  methods  of  analysis  developed  in  this  thesis  must  account  for  the  logical
topology  of  courses,  that  is,  the  patterns  of  linkages  between  them plus  the  logical
protocols that describe access to each course node – to collectively formalize school and
"undergraduate curricula as networks and trajectories" (Nespor 2003).

A  small  percentage  of  referred  to  courses  are  corequisites.   The  University
Calendar  (p.  726)  calls  each a  "requirement,  usually  a  course,  that  must  be taken  in
conjunction with, or previously passed" for a referring course to be enrolled in.  Study of
the data set indicates most courses that are named as a corequisite are of a general and
theoretical nature, while most courses calling for a corequisite are specific and applied
in nature;  for example,  see Figure 3.1.2-3.   Because of their performative similarities,
and compromising for simplicity, corequisites are interpreted for most network purposes
the same as prerequisites with a few exceptions: there are a group ten or fewer corequi-
site pairs in the data set, that is, courses that both refer to each other.  These coreferential
pairs form a cycle in the network,  ÊVÊ, and this creates impossible  feedback condi-
tions for certain algorithms in later chapters (see 4.2.1.1, especially Figure 4.2.1.1-3, for
example) so they need to be specially dealt with.  First consider how a pair of courses
that must be taken together function the same in most practical and logical respects as
one  course  with  combined  credit  weight  and  prerequisites.   To  eliminate  the  cycle
between them, the two nodes (say, red and blue) could be joined such that the interac-
tion between their knowledge becomes internal to a combined node (say, purple), 
ÊVÊ fl Ê, as it is for the interaction of knowledge within a large, perhaps ¯6, course
normally.   For simplicity,  this  persuasive  solution is not used, but could be at a later
date.  Instead, after scrutiny of the course descriptions, the corequisite loop is split and
made  asymmetrical  based  on the  same pattern  as  observed  in  most  other  corequisite
relations: the applied course is left to refer to the theoretical course, but not the reverse,
ÊVÊ fl ÊØÊ (see Figure 3.1.2-4).

An original computer program, Calendar Navigator, is built within the program-
ming environment, Mathematica, to upload text data describing the prerequisites of each
course.   These data are translated into local, 'neighborhood',  structures linking courses
that fulfill  the prerequisites  of others (see Figure 3.1.2-2).   The sum of all individual
course descriptions, their network translations,  and aggregation through the cumulative
attachment of courses to one another implies the overall, wide-scale shape and topology
of the education web.  For most methods of analysis, the only parameters describing a
course  are its node weight,  measured  in academic  credits  (¯),  and the strength  of its
links to neighboring courses.  For some methods of analysis, and much discussion,  the
course label, level, and membership in department and faculty is used to contextualize
the otherwise strictly structural  arguments of the thesis.  Implied network diagrams of
the  entire  course  structure  are  produced  at  any  scale  (see  Figure  3.1.2-5).   Courses
represented by nodes are colored variously based on membership in departments, facul-
ties, or other structures depending on network scale and purpose (see Prefatory Pages:
List of Symbols: List of Faculty Codes or List of Department Codes for consistent color
scheme used throughout the thesis).  When the scale is small, the high density of overlap-
ping nodes obscures the relations represented by links, so there is something revealing
about a map of only the links (see Figures 3.1.2-6, -7, -8, -9, & -10).
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Therefore,  methods  of  analysis  developed  in  this  thesis  must  account  for  the  logical
topology  of  courses,  that  is,  the  patterns  of  linkages  between  them plus  the  logical
protocols that describe access to each course node – to collectively formalize school and
"undergraduate curricula as networks and trajectories" (Nespor 2003).

A  small  percentage  of  referred  to  courses  are  corequisites.   The  University
Calendar  (p.  726)  calls  each a  "requirement,  usually  a  course,  that  must  be taken  in
conjunction with, or previously passed" for a referring course to be enrolled in.  Study of
the data set indicates most courses that are named as a corequisite are of a general and
theoretical nature, while most courses calling for a corequisite are specific and applied
in nature;  for example,  see Figure 3.1.2-3.   Because of their performative similarities,
and compromising for simplicity, corequisites are interpreted for most network purposes
the same as prerequisites with a few exceptions: there are a group ten or fewer corequi-
site pairs in the data set, that is, courses that both refer to each other.  These coreferential
pairs form a cycle in the network,  ÊVÊ, and this creates impossible  feedback condi-
tions for certain algorithms in later chapters (see 4.2.1.1, especially Figure 4.2.1.1-3, for
example) so they need to be specially dealt with.  First consider how a pair of courses
that must be taken together function the same in most practical and logical respects as
one  course  with  combined  credit  weight  and  prerequisites.   To  eliminate  the  cycle
between them, the two nodes (say, red and blue) could be joined such that the interac-
tion between their knowledge becomes internal to a combined node (say, purple), 
ÊVÊ fl Ê, as it is for the interaction of knowledge within a large, perhaps ¯6, course
normally.   For simplicity,  this  persuasive  solution is not used, but could be at a later
date.  Instead, after scrutiny of the course descriptions, the corequisite loop is split and
made  asymmetrical  based  on the  same pattern  as  observed  in  most  other  corequisite
relations: the applied course is left to refer to the theoretical course, but not the reverse,
ÊVÊ fl ÊØÊ (see Figure 3.1.2-4).

An original computer program, Calendar Navigator, is built within the program-
ming environment, Mathematica, to upload text data describing the prerequisites of each
course.   These data are translated into local, 'neighborhood',  structures linking courses
that fulfill  the prerequisites  of others (see Figure 3.1.2-2).   The sum of all individual
course descriptions, their network translations,  and aggregation through the cumulative
attachment of courses to one another implies the overall, wide-scale shape and topology
of the education web.  For most methods of analysis, the only parameters describing a
course  are its node weight,  measured  in academic  credits  (¯),  and the strength  of its
links to neighboring courses.  For some methods of analysis, and much discussion,  the
course label, level, and membership in department and faculty is used to contextualize
the otherwise strictly structural  arguments of the thesis.  Implied network diagrams of
the  entire  course  structure  are  produced  at  any  scale  (see  Figure  3.1.2-5).   Courses
represented by nodes are colored variously based on membership in departments, facul-
ties, or other structures depending on network scale and purpose (see Prefatory Pages:
List of Symbols: List of Faculty Codes or List of Department Codes for consistent color
scheme used throughout the thesis).  When the scale is small, the high density of overlap-
ping nodes obscures the relations represented by links, so there is something revealing
about a map of only the links (see Figures 3.1.2-6, -7, -8, -9, & -10).

Figure 3.1.2-1
The local network structure of
science  courses  already
present  in  school  documents.
It  includes  links  and  course
weights (all ¯5).  The directed
connections  between,  and
among,  academic  and nonaca-
demic science courses  in high
school  are  duplicated  from
this  diagram  and  integrated
into  a  larger  network  assem-
bled  from  multiple  sources.
No present  documents  include
networks  which  are  large,
dynamic,  span  diverse  sub-
jects, or indicate the transition
to university.
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BIOL 332

BIOL 208 STAT 151

MATH 113

MATH 115

MATH 120

Figure 3.1.2-2  A representative course description from the Calendar of the Univer-
sity  of Alberta  and its subnetwork  translation  from prerequisite  information.   The
course,  BIOL 332, is considered to have three prerequisites,  one of which may be
satisfied by three different courses.  Pairs of courses are associated by a directed link
pointing from the referring course to the course which satisfies a particular prerequi-
site.  Each link is accorded a strength of inverse proportion to the number of courses
that can satisfy a prerequisite.  Therefore, the links to BIOL 208 and STAT 151 are
of  strength  unity,  as  indicated  by  the  thick  black  lines,  because  each  course  is
referred to specifically as being necessary to fulfil one of the first two prerequisites
of BIOL 332, and, the links to the math courses are of strength 1/3, as indicated by
the thinner grey lines, because any one of the three courses, MATH 113, 115, or 120,
could fulfill the last prerequisite.   Notice, there are no indications of courses subse-
quent to BIOL 332 in the Calendar's  course description (nor in the network at this
point).   All  course nodes are color coded based on subject and are sized based on
academic  credits  (there  is  no  variation  since  all  of  these  courses  have  the  same
weight of ¯3).

Figure  3.1.2-3   Two  course  descriptions  from  the  Calendar  of  the  University  of
Alberta exemplifying the typical corequisite relationship.  The course, AN SC 463, is
a practical,  applied,  and experimental  course in a very specific field: poultry nutri-
tion.  It calls upon the course, AN SC 310, as a corequisite.  That course is relatively
more  general  and  theoretical:  metabolic  physiology  of  domestic  animals,  and,  is
unlikely to call upon a course such as AN SC 463 as a required corequisite.  AN SC
310 serves AN SC 463 much like a "just-in-time" supplied prerequisite.
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Figure  3.1.2-3   Two  course  descriptions  from  the  Calendar  of  the  University  of
Alberta exemplifying the typical corequisite relationship.  The course, AN SC 463, is
a practical,  applied,  and experimental  course in a very specific field: poultry nutri-
tion.  It calls upon the course, AN SC 310, as a corequisite.  That course is relatively
more  general  and  theoretical:  metabolic  physiology  of  domestic  animals,  and,  is
unlikely to call upon a course such as AN SC 463 as a required corequisite.  AN SC
310 serves AN SC 463 much like a "just-in-time" supplied prerequisite.

Figure 3.1.2-4  A rare example of two courses that refer to each other as corequisites
(NURS 310 V  NURS 309).   For  many research  methods  used  in this  thesis,  the
resulting  network  cycle  is  intolerable  (see  §4.2.1).   While  the  two  courses  are
described separately, they function as two subunits of a 'super' course, call it NURS
309/310, ¯12.  The union of these courses would avoid cycles in the network, but for
practical  considerations  related  to  the  treatment  of  the  data  set,  this  option  is  not
implemented.   Instead, the typical corequisite relationship,  from the practical to the
theoretical (NURS 310 ö NURS 309), is maintained, while the reverse corequisite
relation is removed.
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Figure  3.1.2-5  (above)   Alberta's  education  system,  K-16,  displayed  as  a  course
network  map,  which  includes  all  4815  elements  of  the  data  set,  where  nodes  are
colored by faculty membership.   The scale shows a linear coloring scheme for link
strength,  such that,  strong links are thick and dark,  while weak links are thin and
pale.   Nodes  have an area  proportional  to  their  academic  credit  weight  (¯).   The
primary grades enter the network from the center left and proceed into the center.
Links are not shown as directed at this global view for simplicity.  The most obvious
structural  separation  is between nonacademic  courses  below and academic  courses
above.  The qualitative 'bifurcation', between academic and nonacademic courses, is
revealed  in the network  structure based on algorithms  which are blind to all node
qualities  except  credit  weight  (¯)  and  prerequisite  associations.   The  orientation
among the Faculties is telling: Engineering, Nursing, and Medicine & Dentistry are
closely located to Science and separate from Arts, while Business and Agriculture,
Forestry, & Home Economics are located between.

Figure 3.1.2-6 (below)   The many possible connections in Alberta's education sys-
tem.  Node display is suppressed to emphasize the global-scale link structure explic-
itly mapping the possible learning trajectories through the Education system.  Three
or  four  major  hub  regions  are  apparent.   By  default,  the  view  is  always  biased
towards showing the strong links layered over the weak (see Figure 3.1.2-7 for an
alternative).   Chains  of  links  end  at  terminal  courses  –  those  without  subsequent
courses referring to them.  See Figure 3.1.2-8 for a close-up view of course prerequi-
site links.

Figure 3.1.2-7 (below next)   The foregrounding  of weak links in education.   The
weak links appear as spider webs over the strongly linked branches of the network.
See Figure 3.1.2-8 for a magnified view of course prerequisite links.
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Figure 3.1.2-8 (above)   A closer  view of the connections  between  courses  in the
Faculties  of  Science,  Business,  Engineering,  and  Medicine.   This  mid-scale  view
resolves several regional cores of strongly linked courses superimposed on an underly-
ing mesh of weak links.  The yellow rectangle in the small blue diagram (top right)
indicates  this  exploded  region  taken  from  the  global-scale  diagram  (see  Figure
3.1.2-6).   The orange rectangle  shows a region to be further  exploded (see Figure
3.1.2-9).
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Figure 3.1.2-8 (above)   A closer  view of the connections  between  courses  in the
Faculties  of  Science,  Business,  Engineering,  and  Medicine.   This  mid-scale  view
resolves several regional cores of strongly linked courses superimposed on an underly-
ing mesh of weak links.  The yellow rectangle in the small blue diagram (top right)
indicates  this  exploded  region  taken  from  the  global-scale  diagram  (see  Figure
3.1.2-6).   The orange rectangle  shows a region to be further  exploded (see Figure
3.1.2-9).

Figure 3.1.2-9 (below)  A close view of the connections at the boundary between the
Faculties of Science and Engineering.  This narrow-scale view resolves several local
hubs of strong links, and shows how some courses connect to the rest of the network
by many weak links.  No further structural intrigues are revealed on the network by
additional narrowing of the focus.  See Figure 3.1.2-10 for an alternative view.  The
orange  rectangle  in  the  small  blue  diagram  (upper  right)  indicates  this  exploded
region placed within the mid-scale view (see Figure 3.1.2-8).

Figure 3.1.2-10 (below next)   A close  view of the  connections  and nodes  at  the
boundary  between  the  Faculties  of  Science  and Engineering.   A reintroduction  of
nodes in this  narrow-scale  view makes  the network  structure  more concrete.   The
boundary between the Faculties of Science (Ê) and Engineering (Ê) is tangled since
the connections are multifarious. 
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ü 3.1.2.1  Graph Drawing Algorithms

People prefer  a spatial  representation  of a network over the raw mathematical
statements  using sets  or matrices,  which implies  adding geometric  information  to the
graph.  The manner of node positioning in diagrams enables visualization of the relation-
ships between the elements a network description is intended to capture (Frank & Yasu-
moto 1996, Freeman 2000).  This is called the network embedding, and should be consid-
ered as reflecting the choices and intentions of the author for the data, for the layout has
significant effect on viewer inferences (Blythe et al. 1995; Symeonidis & Tollis 2005).
The  usefulness  of  the  visual  representation  depends  upon  whether  the  embedding  is
aesthetic.  While there are no strict criteria for aesthetic network drawing, it is generally
agreed that any embedding should have minimal link crossing and methodical  spacing
between nodes (Nishizeki & Rahman 1994: ch. 1).  The problem in achieving effective
graph presentation has been studied extensively in the mathematics literature, and many
approaches have been proposed (Battista et al. 1998).  For some simple examples,  see
Figure 3.1.2.1-1.  

While the underlying graph object, G, is independent of the node layout, a clever
choice of embedding can lead to particularly illuminating diagrams.  In this thesis,  for
reliable  comparisons,  consistency  is  chosen  over  cleverness  when  displaying  course
networks.  A versatile, straight-edge drawing algorithm commonly adopted hereafter, is
a  version  the  "spring-electrical"  model  (Pemmaraju  &  Skiena  2003:  §5.6.3).   The
approach for networks with weighted nodes and links with variable strength is to mini-
mize the energy in a physical  model of the network.   Nodes are idealized as charged
objects  of  the  same  sign in  proportion  to  their  course  credit  weight;  so,  by a global
electric force, nodes repel each other.  Links are imagined as springs with spring-con-
stants  proportional  to  their  strength  as  prerequisites;  so,  according  to  Hooke's  law,  a
local attractive force is restricted to nodes in the same neighborhood.   Thus, there is a
tension  built  into the network  structure,  whereby  the nodes  have a global  tenancy  to
spread apart from each other into open space while the links-as-springs pull connected
nodes together.   Through  a computationally  demanding iterative process,  the physical
model  of  the  network  "relaxes"  to  a  minimum  energy  embedding  (for  the  reader
attracted  in  more  mathematical  statements,  see  Attachment  9.3  Supplementary  Equa-
tions 3.1.2.1).  Via the consistently applied physical model, the embedding of a network
'naturally' becomes a direct function of its topology.  Such embedded networks have the
intuitive appeal of tending to cluster highly connected nodes close together while spread-
ing  weakly  linked  nodes  apart  (Noack  2009).   Deviations  from this  pattern  visually
reflect  the  stresses  and  strains  of  competing  influences  in  the  network  (see  Figure
3.1.2.1-2).
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Figure 3.1.2.1-1  The same network visualized with four different embeddings.  The
author begs the reader's indulgence here for the diagram.  Let it be understood as a
relic,  about  five years old,  which reflects  an overly  exuberant  'artisitic'  style from
early in the thesis research.  Anyway, the same mathematical statement, G = {V, E},
defines  all four networks  shown.   The differences  between them are based on the
algorithms  used  to  methodically  arrange  the  node  locations.   The  grey  highlights
emphasize the featured orchestration of nodes.  Top left: the circular embedding was
common in the earlier publications on networks because it is computationally simple
to execute (for example, see Kirke 1996).  It is still often used as a default embed-
ding,  or  for  initial  investigations  into  symmetries  present  among  the  links.   The
circular embedding can be abused to communicate an artificially egalitarian view of
the relationships amongst the nodes.  Top right: the radial embedding places highly
linked nodes towards the center (nodes 7 & 16) thus drawing attention to them, and
directs  the rest  of the network  to radiate  towards  the periphery.   Bottom left:  the
hierarchical embedding implies levels of importance within the network.  The hierar-
chy is completely determined by the choice of node to place at the top, so should be
scrutinized  on  the  basis  of  this  choice  (here  node  10).   Bottom right:  the  ranked
embedding implies a sense of distance between groups of nodes.  Again, the arrange-
ment is determined by the choice of the initial subset (here nodes 15, 16, & 17).
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Figure 3.1.2.1-2   A comparison  of  embeddings  for  a pair  of  networks  that  differ
among the strengths of two links, using the spring-electrical model.  The top network
has all links of strength unity.  It matches the network in Figure 2.3.2.1-4, but that
was positioned with a different, geometric embedding.  Here, the top diagram illus-
trates  the  sample  network  embedded  using  a  spring-electrical  model.   The  link
between nodes 3 & 4 is relatively long as the cluster of nodes to the right all repel the
individual node to the far left.  The link between nodes 1 & 2 is relatively short since
no other node affects displacement along that (vertical) direction.  The bottom dia-
gram is a "weighted"  version of the sample network with its associated  adjacency
matrix indicating links of various strengths.  Weak links in general are more easily
stretched by the repulsive force between nodes (for the reader interested in the execu-
tion of such concepts on the computer, see Attachment 9.4 Program Code 3.1.2.1).

ü 3.1.2.2  Mathematica

Computers were initially developed to expedite numerical calculations, but have
expanded  their  capabilities  to include  manipulation  of symbolic  expressions  for com-
puter algebra, discrete mathematics,  logical operations,  calculus,  and differential  equa-
tions  (Trott  2004a).   Along  with  the  ability  to  do  symbolic  calculations,  four  other
ingredients of modern, comprehensive computer algebra systems prove to be of critical
importance for solving scientific problems: 

Ë a powerful high-level programming language to formulate complicated problems
(Klamkin 1996)

Ë programmable two- and three-dimensional graphics (Houstis & Rice 2000, Trott
2004b)

Ë robust, adaptive numerical methods such as global optimization (Loehl 2000)
Ë  the  ability  to  numerically  evaluate  and  symbolically  deal  with  the  classical

orthogonal polynomials  and special functions of mathematical physics (Fowler
1997).
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Ë a powerful high-level programming language to formulate complicated problems
(Klamkin 1996)

Ë programmable two- and three-dimensional graphics (Houstis & Rice 2000, Trott
2004b)

Ë robust, adaptive numerical methods such as global optimization (Loehl 2000)
Ë  the  ability  to  numerically  evaluate  and  symbolically  deal  with  the  classical

orthogonal polynomials  and special functions of mathematical physics (Fowler
1997).

These  capabilities  offer  the possibility  to coherently  and exhaustively  solve problems
and  model  processes  formulated  in  scientific  investigations,  as  well  as  to  effectively
represent the results.  Such a complete, general-purpose computer algebra system, with
which the author has tussled for more than tens years, is Mathematica (Wolfram 1999).
Indeed, the entire thesis, an organizational  and creative project much larger than these
pages  directly  imply,  as  well  as  a  masters  thesis,  including  formatting,  referencing,
indexing, typesetting, graphics, programming, data processing, and computer modelling,
is entirely delivered through this program, as well as the associated presentations includ-
ing posters, slide-shows,  animations,  and articles.   Thus, Mathematica  is an integrated
computing  and  authoring  domain,  otherwise  called  a  "problem  solving  environment"
(Houstis & Rice 2000; Moriarty et al. 1993) that infuses the entire research project from
inception to delivery.  But, there is a vast difference in between "understanding" some
mathematical theory or model and actually implementing it in executable form.  Mathe-
matica's main ability is to provide tools and concepts to overcome this gap.  Mathemat-
ica supports at least functional programming and rule-based programming (Gray 1998),
plus its built-in  facilities  are rich enough that most algorithmic,  mathematical  thought
has an almost direct expression within it.

ü 3.1.2.3  Matrix Representation of the Data

Patterns  in  the  structure  of  the  Education  system  as  represented  by  courses
appear  as topological  features  in the network.   Difficult  topological  questions  can be
translated into matrix algebra questions which are often easier to solve (Newman 2003;
Newman  2008;  Palla  et  al.  2004).   By  repeatedly  following  a  simple  procedure  for
translating the course descriptions from Provincial  documents,  as illustrated in §3.1.2,
Alberta's education system is abstracted as a network, which is itself represented as an
adjacency matrix in the computer.  Matrix structure, in turn can be mapped and graphi-
cally  displayed.   Visual  representations  of adjacency  matrices  offer  useful  qualitative
information  regarding  the  topologies  of  the  corresponding  networks  (see  Figure
3.1.2.3-1).   By  viewing  the  adjacency  matrix  for  the  entire  network,  relationships
between  courses  across  the education  system can be discerned (see Figure 3.1.2.3-2).
Qualitative comparisons to the adjacency matrices from basic network types help form
tentative  hypotheses  and  shape  expectations  for  more  quantitative  network  analysis.
The adjacency matrix of the entire network appears to harbor patterns associated with
lattice networks (local connections), star networks (hubs), and maybe random networks
(diffuse connections).  Therefore, just on the type of qualitative similarities possessed by
adjacency  matrix  compared  to matrices  of standard  network  types,  it  is  here casually
speculated that the course network falls into the scale-free category.
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Figure 3.1.2.3-1   A vertical array of iconic
networks  paired  with  visualizations  of  the
corresponding  adjacency  matrices.   Matrix
structure  can be graphically  displayed  as a
two  dimensional  grid  of  cells,  by  default
representing  zero-valued  cells  (where  their
is  no  link)  as  black,  and  non-zero  values
(where  a link is present)  as white or grey.
That is any coordinate on the array, {i, j}, is
white  when  the  coordinate  pair  is  also  a
member of the set of vertices (links), {i, j} œ
V.   Some  casual  but  informative  observa-
tions  can  be  made  regarding  the  "basic
network  paragons"  first  shown  in  Figure
2.3.2.1-2:   A.  The  lattice  network  implies
an  adjacency  matrix  with  a  very  regular
pattern,  close  to  the  main  diagonal  as  all
links are local, such that, {i, j} = {i, i ± k},
where  k  `  N.   B.  The  complete  network
yields an adjacency matrix with all coordi-
nates full but for the main diagonal, i,i  = 0
"  i,  since  in  the  context  of  this  thesis,
course  nodes  do not  link with  themselves.
C. The adjacency matrix of the star network
has a distinctive vertical  column indicating
that all  other  nodes link to one hub, and a
distinctive  horizontal  row  indicating  one
hub links to all other nodes.  D. The white,
link  coordinates  neither  huddle  around  or
steer  clear  of  the  main  diagonal,  but  are
pretty  much  distributed  everywhere.   But,
even  a  random  undirected  network  has  a
symmetrical  adjacency  matrix  about  the
main diagonal  since i, j  =  j,i ,  by defini-
tion.  E. The adjacency matrix of the small-
world network  echos  patterns  found in the
lattice  and random matrices.   F.  The adja-
cency  matrix  of  the  scale-free  network
seems  to  contain  patterns  found  in  the
lattice, star, and, perhaps, random matrices.
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Figure 3.1.2.3-2   A plot  of  the  sparse adjacency  matrix,  ,  for  the entire  course
network.   This  4815  µ  4815  matrix  of  possible  course  associations  indicates  far
fewer links (~38 000) than the possible twenty-three million if the education system
formed a complete network.  Although there is an obvious diagonal, the actual trace
of the matrix is zero, Tr() = 0, since no courses refer to themselves as prerequisites.
The strong diagonal  parallel to, and surrounding,  the main diagonal  simply reflects
that courses tend to link to other courses that are close in the data set as assembled.
That is, most connections  are local  in the data set,  probably among courses of the
same subject, department, or faculty.  Qualitatively speaking, the proximity of most
non-zero coordinates to the main diagonal implies the course network is lattice-like.
The link strength scale is adjusted to reveal even weak links.  The color codes on the
sides of the matrix indicate the faculty membership for each course i found along the
diagonal, {i, i}.  Any courses that serve as prerequisites are found along the intersect-
ing row, {i, j}, of a node coordinate, {i, i}, and any subsequents are found along the
intersecting column, {j, i}, " i, j œ {1, ..., N}.  School courses comprise the upper left
corner of the adjacency matrix diagram and university courses fall to the lower right.
The very strong white column below the diagonal intersects the high school diploma
for  university  admission  –  many  university  courses  are  direct  subsequents.   The
upper right side is entirely dark indicating that no SCHOOL courses call on univer-
sity courses  as prerequisites.   The lower  left  side is  very  sparse since only a few
university  courses  directly  refer  to  specific  high  school  courses  as  prerequisites
besides the general high school admission requirements.   Wide, horizontal bands in
the center of the diagram correspond to some Faculty of Arts courses which call on
many (any)  other  Arts  course  of  a  certain  level  to  possibly  satisfy  a prerequisite.
Strong vertical columns in the lower right side indicate some science courses have
many subsequents  referring to them.  Qualitatively speaking, the presence of many
long vertical and horizontal  lines indicates there are many hubs  present in the net-
work, so the network has star-like features.  A small fraction of the non-zero coordi-
nates are scattered about the nether regions of the matrix, thus implying that there are
at least  a few random-like connections  in the network.   For  the interested reader,
further consideration of the adjacency matrix with respect to mathematics courses, as
an example, is made in Attachment 9.1 Supplementary Figures 3.1.2.3-1a & b.
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ü 3.1.2.4  Inventions of Administration

Taken together,  the school curriculum guides,  subject guides, and programs of
study  documents,  plus  the  University  Calendar  and  supporting  websites,  comprise  a
comprehensive and strong, though not unified, statement regarding academic structures
in the Province of Alberta.  They contain large amounts of information regarding policy,
intentions, vision statements, and practical mechanics of education delivery.  The docu-
ments  set  specific  standards  for  individual  courses,  and  more  general  directives  for
whole subjects, departments, and faculties.  Some of the consequences and implications
of administrative  planning are observed  and quantified  in this  subsubsection.   Such a
gathering  of administrative  facts  is  interesting  on its own,  worthy of  at  least  cursory
study,  and also useful  for comparison  with research results  presented  in chapter four.
There, it is shown the network structure of the courses sometimes supports, and some-
times is in conflict with, the function and the stated designs and goals of the provincial
education system as described by the University of Alberta, Alberta Learning, and other
sources.

Through simple counting,  it is observed that most kinds of courses potentially
offered  in  Alberta's  schools  are  nonacademic  (see  Figure  3.1.2.4-1).   There  are  four
major nonacademic programs in high schools: Integrated Occupational  Program (IOP),
Career and Technology Studies (CTS), Registered Apprenticeship Program (RAP), and
Green Certificate Program (GCC).  The IOP program is designed for students with "low
achievement"  who  are  "unlikely  to  progress  in  the  regular  secondary  programs"  to
enhance their "ability to enter into employment and/or continuing education and train-
ing" (Alpern 1991) by "providing them with specific integrated curriculum and off-cam-
pus opportunities"  (Taylor  2007).   The program presents  students  with  modified  ver-
sions  of regular  courses,  such  as IOP 1226,  aka Math  16,  in place  of Math 10,  plus
patently practical topics, such as IOP 2633, Food Services 26, specifically designed to
"integrate  essential  and employability  skills  in occupational  contexts" (Alberta Educa-
tion 2006).   During the 2005-2006 school year,  nearly 8% of the high school student
population was in the IOP stream (Taylor 2007); these are now called "Knowledge and
Employability Courses" at the time of writing.  The CTS program offers students learn-
ing opportunities  to develop skills  for employability,  career planning,  technology,  and
their "daily lives" by preparing them "for transition into adult roles in the family, commu-
nity, workplace and/or further education" (Alberta Education 2006).  During the 2004-
2005 school  year, approximately  90% of Alberta’s  high school students earned six or
more credits  granted in CTS courses,  which accounted  for approximately  14% of the
total number of high school credits granted by Alberta Education in all core and optional
subject areas (Taylor 2007).  Students in the RAP program both attend regular school
classes  plus  work  and  receive  on-the-job  training  under  the  supervision  of  a  skilled
tradesperson as a registered apprentice (Alberta Learning 2003b).  The GCC program is
similar,  but  the  "apprentice-style  agricultural  training"  covers  one  of  seven  primary
specializations  related  to  crops,  livestock,  equine,  or beekeeping  (Alberta  Agriculture
2010).  Together, these two apprenticeship programs enroll just less than three thousand
students across the province (Alberta Apprenticeship and Industry Training Board 2007;
personal communication, Alberta Agriculture and Rural Development, May 2010).

The  above  described  school-to-work  initiatives  are  characterized  by Lehmann
and  Taylor  (2003)  as  Alberta's  response  to the  "new vocationalism"  discourse  of  the
1990s.   The  changes  to  vocational  high  school  education  that  the  Alberta  programs
represent  have  the  potential  to  "challenge  traditional  academic/vocational  divisions".
Supported  by the idea that all future workers need to be "knowledge workers",  voca-
tional training is expected to be broad,  well connected to academic content,  and more
accommodating of goals other than immediate employment, for example, postsecondary
education.  This is achieved by "integrating" academic and vocational education through
related sequences of courses so that students  achieve both academic and occupational
competencies (Grubb 1996).  The extent to which the courses from IOP, CTS, RAP, and
GCC are integrated with the rest of the education system is discussed in §4.2.2.6, as well
as other interpretations of these programs, especially RAP, based on network structure.

Counting  the  core  high  school  and  undergraduate  university  courses  at  each
level reveals an ever increasing number of choices offered to students on their journeys
towards a bachelor degree (see Figure 3.1.2.4-2).  Once students move from high school
into  university,  the  junior  courses  potentially  available  to  them represent  a  dramatic
increase in diversity.   Still,  the options increase yet again and again and again as stu-
dents  select  among the senior  level  courses.   This expansion  of course availability  is
consistent  across  most  faculties  at  the  University  of  Alberta  (see  Figure  3.1.2.4-3).
Computational  tools to assist students with choosing courses are presented in §3.2.  In
terms of academic  credits  (¯),  the trend is  repeated  since most courses  in University
have the same academic weight of ¯3 (see Figure 3.1.2.4-4).

Considering just the University, the number of academic credits at each number
level increases with a strongly linear relationship from one-hundred through four-hun-
dred level courses (see Figure 3.1.2.4-5).   Placed as an introduction before the course
listings  of  the  University  of  Alberta  Calendar,  a  chapter  titled  "Details  of  Courses"
(§220, p. 448) describes the universal course numbering system (see Table 3.1.2.4-1 for
more details).  To summarize, the prerequisites for courses at a particular number level
"normally"  come from the  next  level  below;  for  example,  prerequisites  for  200-level
courses  come  from  the  100-level.   And,  courses  at  a  particular  number  level  are
"designed typically"  for students  in the matching  year of their  program;  for example,
200-level courses are intended for second-year students.

Coupling  the  observations  of  the  negatively  skewed  course  distributions  in
Figures  3.1.2.4-2,  3,  & 5,  plus  the  administration's  intended  prerequisite  relationship
between  number  levels,  plus  the  target  students  for  which  courses  at  each  level  are
designed  (as  described  in Table  3.1.2.4-1),  a  specific  structure  to the  arrangement  of
courses  is  implied  by  the  central  administration,  therefore  determining  a  pattern  of
experience for the student, as follows.  First year students, enrolled in 100 level courses
are introduced  to a variety  of subjects  far  greater  than available  in high school.   For
second year students, the university offers access to an even greater choice of 200 level
courses  which  build  upon  first  year  prerequisites,  and so  on,  until  graduation.   This
rather straightforward, linear administrative version of the layout of the University (see
Figure  3.1.2.4-6)  is  critiqued  in  many  following  sections  of  the  thesis,  especially
§4.2.1.1.  Of course any student, teacher, or administrator,  that is, anyone with signifi-
cant experience with the education system, comes to expect diversity of experience and
variance in the system, and moreover these aspects are considered a strength.  Everyone
understands  that  students'  trajectories  through  the  education  system are  anything  but
simple, and that teachers and administrators need to be flexible in design and delivery of
courses.   But,  are  the  experienced  deviations  from the  stated norms  set  forth  by the
administration  a result of the routinely experienced random events and life choices of
individuals  working  within  an  otherwise  preset  course  structure,  or,  does  the  system
itself have a structure fundamentally different from that suggested by the administrative
documents?
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Taken together,  the school curriculum guides,  subject guides, and programs of
study  documents,  plus  the  University  Calendar  and  supporting  websites,  comprise  a
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education system as described by the University of Alberta, Alberta Learning, and other
sources.

Through simple counting,  it is observed that most kinds of courses potentially
offered  in  Alberta's  schools  are  nonacademic  (see  Figure  3.1.2.4-1).   There  are  four
major nonacademic programs in high schools: Integrated Occupational  Program (IOP),
Career and Technology Studies (CTS), Registered Apprenticeship Program (RAP), and
Green Certificate Program (GCC).  The IOP program is designed for students with "low
achievement"  who  are  "unlikely  to  progress  in  the  regular  secondary  programs"  to
enhance their "ability to enter into employment and/or continuing education and train-
ing" (Alpern 1991) by "providing them with specific integrated curriculum and off-cam-
pus opportunities"  (Taylor  2007).   The program presents  students  with  modified  ver-
sions  of regular  courses,  such  as IOP 1226,  aka Math  16,  in place  of Math 10,  plus
patently practical topics, such as IOP 2633, Food Services 26, specifically designed to
"integrate  essential  and employability  skills  in occupational  contexts" (Alberta Educa-
tion 2006).   During the 2005-2006 school year,  nearly 8% of the high school student
population was in the IOP stream (Taylor 2007); these are now called "Knowledge and
Employability Courses" at the time of writing.  The CTS program offers students learn-
ing opportunities  to develop skills  for employability,  career planning,  technology,  and
their "daily lives" by preparing them "for transition into adult roles in the family, commu-
nity, workplace and/or further education" (Alberta Education 2006).  During the 2004-
2005 school  year, approximately  90% of Alberta’s  high school students earned six or
more credits  granted in CTS courses,  which accounted  for approximately  14% of the
total number of high school credits granted by Alberta Education in all core and optional
subject areas (Taylor 2007).  Students in the RAP program both attend regular school
classes  plus  work  and  receive  on-the-job  training  under  the  supervision  of  a  skilled
tradesperson as a registered apprentice (Alberta Learning 2003b).  The GCC program is
similar,  but  the  "apprentice-style  agricultural  training"  covers  one  of  seven  primary
specializations  related  to  crops,  livestock,  equine,  or beekeeping  (Alberta  Agriculture
2010).  Together, these two apprenticeship programs enroll just less than three thousand
students across the province (Alberta Apprenticeship and Industry Training Board 2007;
personal communication, Alberta Agriculture and Rural Development, May 2010).

The  above  described  school-to-work  initiatives  are  characterized  by Lehmann
and  Taylor  (2003)  as  Alberta's  response  to the  "new vocationalism"  discourse  of  the
1990s.   The  changes  to  vocational  high  school  education  that  the  Alberta  programs
represent  have  the  potential  to  "challenge  traditional  academic/vocational  divisions".
Supported  by the idea that all future workers need to be "knowledge workers",  voca-
tional training is expected to be broad,  well connected to academic content,  and more
accommodating of goals other than immediate employment, for example, postsecondary
education.  This is achieved by "integrating" academic and vocational education through
related sequences of courses so that students  achieve both academic and occupational
competencies (Grubb 1996).  The extent to which the courses from IOP, CTS, RAP, and
GCC are integrated with the rest of the education system is discussed in §4.2.2.6, as well
as other interpretations of these programs, especially RAP, based on network structure.

Counting  the  core  high  school  and  undergraduate  university  courses  at  each
level reveals an ever increasing number of choices offered to students on their journeys
towards a bachelor degree (see Figure 3.1.2.4-2).  Once students move from high school
into  university,  the  junior  courses  potentially  available  to  them represent  a  dramatic
increase in diversity.   Still,  the options increase yet again and again and again as stu-
dents  select  among the senior  level  courses.   This expansion  of course availability  is
consistent  across  most  faculties  at  the  University  of  Alberta  (see  Figure  3.1.2.4-3).
Computational  tools to assist students with choosing courses are presented in §3.2.  In
terms of academic  credits  (¯),  the trend is  repeated  since most courses  in University
have the same academic weight of ¯3 (see Figure 3.1.2.4-4).

Considering just the University, the number of academic credits at each number
level increases with a strongly linear relationship from one-hundred through four-hun-
dred level courses (see Figure 3.1.2.4-5).   Placed as an introduction before the course
listings  of  the  University  of  Alberta  Calendar,  a  chapter  titled  "Details  of  Courses"
(§220, p. 448) describes the universal course numbering system (see Table 3.1.2.4-1 for
more details).  To summarize, the prerequisites for courses at a particular number level
"normally"  come from the  next  level  below;  for  example,  prerequisites  for  200-level
courses  come  from  the  100-level.   And,  courses  at  a  particular  number  level  are
"designed typically"  for students  in the matching  year of their  program;  for example,
200-level courses are intended for second-year students.

Coupling  the  observations  of  the  negatively  skewed  course  distributions  in
Figures  3.1.2.4-2,  3,  & 5,  plus  the  administration's  intended  prerequisite  relationship
between  number  levels,  plus  the  target  students  for  which  courses  at  each  level  are
designed  (as  described  in Table  3.1.2.4-1),  a  specific  structure  to the  arrangement  of
courses  is  implied  by  the  central  administration,  therefore  determining  a  pattern  of
experience for the student, as follows.  First year students, enrolled in 100 level courses
are introduced  to a variety  of subjects  far  greater  than available  in high school.   For
second year students, the university offers access to an even greater choice of 200 level
courses  which  build  upon  first  year  prerequisites,  and so  on,  until  graduation.   This
rather straightforward, linear administrative version of the layout of the University (see
Figure  3.1.2.4-6)  is  critiqued  in  many  following  sections  of  the  thesis,  especially
§4.2.1.1.  Of course any student, teacher, or administrator,  that is, anyone with signifi-
cant experience with the education system, comes to expect diversity of experience and
variance in the system, and moreover these aspects are considered a strength.  Everyone
understands  that  students'  trajectories  through  the  education  system are  anything  but
simple, and that teachers and administrators need to be flexible in design and delivery of
courses.   But,  are  the  experienced  deviations  from the  stated norms  set  forth  by the
administration  a result of the routinely experienced random events and life choices of
individuals  working  within  an  otherwise  preset  course  structure,  or,  does  the  system
itself have a structure fundamentally different from that suggested by the administrative
documents?
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Taken together,  the school curriculum guides,  subject guides, and programs of
study  documents,  plus  the  University  Calendar  and  supporting  websites,  comprise  a
comprehensive and strong, though not unified, statement regarding academic structures
in the Province of Alberta.  They contain large amounts of information regarding policy,
intentions, vision statements, and practical mechanics of education delivery.  The docu-
ments  set  specific  standards  for  individual  courses,  and  more  general  directives  for
whole subjects, departments, and faculties.  Some of the consequences and implications
of administrative  planning are observed  and quantified  in this  subsubsection.   Such a
gathering  of administrative  facts  is  interesting  on its own,  worthy of  at  least  cursory
study,  and also useful  for comparison  with research results  presented  in chapter four.
There, it is shown the network structure of the courses sometimes supports, and some-
times is in conflict with, the function and the stated designs and goals of the provincial
education system as described by the University of Alberta, Alberta Learning, and other
sources.

Through simple counting,  it is observed that most kinds of courses potentially
offered  in  Alberta's  schools  are  nonacademic  (see  Figure  3.1.2.4-1).   There  are  four
major nonacademic programs in high schools: Integrated Occupational  Program (IOP),
Career and Technology Studies (CTS), Registered Apprenticeship Program (RAP), and
Green Certificate Program (GCC).  The IOP program is designed for students with "low
achievement"  who  are  "unlikely  to  progress  in  the  regular  secondary  programs"  to
enhance their "ability to enter into employment and/or continuing education and train-
ing" (Alpern 1991) by "providing them with specific integrated curriculum and off-cam-
pus opportunities"  (Taylor  2007).   The program presents  students  with  modified  ver-
sions  of regular  courses,  such  as IOP 1226,  aka Math  16,  in place  of Math 10,  plus
patently practical topics, such as IOP 2633, Food Services 26, specifically designed to
"integrate  essential  and employability  skills  in occupational  contexts" (Alberta Educa-
tion 2006).   During the 2005-2006 school year,  nearly 8% of the high school student
population was in the IOP stream (Taylor 2007); these are now called "Knowledge and
Employability Courses" at the time of writing.  The CTS program offers students learn-
ing opportunities  to develop skills  for employability,  career planning,  technology,  and
their "daily lives" by preparing them "for transition into adult roles in the family, commu-
nity, workplace and/or further education" (Alberta Education 2006).  During the 2004-
2005 school  year, approximately  90% of Alberta’s  high school students earned six or
more credits  granted in CTS courses,  which accounted  for approximately  14% of the
total number of high school credits granted by Alberta Education in all core and optional
subject areas (Taylor 2007).  Students in the RAP program both attend regular school
classes  plus  work  and  receive  on-the-job  training  under  the  supervision  of  a  skilled
tradesperson as a registered apprentice (Alberta Learning 2003b).  The GCC program is
similar,  but  the  "apprentice-style  agricultural  training"  covers  one  of  seven  primary
specializations  related  to  crops,  livestock,  equine,  or beekeeping  (Alberta  Agriculture
2010).  Together, these two apprenticeship programs enroll just less than three thousand
students across the province (Alberta Apprenticeship and Industry Training Board 2007;
personal communication, Alberta Agriculture and Rural Development, May 2010).

The  above  described  school-to-work  initiatives  are  characterized  by Lehmann
and  Taylor  (2003)  as  Alberta's  response  to the  "new vocationalism"  discourse  of  the
1990s.   The  changes  to  vocational  high  school  education  that  the  Alberta  programs
represent  have  the  potential  to  "challenge  traditional  academic/vocational  divisions".
Supported  by the idea that all future workers need to be "knowledge workers",  voca-
tional training is expected to be broad,  well connected to academic content,  and more
accommodating of goals other than immediate employment, for example, postsecondary
education.  This is achieved by "integrating" academic and vocational education through
related sequences of courses so that students  achieve both academic and occupational
competencies (Grubb 1996).  The extent to which the courses from IOP, CTS, RAP, and
GCC are integrated with the rest of the education system is discussed in §4.2.2.6, as well
as other interpretations of these programs, especially RAP, based on network structure.

Counting  the  core  high  school  and  undergraduate  university  courses  at  each
level reveals an ever increasing number of choices offered to students on their journeys
towards a bachelor degree (see Figure 3.1.2.4-2).  Once students move from high school
into  university,  the  junior  courses  potentially  available  to  them represent  a  dramatic
increase in diversity.   Still,  the options increase yet again and again and again as stu-
dents  select  among the senior  level  courses.   This expansion  of course availability  is
consistent  across  most  faculties  at  the  University  of  Alberta  (see  Figure  3.1.2.4-3).
Computational  tools to assist students with choosing courses are presented in §3.2.  In
terms of academic  credits  (¯),  the trend is  repeated  since most courses  in University
have the same academic weight of ¯3 (see Figure 3.1.2.4-4).

Considering just the University, the number of academic credits at each number
level increases with a strongly linear relationship from one-hundred through four-hun-
dred level courses (see Figure 3.1.2.4-5).   Placed as an introduction before the course
listings  of  the  University  of  Alberta  Calendar,  a  chapter  titled  "Details  of  Courses"
(§220, p. 448) describes the universal course numbering system (see Table 3.1.2.4-1 for
more details).  To summarize, the prerequisites for courses at a particular number level
"normally"  come from the  next  level  below;  for  example,  prerequisites  for  200-level
courses  come  from  the  100-level.   And,  courses  at  a  particular  number  level  are
"designed typically"  for students  in the matching  year of their  program;  for example,
200-level courses are intended for second-year students.

Coupling  the  observations  of  the  negatively  skewed  course  distributions  in
Figures  3.1.2.4-2,  3,  & 5,  plus  the  administration's  intended  prerequisite  relationship
between  number  levels,  plus  the  target  students  for  which  courses  at  each  level  are
designed  (as  described  in Table  3.1.2.4-1),  a  specific  structure  to the  arrangement  of
courses  is  implied  by  the  central  administration,  therefore  determining  a  pattern  of
experience for the student, as follows.  First year students, enrolled in 100 level courses
are introduced  to a variety  of subjects  far  greater  than available  in high school.   For
second year students, the university offers access to an even greater choice of 200 level
courses  which  build  upon  first  year  prerequisites,  and so  on,  until  graduation.   This
rather straightforward, linear administrative version of the layout of the University (see
Figure  3.1.2.4-6)  is  critiqued  in  many  following  sections  of  the  thesis,  especially
§4.2.1.1.  Of course any student, teacher, or administrator,  that is, anyone with signifi-
cant experience with the education system, comes to expect diversity of experience and
variance in the system, and moreover these aspects are considered a strength.  Everyone
understands  that  students'  trajectories  through  the  education  system are  anything  but
simple, and that teachers and administrators need to be flexible in design and delivery of
courses.   But,  are  the  experienced  deviations  from the  stated norms  set  forth  by the
administration  a result of the routinely experienced random events and life choices of
individuals  working  within  an  otherwise  preset  course  structure,  or,  does  the  system
itself have a structure fundamentally different from that suggested by the administrative
documents?
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Figure  3.1.2.4-1   Distribution  of  academic  and  nonacademic  courses  in  school.
Most courses offered in high school are nonacademic.
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Figure 3.1.2.4-2   Academic  opportunities  increase at each number level from aca-
demic  high  school  through  undergraduate  university,  until  the  five-hundred  level.
The eight-  and nine-hundred  level courses are exclusively  WKEXP,  Work Experi-
ence,  courses  with  zero  units  of  course  weight  (¯0).   The year  of a program the
course level is "typically designed for" (University of Alberta 2006, p. 448) is indi-
cated by labels above, or inside, the columns.  Some five-hundred level courses are
offered  in  a  minority  of  University  departments  and  are  designed  for  "certain
advanced or honors undergraduate students in their final [fourth] year."   This distribu-
tion is negatively skewed, and peaks at the four-hundred  level – four 'steps'  above
high school.
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Figure 3.1.2.4-2   Academic  opportunities  increase at each number level from aca-
demic  high  school  through  undergraduate  university,  until  the  five-hundred  level.
The eight-  and nine-hundred  level courses are exclusively  WKEXP,  Work Experi-
ence,  courses  with  zero  units  of  course  weight  (¯0).   The year  of a program the
course level is "typically designed for" (University of Alberta 2006, p. 448) is indi-
cated by labels above, or inside, the columns.  Some five-hundred level courses are
offered  in  a  minority  of  University  departments  and  are  designed  for  "certain
advanced or honors undergraduate students in their final [fourth] year."   This distribu-
tion is negatively skewed, and peaks at the four-hundred  level – four 'steps'  above
high school.
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Figure  3.1.2.4-3   The  number  of  courses  offered  at  each  number  level  tends  to
increases for all faculties.  The Faculties of Arts and Engineering account for most
five-hundred  level  undergraduate  courses.   The Faculty of Science offers  the most
nine-hundred level courses.   The Faculty of Business offers few courses below the
four-hundred level.  The Faculty of Physical Education and Recreation provides the
largest portion of its courses at the three-hundred level.
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Figure 3.1.2.4-4
Frequency  distribution  of  course  weights.   Most
courses  in  Alberta  have  three  academic  credits  of
weight (¯3), especially  in University,  such that, wè

= ¯3 (median)  and wêêê  ≈  ¯3.03 (mean).   There are
many ¯1 courses  in the nonacademic  high school
program,  CTS.   The vocational  programs  of  RAP
and IOP contain most of the ¯5 courses.   The ¯0
courses  in  University  are  the  Work  Experience
(WKEXP) courses afforded by nearly all the large
faculties to certain senior students in the final years
of their  Coop programs.   The Faculty  of  Physical
Education and Recreation is distinctive for offering
the greatest range of course weights: more than two
dozen,  ¯1.5  credit  courses,  plenty  of  ¯3  credit
courses, a few ¯6 credit courses, plus the only two
¯12  credit  courses  in  the  University,  PEDS  491
(#4722) and RLS 449 (#4760) Professional  Practi-
cum.  Note:  numbers  with  format  (#XXXX)  indi-
cate node index for course statistics on Table 9.2-1.
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Figure 3.1.2.4-5
Similar  to  Figure  3.1.2.4-2,  the  number  of  credits
offered  in  undergraduate  univirsity  increases  until
the five-hundred level.  This "top-down", administra-
tive  perspective  of  number  levels  is  quite  linear
(Adjusted R2  ≈ 0.983, F-ratio ≈ 173, and P-value ≈
0.006,  by  ANOVA)  for  the  increase  in  frequency
from the one- to four- hundred level courses.  Given
the  allegations  of  Davis  and  Sumara  (2003),  that
modern  western  educational  institutions  are under-
pinned by linear assumptions, it may not be surpris-
ing that administrators would envision their univer-
sity so.  This shape of distribution  tacitly supports
the view of undergraduate education as an initiation
from academic  high  school  to  a restricted  number
of "Junior" gateway courses, followed by a steadily
expanding knowledge structure of "Senior" courses,
perhaps,  to  be  concluded  by  a  small  selection  of
elite courses (see Figure 3.1.2.4-6).

Details of Courses
Each course is designated by its computer abbreviation and a number.  Courses
are numbered according to the following system:
000-099 Pre-University
100-199 Basic Undergraduate.  Normally requires no university-level 

prerequisites.  Designed typically for students in the first year 
of a program.

200-299 Undergraduate.  Prerequisites, if any, are normally at the 100-
level.  Designed typically for students in the second year of a 
program.

300-399 Undergraduate.  Prerequisites, if any, are normally at the 200-
level.  Designed typically for students in the third year of a 
program.

400-499 Advanced Undergraduate.  Prerequisites, if any, are normally at 
the 300-level.  Designed typically for students in the fourth year 
of a program.

500-599 Graduate.  Designed for graduate students and certain ad-
vanced or honors undergraduate students in their final year.
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Details of Courses
Each course is designated by its computer abbreviation and a number.  Courses
are numbered according to the following system:
000-099 Pre-University
100-199 Basic Undergraduate.  Normally requires no university-level 

prerequisites.  Designed typically for students in the first year 
of a program.

200-299 Undergraduate.  Prerequisites, if any, are normally at the 100-
level.  Designed typically for students in the second year of a 
program.

300-399 Undergraduate.  Prerequisites, if any, are normally at the 200-
level.  Designed typically for students in the third year of a 
program.

400-499 Advanced Undergraduate.  Prerequisites, if any, are normally at 
the 300-level.  Designed typically for students in the fourth year 
of a program.

500-599 Graduate.  Designed for graduate students and certain ad-
vanced or honors undergraduate students in their final year.

Table  3.1.2.4-1   Details  of  course  numbering  system  at  University.   The  table,
quoted  exactly  by  content  and  format  directly  from the  Calendar  (§220,  p.  448),
describes the meaning of course numbers according to the University administration.
Standards are set forth, such that, courses at one level have prerequisites  from one
level below, and students attending courses are from a corresponding program year.
The numbering system also incorporates  several  equivocations  which enable varia-
tion: "normally", "typically", and "if any".
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Figure 3.1.2.4-6
An  imaginary  network  based  on  a
simple  interpretation  of  Figures
3.1.2.4-2  &  4.   Assuming  node
credit values are weighted in propor-
tion  to  node  size,  and  considering
the number of nodes at each number
level,  this  is  a  toy  example  of  a
network  which  produces  a  fre-
quency distribution of course credits
over catagories of number level with
identical  proportions  as  Figure
3.1.2.4-5.   To arrange the links,  the
nodes  follow  the  "normal"  guide-
lines  from  the  University  Calendar
(see  Table  3.1.2.4-1),  such  that,
four-hundred  level  courses  have
three-hundred  level  prerequisites,
and so on.  Observe the structure to
be, in a sense,  'top-heavy'  (Ù),  such
that,  the  network  opens  upward  to
become  richer  with  choice  as  a
student  progresses  along  prerequi-
site  lineages  from  high  school  into
university until  terminal  courses are
reached.
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3.2 Navigating Alberta's Course Network

" . . . there has been little sustained discussion of the spatial dimen-
sions of education.  Much of the discussion of educational changes
has  remained  at  the  level  of  technical  implementation,  with  few
attempts to provide a wider framing, which explicitly highlights the
spatial ordering of curriculum and learning."

Edwards, R. & Usher, R. (2003) Putting Space Back on the Map of
Learning,  in Edwards,  R. & Usher, R. (eds.) Space, Curricu-
lum  and  Learning  (Greenwich,  CT,  USA:  Information  Age
Publishing): p. 2.

From  kindergarten  onwards,  each  new  step  in  a  student’s  formal  education
requires the support of earlier, successful learning.  But even after this necessary condi-
tion is satisfied by a student, they may still struggle to plan ahead and choose ensuing
courses due to the inaccessibility of the required information regarding what is available
to them.  The transitions from junior to senior high school, and from high school gradua-
tion into first and second year university are particularly bewildering due to the flourish
of possibilities provided by the expanding number of courses.  While course choices are
directed by the various programs of study at university, all of them have at least some
options,  and  any  programs  associated  with  the  'liberal  arts'  tradition  encourage  the
pursuit  of  diverse  interests.   So,  unless  explicitly  regulated,  as  a  small  minority  of
courses at university are towards students in a specific degree program or of a specific
year, courses can be enrolled in by any student with the prerequisites  following his or
her  interests.   But,  given  their  transcript  and  the  school's  or  university's  calendar,  a
student, or even their counsellor, has trouble finding and considering all of the choices
available because of the backward, or 'retrospective',  orientation to the course descrip-
tions exclusively towards prerequisites.  The personal information on the transcript does
not directly  imply any immediate  opportunities  or paths towards future learning.   For
example, the Course Listings in the U. of A. Calendar (§220 & §221) are about three-hun-
dred pages of small font, single-spaced, double-columned text.  Finding optional courses
for which student a qualifies via their transcripts is essentially what computer program-
mers call  a "random search".   To help matters,  a designed and implemented  network
approach is offered in this section as a tool for awareness of the global structure of even
a large education  system,  as well  as the appreciation  of the local  connectedness  of a
transcript or an individual course, through automated search and visualization capabili-
ties.

In this section, for any student, education is considered as a personal subset of
learning experiences  that result from encounters  with organized academic information.
For  a student,  the  most  important  quality  of  a  networked  data  base  of  the education
system  is  the  quick  searches  available  for  subsequent  courses  from their  transcripts.
Since the network structure is a complete accounting of all node associations, from any
course  node,  all  adjacent  nodes  are directly  available  as members  of the surrounding
neighborhood (see Figure 3.2.1-1).  Whereas education documents, especially in univer-
sity, identify only prerequisite courses, a network description of a course node includes
all adjacent nodes, therefore, given a node, i, any course in the network that calls upon i
as a prerequisite  is immediately  identifiable.   Throughout  the thesis,  analogous to the
term, "prerequisites", any following courses to a node are called subsequents.  With the
ability  to  comprehensively  identify  all  possible  subsequents,  comes  better  informed
course planning for the student.
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From  kindergarten  onwards,  each  new  step  in  a  student’s  formal  education
requires the support of earlier, successful learning.  But even after this necessary condi-
tion is satisfied by a student, they may still struggle to plan ahead and choose ensuing
courses due to the inaccessibility of the required information regarding what is available
to them.  The transitions from junior to senior high school, and from high school gradua-
tion into first and second year university are particularly bewildering due to the flourish
of possibilities provided by the expanding number of courses.  While course choices are
directed by the various programs of study at university, all of them have at least some
options,  and  any  programs  associated  with  the  'liberal  arts'  tradition  encourage  the
pursuit  of  diverse  interests.   So,  unless  explicitly  regulated,  as  a  small  minority  of
courses at university are towards students in a specific degree program or of a specific
year, courses can be enrolled in by any student with the prerequisites  following his or
her  interests.   But,  given  their  transcript  and  the  school's  or  university's  calendar,  a
student, or even their counsellor, has trouble finding and considering all of the choices
available because of the backward, or 'retrospective',  orientation to the course descrip-
tions exclusively towards prerequisites.  The personal information on the transcript does
not directly  imply any immediate  opportunities  or paths towards future learning.   For
example, the Course Listings in the U. of A. Calendar (§220 & §221) are about three-hun-
dred pages of small font, single-spaced, double-columned text.  Finding optional courses
for which student a qualifies via their transcripts is essentially what computer program-
mers call  a "random search".   To help matters,  a designed and implemented  network
approach is offered in this section as a tool for awareness of the global structure of even
a large education  system,  as well  as the appreciation  of the local  connectedness  of a
transcript or an individual course, through automated search and visualization capabili-
ties.

In this section, for any student, education is considered as a personal subset of
learning experiences  that result from encounters  with organized academic information.
For  a student,  the  most  important  quality  of  a  networked  data  base  of  the education
system  is  the  quick  searches  available  for  subsequent  courses  from their  transcripts.
Since the network structure is a complete accounting of all node associations, from any
course  node,  all  adjacent  nodes  are directly  available  as members  of the surrounding
neighborhood (see Figure 3.2.1-1).  Whereas education documents, especially in univer-
sity, identify only prerequisite courses, a network description of a course node includes
all adjacent nodes, therefore, given a node, i, any course in the network that calls upon i
as a prerequisite  is immediately  identifiable.   Throughout  the thesis,  analogous to the
term, "prerequisites", any following courses to a node are called subsequents.  With the
ability  to  comprehensively  identify  all  possible  subsequents,  comes  better  informed
course planning for the student.

BIOL 332

BIOL 208

STAT 151

MATH 113
MATH 115

MATH 120

BIOL 470

BOT 431

ZOOL 434

ZOOL 465

subsequents subsequents

prerequisites prerequisites

Figure 3.2-1  The prerequisites  and subsequents  of the course,  BIOL 332 (review
Figure 3.1.2-2).  Each course is surrounded by a neighborhood of adjacent, directly
linked nodes, which can be classified into two exclusive sets called the prerequisite
neighborhood, pre , and the subsequent neighborhood, sub .  Prerequisite nodes are
referred to by the central course node defining the neighborhood, while subsequent
nodes refer to the central node.  The course, BIOL 332, has three prerequisites, one
of which is satisfied by three courses.  The total strength of the edges to the prerequi-
sites is exactly in proportion:  presTOTAL  = 1 + 1 + 1/3 + 1/3 + 1/3 = 3, such that,
presTOTAL  œ  ,  generally.   Four  courses  refer  to  BIOL 332;  by link  strength  the
central course is said to support almost one and a third subsequents:  subsTOTAL ≈ 1/3
+ 1/8 + 1/3 + 1/2 = 31/24.  Precise information on node weight and link strength is
not expected to be gathered directly from the network visuals (thought they are often
quite  clear),  but  it  is  available  through  other  features  of  the  program,  Calendar
Navigator.
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Figure 3.2-1  The prerequisites  and subsequents  of the course,  BIOL 332 (review
Figure 3.1.2-2).  Each course is surrounded by a neighborhood of adjacent, directly
linked nodes, which can be classified into two exclusive sets called the prerequisite
neighborhood, pre , and the subsequent neighborhood, sub .  Prerequisite nodes are
referred to by the central course node defining the neighborhood, while subsequent
nodes refer to the central node.  The course, BIOL 332, has three prerequisites, one
of which is satisfied by three courses.  The total strength of the edges to the prerequi-
sites is exactly in proportion:  presTOTAL  = 1 + 1 + 1/3 + 1/3 + 1/3 = 3, such that,
presTOTAL  œ  ,  generally.   Four  courses  refer  to  BIOL 332;  by link  strength  the
central course is said to support almost one and a third subsequents:  subsTOTAL ≈ 1/3
+ 1/8 + 1/3 + 1/2 = 31/24.  Precise information on node weight and link strength is
not expected to be gathered directly from the network visuals (thought they are often
quite  clear),  but  it  is  available  through  other  features  of  the  program,  Calendar
Navigator.

‡ 3.2.1  The Debut of a Network Based Tool for Students & 
Counsellors

Students  routinely deal with complicated situations.   Just using the transit sys-
tem through a city to arrive at class on time, is a computationally  heavy load, say, as
measured by a robot.  But what makes the educational environment so mentally taxing
on the student are the ongoing and abundant prospects.  Based on the lack of variance
and  consequence  of  past  journeys,  a  commuting  student  quickly  learns  to  ignore,  as
unimportant, most details of the daily effort to campus.  In contrast, school or university
itself  is  a  continuous  confrontation  with  new  academic  information,  frequent  tests,
periodic course choices based on multiple dependencies, and long-term significance for
each of these events.   When considering what courses to enroll in, and what learning
trajectories  to  embark  upon,  having  at  least  an understanding  of  what  each  prospect
affords within the education system is crucial.  Paradoxically, Simon (1993: 156) reports
that when faced with complex decisions, it seems that individuals become docile – they
tend to “depend on suggestions, recommendations, persuasion, and information obtained
through social channels as a major basis for choice".  On the other hand, Ruecker (2003)
describes how most people are naturally adept at finding and evaluating prospects visu-
ally, so a graphical tool offers inherent advantages.   Wayfinding  is the ability to learn
and remember a route through an environment (Blades 1991) with the overall goal being
able to relocate from one place to another in wide-scale space (Gluck, 1991).  Spatial
orientation refers to the process by which a person knows where he or she is relative to
something else (Garling & Golledge 1989). 

Calendar  Navigator,  is introduced  as an original  graphics based computer pro-
gram for students and counsellors created specifically for applications in education.  The
program strives to move beyond the University's  Calendar-as-"parts  list" to more fully
communicate the ways networked courses interact with one another to influence learn-
ing.   Calendar  Navigator  provides  a graphical  interpretation  of the University  course
structure via networks to spatially orient a student within their educational environment,
and to assist a student's wayfinding through it.  The utilitarian graphical user interface
(GUI)  is  not  polished  enough  for  commercial  marketing,  but  presently  consists  of  a
half-dozen primary widgets – small windows providing the user with interaction points
for the direct manipulation of the application through text fields, settings, and function
buttons.  First, the overall course network can be displayed as shown in Figure 3.1.2-5.
There  are  zooming  and  panning  features  to  identify  structural  details  (review Figure
3.1.2-10),  and  controls  to  alter  all  graphical  parameters,  similar  to  what  might  be
expected of any narrowly focused graphics program, for example in, say, architecture.
Any node can be selected and isolated within just its neighborhood as shown in Figure
3.2-1.   Once  selected,  either  individually  or  by  region,  nodes  can  be  identified  with
labels  or by a "pop-up"  window which presents  the complete  course  listing from the
calendar, plus a list of all subsequents,  plus a list of all corresponding special statistics
introduced  in chapter  four of this  thesis.   Therefore,  the network  diagrams provide  a
dynamic visual map, as well as an interactive source of embedded descriptive text from
the calendar and network statistics.  It's here hypothesized that students using such a tool
would  make  more  informed  course  choices  faster  and easier  than  with  the  resources
currently available, but research trials with follow-up surveys would need to confirm or
deny this claim.

The  program,  Calendar  Navigator,  is  designed  to  specifically  answer  a  most
basic,  but  frustratingly  difficult  question  for  a  student,  "Given  their  transcript,  what
courses are immediately available to them, and along what learning trajectories do they
follow?"  The program accepts as input a student's transcript: a set of courses, t = {t1,
..., tn}, to serve as prerequisites for continued learning or as requirements for a degree.
A transcript  can  be  displayed  and  superimposed  on the  overall  course  web  to  guide
visual browsing.  All directly available courses the particular transcript allows are high-
lighted and brought to the attention of a student (see Figure 3.2.1-1, part A.).  There is
subtleness  to establishing  what  courses  should  be highlighted  for  the student  though.
For  example,  besides  being related  as pre-  or  co-requisites,  two courses  may signifi-
cantly overlap in content.  Although not explicitly addressed in the University Calendar,
courses that overlap in content are common in most faculties and, in practice, constrain
students'  course  choices.   Once  a  particular  course  is  on  a  student's  transcript,  other
overlapped courses cannot be enrolled in for credit, just as neither can credit be earned
for the same course twice (generally).   For example, the course description for NU FS
305†  (#1478), Introduction to the Principles of Nutrition, contains the constraint, "Stu-
dents cannot obtain credit in NU FS 305 and NUTR 301, 302, 303, or 304."  The con-
tents of NUTR 301, 302, 303, and 304 are deemed by the Department  of Agriculture,
Food and Nutrition Science to overlap the content of NU FS 305 to such proportions
that credit  cannot be gained for NU FS 305 once credit  for any of these overlapping
courses is earned.  The relationship is not mutual, so students with the course, NU FS
305, on their transcripts are not prevented from enrolling in the Nutrition courses (see
Figure  3.2.2-2).   Moreover,  often  course  descriptions  that  call  upon  an  overlapped
course do not list the overlapping course as a prerequisite option.  Extending the exam-
ple, there may be a third course which calls upon NU FS 305 as a prerequisite, but does
necessarily  mention the possibility  of substituting any of the nutrition courses (NUTR
30X).   Therefore,  without  following  all  the  implied,  secondary  connections  between
some courses, students may underestimate their learning prospects.  To solve this issue,
once a transcript  is  entered,  Calendar  Navigator  searches  its  data base  to identify  all
courses that are overlapped by the transcript and collects them in a new set of courses
called the virtual transcript, virtt.  The effective transcript  for a student used by func-
tions described in this subsection is a union of the student's transcript with their virtual
transcript,  effectt = t ‹ virtt.  This ensures the program highlights all possible courses
potentially available to a student – even those obscured within the available documenta-
tion.

A set of all courses that have their prerequisites  satisfied by the student's tran-
script  is  established  by a "breadth-first  search" (Corman et al.  2001:  531-539)  of the
remaining network.  These courses can be highlighted and listed, and are considered to
comprise a student's immediate potential; less specifically, all courses outside the tran-
script  are  simply  called  the  student's  potential.   Using  Calendar  Navigator,  a  set  of
speculative courses, spect, may be added to an effective transcript by a student consider-
ing certain course for the next semester or further on.  All list variables are updated and
displayed,  indicating to a student how their options will change given certain choices.
Via labels and pop-up windows, calendar entries for any selected course node may be
viewed (see Figure 3.2.2-3).  In this context, the program serves as an extensive, direc-
tive  'visual  calendar',  similar  in  function  to  the  commercially  available  program  for
associated  word  searches,  Visual  Thesarus®  <http://www.visualthesaurus.com>.
Courses  a student  is  avoiding  (or failed and is  not  repeating)  can be struck from the
network (see Figure 3.2.1-1, part B.).  Struck courses form a set that can never intersect
the student's  transcript,  thus determining a further subset of courses removed from the
student's potential.  These courses are necessarily inaccessible to the student, as graphi-
cally represented by empty regions of the education web without nodes.  By modifying
different  visual  characteristics  of  the  network,  through  highlights  and  'ghosting',  the
program visually filters those connections and nodes that are relevant to the user.  To
summarize,  from input transcripts,  Calendar Navigator offers students a rich "prospect
interface" (Ruecker 2003) to adaptively browse networks and lists of courses that compre-
hensively highlight: a) their academic background, b) their prospects for future learning. 

Besides  transcript  and  course  information,  Calendar  Navigator  displays  and
handles various degree and diploma requirements.   In Calendar Navigator,  degrees are
defined  (at  least)  by  a  set  of  course  requirements  translated  into  logical  statements,
analogous in practice to a large set of prerequisites for a course.  These degree require-
ments  are satisfied  or not  by a student's  transcript  and denoted for the student  as so.
Degree requirements are visually displayed as a colored overlay onto the network, just
like  a transcript  is,  indicating  to the  student  the  full  breadth  of possible  courses  that
satisfy the degree requirements.   Using data from an "all-pairs shortest paths" calcula-
tion (Corman et al. 2001: ch. 25, p. 620-642), Calendar Navigator is able to recommend
a nonunique  set  of  shortest  course  trajectories  between  a  student's  transcript  and the
requirements for a particular degree.  Therefore, Calendar Navigator may be applied by
a student or counsellor for both finding a) all the possible course choices that fulfill the
requirements for a degree, and, b) an efficient route between a transcript and the require-
ments for a degree, thus fully disclosing all education options available  – diverse andefficient – in the pursuit of a Bachelors degree.There appears to be some strong similarities between the network approach usedin this  thesis  regarding  courses  and a similar  spatial  tool  presently  used in educationcounselling.  A cognitive map is a mental devise and store which helps to simplify, codeand  order  the  endlessly  complex  world  of  human  interaction  with  the  environment(Kitchin 1994), see Figure 3.2.1-4.  Used in education counselling,  cognitive maps aread hoc knowledge structures to spatially organize and relate ideas, feelings, and actionsto  effectively  facilitate  communication  and  problem  solving  in  group  and  individualcounseling sessions (de Vries et al. 1992; Fletcher et al. 2003).  The course network aspresented in this subsection has many of the same features of a cognitive map in the wayit arranges and presents complex information for consideration.   The major differencesare  of  scale,  perspective,  and  formalism:  while  relatively  small  cognitive  maps  areimplied  by  internal  representations  of  the  environment  for  the  student,  large  coursenetworks  are the external  product  of measurement  of the education  system.   Withoutfurther  support  or  assertions,  it's  here  casually  speculated  that  the  education  coursenetwork  is  Alberta's  academic  knowledge  map  embedded  in  our  schools  –  a  large,sophisticated "cognitive map" of ideas, feelings, and actions supported by a society andnot any one individual.Increasing  technology  and  information  (improved  data)  allow  researchers  todescribe,  model,  and  reveal  hitherto  invisible  structures  within  society  (Stokman  &Doreian  2001;  Wellman  & Tindall  2001;  Degenne  &  Forse  1999;  ch.  1  &  2).   Asapplied to education in this subsection, a computer assisted, network account of coursesin Alberta,  K-16, provides an interface which includes affordances to zoom, pan, sort,select, group, subset, rename, annotate, open, or structure course items, transcripts, anddegrees.  The course map offers to students a new and different sense of themselves andtheir situation in relation to the education system.  The ability to manipulate,  browse,and foreground certain aspects of the course network is important for utility, letting thestudent  (or  counsellor)  better  manage  their  undergraduate  studies.   It  is  here  recom-mended that such utility  be incorporated  into the University  of Alberta's  Bear Tracksstudent services website for widespread use.  Perhaps with some modest investment oftime and  effort,  users  may become  as  familiar  with  network  course  maps  as  driversbecome with complicated road maps of a major city as a useful means for wayfinding.In principle,  data from any education system which adequately describes the prerequi-site requirements for all its courses could be similarly uploaded into Calendar Navigator,translated,  visualized,  and manipulated,  thus what follows is a particular example of ageneral approach.___________________________________†Numbers with the format (#XXXX) appearing in the text indicate node index for thecorresponding course statistics on Table 9.2-1.
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Students  routinely deal with complicated situations.   Just using the transit sys-
tem through a city to arrive at class on time, is a computationally  heavy load, say, as
measured by a robot.  But what makes the educational environment so mentally taxing
on the student are the ongoing and abundant prospects.  Based on the lack of variance
and  consequence  of  past  journeys,  a  commuting  student  quickly  learns  to  ignore,  as
unimportant, most details of the daily effort to campus.  In contrast, school or university
itself  is  a  continuous  confrontation  with  new  academic  information,  frequent  tests,
periodic course choices based on multiple dependencies, and long-term significance for
each of these events.   When considering what courses to enroll in, and what learning
trajectories  to  embark  upon,  having  at  least  an understanding  of  what  each  prospect
affords within the education system is crucial.  Paradoxically, Simon (1993: 156) reports
that when faced with complex decisions, it seems that individuals become docile – they
tend to “depend on suggestions, recommendations, persuasion, and information obtained
through social channels as a major basis for choice".  On the other hand, Ruecker (2003)
describes how most people are naturally adept at finding and evaluating prospects visu-
ally, so a graphical tool offers inherent advantages.   Wayfinding  is the ability to learn
and remember a route through an environment (Blades 1991) with the overall goal being
able to relocate from one place to another in wide-scale space (Gluck, 1991).  Spatial
orientation refers to the process by which a person knows where he or she is relative to
something else (Garling & Golledge 1989). 

Calendar  Navigator,  is introduced  as an original  graphics based computer pro-
gram for students and counsellors created specifically for applications in education.  The
program strives to move beyond the University's  Calendar-as-"parts  list" to more fully
communicate the ways networked courses interact with one another to influence learn-
ing.   Calendar  Navigator  provides  a graphical  interpretation  of the University  course
structure via networks to spatially orient a student within their educational environment,
and to assist a student's wayfinding through it.  The utilitarian graphical user interface
(GUI)  is  not  polished  enough  for  commercial  marketing,  but  presently  consists  of  a
half-dozen primary widgets – small windows providing the user with interaction points
for the direct manipulation of the application through text fields, settings, and function
buttons.  First, the overall course network can be displayed as shown in Figure 3.1.2-5.
There  are  zooming  and  panning  features  to  identify  structural  details  (review Figure
3.1.2-10),  and  controls  to  alter  all  graphical  parameters,  similar  to  what  might  be
expected of any narrowly focused graphics program, for example in, say, architecture.
Any node can be selected and isolated within just its neighborhood as shown in Figure
3.2-1.   Once  selected,  either  individually  or  by  region,  nodes  can  be  identified  with
labels  or by a "pop-up"  window which presents  the complete  course  listing from the
calendar, plus a list of all subsequents,  plus a list of all corresponding special statistics
introduced  in chapter  four of this  thesis.   Therefore,  the network  diagrams provide  a
dynamic visual map, as well as an interactive source of embedded descriptive text from
the calendar and network statistics.  It's here hypothesized that students using such a tool
would  make  more  informed  course  choices  faster  and easier  than  with  the  resources
currently available, but research trials with follow-up surveys would need to confirm or
deny this claim.

The  program,  Calendar  Navigator,  is  designed  to  specifically  answer  a  most
basic,  but  frustratingly  difficult  question  for  a  student,  "Given  their  transcript,  what
courses are immediately available to them, and along what learning trajectories do they
follow?"  The program accepts as input a student's transcript: a set of courses, t = {t1,
..., tn}, to serve as prerequisites for continued learning or as requirements for a degree.
A transcript  can  be  displayed  and  superimposed  on the  overall  course  web  to  guide
visual browsing.  All directly available courses the particular transcript allows are high-
lighted and brought to the attention of a student (see Figure 3.2.1-1, part A.).  There is
subtleness  to establishing  what  courses  should  be highlighted  for  the student  though.
For  example,  besides  being related  as pre-  or  co-requisites,  two courses  may signifi-
cantly overlap in content.  Although not explicitly addressed in the University Calendar,
courses that overlap in content are common in most faculties and, in practice, constrain
students'  course  choices.   Once  a  particular  course  is  on  a  student's  transcript,  other
overlapped courses cannot be enrolled in for credit, just as neither can credit be earned
for the same course twice (generally).   For example, the course description for NU FS
305†  (#1478), Introduction to the Principles of Nutrition, contains the constraint, "Stu-
dents cannot obtain credit in NU FS 305 and NUTR 301, 302, 303, or 304."  The con-
tents of NUTR 301, 302, 303, and 304 are deemed by the Department  of Agriculture,
Food and Nutrition Science to overlap the content of NU FS 305 to such proportions
that credit  cannot be gained for NU FS 305 once credit  for any of these overlapping
courses is earned.  The relationship is not mutual, so students with the course, NU FS
305, on their transcripts are not prevented from enrolling in the Nutrition courses (see
Figure  3.2.2-2).   Moreover,  often  course  descriptions  that  call  upon  an  overlapped
course do not list the overlapping course as a prerequisite option.  Extending the exam-
ple, there may be a third course which calls upon NU FS 305 as a prerequisite, but does
necessarily  mention the possibility  of substituting any of the nutrition courses (NUTR
30X).   Therefore,  without  following  all  the  implied,  secondary  connections  between
some courses, students may underestimate their learning prospects.  To solve this issue,
once a transcript  is  entered,  Calendar  Navigator  searches  its  data base  to identify  all
courses that are overlapped by the transcript and collects them in a new set of courses
called the virtual transcript, virtt.  The effective transcript  for a student used by func-
tions described in this subsection is a union of the student's transcript with their virtual
transcript,  effectt = t ‹ virtt.  This ensures the program highlights all possible courses
potentially available to a student – even those obscured within the available documenta-
tion.

A set of all courses that have their prerequisites  satisfied by the student's tran-
script  is  established  by a "breadth-first  search" (Corman et al.  2001:  531-539)  of the
remaining network.  These courses can be highlighted and listed, and are considered to
comprise a student's immediate potential; less specifically, all courses outside the tran-
script  are  simply  called  the  student's  potential.   Using  Calendar  Navigator,  a  set  of
speculative courses, spect, may be added to an effective transcript by a student consider-
ing certain course for the next semester or further on.  All list variables are updated and
displayed,  indicating to a student how their options will change given certain choices.
Via labels and pop-up windows, calendar entries for any selected course node may be
viewed (see Figure 3.2.2-3).  In this context, the program serves as an extensive, direc-
tive  'visual  calendar',  similar  in  function  to  the  commercially  available  program  for
associated  word  searches,  Visual  Thesarus®  <http://www.visualthesaurus.com>.
Courses  a student  is  avoiding  (or failed and is  not  repeating)  can be struck from the
network (see Figure 3.2.1-1, part B.).  Struck courses form a set that can never intersect
the student's  transcript,  thus determining a further subset of courses removed from the
student's potential.  These courses are necessarily inaccessible to the student, as graphi-
cally represented by empty regions of the education web without nodes.  By modifying
different  visual  characteristics  of  the  network,  through  highlights  and  'ghosting',  the
program visually filters those connections and nodes that are relevant to the user.  To
summarize,  from input transcripts,  Calendar Navigator offers students a rich "prospect
interface" (Ruecker 2003) to adaptively browse networks and lists of courses that compre-
hensively highlight: a) their academic background, b) their prospects for future learning. 

Besides  transcript  and  course  information,  Calendar  Navigator  displays  and
handles various degree and diploma requirements.   In Calendar Navigator,  degrees are
defined  (at  least)  by  a  set  of  course  requirements  translated  into  logical  statements,
analogous in practice to a large set of prerequisites for a course.  These degree require-
ments  are satisfied  or not  by a student's  transcript  and denoted for the student  as so.
Degree requirements are visually displayed as a colored overlay onto the network, just
like  a transcript  is,  indicating  to the  student  the  full  breadth  of possible  courses  that
satisfy the degree requirements.   Using data from an "all-pairs shortest paths" calcula-
tion (Corman et al. 2001: ch. 25, p. 620-642), Calendar Navigator is able to recommend
a nonunique  set  of  shortest  course  trajectories  between  a  student's  transcript  and the
requirements for a particular degree.  Therefore, Calendar Navigator may be applied by
a student or counsellor for both finding a) all the possible course choices that fulfill the
requirements for a degree, and, b) an efficient route between a transcript and the require-
ments for a degree, thus fully disclosing all education options available  – diverse and
efficient – in the pursuit of a Bachelors degree.

There appears to be some strong similarities between the network approach used
in this  thesis  regarding  courses  and a similar  spatial  tool  presently  used in education
counselling.  A cognitive map is a mental devise and store which helps to simplify, code
and  order  the  endlessly  complex  world  of  human  interaction  with  the  environment
(Kitchin 1994), see Figure 3.2.1-4.  Used in education counselling,  cognitive maps are
ad hoc knowledge structures to spatially organize and relate ideas, feelings, and actions
to  effectively  facilitate  communication  and  problem  solving  in  group  and  individual
counseling sessions (de Vries et al. 1992; Fletcher et al. 2003).  The course network as
presented in this subsection has many of the same features of a cognitive map in the way
it arranges and presents complex information for consideration.   The major differences
are  of  scale,  perspective,  and  formalism:  while  relatively  small  cognitive  maps  are
implied  by  internal  representations  of  the  environment  for  the  student,  large  course
networks  are the external  product  of measurement  of the education  system.   Without
further  support  or  assertions,  it's  here  casually  speculated  that  the  education  course
network  is  Alberta's  academic  knowledge  map  embedded  in  our  schools  –  a  large,
sophisticated "cognitive map" of ideas, feelings, and actions supported by a society and
not any one individual.

Increasing  technology  and  information  (improved  data)  allow  researchers  to
describe,  model,  and  reveal  hitherto  invisible  structures  within  society  (Stokman  &
Doreian  2001;  Wellman  & Tindall  2001;  Degenne  &  Forse  1999;  ch.  1  &  2).   As
applied to education in this subsection, a computer assisted, network account of courses
in Alberta,  K-16, provides an interface which includes affordances to zoom, pan, sort,
select, group, subset, rename, annotate, open, or structure course items, transcripts, and
degrees.  The course map offers to students a new and different sense of themselves and
their situation in relation to the education system.  The ability to manipulate,  browse,
and foreground certain aspects of the course network is important for utility, letting the
student  (or  counsellor)  better  manage  their  undergraduate  studies.   It  is  here  recom-
mended that such utility  be incorporated  into the University  of Alberta's  Bear Tracks
student services website for widespread use.  Perhaps with some modest investment of
time and  effort,  users  may become  as  familiar  with  network  course  maps  as  drivers
become with complicated road maps of a major city as a useful means for wayfinding.
In principle,  data from any education system which adequately describes the prerequi-
site requirements for all its courses could be similarly uploaded into Calendar Navigator,
translated,  visualized,  and manipulated,  thus what follows is a particular example of a
general approach.
___________________________________
†Numbers with the format (#XXXX) appearing in the text indicate node index for the
corresponding course statistics on Table 9.2-1.
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Students  routinely deal with complicated situations.   Just using the transit sys-
tem through a city to arrive at class on time, is a computationally  heavy load, say, as
measured by a robot.  But what makes the educational environment so mentally taxing
on the student are the ongoing and abundant prospects.  Based on the lack of variance
and  consequence  of  past  journeys,  a  commuting  student  quickly  learns  to  ignore,  as
unimportant, most details of the daily effort to campus.  In contrast, school or university
itself  is  a  continuous  confrontation  with  new  academic  information,  frequent  tests,
periodic course choices based on multiple dependencies, and long-term significance for
each of these events.   When considering what courses to enroll in, and what learning
trajectories  to  embark  upon,  having  at  least  an understanding  of  what  each  prospect
affords within the education system is crucial.  Paradoxically, Simon (1993: 156) reports
that when faced with complex decisions, it seems that individuals become docile – they
tend to “depend on suggestions, recommendations, persuasion, and information obtained
through social channels as a major basis for choice".  On the other hand, Ruecker (2003)
describes how most people are naturally adept at finding and evaluating prospects visu-
ally, so a graphical tool offers inherent advantages.   Wayfinding  is the ability to learn
and remember a route through an environment (Blades 1991) with the overall goal being
able to relocate from one place to another in wide-scale space (Gluck, 1991).  Spatial
orientation refers to the process by which a person knows where he or she is relative to
something else (Garling & Golledge 1989). 

Calendar  Navigator,  is introduced  as an original  graphics based computer pro-
gram for students and counsellors created specifically for applications in education.  The
program strives to move beyond the University's  Calendar-as-"parts  list" to more fully
communicate the ways networked courses interact with one another to influence learn-
ing.   Calendar  Navigator  provides  a graphical  interpretation  of the University  course
structure via networks to spatially orient a student within their educational environment,
and to assist a student's wayfinding through it.  The utilitarian graphical user interface
(GUI)  is  not  polished  enough  for  commercial  marketing,  but  presently  consists  of  a
half-dozen primary widgets – small windows providing the user with interaction points
for the direct manipulation of the application through text fields, settings, and function
buttons.  First, the overall course network can be displayed as shown in Figure 3.1.2-5.
There  are  zooming  and  panning  features  to  identify  structural  details  (review Figure
3.1.2-10),  and  controls  to  alter  all  graphical  parameters,  similar  to  what  might  be
expected of any narrowly focused graphics program, for example in, say, architecture.
Any node can be selected and isolated within just its neighborhood as shown in Figure
3.2-1.   Once  selected,  either  individually  or  by  region,  nodes  can  be  identified  with
labels  or by a "pop-up"  window which presents  the complete  course  listing from the
calendar, plus a list of all subsequents,  plus a list of all corresponding special statistics
introduced  in chapter  four of this  thesis.   Therefore,  the network  diagrams provide  a
dynamic visual map, as well as an interactive source of embedded descriptive text from
the calendar and network statistics.  It's here hypothesized that students using such a tool
would  make  more  informed  course  choices  faster  and easier  than  with  the  resources
currently available, but research trials with follow-up surveys would need to confirm or
deny this claim.

The  program,  Calendar  Navigator,  is  designed  to  specifically  answer  a  most
basic,  but  frustratingly  difficult  question  for  a  student,  "Given  their  transcript,  what
courses are immediately available to them, and along what learning trajectories do they
follow?"  The program accepts as input a student's transcript: a set of courses, t = {t1,
..., tn}, to serve as prerequisites for continued learning or as requirements for a degree.
A transcript  can  be  displayed  and  superimposed  on the  overall  course  web  to  guide
visual browsing.  All directly available courses the particular transcript allows are high-
lighted and brought to the attention of a student (see Figure 3.2.1-1, part A.).  There is
subtleness  to establishing  what  courses  should  be highlighted  for  the student  though.
For  example,  besides  being related  as pre-  or  co-requisites,  two courses  may signifi-
cantly overlap in content.  Although not explicitly addressed in the University Calendar,
courses that overlap in content are common in most faculties and, in practice, constrain
students'  course  choices.   Once  a  particular  course  is  on  a  student's  transcript,  other
overlapped courses cannot be enrolled in for credit, just as neither can credit be earned
for the same course twice (generally).   For example, the course description for NU FS
305†  (#1478), Introduction to the Principles of Nutrition, contains the constraint, "Stu-
dents cannot obtain credit in NU FS 305 and NUTR 301, 302, 303, or 304."  The con-
tents of NUTR 301, 302, 303, and 304 are deemed by the Department  of Agriculture,
Food and Nutrition Science to overlap the content of NU FS 305 to such proportions
that credit  cannot be gained for NU FS 305 once credit  for any of these overlapping
courses is earned.  The relationship is not mutual, so students with the course, NU FS
305, on their transcripts are not prevented from enrolling in the Nutrition courses (see
Figure  3.2.2-2).   Moreover,  often  course  descriptions  that  call  upon  an  overlapped
course do not list the overlapping course as a prerequisite option.  Extending the exam-
ple, there may be a third course which calls upon NU FS 305 as a prerequisite, but does
necessarily  mention the possibility  of substituting any of the nutrition courses (NUTR
30X).   Therefore,  without  following  all  the  implied,  secondary  connections  between
some courses, students may underestimate their learning prospects.  To solve this issue,
once a transcript  is  entered,  Calendar  Navigator  searches  its  data base  to identify  all
courses that are overlapped by the transcript and collects them in a new set of courses
called the virtual transcript, virtt.  The effective transcript  for a student used by func-
tions described in this subsection is a union of the student's transcript with their virtual
transcript,  effectt = t ‹ virtt.  This ensures the program highlights all possible courses
potentially available to a student – even those obscured within the available documenta-
tion.

A set of all courses that have their prerequisites  satisfied by the student's tran-
script  is  established  by a "breadth-first  search" (Corman et al.  2001:  531-539)  of the
remaining network.  These courses can be highlighted and listed, and are considered to
comprise a student's immediate potential; less specifically, all courses outside the tran-
script  are  simply  called  the  student's  potential.   Using  Calendar  Navigator,  a  set  of
speculative courses, spect, may be added to an effective transcript by a student consider-
ing certain course for the next semester or further on.  All list variables are updated and
displayed,  indicating to a student how their options will change given certain choices.
Via labels and pop-up windows, calendar entries for any selected course node may be
viewed (see Figure 3.2.2-3).  In this context, the program serves as an extensive, direc-
tive  'visual  calendar',  similar  in  function  to  the  commercially  available  program  for
associated  word  searches,  Visual  Thesarus®  <http://www.visualthesaurus.com>.
Courses  a student  is  avoiding  (or failed and is  not  repeating)  can be struck from the
network (see Figure 3.2.1-1, part B.).  Struck courses form a set that can never intersect
the student's  transcript,  thus determining a further subset of courses removed from the
student's potential.  These courses are necessarily inaccessible to the student, as graphi-
cally represented by empty regions of the education web without nodes.  By modifying
different  visual  characteristics  of  the  network,  through  highlights  and  'ghosting',  the
program visually filters those connections and nodes that are relevant to the user.  To
summarize,  from input transcripts,  Calendar Navigator offers students a rich "prospect
interface" (Ruecker 2003) to adaptively browse networks and lists of courses that compre-
hensively highlight: a) their academic background, b) their prospects for future learning. 

Besides  transcript  and  course  information,  Calendar  Navigator  displays  and
handles various degree and diploma requirements.   In Calendar Navigator,  degrees are
defined  (at  least)  by  a  set  of  course  requirements  translated  into  logical  statements,
analogous in practice to a large set of prerequisites for a course.  These degree require-
ments  are satisfied  or not  by a student's  transcript  and denoted for the student  as so.
Degree requirements are visually displayed as a colored overlay onto the network, just
like  a transcript  is,  indicating  to the  student  the  full  breadth  of possible  courses  that
satisfy the degree requirements.   Using data from an "all-pairs shortest paths" calcula-
tion (Corman et al. 2001: ch. 25, p. 620-642), Calendar Navigator is able to recommend
a nonunique  set  of  shortest  course  trajectories  between  a  student's  transcript  and the
requirements for a particular degree.  Therefore, Calendar Navigator may be applied by
a student or counsellor for both finding a) all the possible course choices that fulfill the
requirements for a degree, and, b) an efficient route between a transcript and the require-
ments for a degree, thus fully disclosing all education options available  – diverse and
efficient – in the pursuit of a Bachelors degree.

There appears to be some strong similarities between the network approach used
in this  thesis  regarding  courses  and a similar  spatial  tool  presently  used in education
counselling.  A cognitive map is a mental devise and store which helps to simplify, code
and  order  the  endlessly  complex  world  of  human  interaction  with  the  environment
(Kitchin 1994), see Figure 3.2.1-4.  Used in education counselling,  cognitive maps are
ad hoc knowledge structures to spatially organize and relate ideas, feelings, and actions
to  effectively  facilitate  communication  and  problem  solving  in  group  and  individual
counseling sessions (de Vries et al. 1992; Fletcher et al. 2003).  The course network as
presented in this subsection has many of the same features of a cognitive map in the way
it arranges and presents complex information for consideration.   The major differences
are  of  scale,  perspective,  and  formalism:  while  relatively  small  cognitive  maps  are
implied  by  internal  representations  of  the  environment  for  the  student,  large  course
networks  are the external  product  of measurement  of the education  system.   Without
further  support  or  assertions,  it's  here  casually  speculated  that  the  education  course
network  is  Alberta's  academic  knowledge  map  embedded  in  our  schools  –  a  large,
sophisticated "cognitive map" of ideas, feelings, and actions supported by a society and
not any one individual.

Increasing  technology  and  information  (improved  data)  allow  researchers  to
describe,  model,  and  reveal  hitherto  invisible  structures  within  society  (Stokman  &
Doreian  2001;  Wellman  & Tindall  2001;  Degenne  &  Forse  1999;  ch.  1  &  2).   As
applied to education in this subsection, a computer assisted, network account of courses
in Alberta,  K-16, provides an interface which includes affordances to zoom, pan, sort,
select, group, subset, rename, annotate, open, or structure course items, transcripts, and
degrees.  The course map offers to students a new and different sense of themselves and
their situation in relation to the education system.  The ability to manipulate,  browse,
and foreground certain aspects of the course network is important for utility, letting the
student  (or  counsellor)  better  manage  their  undergraduate  studies.   It  is  here  recom-
mended that such utility  be incorporated  into the University  of Alberta's  Bear Tracks
student services website for widespread use.  Perhaps with some modest investment of
time and  effort,  users  may become  as  familiar  with  network  course  maps  as  drivers
become with complicated road maps of a major city as a useful means for wayfinding.
In principle,  data from any education system which adequately describes the prerequi-
site requirements for all its courses could be similarly uploaded into Calendar Navigator,
translated,  visualized,  and manipulated,  thus what follows is a particular example of a
general approach.
___________________________________
†Numbers with the format (#XXXX) appearing in the text indicate node index for the
corresponding course statistics on Table 9.2-1.
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Students  routinely deal with complicated situations.   Just using the transit sys-
tem through a city to arrive at class on time, is a computationally  heavy load, say, as
measured by a robot.  But what makes the educational environment so mentally taxing
on the student are the ongoing and abundant prospects.  Based on the lack of variance
and  consequence  of  past  journeys,  a  commuting  student  quickly  learns  to  ignore,  as
unimportant, most details of the daily effort to campus.  In contrast, school or university
itself  is  a  continuous  confrontation  with  new  academic  information,  frequent  tests,
periodic course choices based on multiple dependencies, and long-term significance for
each of these events.   When considering what courses to enroll in, and what learning
trajectories  to  embark  upon,  having  at  least  an understanding  of  what  each  prospect
affords within the education system is crucial.  Paradoxically, Simon (1993: 156) reports
that when faced with complex decisions, it seems that individuals become docile – they
tend to “depend on suggestions, recommendations, persuasion, and information obtained
through social channels as a major basis for choice".  On the other hand, Ruecker (2003)
describes how most people are naturally adept at finding and evaluating prospects visu-
ally, so a graphical tool offers inherent advantages.   Wayfinding  is the ability to learn
and remember a route through an environment (Blades 1991) with the overall goal being
able to relocate from one place to another in wide-scale space (Gluck, 1991).  Spatial
orientation refers to the process by which a person knows where he or she is relative to
something else (Garling & Golledge 1989). 

Calendar  Navigator,  is introduced  as an original  graphics based computer pro-
gram for students and counsellors created specifically for applications in education.  The
program strives to move beyond the University's  Calendar-as-"parts  list" to more fully
communicate the ways networked courses interact with one another to influence learn-
ing.   Calendar  Navigator  provides  a graphical  interpretation  of the University  course
structure via networks to spatially orient a student within their educational environment,
and to assist a student's wayfinding through it.  The utilitarian graphical user interface
(GUI)  is  not  polished  enough  for  commercial  marketing,  but  presently  consists  of  a
half-dozen primary widgets – small windows providing the user with interaction points
for the direct manipulation of the application through text fields, settings, and function
buttons.  First, the overall course network can be displayed as shown in Figure 3.1.2-5.
There  are  zooming  and  panning  features  to  identify  structural  details  (review Figure
3.1.2-10),  and  controls  to  alter  all  graphical  parameters,  similar  to  what  might  be
expected of any narrowly focused graphics program, for example in, say, architecture.
Any node can be selected and isolated within just its neighborhood as shown in Figure
3.2-1.   Once  selected,  either  individually  or  by  region,  nodes  can  be  identified  with
labels  or by a "pop-up"  window which presents  the complete  course  listing from the
calendar, plus a list of all subsequents,  plus a list of all corresponding special statistics
introduced  in chapter  four of this  thesis.   Therefore,  the network  diagrams provide  a
dynamic visual map, as well as an interactive source of embedded descriptive text from
the calendar and network statistics.  It's here hypothesized that students using such a tool
would  make  more  informed  course  choices  faster  and easier  than  with  the  resources
currently available, but research trials with follow-up surveys would need to confirm or
deny this claim.

The  program,  Calendar  Navigator,  is  designed  to  specifically  answer  a  most
basic,  but  frustratingly  difficult  question  for  a  student,  "Given  their  transcript,  what
courses are immediately available to them, and along what learning trajectories do they
follow?"  The program accepts as input a student's transcript: a set of courses, t = {t1,
..., tn}, to serve as prerequisites for continued learning or as requirements for a degree.
A transcript  can  be  displayed  and  superimposed  on the  overall  course  web  to  guide
visual browsing.  All directly available courses the particular transcript allows are high-
lighted and brought to the attention of a student (see Figure 3.2.1-1, part A.).  There is
subtleness  to establishing  what  courses  should  be highlighted  for  the student  though.
For  example,  besides  being related  as pre-  or  co-requisites,  two courses  may signifi-
cantly overlap in content.  Although not explicitly addressed in the University Calendar,
courses that overlap in content are common in most faculties and, in practice, constrain
students'  course  choices.   Once  a  particular  course  is  on  a  student's  transcript,  other
overlapped courses cannot be enrolled in for credit, just as neither can credit be earned
for the same course twice (generally).   For example, the course description for NU FS
305†  (#1478), Introduction to the Principles of Nutrition, contains the constraint, "Stu-
dents cannot obtain credit in NU FS 305 and NUTR 301, 302, 303, or 304."  The con-
tents of NUTR 301, 302, 303, and 304 are deemed by the Department  of Agriculture,
Food and Nutrition Science to overlap the content of NU FS 305 to such proportions
that credit  cannot be gained for NU FS 305 once credit  for any of these overlapping
courses is earned.  The relationship is not mutual, so students with the course, NU FS
305, on their transcripts are not prevented from enrolling in the Nutrition courses (see
Figure  3.2.2-2).   Moreover,  often  course  descriptions  that  call  upon  an  overlapped
course do not list the overlapping course as a prerequisite option.  Extending the exam-
ple, there may be a third course which calls upon NU FS 305 as a prerequisite, but does
necessarily  mention the possibility  of substituting any of the nutrition courses (NUTR
30X).   Therefore,  without  following  all  the  implied,  secondary  connections  between
some courses, students may underestimate their learning prospects.  To solve this issue,
once a transcript  is  entered,  Calendar  Navigator  searches  its  data base  to identify  all
courses that are overlapped by the transcript and collects them in a new set of courses
called the virtual transcript, virtt.  The effective transcript  for a student used by func-
tions described in this subsection is a union of the student's transcript with their virtual
transcript,  effectt = t ‹ virtt.  This ensures the program highlights all possible courses
potentially available to a student – even those obscured within the available documenta-
tion.

A set of all courses that have their prerequisites  satisfied by the student's tran-
script  is  established  by a "breadth-first  search" (Corman et al.  2001:  531-539)  of the
remaining network.  These courses can be highlighted and listed, and are considered to
comprise a student's immediate potential; less specifically, all courses outside the tran-
script  are  simply  called  the  student's  potential.   Using  Calendar  Navigator,  a  set  of
speculative courses, spect, may be added to an effective transcript by a student consider-
ing certain course for the next semester or further on.  All list variables are updated and
displayed,  indicating to a student how their options will change given certain choices.
Via labels and pop-up windows, calendar entries for any selected course node may be
viewed (see Figure 3.2.2-3).  In this context, the program serves as an extensive, direc-
tive  'visual  calendar',  similar  in  function  to  the  commercially  available  program  for
associated  word  searches,  Visual  Thesarus®  <http://www.visualthesaurus.com>.
Courses  a student  is  avoiding  (or failed and is  not  repeating)  can be struck from the
network (see Figure 3.2.1-1, part B.).  Struck courses form a set that can never intersect
the student's  transcript,  thus determining a further subset of courses removed from the
student's potential.  These courses are necessarily inaccessible to the student, as graphi-
cally represented by empty regions of the education web without nodes.  By modifying
different  visual  characteristics  of  the  network,  through  highlights  and  'ghosting',  the
program visually filters those connections and nodes that are relevant to the user.  To
summarize,  from input transcripts,  Calendar Navigator offers students a rich "prospect
interface" (Ruecker 2003) to adaptively browse networks and lists of courses that compre-
hensively highlight: a) their academic background, b) their prospects for future learning. 

Besides  transcript  and  course  information,  Calendar  Navigator  displays  and
handles various degree and diploma requirements.   In Calendar Navigator,  degrees are
defined  (at  least)  by  a  set  of  course  requirements  translated  into  logical  statements,
analogous in practice to a large set of prerequisites for a course.  These degree require-
ments  are satisfied  or not  by a student's  transcript  and denoted for the student  as so.
Degree requirements are visually displayed as a colored overlay onto the network, just
like  a transcript  is,  indicating  to the  student  the  full  breadth  of possible  courses  that
satisfy the degree requirements.   Using data from an "all-pairs shortest paths" calcula-
tion (Corman et al. 2001: ch. 25, p. 620-642), Calendar Navigator is able to recommend
a nonunique  set  of  shortest  course  trajectories  between  a  student's  transcript  and the
requirements for a particular degree.  Therefore, Calendar Navigator may be applied by
a student or counsellor for both finding a) all the possible course choices that fulfill the
requirements for a degree, and, b) an efficient route between a transcript and the require-
ments for a degree, thus fully disclosing all education options available  – diverse and
efficient – in the pursuit of a Bachelors degree.

There appears to be some strong similarities between the network approach used
in this  thesis  regarding  courses  and a similar  spatial  tool  presently  used in education
counselling.  A cognitive map is a mental devise and store which helps to simplify, code
and  order  the  endlessly  complex  world  of  human  interaction  with  the  environment
(Kitchin 1994), see Figure 3.2.1-4.  Used in education counselling,  cognitive maps are
ad hoc knowledge structures to spatially organize and relate ideas, feelings, and actions
to  effectively  facilitate  communication  and  problem  solving  in  group  and  individual
counseling sessions (de Vries et al. 1992; Fletcher et al. 2003).  The course network as
presented in this subsection has many of the same features of a cognitive map in the way
it arranges and presents complex information for consideration.   The major differences
are  of  scale,  perspective,  and  formalism:  while  relatively  small  cognitive  maps  are
implied  by  internal  representations  of  the  environment  for  the  student,  large  course
networks  are the external  product  of measurement  of the education  system.   Without
further  support  or  assertions,  it's  here  casually  speculated  that  the  education  course
network  is  Alberta's  academic  knowledge  map  embedded  in  our  schools  –  a  large,
sophisticated "cognitive map" of ideas, feelings, and actions supported by a society and
not any one individual.

Increasing  technology  and  information  (improved  data)  allow  researchers  to
describe,  model,  and  reveal  hitherto  invisible  structures  within  society  (Stokman  &
Doreian  2001;  Wellman  & Tindall  2001;  Degenne  &  Forse  1999;  ch.  1  &  2).   As
applied to education in this subsection, a computer assisted, network account of courses
in Alberta,  K-16, provides an interface which includes affordances to zoom, pan, sort,
select, group, subset, rename, annotate, open, or structure course items, transcripts, and
degrees.  The course map offers to students a new and different sense of themselves and
their situation in relation to the education system.  The ability to manipulate,  browse,
and foreground certain aspects of the course network is important for utility, letting the
student  (or  counsellor)  better  manage  their  undergraduate  studies.   It  is  here  recom-
mended that such utility  be incorporated  into the University  of Alberta's  Bear Tracks
student services website for widespread use.  Perhaps with some modest investment of
time and  effort,  users  may become  as  familiar  with  network  course  maps  as  drivers
become with complicated road maps of a major city as a useful means for wayfinding.
In principle,  data from any education system which adequately describes the prerequi-
site requirements for all its courses could be similarly uploaded into Calendar Navigator,
translated,  visualized,  and manipulated,  thus what follows is a particular example of a
general approach.
___________________________________
†Numbers with the format (#XXXX) appearing in the text indicate node index for the
corresponding course statistics on Table 9.2-1.
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Figure 3.2.1-1   A student  transcript  projected  onto a course subnetwork.   A high
school student’s transcript (black) is considered as a second connected network, and
superimposed  onto  the  course  network.   A.  The  courses  for  which  the  transcript
satisfies their prerequisites  are highlighted by bullseyes (ü) to focus student brows-
ing.  Tentative courses may be selected and added to the transcript to observe how
different  course  choices  affect  transcript  development  and  course  accessibility
throughout  the network.   B.  Any courses the student fails or avoids can be struck
from the network (û).  All subsequent course nodes that are inaccessible disappear
from the network.  More elegant diagrams are currently produced by Calendar Navi-
gator, but this 'retro' illustration is shown because it appears in Fuite (2008).
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NU FUS 305

NUTR 301

Figure  3.2.2-2   A  set  diagram  to  explain  overlapping
courses where elements are identifable units of knowledge.
When NU FS 305 is present on a student's transcript,  NU
FS  305  cannot  be  taken  for  credit  again  since  no  new

knowledge is introduced,  such that, NU FS 305 Œ NU FS
305.   When NUTR 301 (#1511) is present  on a student's
transcript,  NU FS 305 cannot be taken for credit  because
NUTR 301 covers too many of the same topics (fl NU FS
305 Œ NUTR 301) and can be used to satisfy any prerequi-
site requiring NU FS 305.  When NU FS 305 is present on

a  student's  transcript,  NUTR  301  remains  available
because enough new knowledge is introduced to justify the
granting  of  academic  credit.   This  implies,  NU  FS  305

does not overlap NUTR 301 (fl NU FS 305 é NUTR 301)
nor replace it as a prerequisite for any course.
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Figure  3.2.2-3   Calendar  Navigator  screenshot  widget  example:  Calendar  Entry
Display.   From  the  selection  of  a  course  on  the  network,  the  program,  Calendar
Navigator,  allows  the  display  of  a  pop-up  window.   The  provided  information
includes a standard course description found in the University Calendar, plus addi-
tional,  network-derived  information.   First,  a set of courses subsequent  to GENET
301,  for example,  indicates  to a student  what  courses  possibly  call  on this  one to
satisfy a prerequisite.  This answers a basic need of a student to informatively plan
course choices determining future learning.  Second, network statistics for the course
node  matching  those  from  (supplementary)  Table  9.2-1  are  listed  at  the  bottom.
These provide further context for the course and are explained throughout the thesis.
For  interested  readers,  other  GUIs  are  shown  in  Attachment  9.1  Supplementary
Figures 3.2.2-3a, b, c, d, e, & f; these figures at least show, if not explain, most of the
important GUIs used to execute Calendar Navigator's navigational functions.
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Figure 3.2.2-4   An example of a cognitive map created during a group discussion
within a drug abuse counseling session regarding the central issue of relapse; figure
take  directly  from  Dansereau  &  Dees  (2002,  used  with  permission).   Analogous
maps  are  built  in  education  counseling  regarding  issues  from  that  context.   The
visual representation of cognitive maps clusters related components  together,  while
written or spoken language tends to "string them out".  Consequently, language can
be less effective for representing parallel lines of thought, feedback loops, and other
elements  of complex concerns  (O'Donnell  et al.  2002).  In counseling,  interrelated
feelings, thoughts, and actions benefit from a spatial representation of both the rele-
vant issues and potential  solutions to give the counselor  and patient  (or student)  a
powerful tool to systematically assess problems and options.
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4.  Results and Findings

4.1  Idealizing Alberta's Course Network

How are we to gain access to networks,  those beings whose topol-
ogy is so odd and whose ontology is even more unusual, beings that
possess both the capacity to produce both time and space?

Latour, Bruno (1993), We Have Never Been Modern, 4(1): p. 77.

‡ 4.1.1  Standard Network Analysis

A visual  map of  the journey  through the larger  curriculum  would
demand more attention to the angle from which the curriculum has
been put together: who is at the centre, and who is at the periphery?
How close or distant are the various theories or phenomena that are
discussed?  What ground is not covered at all?

Ruitenberg, Claudia W. (2007) Here Be Dragons: Exploring Cartog-
raphy  in  Educational  Theory  and  Research,  Complicity:  An
International  Journal  of  Complexity  and Education,  4(1):  p.
16.

ü 4.1.1.1  Network Size, Order, and Density

The  network  of  courses,  as  studied,  contains  4 815  nodes  (its  order,  M)  and
almost 39 000 links (its size, N).  Links vary in strength (see Figure 4.1.1.1-1) and are
heterogeneously distributed among the nodes (see following §4.1.1.2).  Standard comput-
erized analysis  confirms the network is connected, meaning there are no disconnected
course  nodes unrelated  to any other,  either  as a prerequisite  or a subsequent,  nor are
there any isolated subnetworks.  Since the minimum size of a connected binary network
is N-1 links (Nmin  = 4814), while the maximum size of a complete network is N(N - 1)/2
links (Nmax  = 11 589 705), the courses have a low density of possible links (Nmin  < N `
Nmax) and the network is  deemed sparse.   Also,  standard computerized  analysis  con-
firms the network is acyclic, meaning there are no paths that form a closed loop.  That
is, the courses are exclusively "feed forward",  such that no course can serve as both a
prerequisite  and a subsequent,  even indirectly,  for another.  Therefore,  the course net-
work is classified as a type of tree – an important category in graph theory as well as a
commonly  used metaphor  for knowledge  and learning  (see for  example,  Maturana  &
Varela 1998; Davis 2004).
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Figure  4.1.1.1-1   Histogram  showing  that  most  links  between  courses  and  their
prerequisites  are weak (≤1/5),  but there are many strong links (≥1/2) which domi-
nate the topology of the course network (Csermely 2009: p. 105-106).  Prerequisite
link strengths usually have values 1/n, where n œ  is the number of courses that can
satisfy a certain prerequisite.

ü 4.1.1.2  Node Degree Distribution

Recall  from §2.3.2.1  that the degree  of a node in a network is the number of
links incident on that node.  Let P(d) be the fraction of links in the network that have
degree d.  The degree distribution for the network is a histogram of the degrees of all
member nodes.  Aspects of network topology are reflected in the node degree distribu-
tion offering  insights  into basic  network properties  and formation  (Barabasi  & Oltvai
2004).  Important  to the historical research of networks was the random graph, which
has a degree distribution that is Poisson for large networks, such that most nodes have a
degree not far from a well defined average (see Figure 4.4.1.2-1).  Knowing this average
(and standard deviation) is useful for characterizing the conditions of the typical node
since  significant  deviations  are  statistically  negligible.   Important  to  contemporary
research is the scale-free network which has a degree distribution described by a simple 

power law, d-a , a > 0.  In scale-free networks, few nodes have degree values close to
the  average,  since  most  have  fewer  connections  and some  have far,  far  more.   That
nodes within scale-free networks cannot be characterized simply is often a sign of com-
plex underlying processes that merit further study.

Considering  just  prerequisite  (and  not  subsequent)  relationships,  most  courses
are observed to be linked to one prerequisite implying most courses routinely develop,
or elaborate upon, the content from a single previous course (see Figure 4.1.1.2-2).  The
degree of every course node to prerequisites  is listed and highlighted on a gradient in
Table 9.2-1, seventh column, dpre .  A significant minority of courses bring together the
content  of  multiple  prerequisites  to  inform them.   For  example,  ENCS 307 (#1385),
Environmental  Assessment  Methods,  impressively  develops  the  "principles  and  ele-
ments of environmental assessment with an interdisciplinary focus" that requires ENCS
201, PL SC 221, REN R 250, SOILS 210, ECON 102, STAT 151, and ENCS 207 as
prerequisites, that is, the full palette of wildlife biodiversity, plant science, soil science,
water  resource  management,  environmental  conservation,  economics,  and  statistics.
Otherwise, a course, such as, POL S 354 (#2945), Introduction to International Political
Economics,  which asks for POL S 230, 240, or 260 as a prerequisite,  that is, no more
than a single earlier course in the subject, is typical.  The average number of prerequi-
sites per course varies significantly for each faculty (see Figure 4.1.1.2-3).  The Facul-
ties  of  Arts  and  Physical  Education  are  measured  to  be  low prerequisite  demanding
faculties; Science, Medicine & Dentistry, and especially Nursing are Faculties harboring
courses that, on average, demand 1.75 prerequisites or more, and are here considered to
be prerequisite 'rich'.   An accounting of subsequent links reveals the largest portion of
courses  support  no  subsequents;  that  is,  they  lie  on  the  terminal  end  of  prerequisite
chains with no other courses referring to them.  While almost no courses have more than
five  prerequisites,  there  are  substantial  numbers  of  courses  with  five,  ten,  fifteen,  or
more direct subsequents (see Figure 4.1.1.2-4).   These major knowledge sources serve
as hubs for the many other courses depending on them.  At the university level, these
include  in descending  order:  STAT 151 (#4326),  Introduction  to Applied Statistics  I,
ECON 101 (#2039), Introduction to Microeconomics,  MATH 113 (#4168), Elementary
Calculus I, BIOCH 200 (#4408), Introduction to Biochemistry, and BIOL 107 (#3878),
Introduction  to  Cell  Biology.   For  system-wide  element-to-element  comparison,  the
degree  of every course node to subsequents  is listed and highlighted  on a gradient  in
Table 9.2-1, eighth column, dsub .  At the level of Faculties, Nursing and Science, plus
School  have  courses  with  the  highest  average  number  of  subsequents  (see  Figure
4.1.1.2-5).

Together,  links from a course node to its prerequisites  and subsequents  deter-
mine  its total  degree,  d.   The degree  distribution  for  all  courses  is  a  combination  of
Figures 4.1.1.2-2 & -4 and most closely resembles the power law distribution of Figure
4.1.1.2-1.   The power law distribution has attracted particular  attention over the years
for  its  mathematical  properties,  which  sometimes  lead  to  surprising  physical  conse-
quences, and for its appearance in a diverse range of natural and man-made phenomena
studied  in  various  disciplines.   For  example,  in  the  late  nineteenth  century,  Vilfredo
Pareto identified a power law for the distribution of income in Italy, summarized popu-
larly as the "80-20 rule", and subsequently shown to be a world-wide condition (United
Nations 1992: ch. 3, p. 34-35; Barabasi 2003: ch. 6).  More recently, power laws have
been  discovered  in  the  degree  distributions  of  socially  constructed  networks  like  the
World Wide Web (Pastor-Satorras  & Vespignani 2000), and have been associated with
phenomena characterized by preferential attachment (Berger et al. 2004, Dorogovtsev et
al.  2000).   They have also been linked with  the idea of self-organized  criticality  and
have been observed in the size distributions of many natural phenomena, such as sand-
piles and earthquakes (Rosendahl et al. 1993; Ito & Matsuzaki 1990).  Recent empirical
studies of economic data have turned up power law behavior in the return distribution of
financial  assets  (Yamamoto  & Miyazima 2004),  and in the size distributions  of firms
and market  shares (Gabaix 2003; Cont 2001; Axtell 1999).  The latter work has been
picked up in the marketing literature and has even found its way into popular business
books recently like The Long Tail (Anderson 2008).

Mathematically, some quantity, d, obeys a power law if it is drawn from a proba-
bility distribution,  p(d) ∝ d-a , where a is a constant  of the distribution  known as the
exponent or scaling parameter (Malcai et al. 1997).  The scaling parameter typically lies
in the range 2 < a < 3, although there are occasional exceptions (Clauset et al. 2009).  In
practice,  few empirical  phenomena  obey power laws for all values of the variable,  d.
More often the power law applies only for values greater  than some minimum value,
dmin , and some upper cut off, dmax, both of which are natural boundary conditions of the
system being studied.  In such cases, just some (hopefully major) portion of the tail of
the distribution follows a power law (for example, see Bagler 2008).  In the case of the
course network, the minimum degree is one, dmin = 1, because all courses are involved
in  at  least  one prerequisite  relationship  with  some other  course,  while  the  maximum
degree is about one hundred, dmax ≈ 100 (review Figure 4.1.1.2-4)

Fitting power laws to empirical data traditionally starts by taking the logarithm
of both sides of the above proportion to linearize the distribution, as ln[p(d)]  = -a ln[d]
+ constant,  on a doubly logarithmic plot (see Figure 4.1.1.2-6).   The absolute slope is
identified as the exponent and extracted by performing a least-squares linear regression.
Clauset  et  al.  (2009)  view common linearized  methods  as intrinsically  unreliable  and
difficult to scrutinize, since they are susceptible to "significant systematic errors under
relatively  common  conditions,  and as  a  consequence  the  results  they  give  cannot  be
trusted".  The observed, qualitative straight-line behavior of data is said to be a neces-
sary but by no means sufficient  condition for true power-law behavior.   Instead, they
outline  a  method  of  maximum  likelihood  –  "provably  accurate"  in  the  limit  of  large
sample size – to estimate the scaling parameter, a, and its uncertainty, which is followed
for this thesis (for interested readers, the mathematics is briefly covered in Attachment9.3 Supplementary  Equations  4.1.1.2).   Calculations  on the course data beget an esti-mate for the scaling parameter  of a  = 2.41 ± 0.02,  which is pleasantly  in accord withscaling parameters from many other natural systems (Albert & Barabasi 2002).Methods  to fit  data and estimate parameters  such as a, on their own, offer noexplanations  concerning  their  plausibility.   Regardless  of  the  true  degree  distributionfrom which the course data arises, a power law can always be made to fit.  The salientquestion is whether the fit is a good match to the data; the answer comes through furtherstatistical methods to test the power-law hypothesis.  The basic approach used here is tosample many synthetic  data sets  from an actual  power-law distribution  – specifically,the one estimated by the method of maximum likelihood.  Then measure how much thesynthetic  data sets fluctuate from the known power-law form, and compare the resultswith the measurement on the empirical data from the course network.  If the empiricaldata set deviates much more from the power-law form than most synthetic ones, then thepower law is not a plausible fit to the data.  Calculations using 2000 synthetic sets ofnode degrees, each with 4815 random values (the same order as the original network),taken from a normalized  node degree  distribution  described  by the calculated  scalingparameter, a, facilitated by built-in algorithms using Mathematica on the AICT Statisti-cal Server, show that fully 12% of synthetic data sets randomly deviate from the distribu-tion as much as the empirical course data.  That is, the empirical data fits the calculateddegree distribution with scaling parameter, a, about as well as many synthetic data setsdrawn  from  the.calculated  (power-law)  degree  distribution  itself,  thus  offering  someassurance that the empirical data set is also based on a (the same) power-law distribu-tion.   While this  does not prove that the network is scale-free,  this  kind of statisticalscrutiny at least does not falsify the hypothesis, and offers support by showing that theempirical data set could be plausibly generated from natural processes described by thecalculated power-law distribution.Power laws are abundant in nature and society, affecting both the constructionand the utilization of real networks.  The power-law degree distribution has become thetrademark of scale-free networks and can be explained by invoking principles of sponta-neous, decentralized network growth such as preferential  attachment (Almaas & Bara-basi 2006; Jeong et al. 2000).  Specific, credible mechanisms for the growth and result-ing  structure  of  Alberta's  course  network  are  not  formally  discussed  in  this  thesis.Instead, towards preparation for such research, various measurements  and observationsare  carefully  made and catalogued  to categorize  and portray the network  and its ele-ments allowing for informed conjecture.  In this subsubsection, the scaling parameter iscalculated to be a = 2.41 ± 0.02 and is deemed to be statistically significant.  In practice,one can rarely, if ever, be sure an observed quantity such as node degree is drawn from apower-law  distribution,  but  with  reasonable  certainty  it  appears  the  observations  ofAlberta's  course  network  are  consistent  with  the  hypothesis,  or  at  least  is  not  firmlyruled  out.   Thus,  a  tentative  conclusion  implied  by the calculated  distribution  is  thatcourses form a scale-free network via their prerequisite knowledge relationships.  Sincescale-free networks are often the result of complex evolutionary processes, the observa-tion of a power-law degree distribution is consistent with the further hypothesis that thecourse network is an aspect of an encompassing, formally complex educational system.
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power law, d-a , a > 0.  In scale-free networks, few nodes have degree values close to
the  average,  since  most  have  fewer  connections  and some  have far,  far  more.   That
nodes within scale-free networks cannot be characterized simply is often a sign of com-
plex underlying processes that merit further study.
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courses  support  no  subsequents;  that  is,  they  lie  on  the  terminal  end  of  prerequisite
chains with no other courses referring to them.  While almost no courses have more than
five  prerequisites,  there  are  substantial  numbers  of  courses  with  five,  ten,  fifteen,  or
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phenomena characterized by preferential attachment (Berger et al. 2004, Dorogovtsev et
al.  2000).   They have also been linked with  the idea of self-organized  criticality  and
have been observed in the size distributions of many natural phenomena, such as sand-
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More often the power law applies only for values greater  than some minimum value,
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system being studied.  In such cases, just some (hopefully major) portion of the tail of
the distribution follows a power law (for example, see Bagler 2008).  In the case of the
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Fitting power laws to empirical data traditionally starts by taking the logarithm
of both sides of the above proportion to linearize the distribution, as ln[p(d)]  = -a ln[d]
+ constant,  on a doubly logarithmic plot (see Figure 4.1.1.2-6).   The absolute slope is
identified as the exponent and extracted by performing a least-squares linear regression.
Clauset  et  al.  (2009)  view common linearized  methods  as intrinsically  unreliable  and
difficult to scrutinize, since they are susceptible to "significant systematic errors under
relatively  common  conditions,  and as  a  consequence  the  results  they  give  cannot  be
trusted".  The observed, qualitative straight-line behavior of data is said to be a neces-
sary but by no means sufficient  condition for true power-law behavior.   Instead, they
outline  a  method  of  maximum  likelihood  –  "provably  accurate"  in  the  limit  of  large
sample size – to estimate the scaling parameter, a, and its uncertainty, which is followed
for this thesis (for interested readers, the mathematics is briefly covered in Attachment
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mate for the scaling parameter  of a  = 2.41 ± 0.02,  which is pleasantly  in accord with
scaling parameters from many other natural systems (Albert & Barabasi 2002).
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from which the course data arises, a power law can always be made to fit.  The salient
question is whether the fit is a good match to the data; the answer comes through further
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sample many synthetic  data sets  from an actual  power-law distribution  – specifically,
the one estimated by the method of maximum likelihood.  Then measure how much the
synthetic  data sets fluctuate from the known power-law form, and compare the results
with the measurement on the empirical data from the course network.  If the empirical
data set deviates much more from the power-law form than most synthetic ones, then the
power law is not a plausible fit to the data.  Calculations using 2000 synthetic sets of
node degrees, each with 4815 random values (the same order as the original network),
taken from a normalized  node degree  distribution  described  by the calculated  scaling
parameter, a, facilitated by built-in algorithms using Mathematica on the AICT Statisti-
cal Server, show that fully 12% of synthetic data sets randomly deviate from the distribu-
tion as much as the empirical course data.  That is, the empirical data fits the calculated
degree distribution with scaling parameter, a, about as well as many synthetic data sets
drawn  from  the.calculated  (power-law)  degree  distribution  itself,  thus  offering  some
assurance that the empirical data set is also based on a (the same) power-law distribu-
tion.   While this  does not prove that the network is scale-free,  this  kind of statistical
scrutiny at least does not falsify the hypothesis, and offers support by showing that the
empirical data set could be plausibly generated from natural processes described by the
calculated power-law distribution.
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and the utilization of real networks.  The power-law degree distribution has become the
trademark of scale-free networks and can be explained by invoking principles of sponta-
neous, decentralized network growth such as preferential  attachment (Almaas & Bara-
basi 2006; Jeong et al. 2000).  Specific, credible mechanisms for the growth and result-
ing  structure  of  Alberta's  course  network  are  not  formally  discussed  in  this  thesis.
Instead, towards preparation for such research, various measurements  and observations
are  carefully  made and catalogued  to categorize  and portray the network  and its ele-
ments allowing for informed conjecture.  In this subsubsection, the scaling parameter is
calculated to be a = 2.41 ± 0.02 and is deemed to be statistically significant.  In practice,
one can rarely, if ever, be sure an observed quantity such as node degree is drawn from a
power-law  distribution,  but  with  reasonable  certainty  it  appears  the  observations  of
Alberta's  course  network  are  consistent  with  the  hypothesis,  or  at  least  is  not  firmly
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4.1.1.2-1.   The power law distribution has attracted particular  attention over the years
for  its  mathematical  properties,  which  sometimes  lead  to  surprising  physical  conse-
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Pareto identified a power law for the distribution of income in Italy, summarized popu-
larly as the "80-20 rule", and subsequently shown to be a world-wide condition (United
Nations 1992: ch. 3, p. 34-35; Barabasi 2003: ch. 6).  More recently, power laws have
been  discovered  in  the  degree  distributions  of  socially  constructed  networks  like  the
World Wide Web (Pastor-Satorras  & Vespignani 2000), and have been associated with
phenomena characterized by preferential attachment (Berger et al. 2004, Dorogovtsev et
al.  2000).   They have also been linked with  the idea of self-organized  criticality  and
have been observed in the size distributions of many natural phenomena, such as sand-
piles and earthquakes (Rosendahl et al. 1993; Ito & Matsuzaki 1990).  Recent empirical
studies of economic data have turned up power law behavior in the return distribution of
financial  assets  (Yamamoto  & Miyazima 2004),  and in the size distributions  of firms
and market  shares (Gabaix 2003; Cont 2001; Axtell 1999).  The latter work has been
picked up in the marketing literature and has even found its way into popular business
books recently like The Long Tail (Anderson 2008).

Mathematically, some quantity, d, obeys a power law if it is drawn from a proba-
bility distribution,  p(d) ∝ d-a , where a is a constant  of the distribution  known as the
exponent or scaling parameter (Malcai et al. 1997).  The scaling parameter typically lies
in the range 2 < a < 3, although there are occasional exceptions (Clauset et al. 2009).  In
practice,  few empirical  phenomena  obey power laws for all values of the variable,  d.
More often the power law applies only for values greater  than some minimum value,
dmin , and some upper cut off, dmax, both of which are natural boundary conditions of the
system being studied.  In such cases, just some (hopefully major) portion of the tail of
the distribution follows a power law (for example, see Bagler 2008).  In the case of the
course network, the minimum degree is one, dmin = 1, because all courses are involved
in  at  least  one prerequisite  relationship  with  some other  course,  while  the  maximum
degree is about one hundred, dmax ≈ 100 (review Figure 4.1.1.2-4)

Fitting power laws to empirical data traditionally starts by taking the logarithm
of both sides of the above proportion to linearize the distribution, as ln[p(d)]  = -a ln[d]
+ constant,  on a doubly logarithmic plot (see Figure 4.1.1.2-6).   The absolute slope is
identified as the exponent and extracted by performing a least-squares linear regression.
Clauset  et  al.  (2009)  view common linearized  methods  as intrinsically  unreliable  and
difficult to scrutinize, since they are susceptible to "significant systematic errors under
relatively  common  conditions,  and as  a  consequence  the  results  they  give  cannot  be
trusted".  The observed, qualitative straight-line behavior of data is said to be a neces-
sary but by no means sufficient  condition for true power-law behavior.   Instead, they
outline  a  method  of  maximum  likelihood  –  "provably  accurate"  in  the  limit  of  large
sample size – to estimate the scaling parameter, a, and its uncertainty, which is followed
for this thesis (for interested readers, the mathematics is briefly covered in Attachment
9.3 Supplementary  Equations  4.1.1.2).   Calculations  on the course data beget an esti-
mate for the scaling parameter  of a  = 2.41 ± 0.02,  which is pleasantly  in accord with
scaling parameters from many other natural systems (Albert & Barabasi 2002).

Methods  to fit  data and estimate parameters  such as a, on their own, offer no
explanations  concerning  their  plausibility.   Regardless  of  the  true  degree  distribution
from which the course data arises, a power law can always be made to fit.  The salient
question is whether the fit is a good match to the data; the answer comes through further
statistical methods to test the power-law hypothesis.  The basic approach used here is to
sample many synthetic  data sets  from an actual  power-law distribution  – specifically,
the one estimated by the method of maximum likelihood.  Then measure how much the
synthetic  data sets fluctuate from the known power-law form, and compare the results
with the measurement on the empirical data from the course network.  If the empirical
data set deviates much more from the power-law form than most synthetic ones, then the
power law is not a plausible fit to the data.  Calculations using 2000 synthetic sets of
node degrees, each with 4815 random values (the same order as the original network),
taken from a normalized  node degree  distribution  described  by the calculated  scaling
parameter, a, facilitated by built-in algorithms using Mathematica on the AICT Statisti-
cal Server, show that fully 12% of synthetic data sets randomly deviate from the distribu-
tion as much as the empirical course data.  That is, the empirical data fits the calculated
degree distribution with scaling parameter, a, about as well as many synthetic data sets
drawn  from  the.calculated  (power-law)  degree  distribution  itself,  thus  offering  some
assurance that the empirical data set is also based on a (the same) power-law distribu-
tion.   While this  does not prove that the network is scale-free,  this  kind of statistical
scrutiny at least does not falsify the hypothesis, and offers support by showing that the
empirical data set could be plausibly generated from natural processes described by the
calculated power-law distribution.

Power laws are abundant in nature and society, affecting both the construction
and the utilization of real networks.  The power-law degree distribution has become the
trademark of scale-free networks and can be explained by invoking principles of sponta-
neous, decentralized network growth such as preferential  attachment (Almaas & Bara-
basi 2006; Jeong et al. 2000).  Specific, credible mechanisms for the growth and result-
ing  structure  of  Alberta's  course  network  are  not  formally  discussed  in  this  thesis.
Instead, towards preparation for such research, various measurements  and observations
are  carefully  made and catalogued  to categorize  and portray the network  and its ele-
ments allowing for informed conjecture.  In this subsubsection, the scaling parameter is
calculated to be a = 2.41 ± 0.02 and is deemed to be statistically significant.  In practice,
one can rarely, if ever, be sure an observed quantity such as node degree is drawn from a
power-law  distribution,  but  with  reasonable  certainty  it  appears  the  observations  of
Alberta's  course  network  are  consistent  with  the  hypothesis,  or  at  least  is  not  firmly
ruled  out.   Thus,  a  tentative  conclusion  implied  by the calculated  distribution  is  that
courses form a scale-free network via their prerequisite knowledge relationships.  Since
scale-free networks are often the result of complex evolutionary processes, the observa-
tion of a power-law degree distribution is consistent with the further hypothesis that the
course network is an aspect of an encompassing, formally complex educational system.
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power law, d-a , a > 0.  In scale-free networks, few nodes have degree values close to
the  average,  since  most  have  fewer  connections  and some  have far,  far  more.   That
nodes within scale-free networks cannot be characterized simply is often a sign of com-
plex underlying processes that merit further study.

Considering  just  prerequisite  (and  not  subsequent)  relationships,  most  courses
are observed to be linked to one prerequisite implying most courses routinely develop,
or elaborate upon, the content from a single previous course (see Figure 4.1.1.2-2).  The
degree of every course node to prerequisites  is listed and highlighted on a gradient in
Table 9.2-1, seventh column, dpre .  A significant minority of courses bring together the
content  of  multiple  prerequisites  to  inform them.   For  example,  ENCS 307 (#1385),
Environmental  Assessment  Methods,  impressively  develops  the  "principles  and  ele-
ments of environmental assessment with an interdisciplinary focus" that requires ENCS
201, PL SC 221, REN R 250, SOILS 210, ECON 102, STAT 151, and ENCS 207 as
prerequisites, that is, the full palette of wildlife biodiversity, plant science, soil science,
water  resource  management,  environmental  conservation,  economics,  and  statistics.
Otherwise, a course, such as, POL S 354 (#2945), Introduction to International Political
Economics,  which asks for POL S 230, 240, or 260 as a prerequisite,  that is, no more
than a single earlier course in the subject, is typical.  The average number of prerequi-
sites per course varies significantly for each faculty (see Figure 4.1.1.2-3).  The Facul-
ties  of  Arts  and  Physical  Education  are  measured  to  be  low prerequisite  demanding
faculties; Science, Medicine & Dentistry, and especially Nursing are Faculties harboring
courses that, on average, demand 1.75 prerequisites or more, and are here considered to
be prerequisite 'rich'.   An accounting of subsequent links reveals the largest portion of
courses  support  no  subsequents;  that  is,  they  lie  on  the  terminal  end  of  prerequisite
chains with no other courses referring to them.  While almost no courses have more than
five  prerequisites,  there  are  substantial  numbers  of  courses  with  five,  ten,  fifteen,  or
more direct subsequents (see Figure 4.1.1.2-4).   These major knowledge sources serve
as hubs for the many other courses depending on them.  At the university level, these
include  in descending  order:  STAT 151 (#4326),  Introduction  to Applied Statistics  I,
ECON 101 (#2039), Introduction to Microeconomics,  MATH 113 (#4168), Elementary
Calculus I, BIOCH 200 (#4408), Introduction to Biochemistry, and BIOL 107 (#3878),
Introduction  to  Cell  Biology.   For  system-wide  element-to-element  comparison,  the
degree  of every course node to subsequents  is listed and highlighted  on a gradient  in
Table 9.2-1, eighth column, dsub .  At the level of Faculties, Nursing and Science, plus
School  have  courses  with  the  highest  average  number  of  subsequents  (see  Figure
4.1.1.2-5).

Together,  links from a course node to its prerequisites  and subsequents  deter-
mine  its total  degree,  d.   The degree  distribution  for  all  courses  is  a  combination  of
Figures 4.1.1.2-2 & -4 and most closely resembles the power law distribution of Figure
4.1.1.2-1.   The power law distribution has attracted particular  attention over the years
for  its  mathematical  properties,  which  sometimes  lead  to  surprising  physical  conse-
quences, and for its appearance in a diverse range of natural and man-made phenomena
studied  in  various  disciplines.   For  example,  in  the  late  nineteenth  century,  Vilfredo
Pareto identified a power law for the distribution of income in Italy, summarized popu-
larly as the "80-20 rule", and subsequently shown to be a world-wide condition (United
Nations 1992: ch. 3, p. 34-35; Barabasi 2003: ch. 6).  More recently, power laws have
been  discovered  in  the  degree  distributions  of  socially  constructed  networks  like  the
World Wide Web (Pastor-Satorras  & Vespignani 2000), and have been associated with
phenomena characterized by preferential attachment (Berger et al. 2004, Dorogovtsev et
al.  2000).   They have also been linked with  the idea of self-organized  criticality  and
have been observed in the size distributions of many natural phenomena, such as sand-
piles and earthquakes (Rosendahl et al. 1993; Ito & Matsuzaki 1990).  Recent empirical
studies of economic data have turned up power law behavior in the return distribution of
financial  assets  (Yamamoto  & Miyazima 2004),  and in the size distributions  of firms
and market  shares (Gabaix 2003; Cont 2001; Axtell 1999).  The latter work has been
picked up in the marketing literature and has even found its way into popular business
books recently like The Long Tail (Anderson 2008).

Mathematically, some quantity, d, obeys a power law if it is drawn from a proba-
bility distribution,  p(d) ∝ d-a , where a is a constant  of the distribution  known as the
exponent or scaling parameter (Malcai et al. 1997).  The scaling parameter typically lies
in the range 2 < a < 3, although there are occasional exceptions (Clauset et al. 2009).  In
practice,  few empirical  phenomena  obey power laws for all values of the variable,  d.
More often the power law applies only for values greater  than some minimum value,
dmin , and some upper cut off, dmax, both of which are natural boundary conditions of the
system being studied.  In such cases, just some (hopefully major) portion of the tail of
the distribution follows a power law (for example, see Bagler 2008).  In the case of the
course network, the minimum degree is one, dmin = 1, because all courses are involved
in  at  least  one prerequisite  relationship  with  some other  course,  while  the  maximum
degree is about one hundred, dmax ≈ 100 (review Figure 4.1.1.2-4)

Fitting power laws to empirical data traditionally starts by taking the logarithm
of both sides of the above proportion to linearize the distribution, as ln[p(d)]  = -a ln[d]
+ constant,  on a doubly logarithmic plot (see Figure 4.1.1.2-6).   The absolute slope is
identified as the exponent and extracted by performing a least-squares linear regression.
Clauset  et  al.  (2009)  view common linearized  methods  as intrinsically  unreliable  and
difficult to scrutinize, since they are susceptible to "significant systematic errors under
relatively  common  conditions,  and as  a  consequence  the  results  they  give  cannot  be
trusted".  The observed, qualitative straight-line behavior of data is said to be a neces-
sary but by no means sufficient  condition for true power-law behavior.   Instead, they
outline  a  method  of  maximum  likelihood  –  "provably  accurate"  in  the  limit  of  large
sample size – to estimate the scaling parameter, a, and its uncertainty, which is followed
for this thesis (for interested readers, the mathematics is briefly covered in Attachment
9.3 Supplementary  Equations  4.1.1.2).   Calculations  on the course data beget an esti-
mate for the scaling parameter  of a  = 2.41 ± 0.02,  which is pleasantly  in accord with
scaling parameters from many other natural systems (Albert & Barabasi 2002).

Methods  to fit  data and estimate parameters  such as a, on their own, offer no
explanations  concerning  their  plausibility.   Regardless  of  the  true  degree  distribution
from which the course data arises, a power law can always be made to fit.  The salient
question is whether the fit is a good match to the data; the answer comes through further
statistical methods to test the power-law hypothesis.  The basic approach used here is to
sample many synthetic  data sets  from an actual  power-law distribution  – specifically,
the one estimated by the method of maximum likelihood.  Then measure how much the
synthetic  data sets fluctuate from the known power-law form, and compare the results
with the measurement on the empirical data from the course network.  If the empirical
data set deviates much more from the power-law form than most synthetic ones, then the
power law is not a plausible fit to the data.  Calculations using 2000 synthetic sets of
node degrees, each with 4815 random values (the same order as the original network),
taken from a normalized  node degree  distribution  described  by the calculated  scaling
parameter, a, facilitated by built-in algorithms using Mathematica on the AICT Statisti-
cal Server, show that fully 12% of synthetic data sets randomly deviate from the distribu-
tion as much as the empirical course data.  That is, the empirical data fits the calculated
degree distribution with scaling parameter, a, about as well as many synthetic data sets
drawn  from  the.calculated  (power-law)  degree  distribution  itself,  thus  offering  some
assurance that the empirical data set is also based on a (the same) power-law distribu-
tion.   While this  does not prove that the network is scale-free,  this  kind of statistical
scrutiny at least does not falsify the hypothesis, and offers support by showing that the
empirical data set could be plausibly generated from natural processes described by the
calculated power-law distribution.

Power laws are abundant in nature and society, affecting both the construction
and the utilization of real networks.  The power-law degree distribution has become the
trademark of scale-free networks and can be explained by invoking principles of sponta-
neous, decentralized network growth such as preferential  attachment (Almaas & Bara-
basi 2006; Jeong et al. 2000).  Specific, credible mechanisms for the growth and result-
ing  structure  of  Alberta's  course  network  are  not  formally  discussed  in  this  thesis.
Instead, towards preparation for such research, various measurements  and observations
are  carefully  made and catalogued  to categorize  and portray the network  and its ele-
ments allowing for informed conjecture.  In this subsubsection, the scaling parameter is
calculated to be a = 2.41 ± 0.02 and is deemed to be statistically significant.  In practice,
one can rarely, if ever, be sure an observed quantity such as node degree is drawn from a
power-law  distribution,  but  with  reasonable  certainty  it  appears  the  observations  of
Alberta's  course  network  are  consistent  with  the  hypothesis,  or  at  least  is  not  firmly
ruled  out.   Thus,  a  tentative  conclusion  implied  by the calculated  distribution  is  that
courses form a scale-free network via their prerequisite knowledge relationships.  Since
scale-free networks are often the result of complex evolutionary processes, the observa-
tion of a power-law degree distribution is consistent with the further hypothesis that the
course network is an aspect of an encompassing, formally complex educational system.
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power law, d-a , a > 0.  In scale-free networks, few nodes have degree values close to
the  average,  since  most  have  fewer  connections  and some  have far,  far  more.   That
nodes within scale-free networks cannot be characterized simply is often a sign of com-
plex underlying processes that merit further study.

Considering  just  prerequisite  (and  not  subsequent)  relationships,  most  courses
are observed to be linked to one prerequisite implying most courses routinely develop,
or elaborate upon, the content from a single previous course (see Figure 4.1.1.2-2).  The
degree of every course node to prerequisites  is listed and highlighted on a gradient in
Table 9.2-1, seventh column, dpre .  A significant minority of courses bring together the
content  of  multiple  prerequisites  to  inform them.   For  example,  ENCS 307 (#1385),
Environmental  Assessment  Methods,  impressively  develops  the  "principles  and  ele-
ments of environmental assessment with an interdisciplinary focus" that requires ENCS
201, PL SC 221, REN R 250, SOILS 210, ECON 102, STAT 151, and ENCS 207 as
prerequisites, that is, the full palette of wildlife biodiversity, plant science, soil science,
water  resource  management,  environmental  conservation,  economics,  and  statistics.
Otherwise, a course, such as, POL S 354 (#2945), Introduction to International Political
Economics,  which asks for POL S 230, 240, or 260 as a prerequisite,  that is, no more
than a single earlier course in the subject, is typical.  The average number of prerequi-
sites per course varies significantly for each faculty (see Figure 4.1.1.2-3).  The Facul-
ties  of  Arts  and  Physical  Education  are  measured  to  be  low prerequisite  demanding
faculties; Science, Medicine & Dentistry, and especially Nursing are Faculties harboring
courses that, on average, demand 1.75 prerequisites or more, and are here considered to
be prerequisite 'rich'.   An accounting of subsequent links reveals the largest portion of
courses  support  no  subsequents;  that  is,  they  lie  on  the  terminal  end  of  prerequisite
chains with no other courses referring to them.  While almost no courses have more than
five  prerequisites,  there  are  substantial  numbers  of  courses  with  five,  ten,  fifteen,  or
more direct subsequents (see Figure 4.1.1.2-4).   These major knowledge sources serve
as hubs for the many other courses depending on them.  At the university level, these
include  in descending  order:  STAT 151 (#4326),  Introduction  to Applied Statistics  I,
ECON 101 (#2039), Introduction to Microeconomics,  MATH 113 (#4168), Elementary
Calculus I, BIOCH 200 (#4408), Introduction to Biochemistry, and BIOL 107 (#3878),
Introduction  to  Cell  Biology.   For  system-wide  element-to-element  comparison,  the
degree  of every course node to subsequents  is listed and highlighted  on a gradient  in
Table 9.2-1, eighth column, dsub .  At the level of Faculties, Nursing and Science, plus
School  have  courses  with  the  highest  average  number  of  subsequents  (see  Figure
4.1.1.2-5).

Together,  links from a course node to its prerequisites  and subsequents  deter-
mine  its total  degree,  d.   The degree  distribution  for  all  courses  is  a  combination  of
Figures 4.1.1.2-2 & -4 and most closely resembles the power law distribution of Figure
4.1.1.2-1.   The power law distribution has attracted particular  attention over the years
for  its  mathematical  properties,  which  sometimes  lead  to  surprising  physical  conse-
quences, and for its appearance in a diverse range of natural and man-made phenomena
studied  in  various  disciplines.   For  example,  in  the  late  nineteenth  century,  Vilfredo
Pareto identified a power law for the distribution of income in Italy, summarized popu-
larly as the "80-20 rule", and subsequently shown to be a world-wide condition (United
Nations 1992: ch. 3, p. 34-35; Barabasi 2003: ch. 6).  More recently, power laws have
been  discovered  in  the  degree  distributions  of  socially  constructed  networks  like  the
World Wide Web (Pastor-Satorras  & Vespignani 2000), and have been associated with
phenomena characterized by preferential attachment (Berger et al. 2004, Dorogovtsev et
al.  2000).   They have also been linked with  the idea of self-organized  criticality  and
have been observed in the size distributions of many natural phenomena, such as sand-
piles and earthquakes (Rosendahl et al. 1993; Ito & Matsuzaki 1990).  Recent empirical
studies of economic data have turned up power law behavior in the return distribution of
financial  assets  (Yamamoto  & Miyazima 2004),  and in the size distributions  of firms
and market  shares (Gabaix 2003; Cont 2001; Axtell 1999).  The latter work has been
picked up in the marketing literature and has even found its way into popular business
books recently like The Long Tail (Anderson 2008).

Mathematically, some quantity, d, obeys a power law if it is drawn from a proba-
bility distribution,  p(d) ∝ d-a , where a is a constant  of the distribution  known as the
exponent or scaling parameter (Malcai et al. 1997).  The scaling parameter typically lies
in the range 2 < a < 3, although there are occasional exceptions (Clauset et al. 2009).  In
practice,  few empirical  phenomena  obey power laws for all values of the variable,  d.
More often the power law applies only for values greater  than some minimum value,
dmin , and some upper cut off, dmax, both of which are natural boundary conditions of the
system being studied.  In such cases, just some (hopefully major) portion of the tail of
the distribution follows a power law (for example, see Bagler 2008).  In the case of the
course network, the minimum degree is one, dmin = 1, because all courses are involved
in  at  least  one prerequisite  relationship  with  some other  course,  while  the  maximum
degree is about one hundred, dmax ≈ 100 (review Figure 4.1.1.2-4)

Fitting power laws to empirical data traditionally starts by taking the logarithm
of both sides of the above proportion to linearize the distribution, as ln[p(d)]  = -a ln[d]
+ constant,  on a doubly logarithmic plot (see Figure 4.1.1.2-6).   The absolute slope is
identified as the exponent and extracted by performing a least-squares linear regression.
Clauset  et  al.  (2009)  view common linearized  methods  as intrinsically  unreliable  and
difficult to scrutinize, since they are susceptible to "significant systematic errors under
relatively  common  conditions,  and as  a  consequence  the  results  they  give  cannot  be
trusted".  The observed, qualitative straight-line behavior of data is said to be a neces-
sary but by no means sufficient  condition for true power-law behavior.   Instead, they
outline  a  method  of  maximum  likelihood  –  "provably  accurate"  in  the  limit  of  large
sample size – to estimate the scaling parameter, a, and its uncertainty, which is followed
for this thesis (for interested readers, the mathematics is briefly covered in Attachment
9.3 Supplementary  Equations  4.1.1.2).   Calculations  on the course data beget an esti-
mate for the scaling parameter  of a  = 2.41 ± 0.02,  which is pleasantly  in accord with
scaling parameters from many other natural systems (Albert & Barabasi 2002).

Methods  to fit  data and estimate parameters  such as a, on their own, offer no
explanations  concerning  their  plausibility.   Regardless  of  the  true  degree  distribution
from which the course data arises, a power law can always be made to fit.  The salient
question is whether the fit is a good match to the data; the answer comes through further
statistical methods to test the power-law hypothesis.  The basic approach used here is to
sample many synthetic  data sets  from an actual  power-law distribution  – specifically,
the one estimated by the method of maximum likelihood.  Then measure how much the
synthetic  data sets fluctuate from the known power-law form, and compare the results
with the measurement on the empirical data from the course network.  If the empirical
data set deviates much more from the power-law form than most synthetic ones, then the
power law is not a plausible fit to the data.  Calculations using 2000 synthetic sets of
node degrees, each with 4815 random values (the same order as the original network),
taken from a normalized  node degree  distribution  described  by the calculated  scaling
parameter, a, facilitated by built-in algorithms using Mathematica on the AICT Statisti-
cal Server, show that fully 12% of synthetic data sets randomly deviate from the distribu-
tion as much as the empirical course data.  That is, the empirical data fits the calculated
degree distribution with scaling parameter, a, about as well as many synthetic data sets
drawn  from  the.calculated  (power-law)  degree  distribution  itself,  thus  offering  some
assurance that the empirical data set is also based on a (the same) power-law distribu-
tion.   While this  does not prove that the network is scale-free,  this  kind of statistical
scrutiny at least does not falsify the hypothesis, and offers support by showing that the
empirical data set could be plausibly generated from natural processes described by the
calculated power-law distribution.

Power laws are abundant in nature and society, affecting both the construction
and the utilization of real networks.  The power-law degree distribution has become the
trademark of scale-free networks and can be explained by invoking principles of sponta-
neous, decentralized network growth such as preferential  attachment (Almaas & Bara-
basi 2006; Jeong et al. 2000).  Specific, credible mechanisms for the growth and result-
ing  structure  of  Alberta's  course  network  are  not  formally  discussed  in  this  thesis.
Instead, towards preparation for such research, various measurements  and observations
are  carefully  made and catalogued  to categorize  and portray the network  and its ele-
ments allowing for informed conjecture.  In this subsubsection, the scaling parameter is
calculated to be a = 2.41 ± 0.02 and is deemed to be statistically significant.  In practice,
one can rarely, if ever, be sure an observed quantity such as node degree is drawn from a
power-law  distribution,  but  with  reasonable  certainty  it  appears  the  observations  of
Alberta's  course  network  are  consistent  with  the  hypothesis,  or  at  least  is  not  firmly
ruled  out.   Thus,  a  tentative  conclusion  implied  by the calculated  distribution  is  that
courses form a scale-free network via their prerequisite knowledge relationships.  Since
scale-free networks are often the result of complex evolutionary processes, the observa-
tion of a power-law degree distribution is consistent with the further hypothesis that the
course network is an aspect of an encompassing, formally complex educational system.
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Figure 4.1.1.2-1   Some classes  of degree  distributions  for networks.   Each of the
three probability distributions implies the same median degree (d

è
 ≈ 3.95).  Pictured

top right is a lattice network.  Imagine it to be an undirected binary network of eighty
nodes  per  side,  so  that  it  implies  the  discrete  degree  distribution  (Ê),  where  the
majority of the interior nodes have degree 4, P(4) = 0.95, the edge nodes have degree
3, and the four corner nodes have degree 2, exclusively.  If a random process of edge
rearrangement is applied to the lattice network, then the Poisson distribution (Ê) for
the node degree is reached in the limit (Liu et al. 2007).  Notice some of the nodes
would  become  disconnected  as  a result,  such that,  P(0)  >  0.   If  various  selective
processes  are  applied  to  the  edges  of  the  lattice  network,  such that,  they  become
rearranged against some fitness criteria (Catanzaro et al. 2005; Caldarelli et al. 2002;
Moreno et al.  2002),  or if all of the links are removed from the nodes, only to be
replaced  into the network based on some growth rule (Krapivsky  et al.  2000),  for
example, preferential attachment (Jeong et al. 2003; Barabasi & Albert 1999), then a
power  law distribution  for  node  degrees  (Ê)  is  observed  in  the  largest  connected
component of network.  Notice the Poisson distribution is normalized over the inter-
val, d œ [0, ¶), so includes disconnected nodes, while the power law distribution is
normalized over the interval, d œ [1, ¶), and only refers to connected nodes.  The
poisson and power law distributions are shown as both discrete and continuous.  In a
binary network,  the discrete  distributions  apply,  while  the continuous  distributions
are suited for networks with continuous link strengths.
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Figure 4.1.1.2-2  
The  frequency  distribution  of
prerequisites  for  all  courses.   The
bar  chart  indicating  most  courses
have  one  prerequisite  –  the  mini-
mum  requirement  of  a  connected
network.  Any less and the network
would be disconnected.  Kindergar-
ten  (K)  uniquely  has  zero
prerequisites.
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Figure 4.1.1.2-3  Bar chart of the average number of prerequisites per course in each
faculty.  Courses in the Faculty of Nursing require, on average more than two other
courses as prerequisites.   Courses from the Faculties of Engineering, Medicine, and
Science also have high average  demands for prerequisites.   Few courses  from the
Faculty of Physical Education require more than one prerequisite.  No courses from
St. Joseph's or St. Stephen's Colleges requires more than a single prerequisite.  As a
departmental  example,  the average  math course,  considering  both high school  and
university  together,  requires  just  over  one  and  a  half  prerequisites.   The  average
number  of  prerequisites  per  course  for  school  is  artificially  increased  due  to  the
presence of a some 'placeholders',  which refer to large numbers of school courses,
inserted into the course structure, such as, the different types of diplomas (academic,
nonacademic),  University  categories  (e.g. GROUP A, GROUP B, GROUP C), and
some Faculty requirements.
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Figure 4.1.1.2-4   A bar  chart  tracking  the number  of  subsequents  for  all  courses
indicating  many  have  no  subsequents;  these  courses  represent  terminal  points  in
course lineages.  Lots of courses lead to one or two others.  A few courses (far to the
right) serve as knowledge gateways for many other courses.
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Figure 4.1.1.2-5  Bar chart of the average number of subsequents per course in each
faculty.  Courses from the Faculty of Science are commonly referred to as a source
for further  learning,  as indicated by an average  of more than two subsequents  per
course.  Within the Faculty of Science, courses from the Department of Mathematics
are an outlier regarding how frequently they are referred to by other courses.   The
overall statistic for School is inflated, perhaps not unfairly, by the large number of
University  courses  requiring high school  prerequisites.   A low average  number  of
subsequents per course in the Faculties of Agriculture and Physical Education indi-
cates  that  many  of  their  courses  do  not  contribute  to  further  learning  within  the
education system.
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Figure 4.1.1.2-6   The log-log relationship of the node degree distribution is linear
over a domain of about two orders of magnitude with respect to node degree, d, and
over a range of about three orders of magnitude for node frequency, N p(d), where N
is the network order and p(d) is the probability distribution.  The straight line, y = m x
+ b,  is drawn using the equation,  ln[p(d)] = a ln[d] + constant, where the slope is
equal to the calculated scaling parameter,.

ü 4.1.1.3  Academic Flux

The degree,  d,  of  any  node  specifies  how directly  coupled  the  corresponding
course is to other knowledge within the education network (Borgatti 2005).  But, degree
is an indiscriminate  summation of prerequisite and subsequent relationships.   How the
degree of a course node is split between its prerequisites  and subsequents dramatically
affects its role in the education network (see Figure 4.1.1.3-1).  For example, any course
limited to prerequisite  relationships  only draws knowledge from the education system,
but returns nothing specific to influence further learning.  In an attempt to account for
this effect, the present subsubsection briefly outlines the application of a simple network
metric  used  to  characterize  a  course's  capacity  to  engage  with  the  knowledge  of  the
education system, as a furtherance to the node degree measure, d.

When considering how information passes among messenger-RNA and transcrip-
tion factors (TFs) within the life processes of cells, Martinez et al. (2008) introduce a
network  parameter  called  "flux  capacity"  (really).   To  better  capture  the  combined
in-degree  and out-degree  properties  of a node,  they introduced the factor,  Fc  = din  µ
dout .   It  was  observed  the  metric,  Fc ,  better  discriminated  nodes,  each  representing
interacting m-RNAs and TFs, that participated in important control processes over those
that did not,  compared to direct degree comparisons,  d.   Martinez et al.  hypothesized
that their flux capacity measure is more sensitive to the high flow of information that
passes through the influential elements of biological systems studied.

The idea of measuring the direct engagement of a course, simultaneously serving
as a subsequent  and as a prerequisite  to it neighbors,  is adopted from Martinez et al.
(2008), and is here called academic flux, F.  It is a local measure for each node depen-
dant  on  relationships  to  first  neighbors:  a  measure  of  flux,  or  passage,  of  academic
knowledge through a course from its prerequisites  to its subsequents.   In this view, a
course  is  considered  as  a  locus  of  intermediate  knowledge  processing,  that  relies  on
neighboring courses as providers and consumers for its knowledge throughput (review
Figure 4.1.1.3-1).  Applied to all courses of the education system, a few stand out (see
Table 9.2-1, ninth column, F).  At the university level, the academic flux metric calls
particular attention to, in descending order, the network positions of: BIOL 107 (#3878),
MIS 311 (#3528), Management Information Systems, STAT 151 (#4326), MATH 113
(#4168), BIOCH 300 (#4408), and ORG A 201 (#3547), Introduction to Management,
all courses with many subsequents, but most with substantial knowledge inputs as well.
Compare  the  composition  and  ranking  of  exceptional  courses  by  the  academic  flux
metric, F, here with the list of top courses ranked only by the perspective of degree, d, in
§4.1.1.2 above.
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The degree,  d,  of  any  node  specifies  how directly  coupled  the  corresponding
course is to other knowledge within the education network (Borgatti 2005).  But, degree
is an indiscriminate  summation of prerequisite and subsequent relationships.   How the
degree of a course node is split between its prerequisites  and subsequents dramatically
affects its role in the education network (see Figure 4.1.1.3-1).  For example, any course
limited to prerequisite  relationships  only draws knowledge from the education system,
but returns nothing specific to influence further learning.  In an attempt to account for
this effect, the present subsubsection briefly outlines the application of a simple network
metric  used  to  characterize  a  course's  capacity  to  engage  with  the  knowledge  of  the
education system, as a furtherance to the node degree measure, d.

When considering how information passes among messenger-RNA and transcrip-
tion factors (TFs) within the life processes of cells, Martinez et al. (2008) introduce a
network  parameter  called  "flux  capacity"  (really).   To  better  capture  the  combined
in-degree  and out-degree  properties  of a node,  they introduced the factor,  Fc  = din  µ
dout .   It  was  observed  the  metric,  Fc ,  better  discriminated  nodes,  each  representing
interacting m-RNAs and TFs, that participated in important control processes over those
that did not,  compared to direct degree comparisons,  d.   Martinez et al.  hypothesized
that their flux capacity measure is more sensitive to the high flow of information that
passes through the influential elements of biological systems studied.

The idea of measuring the direct engagement of a course, simultaneously serving
as a subsequent  and as a prerequisite  to it neighbors,  is adopted from Martinez et al.
(2008), and is here called academic flux, F.  It is a local measure for each node depen-
dant  on  relationships  to  first  neighbors:  a  measure  of  flux,  or  passage,  of  academic
knowledge through a course from its prerequisites  to its subsequents.   In this view, a
course  is  considered  as  a  locus  of  intermediate  knowledge  processing,  that  relies  on
neighboring courses as providers and consumers for its knowledge throughput (review
Figure 4.1.1.3-1).  Applied to all courses of the education system, a few stand out (see
Table 9.2-1, ninth column, F).  At the university level, the academic flux metric calls
particular attention to, in descending order, the network positions of: BIOL 107 (#3878),
MIS 311 (#3528), Management Information Systems, STAT 151 (#4326), MATH 113
(#4168), BIOCH 300 (#4408), and ORG A 201 (#3547), Introduction to Management,
all courses with many subsequents, but most with substantial knowledge inputs as well.
Compare  the  composition  and  ranking  of  exceptional  courses  by  the  academic  flux
metric, F, here with the list of top courses ranked only by the perspective of degree, d, in
§4.1.1.2 above.

din = 3
dout = 1
F = 3

din = 0
dout = 4
F = 0

din = 2
dout = 2
F = 4

Figure 4.1.1.3-1  Academic flux for three nodes of the same degree, dtotal  = 4.  How
the links for any node are split  between subsequents  and prerequisites  reflects  the
role of a course as a knowledge provider, consumer, and 'processor'.  Any node has a
maximum academic  flux if  the degree,  dtotal  = din  + dout ,  is  evenly  split  between
prerequisites and subsequents, such that, din  = dout .  With this configuration of links,
a course node both 'draws from' and 'releases' knowledge into the rest of the educa-
tion network.  The middle diagram shows how even a well coupled course node may
not have any knowledge throughput.
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ü 4.1.1.4  Eigenvector Centrality

Location, location, location.

A cliched turn  of phrase  used by property  experts  to describe  the
three  most  important  factors  determining  the  value  of  a
property.

Among  the  techniques  of network  analysis  are  various  measures  of centrality
that allude to the relative importance  of a node within a network (Everett  & Borgatti
2005; Wang et al. 2008; Yager 2010).  Centrality is a label for the intuitive concept of a
node being "in the thick of things" (Freeman 1978), which was developed in the early
days of social network research (Waserman & Faust 1994).  The popularity of the cur-
rently dominant  internet search engine,  Google,  compellingly  testifies to the utility of
accurate  network  centrality  measures.   Returns  from  queries  sent  to  Google  are
answered via PageRank – a patented link analysis process that assigns numerical weight-
ing to each hyperlinked document in the World Wide Web, with the purpose of quantify-
ing their relative importance and their relevance to the query.  Algorithms at the heart of
PageRank used to establish website preeminence are a variant of the eigenvector central-
ity measure (Hurtgen et al. 2008), which is employed widely in social network analysis
(see, for many examples, Freeman 2008a) and implemented in this subsubsection to the
course network.

Eigenvector  centrality  is  a  characteristic  of  individual  nodes  as  a  function  of
their location in a network (Bonacich 2007).  The eigenvector centrality metric assigns
relative  scores  to all  nodes in the network  based on the principle  that connections  to
high-scoring  nodes  contribute  more  to  the  score  of  the  node  in  question  than  equal
connections to low-scoring nodes (Kleinberg 1999).  Eigenvector centrality, ce, is simi-
lar to degree, sometimes called degree centrality, d, but assesses links to central nodes
higher  than  links  to  peripheral  nodes.   Nodes,  that  link to  other  nodes  that  are  well
connected to the rest of the network,  will receive higher eigenvector  centrality scores.
This may remind readers of the chicken and egg paradox: to determine the centrality of
a course,  the centrality  of all  courses  linking  to it  are required,  and vice versa.   The
conundrum is overcome  using  the techniques  of  matrix  algebra on the network  adja-
cency  matrix,  ,  to  calculate  the  eigenvector  centrality  scores  for  all  course  nodes
simultaneously.   For interested readers, the applied mathematics are detailed in Attach-
ment 9.3 Supplementary Equations 4.1.1.4.  For everyone else, let it be understood that
for  peripheral  nodes,  eigenvector  centrality  scores  approach  zero,  c Ø 0,  and  for core
nodes, eigenvector centrality scores approach one, c Ø 1 ( a score obtainable only by the
central node of a star network) (Ruhnau 2000).  A complete list of eigenvector centrality
scores for courses is calculated by computer using the program, Calendar Navigator, and
reported as part of Table 9.2-1, tenth column, ce.

The eigenvector  centrality scores for the nodes in the course network have an
extreme range.   By far,  the most  centralized  network  node is  DIPLOMA Admission,
which  is  not  surprising  since  it  draws  extensively  from school  to  satisfy  its  require-
ments, and is used as a default requirement for all courses in the University that do not
name a specific  prerequisite.   The most  centralized  course in the education  system is
STAT 151 (#4326), followed by the next ten: ECON 101 (#2039), MATH 113 (#4168),
BIOL  107  (#3878),  MATH  114  (#4169),  PHYS  130  (#4249),  STAT  141  (#4325),
CHEM 161 (#3938), CHEM 101 (#3934), MATH 100 (#4165), and PHYS 144 (#4250).
This list of highly central  courses is interesting for at least a few reasons.  First, it is
quite diverse in the sense that six different subjects make up the top eleven most central
courses.  Second, the overall emphasis on scientific, and especially mathematical knowl-
edge is emphatic.  Third, this list of courses almost exactly mirrors the author's freshman
transcript:  calculus, linear algebra, organic/inorganic  chemistry,  biology, some physics,
and a quantitatively oriented arts option – economics (statistics came in the junior year).

The second tier of highly centralized courses is less heterogenous since the next
eleven courses  are all  history  courses  (HIST)  followed  by a run of four introductory
english courses (ENGL).  The least central university course, the one that is structurally
furthest on the fringes, is WKEXP 905, Engineering Work Experience V, and the next
least central  is  CHINA 420, Chinese Modernity:  Literature  and Film.  The list of the
two-hundred  least  central  courses  is  dominated  by terminal  courses  from the nonaca-
demic high school streams, such as RAP and CTS courses; but, at the very bottom, the
least structurally central course in the school system is kindergarten†.

In the wider  educational  context,  Paechter  (2003) describes  how the layout of
rooms in buildings, positioning of subjects in spatialized timetables, and the structure of
the  curriculum  implies  importance  within  the  school,  such  that,  central  "territory"  is
reserved for the powerful.  More specfically in this subsubsection, all nodes are ranked
based on the eigenvector centrality measure in an attempt to tell which courses are most
important from this commonly applied structural perspective (Scott 2000).  The results
are explicitly blind to the content of the individual courses.  The eigenvector score offers
an unbiased, insightful way of thinking about the position and role of a course and the
knowledge  it  supports  in  Alberta's  education  system  to  students,  administrators,  and
teachers.  A drawback of the metric is that it usually assumes the links are undirected, so
ignores the essential directionality of the course network.  Therefore, while reported and
considered  for  thoroughness  and  consistency  with  other  network  research,  and while
useful in their own right, these centrality data are not further dwelled upon in favor of
results from the developed metrics of §4.2.1.

_____________________________________
†Currently,  more than 90% of children  in Alberta  attend what  is  typically  a half-day
kindergarten  program,  though  it  is  recommended  that  kindergarten  be available  on a
full-day basis, especially for "at risk" children, and be made mandatory (Alberta Learn-
ing  2003a).   Presently,  kindergarten  is  optional  such  that  the  prerequisite  behaviors,
knowledge,  and socialization required to achieve in grade one can be learned at home
instead.   But,  a summary of current research indicates full-day kindergarten results in
"superior academic achievement,  attendance,  and social and behavioural development"
in students  compared  to half-day kindergarten  and home schooling  (British Columbia
School Trustees Association 2005).

105



Among  the  techniques  of network  analysis  are  various  measures  of centrality
that allude to the relative importance  of a node within a network (Everett  & Borgatti
2005; Wang et al. 2008; Yager 2010).  Centrality is a label for the intuitive concept of a
node being "in the thick of things" (Freeman 1978), which was developed in the early
days of social network research (Waserman & Faust 1994).  The popularity of the cur-
rently dominant  internet search engine,  Google,  compellingly  testifies to the utility of
accurate  network  centrality  measures.   Returns  from  queries  sent  to  Google  are
answered via PageRank – a patented link analysis process that assigns numerical weight-
ing to each hyperlinked document in the World Wide Web, with the purpose of quantify-
ing their relative importance and their relevance to the query.  Algorithms at the heart of
PageRank used to establish website preeminence are a variant of the eigenvector central-
ity measure (Hurtgen et al. 2008), which is employed widely in social network analysis
(see, for many examples, Freeman 2008a) and implemented in this subsubsection to the
course network.

Eigenvector  centrality  is  a  characteristic  of  individual  nodes  as  a  function  of
their location in a network (Bonacich 2007).  The eigenvector centrality metric assigns
relative  scores  to all  nodes in the network  based on the principle  that connections  to
high-scoring  nodes  contribute  more  to  the  score  of  the  node  in  question  than  equal
connections to low-scoring nodes (Kleinberg 1999).  Eigenvector centrality, ce, is simi-
lar to degree, sometimes called degree centrality, d, but assesses links to central nodes
higher  than  links  to  peripheral  nodes.   Nodes,  that  link to  other  nodes  that  are  well
connected to the rest of the network,  will receive higher eigenvector  centrality scores.
This may remind readers of the chicken and egg paradox: to determine the centrality of
a course,  the centrality  of all  courses  linking  to it  are required,  and vice versa.   The
conundrum is overcome  using  the techniques  of  matrix  algebra on the network  adja-
cency  matrix,  ,  to  calculate  the  eigenvector  centrality  scores  for  all  course  nodes
simultaneously.   For interested readers, the applied mathematics are detailed in Attach-
ment 9.3 Supplementary Equations 4.1.1.4.  For everyone else, let it be understood that
for  peripheral  nodes,  eigenvector  centrality  scores  approach  zero,  c Ø 0,  and  for core
nodes, eigenvector centrality scores approach one, c Ø 1 ( a score obtainable only by the
central node of a star network) (Ruhnau 2000).  A complete list of eigenvector centrality
scores for courses is calculated by computer using the program, Calendar Navigator, and
reported as part of Table 9.2-1, tenth column, ce.

The eigenvector  centrality scores for the nodes in the course network have an
extreme range.   By far,  the most  centralized  network  node is  DIPLOMA Admission,
which  is  not  surprising  since  it  draws  extensively  from school  to  satisfy  its  require-
ments, and is used as a default requirement for all courses in the University that do not
name a specific  prerequisite.   The most  centralized  course in the education  system is
STAT 151 (#4326), followed by the next ten: ECON 101 (#2039), MATH 113 (#4168),
BIOL  107  (#3878),  MATH  114  (#4169),  PHYS  130  (#4249),  STAT  141  (#4325),
CHEM 161 (#3938), CHEM 101 (#3934), MATH 100 (#4165), and PHYS 144 (#4250).
This list of highly central  courses is interesting for at least a few reasons.  First, it is
quite diverse in the sense that six different subjects make up the top eleven most central
courses.  Second, the overall emphasis on scientific, and especially mathematical knowl-
edge is emphatic.  Third, this list of courses almost exactly mirrors the author's freshman
transcript:  calculus, linear algebra, organic/inorganic  chemistry,  biology, some physics,
and a quantitatively oriented arts option – economics (statistics came in the junior year).

The second tier of highly centralized courses is less heterogenous since the next
eleven courses  are all  history  courses  (HIST)  followed  by a run of four introductory
english courses (ENGL).  The least central university course, the one that is structurally
furthest on the fringes, is WKEXP 905, Engineering Work Experience V, and the next
least central  is  CHINA 420, Chinese Modernity:  Literature  and Film.  The list of the
two-hundred  least  central  courses  is  dominated  by terminal  courses  from the nonaca-
demic high school streams, such as RAP and CTS courses; but, at the very bottom, the
least structurally central course in the school system is kindergarten†.

In the wider  educational  context,  Paechter  (2003) describes  how the layout of
rooms in buildings, positioning of subjects in spatialized timetables, and the structure of
the  curriculum  implies  importance  within  the  school,  such  that,  central  "territory"  is
reserved for the powerful.  More specfically in this subsubsection, all nodes are ranked
based on the eigenvector centrality measure in an attempt to tell which courses are most
important from this commonly applied structural perspective (Scott 2000).  The results
are explicitly blind to the content of the individual courses.  The eigenvector score offers
an unbiased, insightful way of thinking about the position and role of a course and the
knowledge  it  supports  in  Alberta's  education  system  to  students,  administrators,  and
teachers.  A drawback of the metric is that it usually assumes the links are undirected, so
ignores the essential directionality of the course network.  Therefore, while reported and
considered  for  thoroughness  and  consistency  with  other  network  research,  and while
useful in their own right, these centrality data are not further dwelled upon in favor of
results from the developed metrics of §4.2.1.

_____________________________________
†Currently,  more than 90% of children  in Alberta  attend what  is  typically  a half-day
kindergarten  program,  though  it  is  recommended  that  kindergarten  be available  on a
full-day basis, especially for "at risk" children, and be made mandatory (Alberta Learn-
ing  2003a).   Presently,  kindergarten  is  optional  such  that  the  prerequisite  behaviors,
knowledge,  and socialization required to achieve in grade one can be learned at home
instead.   But,  a summary of current research indicates full-day kindergarten results in
"superior academic achievement,  attendance,  and social and behavioural development"
in students  compared  to half-day kindergarten  and home schooling  (British Columbia
School Trustees Association 2005).
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Among  the  techniques  of network  analysis  are  various  measures  of centrality
that allude to the relative importance  of a node within a network (Everett  & Borgatti
2005; Wang et al. 2008; Yager 2010).  Centrality is a label for the intuitive concept of a
node being "in the thick of things" (Freeman 1978), which was developed in the early
days of social network research (Waserman & Faust 1994).  The popularity of the cur-
rently dominant  internet search engine,  Google,  compellingly  testifies to the utility of
accurate  network  centrality  measures.   Returns  from  queries  sent  to  Google  are
answered via PageRank – a patented link analysis process that assigns numerical weight-
ing to each hyperlinked document in the World Wide Web, with the purpose of quantify-
ing their relative importance and their relevance to the query.  Algorithms at the heart of
PageRank used to establish website preeminence are a variant of the eigenvector central-
ity measure (Hurtgen et al. 2008), which is employed widely in social network analysis
(see, for many examples, Freeman 2008a) and implemented in this subsubsection to the
course network.

Eigenvector  centrality  is  a  characteristic  of  individual  nodes  as  a  function  of
their location in a network (Bonacich 2007).  The eigenvector centrality metric assigns
relative  scores  to all  nodes in the network  based on the principle  that connections  to
high-scoring  nodes  contribute  more  to  the  score  of  the  node  in  question  than  equal
connections to low-scoring nodes (Kleinberg 1999).  Eigenvector centrality, ce, is simi-
lar to degree, sometimes called degree centrality, d, but assesses links to central nodes
higher  than  links  to  peripheral  nodes.   Nodes,  that  link to  other  nodes  that  are  well
connected to the rest of the network,  will receive higher eigenvector  centrality scores.
This may remind readers of the chicken and egg paradox: to determine the centrality of
a course,  the centrality  of all  courses  linking  to it  are required,  and vice versa.   The
conundrum is overcome  using  the techniques  of  matrix  algebra on the network  adja-
cency  matrix,  ,  to  calculate  the  eigenvector  centrality  scores  for  all  course  nodes
simultaneously.   For interested readers, the applied mathematics are detailed in Attach-
ment 9.3 Supplementary Equations 4.1.1.4.  For everyone else, let it be understood that
for  peripheral  nodes,  eigenvector  centrality  scores  approach  zero,  c Ø 0,  and  for core
nodes, eigenvector centrality scores approach one, c Ø 1 ( a score obtainable only by the
central node of a star network) (Ruhnau 2000).  A complete list of eigenvector centrality
scores for courses is calculated by computer using the program, Calendar Navigator, and
reported as part of Table 9.2-1, tenth column, ce.

The eigenvector  centrality scores for the nodes in the course network have an
extreme range.   By far,  the most  centralized  network  node is  DIPLOMA Admission,
which  is  not  surprising  since  it  draws  extensively  from school  to  satisfy  its  require-
ments, and is used as a default requirement for all courses in the University that do not
name a specific  prerequisite.   The most  centralized  course in the education  system is
STAT 151 (#4326), followed by the next ten: ECON 101 (#2039), MATH 113 (#4168),
BIOL  107  (#3878),  MATH  114  (#4169),  PHYS  130  (#4249),  STAT  141  (#4325),
CHEM 161 (#3938), CHEM 101 (#3934), MATH 100 (#4165), and PHYS 144 (#4250).
This list of highly central  courses is interesting for at least a few reasons.  First, it is
quite diverse in the sense that six different subjects make up the top eleven most central
courses.  Second, the overall emphasis on scientific, and especially mathematical knowl-
edge is emphatic.  Third, this list of courses almost exactly mirrors the author's freshman
transcript:  calculus, linear algebra, organic/inorganic  chemistry,  biology, some physics,
and a quantitatively oriented arts option – economics (statistics came in the junior year).

The second tier of highly centralized courses is less heterogenous since the next
eleven courses  are all  history  courses  (HIST)  followed  by a run of four introductory
english courses (ENGL).  The least central university course, the one that is structurally
furthest on the fringes, is WKEXP 905, Engineering Work Experience V, and the next
least central  is  CHINA 420, Chinese Modernity:  Literature  and Film.  The list of the
two-hundred  least  central  courses  is  dominated  by terminal  courses  from the nonaca-
demic high school streams, such as RAP and CTS courses; but, at the very bottom, the
least structurally central course in the school system is kindergarten†.

In the wider  educational  context,  Paechter  (2003) describes  how the layout of
rooms in buildings, positioning of subjects in spatialized timetables, and the structure of
the  curriculum  implies  importance  within  the  school,  such  that,  central  "territory"  is
reserved for the powerful.  More specfically in this subsubsection, all nodes are ranked
based on the eigenvector centrality measure in an attempt to tell which courses are most
important from this commonly applied structural perspective (Scott 2000).  The results
are explicitly blind to the content of the individual courses.  The eigenvector score offers
an unbiased, insightful way of thinking about the position and role of a course and the
knowledge  it  supports  in  Alberta's  education  system  to  students,  administrators,  and
teachers.  A drawback of the metric is that it usually assumes the links are undirected, so
ignores the essential directionality of the course network.  Therefore, while reported and
considered  for  thoroughness  and  consistency  with  other  network  research,  and while
useful in their own right, these centrality data are not further dwelled upon in favor of
results from the developed metrics of §4.2.1.

_____________________________________
†Currently,  more than 90% of children  in Alberta  attend what  is  typically  a half-day
kindergarten  program,  though  it  is  recommended  that  kindergarten  be available  on a
full-day basis, especially for "at risk" children, and be made mandatory (Alberta Learn-
ing  2003a).   Presently,  kindergarten  is  optional  such  that  the  prerequisite  behaviors,
knowledge,  and socialization required to achieve in grade one can be learned at home
instead.   But,  a summary of current research indicates full-day kindergarten results in
"superior academic achievement,  attendance,  and social and behavioural development"
in students  compared  to half-day kindergarten  and home schooling  (British Columbia
School Trustees Association 2005).

ü 4.1.1.5  Network Geodesics and Diameter

An important standard approach for investigating networks is finding the short-
est paths, or geodesics, between pairs of nodes (Otte & Rousseau 2002; Dekker 2005),
simply measured as the number of steps or links (Yang & Knoke 2001).  The functions
to  calculate  the  "all-pairs  shortest  paths"  are  built  into  Mathematica  using  Dijkstra's
theorem for undirected graphs (Cherkassky et al. 1996).  So the directionality and vary-
ing strength of the links in the course network is ignored for the results in this subsubsec-
tion.  Geodesics between every node pair are computed in Q(N3) time, that is, the time
of calculation  is  proportional  to  the  cube of  the  network  order  (Corman et  al.  2001:
580-642).  Because the course network contains nearly five-thousand nodes, more than
one month of CPU time on the AICT Numerical and Statistical Servers was consumed,
which in retrospect  may seem wasteful  since the results  are not dwelled  upon in this
subsubsection.

The eccentricity of a node is the length of the longest geodesic to any other node
in the network.  That is, if the shortest paths from a node to all other nodes in the net-
work is calculated,  the eccentricity is determined by the longest.   The radius of a net-
work is the smallest eccentricity of any vertex, and is held in the course network exclu-
sively by grade nine: eGRADE 9  = 9 steps.  It's a central position of remarkable symmetry
as measured by the shortest paths metric, placing it exactly nine steps from: a) the net-
work's  beginning  (kindergarten),  b)  the  terminal  ends  of  nonacademic  high  school
courses,  such  as  RAP  6171  (#1140),  Boilermaker  35d,  and,  c)  the  terminal  ends  of
undergraduate university, such as MARK 497 (#3506), Individual Research Project III.
The diameter of a network is the maximum eccentricity of any node: 18 steps for Alber-
ta's course network.   The perimeter  is set by ART 569 (#1745),  Sculpture:  Advanced
Studies V, and JAPAN 451 (#2601),  Advanced Readings in Japanese,  and RAP 6227
(#1180), Roofer 35d, among some other courses.  Throughout the network, the average
eccentricity for courses is eê  = 13.0 ± 1.6, and the average geodesic is 5.8 ± 2.7, where the
reported uncertainties are the standard deviations.

Networks,  and  network  thinking,  have  made  their  appearance  in  the  popular
scientific  press  (Johnson 2001;  Buchanan 2002) and the popular  media generally  (for
example, Burke 2005; Watts 2004a; Shachtman 2007; British Broadcasting Corporation
2005).   A  fascinating  property  of  many  networks  discovered  and  discussed  is  their
apparent compactness (Cohen & Havlin 2003), such that, the entire network, regardless
of order, seems linked together in such a way that it creates a "small-world"  (Yang &
Holland 2005), where each node is separated from any other node, as a rule of thumb,
by less than "six degrees of separation" (see Figure 4.11.5-1).  For example, Leskovec &
Horvitz (2008) studied the anonymized data capturing a month of communication activi-
ties within the whole of the Microsoft Messenger instant-messaging system – 30 billion
conversations  among  240  million  people  – only  to  find  that  the  average  path length
among  users  was  about  6.6.   Newman  (2001a)  traced  author  collaboration  networks
using computer  data bases of scientific  papers  to link scientists  who have coauthored
one or more papers together.   At that time, the database, Medline, contained over 1.5
million authors and about 2.2 million papers, yet a geodesic of only about 4.6 steps on
average  separated  any  two  authors,  as  explained  by  an  exponential  increase  in  "kth
nearest neighbors" – neighbors in an ever expanding neighborhood,  k steps away from
any node.  He concluded the average path length in random graphs scales logarithmi-
cally,  such that, it remains short,  even for very large networks in general.   A popular
internet  application,  Oracle  of Bacon  <http://oracleofbacon.org/center.php>,  supported
by a comprehensive  Hollywood  movie data  set  containing  1.6 million  actors  and 1.2
million  films  and  TV  shows,  links  actors  through  common  movie  membership;  the
actor, Kevin Bacon, is found to be, on average, less than three steps away from another
actor, and only eight steps away from even the most obscure actor.  Besides these social
networks, similar studies of transportation networks, such as, power grids (Albert et al.
2004), airports (Bagler 2008), railways (Sen et al. 2003), and roadways (Kalapala et al.
2006),  neural networks  (Latora & Marchiori  2001),  language organization (Cancho &
Sole  2001;  Holanda  2004),  ecological  interactions  (Jordan  &  Scheuring  2004),  and
biological  regulatory  networks  (Dewey & Galas 2006), such as interacting genes in a
cell also exhibit small-world behavior (Almaas 2007).  Finally, the world-wide web, the
present era's defining network, has a currently estimated lower limit of 24 billion pages
(<http://www.worldwidewebsize.com/>)  yet only a projected average geodesic of about
21 "clicks"  (Albert  et  al.  1999).   Considering  its  average  path length  and large size,
Alberta's course network comfortably fits among these well studied examples.  Indeed,
its average geodesic, or average path length, of 5.8 ± 2.7 steps between courses is amus-
ingly close to the cliched value of "six degrees of separation"; thus, it is here concluded
that the course structure of Alberta's education system, as measured by all-pairs shortest
paths,  satisfies  the  common  definition  of  a  "small-world"  network  (Collins  & Chow
1998).
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tion.  Geodesics between every node pair are computed in Q(N3) time, that is, the time
of calculation  is  proportional  to  the  cube of  the  network  order  (Corman et  al.  2001:
580-642).  Because the course network contains nearly five-thousand nodes, more than
one month of CPU time on the AICT Numerical and Statistical Servers was consumed,
which in retrospect  may seem wasteful  since the results  are not dwelled  upon in this
subsubsection.

The eccentricity of a node is the length of the longest geodesic to any other node
in the network.  That is, if the shortest paths from a node to all other nodes in the net-
work is calculated,  the eccentricity is determined by the longest.   The radius of a net-
work is the smallest eccentricity of any vertex, and is held in the course network exclu-
sively by grade nine: eGRADE 9  = 9 steps.  It's a central position of remarkable symmetry
as measured by the shortest paths metric, placing it exactly nine steps from: a) the net-
work's  beginning  (kindergarten),  b)  the  terminal  ends  of  nonacademic  high  school
courses,  such  as  RAP  6171  (#1140),  Boilermaker  35d,  and,  c)  the  terminal  ends  of
undergraduate university, such as MARK 497 (#3506), Individual Research Project III.
The diameter of a network is the maximum eccentricity of any node: 18 steps for Alber-
ta's course network.   The perimeter  is set by ART 569 (#1745),  Sculpture:  Advanced
Studies V, and JAPAN 451 (#2601),  Advanced Readings in Japanese,  and RAP 6227
(#1180), Roofer 35d, among some other courses.  Throughout the network, the average
eccentricity for courses is eê  = 13.0 ± 1.6, and the average geodesic is 5.8 ± 2.7, where the
reported uncertainties are the standard deviations.

Networks,  and  network  thinking,  have  made  their  appearance  in  the  popular
scientific  press  (Johnson 2001;  Buchanan 2002) and the popular  media generally  (for
example, Burke 2005; Watts 2004a; Shachtman 2007; British Broadcasting Corporation
2005).   A  fascinating  property  of  many  networks  discovered  and  discussed  is  their
apparent compactness (Cohen & Havlin 2003), such that, the entire network, regardless
of order, seems linked together in such a way that it creates a "small-world"  (Yang &
Holland 2005), where each node is separated from any other node, as a rule of thumb,
by less than "six degrees of separation" (see Figure 4.11.5-1).  For example, Leskovec &
Horvitz (2008) studied the anonymized data capturing a month of communication activi-
ties within the whole of the Microsoft Messenger instant-messaging system – 30 billion
conversations  among  240  million  people  – only  to  find  that  the  average  path length
among  users  was  about  6.6.   Newman  (2001a)  traced  author  collaboration  networks
using computer  data bases of scientific  papers  to link scientists  who have coauthored
one or more papers together.   At that time, the database, Medline, contained over 1.5
million authors and about 2.2 million papers, yet a geodesic of only about 4.6 steps on
average  separated  any  two  authors,  as  explained  by  an  exponential  increase  in  "kth
nearest neighbors" – neighbors in an ever expanding neighborhood,  k steps away from
any node.  He concluded the average path length in random graphs scales logarithmi-
cally,  such that, it remains short,  even for very large networks in general.   A popular
internet  application,  Oracle  of Bacon  <http://oracleofbacon.org/center.php>,  supported
by a comprehensive  Hollywood  movie data  set  containing  1.6 million  actors  and 1.2
million  films  and  TV  shows,  links  actors  through  common  movie  membership;  the
actor, Kevin Bacon, is found to be, on average, less than three steps away from another
actor, and only eight steps away from even the most obscure actor.  Besides these social
networks, similar studies of transportation networks, such as, power grids (Albert et al.
2004), airports (Bagler 2008), railways (Sen et al. 2003), and roadways (Kalapala et al.
2006),  neural networks  (Latora & Marchiori  2001),  language organization (Cancho &
Sole  2001;  Holanda  2004),  ecological  interactions  (Jordan  &  Scheuring  2004),  and
biological  regulatory  networks  (Dewey & Galas 2006), such as interacting genes in a
cell also exhibit small-world behavior (Almaas 2007).  Finally, the world-wide web, the
present era's defining network, has a currently estimated lower limit of 24 billion pages
(<http://www.worldwidewebsize.com/>)  yet only a projected average geodesic of about
21 "clicks"  (Albert  et  al.  1999).   Considering  its  average  path length  and large size,
Alberta's course network comfortably fits among these well studied examples.  Indeed,
its average geodesic, or average path length, of 5.8 ± 2.7 steps between courses is amus-
ingly close to the cliched value of "six degrees of separation"; thus, it is here concluded
that the course structure of Alberta's education system, as measured by all-pairs shortest
paths,  satisfies  the  common  definition  of  a  "small-world"  network  (Collins  & Chow
1998).
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Figure 4.1.1.5-1   Network  topology  affects  average  path  length.   Many observed
network structures seem optimized for transportation and communication as a conse-
quence of having both local and long-range connections (Hubler 2005a).  Many local
links  (such  as  in a  lattice  network)  ensure  comprehensive  node  inclusion  into the
network and nearly direct connection to nearby locations, say within a clique, while a
smaller fraction of long-range links, say between cliques, ensures that the opportuni-
ties to jump long distances within the network is never far from any location (such as
in a small-world network).  A random network has many long range links, but does
not consistently connect local nodes along short, efficient paths.  Thus, by balancing
both local clustering and long range contacts, even vast small-world networks have
short average path lengths between nodes.
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‡ 4.1.2  Advanced Network Analysis

In physical science the first essential step in the direction of learn-
ing  any  subject  is  to  find  principles  of  numerical  reckoning  and
practicable methods for measuring some quality connected with it. I
often say that when you can measure what you are speaking about,
and express it in numbers, you know something about it; but when
you cannot measure it, when you cannot express it in numbers, your
knowledge  is  of  a  meagre  and unsatisfactory  kind;  it  may  be  the
beginning  of  knowledge,  but  you  have  scarcely  in  your  thoughts
advanced to the state of Science, whatever the matter may be.

Lord  Kelvin  (1883)  Electrical  Units  of  Measurement,  Popular
Lectures and Addresses, Vol. 1: p. 73.

ü 4.1.2.1  Administrative Structure - Top Down

There is little universal about modern universities. . . Modern knowl-
edge, though great, is highly dispersed between epistemic communi-
ties;  neither  fit  nor  organized  to  address  the  whole  and  inform
collective action.

Norgaard,  Richard  B.  (2004)  Learning  and Knowing  Collectively,
Ecological Economics, 49: 231-241.

Addressing the course network at different levels is possible through coarse-grain-
ing – the aggregation of nodes and links to produce simpler networks.  Itzkovitz (2005)
describes  how complex networks  can be coarse-grained  into smaller and more under-
standable  versions in which each node represents  an entire pattern in the original net-
work.  The preexisting and familiar administrative grouping of courses into departments
and faculties are obvious choices for study and are briefly presented in this subsubsec-
tion (see Figures 4.1.2.1-1 & -4).  There is some analogy between course, department,
and faculty  network maps compared  to city, provincial,  and nation-wide geographical
maps:  each ignores  aspects  of levels  above  and below to some extent  and highlights
features  on  a particular  scale.   Most  of  the  previous  and following  network  analysis
contained in this thesis could be applied to the coarse-grained,  department and faculty
networks  as  well.   Indeed,  understanding  how  the  many  properties  of  the  network
change given such groupings is itself insightful (Sales-Pardo et al. 2007; Serrano et al.
2009), but that will mostly be left for future research.

Below,  there are three closely  related network  diagrams  that display Alberta's
Education system at the level of faculties: Figures 4.1.2.1-1, -2, & -3.  They are created
by collecting all the individual course nodes from each faculty into one super node of
size proportional to the total number of course credits.  The links follow the nodes and
are  fused  together  whenever  multiple  links  of  the  same direction  occur  between  two
super  nodes.   The networks  differ  by  whether  or  not  links  internal  to  the  nodes  are
indicated as circular "self-loops", and how the links' thickness and color are displayed as
a  function  of  their  strength.   Each network  is  devised  to focus  on one aspect  of  the
relationships  between faculties,  and they are intended to be viewed in succession,  and
their  qualitative  utility  considered  as a series.   Viewed together,  the faculty  networks
qualitatively  underscore:  a) the central  role of School at the core of many knowledge
relationships, b) the dominant knowledge transfer between two faculties, from School to
Arts,  c) the position of Science  as the secondary hub for University  education,  d) the
relative  importance  of  knowledge  internal  to  faculties  compared  to  the  knowledge
shared  between  faculties,  and  e)  the  absence  of  many  strong  feed-back  relationships
whereby two Faculties both give and receive knowledge from each other.

Further below are three closely related network diagrams that display Alberta's
Education system at the level of university and school departments:  Figures 4.1.2.1-4,
-5, & -6.  As before with the faculty networks, each department network differs from the
others only by whether or not links internal to the nodes are indicated as circular "self-
loops",  and  how  the  links'  thickness  and  color  are  displayed  as  a  function  of  their
strength.  A main theme these diagrams seem to support are that most departments exist
quite isolated from each other, with few (combined) links being stronger than ten.  That
is,  there are few pairs of departments  between which more than ten prerequisite  links
span.   Second,  two  university  departments,  Biological  Sciences  (BIOLOG  SCI)  and
Mathematical  &  Statistical  Sciences  (MATH  SCI)  anchor  significant  departmental
subnetworks.  

This subsubsection presents a simple approach for coarse-graining in which the
complex course network is represented  by compact and more understandable  versions
through the aggregation of nodes and links.  Course nodes are grouped based on their
membership to the preset administrative categories of department and faculty.  Observa-
tions  of  the  coarse-grained  networks  reveal  administrative  structures  via  their  spatial
arrangement  to  provide  insight  for  strategic  thinking  about  the  education  system by
representing  how the  organization  functions  with  regards  to  the  flow of  prerequisite
knowledge.
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Addressing the course network at different levels is possible through coarse-grain-
ing – the aggregation of nodes and links to produce simpler networks.  Itzkovitz (2005)
describes  how complex networks  can be coarse-grained  into smaller and more under-
standable  versions in which each node represents  an entire pattern in the original net-
work.  The preexisting and familiar administrative grouping of courses into departments
and faculties are obvious choices for study and are briefly presented in this subsubsec-
tion (see Figures 4.1.2.1-1 & -4).  There is some analogy between course, department,
and faculty  network maps compared  to city, provincial,  and nation-wide geographical
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networks  as  well.   Indeed,  understanding  how  the  many  properties  of  the  network
change given such groupings is itself insightful (Sales-Pardo et al. 2007; Serrano et al.
2009), but that will mostly be left for future research.

Below,  there are three closely  related network  diagrams  that display Alberta's
Education system at the level of faculties: Figures 4.1.2.1-1, -2, & -3.  They are created
by collecting all the individual course nodes from each faculty into one super node of
size proportional to the total number of course credits.  The links follow the nodes and
are  fused  together  whenever  multiple  links  of  the  same direction  occur  between  two
super  nodes.   The networks  differ  by  whether  or  not  links  internal  to  the  nodes  are
indicated as circular "self-loops", and how the links' thickness and color are displayed as
a  function  of  their  strength.   Each network  is  devised  to focus  on one aspect  of  the
relationships  between faculties,  and they are intended to be viewed in succession,  and
their  qualitative  utility  considered  as a series.   Viewed together,  the faculty  networks
qualitatively  underscore:  a) the central  role of School at the core of many knowledge
relationships, b) the dominant knowledge transfer between two faculties, from School to
Arts,  c) the position of Science  as the secondary hub for University  education,  d) the
relative  importance  of  knowledge  internal  to  faculties  compared  to  the  knowledge
shared  between  faculties,  and  e)  the  absence  of  many  strong  feed-back  relationships
whereby two Faculties both give and receive knowledge from each other.

Further below are three closely related network diagrams that display Alberta's
Education system at the level of university and school departments:  Figures 4.1.2.1-4,
-5, & -6.  As before with the faculty networks, each department network differs from the
others only by whether or not links internal to the nodes are indicated as circular "self-
loops",  and  how  the  links'  thickness  and  color  are  displayed  as  a  function  of  their
strength.  A main theme these diagrams seem to support are that most departments exist
quite isolated from each other, with few (combined) links being stronger than ten.  That
is,  there are few pairs of departments  between which more than ten prerequisite  links
span.   Second,  two  university  departments,  Biological  Sciences  (BIOLOG  SCI)  and
Mathematical  &  Statistical  Sciences  (MATH  SCI)  anchor  significant  departmental
subnetworks.  

This subsubsection presents a simple approach for coarse-graining in which the
complex course network is represented  by compact and more understandable  versions
through the aggregation of nodes and links.  Course nodes are grouped based on their
membership to the preset administrative categories of department and faculty.  Observa-
tions  of  the  coarse-grained  networks  reveal  administrative  structures  via  their  spatial
arrangement  to  provide  insight  for  strategic  thinking  about  the  education  system by
representing  how the  organization  functions  with  regards  to  the  flow of  prerequisite
knowledge.
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Figure  4.1.2.1-1   A  coarse  grained  network  highlighting  the  interrelationships
between the University faculties and School.  School is the central hub of the educa-
tion  system,  directly  supporting  every  other  Faculty  (given  the  scale,  some  very
weak  links  are  invisible  in the  printed  version).   The Faculties  of  Arts  (AR)  and
especially  Science  (SC)  are  involved  in  some  feedback  relationships  with  other
faculties whereby each serves as a prerequisite and a subsequent to knowledge from
those faculties.   The Faculty of Science (SC), along with School,  takes an interior,
core position.  Node area is directly proportional to faculty size in credits (¯), while
link thickness and darkness is related to number of prerequisite relationships.
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Figure 4.1.2.1-2  A coarse grained network indicating self-loops and major prerequi-
site links between faculties.  Links between courses of the same faculty are collected
and  represented  by  circular  loops.   Most  faculties  have  strong  internal  structures
compared to external links.  Despite being similar in size, there is a clear decline in
the importance of internal links from the Faculties of Nursing (NU) to Native Studies
(NS) to Saint Joseph's College (SJ), as indicated by the self-loops,  contrasted with
similar  prerequisite  links  to  School.   This  qualitatively  indicates  a  much  denser
knowledge  structure  resides  internal  to  Nursing  over  Native  Studies  over  Saint
Joseph's.  Node area is directly proportional to faculty size, while link thickness and
darkness is related to number  of prerequisites.   The relatively weak links between
faculties indicates a rather "loosely coupled" (Goldspink 2007) knowledge system at
this level of administrative organization.
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Figure 4.1.2.1-3  A coarse grained network of faculties with thickness and darkness
of links strictly scaled in direct proportion to prerequisite strength.  The magnitude of
knowledge relationships internal to the Faculty of Arts is underscored, as well as the
axis  between  Arts  and  School.   The dominant  edge and  node  structures  suggests
much knowledge is constructed within School, thereafter it mainly supports knowl-
edge in the Faculty of Arts, wherein knowledge is significantly elaborated.  
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Figure  4.1.2.1-4   A  coarse-grained  network  scaled  to  reveal  all  existing  internal
structures and prerequisite links between departments.  Most departments have thick,
dark self-referring,  loops indicating strong internal departmental structure compared
to  the  generally  weak  interdepartmental  links.   This  visually  implies  departments
mostly form well connected course subnetworks,  and these subnetwork cliques are
weakly linked to one another  in comparison.   Says Clark  (2004),  "as departments
seek the effective capacity to be competent carriers of different bodies of knowledge,
they  segment  universities".   The  SCHOOL  node,  representing  school  grades  and
academic diplomas, obviously serves as a central hub since it is referred to by most
other departments.   In orbit to the upper right (at, say, one o'clock) are mostly the
nonacademic school departments.   From the lower right to the lower left, there is a
general transition between departments from the Faculty of Arts (say, three o'clock to
six o'clock) to departments  from the Faculties  of Science and Medicine (say, eight
o'clock  to  nine  o'clock)  via  departments  from the  Faculties  of  Business  (at  about
seven o'clock) and Engineering (at about eight o'clock).

As departments seek the effective capacity to be competent carriers of different bodies
of knowledge, they segment universities from the bottom up.  
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Figure  4.1.2.1-5   A simplified  coarse  grained  network  scaled  to  highlighting  the
interrelationships  between  the  departments  of  University  and  School.   There  is  a
diversity of node size, link strength, and some feedback loops in this topologically
complex network.  Node area is directly proportional to department size, while link
thickness and darkness is related to number of prerequisites.
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Figure 4.1.2.1-6   A coarse-grained network scaled and selectively labelled to fore-
ground the differing topological locations of several of the larger departments.  The
Department  of  Mathematical  and  Statistical  Sciences  (MATH  SCI)  and,  to  some
extent, the Department of Biological Sciences (BIOLOG SCI) serve as hubs second-
ary to School.   The Department  of English  (ENGLISH)  is broadly connected,  but
does not appear to be a hub since it has few links to other departments that are stron-
ger than other competing links to those departments, and so it remains on the periph-
ery of the network.   Large departments  like History and Classics (HIST&CLASS),
and Modern  Languages  and Cultural  Studies  (MODLGCULST),  appear  central  to
the network only by virtue of their strong connections to the primary hub, but have
few strong connections to the rest of the network.  Node area is directly proportional
to  department  size,  while  link  thickness  and  darkness  is  related  to  number  of
prerequisites.
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ü 4.1.2.2  Community Structure - Bottom Up

Empirically,  a large proportion of the complex systems we observe
in  nature  exhibit  hierarchic  structure.  On  theoretical  grounds  we
could expect complex systems to be hierarchies in a world in which
complexity had to evolve from simplicity.

Simon, H. A. (1962) The Architecture of Complexity,  Proceedings
of the American Philosophical  Society, December,  106(6):  p.
482.

In the recent study of systems characterized  by networks, such as the internet,
world-wide web, metabolic networks, food webs, neural networks, and social networks,
an important issue that has received considerable attention is the detection and character-
ization  of internal  community  structure – the tendency  for the objects  represented  by
nodes to divide into groups (Newman 2004c; Danon et al. 2005; Radicchi et al. 2004;
Karrer et al. 2008, Bray 2003).  A sensible way of interpreting our complex world is to
try to identify subunits in it and to map the interactions between these parts.  In many
systems, it is possible to define subunits in such a way that the network of their interac-
tions provides a simple but still informative representation of the system (Farkas et al.
2004).   Here,  a  subnetwork  is  considered  a  community,  or  module,  if  comprised  of
densely connected nodes only sparsely connected to the rest of the network (see Figure
4.1.2.2-1).  Generally, the ability to detect and identify such groups of nodes is of signifi-
cant practical importance because they often correspond to some sort of functional unit
(Arenas et al. 2007; Eakin 2004).  For instance, groups within the worldwide web corre-
spond to sets of web pages on related topics (Clauset et al. 2004; Capocci et al. 2008),
and, groups within social networks correspond to tight social units or cliques (Girvan &
Newman  2002).   In  education,  as  illustrated  in  §4.1.2.1  Community  Structure  -  Top
Down, there are already names for courses and their collections:  each course belongs to
a subject  (eg.  MATH or STAT), is  administered  by a department  (eg.  Department  of
Philosophy), and falls within a faculty (eg. Faculty of Nursing).  But, in what manner do
the 'natural' groupings of the course nodes based on algorithms studying course related-
ness  through network  structure  correspond  to these administrative  rubrics  assigned  to
courses?

Newman & Girvan (2004) explain how well a network is subdivided into subnet-
work  communities  by  employing  a  metric  called  modularity,  with  the  symbol  Q
(remember,  the size of the network, or total number of links is already assigned to the
symbol M, while m is used as the associated counter).  To quantify the strength of com-
munity structure they measure the fraction of links in a network that connect nodes in
the same community,  less the fraction of links that you would expect among the same
nodes if the links were randomly attached with no compelling overall internal structure,
that is, let Q = (fraction of edges within modules) - (fraction of edges expected within
modules assuming the network is randomly connected).  If the number of within-commu-
nity links is no better than random, then the modularity is calculated to be small, Q Ø 0,
while  networks  with  strong  community  structure  score  higher,  Q  Ø  1.   Newman  &
Girvan report Q values for modular networks "typically fall in the range from about 0.3
to 0.7. Higher values are rare."  More detailed mathematics regarding the definition of
the modularity metric is set forth in Attachment 9.3 Supplementary Equations 4.1.2.2a,
for the interested reader.

While the modularity metric, Q, is straightforward conceptually and mathemati-
cally, it relies on the network communities as known inputs.  Though groups of course
nodes may be pre-identified by some external standard,  say, faculty membership as in
the previous subsubsection, recognizing communities from an unbiased, structural point
of view is a sophisticated challenge because there are so many possible partitions of a
complex network.  Danon et al.(2005) detail the efforts of physics researchers in recent
years to detect and quantify community structure in networks, which include centrality
measures, flow models, and random walks.  If the number and sizes of the communities
is variable,  then searching for the optimal partition which exhaustively maximizes the
modularity  score  for a large network  is  computationally  intractable.   An approximate
technique, one which generates good, but not provably perfect, partitions of the network
into  communities  that  increase  the  modularity  score,  Q,  is  introduced  by  Newman
(2006a & 2006b).  It is based on an expression of the modularity metric (function) in
matrix terms.  This permits modularity improving, community  identifying divisions of
the network to be formulated and optimized as a spectral problem in linear algebra (Goh
2001).  Practically, it comes down to computing eigenvectors of a modified version of
the network's adjacency matrix, , to detect the community boundaries.  More detailed
mathematics  regarding  the partitioning  of the network  in an attempt  to maximize  the
modularity metric is set forth in Attachment 9.3 Supplementary Equations 4.1.2.2b, for
the interested reader.
 

Newman's eigenvector partition method is incorporated into the program, Calen-
dar Navigator.  Its implementation leads to the division of the course network into two
separate  communities  that  increase  the modularity  score,  Q.   Community  structure  is
revealed by choosing the best partition of the network in terms of communities,  in the
sense  of  groups  of  nodes  that  are  more  intraconnected  rather  than  interconnected
between them.  But, for reasons not considered here (see references) such a division is
only considered approximate; that is, the method will fail to find optimum partitions in
some cases.  After a first pass over the network, the spectral approach provides a broad
picture of the general shape a division should take, but there is often room for improve-
ment.  So a secondary, computationally expensive, brute-force algorithm iteratively and
exhaustively swaps individual nodes between communities until the effort to refine the
community  boundaries and increase modularity fails to progress for any node.  There-
fore, at least a local maximum reachable by single node switches is found for the modu-
larity score given the starting point provided by the spectral method plus any community
membership  changes  ensuing  from the  refinement  step.   The two-stage  approach  for
determining each partition as implemented for this subsubsection is detailed in Attach-
ment 9.4 Program Code 4.1.2.2, for the interested reader.

The sophisticated procedure to split the course network into structurally  deter-
mined communities  can be iterated and repeatedly applied, first to the whole network,
and then to the resulting subnetworks, and so on until no further splits of any portion of
the network results  in an increase in the modularity  score,  Q.   All  remaining  subnet-
works are thoroughly connected internally, and are recognized as indivisible communi-
ties or modules.  Since the first split results in the greatest increase in modularity, and all
further splits follow in a generally diminishing chain, the output of the cleaving method
is usefully interpreted as a dendrogram – a tree-like diagram used to illustrate the hierar-
chical arrangement of clusters in a system (see Figure 4.1.2.2-2 for a simple example).
Since the course network is so large and complex, the dendrogram describing the hierar-
chical structure of the communities is rather complicated; but, with a certain investment
of time and study, many new and rich insights into the structure of the course network
are possible (see Figure 4.1.2.2-3), only some of which are described in this thesis.

One obvious fact gathered by counting the terminal branches of the dendrogram
illustrating  the  hierarchical  grouping  of  course  nodes,  is  that  the  course  network  is
composed of 86 indivisible modules at the finest, most sensitive level.  The structurally
determined course communities  vary significantly  in size and composition.   While 56
courses is the average, the largest module contains some 818 courses mostly from the
Faculty of Arts, while the smallest is formed by just two Recreation and Leisure Studies
courses:  RLS 441 (¯3),  Practicum Seminar,  and RLS 449 (¯12),  Professional  Practi-
cum, which are designed to be taken exclusively together, as stated in the description of
RLS 449: "Fourteen weeks of professional experience in full-time placement.  Must be
taken concurrently with RLS 441. Students will not be allowed to register in any other
course in conjunction with RLS 441/449 unless approved by the Practicum Supervisor."
All indivisible modules at the terminal ends of the dendrogram have the property that if
further split,  or if joined together,  then the modularity  score for the entire course net-
work would decrease.

Many  of  the  smaller,  and  even  some  of  the  larger  modules  contain  but  one
course type, confirming, not surprisingly, that structural modules are, in some manner, a
function of subjects.  For example, MUSIC courses are almost all found together in an
exclusive,  single,  large  community  (sixth  bar  from top  in  Figure  4.1.2.2-3).   On the
other hand, the course type, WKEXP, is spread among nine of the modules.  But "work
experience" is not really a subject but more a processes, and these type of courses are
offered by many of the larger faculties for students coming from multitudinous subjects.Two interdisciplinary subjects, Earth and Atmospheric Science (EAS) and Environmen-tal and Conservation Science (ENCS), each populate six or more modules.  In general, aqualitative accounting of course distribution indicates those subjects often considered tobe focused and specialized end up in fewer, less diverse structural cliques than broadlybased interdisciplinary subjects.After  the  largest  eight  (or  so)  divisions  of  the  network,  modularity  improvesonly  marginally  for  any  further  single  division.   This  means  important,  wide-scalemodular structures of the education system are revealed in these first divisions and theydeserve some consideration.   Figure 4.1.2.2-4 is an attempt to communicate  the majorstructurally defined divisions in the course network.   The first nine modules identifiedby algorithms that scrutinize structural  relatedness are separated by color and overlaidon the network map of courses.  Qualitatively speaking, several communities among theUniversity course nodes look similar to the 'top down' divisions based on Faculty mem-bership  (compare  to  Figure  3.1.2-5).   Most  of  the  nonacademic  School  courses(especially RAP) are isolated from the rest of the school system into their own moduleat this early stage.  Many academic high school courses are pulled away from the twoschool based modules (Ê & Ê) and subsumed into University based knowledge commu-nities.  That is, among academic high school courses, membership in knowledge commu-nities  based  on  subject  is  generally  more  important  than  the  administrative  divisionbetween School and University.  Courses from the Faculty of Science do not make up amajority of any of the largest nine modules; instead the Science nodes are split amongcommunities dominated by nodes from some other Faculty.Despite the large size of the adjacency matrix and the many resulting significanteigenvectors,  the spectral methods used in this section execute quickly (in a matter ofhours) on the Numerical  and Statistical  Servers of AICT at the U. of A..  More timeconsuming  is  the  refinement  process  (a  matter  of  weeks)  which  often  improves  thechange in modularity score of each partition by up to 5% compared to spectral methodsalone.  The modularity score for the course network is ultimately calculated to be Q ≈0.84, which is greater than the typical range reported by Newman & Girvan (2004) andvery near the top of modularity  scores reported by Newman (2006b);  thus, courses inAlberta appear in the broader context of networked systems to be uncommonly modular.That is, identifiable course communities are more isolated from each other than commu-nities normally comprising other types of networks, such as, say, a biological regulatorynetwork (Broderick, Fuite, et al. 2010, Ravasz et al. 2002) or a coauthorship network ofscientists (Newman 2001b, Ramasco et al. 2004).The ability to detect community structure in the course network adds insight forthinking  about  education and could clearly  have practical  applications.   For example,knowledge-based  course  communities  might  be confirmed  to  well  represent  real  sub-jects  as  presently  defined;  or,  perhaps  a tightly  bound,  indivisible  module  of coursesfrom several  subjects compels its recognition as a unified subject in its own right; or,maybe a significant structural split indicates there is enough divergence within a subjectto warrant its fission into two subjects.  Being able to objectively identify these knowl-edge-based communities  could inform administrators  to help understand,  place, group,and manage these course subnetworks more effectively.  Consider how the question ofknowledge  cohesion  among  courses  within  the  same  department  may  be  examinedstructurally.   For  instance,  is  there any unity among the courses  of different  subjectswithin the Department  of English and Film Studies,  the Department  of Electrical  andComputer  Engineering,  or  the  Department  of  Mathematical  and  Statistical  Sciences?Or, are there deep fissures between the courses of different modules, and does this haveimplications for administration structures and whether or not some departments ought tobe split?  Are their groups of courses that could be merged into one department consider-ing their cohesive knowledge?  Due to practical time constraints, specific questions suchas these are not answered in this thesis but are pointed out as well posed and answerablethrough more detailed research using results from the introduced modularity methods.Besides administrators, education and other social science researchers could usea modular breakdown of courses to search within identified communities for the kind ofknowledge maintaining  their connectedness  or hypothesize specific  social mechanismsunderlying community formation.  For example, the Faculty of Graduate Studies (2001)considers  transdisciplinary  research  to  be  "held  together  by  a  common  ideologicalframework", concerning knowledge which is in some sense between, across, and beyondeach individual discipline as defined ('top down') by administration.  So a strong transdis-cipline  might  appear  in the education  system as a structurally  distinct  subnetwork  ofcourses based on the shared knowledge of an underlying framework, stance, or commu-nity practice.  Inspection of modules IV, V, VI, & VII in Figure 4.1.2.2-4, indicates theymay be candidates for this type of interpretation.  For instance, module V (Ê) containsalmost the entire Faculty of Medicine and Dentistry, plus much of the Faculty of Agricul-ture, Forestry, and Home Economics, along with supporting courses from subjects in theFaculty of Science, such as, Biology, Botany, Chemistry,  Genetics, Microbiology,  andZoology  (see  also  Figure  4.1.2.2-3  bar  chart  and  subject  list  for  composition);  so  ittentatively appears as though this module is founded on a some kind of reductive, evolu-tionary, and bio-chemically based "way of knowing" (Moore 1993: Parts One & Two).Module VI (Ê) is comprised of almost the entire Faculty of Engineering in a communityalong with supporting courses from subjects  in the Faculty of Science, such as, Com-puter Science, Earth and Atmospheric Science, Mathematics, Statistics, and Physics; soperhaps it could be argued this module is centered on abstract,  mathematical,  rational,and mechanistic  ways of knowing.   Almost  the entire Faculty  of Business  is isolatedwithin Module VII (Ê) along with supporting  courses from subjects  in the Faculty ofArts (for example,  Economics,  English,  and Psychology)  and even the Faculty of Sci-ence (for example, Mathematics and Statistics); so maybe this module commonly relieson, say, macroscopic,  managerial,  and socio-statistical  ways of knowing.  And finally,module IV (Á white) interestingly contains almost all the courses of both Nursing andNative Studies.   Without overstating the hypothesis,  perhaps the underlying transdisci-pline (if it exists) is founded on some form of paradigm with characteristic  aspects ofholism,  caring,  and  preservation  (Watson  2008:  ch.  1;  Leininger  1984;  Berkes  1993;Witt 2007).  Because the topic of transdisciplinarity appears to the author of the thesis asill-defined in the literature (for example, Klein et al. 2001 or Mitrany & Stokols 2005)or championed by radical, 'far out' authors (for example, Nicolescu 2002 & 2008), thetopic  is left  undeveloped  as speculation,  and highlighted  for further  research  to morerigorously identify, or not, the large modules within the course structure of the educationsystem as representing transdisciplines  based on common ideological  frameworks  andconstraints (Kline 1995: ch. 2-5 & 3-7).The results of this subsubsection indicate the course network is inherently modu-lar (Q ≈ 0.84).  The 'bottom-up', or internalist perspective portrays the university as anorganization  of modules at different scales.   The first divisions roughly correspond tosome of the largest faculties, the smallest divisions often carve out a single subject or afew closely  related  ones,  and intermediate  divisions  which likely  deserve some moreattentive study.  In §4.1.1.2 Node Degree Distribution, the course network is shown toprobably be a scale-free network (a ≈ 2.41), thus producing two conclusions which atfirst seem to be exclusive.  However, Almaas & Barabasi (2006) discuss how these twoimportant and independent concepts can coexist without paradox in "hierarchical scale-free  networks",  wherein  modules  themselves  combine  into  each  other  in  a  hierarchy(Ravasz  & Barabasi  2003).   This indicates  that the education  network  is  not just  thecoexistence  of  relatively  independent  groups  of  nodes  nor  a  well  integrated  whole.Instead, there are many small modules that combine to form larger, possibly less cohe-sive groups,  which combine again and again to form even larger "metacommunities",thus maintaining a somewhat self-similar, scale-free structure (Pollner et al. 2006).
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In the recent study of systems characterized  by networks, such as the internet,
world-wide web, metabolic networks, food webs, neural networks, and social networks,
an important issue that has received considerable attention is the detection and character-
ization  of internal  community  structure – the tendency  for the objects  represented  by
nodes to divide into groups (Newman 2004c; Danon et al. 2005; Radicchi et al. 2004;
Karrer et al. 2008, Bray 2003).  A sensible way of interpreting our complex world is to
try to identify subunits in it and to map the interactions between these parts.  In many
systems, it is possible to define subunits in such a way that the network of their interac-
tions provides a simple but still informative representation of the system (Farkas et al.
2004).   Here,  a  subnetwork  is  considered  a  community,  or  module,  if  comprised  of
densely connected nodes only sparsely connected to the rest of the network (see Figure
4.1.2.2-1).  Generally, the ability to detect and identify such groups of nodes is of signifi-
cant practical importance because they often correspond to some sort of functional unit
(Arenas et al. 2007; Eakin 2004).  For instance, groups within the worldwide web corre-
spond to sets of web pages on related topics (Clauset et al. 2004; Capocci et al. 2008),
and, groups within social networks correspond to tight social units or cliques (Girvan &
Newman  2002).   In  education,  as  illustrated  in  §4.1.2.1  Community  Structure  -  Top
Down, there are already names for courses and their collections:  each course belongs to
a subject  (eg.  MATH or STAT), is  administered  by a department  (eg.  Department  of
Philosophy), and falls within a faculty (eg. Faculty of Nursing).  But, in what manner do
the 'natural' groupings of the course nodes based on algorithms studying course related-
ness  through network  structure  correspond  to these administrative  rubrics  assigned  to
courses?

Newman & Girvan (2004) explain how well a network is subdivided into subnet-
work  communities  by  employing  a  metric  called  modularity,  with  the  symbol  Q
(remember,  the size of the network, or total number of links is already assigned to the
symbol M, while m is used as the associated counter).  To quantify the strength of com-
munity structure they measure the fraction of links in a network that connect nodes in
the same community,  less the fraction of links that you would expect among the same
nodes if the links were randomly attached with no compelling overall internal structure,
that is, let Q = (fraction of edges within modules) - (fraction of edges expected within
modules assuming the network is randomly connected).  If the number of within-commu-
nity links is no better than random, then the modularity is calculated to be small, Q Ø 0,
while  networks  with  strong  community  structure  score  higher,  Q  Ø  1.   Newman  &
Girvan report Q values for modular networks "typically fall in the range from about 0.3
to 0.7. Higher values are rare."  More detailed mathematics regarding the definition of
the modularity metric is set forth in Attachment 9.3 Supplementary Equations 4.1.2.2a,
for the interested reader.

While the modularity metric, Q, is straightforward conceptually and mathemati-
cally, it relies on the network communities as known inputs.  Though groups of course
nodes may be pre-identified by some external standard,  say, faculty membership as in
the previous subsubsection, recognizing communities from an unbiased, structural point
of view is a sophisticated challenge because there are so many possible partitions of a
complex network.  Danon et al.(2005) detail the efforts of physics researchers in recent
years to detect and quantify community structure in networks, which include centrality
measures, flow models, and random walks.  If the number and sizes of the communities
is variable,  then searching for the optimal partition which exhaustively maximizes the
modularity  score  for a large network  is  computationally  intractable.   An approximate
technique, one which generates good, but not provably perfect, partitions of the network
into  communities  that  increase  the  modularity  score,  Q,  is  introduced  by  Newman
(2006a & 2006b).  It is based on an expression of the modularity metric (function) in
matrix terms.  This permits modularity improving, community  identifying divisions of
the network to be formulated and optimized as a spectral problem in linear algebra (Goh
2001).  Practically, it comes down to computing eigenvectors of a modified version of
the network's adjacency matrix, , to detect the community boundaries.  More detailed
mathematics  regarding  the partitioning  of the network  in an attempt  to maximize  the
modularity metric is set forth in Attachment 9.3 Supplementary Equations 4.1.2.2b, for
the interested reader.
 

Newman's eigenvector partition method is incorporated into the program, Calen-
dar Navigator.  Its implementation leads to the division of the course network into two
separate  communities  that  increase  the modularity  score,  Q.   Community  structure  is
revealed by choosing the best partition of the network in terms of communities,  in the
sense  of  groups  of  nodes  that  are  more  intraconnected  rather  than  interconnected
between them.  But, for reasons not considered here (see references) such a division is
only considered approximate; that is, the method will fail to find optimum partitions in
some cases.  After a first pass over the network, the spectral approach provides a broad
picture of the general shape a division should take, but there is often room for improve-
ment.  So a secondary, computationally expensive, brute-force algorithm iteratively and
exhaustively swaps individual nodes between communities until the effort to refine the
community  boundaries and increase modularity fails to progress for any node.  There-
fore, at least a local maximum reachable by single node switches is found for the modu-
larity score given the starting point provided by the spectral method plus any community
membership  changes  ensuing  from the  refinement  step.   The two-stage  approach  for
determining each partition as implemented for this subsubsection is detailed in Attach-
ment 9.4 Program Code 4.1.2.2, for the interested reader.

The sophisticated procedure to split the course network into structurally  deter-
mined communities  can be iterated and repeatedly applied, first to the whole network,
and then to the resulting subnetworks, and so on until no further splits of any portion of
the network results  in an increase in the modularity  score,  Q.   All  remaining  subnet-
works are thoroughly connected internally, and are recognized as indivisible communi-
ties or modules.  Since the first split results in the greatest increase in modularity, and all
further splits follow in a generally diminishing chain, the output of the cleaving method
is usefully interpreted as a dendrogram – a tree-like diagram used to illustrate the hierar-
chical arrangement of clusters in a system (see Figure 4.1.2.2-2 for a simple example).
Since the course network is so large and complex, the dendrogram describing the hierar-
chical structure of the communities is rather complicated; but, with a certain investment
of time and study, many new and rich insights into the structure of the course network
are possible (see Figure 4.1.2.2-3), only some of which are described in this thesis.

One obvious fact gathered by counting the terminal branches of the dendrogram
illustrating  the  hierarchical  grouping  of  course  nodes,  is  that  the  course  network  is
composed of 86 indivisible modules at the finest, most sensitive level.  The structurally
determined course communities  vary significantly  in size and composition.   While 56
courses is the average, the largest module contains some 818 courses mostly from the
Faculty of Arts, while the smallest is formed by just two Recreation and Leisure Studies
courses:  RLS 441 (¯3),  Practicum Seminar,  and RLS 449 (¯12),  Professional  Practi-
cum, which are designed to be taken exclusively together, as stated in the description of
RLS 449: "Fourteen weeks of professional experience in full-time placement.  Must be
taken concurrently with RLS 441. Students will not be allowed to register in any other
course in conjunction with RLS 441/449 unless approved by the Practicum Supervisor."
All indivisible modules at the terminal ends of the dendrogram have the property that if
further split,  or if joined together,  then the modularity  score for the entire course net-
work would decrease.

Many  of  the  smaller,  and  even  some  of  the  larger  modules  contain  but  one
course type, confirming, not surprisingly, that structural modules are, in some manner, a
function of subjects.  For example, MUSIC courses are almost all found together in an
exclusive,  single,  large  community  (sixth  bar  from top  in  Figure  4.1.2.2-3).   On the
other hand, the course type, WKEXP, is spread among nine of the modules.  But "work
experience" is not really a subject but more a processes, and these type of courses are
offered by many of the larger faculties for students coming from multitudinous subjects.
Two interdisciplinary subjects, Earth and Atmospheric Science (EAS) and Environmen-
tal and Conservation Science (ENCS), each populate six or more modules.  In general, a
qualitative accounting of course distribution indicates those subjects often considered to
be focused and specialized end up in fewer, less diverse structural cliques than broadly
based interdisciplinary subjects.

After  the  largest  eight  (or  so)  divisions  of  the  network,  modularity  improves
only  marginally  for  any  further  single  division.   This  means  important,  wide-scale
modular structures of the education system are revealed in these first divisions and they
deserve some consideration.   Figure 4.1.2.2-4 is an attempt to communicate  the major
structurally defined divisions in the course network.   The first nine modules identified
by algorithms that scrutinize structural  relatedness are separated by color and overlaid
on the network map of courses.  Qualitatively speaking, several communities among the
University course nodes look similar to the 'top down' divisions based on Faculty mem-
bership  (compare  to  Figure  3.1.2-5).   Most  of  the  nonacademic  School  courses
(especially RAP) are isolated from the rest of the school system into their own module
at this early stage.  Many academic high school courses are pulled away from the two
school based modules (Ê & Ê) and subsumed into University based knowledge commu-
nities.  That is, among academic high school courses, membership in knowledge commu-
nities  based  on  subject  is  generally  more  important  than  the  administrative  division
between School and University.  Courses from the Faculty of Science do not make up a
majority of any of the largest nine modules; instead the Science nodes are split among
communities dominated by nodes from some other Faculty.

Despite the large size of the adjacency matrix and the many resulting significant
eigenvectors,  the spectral methods used in this section execute quickly (in a matter of
hours) on the Numerical  and Statistical  Servers of AICT at the U. of A..  More time
consuming  is  the  refinement  process  (a  matter  of  weeks)  which  often  improves  the
change in modularity score of each partition by up to 5% compared to spectral methods
alone.  The modularity score for the course network is ultimately calculated to be Q ≈
0.84, which is greater than the typical range reported by Newman & Girvan (2004) and
very near the top of modularity  scores reported by Newman (2006b);  thus, courses in
Alberta appear in the broader context of networked systems to be uncommonly modular.
That is, identifiable course communities are more isolated from each other than commu-
nities normally comprising other types of networks, such as, say, a biological regulatory
network (Broderick, Fuite, et al. 2010, Ravasz et al. 2002) or a coauthorship network of
scientists (Newman 2001b, Ramasco et al. 2004).

The ability to detect community structure in the course network adds insight for
thinking  about  education and could clearly  have practical  applications.   For example,
knowledge-based  course  communities  might  be confirmed  to  well  represent  real  sub-
jects  as  presently  defined;  or,  perhaps  a tightly  bound,  indivisible  module  of courses
from several  subjects compels its recognition as a unified subject in its own right; or,maybe a significant structural split indicates there is enough divergence within a subjectto warrant its fission into two subjects.  Being able to objectively identify these knowl-edge-based communities  could inform administrators  to help understand,  place, group,and manage these course subnetworks more effectively.  Consider how the question ofknowledge  cohesion  among  courses  within  the  same  department  may  be  examinedstructurally.   For  instance,  is  there any unity among the courses  of different  subjectswithin the Department  of English and Film Studies,  the Department  of Electrical  andComputer  Engineering,  or  the  Department  of  Mathematical  and  Statistical  Sciences?Or, are there deep fissures between the courses of different modules, and does this haveimplications for administration structures and whether or not some departments ought tobe split?  Are their groups of courses that could be merged into one department consider-ing their cohesive knowledge?  Due to practical time constraints, specific questions suchas these are not answered in this thesis but are pointed out as well posed and answerablethrough more detailed research using results from the introduced modularity methods.Besides administrators, education and other social science researchers could usea modular breakdown of courses to search within identified communities for the kind ofknowledge maintaining  their connectedness  or hypothesize specific  social mechanismsunderlying community formation.  For example, the Faculty of Graduate Studies (2001)considers  transdisciplinary  research  to  be  "held  together  by  a  common  ideologicalframework", concerning knowledge which is in some sense between, across, and beyondeach individual discipline as defined ('top down') by administration.  So a strong transdis-cipline  might  appear  in the education  system as a structurally  distinct  subnetwork  ofcourses based on the shared knowledge of an underlying framework, stance, or commu-nity practice.  Inspection of modules IV, V, VI, & VII in Figure 4.1.2.2-4, indicates theymay be candidates for this type of interpretation.  For instance, module V (Ê) containsalmost the entire Faculty of Medicine and Dentistry, plus much of the Faculty of Agricul-ture, Forestry, and Home Economics, along with supporting courses from subjects in theFaculty of Science, such as, Biology, Botany, Chemistry,  Genetics, Microbiology,  andZoology  (see  also  Figure  4.1.2.2-3  bar  chart  and  subject  list  for  composition);  so  ittentatively appears as though this module is founded on a some kind of reductive, evolu-tionary, and bio-chemically based "way of knowing" (Moore 1993: Parts One & Two).Module VI (Ê) is comprised of almost the entire Faculty of Engineering in a communityalong with supporting courses from subjects  in the Faculty of Science, such as, Com-puter Science, Earth and Atmospheric Science, Mathematics, Statistics, and Physics; soperhaps it could be argued this module is centered on abstract,  mathematical,  rational,and mechanistic  ways of knowing.   Almost  the entire Faculty  of Business  is isolatedwithin Module VII (Ê) along with supporting  courses from subjects  in the Faculty ofArts (for example,  Economics,  English,  and Psychology)  and even the Faculty of Sci-ence (for example, Mathematics and Statistics); so maybe this module commonly relieson, say, macroscopic,  managerial,  and socio-statistical  ways of knowing.  And finally,module IV (Á white) interestingly contains almost all the courses of both Nursing andNative Studies.   Without overstating the hypothesis,  perhaps the underlying transdisci-pline (if it exists) is founded on some form of paradigm with characteristic  aspects ofholism,  caring,  and  preservation  (Watson  2008:  ch.  1;  Leininger  1984;  Berkes  1993;Witt 2007).  Because the topic of transdisciplinarity appears to the author of the thesis asill-defined in the literature (for example, Klein et al. 2001 or Mitrany & Stokols 2005)or championed by radical, 'far out' authors (for example, Nicolescu 2002 & 2008), thetopic  is left  undeveloped  as speculation,  and highlighted  for further  research  to morerigorously identify, or not, the large modules within the course structure of the educationsystem as representing transdisciplines  based on common ideological  frameworks  andconstraints (Kline 1995: ch. 2-5 & 3-7).The results of this subsubsection indicate the course network is inherently modu-lar (Q ≈ 0.84).  The 'bottom-up', or internalist perspective portrays the university as anorganization  of modules at different scales.   The first divisions roughly correspond tosome of the largest faculties, the smallest divisions often carve out a single subject or afew closely  related  ones,  and intermediate  divisions  which likely  deserve some moreattentive study.  In §4.1.1.2 Node Degree Distribution, the course network is shown toprobably be a scale-free network (a ≈ 2.41), thus producing two conclusions which atfirst seem to be exclusive.  However, Almaas & Barabasi (2006) discuss how these twoimportant and independent concepts can coexist without paradox in "hierarchical scale-free  networks",  wherein  modules  themselves  combine  into  each  other  in  a  hierarchy(Ravasz  & Barabasi  2003).   This indicates  that the education  network  is  not just  thecoexistence  of  relatively  independent  groups  of  nodes  nor  a  well  integrated  whole.Instead, there are many small modules that combine to form larger, possibly less cohe-sive groups,  which combine again and again to form even larger "metacommunities",thus maintaining a somewhat self-similar, scale-free structure (Pollner et al. 2006).
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In the recent study of systems characterized  by networks, such as the internet,
world-wide web, metabolic networks, food webs, neural networks, and social networks,
an important issue that has received considerable attention is the detection and character-
ization  of internal  community  structure – the tendency  for the objects  represented  by
nodes to divide into groups (Newman 2004c; Danon et al. 2005; Radicchi et al. 2004;
Karrer et al. 2008, Bray 2003).  A sensible way of interpreting our complex world is to
try to identify subunits in it and to map the interactions between these parts.  In many
systems, it is possible to define subunits in such a way that the network of their interac-
tions provides a simple but still informative representation of the system (Farkas et al.
2004).   Here,  a  subnetwork  is  considered  a  community,  or  module,  if  comprised  of
densely connected nodes only sparsely connected to the rest of the network (see Figure
4.1.2.2-1).  Generally, the ability to detect and identify such groups of nodes is of signifi-
cant practical importance because they often correspond to some sort of functional unit
(Arenas et al. 2007; Eakin 2004).  For instance, groups within the worldwide web corre-
spond to sets of web pages on related topics (Clauset et al. 2004; Capocci et al. 2008),
and, groups within social networks correspond to tight social units or cliques (Girvan &
Newman  2002).   In  education,  as  illustrated  in  §4.1.2.1  Community  Structure  -  Top
Down, there are already names for courses and their collections:  each course belongs to
a subject  (eg.  MATH or STAT), is  administered  by a department  (eg.  Department  of
Philosophy), and falls within a faculty (eg. Faculty of Nursing).  But, in what manner do
the 'natural' groupings of the course nodes based on algorithms studying course related-
ness  through network  structure  correspond  to these administrative  rubrics  assigned  to
courses?

Newman & Girvan (2004) explain how well a network is subdivided into subnet-
work  communities  by  employing  a  metric  called  modularity,  with  the  symbol  Q
(remember,  the size of the network, or total number of links is already assigned to the
symbol M, while m is used as the associated counter).  To quantify the strength of com-
munity structure they measure the fraction of links in a network that connect nodes in
the same community,  less the fraction of links that you would expect among the same
nodes if the links were randomly attached with no compelling overall internal structure,
that is, let Q = (fraction of edges within modules) - (fraction of edges expected within
modules assuming the network is randomly connected).  If the number of within-commu-
nity links is no better than random, then the modularity is calculated to be small, Q Ø 0,
while  networks  with  strong  community  structure  score  higher,  Q  Ø  1.   Newman  &
Girvan report Q values for modular networks "typically fall in the range from about 0.3
to 0.7. Higher values are rare."  More detailed mathematics regarding the definition of
the modularity metric is set forth in Attachment 9.3 Supplementary Equations 4.1.2.2a,
for the interested reader.

While the modularity metric, Q, is straightforward conceptually and mathemati-
cally, it relies on the network communities as known inputs.  Though groups of course
nodes may be pre-identified by some external standard,  say, faculty membership as in
the previous subsubsection, recognizing communities from an unbiased, structural point
of view is a sophisticated challenge because there are so many possible partitions of a
complex network.  Danon et al.(2005) detail the efforts of physics researchers in recent
years to detect and quantify community structure in networks, which include centrality
measures, flow models, and random walks.  If the number and sizes of the communities
is variable,  then searching for the optimal partition which exhaustively maximizes the
modularity  score  for a large network  is  computationally  intractable.   An approximate
technique, one which generates good, but not provably perfect, partitions of the network
into  communities  that  increase  the  modularity  score,  Q,  is  introduced  by  Newman
(2006a & 2006b).  It is based on an expression of the modularity metric (function) in
matrix terms.  This permits modularity improving, community  identifying divisions of
the network to be formulated and optimized as a spectral problem in linear algebra (Goh
2001).  Practically, it comes down to computing eigenvectors of a modified version of
the network's adjacency matrix, , to detect the community boundaries.  More detailed
mathematics  regarding  the partitioning  of the network  in an attempt  to maximize  the
modularity metric is set forth in Attachment 9.3 Supplementary Equations 4.1.2.2b, for
the interested reader.
 

Newman's eigenvector partition method is incorporated into the program, Calen-
dar Navigator.  Its implementation leads to the division of the course network into two
separate  communities  that  increase  the modularity  score,  Q.   Community  structure  is
revealed by choosing the best partition of the network in terms of communities,  in the
sense  of  groups  of  nodes  that  are  more  intraconnected  rather  than  interconnected
between them.  But, for reasons not considered here (see references) such a division is
only considered approximate; that is, the method will fail to find optimum partitions in
some cases.  After a first pass over the network, the spectral approach provides a broad
picture of the general shape a division should take, but there is often room for improve-
ment.  So a secondary, computationally expensive, brute-force algorithm iteratively and
exhaustively swaps individual nodes between communities until the effort to refine the
community  boundaries and increase modularity fails to progress for any node.  There-
fore, at least a local maximum reachable by single node switches is found for the modu-
larity score given the starting point provided by the spectral method plus any community
membership  changes  ensuing  from the  refinement  step.   The two-stage  approach  for
determining each partition as implemented for this subsubsection is detailed in Attach-
ment 9.4 Program Code 4.1.2.2, for the interested reader.

The sophisticated procedure to split the course network into structurally  deter-
mined communities  can be iterated and repeatedly applied, first to the whole network,
and then to the resulting subnetworks, and so on until no further splits of any portion of
the network results  in an increase in the modularity  score,  Q.   All  remaining  subnet-
works are thoroughly connected internally, and are recognized as indivisible communi-
ties or modules.  Since the first split results in the greatest increase in modularity, and all
further splits follow in a generally diminishing chain, the output of the cleaving method
is usefully interpreted as a dendrogram – a tree-like diagram used to illustrate the hierar-
chical arrangement of clusters in a system (see Figure 4.1.2.2-2 for a simple example).
Since the course network is so large and complex, the dendrogram describing the hierar-
chical structure of the communities is rather complicated; but, with a certain investment
of time and study, many new and rich insights into the structure of the course network
are possible (see Figure 4.1.2.2-3), only some of which are described in this thesis.

One obvious fact gathered by counting the terminal branches of the dendrogram
illustrating  the  hierarchical  grouping  of  course  nodes,  is  that  the  course  network  is
composed of 86 indivisible modules at the finest, most sensitive level.  The structurally
determined course communities  vary significantly  in size and composition.   While 56
courses is the average, the largest module contains some 818 courses mostly from the
Faculty of Arts, while the smallest is formed by just two Recreation and Leisure Studies
courses:  RLS 441 (¯3),  Practicum Seminar,  and RLS 449 (¯12),  Professional  Practi-
cum, which are designed to be taken exclusively together, as stated in the description of
RLS 449: "Fourteen weeks of professional experience in full-time placement.  Must be
taken concurrently with RLS 441. Students will not be allowed to register in any other
course in conjunction with RLS 441/449 unless approved by the Practicum Supervisor."
All indivisible modules at the terminal ends of the dendrogram have the property that if
further split,  or if joined together,  then the modularity  score for the entire course net-
work would decrease.

Many  of  the  smaller,  and  even  some  of  the  larger  modules  contain  but  one
course type, confirming, not surprisingly, that structural modules are, in some manner, a
function of subjects.  For example, MUSIC courses are almost all found together in an
exclusive,  single,  large  community  (sixth  bar  from top  in  Figure  4.1.2.2-3).   On the
other hand, the course type, WKEXP, is spread among nine of the modules.  But "work
experience" is not really a subject but more a processes, and these type of courses are
offered by many of the larger faculties for students coming from multitudinous subjects.
Two interdisciplinary subjects, Earth and Atmospheric Science (EAS) and Environmen-
tal and Conservation Science (ENCS), each populate six or more modules.  In general, a
qualitative accounting of course distribution indicates those subjects often considered to
be focused and specialized end up in fewer, less diverse structural cliques than broadly
based interdisciplinary subjects.

After  the  largest  eight  (or  so)  divisions  of  the  network,  modularity  improves
only  marginally  for  any  further  single  division.   This  means  important,  wide-scale
modular structures of the education system are revealed in these first divisions and they
deserve some consideration.   Figure 4.1.2.2-4 is an attempt to communicate  the major
structurally defined divisions in the course network.   The first nine modules identified
by algorithms that scrutinize structural  relatedness are separated by color and overlaid
on the network map of courses.  Qualitatively speaking, several communities among the
University course nodes look similar to the 'top down' divisions based on Faculty mem-
bership  (compare  to  Figure  3.1.2-5).   Most  of  the  nonacademic  School  courses
(especially RAP) are isolated from the rest of the school system into their own module
at this early stage.  Many academic high school courses are pulled away from the two
school based modules (Ê & Ê) and subsumed into University based knowledge commu-
nities.  That is, among academic high school courses, membership in knowledge commu-
nities  based  on  subject  is  generally  more  important  than  the  administrative  division
between School and University.  Courses from the Faculty of Science do not make up a
majority of any of the largest nine modules; instead the Science nodes are split among
communities dominated by nodes from some other Faculty.

Despite the large size of the adjacency matrix and the many resulting significant
eigenvectors,  the spectral methods used in this section execute quickly (in a matter of
hours) on the Numerical  and Statistical  Servers of AICT at the U. of A..  More time
consuming  is  the  refinement  process  (a  matter  of  weeks)  which  often  improves  the
change in modularity score of each partition by up to 5% compared to spectral methods
alone.  The modularity score for the course network is ultimately calculated to be Q ≈
0.84, which is greater than the typical range reported by Newman & Girvan (2004) and
very near the top of modularity  scores reported by Newman (2006b);  thus, courses in
Alberta appear in the broader context of networked systems to be uncommonly modular.
That is, identifiable course communities are more isolated from each other than commu-
nities normally comprising other types of networks, such as, say, a biological regulatory
network (Broderick, Fuite, et al. 2010, Ravasz et al. 2002) or a coauthorship network of
scientists (Newman 2001b, Ramasco et al. 2004).

The ability to detect community structure in the course network adds insight for
thinking  about  education and could clearly  have practical  applications.   For example,
knowledge-based  course  communities  might  be confirmed  to  well  represent  real  sub-
jects  as  presently  defined;  or,  perhaps  a tightly  bound,  indivisible  module  of courses
from several  subjects compels its recognition as a unified subject in its own right; or,
maybe a significant structural split indicates there is enough divergence within a subject
to warrant its fission into two subjects.  Being able to objectively identify these knowl-
edge-based communities  could inform administrators  to help understand,  place, group,
and manage these course subnetworks more effectively.  Consider how the question of
knowledge  cohesion  among  courses  within  the  same  department  may  be  examined
structurally.   For  instance,  is  there any unity among the courses  of different  subjects
within the Department  of English and Film Studies,  the Department  of Electrical  and
Computer  Engineering,  or  the  Department  of  Mathematical  and  Statistical  Sciences?
Or, are there deep fissures between the courses of different modules, and does this have
implications for administration structures and whether or not some departments ought to
be split?  Are their groups of courses that could be merged into one department consider-
ing their cohesive knowledge?  Due to practical time constraints, specific questions such
as these are not answered in this thesis but are pointed out as well posed and answerable
through more detailed research using results from the introduced modularity methods.

Besides administrators, education and other social science researchers could use
a modular breakdown of courses to search within identified communities for the kind of
knowledge maintaining  their connectedness  or hypothesize specific  social mechanisms
underlying community formation.  For example, the Faculty of Graduate Studies (2001)
considers  transdisciplinary  research  to  be  "held  together  by  a  common  ideological
framework", concerning knowledge which is in some sense between, across, and beyond
each individual discipline as defined ('top down') by administration.  So a strong transdis-
cipline  might  appear  in the education  system as a structurally  distinct  subnetwork  of
courses based on the shared knowledge of an underlying framework, stance, or commu-
nity practice.  Inspection of modules IV, V, VI, & VII in Figure 4.1.2.2-4, indicates they
may be candidates for this type of interpretation.  For instance, module V (Ê) contains
almost the entire Faculty of Medicine and Dentistry, plus much of the Faculty of Agricul-
ture, Forestry, and Home Economics, along with supporting courses from subjects in the
Faculty of Science, such as, Biology, Botany, Chemistry,  Genetics, Microbiology,  and
Zoology  (see  also  Figure  4.1.2.2-3  bar  chart  and  subject  list  for  composition);  so  it
tentatively appears as though this module is founded on a some kind of reductive, evolu-
tionary, and bio-chemically based "way of knowing" (Moore 1993: Parts One & Two).
Module VI (Ê) is comprised of almost the entire Faculty of Engineering in a community
along with supporting courses from subjects  in the Faculty of Science, such as, Com-
puter Science, Earth and Atmospheric Science, Mathematics, Statistics, and Physics; so
perhaps it could be argued this module is centered on abstract,  mathematical,  rational,
and mechanistic  ways of knowing.   Almost  the entire Faculty  of Business  is isolated
within Module VII (Ê) along with supporting  courses from subjects  in the Faculty of
Arts (for example,  Economics,  English,  and Psychology)  and even the Faculty of Sci-
ence (for example, Mathematics and Statistics); so maybe this module commonly relies
on, say, macroscopic,  managerial,  and socio-statistical  ways of knowing.  And finally,
module IV (Á white) interestingly contains almost all the courses of both Nursing and
Native Studies.   Without overstating the hypothesis,  perhaps the underlying transdisci-pline (if it exists) is founded on some form of paradigm with characteristic  aspects ofholism,  caring,  and  preservation  (Watson  2008:  ch.  1;  Leininger  1984;  Berkes  1993;Witt 2007).  Because the topic of transdisciplinarity appears to the author of the thesis asill-defined in the literature (for example, Klein et al. 2001 or Mitrany & Stokols 2005)or championed by radical, 'far out' authors (for example, Nicolescu 2002 & 2008), thetopic  is left  undeveloped  as speculation,  and highlighted  for further  research  to morerigorously identify, or not, the large modules within the course structure of the educationsystem as representing transdisciplines  based on common ideological  frameworks  andconstraints (Kline 1995: ch. 2-5 & 3-7).The results of this subsubsection indicate the course network is inherently modu-lar (Q ≈ 0.84).  The 'bottom-up', or internalist perspective portrays the university as anorganization  of modules at different scales.   The first divisions roughly correspond tosome of the largest faculties, the smallest divisions often carve out a single subject or afew closely  related  ones,  and intermediate  divisions  which likely  deserve some moreattentive study.  In §4.1.1.2 Node Degree Distribution, the course network is shown toprobably be a scale-free network (a ≈ 2.41), thus producing two conclusions which atfirst seem to be exclusive.  However, Almaas & Barabasi (2006) discuss how these twoimportant and independent concepts can coexist without paradox in "hierarchical scale-free  networks",  wherein  modules  themselves  combine  into  each  other  in  a  hierarchy(Ravasz  & Barabasi  2003).   This indicates  that the education  network  is  not just  thecoexistence  of  relatively  independent  groups  of  nodes  nor  a  well  integrated  whole.Instead, there are many small modules that combine to form larger, possibly less cohe-sive groups,  which combine again and again to form even larger "metacommunities",thus maintaining a somewhat self-similar, scale-free structure (Pollner et al. 2006).
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In the recent study of systems characterized  by networks, such as the internet,
world-wide web, metabolic networks, food webs, neural networks, and social networks,
an important issue that has received considerable attention is the detection and character-
ization  of internal  community  structure – the tendency  for the objects  represented  by
nodes to divide into groups (Newman 2004c; Danon et al. 2005; Radicchi et al. 2004;
Karrer et al. 2008, Bray 2003).  A sensible way of interpreting our complex world is to
try to identify subunits in it and to map the interactions between these parts.  In many
systems, it is possible to define subunits in such a way that the network of their interac-
tions provides a simple but still informative representation of the system (Farkas et al.
2004).   Here,  a  subnetwork  is  considered  a  community,  or  module,  if  comprised  of
densely connected nodes only sparsely connected to the rest of the network (see Figure
4.1.2.2-1).  Generally, the ability to detect and identify such groups of nodes is of signifi-
cant practical importance because they often correspond to some sort of functional unit
(Arenas et al. 2007; Eakin 2004).  For instance, groups within the worldwide web corre-
spond to sets of web pages on related topics (Clauset et al. 2004; Capocci et al. 2008),
and, groups within social networks correspond to tight social units or cliques (Girvan &
Newman  2002).   In  education,  as  illustrated  in  §4.1.2.1  Community  Structure  -  Top
Down, there are already names for courses and their collections:  each course belongs to
a subject  (eg.  MATH or STAT), is  administered  by a department  (eg.  Department  of
Philosophy), and falls within a faculty (eg. Faculty of Nursing).  But, in what manner do
the 'natural' groupings of the course nodes based on algorithms studying course related-
ness  through network  structure  correspond  to these administrative  rubrics  assigned  to
courses?

Newman & Girvan (2004) explain how well a network is subdivided into subnet-
work  communities  by  employing  a  metric  called  modularity,  with  the  symbol  Q
(remember,  the size of the network, or total number of links is already assigned to the
symbol M, while m is used as the associated counter).  To quantify the strength of com-
munity structure they measure the fraction of links in a network that connect nodes in
the same community,  less the fraction of links that you would expect among the same
nodes if the links were randomly attached with no compelling overall internal structure,
that is, let Q = (fraction of edges within modules) - (fraction of edges expected within
modules assuming the network is randomly connected).  If the number of within-commu-
nity links is no better than random, then the modularity is calculated to be small, Q Ø 0,
while  networks  with  strong  community  structure  score  higher,  Q  Ø  1.   Newman  &
Girvan report Q values for modular networks "typically fall in the range from about 0.3
to 0.7. Higher values are rare."  More detailed mathematics regarding the definition of
the modularity metric is set forth in Attachment 9.3 Supplementary Equations 4.1.2.2a,
for the interested reader.

While the modularity metric, Q, is straightforward conceptually and mathemati-
cally, it relies on the network communities as known inputs.  Though groups of course
nodes may be pre-identified by some external standard,  say, faculty membership as in
the previous subsubsection, recognizing communities from an unbiased, structural point
of view is a sophisticated challenge because there are so many possible partitions of a
complex network.  Danon et al.(2005) detail the efforts of physics researchers in recent
years to detect and quantify community structure in networks, which include centrality
measures, flow models, and random walks.  If the number and sizes of the communities
is variable,  then searching for the optimal partition which exhaustively maximizes the
modularity  score  for a large network  is  computationally  intractable.   An approximate
technique, one which generates good, but not provably perfect, partitions of the network
into  communities  that  increase  the  modularity  score,  Q,  is  introduced  by  Newman
(2006a & 2006b).  It is based on an expression of the modularity metric (function) in
matrix terms.  This permits modularity improving, community  identifying divisions of
the network to be formulated and optimized as a spectral problem in linear algebra (Goh
2001).  Practically, it comes down to computing eigenvectors of a modified version of
the network's adjacency matrix, , to detect the community boundaries.  More detailed
mathematics  regarding  the partitioning  of the network  in an attempt  to maximize  the
modularity metric is set forth in Attachment 9.3 Supplementary Equations 4.1.2.2b, for
the interested reader.
 

Newman's eigenvector partition method is incorporated into the program, Calen-
dar Navigator.  Its implementation leads to the division of the course network into two
separate  communities  that  increase  the modularity  score,  Q.   Community  structure  is
revealed by choosing the best partition of the network in terms of communities,  in the
sense  of  groups  of  nodes  that  are  more  intraconnected  rather  than  interconnected
between them.  But, for reasons not considered here (see references) such a division is
only considered approximate; that is, the method will fail to find optimum partitions in
some cases.  After a first pass over the network, the spectral approach provides a broad
picture of the general shape a division should take, but there is often room for improve-
ment.  So a secondary, computationally expensive, brute-force algorithm iteratively and
exhaustively swaps individual nodes between communities until the effort to refine the
community  boundaries and increase modularity fails to progress for any node.  There-
fore, at least a local maximum reachable by single node switches is found for the modu-
larity score given the starting point provided by the spectral method plus any community
membership  changes  ensuing  from the  refinement  step.   The two-stage  approach  for
determining each partition as implemented for this subsubsection is detailed in Attach-
ment 9.4 Program Code 4.1.2.2, for the interested reader.

The sophisticated procedure to split the course network into structurally  deter-
mined communities  can be iterated and repeatedly applied, first to the whole network,
and then to the resulting subnetworks, and so on until no further splits of any portion of
the network results  in an increase in the modularity  score,  Q.   All  remaining  subnet-
works are thoroughly connected internally, and are recognized as indivisible communi-
ties or modules.  Since the first split results in the greatest increase in modularity, and all
further splits follow in a generally diminishing chain, the output of the cleaving method
is usefully interpreted as a dendrogram – a tree-like diagram used to illustrate the hierar-
chical arrangement of clusters in a system (see Figure 4.1.2.2-2 for a simple example).
Since the course network is so large and complex, the dendrogram describing the hierar-
chical structure of the communities is rather complicated; but, with a certain investment
of time and study, many new and rich insights into the structure of the course network
are possible (see Figure 4.1.2.2-3), only some of which are described in this thesis.

One obvious fact gathered by counting the terminal branches of the dendrogram
illustrating  the  hierarchical  grouping  of  course  nodes,  is  that  the  course  network  is
composed of 86 indivisible modules at the finest, most sensitive level.  The structurally
determined course communities  vary significantly  in size and composition.   While 56
courses is the average, the largest module contains some 818 courses mostly from the
Faculty of Arts, while the smallest is formed by just two Recreation and Leisure Studies
courses:  RLS 441 (¯3),  Practicum Seminar,  and RLS 449 (¯12),  Professional  Practi-
cum, which are designed to be taken exclusively together, as stated in the description of
RLS 449: "Fourteen weeks of professional experience in full-time placement.  Must be
taken concurrently with RLS 441. Students will not be allowed to register in any other
course in conjunction with RLS 441/449 unless approved by the Practicum Supervisor."
All indivisible modules at the terminal ends of the dendrogram have the property that if
further split,  or if joined together,  then the modularity  score for the entire course net-
work would decrease.

Many  of  the  smaller,  and  even  some  of  the  larger  modules  contain  but  one
course type, confirming, not surprisingly, that structural modules are, in some manner, a
function of subjects.  For example, MUSIC courses are almost all found together in an
exclusive,  single,  large  community  (sixth  bar  from top  in  Figure  4.1.2.2-3).   On the
other hand, the course type, WKEXP, is spread among nine of the modules.  But "work
experience" is not really a subject but more a processes, and these type of courses are
offered by many of the larger faculties for students coming from multitudinous subjects.
Two interdisciplinary subjects, Earth and Atmospheric Science (EAS) and Environmen-
tal and Conservation Science (ENCS), each populate six or more modules.  In general, a
qualitative accounting of course distribution indicates those subjects often considered to
be focused and specialized end up in fewer, less diverse structural cliques than broadly
based interdisciplinary subjects.

After  the  largest  eight  (or  so)  divisions  of  the  network,  modularity  improves
only  marginally  for  any  further  single  division.   This  means  important,  wide-scale
modular structures of the education system are revealed in these first divisions and they
deserve some consideration.   Figure 4.1.2.2-4 is an attempt to communicate  the major
structurally defined divisions in the course network.   The first nine modules identified
by algorithms that scrutinize structural  relatedness are separated by color and overlaid
on the network map of courses.  Qualitatively speaking, several communities among the
University course nodes look similar to the 'top down' divisions based on Faculty mem-
bership  (compare  to  Figure  3.1.2-5).   Most  of  the  nonacademic  School  courses
(especially RAP) are isolated from the rest of the school system into their own module
at this early stage.  Many academic high school courses are pulled away from the two
school based modules (Ê & Ê) and subsumed into University based knowledge commu-
nities.  That is, among academic high school courses, membership in knowledge commu-
nities  based  on  subject  is  generally  more  important  than  the  administrative  division
between School and University.  Courses from the Faculty of Science do not make up a
majority of any of the largest nine modules; instead the Science nodes are split among
communities dominated by nodes from some other Faculty.

Despite the large size of the adjacency matrix and the many resulting significant
eigenvectors,  the spectral methods used in this section execute quickly (in a matter of
hours) on the Numerical  and Statistical  Servers of AICT at the U. of A..  More time
consuming  is  the  refinement  process  (a  matter  of  weeks)  which  often  improves  the
change in modularity score of each partition by up to 5% compared to spectral methods
alone.  The modularity score for the course network is ultimately calculated to be Q ≈
0.84, which is greater than the typical range reported by Newman & Girvan (2004) and
very near the top of modularity  scores reported by Newman (2006b);  thus, courses in
Alberta appear in the broader context of networked systems to be uncommonly modular.
That is, identifiable course communities are more isolated from each other than commu-
nities normally comprising other types of networks, such as, say, a biological regulatory
network (Broderick, Fuite, et al. 2010, Ravasz et al. 2002) or a coauthorship network of
scientists (Newman 2001b, Ramasco et al. 2004).

The ability to detect community structure in the course network adds insight for
thinking  about  education and could clearly  have practical  applications.   For example,
knowledge-based  course  communities  might  be confirmed  to  well  represent  real  sub-
jects  as  presently  defined;  or,  perhaps  a tightly  bound,  indivisible  module  of courses
from several  subjects compels its recognition as a unified subject in its own right; or,
maybe a significant structural split indicates there is enough divergence within a subject
to warrant its fission into two subjects.  Being able to objectively identify these knowl-
edge-based communities  could inform administrators  to help understand,  place, group,
and manage these course subnetworks more effectively.  Consider how the question of
knowledge  cohesion  among  courses  within  the  same  department  may  be  examined
structurally.   For  instance,  is  there any unity among the courses  of different  subjects
within the Department  of English and Film Studies,  the Department  of Electrical  and
Computer  Engineering,  or  the  Department  of  Mathematical  and  Statistical  Sciences?
Or, are there deep fissures between the courses of different modules, and does this have
implications for administration structures and whether or not some departments ought to
be split?  Are their groups of courses that could be merged into one department consider-
ing their cohesive knowledge?  Due to practical time constraints, specific questions such
as these are not answered in this thesis but are pointed out as well posed and answerable
through more detailed research using results from the introduced modularity methods.

Besides administrators, education and other social science researchers could use
a modular breakdown of courses to search within identified communities for the kind of
knowledge maintaining  their connectedness  or hypothesize specific  social mechanisms
underlying community formation.  For example, the Faculty of Graduate Studies (2001)
considers  transdisciplinary  research  to  be  "held  together  by  a  common  ideological
framework", concerning knowledge which is in some sense between, across, and beyond
each individual discipline as defined ('top down') by administration.  So a strong transdis-
cipline  might  appear  in the education  system as a structurally  distinct  subnetwork  of
courses based on the shared knowledge of an underlying framework, stance, or commu-
nity practice.  Inspection of modules IV, V, VI, & VII in Figure 4.1.2.2-4, indicates they
may be candidates for this type of interpretation.  For instance, module V (Ê) contains
almost the entire Faculty of Medicine and Dentistry, plus much of the Faculty of Agricul-
ture, Forestry, and Home Economics, along with supporting courses from subjects in the
Faculty of Science, such as, Biology, Botany, Chemistry,  Genetics, Microbiology,  and
Zoology  (see  also  Figure  4.1.2.2-3  bar  chart  and  subject  list  for  composition);  so  it
tentatively appears as though this module is founded on a some kind of reductive, evolu-
tionary, and bio-chemically based "way of knowing" (Moore 1993: Parts One & Two).
Module VI (Ê) is comprised of almost the entire Faculty of Engineering in a community
along with supporting courses from subjects  in the Faculty of Science, such as, Com-
puter Science, Earth and Atmospheric Science, Mathematics, Statistics, and Physics; so
perhaps it could be argued this module is centered on abstract,  mathematical,  rational,
and mechanistic  ways of knowing.   Almost  the entire Faculty  of Business  is isolated
within Module VII (Ê) along with supporting  courses from subjects  in the Faculty of
Arts (for example,  Economics,  English,  and Psychology)  and even the Faculty of Sci-
ence (for example, Mathematics and Statistics); so maybe this module commonly relies
on, say, macroscopic,  managerial,  and socio-statistical  ways of knowing.  And finally,
module IV (Á white) interestingly contains almost all the courses of both Nursing and
Native Studies.   Without overstating the hypothesis,  perhaps the underlying transdisci-
pline (if it exists) is founded on some form of paradigm with characteristic  aspects of
holism,  caring,  and  preservation  (Watson  2008:  ch.  1;  Leininger  1984;  Berkes  1993;
Witt 2007).  Because the topic of transdisciplinarity appears to the author of the thesis as
ill-defined in the literature (for example, Klein et al. 2001 or Mitrany & Stokols 2005)
or championed by radical, 'far out' authors (for example, Nicolescu 2002 & 2008), the
topic  is left  undeveloped  as speculation,  and highlighted  for further  research  to more
rigorously identify, or not, the large modules within the course structure of the education
system as representing transdisciplines  based on common ideological  frameworks  and
constraints (Kline 1995: ch. 2-5 & 3-7).

The results of this subsubsection indicate the course network is inherently modu-
lar (Q ≈ 0.84).  The 'bottom-up', or internalist perspective portrays the university as an
organization  of modules at different scales.   The first divisions roughly correspond to
some of the largest faculties, the smallest divisions often carve out a single subject or a
few closely  related  ones,  and intermediate  divisions  which likely  deserve some more
attentive study.  In §4.1.1.2 Node Degree Distribution, the course network is shown to
probably be a scale-free network (a ≈ 2.41), thus producing two conclusions which at
first seem to be exclusive.  However, Almaas & Barabasi (2006) discuss how these two
important and independent concepts can coexist without paradox in "hierarchical scale-
free  networks",  wherein  modules  themselves  combine  into  each  other  in  a  hierarchy
(Ravasz  & Barabasi  2003).   This indicates  that the education  network  is  not just  the
coexistence  of  relatively  independent  groups  of  nodes  nor  a  well  integrated  whole.
Instead, there are many small modules that combine to form larger, possibly less cohe-
sive groups,  which combine again and again to form even larger "metacommunities",
thus maintaining a somewhat self-similar, scale-free structure (Pollner et al. 2006).
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In the recent study of systems characterized  by networks, such as the internet,world-wide web, metabolic networks, food webs, neural networks, and social networks,an important issue that has received considerable attention is the detection and character-ization  of internal  community  structure – the tendency  for the objects  represented  bynodes to divide into groups (Newman 2004c; Danon et al. 2005; Radicchi et al. 2004;Karrer et al. 2008, Bray 2003).  A sensible way of interpreting our complex world is totry to identify subunits in it and to map the interactions between these parts.  In manysystems, it is possible to define subunits in such a way that the network of their interac-tions provides a simple but still informative representation of the system (Farkas et al.2004).   Here,  a  subnetwork  is  considered  a  community,  or  module,  if  comprised  ofdensely connected nodes only sparsely connected to the rest of the network (see Figure4.1.2.2-1).  Generally, the ability to detect and identify such groups of nodes is of signifi-cant practical importance because they often correspond to some sort of functional unit(Arenas et al. 2007; Eakin 2004).  For instance, groups within the worldwide web corre-spond to sets of web pages on related topics (Clauset et al. 2004; Capocci et al. 2008),and, groups within social networks correspond to tight social units or cliques (Girvan &Newman  2002).   In  education,  as  illustrated  in  §4.1.2.1  Community  Structure  -  TopDown, there are already names for courses and their collections:  each course belongs toa subject  (eg.  MATH or STAT), is  administered  by a department  (eg.  Department  ofPhilosophy), and falls within a faculty (eg. Faculty of Nursing).  But, in what manner dothe 'natural' groupings of the course nodes based on algorithms studying course related-ness  through network  structure  correspond  to these administrative  rubrics  assigned  tocourses?
Newman & Girvan (2004) explain how well a network is subdivided into subnet-

work  communities  by  employing  a  metric  called  modularity,  with  the  symbol  Q
(remember,  the size of the network, or total number of links is already assigned to the
symbol M, while m is used as the associated counter).  To quantify the strength of com-
munity structure they measure the fraction of links in a network that connect nodes in
the same community,  less the fraction of links that you would expect among the same
nodes if the links were randomly attached with no compelling overall internal structure,
that is, let Q = (fraction of edges within modules) - (fraction of edges expected within
modules assuming the network is randomly connected).  If the number of within-commu-
nity links is no better than random, then the modularity is calculated to be small, Q Ø 0,
while  networks  with  strong  community  structure  score  higher,  Q  Ø  1.   Newman  &
Girvan report Q values for modular networks "typically fall in the range from about 0.3
to 0.7. Higher values are rare."  More detailed mathematics regarding the definition of
the modularity metric is set forth in Attachment 9.3 Supplementary Equations 4.1.2.2a,
for the interested reader.

While the modularity metric, Q, is straightforward conceptually and mathemati-
cally, it relies on the network communities as known inputs.  Though groups of course
nodes may be pre-identified by some external standard,  say, faculty membership as in
the previous subsubsection, recognizing communities from an unbiased, structural point
of view is a sophisticated challenge because there are so many possible partitions of a
complex network.  Danon et al.(2005) detail the efforts of physics researchers in recent
years to detect and quantify community structure in networks, which include centrality
measures, flow models, and random walks.  If the number and sizes of the communities
is variable,  then searching for the optimal partition which exhaustively maximizes the
modularity  score  for a large network  is  computationally  intractable.   An approximate
technique, one which generates good, but not provably perfect, partitions of the network
into  communities  that  increase  the  modularity  score,  Q,  is  introduced  by  Newman
(2006a & 2006b).  It is based on an expression of the modularity metric (function) in
matrix terms.  This permits modularity improving, community  identifying divisions of
the network to be formulated and optimized as a spectral problem in linear algebra (Goh
2001).  Practically, it comes down to computing eigenvectors of a modified version of
the network's adjacency matrix, , to detect the community boundaries.  More detailed
mathematics  regarding  the partitioning  of the network  in an attempt  to maximize  the
modularity metric is set forth in Attachment 9.3 Supplementary Equations 4.1.2.2b, for
the interested reader.
 

Newman's eigenvector partition method is incorporated into the program, Calen-
dar Navigator.  Its implementation leads to the division of the course network into two
separate  communities  that  increase  the modularity  score,  Q.   Community  structure  is
revealed by choosing the best partition of the network in terms of communities,  in the
sense  of  groups  of  nodes  that  are  more  intraconnected  rather  than  interconnected
between them.  But, for reasons not considered here (see references) such a division is
only considered approximate; that is, the method will fail to find optimum partitions in
some cases.  After a first pass over the network, the spectral approach provides a broad
picture of the general shape a division should take, but there is often room for improve-
ment.  So a secondary, computationally expensive, brute-force algorithm iteratively and
exhaustively swaps individual nodes between communities until the effort to refine the
community  boundaries and increase modularity fails to progress for any node.  There-
fore, at least a local maximum reachable by single node switches is found for the modu-
larity score given the starting point provided by the spectral method plus any community
membership  changes  ensuing  from the  refinement  step.   The two-stage  approach  for
determining each partition as implemented for this subsubsection is detailed in Attach-
ment 9.4 Program Code 4.1.2.2, for the interested reader.

The sophisticated procedure to split the course network into structurally  deter-
mined communities  can be iterated and repeatedly applied, first to the whole network,
and then to the resulting subnetworks, and so on until no further splits of any portion of
the network results  in an increase in the modularity  score,  Q.   All  remaining  subnet-
works are thoroughly connected internally, and are recognized as indivisible communi-
ties or modules.  Since the first split results in the greatest increase in modularity, and all
further splits follow in a generally diminishing chain, the output of the cleaving method
is usefully interpreted as a dendrogram – a tree-like diagram used to illustrate the hierar-
chical arrangement of clusters in a system (see Figure 4.1.2.2-2 for a simple example).
Since the course network is so large and complex, the dendrogram describing the hierar-
chical structure of the communities is rather complicated; but, with a certain investment
of time and study, many new and rich insights into the structure of the course network
are possible (see Figure 4.1.2.2-3), only some of which are described in this thesis.

One obvious fact gathered by counting the terminal branches of the dendrogram
illustrating  the  hierarchical  grouping  of  course  nodes,  is  that  the  course  network  is
composed of 86 indivisible modules at the finest, most sensitive level.  The structurally
determined course communities  vary significantly  in size and composition.   While 56
courses is the average, the largest module contains some 818 courses mostly from the
Faculty of Arts, while the smallest is formed by just two Recreation and Leisure Studies
courses:  RLS 441 (¯3),  Practicum Seminar,  and RLS 449 (¯12),  Professional  Practi-
cum, which are designed to be taken exclusively together, as stated in the description of
RLS 449: "Fourteen weeks of professional experience in full-time placement.  Must be
taken concurrently with RLS 441. Students will not be allowed to register in any other
course in conjunction with RLS 441/449 unless approved by the Practicum Supervisor."
All indivisible modules at the terminal ends of the dendrogram have the property that if
further split,  or if joined together,  then the modularity  score for the entire course net-
work would decrease.

Many  of  the  smaller,  and  even  some  of  the  larger  modules  contain  but  one
course type, confirming, not surprisingly, that structural modules are, in some manner, a
function of subjects.  For example, MUSIC courses are almost all found together in an
exclusive,  single,  large  community  (sixth  bar  from top  in  Figure  4.1.2.2-3).   On the
other hand, the course type, WKEXP, is spread among nine of the modules.  But "work
experience" is not really a subject but more a processes, and these type of courses are
offered by many of the larger faculties for students coming from multitudinous subjects.
Two interdisciplinary subjects, Earth and Atmospheric Science (EAS) and Environmen-
tal and Conservation Science (ENCS), each populate six or more modules.  In general, a
qualitative accounting of course distribution indicates those subjects often considered to
be focused and specialized end up in fewer, less diverse structural cliques than broadly
based interdisciplinary subjects.

After  the  largest  eight  (or  so)  divisions  of  the  network,  modularity  improves
only  marginally  for  any  further  single  division.   This  means  important,  wide-scale
modular structures of the education system are revealed in these first divisions and they
deserve some consideration.   Figure 4.1.2.2-4 is an attempt to communicate  the major
structurally defined divisions in the course network.   The first nine modules identified
by algorithms that scrutinize structural  relatedness are separated by color and overlaid
on the network map of courses.  Qualitatively speaking, several communities among the
University course nodes look similar to the 'top down' divisions based on Faculty mem-
bership  (compare  to  Figure  3.1.2-5).   Most  of  the  nonacademic  School  courses
(especially RAP) are isolated from the rest of the school system into their own module
at this early stage.  Many academic high school courses are pulled away from the two
school based modules (Ê & Ê) and subsumed into University based knowledge commu-
nities.  That is, among academic high school courses, membership in knowledge commu-
nities  based  on  subject  is  generally  more  important  than  the  administrative  division
between School and University.  Courses from the Faculty of Science do not make up a
majority of any of the largest nine modules; instead the Science nodes are split among
communities dominated by nodes from some other Faculty.

Despite the large size of the adjacency matrix and the many resulting significant
eigenvectors,  the spectral methods used in this section execute quickly (in a matter of
hours) on the Numerical  and Statistical  Servers of AICT at the U. of A..  More time
consuming  is  the  refinement  process  (a  matter  of  weeks)  which  often  improves  the
change in modularity score of each partition by up to 5% compared to spectral methods
alone.  The modularity score for the course network is ultimately calculated to be Q ≈
0.84, which is greater than the typical range reported by Newman & Girvan (2004) and
very near the top of modularity  scores reported by Newman (2006b);  thus, courses in
Alberta appear in the broader context of networked systems to be uncommonly modular.
That is, identifiable course communities are more isolated from each other than commu-
nities normally comprising other types of networks, such as, say, a biological regulatory
network (Broderick, Fuite, et al. 2010, Ravasz et al. 2002) or a coauthorship network of
scientists (Newman 2001b, Ramasco et al. 2004).

The ability to detect community structure in the course network adds insight for
thinking  about  education and could clearly  have practical  applications.   For example,
knowledge-based  course  communities  might  be confirmed  to  well  represent  real  sub-
jects  as  presently  defined;  or,  perhaps  a tightly  bound,  indivisible  module  of courses
from several  subjects compels its recognition as a unified subject in its own right; or,
maybe a significant structural split indicates there is enough divergence within a subject
to warrant its fission into two subjects.  Being able to objectively identify these knowl-
edge-based communities  could inform administrators  to help understand,  place, group,
and manage these course subnetworks more effectively.  Consider how the question of
knowledge  cohesion  among  courses  within  the  same  department  may  be  examined
structurally.   For  instance,  is  there any unity among the courses  of different  subjects
within the Department  of English and Film Studies,  the Department  of Electrical  and
Computer  Engineering,  or  the  Department  of  Mathematical  and  Statistical  Sciences?
Or, are there deep fissures between the courses of different modules, and does this have
implications for administration structures and whether or not some departments ought to
be split?  Are their groups of courses that could be merged into one department consider-
ing their cohesive knowledge?  Due to practical time constraints, specific questions such
as these are not answered in this thesis but are pointed out as well posed and answerable
through more detailed research using results from the introduced modularity methods.

Besides administrators, education and other social science researchers could use
a modular breakdown of courses to search within identified communities for the kind of
knowledge maintaining  their connectedness  or hypothesize specific  social mechanisms
underlying community formation.  For example, the Faculty of Graduate Studies (2001)
considers  transdisciplinary  research  to  be  "held  together  by  a  common  ideological
framework", concerning knowledge which is in some sense between, across, and beyond
each individual discipline as defined ('top down') by administration.  So a strong transdis-
cipline  might  appear  in the education  system as a structurally  distinct  subnetwork  of
courses based on the shared knowledge of an underlying framework, stance, or commu-
nity practice.  Inspection of modules IV, V, VI, & VII in Figure 4.1.2.2-4, indicates they
may be candidates for this type of interpretation.  For instance, module V (Ê) contains
almost the entire Faculty of Medicine and Dentistry, plus much of the Faculty of Agricul-
ture, Forestry, and Home Economics, along with supporting courses from subjects in the
Faculty of Science, such as, Biology, Botany, Chemistry,  Genetics, Microbiology,  and
Zoology  (see  also  Figure  4.1.2.2-3  bar  chart  and  subject  list  for  composition);  so  it
tentatively appears as though this module is founded on a some kind of reductive, evolu-
tionary, and bio-chemically based "way of knowing" (Moore 1993: Parts One & Two).
Module VI (Ê) is comprised of almost the entire Faculty of Engineering in a community
along with supporting courses from subjects  in the Faculty of Science, such as, Com-
puter Science, Earth and Atmospheric Science, Mathematics, Statistics, and Physics; so
perhaps it could be argued this module is centered on abstract,  mathematical,  rational,
and mechanistic  ways of knowing.   Almost  the entire Faculty  of Business  is isolated
within Module VII (Ê) along with supporting  courses from subjects  in the Faculty of
Arts (for example,  Economics,  English,  and Psychology)  and even the Faculty of Sci-
ence (for example, Mathematics and Statistics); so maybe this module commonly relies
on, say, macroscopic,  managerial,  and socio-statistical  ways of knowing.  And finally,
module IV (Á white) interestingly contains almost all the courses of both Nursing and
Native Studies.   Without overstating the hypothesis,  perhaps the underlying transdisci-
pline (if it exists) is founded on some form of paradigm with characteristic  aspects of
holism,  caring,  and  preservation  (Watson  2008:  ch.  1;  Leininger  1984;  Berkes  1993;
Witt 2007).  Because the topic of transdisciplinarity appears to the author of the thesis as
ill-defined in the literature (for example, Klein et al. 2001 or Mitrany & Stokols 2005)
or championed by radical, 'far out' authors (for example, Nicolescu 2002 & 2008), the
topic  is left  undeveloped  as speculation,  and highlighted  for further  research  to more
rigorously identify, or not, the large modules within the course structure of the education
system as representing transdisciplines  based on common ideological  frameworks  and
constraints (Kline 1995: ch. 2-5 & 3-7).

The results of this subsubsection indicate the course network is inherently modu-
lar (Q ≈ 0.84).  The 'bottom-up', or internalist perspective portrays the university as an
organization  of modules at different scales.   The first divisions roughly correspond to
some of the largest faculties, the smallest divisions often carve out a single subject or a
few closely  related  ones,  and intermediate  divisions  which likely  deserve some more
attentive study.  In §4.1.1.2 Node Degree Distribution, the course network is shown to
probably be a scale-free network (a ≈ 2.41), thus producing two conclusions which at
first seem to be exclusive.  However, Almaas & Barabasi (2006) discuss how these two
important and independent concepts can coexist without paradox in "hierarchical scale-
free  networks",  wherein  modules  themselves  combine  into  each  other  in  a  hierarchy
(Ravasz  & Barabasi  2003).   This indicates  that the education  network  is  not just  the
coexistence  of  relatively  independent  groups  of  nodes  nor  a  well  integrated  whole.
Instead, there are many small modules that combine to form larger, possibly less cohe-
sive groups,  which combine again and again to form even larger "metacommunities",
thus maintaining a somewhat self-similar, scale-free structure (Pollner et al. 2006).
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In the recent study of systems characterized  by networks, such as the internet,world-wide web, metabolic networks, food webs, neural networks, and social networks,an important issue that has received considerable attention is the detection and character-ization  of internal  community  structure – the tendency  for the objects  represented  bynodes to divide into groups (Newman 2004c; Danon et al. 2005; Radicchi et al. 2004;Karrer et al. 2008, Bray 2003).  A sensible way of interpreting our complex world is totry to identify subunits in it and to map the interactions between these parts.  In manysystems, it is possible to define subunits in such a way that the network of their interac-tions provides a simple but still informative representation of the system (Farkas et al.2004).   Here,  a  subnetwork  is  considered  a  community,  or  module,  if  comprised  ofdensely connected nodes only sparsely connected to the rest of the network (see Figure4.1.2.2-1).  Generally, the ability to detect and identify such groups of nodes is of signifi-cant practical importance because they often correspond to some sort of functional unit(Arenas et al. 2007; Eakin 2004).  For instance, groups within the worldwide web corre-spond to sets of web pages on related topics (Clauset et al. 2004; Capocci et al. 2008),and, groups within social networks correspond to tight social units or cliques (Girvan &Newman  2002).   In  education,  as  illustrated  in  §4.1.2.1  Community  Structure  -  TopDown, there are already names for courses and their collections:  each course belongs toa subject  (eg.  MATH or STAT), is  administered  by a department  (eg.  Department  ofPhilosophy), and falls within a faculty (eg. Faculty of Nursing).  But, in what manner dothe 'natural' groupings of the course nodes based on algorithms studying course related-ness  through network  structure  correspond  to these administrative  rubrics  assigned  tocourses?Newman & Girvan (2004) explain how well a network is subdivided into subnet-work  communities  by  employing  a  metric  called  modularity,  with  the  symbol  Q(remember,  the size of the network, or total number of links is already assigned to thesymbol M, while m is used as the associated counter).  To quantify the strength of com-munity structure they measure the fraction of links in a network that connect nodes inthe same community,  less the fraction of links that you would expect among the samenodes if the links were randomly attached with no compelling overall internal structure,that is, let Q = (fraction of edges within modules) - (fraction of edges expected withinmodules assuming the network is randomly connected).  If the number of within-commu-nity links is no better than random, then the modularity is calculated to be small, Q Ø 0,while  networks  with  strong  community  structure  score  higher,  Q  Ø  1.   Newman  &Girvan report Q values for modular networks "typically fall in the range from about 0.3to 0.7. Higher values are rare."  More detailed mathematics regarding the definition ofthe modularity metric is set forth in Attachment 9.3 Supplementary Equations 4.1.2.2a,for the interested reader.While the modularity metric, Q, is straightforward conceptually and mathemati-cally, it relies on the network communities as known inputs.  Though groups of coursenodes may be pre-identified by some external standard,  say, faculty membership as inthe previous subsubsection, recognizing communities from an unbiased, structural pointof view is a sophisticated challenge because there are so many possible partitions of acomplex network.  Danon et al.(2005) detail the efforts of physics researchers in recentyears to detect and quantify community structure in networks, which include centralitymeasures, flow models, and random walks.  If the number and sizes of the communitiesis variable,  then searching for the optimal partition which exhaustively maximizes themodularity  score  for a large network  is  computationally  intractable.   An approximatetechnique, one which generates good, but not provably perfect, partitions of the networkinto  communities  that  increase  the  modularity  score,  Q,  is  introduced  by  Newman(2006a & 2006b).  It is based on an expression of the modularity metric (function) inmatrix terms.  This permits modularity improving, community  identifying divisions ofthe network to be formulated and optimized as a spectral problem in linear algebra (Goh2001).  Practically, it comes down to computing eigenvectors of a modified version ofthe network's adjacency matrix, , to detect the community boundaries.  More detailedmathematics  regarding  the partitioning  of the network  in an attempt  to maximize  themodularity metric is set forth in Attachment 9.3 Supplementary Equations 4.1.2.2b, forthe interested reader. Newman's eigenvector partition method is incorporated into the program, Calen-dar Navigator.  Its implementation leads to the division of the course network into twoseparate  communities  that  increase  the modularity  score,  Q.   Community  structure  isrevealed by choosing the best partition of the network in terms of communities,  in thesense  of  groups  of  nodes  that  are  more  intraconnected  rather  than  interconnectedbetween them.  But, for reasons not considered here (see references) such a division is
only considered approximate; that is, the method will fail to find optimum partitions in
some cases.  After a first pass over the network, the spectral approach provides a broad
picture of the general shape a division should take, but there is often room for improve-
ment.  So a secondary, computationally expensive, brute-force algorithm iteratively and
exhaustively swaps individual nodes between communities until the effort to refine the
community  boundaries and increase modularity fails to progress for any node.  There-
fore, at least a local maximum reachable by single node switches is found for the modu-
larity score given the starting point provided by the spectral method plus any community
membership  changes  ensuing  from the  refinement  step.   The two-stage  approach  for
determining each partition as implemented for this subsubsection is detailed in Attach-
ment 9.4 Program Code 4.1.2.2, for the interested reader.

The sophisticated procedure to split the course network into structurally  deter-
mined communities  can be iterated and repeatedly applied, first to the whole network,
and then to the resulting subnetworks, and so on until no further splits of any portion of
the network results  in an increase in the modularity  score,  Q.   All  remaining  subnet-
works are thoroughly connected internally, and are recognized as indivisible communi-
ties or modules.  Since the first split results in the greatest increase in modularity, and all
further splits follow in a generally diminishing chain, the output of the cleaving method
is usefully interpreted as a dendrogram – a tree-like diagram used to illustrate the hierar-
chical arrangement of clusters in a system (see Figure 4.1.2.2-2 for a simple example).
Since the course network is so large and complex, the dendrogram describing the hierar-
chical structure of the communities is rather complicated; but, with a certain investment
of time and study, many new and rich insights into the structure of the course network
are possible (see Figure 4.1.2.2-3), only some of which are described in this thesis.

One obvious fact gathered by counting the terminal branches of the dendrogram
illustrating  the  hierarchical  grouping  of  course  nodes,  is  that  the  course  network  is
composed of 86 indivisible modules at the finest, most sensitive level.  The structurally
determined course communities  vary significantly  in size and composition.   While 56
courses is the average, the largest module contains some 818 courses mostly from the
Faculty of Arts, while the smallest is formed by just two Recreation and Leisure Studies
courses:  RLS 441 (¯3),  Practicum Seminar,  and RLS 449 (¯12),  Professional  Practi-
cum, which are designed to be taken exclusively together, as stated in the description of
RLS 449: "Fourteen weeks of professional experience in full-time placement.  Must be
taken concurrently with RLS 441. Students will not be allowed to register in any other
course in conjunction with RLS 441/449 unless approved by the Practicum Supervisor."
All indivisible modules at the terminal ends of the dendrogram have the property that if
further split,  or if joined together,  then the modularity  score for the entire course net-
work would decrease.

Many  of  the  smaller,  and  even  some  of  the  larger  modules  contain  but  one
course type, confirming, not surprisingly, that structural modules are, in some manner, a
function of subjects.  For example, MUSIC courses are almost all found together in an
exclusive,  single,  large  community  (sixth  bar  from top  in  Figure  4.1.2.2-3).   On the
other hand, the course type, WKEXP, is spread among nine of the modules.  But "work
experience" is not really a subject but more a processes, and these type of courses are
offered by many of the larger faculties for students coming from multitudinous subjects.
Two interdisciplinary subjects, Earth and Atmospheric Science (EAS) and Environmen-
tal and Conservation Science (ENCS), each populate six or more modules.  In general, a
qualitative accounting of course distribution indicates those subjects often considered to
be focused and specialized end up in fewer, less diverse structural cliques than broadly
based interdisciplinary subjects.

After  the  largest  eight  (or  so)  divisions  of  the  network,  modularity  improves
only  marginally  for  any  further  single  division.   This  means  important,  wide-scale
modular structures of the education system are revealed in these first divisions and they
deserve some consideration.   Figure 4.1.2.2-4 is an attempt to communicate  the major
structurally defined divisions in the course network.   The first nine modules identified
by algorithms that scrutinize structural  relatedness are separated by color and overlaid
on the network map of courses.  Qualitatively speaking, several communities among the
University course nodes look similar to the 'top down' divisions based on Faculty mem-
bership  (compare  to  Figure  3.1.2-5).   Most  of  the  nonacademic  School  courses
(especially RAP) are isolated from the rest of the school system into their own module
at this early stage.  Many academic high school courses are pulled away from the two
school based modules (Ê & Ê) and subsumed into University based knowledge commu-
nities.  That is, among academic high school courses, membership in knowledge commu-
nities  based  on  subject  is  generally  more  important  than  the  administrative  division
between School and University.  Courses from the Faculty of Science do not make up a
majority of any of the largest nine modules; instead the Science nodes are split among
communities dominated by nodes from some other Faculty.

Despite the large size of the adjacency matrix and the many resulting significant
eigenvectors,  the spectral methods used in this section execute quickly (in a matter of
hours) on the Numerical  and Statistical  Servers of AICT at the U. of A..  More time
consuming  is  the  refinement  process  (a  matter  of  weeks)  which  often  improves  the
change in modularity score of each partition by up to 5% compared to spectral methods
alone.  The modularity score for the course network is ultimately calculated to be Q ≈
0.84, which is greater than the typical range reported by Newman & Girvan (2004) and
very near the top of modularity  scores reported by Newman (2006b);  thus, courses in
Alberta appear in the broader context of networked systems to be uncommonly modular.
That is, identifiable course communities are more isolated from each other than commu-
nities normally comprising other types of networks, such as, say, a biological regulatory
network (Broderick, Fuite, et al. 2010, Ravasz et al. 2002) or a coauthorship network of
scientists (Newman 2001b, Ramasco et al. 2004).

The ability to detect community structure in the course network adds insight for
thinking  about  education and could clearly  have practical  applications.   For example,
knowledge-based  course  communities  might  be confirmed  to  well  represent  real  sub-
jects  as  presently  defined;  or,  perhaps  a tightly  bound,  indivisible  module  of courses
from several  subjects compels its recognition as a unified subject in its own right; or,
maybe a significant structural split indicates there is enough divergence within a subject
to warrant its fission into two subjects.  Being able to objectively identify these knowl-
edge-based communities  could inform administrators  to help understand,  place, group,
and manage these course subnetworks more effectively.  Consider how the question of
knowledge  cohesion  among  courses  within  the  same  department  may  be  examined
structurally.   For  instance,  is  there any unity among the courses  of different  subjects
within the Department  of English and Film Studies,  the Department  of Electrical  and
Computer  Engineering,  or  the  Department  of  Mathematical  and  Statistical  Sciences?
Or, are there deep fissures between the courses of different modules, and does this have
implications for administration structures and whether or not some departments ought to
be split?  Are their groups of courses that could be merged into one department consider-
ing their cohesive knowledge?  Due to practical time constraints, specific questions such
as these are not answered in this thesis but are pointed out as well posed and answerable
through more detailed research using results from the introduced modularity methods.

Besides administrators, education and other social science researchers could use
a modular breakdown of courses to search within identified communities for the kind of
knowledge maintaining  their connectedness  or hypothesize specific  social mechanisms
underlying community formation.  For example, the Faculty of Graduate Studies (2001)
considers  transdisciplinary  research  to  be  "held  together  by  a  common  ideological
framework", concerning knowledge which is in some sense between, across, and beyond
each individual discipline as defined ('top down') by administration.  So a strong transdis-
cipline  might  appear  in the education  system as a structurally  distinct  subnetwork  of
courses based on the shared knowledge of an underlying framework, stance, or commu-
nity practice.  Inspection of modules IV, V, VI, & VII in Figure 4.1.2.2-4, indicates they
may be candidates for this type of interpretation.  For instance, module V (Ê) contains
almost the entire Faculty of Medicine and Dentistry, plus much of the Faculty of Agricul-
ture, Forestry, and Home Economics, along with supporting courses from subjects in the
Faculty of Science, such as, Biology, Botany, Chemistry,  Genetics, Microbiology,  and
Zoology  (see  also  Figure  4.1.2.2-3  bar  chart  and  subject  list  for  composition);  so  it
tentatively appears as though this module is founded on a some kind of reductive, evolu-
tionary, and bio-chemically based "way of knowing" (Moore 1993: Parts One & Two).
Module VI (Ê) is comprised of almost the entire Faculty of Engineering in a community
along with supporting courses from subjects  in the Faculty of Science, such as, Com-
puter Science, Earth and Atmospheric Science, Mathematics, Statistics, and Physics; so
perhaps it could be argued this module is centered on abstract,  mathematical,  rational,
and mechanistic  ways of knowing.   Almost  the entire Faculty  of Business  is isolated
within Module VII (Ê) along with supporting  courses from subjects  in the Faculty of
Arts (for example,  Economics,  English,  and Psychology)  and even the Faculty of Sci-
ence (for example, Mathematics and Statistics); so maybe this module commonly relies
on, say, macroscopic,  managerial,  and socio-statistical  ways of knowing.  And finally,
module IV (Á white) interestingly contains almost all the courses of both Nursing and
Native Studies.   Without overstating the hypothesis,  perhaps the underlying transdisci-
pline (if it exists) is founded on some form of paradigm with characteristic  aspects of
holism,  caring,  and  preservation  (Watson  2008:  ch.  1;  Leininger  1984;  Berkes  1993;
Witt 2007).  Because the topic of transdisciplinarity appears to the author of the thesis as
ill-defined in the literature (for example, Klein et al. 2001 or Mitrany & Stokols 2005)
or championed by radical, 'far out' authors (for example, Nicolescu 2002 & 2008), the
topic  is left  undeveloped  as speculation,  and highlighted  for further  research  to more
rigorously identify, or not, the large modules within the course structure of the education
system as representing transdisciplines  based on common ideological  frameworks  and
constraints (Kline 1995: ch. 2-5 & 3-7).

The results of this subsubsection indicate the course network is inherently modu-
lar (Q ≈ 0.84).  The 'bottom-up', or internalist perspective portrays the university as an
organization  of modules at different scales.   The first divisions roughly correspond to
some of the largest faculties, the smallest divisions often carve out a single subject or a
few closely  related  ones,  and intermediate  divisions  which likely  deserve some more
attentive study.  In §4.1.1.2 Node Degree Distribution, the course network is shown to
probably be a scale-free network (a ≈ 2.41), thus producing two conclusions which at
first seem to be exclusive.  However, Almaas & Barabasi (2006) discuss how these two
important and independent concepts can coexist without paradox in "hierarchical scale-
free  networks",  wherein  modules  themselves  combine  into  each  other  in  a  hierarchy
(Ravasz  & Barabasi  2003).   This indicates  that the education  network  is  not just  the
coexistence  of  relatively  independent  groups  of  nodes  nor  a  well  integrated  whole.
Instead, there are many small modules that combine to form larger, possibly less cohe-
sive groups,  which combine again and again to form even larger "metacommunities",
thus maintaining a somewhat self-similar, scale-free structure (Pollner et al. 2006).

Figure  4.1.2.2-1   Three  communi-
tites of nodes in a toy network.  The
nodes  of  some  networks  fall  natu-
rally  into  structural  communities,  or
modules,  subsets  of  nodes  (shaded)
within which there are many internal
links  compared  to  links  between
nodes of different modules.

Figure 4.1.2.2-2   A dendrogram of a
toy  system.   The  resolution  of  a
system  into  its  constituents  can  be
shown  as  a  dendrogram  to  reveal
heirarchical  relationships  based  on
structure.   Dendrograms  are  similar
to  cladograms  used  in  biology  to
show  ancestral  relations  between
organisms.
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Figure 4.1.2.2-3  A dendrogram showing the hierarchical grouping of course nodes.
Improvements in the modularity score (DQ) for the network due to a particular split
into two subnetworks is indicated by the length of the horizontal line (A) preceding a
bifurcation (B) of the dendrogram.  The magnitude of the very first split is not indi-
cated since the initial approaching branch from the left is trimmed away to improve
the horizontal scale.  The change in modularity score for some splits to the network
is quite small,  as indicated by short  horizontal  lines preceding a bifurcation  in the
dendrogram (eg.  C1 & C2).   Since modularity  is a function of the size of subnet-
works, a small change in modularity  may result from the identification and separa-
tion of structurally  isolated,  but small,  subnetworks  from larger subnetworks  (C1),
or, a small change in modularity  may result from the separation of two larger, but
vaguely  modular  subnetworks  from  each  other  (C2).   Ultimately,  the  modularity
score is the total of changes in modularity due to all of the splits: Q = S DQi .  The
visual analog is the sum of all horizontal  line lengths preceding bifurcations.   The
size of each indivisible module is indicated at the termini by horizontal bars forming
a vertical  chart.   The  bar  colors  correspond  to  the  faculty  membership  of  course
nodes comprising each module.  The union of standard abbreviated subject names for
courses comprising each structural community are listed.
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tion of structurally  isolated,  but small,  subnetworks  from larger subnetworks  (C1),
or, a small change in modularity  may result from the separation of two larger, but
vaguely  modular  subnetworks  from  each  other  (C2).   Ultimately,  the  modularity
score is the total of changes in modularity due to all of the splits: Q = S DQi .  The
visual analog is the sum of all horizontal  line lengths preceding bifurcations.   The
size of each indivisible module is indicated at the termini by horizontal bars forming
a vertical  chart.   The  bar  colors  correspond  to  the  faculty  membership  of  course
nodes comprising each module.  The union of standard abbreviated subject names for
courses comprising each structural community are listed.

Figure 4.1.2.2-4 (below)  The first nine modules identified by algorithms that scruti-
nize structural relatedness.  Each module is colored to reflect a major faculty member-
ship where possible, and numbered (I, II, III, ..., IX).  All the course nodes of each
module  are  assigned  that  color  (compare  to  Figure  3.1.2-5).   Also,  a  pie  chart,
marked with a color matching outer ring (Á, Á, Á, or Á for example), is associated
with each module to accurately  indicate the faculty membership  of the constituent
courses.  The nodes representing School are mostly split into two major modules (Ê
& Ê); the largest, lower module (Ê) being comprised mostly of nonacademic, RAP,
courses.  Many academic school nodes have been incorporated into modules domi-
nated by university courses.  Most of the major faculties dominate at least one of the
emerging modules, thus indicating the highest scale of knowledge structures seem to
align closely with the top down distinctions of University Faculties.   Though some
Faculties, such as Business, Native Studies, and Physical Education do not appear as
separate identifiable modules before both School (Ê & Ê) and the Faculty of Arts (Ê
& Ê) each split into two modules.  This indicates there is more substructure within
School  and within  the  Faculty  of  Arts  than there  is  structural  separation  between
some  other  Faculties.   Moreover,  the  Faculty  of  Science  is  shredded,  with  major
components ending up as part of modules dominated by Engineering (Ê), Medicine
(Ê), and Agriculture, Forestry, & Home Economics (Ê).  Interested readers can view
the step-by-step development of the early hierarchical modular organization in Attach-
ment 9.1 Supplementary Figures 4.1.2.2-4a, b, c, d, e, f, g, & h.

125



SCHOOL

AH
EN

MH

SC

SCHOOL

EN

SC

ENNS

NU

AH
AR

PE

AH

SC

AH

AR

BC

SC

AR

SCHOOL

I

II

III

IV

V

VI

VII

VIII

IX

K

1

2

3
4

5 6

8
academic

School

nonacademic
School

RAP

Arts

BusinessEngineering

Med
Dent

IOP
CTS

0.0 0.2 0.4 0.6 0.8 1.0

Link Strength

126



ü 4.1.2.3  Offdiagonal Complexity

How complex  or simple a structure  is  depends  critically  upon the
way in which we describe it. Most of the complex structures found in
the world  are  enormously  redundant,  and  we can use  this  redun-
dancy  to  simplify  their  description.  But  to  use  it,  to  achieve  the
simplification, we must find the right representation.

Simon, H. A. (1962) The Architecture of Complexity,  Proceedings
of the American Philosophical  Society, December,  106(6):  p.
481.

A  common  criticism  of  earlier  quantitative  theorizing  in  education  is  that  it
tended to offer and use simplistic linear models and metaphors to describe phenomena
that are patently complex (Davis & Sumara 2006: ch. 3).  Networks are introduced in
this thesis as flexible and sophisticated enough to begin to capture important aspects of
complex  systems.   When  applied  to  the  course  structure  of  the  education  system in
Alberta, the network is expected to reflect the complexity of the underlying system in
some hopefully measurable  way.  Networks derived from a vast variety of biological,
social,  and  economical  research  show  topologies  drastically  differing  from  random
networks or regular networks, such as simple chains or lattices (Yang & Knoke 2001;
Watts & Strogatz 1998; Motter et al. 2002).  Metabolic and other biological networks,
collaboration  networks,  www,  internet,  etc.,  have  in  common  a  distribution  of  link
degrees which follows a power law, and thus has no inherent scale; such networks are
termed "scale-free  networks."   Compared  to random networks,  which have a Poisson
link distribution and thus a characteristic  scale, they share a lot of different properties,
especially  a  tendency  to  possess  internal  modules,  and  a  short  average  path  length.
Together,  the results of §4.1.1.2,  §4.1.1.5,  and §4.1.2.2 reveal the course network as a
whole to be modular,  small-world,  and scale-free,  and thus included among other net-
works  resulting  from  complex  systems.   However,  the  question  of  complexity  of  a
network itself is still in its infancy with only a handful of academic papers on the sub-
ject.  Common among the papers that do exist on the topic is an aesthetic appeal to the
notion  that  complex  networks  should not  resemble  random arrangements  or have the
strictly consistent architecture of a lattice, nor be akin to maximally connected complete
networks nor minimally connected chains and star networks.  But, there is still no rigor-
ous proof or even a consensus in the literature about what features are necessary in a
network for it to be characterized as complex, and some further suggest it may be ill-de-
fined  task  (Anastasiadis  et  al.  2005).   Nevertheless,  one  particular  approach  appears
plausible, feasible, and apposite for use in this thesis.  

Claussen  (2007  &  2008)  recently  introduced  a  network  metric,  Offdiagonal
Complexity  (OdC),  as  a  complexity  estimator  for  undirected  binary  networks.   This
network measure is translated into code as part of the program, Calendar Navigator, and
applied  to  departmental  subnetworks  to  estimate  their  relative  complexity.   The  few
other  suggested  complexity  measures  in the literature  themselves  have high computa-
tional complexity (Kim & Wilhelm 2008) and are not considered here given the size of
the entire course network and the required computing resources.  The offdiagonal com-
plexity metric yields a minimal value of zero for a regular lattice, star network, and a
fully connected network,  which is consistent  with other complexity measures  (Kim &
Wilhelm 2008)  where  complex networks  are observed  to have a middling  number of
links,  between the minimum (N  - 1) and the maximum connected  network,  N(N - 1)/2.
What  all  complexity  metrics  have  in  common  is  their  sensitivity  to  diversity  in  the
topology  of the network.   Lattice,  star,  and fully connected  networks,  while different
from one another, lack variety in the connections among their internal elements (review
Figure 2.3.2.1-2 for a reminder).  Understanding how one or two of the individual nodes
of theses networks are linked, directly implies how all the rest of the network is built,
hence, too much regularity reduces complexity (Gell-Mann 1995).  Observing the links
of  one  or  two  individual  nodes  in  a  random network  says  almost  nothing  about  the
particular connectivity of any other nodes, but a significant sample of the nodes places a
well defined probabilistic envelope around the possibilities in the network – the cumula-
tive effect of a large number of random events is highly predictable,  even though the
outcomes of the individual  events are highly unpredictable,  hence,  too much random-
ness  reduces  complexity  (Li  1991).   In accordance,  the OdC  metric  yields low finite
values for a random network,  and higher values for apparently complex networks like
scale free networks.  Specifically, the OdC metric is sensitive to the level of variation or
entropy  exhibited in the relative degree  of adjacent  nodes in the network.   That is, if
nodes are typically connected with other nodes of different degree to themselves,  and
the differences in degree are varied among the nodes, then the network will register as
complex by the OdC metric (see Attachment 9.3 Supplementary Equations 4.1.2.3, for
more formal statements).   For example,  in a random network  described  by a Poisson
degree distribution (see Figure 4.1.1.2-1), most nodes have a degree close to an identifi-
able average, thus limiting the variation of relative degree amongst neighboring nodes
and  consequently  the  offdiagonal  complexity  measure  to  a  low  value.   For  another
example,  consider  how  a  large  (N Ø ¶)  lattice  network  has  no  variation  of  relative
degree amongst identical neighboring nodes, leading to a complexity score of zero.

In their book, Complexity and Education, Davis & Sumara (2003: p.168) write,
"The extent to which curricula reflect emergent worldviews, knowledges, technologies,
and social issues illustrates that formal education is highly dependent on evolving circum-
stances."  A system, such as education, sensitive to, and a function of, "highly evolving
circumstances" must itself be evolving and adaptive, or at least be considered a dynamic
subsystem of an evolving and adaptive system (Bar-Yam 1997).  Many other complex
adaptive systems sensitive to, and evolving with, their environments have structures that
are  often well  modelled  by "complex  networks"  (Ben-Naim et  al.  2004:  entire  book;
Albert  et  al.  2000;  Bar-Yam  & Epstein  2004;  review  §2.3.2).   Such  networks  have
varied properties such as, robustness (Albert et al. 2000; Callaway et al. 2000; Cohen et
al.  2000;  Motter  2004),  stability  (Berlow  1999;  Kalisky  et  al.  2004;  de  Menezes  &
Barabasi  2004),  responsiveness  (Bar-Yam  &  Epstein  2004;  Burt  2000;  Jeong  et  al.
2001; Lai et al. 2004), adaptability (Barrat et al. 2004b; Bergman & Siegal 2003; Bian-
coni  & Barabasi  2001a;  Dereny  et  al.  2004;  Doreian  2002;  Dorogovtsev  & Mendes
2002),  and compactness  (Crossley  2008;  Kleinburg  2000), and are history embedding
(Benner  2001)  and  information  conducting  (Burkhardt  &  Brass  1990;  Donetti  et  al.
2005; Erickson 1996; Lee & Rieger 2006; Pastor-Satorras & Vespignani 2000).  Com-
plex networks  also allow fluid  yet  durable  interactions  with/within  their  architectures
(Willeboordse  2006; Zanette 2001; Watts et al. 2002; Watts 2002) and are usually the
result  of  systems  with  distributed  control  (Gupte  et  al.  2005,  Grabowski  & Kosinski
2006, Holme & Kim 2002).  That is, the structure and connectivity  properties of net-
works,  as well  as the capacities  of their nodes, have important  consequences  for their
capabilities,  and can indicate the mechanisms and constraints of their construction and
the dynamics of their evolution.  Therefore, it is here assumed that departmental course
subnetworks, themselves an aspect of curricula, measured as complex, are produced by
adaptive  and evolving  processes  at  the  level  of  the  department;  alternatively,  course
subnetworks  that  are  not  complex  may be  a result  of  a  static  academic  environment
(re)studying stale knowledge, a maladaptive selection process, or not a result of adaptive
processes  at  all  but  of  arbitrary  design  by centralized  administration  which  Davis  &
Sumara  (2003)  contend  is  steeped  in  the  "linear"  metaphors  surrounding  education
resulting  in what Bell  (1980) describes  as "bureaucratic  consistency,  impartiality,  and
predictability".  

The manifestly structuralist and connectionist view of the university, it's depart-
ments and knowledges, claimed here parallels (but is not dependant on) that of the brain,
its regions and ideas,  held commonly by neurologists  such as DiCicco-Bloom (2006),
who  writes:  "our  most  sophisticated  thoughts  and  feelings  depend  critically  on  the
cellular composition and functional organization of the cerebral cortex.  Indeed, changes
in the  numbers of neurons, their positions within the tissue, and their interconnections
via synapses may underlie a variety of human brain disorders"  (see also, Honey et al.
2007).  Moreover,  just as neuroscience  suggests thoughts are the products of the mind
resulting from a biological process of the brain and the senses interacting with the physi-
cal world (Zull 2002), it is here conjectured the academic knowledge within the educa-
tion  system results  from a  coevolutionary  social  process  of  the  institutions  and  their
members,  such  as  the  teachers,  professors,  and  administrators,  interacting  with  the
physical and social world.  Fleener (2002b) writes, "as a complex adaptive social mean-
ing system, education can be viewed as a school/society manifold", where "the intraca-
cies of meaning evolving from the school/society complex define the educational land-
scapes".   The course networks are offered as specific examples resulting from a "law of
requisite  variety",  whereby  a biological  or social  entity  is  "efficatiously  adaptive",  asreported by McKelvey (2001), when "the variety of its internal order matches the varietyof  the  environmental  constraints."   Hence,  its  here  hypothesized  the  content  of  thecourses plus the order, size, and connectivity  of the departmental  course networks arethe  product  of  adaptive  processes  that  reflect  factors  such  as  decentralized  (or  not)control, the availability of resources (information,  students, money), and the fidelity ofinteractions with the complex world for each department.The  results  from  applying  the  offdiagonal  complexity  metric  to  each  of  theUniversity's departments are recorded in the Attachment on Table 9.2-1, twelfth column,OdC.  Ranked at the very top with the highest complexity (OdC ≈ 2.5) is the Departmentof Biological Sciences;  an apt standing for a modern,  rapidly growing, and influentialarea of study that underlines biology's burgeoning status as the dominant science of ourage†(Dyson 2005).   Given the assumptions  adopted in this subsubsection,  it is specu-lated here the biological sciences presently provide the most powerful paradigms, rele-vant metaphors for meaning, and supplies our society with frameworks for explanations(Maasen  1995)  in  a  coevolutionary  relationship  with  current  "emergent  worldviews,knowledges, technologies, and social issues", beyond all other fields of academic study.The close engagement between biology and the world is reflected in its complex, self-or-ganized knowledge structure at University.  In contrast, at the opposite end of the com-plexity  scale,  a  sizable  department  with  a zero  complexity  score  (OdC  = 0)  is  SaintJoseph's  College,  which is centered  on the study of Christian  theology (University  ofAlberta 2010), "committed to discover, integrate, and disseminate truth, as revealed byGod" in the Bible – a single frozen, exclusive, antique text.  Accordingly, based on itsnetwork  structure,  the  opposite  construal  is  implied.   The  next  least  complex  coursestructures,  among larger departments  with a finite complexity score (0 < OdC  < 1) indescending order are Interdisciplinary  Studies  and Women's  Studies.   Otherwise,  nearthe top just below the Biological Sciences, the departments with the next most complexcourse structures (OdC > 2.2) in descending order are: Psychology, Economics, PoliticalScience,  Linguistics,  Accounting  &  Management  Information  Systems,  Sociology,Chemical and Materials Engineering, and Physics.This subsubsection introduces and applies the offdiagonal complexity metric onAlberta's course network.  It measures and ranks all university departments by the diver-sity of their internal course structure.  By visual inspection of Figure 4.1.2.3-1, there isno compelling, simple correspondence between the offdiagonal complexity score (OdC)for a large University department and its total course credits.  That is, beyond a thresh-old, say ¯50 credits, large departments do not seem to have inherently more complexcourse structures than smaller departments.   Therefore,  among the course subnetworksdefined  by  all  save  the  smallest  University  departments,  offdiagonal  complexity  is  afunction of network topology, not order (number of nodes or total course weight).   Acourse subnetwork with complex architecture  may imply the knowledge of the depart-ment is a consequence of active, adaptive, intimate, and substantial engagement with the"emergent  worldviews,  knowledges,  technologies,  and  social  issues"  of  our  complexworld.  A noncomplex network indicates something is different.  Perhaps the knowledgeof the noncomplex department is a) shielded in some manner from the complex world,b)  has  failed  to  remake  itself  to  provide  enough  relevant  knowledge  for  substantialengagement with the ever changing complex world, or c) has an nonadaptive artificialdesign insensitive to the complex world.___________†  Exemplifying  the  ascendancy  of  biology  over  physics  as  the  dominant  science  inpopular culture, the author laments how the super powers of the latest movie version ofSpider-Man result from the bite of a genetically modified spider and not a radioactiveone as in the early 1960s original.
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A  common  criticism  of  earlier  quantitative  theorizing  in  education  is  that  it
tended to offer and use simplistic linear models and metaphors to describe phenomena
that are patently complex (Davis & Sumara 2006: ch. 3).  Networks are introduced in
this thesis as flexible and sophisticated enough to begin to capture important aspects of
complex  systems.   When  applied  to  the  course  structure  of  the  education  system in
Alberta, the network is expected to reflect the complexity of the underlying system in
some hopefully measurable  way.  Networks derived from a vast variety of biological,
social,  and  economical  research  show  topologies  drastically  differing  from  random
networks or regular networks, such as simple chains or lattices (Yang & Knoke 2001;
Watts & Strogatz 1998; Motter et al. 2002).  Metabolic and other biological networks,
collaboration  networks,  www,  internet,  etc.,  have  in  common  a  distribution  of  link
degrees which follows a power law, and thus has no inherent scale; such networks are
termed "scale-free  networks."   Compared  to random networks,  which have a Poisson
link distribution and thus a characteristic  scale, they share a lot of different properties,
especially  a  tendency  to  possess  internal  modules,  and  a  short  average  path  length.
Together,  the results of §4.1.1.2,  §4.1.1.5,  and §4.1.2.2 reveal the course network as a
whole to be modular,  small-world,  and scale-free,  and thus included among other net-
works  resulting  from  complex  systems.   However,  the  question  of  complexity  of  a
network itself is still in its infancy with only a handful of academic papers on the sub-
ject.  Common among the papers that do exist on the topic is an aesthetic appeal to the
notion  that  complex  networks  should not  resemble  random arrangements  or have the
strictly consistent architecture of a lattice, nor be akin to maximally connected complete
networks nor minimally connected chains and star networks.  But, there is still no rigor-
ous proof or even a consensus in the literature about what features are necessary in a
network for it to be characterized as complex, and some further suggest it may be ill-de-
fined  task  (Anastasiadis  et  al.  2005).   Nevertheless,  one  particular  approach  appears
plausible, feasible, and apposite for use in this thesis.  

Claussen  (2007  &  2008)  recently  introduced  a  network  metric,  Offdiagonal
Complexity  (OdC),  as  a  complexity  estimator  for  undirected  binary  networks.   This
network measure is translated into code as part of the program, Calendar Navigator, and
applied  to  departmental  subnetworks  to  estimate  their  relative  complexity.   The  few
other  suggested  complexity  measures  in the literature  themselves  have high computa-
tional complexity (Kim & Wilhelm 2008) and are not considered here given the size of
the entire course network and the required computing resources.  The offdiagonal com-
plexity metric yields a minimal value of zero for a regular lattice, star network, and a
fully connected network,  which is consistent  with other complexity measures  (Kim &
Wilhelm 2008)  where  complex networks  are observed  to have a middling  number of
links,  between the minimum (N  - 1) and the maximum connected  network,  N(N - 1)/2.
What  all  complexity  metrics  have  in  common  is  their  sensitivity  to  diversity  in  the
topology  of the network.   Lattice,  star,  and fully connected  networks,  while different
from one another, lack variety in the connections among their internal elements (review
Figure 2.3.2.1-2 for a reminder).  Understanding how one or two of the individual nodes
of theses networks are linked, directly implies how all the rest of the network is built,
hence, too much regularity reduces complexity (Gell-Mann 1995).  Observing the links
of  one  or  two  individual  nodes  in  a  random network  says  almost  nothing  about  the
particular connectivity of any other nodes, but a significant sample of the nodes places a
well defined probabilistic envelope around the possibilities in the network – the cumula-
tive effect of a large number of random events is highly predictable,  even though the
outcomes of the individual  events are highly unpredictable,  hence,  too much random-
ness  reduces  complexity  (Li  1991).   In accordance,  the OdC  metric  yields low finite
values for a random network,  and higher values for apparently complex networks like
scale free networks.  Specifically, the OdC metric is sensitive to the level of variation or
entropy  exhibited in the relative degree  of adjacent  nodes in the network.   That is, if
nodes are typically connected with other nodes of different degree to themselves,  and
the differences in degree are varied among the nodes, then the network will register as
complex by the OdC metric (see Attachment 9.3 Supplementary Equations 4.1.2.3, for
more formal statements).   For example,  in a random network  described  by a Poisson
degree distribution (see Figure 4.1.1.2-1), most nodes have a degree close to an identifi-
able average, thus limiting the variation of relative degree amongst neighboring nodes
and  consequently  the  offdiagonal  complexity  measure  to  a  low  value.   For  another
example,  consider  how  a  large  (N Ø ¶)  lattice  network  has  no  variation  of  relative
degree amongst identical neighboring nodes, leading to a complexity score of zero.

In their book, Complexity and Education, Davis & Sumara (2003: p.168) write,
"The extent to which curricula reflect emergent worldviews, knowledges, technologies,
and social issues illustrates that formal education is highly dependent on evolving circum-
stances."  A system, such as education, sensitive to, and a function of, "highly evolving
circumstances" must itself be evolving and adaptive, or at least be considered a dynamic
subsystem of an evolving and adaptive system (Bar-Yam 1997).  Many other complex
adaptive systems sensitive to, and evolving with, their environments have structures that
are  often well  modelled  by "complex  networks"  (Ben-Naim et  al.  2004:  entire  book;
Albert  et  al.  2000;  Bar-Yam  & Epstein  2004;  review  §2.3.2).   Such  networks  have
varied properties such as, robustness (Albert et al. 2000; Callaway et al. 2000; Cohen et
al.  2000;  Motter  2004),  stability  (Berlow  1999;  Kalisky  et  al.  2004;  de  Menezes  &
Barabasi  2004),  responsiveness  (Bar-Yam  &  Epstein  2004;  Burt  2000;  Jeong  et  al.
2001; Lai et al. 2004), adaptability (Barrat et al. 2004b; Bergman & Siegal 2003; Bian-
coni  & Barabasi  2001a;  Dereny  et  al.  2004;  Doreian  2002;  Dorogovtsev  & Mendes
2002),  and compactness  (Crossley  2008;  Kleinburg  2000), and are history embedding
(Benner  2001)  and  information  conducting  (Burkhardt  &  Brass  1990;  Donetti  et  al.
2005; Erickson 1996; Lee & Rieger 2006; Pastor-Satorras & Vespignani 2000).  Com-
plex networks  also allow fluid  yet  durable  interactions  with/within  their  architectures
(Willeboordse  2006; Zanette 2001; Watts et al. 2002; Watts 2002) and are usually the
result  of  systems  with  distributed  control  (Gupte  et  al.  2005,  Grabowski  & Kosinski
2006, Holme & Kim 2002).  That is, the structure and connectivity  properties of net-
works,  as well  as the capacities  of their nodes, have important  consequences  for their
capabilities,  and can indicate the mechanisms and constraints of their construction and
the dynamics of their evolution.  Therefore, it is here assumed that departmental course
subnetworks, themselves an aspect of curricula, measured as complex, are produced by
adaptive  and evolving  processes  at  the  level  of  the  department;  alternatively,  course
subnetworks  that  are  not  complex  may be  a result  of  a  static  academic  environment
(re)studying stale knowledge, a maladaptive selection process, or not a result of adaptive
processes  at  all  but  of  arbitrary  design  by centralized  administration  which  Davis  &
Sumara  (2003)  contend  is  steeped  in  the  "linear"  metaphors  surrounding  education
resulting  in what Bell  (1980) describes  as "bureaucratic  consistency,  impartiality,  and
predictability".  

The manifestly structuralist and connectionist view of the university, it's depart-
ments and knowledges, claimed here parallels (but is not dependant on) that of the brain,
its regions and ideas,  held commonly by neurologists  such as DiCicco-Bloom (2006),
who  writes:  "our  most  sophisticated  thoughts  and  feelings  depend  critically  on  the
cellular composition and functional organization of the cerebral cortex.  Indeed, changes
in the  numbers of neurons, their positions within the tissue, and their interconnections
via synapses may underlie a variety of human brain disorders"  (see also, Honey et al.
2007).  Moreover,  just as neuroscience  suggests thoughts are the products of the mind
resulting from a biological process of the brain and the senses interacting with the physi-
cal world (Zull 2002), it is here conjectured the academic knowledge within the educa-
tion  system results  from a  coevolutionary  social  process  of  the  institutions  and  their
members,  such  as  the  teachers,  professors,  and  administrators,  interacting  with  the
physical and social world.  Fleener (2002b) writes, "as a complex adaptive social mean-
ing system, education can be viewed as a school/society manifold", where "the intraca-
cies of meaning evolving from the school/society complex define the educational land-
scapes".   The course networks are offered as specific examples resulting from a "law of
requisite  variety",  whereby  a biological  or social  entity  is  "efficatiously  adaptive",  as
reported by McKelvey (2001), when "the variety of its internal order matches the variety
of  the  environmental  constraints."   Hence,  its  here  hypothesized  the  content  of  the
courses plus the order, size, and connectivity  of the departmental  course networks are
the  product  of  adaptive  processes  that  reflect  factors  such  as  decentralized  (or  not)
control, the availability of resources (information,  students, money), and the fidelity of
interactions with the complex world for each department.

The  results  from  applying  the  offdiagonal  complexity  metric  to  each  of  the
University's departments are recorded in the Attachment on Table 9.2-1, twelfth column,
OdC.  Ranked at the very top with the highest complexity (OdC ≈ 2.5) is the Department
of Biological Sciences;  an apt standing for a modern,  rapidly growing, and influential
area of study that underlines biology's burgeoning status as the dominant science of our
age†(Dyson 2005).   Given the assumptions  adopted in this subsubsection,  it is specu-
lated here the biological sciences presently provide the most powerful paradigms, rele-
vant metaphors for meaning, and supplies our society with frameworks for explanations
(Maasen  1995)  in  a  coevolutionary  relationship  with  current  "emergent  worldviews,
knowledges, technologies, and social issues", beyond all other fields of academic study.
The close engagement between biology and the world is reflected in its complex, self-or-
ganized knowledge structure at University.  In contrast, at the opposite end of the com-
plexity  scale,  a  sizable  department  with  a zero  complexity  score  (OdC  = 0)  is  Saint
Joseph's  College,  which is centered  on the study of Christian  theology (University  of
Alberta 2010), "committed to discover, integrate, and disseminate truth, as revealed by
God" in the Bible – a single frozen, exclusive, antique text.  Accordingly, based on its
network  structure,  the  opposite  construal  is  implied.   The  next  least  complex  course
structures,  among larger departments  with a finite complexity score (0 < OdC  < 1) in
descending order are Interdisciplinary  Studies  and Women's  Studies.   Otherwise,  near
the top just below the Biological Sciences, the departments with the next most complex
course structures (OdC > 2.2) in descending order are: Psychology, Economics, Political
Science,  Linguistics,  Accounting  &  Management  Information  Systems,  Sociology,
Chemical and Materials Engineering, and Physics.

This subsubsection introduces and applies the offdiagonal complexity metric on
Alberta's course network.  It measures and ranks all university departments by the diver-
sity of their internal course structure.  By visual inspection of Figure 4.1.2.3-1, there is
no compelling, simple correspondence between the offdiagonal complexity score (OdC)
for a large University department and its total course credits.  That is, beyond a thresh-
old, say ¯50 credits, large departments do not seem to have inherently more complex
course structures than smaller departments.   Therefore,  among the course subnetworks
defined  by  all  save  the  smallest  University  departments,  offdiagonal  complexity  is  a
function of network topology, not order (number of nodes or total course weight).   A
course subnetwork with complex architecture  may imply the knowledge of the depart-
ment is a consequence of active, adaptive, intimate, and substantial engagement with the
"emergent  worldviews,  knowledges,  technologies,  and  social  issues"  of  our  complexworld.  A noncomplex network indicates something is different.  Perhaps the knowledgeof the noncomplex department is a) shielded in some manner from the complex world,b)  has  failed  to  remake  itself  to  provide  enough  relevant  knowledge  for  substantialengagement with the ever changing complex world, or c) has an nonadaptive artificialdesign insensitive to the complex world.___________†  Exemplifying  the  ascendancy  of  biology  over  physics  as  the  dominant  science  inpopular culture, the author laments how the super powers of the latest movie version ofSpider-Man result from the bite of a genetically modified spider and not a radioactiveone as in the early 1960s original.
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A  common  criticism  of  earlier  quantitative  theorizing  in  education  is  that  it
tended to offer and use simplistic linear models and metaphors to describe phenomena
that are patently complex (Davis & Sumara 2006: ch. 3).  Networks are introduced in
this thesis as flexible and sophisticated enough to begin to capture important aspects of
complex  systems.   When  applied  to  the  course  structure  of  the  education  system in
Alberta, the network is expected to reflect the complexity of the underlying system in
some hopefully measurable  way.  Networks derived from a vast variety of biological,
social,  and  economical  research  show  topologies  drastically  differing  from  random
networks or regular networks, such as simple chains or lattices (Yang & Knoke 2001;
Watts & Strogatz 1998; Motter et al. 2002).  Metabolic and other biological networks,
collaboration  networks,  www,  internet,  etc.,  have  in  common  a  distribution  of  link
degrees which follows a power law, and thus has no inherent scale; such networks are
termed "scale-free  networks."   Compared  to random networks,  which have a Poisson
link distribution and thus a characteristic  scale, they share a lot of different properties,
especially  a  tendency  to  possess  internal  modules,  and  a  short  average  path  length.
Together,  the results of §4.1.1.2,  §4.1.1.5,  and §4.1.2.2 reveal the course network as a
whole to be modular,  small-world,  and scale-free,  and thus included among other net-
works  resulting  from  complex  systems.   However,  the  question  of  complexity  of  a
network itself is still in its infancy with only a handful of academic papers on the sub-
ject.  Common among the papers that do exist on the topic is an aesthetic appeal to the
notion  that  complex  networks  should not  resemble  random arrangements  or have the
strictly consistent architecture of a lattice, nor be akin to maximally connected complete
networks nor minimally connected chains and star networks.  But, there is still no rigor-
ous proof or even a consensus in the literature about what features are necessary in a
network for it to be characterized as complex, and some further suggest it may be ill-de-
fined  task  (Anastasiadis  et  al.  2005).   Nevertheless,  one  particular  approach  appears
plausible, feasible, and apposite for use in this thesis.  

Claussen  (2007  &  2008)  recently  introduced  a  network  metric,  Offdiagonal
Complexity  (OdC),  as  a  complexity  estimator  for  undirected  binary  networks.   This
network measure is translated into code as part of the program, Calendar Navigator, and
applied  to  departmental  subnetworks  to  estimate  their  relative  complexity.   The  few
other  suggested  complexity  measures  in the literature  themselves  have high computa-
tional complexity (Kim & Wilhelm 2008) and are not considered here given the size of
the entire course network and the required computing resources.  The offdiagonal com-
plexity metric yields a minimal value of zero for a regular lattice, star network, and a
fully connected network,  which is consistent  with other complexity measures  (Kim &
Wilhelm 2008)  where  complex networks  are observed  to have a middling  number of
links,  between the minimum (N  - 1) and the maximum connected  network,  N(N - 1)/2.
What  all  complexity  metrics  have  in  common  is  their  sensitivity  to  diversity  in  the
topology  of the network.   Lattice,  star,  and fully connected  networks,  while different
from one another, lack variety in the connections among their internal elements (review
Figure 2.3.2.1-2 for a reminder).  Understanding how one or two of the individual nodes
of theses networks are linked, directly implies how all the rest of the network is built,
hence, too much regularity reduces complexity (Gell-Mann 1995).  Observing the links
of  one  or  two  individual  nodes  in  a  random network  says  almost  nothing  about  the
particular connectivity of any other nodes, but a significant sample of the nodes places a
well defined probabilistic envelope around the possibilities in the network – the cumula-
tive effect of a large number of random events is highly predictable,  even though the
outcomes of the individual  events are highly unpredictable,  hence,  too much random-
ness  reduces  complexity  (Li  1991).   In accordance,  the OdC  metric  yields low finite
values for a random network,  and higher values for apparently complex networks like
scale free networks.  Specifically, the OdC metric is sensitive to the level of variation or
entropy  exhibited in the relative degree  of adjacent  nodes in the network.   That is, if
nodes are typically connected with other nodes of different degree to themselves,  and
the differences in degree are varied among the nodes, then the network will register as
complex by the OdC metric (see Attachment 9.3 Supplementary Equations 4.1.2.3, for
more formal statements).   For example,  in a random network  described  by a Poisson
degree distribution (see Figure 4.1.1.2-1), most nodes have a degree close to an identifi-
able average, thus limiting the variation of relative degree amongst neighboring nodes
and  consequently  the  offdiagonal  complexity  measure  to  a  low  value.   For  another
example,  consider  how  a  large  (N Ø ¶)  lattice  network  has  no  variation  of  relative
degree amongst identical neighboring nodes, leading to a complexity score of zero.

In their book, Complexity and Education, Davis & Sumara (2003: p.168) write,
"The extent to which curricula reflect emergent worldviews, knowledges, technologies,
and social issues illustrates that formal education is highly dependent on evolving circum-
stances."  A system, such as education, sensitive to, and a function of, "highly evolving
circumstances" must itself be evolving and adaptive, or at least be considered a dynamic
subsystem of an evolving and adaptive system (Bar-Yam 1997).  Many other complex
adaptive systems sensitive to, and evolving with, their environments have structures that
are  often well  modelled  by "complex  networks"  (Ben-Naim et  al.  2004:  entire  book;
Albert  et  al.  2000;  Bar-Yam  & Epstein  2004;  review  §2.3.2).   Such  networks  have
varied properties such as, robustness (Albert et al. 2000; Callaway et al. 2000; Cohen et
al.  2000;  Motter  2004),  stability  (Berlow  1999;  Kalisky  et  al.  2004;  de  Menezes  &
Barabasi  2004),  responsiveness  (Bar-Yam  &  Epstein  2004;  Burt  2000;  Jeong  et  al.
2001; Lai et al. 2004), adaptability (Barrat et al. 2004b; Bergman & Siegal 2003; Bian-
coni  & Barabasi  2001a;  Dereny  et  al.  2004;  Doreian  2002;  Dorogovtsev  & Mendes
2002),  and compactness  (Crossley  2008;  Kleinburg  2000), and are history embedding
(Benner  2001)  and  information  conducting  (Burkhardt  &  Brass  1990;  Donetti  et  al.
2005; Erickson 1996; Lee & Rieger 2006; Pastor-Satorras & Vespignani 2000).  Com-
plex networks  also allow fluid  yet  durable  interactions  with/within  their  architectures
(Willeboordse  2006; Zanette 2001; Watts et al. 2002; Watts 2002) and are usually the
result  of  systems  with  distributed  control  (Gupte  et  al.  2005,  Grabowski  & Kosinski
2006, Holme & Kim 2002).  That is, the structure and connectivity  properties of net-
works,  as well  as the capacities  of their nodes, have important  consequences  for their
capabilities,  and can indicate the mechanisms and constraints of their construction and
the dynamics of their evolution.  Therefore, it is here assumed that departmental course
subnetworks, themselves an aspect of curricula, measured as complex, are produced by
adaptive  and evolving  processes  at  the  level  of  the  department;  alternatively,  course
subnetworks  that  are  not  complex  may be  a result  of  a  static  academic  environment
(re)studying stale knowledge, a maladaptive selection process, or not a result of adaptive
processes  at  all  but  of  arbitrary  design  by centralized  administration  which  Davis  &
Sumara  (2003)  contend  is  steeped  in  the  "linear"  metaphors  surrounding  education
resulting  in what Bell  (1980) describes  as "bureaucratic  consistency,  impartiality,  and
predictability".  

The manifestly structuralist and connectionist view of the university, it's depart-
ments and knowledges, claimed here parallels (but is not dependant on) that of the brain,
its regions and ideas,  held commonly by neurologists  such as DiCicco-Bloom (2006),
who  writes:  "our  most  sophisticated  thoughts  and  feelings  depend  critically  on  the
cellular composition and functional organization of the cerebral cortex.  Indeed, changes
in the  numbers of neurons, their positions within the tissue, and their interconnections
via synapses may underlie a variety of human brain disorders"  (see also, Honey et al.
2007).  Moreover,  just as neuroscience  suggests thoughts are the products of the mind
resulting from a biological process of the brain and the senses interacting with the physi-
cal world (Zull 2002), it is here conjectured the academic knowledge within the educa-
tion  system results  from a  coevolutionary  social  process  of  the  institutions  and  their
members,  such  as  the  teachers,  professors,  and  administrators,  interacting  with  the
physical and social world.  Fleener (2002b) writes, "as a complex adaptive social mean-
ing system, education can be viewed as a school/society manifold", where "the intraca-
cies of meaning evolving from the school/society complex define the educational land-
scapes".   The course networks are offered as specific examples resulting from a "law of
requisite  variety",  whereby  a biological  or social  entity  is  "efficatiously  adaptive",  as
reported by McKelvey (2001), when "the variety of its internal order matches the variety
of  the  environmental  constraints."   Hence,  its  here  hypothesized  the  content  of  the
courses plus the order, size, and connectivity  of the departmental  course networks are
the  product  of  adaptive  processes  that  reflect  factors  such  as  decentralized  (or  not)
control, the availability of resources (information,  students, money), and the fidelity of
interactions with the complex world for each department.

The  results  from  applying  the  offdiagonal  complexity  metric  to  each  of  the
University's departments are recorded in the Attachment on Table 9.2-1, twelfth column,
OdC.  Ranked at the very top with the highest complexity (OdC ≈ 2.5) is the Department
of Biological Sciences;  an apt standing for a modern,  rapidly growing, and influential
area of study that underlines biology's burgeoning status as the dominant science of our
age†(Dyson 2005).   Given the assumptions  adopted in this subsubsection,  it is specu-
lated here the biological sciences presently provide the most powerful paradigms, rele-
vant metaphors for meaning, and supplies our society with frameworks for explanations
(Maasen  1995)  in  a  coevolutionary  relationship  with  current  "emergent  worldviews,
knowledges, technologies, and social issues", beyond all other fields of academic study.
The close engagement between biology and the world is reflected in its complex, self-or-
ganized knowledge structure at University.  In contrast, at the opposite end of the com-
plexity  scale,  a  sizable  department  with  a zero  complexity  score  (OdC  = 0)  is  Saint
Joseph's  College,  which is centered  on the study of Christian  theology (University  of
Alberta 2010), "committed to discover, integrate, and disseminate truth, as revealed by
God" in the Bible – a single frozen, exclusive, antique text.  Accordingly, based on its
network  structure,  the  opposite  construal  is  implied.   The  next  least  complex  course
structures,  among larger departments  with a finite complexity score (0 < OdC  < 1) in
descending order are Interdisciplinary  Studies  and Women's  Studies.   Otherwise,  near
the top just below the Biological Sciences, the departments with the next most complex
course structures (OdC > 2.2) in descending order are: Psychology, Economics, Political
Science,  Linguistics,  Accounting  &  Management  Information  Systems,  Sociology,
Chemical and Materials Engineering, and Physics.

This subsubsection introduces and applies the offdiagonal complexity metric on
Alberta's course network.  It measures and ranks all university departments by the diver-
sity of their internal course structure.  By visual inspection of Figure 4.1.2.3-1, there is
no compelling, simple correspondence between the offdiagonal complexity score (OdC)
for a large University department and its total course credits.  That is, beyond a thresh-
old, say ¯50 credits, large departments do not seem to have inherently more complex
course structures than smaller departments.   Therefore,  among the course subnetworks
defined  by  all  save  the  smallest  University  departments,  offdiagonal  complexity  is  a
function of network topology, not order (number of nodes or total course weight).   A
course subnetwork with complex architecture  may imply the knowledge of the depart-
ment is a consequence of active, adaptive, intimate, and substantial engagement with the
"emergent  worldviews,  knowledges,  technologies,  and  social  issues"  of  our  complex
world.  A noncomplex network indicates something is different.  Perhaps the knowledge
of the noncomplex department is a) shielded in some manner from the complex world,
b)  has  failed  to  remake  itself  to  provide  enough  relevant  knowledge  for  substantial
engagement with the ever changing complex world, or c) has an nonadaptive artificial
design insensitive to the complex world.
___________
†  Exemplifying  the  ascendancy  of  biology  over  physics  as  the  dominant  science  in
popular culture, the author laments how the super powers of the latest movie version of
Spider-Man result from the bite of a genetically modified spider and not a radioactive
one as in the early 1960s original.

129



A  common  criticism  of  earlier  quantitative  theorizing  in  education  is  that  it
tended to offer and use simplistic linear models and metaphors to describe phenomena
that are patently complex (Davis & Sumara 2006: ch. 3).  Networks are introduced in
this thesis as flexible and sophisticated enough to begin to capture important aspects of
complex  systems.   When  applied  to  the  course  structure  of  the  education  system in
Alberta, the network is expected to reflect the complexity of the underlying system in
some hopefully measurable  way.  Networks derived from a vast variety of biological,
social,  and  economical  research  show  topologies  drastically  differing  from  random
networks or regular networks, such as simple chains or lattices (Yang & Knoke 2001;
Watts & Strogatz 1998; Motter et al. 2002).  Metabolic and other biological networks,
collaboration  networks,  www,  internet,  etc.,  have  in  common  a  distribution  of  link
degrees which follows a power law, and thus has no inherent scale; such networks are
termed "scale-free  networks."   Compared  to random networks,  which have a Poisson
link distribution and thus a characteristic  scale, they share a lot of different properties,
especially  a  tendency  to  possess  internal  modules,  and  a  short  average  path  length.
Together,  the results of §4.1.1.2,  §4.1.1.5,  and §4.1.2.2 reveal the course network as a
whole to be modular,  small-world,  and scale-free,  and thus included among other net-
works  resulting  from  complex  systems.   However,  the  question  of  complexity  of  a
network itself is still in its infancy with only a handful of academic papers on the sub-
ject.  Common among the papers that do exist on the topic is an aesthetic appeal to the
notion  that  complex  networks  should not  resemble  random arrangements  or have the
strictly consistent architecture of a lattice, nor be akin to maximally connected complete
networks nor minimally connected chains and star networks.  But, there is still no rigor-
ous proof or even a consensus in the literature about what features are necessary in a
network for it to be characterized as complex, and some further suggest it may be ill-de-
fined  task  (Anastasiadis  et  al.  2005).   Nevertheless,  one  particular  approach  appears
plausible, feasible, and apposite for use in this thesis.  

Claussen  (2007  &  2008)  recently  introduced  a  network  metric,  Offdiagonal
Complexity  (OdC),  as  a  complexity  estimator  for  undirected  binary  networks.   This
network measure is translated into code as part of the program, Calendar Navigator, and
applied  to  departmental  subnetworks  to  estimate  their  relative  complexity.   The  few
other  suggested  complexity  measures  in the literature  themselves  have high computa-
tional complexity (Kim & Wilhelm 2008) and are not considered here given the size of
the entire course network and the required computing resources.  The offdiagonal com-
plexity metric yields a minimal value of zero for a regular lattice, star network, and a
fully connected network,  which is consistent  with other complexity measures  (Kim &
Wilhelm 2008)  where  complex networks  are observed  to have a middling  number of
links,  between the minimum (N  - 1) and the maximum connected  network,  N(N - 1)/2.
What  all  complexity  metrics  have  in  common  is  their  sensitivity  to  diversity  in  the
topology  of the network.   Lattice,  star,  and fully connected  networks,  while different
from one another, lack variety in the connections among their internal elements (review
Figure 2.3.2.1-2 for a reminder).  Understanding how one or two of the individual nodes
of theses networks are linked, directly implies how all the rest of the network is built,
hence, too much regularity reduces complexity (Gell-Mann 1995).  Observing the links
of  one  or  two  individual  nodes  in  a  random network  says  almost  nothing  about  the
particular connectivity of any other nodes, but a significant sample of the nodes places a
well defined probabilistic envelope around the possibilities in the network – the cumula-
tive effect of a large number of random events is highly predictable,  even though the
outcomes of the individual  events are highly unpredictable,  hence,  too much random-
ness  reduces  complexity  (Li  1991).   In accordance,  the OdC  metric  yields low finite
values for a random network,  and higher values for apparently complex networks like
scale free networks.  Specifically, the OdC metric is sensitive to the level of variation or
entropy  exhibited in the relative degree  of adjacent  nodes in the network.   That is, if
nodes are typically connected with other nodes of different degree to themselves,  and
the differences in degree are varied among the nodes, then the network will register as
complex by the OdC metric (see Attachment 9.3 Supplementary Equations 4.1.2.3, for
more formal statements).   For example,  in a random network  described  by a Poisson
degree distribution (see Figure 4.1.1.2-1), most nodes have a degree close to an identifi-
able average, thus limiting the variation of relative degree amongst neighboring nodes
and  consequently  the  offdiagonal  complexity  measure  to  a  low  value.   For  another
example,  consider  how  a  large  (N Ø ¶)  lattice  network  has  no  variation  of  relative
degree amongst identical neighboring nodes, leading to a complexity score of zero.

In their book, Complexity and Education, Davis & Sumara (2003: p.168) write,
"The extent to which curricula reflect emergent worldviews, knowledges, technologies,
and social issues illustrates that formal education is highly dependent on evolving circum-
stances."  A system, such as education, sensitive to, and a function of, "highly evolving
circumstances" must itself be evolving and adaptive, or at least be considered a dynamic
subsystem of an evolving and adaptive system (Bar-Yam 1997).  Many other complex
adaptive systems sensitive to, and evolving with, their environments have structures that
are  often well  modelled  by "complex  networks"  (Ben-Naim et  al.  2004:  entire  book;
Albert  et  al.  2000;  Bar-Yam  & Epstein  2004;  review  §2.3.2).   Such  networks  have
varied properties such as, robustness (Albert et al. 2000; Callaway et al. 2000; Cohen et
al.  2000;  Motter  2004),  stability  (Berlow  1999;  Kalisky  et  al.  2004;  de  Menezes  &
Barabasi  2004),  responsiveness  (Bar-Yam  &  Epstein  2004;  Burt  2000;  Jeong  et  al.
2001; Lai et al. 2004), adaptability (Barrat et al. 2004b; Bergman & Siegal 2003; Bian-
coni  & Barabasi  2001a;  Dereny  et  al.  2004;  Doreian  2002;  Dorogovtsev  & Mendes
2002),  and compactness  (Crossley  2008;  Kleinburg  2000), and are history embedding
(Benner  2001)  and  information  conducting  (Burkhardt  &  Brass  1990;  Donetti  et  al.
2005; Erickson 1996; Lee & Rieger 2006; Pastor-Satorras & Vespignani 2000).  Com-
plex networks  also allow fluid  yet  durable  interactions  with/within  their  architectures
(Willeboordse  2006; Zanette 2001; Watts et al. 2002; Watts 2002) and are usually the
result  of  systems  with  distributed  control  (Gupte  et  al.  2005,  Grabowski  & Kosinski
2006, Holme & Kim 2002).  That is, the structure and connectivity  properties of net-
works,  as well  as the capacities  of their nodes, have important  consequences  for their
capabilities,  and can indicate the mechanisms and constraints of their construction and
the dynamics of their evolution.  Therefore, it is here assumed that departmental course
subnetworks, themselves an aspect of curricula, measured as complex, are produced by
adaptive  and evolving  processes  at  the  level  of  the  department;  alternatively,  course
subnetworks  that  are  not  complex  may be  a result  of  a  static  academic  environment
(re)studying stale knowledge, a maladaptive selection process, or not a result of adaptive
processes  at  all  but  of  arbitrary  design  by centralized  administration  which  Davis  &
Sumara  (2003)  contend  is  steeped  in  the  "linear"  metaphors  surrounding  education
resulting  in what Bell  (1980) describes  as "bureaucratic  consistency,  impartiality,  and
predictability".  

The manifestly structuralist and connectionist view of the university, it's depart-
ments and knowledges, claimed here parallels (but is not dependant on) that of the brain,
its regions and ideas,  held commonly by neurologists  such as DiCicco-Bloom (2006),
who  writes:  "our  most  sophisticated  thoughts  and  feelings  depend  critically  on  the
cellular composition and functional organization of the cerebral cortex.  Indeed, changes
in the  numbers of neurons, their positions within the tissue, and their interconnections
via synapses may underlie a variety of human brain disorders"  (see also, Honey et al.
2007).  Moreover,  just as neuroscience  suggests thoughts are the products of the mind
resulting from a biological process of the brain and the senses interacting with the physi-
cal world (Zull 2002), it is here conjectured the academic knowledge within the educa-
tion  system results  from a  coevolutionary  social  process  of  the  institutions  and  their
members,  such  as  the  teachers,  professors,  and  administrators,  interacting  with  the
physical and social world.  Fleener (2002b) writes, "as a complex adaptive social mean-
ing system, education can be viewed as a school/society manifold", where "the intraca-
cies of meaning evolving from the school/society complex define the educational land-
scapes".   The course networks are offered as specific examples resulting from a "law of
requisite  variety",  whereby  a biological  or social  entity  is  "efficatiously  adaptive",  as
reported by McKelvey (2001), when "the variety of its internal order matches the variety
of  the  environmental  constraints."   Hence,  its  here  hypothesized  the  content  of  the
courses plus the order, size, and connectivity  of the departmental  course networks are
the  product  of  adaptive  processes  that  reflect  factors  such  as  decentralized  (or  not)
control, the availability of resources (information,  students, money), and the fidelity of
interactions with the complex world for each department.

The  results  from  applying  the  offdiagonal  complexity  metric  to  each  of  the
University's departments are recorded in the Attachment on Table 9.2-1, twelfth column,
OdC.  Ranked at the very top with the highest complexity (OdC ≈ 2.5) is the Department
of Biological Sciences;  an apt standing for a modern,  rapidly growing, and influential
area of study that underlines biology's burgeoning status as the dominant science of our
age†(Dyson 2005).   Given the assumptions  adopted in this subsubsection,  it is specu-
lated here the biological sciences presently provide the most powerful paradigms, rele-
vant metaphors for meaning, and supplies our society with frameworks for explanations
(Maasen  1995)  in  a  coevolutionary  relationship  with  current  "emergent  worldviews,
knowledges, technologies, and social issues", beyond all other fields of academic study.
The close engagement between biology and the world is reflected in its complex, self-or-
ganized knowledge structure at University.  In contrast, at the opposite end of the com-
plexity  scale,  a  sizable  department  with  a zero  complexity  score  (OdC  = 0)  is  Saint
Joseph's  College,  which is centered  on the study of Christian  theology (University  of
Alberta 2010), "committed to discover, integrate, and disseminate truth, as revealed by
God" in the Bible – a single frozen, exclusive, antique text.  Accordingly, based on its
network  structure,  the  opposite  construal  is  implied.   The  next  least  complex  course
structures,  among larger departments  with a finite complexity score (0 < OdC  < 1) in
descending order are Interdisciplinary  Studies  and Women's  Studies.   Otherwise,  near
the top just below the Biological Sciences, the departments with the next most complex
course structures (OdC > 2.2) in descending order are: Psychology, Economics, Political
Science,  Linguistics,  Accounting  &  Management  Information  Systems,  Sociology,
Chemical and Materials Engineering, and Physics.

This subsubsection introduces and applies the offdiagonal complexity metric on
Alberta's course network.  It measures and ranks all university departments by the diver-
sity of their internal course structure.  By visual inspection of Figure 4.1.2.3-1, there is
no compelling, simple correspondence between the offdiagonal complexity score (OdC)
for a large University department and its total course credits.  That is, beyond a thresh-
old, say ¯50 credits, large departments do not seem to have inherently more complex
course structures than smaller departments.   Therefore,  among the course subnetworks
defined  by  all  save  the  smallest  University  departments,  offdiagonal  complexity  is  a
function of network topology, not order (number of nodes or total course weight).   A
course subnetwork with complex architecture  may imply the knowledge of the depart-
ment is a consequence of active, adaptive, intimate, and substantial engagement with the
"emergent  worldviews,  knowledges,  technologies,  and  social  issues"  of  our  complex
world.  A noncomplex network indicates something is different.  Perhaps the knowledge
of the noncomplex department is a) shielded in some manner from the complex world,
b)  has  failed  to  remake  itself  to  provide  enough  relevant  knowledge  for  substantial
engagement with the ever changing complex world, or c) has an nonadaptive artificial
design insensitive to the complex world.
___________
†  Exemplifying  the  ascendancy  of  biology  over  physics  as  the  dominant  science  in
popular culture, the author laments how the super powers of the latest movie version of
Spider-Man result from the bite of a genetically modified spider and not a radioactive
one as in the early 1960s original.
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A  common  criticism  of  earlier  quantitative  theorizing  in  education  is  that  ittended to offer and use simplistic linear models and metaphors to describe phenomenathat are patently complex (Davis & Sumara 2006: ch. 3).  Networks are introduced inthis thesis as flexible and sophisticated enough to begin to capture important aspects ofcomplex  systems.   When  applied  to  the  course  structure  of  the  education  system inAlberta, the network is expected to reflect the complexity of the underlying system insome hopefully measurable  way.  Networks derived from a vast variety of biological,social,  and  economical  research  show  topologies  drastically  differing  from  randomnetworks or regular networks, such as simple chains or lattices (Yang & Knoke 2001;Watts & Strogatz 1998; Motter et al. 2002).  Metabolic and other biological networks,collaboration  networks,  www,  internet,  etc.,  have  in  common  a  distribution  of  linkdegrees which follows a power law, and thus has no inherent scale; such networks aretermed "scale-free  networks."   Compared  to random networks,  which have a Poissonlink distribution and thus a characteristic  scale, they share a lot of different properties,especially  a  tendency  to  possess  internal  modules,  and  a  short  average  path  length.Together,  the results of §4.1.1.2,  §4.1.1.5,  and §4.1.2.2 reveal the course network as awhole to be modular,  small-world,  and scale-free,  and thus included among other net-works  resulting  from  complex  systems.   However,  the  question  of  complexity  of  anetwork itself is still in its infancy with only a handful of academic papers on the sub-ject.  Common among the papers that do exist on the topic is an aesthetic appeal to thenotion  that  complex  networks  should not  resemble  random arrangements  or have thestrictly consistent architecture of a lattice, nor be akin to maximally connected completenetworks nor minimally connected chains and star networks.  But, there is still no rigor-
ous proof or even a consensus in the literature about what features are necessary in a
network for it to be characterized as complex, and some further suggest it may be ill-de-
fined  task  (Anastasiadis  et  al.  2005).   Nevertheless,  one  particular  approach  appears
plausible, feasible, and apposite for use in this thesis.  

Claussen  (2007  &  2008)  recently  introduced  a  network  metric,  Offdiagonal
Complexity  (OdC),  as  a  complexity  estimator  for  undirected  binary  networks.   This
network measure is translated into code as part of the program, Calendar Navigator, and
applied  to  departmental  subnetworks  to  estimate  their  relative  complexity.   The  few
other  suggested  complexity  measures  in the literature  themselves  have high computa-
tional complexity (Kim & Wilhelm 2008) and are not considered here given the size of
the entire course network and the required computing resources.  The offdiagonal com-
plexity metric yields a minimal value of zero for a regular lattice, star network, and a
fully connected network,  which is consistent  with other complexity measures  (Kim &
Wilhelm 2008)  where  complex networks  are observed  to have a middling  number of
links,  between the minimum (N  - 1) and the maximum connected  network,  N(N - 1)/2.
What  all  complexity  metrics  have  in  common  is  their  sensitivity  to  diversity  in  the
topology  of the network.   Lattice,  star,  and fully connected  networks,  while different
from one another, lack variety in the connections among their internal elements (review
Figure 2.3.2.1-2 for a reminder).  Understanding how one or two of the individual nodes
of theses networks are linked, directly implies how all the rest of the network is built,
hence, too much regularity reduces complexity (Gell-Mann 1995).  Observing the links
of  one  or  two  individual  nodes  in  a  random network  says  almost  nothing  about  the
particular connectivity of any other nodes, but a significant sample of the nodes places a
well defined probabilistic envelope around the possibilities in the network – the cumula-
tive effect of a large number of random events is highly predictable,  even though the
outcomes of the individual  events are highly unpredictable,  hence,  too much random-
ness  reduces  complexity  (Li  1991).   In accordance,  the OdC  metric  yields low finite
values for a random network,  and higher values for apparently complex networks like
scale free networks.  Specifically, the OdC metric is sensitive to the level of variation or
entropy  exhibited in the relative degree  of adjacent  nodes in the network.   That is, if
nodes are typically connected with other nodes of different degree to themselves,  and
the differences in degree are varied among the nodes, then the network will register as
complex by the OdC metric (see Attachment 9.3 Supplementary Equations 4.1.2.3, for
more formal statements).   For example,  in a random network  described  by a Poisson
degree distribution (see Figure 4.1.1.2-1), most nodes have a degree close to an identifi-
able average, thus limiting the variation of relative degree amongst neighboring nodes
and  consequently  the  offdiagonal  complexity  measure  to  a  low  value.   For  another
example,  consider  how  a  large  (N Ø ¶)  lattice  network  has  no  variation  of  relative
degree amongst identical neighboring nodes, leading to a complexity score of zero.

In their book, Complexity and Education, Davis & Sumara (2003: p.168) write,
"The extent to which curricula reflect emergent worldviews, knowledges, technologies,
and social issues illustrates that formal education is highly dependent on evolving circum-
stances."  A system, such as education, sensitive to, and a function of, "highly evolving
circumstances" must itself be evolving and adaptive, or at least be considered a dynamic
subsystem of an evolving and adaptive system (Bar-Yam 1997).  Many other complex
adaptive systems sensitive to, and evolving with, their environments have structures that
are  often well  modelled  by "complex  networks"  (Ben-Naim et  al.  2004:  entire  book;
Albert  et  al.  2000;  Bar-Yam  & Epstein  2004;  review  §2.3.2).   Such  networks  have
varied properties such as, robustness (Albert et al. 2000; Callaway et al. 2000; Cohen et
al.  2000;  Motter  2004),  stability  (Berlow  1999;  Kalisky  et  al.  2004;  de  Menezes  &
Barabasi  2004),  responsiveness  (Bar-Yam  &  Epstein  2004;  Burt  2000;  Jeong  et  al.
2001; Lai et al. 2004), adaptability (Barrat et al. 2004b; Bergman & Siegal 2003; Bian-
coni  & Barabasi  2001a;  Dereny  et  al.  2004;  Doreian  2002;  Dorogovtsev  & Mendes
2002),  and compactness  (Crossley  2008;  Kleinburg  2000), and are history embedding
(Benner  2001)  and  information  conducting  (Burkhardt  &  Brass  1990;  Donetti  et  al.
2005; Erickson 1996; Lee & Rieger 2006; Pastor-Satorras & Vespignani 2000).  Com-
plex networks  also allow fluid  yet  durable  interactions  with/within  their  architectures
(Willeboordse  2006; Zanette 2001; Watts et al. 2002; Watts 2002) and are usually the
result  of  systems  with  distributed  control  (Gupte  et  al.  2005,  Grabowski  & Kosinski
2006, Holme & Kim 2002).  That is, the structure and connectivity  properties of net-
works,  as well  as the capacities  of their nodes, have important  consequences  for their
capabilities,  and can indicate the mechanisms and constraints of their construction and
the dynamics of their evolution.  Therefore, it is here assumed that departmental course
subnetworks, themselves an aspect of curricula, measured as complex, are produced by
adaptive  and evolving  processes  at  the  level  of  the  department;  alternatively,  course
subnetworks  that  are  not  complex  may be  a result  of  a  static  academic  environment
(re)studying stale knowledge, a maladaptive selection process, or not a result of adaptive
processes  at  all  but  of  arbitrary  design  by centralized  administration  which  Davis  &
Sumara  (2003)  contend  is  steeped  in  the  "linear"  metaphors  surrounding  education
resulting  in what Bell  (1980) describes  as "bureaucratic  consistency,  impartiality,  and
predictability".  

The manifestly structuralist and connectionist view of the university, it's depart-
ments and knowledges, claimed here parallels (but is not dependant on) that of the brain,
its regions and ideas,  held commonly by neurologists  such as DiCicco-Bloom (2006),
who  writes:  "our  most  sophisticated  thoughts  and  feelings  depend  critically  on  the
cellular composition and functional organization of the cerebral cortex.  Indeed, changes
in the  numbers of neurons, their positions within the tissue, and their interconnections
via synapses may underlie a variety of human brain disorders"  (see also, Honey et al.
2007).  Moreover,  just as neuroscience  suggests thoughts are the products of the mind
resulting from a biological process of the brain and the senses interacting with the physi-
cal world (Zull 2002), it is here conjectured the academic knowledge within the educa-
tion  system results  from a  coevolutionary  social  process  of  the  institutions  and  their
members,  such  as  the  teachers,  professors,  and  administrators,  interacting  with  the
physical and social world.  Fleener (2002b) writes, "as a complex adaptive social mean-
ing system, education can be viewed as a school/society manifold", where "the intraca-
cies of meaning evolving from the school/society complex define the educational land-
scapes".   The course networks are offered as specific examples resulting from a "law of
requisite  variety",  whereby  a biological  or social  entity  is  "efficatiously  adaptive",  as
reported by McKelvey (2001), when "the variety of its internal order matches the variety
of  the  environmental  constraints."   Hence,  its  here  hypothesized  the  content  of  the
courses plus the order, size, and connectivity  of the departmental  course networks are
the  product  of  adaptive  processes  that  reflect  factors  such  as  decentralized  (or  not)
control, the availability of resources (information,  students, money), and the fidelity of
interactions with the complex world for each department.

The  results  from  applying  the  offdiagonal  complexity  metric  to  each  of  the
University's departments are recorded in the Attachment on Table 9.2-1, twelfth column,
OdC.  Ranked at the very top with the highest complexity (OdC ≈ 2.5) is the Department
of Biological Sciences;  an apt standing for a modern,  rapidly growing, and influential
area of study that underlines biology's burgeoning status as the dominant science of our
age†(Dyson 2005).   Given the assumptions  adopted in this subsubsection,  it is specu-
lated here the biological sciences presently provide the most powerful paradigms, rele-
vant metaphors for meaning, and supplies our society with frameworks for explanations
(Maasen  1995)  in  a  coevolutionary  relationship  with  current  "emergent  worldviews,
knowledges, technologies, and social issues", beyond all other fields of academic study.
The close engagement between biology and the world is reflected in its complex, self-or-
ganized knowledge structure at University.  In contrast, at the opposite end of the com-
plexity  scale,  a  sizable  department  with  a zero  complexity  score  (OdC  = 0)  is  Saint
Joseph's  College,  which is centered  on the study of Christian  theology (University  of
Alberta 2010), "committed to discover, integrate, and disseminate truth, as revealed by
God" in the Bible – a single frozen, exclusive, antique text.  Accordingly, based on its
network  structure,  the  opposite  construal  is  implied.   The  next  least  complex  course
structures,  among larger departments  with a finite complexity score (0 < OdC  < 1) in
descending order are Interdisciplinary  Studies  and Women's  Studies.   Otherwise,  near
the top just below the Biological Sciences, the departments with the next most complex
course structures (OdC > 2.2) in descending order are: Psychology, Economics, Political
Science,  Linguistics,  Accounting  &  Management  Information  Systems,  Sociology,
Chemical and Materials Engineering, and Physics.

This subsubsection introduces and applies the offdiagonal complexity metric on
Alberta's course network.  It measures and ranks all university departments by the diver-
sity of their internal course structure.  By visual inspection of Figure 4.1.2.3-1, there is
no compelling, simple correspondence between the offdiagonal complexity score (OdC)
for a large University department and its total course credits.  That is, beyond a thresh-
old, say ¯50 credits, large departments do not seem to have inherently more complex
course structures than smaller departments.   Therefore,  among the course subnetworks
defined  by  all  save  the  smallest  University  departments,  offdiagonal  complexity  is  a
function of network topology, not order (number of nodes or total course weight).   A
course subnetwork with complex architecture  may imply the knowledge of the depart-
ment is a consequence of active, adaptive, intimate, and substantial engagement with the
"emergent  worldviews,  knowledges,  technologies,  and  social  issues"  of  our  complex
world.  A noncomplex network indicates something is different.  Perhaps the knowledge
of the noncomplex department is a) shielded in some manner from the complex world,
b)  has  failed  to  remake  itself  to  provide  enough  relevant  knowledge  for  substantial
engagement with the ever changing complex world, or c) has an nonadaptive artificial
design insensitive to the complex world.
___________
†  Exemplifying  the  ascendancy  of  biology  over  physics  as  the  dominant  science  in
popular culture, the author laments how the super powers of the latest movie version of
Spider-Man result from the bite of a genetically modified spider and not a radioactive
one as in the early 1960s original.
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Figure 4.1.2.3-1   A scatterplot  of offdiagonal  complexity score versus total course
credits  for  University  departments.   For  reference,  a  black  connected  scatterplot
showing the complexity scores of similarly ordered random networks with the same
average connectivity (size) underlies the color coded departmental data.  This base-
line of random networks confirms that complexity scores for very small networks are
expected to be negligible because of necessarily limited capacity for structural diver-
sity.  But the potential for complexity quickly rises with the presence of fewer than
fifteen course nodes (≈¯40).   Given the sparse average connectivity  of the random
networks, matching that of the course network (review 4.1.1.1 & .2), their complex-
ity scores quickly plateau (OdCrandom networks  ≤ 2).  Most university departments fall
near  the  arc  established  by  the  random  networks.   Six  small  departments
(understandably), plus Saint Joseph's (SJ), have offdiagonal complexity scores (OdC)
of zero (bottom left of the plot).  The Department of Biological Sciences (BIOLOG
SCI) hovers at the top of the diagram.  The large Departments of History & Classics
(HIST&CLASS) and Modern Languages & Cultural Studies (MODLGCULST) drift
to the right  with complexities  near  the random networks.   Departments  noticeably
below and to the right of the random networks are Saint Joseph's, Women's Studies
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(WOMEN ST),  Philosophy  (PHILOSOPHY),  Drama (DRAMA),  and Interdiscipli-
nary Studies (INT D).

4.2 Interpreting Alberta's Course Network

‡ 4.2.1  Novel Network Analysis

Thus  to  talk  about  space  in  relation  to  curriculum,  learning  and
knowledge production is also to talk about how power is distributed
and exercised.

Edwards, R. & Usher, R. (2003) Putting Space Back on the Map of
Learning,  in Edwards,  R. & Usher, R. (eds.) Space, Curricu-
lum  and  Learning  (Greenwich,  CT,  USA:  Information  Age
Publishing): p. 3.

Paths  or  trajectories  students  may  trace  through  the  course  network  are  not
independent from one another because many course nodes have more that one prerequi-
site, all of which need to be fulfilled; therefore, many standard network metrics based on
algorithms  which  assume  path  independence,  such  as  the  "shortest  paths"  algorithm
(Corman et al. 2001: ch. 24), do not properly apply without modification.  New metrics
for use on education course networks are introduced, described, and implemented in the
following subsubsections.   Each metric is designed to characterize individual nodes or
subnetworks  based  solely  on local  and global  network  structure  without  assumptions
regarding the particularities of course content.  Each approach calls attention to specific
courses, or groups of courses, from a particular standpoint that might otherwise remain
inaccessible using other standard educational research practices.
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ü 4.2.1.1  Distent

A basic function of maps is to orient the user in spatial terms regarding a subject.
An important  aspect  of  orientation  is  the  viewer's  ability  to  determine  closeness  and
separation between places or objects while reading a map.  This is usually accomplished
by some sort of associated scale or legend to help with the interpretation of distances,
areas,  color codes, etcetera.   The networks in this thesis, and networks in general, are
intended to capture and visually emphasize topology – those spatial properties that are
invariant under continuous elastic deformations.  Distortions  of network size, overlap-
ping  of  nodes,  crossing  of  links,  twisting  of  form,  and  stretching  of  shape  are  all
accepted  to preserve and communicate  the architecture  of connections  among compo-
nents.  This generally contrasts with typical maps, say geographic, which mostly strive
to preserve distance, proportional areas, and fixed arrangements of elements.

Reenforcing  a fairly  "standard narrative"  of education  as coherent,  cumulative
learning in preparation for a future (Nespor 2007), Ormell  (1996) offers "eight robust
metaphors  .  .  .  to  represent  the  invariant  features  of  education",  three  of  which  are
related to the spatial metaphor of education as mountain climbing.  Ormell conceives of
the curriculum  as "a  definite,  recognized  named mountain,  which requires  effort  and
stamina to climb", upon which students should be able to gauge their progress in the trek
towards the summit, where their efforts are rewarded with "a ‘local synthesis’: a single
viewpoint  or  vantage-point  from  which  a  great  tract  of  country  (knowledge)  can  be
seen".   But, this type of metaphor is difficult to reconcile with the architecture of the
network maps presented  in the thesis.   A basic observation within this thesis  that the
curriculum, as represented by courses, is very large, so only ever partially experienced,
and does not allow for relatively "great tracts" of knowledge to be seen in retrospect; the
number  of  possible  trajectories  is  nearly  innumerable  for  students,  so  no  orientation
towards a single summit is possible.  And, an initiating observation of this thesis, which
motivated the very creation of the network maps presented, is that the overall curricular
structure is veiled – anything but "prominent", "publicly visible", and easily "seen from
a distance" as Ormell contends the curriculum should be (p. 72-73).  

Instead of "height" on a mountain in a journey towards a "peak", a different kind
of measure for progress through the curriculum as represented by the network of courses
is required.  Davis and Sumara (2006: 57)  write that "complexity thinking troubles the
metaphors of accumulations of knowledge and progress toward a foreseeable endpoint",
and "the emergence of new interpretive possibility [learning] is framed more in terms of
expansiveness  and  outward  movement".   Instead  of  the  synthesizing  and  orienting
vantage point being the peak of a mountain from where a student looks back and down-
wards  upon  the  curriculum  once  climbed,  a  metric  which  traces  a  learner's  history
through the curriculum to measure "outward movement" from a starting point towards
the unknown is formulated.  Let such a course network metric be called distent, D

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition: "Distent, n:  Stretching out; out-stretched extent; distension; breadth."  Here,
as an alternative to the concept of distance in Euclidean space (Gamelin & Greene 1983:
ch.  1),  distent  is  proffered  as  a  structural  metric  of  course  separation  on a  network.
Traditional  cartographic measures of separation, such as cartesian distance, along with
some typical adjectives, such as higher and lower, are less applicable to describe separa-
tion of nodes on a tangled network.  Common education perspectives assume that move-
ment along a knowledge trajectory implies the effective connection of new knowledge
to old knowledge,  that is, the construction of a continuously elaborated present knowl-
edge.  This view from education can support a more continuous,  topological notion of
separation-as-stretching as much as the notion of separation-as-distance or being apart in
space.  The metric, distent, captures this difference by tracing the steps taken forward to
reach any point in the network.  Therefore, two nodes may be located quite close to each
other in terms of their placements on the embedding of a network map, but be consid-
ered quite separated as measured by distent†.

Let distent be measured outward from a common origin: the beginning of Kinder-
garten.   Now all  courses  of  the  education  system can  be characterized  as containing
knowledge continuously elaborated from Kindergarten by tracing the demands of prior
knowledge set down in prerequisite requirements as represented by the topology of the
network  (see  Figure  4.2.1.1-1).   Let  the  distent  score  assigned  to  any  course  be the
academic credits (¯) required to finish the course; that is, distent is a measure of continu-
ous knowledge elaboration, stretching from the beginning of Kindergarten to the end of
the course in question.  Since there are many possible trajectories between kindergarten
and,  say,  an  advanced  undergraduate  course,  care  must  be  taken  in  establishing  an
algorithm.  To do so, the way the course network is normally visualized and described in
this thesis must be changed by reversing the direction of the links (see Figure 4.2.1.1-2).
This  change  in  link polarity  switches  the  qualitative  orientation  of  the  network  from
prerequisite courses to subsequent courses, from prior knowledge to future possibilities,
and  switches  the  quantitative  flow  to  be  in  the  direction  of  knowledge  elaboration:
expansive and outward from a common origin, Kindergarten.

A directed  acyclic  graph  (review §2.3.2.1),  like the  course  network,  formally
defines a "precedence relation" (Pemmaraju & Skiena 2003: ch. 8.5.1) on the nodes, if
link (i, j) is taken as meaning that node i must occur before node j.  A topological sort is
a nonunique permutation of the nodes of a graph such that a link (i, j) always implies
that i appears before j (Corman et al 2001: ch. 22.4).  Only directed acyclic graphs can
be topologically sorted, since no node in a directed cycle can take precedence over all
the rest.   Because there are no cycles, every finite acyclic graph contains at least one
node v of out-degree zero where trajectories of the graph might be said to end.  Clearly,
v can appear last in the topological ordering.  Deleting v leaves a graph with at least one
other vertex of out-degree zero.  Repeating this argument gives an algorithm for topologi-
cally  sorting  any  directed  acyclic  graph  establishing  a  node  permutation  with  a
beginning(s) and end(s) (see Figure 4.2.1.1-3).  Critical to several types of calculations
for this thesis, a topological sort of the course network allows the otherwise large, tan-
gled nexus to be addressed systematically and efficiently, from end(s) to end, for compre-
hensive,  sophisticated  analysis  with  reasonable  computing  times  (for  the  interested
reader, see Attachment 9.3 Supplementary Equations 4.2.1.1).

Here  it  is  assumed  that  a  particular  course  and  its  neighborhood  define  a
"precedence  relation".   In  the  case  of  the  course  network  reversed,  where  edges  are
oriented from a course to its subsequents, the precedence relation is the prior knowledge
a  course  provides  to  its  subsequents  for  elaboration.   Typically,  terminal  400-level
courses are at the end of such precedence chains and kindergarten is alone at the begin-
ning because it is the only node requiring no prior knowledge from within the education
system.  The topologically sorted reverse course network always starts with kindergar-
ten, and it is an obvious reference point for distent and other calculations.  Let the dis-
tent measure to any course be the total number of credits accumulated along a trajectory
from the beginning of kindergarten to the end of the course, chosen to be simultaneously
the longest  necessary  and the shortest  optional  path (see Figure  4.2.1.1-4  and Figure
4.2.1.1-5).  In large complicated course networks, a path defining the distent of a course
is not unique since one or more paths may determine the same distent score. 

By sifting through  the individual  distent  results  calculated  for each course by
computer  with  the  program,  Calendar  Navigator,  some  exceptional  courses  are  high-
lighted (see Table 9.2-1, eleventh column, D).  Predictably, kindergarten (#535) has the
lowest  possible  distent score (¯2), since it relies not at all for students  to arrive with
knowledge from elsewhere  in the education system.  The many instructional  hours of
expected  attendance,  and  the  normally  twelve-plus  years  of  enrollment,  ensures  that
School  is  the  major,  if  not  distinguishing,  contributor  to  the  distent  scores  of  most
courses (see Figure 4.2.1.1-6).   Trajectory requests may be sent to Calendar Navigator
for any input course node on the network; two are shown in Figure 4.2.1.1-7.  Distent
scores and trajectories allow for sophisticated quantitative and qualitative interpretation
of  courses  characteristics  based  on  network  structure  independent  of  subject  specific
course content.   Courses with small distent scores lie on continuous chains of knowl-
edge elaboration that are short; courses with large distent scores lie on continuous chains
of knowledge elaboration that are long.  The "emergence of new interpretive possibili-
ties"  within  any course  is  not  arbitrary,  but  always  a  function  of  the  prior  academic
knowledge brought to the course by students.  Given the distent score of a course, and
by tracing the trajectory to it, reasonable expectations may be made regarding the level
of readings,  difficulty  of assignments,  knowledge  of peers,  scholarliness  of instructor,
necessity  for attendance,  and challenge  of assessments,  within.   Coupled with subject
specific context, further expectations regarding methods of content delivery, the role of
the individual learner, the role of the instructor, and the type of interactions among thelearners can be formed.High  school  courses  with  maximum distent  are the terminal  courses  from theRegistered Apprenticeship Program (RAP), for example, RAP 6243 (#1196), StructuralSteel and Plate Fitter 35d, with D = ¯ 90.  This indicates the vocational knowledge intheses courses is well developed, and supported by a continuous, long chain of previouslearning.   Not  surprisingly,  considering  the number of hours  directed toward the pro-gram, a successful  RAP student graduates  from high school  nearly finished their  firstyear  formal  apprenticeship  training  in  the  corresponding  field,  which  are  otherwise"traditionally  .  .  .  began  after  students  graduate  from high school"  (Alberta  Learning2003b).  Among the academic high school courses, MAT 3211 (#736), Mathematics 31,and GER 3317 (#534), German 31, with D = ¯ 67, and FSL 3308 (#528), French 31C,with D = ¯ 77, have the greatest distent scores.  These courses are appended to the endsof  prerequisite  chains  typical  in  length  of  other  senior  subjects  in  high  school,  thusextending them, indicating students must direct even more learning time and effort tofinish  them.  As a result,  students  completing  these long learning trajectories  in highschool have direct access to more advanced courses in the corresponding departments atthe  University  of  Alberta,  such as,  MATH 100 (#4165),  Calculus  I,  and MATH 117(#4171), Honors Calculus I, over MATH 114 (#4169), Elementary Calculus I, or FREN211  (#2208),  Intermediate  French  I,  over  FREN  111  (#2204),  Beginners'  French  I.Thus, the distent metric,  measuring only network structure,  identifies,  by extreme val-ues, the courses in the school system that, a) function as the gateway to the educationsystem (kindergarten),  and, b) effectively function as 'advanced placement' courses, forfurther learning in either the trades or university.  Generalizing, the distent metric is hereoffered  as  a  measure  of  course  separation  from kindergarten,  which  in  turn  may  bereasonably interpreted  as corresponding  to the level of knowledge development  at theconclusion of a course.The lowest distent  courses in the University  are introductory  courses from theDepartment  of Physical  Education and Recreation,  such as, PAC 182 (#4651),  IndoorWall Climbing, and DAC155 (#4613), Social Dance, all with D = ¯ 62.5.  These physi-cal  activity  and  dance  activity  courses  require  nothing  but  the  minimum  Universityentrance  requirements  as  prerequisites,  and are  only  weighted  as  ¯1.5  credit  coursesthemselves.  At the other extreme, is NURS 408 (#4594), Acute Care Practice II, with awhopping (in the strictly scholarly sense) distent of D = ¯129 – a score so large it isonly achievable by a high credit course coming at the end of a strict, four year scheduleof consecutive high credit courses in a single discipline.  Its course description declareshow "professional  nursing practice focuses on a comprehensive  application of primaryhealth  care principles  to clients  experiencing  acute  variances  in health  across  the lifespan".   The  weighty  vocabulary  of  "professional",  "practice",  "comprehensive","principles", and "variance" used in the description is well suited to a course that com-pletes the training of those who prepare, literally, for complicated life and death situa-tions at the extreme of their involved profession.  A qualitative visualization of distentscore distribution for nodes throughout the course network, for School and University, isdisplayed by Figure 4.2.1.1-8.  By  calculating  the  frequency  distribution  of  course  distent  for  each  facultyindividually,  location  (median),  dispersion  (median  absolute  deviation),  and  shape(skewness) statistics may be compared (see Table 4.2.1.1-1 tenth column, Dè , and Figure4.2.1.1-9).  By viewing the median distent column, Dè , the Faculties of Arts and PhysicalEducation, are seen as low distent faculties, scoring ¯67 and ¯66 respectively.  Consider-ing the baseline distent level of ¯61, required just for the minimum University entrancerequirements from high school, most courses in the Faculties of Arts and Physical Educa-tion have distent scores within ¯6, viz., two ¯3 courses in a row.  Most courses in theFaculty of Agriculture, Forestry, and Home Economics, Dè AH  = ¯68, and the School ofNative Studies, Dè NS  = ¯68, have distent scores within ¯9 ( or three ¯3 courses) of theminimum University entrance requirements.  The majority of Science (Dè SC  = ¯73) andBusiness (Dè BC  = ¯71) courses can be completed within ¯12 sequences of study, or four¯3 courses.  The professionally oriented Faculties of Engineering, Nursing, and Medi-cine & Dentistry, all have a majority of their courses coming after knowledge develop-ment chains of greater than ¯12 beyond high school.  That is, most courses from theseFaculties  are typically not even encountered by students until after sequences of studythat include at least four courses at the University level.  See Figures 4.2.1.1-10 & -11for more details.   For the interested reader, similar comparisons among the Universitydepartments may be made using the average distent statistics on Table 4.2.1.1-2, eighthcolumn, Dêêê.The system for numbering university courses as described in the University ofAlberta Calendar (§220, p. 448), already discussed in §3.1.2.4 (review Table 3.1.2.4-1),implies a specific, direct relationship with the distent metric.  Quite simply, since eachnumber  level  is  expected to have prerequisites  from the previous  level,  eg.  300-levelcourses "normally" have 200-level prerequisites, and since the median weight of univer-sity courses is ¯3 (review Figure 3.1.2.4-4), the separation of number levels in terms ofdistent should be ¯3.  A common intermediate reference point for all university coursesis the minimum entrance requirements with distent of ¯61.  Therefore, if the Universityadministration's  course numbering system is being followed, then most first year, 100-level courses have an expected distent of ¯61 + ¯3 = ¯64, 200-level courses have anexpected distent of ¯67, third year courses have an expected distent of ¯70, and 400-level courses are supposed to have a distent score of ¯73 on average.  Insofar as thiscorrespondence  holds,  the frequency distribution  of course credit  weight over numberlevels  (review  Figure  3.1.2.4-5)  matches  the  frequency  distribution  of  course  creditweight over distent (see Figure 4.2.1.1-12).   Alas, this is not the case.  Although bothdistributions  have the same median – at the 300-level  or ¯70 distent score, they havevery different shapes as measured by skewness: -1.36 vs. 2.07.  A negative skewness tothe frequency distribution in Figure 3.1.2.4-5 implies that few low-level courses lead tomany  high-level  courses,  while  a  positive  skewness  to  the  frequency  distribution  inFigure 4.2.1.1-12 shows that many courses of low distent lead to fewer courses of rela-tively higher distent.  Using a nonparametric statistical method to compare two distribu-tions with the same median, the distributions  from Figures 3.1.2.4-5 & 4.2.1.1-12,  aremeasured  to be significantly  different  (P-value ≈  0) by comparing  variability  using a"test  of dispersion"  (Hollander  & Wolfe 1999:  ch.  5.1),  called the Siegel-Tukey  Test(Abell et al. 1999: 570).  To summarize, the University administration sets forth guide-lines and labels which arrange the courses in an expansive, "top-heavy" structure (Ù) asnumber level increases, but, the courses actually interact by their prerequisite knowledgein  a  far  different  manner:  a  contracting,  "bottom-heavy"  structure  (Ú)  as  distentincreases (see Figure 4.2.1.1-13).The  "top-down",  planned  view  of  course  structure  from  the  administrationdiffers  substantially  from the "bottom-up",  experienced  view of course structure  fromthe students.  The only Faculty with a negative skewness to the distent distribution forits  courses  (see Table  4.2.1.1-1,  eleventh  column,  gD)  is  Engineering.   That  is,  onlyEngineering  (mildly)  holds to the administrative  view that courses are arranged in anexpanding  structure,  anything  like Figure 3.1.2.4-5.   The reason for the dramatic  andconsistent difference in course arrangement for every other Faculty, and the Universityas a whole,  from the expected  arrangement  of courses  implied  by the distribution  ofnumber level, is the widespread and prevalent use of hedge terms in the course number-ing system that allow for deviations  from the normal prerequisite  relationships  amongcourses (review Table 3.1.2.4-1).  In most Faculties there are many senior courses withfew senior prerequisites,  few junior prerequisites,  or even no prerequisites at all.  Thishas the effect of increasing access, and 'front-loading'  new course choices for freshmanand sophomore  students,  thus making most of a Faculty available to students  early intheir studies with relatively  lesser expansion of course choices in later years.   On theother hand, some Faculties assign courses prerequisites  of the same level, instead of alevel  below,  thus  extending  prerequisite  lineages  and  delaying  access  to  subsequentcourses of higher number level beyond what is expected.  Both of these ubiquitous typesof  deviations  from  the  normal  classification  of  courses  contribute  to  the  differencebetween the imagined administrative structure – wherein the diversity of courses avail-able to students consistently increases year-by-year as they move towards graduation –versus  the  experienced  knowledge  structure  of  courses  linked  by  their  prerequisiterequirements – wherein new course choices explode in the early years for students, thenare reduced to a trickle along sometimes very lengthy trajectories.Besides  the directed,  binary,  prerequisite  relationship  between pairs of coursesthat establishes the network structure studied in this thesis, courses are associated by asecond overlapping layer of relationships based on membership in specific degree pro-grams  offered  by  each  university  Department.   The  University's  numbering  systemdescribes courses at any number level as being "designed typically for students in the[corresponding] year of a program."  That is, 300-level courses are "typically" designedfor third-year students  of a particular program.  Sometimes this condition is explicitlystated  in  a course  description.   For  example,  NUTR 440 (#1518),  Current  Topics  inNutritional  Sciences,  states  it  is  "open  to  fourth-year  students  in  the  Nutrition  majoronly",  but  also  lists  NUTR 301 & 302 as specific  course  prerequisites.   Many othersenior  level  courses  have  no  stated  prerequisites  of  specific  courses,  degree  require-ments, or student year.  A very small minority of courses have restrictions on the year ofa student without also specifying specific course prerequisites or even degree programs;for example, SOC 300, Principles of Sociology, offers "basic concepts and principles ofSociology  for  students  with  advanced  standing"  with  the explicit  "prerequisite:  third-year or more advanced standing", which "may not be taken for credit by students withcredit in SOC 100. First or second-year students must take SOC 100."  In terms of themethod of data translation into the course network in this theses, a prerequisite conditionon the year of the student can be reasonably accounted for by the requirement of leastone connection from that course to some other subset of courses at the next lower num-ber level.   Ideally,  the two factors that determine the number level of a course are inharmony: a course at a certain number level, say 300, has explicit prerequisites  at thenext level below (200-level) or is attended by students in the corresponding (third) year,whose  transcripts  are  full  of  the  implicitly  supporting  (200-level)  courses  from  theprevious year of the program.  The disconnect between the number level of courses thathave explicitly stated prerequisites and the number level of courses that rely on implicitadherence to an outline of a degree program is revealed whenever a diversity of studentsexternal  to  particular  programs  enroll  in  courses  as  options,  or  whenever  the  samecourse belongs in two or more different degree programs.Contemporary learning theories emphasize engaging and challenging the learnerwith tasks that refer to skills and knowledge just beyond their current level of capabili-ties.   For  example,  Smith  et  al.  (1993)  employ  an  explicit  constructivist  stance  andinterpret students' prior conceptions as "resources for cognitive growth within a complexsystems view of knowledge" used as the basis for "knowledge refinement and reorganiza-tion".  This view of knowledge and learning is incompatible with the current practice ofassigning the same number level to whole groups of courses where the "level of mas-tery" and academic "resources"  among the students  are so inconsistent.   For instance,presenting a 400-level course without specific university prerequisites and contending itsomehow  supports  learning  and  knowledge  of  the  same  "level"  as  other  400-levelcourses  with  standard  prerequisite  lineages  is  problematic.   Either,  the  informationencountered suits a 400-level  course and relies on sophisticated (300-level)  supportingprerequisite knowledge that a diverse student body with differing prior knowledges andexperiences  are unable to incorporate  into their  knowing,  or, the information  encoun-tered depends on prerequites further towards students'  shared foundational  knowledge,thus  resulting in learning  outcomes characteristic  of courses at  a lower number  level.The argument  here assumes a kind of consistency in the Education system, such that,any course, in any subject, given any title, sporting any catalogue number, cannot reli-ably elevate the knowledge of its incoming students more (or less) than its credit weight(eg. ¯3) reflects, from a baseline level of experience and common knowledge indicatedby prerequisites  without having practically unacceptable  dropout or failure rates.  Thisprinciple  is consistent  with John Dewy (1938: ch. 3 & 7), who places learning into a"category of continuity" based on an "experiential continuum" that precludes any sort oflarge 'quantum leaps'  in knowledge  among learners  beyond their  prior  experiences  tolevels beyond what can be expected from a single ¯3 course.Number levels presently fail to be meaningful  because they do not model (Se-beok & Danesi 2000: ch. 1) well and sustain the pattern of the University's course num-bering  system to  which  they  supposedly  refer,  nor  do  they  consistently  differentiate(Belsey 2002: ch. 4) courses based on a substantive concept such as the level of knowl-edge taught and learned in a course.  The above described repositioning of courses inUniversity  based  on  nonstandard  or  unstated  prerequisite  requirements  for  assignednumber levels leads to a large variance of distent scores for courses of the same numberlevel (for example, review Figure 4.2.1.1-7).  When, courses of a particular level haveanything from no university prerequisites  to prerequisites of the same level, just know-ing the catalogue number of a course is insufficient to reliably characterize the knowl-edge development within, especially for 300- and 400-level courses.  The distent metricis here offered both as a way of restating the meaning of the course numbering system(review Table 3.1.2.4-1) and as a practical tool to label courses based on the level of theknowledge  taught  in  the  course.   A distent  supported  system of  assigning  cataloguenumbers  to  courses  would  function  similarly  to  how addresses  are presently  used  tolocate buildings in a city, where the (street) name and first digits of the address immedi-ately offer an approximate 'location'.  The proposed format is: SUBJECT XXYY, whereSUBJECT is the subject code used presently, such as MATH (Math) or PSYCO (Psychol-ogy), XX is the distent score of the course, say ¯64 for a first year course, and YY arethe last two digits presently used to distinguish courses at any level.  For example, usingthe courses from Figure 4.2.1.1-7, CH E 435, Oilsands Engineering Design, would berelabelled CH E 9735 derived from its distent score of ¯97, and C LIT 440, Compara-tive Studies in Popular Culture, would be relabelled C LIT 6440, derived from its distentscore of ¯64.  Courses are presently given classifications based on course number, butthis administrative categorization has lost some of its meaning due to the pervasive lackof discipline in following the guidelines.  A course labelling system tied directly to theprerequisite  requirements  offers  an  objective,  consistent  method  for  generating  cata-logue numbers,  which,  in turn,  provide immediate  information  regarding  the approxi-mate level of knowledge expected in the course based on distent score.Aside  from  the  particularities  of  the  proposed  course  renumbering  systemdescribed immediately  above, the present system can be further scrutinized.   Once therelationship  between  the University's  present  numbering  system and distent  is  under-stood, and after the observation that the distribution of courses by level does not matchthe distribution of courses by distent, the question of which courses,  departments,  andfaculties currently break the guidelines the most, and in what ways, arises.  Nominally,all courses presently labelled, 4xx, are of the same number level, but as measured by thedistent metric, they vary widely in their network locations, and therefore functions.  TheUniversity numbering system, if followed, implies a consistent distent value for coursesfrom each  number  level:  100-level  courses  taken  by first  year  students  in a programhave an expected distent of ¯61 + ¯3 = ¯64, 200-level courses taken by second yearstudents  in  a  program  have  an  expected  distent  of  ¯67,  third  year  courses  have  anexpected distent of ¯70, and 400-level courses are supposed to have a distent score of¯73 on average, as illustrated four paragraphs above.  Therefore,  all of the courses inthe University can be assigned two distent scores: a) an implicit score determined by thepresently assigned catalogue number,  and b) a measured distent value based on actualprerequisite  lineages.   Comparison  of these two distent  values determines  if  the cata-logue  number  of  a course  overstates,  matches,  or  understates  the level  of knowledgedeveloped  therein.   After  normalization,  by  setting  the  minimal  university  entrancerequirement to zero distent, the ratio of the implied vs. the measured distent accrued inuniversity for each course is calculated, and the average values reported for departmentson Table 4.2.1.1-1.  Large ratios indicate that the average course catalogue numbers aretoo high given the average measured course distent; these departments are responsiblefor the above discussed "front  loading" of the university by allowing overly generousaccess to upper level courses by freshman and sophomore students.  Small ratios indi-cate  that the average course catalogue  numbers  are too low given the average coursedistent;  these  departments  are  responsible  for  the  above  discussed  "long  tail"  of  thefrequency distribution for distent comprised of courses along protracted trajectories.  The integrity  of such evaluations  is dependent  on the reliability  of the distentmetric  to  measure  what  is  purported  (see  Figure  4.2.1.1-14),  and  the  plausibility  ofinterpretations.   Notice,  at issue in this analysis  of number level 'inflation'  is not howmany high or low distent courses there are in a department, but how appropriately theyare labelled with catalogue numbers.  For instance, the Department of Biomedical Engi-neering will always have proportionally more high distent courses than, say, the Depart-ment  of Anthropology,  since  its  advanced  subject  matter  relies  on so much previouslearning before entrance.  But, either Department could be measured as 'correspondent',over 'inflationist'  or 'deflationist',  whenever  the number  levels assigned to the coursesfaithfully reflect the University course numbering system.   It is here speculated that thepractical  aligning  of  courses  in  terms  of  their  topics  of  inquiry,  prerequisite  require-ments, and number level, is a distributed process occurring among professors of individ-ual Departments – an intermediate level somewhere between the central administrationand the students.  Clark (2004) identifies two important forces of influence on a depart-ment: 1) the vitality, diversity, and growth of the subject matter of the department, and,2)  the  element  of  competition  for  resources  between  departments  in  the  university(particularly  in  North  America).   For  departments  centered  around  large,  involved,demanding subjects studied through focused programs, long chains of knowledge devel-opment, including five or more courses, are inevitable.  Given the inherent limitation ofthe University course numbering system to 400- & 500-level courses that imply prerequi-site  chains  of three  or four courses long,  number level  deflation is unavoidable.   Fordepartments centered on what Pan (1998) and Cole (2002) call "marginalized" subjects,course  level  inflation  might  be a  survival  response  to  help compete  for  the essentialresources of students and the funding allocated for them.  For example, since all Bache-lor  programs  have limitations  on the number  of  junior  level  credits  which  contributetowards the degree, persistently low enrolments in a junior (100-level) course at a Depart-ment can be addressed by raising the catalogue number to the 200-level.  Thus, a code-pendent  relationship  established  between  students  'shopping'  for accessible,  nonjuniordegree requirements and departments seeking student enrolment can be a mechanism forcourse level inflation.   A more widely reported,  complementary  phenomena of "gradeinflation" (Nature 2004; Johnson 2003: ch. 3; Ziomek & Svec 1997; British Broadcast-ing  Corporation  2010)  "omnipresent  at  community  colleges  and  at  both  public  andprivate four-year schools" is attributed by Rojstaczer & Healy (2010)  to a similar, "keepthe  customer  happy",  ethos  across  USA  (at  least)  campuses  (see  also,<www.gradeinflation.com>).By definition, academic subjects vary from one another.  It is difficult to com-pare the subject matter in, say, ENGLISH 100 to MATH 333, so no attempts are directlymade in this thesis.   Instead,  courses are evaluated and compared indirectly  based ontheir network locations.  The differences and similarities in courses are by virtue of theirarrangement, and the assumption that each course on a transcript contributes equally to astudent's education in proportion to course weight: three academic credits (¯3) assignedto a Native Studies course is given the same significance on a transcript as if the creditswere  assigned  to  a  Pharmacology  course.   Distent  is  the first  example  of  a  networkmetric  tailored  for  use  in  education.   It  measures  the  prerequisite  lineages  for  eachcourse  in  a careful  way,  by identifying  the simultaneously  longest  necessary  and (fl)shortest optional route from kindergarten to the course in question.   Chains of coursesare  argued  to be trajectories  of continuous  knowledge  elaboration  proportional  to thenumber of academic credits (¯) awarded to constituent courses along the way, and thisis  called  'distent'.   With  this  framework  in  place,  all  individual  courses  in  Alberta'sProvincial Education system are characterized by the distent measure, plus departmentsand faculties by average and median distent values.  The distribution of distent scores isshown to have strong implications for how the network of courses is shaped, which inturn determines  how knowledge  is presented to, and experienced  by, students  in theirpaths  through  University.   The  discrepancy  between  how  courses  are  labelled  withcatalogue  numbers  by  the  administration  and  how courses  are  scored  by  the  distentmetric is briefly discussed, leading to the portrayal of some departments as 'inflationist','deflationist', or 'correspondent'.  The suggestion, and outline, for a new system of courselabelling is offered since present labels no longer provide significant contextual meaning.__________________________†  Something  similar  could  be said  for  regular  geographical  maps.   For  example,  twotowns  in British  Columbia,  separated  by mountains,  may be close,  measured  "as  thecrow flies", yet be distant, measured by the highway system.
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A basic function of maps is to orient the user in spatial terms regarding a subject.
An important  aspect  of  orientation  is  the  viewer's  ability  to  determine  closeness  and
separation between places or objects while reading a map.  This is usually accomplished
by some sort of associated scale or legend to help with the interpretation of distances,
areas,  color codes, etcetera.   The networks in this thesis, and networks in general, are
intended to capture and visually emphasize topology – those spatial properties that are
invariant under continuous elastic deformations.  Distortions  of network size, overlap-
ping  of  nodes,  crossing  of  links,  twisting  of  form,  and  stretching  of  shape  are  all
accepted  to preserve and communicate  the architecture  of connections  among compo-
nents.  This generally contrasts with typical maps, say geographic, which mostly strive
to preserve distance, proportional areas, and fixed arrangements of elements.

Reenforcing  a fairly  "standard narrative"  of education  as coherent,  cumulative
learning in preparation for a future (Nespor 2007), Ormell  (1996) offers "eight robust
metaphors  .  .  .  to  represent  the  invariant  features  of  education",  three  of  which  are
related to the spatial metaphor of education as mountain climbing.  Ormell conceives of
the curriculum  as "a  definite,  recognized  named mountain,  which requires  effort  and
stamina to climb", upon which students should be able to gauge their progress in the trek
towards the summit, where their efforts are rewarded with "a ‘local synthesis’: a single
viewpoint  or  vantage-point  from  which  a  great  tract  of  country  (knowledge)  can  be
seen".   But, this type of metaphor is difficult to reconcile with the architecture of the
network maps presented  in the thesis.   A basic observation within this thesis  that the
curriculum, as represented by courses, is very large, so only ever partially experienced,
and does not allow for relatively "great tracts" of knowledge to be seen in retrospect; the
number  of  possible  trajectories  is  nearly  innumerable  for  students,  so  no  orientation
towards a single summit is possible.  And, an initiating observation of this thesis, which
motivated the very creation of the network maps presented, is that the overall curricular
structure is veiled – anything but "prominent", "publicly visible", and easily "seen from
a distance" as Ormell contends the curriculum should be (p. 72-73).  

Instead of "height" on a mountain in a journey towards a "peak", a different kind
of measure for progress through the curriculum as represented by the network of courses
is required.  Davis and Sumara (2006: 57)  write that "complexity thinking troubles the
metaphors of accumulations of knowledge and progress toward a foreseeable endpoint",
and "the emergence of new interpretive possibility [learning] is framed more in terms of
expansiveness  and  outward  movement".   Instead  of  the  synthesizing  and  orienting
vantage point being the peak of a mountain from where a student looks back and down-
wards  upon  the  curriculum  once  climbed,  a  metric  which  traces  a  learner's  history
through the curriculum to measure "outward movement" from a starting point towards
the unknown is formulated.  Let such a course network metric be called distent, D

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition: "Distent, n:  Stretching out; out-stretched extent; distension; breadth."  Here,
as an alternative to the concept of distance in Euclidean space (Gamelin & Greene 1983:
ch.  1),  distent  is  proffered  as  a  structural  metric  of  course  separation  on a  network.
Traditional  cartographic measures of separation, such as cartesian distance, along with
some typical adjectives, such as higher and lower, are less applicable to describe separa-
tion of nodes on a tangled network.  Common education perspectives assume that move-
ment along a knowledge trajectory implies the effective connection of new knowledge
to old knowledge,  that is, the construction of a continuously elaborated present knowl-
edge.  This view from education can support a more continuous,  topological notion of
separation-as-stretching as much as the notion of separation-as-distance or being apart in
space.  The metric, distent, captures this difference by tracing the steps taken forward to
reach any point in the network.  Therefore, two nodes may be located quite close to each
other in terms of their placements on the embedding of a network map, but be consid-
ered quite separated as measured by distent†.

Let distent be measured outward from a common origin: the beginning of Kinder-
garten.   Now all  courses  of  the  education  system can  be characterized  as containing
knowledge continuously elaborated from Kindergarten by tracing the demands of prior
knowledge set down in prerequisite requirements as represented by the topology of the
network  (see  Figure  4.2.1.1-1).   Let  the  distent  score  assigned  to  any  course  be the
academic credits (¯) required to finish the course; that is, distent is a measure of continu-
ous knowledge elaboration, stretching from the beginning of Kindergarten to the end of
the course in question.  Since there are many possible trajectories between kindergarten
and,  say,  an  advanced  undergraduate  course,  care  must  be  taken  in  establishing  an
algorithm.  To do so, the way the course network is normally visualized and described in
this thesis must be changed by reversing the direction of the links (see Figure 4.2.1.1-2).
This  change  in  link polarity  switches  the  qualitative  orientation  of  the  network  from
prerequisite courses to subsequent courses, from prior knowledge to future possibilities,
and  switches  the  quantitative  flow  to  be  in  the  direction  of  knowledge  elaboration:
expansive and outward from a common origin, Kindergarten.

A directed  acyclic  graph  (review §2.3.2.1),  like the  course  network,  formally
defines a "precedence relation" (Pemmaraju & Skiena 2003: ch. 8.5.1) on the nodes, if
link (i, j) is taken as meaning that node i must occur before node j.  A topological sort is
a nonunique permutation of the nodes of a graph such that a link (i, j) always implies
that i appears before j (Corman et al 2001: ch. 22.4).  Only directed acyclic graphs can
be topologically sorted, since no node in a directed cycle can take precedence over all
the rest.   Because there are no cycles, every finite acyclic graph contains at least one
node v of out-degree zero where trajectories of the graph might be said to end.  Clearly,
v can appear last in the topological ordering.  Deleting v leaves a graph with at least one
other vertex of out-degree zero.  Repeating this argument gives an algorithm for topologi-
cally  sorting  any  directed  acyclic  graph  establishing  a  node  permutation  with  a
beginning(s) and end(s) (see Figure 4.2.1.1-3).  Critical to several types of calculations
for this thesis, a topological sort of the course network allows the otherwise large, tan-
gled nexus to be addressed systematically and efficiently, from end(s) to end, for compre-
hensive,  sophisticated  analysis  with  reasonable  computing  times  (for  the  interested
reader, see Attachment 9.3 Supplementary Equations 4.2.1.1).

Here  it  is  assumed  that  a  particular  course  and  its  neighborhood  define  a
"precedence  relation".   In  the  case  of  the  course  network  reversed,  where  edges  are
oriented from a course to its subsequents, the precedence relation is the prior knowledge
a  course  provides  to  its  subsequents  for  elaboration.   Typically,  terminal  400-level
courses are at the end of such precedence chains and kindergarten is alone at the begin-
ning because it is the only node requiring no prior knowledge from within the education
system.  The topologically sorted reverse course network always starts with kindergar-
ten, and it is an obvious reference point for distent and other calculations.  Let the dis-
tent measure to any course be the total number of credits accumulated along a trajectory
from the beginning of kindergarten to the end of the course, chosen to be simultaneously
the longest  necessary  and the shortest  optional  path (see Figure  4.2.1.1-4  and Figure
4.2.1.1-5).  In large complicated course networks, a path defining the distent of a course
is not unique since one or more paths may determine the same distent score. 

By sifting through  the individual  distent  results  calculated  for each course by
computer  with  the  program,  Calendar  Navigator,  some  exceptional  courses  are  high-
lighted (see Table 9.2-1, eleventh column, D).  Predictably, kindergarten (#535) has the
lowest  possible  distent score (¯2), since it relies not at all for students  to arrive with
knowledge from elsewhere  in the education system.  The many instructional  hours of
expected  attendance,  and  the  normally  twelve-plus  years  of  enrollment,  ensures  that
School  is  the  major,  if  not  distinguishing,  contributor  to  the  distent  scores  of  most
courses (see Figure 4.2.1.1-6).   Trajectory requests may be sent to Calendar Navigator
for any input course node on the network; two are shown in Figure 4.2.1.1-7.  Distent
scores and trajectories allow for sophisticated quantitative and qualitative interpretation
of  courses  characteristics  based  on  network  structure  independent  of  subject  specific
course content.   Courses with small distent scores lie on continuous chains of knowl-
edge elaboration that are short; courses with large distent scores lie on continuous chains
of knowledge elaboration that are long.  The "emergence of new interpretive possibili-
ties"  within  any course  is  not  arbitrary,  but  always  a  function  of  the  prior  academic
knowledge brought to the course by students.  Given the distent score of a course, and
by tracing the trajectory to it, reasonable expectations may be made regarding the level
of readings,  difficulty  of assignments,  knowledge  of peers,  scholarliness  of instructor,
necessity  for attendance,  and challenge  of assessments,  within.   Coupled with subject
specific context, further expectations regarding methods of content delivery, the role of
the individual learner, the role of the instructor, and the type of interactions among the
learners can be formed.

High  school  courses  with  maximum distent  are the terminal  courses  from the
Registered Apprenticeship Program (RAP), for example, RAP 6243 (#1196), Structural
Steel and Plate Fitter 35d, with D = ¯ 90.  This indicates the vocational knowledge in
theses courses is well developed, and supported by a continuous, long chain of previous
learning.   Not  surprisingly,  considering  the number of hours  directed toward the pro-
gram, a successful  RAP student graduates  from high school  nearly finished their  first
year  formal  apprenticeship  training  in  the  corresponding  field,  which  are  otherwise
"traditionally  .  .  .  began  after  students  graduate  from high school"  (Alberta  Learning
2003b).  Among the academic high school courses, MAT 3211 (#736), Mathematics 31,
and GER 3317 (#534), German 31, with D = ¯ 67, and FSL 3308 (#528), French 31C,
with D = ¯ 77, have the greatest distent scores.  These courses are appended to the ends
of  prerequisite  chains  typical  in  length  of  other  senior  subjects  in  high  school,  thus
extending them, indicating students must direct even more learning time and effort to
finish  them.  As a result,  students  completing  these long learning trajectories  in high
school have direct access to more advanced courses in the corresponding departments at
the  University  of  Alberta,  such as,  MATH 100 (#4165),  Calculus  I,  and MATH 117
(#4171), Honors Calculus I, over MATH 114 (#4169), Elementary Calculus I, or FREN
211  (#2208),  Intermediate  French  I,  over  FREN  111  (#2204),  Beginners'  French  I.
Thus, the distent metric,  measuring only network structure,  identifies,  by extreme val-
ues, the courses in the school system that, a) function as the gateway to the education
system (kindergarten),  and, b) effectively function as 'advanced placement' courses, for
further learning in either the trades or university.  Generalizing, the distent metric is here
offered  as  a  measure  of  course  separation  from kindergarten,  which  in  turn  may  be
reasonably interpreted  as corresponding  to the level of knowledge development  at the
conclusion of a course.

The lowest distent  courses in the University  are introductory  courses from the
Department  of Physical  Education and Recreation,  such as, PAC 182 (#4651),  Indoor
Wall Climbing, and DAC155 (#4613), Social Dance, all with D = ¯ 62.5.  These physi-
cal  activity  and  dance  activity  courses  require  nothing  but  the  minimum  University
entrance  requirements  as  prerequisites,  and are  only  weighted  as  ¯1.5  credit  courses
themselves.  At the other extreme, is NURS 408 (#4594), Acute Care Practice II, with a
whopping (in the strictly scholarly sense) distent of D = ¯129 – a score so large it is
only achievable by a high credit course coming at the end of a strict, four year schedule
of consecutive high credit courses in a single discipline.  Its course description declares
how "professional  nursing practice focuses on a comprehensive  application of primary
health  care principles  to clients  experiencing  acute  variances  in health  across  the life
span".   The  weighty  vocabulary  of  "professional",  "practice",  "comprehensive",
"principles", and "variance" used in the description is well suited to a course that com-
pletes the training of those who prepare, literally, for complicated life and death situa-tions at the extreme of their involved profession.  A qualitative visualization of distentscore distribution for nodes throughout the course network, for School and University, isdisplayed by Figure 4.2.1.1-8.  By  calculating  the  frequency  distribution  of  course  distent  for  each  facultyindividually,  location  (median),  dispersion  (median  absolute  deviation),  and  shape(skewness) statistics may be compared (see Table 4.2.1.1-1 tenth column, Dè , and Figure4.2.1.1-9).  By viewing the median distent column, Dè , the Faculties of Arts and PhysicalEducation, are seen as low distent faculties, scoring ¯67 and ¯66 respectively.  Consider-ing the baseline distent level of ¯61, required just for the minimum University entrancerequirements from high school, most courses in the Faculties of Arts and Physical Educa-tion have distent scores within ¯6, viz., two ¯3 courses in a row.  Most courses in theFaculty of Agriculture, Forestry, and Home Economics, Dè AH  = ¯68, and the School ofNative Studies, Dè NS  = ¯68, have distent scores within ¯9 ( or three ¯3 courses) of theminimum University entrance requirements.  The majority of Science (Dè SC  = ¯73) andBusiness (Dè BC  = ¯71) courses can be completed within ¯12 sequences of study, or four¯3 courses.  The professionally oriented Faculties of Engineering, Nursing, and Medi-cine & Dentistry, all have a majority of their courses coming after knowledge develop-ment chains of greater than ¯12 beyond high school.  That is, most courses from theseFaculties  are typically not even encountered by students until after sequences of studythat include at least four courses at the University level.  See Figures 4.2.1.1-10 & -11for more details.   For the interested reader, similar comparisons among the Universitydepartments may be made using the average distent statistics on Table 4.2.1.1-2, eighthcolumn, Dêêê.The system for numbering university courses as described in the University ofAlberta Calendar (§220, p. 448), already discussed in §3.1.2.4 (review Table 3.1.2.4-1),implies a specific, direct relationship with the distent metric.  Quite simply, since eachnumber  level  is  expected to have prerequisites  from the previous  level,  eg.  300-levelcourses "normally" have 200-level prerequisites, and since the median weight of univer-sity courses is ¯3 (review Figure 3.1.2.4-4), the separation of number levels in terms ofdistent should be ¯3.  A common intermediate reference point for all university coursesis the minimum entrance requirements with distent of ¯61.  Therefore, if the Universityadministration's  course numbering system is being followed, then most first year, 100-level courses have an expected distent of ¯61 + ¯3 = ¯64, 200-level courses have anexpected distent of ¯67, third year courses have an expected distent of ¯70, and 400-level courses are supposed to have a distent score of ¯73 on average.  Insofar as thiscorrespondence  holds,  the frequency distribution  of course credit  weight over numberlevels  (review  Figure  3.1.2.4-5)  matches  the  frequency  distribution  of  course  creditweight over distent (see Figure 4.2.1.1-12).   Alas, this is not the case.  Although bothdistributions  have the same median – at the 300-level  or ¯70 distent score, they havevery different shapes as measured by skewness: -1.36 vs. 2.07.  A negative skewness tothe frequency distribution in Figure 3.1.2.4-5 implies that few low-level courses lead tomany  high-level  courses,  while  a  positive  skewness  to  the  frequency  distribution  inFigure 4.2.1.1-12 shows that many courses of low distent lead to fewer courses of rela-tively higher distent.  Using a nonparametric statistical method to compare two distribu-tions with the same median, the distributions  from Figures 3.1.2.4-5 & 4.2.1.1-12,  aremeasured  to be significantly  different  (P-value ≈  0) by comparing  variability  using a"test  of dispersion"  (Hollander  & Wolfe 1999:  ch.  5.1),  called the Siegel-Tukey  Test(Abell et al. 1999: 570).  To summarize, the University administration sets forth guide-lines and labels which arrange the courses in an expansive, "top-heavy" structure (Ù) asnumber level increases, but, the courses actually interact by their prerequisite knowledgein  a  far  different  manner:  a  contracting,  "bottom-heavy"  structure  (Ú)  as  distentincreases (see Figure 4.2.1.1-13).The  "top-down",  planned  view  of  course  structure  from  the  administrationdiffers  substantially  from the "bottom-up",  experienced  view of course structure  fromthe students.  The only Faculty with a negative skewness to the distent distribution forits  courses  (see Table  4.2.1.1-1,  eleventh  column,  gD)  is  Engineering.   That  is,  onlyEngineering  (mildly)  holds to the administrative  view that courses are arranged in anexpanding  structure,  anything  like Figure 3.1.2.4-5.   The reason for the dramatic  andconsistent difference in course arrangement for every other Faculty, and the Universityas a whole,  from the expected  arrangement  of courses  implied  by the distribution  ofnumber level, is the widespread and prevalent use of hedge terms in the course number-ing system that allow for deviations  from the normal prerequisite  relationships  amongcourses (review Table 3.1.2.4-1).  In most Faculties there are many senior courses withfew senior prerequisites,  few junior prerequisites,  or even no prerequisites at all.  Thishas the effect of increasing access, and 'front-loading'  new course choices for freshmanand sophomore  students,  thus making most of a Faculty available to students  early intheir studies with relatively  lesser expansion of course choices in later years.   On theother hand, some Faculties assign courses prerequisites  of the same level, instead of alevel  below,  thus  extending  prerequisite  lineages  and  delaying  access  to  subsequentcourses of higher number level beyond what is expected.  Both of these ubiquitous typesof  deviations  from  the  normal  classification  of  courses  contribute  to  the  differencebetween the imagined administrative structure – wherein the diversity of courses avail-able to students consistently increases year-by-year as they move towards graduation –versus  the  experienced  knowledge  structure  of  courses  linked  by  their  prerequisiterequirements – wherein new course choices explode in the early years for students, thenare reduced to a trickle along sometimes very lengthy trajectories.Besides  the directed,  binary,  prerequisite  relationship  between pairs of coursesthat establishes the network structure studied in this thesis, courses are associated by asecond overlapping layer of relationships based on membership in specific degree pro-grams  offered  by  each  university  Department.   The  University's  numbering  systemdescribes courses at any number level as being "designed typically for students in the[corresponding] year of a program."  That is, 300-level courses are "typically" designedfor third-year students  of a particular program.  Sometimes this condition is explicitlystated  in  a course  description.   For  example,  NUTR 440 (#1518),  Current  Topics  inNutritional  Sciences,  states  it  is  "open  to  fourth-year  students  in  the  Nutrition  majoronly",  but  also  lists  NUTR 301 & 302 as specific  course  prerequisites.   Many othersenior  level  courses  have  no  stated  prerequisites  of  specific  courses,  degree  require-ments, or student year.  A very small minority of courses have restrictions on the year ofa student without also specifying specific course prerequisites or even degree programs;for example, SOC 300, Principles of Sociology, offers "basic concepts and principles ofSociology  for  students  with  advanced  standing"  with  the explicit  "prerequisite:  third-year or more advanced standing", which "may not be taken for credit by students withcredit in SOC 100. First or second-year students must take SOC 100."  In terms of themethod of data translation into the course network in this theses, a prerequisite conditionon the year of the student can be reasonably accounted for by the requirement of leastone connection from that course to some other subset of courses at the next lower num-ber level.   Ideally,  the two factors that determine the number level of a course are inharmony: a course at a certain number level, say 300, has explicit prerequisites  at thenext level below (200-level) or is attended by students in the corresponding (third) year,whose  transcripts  are  full  of  the  implicitly  supporting  (200-level)  courses  from  theprevious year of the program.  The disconnect between the number level of courses thathave explicitly stated prerequisites and the number level of courses that rely on implicitadherence to an outline of a degree program is revealed whenever a diversity of studentsexternal  to  particular  programs  enroll  in  courses  as  options,  or  whenever  the  samecourse belongs in two or more different degree programs.Contemporary learning theories emphasize engaging and challenging the learnerwith tasks that refer to skills and knowledge just beyond their current level of capabili-ties.   For  example,  Smith  et  al.  (1993)  employ  an  explicit  constructivist  stance  andinterpret students' prior conceptions as "resources for cognitive growth within a complexsystems view of knowledge" used as the basis for "knowledge refinement and reorganiza-tion".  This view of knowledge and learning is incompatible with the current practice ofassigning the same number level to whole groups of courses where the "level of mas-tery" and academic "resources"  among the students  are so inconsistent.   For instance,presenting a 400-level course without specific university prerequisites and contending itsomehow  supports  learning  and  knowledge  of  the  same  "level"  as  other  400-levelcourses  with  standard  prerequisite  lineages  is  problematic.   Either,  the  informationencountered suits a 400-level  course and relies on sophisticated (300-level)  supportingprerequisite knowledge that a diverse student body with differing prior knowledges andexperiences  are unable to incorporate  into their  knowing,  or, the information  encoun-tered depends on prerequites further towards students'  shared foundational  knowledge,thus  resulting in learning  outcomes characteristic  of courses at  a lower number  level.The argument  here assumes a kind of consistency in the Education system, such that,any course, in any subject, given any title, sporting any catalogue number, cannot reli-ably elevate the knowledge of its incoming students more (or less) than its credit weight(eg. ¯3) reflects, from a baseline level of experience and common knowledge indicatedby prerequisites  without having practically unacceptable  dropout or failure rates.  Thisprinciple  is consistent  with John Dewy (1938: ch. 3 & 7), who places learning into a"category of continuity" based on an "experiential continuum" that precludes any sort oflarge 'quantum leaps'  in knowledge  among learners  beyond their  prior  experiences  tolevels beyond what can be expected from a single ¯3 course.Number levels presently fail to be meaningful  because they do not model (Se-beok & Danesi 2000: ch. 1) well and sustain the pattern of the University's course num-bering  system to  which  they  supposedly  refer,  nor  do  they  consistently  differentiate(Belsey 2002: ch. 4) courses based on a substantive concept such as the level of knowl-edge taught and learned in a course.  The above described repositioning of courses inUniversity  based  on  nonstandard  or  unstated  prerequisite  requirements  for  assignednumber levels leads to a large variance of distent scores for courses of the same numberlevel (for example, review Figure 4.2.1.1-7).  When, courses of a particular level haveanything from no university prerequisites  to prerequisites of the same level, just know-ing the catalogue number of a course is insufficient to reliably characterize the knowl-edge development within, especially for 300- and 400-level courses.  The distent metricis here offered both as a way of restating the meaning of the course numbering system(review Table 3.1.2.4-1) and as a practical tool to label courses based on the level of theknowledge  taught  in  the  course.   A distent  supported  system of  assigning  cataloguenumbers  to  courses  would  function  similarly  to  how addresses  are presently  used  tolocate buildings in a city, where the (street) name and first digits of the address immedi-ately offer an approximate 'location'.  The proposed format is: SUBJECT XXYY, whereSUBJECT is the subject code used presently, such as MATH (Math) or PSYCO (Psychol-ogy), XX is the distent score of the course, say ¯64 for a first year course, and YY arethe last two digits presently used to distinguish courses at any level.  For example, usingthe courses from Figure 4.2.1.1-7, CH E 435, Oilsands Engineering Design, would berelabelled CH E 9735 derived from its distent score of ¯97, and C LIT 440, Compara-tive Studies in Popular Culture, would be relabelled C LIT 6440, derived from its distentscore of ¯64.  Courses are presently given classifications based on course number, butthis administrative categorization has lost some of its meaning due to the pervasive lackof discipline in following the guidelines.  A course labelling system tied directly to theprerequisite  requirements  offers  an  objective,  consistent  method  for  generating  cata-logue numbers,  which,  in turn,  provide immediate  information  regarding  the approxi-mate level of knowledge expected in the course based on distent score.Aside  from  the  particularities  of  the  proposed  course  renumbering  systemdescribed immediately  above, the present system can be further scrutinized.   Once therelationship  between  the University's  present  numbering  system and distent  is  under-stood, and after the observation that the distribution of courses by level does not matchthe distribution of courses by distent, the question of which courses,  departments,  andfaculties currently break the guidelines the most, and in what ways, arises.  Nominally,all courses presently labelled, 4xx, are of the same number level, but as measured by thedistent metric, they vary widely in their network locations, and therefore functions.  TheUniversity numbering system, if followed, implies a consistent distent value for coursesfrom each  number  level:  100-level  courses  taken  by first  year  students  in a programhave an expected distent of ¯61 + ¯3 = ¯64, 200-level courses taken by second yearstudents  in  a  program  have  an  expected  distent  of  ¯67,  third  year  courses  have  anexpected distent of ¯70, and 400-level courses are supposed to have a distent score of¯73 on average, as illustrated four paragraphs above.  Therefore,  all of the courses inthe University can be assigned two distent scores: a) an implicit score determined by thepresently assigned catalogue number,  and b) a measured distent value based on actualprerequisite  lineages.   Comparison  of these two distent  values determines  if  the cata-logue  number  of  a course  overstates,  matches,  or  understates  the level  of knowledgedeveloped  therein.   After  normalization,  by  setting  the  minimal  university  entrancerequirement to zero distent, the ratio of the implied vs. the measured distent accrued inuniversity for each course is calculated, and the average values reported for departmentson Table 4.2.1.1-1.  Large ratios indicate that the average course catalogue numbers aretoo high given the average measured course distent; these departments are responsiblefor the above discussed "front  loading" of the university by allowing overly generousaccess to upper level courses by freshman and sophomore students.  Small ratios indi-cate  that the average course catalogue  numbers  are too low given the average coursedistent;  these  departments  are  responsible  for  the  above  discussed  "long  tail"  of  thefrequency distribution for distent comprised of courses along protracted trajectories.  The integrity  of such evaluations  is dependent  on the reliability  of the distentmetric  to  measure  what  is  purported  (see  Figure  4.2.1.1-14),  and  the  plausibility  ofinterpretations.   Notice,  at issue in this analysis  of number level 'inflation'  is not howmany high or low distent courses there are in a department, but how appropriately theyare labelled with catalogue numbers.  For instance, the Department of Biomedical Engi-neering will always have proportionally more high distent courses than, say, the Depart-ment  of Anthropology,  since  its  advanced  subject  matter  relies  on so much previouslearning before entrance.  But, either Department could be measured as 'correspondent',over 'inflationist'  or 'deflationist',  whenever  the number  levels assigned to the coursesfaithfully reflect the University course numbering system.   It is here speculated that thepractical  aligning  of  courses  in  terms  of  their  topics  of  inquiry,  prerequisite  require-ments, and number level, is a distributed process occurring among professors of individ-ual Departments – an intermediate level somewhere between the central administrationand the students.  Clark (2004) identifies two important forces of influence on a depart-ment: 1) the vitality, diversity, and growth of the subject matter of the department, and,2)  the  element  of  competition  for  resources  between  departments  in  the  university(particularly  in  North  America).   For  departments  centered  around  large,  involved,demanding subjects studied through focused programs, long chains of knowledge devel-opment, including five or more courses, are inevitable.  Given the inherent limitation ofthe University course numbering system to 400- & 500-level courses that imply prerequi-site  chains  of three  or four courses long,  number level  deflation is unavoidable.   Fordepartments centered on what Pan (1998) and Cole (2002) call "marginalized" subjects,course  level  inflation  might  be a  survival  response  to  help compete  for  the essentialresources of students and the funding allocated for them.  For example, since all Bache-lor  programs  have limitations  on the number  of  junior  level  credits  which  contributetowards the degree, persistently low enrolments in a junior (100-level) course at a Depart-ment can be addressed by raising the catalogue number to the 200-level.  Thus, a code-pendent  relationship  established  between  students  'shopping'  for accessible,  nonjuniordegree requirements and departments seeking student enrolment can be a mechanism forcourse level inflation.   A more widely reported,  complementary  phenomena of "gradeinflation" (Nature 2004; Johnson 2003: ch. 3; Ziomek & Svec 1997; British Broadcast-ing  Corporation  2010)  "omnipresent  at  community  colleges  and  at  both  public  andprivate four-year schools" is attributed by Rojstaczer & Healy (2010)  to a similar, "keepthe  customer  happy",  ethos  across  USA  (at  least)  campuses  (see  also,<www.gradeinflation.com>).By definition, academic subjects vary from one another.  It is difficult to com-pare the subject matter in, say, ENGLISH 100 to MATH 333, so no attempts are directlymade in this thesis.   Instead,  courses are evaluated and compared indirectly  based ontheir network locations.  The differences and similarities in courses are by virtue of theirarrangement, and the assumption that each course on a transcript contributes equally to astudent's education in proportion to course weight: three academic credits (¯3) assignedto a Native Studies course is given the same significance on a transcript as if the creditswere  assigned  to  a  Pharmacology  course.   Distent  is  the first  example  of  a  networkmetric  tailored  for  use  in  education.   It  measures  the  prerequisite  lineages  for  eachcourse  in  a careful  way,  by identifying  the simultaneously  longest  necessary  and (fl)shortest optional route from kindergarten to the course in question.   Chains of coursesare  argued  to be trajectories  of continuous  knowledge  elaboration  proportional  to thenumber of academic credits (¯) awarded to constituent courses along the way, and thisis  called  'distent'.   With  this  framework  in  place,  all  individual  courses  in  Alberta'sProvincial Education system are characterized by the distent measure, plus departmentsand faculties by average and median distent values.  The distribution of distent scores isshown to have strong implications for how the network of courses is shaped, which inturn determines  how knowledge  is presented to, and experienced  by, students  in theirpaths  through  University.   The  discrepancy  between  how  courses  are  labelled  withcatalogue  numbers  by  the  administration  and  how courses  are  scored  by  the  distentmetric is briefly discussed, leading to the portrayal of some departments as 'inflationist','deflationist', or 'correspondent'.  The suggestion, and outline, for a new system of courselabelling is offered since present labels no longer provide significant contextual meaning.__________________________†  Something  similar  could  be said  for  regular  geographical  maps.   For  example,  twotowns  in British  Columbia,  separated  by mountains,  may be close,  measured  "as  thecrow flies", yet be distant, measured by the highway system.
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A basic function of maps is to orient the user in spatial terms regarding a subject.
An important  aspect  of  orientation  is  the  viewer's  ability  to  determine  closeness  and
separation between places or objects while reading a map.  This is usually accomplished
by some sort of associated scale or legend to help with the interpretation of distances,
areas,  color codes, etcetera.   The networks in this thesis, and networks in general, are
intended to capture and visually emphasize topology – those spatial properties that are
invariant under continuous elastic deformations.  Distortions  of network size, overlap-
ping  of  nodes,  crossing  of  links,  twisting  of  form,  and  stretching  of  shape  are  all
accepted  to preserve and communicate  the architecture  of connections  among compo-
nents.  This generally contrasts with typical maps, say geographic, which mostly strive
to preserve distance, proportional areas, and fixed arrangements of elements.

Reenforcing  a fairly  "standard narrative"  of education  as coherent,  cumulative
learning in preparation for a future (Nespor 2007), Ormell  (1996) offers "eight robust
metaphors  .  .  .  to  represent  the  invariant  features  of  education",  three  of  which  are
related to the spatial metaphor of education as mountain climbing.  Ormell conceives of
the curriculum  as "a  definite,  recognized  named mountain,  which requires  effort  and
stamina to climb", upon which students should be able to gauge their progress in the trek
towards the summit, where their efforts are rewarded with "a ‘local synthesis’: a single
viewpoint  or  vantage-point  from  which  a  great  tract  of  country  (knowledge)  can  be
seen".   But, this type of metaphor is difficult to reconcile with the architecture of the
network maps presented  in the thesis.   A basic observation within this thesis  that the
curriculum, as represented by courses, is very large, so only ever partially experienced,
and does not allow for relatively "great tracts" of knowledge to be seen in retrospect; the
number  of  possible  trajectories  is  nearly  innumerable  for  students,  so  no  orientation
towards a single summit is possible.  And, an initiating observation of this thesis, which
motivated the very creation of the network maps presented, is that the overall curricular
structure is veiled – anything but "prominent", "publicly visible", and easily "seen from
a distance" as Ormell contends the curriculum should be (p. 72-73).  

Instead of "height" on a mountain in a journey towards a "peak", a different kind
of measure for progress through the curriculum as represented by the network of courses
is required.  Davis and Sumara (2006: 57)  write that "complexity thinking troubles the
metaphors of accumulations of knowledge and progress toward a foreseeable endpoint",
and "the emergence of new interpretive possibility [learning] is framed more in terms of
expansiveness  and  outward  movement".   Instead  of  the  synthesizing  and  orienting
vantage point being the peak of a mountain from where a student looks back and down-
wards  upon  the  curriculum  once  climbed,  a  metric  which  traces  a  learner's  history
through the curriculum to measure "outward movement" from a starting point towards
the unknown is formulated.  Let such a course network metric be called distent, D

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition: "Distent, n:  Stretching out; out-stretched extent; distension; breadth."  Here,
as an alternative to the concept of distance in Euclidean space (Gamelin & Greene 1983:
ch.  1),  distent  is  proffered  as  a  structural  metric  of  course  separation  on a  network.
Traditional  cartographic measures of separation, such as cartesian distance, along with
some typical adjectives, such as higher and lower, are less applicable to describe separa-
tion of nodes on a tangled network.  Common education perspectives assume that move-
ment along a knowledge trajectory implies the effective connection of new knowledge
to old knowledge,  that is, the construction of a continuously elaborated present knowl-
edge.  This view from education can support a more continuous,  topological notion of
separation-as-stretching as much as the notion of separation-as-distance or being apart in
space.  The metric, distent, captures this difference by tracing the steps taken forward to
reach any point in the network.  Therefore, two nodes may be located quite close to each
other in terms of their placements on the embedding of a network map, but be consid-
ered quite separated as measured by distent†.

Let distent be measured outward from a common origin: the beginning of Kinder-
garten.   Now all  courses  of  the  education  system can  be characterized  as containing
knowledge continuously elaborated from Kindergarten by tracing the demands of prior
knowledge set down in prerequisite requirements as represented by the topology of the
network  (see  Figure  4.2.1.1-1).   Let  the  distent  score  assigned  to  any  course  be the
academic credits (¯) required to finish the course; that is, distent is a measure of continu-
ous knowledge elaboration, stretching from the beginning of Kindergarten to the end of
the course in question.  Since there are many possible trajectories between kindergarten
and,  say,  an  advanced  undergraduate  course,  care  must  be  taken  in  establishing  an
algorithm.  To do so, the way the course network is normally visualized and described in
this thesis must be changed by reversing the direction of the links (see Figure 4.2.1.1-2).
This  change  in  link polarity  switches  the  qualitative  orientation  of  the  network  from
prerequisite courses to subsequent courses, from prior knowledge to future possibilities,
and  switches  the  quantitative  flow  to  be  in  the  direction  of  knowledge  elaboration:
expansive and outward from a common origin, Kindergarten.

A directed  acyclic  graph  (review §2.3.2.1),  like the  course  network,  formally
defines a "precedence relation" (Pemmaraju & Skiena 2003: ch. 8.5.1) on the nodes, if
link (i, j) is taken as meaning that node i must occur before node j.  A topological sort is
a nonunique permutation of the nodes of a graph such that a link (i, j) always implies
that i appears before j (Corman et al 2001: ch. 22.4).  Only directed acyclic graphs can
be topologically sorted, since no node in a directed cycle can take precedence over all
the rest.   Because there are no cycles, every finite acyclic graph contains at least one
node v of out-degree zero where trajectories of the graph might be said to end.  Clearly,
v can appear last in the topological ordering.  Deleting v leaves a graph with at least one
other vertex of out-degree zero.  Repeating this argument gives an algorithm for topologi-
cally  sorting  any  directed  acyclic  graph  establishing  a  node  permutation  with  a
beginning(s) and end(s) (see Figure 4.2.1.1-3).  Critical to several types of calculations
for this thesis, a topological sort of the course network allows the otherwise large, tan-
gled nexus to be addressed systematically and efficiently, from end(s) to end, for compre-
hensive,  sophisticated  analysis  with  reasonable  computing  times  (for  the  interested
reader, see Attachment 9.3 Supplementary Equations 4.2.1.1).

Here  it  is  assumed  that  a  particular  course  and  its  neighborhood  define  a
"precedence  relation".   In  the  case  of  the  course  network  reversed,  where  edges  are
oriented from a course to its subsequents, the precedence relation is the prior knowledge
a  course  provides  to  its  subsequents  for  elaboration.   Typically,  terminal  400-level
courses are at the end of such precedence chains and kindergarten is alone at the begin-
ning because it is the only node requiring no prior knowledge from within the education
system.  The topologically sorted reverse course network always starts with kindergar-
ten, and it is an obvious reference point for distent and other calculations.  Let the dis-
tent measure to any course be the total number of credits accumulated along a trajectory
from the beginning of kindergarten to the end of the course, chosen to be simultaneously
the longest  necessary  and the shortest  optional  path (see Figure  4.2.1.1-4  and Figure
4.2.1.1-5).  In large complicated course networks, a path defining the distent of a course
is not unique since one or more paths may determine the same distent score. 

By sifting through  the individual  distent  results  calculated  for each course by
computer  with  the  program,  Calendar  Navigator,  some  exceptional  courses  are  high-
lighted (see Table 9.2-1, eleventh column, D).  Predictably, kindergarten (#535) has the
lowest  possible  distent score (¯2), since it relies not at all for students  to arrive with
knowledge from elsewhere  in the education system.  The many instructional  hours of
expected  attendance,  and  the  normally  twelve-plus  years  of  enrollment,  ensures  that
School  is  the  major,  if  not  distinguishing,  contributor  to  the  distent  scores  of  most
courses (see Figure 4.2.1.1-6).   Trajectory requests may be sent to Calendar Navigator
for any input course node on the network; two are shown in Figure 4.2.1.1-7.  Distent
scores and trajectories allow for sophisticated quantitative and qualitative interpretation
of  courses  characteristics  based  on  network  structure  independent  of  subject  specific
course content.   Courses with small distent scores lie on continuous chains of knowl-
edge elaboration that are short; courses with large distent scores lie on continuous chains
of knowledge elaboration that are long.  The "emergence of new interpretive possibili-
ties"  within  any course  is  not  arbitrary,  but  always  a  function  of  the  prior  academic
knowledge brought to the course by students.  Given the distent score of a course, and
by tracing the trajectory to it, reasonable expectations may be made regarding the level
of readings,  difficulty  of assignments,  knowledge  of peers,  scholarliness  of instructor,
necessity  for attendance,  and challenge  of assessments,  within.   Coupled with subject
specific context, further expectations regarding methods of content delivery, the role of
the individual learner, the role of the instructor, and the type of interactions among the
learners can be formed.

High  school  courses  with  maximum distent  are the terminal  courses  from the
Registered Apprenticeship Program (RAP), for example, RAP 6243 (#1196), Structural
Steel and Plate Fitter 35d, with D = ¯ 90.  This indicates the vocational knowledge in
theses courses is well developed, and supported by a continuous, long chain of previous
learning.   Not  surprisingly,  considering  the number of hours  directed toward the pro-
gram, a successful  RAP student graduates  from high school  nearly finished their  first
year  formal  apprenticeship  training  in  the  corresponding  field,  which  are  otherwise
"traditionally  .  .  .  began  after  students  graduate  from high school"  (Alberta  Learning
2003b).  Among the academic high school courses, MAT 3211 (#736), Mathematics 31,
and GER 3317 (#534), German 31, with D = ¯ 67, and FSL 3308 (#528), French 31C,
with D = ¯ 77, have the greatest distent scores.  These courses are appended to the ends
of  prerequisite  chains  typical  in  length  of  other  senior  subjects  in  high  school,  thus
extending them, indicating students must direct even more learning time and effort to
finish  them.  As a result,  students  completing  these long learning trajectories  in high
school have direct access to more advanced courses in the corresponding departments at
the  University  of  Alberta,  such as,  MATH 100 (#4165),  Calculus  I,  and MATH 117
(#4171), Honors Calculus I, over MATH 114 (#4169), Elementary Calculus I, or FREN
211  (#2208),  Intermediate  French  I,  over  FREN  111  (#2204),  Beginners'  French  I.
Thus, the distent metric,  measuring only network structure,  identifies,  by extreme val-
ues, the courses in the school system that, a) function as the gateway to the education
system (kindergarten),  and, b) effectively function as 'advanced placement' courses, for
further learning in either the trades or university.  Generalizing, the distent metric is here
offered  as  a  measure  of  course  separation  from kindergarten,  which  in  turn  may  be
reasonably interpreted  as corresponding  to the level of knowledge development  at the
conclusion of a course.

The lowest distent  courses in the University  are introductory  courses from the
Department  of Physical  Education and Recreation,  such as, PAC 182 (#4651),  Indoor
Wall Climbing, and DAC155 (#4613), Social Dance, all with D = ¯ 62.5.  These physi-
cal  activity  and  dance  activity  courses  require  nothing  but  the  minimum  University
entrance  requirements  as  prerequisites,  and are  only  weighted  as  ¯1.5  credit  courses
themselves.  At the other extreme, is NURS 408 (#4594), Acute Care Practice II, with a
whopping (in the strictly scholarly sense) distent of D = ¯129 – a score so large it is
only achievable by a high credit course coming at the end of a strict, four year schedule
of consecutive high credit courses in a single discipline.  Its course description declares
how "professional  nursing practice focuses on a comprehensive  application of primary
health  care principles  to clients  experiencing  acute  variances  in health  across  the life
span".   The  weighty  vocabulary  of  "professional",  "practice",  "comprehensive",
"principles", and "variance" used in the description is well suited to a course that com-
pletes the training of those who prepare, literally, for complicated life and death situa-
tions at the extreme of their involved profession.  A qualitative visualization of distent
score distribution for nodes throughout the course network, for School and University, is
displayed by Figure 4.2.1.1-8.  

By  calculating  the  frequency  distribution  of  course  distent  for  each  faculty
individually,  location  (median),  dispersion  (median  absolute  deviation),  and  shape
(skewness) statistics may be compared (see Table 4.2.1.1-1 tenth column, Dè , and Figure
4.2.1.1-9).  By viewing the median distent column, Dè , the Faculties of Arts and Physical
Education, are seen as low distent faculties, scoring ¯67 and ¯66 respectively.  Consider-
ing the baseline distent level of ¯61, required just for the minimum University entrance
requirements from high school, most courses in the Faculties of Arts and Physical Educa-
tion have distent scores within ¯6, viz., two ¯3 courses in a row.  Most courses in the
Faculty of Agriculture, Forestry, and Home Economics, Dè AH  = ¯68, and the School of
Native Studies, Dè NS  = ¯68, have distent scores within ¯9 ( or three ¯3 courses) of the
minimum University entrance requirements.  The majority of Science (Dè SC  = ¯73) and
Business (Dè BC  = ¯71) courses can be completed within ¯12 sequences of study, or four
¯3 courses.  The professionally oriented Faculties of Engineering, Nursing, and Medi-
cine & Dentistry, all have a majority of their courses coming after knowledge develop-
ment chains of greater than ¯12 beyond high school.  That is, most courses from these
Faculties  are typically not even encountered by students until after sequences of study
that include at least four courses at the University level.  See Figures 4.2.1.1-10 & -11
for more details.   For the interested reader, similar comparisons among the University
departments may be made using the average distent statistics on Table 4.2.1.1-2, eighth
column, Dêêê.

The system for numbering university courses as described in the University of
Alberta Calendar (§220, p. 448), already discussed in §3.1.2.4 (review Table 3.1.2.4-1),
implies a specific, direct relationship with the distent metric.  Quite simply, since each
number  level  is  expected to have prerequisites  from the previous  level,  eg.  300-level
courses "normally" have 200-level prerequisites, and since the median weight of univer-
sity courses is ¯3 (review Figure 3.1.2.4-4), the separation of number levels in terms of
distent should be ¯3.  A common intermediate reference point for all university courses
is the minimum entrance requirements with distent of ¯61.  Therefore, if the University
administration's  course numbering system is being followed, then most first year, 100-
level courses have an expected distent of ¯61 + ¯3 = ¯64, 200-level courses have an
expected distent of ¯67, third year courses have an expected distent of ¯70, and 400-
level courses are supposed to have a distent score of ¯73 on average.  Insofar as this
correspondence  holds,  the frequency distribution  of course credit  weight over number
levels  (review  Figure  3.1.2.4-5)  matches  the  frequency  distribution  of  course  credit
weight over distent (see Figure 4.2.1.1-12).   Alas, this is not the case.  Although both
distributions  have the same median – at the 300-level  or ¯70 distent score, they have
very different shapes as measured by skewness: -1.36 vs. 2.07.  A negative skewness to
the frequency distribution in Figure 3.1.2.4-5 implies that few low-level courses lead tomany  high-level  courses,  while  a  positive  skewness  to  the  frequency  distribution  inFigure 4.2.1.1-12 shows that many courses of low distent lead to fewer courses of rela-tively higher distent.  Using a nonparametric statistical method to compare two distribu-tions with the same median, the distributions  from Figures 3.1.2.4-5 & 4.2.1.1-12,  aremeasured  to be significantly  different  (P-value ≈  0) by comparing  variability  using a"test  of dispersion"  (Hollander  & Wolfe 1999:  ch.  5.1),  called the Siegel-Tukey  Test(Abell et al. 1999: 570).  To summarize, the University administration sets forth guide-lines and labels which arrange the courses in an expansive, "top-heavy" structure (Ù) asnumber level increases, but, the courses actually interact by their prerequisite knowledgein  a  far  different  manner:  a  contracting,  "bottom-heavy"  structure  (Ú)  as  distentincreases (see Figure 4.2.1.1-13).The  "top-down",  planned  view  of  course  structure  from  the  administrationdiffers  substantially  from the "bottom-up",  experienced  view of course structure  fromthe students.  The only Faculty with a negative skewness to the distent distribution forits  courses  (see Table  4.2.1.1-1,  eleventh  column,  gD)  is  Engineering.   That  is,  onlyEngineering  (mildly)  holds to the administrative  view that courses are arranged in anexpanding  structure,  anything  like Figure 3.1.2.4-5.   The reason for the dramatic  andconsistent difference in course arrangement for every other Faculty, and the Universityas a whole,  from the expected  arrangement  of courses  implied  by the distribution  ofnumber level, is the widespread and prevalent use of hedge terms in the course number-ing system that allow for deviations  from the normal prerequisite  relationships  amongcourses (review Table 3.1.2.4-1).  In most Faculties there are many senior courses withfew senior prerequisites,  few junior prerequisites,  or even no prerequisites at all.  Thishas the effect of increasing access, and 'front-loading'  new course choices for freshmanand sophomore  students,  thus making most of a Faculty available to students  early intheir studies with relatively  lesser expansion of course choices in later years.   On theother hand, some Faculties assign courses prerequisites  of the same level, instead of alevel  below,  thus  extending  prerequisite  lineages  and  delaying  access  to  subsequentcourses of higher number level beyond what is expected.  Both of these ubiquitous typesof  deviations  from  the  normal  classification  of  courses  contribute  to  the  differencebetween the imagined administrative structure – wherein the diversity of courses avail-able to students consistently increases year-by-year as they move towards graduation –versus  the  experienced  knowledge  structure  of  courses  linked  by  their  prerequisiterequirements – wherein new course choices explode in the early years for students, thenare reduced to a trickle along sometimes very lengthy trajectories.Besides  the directed,  binary,  prerequisite  relationship  between pairs of coursesthat establishes the network structure studied in this thesis, courses are associated by asecond overlapping layer of relationships based on membership in specific degree pro-grams  offered  by  each  university  Department.   The  University's  numbering  systemdescribes courses at any number level as being "designed typically for students in the[corresponding] year of a program."  That is, 300-level courses are "typically" designedfor third-year students  of a particular program.  Sometimes this condition is explicitlystated  in  a course  description.   For  example,  NUTR 440 (#1518),  Current  Topics  inNutritional  Sciences,  states  it  is  "open  to  fourth-year  students  in  the  Nutrition  majoronly",  but  also  lists  NUTR 301 & 302 as specific  course  prerequisites.   Many othersenior  level  courses  have  no  stated  prerequisites  of  specific  courses,  degree  require-ments, or student year.  A very small minority of courses have restrictions on the year ofa student without also specifying specific course prerequisites or even degree programs;for example, SOC 300, Principles of Sociology, offers "basic concepts and principles ofSociology  for  students  with  advanced  standing"  with  the explicit  "prerequisite:  third-year or more advanced standing", which "may not be taken for credit by students withcredit in SOC 100. First or second-year students must take SOC 100."  In terms of themethod of data translation into the course network in this theses, a prerequisite conditionon the year of the student can be reasonably accounted for by the requirement of leastone connection from that course to some other subset of courses at the next lower num-ber level.   Ideally,  the two factors that determine the number level of a course are inharmony: a course at a certain number level, say 300, has explicit prerequisites  at thenext level below (200-level) or is attended by students in the corresponding (third) year,whose  transcripts  are  full  of  the  implicitly  supporting  (200-level)  courses  from  theprevious year of the program.  The disconnect between the number level of courses thathave explicitly stated prerequisites and the number level of courses that rely on implicitadherence to an outline of a degree program is revealed whenever a diversity of studentsexternal  to  particular  programs  enroll  in  courses  as  options,  or  whenever  the  samecourse belongs in two or more different degree programs.Contemporary learning theories emphasize engaging and challenging the learnerwith tasks that refer to skills and knowledge just beyond their current level of capabili-ties.   For  example,  Smith  et  al.  (1993)  employ  an  explicit  constructivist  stance  andinterpret students' prior conceptions as "resources for cognitive growth within a complexsystems view of knowledge" used as the basis for "knowledge refinement and reorganiza-tion".  This view of knowledge and learning is incompatible with the current practice ofassigning the same number level to whole groups of courses where the "level of mas-tery" and academic "resources"  among the students  are so inconsistent.   For instance,presenting a 400-level course without specific university prerequisites and contending itsomehow  supports  learning  and  knowledge  of  the  same  "level"  as  other  400-levelcourses  with  standard  prerequisite  lineages  is  problematic.   Either,  the  informationencountered suits a 400-level  course and relies on sophisticated (300-level)  supportingprerequisite knowledge that a diverse student body with differing prior knowledges andexperiences  are unable to incorporate  into their  knowing,  or, the information  encoun-tered depends on prerequites further towards students'  shared foundational  knowledge,thus  resulting in learning  outcomes characteristic  of courses at  a lower number  level.The argument  here assumes a kind of consistency in the Education system, such that,any course, in any subject, given any title, sporting any catalogue number, cannot reli-ably elevate the knowledge of its incoming students more (or less) than its credit weight(eg. ¯3) reflects, from a baseline level of experience and common knowledge indicatedby prerequisites  without having practically unacceptable  dropout or failure rates.  Thisprinciple  is consistent  with John Dewy (1938: ch. 3 & 7), who places learning into a"category of continuity" based on an "experiential continuum" that precludes any sort oflarge 'quantum leaps'  in knowledge  among learners  beyond their  prior  experiences  tolevels beyond what can be expected from a single ¯3 course.Number levels presently fail to be meaningful  because they do not model (Se-beok & Danesi 2000: ch. 1) well and sustain the pattern of the University's course num-bering  system to  which  they  supposedly  refer,  nor  do  they  consistently  differentiate(Belsey 2002: ch. 4) courses based on a substantive concept such as the level of knowl-edge taught and learned in a course.  The above described repositioning of courses inUniversity  based  on  nonstandard  or  unstated  prerequisite  requirements  for  assignednumber levels leads to a large variance of distent scores for courses of the same numberlevel (for example, review Figure 4.2.1.1-7).  When, courses of a particular level haveanything from no university prerequisites  to prerequisites of the same level, just know-ing the catalogue number of a course is insufficient to reliably characterize the knowl-edge development within, especially for 300- and 400-level courses.  The distent metricis here offered both as a way of restating the meaning of the course numbering system(review Table 3.1.2.4-1) and as a practical tool to label courses based on the level of theknowledge  taught  in  the  course.   A distent  supported  system of  assigning  cataloguenumbers  to  courses  would  function  similarly  to  how addresses  are presently  used  tolocate buildings in a city, where the (street) name and first digits of the address immedi-ately offer an approximate 'location'.  The proposed format is: SUBJECT XXYY, whereSUBJECT is the subject code used presently, such as MATH (Math) or PSYCO (Psychol-ogy), XX is the distent score of the course, say ¯64 for a first year course, and YY arethe last two digits presently used to distinguish courses at any level.  For example, usingthe courses from Figure 4.2.1.1-7, CH E 435, Oilsands Engineering Design, would berelabelled CH E 9735 derived from its distent score of ¯97, and C LIT 440, Compara-tive Studies in Popular Culture, would be relabelled C LIT 6440, derived from its distentscore of ¯64.  Courses are presently given classifications based on course number, butthis administrative categorization has lost some of its meaning due to the pervasive lackof discipline in following the guidelines.  A course labelling system tied directly to theprerequisite  requirements  offers  an  objective,  consistent  method  for  generating  cata-logue numbers,  which,  in turn,  provide immediate  information  regarding  the approxi-mate level of knowledge expected in the course based on distent score.Aside  from  the  particularities  of  the  proposed  course  renumbering  systemdescribed immediately  above, the present system can be further scrutinized.   Once therelationship  between  the University's  present  numbering  system and distent  is  under-stood, and after the observation that the distribution of courses by level does not matchthe distribution of courses by distent, the question of which courses,  departments,  andfaculties currently break the guidelines the most, and in what ways, arises.  Nominally,all courses presently labelled, 4xx, are of the same number level, but as measured by thedistent metric, they vary widely in their network locations, and therefore functions.  TheUniversity numbering system, if followed, implies a consistent distent value for coursesfrom each  number  level:  100-level  courses  taken  by first  year  students  in a programhave an expected distent of ¯61 + ¯3 = ¯64, 200-level courses taken by second yearstudents  in  a  program  have  an  expected  distent  of  ¯67,  third  year  courses  have  anexpected distent of ¯70, and 400-level courses are supposed to have a distent score of¯73 on average, as illustrated four paragraphs above.  Therefore,  all of the courses inthe University can be assigned two distent scores: a) an implicit score determined by thepresently assigned catalogue number,  and b) a measured distent value based on actualprerequisite  lineages.   Comparison  of these two distent  values determines  if  the cata-logue  number  of  a course  overstates,  matches,  or  understates  the level  of knowledgedeveloped  therein.   After  normalization,  by  setting  the  minimal  university  entrancerequirement to zero distent, the ratio of the implied vs. the measured distent accrued inuniversity for each course is calculated, and the average values reported for departmentson Table 4.2.1.1-1.  Large ratios indicate that the average course catalogue numbers aretoo high given the average measured course distent; these departments are responsiblefor the above discussed "front  loading" of the university by allowing overly generousaccess to upper level courses by freshman and sophomore students.  Small ratios indi-cate  that the average course catalogue  numbers  are too low given the average coursedistent;  these  departments  are  responsible  for  the  above  discussed  "long  tail"  of  thefrequency distribution for distent comprised of courses along protracted trajectories.  The integrity  of such evaluations  is dependent  on the reliability  of the distentmetric  to  measure  what  is  purported  (see  Figure  4.2.1.1-14),  and  the  plausibility  ofinterpretations.   Notice,  at issue in this analysis  of number level 'inflation'  is not howmany high or low distent courses there are in a department, but how appropriately theyare labelled with catalogue numbers.  For instance, the Department of Biomedical Engi-neering will always have proportionally more high distent courses than, say, the Depart-ment  of Anthropology,  since  its  advanced  subject  matter  relies  on so much previouslearning before entrance.  But, either Department could be measured as 'correspondent',over 'inflationist'  or 'deflationist',  whenever  the number  levels assigned to the coursesfaithfully reflect the University course numbering system.   It is here speculated that thepractical  aligning  of  courses  in  terms  of  their  topics  of  inquiry,  prerequisite  require-ments, and number level, is a distributed process occurring among professors of individ-ual Departments – an intermediate level somewhere between the central administrationand the students.  Clark (2004) identifies two important forces of influence on a depart-ment: 1) the vitality, diversity, and growth of the subject matter of the department, and,2)  the  element  of  competition  for  resources  between  departments  in  the  university(particularly  in  North  America).   For  departments  centered  around  large,  involved,demanding subjects studied through focused programs, long chains of knowledge devel-opment, including five or more courses, are inevitable.  Given the inherent limitation ofthe University course numbering system to 400- & 500-level courses that imply prerequi-site  chains  of three  or four courses long,  number level  deflation is unavoidable.   Fordepartments centered on what Pan (1998) and Cole (2002) call "marginalized" subjects,course  level  inflation  might  be a  survival  response  to  help compete  for  the essentialresources of students and the funding allocated for them.  For example, since all Bache-lor  programs  have limitations  on the number  of  junior  level  credits  which  contributetowards the degree, persistently low enrolments in a junior (100-level) course at a Depart-ment can be addressed by raising the catalogue number to the 200-level.  Thus, a code-pendent  relationship  established  between  students  'shopping'  for accessible,  nonjuniordegree requirements and departments seeking student enrolment can be a mechanism forcourse level inflation.   A more widely reported,  complementary  phenomena of "gradeinflation" (Nature 2004; Johnson 2003: ch. 3; Ziomek & Svec 1997; British Broadcast-ing  Corporation  2010)  "omnipresent  at  community  colleges  and  at  both  public  andprivate four-year schools" is attributed by Rojstaczer & Healy (2010)  to a similar, "keepthe  customer  happy",  ethos  across  USA  (at  least)  campuses  (see  also,<www.gradeinflation.com>).By definition, academic subjects vary from one another.  It is difficult to com-pare the subject matter in, say, ENGLISH 100 to MATH 333, so no attempts are directlymade in this thesis.   Instead,  courses are evaluated and compared indirectly  based ontheir network locations.  The differences and similarities in courses are by virtue of theirarrangement, and the assumption that each course on a transcript contributes equally to astudent's education in proportion to course weight: three academic credits (¯3) assignedto a Native Studies course is given the same significance on a transcript as if the creditswere  assigned  to  a  Pharmacology  course.   Distent  is  the first  example  of  a  networkmetric  tailored  for  use  in  education.   It  measures  the  prerequisite  lineages  for  eachcourse  in  a careful  way,  by identifying  the simultaneously  longest  necessary  and (fl)shortest optional route from kindergarten to the course in question.   Chains of coursesare  argued  to be trajectories  of continuous  knowledge  elaboration  proportional  to thenumber of academic credits (¯) awarded to constituent courses along the way, and thisis  called  'distent'.   With  this  framework  in  place,  all  individual  courses  in  Alberta'sProvincial Education system are characterized by the distent measure, plus departmentsand faculties by average and median distent values.  The distribution of distent scores isshown to have strong implications for how the network of courses is shaped, which inturn determines  how knowledge  is presented to, and experienced  by, students  in theirpaths  through  University.   The  discrepancy  between  how  courses  are  labelled  withcatalogue  numbers  by  the  administration  and  how courses  are  scored  by  the  distentmetric is briefly discussed, leading to the portrayal of some departments as 'inflationist','deflationist', or 'correspondent'.  The suggestion, and outline, for a new system of courselabelling is offered since present labels no longer provide significant contextual meaning.__________________________†  Something  similar  could  be said  for  regular  geographical  maps.   For  example,  twotowns  in British  Columbia,  separated  by mountains,  may be close,  measured  "as  thecrow flies", yet be distant, measured by the highway system.
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A basic function of maps is to orient the user in spatial terms regarding a subject.
An important  aspect  of  orientation  is  the  viewer's  ability  to  determine  closeness  and
separation between places or objects while reading a map.  This is usually accomplished
by some sort of associated scale or legend to help with the interpretation of distances,
areas,  color codes, etcetera.   The networks in this thesis, and networks in general, are
intended to capture and visually emphasize topology – those spatial properties that are
invariant under continuous elastic deformations.  Distortions  of network size, overlap-
ping  of  nodes,  crossing  of  links,  twisting  of  form,  and  stretching  of  shape  are  all
accepted  to preserve and communicate  the architecture  of connections  among compo-
nents.  This generally contrasts with typical maps, say geographic, which mostly strive
to preserve distance, proportional areas, and fixed arrangements of elements.

Reenforcing  a fairly  "standard narrative"  of education  as coherent,  cumulative
learning in preparation for a future (Nespor 2007), Ormell  (1996) offers "eight robust
metaphors  .  .  .  to  represent  the  invariant  features  of  education",  three  of  which  are
related to the spatial metaphor of education as mountain climbing.  Ormell conceives of
the curriculum  as "a  definite,  recognized  named mountain,  which requires  effort  and
stamina to climb", upon which students should be able to gauge their progress in the trek
towards the summit, where their efforts are rewarded with "a ‘local synthesis’: a single
viewpoint  or  vantage-point  from  which  a  great  tract  of  country  (knowledge)  can  be
seen".   But, this type of metaphor is difficult to reconcile with the architecture of the
network maps presented  in the thesis.   A basic observation within this thesis  that the
curriculum, as represented by courses, is very large, so only ever partially experienced,
and does not allow for relatively "great tracts" of knowledge to be seen in retrospect; the
number  of  possible  trajectories  is  nearly  innumerable  for  students,  so  no  orientation
towards a single summit is possible.  And, an initiating observation of this thesis, which
motivated the very creation of the network maps presented, is that the overall curricular
structure is veiled – anything but "prominent", "publicly visible", and easily "seen from
a distance" as Ormell contends the curriculum should be (p. 72-73).  

Instead of "height" on a mountain in a journey towards a "peak", a different kind
of measure for progress through the curriculum as represented by the network of courses
is required.  Davis and Sumara (2006: 57)  write that "complexity thinking troubles the
metaphors of accumulations of knowledge and progress toward a foreseeable endpoint",
and "the emergence of new interpretive possibility [learning] is framed more in terms of
expansiveness  and  outward  movement".   Instead  of  the  synthesizing  and  orienting
vantage point being the peak of a mountain from where a student looks back and down-
wards  upon  the  curriculum  once  climbed,  a  metric  which  traces  a  learner's  history
through the curriculum to measure "outward movement" from a starting point towards
the unknown is formulated.  Let such a course network metric be called distent, D

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition: "Distent, n:  Stretching out; out-stretched extent; distension; breadth."  Here,
as an alternative to the concept of distance in Euclidean space (Gamelin & Greene 1983:
ch.  1),  distent  is  proffered  as  a  structural  metric  of  course  separation  on a  network.
Traditional  cartographic measures of separation, such as cartesian distance, along with
some typical adjectives, such as higher and lower, are less applicable to describe separa-
tion of nodes on a tangled network.  Common education perspectives assume that move-
ment along a knowledge trajectory implies the effective connection of new knowledge
to old knowledge,  that is, the construction of a continuously elaborated present knowl-
edge.  This view from education can support a more continuous,  topological notion of
separation-as-stretching as much as the notion of separation-as-distance or being apart in
space.  The metric, distent, captures this difference by tracing the steps taken forward to
reach any point in the network.  Therefore, two nodes may be located quite close to each
other in terms of their placements on the embedding of a network map, but be consid-
ered quite separated as measured by distent†.

Let distent be measured outward from a common origin: the beginning of Kinder-
garten.   Now all  courses  of  the  education  system can  be characterized  as containing
knowledge continuously elaborated from Kindergarten by tracing the demands of prior
knowledge set down in prerequisite requirements as represented by the topology of the
network  (see  Figure  4.2.1.1-1).   Let  the  distent  score  assigned  to  any  course  be the
academic credits (¯) required to finish the course; that is, distent is a measure of continu-
ous knowledge elaboration, stretching from the beginning of Kindergarten to the end of
the course in question.  Since there are many possible trajectories between kindergarten
and,  say,  an  advanced  undergraduate  course,  care  must  be  taken  in  establishing  an
algorithm.  To do so, the way the course network is normally visualized and described in
this thesis must be changed by reversing the direction of the links (see Figure 4.2.1.1-2).
This  change  in  link polarity  switches  the  qualitative  orientation  of  the  network  from
prerequisite courses to subsequent courses, from prior knowledge to future possibilities,
and  switches  the  quantitative  flow  to  be  in  the  direction  of  knowledge  elaboration:
expansive and outward from a common origin, Kindergarten.

A directed  acyclic  graph  (review §2.3.2.1),  like the  course  network,  formally
defines a "precedence relation" (Pemmaraju & Skiena 2003: ch. 8.5.1) on the nodes, if
link (i, j) is taken as meaning that node i must occur before node j.  A topological sort is
a nonunique permutation of the nodes of a graph such that a link (i, j) always implies
that i appears before j (Corman et al 2001: ch. 22.4).  Only directed acyclic graphs can
be topologically sorted, since no node in a directed cycle can take precedence over all
the rest.   Because there are no cycles, every finite acyclic graph contains at least one
node v of out-degree zero where trajectories of the graph might be said to end.  Clearly,
v can appear last in the topological ordering.  Deleting v leaves a graph with at least one
other vertex of out-degree zero.  Repeating this argument gives an algorithm for topologi-
cally  sorting  any  directed  acyclic  graph  establishing  a  node  permutation  with  a
beginning(s) and end(s) (see Figure 4.2.1.1-3).  Critical to several types of calculations
for this thesis, a topological sort of the course network allows the otherwise large, tan-
gled nexus to be addressed systematically and efficiently, from end(s) to end, for compre-
hensive,  sophisticated  analysis  with  reasonable  computing  times  (for  the  interested
reader, see Attachment 9.3 Supplementary Equations 4.2.1.1).

Here  it  is  assumed  that  a  particular  course  and  its  neighborhood  define  a
"precedence  relation".   In  the  case  of  the  course  network  reversed,  where  edges  are
oriented from a course to its subsequents, the precedence relation is the prior knowledge
a  course  provides  to  its  subsequents  for  elaboration.   Typically,  terminal  400-level
courses are at the end of such precedence chains and kindergarten is alone at the begin-
ning because it is the only node requiring no prior knowledge from within the education
system.  The topologically sorted reverse course network always starts with kindergar-
ten, and it is an obvious reference point for distent and other calculations.  Let the dis-
tent measure to any course be the total number of credits accumulated along a trajectory
from the beginning of kindergarten to the end of the course, chosen to be simultaneously
the longest  necessary  and the shortest  optional  path (see Figure  4.2.1.1-4  and Figure
4.2.1.1-5).  In large complicated course networks, a path defining the distent of a course
is not unique since one or more paths may determine the same distent score. 

By sifting through  the individual  distent  results  calculated  for each course by
computer  with  the  program,  Calendar  Navigator,  some  exceptional  courses  are  high-
lighted (see Table 9.2-1, eleventh column, D).  Predictably, kindergarten (#535) has the
lowest  possible  distent score (¯2), since it relies not at all for students  to arrive with
knowledge from elsewhere  in the education system.  The many instructional  hours of
expected  attendance,  and  the  normally  twelve-plus  years  of  enrollment,  ensures  that
School  is  the  major,  if  not  distinguishing,  contributor  to  the  distent  scores  of  most
courses (see Figure 4.2.1.1-6).   Trajectory requests may be sent to Calendar Navigator
for any input course node on the network; two are shown in Figure 4.2.1.1-7.  Distent
scores and trajectories allow for sophisticated quantitative and qualitative interpretation
of  courses  characteristics  based  on  network  structure  independent  of  subject  specific
course content.   Courses with small distent scores lie on continuous chains of knowl-
edge elaboration that are short; courses with large distent scores lie on continuous chains
of knowledge elaboration that are long.  The "emergence of new interpretive possibili-
ties"  within  any course  is  not  arbitrary,  but  always  a  function  of  the  prior  academic
knowledge brought to the course by students.  Given the distent score of a course, and
by tracing the trajectory to it, reasonable expectations may be made regarding the level
of readings,  difficulty  of assignments,  knowledge  of peers,  scholarliness  of instructor,
necessity  for attendance,  and challenge  of assessments,  within.   Coupled with subject
specific context, further expectations regarding methods of content delivery, the role of
the individual learner, the role of the instructor, and the type of interactions among the
learners can be formed.

High  school  courses  with  maximum distent  are the terminal  courses  from the
Registered Apprenticeship Program (RAP), for example, RAP 6243 (#1196), Structural
Steel and Plate Fitter 35d, with D = ¯ 90.  This indicates the vocational knowledge in
theses courses is well developed, and supported by a continuous, long chain of previous
learning.   Not  surprisingly,  considering  the number of hours  directed toward the pro-
gram, a successful  RAP student graduates  from high school  nearly finished their  first
year  formal  apprenticeship  training  in  the  corresponding  field,  which  are  otherwise
"traditionally  .  .  .  began  after  students  graduate  from high school"  (Alberta  Learning
2003b).  Among the academic high school courses, MAT 3211 (#736), Mathematics 31,
and GER 3317 (#534), German 31, with D = ¯ 67, and FSL 3308 (#528), French 31C,
with D = ¯ 77, have the greatest distent scores.  These courses are appended to the ends
of  prerequisite  chains  typical  in  length  of  other  senior  subjects  in  high  school,  thus
extending them, indicating students must direct even more learning time and effort to
finish  them.  As a result,  students  completing  these long learning trajectories  in high
school have direct access to more advanced courses in the corresponding departments at
the  University  of  Alberta,  such as,  MATH 100 (#4165),  Calculus  I,  and MATH 117
(#4171), Honors Calculus I, over MATH 114 (#4169), Elementary Calculus I, or FREN
211  (#2208),  Intermediate  French  I,  over  FREN  111  (#2204),  Beginners'  French  I.
Thus, the distent metric,  measuring only network structure,  identifies,  by extreme val-
ues, the courses in the school system that, a) function as the gateway to the education
system (kindergarten),  and, b) effectively function as 'advanced placement' courses, for
further learning in either the trades or university.  Generalizing, the distent metric is here
offered  as  a  measure  of  course  separation  from kindergarten,  which  in  turn  may  be
reasonably interpreted  as corresponding  to the level of knowledge development  at the
conclusion of a course.

The lowest distent  courses in the University  are introductory  courses from the
Department  of Physical  Education and Recreation,  such as, PAC 182 (#4651),  Indoor
Wall Climbing, and DAC155 (#4613), Social Dance, all with D = ¯ 62.5.  These physi-
cal  activity  and  dance  activity  courses  require  nothing  but  the  minimum  University
entrance  requirements  as  prerequisites,  and are  only  weighted  as  ¯1.5  credit  courses
themselves.  At the other extreme, is NURS 408 (#4594), Acute Care Practice II, with a
whopping (in the strictly scholarly sense) distent of D = ¯129 – a score so large it is
only achievable by a high credit course coming at the end of a strict, four year schedule
of consecutive high credit courses in a single discipline.  Its course description declares
how "professional  nursing practice focuses on a comprehensive  application of primary
health  care principles  to clients  experiencing  acute  variances  in health  across  the life
span".   The  weighty  vocabulary  of  "professional",  "practice",  "comprehensive",
"principles", and "variance" used in the description is well suited to a course that com-
pletes the training of those who prepare, literally, for complicated life and death situa-
tions at the extreme of their involved profession.  A qualitative visualization of distent
score distribution for nodes throughout the course network, for School and University, is
displayed by Figure 4.2.1.1-8.  

By  calculating  the  frequency  distribution  of  course  distent  for  each  faculty
individually,  location  (median),  dispersion  (median  absolute  deviation),  and  shape
(skewness) statistics may be compared (see Table 4.2.1.1-1 tenth column, Dè , and Figure
4.2.1.1-9).  By viewing the median distent column, Dè , the Faculties of Arts and Physical
Education, are seen as low distent faculties, scoring ¯67 and ¯66 respectively.  Consider-
ing the baseline distent level of ¯61, required just for the minimum University entrance
requirements from high school, most courses in the Faculties of Arts and Physical Educa-
tion have distent scores within ¯6, viz., two ¯3 courses in a row.  Most courses in the
Faculty of Agriculture, Forestry, and Home Economics, Dè AH  = ¯68, and the School of
Native Studies, Dè NS  = ¯68, have distent scores within ¯9 ( or three ¯3 courses) of the
minimum University entrance requirements.  The majority of Science (Dè SC  = ¯73) and
Business (Dè BC  = ¯71) courses can be completed within ¯12 sequences of study, or four
¯3 courses.  The professionally oriented Faculties of Engineering, Nursing, and Medi-
cine & Dentistry, all have a majority of their courses coming after knowledge develop-
ment chains of greater than ¯12 beyond high school.  That is, most courses from these
Faculties  are typically not even encountered by students until after sequences of study
that include at least four courses at the University level.  See Figures 4.2.1.1-10 & -11
for more details.   For the interested reader, similar comparisons among the University
departments may be made using the average distent statistics on Table 4.2.1.1-2, eighth
column, Dêêê.

The system for numbering university courses as described in the University of
Alberta Calendar (§220, p. 448), already discussed in §3.1.2.4 (review Table 3.1.2.4-1),
implies a specific, direct relationship with the distent metric.  Quite simply, since each
number  level  is  expected to have prerequisites  from the previous  level,  eg.  300-level
courses "normally" have 200-level prerequisites, and since the median weight of univer-
sity courses is ¯3 (review Figure 3.1.2.4-4), the separation of number levels in terms of
distent should be ¯3.  A common intermediate reference point for all university courses
is the minimum entrance requirements with distent of ¯61.  Therefore, if the University
administration's  course numbering system is being followed, then most first year, 100-
level courses have an expected distent of ¯61 + ¯3 = ¯64, 200-level courses have an
expected distent of ¯67, third year courses have an expected distent of ¯70, and 400-
level courses are supposed to have a distent score of ¯73 on average.  Insofar as this
correspondence  holds,  the frequency distribution  of course credit  weight over number
levels  (review  Figure  3.1.2.4-5)  matches  the  frequency  distribution  of  course  credit
weight over distent (see Figure 4.2.1.1-12).   Alas, this is not the case.  Although both
distributions  have the same median – at the 300-level  or ¯70 distent score, they have
very different shapes as measured by skewness: -1.36 vs. 2.07.  A negative skewness to
the frequency distribution in Figure 3.1.2.4-5 implies that few low-level courses lead to
many  high-level  courses,  while  a  positive  skewness  to  the  frequency  distribution  in
Figure 4.2.1.1-12 shows that many courses of low distent lead to fewer courses of rela-
tively higher distent.  Using a nonparametric statistical method to compare two distribu-
tions with the same median, the distributions  from Figures 3.1.2.4-5 & 4.2.1.1-12,  are
measured  to be significantly  different  (P-value ≈  0) by comparing  variability  using a
"test  of dispersion"  (Hollander  & Wolfe 1999:  ch.  5.1),  called the Siegel-Tukey  Test
(Abell et al. 1999: 570).  To summarize, the University administration sets forth guide-
lines and labels which arrange the courses in an expansive, "top-heavy" structure (Ù) as
number level increases, but, the courses actually interact by their prerequisite knowledge
in  a  far  different  manner:  a  contracting,  "bottom-heavy"  structure  (Ú)  as  distent
increases (see Figure 4.2.1.1-13).

The  "top-down",  planned  view  of  course  structure  from  the  administration
differs  substantially  from the "bottom-up",  experienced  view of course structure  from
the students.  The only Faculty with a negative skewness to the distent distribution for
its  courses  (see Table  4.2.1.1-1,  eleventh  column,  gD)  is  Engineering.   That  is,  only
Engineering  (mildly)  holds to the administrative  view that courses are arranged in an
expanding  structure,  anything  like Figure 3.1.2.4-5.   The reason for the dramatic  and
consistent difference in course arrangement for every other Faculty, and the University
as a whole,  from the expected  arrangement  of courses  implied  by the distribution  of
number level, is the widespread and prevalent use of hedge terms in the course number-
ing system that allow for deviations  from the normal prerequisite  relationships  among
courses (review Table 3.1.2.4-1).  In most Faculties there are many senior courses with
few senior prerequisites,  few junior prerequisites,  or even no prerequisites at all.  This
has the effect of increasing access, and 'front-loading'  new course choices for freshman
and sophomore  students,  thus making most of a Faculty available to students  early in
their studies with relatively  lesser expansion of course choices in later years.   On the
other hand, some Faculties assign courses prerequisites  of the same level, instead of a
level  below,  thus  extending  prerequisite  lineages  and  delaying  access  to  subsequent
courses of higher number level beyond what is expected.  Both of these ubiquitous types
of  deviations  from  the  normal  classification  of  courses  contribute  to  the  difference
between the imagined administrative structure – wherein the diversity of courses avail-
able to students consistently increases year-by-year as they move towards graduation –
versus  the  experienced  knowledge  structure  of  courses  linked  by  their  prerequisite
requirements – wherein new course choices explode in the early years for students, then
are reduced to a trickle along sometimes very lengthy trajectories.

Besides  the directed,  binary,  prerequisite  relationship  between pairs of courses
that establishes the network structure studied in this thesis, courses are associated by a
second overlapping layer of relationships based on membership in specific degree pro-
grams  offered  by  each  university  Department.   The  University's  numbering  system
describes courses at any number level as being "designed typically for students in the
[corresponding] year of a program."  That is, 300-level courses are "typically" designedfor third-year students  of a particular program.  Sometimes this condition is explicitlystated  in  a course  description.   For  example,  NUTR 440 (#1518),  Current  Topics  inNutritional  Sciences,  states  it  is  "open  to  fourth-year  students  in  the  Nutrition  majoronly",  but  also  lists  NUTR 301 & 302 as specific  course  prerequisites.   Many othersenior  level  courses  have  no  stated  prerequisites  of  specific  courses,  degree  require-ments, or student year.  A very small minority of courses have restrictions on the year ofa student without also specifying specific course prerequisites or even degree programs;for example, SOC 300, Principles of Sociology, offers "basic concepts and principles ofSociology  for  students  with  advanced  standing"  with  the explicit  "prerequisite:  third-year or more advanced standing", which "may not be taken for credit by students withcredit in SOC 100. First or second-year students must take SOC 100."  In terms of themethod of data translation into the course network in this theses, a prerequisite conditionon the year of the student can be reasonably accounted for by the requirement of leastone connection from that course to some other subset of courses at the next lower num-ber level.   Ideally,  the two factors that determine the number level of a course are inharmony: a course at a certain number level, say 300, has explicit prerequisites  at thenext level below (200-level) or is attended by students in the corresponding (third) year,whose  transcripts  are  full  of  the  implicitly  supporting  (200-level)  courses  from  theprevious year of the program.  The disconnect between the number level of courses thathave explicitly stated prerequisites and the number level of courses that rely on implicitadherence to an outline of a degree program is revealed whenever a diversity of studentsexternal  to  particular  programs  enroll  in  courses  as  options,  or  whenever  the  samecourse belongs in two or more different degree programs.Contemporary learning theories emphasize engaging and challenging the learnerwith tasks that refer to skills and knowledge just beyond their current level of capabili-ties.   For  example,  Smith  et  al.  (1993)  employ  an  explicit  constructivist  stance  andinterpret students' prior conceptions as "resources for cognitive growth within a complexsystems view of knowledge" used as the basis for "knowledge refinement and reorganiza-tion".  This view of knowledge and learning is incompatible with the current practice ofassigning the same number level to whole groups of courses where the "level of mas-tery" and academic "resources"  among the students  are so inconsistent.   For instance,presenting a 400-level course without specific university prerequisites and contending itsomehow  supports  learning  and  knowledge  of  the  same  "level"  as  other  400-levelcourses  with  standard  prerequisite  lineages  is  problematic.   Either,  the  informationencountered suits a 400-level  course and relies on sophisticated (300-level)  supportingprerequisite knowledge that a diverse student body with differing prior knowledges andexperiences  are unable to incorporate  into their  knowing,  or, the information  encoun-tered depends on prerequites further towards students'  shared foundational  knowledge,thus  resulting in learning  outcomes characteristic  of courses at  a lower number  level.The argument  here assumes a kind of consistency in the Education system, such that,any course, in any subject, given any title, sporting any catalogue number, cannot reli-ably elevate the knowledge of its incoming students more (or less) than its credit weight(eg. ¯3) reflects, from a baseline level of experience and common knowledge indicatedby prerequisites  without having practically unacceptable  dropout or failure rates.  Thisprinciple  is consistent  with John Dewy (1938: ch. 3 & 7), who places learning into a"category of continuity" based on an "experiential continuum" that precludes any sort oflarge 'quantum leaps'  in knowledge  among learners  beyond their  prior  experiences  tolevels beyond what can be expected from a single ¯3 course.Number levels presently fail to be meaningful  because they do not model (Se-beok & Danesi 2000: ch. 1) well and sustain the pattern of the University's course num-bering  system to  which  they  supposedly  refer,  nor  do  they  consistently  differentiate(Belsey 2002: ch. 4) courses based on a substantive concept such as the level of knowl-edge taught and learned in a course.  The above described repositioning of courses inUniversity  based  on  nonstandard  or  unstated  prerequisite  requirements  for  assignednumber levels leads to a large variance of distent scores for courses of the same numberlevel (for example, review Figure 4.2.1.1-7).  When, courses of a particular level haveanything from no university prerequisites  to prerequisites of the same level, just know-ing the catalogue number of a course is insufficient to reliably characterize the knowl-edge development within, especially for 300- and 400-level courses.  The distent metricis here offered both as a way of restating the meaning of the course numbering system(review Table 3.1.2.4-1) and as a practical tool to label courses based on the level of theknowledge  taught  in  the  course.   A distent  supported  system of  assigning  cataloguenumbers  to  courses  would  function  similarly  to  how addresses  are presently  used  tolocate buildings in a city, where the (street) name and first digits of the address immedi-ately offer an approximate 'location'.  The proposed format is: SUBJECT XXYY, whereSUBJECT is the subject code used presently, such as MATH (Math) or PSYCO (Psychol-ogy), XX is the distent score of the course, say ¯64 for a first year course, and YY arethe last two digits presently used to distinguish courses at any level.  For example, usingthe courses from Figure 4.2.1.1-7, CH E 435, Oilsands Engineering Design, would berelabelled CH E 9735 derived from its distent score of ¯97, and C LIT 440, Compara-tive Studies in Popular Culture, would be relabelled C LIT 6440, derived from its distentscore of ¯64.  Courses are presently given classifications based on course number, butthis administrative categorization has lost some of its meaning due to the pervasive lackof discipline in following the guidelines.  A course labelling system tied directly to theprerequisite  requirements  offers  an  objective,  consistent  method  for  generating  cata-logue numbers,  which,  in turn,  provide immediate  information  regarding  the approxi-mate level of knowledge expected in the course based on distent score.Aside  from  the  particularities  of  the  proposed  course  renumbering  systemdescribed immediately  above, the present system can be further scrutinized.   Once therelationship  between  the University's  present  numbering  system and distent  is  under-stood, and after the observation that the distribution of courses by level does not matchthe distribution of courses by distent, the question of which courses,  departments,  andfaculties currently break the guidelines the most, and in what ways, arises.  Nominally,all courses presently labelled, 4xx, are of the same number level, but as measured by thedistent metric, they vary widely in their network locations, and therefore functions.  TheUniversity numbering system, if followed, implies a consistent distent value for coursesfrom each  number  level:  100-level  courses  taken  by first  year  students  in a programhave an expected distent of ¯61 + ¯3 = ¯64, 200-level courses taken by second yearstudents  in  a  program  have  an  expected  distent  of  ¯67,  third  year  courses  have  anexpected distent of ¯70, and 400-level courses are supposed to have a distent score of¯73 on average, as illustrated four paragraphs above.  Therefore,  all of the courses inthe University can be assigned two distent scores: a) an implicit score determined by thepresently assigned catalogue number,  and b) a measured distent value based on actualprerequisite  lineages.   Comparison  of these two distent  values determines  if  the cata-logue  number  of  a course  overstates,  matches,  or  understates  the level  of knowledgedeveloped  therein.   After  normalization,  by  setting  the  minimal  university  entrancerequirement to zero distent, the ratio of the implied vs. the measured distent accrued inuniversity for each course is calculated, and the average values reported for departmentson Table 4.2.1.1-1.  Large ratios indicate that the average course catalogue numbers aretoo high given the average measured course distent; these departments are responsiblefor the above discussed "front  loading" of the university by allowing overly generousaccess to upper level courses by freshman and sophomore students.  Small ratios indi-cate  that the average course catalogue  numbers  are too low given the average coursedistent;  these  departments  are  responsible  for  the  above  discussed  "long  tail"  of  thefrequency distribution for distent comprised of courses along protracted trajectories.  The integrity  of such evaluations  is dependent  on the reliability  of the distentmetric  to  measure  what  is  purported  (see  Figure  4.2.1.1-14),  and  the  plausibility  ofinterpretations.   Notice,  at issue in this analysis  of number level 'inflation'  is not howmany high or low distent courses there are in a department, but how appropriately theyare labelled with catalogue numbers.  For instance, the Department of Biomedical Engi-neering will always have proportionally more high distent courses than, say, the Depart-ment  of Anthropology,  since  its  advanced  subject  matter  relies  on so much previouslearning before entrance.  But, either Department could be measured as 'correspondent',over 'inflationist'  or 'deflationist',  whenever  the number  levels assigned to the coursesfaithfully reflect the University course numbering system.   It is here speculated that thepractical  aligning  of  courses  in  terms  of  their  topics  of  inquiry,  prerequisite  require-ments, and number level, is a distributed process occurring among professors of individ-ual Departments – an intermediate level somewhere between the central administrationand the students.  Clark (2004) identifies two important forces of influence on a depart-ment: 1) the vitality, diversity, and growth of the subject matter of the department, and,2)  the  element  of  competition  for  resources  between  departments  in  the  university(particularly  in  North  America).   For  departments  centered  around  large,  involved,demanding subjects studied through focused programs, long chains of knowledge devel-opment, including five or more courses, are inevitable.  Given the inherent limitation ofthe University course numbering system to 400- & 500-level courses that imply prerequi-site  chains  of three  or four courses long,  number level  deflation is unavoidable.   Fordepartments centered on what Pan (1998) and Cole (2002) call "marginalized" subjects,course  level  inflation  might  be a  survival  response  to  help compete  for  the essentialresources of students and the funding allocated for them.  For example, since all Bache-lor  programs  have limitations  on the number  of  junior  level  credits  which  contributetowards the degree, persistently low enrolments in a junior (100-level) course at a Depart-ment can be addressed by raising the catalogue number to the 200-level.  Thus, a code-pendent  relationship  established  between  students  'shopping'  for accessible,  nonjuniordegree requirements and departments seeking student enrolment can be a mechanism forcourse level inflation.   A more widely reported,  complementary  phenomena of "gradeinflation" (Nature 2004; Johnson 2003: ch. 3; Ziomek & Svec 1997; British Broadcast-ing  Corporation  2010)  "omnipresent  at  community  colleges  and  at  both  public  andprivate four-year schools" is attributed by Rojstaczer & Healy (2010)  to a similar, "keepthe  customer  happy",  ethos  across  USA  (at  least)  campuses  (see  also,<www.gradeinflation.com>).By definition, academic subjects vary from one another.  It is difficult to com-pare the subject matter in, say, ENGLISH 100 to MATH 333, so no attempts are directlymade in this thesis.   Instead,  courses are evaluated and compared indirectly  based ontheir network locations.  The differences and similarities in courses are by virtue of theirarrangement, and the assumption that each course on a transcript contributes equally to astudent's education in proportion to course weight: three academic credits (¯3) assignedto a Native Studies course is given the same significance on a transcript as if the creditswere  assigned  to  a  Pharmacology  course.   Distent  is  the first  example  of  a  networkmetric  tailored  for  use  in  education.   It  measures  the  prerequisite  lineages  for  eachcourse  in  a careful  way,  by identifying  the simultaneously  longest  necessary  and (fl)shortest optional route from kindergarten to the course in question.   Chains of coursesare  argued  to be trajectories  of continuous  knowledge  elaboration  proportional  to thenumber of academic credits (¯) awarded to constituent courses along the way, and thisis  called  'distent'.   With  this  framework  in  place,  all  individual  courses  in  Alberta'sProvincial Education system are characterized by the distent measure, plus departmentsand faculties by average and median distent values.  The distribution of distent scores isshown to have strong implications for how the network of courses is shaped, which inturn determines  how knowledge  is presented to, and experienced  by, students  in theirpaths  through  University.   The  discrepancy  between  how  courses  are  labelled  withcatalogue  numbers  by  the  administration  and  how courses  are  scored  by  the  distentmetric is briefly discussed, leading to the portrayal of some departments as 'inflationist','deflationist', or 'correspondent'.  The suggestion, and outline, for a new system of courselabelling is offered since present labels no longer provide significant contextual meaning.__________________________†  Something  similar  could  be said  for  regular  geographical  maps.   For  example,  twotowns  in British  Columbia,  separated  by mountains,  may be close,  measured  "as  thecrow flies", yet be distant, measured by the highway system.
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A basic function of maps is to orient the user in spatial terms regarding a subject.An important  aspect  of  orientation  is  the  viewer's  ability  to  determine  closeness  andseparation between places or objects while reading a map.  This is usually accomplishedby some sort of associated scale or legend to help with the interpretation of distances,areas,  color codes, etcetera.   The networks in this thesis, and networks in general, areintended to capture and visually emphasize topology – those spatial properties that areinvariant under continuous elastic deformations.  Distortions  of network size, overlap-ping  of  nodes,  crossing  of  links,  twisting  of  form,  and  stretching  of  shape  are  allaccepted  to preserve and communicate  the architecture  of connections  among compo-nents.  This generally contrasts with typical maps, say geographic, which mostly striveto preserve distance, proportional areas, and fixed arrangements of elements.Reenforcing  a fairly  "standard narrative"  of education  as coherent,  cumulativelearning in preparation for a future (Nespor 2007), Ormell  (1996) offers "eight robustmetaphors  .  .  .  to  represent  the  invariant  features  of  education",  three  of  which  arerelated to the spatial metaphor of education as mountain climbing.  Ormell conceives ofthe curriculum  as "a  definite,  recognized  named mountain,  which requires  effort  andstamina to climb", upon which students should be able to gauge their progress in the trektowards the summit, where their efforts are rewarded with "a ‘local synthesis’: a singleviewpoint  or  vantage-point  from  which  a  great  tract  of  country  (knowledge)  can  beseen".   But, this type of metaphor is difficult to reconcile with the architecture of thenetwork maps presented  in the thesis.   A basic observation within this thesis  that thecurriculum, as represented by courses, is very large, so only ever partially experienced,and does not allow for relatively "great tracts" of knowledge to be seen in retrospect; thenumber  of  possible  trajectories  is  nearly  innumerable  for  students,  so  no  orientationtowards a single summit is possible.  And, an initiating observation of this thesis, whichmotivated the very creation of the network maps presented, is that the overall curricularstructure is veiled – anything but "prominent", "publicly visible", and easily "seen froma distance" as Ormell contends the curriculum should be (p. 72-73).  Instead of "height" on a mountain in a journey towards a "peak", a different kindof measure for progress through the curriculum as represented by the network of coursesis required.  Davis and Sumara (2006: 57)  write that "complexity thinking troubles the
metaphors of accumulations of knowledge and progress toward a foreseeable endpoint",
and "the emergence of new interpretive possibility [learning] is framed more in terms of
expansiveness  and  outward  movement".   Instead  of  the  synthesizing  and  orienting
vantage point being the peak of a mountain from where a student looks back and down-
wards  upon  the  curriculum  once  climbed,  a  metric  which  traces  a  learner's  history
through the curriculum to measure "outward movement" from a starting point towards
the unknown is formulated.  Let such a course network metric be called distent, D

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition: "Distent, n:  Stretching out; out-stretched extent; distension; breadth."  Here,
as an alternative to the concept of distance in Euclidean space (Gamelin & Greene 1983:
ch.  1),  distent  is  proffered  as  a  structural  metric  of  course  separation  on a  network.
Traditional  cartographic measures of separation, such as cartesian distance, along with
some typical adjectives, such as higher and lower, are less applicable to describe separa-
tion of nodes on a tangled network.  Common education perspectives assume that move-
ment along a knowledge trajectory implies the effective connection of new knowledge
to old knowledge,  that is, the construction of a continuously elaborated present knowl-
edge.  This view from education can support a more continuous,  topological notion of
separation-as-stretching as much as the notion of separation-as-distance or being apart in
space.  The metric, distent, captures this difference by tracing the steps taken forward to
reach any point in the network.  Therefore, two nodes may be located quite close to each
other in terms of their placements on the embedding of a network map, but be consid-
ered quite separated as measured by distent†.

Let distent be measured outward from a common origin: the beginning of Kinder-
garten.   Now all  courses  of  the  education  system can  be characterized  as containing
knowledge continuously elaborated from Kindergarten by tracing the demands of prior
knowledge set down in prerequisite requirements as represented by the topology of the
network  (see  Figure  4.2.1.1-1).   Let  the  distent  score  assigned  to  any  course  be the
academic credits (¯) required to finish the course; that is, distent is a measure of continu-
ous knowledge elaboration, stretching from the beginning of Kindergarten to the end of
the course in question.  Since there are many possible trajectories between kindergarten
and,  say,  an  advanced  undergraduate  course,  care  must  be  taken  in  establishing  an
algorithm.  To do so, the way the course network is normally visualized and described in
this thesis must be changed by reversing the direction of the links (see Figure 4.2.1.1-2).
This  change  in  link polarity  switches  the  qualitative  orientation  of  the  network  from
prerequisite courses to subsequent courses, from prior knowledge to future possibilities,
and  switches  the  quantitative  flow  to  be  in  the  direction  of  knowledge  elaboration:
expansive and outward from a common origin, Kindergarten.

A directed  acyclic  graph  (review §2.3.2.1),  like the  course  network,  formally
defines a "precedence relation" (Pemmaraju & Skiena 2003: ch. 8.5.1) on the nodes, if
link (i, j) is taken as meaning that node i must occur before node j.  A topological sort is
a nonunique permutation of the nodes of a graph such that a link (i, j) always implies
that i appears before j (Corman et al 2001: ch. 22.4).  Only directed acyclic graphs can
be topologically sorted, since no node in a directed cycle can take precedence over all
the rest.   Because there are no cycles, every finite acyclic graph contains at least one
node v of out-degree zero where trajectories of the graph might be said to end.  Clearly,
v can appear last in the topological ordering.  Deleting v leaves a graph with at least one
other vertex of out-degree zero.  Repeating this argument gives an algorithm for topologi-
cally  sorting  any  directed  acyclic  graph  establishing  a  node  permutation  with  a
beginning(s) and end(s) (see Figure 4.2.1.1-3).  Critical to several types of calculations
for this thesis, a topological sort of the course network allows the otherwise large, tan-
gled nexus to be addressed systematically and efficiently, from end(s) to end, for compre-
hensive,  sophisticated  analysis  with  reasonable  computing  times  (for  the  interested
reader, see Attachment 9.3 Supplementary Equations 4.2.1.1).

Here  it  is  assumed  that  a  particular  course  and  its  neighborhood  define  a
"precedence  relation".   In  the  case  of  the  course  network  reversed,  where  edges  are
oriented from a course to its subsequents, the precedence relation is the prior knowledge
a  course  provides  to  its  subsequents  for  elaboration.   Typically,  terminal  400-level
courses are at the end of such precedence chains and kindergarten is alone at the begin-
ning because it is the only node requiring no prior knowledge from within the education
system.  The topologically sorted reverse course network always starts with kindergar-
ten, and it is an obvious reference point for distent and other calculations.  Let the dis-
tent measure to any course be the total number of credits accumulated along a trajectory
from the beginning of kindergarten to the end of the course, chosen to be simultaneously
the longest  necessary  and the shortest  optional  path (see Figure  4.2.1.1-4  and Figure
4.2.1.1-5).  In large complicated course networks, a path defining the distent of a course
is not unique since one or more paths may determine the same distent score. 

By sifting through  the individual  distent  results  calculated  for each course by
computer  with  the  program,  Calendar  Navigator,  some  exceptional  courses  are  high-
lighted (see Table 9.2-1, eleventh column, D).  Predictably, kindergarten (#535) has the
lowest  possible  distent score (¯2), since it relies not at all for students  to arrive with
knowledge from elsewhere  in the education system.  The many instructional  hours of
expected  attendance,  and  the  normally  twelve-plus  years  of  enrollment,  ensures  that
School  is  the  major,  if  not  distinguishing,  contributor  to  the  distent  scores  of  most
courses (see Figure 4.2.1.1-6).   Trajectory requests may be sent to Calendar Navigator
for any input course node on the network; two are shown in Figure 4.2.1.1-7.  Distent
scores and trajectories allow for sophisticated quantitative and qualitative interpretation
of  courses  characteristics  based  on  network  structure  independent  of  subject  specific
course content.   Courses with small distent scores lie on continuous chains of knowl-
edge elaboration that are short; courses with large distent scores lie on continuous chains
of knowledge elaboration that are long.  The "emergence of new interpretive possibili-
ties"  within  any course  is  not  arbitrary,  but  always  a  function  of  the  prior  academic
knowledge brought to the course by students.  Given the distent score of a course, and
by tracing the trajectory to it, reasonable expectations may be made regarding the level
of readings,  difficulty  of assignments,  knowledge  of peers,  scholarliness  of instructor,
necessity  for attendance,  and challenge  of assessments,  within.   Coupled with subject
specific context, further expectations regarding methods of content delivery, the role of
the individual learner, the role of the instructor, and the type of interactions among the
learners can be formed.

High  school  courses  with  maximum distent  are the terminal  courses  from the
Registered Apprenticeship Program (RAP), for example, RAP 6243 (#1196), Structural
Steel and Plate Fitter 35d, with D = ¯ 90.  This indicates the vocational knowledge in
theses courses is well developed, and supported by a continuous, long chain of previous
learning.   Not  surprisingly,  considering  the number of hours  directed toward the pro-
gram, a successful  RAP student graduates  from high school  nearly finished their  first
year  formal  apprenticeship  training  in  the  corresponding  field,  which  are  otherwise
"traditionally  .  .  .  began  after  students  graduate  from high school"  (Alberta  Learning
2003b).  Among the academic high school courses, MAT 3211 (#736), Mathematics 31,
and GER 3317 (#534), German 31, with D = ¯ 67, and FSL 3308 (#528), French 31C,
with D = ¯ 77, have the greatest distent scores.  These courses are appended to the ends
of  prerequisite  chains  typical  in  length  of  other  senior  subjects  in  high  school,  thus
extending them, indicating students must direct even more learning time and effort to
finish  them.  As a result,  students  completing  these long learning trajectories  in high
school have direct access to more advanced courses in the corresponding departments at
the  University  of  Alberta,  such as,  MATH 100 (#4165),  Calculus  I,  and MATH 117
(#4171), Honors Calculus I, over MATH 114 (#4169), Elementary Calculus I, or FREN
211  (#2208),  Intermediate  French  I,  over  FREN  111  (#2204),  Beginners'  French  I.
Thus, the distent metric,  measuring only network structure,  identifies,  by extreme val-
ues, the courses in the school system that, a) function as the gateway to the education
system (kindergarten),  and, b) effectively function as 'advanced placement' courses, for
further learning in either the trades or university.  Generalizing, the distent metric is here
offered  as  a  measure  of  course  separation  from kindergarten,  which  in  turn  may  be
reasonably interpreted  as corresponding  to the level of knowledge development  at the
conclusion of a course.

The lowest distent  courses in the University  are introductory  courses from the
Department  of Physical  Education and Recreation,  such as, PAC 182 (#4651),  Indoor
Wall Climbing, and DAC155 (#4613), Social Dance, all with D = ¯ 62.5.  These physi-
cal  activity  and  dance  activity  courses  require  nothing  but  the  minimum  University
entrance  requirements  as  prerequisites,  and are  only  weighted  as  ¯1.5  credit  courses
themselves.  At the other extreme, is NURS 408 (#4594), Acute Care Practice II, with a
whopping (in the strictly scholarly sense) distent of D = ¯129 – a score so large it is
only achievable by a high credit course coming at the end of a strict, four year schedule
of consecutive high credit courses in a single discipline.  Its course description declares
how "professional  nursing practice focuses on a comprehensive  application of primary
health  care principles  to clients  experiencing  acute  variances  in health  across  the life
span".   The  weighty  vocabulary  of  "professional",  "practice",  "comprehensive",
"principles", and "variance" used in the description is well suited to a course that com-
pletes the training of those who prepare, literally, for complicated life and death situa-
tions at the extreme of their involved profession.  A qualitative visualization of distent
score distribution for nodes throughout the course network, for School and University, is
displayed by Figure 4.2.1.1-8.  

By  calculating  the  frequency  distribution  of  course  distent  for  each  faculty
individually,  location  (median),  dispersion  (median  absolute  deviation),  and  shape
(skewness) statistics may be compared (see Table 4.2.1.1-1 tenth column, Dè , and Figure
4.2.1.1-9).  By viewing the median distent column, Dè , the Faculties of Arts and Physical
Education, are seen as low distent faculties, scoring ¯67 and ¯66 respectively.  Consider-
ing the baseline distent level of ¯61, required just for the minimum University entrance
requirements from high school, most courses in the Faculties of Arts and Physical Educa-
tion have distent scores within ¯6, viz., two ¯3 courses in a row.  Most courses in the
Faculty of Agriculture, Forestry, and Home Economics, Dè AH  = ¯68, and the School of
Native Studies, Dè NS  = ¯68, have distent scores within ¯9 ( or three ¯3 courses) of the
minimum University entrance requirements.  The majority of Science (Dè SC  = ¯73) and
Business (Dè BC  = ¯71) courses can be completed within ¯12 sequences of study, or four
¯3 courses.  The professionally oriented Faculties of Engineering, Nursing, and Medi-
cine & Dentistry, all have a majority of their courses coming after knowledge develop-
ment chains of greater than ¯12 beyond high school.  That is, most courses from these
Faculties  are typically not even encountered by students until after sequences of study
that include at least four courses at the University level.  See Figures 4.2.1.1-10 & -11
for more details.   For the interested reader, similar comparisons among the University
departments may be made using the average distent statistics on Table 4.2.1.1-2, eighth
column, Dêêê.

The system for numbering university courses as described in the University of
Alberta Calendar (§220, p. 448), already discussed in §3.1.2.4 (review Table 3.1.2.4-1),
implies a specific, direct relationship with the distent metric.  Quite simply, since each
number  level  is  expected to have prerequisites  from the previous  level,  eg.  300-level
courses "normally" have 200-level prerequisites, and since the median weight of univer-
sity courses is ¯3 (review Figure 3.1.2.4-4), the separation of number levels in terms of
distent should be ¯3.  A common intermediate reference point for all university courses
is the minimum entrance requirements with distent of ¯61.  Therefore, if the University
administration's  course numbering system is being followed, then most first year, 100-
level courses have an expected distent of ¯61 + ¯3 = ¯64, 200-level courses have an
expected distent of ¯67, third year courses have an expected distent of ¯70, and 400-
level courses are supposed to have a distent score of ¯73 on average.  Insofar as this
correspondence  holds,  the frequency distribution  of course credit  weight over number
levels  (review  Figure  3.1.2.4-5)  matches  the  frequency  distribution  of  course  credit
weight over distent (see Figure 4.2.1.1-12).   Alas, this is not the case.  Although both
distributions  have the same median – at the 300-level  or ¯70 distent score, they have
very different shapes as measured by skewness: -1.36 vs. 2.07.  A negative skewness to
the frequency distribution in Figure 3.1.2.4-5 implies that few low-level courses lead to
many  high-level  courses,  while  a  positive  skewness  to  the  frequency  distribution  in
Figure 4.2.1.1-12 shows that many courses of low distent lead to fewer courses of rela-
tively higher distent.  Using a nonparametric statistical method to compare two distribu-
tions with the same median, the distributions  from Figures 3.1.2.4-5 & 4.2.1.1-12,  are
measured  to be significantly  different  (P-value ≈  0) by comparing  variability  using a
"test  of dispersion"  (Hollander  & Wolfe 1999:  ch.  5.1),  called the Siegel-Tukey  Test
(Abell et al. 1999: 570).  To summarize, the University administration sets forth guide-
lines and labels which arrange the courses in an expansive, "top-heavy" structure (Ù) as
number level increases, but, the courses actually interact by their prerequisite knowledge
in  a  far  different  manner:  a  contracting,  "bottom-heavy"  structure  (Ú)  as  distent
increases (see Figure 4.2.1.1-13).

The  "top-down",  planned  view  of  course  structure  from  the  administration
differs  substantially  from the "bottom-up",  experienced  view of course structure  from
the students.  The only Faculty with a negative skewness to the distent distribution for
its  courses  (see Table  4.2.1.1-1,  eleventh  column,  gD)  is  Engineering.   That  is,  only
Engineering  (mildly)  holds to the administrative  view that courses are arranged in an
expanding  structure,  anything  like Figure 3.1.2.4-5.   The reason for the dramatic  and
consistent difference in course arrangement for every other Faculty, and the University
as a whole,  from the expected  arrangement  of courses  implied  by the distribution  of
number level, is the widespread and prevalent use of hedge terms in the course number-
ing system that allow for deviations  from the normal prerequisite  relationships  among
courses (review Table 3.1.2.4-1).  In most Faculties there are many senior courses with
few senior prerequisites,  few junior prerequisites,  or even no prerequisites at all.  This
has the effect of increasing access, and 'front-loading'  new course choices for freshman
and sophomore  students,  thus making most of a Faculty available to students  early in
their studies with relatively  lesser expansion of course choices in later years.   On the
other hand, some Faculties assign courses prerequisites  of the same level, instead of a
level  below,  thus  extending  prerequisite  lineages  and  delaying  access  to  subsequent
courses of higher number level beyond what is expected.  Both of these ubiquitous types
of  deviations  from  the  normal  classification  of  courses  contribute  to  the  difference
between the imagined administrative structure – wherein the diversity of courses avail-
able to students consistently increases year-by-year as they move towards graduation –
versus  the  experienced  knowledge  structure  of  courses  linked  by  their  prerequisite
requirements – wherein new course choices explode in the early years for students, then
are reduced to a trickle along sometimes very lengthy trajectories.

Besides  the directed,  binary,  prerequisite  relationship  between pairs of courses
that establishes the network structure studied in this thesis, courses are associated by a
second overlapping layer of relationships based on membership in specific degree pro-
grams  offered  by  each  university  Department.   The  University's  numbering  system
describes courses at any number level as being "designed typically for students in the
[corresponding] year of a program."  That is, 300-level courses are "typically" designed
for third-year students  of a particular program.  Sometimes this condition is explicitly
stated  in  a course  description.   For  example,  NUTR 440 (#1518),  Current  Topics  in
Nutritional  Sciences,  states  it  is  "open  to  fourth-year  students  in  the  Nutrition  major
only",  but  also  lists  NUTR 301 & 302 as specific  course  prerequisites.   Many other
senior  level  courses  have  no  stated  prerequisites  of  specific  courses,  degree  require-
ments, or student year.  A very small minority of courses have restrictions on the year of
a student without also specifying specific course prerequisites or even degree programs;
for example, SOC 300, Principles of Sociology, offers "basic concepts and principles of
Sociology  for  students  with  advanced  standing"  with  the explicit  "prerequisite:  third-
year or more advanced standing", which "may not be taken for credit by students with
credit in SOC 100. First or second-year students must take SOC 100."  In terms of the
method of data translation into the course network in this theses, a prerequisite condition
on the year of the student can be reasonably accounted for by the requirement of least
one connection from that course to some other subset of courses at the next lower num-
ber level.   Ideally,  the two factors that determine the number level of a course are in
harmony: a course at a certain number level, say 300, has explicit prerequisites  at the
next level below (200-level) or is attended by students in the corresponding (third) year,
whose  transcripts  are  full  of  the  implicitly  supporting  (200-level)  courses  from  the
previous year of the program.  The disconnect between the number level of courses that
have explicitly stated prerequisites and the number level of courses that rely on implicit
adherence to an outline of a degree program is revealed whenever a diversity of students
external  to  particular  programs  enroll  in  courses  as  options,  or  whenever  the  same
course belongs in two or more different degree programs.

Contemporary learning theories emphasize engaging and challenging the learner
with tasks that refer to skills and knowledge just beyond their current level of capabili-
ties.   For  example,  Smith  et  al.  (1993)  employ  an  explicit  constructivist  stance  and
interpret students' prior conceptions as "resources for cognitive growth within a complex
systems view of knowledge" used as the basis for "knowledge refinement and reorganiza-
tion".  This view of knowledge and learning is incompatible with the current practice of
assigning the same number level to whole groups of courses where the "level of mas-
tery" and academic "resources"  among the students  are so inconsistent.   For instance,
presenting a 400-level course without specific university prerequisites and contending it
somehow  supports  learning  and  knowledge  of  the  same  "level"  as  other  400-level
courses  with  standard  prerequisite  lineages  is  problematic.   Either,  the  information
encountered suits a 400-level  course and relies on sophisticated (300-level)  supporting
prerequisite knowledge that a diverse student body with differing prior knowledges and
experiences  are unable to incorporate  into their  knowing,  or, the information  encoun-
tered depends on prerequites further towards students'  shared foundational  knowledge,
thus  resulting in learning  outcomes characteristic  of courses at  a lower number  level.
The argument  here assumes a kind of consistency in the Education system, such that,
any course, in any subject, given any title, sporting any catalogue number, cannot reli-
ably elevate the knowledge of its incoming students more (or less) than its credit weight(eg. ¯3) reflects, from a baseline level of experience and common knowledge indicatedby prerequisites  without having practically unacceptable  dropout or failure rates.  Thisprinciple  is consistent  with John Dewy (1938: ch. 3 & 7), who places learning into a"category of continuity" based on an "experiential continuum" that precludes any sort oflarge 'quantum leaps'  in knowledge  among learners  beyond their  prior  experiences  tolevels beyond what can be expected from a single ¯3 course.Number levels presently fail to be meaningful  because they do not model (Se-beok & Danesi 2000: ch. 1) well and sustain the pattern of the University's course num-bering  system to  which  they  supposedly  refer,  nor  do  they  consistently  differentiate(Belsey 2002: ch. 4) courses based on a substantive concept such as the level of knowl-edge taught and learned in a course.  The above described repositioning of courses inUniversity  based  on  nonstandard  or  unstated  prerequisite  requirements  for  assignednumber levels leads to a large variance of distent scores for courses of the same numberlevel (for example, review Figure 4.2.1.1-7).  When, courses of a particular level haveanything from no university prerequisites  to prerequisites of the same level, just know-ing the catalogue number of a course is insufficient to reliably characterize the knowl-edge development within, especially for 300- and 400-level courses.  The distent metricis here offered both as a way of restating the meaning of the course numbering system(review Table 3.1.2.4-1) and as a practical tool to label courses based on the level of theknowledge  taught  in  the  course.   A distent  supported  system of  assigning  cataloguenumbers  to  courses  would  function  similarly  to  how addresses  are presently  used  tolocate buildings in a city, where the (street) name and first digits of the address immedi-ately offer an approximate 'location'.  The proposed format is: SUBJECT XXYY, whereSUBJECT is the subject code used presently, such as MATH (Math) or PSYCO (Psychol-ogy), XX is the distent score of the course, say ¯64 for a first year course, and YY arethe last two digits presently used to distinguish courses at any level.  For example, usingthe courses from Figure 4.2.1.1-7, CH E 435, Oilsands Engineering Design, would berelabelled CH E 9735 derived from its distent score of ¯97, and C LIT 440, Compara-tive Studies in Popular Culture, would be relabelled C LIT 6440, derived from its distentscore of ¯64.  Courses are presently given classifications based on course number, butthis administrative categorization has lost some of its meaning due to the pervasive lackof discipline in following the guidelines.  A course labelling system tied directly to theprerequisite  requirements  offers  an  objective,  consistent  method  for  generating  cata-logue numbers,  which,  in turn,  provide immediate  information  regarding  the approxi-mate level of knowledge expected in the course based on distent score.Aside  from  the  particularities  of  the  proposed  course  renumbering  systemdescribed immediately  above, the present system can be further scrutinized.   Once therelationship  between  the University's  present  numbering  system and distent  is  under-stood, and after the observation that the distribution of courses by level does not matchthe distribution of courses by distent, the question of which courses,  departments,  andfaculties currently break the guidelines the most, and in what ways, arises.  Nominally,all courses presently labelled, 4xx, are of the same number level, but as measured by thedistent metric, they vary widely in their network locations, and therefore functions.  TheUniversity numbering system, if followed, implies a consistent distent value for coursesfrom each  number  level:  100-level  courses  taken  by first  year  students  in a programhave an expected distent of ¯61 + ¯3 = ¯64, 200-level courses taken by second yearstudents  in  a  program  have  an  expected  distent  of  ¯67,  third  year  courses  have  anexpected distent of ¯70, and 400-level courses are supposed to have a distent score of¯73 on average, as illustrated four paragraphs above.  Therefore,  all of the courses inthe University can be assigned two distent scores: a) an implicit score determined by thepresently assigned catalogue number,  and b) a measured distent value based on actualprerequisite  lineages.   Comparison  of these two distent  values determines  if  the cata-logue  number  of  a course  overstates,  matches,  or  understates  the level  of knowledgedeveloped  therein.   After  normalization,  by  setting  the  minimal  university  entrancerequirement to zero distent, the ratio of the implied vs. the measured distent accrued inuniversity for each course is calculated, and the average values reported for departmentson Table 4.2.1.1-1.  Large ratios indicate that the average course catalogue numbers aretoo high given the average measured course distent; these departments are responsiblefor the above discussed "front  loading" of the university by allowing overly generousaccess to upper level courses by freshman and sophomore students.  Small ratios indi-cate  that the average course catalogue  numbers  are too low given the average coursedistent;  these  departments  are  responsible  for  the  above  discussed  "long  tail"  of  thefrequency distribution for distent comprised of courses along protracted trajectories.  The integrity  of such evaluations  is dependent  on the reliability  of the distentmetric  to  measure  what  is  purported  (see  Figure  4.2.1.1-14),  and  the  plausibility  ofinterpretations.   Notice,  at issue in this analysis  of number level 'inflation'  is not howmany high or low distent courses there are in a department, but how appropriately theyare labelled with catalogue numbers.  For instance, the Department of Biomedical Engi-neering will always have proportionally more high distent courses than, say, the Depart-ment  of Anthropology,  since  its  advanced  subject  matter  relies  on so much previouslearning before entrance.  But, either Department could be measured as 'correspondent',over 'inflationist'  or 'deflationist',  whenever  the number  levels assigned to the coursesfaithfully reflect the University course numbering system.   It is here speculated that thepractical  aligning  of  courses  in  terms  of  their  topics  of  inquiry,  prerequisite  require-ments, and number level, is a distributed process occurring among professors of individ-ual Departments – an intermediate level somewhere between the central administrationand the students.  Clark (2004) identifies two important forces of influence on a depart-ment: 1) the vitality, diversity, and growth of the subject matter of the department, and,2)  the  element  of  competition  for  resources  between  departments  in  the  university(particularly  in  North  America).   For  departments  centered  around  large,  involved,demanding subjects studied through focused programs, long chains of knowledge devel-opment, including five or more courses, are inevitable.  Given the inherent limitation ofthe University course numbering system to 400- & 500-level courses that imply prerequi-site  chains  of three  or four courses long,  number level  deflation is unavoidable.   Fordepartments centered on what Pan (1998) and Cole (2002) call "marginalized" subjects,course  level  inflation  might  be a  survival  response  to  help compete  for  the essentialresources of students and the funding allocated for them.  For example, since all Bache-lor  programs  have limitations  on the number  of  junior  level  credits  which  contributetowards the degree, persistently low enrolments in a junior (100-level) course at a Depart-ment can be addressed by raising the catalogue number to the 200-level.  Thus, a code-pendent  relationship  established  between  students  'shopping'  for accessible,  nonjuniordegree requirements and departments seeking student enrolment can be a mechanism forcourse level inflation.   A more widely reported,  complementary  phenomena of "gradeinflation" (Nature 2004; Johnson 2003: ch. 3; Ziomek & Svec 1997; British Broadcast-ing  Corporation  2010)  "omnipresent  at  community  colleges  and  at  both  public  andprivate four-year schools" is attributed by Rojstaczer & Healy (2010)  to a similar, "keepthe  customer  happy",  ethos  across  USA  (at  least)  campuses  (see  also,<www.gradeinflation.com>).By definition, academic subjects vary from one another.  It is difficult to com-pare the subject matter in, say, ENGLISH 100 to MATH 333, so no attempts are directlymade in this thesis.   Instead,  courses are evaluated and compared indirectly  based ontheir network locations.  The differences and similarities in courses are by virtue of theirarrangement, and the assumption that each course on a transcript contributes equally to astudent's education in proportion to course weight: three academic credits (¯3) assignedto a Native Studies course is given the same significance on a transcript as if the creditswere  assigned  to  a  Pharmacology  course.   Distent  is  the first  example  of  a  networkmetric  tailored  for  use  in  education.   It  measures  the  prerequisite  lineages  for  eachcourse  in  a careful  way,  by identifying  the simultaneously  longest  necessary  and (fl)shortest optional route from kindergarten to the course in question.   Chains of coursesare  argued  to be trajectories  of continuous  knowledge  elaboration  proportional  to thenumber of academic credits (¯) awarded to constituent courses along the way, and thisis  called  'distent'.   With  this  framework  in  place,  all  individual  courses  in  Alberta'sProvincial Education system are characterized by the distent measure, plus departmentsand faculties by average and median distent values.  The distribution of distent scores isshown to have strong implications for how the network of courses is shaped, which inturn determines  how knowledge  is presented to, and experienced  by, students  in theirpaths  through  University.   The  discrepancy  between  how  courses  are  labelled  withcatalogue  numbers  by  the  administration  and  how courses  are  scored  by  the  distentmetric is briefly discussed, leading to the portrayal of some departments as 'inflationist','deflationist', or 'correspondent'.  The suggestion, and outline, for a new system of courselabelling is offered since present labels no longer provide significant contextual meaning.__________________________†  Something  similar  could  be said  for  regular  geographical  maps.   For  example,  twotowns  in British  Columbia,  separated  by mountains,  may be close,  measured  "as  thecrow flies", yet be distant, measured by the highway system.
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A basic function of maps is to orient the user in spatial terms regarding a subject.An important  aspect  of  orientation  is  the  viewer's  ability  to  determine  closeness  andseparation between places or objects while reading a map.  This is usually accomplishedby some sort of associated scale or legend to help with the interpretation of distances,areas,  color codes, etcetera.   The networks in this thesis, and networks in general, areintended to capture and visually emphasize topology – those spatial properties that areinvariant under continuous elastic deformations.  Distortions  of network size, overlap-ping  of  nodes,  crossing  of  links,  twisting  of  form,  and  stretching  of  shape  are  allaccepted  to preserve and communicate  the architecture  of connections  among compo-nents.  This generally contrasts with typical maps, say geographic, which mostly striveto preserve distance, proportional areas, and fixed arrangements of elements.Reenforcing  a fairly  "standard narrative"  of education  as coherent,  cumulativelearning in preparation for a future (Nespor 2007), Ormell  (1996) offers "eight robustmetaphors  .  .  .  to  represent  the  invariant  features  of  education",  three  of  which  arerelated to the spatial metaphor of education as mountain climbing.  Ormell conceives ofthe curriculum  as "a  definite,  recognized  named mountain,  which requires  effort  andstamina to climb", upon which students should be able to gauge their progress in the trektowards the summit, where their efforts are rewarded with "a ‘local synthesis’: a singleviewpoint  or  vantage-point  from  which  a  great  tract  of  country  (knowledge)  can  beseen".   But, this type of metaphor is difficult to reconcile with the architecture of thenetwork maps presented  in the thesis.   A basic observation within this thesis  that thecurriculum, as represented by courses, is very large, so only ever partially experienced,and does not allow for relatively "great tracts" of knowledge to be seen in retrospect; thenumber  of  possible  trajectories  is  nearly  innumerable  for  students,  so  no  orientationtowards a single summit is possible.  And, an initiating observation of this thesis, whichmotivated the very creation of the network maps presented, is that the overall curricularstructure is veiled – anything but "prominent", "publicly visible", and easily "seen froma distance" as Ormell contends the curriculum should be (p. 72-73).  Instead of "height" on a mountain in a journey towards a "peak", a different kindof measure for progress through the curriculum as represented by the network of coursesis required.  Davis and Sumara (2006: 57)  write that "complexity thinking troubles themetaphors of accumulations of knowledge and progress toward a foreseeable endpoint",and "the emergence of new interpretive possibility [learning] is framed more in terms ofexpansiveness  and  outward  movement".   Instead  of  the  synthesizing  and  orientingvantage point being the peak of a mountain from where a student looks back and down-wards  upon  the  curriculum  once  climbed,  a  metric  which  traces  a  learner's  historythrough the curriculum to measure "outward movement" from a starting point towardsthe unknown is formulated.  Let such a course network metric be called distent, DThe  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  followingdefinition: "Distent, n:  Stretching out; out-stretched extent; distension; breadth."  Here,as an alternative to the concept of distance in Euclidean space (Gamelin & Greene 1983:ch.  1),  distent  is  proffered  as  a  structural  metric  of  course  separation  on a  network.Traditional  cartographic measures of separation, such as cartesian distance, along withsome typical adjectives, such as higher and lower, are less applicable to describe separa-tion of nodes on a tangled network.  Common education perspectives assume that move-ment along a knowledge trajectory implies the effective connection of new knowledgeto old knowledge,  that is, the construction of a continuously elaborated present knowl-edge.  This view from education can support a more continuous,  topological notion ofseparation-as-stretching as much as the notion of separation-as-distance or being apart inspace.  The metric, distent, captures this difference by tracing the steps taken forward toreach any point in the network.  Therefore, two nodes may be located quite close to eachother in terms of their placements on the embedding of a network map, but be consid-ered quite separated as measured by distent†.Let distent be measured outward from a common origin: the beginning of Kinder-garten.   Now all  courses  of  the  education  system can  be characterized  as containingknowledge continuously elaborated from Kindergarten by tracing the demands of priorknowledge set down in prerequisite requirements as represented by the topology of thenetwork  (see  Figure  4.2.1.1-1).   Let  the  distent  score  assigned  to  any  course  be theacademic credits (¯) required to finish the course; that is, distent is a measure of continu-ous knowledge elaboration, stretching from the beginning of Kindergarten to the end ofthe course in question.  Since there are many possible trajectories between kindergartenand,  say,  an  advanced  undergraduate  course,  care  must  be  taken  in  establishing  analgorithm.  To do so, the way the course network is normally visualized and described inthis thesis must be changed by reversing the direction of the links (see Figure 4.2.1.1-2).This  change  in  link polarity  switches  the  qualitative  orientation  of  the  network  fromprerequisite courses to subsequent courses, from prior knowledge to future possibilities,and  switches  the  quantitative  flow  to  be  in  the  direction  of  knowledge  elaboration:expansive and outward from a common origin, Kindergarten.A directed  acyclic  graph  (review §2.3.2.1),  like the  course  network,  formallydefines a "precedence relation" (Pemmaraju & Skiena 2003: ch. 8.5.1) on the nodes, iflink (i, j) is taken as meaning that node i must occur before node j.  A topological sort isa nonunique permutation of the nodes of a graph such that a link (i, j) always implies
that i appears before j (Corman et al 2001: ch. 22.4).  Only directed acyclic graphs can
be topologically sorted, since no node in a directed cycle can take precedence over all
the rest.   Because there are no cycles, every finite acyclic graph contains at least one
node v of out-degree zero where trajectories of the graph might be said to end.  Clearly,
v can appear last in the topological ordering.  Deleting v leaves a graph with at least one
other vertex of out-degree zero.  Repeating this argument gives an algorithm for topologi-
cally  sorting  any  directed  acyclic  graph  establishing  a  node  permutation  with  a
beginning(s) and end(s) (see Figure 4.2.1.1-3).  Critical to several types of calculations
for this thesis, a topological sort of the course network allows the otherwise large, tan-
gled nexus to be addressed systematically and efficiently, from end(s) to end, for compre-
hensive,  sophisticated  analysis  with  reasonable  computing  times  (for  the  interested
reader, see Attachment 9.3 Supplementary Equations 4.2.1.1).

Here  it  is  assumed  that  a  particular  course  and  its  neighborhood  define  a
"precedence  relation".   In  the  case  of  the  course  network  reversed,  where  edges  are
oriented from a course to its subsequents, the precedence relation is the prior knowledge
a  course  provides  to  its  subsequents  for  elaboration.   Typically,  terminal  400-level
courses are at the end of such precedence chains and kindergarten is alone at the begin-
ning because it is the only node requiring no prior knowledge from within the education
system.  The topologically sorted reverse course network always starts with kindergar-
ten, and it is an obvious reference point for distent and other calculations.  Let the dis-
tent measure to any course be the total number of credits accumulated along a trajectory
from the beginning of kindergarten to the end of the course, chosen to be simultaneously
the longest  necessary  and the shortest  optional  path (see Figure  4.2.1.1-4  and Figure
4.2.1.1-5).  In large complicated course networks, a path defining the distent of a course
is not unique since one or more paths may determine the same distent score. 

By sifting through  the individual  distent  results  calculated  for each course by
computer  with  the  program,  Calendar  Navigator,  some  exceptional  courses  are  high-
lighted (see Table 9.2-1, eleventh column, D).  Predictably, kindergarten (#535) has the
lowest  possible  distent score (¯2), since it relies not at all for students  to arrive with
knowledge from elsewhere  in the education system.  The many instructional  hours of
expected  attendance,  and  the  normally  twelve-plus  years  of  enrollment,  ensures  that
School  is  the  major,  if  not  distinguishing,  contributor  to  the  distent  scores  of  most
courses (see Figure 4.2.1.1-6).   Trajectory requests may be sent to Calendar Navigator
for any input course node on the network; two are shown in Figure 4.2.1.1-7.  Distent
scores and trajectories allow for sophisticated quantitative and qualitative interpretation
of  courses  characteristics  based  on  network  structure  independent  of  subject  specific
course content.   Courses with small distent scores lie on continuous chains of knowl-
edge elaboration that are short; courses with large distent scores lie on continuous chains
of knowledge elaboration that are long.  The "emergence of new interpretive possibili-
ties"  within  any course  is  not  arbitrary,  but  always  a  function  of  the  prior  academic
knowledge brought to the course by students.  Given the distent score of a course, and
by tracing the trajectory to it, reasonable expectations may be made regarding the level
of readings,  difficulty  of assignments,  knowledge  of peers,  scholarliness  of instructor,
necessity  for attendance,  and challenge  of assessments,  within.   Coupled with subject
specific context, further expectations regarding methods of content delivery, the role of
the individual learner, the role of the instructor, and the type of interactions among the
learners can be formed.

High  school  courses  with  maximum distent  are the terminal  courses  from the
Registered Apprenticeship Program (RAP), for example, RAP 6243 (#1196), Structural
Steel and Plate Fitter 35d, with D = ¯ 90.  This indicates the vocational knowledge in
theses courses is well developed, and supported by a continuous, long chain of previous
learning.   Not  surprisingly,  considering  the number of hours  directed toward the pro-
gram, a successful  RAP student graduates  from high school  nearly finished their  first
year  formal  apprenticeship  training  in  the  corresponding  field,  which  are  otherwise
"traditionally  .  .  .  began  after  students  graduate  from high school"  (Alberta  Learning
2003b).  Among the academic high school courses, MAT 3211 (#736), Mathematics 31,
and GER 3317 (#534), German 31, with D = ¯ 67, and FSL 3308 (#528), French 31C,
with D = ¯ 77, have the greatest distent scores.  These courses are appended to the ends
of  prerequisite  chains  typical  in  length  of  other  senior  subjects  in  high  school,  thus
extending them, indicating students must direct even more learning time and effort to
finish  them.  As a result,  students  completing  these long learning trajectories  in high
school have direct access to more advanced courses in the corresponding departments at
the  University  of  Alberta,  such as,  MATH 100 (#4165),  Calculus  I,  and MATH 117
(#4171), Honors Calculus I, over MATH 114 (#4169), Elementary Calculus I, or FREN
211  (#2208),  Intermediate  French  I,  over  FREN  111  (#2204),  Beginners'  French  I.
Thus, the distent metric,  measuring only network structure,  identifies,  by extreme val-
ues, the courses in the school system that, a) function as the gateway to the education
system (kindergarten),  and, b) effectively function as 'advanced placement' courses, for
further learning in either the trades or university.  Generalizing, the distent metric is here
offered  as  a  measure  of  course  separation  from kindergarten,  which  in  turn  may  be
reasonably interpreted  as corresponding  to the level of knowledge development  at the
conclusion of a course.

The lowest distent  courses in the University  are introductory  courses from the
Department  of Physical  Education and Recreation,  such as, PAC 182 (#4651),  Indoor
Wall Climbing, and DAC155 (#4613), Social Dance, all with D = ¯ 62.5.  These physi-
cal  activity  and  dance  activity  courses  require  nothing  but  the  minimum  University
entrance  requirements  as  prerequisites,  and are  only  weighted  as  ¯1.5  credit  courses
themselves.  At the other extreme, is NURS 408 (#4594), Acute Care Practice II, with a
whopping (in the strictly scholarly sense) distent of D = ¯129 – a score so large it is
only achievable by a high credit course coming at the end of a strict, four year schedule
of consecutive high credit courses in a single discipline.  Its course description declares
how "professional  nursing practice focuses on a comprehensive  application of primary
health  care principles  to clients  experiencing  acute  variances  in health  across  the life
span".   The  weighty  vocabulary  of  "professional",  "practice",  "comprehensive",
"principles", and "variance" used in the description is well suited to a course that com-
pletes the training of those who prepare, literally, for complicated life and death situa-
tions at the extreme of their involved profession.  A qualitative visualization of distent
score distribution for nodes throughout the course network, for School and University, is
displayed by Figure 4.2.1.1-8.  

By  calculating  the  frequency  distribution  of  course  distent  for  each  faculty
individually,  location  (median),  dispersion  (median  absolute  deviation),  and  shape
(skewness) statistics may be compared (see Table 4.2.1.1-1 tenth column, Dè , and Figure
4.2.1.1-9).  By viewing the median distent column, Dè , the Faculties of Arts and Physical
Education, are seen as low distent faculties, scoring ¯67 and ¯66 respectively.  Consider-
ing the baseline distent level of ¯61, required just for the minimum University entrance
requirements from high school, most courses in the Faculties of Arts and Physical Educa-
tion have distent scores within ¯6, viz., two ¯3 courses in a row.  Most courses in the
Faculty of Agriculture, Forestry, and Home Economics, Dè AH  = ¯68, and the School of
Native Studies, Dè NS  = ¯68, have distent scores within ¯9 ( or three ¯3 courses) of the
minimum University entrance requirements.  The majority of Science (Dè SC  = ¯73) and
Business (Dè BC  = ¯71) courses can be completed within ¯12 sequences of study, or four
¯3 courses.  The professionally oriented Faculties of Engineering, Nursing, and Medi-
cine & Dentistry, all have a majority of their courses coming after knowledge develop-
ment chains of greater than ¯12 beyond high school.  That is, most courses from these
Faculties  are typically not even encountered by students until after sequences of study
that include at least four courses at the University level.  See Figures 4.2.1.1-10 & -11
for more details.   For the interested reader, similar comparisons among the University
departments may be made using the average distent statistics on Table 4.2.1.1-2, eighth
column, Dêêê.

The system for numbering university courses as described in the University of
Alberta Calendar (§220, p. 448), already discussed in §3.1.2.4 (review Table 3.1.2.4-1),
implies a specific, direct relationship with the distent metric.  Quite simply, since each
number  level  is  expected to have prerequisites  from the previous  level,  eg.  300-level
courses "normally" have 200-level prerequisites, and since the median weight of univer-
sity courses is ¯3 (review Figure 3.1.2.4-4), the separation of number levels in terms of
distent should be ¯3.  A common intermediate reference point for all university courses
is the minimum entrance requirements with distent of ¯61.  Therefore, if the University
administration's  course numbering system is being followed, then most first year, 100-
level courses have an expected distent of ¯61 + ¯3 = ¯64, 200-level courses have an
expected distent of ¯67, third year courses have an expected distent of ¯70, and 400-
level courses are supposed to have a distent score of ¯73 on average.  Insofar as this
correspondence  holds,  the frequency distribution  of course credit  weight over number
levels  (review  Figure  3.1.2.4-5)  matches  the  frequency  distribution  of  course  credit
weight over distent (see Figure 4.2.1.1-12).   Alas, this is not the case.  Although both
distributions  have the same median – at the 300-level  or ¯70 distent score, they have
very different shapes as measured by skewness: -1.36 vs. 2.07.  A negative skewness to
the frequency distribution in Figure 3.1.2.4-5 implies that few low-level courses lead to
many  high-level  courses,  while  a  positive  skewness  to  the  frequency  distribution  in
Figure 4.2.1.1-12 shows that many courses of low distent lead to fewer courses of rela-
tively higher distent.  Using a nonparametric statistical method to compare two distribu-
tions with the same median, the distributions  from Figures 3.1.2.4-5 & 4.2.1.1-12,  are
measured  to be significantly  different  (P-value ≈  0) by comparing  variability  using a
"test  of dispersion"  (Hollander  & Wolfe 1999:  ch.  5.1),  called the Siegel-Tukey  Test
(Abell et al. 1999: 570).  To summarize, the University administration sets forth guide-
lines and labels which arrange the courses in an expansive, "top-heavy" structure (Ù) as
number level increases, but, the courses actually interact by their prerequisite knowledge
in  a  far  different  manner:  a  contracting,  "bottom-heavy"  structure  (Ú)  as  distent
increases (see Figure 4.2.1.1-13).

The  "top-down",  planned  view  of  course  structure  from  the  administration
differs  substantially  from the "bottom-up",  experienced  view of course structure  from
the students.  The only Faculty with a negative skewness to the distent distribution for
its  courses  (see Table  4.2.1.1-1,  eleventh  column,  gD)  is  Engineering.   That  is,  only
Engineering  (mildly)  holds to the administrative  view that courses are arranged in an
expanding  structure,  anything  like Figure 3.1.2.4-5.   The reason for the dramatic  and
consistent difference in course arrangement for every other Faculty, and the University
as a whole,  from the expected  arrangement  of courses  implied  by the distribution  of
number level, is the widespread and prevalent use of hedge terms in the course number-
ing system that allow for deviations  from the normal prerequisite  relationships  among
courses (review Table 3.1.2.4-1).  In most Faculties there are many senior courses with
few senior prerequisites,  few junior prerequisites,  or even no prerequisites at all.  This
has the effect of increasing access, and 'front-loading'  new course choices for freshman
and sophomore  students,  thus making most of a Faculty available to students  early in
their studies with relatively  lesser expansion of course choices in later years.   On the
other hand, some Faculties assign courses prerequisites  of the same level, instead of a
level  below,  thus  extending  prerequisite  lineages  and  delaying  access  to  subsequent
courses of higher number level beyond what is expected.  Both of these ubiquitous types
of  deviations  from  the  normal  classification  of  courses  contribute  to  the  difference
between the imagined administrative structure – wherein the diversity of courses avail-
able to students consistently increases year-by-year as they move towards graduation –
versus  the  experienced  knowledge  structure  of  courses  linked  by  their  prerequisite
requirements – wherein new course choices explode in the early years for students, then
are reduced to a trickle along sometimes very lengthy trajectories.

Besides  the directed,  binary,  prerequisite  relationship  between pairs of courses
that establishes the network structure studied in this thesis, courses are associated by a
second overlapping layer of relationships based on membership in specific degree pro-
grams  offered  by  each  university  Department.   The  University's  numbering  system
describes courses at any number level as being "designed typically for students in the
[corresponding] year of a program."  That is, 300-level courses are "typically" designed
for third-year students  of a particular program.  Sometimes this condition is explicitly
stated  in  a course  description.   For  example,  NUTR 440 (#1518),  Current  Topics  in
Nutritional  Sciences,  states  it  is  "open  to  fourth-year  students  in  the  Nutrition  major
only",  but  also  lists  NUTR 301 & 302 as specific  course  prerequisites.   Many other
senior  level  courses  have  no  stated  prerequisites  of  specific  courses,  degree  require-
ments, or student year.  A very small minority of courses have restrictions on the year of
a student without also specifying specific course prerequisites or even degree programs;
for example, SOC 300, Principles of Sociology, offers "basic concepts and principles of
Sociology  for  students  with  advanced  standing"  with  the explicit  "prerequisite:  third-
year or more advanced standing", which "may not be taken for credit by students with
credit in SOC 100. First or second-year students must take SOC 100."  In terms of the
method of data translation into the course network in this theses, a prerequisite condition
on the year of the student can be reasonably accounted for by the requirement of least
one connection from that course to some other subset of courses at the next lower num-
ber level.   Ideally,  the two factors that determine the number level of a course are in
harmony: a course at a certain number level, say 300, has explicit prerequisites  at the
next level below (200-level) or is attended by students in the corresponding (third) year,
whose  transcripts  are  full  of  the  implicitly  supporting  (200-level)  courses  from  the
previous year of the program.  The disconnect between the number level of courses that
have explicitly stated prerequisites and the number level of courses that rely on implicit
adherence to an outline of a degree program is revealed whenever a diversity of students
external  to  particular  programs  enroll  in  courses  as  options,  or  whenever  the  same
course belongs in two or more different degree programs.

Contemporary learning theories emphasize engaging and challenging the learner
with tasks that refer to skills and knowledge just beyond their current level of capabili-
ties.   For  example,  Smith  et  al.  (1993)  employ  an  explicit  constructivist  stance  and
interpret students' prior conceptions as "resources for cognitive growth within a complex
systems view of knowledge" used as the basis for "knowledge refinement and reorganiza-
tion".  This view of knowledge and learning is incompatible with the current practice of
assigning the same number level to whole groups of courses where the "level of mas-
tery" and academic "resources"  among the students  are so inconsistent.   For instance,
presenting a 400-level course without specific university prerequisites and contending it
somehow  supports  learning  and  knowledge  of  the  same  "level"  as  other  400-level
courses  with  standard  prerequisite  lineages  is  problematic.   Either,  the  information
encountered suits a 400-level  course and relies on sophisticated (300-level)  supporting
prerequisite knowledge that a diverse student body with differing prior knowledges and
experiences  are unable to incorporate  into their  knowing,  or, the information  encoun-
tered depends on prerequites further towards students'  shared foundational  knowledge,
thus  resulting in learning  outcomes characteristic  of courses at  a lower number  level.
The argument  here assumes a kind of consistency in the Education system, such that,
any course, in any subject, given any title, sporting any catalogue number, cannot reli-
ably elevate the knowledge of its incoming students more (or less) than its credit weight
(eg. ¯3) reflects, from a baseline level of experience and common knowledge indicated
by prerequisites  without having practically unacceptable  dropout or failure rates.  This
principle  is consistent  with John Dewy (1938: ch. 3 & 7), who places learning into a
"category of continuity" based on an "experiential continuum" that precludes any sort of
large 'quantum leaps'  in knowledge  among learners  beyond their  prior  experiences  to
levels beyond what can be expected from a single ¯3 course.

Number levels presently fail to be meaningful  because they do not model (Se-
beok & Danesi 2000: ch. 1) well and sustain the pattern of the University's course num-
bering  system to  which  they  supposedly  refer,  nor  do  they  consistently  differentiate
(Belsey 2002: ch. 4) courses based on a substantive concept such as the level of knowl-
edge taught and learned in a course.  The above described repositioning of courses in
University  based  on  nonstandard  or  unstated  prerequisite  requirements  for  assigned
number levels leads to a large variance of distent scores for courses of the same number
level (for example, review Figure 4.2.1.1-7).  When, courses of a particular level have
anything from no university prerequisites  to prerequisites of the same level, just know-
ing the catalogue number of a course is insufficient to reliably characterize the knowl-
edge development within, especially for 300- and 400-level courses.  The distent metric
is here offered both as a way of restating the meaning of the course numbering system
(review Table 3.1.2.4-1) and as a practical tool to label courses based on the level of the
knowledge  taught  in  the  course.   A distent  supported  system of  assigning  catalogue
numbers  to  courses  would  function  similarly  to  how addresses  are presently  used  to
locate buildings in a city, where the (street) name and first digits of the address immedi-
ately offer an approximate 'location'.  The proposed format is: SUBJECT XXYY, where
SUBJECT is the subject code used presently, such as MATH (Math) or PSYCO (Psychol-
ogy), XX is the distent score of the course, say ¯64 for a first year course, and YY are
the last two digits presently used to distinguish courses at any level.  For example, using
the courses from Figure 4.2.1.1-7, CH E 435, Oilsands Engineering Design, would be
relabelled CH E 9735 derived from its distent score of ¯97, and C LIT 440, Compara-
tive Studies in Popular Culture, would be relabelled C LIT 6440, derived from its distent
score of ¯64.  Courses are presently given classifications based on course number, but
this administrative categorization has lost some of its meaning due to the pervasive lack
of discipline in following the guidelines.  A course labelling system tied directly to the
prerequisite  requirements  offers  an  objective,  consistent  method  for  generating  cata-
logue numbers,  which,  in turn,  provide immediate  information  regarding  the approxi-
mate level of knowledge expected in the course based on distent score.

Aside  from  the  particularities  of  the  proposed  course  renumbering  system
described immediately  above, the present system can be further scrutinized.   Once the
relationship  between  the University's  present  numbering  system and distent  is  under-
stood, and after the observation that the distribution of courses by level does not match
the distribution of courses by distent, the question of which courses,  departments,  and
faculties currently break the guidelines the most, and in what ways, arises.  Nominally,all courses presently labelled, 4xx, are of the same number level, but as measured by thedistent metric, they vary widely in their network locations, and therefore functions.  TheUniversity numbering system, if followed, implies a consistent distent value for coursesfrom each  number  level:  100-level  courses  taken  by first  year  students  in a programhave an expected distent of ¯61 + ¯3 = ¯64, 200-level courses taken by second yearstudents  in  a  program  have  an  expected  distent  of  ¯67,  third  year  courses  have  anexpected distent of ¯70, and 400-level courses are supposed to have a distent score of¯73 on average, as illustrated four paragraphs above.  Therefore,  all of the courses inthe University can be assigned two distent scores: a) an implicit score determined by thepresently assigned catalogue number,  and b) a measured distent value based on actualprerequisite  lineages.   Comparison  of these two distent  values determines  if  the cata-logue  number  of  a course  overstates,  matches,  or  understates  the level  of knowledgedeveloped  therein.   After  normalization,  by  setting  the  minimal  university  entrancerequirement to zero distent, the ratio of the implied vs. the measured distent accrued inuniversity for each course is calculated, and the average values reported for departmentson Table 4.2.1.1-1.  Large ratios indicate that the average course catalogue numbers aretoo high given the average measured course distent; these departments are responsiblefor the above discussed "front  loading" of the university by allowing overly generousaccess to upper level courses by freshman and sophomore students.  Small ratios indi-cate  that the average course catalogue  numbers  are too low given the average coursedistent;  these  departments  are  responsible  for  the  above  discussed  "long  tail"  of  thefrequency distribution for distent comprised of courses along protracted trajectories.  The integrity  of such evaluations  is dependent  on the reliability  of the distentmetric  to  measure  what  is  purported  (see  Figure  4.2.1.1-14),  and  the  plausibility  ofinterpretations.   Notice,  at issue in this analysis  of number level 'inflation'  is not howmany high or low distent courses there are in a department, but how appropriately theyare labelled with catalogue numbers.  For instance, the Department of Biomedical Engi-neering will always have proportionally more high distent courses than, say, the Depart-ment  of Anthropology,  since  its  advanced  subject  matter  relies  on so much previouslearning before entrance.  But, either Department could be measured as 'correspondent',over 'inflationist'  or 'deflationist',  whenever  the number  levels assigned to the coursesfaithfully reflect the University course numbering system.   It is here speculated that thepractical  aligning  of  courses  in  terms  of  their  topics  of  inquiry,  prerequisite  require-ments, and number level, is a distributed process occurring among professors of individ-ual Departments – an intermediate level somewhere between the central administrationand the students.  Clark (2004) identifies two important forces of influence on a depart-ment: 1) the vitality, diversity, and growth of the subject matter of the department, and,2)  the  element  of  competition  for  resources  between  departments  in  the  university(particularly  in  North  America).   For  departments  centered  around  large,  involved,demanding subjects studied through focused programs, long chains of knowledge devel-opment, including five or more courses, are inevitable.  Given the inherent limitation ofthe University course numbering system to 400- & 500-level courses that imply prerequi-site  chains  of three  or four courses long,  number level  deflation is unavoidable.   Fordepartments centered on what Pan (1998) and Cole (2002) call "marginalized" subjects,course  level  inflation  might  be a  survival  response  to  help compete  for  the essentialresources of students and the funding allocated for them.  For example, since all Bache-lor  programs  have limitations  on the number  of  junior  level  credits  which  contributetowards the degree, persistently low enrolments in a junior (100-level) course at a Depart-ment can be addressed by raising the catalogue number to the 200-level.  Thus, a code-pendent  relationship  established  between  students  'shopping'  for accessible,  nonjuniordegree requirements and departments seeking student enrolment can be a mechanism forcourse level inflation.   A more widely reported,  complementary  phenomena of "gradeinflation" (Nature 2004; Johnson 2003: ch. 3; Ziomek & Svec 1997; British Broadcast-ing  Corporation  2010)  "omnipresent  at  community  colleges  and  at  both  public  andprivate four-year schools" is attributed by Rojstaczer & Healy (2010)  to a similar, "keepthe  customer  happy",  ethos  across  USA  (at  least)  campuses  (see  also,<www.gradeinflation.com>).By definition, academic subjects vary from one another.  It is difficult to com-pare the subject matter in, say, ENGLISH 100 to MATH 333, so no attempts are directlymade in this thesis.   Instead,  courses are evaluated and compared indirectly  based ontheir network locations.  The differences and similarities in courses are by virtue of theirarrangement, and the assumption that each course on a transcript contributes equally to astudent's education in proportion to course weight: three academic credits (¯3) assignedto a Native Studies course is given the same significance on a transcript as if the creditswere  assigned  to  a  Pharmacology  course.   Distent  is  the first  example  of  a  networkmetric  tailored  for  use  in  education.   It  measures  the  prerequisite  lineages  for  eachcourse  in  a careful  way,  by identifying  the simultaneously  longest  necessary  and (fl)shortest optional route from kindergarten to the course in question.   Chains of coursesare  argued  to be trajectories  of continuous  knowledge  elaboration  proportional  to thenumber of academic credits (¯) awarded to constituent courses along the way, and thisis  called  'distent'.   With  this  framework  in  place,  all  individual  courses  in  Alberta'sProvincial Education system are characterized by the distent measure, plus departmentsand faculties by average and median distent values.  The distribution of distent scores isshown to have strong implications for how the network of courses is shaped, which inturn determines  how knowledge  is presented to, and experienced  by, students  in theirpaths  through  University.   The  discrepancy  between  how  courses  are  labelled  withcatalogue  numbers  by  the  administration  and  how courses  are  scored  by  the  distentmetric is briefly discussed, leading to the portrayal of some departments as 'inflationist','deflationist', or 'correspondent'.  The suggestion, and outline, for a new system of courselabelling is offered since present labels no longer provide significant contextual meaning.__________________________†  Something  similar  could  be said  for  regular  geographical  maps.   For  example,  twotowns  in British  Columbia,  separated  by mountains,  may be close,  measured  "as  thecrow flies", yet be distant, measured by the highway system.
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A basic function of maps is to orient the user in spatial terms regarding a subject.An important  aspect  of  orientation  is  the  viewer's  ability  to  determine  closeness  andseparation between places or objects while reading a map.  This is usually accomplishedby some sort of associated scale or legend to help with the interpretation of distances,areas,  color codes, etcetera.   The networks in this thesis, and networks in general, areintended to capture and visually emphasize topology – those spatial properties that areinvariant under continuous elastic deformations.  Distortions  of network size, overlap-ping  of  nodes,  crossing  of  links,  twisting  of  form,  and  stretching  of  shape  are  allaccepted  to preserve and communicate  the architecture  of connections  among compo-nents.  This generally contrasts with typical maps, say geographic, which mostly striveto preserve distance, proportional areas, and fixed arrangements of elements.Reenforcing  a fairly  "standard narrative"  of education  as coherent,  cumulativelearning in preparation for a future (Nespor 2007), Ormell  (1996) offers "eight robustmetaphors  .  .  .  to  represent  the  invariant  features  of  education",  three  of  which  arerelated to the spatial metaphor of education as mountain climbing.  Ormell conceives ofthe curriculum  as "a  definite,  recognized  named mountain,  which requires  effort  andstamina to climb", upon which students should be able to gauge their progress in the trektowards the summit, where their efforts are rewarded with "a ‘local synthesis’: a singleviewpoint  or  vantage-point  from  which  a  great  tract  of  country  (knowledge)  can  beseen".   But, this type of metaphor is difficult to reconcile with the architecture of thenetwork maps presented  in the thesis.   A basic observation within this thesis  that thecurriculum, as represented by courses, is very large, so only ever partially experienced,and does not allow for relatively "great tracts" of knowledge to be seen in retrospect; thenumber  of  possible  trajectories  is  nearly  innumerable  for  students,  so  no  orientationtowards a single summit is possible.  And, an initiating observation of this thesis, whichmotivated the very creation of the network maps presented, is that the overall curricularstructure is veiled – anything but "prominent", "publicly visible", and easily "seen froma distance" as Ormell contends the curriculum should be (p. 72-73).  Instead of "height" on a mountain in a journey towards a "peak", a different kindof measure for progress through the curriculum as represented by the network of coursesis required.  Davis and Sumara (2006: 57)  write that "complexity thinking troubles themetaphors of accumulations of knowledge and progress toward a foreseeable endpoint",and "the emergence of new interpretive possibility [learning] is framed more in terms ofexpansiveness  and  outward  movement".   Instead  of  the  synthesizing  and  orientingvantage point being the peak of a mountain from where a student looks back and down-wards  upon  the  curriculum  once  climbed,  a  metric  which  traces  a  learner's  historythrough the curriculum to measure "outward movement" from a starting point towardsthe unknown is formulated.  Let such a course network metric be called distent, DThe  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  followingdefinition: "Distent, n:  Stretching out; out-stretched extent; distension; breadth."  Here,as an alternative to the concept of distance in Euclidean space (Gamelin & Greene 1983:ch.  1),  distent  is  proffered  as  a  structural  metric  of  course  separation  on a  network.Traditional  cartographic measures of separation, such as cartesian distance, along withsome typical adjectives, such as higher and lower, are less applicable to describe separa-tion of nodes on a tangled network.  Common education perspectives assume that move-ment along a knowledge trajectory implies the effective connection of new knowledgeto old knowledge,  that is, the construction of a continuously elaborated present knowl-edge.  This view from education can support a more continuous,  topological notion ofseparation-as-stretching as much as the notion of separation-as-distance or being apart inspace.  The metric, distent, captures this difference by tracing the steps taken forward toreach any point in the network.  Therefore, two nodes may be located quite close to eachother in terms of their placements on the embedding of a network map, but be consid-ered quite separated as measured by distent†.Let distent be measured outward from a common origin: the beginning of Kinder-garten.   Now all  courses  of  the  education  system can  be characterized  as containingknowledge continuously elaborated from Kindergarten by tracing the demands of priorknowledge set down in prerequisite requirements as represented by the topology of thenetwork  (see  Figure  4.2.1.1-1).   Let  the  distent  score  assigned  to  any  course  be theacademic credits (¯) required to finish the course; that is, distent is a measure of continu-ous knowledge elaboration, stretching from the beginning of Kindergarten to the end ofthe course in question.  Since there are many possible trajectories between kindergartenand,  say,  an  advanced  undergraduate  course,  care  must  be  taken  in  establishing  analgorithm.  To do so, the way the course network is normally visualized and described inthis thesis must be changed by reversing the direction of the links (see Figure 4.2.1.1-2).This  change  in  link polarity  switches  the  qualitative  orientation  of  the  network  fromprerequisite courses to subsequent courses, from prior knowledge to future possibilities,and  switches  the  quantitative  flow  to  be  in  the  direction  of  knowledge  elaboration:expansive and outward from a common origin, Kindergarten.A directed  acyclic  graph  (review §2.3.2.1),  like the  course  network,  formallydefines a "precedence relation" (Pemmaraju & Skiena 2003: ch. 8.5.1) on the nodes, iflink (i, j) is taken as meaning that node i must occur before node j.  A topological sort isa nonunique permutation of the nodes of a graph such that a link (i, j) always impliesthat i appears before j (Corman et al 2001: ch. 22.4).  Only directed acyclic graphs canbe topologically sorted, since no node in a directed cycle can take precedence over allthe rest.   Because there are no cycles, every finite acyclic graph contains at least onenode v of out-degree zero where trajectories of the graph might be said to end.  Clearly,v can appear last in the topological ordering.  Deleting v leaves a graph with at least oneother vertex of out-degree zero.  Repeating this argument gives an algorithm for topologi-cally  sorting  any  directed  acyclic  graph  establishing  a  node  permutation  with  abeginning(s) and end(s) (see Figure 4.2.1.1-3).  Critical to several types of calculationsfor this thesis, a topological sort of the course network allows the otherwise large, tan-gled nexus to be addressed systematically and efficiently, from end(s) to end, for compre-hensive,  sophisticated  analysis  with  reasonable  computing  times  (for  the  interestedreader, see Attachment 9.3 Supplementary Equations 4.2.1.1).Here  it  is  assumed  that  a  particular  course  and  its  neighborhood  define  a"precedence  relation".   In  the  case  of  the  course  network  reversed,  where  edges  areoriented from a course to its subsequents, the precedence relation is the prior knowledgea  course  provides  to  its  subsequents  for  elaboration.   Typically,  terminal  400-levelcourses are at the end of such precedence chains and kindergarten is alone at the begin-ning because it is the only node requiring no prior knowledge from within the educationsystem.  The topologically sorted reverse course network always starts with kindergar-ten, and it is an obvious reference point for distent and other calculations.  Let the dis-tent measure to any course be the total number of credits accumulated along a trajectoryfrom the beginning of kindergarten to the end of the course, chosen to be simultaneouslythe longest  necessary  and the shortest  optional  path (see Figure  4.2.1.1-4  and Figure4.2.1.1-5).  In large complicated course networks, a path defining the distent of a courseis not unique since one or more paths may determine the same distent score. By sifting through  the individual  distent  results  calculated  for each course bycomputer  with  the  program,  Calendar  Navigator,  some  exceptional  courses  are  high-lighted (see Table 9.2-1, eleventh column, D).  Predictably, kindergarten (#535) has thelowest  possible  distent score (¯2), since it relies not at all for students  to arrive withknowledge from elsewhere  in the education system.  The many instructional  hours ofexpected  attendance,  and  the  normally  twelve-plus  years  of  enrollment,  ensures  thatSchool  is  the  major,  if  not  distinguishing,  contributor  to  the  distent  scores  of  mostcourses (see Figure 4.2.1.1-6).   Trajectory requests may be sent to Calendar Navigatorfor any input course node on the network; two are shown in Figure 4.2.1.1-7.  Distentscores and trajectories allow for sophisticated quantitative and qualitative interpretationof  courses  characteristics  based  on  network  structure  independent  of  subject  specificcourse content.   Courses with small distent scores lie on continuous chains of knowl-edge elaboration that are short; courses with large distent scores lie on continuous chainsof knowledge elaboration that are long.  The "emergence of new interpretive possibili-ties"  within  any course  is  not  arbitrary,  but  always  a  function  of  the  prior  academicknowledge brought to the course by students.  Given the distent score of a course, and
by tracing the trajectory to it, reasonable expectations may be made regarding the level
of readings,  difficulty  of assignments,  knowledge  of peers,  scholarliness  of instructor,
necessity  for attendance,  and challenge  of assessments,  within.   Coupled with subject
specific context, further expectations regarding methods of content delivery, the role of
the individual learner, the role of the instructor, and the type of interactions among the
learners can be formed.

High  school  courses  with  maximum distent  are the terminal  courses  from the
Registered Apprenticeship Program (RAP), for example, RAP 6243 (#1196), Structural
Steel and Plate Fitter 35d, with D = ¯ 90.  This indicates the vocational knowledge in
theses courses is well developed, and supported by a continuous, long chain of previous
learning.   Not  surprisingly,  considering  the number of hours  directed toward the pro-
gram, a successful  RAP student graduates  from high school  nearly finished their  first
year  formal  apprenticeship  training  in  the  corresponding  field,  which  are  otherwise
"traditionally  .  .  .  began  after  students  graduate  from high school"  (Alberta  Learning
2003b).  Among the academic high school courses, MAT 3211 (#736), Mathematics 31,
and GER 3317 (#534), German 31, with D = ¯ 67, and FSL 3308 (#528), French 31C,
with D = ¯ 77, have the greatest distent scores.  These courses are appended to the ends
of  prerequisite  chains  typical  in  length  of  other  senior  subjects  in  high  school,  thus
extending them, indicating students must direct even more learning time and effort to
finish  them.  As a result,  students  completing  these long learning trajectories  in high
school have direct access to more advanced courses in the corresponding departments at
the  University  of  Alberta,  such as,  MATH 100 (#4165),  Calculus  I,  and MATH 117
(#4171), Honors Calculus I, over MATH 114 (#4169), Elementary Calculus I, or FREN
211  (#2208),  Intermediate  French  I,  over  FREN  111  (#2204),  Beginners'  French  I.
Thus, the distent metric,  measuring only network structure,  identifies,  by extreme val-
ues, the courses in the school system that, a) function as the gateway to the education
system (kindergarten),  and, b) effectively function as 'advanced placement' courses, for
further learning in either the trades or university.  Generalizing, the distent metric is here
offered  as  a  measure  of  course  separation  from kindergarten,  which  in  turn  may  be
reasonably interpreted  as corresponding  to the level of knowledge development  at the
conclusion of a course.

The lowest distent  courses in the University  are introductory  courses from the
Department  of Physical  Education and Recreation,  such as, PAC 182 (#4651),  Indoor
Wall Climbing, and DAC155 (#4613), Social Dance, all with D = ¯ 62.5.  These physi-
cal  activity  and  dance  activity  courses  require  nothing  but  the  minimum  University
entrance  requirements  as  prerequisites,  and are  only  weighted  as  ¯1.5  credit  courses
themselves.  At the other extreme, is NURS 408 (#4594), Acute Care Practice II, with a
whopping (in the strictly scholarly sense) distent of D = ¯129 – a score so large it is
only achievable by a high credit course coming at the end of a strict, four year schedule
of consecutive high credit courses in a single discipline.  Its course description declares
how "professional  nursing practice focuses on a comprehensive  application of primary
health  care principles  to clients  experiencing  acute  variances  in health  across  the life
span".   The  weighty  vocabulary  of  "professional",  "practice",  "comprehensive",
"principles", and "variance" used in the description is well suited to a course that com-
pletes the training of those who prepare, literally, for complicated life and death situa-
tions at the extreme of their involved profession.  A qualitative visualization of distent
score distribution for nodes throughout the course network, for School and University, is
displayed by Figure 4.2.1.1-8.  

By  calculating  the  frequency  distribution  of  course  distent  for  each  faculty
individually,  location  (median),  dispersion  (median  absolute  deviation),  and  shape
(skewness) statistics may be compared (see Table 4.2.1.1-1 tenth column, Dè , and Figure
4.2.1.1-9).  By viewing the median distent column, Dè , the Faculties of Arts and Physical
Education, are seen as low distent faculties, scoring ¯67 and ¯66 respectively.  Consider-
ing the baseline distent level of ¯61, required just for the minimum University entrance
requirements from high school, most courses in the Faculties of Arts and Physical Educa-
tion have distent scores within ¯6, viz., two ¯3 courses in a row.  Most courses in the
Faculty of Agriculture, Forestry, and Home Economics, Dè AH  = ¯68, and the School of
Native Studies, Dè NS  = ¯68, have distent scores within ¯9 ( or three ¯3 courses) of the
minimum University entrance requirements.  The majority of Science (Dè SC  = ¯73) and
Business (Dè BC  = ¯71) courses can be completed within ¯12 sequences of study, or four
¯3 courses.  The professionally oriented Faculties of Engineering, Nursing, and Medi-
cine & Dentistry, all have a majority of their courses coming after knowledge develop-
ment chains of greater than ¯12 beyond high school.  That is, most courses from these
Faculties  are typically not even encountered by students until after sequences of study
that include at least four courses at the University level.  See Figures 4.2.1.1-10 & -11
for more details.   For the interested reader, similar comparisons among the University
departments may be made using the average distent statistics on Table 4.2.1.1-2, eighth
column, Dêêê.

The system for numbering university courses as described in the University of
Alberta Calendar (§220, p. 448), already discussed in §3.1.2.4 (review Table 3.1.2.4-1),
implies a specific, direct relationship with the distent metric.  Quite simply, since each
number  level  is  expected to have prerequisites  from the previous  level,  eg.  300-level
courses "normally" have 200-level prerequisites, and since the median weight of univer-
sity courses is ¯3 (review Figure 3.1.2.4-4), the separation of number levels in terms of
distent should be ¯3.  A common intermediate reference point for all university courses
is the minimum entrance requirements with distent of ¯61.  Therefore, if the University
administration's  course numbering system is being followed, then most first year, 100-
level courses have an expected distent of ¯61 + ¯3 = ¯64, 200-level courses have an
expected distent of ¯67, third year courses have an expected distent of ¯70, and 400-
level courses are supposed to have a distent score of ¯73 on average.  Insofar as this
correspondence  holds,  the frequency distribution  of course credit  weight over number
levels  (review  Figure  3.1.2.4-5)  matches  the  frequency  distribution  of  course  credit
weight over distent (see Figure 4.2.1.1-12).   Alas, this is not the case.  Although both
distributions  have the same median – at the 300-level  or ¯70 distent score, they have
very different shapes as measured by skewness: -1.36 vs. 2.07.  A negative skewness to
the frequency distribution in Figure 3.1.2.4-5 implies that few low-level courses lead to
many  high-level  courses,  while  a  positive  skewness  to  the  frequency  distribution  in
Figure 4.2.1.1-12 shows that many courses of low distent lead to fewer courses of rela-
tively higher distent.  Using a nonparametric statistical method to compare two distribu-
tions with the same median, the distributions  from Figures 3.1.2.4-5 & 4.2.1.1-12,  are
measured  to be significantly  different  (P-value ≈  0) by comparing  variability  using a
"test  of dispersion"  (Hollander  & Wolfe 1999:  ch.  5.1),  called the Siegel-Tukey  Test
(Abell et al. 1999: 570).  To summarize, the University administration sets forth guide-
lines and labels which arrange the courses in an expansive, "top-heavy" structure (Ù) as
number level increases, but, the courses actually interact by their prerequisite knowledge
in  a  far  different  manner:  a  contracting,  "bottom-heavy"  structure  (Ú)  as  distent
increases (see Figure 4.2.1.1-13).

The  "top-down",  planned  view  of  course  structure  from  the  administration
differs  substantially  from the "bottom-up",  experienced  view of course structure  from
the students.  The only Faculty with a negative skewness to the distent distribution for
its  courses  (see Table  4.2.1.1-1,  eleventh  column,  gD)  is  Engineering.   That  is,  only
Engineering  (mildly)  holds to the administrative  view that courses are arranged in an
expanding  structure,  anything  like Figure 3.1.2.4-5.   The reason for the dramatic  and
consistent difference in course arrangement for every other Faculty, and the University
as a whole,  from the expected  arrangement  of courses  implied  by the distribution  of
number level, is the widespread and prevalent use of hedge terms in the course number-
ing system that allow for deviations  from the normal prerequisite  relationships  among
courses (review Table 3.1.2.4-1).  In most Faculties there are many senior courses with
few senior prerequisites,  few junior prerequisites,  or even no prerequisites at all.  This
has the effect of increasing access, and 'front-loading'  new course choices for freshman
and sophomore  students,  thus making most of a Faculty available to students  early in
their studies with relatively  lesser expansion of course choices in later years.   On the
other hand, some Faculties assign courses prerequisites  of the same level, instead of a
level  below,  thus  extending  prerequisite  lineages  and  delaying  access  to  subsequent
courses of higher number level beyond what is expected.  Both of these ubiquitous types
of  deviations  from  the  normal  classification  of  courses  contribute  to  the  difference
between the imagined administrative structure – wherein the diversity of courses avail-
able to students consistently increases year-by-year as they move towards graduation –
versus  the  experienced  knowledge  structure  of  courses  linked  by  their  prerequisite
requirements – wherein new course choices explode in the early years for students, then
are reduced to a trickle along sometimes very lengthy trajectories.

Besides  the directed,  binary,  prerequisite  relationship  between pairs of courses
that establishes the network structure studied in this thesis, courses are associated by a
second overlapping layer of relationships based on membership in specific degree pro-
grams  offered  by  each  university  Department.   The  University's  numbering  system
describes courses at any number level as being "designed typically for students in the
[corresponding] year of a program."  That is, 300-level courses are "typically" designed
for third-year students  of a particular program.  Sometimes this condition is explicitly
stated  in  a course  description.   For  example,  NUTR 440 (#1518),  Current  Topics  in
Nutritional  Sciences,  states  it  is  "open  to  fourth-year  students  in  the  Nutrition  major
only",  but  also  lists  NUTR 301 & 302 as specific  course  prerequisites.   Many other
senior  level  courses  have  no  stated  prerequisites  of  specific  courses,  degree  require-
ments, or student year.  A very small minority of courses have restrictions on the year of
a student without also specifying specific course prerequisites or even degree programs;
for example, SOC 300, Principles of Sociology, offers "basic concepts and principles of
Sociology  for  students  with  advanced  standing"  with  the explicit  "prerequisite:  third-
year or more advanced standing", which "may not be taken for credit by students with
credit in SOC 100. First or second-year students must take SOC 100."  In terms of the
method of data translation into the course network in this theses, a prerequisite condition
on the year of the student can be reasonably accounted for by the requirement of least
one connection from that course to some other subset of courses at the next lower num-
ber level.   Ideally,  the two factors that determine the number level of a course are in
harmony: a course at a certain number level, say 300, has explicit prerequisites  at the
next level below (200-level) or is attended by students in the corresponding (third) year,
whose  transcripts  are  full  of  the  implicitly  supporting  (200-level)  courses  from  the
previous year of the program.  The disconnect between the number level of courses that
have explicitly stated prerequisites and the number level of courses that rely on implicit
adherence to an outline of a degree program is revealed whenever a diversity of students
external  to  particular  programs  enroll  in  courses  as  options,  or  whenever  the  same
course belongs in two or more different degree programs.

Contemporary learning theories emphasize engaging and challenging the learner
with tasks that refer to skills and knowledge just beyond their current level of capabili-
ties.   For  example,  Smith  et  al.  (1993)  employ  an  explicit  constructivist  stance  and
interpret students' prior conceptions as "resources for cognitive growth within a complex
systems view of knowledge" used as the basis for "knowledge refinement and reorganiza-
tion".  This view of knowledge and learning is incompatible with the current practice of
assigning the same number level to whole groups of courses where the "level of mas-
tery" and academic "resources"  among the students  are so inconsistent.   For instance,
presenting a 400-level course without specific university prerequisites and contending it
somehow  supports  learning  and  knowledge  of  the  same  "level"  as  other  400-level
courses  with  standard  prerequisite  lineages  is  problematic.   Either,  the  information
encountered suits a 400-level  course and relies on sophisticated (300-level)  supporting
prerequisite knowledge that a diverse student body with differing prior knowledges and
experiences  are unable to incorporate  into their  knowing,  or, the information  encoun-
tered depends on prerequites further towards students'  shared foundational  knowledge,
thus  resulting in learning  outcomes characteristic  of courses at  a lower number  level.
The argument  here assumes a kind of consistency in the Education system, such that,
any course, in any subject, given any title, sporting any catalogue number, cannot reli-
ably elevate the knowledge of its incoming students more (or less) than its credit weight
(eg. ¯3) reflects, from a baseline level of experience and common knowledge indicated
by prerequisites  without having practically unacceptable  dropout or failure rates.  This
principle  is consistent  with John Dewy (1938: ch. 3 & 7), who places learning into a
"category of continuity" based on an "experiential continuum" that precludes any sort of
large 'quantum leaps'  in knowledge  among learners  beyond their  prior  experiences  to
levels beyond what can be expected from a single ¯3 course.

Number levels presently fail to be meaningful  because they do not model (Se-
beok & Danesi 2000: ch. 1) well and sustain the pattern of the University's course num-
bering  system to  which  they  supposedly  refer,  nor  do  they  consistently  differentiate
(Belsey 2002: ch. 4) courses based on a substantive concept such as the level of knowl-
edge taught and learned in a course.  The above described repositioning of courses in
University  based  on  nonstandard  or  unstated  prerequisite  requirements  for  assigned
number levels leads to a large variance of distent scores for courses of the same number
level (for example, review Figure 4.2.1.1-7).  When, courses of a particular level have
anything from no university prerequisites  to prerequisites of the same level, just know-
ing the catalogue number of a course is insufficient to reliably characterize the knowl-
edge development within, especially for 300- and 400-level courses.  The distent metric
is here offered both as a way of restating the meaning of the course numbering system
(review Table 3.1.2.4-1) and as a practical tool to label courses based on the level of the
knowledge  taught  in  the  course.   A distent  supported  system of  assigning  catalogue
numbers  to  courses  would  function  similarly  to  how addresses  are presently  used  to
locate buildings in a city, where the (street) name and first digits of the address immedi-
ately offer an approximate 'location'.  The proposed format is: SUBJECT XXYY, where
SUBJECT is the subject code used presently, such as MATH (Math) or PSYCO (Psychol-
ogy), XX is the distent score of the course, say ¯64 for a first year course, and YY are
the last two digits presently used to distinguish courses at any level.  For example, using
the courses from Figure 4.2.1.1-7, CH E 435, Oilsands Engineering Design, would be
relabelled CH E 9735 derived from its distent score of ¯97, and C LIT 440, Compara-
tive Studies in Popular Culture, would be relabelled C LIT 6440, derived from its distent
score of ¯64.  Courses are presently given classifications based on course number, but
this administrative categorization has lost some of its meaning due to the pervasive lack
of discipline in following the guidelines.  A course labelling system tied directly to the
prerequisite  requirements  offers  an  objective,  consistent  method  for  generating  cata-
logue numbers,  which,  in turn,  provide immediate  information  regarding  the approxi-
mate level of knowledge expected in the course based on distent score.

Aside  from  the  particularities  of  the  proposed  course  renumbering  system
described immediately  above, the present system can be further scrutinized.   Once the
relationship  between  the University's  present  numbering  system and distent  is  under-
stood, and after the observation that the distribution of courses by level does not match
the distribution of courses by distent, the question of which courses,  departments,  and
faculties currently break the guidelines the most, and in what ways, arises.  Nominally,
all courses presently labelled, 4xx, are of the same number level, but as measured by the
distent metric, they vary widely in their network locations, and therefore functions.  The
University numbering system, if followed, implies a consistent distent value for courses
from each  number  level:  100-level  courses  taken  by first  year  students  in a program
have an expected distent of ¯61 + ¯3 = ¯64, 200-level courses taken by second year
students  in  a  program  have  an  expected  distent  of  ¯67,  third  year  courses  have  an
expected distent of ¯70, and 400-level courses are supposed to have a distent score of
¯73 on average, as illustrated four paragraphs above.  Therefore,  all of the courses in
the University can be assigned two distent scores: a) an implicit score determined by the
presently assigned catalogue number,  and b) a measured distent value based on actual
prerequisite  lineages.   Comparison  of these two distent  values determines  if  the cata-
logue  number  of  a course  overstates,  matches,  or  understates  the level  of knowledge
developed  therein.   After  normalization,  by  setting  the  minimal  university  entrance
requirement to zero distent, the ratio of the implied vs. the measured distent accrued in
university for each course is calculated, and the average values reported for departments
on Table 4.2.1.1-1.  Large ratios indicate that the average course catalogue numbers are
too high given the average measured course distent; these departments are responsible
for the above discussed "front  loading" of the university by allowing overly generous
access to upper level courses by freshman and sophomore students.  Small ratios indi-
cate  that the average course catalogue  numbers  are too low given the average course
distent;  these  departments  are  responsible  for  the  above  discussed  "long  tail"  of  the
frequency distribution for distent comprised of courses along protracted trajectories.  

The integrity  of such evaluations  is dependent  on the reliability  of the distent
metric  to  measure  what  is  purported  (see  Figure  4.2.1.1-14),  and  the  plausibility  of
interpretations.   Notice,  at issue in this analysis  of number level 'inflation'  is not how
many high or low distent courses there are in a department, but how appropriately they
are labelled with catalogue numbers.  For instance, the Department of Biomedical Engi-
neering will always have proportionally more high distent courses than, say, the Depart-
ment  of Anthropology,  since  its  advanced  subject  matter  relies  on so much previous
learning before entrance.  But, either Department could be measured as 'correspondent',
over 'inflationist'  or 'deflationist',  whenever  the number  levels assigned to the courses
faithfully reflect the University course numbering system.   It is here speculated that the
practical  aligning  of  courses  in  terms  of  their  topics  of  inquiry,  prerequisite  require-
ments, and number level, is a distributed process occurring among professors of individ-
ual Departments – an intermediate level somewhere between the central administration
and the students.  Clark (2004) identifies two important forces of influence on a depart-
ment: 1) the vitality, diversity, and growth of the subject matter of the department, and,
2)  the  element  of  competition  for  resources  between  departments  in  the  university
(particularly  in  North  America).   For  departments  centered  around  large,  involved,
demanding subjects studied through focused programs, long chains of knowledge devel-
opment, including five or more courses, are inevitable.  Given the inherent limitation of
the University course numbering system to 400- & 500-level courses that imply prerequi-site  chains  of three  or four courses long,  number level  deflation is unavoidable.   Fordepartments centered on what Pan (1998) and Cole (2002) call "marginalized" subjects,course  level  inflation  might  be a  survival  response  to  help compete  for  the essentialresources of students and the funding allocated for them.  For example, since all Bache-lor  programs  have limitations  on the number  of  junior  level  credits  which  contributetowards the degree, persistently low enrolments in a junior (100-level) course at a Depart-ment can be addressed by raising the catalogue number to the 200-level.  Thus, a code-pendent  relationship  established  between  students  'shopping'  for accessible,  nonjuniordegree requirements and departments seeking student enrolment can be a mechanism forcourse level inflation.   A more widely reported,  complementary  phenomena of "gradeinflation" (Nature 2004; Johnson 2003: ch. 3; Ziomek & Svec 1997; British Broadcast-ing  Corporation  2010)  "omnipresent  at  community  colleges  and  at  both  public  andprivate four-year schools" is attributed by Rojstaczer & Healy (2010)  to a similar, "keepthe  customer  happy",  ethos  across  USA  (at  least)  campuses  (see  also,<www.gradeinflation.com>).By definition, academic subjects vary from one another.  It is difficult to com-pare the subject matter in, say, ENGLISH 100 to MATH 333, so no attempts are directlymade in this thesis.   Instead,  courses are evaluated and compared indirectly  based ontheir network locations.  The differences and similarities in courses are by virtue of theirarrangement, and the assumption that each course on a transcript contributes equally to astudent's education in proportion to course weight: three academic credits (¯3) assignedto a Native Studies course is given the same significance on a transcript as if the creditswere  assigned  to  a  Pharmacology  course.   Distent  is  the first  example  of  a  networkmetric  tailored  for  use  in  education.   It  measures  the  prerequisite  lineages  for  eachcourse  in  a careful  way,  by identifying  the simultaneously  longest  necessary  and (fl)shortest optional route from kindergarten to the course in question.   Chains of coursesare  argued  to be trajectories  of continuous  knowledge  elaboration  proportional  to thenumber of academic credits (¯) awarded to constituent courses along the way, and thisis  called  'distent'.   With  this  framework  in  place,  all  individual  courses  in  Alberta'sProvincial Education system are characterized by the distent measure, plus departmentsand faculties by average and median distent values.  The distribution of distent scores isshown to have strong implications for how the network of courses is shaped, which inturn determines  how knowledge  is presented to, and experienced  by, students  in theirpaths  through  University.   The  discrepancy  between  how  courses  are  labelled  withcatalogue  numbers  by  the  administration  and  how courses  are  scored  by  the  distentmetric is briefly discussed, leading to the portrayal of some departments as 'inflationist','deflationist', or 'correspondent'.  The suggestion, and outline, for a new system of courselabelling is offered since present labels no longer provide significant contextual meaning.__________________________†  Something  similar  could  be said  for  regular  geographical  maps.   For  example,  twotowns  in British  Columbia,  separated  by mountains,  may be close,  measured  "as  thecrow flies", yet be distant, measured by the highway system.
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A basic function of maps is to orient the user in spatial terms regarding a subject.An important  aspect  of  orientation  is  the  viewer's  ability  to  determine  closeness  andseparation between places or objects while reading a map.  This is usually accomplishedby some sort of associated scale or legend to help with the interpretation of distances,areas,  color codes, etcetera.   The networks in this thesis, and networks in general, areintended to capture and visually emphasize topology – those spatial properties that areinvariant under continuous elastic deformations.  Distortions  of network size, overlap-ping  of  nodes,  crossing  of  links,  twisting  of  form,  and  stretching  of  shape  are  allaccepted  to preserve and communicate  the architecture  of connections  among compo-nents.  This generally contrasts with typical maps, say geographic, which mostly striveto preserve distance, proportional areas, and fixed arrangements of elements.Reenforcing  a fairly  "standard narrative"  of education  as coherent,  cumulativelearning in preparation for a future (Nespor 2007), Ormell  (1996) offers "eight robustmetaphors  .  .  .  to  represent  the  invariant  features  of  education",  three  of  which  arerelated to the spatial metaphor of education as mountain climbing.  Ormell conceives ofthe curriculum  as "a  definite,  recognized  named mountain,  which requires  effort  andstamina to climb", upon which students should be able to gauge their progress in the trektowards the summit, where their efforts are rewarded with "a ‘local synthesis’: a singleviewpoint  or  vantage-point  from  which  a  great  tract  of  country  (knowledge)  can  beseen".   But, this type of metaphor is difficult to reconcile with the architecture of thenetwork maps presented  in the thesis.   A basic observation within this thesis  that thecurriculum, as represented by courses, is very large, so only ever partially experienced,and does not allow for relatively "great tracts" of knowledge to be seen in retrospect; thenumber  of  possible  trajectories  is  nearly  innumerable  for  students,  so  no  orientationtowards a single summit is possible.  And, an initiating observation of this thesis, whichmotivated the very creation of the network maps presented, is that the overall curricularstructure is veiled – anything but "prominent", "publicly visible", and easily "seen froma distance" as Ormell contends the curriculum should be (p. 72-73).  Instead of "height" on a mountain in a journey towards a "peak", a different kindof measure for progress through the curriculum as represented by the network of coursesis required.  Davis and Sumara (2006: 57)  write that "complexity thinking troubles themetaphors of accumulations of knowledge and progress toward a foreseeable endpoint",and "the emergence of new interpretive possibility [learning] is framed more in terms ofexpansiveness  and  outward  movement".   Instead  of  the  synthesizing  and  orientingvantage point being the peak of a mountain from where a student looks back and down-wards  upon  the  curriculum  once  climbed,  a  metric  which  traces  a  learner's  historythrough the curriculum to measure "outward movement" from a starting point towardsthe unknown is formulated.  Let such a course network metric be called distent, DThe  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  followingdefinition: "Distent, n:  Stretching out; out-stretched extent; distension; breadth."  Here,as an alternative to the concept of distance in Euclidean space (Gamelin & Greene 1983:ch.  1),  distent  is  proffered  as  a  structural  metric  of  course  separation  on a  network.Traditional  cartographic measures of separation, such as cartesian distance, along withsome typical adjectives, such as higher and lower, are less applicable to describe separa-tion of nodes on a tangled network.  Common education perspectives assume that move-ment along a knowledge trajectory implies the effective connection of new knowledgeto old knowledge,  that is, the construction of a continuously elaborated present knowl-edge.  This view from education can support a more continuous,  topological notion ofseparation-as-stretching as much as the notion of separation-as-distance or being apart inspace.  The metric, distent, captures this difference by tracing the steps taken forward toreach any point in the network.  Therefore, two nodes may be located quite close to eachother in terms of their placements on the embedding of a network map, but be consid-ered quite separated as measured by distent†.Let distent be measured outward from a common origin: the beginning of Kinder-garten.   Now all  courses  of  the  education  system can  be characterized  as containingknowledge continuously elaborated from Kindergarten by tracing the demands of priorknowledge set down in prerequisite requirements as represented by the topology of thenetwork  (see  Figure  4.2.1.1-1).   Let  the  distent  score  assigned  to  any  course  be theacademic credits (¯) required to finish the course; that is, distent is a measure of continu-ous knowledge elaboration, stretching from the beginning of Kindergarten to the end ofthe course in question.  Since there are many possible trajectories between kindergartenand,  say,  an  advanced  undergraduate  course,  care  must  be  taken  in  establishing  analgorithm.  To do so, the way the course network is normally visualized and described inthis thesis must be changed by reversing the direction of the links (see Figure 4.2.1.1-2).This  change  in  link polarity  switches  the  qualitative  orientation  of  the  network  fromprerequisite courses to subsequent courses, from prior knowledge to future possibilities,and  switches  the  quantitative  flow  to  be  in  the  direction  of  knowledge  elaboration:expansive and outward from a common origin, Kindergarten.A directed  acyclic  graph  (review §2.3.2.1),  like the  course  network,  formallydefines a "precedence relation" (Pemmaraju & Skiena 2003: ch. 8.5.1) on the nodes, iflink (i, j) is taken as meaning that node i must occur before node j.  A topological sort isa nonunique permutation of the nodes of a graph such that a link (i, j) always impliesthat i appears before j (Corman et al 2001: ch. 22.4).  Only directed acyclic graphs canbe topologically sorted, since no node in a directed cycle can take precedence over allthe rest.   Because there are no cycles, every finite acyclic graph contains at least onenode v of out-degree zero where trajectories of the graph might be said to end.  Clearly,v can appear last in the topological ordering.  Deleting v leaves a graph with at least oneother vertex of out-degree zero.  Repeating this argument gives an algorithm for topologi-cally  sorting  any  directed  acyclic  graph  establishing  a  node  permutation  with  abeginning(s) and end(s) (see Figure 4.2.1.1-3).  Critical to several types of calculationsfor this thesis, a topological sort of the course network allows the otherwise large, tan-gled nexus to be addressed systematically and efficiently, from end(s) to end, for compre-hensive,  sophisticated  analysis  with  reasonable  computing  times  (for  the  interestedreader, see Attachment 9.3 Supplementary Equations 4.2.1.1).Here  it  is  assumed  that  a  particular  course  and  its  neighborhood  define  a"precedence  relation".   In  the  case  of  the  course  network  reversed,  where  edges  areoriented from a course to its subsequents, the precedence relation is the prior knowledgea  course  provides  to  its  subsequents  for  elaboration.   Typically,  terminal  400-levelcourses are at the end of such precedence chains and kindergarten is alone at the begin-ning because it is the only node requiring no prior knowledge from within the educationsystem.  The topologically sorted reverse course network always starts with kindergar-ten, and it is an obvious reference point for distent and other calculations.  Let the dis-tent measure to any course be the total number of credits accumulated along a trajectoryfrom the beginning of kindergarten to the end of the course, chosen to be simultaneouslythe longest  necessary  and the shortest  optional  path (see Figure  4.2.1.1-4  and Figure4.2.1.1-5).  In large complicated course networks, a path defining the distent of a courseis not unique since one or more paths may determine the same distent score. By sifting through  the individual  distent  results  calculated  for each course bycomputer  with  the  program,  Calendar  Navigator,  some  exceptional  courses  are  high-lighted (see Table 9.2-1, eleventh column, D).  Predictably, kindergarten (#535) has thelowest  possible  distent score (¯2), since it relies not at all for students  to arrive withknowledge from elsewhere  in the education system.  The many instructional  hours ofexpected  attendance,  and  the  normally  twelve-plus  years  of  enrollment,  ensures  thatSchool  is  the  major,  if  not  distinguishing,  contributor  to  the  distent  scores  of  mostcourses (see Figure 4.2.1.1-6).   Trajectory requests may be sent to Calendar Navigatorfor any input course node on the network; two are shown in Figure 4.2.1.1-7.  Distentscores and trajectories allow for sophisticated quantitative and qualitative interpretationof  courses  characteristics  based  on  network  structure  independent  of  subject  specificcourse content.   Courses with small distent scores lie on continuous chains of knowl-edge elaboration that are short; courses with large distent scores lie on continuous chainsof knowledge elaboration that are long.  The "emergence of new interpretive possibili-ties"  within  any course  is  not  arbitrary,  but  always  a  function  of  the  prior  academicknowledge brought to the course by students.  Given the distent score of a course, andby tracing the trajectory to it, reasonable expectations may be made regarding the levelof readings,  difficulty  of assignments,  knowledge  of peers,  scholarliness  of instructor,necessity  for attendance,  and challenge  of assessments,  within.   Coupled with subjectspecific context, further expectations regarding methods of content delivery, the role ofthe individual learner, the role of the instructor, and the type of interactions among thelearners can be formed.High  school  courses  with  maximum distent  are the terminal  courses  from theRegistered Apprenticeship Program (RAP), for example, RAP 6243 (#1196), StructuralSteel and Plate Fitter 35d, with D = ¯ 90.  This indicates the vocational knowledge intheses courses is well developed, and supported by a continuous, long chain of previouslearning.   Not  surprisingly,  considering  the number of hours  directed toward the pro-gram, a successful  RAP student graduates  from high school  nearly finished their  firstyear  formal  apprenticeship  training  in  the  corresponding  field,  which  are  otherwise"traditionally  .  .  .  began  after  students  graduate  from high school"  (Alberta  Learning2003b).  Among the academic high school courses, MAT 3211 (#736), Mathematics 31,and GER 3317 (#534), German 31, with D = ¯ 67, and FSL 3308 (#528), French 31C,with D = ¯ 77, have the greatest distent scores.  These courses are appended to the endsof  prerequisite  chains  typical  in  length  of  other  senior  subjects  in  high  school,  thusextending them, indicating students must direct even more learning time and effort tofinish  them.  As a result,  students  completing  these long learning trajectories  in highschool have direct access to more advanced courses in the corresponding departments atthe  University  of  Alberta,  such as,  MATH 100 (#4165),  Calculus  I,  and MATH 117(#4171), Honors Calculus I, over MATH 114 (#4169), Elementary Calculus I, or FREN211  (#2208),  Intermediate  French  I,  over  FREN  111  (#2204),  Beginners'  French  I.Thus, the distent metric,  measuring only network structure,  identifies,  by extreme val-ues, the courses in the school system that, a) function as the gateway to the educationsystem (kindergarten),  and, b) effectively function as 'advanced placement' courses, forfurther learning in either the trades or university.  Generalizing, the distent metric is hereoffered  as  a  measure  of  course  separation  from kindergarten,  which  in  turn  may  bereasonably interpreted  as corresponding  to the level of knowledge development  at theconclusion of a course.The lowest distent  courses in the University  are introductory  courses from theDepartment  of Physical  Education and Recreation,  such as, PAC 182 (#4651),  IndoorWall Climbing, and DAC155 (#4613), Social Dance, all with D = ¯ 62.5.  These physi-cal  activity  and  dance  activity  courses  require  nothing  but  the  minimum  Universityentrance  requirements  as  prerequisites,  and are  only  weighted  as  ¯1.5  credit  coursesthemselves.  At the other extreme, is NURS 408 (#4594), Acute Care Practice II, with awhopping (in the strictly scholarly sense) distent of D = ¯129 – a score so large it isonly achievable by a high credit course coming at the end of a strict, four year scheduleof consecutive high credit courses in a single discipline.  Its course description declareshow "professional  nursing practice focuses on a comprehensive  application of primary
health  care principles  to clients  experiencing  acute  variances  in health  across  the life
span".   The  weighty  vocabulary  of  "professional",  "practice",  "comprehensive",
"principles", and "variance" used in the description is well suited to a course that com-
pletes the training of those who prepare, literally, for complicated life and death situa-
tions at the extreme of their involved profession.  A qualitative visualization of distent
score distribution for nodes throughout the course network, for School and University, is
displayed by Figure 4.2.1.1-8.  

By  calculating  the  frequency  distribution  of  course  distent  for  each  faculty
individually,  location  (median),  dispersion  (median  absolute  deviation),  and  shape
(skewness) statistics may be compared (see Table 4.2.1.1-1 tenth column, Dè , and Figure
4.2.1.1-9).  By viewing the median distent column, Dè , the Faculties of Arts and Physical
Education, are seen as low distent faculties, scoring ¯67 and ¯66 respectively.  Consider-
ing the baseline distent level of ¯61, required just for the minimum University entrance
requirements from high school, most courses in the Faculties of Arts and Physical Educa-
tion have distent scores within ¯6, viz., two ¯3 courses in a row.  Most courses in the
Faculty of Agriculture, Forestry, and Home Economics, Dè AH  = ¯68, and the School of
Native Studies, Dè NS  = ¯68, have distent scores within ¯9 ( or three ¯3 courses) of the
minimum University entrance requirements.  The majority of Science (Dè SC  = ¯73) and
Business (Dè BC  = ¯71) courses can be completed within ¯12 sequences of study, or four
¯3 courses.  The professionally oriented Faculties of Engineering, Nursing, and Medi-
cine & Dentistry, all have a majority of their courses coming after knowledge develop-
ment chains of greater than ¯12 beyond high school.  That is, most courses from these
Faculties  are typically not even encountered by students until after sequences of study
that include at least four courses at the University level.  See Figures 4.2.1.1-10 & -11
for more details.   For the interested reader, similar comparisons among the University
departments may be made using the average distent statistics on Table 4.2.1.1-2, eighth
column, Dêêê.

The system for numbering university courses as described in the University of
Alberta Calendar (§220, p. 448), already discussed in §3.1.2.4 (review Table 3.1.2.4-1),
implies a specific, direct relationship with the distent metric.  Quite simply, since each
number  level  is  expected to have prerequisites  from the previous  level,  eg.  300-level
courses "normally" have 200-level prerequisites, and since the median weight of univer-
sity courses is ¯3 (review Figure 3.1.2.4-4), the separation of number levels in terms of
distent should be ¯3.  A common intermediate reference point for all university courses
is the minimum entrance requirements with distent of ¯61.  Therefore, if the University
administration's  course numbering system is being followed, then most first year, 100-
level courses have an expected distent of ¯61 + ¯3 = ¯64, 200-level courses have an
expected distent of ¯67, third year courses have an expected distent of ¯70, and 400-
level courses are supposed to have a distent score of ¯73 on average.  Insofar as this
correspondence  holds,  the frequency distribution  of course credit  weight over number
levels  (review  Figure  3.1.2.4-5)  matches  the  frequency  distribution  of  course  credit
weight over distent (see Figure 4.2.1.1-12).   Alas, this is not the case.  Although both
distributions  have the same median – at the 300-level  or ¯70 distent score, they have
very different shapes as measured by skewness: -1.36 vs. 2.07.  A negative skewness to
the frequency distribution in Figure 3.1.2.4-5 implies that few low-level courses lead to
many  high-level  courses,  while  a  positive  skewness  to  the  frequency  distribution  in
Figure 4.2.1.1-12 shows that many courses of low distent lead to fewer courses of rela-
tively higher distent.  Using a nonparametric statistical method to compare two distribu-
tions with the same median, the distributions  from Figures 3.1.2.4-5 & 4.2.1.1-12,  are
measured  to be significantly  different  (P-value ≈  0) by comparing  variability  using a
"test  of dispersion"  (Hollander  & Wolfe 1999:  ch.  5.1),  called the Siegel-Tukey  Test
(Abell et al. 1999: 570).  To summarize, the University administration sets forth guide-
lines and labels which arrange the courses in an expansive, "top-heavy" structure (Ù) as
number level increases, but, the courses actually interact by their prerequisite knowledge
in  a  far  different  manner:  a  contracting,  "bottom-heavy"  structure  (Ú)  as  distent
increases (see Figure 4.2.1.1-13).

The  "top-down",  planned  view  of  course  structure  from  the  administration
differs  substantially  from the "bottom-up",  experienced  view of course structure  from
the students.  The only Faculty with a negative skewness to the distent distribution for
its  courses  (see Table  4.2.1.1-1,  eleventh  column,  gD)  is  Engineering.   That  is,  only
Engineering  (mildly)  holds to the administrative  view that courses are arranged in an
expanding  structure,  anything  like Figure 3.1.2.4-5.   The reason for the dramatic  and
consistent difference in course arrangement for every other Faculty, and the University
as a whole,  from the expected  arrangement  of courses  implied  by the distribution  of
number level, is the widespread and prevalent use of hedge terms in the course number-
ing system that allow for deviations  from the normal prerequisite  relationships  among
courses (review Table 3.1.2.4-1).  In most Faculties there are many senior courses with
few senior prerequisites,  few junior prerequisites,  or even no prerequisites at all.  This
has the effect of increasing access, and 'front-loading'  new course choices for freshman
and sophomore  students,  thus making most of a Faculty available to students  early in
their studies with relatively  lesser expansion of course choices in later years.   On the
other hand, some Faculties assign courses prerequisites  of the same level, instead of a
level  below,  thus  extending  prerequisite  lineages  and  delaying  access  to  subsequent
courses of higher number level beyond what is expected.  Both of these ubiquitous types
of  deviations  from  the  normal  classification  of  courses  contribute  to  the  difference
between the imagined administrative structure – wherein the diversity of courses avail-
able to students consistently increases year-by-year as they move towards graduation –
versus  the  experienced  knowledge  structure  of  courses  linked  by  their  prerequisite
requirements – wherein new course choices explode in the early years for students, then
are reduced to a trickle along sometimes very lengthy trajectories.

Besides  the directed,  binary,  prerequisite  relationship  between pairs of courses
that establishes the network structure studied in this thesis, courses are associated by a
second overlapping layer of relationships based on membership in specific degree pro-
grams  offered  by  each  university  Department.   The  University's  numbering  system
describes courses at any number level as being "designed typically for students in the
[corresponding] year of a program."  That is, 300-level courses are "typically" designed
for third-year students  of a particular program.  Sometimes this condition is explicitly
stated  in  a course  description.   For  example,  NUTR 440 (#1518),  Current  Topics  in
Nutritional  Sciences,  states  it  is  "open  to  fourth-year  students  in  the  Nutrition  major
only",  but  also  lists  NUTR 301 & 302 as specific  course  prerequisites.   Many other
senior  level  courses  have  no  stated  prerequisites  of  specific  courses,  degree  require-
ments, or student year.  A very small minority of courses have restrictions on the year of
a student without also specifying specific course prerequisites or even degree programs;
for example, SOC 300, Principles of Sociology, offers "basic concepts and principles of
Sociology  for  students  with  advanced  standing"  with  the explicit  "prerequisite:  third-
year or more advanced standing", which "may not be taken for credit by students with
credit in SOC 100. First or second-year students must take SOC 100."  In terms of the
method of data translation into the course network in this theses, a prerequisite condition
on the year of the student can be reasonably accounted for by the requirement of least
one connection from that course to some other subset of courses at the next lower num-
ber level.   Ideally,  the two factors that determine the number level of a course are in
harmony: a course at a certain number level, say 300, has explicit prerequisites  at the
next level below (200-level) or is attended by students in the corresponding (third) year,
whose  transcripts  are  full  of  the  implicitly  supporting  (200-level)  courses  from  the
previous year of the program.  The disconnect between the number level of courses that
have explicitly stated prerequisites and the number level of courses that rely on implicit
adherence to an outline of a degree program is revealed whenever a diversity of students
external  to  particular  programs  enroll  in  courses  as  options,  or  whenever  the  same
course belongs in two or more different degree programs.

Contemporary learning theories emphasize engaging and challenging the learner
with tasks that refer to skills and knowledge just beyond their current level of capabili-
ties.   For  example,  Smith  et  al.  (1993)  employ  an  explicit  constructivist  stance  and
interpret students' prior conceptions as "resources for cognitive growth within a complex
systems view of knowledge" used as the basis for "knowledge refinement and reorganiza-
tion".  This view of knowledge and learning is incompatible with the current practice of
assigning the same number level to whole groups of courses where the "level of mas-
tery" and academic "resources"  among the students  are so inconsistent.   For instance,
presenting a 400-level course without specific university prerequisites and contending it
somehow  supports  learning  and  knowledge  of  the  same  "level"  as  other  400-level
courses  with  standard  prerequisite  lineages  is  problematic.   Either,  the  information
encountered suits a 400-level  course and relies on sophisticated (300-level)  supporting
prerequisite knowledge that a diverse student body with differing prior knowledges and
experiences  are unable to incorporate  into their  knowing,  or, the information  encoun-
tered depends on prerequites further towards students'  shared foundational  knowledge,
thus  resulting in learning  outcomes characteristic  of courses at  a lower number  level.
The argument  here assumes a kind of consistency in the Education system, such that,
any course, in any subject, given any title, sporting any catalogue number, cannot reli-
ably elevate the knowledge of its incoming students more (or less) than its credit weight
(eg. ¯3) reflects, from a baseline level of experience and common knowledge indicated
by prerequisites  without having practically unacceptable  dropout or failure rates.  This
principle  is consistent  with John Dewy (1938: ch. 3 & 7), who places learning into a
"category of continuity" based on an "experiential continuum" that precludes any sort of
large 'quantum leaps'  in knowledge  among learners  beyond their  prior  experiences  to
levels beyond what can be expected from a single ¯3 course.

Number levels presently fail to be meaningful  because they do not model (Se-
beok & Danesi 2000: ch. 1) well and sustain the pattern of the University's course num-
bering  system to  which  they  supposedly  refer,  nor  do  they  consistently  differentiate
(Belsey 2002: ch. 4) courses based on a substantive concept such as the level of knowl-
edge taught and learned in a course.  The above described repositioning of courses in
University  based  on  nonstandard  or  unstated  prerequisite  requirements  for  assigned
number levels leads to a large variance of distent scores for courses of the same number
level (for example, review Figure 4.2.1.1-7).  When, courses of a particular level have
anything from no university prerequisites  to prerequisites of the same level, just know-
ing the catalogue number of a course is insufficient to reliably characterize the knowl-
edge development within, especially for 300- and 400-level courses.  The distent metric
is here offered both as a way of restating the meaning of the course numbering system
(review Table 3.1.2.4-1) and as a practical tool to label courses based on the level of the
knowledge  taught  in  the  course.   A distent  supported  system of  assigning  catalogue
numbers  to  courses  would  function  similarly  to  how addresses  are presently  used  to
locate buildings in a city, where the (street) name and first digits of the address immedi-
ately offer an approximate 'location'.  The proposed format is: SUBJECT XXYY, where
SUBJECT is the subject code used presently, such as MATH (Math) or PSYCO (Psychol-
ogy), XX is the distent score of the course, say ¯64 for a first year course, and YY are
the last two digits presently used to distinguish courses at any level.  For example, using
the courses from Figure 4.2.1.1-7, CH E 435, Oilsands Engineering Design, would be
relabelled CH E 9735 derived from its distent score of ¯97, and C LIT 440, Compara-
tive Studies in Popular Culture, would be relabelled C LIT 6440, derived from its distent
score of ¯64.  Courses are presently given classifications based on course number, but
this administrative categorization has lost some of its meaning due to the pervasive lack
of discipline in following the guidelines.  A course labelling system tied directly to the
prerequisite  requirements  offers  an  objective,  consistent  method  for  generating  cata-
logue numbers,  which,  in turn,  provide immediate  information  regarding  the approxi-
mate level of knowledge expected in the course based on distent score.

Aside  from  the  particularities  of  the  proposed  course  renumbering  system
described immediately  above, the present system can be further scrutinized.   Once the
relationship  between  the University's  present  numbering  system and distent  is  under-
stood, and after the observation that the distribution of courses by level does not match
the distribution of courses by distent, the question of which courses,  departments,  and
faculties currently break the guidelines the most, and in what ways, arises.  Nominally,
all courses presently labelled, 4xx, are of the same number level, but as measured by the
distent metric, they vary widely in their network locations, and therefore functions.  The
University numbering system, if followed, implies a consistent distent value for courses
from each  number  level:  100-level  courses  taken  by first  year  students  in a program
have an expected distent of ¯61 + ¯3 = ¯64, 200-level courses taken by second year
students  in  a  program  have  an  expected  distent  of  ¯67,  third  year  courses  have  an
expected distent of ¯70, and 400-level courses are supposed to have a distent score of
¯73 on average, as illustrated four paragraphs above.  Therefore,  all of the courses in
the University can be assigned two distent scores: a) an implicit score determined by the
presently assigned catalogue number,  and b) a measured distent value based on actual
prerequisite  lineages.   Comparison  of these two distent  values determines  if  the cata-
logue  number  of  a course  overstates,  matches,  or  understates  the level  of knowledge
developed  therein.   After  normalization,  by  setting  the  minimal  university  entrance
requirement to zero distent, the ratio of the implied vs. the measured distent accrued in
university for each course is calculated, and the average values reported for departments
on Table 4.2.1.1-1.  Large ratios indicate that the average course catalogue numbers are
too high given the average measured course distent; these departments are responsible
for the above discussed "front  loading" of the university by allowing overly generous
access to upper level courses by freshman and sophomore students.  Small ratios indi-
cate  that the average course catalogue  numbers  are too low given the average course
distent;  these  departments  are  responsible  for  the  above  discussed  "long  tail"  of  the
frequency distribution for distent comprised of courses along protracted trajectories.  

The integrity  of such evaluations  is dependent  on the reliability  of the distent
metric  to  measure  what  is  purported  (see  Figure  4.2.1.1-14),  and  the  plausibility  of
interpretations.   Notice,  at issue in this analysis  of number level 'inflation'  is not how
many high or low distent courses there are in a department, but how appropriately they
are labelled with catalogue numbers.  For instance, the Department of Biomedical Engi-
neering will always have proportionally more high distent courses than, say, the Depart-
ment  of Anthropology,  since  its  advanced  subject  matter  relies  on so much previous
learning before entrance.  But, either Department could be measured as 'correspondent',
over 'inflationist'  or 'deflationist',  whenever  the number  levels assigned to the courses
faithfully reflect the University course numbering system.   It is here speculated that the
practical  aligning  of  courses  in  terms  of  their  topics  of  inquiry,  prerequisite  require-
ments, and number level, is a distributed process occurring among professors of individ-
ual Departments – an intermediate level somewhere between the central administration
and the students.  Clark (2004) identifies two important forces of influence on a depart-
ment: 1) the vitality, diversity, and growth of the subject matter of the department, and,
2)  the  element  of  competition  for  resources  between  departments  in  the  university
(particularly  in  North  America).   For  departments  centered  around  large,  involved,
demanding subjects studied through focused programs, long chains of knowledge devel-
opment, including five or more courses, are inevitable.  Given the inherent limitation of
the University course numbering system to 400- & 500-level courses that imply prerequi-
site  chains  of three  or four courses long,  number level  deflation is unavoidable.   For
departments centered on what Pan (1998) and Cole (2002) call "marginalized" subjects,
course  level  inflation  might  be a  survival  response  to  help compete  for  the essential
resources of students and the funding allocated for them.  For example, since all Bache-
lor  programs  have limitations  on the number  of  junior  level  credits  which  contribute
towards the degree, persistently low enrolments in a junior (100-level) course at a Depart-
ment can be addressed by raising the catalogue number to the 200-level.  Thus, a code-
pendent  relationship  established  between  students  'shopping'  for accessible,  nonjunior
degree requirements and departments seeking student enrolment can be a mechanism for
course level inflation.   A more widely reported,  complementary  phenomena of "grade
inflation" (Nature 2004; Johnson 2003: ch. 3; Ziomek & Svec 1997; British Broadcast-
ing  Corporation  2010)  "omnipresent  at  community  colleges  and  at  both  public  and
private four-year schools" is attributed by Rojstaczer & Healy (2010)  to a similar, "keep
the  customer  happy",  ethos  across  USA  (at  least)  campuses  (see  also,
<www.gradeinflation.com>).

By definition, academic subjects vary from one another.  It is difficult to com-
pare the subject matter in, say, ENGLISH 100 to MATH 333, so no attempts are directly
made in this thesis.   Instead,  courses are evaluated and compared indirectly  based on
their network locations.  The differences and similarities in courses are by virtue of their
arrangement, and the assumption that each course on a transcript contributes equally to a
student's education in proportion to course weight: three academic credits (¯3) assigned
to a Native Studies course is given the same significance on a transcript as if the credits
were  assigned  to  a  Pharmacology  course.   Distent  is  the first  example  of  a  network
metric  tailored  for  use  in  education.   It  measures  the  prerequisite  lineages  for  each
course  in  a careful  way,  by identifying  the simultaneously  longest  necessary  and (fl)
shortest optional route from kindergarten to the course in question.   Chains of courses
are  argued  to be trajectories  of continuous  knowledge  elaboration  proportional  to the
number of academic credits (¯) awarded to constituent courses along the way, and this
is  called  'distent'.   With  this  framework  in  place,  all  individual  courses  in  Alberta's
Provincial Education system are characterized by the distent measure, plus departments
and faculties by average and median distent values.  The distribution of distent scores is
shown to have strong implications for how the network of courses is shaped, which in
turn determines  how knowledge  is presented to, and experienced  by, students  in their
paths  through  University.   The  discrepancy  between  how  courses  are  labelled  with
catalogue  numbers  by  the  administration  and  how courses  are  scored  by  the  distent
metric is briefly discussed, leading to the portrayal of some departments as 'inflationist',
'deflationist', or 'correspondent'.  The suggestion, and outline, for a new system of course
labelling is offered since present labels no longer provide significant contextual meaning.
__________________________
†  Something  similar  could  be said  for  regular  geographical  maps.   For  example,  two
towns  in British  Columbia,  separated  by mountains,  may be close,  measured  "as  the
crow flies", yet be distant, measured by the highway system.
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A basic function of maps is to orient the user in spatial terms regarding a subject.An important  aspect  of  orientation  is  the  viewer's  ability  to  determine  closeness  andseparation between places or objects while reading a map.  This is usually accomplishedby some sort of associated scale or legend to help with the interpretation of distances,areas,  color codes, etcetera.   The networks in this thesis, and networks in general, areintended to capture and visually emphasize topology – those spatial properties that areinvariant under continuous elastic deformations.  Distortions  of network size, overlap-ping  of  nodes,  crossing  of  links,  twisting  of  form,  and  stretching  of  shape  are  allaccepted  to preserve and communicate  the architecture  of connections  among compo-nents.  This generally contrasts with typical maps, say geographic, which mostly striveto preserve distance, proportional areas, and fixed arrangements of elements.Reenforcing  a fairly  "standard narrative"  of education  as coherent,  cumulativelearning in preparation for a future (Nespor 2007), Ormell  (1996) offers "eight robustmetaphors  .  .  .  to  represent  the  invariant  features  of  education",  three  of  which  arerelated to the spatial metaphor of education as mountain climbing.  Ormell conceives ofthe curriculum  as "a  definite,  recognized  named mountain,  which requires  effort  andstamina to climb", upon which students should be able to gauge their progress in the trektowards the summit, where their efforts are rewarded with "a ‘local synthesis’: a singleviewpoint  or  vantage-point  from  which  a  great  tract  of  country  (knowledge)  can  beseen".   But, this type of metaphor is difficult to reconcile with the architecture of thenetwork maps presented  in the thesis.   A basic observation within this thesis  that thecurriculum, as represented by courses, is very large, so only ever partially experienced,and does not allow for relatively "great tracts" of knowledge to be seen in retrospect; thenumber  of  possible  trajectories  is  nearly  innumerable  for  students,  so  no  orientationtowards a single summit is possible.  And, an initiating observation of this thesis, whichmotivated the very creation of the network maps presented, is that the overall curricularstructure is veiled – anything but "prominent", "publicly visible", and easily "seen froma distance" as Ormell contends the curriculum should be (p. 72-73).  Instead of "height" on a mountain in a journey towards a "peak", a different kindof measure for progress through the curriculum as represented by the network of coursesis required.  Davis and Sumara (2006: 57)  write that "complexity thinking troubles themetaphors of accumulations of knowledge and progress toward a foreseeable endpoint",and "the emergence of new interpretive possibility [learning] is framed more in terms ofexpansiveness  and  outward  movement".   Instead  of  the  synthesizing  and  orientingvantage point being the peak of a mountain from where a student looks back and down-wards  upon  the  curriculum  once  climbed,  a  metric  which  traces  a  learner's  historythrough the curriculum to measure "outward movement" from a starting point towardsthe unknown is formulated.  Let such a course network metric be called distent, DThe  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  followingdefinition: "Distent, n:  Stretching out; out-stretched extent; distension; breadth."  Here,as an alternative to the concept of distance in Euclidean space (Gamelin & Greene 1983:ch.  1),  distent  is  proffered  as  a  structural  metric  of  course  separation  on a  network.Traditional  cartographic measures of separation, such as cartesian distance, along withsome typical adjectives, such as higher and lower, are less applicable to describe separa-tion of nodes on a tangled network.  Common education perspectives assume that move-ment along a knowledge trajectory implies the effective connection of new knowledgeto old knowledge,  that is, the construction of a continuously elaborated present knowl-edge.  This view from education can support a more continuous,  topological notion ofseparation-as-stretching as much as the notion of separation-as-distance or being apart inspace.  The metric, distent, captures this difference by tracing the steps taken forward toreach any point in the network.  Therefore, two nodes may be located quite close to eachother in terms of their placements on the embedding of a network map, but be consid-ered quite separated as measured by distent†.Let distent be measured outward from a common origin: the beginning of Kinder-garten.   Now all  courses  of  the  education  system can  be characterized  as containingknowledge continuously elaborated from Kindergarten by tracing the demands of priorknowledge set down in prerequisite requirements as represented by the topology of thenetwork  (see  Figure  4.2.1.1-1).   Let  the  distent  score  assigned  to  any  course  be theacademic credits (¯) required to finish the course; that is, distent is a measure of continu-ous knowledge elaboration, stretching from the beginning of Kindergarten to the end ofthe course in question.  Since there are many possible trajectories between kindergartenand,  say,  an  advanced  undergraduate  course,  care  must  be  taken  in  establishing  analgorithm.  To do so, the way the course network is normally visualized and described inthis thesis must be changed by reversing the direction of the links (see Figure 4.2.1.1-2).This  change  in  link polarity  switches  the  qualitative  orientation  of  the  network  fromprerequisite courses to subsequent courses, from prior knowledge to future possibilities,and  switches  the  quantitative  flow  to  be  in  the  direction  of  knowledge  elaboration:expansive and outward from a common origin, Kindergarten.A directed  acyclic  graph  (review §2.3.2.1),  like the  course  network,  formallydefines a "precedence relation" (Pemmaraju & Skiena 2003: ch. 8.5.1) on the nodes, iflink (i, j) is taken as meaning that node i must occur before node j.  A topological sort isa nonunique permutation of the nodes of a graph such that a link (i, j) always impliesthat i appears before j (Corman et al 2001: ch. 22.4).  Only directed acyclic graphs canbe topologically sorted, since no node in a directed cycle can take precedence over allthe rest.   Because there are no cycles, every finite acyclic graph contains at least onenode v of out-degree zero where trajectories of the graph might be said to end.  Clearly,v can appear last in the topological ordering.  Deleting v leaves a graph with at least oneother vertex of out-degree zero.  Repeating this argument gives an algorithm for topologi-cally  sorting  any  directed  acyclic  graph  establishing  a  node  permutation  with  abeginning(s) and end(s) (see Figure 4.2.1.1-3).  Critical to several types of calculationsfor this thesis, a topological sort of the course network allows the otherwise large, tan-gled nexus to be addressed systematically and efficiently, from end(s) to end, for compre-hensive,  sophisticated  analysis  with  reasonable  computing  times  (for  the  interestedreader, see Attachment 9.3 Supplementary Equations 4.2.1.1).Here  it  is  assumed  that  a  particular  course  and  its  neighborhood  define  a"precedence  relation".   In  the  case  of  the  course  network  reversed,  where  edges  areoriented from a course to its subsequents, the precedence relation is the prior knowledgea  course  provides  to  its  subsequents  for  elaboration.   Typically,  terminal  400-levelcourses are at the end of such precedence chains and kindergarten is alone at the begin-ning because it is the only node requiring no prior knowledge from within the educationsystem.  The topologically sorted reverse course network always starts with kindergar-ten, and it is an obvious reference point for distent and other calculations.  Let the dis-tent measure to any course be the total number of credits accumulated along a trajectoryfrom the beginning of kindergarten to the end of the course, chosen to be simultaneouslythe longest  necessary  and the shortest  optional  path (see Figure  4.2.1.1-4  and Figure4.2.1.1-5).  In large complicated course networks, a path defining the distent of a courseis not unique since one or more paths may determine the same distent score. By sifting through  the individual  distent  results  calculated  for each course bycomputer  with  the  program,  Calendar  Navigator,  some  exceptional  courses  are  high-lighted (see Table 9.2-1, eleventh column, D).  Predictably, kindergarten (#535) has thelowest  possible  distent score (¯2), since it relies not at all for students  to arrive withknowledge from elsewhere  in the education system.  The many instructional  hours ofexpected  attendance,  and  the  normally  twelve-plus  years  of  enrollment,  ensures  thatSchool  is  the  major,  if  not  distinguishing,  contributor  to  the  distent  scores  of  mostcourses (see Figure 4.2.1.1-6).   Trajectory requests may be sent to Calendar Navigatorfor any input course node on the network; two are shown in Figure 4.2.1.1-7.  Distentscores and trajectories allow for sophisticated quantitative and qualitative interpretationof  courses  characteristics  based  on  network  structure  independent  of  subject  specificcourse content.   Courses with small distent scores lie on continuous chains of knowl-edge elaboration that are short; courses with large distent scores lie on continuous chainsof knowledge elaboration that are long.  The "emergence of new interpretive possibili-ties"  within  any course  is  not  arbitrary,  but  always  a  function  of  the  prior  academicknowledge brought to the course by students.  Given the distent score of a course, andby tracing the trajectory to it, reasonable expectations may be made regarding the levelof readings,  difficulty  of assignments,  knowledge  of peers,  scholarliness  of instructor,necessity  for attendance,  and challenge  of assessments,  within.   Coupled with subjectspecific context, further expectations regarding methods of content delivery, the role ofthe individual learner, the role of the instructor, and the type of interactions among thelearners can be formed.High  school  courses  with  maximum distent  are the terminal  courses  from theRegistered Apprenticeship Program (RAP), for example, RAP 6243 (#1196), StructuralSteel and Plate Fitter 35d, with D = ¯ 90.  This indicates the vocational knowledge intheses courses is well developed, and supported by a continuous, long chain of previouslearning.   Not  surprisingly,  considering  the number of hours  directed toward the pro-gram, a successful  RAP student graduates  from high school  nearly finished their  firstyear  formal  apprenticeship  training  in  the  corresponding  field,  which  are  otherwise"traditionally  .  .  .  began  after  students  graduate  from high school"  (Alberta  Learning2003b).  Among the academic high school courses, MAT 3211 (#736), Mathematics 31,and GER 3317 (#534), German 31, with D = ¯ 67, and FSL 3308 (#528), French 31C,with D = ¯ 77, have the greatest distent scores.  These courses are appended to the endsof  prerequisite  chains  typical  in  length  of  other  senior  subjects  in  high  school,  thusextending them, indicating students must direct even more learning time and effort tofinish  them.  As a result,  students  completing  these long learning trajectories  in highschool have direct access to more advanced courses in the corresponding departments atthe  University  of  Alberta,  such as,  MATH 100 (#4165),  Calculus  I,  and MATH 117(#4171), Honors Calculus I, over MATH 114 (#4169), Elementary Calculus I, or FREN211  (#2208),  Intermediate  French  I,  over  FREN  111  (#2204),  Beginners'  French  I.Thus, the distent metric,  measuring only network structure,  identifies,  by extreme val-ues, the courses in the school system that, a) function as the gateway to the educationsystem (kindergarten),  and, b) effectively function as 'advanced placement' courses, forfurther learning in either the trades or university.  Generalizing, the distent metric is hereoffered  as  a  measure  of  course  separation  from kindergarten,  which  in  turn  may  bereasonably interpreted  as corresponding  to the level of knowledge development  at theconclusion of a course.The lowest distent  courses in the University  are introductory  courses from theDepartment  of Physical  Education and Recreation,  such as, PAC 182 (#4651),  IndoorWall Climbing, and DAC155 (#4613), Social Dance, all with D = ¯ 62.5.  These physi-cal  activity  and  dance  activity  courses  require  nothing  but  the  minimum  Universityentrance  requirements  as  prerequisites,  and are  only  weighted  as  ¯1.5  credit  coursesthemselves.  At the other extreme, is NURS 408 (#4594), Acute Care Practice II, with awhopping (in the strictly scholarly sense) distent of D = ¯129 – a score so large it isonly achievable by a high credit course coming at the end of a strict, four year scheduleof consecutive high credit courses in a single discipline.  Its course description declareshow "professional  nursing practice focuses on a comprehensive  application of primaryhealth  care principles  to clients  experiencing  acute  variances  in health  across  the lifespan".   The  weighty  vocabulary  of  "professional",  "practice",  "comprehensive","principles", and "variance" used in the description is well suited to a course that com-pletes the training of those who prepare, literally, for complicated life and death situa-tions at the extreme of their involved profession.  A qualitative visualization of distentscore distribution for nodes throughout the course network, for School and University, isdisplayed by Figure 4.2.1.1-8.  By  calculating  the  frequency  distribution  of  course  distent  for  each  facultyindividually,  location  (median),  dispersion  (median  absolute  deviation),  and  shape(skewness) statistics may be compared (see Table 4.2.1.1-1 tenth column, Dè , and Figure4.2.1.1-9).  By viewing the median distent column, Dè , the Faculties of Arts and PhysicalEducation, are seen as low distent faculties, scoring ¯67 and ¯66 respectively.  Consider-ing the baseline distent level of ¯61, required just for the minimum University entrancerequirements from high school, most courses in the Faculties of Arts and Physical Educa-tion have distent scores within ¯6, viz., two ¯3 courses in a row.  Most courses in theFaculty of Agriculture, Forestry, and Home Economics, Dè AH  = ¯68, and the School ofNative Studies, Dè NS  = ¯68, have distent scores within ¯9 ( or three ¯3 courses) of theminimum University entrance requirements.  The majority of Science (Dè SC  = ¯73) andBusiness (Dè BC  = ¯71) courses can be completed within ¯12 sequences of study, or four¯3 courses.  The professionally oriented Faculties of Engineering, Nursing, and Medi-cine & Dentistry, all have a majority of their courses coming after knowledge develop-ment chains of greater than ¯12 beyond high school.  That is, most courses from theseFaculties  are typically not even encountered by students until after sequences of studythat include at least four courses at the University level.  See Figures 4.2.1.1-10 & -11for more details.   For the interested reader, similar comparisons among the Universitydepartments may be made using the average distent statistics on Table 4.2.1.1-2, eighthcolumn, Dêêê.The system for numbering university courses as described in the University ofAlberta Calendar (§220, p. 448), already discussed in §3.1.2.4 (review Table 3.1.2.4-1),implies a specific, direct relationship with the distent metric.  Quite simply, since eachnumber  level  is  expected to have prerequisites  from the previous  level,  eg.  300-levelcourses "normally" have 200-level prerequisites, and since the median weight of univer-sity courses is ¯3 (review Figure 3.1.2.4-4), the separation of number levels in terms ofdistent should be ¯3.  A common intermediate reference point for all university coursesis the minimum entrance requirements with distent of ¯61.  Therefore, if the Universityadministration's  course numbering system is being followed, then most first year, 100-level courses have an expected distent of ¯61 + ¯3 = ¯64, 200-level courses have anexpected distent of ¯67, third year courses have an expected distent of ¯70, and 400-level courses are supposed to have a distent score of ¯73 on average.  Insofar as thiscorrespondence  holds,  the frequency distribution  of course credit  weight over number
levels  (review  Figure  3.1.2.4-5)  matches  the  frequency  distribution  of  course  credit
weight over distent (see Figure 4.2.1.1-12).   Alas, this is not the case.  Although both
distributions  have the same median – at the 300-level  or ¯70 distent score, they have
very different shapes as measured by skewness: -1.36 vs. 2.07.  A negative skewness to
the frequency distribution in Figure 3.1.2.4-5 implies that few low-level courses lead to
many  high-level  courses,  while  a  positive  skewness  to  the  frequency  distribution  in
Figure 4.2.1.1-12 shows that many courses of low distent lead to fewer courses of rela-
tively higher distent.  Using a nonparametric statistical method to compare two distribu-
tions with the same median, the distributions  from Figures 3.1.2.4-5 & 4.2.1.1-12,  are
measured  to be significantly  different  (P-value ≈  0) by comparing  variability  using a
"test  of dispersion"  (Hollander  & Wolfe 1999:  ch.  5.1),  called the Siegel-Tukey  Test
(Abell et al. 1999: 570).  To summarize, the University administration sets forth guide-
lines and labels which arrange the courses in an expansive, "top-heavy" structure (Ù) as
number level increases, but, the courses actually interact by their prerequisite knowledge
in  a  far  different  manner:  a  contracting,  "bottom-heavy"  structure  (Ú)  as  distent
increases (see Figure 4.2.1.1-13).

The  "top-down",  planned  view  of  course  structure  from  the  administration
differs  substantially  from the "bottom-up",  experienced  view of course structure  from
the students.  The only Faculty with a negative skewness to the distent distribution for
its  courses  (see Table  4.2.1.1-1,  eleventh  column,  gD)  is  Engineering.   That  is,  only
Engineering  (mildly)  holds to the administrative  view that courses are arranged in an
expanding  structure,  anything  like Figure 3.1.2.4-5.   The reason for the dramatic  and
consistent difference in course arrangement for every other Faculty, and the University
as a whole,  from the expected  arrangement  of courses  implied  by the distribution  of
number level, is the widespread and prevalent use of hedge terms in the course number-
ing system that allow for deviations  from the normal prerequisite  relationships  among
courses (review Table 3.1.2.4-1).  In most Faculties there are many senior courses with
few senior prerequisites,  few junior prerequisites,  or even no prerequisites at all.  This
has the effect of increasing access, and 'front-loading'  new course choices for freshman
and sophomore  students,  thus making most of a Faculty available to students  early in
their studies with relatively  lesser expansion of course choices in later years.   On the
other hand, some Faculties assign courses prerequisites  of the same level, instead of a
level  below,  thus  extending  prerequisite  lineages  and  delaying  access  to  subsequent
courses of higher number level beyond what is expected.  Both of these ubiquitous types
of  deviations  from  the  normal  classification  of  courses  contribute  to  the  difference
between the imagined administrative structure – wherein the diversity of courses avail-
able to students consistently increases year-by-year as they move towards graduation –
versus  the  experienced  knowledge  structure  of  courses  linked  by  their  prerequisite
requirements – wherein new course choices explode in the early years for students, then
are reduced to a trickle along sometimes very lengthy trajectories.

Besides  the directed,  binary,  prerequisite  relationship  between pairs of courses
that establishes the network structure studied in this thesis, courses are associated by a
second overlapping layer of relationships based on membership in specific degree pro-
grams  offered  by  each  university  Department.   The  University's  numbering  system
describes courses at any number level as being "designed typically for students in the
[corresponding] year of a program."  That is, 300-level courses are "typically" designed
for third-year students  of a particular program.  Sometimes this condition is explicitly
stated  in  a course  description.   For  example,  NUTR 440 (#1518),  Current  Topics  in
Nutritional  Sciences,  states  it  is  "open  to  fourth-year  students  in  the  Nutrition  major
only",  but  also  lists  NUTR 301 & 302 as specific  course  prerequisites.   Many other
senior  level  courses  have  no  stated  prerequisites  of  specific  courses,  degree  require-
ments, or student year.  A very small minority of courses have restrictions on the year of
a student without also specifying specific course prerequisites or even degree programs;
for example, SOC 300, Principles of Sociology, offers "basic concepts and principles of
Sociology  for  students  with  advanced  standing"  with  the explicit  "prerequisite:  third-
year or more advanced standing", which "may not be taken for credit by students with
credit in SOC 100. First or second-year students must take SOC 100."  In terms of the
method of data translation into the course network in this theses, a prerequisite condition
on the year of the student can be reasonably accounted for by the requirement of least
one connection from that course to some other subset of courses at the next lower num-
ber level.   Ideally,  the two factors that determine the number level of a course are in
harmony: a course at a certain number level, say 300, has explicit prerequisites  at the
next level below (200-level) or is attended by students in the corresponding (third) year,
whose  transcripts  are  full  of  the  implicitly  supporting  (200-level)  courses  from  the
previous year of the program.  The disconnect between the number level of courses that
have explicitly stated prerequisites and the number level of courses that rely on implicit
adherence to an outline of a degree program is revealed whenever a diversity of students
external  to  particular  programs  enroll  in  courses  as  options,  or  whenever  the  same
course belongs in two or more different degree programs.

Contemporary learning theories emphasize engaging and challenging the learner
with tasks that refer to skills and knowledge just beyond their current level of capabili-
ties.   For  example,  Smith  et  al.  (1993)  employ  an  explicit  constructivist  stance  and
interpret students' prior conceptions as "resources for cognitive growth within a complex
systems view of knowledge" used as the basis for "knowledge refinement and reorganiza-
tion".  This view of knowledge and learning is incompatible with the current practice of
assigning the same number level to whole groups of courses where the "level of mas-
tery" and academic "resources"  among the students  are so inconsistent.   For instance,
presenting a 400-level course without specific university prerequisites and contending it
somehow  supports  learning  and  knowledge  of  the  same  "level"  as  other  400-level
courses  with  standard  prerequisite  lineages  is  problematic.   Either,  the  information
encountered suits a 400-level  course and relies on sophisticated (300-level)  supporting
prerequisite knowledge that a diverse student body with differing prior knowledges and
experiences  are unable to incorporate  into their  knowing,  or, the information  encoun-
tered depends on prerequites further towards students'  shared foundational  knowledge,
thus  resulting in learning  outcomes characteristic  of courses at  a lower number  level.
The argument  here assumes a kind of consistency in the Education system, such that,
any course, in any subject, given any title, sporting any catalogue number, cannot reli-
ably elevate the knowledge of its incoming students more (or less) than its credit weight
(eg. ¯3) reflects, from a baseline level of experience and common knowledge indicated
by prerequisites  without having practically unacceptable  dropout or failure rates.  This
principle  is consistent  with John Dewy (1938: ch. 3 & 7), who places learning into a
"category of continuity" based on an "experiential continuum" that precludes any sort of
large 'quantum leaps'  in knowledge  among learners  beyond their  prior  experiences  to
levels beyond what can be expected from a single ¯3 course.

Number levels presently fail to be meaningful  because they do not model (Se-
beok & Danesi 2000: ch. 1) well and sustain the pattern of the University's course num-
bering  system to  which  they  supposedly  refer,  nor  do  they  consistently  differentiate
(Belsey 2002: ch. 4) courses based on a substantive concept such as the level of knowl-
edge taught and learned in a course.  The above described repositioning of courses in
University  based  on  nonstandard  or  unstated  prerequisite  requirements  for  assigned
number levels leads to a large variance of distent scores for courses of the same number
level (for example, review Figure 4.2.1.1-7).  When, courses of a particular level have
anything from no university prerequisites  to prerequisites of the same level, just know-
ing the catalogue number of a course is insufficient to reliably characterize the knowl-
edge development within, especially for 300- and 400-level courses.  The distent metric
is here offered both as a way of restating the meaning of the course numbering system
(review Table 3.1.2.4-1) and as a practical tool to label courses based on the level of the
knowledge  taught  in  the  course.   A distent  supported  system of  assigning  catalogue
numbers  to  courses  would  function  similarly  to  how addresses  are presently  used  to
locate buildings in a city, where the (street) name and first digits of the address immedi-
ately offer an approximate 'location'.  The proposed format is: SUBJECT XXYY, where
SUBJECT is the subject code used presently, such as MATH (Math) or PSYCO (Psychol-
ogy), XX is the distent score of the course, say ¯64 for a first year course, and YY are
the last two digits presently used to distinguish courses at any level.  For example, using
the courses from Figure 4.2.1.1-7, CH E 435, Oilsands Engineering Design, would be
relabelled CH E 9735 derived from its distent score of ¯97, and C LIT 440, Compara-
tive Studies in Popular Culture, would be relabelled C LIT 6440, derived from its distent
score of ¯64.  Courses are presently given classifications based on course number, but
this administrative categorization has lost some of its meaning due to the pervasive lack
of discipline in following the guidelines.  A course labelling system tied directly to the
prerequisite  requirements  offers  an  objective,  consistent  method  for  generating  cata-
logue numbers,  which,  in turn,  provide immediate  information  regarding  the approxi-
mate level of knowledge expected in the course based on distent score.

Aside  from  the  particularities  of  the  proposed  course  renumbering  system
described immediately  above, the present system can be further scrutinized.   Once the
relationship  between  the University's  present  numbering  system and distent  is  under-
stood, and after the observation that the distribution of courses by level does not match
the distribution of courses by distent, the question of which courses,  departments,  and
faculties currently break the guidelines the most, and in what ways, arises.  Nominally,
all courses presently labelled, 4xx, are of the same number level, but as measured by the
distent metric, they vary widely in their network locations, and therefore functions.  The
University numbering system, if followed, implies a consistent distent value for courses
from each  number  level:  100-level  courses  taken  by first  year  students  in a program
have an expected distent of ¯61 + ¯3 = ¯64, 200-level courses taken by second year
students  in  a  program  have  an  expected  distent  of  ¯67,  third  year  courses  have  an
expected distent of ¯70, and 400-level courses are supposed to have a distent score of
¯73 on average, as illustrated four paragraphs above.  Therefore,  all of the courses in
the University can be assigned two distent scores: a) an implicit score determined by the
presently assigned catalogue number,  and b) a measured distent value based on actual
prerequisite  lineages.   Comparison  of these two distent  values determines  if  the cata-
logue  number  of  a course  overstates,  matches,  or  understates  the level  of knowledge
developed  therein.   After  normalization,  by  setting  the  minimal  university  entrance
requirement to zero distent, the ratio of the implied vs. the measured distent accrued in
university for each course is calculated, and the average values reported for departments
on Table 4.2.1.1-1.  Large ratios indicate that the average course catalogue numbers are
too high given the average measured course distent; these departments are responsible
for the above discussed "front  loading" of the university by allowing overly generous
access to upper level courses by freshman and sophomore students.  Small ratios indi-
cate  that the average course catalogue  numbers  are too low given the average course
distent;  these  departments  are  responsible  for  the  above  discussed  "long  tail"  of  the
frequency distribution for distent comprised of courses along protracted trajectories.  

The integrity  of such evaluations  is dependent  on the reliability  of the distent
metric  to  measure  what  is  purported  (see  Figure  4.2.1.1-14),  and  the  plausibility  of
interpretations.   Notice,  at issue in this analysis  of number level 'inflation'  is not how
many high or low distent courses there are in a department, but how appropriately they
are labelled with catalogue numbers.  For instance, the Department of Biomedical Engi-
neering will always have proportionally more high distent courses than, say, the Depart-
ment  of Anthropology,  since  its  advanced  subject  matter  relies  on so much previous
learning before entrance.  But, either Department could be measured as 'correspondent',
over 'inflationist'  or 'deflationist',  whenever  the number  levels assigned to the courses
faithfully reflect the University course numbering system.   It is here speculated that the
practical  aligning  of  courses  in  terms  of  their  topics  of  inquiry,  prerequisite  require-
ments, and number level, is a distributed process occurring among professors of individ-
ual Departments – an intermediate level somewhere between the central administration
and the students.  Clark (2004) identifies two important forces of influence on a depart-
ment: 1) the vitality, diversity, and growth of the subject matter of the department, and,
2)  the  element  of  competition  for  resources  between  departments  in  the  university
(particularly  in  North  America).   For  departments  centered  around  large,  involved,
demanding subjects studied through focused programs, long chains of knowledge devel-
opment, including five or more courses, are inevitable.  Given the inherent limitation of
the University course numbering system to 400- & 500-level courses that imply prerequi-
site  chains  of three  or four courses long,  number level  deflation is unavoidable.   For
departments centered on what Pan (1998) and Cole (2002) call "marginalized" subjects,
course  level  inflation  might  be a  survival  response  to  help compete  for  the essential
resources of students and the funding allocated for them.  For example, since all Bache-
lor  programs  have limitations  on the number  of  junior  level  credits  which  contribute
towards the degree, persistently low enrolments in a junior (100-level) course at a Depart-
ment can be addressed by raising the catalogue number to the 200-level.  Thus, a code-
pendent  relationship  established  between  students  'shopping'  for accessible,  nonjunior
degree requirements and departments seeking student enrolment can be a mechanism for
course level inflation.   A more widely reported,  complementary  phenomena of "grade
inflation" (Nature 2004; Johnson 2003: ch. 3; Ziomek & Svec 1997; British Broadcast-
ing  Corporation  2010)  "omnipresent  at  community  colleges  and  at  both  public  and
private four-year schools" is attributed by Rojstaczer & Healy (2010)  to a similar, "keep
the  customer  happy",  ethos  across  USA  (at  least)  campuses  (see  also,
<www.gradeinflation.com>).

By definition, academic subjects vary from one another.  It is difficult to com-
pare the subject matter in, say, ENGLISH 100 to MATH 333, so no attempts are directly
made in this thesis.   Instead,  courses are evaluated and compared indirectly  based on
their network locations.  The differences and similarities in courses are by virtue of their
arrangement, and the assumption that each course on a transcript contributes equally to a
student's education in proportion to course weight: three academic credits (¯3) assigned
to a Native Studies course is given the same significance on a transcript as if the credits
were  assigned  to  a  Pharmacology  course.   Distent  is  the first  example  of  a  network
metric  tailored  for  use  in  education.   It  measures  the  prerequisite  lineages  for  each
course  in  a careful  way,  by identifying  the simultaneously  longest  necessary  and (fl)
shortest optional route from kindergarten to the course in question.   Chains of courses
are  argued  to be trajectories  of continuous  knowledge  elaboration  proportional  to the
number of academic credits (¯) awarded to constituent courses along the way, and this
is  called  'distent'.   With  this  framework  in  place,  all  individual  courses  in  Alberta's
Provincial Education system are characterized by the distent measure, plus departments
and faculties by average and median distent values.  The distribution of distent scores is
shown to have strong implications for how the network of courses is shaped, which in
turn determines  how knowledge  is presented to, and experienced  by, students  in their
paths  through  University.   The  discrepancy  between  how  courses  are  labelled  with
catalogue  numbers  by  the  administration  and  how courses  are  scored  by  the  distent
metric is briefly discussed, leading to the portrayal of some departments as 'inflationist',
'deflationist', or 'correspondent'.  The suggestion, and outline, for a new system of course
labelling is offered since present labels no longer provide significant contextual meaning.
__________________________
†  Something  similar  could  be said  for  regular  geographical  maps.   For  example,  two
towns  in British  Columbia,  separated  by mountains,  may be close,  measured  "as  the
crow flies", yet be distant, measured by the highway system.
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A basic function of maps is to orient the user in spatial terms regarding a subject.An important  aspect  of  orientation  is  the  viewer's  ability  to  determine  closeness  andseparation between places or objects while reading a map.  This is usually accomplishedby some sort of associated scale or legend to help with the interpretation of distances,areas,  color codes, etcetera.   The networks in this thesis, and networks in general, areintended to capture and visually emphasize topology – those spatial properties that areinvariant under continuous elastic deformations.  Distortions  of network size, overlap-ping  of  nodes,  crossing  of  links,  twisting  of  form,  and  stretching  of  shape  are  allaccepted  to preserve and communicate  the architecture  of connections  among compo-nents.  This generally contrasts with typical maps, say geographic, which mostly striveto preserve distance, proportional areas, and fixed arrangements of elements.Reenforcing  a fairly  "standard narrative"  of education  as coherent,  cumulativelearning in preparation for a future (Nespor 2007), Ormell  (1996) offers "eight robustmetaphors  .  .  .  to  represent  the  invariant  features  of  education",  three  of  which  arerelated to the spatial metaphor of education as mountain climbing.  Ormell conceives ofthe curriculum  as "a  definite,  recognized  named mountain,  which requires  effort  andstamina to climb", upon which students should be able to gauge their progress in the trektowards the summit, where their efforts are rewarded with "a ‘local synthesis’: a singleviewpoint  or  vantage-point  from  which  a  great  tract  of  country  (knowledge)  can  beseen".   But, this type of metaphor is difficult to reconcile with the architecture of thenetwork maps presented  in the thesis.   A basic observation within this thesis  that thecurriculum, as represented by courses, is very large, so only ever partially experienced,and does not allow for relatively "great tracts" of knowledge to be seen in retrospect; thenumber  of  possible  trajectories  is  nearly  innumerable  for  students,  so  no  orientationtowards a single summit is possible.  And, an initiating observation of this thesis, whichmotivated the very creation of the network maps presented, is that the overall curricularstructure is veiled – anything but "prominent", "publicly visible", and easily "seen froma distance" as Ormell contends the curriculum should be (p. 72-73).  Instead of "height" on a mountain in a journey towards a "peak", a different kindof measure for progress through the curriculum as represented by the network of coursesis required.  Davis and Sumara (2006: 57)  write that "complexity thinking troubles themetaphors of accumulations of knowledge and progress toward a foreseeable endpoint",and "the emergence of new interpretive possibility [learning] is framed more in terms ofexpansiveness  and  outward  movement".   Instead  of  the  synthesizing  and  orientingvantage point being the peak of a mountain from where a student looks back and down-wards  upon  the  curriculum  once  climbed,  a  metric  which  traces  a  learner's  historythrough the curriculum to measure "outward movement" from a starting point towardsthe unknown is formulated.  Let such a course network metric be called distent, DThe  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  followingdefinition: "Distent, n:  Stretching out; out-stretched extent; distension; breadth."  Here,as an alternative to the concept of distance in Euclidean space (Gamelin & Greene 1983:ch.  1),  distent  is  proffered  as  a  structural  metric  of  course  separation  on a  network.Traditional  cartographic measures of separation, such as cartesian distance, along withsome typical adjectives, such as higher and lower, are less applicable to describe separa-tion of nodes on a tangled network.  Common education perspectives assume that move-ment along a knowledge trajectory implies the effective connection of new knowledgeto old knowledge,  that is, the construction of a continuously elaborated present knowl-edge.  This view from education can support a more continuous,  topological notion ofseparation-as-stretching as much as the notion of separation-as-distance or being apart inspace.  The metric, distent, captures this difference by tracing the steps taken forward toreach any point in the network.  Therefore, two nodes may be located quite close to eachother in terms of their placements on the embedding of a network map, but be consid-ered quite separated as measured by distent†.Let distent be measured outward from a common origin: the beginning of Kinder-garten.   Now all  courses  of  the  education  system can  be characterized  as containingknowledge continuously elaborated from Kindergarten by tracing the demands of priorknowledge set down in prerequisite requirements as represented by the topology of thenetwork  (see  Figure  4.2.1.1-1).   Let  the  distent  score  assigned  to  any  course  be theacademic credits (¯) required to finish the course; that is, distent is a measure of continu-ous knowledge elaboration, stretching from the beginning of Kindergarten to the end ofthe course in question.  Since there are many possible trajectories between kindergartenand,  say,  an  advanced  undergraduate  course,  care  must  be  taken  in  establishing  analgorithm.  To do so, the way the course network is normally visualized and described inthis thesis must be changed by reversing the direction of the links (see Figure 4.2.1.1-2).This  change  in  link polarity  switches  the  qualitative  orientation  of  the  network  fromprerequisite courses to subsequent courses, from prior knowledge to future possibilities,and  switches  the  quantitative  flow  to  be  in  the  direction  of  knowledge  elaboration:expansive and outward from a common origin, Kindergarten.A directed  acyclic  graph  (review §2.3.2.1),  like the  course  network,  formallydefines a "precedence relation" (Pemmaraju & Skiena 2003: ch. 8.5.1) on the nodes, iflink (i, j) is taken as meaning that node i must occur before node j.  A topological sort isa nonunique permutation of the nodes of a graph such that a link (i, j) always impliesthat i appears before j (Corman et al 2001: ch. 22.4).  Only directed acyclic graphs canbe topologically sorted, since no node in a directed cycle can take precedence over allthe rest.   Because there are no cycles, every finite acyclic graph contains at least onenode v of out-degree zero where trajectories of the graph might be said to end.  Clearly,v can appear last in the topological ordering.  Deleting v leaves a graph with at least oneother vertex of out-degree zero.  Repeating this argument gives an algorithm for topologi-cally  sorting  any  directed  acyclic  graph  establishing  a  node  permutation  with  abeginning(s) and end(s) (see Figure 4.2.1.1-3).  Critical to several types of calculationsfor this thesis, a topological sort of the course network allows the otherwise large, tan-gled nexus to be addressed systematically and efficiently, from end(s) to end, for compre-hensive,  sophisticated  analysis  with  reasonable  computing  times  (for  the  interestedreader, see Attachment 9.3 Supplementary Equations 4.2.1.1).Here  it  is  assumed  that  a  particular  course  and  its  neighborhood  define  a"precedence  relation".   In  the  case  of  the  course  network  reversed,  where  edges  areoriented from a course to its subsequents, the precedence relation is the prior knowledgea  course  provides  to  its  subsequents  for  elaboration.   Typically,  terminal  400-levelcourses are at the end of such precedence chains and kindergarten is alone at the begin-ning because it is the only node requiring no prior knowledge from within the educationsystem.  The topologically sorted reverse course network always starts with kindergar-ten, and it is an obvious reference point for distent and other calculations.  Let the dis-tent measure to any course be the total number of credits accumulated along a trajectoryfrom the beginning of kindergarten to the end of the course, chosen to be simultaneouslythe longest  necessary  and the shortest  optional  path (see Figure  4.2.1.1-4  and Figure4.2.1.1-5).  In large complicated course networks, a path defining the distent of a courseis not unique since one or more paths may determine the same distent score. By sifting through  the individual  distent  results  calculated  for each course bycomputer  with  the  program,  Calendar  Navigator,  some  exceptional  courses  are  high-lighted (see Table 9.2-1, eleventh column, D).  Predictably, kindergarten (#535) has thelowest  possible  distent score (¯2), since it relies not at all for students  to arrive withknowledge from elsewhere  in the education system.  The many instructional  hours ofexpected  attendance,  and  the  normally  twelve-plus  years  of  enrollment,  ensures  thatSchool  is  the  major,  if  not  distinguishing,  contributor  to  the  distent  scores  of  mostcourses (see Figure 4.2.1.1-6).   Trajectory requests may be sent to Calendar Navigatorfor any input course node on the network; two are shown in Figure 4.2.1.1-7.  Distentscores and trajectories allow for sophisticated quantitative and qualitative interpretationof  courses  characteristics  based  on  network  structure  independent  of  subject  specificcourse content.   Courses with small distent scores lie on continuous chains of knowl-edge elaboration that are short; courses with large distent scores lie on continuous chainsof knowledge elaboration that are long.  The "emergence of new interpretive possibili-ties"  within  any course  is  not  arbitrary,  but  always  a  function  of  the  prior  academicknowledge brought to the course by students.  Given the distent score of a course, andby tracing the trajectory to it, reasonable expectations may be made regarding the levelof readings,  difficulty  of assignments,  knowledge  of peers,  scholarliness  of instructor,necessity  for attendance,  and challenge  of assessments,  within.   Coupled with subjectspecific context, further expectations regarding methods of content delivery, the role ofthe individual learner, the role of the instructor, and the type of interactions among thelearners can be formed.High  school  courses  with  maximum distent  are the terminal  courses  from theRegistered Apprenticeship Program (RAP), for example, RAP 6243 (#1196), StructuralSteel and Plate Fitter 35d, with D = ¯ 90.  This indicates the vocational knowledge intheses courses is well developed, and supported by a continuous, long chain of previouslearning.   Not  surprisingly,  considering  the number of hours  directed toward the pro-gram, a successful  RAP student graduates  from high school  nearly finished their  firstyear  formal  apprenticeship  training  in  the  corresponding  field,  which  are  otherwise"traditionally  .  .  .  began  after  students  graduate  from high school"  (Alberta  Learning2003b).  Among the academic high school courses, MAT 3211 (#736), Mathematics 31,and GER 3317 (#534), German 31, with D = ¯ 67, and FSL 3308 (#528), French 31C,with D = ¯ 77, have the greatest distent scores.  These courses are appended to the endsof  prerequisite  chains  typical  in  length  of  other  senior  subjects  in  high  school,  thusextending them, indicating students must direct even more learning time and effort tofinish  them.  As a result,  students  completing  these long learning trajectories  in highschool have direct access to more advanced courses in the corresponding departments atthe  University  of  Alberta,  such as,  MATH 100 (#4165),  Calculus  I,  and MATH 117(#4171), Honors Calculus I, over MATH 114 (#4169), Elementary Calculus I, or FREN211  (#2208),  Intermediate  French  I,  over  FREN  111  (#2204),  Beginners'  French  I.Thus, the distent metric,  measuring only network structure,  identifies,  by extreme val-ues, the courses in the school system that, a) function as the gateway to the educationsystem (kindergarten),  and, b) effectively function as 'advanced placement' courses, forfurther learning in either the trades or university.  Generalizing, the distent metric is hereoffered  as  a  measure  of  course  separation  from kindergarten,  which  in  turn  may  bereasonably interpreted  as corresponding  to the level of knowledge development  at theconclusion of a course.The lowest distent  courses in the University  are introductory  courses from theDepartment  of Physical  Education and Recreation,  such as, PAC 182 (#4651),  IndoorWall Climbing, and DAC155 (#4613), Social Dance, all with D = ¯ 62.5.  These physi-cal  activity  and  dance  activity  courses  require  nothing  but  the  minimum  Universityentrance  requirements  as  prerequisites,  and are  only  weighted  as  ¯1.5  credit  coursesthemselves.  At the other extreme, is NURS 408 (#4594), Acute Care Practice II, with awhopping (in the strictly scholarly sense) distent of D = ¯129 – a score so large it isonly achievable by a high credit course coming at the end of a strict, four year scheduleof consecutive high credit courses in a single discipline.  Its course description declareshow "professional  nursing practice focuses on a comprehensive  application of primaryhealth  care principles  to clients  experiencing  acute  variances  in health  across  the lifespan".   The  weighty  vocabulary  of  "professional",  "practice",  "comprehensive","principles", and "variance" used in the description is well suited to a course that com-pletes the training of those who prepare, literally, for complicated life and death situa-tions at the extreme of their involved profession.  A qualitative visualization of distentscore distribution for nodes throughout the course network, for School and University, isdisplayed by Figure 4.2.1.1-8.  By  calculating  the  frequency  distribution  of  course  distent  for  each  facultyindividually,  location  (median),  dispersion  (median  absolute  deviation),  and  shape(skewness) statistics may be compared (see Table 4.2.1.1-1 tenth column, Dè , and Figure4.2.1.1-9).  By viewing the median distent column, Dè , the Faculties of Arts and PhysicalEducation, are seen as low distent faculties, scoring ¯67 and ¯66 respectively.  Consider-ing the baseline distent level of ¯61, required just for the minimum University entrancerequirements from high school, most courses in the Faculties of Arts and Physical Educa-tion have distent scores within ¯6, viz., two ¯3 courses in a row.  Most courses in theFaculty of Agriculture, Forestry, and Home Economics, Dè AH  = ¯68, and the School ofNative Studies, Dè NS  = ¯68, have distent scores within ¯9 ( or three ¯3 courses) of theminimum University entrance requirements.  The majority of Science (Dè SC  = ¯73) andBusiness (Dè BC  = ¯71) courses can be completed within ¯12 sequences of study, or four¯3 courses.  The professionally oriented Faculties of Engineering, Nursing, and Medi-cine & Dentistry, all have a majority of their courses coming after knowledge develop-ment chains of greater than ¯12 beyond high school.  That is, most courses from theseFaculties  are typically not even encountered by students until after sequences of studythat include at least four courses at the University level.  See Figures 4.2.1.1-10 & -11for more details.   For the interested reader, similar comparisons among the Universitydepartments may be made using the average distent statistics on Table 4.2.1.1-2, eighthcolumn, Dêêê.The system for numbering university courses as described in the University ofAlberta Calendar (§220, p. 448), already discussed in §3.1.2.4 (review Table 3.1.2.4-1),implies a specific, direct relationship with the distent metric.  Quite simply, since eachnumber  level  is  expected to have prerequisites  from the previous  level,  eg.  300-levelcourses "normally" have 200-level prerequisites, and since the median weight of univer-sity courses is ¯3 (review Figure 3.1.2.4-4), the separation of number levels in terms ofdistent should be ¯3.  A common intermediate reference point for all university coursesis the minimum entrance requirements with distent of ¯61.  Therefore, if the Universityadministration's  course numbering system is being followed, then most first year, 100-level courses have an expected distent of ¯61 + ¯3 = ¯64, 200-level courses have anexpected distent of ¯67, third year courses have an expected distent of ¯70, and 400-level courses are supposed to have a distent score of ¯73 on average.  Insofar as thiscorrespondence  holds,  the frequency distribution  of course credit  weight over numberlevels  (review  Figure  3.1.2.4-5)  matches  the  frequency  distribution  of  course  creditweight over distent (see Figure 4.2.1.1-12).   Alas, this is not the case.  Although bothdistributions  have the same median – at the 300-level  or ¯70 distent score, they havevery different shapes as measured by skewness: -1.36 vs. 2.07.  A negative skewness tothe frequency distribution in Figure 3.1.2.4-5 implies that few low-level courses lead tomany  high-level  courses,  while  a  positive  skewness  to  the  frequency  distribution  inFigure 4.2.1.1-12 shows that many courses of low distent lead to fewer courses of rela-tively higher distent.  Using a nonparametric statistical method to compare two distribu-tions with the same median, the distributions  from Figures 3.1.2.4-5 & 4.2.1.1-12,  aremeasured  to be significantly  different  (P-value ≈  0) by comparing  variability  using a"test  of dispersion"  (Hollander  & Wolfe 1999:  ch.  5.1),  called the Siegel-Tukey  Test(Abell et al. 1999: 570).  To summarize, the University administration sets forth guide-lines and labels which arrange the courses in an expansive, "top-heavy" structure (Ù) asnumber level increases, but, the courses actually interact by their prerequisite knowledgein  a  far  different  manner:  a  contracting,  "bottom-heavy"  structure  (Ú)  as  distentincreases (see Figure 4.2.1.1-13).The  "top-down",  planned  view  of  course  structure  from  the  administrationdiffers  substantially  from the "bottom-up",  experienced  view of course structure  fromthe students.  The only Faculty with a negative skewness to the distent distribution forits  courses  (see Table  4.2.1.1-1,  eleventh  column,  gD)  is  Engineering.   That  is,  onlyEngineering  (mildly)  holds to the administrative  view that courses are arranged in anexpanding  structure,  anything  like Figure 3.1.2.4-5.   The reason for the dramatic  andconsistent difference in course arrangement for every other Faculty, and the Universityas a whole,  from the expected  arrangement  of courses  implied  by the distribution  ofnumber level, is the widespread and prevalent use of hedge terms in the course number-ing system that allow for deviations  from the normal prerequisite  relationships  amongcourses (review Table 3.1.2.4-1).  In most Faculties there are many senior courses withfew senior prerequisites,  few junior prerequisites,  or even no prerequisites at all.  Thishas the effect of increasing access, and 'front-loading'  new course choices for freshmanand sophomore  students,  thus making most of a Faculty available to students  early intheir studies with relatively  lesser expansion of course choices in later years.   On theother hand, some Faculties assign courses prerequisites  of the same level, instead of alevel  below,  thus  extending  prerequisite  lineages  and  delaying  access  to  subsequentcourses of higher number level beyond what is expected.  Both of these ubiquitous typesof  deviations  from  the  normal  classification  of  courses  contribute  to  the  differencebetween the imagined administrative structure – wherein the diversity of courses avail-able to students consistently increases year-by-year as they move towards graduation –versus  the  experienced  knowledge  structure  of  courses  linked  by  their  prerequisiterequirements – wherein new course choices explode in the early years for students, thenare reduced to a trickle along sometimes very lengthy trajectories.Besides  the directed,  binary,  prerequisite  relationship  between pairs of courses
that establishes the network structure studied in this thesis, courses are associated by a
second overlapping layer of relationships based on membership in specific degree pro-
grams  offered  by  each  university  Department.   The  University's  numbering  system
describes courses at any number level as being "designed typically for students in the
[corresponding] year of a program."  That is, 300-level courses are "typically" designed
for third-year students  of a particular program.  Sometimes this condition is explicitly
stated  in  a course  description.   For  example,  NUTR 440 (#1518),  Current  Topics  in
Nutritional  Sciences,  states  it  is  "open  to  fourth-year  students  in  the  Nutrition  major
only",  but  also  lists  NUTR 301 & 302 as specific  course  prerequisites.   Many other
senior  level  courses  have  no  stated  prerequisites  of  specific  courses,  degree  require-
ments, or student year.  A very small minority of courses have restrictions on the year of
a student without also specifying specific course prerequisites or even degree programs;
for example, SOC 300, Principles of Sociology, offers "basic concepts and principles of
Sociology  for  students  with  advanced  standing"  with  the explicit  "prerequisite:  third-
year or more advanced standing", which "may not be taken for credit by students with
credit in SOC 100. First or second-year students must take SOC 100."  In terms of the
method of data translation into the course network in this theses, a prerequisite condition
on the year of the student can be reasonably accounted for by the requirement of least
one connection from that course to some other subset of courses at the next lower num-
ber level.   Ideally,  the two factors that determine the number level of a course are in
harmony: a course at a certain number level, say 300, has explicit prerequisites  at the
next level below (200-level) or is attended by students in the corresponding (third) year,
whose  transcripts  are  full  of  the  implicitly  supporting  (200-level)  courses  from  the
previous year of the program.  The disconnect between the number level of courses that
have explicitly stated prerequisites and the number level of courses that rely on implicit
adherence to an outline of a degree program is revealed whenever a diversity of students
external  to  particular  programs  enroll  in  courses  as  options,  or  whenever  the  same
course belongs in two or more different degree programs.

Contemporary learning theories emphasize engaging and challenging the learner
with tasks that refer to skills and knowledge just beyond their current level of capabili-
ties.   For  example,  Smith  et  al.  (1993)  employ  an  explicit  constructivist  stance  and
interpret students' prior conceptions as "resources for cognitive growth within a complex
systems view of knowledge" used as the basis for "knowledge refinement and reorganiza-
tion".  This view of knowledge and learning is incompatible with the current practice of
assigning the same number level to whole groups of courses where the "level of mas-
tery" and academic "resources"  among the students  are so inconsistent.   For instance,
presenting a 400-level course without specific university prerequisites and contending it
somehow  supports  learning  and  knowledge  of  the  same  "level"  as  other  400-level
courses  with  standard  prerequisite  lineages  is  problematic.   Either,  the  information
encountered suits a 400-level  course and relies on sophisticated (300-level)  supporting
prerequisite knowledge that a diverse student body with differing prior knowledges and
experiences  are unable to incorporate  into their  knowing,  or, the information  encoun-
tered depends on prerequites further towards students'  shared foundational  knowledge,
thus  resulting in learning  outcomes characteristic  of courses at  a lower number  level.
The argument  here assumes a kind of consistency in the Education system, such that,
any course, in any subject, given any title, sporting any catalogue number, cannot reli-
ably elevate the knowledge of its incoming students more (or less) than its credit weight
(eg. ¯3) reflects, from a baseline level of experience and common knowledge indicated
by prerequisites  without having practically unacceptable  dropout or failure rates.  This
principle  is consistent  with John Dewy (1938: ch. 3 & 7), who places learning into a
"category of continuity" based on an "experiential continuum" that precludes any sort of
large 'quantum leaps'  in knowledge  among learners  beyond their  prior  experiences  to
levels beyond what can be expected from a single ¯3 course.

Number levels presently fail to be meaningful  because they do not model (Se-
beok & Danesi 2000: ch. 1) well and sustain the pattern of the University's course num-
bering  system to  which  they  supposedly  refer,  nor  do  they  consistently  differentiate
(Belsey 2002: ch. 4) courses based on a substantive concept such as the level of knowl-
edge taught and learned in a course.  The above described repositioning of courses in
University  based  on  nonstandard  or  unstated  prerequisite  requirements  for  assigned
number levels leads to a large variance of distent scores for courses of the same number
level (for example, review Figure 4.2.1.1-7).  When, courses of a particular level have
anything from no university prerequisites  to prerequisites of the same level, just know-
ing the catalogue number of a course is insufficient to reliably characterize the knowl-
edge development within, especially for 300- and 400-level courses.  The distent metric
is here offered both as a way of restating the meaning of the course numbering system
(review Table 3.1.2.4-1) and as a practical tool to label courses based on the level of the
knowledge  taught  in  the  course.   A distent  supported  system of  assigning  catalogue
numbers  to  courses  would  function  similarly  to  how addresses  are presently  used  to
locate buildings in a city, where the (street) name and first digits of the address immedi-
ately offer an approximate 'location'.  The proposed format is: SUBJECT XXYY, where
SUBJECT is the subject code used presently, such as MATH (Math) or PSYCO (Psychol-
ogy), XX is the distent score of the course, say ¯64 for a first year course, and YY are
the last two digits presently used to distinguish courses at any level.  For example, using
the courses from Figure 4.2.1.1-7, CH E 435, Oilsands Engineering Design, would be
relabelled CH E 9735 derived from its distent score of ¯97, and C LIT 440, Compara-
tive Studies in Popular Culture, would be relabelled C LIT 6440, derived from its distent
score of ¯64.  Courses are presently given classifications based on course number, but
this administrative categorization has lost some of its meaning due to the pervasive lack
of discipline in following the guidelines.  A course labelling system tied directly to the
prerequisite  requirements  offers  an  objective,  consistent  method  for  generating  cata-
logue numbers,  which,  in turn,  provide immediate  information  regarding  the approxi-
mate level of knowledge expected in the course based on distent score.

Aside  from  the  particularities  of  the  proposed  course  renumbering  system
described immediately  above, the present system can be further scrutinized.   Once the
relationship  between  the University's  present  numbering  system and distent  is  under-
stood, and after the observation that the distribution of courses by level does not match
the distribution of courses by distent, the question of which courses,  departments,  and
faculties currently break the guidelines the most, and in what ways, arises.  Nominally,
all courses presently labelled, 4xx, are of the same number level, but as measured by the
distent metric, they vary widely in their network locations, and therefore functions.  The
University numbering system, if followed, implies a consistent distent value for courses
from each  number  level:  100-level  courses  taken  by first  year  students  in a program
have an expected distent of ¯61 + ¯3 = ¯64, 200-level courses taken by second year
students  in  a  program  have  an  expected  distent  of  ¯67,  third  year  courses  have  an
expected distent of ¯70, and 400-level courses are supposed to have a distent score of
¯73 on average, as illustrated four paragraphs above.  Therefore,  all of the courses in
the University can be assigned two distent scores: a) an implicit score determined by the
presently assigned catalogue number,  and b) a measured distent value based on actual
prerequisite  lineages.   Comparison  of these two distent  values determines  if  the cata-
logue  number  of  a course  overstates,  matches,  or  understates  the level  of knowledge
developed  therein.   After  normalization,  by  setting  the  minimal  university  entrance
requirement to zero distent, the ratio of the implied vs. the measured distent accrued in
university for each course is calculated, and the average values reported for departments
on Table 4.2.1.1-1.  Large ratios indicate that the average course catalogue numbers are
too high given the average measured course distent; these departments are responsible
for the above discussed "front  loading" of the university by allowing overly generous
access to upper level courses by freshman and sophomore students.  Small ratios indi-
cate  that the average course catalogue  numbers  are too low given the average course
distent;  these  departments  are  responsible  for  the  above  discussed  "long  tail"  of  the
frequency distribution for distent comprised of courses along protracted trajectories.  

The integrity  of such evaluations  is dependent  on the reliability  of the distent
metric  to  measure  what  is  purported  (see  Figure  4.2.1.1-14),  and  the  plausibility  of
interpretations.   Notice,  at issue in this analysis  of number level 'inflation'  is not how
many high or low distent courses there are in a department, but how appropriately they
are labelled with catalogue numbers.  For instance, the Department of Biomedical Engi-
neering will always have proportionally more high distent courses than, say, the Depart-
ment  of Anthropology,  since  its  advanced  subject  matter  relies  on so much previous
learning before entrance.  But, either Department could be measured as 'correspondent',
over 'inflationist'  or 'deflationist',  whenever  the number  levels assigned to the courses
faithfully reflect the University course numbering system.   It is here speculated that the
practical  aligning  of  courses  in  terms  of  their  topics  of  inquiry,  prerequisite  require-
ments, and number level, is a distributed process occurring among professors of individ-
ual Departments – an intermediate level somewhere between the central administration
and the students.  Clark (2004) identifies two important forces of influence on a depart-
ment: 1) the vitality, diversity, and growth of the subject matter of the department, and,
2)  the  element  of  competition  for  resources  between  departments  in  the  university
(particularly  in  North  America).   For  departments  centered  around  large,  involved,
demanding subjects studied through focused programs, long chains of knowledge devel-
opment, including five or more courses, are inevitable.  Given the inherent limitation of
the University course numbering system to 400- & 500-level courses that imply prerequi-
site  chains  of three  or four courses long,  number level  deflation is unavoidable.   For
departments centered on what Pan (1998) and Cole (2002) call "marginalized" subjects,
course  level  inflation  might  be a  survival  response  to  help compete  for  the essential
resources of students and the funding allocated for them.  For example, since all Bache-
lor  programs  have limitations  on the number  of  junior  level  credits  which  contribute
towards the degree, persistently low enrolments in a junior (100-level) course at a Depart-
ment can be addressed by raising the catalogue number to the 200-level.  Thus, a code-
pendent  relationship  established  between  students  'shopping'  for accessible,  nonjunior
degree requirements and departments seeking student enrolment can be a mechanism for
course level inflation.   A more widely reported,  complementary  phenomena of "grade
inflation" (Nature 2004; Johnson 2003: ch. 3; Ziomek & Svec 1997; British Broadcast-
ing  Corporation  2010)  "omnipresent  at  community  colleges  and  at  both  public  and
private four-year schools" is attributed by Rojstaczer & Healy (2010)  to a similar, "keep
the  customer  happy",  ethos  across  USA  (at  least)  campuses  (see  also,
<www.gradeinflation.com>).

By definition, academic subjects vary from one another.  It is difficult to com-
pare the subject matter in, say, ENGLISH 100 to MATH 333, so no attempts are directly
made in this thesis.   Instead,  courses are evaluated and compared indirectly  based on
their network locations.  The differences and similarities in courses are by virtue of their
arrangement, and the assumption that each course on a transcript contributes equally to a
student's education in proportion to course weight: three academic credits (¯3) assigned
to a Native Studies course is given the same significance on a transcript as if the credits
were  assigned  to  a  Pharmacology  course.   Distent  is  the first  example  of  a  network
metric  tailored  for  use  in  education.   It  measures  the  prerequisite  lineages  for  each
course  in  a careful  way,  by identifying  the simultaneously  longest  necessary  and (fl)
shortest optional route from kindergarten to the course in question.   Chains of courses
are  argued  to be trajectories  of continuous  knowledge  elaboration  proportional  to the
number of academic credits (¯) awarded to constituent courses along the way, and this
is  called  'distent'.   With  this  framework  in  place,  all  individual  courses  in  Alberta's
Provincial Education system are characterized by the distent measure, plus departments
and faculties by average and median distent values.  The distribution of distent scores is
shown to have strong implications for how the network of courses is shaped, which in
turn determines  how knowledge  is presented to, and experienced  by, students  in their
paths  through  University.   The  discrepancy  between  how  courses  are  labelled  with
catalogue  numbers  by  the  administration  and  how courses  are  scored  by  the  distent
metric is briefly discussed, leading to the portrayal of some departments as 'inflationist',
'deflationist', or 'correspondent'.  The suggestion, and outline, for a new system of course
labelling is offered since present labels no longer provide significant contextual meaning.
__________________________
†  Something  similar  could  be said  for  regular  geographical  maps.   For  example,  two
towns  in British  Columbia,  separated  by mountains,  may be close,  measured  "as  the
crow flies", yet be distant, measured by the highway system.
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Figure 4.2.1.1-1
A  simple  network  diagram  to  justify  the  distent  metric.
Given  a  reference  node,  K,  a  simple  metric  is  sought  to
characterize and distinguish the network positions of nodes
A  and  B.    Let  it  be  observed  that  node  A  is  two  steps
removed from node K, while node B is three steps removed.
Standard  network  measurements,  such  as  "s-t  shortest-
paths" (Pemmaraju & Skiena 2003: ch. 8.1), are defined on
binary networks, with paths assumed to be independent, and
where  nodes  are  of  singular,  unit  weight.   A  moderately
more  sophisticated  metric,  called  distent,  is  suggested  to
measure the magnitude of separation on education networks
with  course  nodes  of  individual  weights,  links  of  variable
strength,  and  whereon  paths  are  dependent  if  they  link
prerequisites to the same course.
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B

Figure 4.2.1.1-2
A  juxtaposition  of  two  networks,
one  with  polarity  of  the  edges
reversed.   Throughout  the  thesis,
course networks are displayed and
discussed  with  the  links  oriented
from a course towards its prerequi-
sites  as  translated  from  source
documents  (see  Figure  3.1.2-2);
here displayed as network A.  The
reverse  orientation,  network  B,
where  links  point  from  a  course
towards  its  subsequents  is  often
qualitatively insightful and quantita-
tively necessary for this thesis.
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Figure 4.2.1.1-3
A network  embedding  to  illustrate  the effect  of  a
topological  sort.   Displayed  is  network  B,  from
Figure  4.2.1.1-2  after  a  topological  sort  of  its
nodes.   It  appears  structured  in  five  layers  from
bottom  to  top,  as  {{0},  {1},  {2,3,5,7,11},
{4,6,9,10},{8,12}}.   Node  0  is  identified  as  the
unique starting point for the network since it has no
inward  links.   Critically,  all  directed  links  move
only  upward  and  outward,  never  horizontally  or
downward.   This  arrangement  establishes  consis-
tent  precedences  among  the  nodes  useful  for
algoritms  implementing  dynamic  programming
methods (Corman et al 2001: ch. 15).  Calculations
for distent and other network metrics on each node
can proceed upwards and outwards,  one layer at a
time  from  the  beginning  without  concern  that
results regarding a particular node will be affected
by incomplete calculations.
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Figure 4.2.1.1-4
Some sets of trajectories through the course
network  relevant  to distent  calculations  for
any  given  course.   Consider  a  course,  A,
with prerequisite requirements, I, II, and III.
All trajectories from kindergarten to course
A must be considered when calculating the
distent score, DA.  From the sets of trajecto-
ries comprised of courses possibly fulfilling
each prerequisite requirement,  I, II, and III,
the  trajectory  with the least  distent  is cho-
sen.  From the three above identified trajecto-
ries,  one  for  each  necessary  prerequisite
requirement,  the  trajectory  with  greatest
distent is chosen to calculate the distent  of
course A.
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Set of all possible trajectories
in course network

Set of all trajectories from
Kindergarten

Set of all trajectories
to course A

Set of all trajectories that
fulfill prerequisite III
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Figure 4.2.1.1-5
A diagram to illustrate how distent scores are calcu-
lated.   Let  each  node  represent  a  course  on  an
education  network,  where  the  area  of  a  node  is
proportional  to course  credits.   For example,  node
K  has  two  credits  (¯2),  node  a  (and  b)  has  five
credits  (¯5),  and  node  c  (and  the  rest)  has  three
credits (¯3), as indicated.  Let all links between the
nodes  be  strength  unity  indicating  the  prerequisite
nodes are necessary, except the links between node
B and nodes c and d.  These two links are strength
1/2 and indicate that either node c or d satisfies one
prerequisite  of  node  B,  while  node  b  satifies
another.  The distent score of node K is indicated to
be two credits – a value equal to its course weight
plus the distent of its prerequisite  (none).  Further,
the distent score of node a is indicated to be seven
credits  –  a  value  equal  to  its  course  weight  (¯5)
plus the distent score (2) of its prerequisite, node K.
Similarly  simple  calculations  establish  distent
scores up to, and including nodes b, c, and d.  Node
A  requires  both  nodes  c  and  d  as  prerequisites.
Therefore,  the distent score, D, of node A  is equal
to  its  course  credit  weight,  w,  plus  the  maximum
distent  of  nodes  c  and  d,  such  that,  DA  =  wA  +
Max[Dc , Dd] = ¯3 + Max[¯13,  ¯16] = 19 course
credits (¯19).  Node B requires nodes b and (c or d)
as prerequisites.   Because  either  nodes  c  or d  can
satisfy  a  particular  prerequisite  of  node  B,  the
distent  algorithm refers  to  the  node  with  the  least
distent.   Therefore,  DB  = wB  + Max[Db, Min[Dc ,
Dd]]  =  ¯3  +  Max[¯12,  Min[¯13,  ¯16]]  =  ¯3  +
Max[¯12, ¯13] = 16 course credits (¯16).  Notice,
despite both referring to nodes c and d as prerequi-
sites,  and having  the same course  weight,  node A
has a greater distent score than node B.
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Figure 4.2.1.1-6  A bar chart of average distent score for courses in each faculty.  By
displaying  the  complete  scale  of  distent  scores,  from  zero  to  the  maximum,  the
difference  between university  faculties  is visually diminished,  while the dominant,
though  fairly  uniform,  role  of  School  distending  knowledge  from Kindergarten  is
emphasized.  The minimum requirements to graduate from High School and secure
admission to University are represented in the course network by a 'placeholder' node
of zero credits.  This basket of high school courses serves as a convenient reference,
and has a distent score of ¯61.  The most important constituent high school course is
ELA 3104, English Language Arts 30-2 (#275),   The affect of university on distent
is seen as only a comparatively small, specialized contribution to the distent already
established from School within the minimum University entrance requirements.
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Figure 4.2.1.1-7
A diagram showing a juxtaposition of two paths
through  the  education  network  that  determine
values of distent for a pair of four-hundred level
university courses.  Node area is proportional to
course credit  and distent  is indicated along the
y-axis  scale.   The  distent  score  assigned  to  a
course node depends on the number, and credit
weight,  of  courses  belonging  to  a  certain  path
that  connects  through  to  the  network  entry
point,  K.  In this example,  knowledge distends
commonly  through  junior  high  school  toward
both terminal  courses.   A path determining the
distent score for CH E 435, Oilsands Engineer-
ing  Design  (#3600),  includes  courses  in  high
school  and  university  mathematics†,  university
physics, and a selection of chemical engineering
courses,  for  a  total  distent  of  ninety-seven
credits, DCH E 435  = ¯97.  For C LIT 440, Com-
parative Studies in Popular Culture (#1808), the
path  passes  through  only  high  school  English,
for  a  total  distent  of  sixty-four  credits,
DC LIT 440  = ¯64.

________________
†  Despite having the generic sounding name, MATH 100,
the  university  mathematics  course  included  in  the  path
determining the extent of CH E 435, is intended specifi-
cally  for  engineering  students  and  explicitly  requires
MAT 3211, Mathematics 31, as does MATH 117, Honors
Calculus I.  The standard introductory calculus course is
MATH 133, Elementary Calculus I, which only requires
MAT 3037, Pure Math 30.
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Figure  4.2.1.1-8  (above)   A  network  diagram  displaying  the  distent  scores  for
courses.   The nodes  are colored coded based  on distent  score as indicated  by the
vertical legend.  Courses of lower distent score are generally located in central, core
positions on the network.  Nodes of high distent appear on the fringes.  Compare to
Figure 3.1.2-5 for a review of faculty locations.
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Figure  4.2.1.1-8  (above)   A  network  diagram  displaying  the  distent  scores  for
courses.   The nodes  are colored coded based  on distent  score as indicated  by the
vertical legend.  Courses of lower distent score are generally located in central, core
positions on the network.  Nodes of high distent appear on the fringes.  Compare to
Figure 3.1.2-5 for a review of faculty locations.
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Figure 4.2.1.1-9  Distent bar chart for faculties.  Consider the two high distent facul-
ties, Engineering and Nursing.  The average distent for courses in Nursing (¯87) is
higher than the average distent in Engineering (¯81); but, the huge standard devia-
tion  for  Nursing  (¯20)  indicates  a  scattered  distribution.   The median  distent  for
Engineering is higher than for Nursing, but the standard deviation and median devia-
tion for Engineering  is comparatively  smaller.   Combined,  the dispersion  statistics
demonstrate that Engineering is a more compact faculty in terms of distent; and, the
comparison of medians shows that most of the courses in Engineering have a larger
distent than most of the courses in Nursing.  Therefore, Nursing must contain a large
minority of very high distent courses to boost the average distent score.  The magni-
tudes and order of the mean and median statistics is summarized by relative magni-
tudes and signs of the skewness statistic (see Table 4.2.1.1-1).   The small negative
skewness  for Engineering (-0.12) indicates  that slightly  fewer courses of relatively
lower distent lead to more courses of greater distent;  the larger magnitude positive
skewness  statistic  for  Nursing  (0.70)  indicates  that  more  relatively  lower  distent
courses lead to fewer very high distent courses.  This interpretation of the statistics
may be confirmed visually by careful examination of the combined distributions (see
Figures 4.2.1.1-10,  -11, & -12).  A clearer,  but diffuse and perhaps tedious,  visual
description  of  each  department  could  be  made  by  individual  distent  distributions
where the location and size of peaks and tails is more obvious.
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Figure 4.2.1.1-10   A histogram illustrating the distribution of courses in the educa-
tion system based on their distent.  There is no vertical scale since the width of the
intervals is variable.   Instead, a legend (top right) establishes consistency based on
area of  the columns.   For  context,  a  small  selection  of course  labels  are centered
above  their  corresponding  distent  scores.   The  point  of  entry  into  the  education
system is set to zero distent.   Distent,  D, increases in proportion to the credit of a
course and is added to a certain  distent  score of the prerequisites.   Distent  scores
increase simply and predictably up to GRADE 9 (#544), DGRADE 9  = ¯47, where-
upon subject courses are referred to individually.  The lower boundary on distent for
university  courses  is  set  by  the  University  admission  requirements,
DDIPLOMA Admission  = ¯61.  The broad presence  of School across the domain indi-
cates many high school courses have distent scores greater than DIPLOMA Admis-
sion, for example, the academic high school courses of MAT 3211, Mathematics 31
(#736), DMAT 3211  = ¯67, and FSL 3308, French 31C (#528), DFSL 3308  = ¯77.  For
comparison,  concluding  courses from sequences in nonacademic  high school,  such
as IOP 3602,  Child  and Health  Care 36 (#654),  DIOP 3602  = ¯70,  and RAP 6147,
Millwright  35d  (#1116),  DMAT 3211  =  ¯90,  also  have  greater  distent  values  than
DIPLOMA Admission  or many undergraduate  courses.   Courses  with distent  over
one hundred credits come exclusively from the Faculty of Nursing.  At the extreme,
the course,  NURS 408,  Acute  Care  Practice  II  (#4594),  boasts  a  distent  score  of
¯129.

150



2 7 17 27 37 47 57 62 67 73 79 85 91 97 110 120
64 70 76 82 88 94 100Course Distent D H¯ creditsL

Frequency Distribution of
Course Distent - Faculty View
of Academic School & University

Area represents
fifty courses

NURS 461
NURS 405

CH E 435
ART 524

E E 451
MUSIC 560

MATH 438
JAPAN 451
PHYS 472

GEOPH 438
STAT 472

PEDS 446
ECON 408

PMCOL 337
EASIA 480
NU FS 463

MICRB 345
DES 375

K
GRADE 1

GRADE 2

GRADE 3
GRADE 4

GRADE 5

GRADE 6
GRADE 7

GRADE 8
GRADE 9
MAT 9
SCN 9
SST 9

PED 0770
SSN 1154

ULC 1089
PED 1445
SCN 1270

SCN 2231
FSL 2309
FNA 3405

ELA 3104
PAC 110

St Stephen's
St Joeseph's
School
Science
Phys Ed
Nursing
NativeStudies
MedicineDent
Engineering
Business
Arts
Ag For Home Ec

Figure 4.2.1.1-11  A histogram of distent scores focusing on courses from academic
school and university.  The distent scores from nonacademic school programs, such
as, IOP, CTS, and RAP are removed.  There is no vertical scale since the width of
the  intervals  is  variable.   Instead,  a  legend  (middle  right)  establishes  consistency
based on area of the columns.   Though it  is difficult  to observe  in this  combined
distent distribution, distributions  of individual university faculties vary significantly
in their location, determined by mean, and shape, determined by skewness (see also
Figure 4.2.1.1-12).  These variations are reflected in the corresponding course subnet-
works as differences in topology.
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Figure 4.2.1.1-12
A  histogram  focusing  on  a  limited
disent  domain  features  the  distribution
of  courses  in  the  Univerity  and  some
academic  high  school  (number  levels
10,  20,  and  30).   Distent  is  a  measure
based on the number of weighted  steps
in  the  prerequisite  lineage  of  a  course.
The standard,  'top-down',  administrative
view of  number  levels,  as  described  in
Figure  3.1.2.4-2,  implies  a  distribution
that  is  negatively  skewed  (skewness  ≈
-1.36),  such that,  a long tail  on the left
of  low  level  courses  leads  to  more
courses  of  high  number  level.   In  con-
trast,  a 'bottom up' view, here based on
the  network  links  between  courses
results  in  a  distent  distribution  that  is
positively  skewed  (skewness  ≈  0.33),
such that, a large number of low distent
courses on the left lead to a long tail of
high  distent  courses  on  the  right.   The
distribution  mode  (peak)  is  at  a  distent
between ¯67 and ¯70, or about two ¯3
steps from high school admission require-
ments,  and the average (mean ≈ ¯70.5)
of the distent distribution is slightly over
seventy credits – about three steps from
high  school.   The  mode  of  Figure
3.1.2.4-2  is  at  the  400-level,  that  is,
about  four  "typical"  steps  from  high
school  admission  reqirements,  and,  the
'average'  course  (mean)  is  at  the  300-
level.  See Figure 4.2.1.1-13.
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An imaginary network based on an interpretation of
the  frequency  distribution  of  distent  in  Figure
4.2.1.1-12.   Begging  the reader's  indulgence,  con-
sider  the  nodes  to  represent  course  aggregates
containing  numbers  of  courses  in  proportion  to
their  size  with  approximate  distent  values  in  the
range  indicated  on  the  vertical  axis.   Consistent
with the definition  of distent,  links connect  layers
of nodes  with progressively  greater  distent  scores.
Observe  the  structure  to  be,  in  a  sense,  'bottom-
heavy'  (Ú),  such  that,  the  network  is  already  rich
with choice when a student enters the early stages
of undergraduate  university.   From there,  the net-
work  quickly  contracts  as  some  prerequisite  lin-
eages  terminate,  yet  others  continue  to  distend
considerably.   The topology of the course network
implied  here  by  the  distent  metric  contrasts  with
the  network  topology  implied  by  administrative
course labels in Figure 3.1.2.4-6 (please view).  An
explanation  of  the  discrepancy  between  these  two
networks,  and,  more  fundamentally,  the shapes  of
distributions  in  Figure  3.1.2.4-2  and  Figure
4.2.1.1-11,  is  the  widespread  use  of  the  hedge
terms of the course numbering system highlighted
in Table  3.1.2.4-1.   For  example,  the  presence  of
many senior courses touting three and four hundred
level  labels  with  junior  or  no prerequisites  would
shift the discussed distributions  from a negative to
positive  skew,  and the discussed  networks  from a
qualitative 'top-'  (Ù) to 'bottom-heavy'  (Ú) descrip-
tion.   These  observations  point  towards  a kind of
'number level inflation' in some faculties or depart-
ments.   On  the  other  hand,  the  distent  metric
reveals the presence of many, what are here called,
'endurance'  courses  with  very large distents.   Dis-
tent  scores  of  such  magnitude,  say D  >  ¯80,  can
only be achieved if multiple courses in prerequisite
lineages refer to courses of the same level instead
of ("normally") a number level below.
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Table 4.2.1.1-1  Course network properties of faculties.  Gross measures of academic size for each faculty are recorded as
the  number  of  different  courses,  N,  and  the  total  course  credits  (¯).   Course  connectedness  is  described  by the  link
strengths per course in each faculty, s.  Topological  features of interest  for educators are measured for courses in each
faculty by distent (D), sustent (S), extent (E), and intent (I) statistics.  Uncertainty values in mean (average) statistics for
variables, such as, sê, Dêêê, and Sêê, are the standard deviations of the distributions, provided to offer a sense of variability or
dispersion; they do not represent any sort of measurement error.  Uncertainty values in median statistics for variables, such
as, sè, Dè , and Sè , are the median deviations of the distributions.  Skewness statistics (g) are provided for variables to a mea-
sure the asymmetry of the distributions.

¯ - course weight HcreditsL in faculty N - number of courses in faculty
sêpre - mean link strength to prerequisites Sêê - sustent average, units : H¯L
sèpre - median link strength to prerequisites S

è
- sustent median, units : H¯L

sêsub - mean link strength to subsequents gS - sustent skewness
sèsub - median link strength to subsequents Eêêê

- extent average, units : H¯L
Dêêê

- distent average, units : H¯L gE - extent skewness
Dè - distent median, units : H¯L Iê - intent average, units : H¯L
gD - distent skewness gI - intent skewness

Code Name ¯ N sêpre sèpre sêsub sèsub Dêêê Dè gD Sêê S
è

gS Eêêê
gE Iê gI

AH Ag For Home Ec 769.0 265 1.5 ± 0.9 1.0 ± 0.0 0.9 ± 1.6 0.0 ± 0.0 69 ± 4 68 ± 2 0.84 269 ± 117 224 ± 67 0.89 4 ± 10 5.24 5.0 ± 3.5 6.51
AR Arts 5695.0 1817 1.3 ± 0.8 1.0 ± 0.0 1.1 ± 2.6 0.0 ± 0.0 69 ± 5 67 ± 3 1.03 213 ± 85 166 ± 9 1.78 9 ± 31 10.07 5.4 ± 3.2 2.14
BC Business 504.0 180 1.5 ± 1.1 1.0 ± 0.0 1.1 ± 3.2 0.0 ± 0.0 71 ± 4 71 ± 2 0.21 334 ± 79 328 ± 60 -0.28 5 ± 15 4.27 4.2 ± 1.8 1.92
EN Engineering 785.5 279 1.7 ± 1.0 1.0 ± 0.0 1.3 ± 2.1 0.0 ± 0.0 81 ± 7 82 ± 6 -0.12 390 ± 132 438 ± 77 -0.48 13 ± 38 5.88 5.5 ± 2.6 2.56

MH Medicine Dent. 374.0 117 1.8 ± 1.3 1.0 ± 0.0 1.4 ± 3.7 0.0 ± 0.0 74 ± 4 74 ± 3 0.13 410 ± 93 437 ± 38 -1.56 11 ± 37 6.07 5.4 ± 2.2 1.16
NS Native Studies 144.0 44 1.5 ± 0.6 1.0 ± 0.0 1.2 ± 3.1 0.0 ± 0.0 69 ± 3 68 ± 2 1.38 188 ± 30 199 ± 5 -0.23 6 ± 18 4.17 6.4 ± 3.2 2.02
NU Nursing 249.0 52 2.2 ± 1.6 2.0 ± 1.0 1.9 ± 1.6 2.0 ± 1.0 87 ± 20 80 ± 12 0.70 415 ± 134 444 ± 108 -0.35 46 ± 46 0.40 17.4 ± 10.7 1.47
PE Phys. Ed. 454.5 158 1.2 ± 0.8 1.0 ± 0.0 0.8 ± 1.3 0.0 ± 0.0 66 ± 4 66 ± 2 1.48 183 ± 61 160 ± 2 2.85 4 ± 9 3.87 4.2 ± 2.5 3.06
SC Science 1549.0 531 1.7 ± 1.0 1.0 ± 0.0 2.1 ± 4.6 0.0 ± 0.0 73 ± 4 73 ± 3 0.70 325 ± 106 315 ± 93 0.19 39 ± 135 4.95 5.0 ± 2.0 1.95
SH School 3908.0 1327 1.4 ± 1.0 1.0 ± 0.0 1.9 ± 18.4 1.0 ± 0.0 58 ± 12 52 ± 3 1.05 58 ± 15 51 ± 4 1.46 421 ± 1753 5.66 9.9 ± 11.5 1.35
SJ St. Joseph ' s 105.0 35 1.0 ± 0.0 1.0 ± 0.0 0.6 ± 0.7 0.0 ± 0.0 65 ± 1 64 ± 0 1.20 158 ± 1 157 ± 0 1.20 2 ± 2 1.52 3.6 ± 1.1 1.61
SS St. Stephen ' s 30.0 10 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 64 ± 0 64 ± 0 –.— 157 ± 0 157 ± 0 –.— 0 ± 0 –.— 3.0 ± 0.0 –.—
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Table  4.2.1.1-2  (below)   Course  network  properties  of  University  departments.
Gross measures of academic size for each department are recorded as the number of
different  courses,  N,  and  the  total  course  credits  (¯).   Course  connectedness  is
described by the link strengths per course in each department, s.  A tally of the inter-
nal  and  external  links  for  each  department,  and  the  resulting  interdisciplinarity
scores, i, is an indication of the knowledge interaction between departments.  Topo-
logical features of interest for educators are measured for courses in each department
by distent  (D),  sustent  (S),  extent  (E),  intent  (I),  and complexity  (OdC)  statistics.
The normalized academic size of a department is represented by the cover (C) statis-
tic.  Outstanding figures for columns are highlighted, as applicable.  The Department
Code and Number of Courses identify each department and list its size.  The Total
Internal Link Weight is a sum of all prerequisite links between courses of the same
department.   The  fourth  column,  Internal  Link  Weight  per  Course,  indicates  the
richness of internal network structure.  The Total External Prerequisite Link Weight
is a sum of all prerequisite links from courses in the department to courses outside of
the department.   The sixth column, External  Prerequisite  Link Weight  per Course,
lists  the  averaged  dependence  on  prerequisite  knowledge  from other  departments.
The Total External Subsequent Link Weight is a sum of all links to external courses
that draw knowledge from the department.  The eighth column, External Subsequent
Link  Weight  per  Course,  tabulates  the  averaged  dependence  external  subsequent
courses  have  on  knowledge  from  courses  in  the  department.   The  final  column,
Interdisciplinary Score, records for each department the product of columns six and
eight to offer a measure of symmetrical knowledge exchange with other departments.

155



¯ - course weight HcreditsL in department Dêêê
- distent average, units : H¯L

N - number of courses in department Sêê - sustent average, units : H¯L
sêinternal - internal link strength per course Eêêê

- extent average, units : H¯L
sêext

pre - external prerequisite link strength per course Iê - intent average, units : H¯L
sêext

sub - external subsequent link strength per course OdC - offdiagaonal complexity
i - interdisciplinary score C - cover, units : H¯2L
Department ¯ N sêint sêext

pre sêext
sub i Dêêê Sêê Eêêê Iê OdC C

ACCTG & MIS 132.0 46 1.30 0.28 0.07 0.020 74.0 383.6 7.0 4.6 2.25 3641
AFNS 348.0 120 0.89 0.59 0.04 0.026 71.0 316.1 3.6 4.7 1.73 5332
ANATOMY 28.0 8 0.88 0.00 0.00 0.000 68.2 161.3 4.4 5.6 0.68 0
ANTHRO 270.0 89 0.88 0.01 0.03 0.000 68.1 174.4 5.7 4.4 2.19 3321
ART & DESIG 480.0 133 1.23 0.01 0.02 0.000 72.9 321.8 16.0 7.0 1.85 9855
BIOCHEM 48.0 14 1.43 0.71 2.60 1.856 74.0 441.6 32.4 4.6 1.89 1137
BIOLOG SCI 439.5 143 1.28 0.25 0.45 0.112 71.9 296.9 15.8 4.8 2.46 11974
BIOMED ENG 9.0 3 0.33 0.67 0.11 0.074 76.0 296.9 1.3 6.3 0.00 0
CELL BIOL 33.0 10 0.76 0.64 0.15 0.095 73.6 395.2 4.5 5.4 1.55 419
CHEMISTRY 145.5 51 1.47 0.15 1.76 0.262 73.4 375.1 112.2 4.8 2.03 3447
CH & MAT ENG 225.5 79 1.33 0.57 0.11 0.062 82.0 409.9 12.1 5.0 2.24 10625
CIV & ENVIR 264.0 91 1.20 0.40 0.05 0.022 80.6 380.2 12.5 5.9 1.94 9675
COMPUT SCI 117.0 43 1.21 0.37 0.23 0.086 73.2 354.2 20.5 5.4 2.06 2529
DRAMA 343.0 100 0.71 0.00 0.01 0.000 67.5 177.6 4.8 6.5 1.31 2479
EARTH ATSC 259.0 89 1.10 0.28 0.10 0.030 70.4 279.9 8.7 5.2 1.77 3634
E ASIAN ST 276.0 88 0.97 0.05 0.00 0.000 73.3 175.8 12.1 7.1 2.00 6419
ECONOMICS 171.0 57 1.33 0.33 0.88 0.294 70.4 259.8 23.5 4.2 2.36 3774
ELEC & COMP 201.0 68 0.97 0.38 0.26 0.097 81.0 410.4 12.8 5.8 1.48 5344
ENGLISH 531.0 166 1.55 0.08 0.12 0.010 68.5 255.7 9.9 5.7 1.95 2716
FINAN & MGSC 111.0 39 1.28 0.16 0.20 0.032 71.7 310.9 6.8 4.2 1.74 2052
HIST & CLASS 786.0 256 1.14 0.00 0.01 0.000 66.2 208.4 4.6 5.0 1.80 7121
HUMAN ECO 132.0 43 0.63 0.19 0.00 0.000 67.1 178.7 2.9 5.1 1.23 785
INT D 351.0 113 0.24 0.04 0.03 0.001 64.6 166.0 1.5 4.0 0.98 1270
LINGUISTIC 99.0 33 1.36 0.03 0.00 0.000 69.8 255.6 8.0 4.0 2.26 2008
MATH SCI 288.0 99 1.29 0.02 2.61 0.061 73.7 298.9 87.8 4.5 2.17 7367
MECH ENGG 91.0 32 1.06 0.59 0.25 0.148 80.9 385.5 7.1 5.4 1.79 3177
MED LAB SC 82.0 26 0.69 2.04 0.11 0.222 74.4 444.5 3.7 6.6 1.15 549
MICBIO & IMM 33.0 10 0.28 0.92 0.45 0.416 74.9 433.1 19.8 5.8 0.00 0
MODLGCULST 939.0 307 0.99 0.03 0.00 0.000 72.0 168.9 10.8 6.1 2.16 25527
MRKBUSECLW 132.0 47 0.76 0.64 0.02 0.014 71.2 304.8 3.1 4.4 1.71 1980
MUSIC 417.0 129 0.99 0.01 0.01 0.000 71.0 219.0 11.4 6.3 1.85 7926
NEUROSCI 18.0 6 0.00 1.67 0.00 0.000 74.0 429.0 0.0 4.1 0.00 0
NS 144.0 44 1.20 0.02 0.02 0.000 68.6 188.4 6.3 6.4 1.75 1331
NU 249.0 52 1.88 0.10 0.00 0.000 87.4 440.7 46.3 17.4 1.74 11269
ORG ANALYS 129.0 45 0.78 0.87 0.04 0.033 68.4 337.6 3.0 3.8 1.39 1013
PE 454.5 158 0.79 0.02 0.00 0.000 66.4 183.4 4.1 4.2 1.73 4091
PHARMACOL 57.0 21 1.19 0.43 0.32 0.138 75.9 454.4 7.0 4.2 1.46 1191
PHILOSOPHY 231.0 78 0.75 0.18 0.10 0.019 65.7 203.9 4.3 4.6 1.22 1040
PHYSICS 207.0 72 1.48 1.02 0.26 0.261 76.1 421.4 25.1 5.9 2.22 5791
PHYSIOLOGY 63.0 18 0.87 0.46 0.71 0.330 75.3 399.6 14.5 5.4 1.52 0
POLIT SCI 315.0 101 1.02 0.01 0.01 0.000 70.8 169.9 6.2 3.8 2.29 6581
PSYCHOLOGY 201.0 73 1.44 0.26 0.08 0.020 71.5 311.3 10.7 4.4 2.39 4981
RENEW RES 192.0 66 0.96 0.50 0.08 0.038 68.1 273.4 7.0 6.1 2.05 2704
RURAL ECON 90.0 30 0.57 0.49 0.15 0.074 68.6 213.2 2.5 4.1 1.37 472
SJ 123.0 41 0.14 0.08 0.33 0.027 64.6 157.9 1.4 3.5 0.00 0
SOCIOLOGY 291.0 95 1.07 0.03 0.13 0.004 69.2 185.5 7.0 4.3 2.24 4531
SS 30.0 10 0.00 0.00 0.00 0.000 64.0 157.3 0.0 3.0 0.00 0
WOMEN ST 60.0 19 1.00 0.00 0.05 0.000 67.2 165.1 3.6 3.5 0.64 236
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Inflationist Correspondent Deflationist
SS 3.10 ± 0.32

INT D 2.53 ± 0.82
SJ 2.38 ± 0.63

PHILOSOPHY 2.14 ± 0.75
HIST & CLASS 2.04 ± 0.74

DRAMA 1.91 ± 1.12
PE 1.75 ± 0.69

HUMAN ECO 1.72 ± 0.55
WOMEN ST 1.68 ± 0.34

ORG ANALYS 1.66 ± 0.50
ANATOMY 1.65 ± 0.38

RENEW RES 1.58 ± 0.78
RURAL ECON 1.58 ± 0.66

ANTHRO 1.48 ± 0.52
SOCIOLOGY 1.33 ± 0.50

MRKBUSECLW 1.30 ± 0.54
ENGLISH 1.27 ± 0.30

LINGUISTIC 1.24 ± 0.42
NS 1.20 ± 0.34

ART & DESIG 1.15 ± 0.54
FINAN & MGSC 1.14 ± 0.17
MODLGCULST 1.12 ± 0.82

POLIT SCI 1.11 ± 0.39
AFNS 1.11 ± 0.36

PSYCHOLOGY 1.09 ± 0.59
ECONOMICS 1.09 ± 0.32

PHARMACOL 1.06 ± 0.90
E ASIAN ST 1.03 ± 0.73

ACCTG & MIS 1.02 ± 0.50
EARTH ATSC 1.02 ± 0.40

MUSIC 1.01 ± 0.32
BIOLOG SCI 0.95 ± 0.36

COMPUT SCI 0.94 ± 0.60
NEUROSCI 0.92 ± 0.00

PHYSIOLOGY 0.87 ± 0.23
BIOCHEM 0.86 ± 0.10

CELL BIOL 0.85 ± 0.13
MICBIO & IMM 0.78 ± 0.18

MATH SCI 0.77 ± 0.48
CHEMISTRY 0.77 ± 0.17

BIOMED ENG 0.68 ± 0.06
CH & MAT ENG 0.66 ± 0.40

MED LAB SC 0.61 ± 0.10
PHYSICS 0.59 ± 0.20

MECH ENGG 0.57 ± 0.31
CIV & ENVIR 0.57 ± 0.26

ELEC & COMP 0.55 ± 0.17
NU 0.49 ± 0.35

Table  4.2.1.1-3   A ranking  of  departments  based  on the  correspondence  between
number level and course distent.   Any course may be assigned an expected distent
value from its number level, and vice versa, given the prerequisite expectations laid
out  in  the  University  course  numbering  system,  as  recounted  in  Table  3.1.2.4-1.
Departments  with a high average  ratio of number level  to distent  from school  are
labelled  'inflationist'  since  the  catalogue  numbers  touted  by  their  courses  tend  to
overestimate the sophistication of the knowledge within those courses.  For example,
if  a  300-level  course  has  but  one  university  prerequisite  separating  it  from  high
school, while the University course numbering system expects a chain of two (a 100-
+ a 200-level course), then the ratio is 2, and that course contributes to number level
inflation.  Departments labelled 'deflationist'  have many courses with attached cata-
logue numbers that lowball the level of knowledge encountered within those courses.
For  example,  if  a  300-level  course  has  three  university  prerequisites  separating  it
from high school, say a chain of two first year and a second year course, while the
University numbering system expects a chain of two (a 100- + a 200-level course),
then the ratio is 0.67, and that course contributes to number level deflation.  Many
departments  have  course  numbering  schemes  that,  on  average,  closely  match  the
directives  laid  out  by  the  University  course  numbering  system,  these  are  called
'correspondent' – the most exemplary being the Departments of Accounting & Man-
agement  Information  Systems  (appropriately  enough),  Earth  &  Atmospheric  Sci-
ences, and Music.   Associated uncertainty values in average number level inflation
statistics are the standard deviations  of the inflation distributions  for all courses in
each department, and are provided to offer a sense of variability or dispersion; they
do not represent any sort of measurement error.
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Figure 4.2.1.1-14  A scatterplot of average course distent versus total course weight
for university departments.  A nearly horizontal linear fit with a very low coefficient
of determination (R2  ≈ 0.02) and low statistical  significance (P-value ≈ 0.35) indi-
cates that there is little evidence of a compelling trend, or simple relation, between
the distent  score of courses and the size of the departmental  subnetwork of which
they are members (see prefatory pages to identify departments by color if interested).
From this it is assumed distent is a property of whole network topology and an indi-
vidual node's location within it, not of membership to an administration-defined  set
of nodes with a particular size.  This is an important observation allowing the use of
distent for comparing individual nodes from different departments or whole depart-
ments, without undue concern for department size effects.  Indeed, even if a hypotheti-
cally smallest possible department contained but four courses, one at each level, 100,
200, 300, & 400, arranged in a linear  prerequisite  chain as set forth in University
guidelines,  then  it  would  have  an  average  distent  of  and  be  classified  as
"correspondent".
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ü 4.2.1.2 Sustent

The distent metric was previously introduced to measure course separation from
kindergarten by an analysis of network trajectories.  By tracing the maximum necessary
prerequisite path, from the beginning of kindergarten back to the end of the course, the
level  of  knowledge  elaboration,  or development  in that  course  is  deduced  as propor-
tional  to the total number of academic credits encountered.   But, the algorithm which
calculates distent, while tracing and measuring all paths to a course, ultimately settles on
only one, discarding the rest as less representative.   To address this waste of informa-
tion, especially given the complexity of the course network where there may be a diver-
sity of learning trajectories towards a course, another network metric, called sustent, is
described in this subsubsection.

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition:  "Sustent,  n: That which sustains or supports";  "a specific instance of suste-
nance",  a word describing "something  that sustains,  supports,  or upholds;  a means  or
source of support."  By attending to, and accounting for, all possible prerequisite trajecto-
ries back to kindergarten, an inclusive view of the supporting knowledge for learning in
a  course  is  measured  and  appreciated.   While  distent  gauges  how far  knowledge  is
stretched away from kindergarten by the end of a course, through knowledge elaboration
and accrual of information, the sustent metric quantifies how much knowledge is envel-
oped between kindergarten and a course, through knowledge integration and confluence
of information (see Figure 4.2.1.2-1).  The distent metric quantifies in units of academic
credits  (¯)  the  size and strength  of the prerequisite  subnetwork  providing knowledge
upon which to sustain learning in a particular course (see Figure 4.2.1.2-2).  The algo-
rithm  to  calculate  sustent  carefully  addresses  overlapping,  or  redundant  portions  of
multiple trajectories between kindergarten and any course (see Figure 4.2.1.2-3, and, for
the interested reader, Attachment 9.4 Program Code 4.2.1.2).  For each node, the sustent
score is a weighted measure of the supporting nodes, from immediate, to secondary, to
tertiary, to all ancillary prerequisites  that determines the corresponding course's access
to, or how much it draws upon, the knowledge from other courses in the network (see
Figure  4.2.1.2-4,  and,  for  the  interested  reader,  see  Attachment  9.3  Supplementary
Equations  4.2.1.2).   By  measuring  and  recognizing  the  relative  sustent  score  for  a
course, an education researcher, administrator, or even a student, is made aware of how
much (or how little) prior academic knowledge is required to be well suited to therein
learn.  The sustent  metric is sensitive to diversity  in the prerequisite  subnetwork of a
course  since  redundant  portions  of  prerequisite  lineages  are  ignored.   High  sustent
courses are often among the points in the education system where diverse knowledge is
explicitly integrated.

The sustent scores are calculated by computer with the program, Calendar Navi-
gator,  for every course node in the data set (see Table 9.2-1, twelfth column, S).  By
sorting the individual values for each course, some exceptional courses are highlighted.
Predictably,  kindergarten  (#535) has the lowest possible sustent score of zero, since it
relies not at all for students to arrive with knowledge from elsewhere in the education
system.  At the other extreme, REN R 485 (#1580) is the course with the greatest sustent
of over ¯603.  In accordance, it's course title and description points to knowledge synthe-
sis  and application,  befitting  a course  that  is  designed  to heavily  draw on,  and build
upon, knowledge from elsewhere in the education system:  "Land Reclamation; Princi-
ples, practices and philosophy of land reclamation; types of land disturbances and regula-
tions governing their reclamation.  Team project-based  course.  Should be taken in stu-
dents' last year as the Capstone Course for the land reclamation major."  And, it's prereq-
uisites  point  towards  courses  in  hydrology,  ecology,  vegetation  science,  and  senior
courses  in soil  science,  renewable  resources,  and environmental  and conservation  sci-
ences.   The  next  ten  highest  sustent  courses  in  descending  order  are:  NURS  495
(#4609),  PHYS  420  (#4282),  PHYS  461  (#4283),  NURS  497  (#4610),  NURS  461
(#4600),  CH  E  435  (#3600),  NURS  491  (#4605),  NUTR  472  (#1524),  MIN  E 403
(#3837), and ART 560 (#1740).  In particular, PHYS 420, has a daunting course descrip-
tion signalling to prospective students that a broad and deep knowledge from physics,
mathematics,  and computing science is tapped for this high sustent course: "Computa-
tional Physics; Basic principles; Computational methods selected from matrix manipula-
tion, variational techniques,  Monte Carlo, random walks, fast Fourier transform, lattice
methods; as applied to topics selected from mechanics, nonlinear systems, chaos; electro-
dynamics; wave propagation; statistical physics; quantum mechanics; condensed matter.
Prerequisites:  PHYS 234,  244, PHYS 381, MATH 337 or equivalent.  Recommended:
MA PH 343, PHYS 311, PHYS 372, PHYS 472, and PHYS 481. Familiarity with FOR-
TRAN and/or  C programming  language  strongly  recommended."   The lowest  sustent
courses  in  the  University  are  UNIV 101  (#1588)  and  UNIV 102  (#1589),  First-year
Experience I & II, specifically designed for students with Native status in the "Transi-
tional Year Program" who may be admitted to the University with less than the standard
high-school  requirements;  the course description states,  "Topics relevant  to successful
academic performance including study skills, use of campus resources,  stress manage-
ment, and career planning".

The high school course with maximum sustent  is ENM 3020 (#342), Conven-
tional Oil/Gas 2 (Recovery & Production),  with ¯ 98.2.  At the top of academic high
school courses is FSL 3308 (#528), French 31C, with a sustent score of ¯74.5, since it
appears as the seventh ¯5 credit French course along a train of possible French courses
beyond grade eight.  Second is MAT 3211 (#736), Mathematics 31, with a sustent score
almost  ¯70.   The  100-level  university  course  with  maximum  sustent  is  ART  140
(#1691), Drawing I, with a course description, "Study of the principles and techniques
of drawing. Note: Restricted to BFA and BDesign students".  This high sustent introduc-
tory  course  points  to ART 136,  Art  Fundamentals  I,  ART 137,  Art  Fundamentals  II,
DES138,  Design  Fundamentals  I,  and  DES139,  Design  Fundamentals  II  for  support.
Some other very high sustent first year university courses are, in descending order: EN
PH131 (#4101),  PHYS 146 (#4251),  PHYS 130 (#4249),  PHYS 144 (#4250),  NURS
191 (#4568), NURS 195 (#4572), NURS 151 (#4566), NURS 113 (#4563), MUSIC 151
(#2713), and EAS 110 (#4025).  At the 200-level, NURS 294 (#4577), Nursing in Con-
text B1, has the largest sustent, followed by other second year courses from Engineer-
ing, Physics,  Medical  Laboratory  Science,  and Immunology.   At the 300-level,  CH E
358 (#3597),  Process  Data Analysis,  leads all other university courses in sustent,  fol-
lowed by other third year courses in Engineering,  Nursing,  Physics,  Earth and Atmo-
spheric Science, Pharmacology, and Chemistry.

While knowing the sustent score for a particular course is useful (and for even
more  detail,  the  prerequisite  subnetwork  that  determines  the  sustent  score),  general
statistical  trends across the education system are telling as well (see Figure 4.2.1.2-5).
A  frequency  distribution  of  the  distent  scores  across  the  education  system reveals  a
dramatically tall and narrow peak of low distent university courses made up of mostly
courses  from  the  Faculties  of  Agriculture,  Forestry,  &  Home  Economics,  Arts,  and
Physical  Education,  plus,  a  remarkably  long  tail  diversely  composed  of  high  sustent
courses to the right (see Figure 4.2.1.2-6).  By considering the frequency distribution of
course sustent for each faculty individually, location, dispersion, and shape statistics are
compared (see Table 4.2.1.1-1, Sêê, S

è , & gS ).  By referring to the average (and median)
sustent column(s), Arts, Native Studies, and Physical Education, are seen as low sustent
faculties,  scoring  ¯213(166),  ¯188(199),  and  ¯183(160)  respectively  (see  Figure
4.2.1.2-7).  Most courses in these faculties are sustained by a lesser portion of the rest of
the education system compared to courses in other university faculties.   Both of these
faculties are remarkably compact about their peak, as given by their small median abso-
lute deviation scores, ¯9, ¯5, and ¯2 respectively,  indicating that most courses have a
sustent close to the reported median sustent for their faculties.  Both Faculty of Arts and
Faculty  of Physical  Education are also dramatically  asymmetric,  as indicated by their
large, positive skewness scores, 1.78 and 2.85 respectively, and as indicated visually by
their frequency distribution shape of high peaks containing many lower sustent courses,
with  narrow  tails  to  the  right  containing  some  higher  sustent  courses  (see  Figure
4.2.1.2-5).  Engineering, Medicine, and Nursing contain many courses with large suste-
nts, such that, courses from these faculties draw heavily on the knowledge from the rest
of the education network,  as reflected by their average (and median) sustent scores of
¯390(438),  ¯410(437),  and ¯415(444)  respectively.   The negative skewness  statistics
for each of these faculties shows their frequency distributions have a longer tail of some
relatively low sustent courses leading into many more high sustent courses.  The facul-
ties of Business and Science  are interesting for their relatively symmetrical  frequency
distributions (see Figure 4.2.1.2-6),  as indicated by low magnitude skewness statistics:
0.28 and 0.19.  Each faculty has a middling average (and median) sustent score for its
courses, ¯334(328) and ¯325(315), but also substantial standard (median) deviations of
¯79(60) and ¯106(93).  These statistics combine to describe the two faculties as being
composed of courses fairly evenly spread across the domain of calculated sustent scoreswhen compared to other faculties.  For the interested reader, similar comparisons amongthe University departments  may be made using the average sustent statistics on Table4.2.1.1-2, ninth column, Sêê.There is a similarity in the Faculty ranking for distent and sustent statistics,  asvisually confirmed by comparing the bar chart Figures 4.2.1.2-7 & 4.2.1.1-9.  Perhapsthe sustent metric is not offering any new results.  Then again, this observation is itselfinformative about the dominant patterns of course connections.  For example, if coursesare  structured  exclusively  into  chains  and  hubs,  they  form simple  types  of  networkscalled trees (for instances of simple trees, view Figures 4.2.1.1-1 & 4.2.1.4-1).  For anycourse  node  within  a  tree  network,  its  complete  prerequisite  subnetwork  is  a  singlelineage to kindergarten – the same lineage that defines the distent of a course.  There-fore, the more 'tree-like' the course network is, the more closely sustent measures willtrack distent measures.  The more frequently courses refer to multiple prerequisites, thusdrawing together numerous prerequisite lineages from kindergarten (and the less redun-dant the more affecting), the further sustent measures will diverge from distent measures(see Figure 4.2.1.2-8).   The amount courses  are limited to elaborating  on knowledge,such as in long chains of prerequisites,  the scatter plot of sustent vs. distent is pushedhorizontally  by  linear  patterns  towards  low  ratios  (see  Figure  4.2.1.2-8  (A)).   Theamount knowledge converges and is integrated into a course by the merging of multipleprerequisite trajectories, the scatter plot of sustent vs. distent reaches vertically towardshigh  ratios  (see  Figure  4.2.1.2-8  (B)).   The  overall  relationship  between  sustent  anddistent for each faculty might be carefully gleaned from Figure 4.2.1.2-8 (and Attach-ment 9.1 Supplementary Figures 4.2.1.2-8), for example, many courses from the Facultyof Agriculture,  Forestry, & Home Economics linger near the upper edge of the scatterplots, so are speculated to be supported by a greater diversity of knowledge than courseswith similar distent scores from other faculties; these relationships are made explicit inFigure 4.2.1.2-9.Sustent  is  an  education  network  metric  designed  to  quantify  the  size  of  theprerequisite genealogy supporting the knowledge in any course.  Courses that trace butone prerequisite  lineage back to kindergarten have equal sustent and distent measures.Courses  that  rely  upon  many  prerequisite  trajectories  for  their  prior  knowledge  havelarge sustent scores, generally greater than their distent scores.  The ratio of sustent todistent scores is an indication of relatively how much a course depends upon integratedknowledge.  Statistical comparisons across Faculties indicates that Arts, Native Studies,and especially Nursing have, on average, relatively 'isolationist' course structures, whileAgriculture,  Forestry,  &  Home  Economics,  Science,  and  especially,  Business,  andMedicine  &  Dentistry  have  'integrationist'  course  structures.   Future  research  wouldinclude calculations and comparisons performed at the Department level as well.
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The distent metric was previously introduced to measure course separation from
kindergarten by an analysis of network trajectories.  By tracing the maximum necessary
prerequisite path, from the beginning of kindergarten back to the end of the course, the
level  of  knowledge  elaboration,  or development  in that  course  is  deduced  as propor-
tional  to the total number of academic credits encountered.   But, the algorithm which
calculates distent, while tracing and measuring all paths to a course, ultimately settles on
only one, discarding the rest as less representative.   To address this waste of informa-
tion, especially given the complexity of the course network where there may be a diver-
sity of learning trajectories towards a course, another network metric, called sustent, is
described in this subsubsection.

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition:  "Sustent,  n: That which sustains or supports";  "a specific instance of suste-
nance",  a word describing "something  that sustains,  supports,  or upholds;  a means  or
source of support."  By attending to, and accounting for, all possible prerequisite trajecto-
ries back to kindergarten, an inclusive view of the supporting knowledge for learning in
a  course  is  measured  and  appreciated.   While  distent  gauges  how far  knowledge  is
stretched away from kindergarten by the end of a course, through knowledge elaboration
and accrual of information, the sustent metric quantifies how much knowledge is envel-
oped between kindergarten and a course, through knowledge integration and confluence
of information (see Figure 4.2.1.2-1).  The distent metric quantifies in units of academic
credits  (¯)  the  size and strength  of the prerequisite  subnetwork  providing knowledge
upon which to sustain learning in a particular course (see Figure 4.2.1.2-2).  The algo-
rithm  to  calculate  sustent  carefully  addresses  overlapping,  or  redundant  portions  of
multiple trajectories between kindergarten and any course (see Figure 4.2.1.2-3, and, for
the interested reader, Attachment 9.4 Program Code 4.2.1.2).  For each node, the sustent
score is a weighted measure of the supporting nodes, from immediate, to secondary, to
tertiary, to all ancillary prerequisites  that determines the corresponding course's access
to, or how much it draws upon, the knowledge from other courses in the network (see
Figure  4.2.1.2-4,  and,  for  the  interested  reader,  see  Attachment  9.3  Supplementary
Equations  4.2.1.2).   By  measuring  and  recognizing  the  relative  sustent  score  for  a
course, an education researcher, administrator, or even a student, is made aware of how
much (or how little) prior academic knowledge is required to be well suited to therein
learn.  The sustent  metric is sensitive to diversity  in the prerequisite  subnetwork of a
course  since  redundant  portions  of  prerequisite  lineages  are  ignored.   High  sustent
courses are often among the points in the education system where diverse knowledge is
explicitly integrated.

The sustent scores are calculated by computer with the program, Calendar Navi-
gator,  for every course node in the data set (see Table 9.2-1, twelfth column, S).  By
sorting the individual values for each course, some exceptional courses are highlighted.
Predictably,  kindergarten  (#535) has the lowest possible sustent score of zero, since it
relies not at all for students to arrive with knowledge from elsewhere in the education
system.  At the other extreme, REN R 485 (#1580) is the course with the greatest sustent
of over ¯603.  In accordance, it's course title and description points to knowledge synthe-
sis  and application,  befitting  a course  that  is  designed  to heavily  draw on,  and build
upon, knowledge from elsewhere in the education system:  "Land Reclamation; Princi-
ples, practices and philosophy of land reclamation; types of land disturbances and regula-
tions governing their reclamation.  Team project-based  course.  Should be taken in stu-
dents' last year as the Capstone Course for the land reclamation major."  And, it's prereq-
uisites  point  towards  courses  in  hydrology,  ecology,  vegetation  science,  and  senior
courses  in soil  science,  renewable  resources,  and environmental  and conservation  sci-
ences.   The  next  ten  highest  sustent  courses  in  descending  order  are:  NURS  495
(#4609),  PHYS  420  (#4282),  PHYS  461  (#4283),  NURS  497  (#4610),  NURS  461
(#4600),  CH  E  435  (#3600),  NURS  491  (#4605),  NUTR  472  (#1524),  MIN  E 403
(#3837), and ART 560 (#1740).  In particular, PHYS 420, has a daunting course descrip-
tion signalling to prospective students that a broad and deep knowledge from physics,
mathematics,  and computing science is tapped for this high sustent course: "Computa-
tional Physics; Basic principles; Computational methods selected from matrix manipula-
tion, variational techniques,  Monte Carlo, random walks, fast Fourier transform, lattice
methods; as applied to topics selected from mechanics, nonlinear systems, chaos; electro-
dynamics; wave propagation; statistical physics; quantum mechanics; condensed matter.
Prerequisites:  PHYS 234,  244, PHYS 381, MATH 337 or equivalent.  Recommended:
MA PH 343, PHYS 311, PHYS 372, PHYS 472, and PHYS 481. Familiarity with FOR-
TRAN and/or  C programming  language  strongly  recommended."   The lowest  sustent
courses  in  the  University  are  UNIV 101  (#1588)  and  UNIV 102  (#1589),  First-year
Experience I & II, specifically designed for students with Native status in the "Transi-
tional Year Program" who may be admitted to the University with less than the standard
high-school  requirements;  the course description states,  "Topics relevant  to successful
academic performance including study skills, use of campus resources,  stress manage-
ment, and career planning".

The high school course with maximum sustent  is ENM 3020 (#342), Conven-
tional Oil/Gas 2 (Recovery & Production),  with ¯ 98.2.  At the top of academic high
school courses is FSL 3308 (#528), French 31C, with a sustent score of ¯74.5, since it
appears as the seventh ¯5 credit French course along a train of possible French courses
beyond grade eight.  Second is MAT 3211 (#736), Mathematics 31, with a sustent score
almost  ¯70.   The  100-level  university  course  with  maximum  sustent  is  ART  140
(#1691), Drawing I, with a course description, "Study of the principles and techniques
of drawing. Note: Restricted to BFA and BDesign students".  This high sustent introduc-
tory  course  points  to ART 136,  Art  Fundamentals  I,  ART 137,  Art  Fundamentals  II,
DES138,  Design  Fundamentals  I,  and  DES139,  Design  Fundamentals  II  for  support.
Some other very high sustent first year university courses are, in descending order: EN
PH131 (#4101),  PHYS 146 (#4251),  PHYS 130 (#4249),  PHYS 144 (#4250),  NURS
191 (#4568), NURS 195 (#4572), NURS 151 (#4566), NURS 113 (#4563), MUSIC 151
(#2713), and EAS 110 (#4025).  At the 200-level, NURS 294 (#4577), Nursing in Con-
text B1, has the largest sustent, followed by other second year courses from Engineer-
ing, Physics,  Medical  Laboratory  Science,  and Immunology.   At the 300-level,  CH E
358 (#3597),  Process  Data Analysis,  leads all other university courses in sustent,  fol-
lowed by other third year courses in Engineering,  Nursing,  Physics,  Earth and Atmo-
spheric Science, Pharmacology, and Chemistry.

While knowing the sustent score for a particular course is useful (and for even
more  detail,  the  prerequisite  subnetwork  that  determines  the  sustent  score),  general
statistical  trends across the education system are telling as well (see Figure 4.2.1.2-5).
A  frequency  distribution  of  the  distent  scores  across  the  education  system reveals  a
dramatically tall and narrow peak of low distent university courses made up of mostly
courses  from  the  Faculties  of  Agriculture,  Forestry,  &  Home  Economics,  Arts,  and
Physical  Education,  plus,  a  remarkably  long  tail  diversely  composed  of  high  sustent
courses to the right (see Figure 4.2.1.2-6).  By considering the frequency distribution of
course sustent for each faculty individually, location, dispersion, and shape statistics are
compared (see Table 4.2.1.1-1, Sêê, S

è , & gS ).  By referring to the average (and median)
sustent column(s), Arts, Native Studies, and Physical Education, are seen as low sustent
faculties,  scoring  ¯213(166),  ¯188(199),  and  ¯183(160)  respectively  (see  Figure
4.2.1.2-7).  Most courses in these faculties are sustained by a lesser portion of the rest of
the education system compared to courses in other university faculties.   Both of these
faculties are remarkably compact about their peak, as given by their small median abso-
lute deviation scores, ¯9, ¯5, and ¯2 respectively,  indicating that most courses have a
sustent close to the reported median sustent for their faculties.  Both Faculty of Arts and
Faculty  of Physical  Education are also dramatically  asymmetric,  as indicated by their
large, positive skewness scores, 1.78 and 2.85 respectively, and as indicated visually by
their frequency distribution shape of high peaks containing many lower sustent courses,
with  narrow  tails  to  the  right  containing  some  higher  sustent  courses  (see  Figure
4.2.1.2-5).  Engineering, Medicine, and Nursing contain many courses with large suste-
nts, such that, courses from these faculties draw heavily on the knowledge from the rest
of the education network,  as reflected by their average (and median) sustent scores of
¯390(438),  ¯410(437),  and ¯415(444)  respectively.   The negative skewness  statistics
for each of these faculties shows their frequency distributions have a longer tail of some
relatively low sustent courses leading into many more high sustent courses.  The facul-
ties of Business and Science  are interesting for their relatively symmetrical  frequency
distributions (see Figure 4.2.1.2-6),  as indicated by low magnitude skewness statistics:
0.28 and 0.19.  Each faculty has a middling average (and median) sustent score for its
courses, ¯334(328) and ¯325(315), but also substantial standard (median) deviations of
¯79(60) and ¯106(93).  These statistics combine to describe the two faculties as being
composed of courses fairly evenly spread across the domain of calculated sustent scores
when compared to other faculties.  For the interested reader, similar comparisons among
the University departments  may be made using the average sustent statistics on Table
4.2.1.1-2, ninth column, Sêê.

There is a similarity in the Faculty ranking for distent and sustent statistics,  as
visually confirmed by comparing the bar chart Figures 4.2.1.2-7 & 4.2.1.1-9.  Perhaps
the sustent metric is not offering any new results.  Then again, this observation is itself
informative about the dominant patterns of course connections.  For example, if courses
are  structured  exclusively  into  chains  and  hubs,  they  form simple  types  of  networks
called trees (for instances of simple trees, view Figures 4.2.1.1-1 & 4.2.1.4-1).  For any
course  node  within  a  tree  network,  its  complete  prerequisite  subnetwork  is  a  single
lineage to kindergarten – the same lineage that defines the distent of a course.  There-
fore, the more 'tree-like' the course network is, the more closely sustent measures will
track distent measures.  The more frequently courses refer to multiple prerequisites, thus
drawing together numerous prerequisite lineages from kindergarten (and the less redun-
dant the more affecting), the further sustent measures will diverge from distent measures
(see Figure 4.2.1.2-8).   The amount courses  are limited to elaborating  on knowledge,
such as in long chains of prerequisites,  the scatter plot of sustent vs. distent is pushed
horizontally  by  linear  patterns  towards  low  ratios  (see  Figure  4.2.1.2-8  (A)).   The
amount knowledge converges and is integrated into a course by the merging of multiple
prerequisite trajectories, the scatter plot of sustent vs. distent reaches vertically towards
high  ratios  (see  Figure  4.2.1.2-8  (B)).   The  overall  relationship  between  sustent  and
distent for each faculty might be carefully gleaned from Figure 4.2.1.2-8 (and Attach-
ment 9.1 Supplementary Figures 4.2.1.2-8), for example, many courses from the Faculty
of Agriculture,  Forestry, & Home Economics linger near the upper edge of the scatter
plots, so are speculated to be supported by a greater diversity of knowledge than courses
with similar distent scores from other faculties; these relationships are made explicit in
Figure 4.2.1.2-9.

Sustent  is  an  education  network  metric  designed  to  quantify  the  size  of  the
prerequisite genealogy supporting the knowledge in any course.  Courses that trace but
one prerequisite  lineage back to kindergarten have equal sustent and distent measures.
Courses  that  rely  upon  many  prerequisite  trajectories  for  their  prior  knowledge  have
large sustent scores, generally greater than their distent scores.  The ratio of sustent to
distent scores is an indication of relatively how much a course depends upon integrated
knowledge.  Statistical comparisons across Faculties indicates that Arts, Native Studies,
and especially Nursing have, on average, relatively 'isolationist' course structures, while
Agriculture,  Forestry,  &  Home  Economics,  Science,  and  especially,  Business,  and
Medicine  &  Dentistry  have  'integrationist'  course  structures.   Future  research  would
include calculations and comparisons performed at the Department level as well.
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The distent metric was previously introduced to measure course separation from
kindergarten by an analysis of network trajectories.  By tracing the maximum necessary
prerequisite path, from the beginning of kindergarten back to the end of the course, the
level  of  knowledge  elaboration,  or development  in that  course  is  deduced  as propor-
tional  to the total number of academic credits encountered.   But, the algorithm which
calculates distent, while tracing and measuring all paths to a course, ultimately settles on
only one, discarding the rest as less representative.   To address this waste of informa-
tion, especially given the complexity of the course network where there may be a diver-
sity of learning trajectories towards a course, another network metric, called sustent, is
described in this subsubsection.

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition:  "Sustent,  n: That which sustains or supports";  "a specific instance of suste-
nance",  a word describing "something  that sustains,  supports,  or upholds;  a means  or
source of support."  By attending to, and accounting for, all possible prerequisite trajecto-
ries back to kindergarten, an inclusive view of the supporting knowledge for learning in
a  course  is  measured  and  appreciated.   While  distent  gauges  how far  knowledge  is
stretched away from kindergarten by the end of a course, through knowledge elaboration
and accrual of information, the sustent metric quantifies how much knowledge is envel-
oped between kindergarten and a course, through knowledge integration and confluence
of information (see Figure 4.2.1.2-1).  The distent metric quantifies in units of academic
credits  (¯)  the  size and strength  of the prerequisite  subnetwork  providing knowledge
upon which to sustain learning in a particular course (see Figure 4.2.1.2-2).  The algo-
rithm  to  calculate  sustent  carefully  addresses  overlapping,  or  redundant  portions  of
multiple trajectories between kindergarten and any course (see Figure 4.2.1.2-3, and, for
the interested reader, Attachment 9.4 Program Code 4.2.1.2).  For each node, the sustent
score is a weighted measure of the supporting nodes, from immediate, to secondary, to
tertiary, to all ancillary prerequisites  that determines the corresponding course's access
to, or how much it draws upon, the knowledge from other courses in the network (see
Figure  4.2.1.2-4,  and,  for  the  interested  reader,  see  Attachment  9.3  Supplementary
Equations  4.2.1.2).   By  measuring  and  recognizing  the  relative  sustent  score  for  a
course, an education researcher, administrator, or even a student, is made aware of how
much (or how little) prior academic knowledge is required to be well suited to therein
learn.  The sustent  metric is sensitive to diversity  in the prerequisite  subnetwork of a
course  since  redundant  portions  of  prerequisite  lineages  are  ignored.   High  sustent
courses are often among the points in the education system where diverse knowledge is
explicitly integrated.

The sustent scores are calculated by computer with the program, Calendar Navi-
gator,  for every course node in the data set (see Table 9.2-1, twelfth column, S).  By
sorting the individual values for each course, some exceptional courses are highlighted.
Predictably,  kindergarten  (#535) has the lowest possible sustent score of zero, since it
relies not at all for students to arrive with knowledge from elsewhere in the education
system.  At the other extreme, REN R 485 (#1580) is the course with the greatest sustent
of over ¯603.  In accordance, it's course title and description points to knowledge synthe-
sis  and application,  befitting  a course  that  is  designed  to heavily  draw on,  and build
upon, knowledge from elsewhere in the education system:  "Land Reclamation; Princi-
ples, practices and philosophy of land reclamation; types of land disturbances and regula-
tions governing their reclamation.  Team project-based  course.  Should be taken in stu-
dents' last year as the Capstone Course for the land reclamation major."  And, it's prereq-
uisites  point  towards  courses  in  hydrology,  ecology,  vegetation  science,  and  senior
courses  in soil  science,  renewable  resources,  and environmental  and conservation  sci-
ences.   The  next  ten  highest  sustent  courses  in  descending  order  are:  NURS  495
(#4609),  PHYS  420  (#4282),  PHYS  461  (#4283),  NURS  497  (#4610),  NURS  461
(#4600),  CH  E  435  (#3600),  NURS  491  (#4605),  NUTR  472  (#1524),  MIN  E 403
(#3837), and ART 560 (#1740).  In particular, PHYS 420, has a daunting course descrip-
tion signalling to prospective students that a broad and deep knowledge from physics,
mathematics,  and computing science is tapped for this high sustent course: "Computa-
tional Physics; Basic principles; Computational methods selected from matrix manipula-
tion, variational techniques,  Monte Carlo, random walks, fast Fourier transform, lattice
methods; as applied to topics selected from mechanics, nonlinear systems, chaos; electro-
dynamics; wave propagation; statistical physics; quantum mechanics; condensed matter.
Prerequisites:  PHYS 234,  244, PHYS 381, MATH 337 or equivalent.  Recommended:
MA PH 343, PHYS 311, PHYS 372, PHYS 472, and PHYS 481. Familiarity with FOR-
TRAN and/or  C programming  language  strongly  recommended."   The lowest  sustent
courses  in  the  University  are  UNIV 101  (#1588)  and  UNIV 102  (#1589),  First-year
Experience I & II, specifically designed for students with Native status in the "Transi-
tional Year Program" who may be admitted to the University with less than the standard
high-school  requirements;  the course description states,  "Topics relevant  to successful
academic performance including study skills, use of campus resources,  stress manage-
ment, and career planning".

The high school course with maximum sustent  is ENM 3020 (#342), Conven-
tional Oil/Gas 2 (Recovery & Production),  with ¯ 98.2.  At the top of academic high
school courses is FSL 3308 (#528), French 31C, with a sustent score of ¯74.5, since it
appears as the seventh ¯5 credit French course along a train of possible French courses
beyond grade eight.  Second is MAT 3211 (#736), Mathematics 31, with a sustent score
almost  ¯70.   The  100-level  university  course  with  maximum  sustent  is  ART  140
(#1691), Drawing I, with a course description, "Study of the principles and techniques
of drawing. Note: Restricted to BFA and BDesign students".  This high sustent introduc-
tory  course  points  to ART 136,  Art  Fundamentals  I,  ART 137,  Art  Fundamentals  II,
DES138,  Design  Fundamentals  I,  and  DES139,  Design  Fundamentals  II  for  support.
Some other very high sustent first year university courses are, in descending order: EN
PH131 (#4101),  PHYS 146 (#4251),  PHYS 130 (#4249),  PHYS 144 (#4250),  NURS
191 (#4568), NURS 195 (#4572), NURS 151 (#4566), NURS 113 (#4563), MUSIC 151
(#2713), and EAS 110 (#4025).  At the 200-level, NURS 294 (#4577), Nursing in Con-
text B1, has the largest sustent, followed by other second year courses from Engineer-
ing, Physics,  Medical  Laboratory  Science,  and Immunology.   At the 300-level,  CH E
358 (#3597),  Process  Data Analysis,  leads all other university courses in sustent,  fol-
lowed by other third year courses in Engineering,  Nursing,  Physics,  Earth and Atmo-
spheric Science, Pharmacology, and Chemistry.

While knowing the sustent score for a particular course is useful (and for even
more  detail,  the  prerequisite  subnetwork  that  determines  the  sustent  score),  general
statistical  trends across the education system are telling as well (see Figure 4.2.1.2-5).
A  frequency  distribution  of  the  distent  scores  across  the  education  system reveals  a
dramatically tall and narrow peak of low distent university courses made up of mostly
courses  from  the  Faculties  of  Agriculture,  Forestry,  &  Home  Economics,  Arts,  and
Physical  Education,  plus,  a  remarkably  long  tail  diversely  composed  of  high  sustent
courses to the right (see Figure 4.2.1.2-6).  By considering the frequency distribution of
course sustent for each faculty individually, location, dispersion, and shape statistics are
compared (see Table 4.2.1.1-1, Sêê, S

è , & gS ).  By referring to the average (and median)
sustent column(s), Arts, Native Studies, and Physical Education, are seen as low sustent
faculties,  scoring  ¯213(166),  ¯188(199),  and  ¯183(160)  respectively  (see  Figure
4.2.1.2-7).  Most courses in these faculties are sustained by a lesser portion of the rest of
the education system compared to courses in other university faculties.   Both of these
faculties are remarkably compact about their peak, as given by their small median abso-
lute deviation scores, ¯9, ¯5, and ¯2 respectively,  indicating that most courses have a
sustent close to the reported median sustent for their faculties.  Both Faculty of Arts and
Faculty  of Physical  Education are also dramatically  asymmetric,  as indicated by their
large, positive skewness scores, 1.78 and 2.85 respectively, and as indicated visually by
their frequency distribution shape of high peaks containing many lower sustent courses,
with  narrow  tails  to  the  right  containing  some  higher  sustent  courses  (see  Figure
4.2.1.2-5).  Engineering, Medicine, and Nursing contain many courses with large suste-
nts, such that, courses from these faculties draw heavily on the knowledge from the rest
of the education network,  as reflected by their average (and median) sustent scores of
¯390(438),  ¯410(437),  and ¯415(444)  respectively.   The negative skewness  statistics
for each of these faculties shows their frequency distributions have a longer tail of some
relatively low sustent courses leading into many more high sustent courses.  The facul-
ties of Business and Science  are interesting for their relatively symmetrical  frequency
distributions (see Figure 4.2.1.2-6),  as indicated by low magnitude skewness statistics:
0.28 and 0.19.  Each faculty has a middling average (and median) sustent score for its
courses, ¯334(328) and ¯325(315), but also substantial standard (median) deviations of
¯79(60) and ¯106(93).  These statistics combine to describe the two faculties as being
composed of courses fairly evenly spread across the domain of calculated sustent scores
when compared to other faculties.  For the interested reader, similar comparisons among
the University departments  may be made using the average sustent statistics on Table
4.2.1.1-2, ninth column, Sêê.

There is a similarity in the Faculty ranking for distent and sustent statistics,  as
visually confirmed by comparing the bar chart Figures 4.2.1.2-7 & 4.2.1.1-9.  Perhaps
the sustent metric is not offering any new results.  Then again, this observation is itself
informative about the dominant patterns of course connections.  For example, if courses
are  structured  exclusively  into  chains  and  hubs,  they  form simple  types  of  networks
called trees (for instances of simple trees, view Figures 4.2.1.1-1 & 4.2.1.4-1).  For any
course  node  within  a  tree  network,  its  complete  prerequisite  subnetwork  is  a  single
lineage to kindergarten – the same lineage that defines the distent of a course.  There-
fore, the more 'tree-like' the course network is, the more closely sustent measures will
track distent measures.  The more frequently courses refer to multiple prerequisites, thus
drawing together numerous prerequisite lineages from kindergarten (and the less redun-
dant the more affecting), the further sustent measures will diverge from distent measures
(see Figure 4.2.1.2-8).   The amount courses  are limited to elaborating  on knowledge,
such as in long chains of prerequisites,  the scatter plot of sustent vs. distent is pushed
horizontally  by  linear  patterns  towards  low  ratios  (see  Figure  4.2.1.2-8  (A)).   The
amount knowledge converges and is integrated into a course by the merging of multiple
prerequisite trajectories, the scatter plot of sustent vs. distent reaches vertically towards
high  ratios  (see  Figure  4.2.1.2-8  (B)).   The  overall  relationship  between  sustent  and
distent for each faculty might be carefully gleaned from Figure 4.2.1.2-8 (and Attach-
ment 9.1 Supplementary Figures 4.2.1.2-8), for example, many courses from the Faculty
of Agriculture,  Forestry, & Home Economics linger near the upper edge of the scatter
plots, so are speculated to be supported by a greater diversity of knowledge than courses
with similar distent scores from other faculties; these relationships are made explicit in
Figure 4.2.1.2-9.

Sustent  is  an  education  network  metric  designed  to  quantify  the  size  of  the
prerequisite genealogy supporting the knowledge in any course.  Courses that trace but
one prerequisite  lineage back to kindergarten have equal sustent and distent measures.
Courses  that  rely  upon  many  prerequisite  trajectories  for  their  prior  knowledge  have
large sustent scores, generally greater than their distent scores.  The ratio of sustent to
distent scores is an indication of relatively how much a course depends upon integrated
knowledge.  Statistical comparisons across Faculties indicates that Arts, Native Studies,
and especially Nursing have, on average, relatively 'isolationist' course structures, while
Agriculture,  Forestry,  &  Home  Economics,  Science,  and  especially,  Business,  and
Medicine  &  Dentistry  have  'integrationist'  course  structures.   Future  research  would
include calculations and comparisons performed at the Department level as well.
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The distent metric was previously introduced to measure course separation from
kindergarten by an analysis of network trajectories.  By tracing the maximum necessary
prerequisite path, from the beginning of kindergarten back to the end of the course, the
level  of  knowledge  elaboration,  or development  in that  course  is  deduced  as propor-
tional  to the total number of academic credits encountered.   But, the algorithm which
calculates distent, while tracing and measuring all paths to a course, ultimately settles on
only one, discarding the rest as less representative.   To address this waste of informa-
tion, especially given the complexity of the course network where there may be a diver-
sity of learning trajectories towards a course, another network metric, called sustent, is
described in this subsubsection.

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition:  "Sustent,  n: That which sustains or supports";  "a specific instance of suste-
nance",  a word describing "something  that sustains,  supports,  or upholds;  a means  or
source of support."  By attending to, and accounting for, all possible prerequisite trajecto-
ries back to kindergarten, an inclusive view of the supporting knowledge for learning in
a  course  is  measured  and  appreciated.   While  distent  gauges  how far  knowledge  is
stretched away from kindergarten by the end of a course, through knowledge elaboration
and accrual of information, the sustent metric quantifies how much knowledge is envel-
oped between kindergarten and a course, through knowledge integration and confluence
of information (see Figure 4.2.1.2-1).  The distent metric quantifies in units of academic
credits  (¯)  the  size and strength  of the prerequisite  subnetwork  providing knowledge
upon which to sustain learning in a particular course (see Figure 4.2.1.2-2).  The algo-
rithm  to  calculate  sustent  carefully  addresses  overlapping,  or  redundant  portions  of
multiple trajectories between kindergarten and any course (see Figure 4.2.1.2-3, and, for
the interested reader, Attachment 9.4 Program Code 4.2.1.2).  For each node, the sustent
score is a weighted measure of the supporting nodes, from immediate, to secondary, to
tertiary, to all ancillary prerequisites  that determines the corresponding course's access
to, or how much it draws upon, the knowledge from other courses in the network (see
Figure  4.2.1.2-4,  and,  for  the  interested  reader,  see  Attachment  9.3  Supplementary
Equations  4.2.1.2).   By  measuring  and  recognizing  the  relative  sustent  score  for  a
course, an education researcher, administrator, or even a student, is made aware of how
much (or how little) prior academic knowledge is required to be well suited to therein
learn.  The sustent  metric is sensitive to diversity  in the prerequisite  subnetwork of a
course  since  redundant  portions  of  prerequisite  lineages  are  ignored.   High  sustent
courses are often among the points in the education system where diverse knowledge is
explicitly integrated.

The sustent scores are calculated by computer with the program, Calendar Navi-
gator,  for every course node in the data set (see Table 9.2-1, twelfth column, S).  By
sorting the individual values for each course, some exceptional courses are highlighted.
Predictably,  kindergarten  (#535) has the lowest possible sustent score of zero, since it
relies not at all for students to arrive with knowledge from elsewhere in the education
system.  At the other extreme, REN R 485 (#1580) is the course with the greatest sustent
of over ¯603.  In accordance, it's course title and description points to knowledge synthe-
sis  and application,  befitting  a course  that  is  designed  to heavily  draw on,  and build
upon, knowledge from elsewhere in the education system:  "Land Reclamation; Princi-
ples, practices and philosophy of land reclamation; types of land disturbances and regula-
tions governing their reclamation.  Team project-based  course.  Should be taken in stu-
dents' last year as the Capstone Course for the land reclamation major."  And, it's prereq-
uisites  point  towards  courses  in  hydrology,  ecology,  vegetation  science,  and  senior
courses  in soil  science,  renewable  resources,  and environmental  and conservation  sci-
ences.   The  next  ten  highest  sustent  courses  in  descending  order  are:  NURS  495
(#4609),  PHYS  420  (#4282),  PHYS  461  (#4283),  NURS  497  (#4610),  NURS  461
(#4600),  CH  E  435  (#3600),  NURS  491  (#4605),  NUTR  472  (#1524),  MIN  E 403
(#3837), and ART 560 (#1740).  In particular, PHYS 420, has a daunting course descrip-
tion signalling to prospective students that a broad and deep knowledge from physics,
mathematics,  and computing science is tapped for this high sustent course: "Computa-
tional Physics; Basic principles; Computational methods selected from matrix manipula-
tion, variational techniques,  Monte Carlo, random walks, fast Fourier transform, lattice
methods; as applied to topics selected from mechanics, nonlinear systems, chaos; electro-
dynamics; wave propagation; statistical physics; quantum mechanics; condensed matter.
Prerequisites:  PHYS 234,  244, PHYS 381, MATH 337 or equivalent.  Recommended:
MA PH 343, PHYS 311, PHYS 372, PHYS 472, and PHYS 481. Familiarity with FOR-
TRAN and/or  C programming  language  strongly  recommended."   The lowest  sustent
courses  in  the  University  are  UNIV 101  (#1588)  and  UNIV 102  (#1589),  First-year
Experience I & II, specifically designed for students with Native status in the "Transi-
tional Year Program" who may be admitted to the University with less than the standard
high-school  requirements;  the course description states,  "Topics relevant  to successful
academic performance including study skills, use of campus resources,  stress manage-
ment, and career planning".

The high school course with maximum sustent  is ENM 3020 (#342), Conven-
tional Oil/Gas 2 (Recovery & Production),  with ¯ 98.2.  At the top of academic high
school courses is FSL 3308 (#528), French 31C, with a sustent score of ¯74.5, since it
appears as the seventh ¯5 credit French course along a train of possible French courses
beyond grade eight.  Second is MAT 3211 (#736), Mathematics 31, with a sustent score
almost  ¯70.   The  100-level  university  course  with  maximum  sustent  is  ART  140
(#1691), Drawing I, with a course description, "Study of the principles and techniques
of drawing. Note: Restricted to BFA and BDesign students".  This high sustent introduc-
tory  course  points  to ART 136,  Art  Fundamentals  I,  ART 137,  Art  Fundamentals  II,
DES138,  Design  Fundamentals  I,  and  DES139,  Design  Fundamentals  II  for  support.
Some other very high sustent first year university courses are, in descending order: EN
PH131 (#4101),  PHYS 146 (#4251),  PHYS 130 (#4249),  PHYS 144 (#4250),  NURS
191 (#4568), NURS 195 (#4572), NURS 151 (#4566), NURS 113 (#4563), MUSIC 151
(#2713), and EAS 110 (#4025).  At the 200-level, NURS 294 (#4577), Nursing in Con-
text B1, has the largest sustent, followed by other second year courses from Engineer-
ing, Physics,  Medical  Laboratory  Science,  and Immunology.   At the 300-level,  CH E
358 (#3597),  Process  Data Analysis,  leads all other university courses in sustent,  fol-
lowed by other third year courses in Engineering,  Nursing,  Physics,  Earth and Atmo-
spheric Science, Pharmacology, and Chemistry.

While knowing the sustent score for a particular course is useful (and for even
more  detail,  the  prerequisite  subnetwork  that  determines  the  sustent  score),  general
statistical  trends across the education system are telling as well (see Figure 4.2.1.2-5).
A  frequency  distribution  of  the  distent  scores  across  the  education  system reveals  a
dramatically tall and narrow peak of low distent university courses made up of mostly
courses  from  the  Faculties  of  Agriculture,  Forestry,  &  Home  Economics,  Arts,  and
Physical  Education,  plus,  a  remarkably  long  tail  diversely  composed  of  high  sustent
courses to the right (see Figure 4.2.1.2-6).  By considering the frequency distribution of
course sustent for each faculty individually, location, dispersion, and shape statistics are
compared (see Table 4.2.1.1-1, Sêê, S

è , & gS ).  By referring to the average (and median)
sustent column(s), Arts, Native Studies, and Physical Education, are seen as low sustent
faculties,  scoring  ¯213(166),  ¯188(199),  and  ¯183(160)  respectively  (see  Figure
4.2.1.2-7).  Most courses in these faculties are sustained by a lesser portion of the rest of
the education system compared to courses in other university faculties.   Both of these
faculties are remarkably compact about their peak, as given by their small median abso-
lute deviation scores, ¯9, ¯5, and ¯2 respectively,  indicating that most courses have a
sustent close to the reported median sustent for their faculties.  Both Faculty of Arts and
Faculty  of Physical  Education are also dramatically  asymmetric,  as indicated by their
large, positive skewness scores, 1.78 and 2.85 respectively, and as indicated visually by
their frequency distribution shape of high peaks containing many lower sustent courses,
with  narrow  tails  to  the  right  containing  some  higher  sustent  courses  (see  Figure
4.2.1.2-5).  Engineering, Medicine, and Nursing contain many courses with large suste-
nts, such that, courses from these faculties draw heavily on the knowledge from the rest
of the education network,  as reflected by their average (and median) sustent scores of
¯390(438),  ¯410(437),  and ¯415(444)  respectively.   The negative skewness  statistics
for each of these faculties shows their frequency distributions have a longer tail of some
relatively low sustent courses leading into many more high sustent courses.  The facul-
ties of Business and Science  are interesting for their relatively symmetrical  frequency
distributions (see Figure 4.2.1.2-6),  as indicated by low magnitude skewness statistics:
0.28 and 0.19.  Each faculty has a middling average (and median) sustent score for its
courses, ¯334(328) and ¯325(315), but also substantial standard (median) deviations of
¯79(60) and ¯106(93).  These statistics combine to describe the two faculties as being
composed of courses fairly evenly spread across the domain of calculated sustent scores
when compared to other faculties.  For the interested reader, similar comparisons among
the University departments  may be made using the average sustent statistics on Table
4.2.1.1-2, ninth column, Sêê.

There is a similarity in the Faculty ranking for distent and sustent statistics,  as
visually confirmed by comparing the bar chart Figures 4.2.1.2-7 & 4.2.1.1-9.  Perhaps
the sustent metric is not offering any new results.  Then again, this observation is itself
informative about the dominant patterns of course connections.  For example, if courses
are  structured  exclusively  into  chains  and  hubs,  they  form simple  types  of  networks
called trees (for instances of simple trees, view Figures 4.2.1.1-1 & 4.2.1.4-1).  For any
course  node  within  a  tree  network,  its  complete  prerequisite  subnetwork  is  a  single
lineage to kindergarten – the same lineage that defines the distent of a course.  There-
fore, the more 'tree-like' the course network is, the more closely sustent measures will
track distent measures.  The more frequently courses refer to multiple prerequisites, thus
drawing together numerous prerequisite lineages from kindergarten (and the less redun-
dant the more affecting), the further sustent measures will diverge from distent measures
(see Figure 4.2.1.2-8).   The amount courses  are limited to elaborating  on knowledge,
such as in long chains of prerequisites,  the scatter plot of sustent vs. distent is pushed
horizontally  by  linear  patterns  towards  low  ratios  (see  Figure  4.2.1.2-8  (A)).   The
amount knowledge converges and is integrated into a course by the merging of multiple
prerequisite trajectories, the scatter plot of sustent vs. distent reaches vertically towards
high  ratios  (see  Figure  4.2.1.2-8  (B)).   The  overall  relationship  between  sustent  and
distent for each faculty might be carefully gleaned from Figure 4.2.1.2-8 (and Attach-
ment 9.1 Supplementary Figures 4.2.1.2-8), for example, many courses from the Faculty
of Agriculture,  Forestry, & Home Economics linger near the upper edge of the scatter
plots, so are speculated to be supported by a greater diversity of knowledge than courses
with similar distent scores from other faculties; these relationships are made explicit in
Figure 4.2.1.2-9.

Sustent  is  an  education  network  metric  designed  to  quantify  the  size  of  the
prerequisite genealogy supporting the knowledge in any course.  Courses that trace but
one prerequisite  lineage back to kindergarten have equal sustent and distent measures.
Courses  that  rely  upon  many  prerequisite  trajectories  for  their  prior  knowledge  have
large sustent scores, generally greater than their distent scores.  The ratio of sustent to
distent scores is an indication of relatively how much a course depends upon integrated
knowledge.  Statistical comparisons across Faculties indicates that Arts, Native Studies,
and especially Nursing have, on average, relatively 'isolationist' course structures, while
Agriculture,  Forestry,  &  Home  Economics,  Science,  and  especially,  Business,  and
Medicine  &  Dentistry  have  'integrationist'  course  structures.   Future  research  would
include calculations and comparisons performed at the Department level as well.
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Figure 4.2.1.2-1
A simple network diagram to justify the sustent
metric.   Given  a  reference  node,  K,  a  simple
metric  is sought  to characterize  and distinguish
the network positions of nodes A and B.   Let it
be observed that nodes A  and B have the same
order, and the same distent from K: five equiva-
lent  steps.   But  node  B  depends  on  a  greater
portion of the network than node A.  The metric,
sustent, is proposed to measure the magnitude of
network  support  for  a  given  node,  that  is,  to
measure  the  portion  of  the  education  network
that  sustains  the  knowledge  in  a  particular
course.  In this example, node A is sustained by
K and four intermediate nodes, while the sustent
of  node  B  includes  K  and  six  intermediate
nodes.  Minimal sustent is possessed exclusively
by node K.

K

A
B
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Figure 4.2.1.2-2
A diagram to illustrate  how sustent  scores are calcu-
lated  on  the  same  network  used  for  distent  (review
Figure  4.2.1.1-5).   The  sustent  score  of  node  K  is
indicated as zero credits since it is the entry point of
the  network  and  has  no  knowledge  prerequisites
within the system considered here.  The sustent score
of node a is indicated to be two credits – a value equal
to the course weight (¯2) and the sustent (none) of its
prerequisite, node K.  Further along, the sustent score
of node b  is  indicated  to be seven  credits  – a value
equal to the course weight (¯5) and the sustent (2) of
its  prerequisite,  node  a.   Similarly  uncomplicated
calculations establish distent scores up to, and includ-
ing  nodes  c,  and  d.   Node  A  is  sustained  by  both
nodes c  and d  as  required  prerequisites.   Node A  is
coupled to each node,  c  and d,  by a link of strength
unity.   Therefore,  the  sustent  of  node  A  includes
nodes c and d plus the union of the sustents of nodes c
and d.  While nodes a and K contribute to the sustent
of both nodes c and d, they cannot contribute twice to
the sustent of node A (see Figure 4.2.1.2-3).  Node B
is sustained by node b as a required prerequisites,  so
the sustent of node B includes, at least, node b plus its
sustent - nodes a and K.  Node B is also sustained by
either node c or d as a prerequisite, and is coupled to
each node by a link of strength one-half.   Therefore,
the sustent of node B further includes, in proportion to
link strength,  half of nodes c  and d  plus the sum of
half  of  the  sustents  of  nodes  c  and  d.   (See  Figure
4.2.1.2-4).   In general,  the sustent,  S,  of  a  course  is
equal to the scaled sum of all prerequisites  and their
scaled sustents, where the scale is determined by edge
strength, and, the maximum scale is unity, thus prevent-
ing  any  node  from contributing  to  any sustent  more
than  once.   In  the  example  above,  node  A  has  a
greater  sustent  score,  SA  = ¯22,  than node  B,  SB  =
¯19.5.

K

a

b

c d

AB

0

2

7

7

7
10

1310

2219.5

¯2

¯5

¯3

164



K

a

b

c d

AB

K

a

b

c d

AB

K

a

b

c d

AB

I. II. III.

Figure  4.2.1.2-3   A network  diagram to show how simple  sustents  are  combined
when necessary.  The sustent of node c is highlighted in I; the sustent of node d is
highlighted in II.  Part III indicates how the sustent of node A includes the nodes c
and d plus the union of their sustents.
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Figure 4.2.1.2-4
A network diagram to show
how  partial  sustents  are
combined  when  necessary.
Node B  couples  to nodes c
and d with links of one-half
strength.   Node  B  claims
nodes  c  and  d  plus  their
sustents  in  proportion  to
link  strength.   In  part  I,
highlights  indicate  the
proportions of node weights
that  contribute  to  the  sus-
tent  of node B.   In part  II,
beside  each  node  is  an
indication  of  how  much
course  weight  in  credits
that node contributes  to the
sustent score of node B., SB
= ¯19.5.
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Figure 4.2.1.2-5  A histogram indicating the distribution of courses in the education
system based on their sustent.  There is no vertical scale since the width of the catego-
ries is variable.  Instead, a legend establishes consistency based on area of columns.
The distribution  is  dominated  by a peak of University  courses with relatively  low
sustent (≈ ¯160 credits).  Courses from the faculties Agriculture, Forestry, & Home
Economics, Arts, Physical Education, St. Joseph's, and St. Stephen's are disproportion-
ately represented therein.  A fairly flat tail composed of high sustent courses contin-
ues to the right.  There is a major gulf of about ¯50 in sustent scores between most
school  courses  and  most  university  courses.   This  results  from the  administrative
constraint that any university course is only accessible when all the relevant Univer-
sity admission requirements are met.  All university courses are assumed to draw on
the knowledge within the minimum University admission requirements (thus boost-
ing their sustent scores compared with individual courses from School), and courses
restricted to students of a particular Faculty (or Department) are assumed to draw on
the knowledge within the Faculty admission requirements.  This leads to a discontinu-
ity of sustent between School and University,  and differing lower limits on sustent
scores for courses from Faculties with differing minimum entrance requirements.
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Figure 4.2.1.2-5  A histogram indicating the distribution of courses in the education
system based on their sustent.  There is no vertical scale since the width of the catego-
ries is variable.  Instead, a legend establishes consistency based on area of columns.
The distribution  is  dominated  by a peak of University  courses with relatively  low
sustent (≈ ¯160 credits).  Courses from the faculties Agriculture, Forestry, & Home
Economics, Arts, Physical Education, St. Joseph's, and St. Stephen's are disproportion-
ately represented therein.  A fairly flat tail composed of high sustent courses contin-
ues to the right.  There is a major gulf of about ¯50 in sustent scores between most
school  courses  and  most  university  courses.   This  results  from the  administrative
constraint that any university course is only accessible when all the relevant Univer-
sity admission requirements are met.  All university courses are assumed to draw on
the knowledge within the minimum University admission requirements (thus boost-
ing their sustent scores compared with individual courses from School), and courses
restricted to students of a particular Faculty (or Department) are assumed to draw on
the knowledge within the Faculty admission requirements.  This leads to a discontinu-
ity of sustent between School and University,  and differing lower limits on sustent
scores for courses from Faculties with differing minimum entrance requirements.
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Figure 4.2.1.2-6   A look at  the upper tail  of the frequency distribution  for course
sustent to better view the faculty composition of high sustent courses.

167



0

50

100

150

200

250

300

350

400

AH AR BC EN MH NS NU PE SC SCHOOL SJ SS

S

Sustent

(¯ credits) Average and Median Course
Sustent in Each Faculty

Sustent increase
resulting from
University courses.

Sustent of minimum
University entrance
requirements.

Error bars represent
standard deviation
and median deviation
of sustent scores
for each course.

Figure 4.2.1.2-7   A doubled bar chart  displaying  the location of the sustent  score
distribution for courses in each faculty by a pair of statistics, the average (left minor
column) and median (right minor column).  Error bars represent the standard devia-
tion of sustent scores about the mean (average) value for each faculty, or the median
deviation of sustent scores about the median value, and are present to offer a visual
impression of the dispersion (spread).  The average and standard deviation statistics
are sensitive to outliers in the distribution of course sustent scores, while the median
and median  deviation  are  robust  statistics  and less  affected  by proportionally  few
outliers.  Arts, Native Studies, and Physical Education & Recreation are measured as
low sustent  faculties.   Most  of  their  courses,  as  measured  by the  median  sustent,
draw on  little  knowledge  outside  of  high  school.   The  Faculties  of  Engineering,
Medicine & Dentistry, and Nursing are measured as high sustent faculties, such that,
most  of  their  courses  enfold  knowledge  from  large  supporting  prerequisite
subnetworks.
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Figure 4.2.1.2-8   A scatterplot  of sustent  versus  distent  scores  for each course in
Alberta's  education  system  where  the  points  are  colored  by  Faculty  membership.
The reader should be aware the diagram does not communicate density well, that is,
there are no means to determine which points are degenerate, such that, they repre-
sent multiple courses with the same coordinate.  Moreover, the points are rendered in
alphabetical  order  by  faculty,  therefore,  the  relatively  large  Faculty  of  Arts  (Ê)
appears  under  represented  due  to  overlap  by  other  faculties;  nevertheless,  overall
coverage of the phase space is clear (for an alternative rendering, see Attachment 9.1
Supplementary Figures 4.2.1.2-8).  Vertical columns appear in the distribution of the
data because course distent scores are, in a sense, quantized by the common course
credit  weights of ¯1.5, ¯3, ¯5, and ¯6.  Linear patterns of positive slope are also
apparent (A), especially among the points from school and along the right, trailing
edge of the distribution of university courses.  These linear patterns represent long,
chain-like sequences of courses with one prerequisite that depend on each other.  In
these cases, changes in distent are matched by changes in sustent scores, the slope of
the pattern is unity,  and no information  is offered by the sustent  measure over the
distent measure.  Courses that rise above these basic patterns are those that draw on
multiple  prerequisites.   The greater  the diversity  of prerequisites,  the more sustent
increases relative to distent (see Figure 4.2.1.2-1).  Courses along the leading upper
left edge of the distribution (B) have the maximum sustent at any given distent.  The
Faculty  of  Agriculture,  Forestry,  and  Home  Economics  (Ê)  is  disproportionately
represented by courses along this leading edge by courses with relatively high sus-
tent scores.
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Figure 4.2.1.2-9   A scatterplot of average sustent versus average distent scores for
the courses in each faculty.  Without overemphasizing  the point, it is observed that
the faculties adhere reasonably to a linear relationship between their average course
sustent  and  distent  scores  (adjusted  R2  of  0.80).   That  is,  the  average  sustent  of
faculties predictably increases as average distent increases.  Faculties located signifi-
cantly above the trend line offer many courses of diverse knowledge requirements at
their particular  average course distent.   Faculties  located well  below the trend line
have  relatively  few  courses  that  integrate,  or  depend  on  integrated,  knowledge.
Consider the three Faculties stacked into a vertical column at distent ≈ ¯69.  Among
them, Agriculture, Forestry, & Home Economics (Ê) has the greatest average sustent
among its courses,  indicating diverse knowledge  is well  integrated within the Fac-
ulty.  Conversely, the Faculty of Arts (Ê) and especially the School of Native Studies
(Ê) house many courses which rely on less diversity of knowledge compared with
other courses of similar  distent,  probably because they are mostly arranged around
hubs or are contained in isolated prerequisite chains.  Consider the horizontal row of
three Faculties with sustent ≈ ¯400.  While the average sustent scores for the courses
in the Faculties  of Nursing (Á) and Engineering (Ê) are indeed large, they are not
larger than expected by the pattern established across the education system given the
large average distent of courses in these faculties.  Of the three high sustent Facul-
ties,  Medicine  and  Dentistry  (Ê)  is  observed  to  be  intensely  integrative  with  its
knowledge because its courses have the among the highest sustent,  yet achieved at
considerably lower average distent than Nursing or Engineering.   The next furthest
outlier biased towards sustent is the School of Business (Ê).  It is here proposed that
the typical courses in Business and especially Medicine and Dentistry are supported
by a  greater  diversity  of  trajectories  (and therefore  knowledge)  than  courses  with
similar distent scores from other faculties.
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ü 4.2.1.3 Extent

What is the extent of our knowledge? . . . Have we a way of deciding
how far  our  knowledge  extends.   Or  if  we  know how far  it  does
extend, and are able to say what the things are that we know, then
we may be  able  to  formulate  criteria  enabling  us to  mark off  the
things that we do know from those that we do not.

Chisholm, Roderick (1973) The Problem of Criterion: p. 120.

The previously discussed education metrics of distent and sustent both analyze
the prerequisite  lineages between a node and the universal  stem of knowledge for the
entire  course network,  primary school  down to kindergarten.   In different  ways,  each
metric measures how prior knowledge is arranged leading up to, and thus determining,
the  learning  in  a  course  node.   At  this  point,  guiding  questions  of  the  research  are
reversed to introduce the issues of courses, knowledge, and learning subsequent to any
network node.  To address in an uncomplicated way, how the knowledge from a course
further  propagates  through  following  courses  to  affect  subsequent  learning,  another
network metric, called extent, is described in this subsubsection.

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition:  "Extent, n: Breadth of comprehension; width of application, operation, etc.;
scope.  Space or degree to which anything is extended"; of a material thing, "the amount
of space over which it extends."  By reversing the polarity of the course network and
tracking all paths that leave a source node towards subsequent courses, a subnetwork is
defined  outwards  from  the  course  in  question  to  the  terminal  edges  of  the  network.
Through this genealogy,  the knowledge from a source node is passed onto subsequent
courses  as part  of their  prior  knowledge  requirements  to be used as a "resource"  and
elaborated upon.  Depending on the size of that subnetwork and internal link strengths,
the extent metric quantifies into how many courses (and ¯credits) the knowledge from a
source node extends (see Figure 4.2.1.3-1).  The algorithm to calculate extent is exactly
the same used to determine sustent,  except the links of the input course network have
their directions switched;  that is to say, extent  may be considered as 'reverse sustent'.
During calculations, the computer automatically tracks all trajectories from a reference
node to the end of terminal  courses  in the network,  methodically  addressing  overlap-
ping,  crisscrossing,  or  otherwise  redundant  portions  of  multiple  trajectories  (revisit
Figures 4.2.1.2-2, -3, & -4, turning them upside down for interpretation of extent).  For
each node, the extent score is a weighted measure of influenced nodes, from immediate,
to secondary,  to tertiary,  to all following subsequents.   By measuring and recognizing
the relative  extent  score,  an education  researcher,  administrator,  or even a student,  is
made aware of how much (or how little) further academic learning depends on a course.

The extent scores are calculated by computer with the program, Calendar Naviga-
tor, for every course node in the data set (see Table 9.2-1, thirteenth column, E).  Predict-
ably, based on the structure of the education network, kindergarten (#535) is the course
node with greatest extent, EK  = ¯14 565, a value equal to the total course weight of all
the other nodes in the network, including academic and nonacademic School and all of
University.  At the 30-level in School, ELA 3104 (#275), English Language Arts 30-2,
has the maximum extent, EELA 3104  ≈ ¯9 133, due to its role in granting access to univer-
sity courses.  Among university courses, MATH 100 (#4165), Calculus I, has the great-
est extent into the rest of the education network, EMATH 100  = ¯1 039.35.  The next ten
highest extent courses all represent  the subjects of Mathematics  or Chemistry,  starting
with CHEM 103 (#3936), Introduction to University Chemistry I, ECHEM 103  = ¯993.87.
The first  courses  of various  other  subjects  arrive  in descending  order  as:  ECON 101
(#2039),  Introduction  to  Microeconomics,  BIOL  107  (#3878),  Introduction  to  Cell
Biology, STAT 151 (#4326), Introduction  to Applied Statistics I, ENGG 130 (#3740),
Engineering Mechanics, PHYS 130 (#4249), Wave Motion, Optics, and Sound, BIOCH
200 (#4408), Introduction to Biochemistry, POL S 101 (#2914), Introduction to Politics,
EN PH 131 (#4101), Mechanics, MUSIC 100 (#2698), Rudiments of Music, DES 138
(#1911),  Design  Fundamentals  I,  and  ART  136  (#1689),  Art  Fundamentals  I,  each
representing  introductory  subject  knowledge  widely  drawn upon  for  other  courses  to
elaborate.   This list is similar  to, but far from matching, the list of university courses
ranked by eigenvector centrality (see §4.1.1.4).  The extent metric keeps increasing the
score of a course equally for each subsequent node, even those that no longer are very
central themselves, thus contributing little to the eigenvector centrality measure.

At the other  extreme,  there are 1 335 nodes with zero extent  scores;  these are
necessarily the terminal courses where network trajectories can be said to 'end'.  Expect-
ably, many are 400-level courses from university and the concluding courses on the tips
of  isolated  trajectories  through  RAP,  but,  there  are  also  some  first  year  University
courses to which no other courses refer.  These include CHRTC 172 (#4772), Introduc-
tion to Catholic Moral Thought, RLS 133 (#4749), The Human-Nature Relationship in
Leisure,  INT D 100 (#2529),  Employment,  Citizenship,  and the Liberal Arts, and AN
SC 120 (#1332), Animals and Society, none of which have any extent further into the
education system, E  = ¯0, and so cannot serve as a prerequisite  for any other course.
Very low, finite extent courses (E < ¯0.4) in first year University, include, in ascending
order:  CLASS  160  (#1864),  Greek  and  Latin  in  the  English  Language,  PAC  182
(#4651),  Indoor  Wall Climbing,  C LIT 172 (#1784),  Introduction  to Canadian Litera-
ture, SWAH 112 (#3304), Beginners' Swahili, and DAC 155 (#4613), Social Dance.

By considering courses collectively, a frequency distribution of sustent scores is
formed (see Figure 4.2.1.3-2 and, for interested readers, Attachment 9.1 Supplementary
Figures 4.2.1.3-2).  It is clear that most courses in university have little or no extent (≤
¯2 credits); the median extent across all courses in the system is Eè  = ¯(1.5 ± 1.5), and
the median extent of university courses is just Eè UNIVERSITY  = ¯(0.9 ± 0.9), where the
uncertainty is the median deviation from the median.  A null extent score is expected for
all terminal courses, by definition.  This observation, along with Figure 4.1.1.2-5 indi-
cates that most courses reside on the periphery of the education system, which in turn
implies the core of the course network, is small, but made up of important hubs of high
extent (see Figure 4.2.1.3-3).  In University, the Faculties of Science and Nursing have
much higher extent than the other faculties.  Comparisons between average extent scores
for courses in individual departments at University may be made by the interested reader
using the statistics on Table 4.2.1.1-2, tenth column, Eêêê.  Generally, the presence of more
courses with many diverse, perhaps interdisciplinary, prerequisites that integrate knowl-
edge, scattered throughout the network, would promote knowledge sharing and increase
median  extent  scores.   If more departments  designed "cap stone" courses to conclude
degree programs and, literally, 'tie up loose ends' of development  chains, then median
extent  scores  would rise;  even more comprehensively,  the redesign of departments  to
broaden the interdependence of courses and subjects, plus greater enforcement of Univer-
sity  guidelines  regarding  prerequisites  (review  Table  3.1.2.4-1)  for  courses  at  each
number  level,  are all  steps  that  administrators  could take to reduce the proportion  of
courses with low extent and consequently isolated knowledge.

Extent determines, in a metaphorical way, the academic 'horizon' for a course.  It
captures the new possibilities for academic learning within the education system out to
its ends, given a course is well completed.  Just as extent quantifies a horizon towards
subsequents  of  higher  distent,  sustent  quantifies  an  academic  horizon  in the opposite
direction,  towards lower  distent  prerequisites  (see Figure  4.2.1.3-4).   Both extent  and
sustent  metrics  are related  to distent  because  horizons  always  refer  to the edges of a
system, and distent determines any course's relative position.  A boundary condition of
zero distent implies zero sustent and maximal extent; conversely, a boundary condition
of maximum distent implies maximal sustent and zero extent.  Somewhere in the middle
of the course network are positions that balance both; call these (generally nonunique)
locations  'academically  central',  and associate  a  statistic  with  a  local  maximum.   Let
academic centrality be a simultaneous measure of both what comes ahead and what lies
behind the knowledge from any course, such that, academic centrality ∝ sustent*extent;
this implies, ca  = (S*E)/W,  where W = HW ê2L2  is a constant of normalization for each
network, and W is the total weight of course nodes (¯) in the network.  By normalizing
the academic  centrality,  each  course  node is  compared  to the  theoretically  maximum
academic center point for a course network of the same size, that is, for a node located at
a 'pinch point' (similar to course p in Figure 4.2.1.3-4)  where exactly half of the total
network makes up the sustent, and half of the total network makes up the extent.  Trivi-
ally,  any terminal  course has no academic centrality,  since Eterminal course  = 0, as does
Kindergarten, since SK  = 0.  Courses with high academic centrality are the 'pivot points'
around  which  a student's  perspective  is  maximized  in  terms of  a)  development  from
experience and b) possibility  of access.   Academic centrality scores are calculated forevery course by computer using the program Calendar Navigator, and reported on Table9.2-1, fourteenth column, ca .  By this statistic, the academic center point for educationin Alberta is ELA 3104 (#275), English Language Arts 30-2, with a large sustent as agrade twelve academic course in school, and large extent including access to all univer-sity  courses†.   The  next  most  important  'pivot  point',  is  Grade  9 (#544),  with  lessersustent, but with near maximum extent since it is located previous to the specializationof academic courses into specific subjects, and includes all non academic courses, plusuniversity.   The university course with highest academic centrality (notice though, noteigenvector centrality,  review §4.1.1.4) is MATH 100 (#4165),  Calculus I.  Academiccentrality  is  distinguished  from  eigenvector  centrality  because  eigenvector  centralityassumes the links between courses are nondirected,  and is here offered as the replace-ment  standard measure  of centrality on course networks.   Academic centrality  differsfrom academic capacity (review §4.1.1.3) because that is a measure local to the neighbor-hood of any node, and is invariant for a given node and neighborhood contained withinany kind of network, while academic centrality is a network wide measure of a node'srole. Extent  is a metric that characterizes  any course based on its linkage to subse-quent courses in the education system.  It is a useful metric for administrators to gaugethe impact  of  knowledge  a  course  produces  on the  rest  of  a  network.   Knowing  theextent scores of courses allows students to better estimate the future applicability of theknowledge they are learning and plan their course choices accordingly.  The frequencydistribution of distent scores shows the dominant structures in the course network contrib-ute  to  knowledge  divergence  over  knowledge  convergence,  resulting  in most  coursesbeing located on the periphery.  Peripheral courses are not referred to by other coursesas  prerequisites,  so  do  not  determine  the  knowledge  content  of  subsequent  courses.Combined  with  the  sustent  metric,  extent  can  be  used  to  define  a  statistic,  called'academic centrality'  – a measure of a course's linkage to both prerequisite  and subse-quent courses in terms of knowledge, and a course's connection to both past and futurelearning for the student.________________________________†  Note that English Language Arts 30-2 is not the primary, or even a direct, gateway touniversity  entrance.   Any  student  who  is  enrolled  in  ELA 3104  has  likely  travelledthrough the nonacademic English sequence of courses.  Instead, English Language Arts30-2 is an important, 'last junction' coupling the academic and nonacademic parts of theeducation  system.  An ambitious  student  could, from this point,  move onto the gradetwelve  academic  English  course,  and  thereby  satisfy  the  most  important  universityrequirement.
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The previously discussed education metrics of distent and sustent both analyze
the prerequisite  lineages between a node and the universal  stem of knowledge for the
entire  course network,  primary school  down to kindergarten.   In different  ways,  each
metric measures how prior knowledge is arranged leading up to, and thus determining,
the  learning  in  a  course  node.   At  this  point,  guiding  questions  of  the  research  are
reversed to introduce the issues of courses, knowledge, and learning subsequent to any
network node.  To address in an uncomplicated way, how the knowledge from a course
further  propagates  through  following  courses  to  affect  subsequent  learning,  another
network metric, called extent, is described in this subsubsection.

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition:  "Extent, n: Breadth of comprehension; width of application, operation, etc.;
scope.  Space or degree to which anything is extended"; of a material thing, "the amount
of space over which it extends."  By reversing the polarity of the course network and
tracking all paths that leave a source node towards subsequent courses, a subnetwork is
defined  outwards  from  the  course  in  question  to  the  terminal  edges  of  the  network.
Through this genealogy,  the knowledge from a source node is passed onto subsequent
courses  as part  of their  prior  knowledge  requirements  to be used as a "resource"  and
elaborated upon.  Depending on the size of that subnetwork and internal link strengths,
the extent metric quantifies into how many courses (and ¯credits) the knowledge from a
source node extends (see Figure 4.2.1.3-1).  The algorithm to calculate extent is exactly
the same used to determine sustent,  except the links of the input course network have
their directions switched;  that is to say, extent  may be considered as 'reverse sustent'.
During calculations, the computer automatically tracks all trajectories from a reference
node to the end of terminal  courses  in the network,  methodically  addressing  overlap-
ping,  crisscrossing,  or  otherwise  redundant  portions  of  multiple  trajectories  (revisit
Figures 4.2.1.2-2, -3, & -4, turning them upside down for interpretation of extent).  For
each node, the extent score is a weighted measure of influenced nodes, from immediate,
to secondary,  to tertiary,  to all following subsequents.   By measuring and recognizing
the relative  extent  score,  an education  researcher,  administrator,  or even a student,  is
made aware of how much (or how little) further academic learning depends on a course.

The extent scores are calculated by computer with the program, Calendar Naviga-
tor, for every course node in the data set (see Table 9.2-1, thirteenth column, E).  Predict-
ably, based on the structure of the education network, kindergarten (#535) is the course
node with greatest extent, EK  = ¯14 565, a value equal to the total course weight of all
the other nodes in the network, including academic and nonacademic School and all of
University.  At the 30-level in School, ELA 3104 (#275), English Language Arts 30-2,
has the maximum extent, EELA 3104  ≈ ¯9 133, due to its role in granting access to univer-
sity courses.  Among university courses, MATH 100 (#4165), Calculus I, has the great-
est extent into the rest of the education network, EMATH 100  = ¯1 039.35.  The next ten
highest extent courses all represent  the subjects of Mathematics  or Chemistry,  starting
with CHEM 103 (#3936), Introduction to University Chemistry I, ECHEM 103  = ¯993.87.
The first  courses  of various  other  subjects  arrive  in descending  order  as:  ECON 101
(#2039),  Introduction  to  Microeconomics,  BIOL  107  (#3878),  Introduction  to  Cell
Biology, STAT 151 (#4326), Introduction  to Applied Statistics I, ENGG 130 (#3740),
Engineering Mechanics, PHYS 130 (#4249), Wave Motion, Optics, and Sound, BIOCH
200 (#4408), Introduction to Biochemistry, POL S 101 (#2914), Introduction to Politics,
EN PH 131 (#4101), Mechanics, MUSIC 100 (#2698), Rudiments of Music, DES 138
(#1911),  Design  Fundamentals  I,  and  ART  136  (#1689),  Art  Fundamentals  I,  each
representing  introductory  subject  knowledge  widely  drawn upon  for  other  courses  to
elaborate.   This list is similar  to, but far from matching, the list of university courses
ranked by eigenvector centrality (see §4.1.1.4).  The extent metric keeps increasing the
score of a course equally for each subsequent node, even those that no longer are very
central themselves, thus contributing little to the eigenvector centrality measure.

At the other  extreme,  there are 1 335 nodes with zero extent  scores;  these are
necessarily the terminal courses where network trajectories can be said to 'end'.  Expect-
ably, many are 400-level courses from university and the concluding courses on the tips
of  isolated  trajectories  through  RAP,  but,  there  are  also  some  first  year  University
courses to which no other courses refer.  These include CHRTC 172 (#4772), Introduc-
tion to Catholic Moral Thought, RLS 133 (#4749), The Human-Nature Relationship in
Leisure,  INT D 100 (#2529),  Employment,  Citizenship,  and the Liberal Arts, and AN
SC 120 (#1332), Animals and Society, none of which have any extent further into the
education system, E  = ¯0, and so cannot serve as a prerequisite  for any other course.
Very low, finite extent courses (E < ¯0.4) in first year University, include, in ascending
order:  CLASS  160  (#1864),  Greek  and  Latin  in  the  English  Language,  PAC  182
(#4651),  Indoor  Wall Climbing,  C LIT 172 (#1784),  Introduction  to Canadian Litera-
ture, SWAH 112 (#3304), Beginners' Swahili, and DAC 155 (#4613), Social Dance.

By considering courses collectively, a frequency distribution of sustent scores is
formed (see Figure 4.2.1.3-2 and, for interested readers, Attachment 9.1 Supplementary
Figures 4.2.1.3-2).  It is clear that most courses in university have little or no extent (≤
¯2 credits); the median extent across all courses in the system is Eè  = ¯(1.5 ± 1.5), and
the median extent of university courses is just Eè UNIVERSITY  = ¯(0.9 ± 0.9), where the
uncertainty is the median deviation from the median.  A null extent score is expected for
all terminal courses, by definition.  This observation, along with Figure 4.1.1.2-5 indi-
cates that most courses reside on the periphery of the education system, which in turn
implies the core of the course network, is small, but made up of important hubs of high
extent (see Figure 4.2.1.3-3).  In University, the Faculties of Science and Nursing have
much higher extent than the other faculties.  Comparisons between average extent scores
for courses in individual departments at University may be made by the interested reader
using the statistics on Table 4.2.1.1-2, tenth column, Eêêê.  Generally, the presence of more
courses with many diverse, perhaps interdisciplinary, prerequisites that integrate knowl-
edge, scattered throughout the network, would promote knowledge sharing and increase
median  extent  scores.   If more departments  designed "cap stone" courses to conclude
degree programs and, literally, 'tie up loose ends' of development  chains, then median
extent  scores  would rise;  even more comprehensively,  the redesign of departments  to
broaden the interdependence of courses and subjects, plus greater enforcement of Univer-
sity  guidelines  regarding  prerequisites  (review  Table  3.1.2.4-1)  for  courses  at  each
number  level,  are all  steps  that  administrators  could take to reduce the proportion  of
courses with low extent and consequently isolated knowledge.

Extent determines, in a metaphorical way, the academic 'horizon' for a course.  It
captures the new possibilities for academic learning within the education system out to
its ends, given a course is well completed.  Just as extent quantifies a horizon towards
subsequents  of  higher  distent,  sustent  quantifies  an  academic  horizon  in the opposite
direction,  towards lower  distent  prerequisites  (see Figure  4.2.1.3-4).   Both extent  and
sustent  metrics  are related  to distent  because  horizons  always  refer  to the edges of a
system, and distent determines any course's relative position.  A boundary condition of
zero distent implies zero sustent and maximal extent; conversely, a boundary condition
of maximum distent implies maximal sustent and zero extent.  Somewhere in the middle
of the course network are positions that balance both; call these (generally nonunique)
locations  'academically  central',  and associate  a  statistic  with  a  local  maximum.   Let
academic centrality be a simultaneous measure of both what comes ahead and what lies
behind the knowledge from any course, such that, academic centrality ∝ sustent*extent;
this implies, ca  = (S*E)/W,  where W = HW ê2L2  is a constant of normalization for each
network, and W is the total weight of course nodes (¯) in the network.  By normalizing
the academic  centrality,  each  course  node is  compared  to the  theoretically  maximum
academic center point for a course network of the same size, that is, for a node located at
a 'pinch point' (similar to course p in Figure 4.2.1.3-4)  where exactly half of the total
network makes up the sustent, and half of the total network makes up the extent.  Trivi-
ally,  any terminal  course has no academic centrality,  since Eterminal course  = 0, as does
Kindergarten, since SK  = 0.  Courses with high academic centrality are the 'pivot points'
around  which  a student's  perspective  is  maximized  in  terms of  a)  development  from
experience and b) possibility  of access.   Academic centrality scores are calculated for
every course by computer using the program Calendar Navigator, and reported on Table
9.2-1, fourteenth column, ca .  By this statistic, the academic center point for education
in Alberta is ELA 3104 (#275), English Language Arts 30-2, with a large sustent as a
grade twelve academic course in school, and large extent including access to all univer-
sity  courses†.   The  next  most  important  'pivot  point',  is  Grade  9 (#544),  with  lesser
sustent, but with near maximum extent since it is located previous to the specialization
of academic courses into specific subjects, and includes all non academic courses, plus
university.   The university course with highest academic centrality (notice though, not
eigenvector centrality,  review §4.1.1.4) is MATH 100 (#4165),  Calculus I.  Academic
centrality  is  distinguished  from  eigenvector  centrality  because  eigenvector  centrality
assumes the links between courses are nondirected,  and is here offered as the replace-
ment  standard measure  of centrality on course networks.   Academic centrality  differs
from academic capacity (review §4.1.1.3) because that is a measure local to the neighbor-
hood of any node, and is invariant for a given node and neighborhood contained within
any kind of network, while academic centrality is a network wide measure of a node's
role.

Extent  is a metric that characterizes  any course based on its linkage to subse-
quent courses in the education system.  It is a useful metric for administrators to gauge
the impact  of  knowledge  a  course  produces  on the  rest  of  a  network.   Knowing  the
extent scores of courses allows students to better estimate the future applicability of the
knowledge they are learning and plan their course choices accordingly.  The frequency
distribution of distent scores shows the dominant structures in the course network contrib-
ute  to  knowledge  divergence  over  knowledge  convergence,  resulting  in most  courses
being located on the periphery.  Peripheral courses are not referred to by other courses
as  prerequisites,  so  do  not  determine  the  knowledge  content  of  subsequent  courses.
Combined  with  the  sustent  metric,  extent  can  be  used  to  define  a  statistic,  called
'academic centrality'  – a measure of a course's linkage to both prerequisite  and subse-
quent courses in terms of knowledge, and a course's connection to both past and future
learning for the student.

________________________________
†  Note that English Language Arts 30-2 is not the primary, or even a direct, gateway to
university  entrance.   Any  student  who  is  enrolled  in  ELA 3104  has  likely  travelled
through the nonacademic English sequence of courses.  Instead, English Language Arts
30-2 is an important, 'last junction' coupling the academic and nonacademic parts of the
education  system.  An ambitious  student  could, from this point,  move onto the grade
twelve  academic  English  course,  and  thereby  satisfy  the  most  important  university
requirement.
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The previously discussed education metrics of distent and sustent both analyze
the prerequisite  lineages between a node and the universal  stem of knowledge for the
entire  course network,  primary school  down to kindergarten.   In different  ways,  each
metric measures how prior knowledge is arranged leading up to, and thus determining,
the  learning  in  a  course  node.   At  this  point,  guiding  questions  of  the  research  are
reversed to introduce the issues of courses, knowledge, and learning subsequent to any
network node.  To address in an uncomplicated way, how the knowledge from a course
further  propagates  through  following  courses  to  affect  subsequent  learning,  another
network metric, called extent, is described in this subsubsection.

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition:  "Extent, n: Breadth of comprehension; width of application, operation, etc.;
scope.  Space or degree to which anything is extended"; of a material thing, "the amount
of space over which it extends."  By reversing the polarity of the course network and
tracking all paths that leave a source node towards subsequent courses, a subnetwork is
defined  outwards  from  the  course  in  question  to  the  terminal  edges  of  the  network.
Through this genealogy,  the knowledge from a source node is passed onto subsequent
courses  as part  of their  prior  knowledge  requirements  to be used as a "resource"  and
elaborated upon.  Depending on the size of that subnetwork and internal link strengths,
the extent metric quantifies into how many courses (and ¯credits) the knowledge from a
source node extends (see Figure 4.2.1.3-1).  The algorithm to calculate extent is exactly
the same used to determine sustent,  except the links of the input course network have
their directions switched;  that is to say, extent  may be considered as 'reverse sustent'.
During calculations, the computer automatically tracks all trajectories from a reference
node to the end of terminal  courses  in the network,  methodically  addressing  overlap-
ping,  crisscrossing,  or  otherwise  redundant  portions  of  multiple  trajectories  (revisit
Figures 4.2.1.2-2, -3, & -4, turning them upside down for interpretation of extent).  For
each node, the extent score is a weighted measure of influenced nodes, from immediate,
to secondary,  to tertiary,  to all following subsequents.   By measuring and recognizing
the relative  extent  score,  an education  researcher,  administrator,  or even a student,  is
made aware of how much (or how little) further academic learning depends on a course.

The extent scores are calculated by computer with the program, Calendar Naviga-
tor, for every course node in the data set (see Table 9.2-1, thirteenth column, E).  Predict-
ably, based on the structure of the education network, kindergarten (#535) is the course
node with greatest extent, EK  = ¯14 565, a value equal to the total course weight of all
the other nodes in the network, including academic and nonacademic School and all of
University.  At the 30-level in School, ELA 3104 (#275), English Language Arts 30-2,
has the maximum extent, EELA 3104  ≈ ¯9 133, due to its role in granting access to univer-
sity courses.  Among university courses, MATH 100 (#4165), Calculus I, has the great-
est extent into the rest of the education network, EMATH 100  = ¯1 039.35.  The next ten
highest extent courses all represent  the subjects of Mathematics  or Chemistry,  starting
with CHEM 103 (#3936), Introduction to University Chemistry I, ECHEM 103  = ¯993.87.
The first  courses  of various  other  subjects  arrive  in descending  order  as:  ECON 101
(#2039),  Introduction  to  Microeconomics,  BIOL  107  (#3878),  Introduction  to  Cell
Biology, STAT 151 (#4326), Introduction  to Applied Statistics I, ENGG 130 (#3740),
Engineering Mechanics, PHYS 130 (#4249), Wave Motion, Optics, and Sound, BIOCH
200 (#4408), Introduction to Biochemistry, POL S 101 (#2914), Introduction to Politics,
EN PH 131 (#4101), Mechanics, MUSIC 100 (#2698), Rudiments of Music, DES 138
(#1911),  Design  Fundamentals  I,  and  ART  136  (#1689),  Art  Fundamentals  I,  each
representing  introductory  subject  knowledge  widely  drawn upon  for  other  courses  to
elaborate.   This list is similar  to, but far from matching, the list of university courses
ranked by eigenvector centrality (see §4.1.1.4).  The extent metric keeps increasing the
score of a course equally for each subsequent node, even those that no longer are very
central themselves, thus contributing little to the eigenvector centrality measure.

At the other  extreme,  there are 1 335 nodes with zero extent  scores;  these are
necessarily the terminal courses where network trajectories can be said to 'end'.  Expect-
ably, many are 400-level courses from university and the concluding courses on the tips
of  isolated  trajectories  through  RAP,  but,  there  are  also  some  first  year  University
courses to which no other courses refer.  These include CHRTC 172 (#4772), Introduc-
tion to Catholic Moral Thought, RLS 133 (#4749), The Human-Nature Relationship in
Leisure,  INT D 100 (#2529),  Employment,  Citizenship,  and the Liberal Arts, and AN
SC 120 (#1332), Animals and Society, none of which have any extent further into the
education system, E  = ¯0, and so cannot serve as a prerequisite  for any other course.
Very low, finite extent courses (E < ¯0.4) in first year University, include, in ascending
order:  CLASS  160  (#1864),  Greek  and  Latin  in  the  English  Language,  PAC  182
(#4651),  Indoor  Wall Climbing,  C LIT 172 (#1784),  Introduction  to Canadian Litera-
ture, SWAH 112 (#3304), Beginners' Swahili, and DAC 155 (#4613), Social Dance.

By considering courses collectively, a frequency distribution of sustent scores is
formed (see Figure 4.2.1.3-2 and, for interested readers, Attachment 9.1 Supplementary
Figures 4.2.1.3-2).  It is clear that most courses in university have little or no extent (≤
¯2 credits); the median extent across all courses in the system is Eè  = ¯(1.5 ± 1.5), and
the median extent of university courses is just Eè UNIVERSITY  = ¯(0.9 ± 0.9), where the
uncertainty is the median deviation from the median.  A null extent score is expected for
all terminal courses, by definition.  This observation, along with Figure 4.1.1.2-5 indi-
cates that most courses reside on the periphery of the education system, which in turn
implies the core of the course network, is small, but made up of important hubs of high
extent (see Figure 4.2.1.3-3).  In University, the Faculties of Science and Nursing have
much higher extent than the other faculties.  Comparisons between average extent scores
for courses in individual departments at University may be made by the interested reader
using the statistics on Table 4.2.1.1-2, tenth column, Eêêê.  Generally, the presence of more
courses with many diverse, perhaps interdisciplinary, prerequisites that integrate knowl-
edge, scattered throughout the network, would promote knowledge sharing and increase
median  extent  scores.   If more departments  designed "cap stone" courses to conclude
degree programs and, literally, 'tie up loose ends' of development  chains, then median
extent  scores  would rise;  even more comprehensively,  the redesign of departments  to
broaden the interdependence of courses and subjects, plus greater enforcement of Univer-
sity  guidelines  regarding  prerequisites  (review  Table  3.1.2.4-1)  for  courses  at  each
number  level,  are all  steps  that  administrators  could take to reduce the proportion  of
courses with low extent and consequently isolated knowledge.

Extent determines, in a metaphorical way, the academic 'horizon' for a course.  It
captures the new possibilities for academic learning within the education system out to
its ends, given a course is well completed.  Just as extent quantifies a horizon towards
subsequents  of  higher  distent,  sustent  quantifies  an  academic  horizon  in the opposite
direction,  towards lower  distent  prerequisites  (see Figure  4.2.1.3-4).   Both extent  and
sustent  metrics  are related  to distent  because  horizons  always  refer  to the edges of a
system, and distent determines any course's relative position.  A boundary condition of
zero distent implies zero sustent and maximal extent; conversely, a boundary condition
of maximum distent implies maximal sustent and zero extent.  Somewhere in the middle
of the course network are positions that balance both; call these (generally nonunique)
locations  'academically  central',  and associate  a  statistic  with  a  local  maximum.   Let
academic centrality be a simultaneous measure of both what comes ahead and what lies
behind the knowledge from any course, such that, academic centrality ∝ sustent*extent;
this implies, ca  = (S*E)/W,  where W = HW ê2L2  is a constant of normalization for each
network, and W is the total weight of course nodes (¯) in the network.  By normalizing
the academic  centrality,  each  course  node is  compared  to the  theoretically  maximum
academic center point for a course network of the same size, that is, for a node located at
a 'pinch point' (similar to course p in Figure 4.2.1.3-4)  where exactly half of the total
network makes up the sustent, and half of the total network makes up the extent.  Trivi-
ally,  any terminal  course has no academic centrality,  since Eterminal course  = 0, as does
Kindergarten, since SK  = 0.  Courses with high academic centrality are the 'pivot points'
around  which  a student's  perspective  is  maximized  in  terms of  a)  development  from
experience and b) possibility  of access.   Academic centrality scores are calculated for
every course by computer using the program Calendar Navigator, and reported on Table
9.2-1, fourteenth column, ca .  By this statistic, the academic center point for education
in Alberta is ELA 3104 (#275), English Language Arts 30-2, with a large sustent as a
grade twelve academic course in school, and large extent including access to all univer-
sity  courses†.   The  next  most  important  'pivot  point',  is  Grade  9 (#544),  with  lesser
sustent, but with near maximum extent since it is located previous to the specialization
of academic courses into specific subjects, and includes all non academic courses, plus
university.   The university course with highest academic centrality (notice though, not
eigenvector centrality,  review §4.1.1.4) is MATH 100 (#4165),  Calculus I.  Academic
centrality  is  distinguished  from  eigenvector  centrality  because  eigenvector  centrality
assumes the links between courses are nondirected,  and is here offered as the replace-
ment  standard measure  of centrality on course networks.   Academic centrality  differs
from academic capacity (review §4.1.1.3) because that is a measure local to the neighbor-
hood of any node, and is invariant for a given node and neighborhood contained within
any kind of network, while academic centrality is a network wide measure of a node's
role.

Extent  is a metric that characterizes  any course based on its linkage to subse-
quent courses in the education system.  It is a useful metric for administrators to gauge
the impact  of  knowledge  a  course  produces  on the  rest  of  a  network.   Knowing  the
extent scores of courses allows students to better estimate the future applicability of the
knowledge they are learning and plan their course choices accordingly.  The frequency
distribution of distent scores shows the dominant structures in the course network contrib-
ute  to  knowledge  divergence  over  knowledge  convergence,  resulting  in most  courses
being located on the periphery.  Peripheral courses are not referred to by other courses
as  prerequisites,  so  do  not  determine  the  knowledge  content  of  subsequent  courses.
Combined  with  the  sustent  metric,  extent  can  be  used  to  define  a  statistic,  called
'academic centrality'  – a measure of a course's linkage to both prerequisite  and subse-
quent courses in terms of knowledge, and a course's connection to both past and future
learning for the student.

________________________________
†  Note that English Language Arts 30-2 is not the primary, or even a direct, gateway to
university  entrance.   Any  student  who  is  enrolled  in  ELA 3104  has  likely  travelled
through the nonacademic English sequence of courses.  Instead, English Language Arts
30-2 is an important, 'last junction' coupling the academic and nonacademic parts of the
education  system.  An ambitious  student  could, from this point,  move onto the grade
twelve  academic  English  course,  and  thereby  satisfy  the  most  important  university
requirement.
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The previously discussed education metrics of distent and sustent both analyze
the prerequisite  lineages between a node and the universal  stem of knowledge for the
entire  course network,  primary school  down to kindergarten.   In different  ways,  each
metric measures how prior knowledge is arranged leading up to, and thus determining,
the  learning  in  a  course  node.   At  this  point,  guiding  questions  of  the  research  are
reversed to introduce the issues of courses, knowledge, and learning subsequent to any
network node.  To address in an uncomplicated way, how the knowledge from a course
further  propagates  through  following  courses  to  affect  subsequent  learning,  another
network metric, called extent, is described in this subsubsection.

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition:  "Extent, n: Breadth of comprehension; width of application, operation, etc.;
scope.  Space or degree to which anything is extended"; of a material thing, "the amount
of space over which it extends."  By reversing the polarity of the course network and
tracking all paths that leave a source node towards subsequent courses, a subnetwork is
defined  outwards  from  the  course  in  question  to  the  terminal  edges  of  the  network.
Through this genealogy,  the knowledge from a source node is passed onto subsequent
courses  as part  of their  prior  knowledge  requirements  to be used as a "resource"  and
elaborated upon.  Depending on the size of that subnetwork and internal link strengths,
the extent metric quantifies into how many courses (and ¯credits) the knowledge from a
source node extends (see Figure 4.2.1.3-1).  The algorithm to calculate extent is exactly
the same used to determine sustent,  except the links of the input course network have
their directions switched;  that is to say, extent  may be considered as 'reverse sustent'.
During calculations, the computer automatically tracks all trajectories from a reference
node to the end of terminal  courses  in the network,  methodically  addressing  overlap-
ping,  crisscrossing,  or  otherwise  redundant  portions  of  multiple  trajectories  (revisit
Figures 4.2.1.2-2, -3, & -4, turning them upside down for interpretation of extent).  For
each node, the extent score is a weighted measure of influenced nodes, from immediate,
to secondary,  to tertiary,  to all following subsequents.   By measuring and recognizing
the relative  extent  score,  an education  researcher,  administrator,  or even a student,  is
made aware of how much (or how little) further academic learning depends on a course.

The extent scores are calculated by computer with the program, Calendar Naviga-
tor, for every course node in the data set (see Table 9.2-1, thirteenth column, E).  Predict-
ably, based on the structure of the education network, kindergarten (#535) is the course
node with greatest extent, EK  = ¯14 565, a value equal to the total course weight of all
the other nodes in the network, including academic and nonacademic School and all of
University.  At the 30-level in School, ELA 3104 (#275), English Language Arts 30-2,
has the maximum extent, EELA 3104  ≈ ¯9 133, due to its role in granting access to univer-
sity courses.  Among university courses, MATH 100 (#4165), Calculus I, has the great-
est extent into the rest of the education network, EMATH 100  = ¯1 039.35.  The next ten
highest extent courses all represent  the subjects of Mathematics  or Chemistry,  starting
with CHEM 103 (#3936), Introduction to University Chemistry I, ECHEM 103  = ¯993.87.
The first  courses  of various  other  subjects  arrive  in descending  order  as:  ECON 101
(#2039),  Introduction  to  Microeconomics,  BIOL  107  (#3878),  Introduction  to  Cell
Biology, STAT 151 (#4326), Introduction  to Applied Statistics I, ENGG 130 (#3740),
Engineering Mechanics, PHYS 130 (#4249), Wave Motion, Optics, and Sound, BIOCH
200 (#4408), Introduction to Biochemistry, POL S 101 (#2914), Introduction to Politics,
EN PH 131 (#4101), Mechanics, MUSIC 100 (#2698), Rudiments of Music, DES 138
(#1911),  Design  Fundamentals  I,  and  ART  136  (#1689),  Art  Fundamentals  I,  each
representing  introductory  subject  knowledge  widely  drawn upon  for  other  courses  to
elaborate.   This list is similar  to, but far from matching, the list of university courses
ranked by eigenvector centrality (see §4.1.1.4).  The extent metric keeps increasing the
score of a course equally for each subsequent node, even those that no longer are very
central themselves, thus contributing little to the eigenvector centrality measure.

At the other  extreme,  there are 1 335 nodes with zero extent  scores;  these are
necessarily the terminal courses where network trajectories can be said to 'end'.  Expect-
ably, many are 400-level courses from university and the concluding courses on the tips
of  isolated  trajectories  through  RAP,  but,  there  are  also  some  first  year  University
courses to which no other courses refer.  These include CHRTC 172 (#4772), Introduc-
tion to Catholic Moral Thought, RLS 133 (#4749), The Human-Nature Relationship in
Leisure,  INT D 100 (#2529),  Employment,  Citizenship,  and the Liberal Arts, and AN
SC 120 (#1332), Animals and Society, none of which have any extent further into the
education system, E  = ¯0, and so cannot serve as a prerequisite  for any other course.
Very low, finite extent courses (E < ¯0.4) in first year University, include, in ascending
order:  CLASS  160  (#1864),  Greek  and  Latin  in  the  English  Language,  PAC  182
(#4651),  Indoor  Wall Climbing,  C LIT 172 (#1784),  Introduction  to Canadian Litera-
ture, SWAH 112 (#3304), Beginners' Swahili, and DAC 155 (#4613), Social Dance.

By considering courses collectively, a frequency distribution of sustent scores is
formed (see Figure 4.2.1.3-2 and, for interested readers, Attachment 9.1 Supplementary
Figures 4.2.1.3-2).  It is clear that most courses in university have little or no extent (≤
¯2 credits); the median extent across all courses in the system is Eè  = ¯(1.5 ± 1.5), and
the median extent of university courses is just Eè UNIVERSITY  = ¯(0.9 ± 0.9), where the
uncertainty is the median deviation from the median.  A null extent score is expected for
all terminal courses, by definition.  This observation, along with Figure 4.1.1.2-5 indi-
cates that most courses reside on the periphery of the education system, which in turn
implies the core of the course network, is small, but made up of important hubs of high
extent (see Figure 4.2.1.3-3).  In University, the Faculties of Science and Nursing have
much higher extent than the other faculties.  Comparisons between average extent scores
for courses in individual departments at University may be made by the interested reader
using the statistics on Table 4.2.1.1-2, tenth column, Eêêê.  Generally, the presence of more
courses with many diverse, perhaps interdisciplinary, prerequisites that integrate knowl-
edge, scattered throughout the network, would promote knowledge sharing and increase
median  extent  scores.   If more departments  designed "cap stone" courses to conclude
degree programs and, literally, 'tie up loose ends' of development  chains, then median
extent  scores  would rise;  even more comprehensively,  the redesign of departments  to
broaden the interdependence of courses and subjects, plus greater enforcement of Univer-
sity  guidelines  regarding  prerequisites  (review  Table  3.1.2.4-1)  for  courses  at  each
number  level,  are all  steps  that  administrators  could take to reduce the proportion  of
courses with low extent and consequently isolated knowledge.

Extent determines, in a metaphorical way, the academic 'horizon' for a course.  It
captures the new possibilities for academic learning within the education system out to
its ends, given a course is well completed.  Just as extent quantifies a horizon towards
subsequents  of  higher  distent,  sustent  quantifies  an  academic  horizon  in the opposite
direction,  towards lower  distent  prerequisites  (see Figure  4.2.1.3-4).   Both extent  and
sustent  metrics  are related  to distent  because  horizons  always  refer  to the edges of a
system, and distent determines any course's relative position.  A boundary condition of
zero distent implies zero sustent and maximal extent; conversely, a boundary condition
of maximum distent implies maximal sustent and zero extent.  Somewhere in the middle
of the course network are positions that balance both; call these (generally nonunique)
locations  'academically  central',  and associate  a  statistic  with  a  local  maximum.   Let
academic centrality be a simultaneous measure of both what comes ahead and what lies
behind the knowledge from any course, such that, academic centrality ∝ sustent*extent;
this implies, ca  = (S*E)/W,  where W = HW ê2L2  is a constant of normalization for each
network, and W is the total weight of course nodes (¯) in the network.  By normalizing
the academic  centrality,  each  course  node is  compared  to the  theoretically  maximum
academic center point for a course network of the same size, that is, for a node located at
a 'pinch point' (similar to course p in Figure 4.2.1.3-4)  where exactly half of the total
network makes up the sustent, and half of the total network makes up the extent.  Trivi-
ally,  any terminal  course has no academic centrality,  since Eterminal course  = 0, as does
Kindergarten, since SK  = 0.  Courses with high academic centrality are the 'pivot points'
around  which  a student's  perspective  is  maximized  in  terms of  a)  development  from
experience and b) possibility  of access.   Academic centrality scores are calculated for
every course by computer using the program Calendar Navigator, and reported on Table
9.2-1, fourteenth column, ca .  By this statistic, the academic center point for education
in Alberta is ELA 3104 (#275), English Language Arts 30-2, with a large sustent as a
grade twelve academic course in school, and large extent including access to all univer-
sity  courses†.   The  next  most  important  'pivot  point',  is  Grade  9 (#544),  with  lesser
sustent, but with near maximum extent since it is located previous to the specialization
of academic courses into specific subjects, and includes all non academic courses, plus
university.   The university course with highest academic centrality (notice though, not
eigenvector centrality,  review §4.1.1.4) is MATH 100 (#4165),  Calculus I.  Academic
centrality  is  distinguished  from  eigenvector  centrality  because  eigenvector  centrality
assumes the links between courses are nondirected,  and is here offered as the replace-
ment  standard measure  of centrality on course networks.   Academic centrality  differs
from academic capacity (review §4.1.1.3) because that is a measure local to the neighbor-
hood of any node, and is invariant for a given node and neighborhood contained within
any kind of network, while academic centrality is a network wide measure of a node's
role.

Extent  is a metric that characterizes  any course based on its linkage to subse-
quent courses in the education system.  It is a useful metric for administrators to gauge
the impact  of  knowledge  a  course  produces  on the  rest  of  a  network.   Knowing  the
extent scores of courses allows students to better estimate the future applicability of the
knowledge they are learning and plan their course choices accordingly.  The frequency
distribution of distent scores shows the dominant structures in the course network contrib-
ute  to  knowledge  divergence  over  knowledge  convergence,  resulting  in most  courses
being located on the periphery.  Peripheral courses are not referred to by other courses
as  prerequisites,  so  do  not  determine  the  knowledge  content  of  subsequent  courses.
Combined  with  the  sustent  metric,  extent  can  be  used  to  define  a  statistic,  called
'academic centrality'  – a measure of a course's linkage to both prerequisite  and subse-
quent courses in terms of knowledge, and a course's connection to both past and future
learning for the student.

________________________________
†  Note that English Language Arts 30-2 is not the primary, or even a direct, gateway to
university  entrance.   Any  student  who  is  enrolled  in  ELA 3104  has  likely  travelled
through the nonacademic English sequence of courses.  Instead, English Language Arts
30-2 is an important, 'last junction' coupling the academic and nonacademic parts of the
education  system.  An ambitious  student  could, from this point,  move onto the grade
twelve  academic  English  course,  and  thereby  satisfy  the  most  important  university
requirement.
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Figure 4.2.1.3-1
An illustrative network diagram to justify the
extent metric.   A simple metric is sought to
characterize  and  distinguish  the  network
positions of nodes A and B on an education
course  network.   Let  it  be  observed  that
nodes  A  and  B  have  the  same  order,  the
same distent  from K,  and the same sustent.
But  node  B  further  connects  to  a  greater
portion  of  the  network  than  node  A.   The
metric,  extent,  is  proposed  to  measure  the
magnitude  of  network  influence  for a given
node,  that  is,  to measure  the  portion  of  the
education network into which specific knowl-
edge  from  a  course  node  extends.   In  the
above  example,  knowledge  from  node  A
extends  into  two  subsequent  courses;  while
the extent of node B includes two immediate,
three  secondary,  and  one  tertiary  subse-
quents.   Maximal  extent  is  exclusively  pos-
sessed by node K.
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Figure 4.2.1.3-2  A histogram indicating the distribution of courses in the education
system based on their extent.  There is no vertical scale since the width of the catego-
ries is variable.  Instead, a legend establishes consistency based on area of columns.
A very long tail to the right, containing courses of extremely high extent, is cut off.
The distribution is dominated by a huge peak of School and University courses with
little or no extent (≤ ¯2 credits).  By definition, all terminal courses end up in this
column.  This observation,  along with Figure 4.1.1.2-5 indicates that most courses
reside on the periphery of the education system.
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Figure 4.2.1.3-2  A histogram indicating the distribution of courses in the education
system based on their extent.  There is no vertical scale since the width of the catego-
ries is variable.  Instead, a legend establishes consistency based on area of columns.
A very long tail to the right, containing courses of extremely high extent, is cut off.
The distribution is dominated by a huge peak of School and University courses with
little or no extent (≤ ¯2 credits).  By definition, all terminal courses end up in this
column.  This observation,  along with Figure 4.1.1.2-5 indicates that most courses
reside on the periphery of the education system.
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Figure  4.2.1.3-3   A barchart  showing  the  Faculties  of  Nursing  and  Science,  and
especially School, have high average extent measures for their courses.  Due to the
outlying  average  extent  value  for  SCHOOL,  the  vertical  scale  contains  a
discontinuity.
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Figure 4.2.1.3-4   A metaphorical  comparison  between a particle  world line and a
student learning trajectory.   From relativity,  due to the fundamental  speed of light,
any particle passing through point p  (left diagram) has a bounded past and future,
which limits causality (Penrose 2004: §17.7; light cone diagram used by permission
of The Random House Group Ltd.).  The "past cone" contains all possible histories,
or world lines,  that  could have been experienced  by the particle before it  reached
point p, while the future cone contains all events through which the particle, having
visited p, could pass.  Events that lie outside of the light cones were, are, or will be
inaccessible  to  the  particle.   Similarly,  a  course,  p,  has  well  defined  sustent  and
extent subnetworks, which determine learning and confine learning trajectories.  The
sustent subnetwork is comprised of the only prerequisite courses from which a stu-
dent could pass through and reach course p, while, the extent subnetwork contains all
subsequent courses available to the student using the knowledge from course p.  Just
as time increases upward in the left diagram,  distent  increases upward in the right
diagram.  The actual shape of the sustent and extent subnetworks is determined by
the interconnectedness of courses.  Courses with many prerequisites, or at least many
choices per prerequisite,  form sustent  and extent  subnetworks  that rapidly collapse
towards, and expand away, from any course, p, as distent changes.  By analogy, this
would correspond  to wide light  cones.   When courses  have few or,  say, only one
prerequisite  on  average,  sustent  and  extent  subnetworks  are  reduced  to  chains  of
courses with but a single possible learning trajectory.  By analogy, this would corre-
spond to very narrow light cones (it is left to the interested and fanciful  reader to
consider what this implies for changes to the speed of light to maintain the metaphor).
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ü 4.2.1.4 Intent

A  given  instructional  event  is  thus  not  exclusively  situated  in  a
single curriculum: different curricular pathways can intersect in the
"same" course or instructional event, splintering its meanings.

Edwards, R. & Usher, R. (2003) Putting Space Back on the Map of
Learning,  in Edwards,  R. & Usher, R. (eds.) Space, Curricu-
lum  and  Learning  (Greenwich,  CT,  USA:  Information  Age
Publishing): p. 3.

The  metrics  of  distent,  sustent,  and  extent  analyze  all  the  possible  learning
trajectories either towards or away from a particular course.  Once the sustent and extent
subnetworks  are established,  the metric  scores  are independent  of the larger network,
because courses that fall outside these networks are not causally related (review Figure
4.2.1.3-4).   That is, these metric scores would not change for a node if its sustent and
extent subnetworks comprised the entire course network, or were but a small fraction of
a much larger course network.  This structuralist perspective is reasonable to describe an
explicitly mechanical system bound by the rigid logic of a deterministic chain or even a
Markov chain – where events are strictly conditional on the present state (structure and
location)  of the system wherein any knowledge  remaining from the past is embedded
(Gibson  2003).   To  tentatively  elaborate  beyond  this  framework,  assume  knowledge
produced in any course is somewhat directed towards supporting knowledge elsewhere,
and  the  future  learning  of  students.   While  the  specifics  surrounding  the  concept  of
intention  within  the  education  system is  not  detailed  here,  any  new intentions  estab-
lished within a course for learning in subsequent courses are assumed to be necessarily
proportional to the knowledge generated in a course, which is in turn assumed as propor-
tional to the academic credit weight of a course (¯).  Thus, tracking how courses distrib-
ute their knowledge towards subsequent courses is also tracking purposes present within
the  network.   Let  a  metric  designed  to  characterize  and  quantify  how knowledge  is
distributed  from courses to their subsequents,  and therefore  to trace the deliberateness
embedded in the structure of the network, be called intent.  The study of intentionality
often places it in conflict with established models of causality (Juarrero 1999: §3), as is
the case here.  For example, as shown below, the intent score assigned to any course, p,
must  also  account  for  network  topology  outside  its  sustent  and  extent  subnetworks
which already comprehensively account for all the "lower-level" influences on (and by)
the knowledge content of a course, that is, outside of a course's metaphorical light cones,
if you will (see Figure 4.2.1.4-1).

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition:   "Intent,  n:  Inclination;  that which is willed;  design, plan; attention,  heed;
meaning;  an end purposed."   Up to this  point  in  the thesis,  courses  are  described  as
active in so far as they draw upon prior knowledge from courses serving as prerequi-
sites.  Courses as prerequisites themselves, are hitherto described in more passive terms
as suppliers  of knowledge,  or  simply  present  as knowledge  "resources"  to be grazed
upon by subsequent courses.  This perspective is natural given how the course descrip-
tions in school and, especially, university only refer to prerequisite, but not subsequent,
courses, thus encouraging the perspective that courses are actively users, but passively
providers, of networked knowledge.  The eminent physicist, George Ellis (2005), com-
ments  that "the higher  levels  in the hierarchy of complexity  have autonomous  causal
powers that are functionally independent of lower-level processes . . . with higher-level
contexts  determining  the outcome of lower-level  functioning,  and even modifying the
nature of lower-level  constituents."   By letting all courses be considered as sources of
knowledge  tailored  with  foresight  into  where  the  knowledge  will  be  used,  deducible
patterns of purpose across the network result.   The intent metric,  then, is designed to
detect the implicit purposes, unstated in source documents, for each course in the wider
network as though the education system were an adaptive complex system that harbors
(say, unconscious) intentions within the hierarchical structure of the courses.  

While  distent,  sustent,  and  extent  metrics  measure  properties  intrinsic  to  any
node and the trajectories passing through it, the intent score for a course is as much a
function of the network outside of the subnetworks connected to the node, that it can be
considered an extrinsic property of a node, bestowed and primarily determined by the
network at large.   The intent  score imparted to each course is here interpreted  as the
network's  intent  for the course.   To define,  let individual  courses generate  new intent
proportional to the knowledge they create, which, in turn, is proportional to their credit
weight.   This  first  property  of  intent  implies  that  the  minimum intent  possible  for  a
course  is  its  own course  weight;  that  is,  the intent  for a course  can always  be itself.
Also, let courses inherit  and conserve intent from their prerequisites.   Finally, to each
neighboring subsequent node,  let courses pass on intent: a) in proportion to their own
intent scores, b) in proportion to the link strength between them and a subsequent, and c)
inversely proportional  to the total strength of all links to subsequents.   These rules for
intent imply that: a) kindergarten, the only node without academic prerequisites  has an
intent score equal to its own course weight; b) all other nodes have intent scores equal
their  course  weight,  plus the intent  granted to them by their  prerequisites;  c)  courses
with  high  intent  can,  in  turn,  bestow  high  intent  upon  their  subsequent  courses;  d)
courses  split  the intent  they grant  among their subsequents,  so those with few subse-
quents pass on proportionally more intent to each; e) courses without subsequents do not
grant any intent to other courses.  More formal statements describing the intent metric
are found in Attachment 9.3 Supplementary  Equations 4.2.1.4, for readers so inclined.
To summarize, the intent metric tracks the percolation (Callaway et al. 2000; Moreno et
al. 2002; Barabasi  2003; Kesten 2006; Correale et al.  2006) of intentional  knowledge
generated within the directed network from courses to their subsequents.  

The  program,  Calendar  Network,  implements  an  algorithm  tailored  to  course
networks  (for the interested reader,  see Attachment 9.4 Program Code 4.2.1.4), calcu-
lates, and reports intent scores for every course node, as listed on Table 9.2-1, column
fifteen, I.  Scanning the results, looking for high magnitude outliers, one finds some of
the usual suspects: the courses that stood out based on their high distent and/or sustent
statistics, thus implying a strong correlation, at least on the extreme end, for these met-
rics; but there are some new courses making an appearance,  as well.  For example, in
University,  the Faculty of Nursing boasts eight of the top nine intent scores, but none
higher than NURS 390 (#4585), Nursing in Context C, with a score, INURS 390  ≈ ¯59,
and a course description stating: "Within the context of primary health care focus is on
restoration,  rehabilitation  and support  of clients  experiencing  more acute  variances in
health.  Discussion  related  to  health  promotion  and  disease  prevention  continues.
Advanced  health  assessment  and  nursing  skills  are  introduced.  Prerequisites:  NURS
151,  291,  294,  295."   But  breaking  the top ten  is MLCS 495 (#2696),  Modern  Lan-
guages and Cultural Studies Honors Thesis, IMLCS 495  ≈ ¯29, just above DRAMA 457
(#2005), Production & Performance, IDRAMA 457  ≈ ¯27, in eleventh spot, heralding a the
appearance of many other courses from the Faculty of Arts in the top bracket of intent
scores.

When  the  intent  scores  of  individual  courses  are  considered  collectively  in  a
frequency  distribution  (see  Figure  4.2.1.4-2),  it  is  clear  that  most  university  courses
receive  little  intentional  knowledge  from  their  prerequisites.   That  is,  most  courses
depend on prerequisite knowledge that is not specifically intended for them, as indicated
by the course structure.  Having many low intent courses in an education network is a
predictable result of certain topological features.  For example, networks dominated by a
small minority of prerequisite hubs – where few courses supply the prerequisite knowl-
edge for many subsequents – have many courses with low intent, because any intent the
hubs have to offer is split among the many subsequent courses (see Figure 4.2.1.4-3).
Grouping courses by faculty membership,  reveals Arts, Engineering, Medicine & Den-
tistry, Native Studies, and especially Nursing to be relatively high intent faculties, while
Science  is  notable  among  the  lower  intent  faculties  (see  Figure  4.2.1.4-4).   That  the
Faculty of Science has a lower intent score per course compared to the Faculty of Arts is
even more remarkable considering that Science distinguishes itself from Arts by having
a relatively much higher sustent per course (review Figure 4.2.1.2-7).  Two factors are
suggested as relevant to these observations, one resultant and one foundational: a) since
Science courses need to attend to the knowledge requirements  of so many subsequent
courses  from outside  the faculty,  for example  Nursing,  Engineering,  and Medicine  &
Dentistry,  their  intent  is  often  divided  away;  b)  since  the enterprise  of  science  is  so
dedicated to explanation, understanding causation, and establishing universalizing  laws
of nature (Rosenberg  2000:  ch. 2) its scientific  knowledge  cannot  be overly  intentive
and must needs be open to reference by all, or at least many.  For example, throughout
the Faculty of Science there are numerous high degree hubs offering foundational knowl-edge capable of being drawn upon widely (review §4.1.1.2).  Within the Faculty of Artshowever,  and  in  particular  the  humanities,  contextualized  or  "situated"  knowledge(Lindlof 1995: 51-54 ; Goldman 1999: §1.2 & §1.3; Woolgar 1988: 73), heterogeneousknowledge (Easthope 1998; van Hemert et al. 2009), and interpretive knowledge (Gid-dens 1984a;  Shapiro  2005:  ch.  1; Martin  1990: ch. 2; Belsey 2002: p. 6 &  ch.  3) iscommon,  which  produces  self-referential  and  "coherent"  knowing  that  is  disciplinespecific and intentional, thus rendering such a course isolated and incapable of support-ing knowledge in many other courses, never mind many other departments,  and rarelyother faculties (review Figure 4.1.2.1-4 and see the following subsubsection,  §4.2.1.5).Writes van Hemert et al. (2009), "Specialization . . . is reflected . . . in course offeringsat  academic  departments.  Whereas  not  very  many  years  ago,  a  couple  of  dozenadvanced  courses  in  a  social  science  reflected  the  specialization  and  diversity  of thediscipline  even  in  major  universities  with  graduate  schools,  today  a  hundred  suchcourses can be found".Understanding the patterns of intent surrounding a course is useful for studentsbecause it informs their learning.  For example, if a student acknowledges that a certainhub course in which they are enrolled,  supplies knowledge to many subsequents,  theyneed  to accept  more  responsibility  to  actively  contextualize  the knowledge  into  theirown thinking, academic background, and towards future learning because the professornecessarily cannot be very specific in the course without being exclusionary.  Likewise,if professors, who might naturally be biased toward teaching as if all the students are alldestined to continue in the subject (as they themselves did), stress too narrow of a focus,then  the  students  likely  will  not  appreciate  the  wider  applicably  of  the  knowledgeoffered in the course.  On the other hand, when teaching is too abstract or generic, thenpedagogical  opportunities  to ground teaching  in relevant  phenomena  are lost  (Knight2004:  ch.  3).   The  author  personally  felt  these  tensions  while  teaching  Physics  211(#4254), Thermodynamics and Kinetic Theory, to a class of about 50% engineers, 40%physics students, and 10% others. The 'conventional wisdom' at the Physics departmentseemed to be that it was a tall order to interest, engage, and satisfy all groups.  It wasexpected that only would the engineers be interested in the applied aspects of the course,the physics students be interested in the theoretical  foundations,  and that the others beconfused  by  the  sophisticated  mathematics.   Some  comments  regarding  the  mixedcourse are posted by students on www.ratemyprofessors.com.   In general, when teach-ing at the university level is not sensitive to, and does not reflect, the patterns of inten-tion  throughout  the  course  network,  then  there  is  potential  for  conflict  of  interestsbetween the professors and students in any particular course.

178



The  metrics  of  distent,  sustent,  and  extent  analyze  all  the  possible  learning
trajectories either towards or away from a particular course.  Once the sustent and extent
subnetworks  are established,  the metric  scores  are independent  of the larger network,
because courses that fall outside these networks are not causally related (review Figure
4.2.1.3-4).   That is, these metric scores would not change for a node if its sustent and
extent subnetworks comprised the entire course network, or were but a small fraction of
a much larger course network.  This structuralist perspective is reasonable to describe an
explicitly mechanical system bound by the rigid logic of a deterministic chain or even a
Markov chain – where events are strictly conditional on the present state (structure and
location)  of the system wherein any knowledge  remaining from the past is embedded
(Gibson  2003).   To  tentatively  elaborate  beyond  this  framework,  assume  knowledge
produced in any course is somewhat directed towards supporting knowledge elsewhere,
and  the  future  learning  of  students.   While  the  specifics  surrounding  the  concept  of
intention  within  the  education  system is  not  detailed  here,  any  new intentions  estab-
lished within a course for learning in subsequent courses are assumed to be necessarily
proportional to the knowledge generated in a course, which is in turn assumed as propor-
tional to the academic credit weight of a course (¯).  Thus, tracking how courses distrib-
ute their knowledge towards subsequent courses is also tracking purposes present within
the  network.   Let  a  metric  designed  to  characterize  and  quantify  how knowledge  is
distributed  from courses to their subsequents,  and therefore  to trace the deliberateness
embedded in the structure of the network, be called intent.  The study of intentionality
often places it in conflict with established models of causality (Juarrero 1999: §3), as is
the case here.  For example, as shown below, the intent score assigned to any course, p,
must  also  account  for  network  topology  outside  its  sustent  and  extent  subnetworks
which already comprehensively account for all the "lower-level" influences on (and by)
the knowledge content of a course, that is, outside of a course's metaphorical light cones,
if you will (see Figure 4.2.1.4-1).

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition:   "Intent,  n:  Inclination;  that which is willed;  design, plan; attention,  heed;
meaning;  an end purposed."   Up to this  point  in  the thesis,  courses  are  described  as
active in so far as they draw upon prior knowledge from courses serving as prerequi-
sites.  Courses as prerequisites themselves, are hitherto described in more passive terms
as suppliers  of knowledge,  or  simply  present  as knowledge  "resources"  to be grazed
upon by subsequent courses.  This perspective is natural given how the course descrip-
tions in school and, especially, university only refer to prerequisite, but not subsequent,
courses, thus encouraging the perspective that courses are actively users, but passively
providers, of networked knowledge.  The eminent physicist, George Ellis (2005), com-
ments  that "the higher  levels  in the hierarchy of complexity  have autonomous  causal
powers that are functionally independent of lower-level processes . . . with higher-level
contexts  determining  the outcome of lower-level  functioning,  and even modifying the
nature of lower-level  constituents."   By letting all courses be considered as sources of
knowledge  tailored  with  foresight  into  where  the  knowledge  will  be  used,  deducible
patterns of purpose across the network result.   The intent metric,  then, is designed to
detect the implicit purposes, unstated in source documents, for each course in the wider
network as though the education system were an adaptive complex system that harbors
(say, unconscious) intentions within the hierarchical structure of the courses.  

While  distent,  sustent,  and  extent  metrics  measure  properties  intrinsic  to  any
node and the trajectories passing through it, the intent score for a course is as much a
function of the network outside of the subnetworks connected to the node, that it can be
considered an extrinsic property of a node, bestowed and primarily determined by the
network at large.   The intent  score imparted to each course is here interpreted  as the
network's  intent  for the course.   To define,  let individual  courses generate  new intent
proportional to the knowledge they create, which, in turn, is proportional to their credit
weight.   This  first  property  of  intent  implies  that  the  minimum intent  possible  for  a
course  is  its  own course  weight;  that  is,  the intent  for a course  can always  be itself.
Also, let courses inherit  and conserve intent from their prerequisites.   Finally, to each
neighboring subsequent node,  let courses pass on intent: a) in proportion to their own
intent scores, b) in proportion to the link strength between them and a subsequent, and c)
inversely proportional  to the total strength of all links to subsequents.   These rules for
intent imply that: a) kindergarten, the only node without academic prerequisites  has an
intent score equal to its own course weight; b) all other nodes have intent scores equal
their  course  weight,  plus the intent  granted to them by their  prerequisites;  c)  courses
with  high  intent  can,  in  turn,  bestow  high  intent  upon  their  subsequent  courses;  d)
courses  split  the intent  they grant  among their subsequents,  so those with few subse-
quents pass on proportionally more intent to each; e) courses without subsequents do not
grant any intent to other courses.  More formal statements describing the intent metric
are found in Attachment 9.3 Supplementary  Equations 4.2.1.4, for readers so inclined.
To summarize, the intent metric tracks the percolation (Callaway et al. 2000; Moreno et
al. 2002; Barabasi  2003; Kesten 2006; Correale et al.  2006) of intentional  knowledge
generated within the directed network from courses to their subsequents.  

The  program,  Calendar  Network,  implements  an  algorithm  tailored  to  course
networks  (for the interested reader,  see Attachment 9.4 Program Code 4.2.1.4), calcu-
lates, and reports intent scores for every course node, as listed on Table 9.2-1, column
fifteen, I.  Scanning the results, looking for high magnitude outliers, one finds some of
the usual suspects: the courses that stood out based on their high distent and/or sustent
statistics, thus implying a strong correlation, at least on the extreme end, for these met-
rics; but there are some new courses making an appearance,  as well.  For example, in
University,  the Faculty of Nursing boasts eight of the top nine intent scores, but none
higher than NURS 390 (#4585), Nursing in Context C, with a score, INURS 390  ≈ ¯59,
and a course description stating: "Within the context of primary health care focus is on
restoration,  rehabilitation  and support  of clients  experiencing  more acute  variances in
health.  Discussion  related  to  health  promotion  and  disease  prevention  continues.
Advanced  health  assessment  and  nursing  skills  are  introduced.  Prerequisites:  NURS
151,  291,  294,  295."   But  breaking  the top ten  is MLCS 495 (#2696),  Modern  Lan-
guages and Cultural Studies Honors Thesis, IMLCS 495  ≈ ¯29, just above DRAMA 457
(#2005), Production & Performance, IDRAMA 457  ≈ ¯27, in eleventh spot, heralding a the
appearance of many other courses from the Faculty of Arts in the top bracket of intent
scores.

When  the  intent  scores  of  individual  courses  are  considered  collectively  in  a
frequency  distribution  (see  Figure  4.2.1.4-2),  it  is  clear  that  most  university  courses
receive  little  intentional  knowledge  from  their  prerequisites.   That  is,  most  courses
depend on prerequisite knowledge that is not specifically intended for them, as indicated
by the course structure.  Having many low intent courses in an education network is a
predictable result of certain topological features.  For example, networks dominated by a
small minority of prerequisite hubs – where few courses supply the prerequisite knowl-
edge for many subsequents – have many courses with low intent, because any intent the
hubs have to offer is split among the many subsequent courses (see Figure 4.2.1.4-3).
Grouping courses by faculty membership,  reveals Arts, Engineering, Medicine & Den-
tistry, Native Studies, and especially Nursing to be relatively high intent faculties, while
Science  is  notable  among  the  lower  intent  faculties  (see  Figure  4.2.1.4-4).   That  the
Faculty of Science has a lower intent score per course compared to the Faculty of Arts is
even more remarkable considering that Science distinguishes itself from Arts by having
a relatively much higher sustent per course (review Figure 4.2.1.2-7).  Two factors are
suggested as relevant to these observations, one resultant and one foundational: a) since
Science courses need to attend to the knowledge requirements  of so many subsequent
courses  from outside  the faculty,  for example  Nursing,  Engineering,  and Medicine  &
Dentistry,  their  intent  is  often  divided  away;  b)  since  the enterprise  of  science  is  so
dedicated to explanation, understanding causation, and establishing universalizing  laws
of nature (Rosenberg  2000:  ch. 2) its scientific  knowledge  cannot  be overly  intentive
and must needs be open to reference by all, or at least many.  For example, throughout
the Faculty of Science there are numerous high degree hubs offering foundational knowl-
edge capable of being drawn upon widely (review §4.1.1.2).  Within the Faculty of Arts
however,  and  in  particular  the  humanities,  contextualized  or  "situated"  knowledge
(Lindlof 1995: 51-54 ; Goldman 1999: §1.2 & §1.3; Woolgar 1988: 73), heterogeneous
knowledge (Easthope 1998; van Hemert et al. 2009), and interpretive knowledge (Gid-
dens 1984a;  Shapiro  2005:  ch.  1; Martin  1990: ch. 2; Belsey 2002: p. 6 &  ch.  3) is
common,  which  produces  self-referential  and  "coherent"  knowing  that  is  discipline
specific and intentional, thus rendering such a course isolated and incapable of support-
ing knowledge in many other courses, never mind many other departments,  and rarely
other faculties (review Figure 4.1.2.1-4 and see the following subsubsection,  §4.2.1.5).
Writes van Hemert et al. (2009), "Specialization . . . is reflected . . . in course offerings
at  academic  departments.  Whereas  not  very  many  years  ago,  a  couple  of  dozen
advanced  courses  in  a  social  science  reflected  the  specialization  and  diversity  of the
discipline  even  in  major  universities  with  graduate  schools,  today  a  hundred  such
courses can be found".

Understanding the patterns of intent surrounding a course is useful for students
because it informs their learning.  For example, if a student acknowledges that a certain
hub course in which they are enrolled,  supplies knowledge to many subsequents,  they
need  to accept  more  responsibility  to  actively  contextualize  the knowledge  into  their
own thinking, academic background, and towards future learning because the professor
necessarily cannot be very specific in the course without being exclusionary.  Likewise,
if professors, who might naturally be biased toward teaching as if all the students are all
destined to continue in the subject (as they themselves did), stress too narrow of a focus,
then  the  students  likely  will  not  appreciate  the  wider  applicably  of  the  knowledge
offered in the course.  On the other hand, when teaching is too abstract or generic, then
pedagogical  opportunities  to ground teaching  in relevant  phenomena  are lost  (Knight
2004:  ch.  3).   The  author  personally  felt  these  tensions  while  teaching  Physics  211
(#4254), Thermodynamics and Kinetic Theory, to a class of about 50% engineers, 40%
physics students, and 10% others. The 'conventional wisdom' at the Physics department
seemed to be that it was a tall order to interest, engage, and satisfy all groups.  It was
expected that only would the engineers be interested in the applied aspects of the course,
the physics students be interested in the theoretical  foundations,  and that the others be
confused  by  the  sophisticated  mathematics.   Some  comments  regarding  the  mixed
course are posted by students on www.ratemyprofessors.com.   In general, when teach-
ing at the university level is not sensitive to, and does not reflect, the patterns of inten-
tion  throughout  the  course  network,  then  there  is  potential  for  conflict  of  interests
between the professors and students in any particular course.
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The  metrics  of  distent,  sustent,  and  extent  analyze  all  the  possible  learning
trajectories either towards or away from a particular course.  Once the sustent and extent
subnetworks  are established,  the metric  scores  are independent  of the larger network,
because courses that fall outside these networks are not causally related (review Figure
4.2.1.3-4).   That is, these metric scores would not change for a node if its sustent and
extent subnetworks comprised the entire course network, or were but a small fraction of
a much larger course network.  This structuralist perspective is reasonable to describe an
explicitly mechanical system bound by the rigid logic of a deterministic chain or even a
Markov chain – where events are strictly conditional on the present state (structure and
location)  of the system wherein any knowledge  remaining from the past is embedded
(Gibson  2003).   To  tentatively  elaborate  beyond  this  framework,  assume  knowledge
produced in any course is somewhat directed towards supporting knowledge elsewhere,
and  the  future  learning  of  students.   While  the  specifics  surrounding  the  concept  of
intention  within  the  education  system is  not  detailed  here,  any  new intentions  estab-
lished within a course for learning in subsequent courses are assumed to be necessarily
proportional to the knowledge generated in a course, which is in turn assumed as propor-
tional to the academic credit weight of a course (¯).  Thus, tracking how courses distrib-
ute their knowledge towards subsequent courses is also tracking purposes present within
the  network.   Let  a  metric  designed  to  characterize  and  quantify  how knowledge  is
distributed  from courses to their subsequents,  and therefore  to trace the deliberateness
embedded in the structure of the network, be called intent.  The study of intentionality
often places it in conflict with established models of causality (Juarrero 1999: §3), as is
the case here.  For example, as shown below, the intent score assigned to any course, p,
must  also  account  for  network  topology  outside  its  sustent  and  extent  subnetworks
which already comprehensively account for all the "lower-level" influences on (and by)
the knowledge content of a course, that is, outside of a course's metaphorical light cones,
if you will (see Figure 4.2.1.4-1).

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition:   "Intent,  n:  Inclination;  that which is willed;  design, plan; attention,  heed;
meaning;  an end purposed."   Up to this  point  in  the thesis,  courses  are  described  as
active in so far as they draw upon prior knowledge from courses serving as prerequi-
sites.  Courses as prerequisites themselves, are hitherto described in more passive terms
as suppliers  of knowledge,  or  simply  present  as knowledge  "resources"  to be grazed
upon by subsequent courses.  This perspective is natural given how the course descrip-
tions in school and, especially, university only refer to prerequisite, but not subsequent,
courses, thus encouraging the perspective that courses are actively users, but passively
providers, of networked knowledge.  The eminent physicist, George Ellis (2005), com-
ments  that "the higher  levels  in the hierarchy of complexity  have autonomous  causal
powers that are functionally independent of lower-level processes . . . with higher-level
contexts  determining  the outcome of lower-level  functioning,  and even modifying the
nature of lower-level  constituents."   By letting all courses be considered as sources of
knowledge  tailored  with  foresight  into  where  the  knowledge  will  be  used,  deducible
patterns of purpose across the network result.   The intent metric,  then, is designed to
detect the implicit purposes, unstated in source documents, for each course in the wider
network as though the education system were an adaptive complex system that harbors
(say, unconscious) intentions within the hierarchical structure of the courses.  

While  distent,  sustent,  and  extent  metrics  measure  properties  intrinsic  to  any
node and the trajectories passing through it, the intent score for a course is as much a
function of the network outside of the subnetworks connected to the node, that it can be
considered an extrinsic property of a node, bestowed and primarily determined by the
network at large.   The intent  score imparted to each course is here interpreted  as the
network's  intent  for the course.   To define,  let individual  courses generate  new intent
proportional to the knowledge they create, which, in turn, is proportional to their credit
weight.   This  first  property  of  intent  implies  that  the  minimum intent  possible  for  a
course  is  its  own course  weight;  that  is,  the intent  for a course  can always  be itself.
Also, let courses inherit  and conserve intent from their prerequisites.   Finally, to each
neighboring subsequent node,  let courses pass on intent: a) in proportion to their own
intent scores, b) in proportion to the link strength between them and a subsequent, and c)
inversely proportional  to the total strength of all links to subsequents.   These rules for
intent imply that: a) kindergarten, the only node without academic prerequisites  has an
intent score equal to its own course weight; b) all other nodes have intent scores equal
their  course  weight,  plus the intent  granted to them by their  prerequisites;  c)  courses
with  high  intent  can,  in  turn,  bestow  high  intent  upon  their  subsequent  courses;  d)
courses  split  the intent  they grant  among their subsequents,  so those with few subse-
quents pass on proportionally more intent to each; e) courses without subsequents do not
grant any intent to other courses.  More formal statements describing the intent metric
are found in Attachment 9.3 Supplementary  Equations 4.2.1.4, for readers so inclined.
To summarize, the intent metric tracks the percolation (Callaway et al. 2000; Moreno et
al. 2002; Barabasi  2003; Kesten 2006; Correale et al.  2006) of intentional  knowledge
generated within the directed network from courses to their subsequents.  

The  program,  Calendar  Network,  implements  an  algorithm  tailored  to  course
networks  (for the interested reader,  see Attachment 9.4 Program Code 4.2.1.4), calcu-
lates, and reports intent scores for every course node, as listed on Table 9.2-1, column
fifteen, I.  Scanning the results, looking for high magnitude outliers, one finds some of
the usual suspects: the courses that stood out based on their high distent and/or sustent
statistics, thus implying a strong correlation, at least on the extreme end, for these met-
rics; but there are some new courses making an appearance,  as well.  For example, in
University,  the Faculty of Nursing boasts eight of the top nine intent scores, but none
higher than NURS 390 (#4585), Nursing in Context C, with a score, INURS 390  ≈ ¯59,
and a course description stating: "Within the context of primary health care focus is on
restoration,  rehabilitation  and support  of clients  experiencing  more acute  variances in
health.  Discussion  related  to  health  promotion  and  disease  prevention  continues.
Advanced  health  assessment  and  nursing  skills  are  introduced.  Prerequisites:  NURS
151,  291,  294,  295."   But  breaking  the top ten  is MLCS 495 (#2696),  Modern  Lan-
guages and Cultural Studies Honors Thesis, IMLCS 495  ≈ ¯29, just above DRAMA 457
(#2005), Production & Performance, IDRAMA 457  ≈ ¯27, in eleventh spot, heralding a the
appearance of many other courses from the Faculty of Arts in the top bracket of intent
scores.

When  the  intent  scores  of  individual  courses  are  considered  collectively  in  a
frequency  distribution  (see  Figure  4.2.1.4-2),  it  is  clear  that  most  university  courses
receive  little  intentional  knowledge  from  their  prerequisites.   That  is,  most  courses
depend on prerequisite knowledge that is not specifically intended for them, as indicated
by the course structure.  Having many low intent courses in an education network is a
predictable result of certain topological features.  For example, networks dominated by a
small minority of prerequisite hubs – where few courses supply the prerequisite knowl-
edge for many subsequents – have many courses with low intent, because any intent the
hubs have to offer is split among the many subsequent courses (see Figure 4.2.1.4-3).
Grouping courses by faculty membership,  reveals Arts, Engineering, Medicine & Den-
tistry, Native Studies, and especially Nursing to be relatively high intent faculties, while
Science  is  notable  among  the  lower  intent  faculties  (see  Figure  4.2.1.4-4).   That  the
Faculty of Science has a lower intent score per course compared to the Faculty of Arts is
even more remarkable considering that Science distinguishes itself from Arts by having
a relatively much higher sustent per course (review Figure 4.2.1.2-7).  Two factors are
suggested as relevant to these observations, one resultant and one foundational: a) since
Science courses need to attend to the knowledge requirements  of so many subsequent
courses  from outside  the faculty,  for example  Nursing,  Engineering,  and Medicine  &
Dentistry,  their  intent  is  often  divided  away;  b)  since  the enterprise  of  science  is  so
dedicated to explanation, understanding causation, and establishing universalizing  laws
of nature (Rosenberg  2000:  ch. 2) its scientific  knowledge  cannot  be overly  intentive
and must needs be open to reference by all, or at least many.  For example, throughout
the Faculty of Science there are numerous high degree hubs offering foundational knowl-
edge capable of being drawn upon widely (review §4.1.1.2).  Within the Faculty of Arts
however,  and  in  particular  the  humanities,  contextualized  or  "situated"  knowledge
(Lindlof 1995: 51-54 ; Goldman 1999: §1.2 & §1.3; Woolgar 1988: 73), heterogeneous
knowledge (Easthope 1998; van Hemert et al. 2009), and interpretive knowledge (Gid-
dens 1984a;  Shapiro  2005:  ch.  1; Martin  1990: ch. 2; Belsey 2002: p. 6 &  ch.  3) is
common,  which  produces  self-referential  and  "coherent"  knowing  that  is  discipline
specific and intentional, thus rendering such a course isolated and incapable of support-
ing knowledge in many other courses, never mind many other departments,  and rarely
other faculties (review Figure 4.1.2.1-4 and see the following subsubsection,  §4.2.1.5).
Writes van Hemert et al. (2009), "Specialization . . . is reflected . . . in course offerings
at  academic  departments.  Whereas  not  very  many  years  ago,  a  couple  of  dozen
advanced  courses  in  a  social  science  reflected  the  specialization  and  diversity  of the
discipline  even  in  major  universities  with  graduate  schools,  today  a  hundred  such
courses can be found".

Understanding the patterns of intent surrounding a course is useful for students
because it informs their learning.  For example, if a student acknowledges that a certain
hub course in which they are enrolled,  supplies knowledge to many subsequents,  they
need  to accept  more  responsibility  to  actively  contextualize  the knowledge  into  their
own thinking, academic background, and towards future learning because the professor
necessarily cannot be very specific in the course without being exclusionary.  Likewise,
if professors, who might naturally be biased toward teaching as if all the students are all
destined to continue in the subject (as they themselves did), stress too narrow of a focus,
then  the  students  likely  will  not  appreciate  the  wider  applicably  of  the  knowledge
offered in the course.  On the other hand, when teaching is too abstract or generic, then
pedagogical  opportunities  to ground teaching  in relevant  phenomena  are lost  (Knight
2004:  ch.  3).   The  author  personally  felt  these  tensions  while  teaching  Physics  211
(#4254), Thermodynamics and Kinetic Theory, to a class of about 50% engineers, 40%
physics students, and 10% others. The 'conventional wisdom' at the Physics department
seemed to be that it was a tall order to interest, engage, and satisfy all groups.  It was
expected that only would the engineers be interested in the applied aspects of the course,
the physics students be interested in the theoretical  foundations,  and that the others be
confused  by  the  sophisticated  mathematics.   Some  comments  regarding  the  mixed
course are posted by students on www.ratemyprofessors.com.   In general, when teach-
ing at the university level is not sensitive to, and does not reflect, the patterns of inten-
tion  throughout  the  course  network,  then  there  is  potential  for  conflict  of  interests
between the professors and students in any particular course.
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The  metrics  of  distent,  sustent,  and  extent  analyze  all  the  possible  learning
trajectories either towards or away from a particular course.  Once the sustent and extent
subnetworks  are established,  the metric  scores  are independent  of the larger network,
because courses that fall outside these networks are not causally related (review Figure
4.2.1.3-4).   That is, these metric scores would not change for a node if its sustent and
extent subnetworks comprised the entire course network, or were but a small fraction of
a much larger course network.  This structuralist perspective is reasonable to describe an
explicitly mechanical system bound by the rigid logic of a deterministic chain or even a
Markov chain – where events are strictly conditional on the present state (structure and
location)  of the system wherein any knowledge  remaining from the past is embedded
(Gibson  2003).   To  tentatively  elaborate  beyond  this  framework,  assume  knowledge
produced in any course is somewhat directed towards supporting knowledge elsewhere,
and  the  future  learning  of  students.   While  the  specifics  surrounding  the  concept  of
intention  within  the  education  system is  not  detailed  here,  any  new intentions  estab-
lished within a course for learning in subsequent courses are assumed to be necessarily
proportional to the knowledge generated in a course, which is in turn assumed as propor-
tional to the academic credit weight of a course (¯).  Thus, tracking how courses distrib-
ute their knowledge towards subsequent courses is also tracking purposes present within
the  network.   Let  a  metric  designed  to  characterize  and  quantify  how knowledge  is
distributed  from courses to their subsequents,  and therefore  to trace the deliberateness
embedded in the structure of the network, be called intent.  The study of intentionality
often places it in conflict with established models of causality (Juarrero 1999: §3), as is
the case here.  For example, as shown below, the intent score assigned to any course, p,
must  also  account  for  network  topology  outside  its  sustent  and  extent  subnetworks
which already comprehensively account for all the "lower-level" influences on (and by)
the knowledge content of a course, that is, outside of a course's metaphorical light cones,
if you will (see Figure 4.2.1.4-1).

The  Oxford  English  Dictionary,  2nd  edition  (1989)  provides  the  following
definition:   "Intent,  n:  Inclination;  that which is willed;  design, plan; attention,  heed;
meaning;  an end purposed."   Up to this  point  in  the thesis,  courses  are  described  as
active in so far as they draw upon prior knowledge from courses serving as prerequi-
sites.  Courses as prerequisites themselves, are hitherto described in more passive terms
as suppliers  of knowledge,  or  simply  present  as knowledge  "resources"  to be grazed
upon by subsequent courses.  This perspective is natural given how the course descrip-
tions in school and, especially, university only refer to prerequisite, but not subsequent,
courses, thus encouraging the perspective that courses are actively users, but passively
providers, of networked knowledge.  The eminent physicist, George Ellis (2005), com-
ments  that "the higher  levels  in the hierarchy of complexity  have autonomous  causal
powers that are functionally independent of lower-level processes . . . with higher-level
contexts  determining  the outcome of lower-level  functioning,  and even modifying the
nature of lower-level  constituents."   By letting all courses be considered as sources of
knowledge  tailored  with  foresight  into  where  the  knowledge  will  be  used,  deducible
patterns of purpose across the network result.   The intent metric,  then, is designed to
detect the implicit purposes, unstated in source documents, for each course in the wider
network as though the education system were an adaptive complex system that harbors
(say, unconscious) intentions within the hierarchical structure of the courses.  

While  distent,  sustent,  and  extent  metrics  measure  properties  intrinsic  to  any
node and the trajectories passing through it, the intent score for a course is as much a
function of the network outside of the subnetworks connected to the node, that it can be
considered an extrinsic property of a node, bestowed and primarily determined by the
network at large.   The intent  score imparted to each course is here interpreted  as the
network's  intent  for the course.   To define,  let individual  courses generate  new intent
proportional to the knowledge they create, which, in turn, is proportional to their credit
weight.   This  first  property  of  intent  implies  that  the  minimum intent  possible  for  a
course  is  its  own course  weight;  that  is,  the intent  for a course  can always  be itself.
Also, let courses inherit  and conserve intent from their prerequisites.   Finally, to each
neighboring subsequent node,  let courses pass on intent: a) in proportion to their own
intent scores, b) in proportion to the link strength between them and a subsequent, and c)
inversely proportional  to the total strength of all links to subsequents.   These rules for
intent imply that: a) kindergarten, the only node without academic prerequisites  has an
intent score equal to its own course weight; b) all other nodes have intent scores equal
their  course  weight,  plus the intent  granted to them by their  prerequisites;  c)  courses
with  high  intent  can,  in  turn,  bestow  high  intent  upon  their  subsequent  courses;  d)
courses  split  the intent  they grant  among their subsequents,  so those with few subse-
quents pass on proportionally more intent to each; e) courses without subsequents do not
grant any intent to other courses.  More formal statements describing the intent metric
are found in Attachment 9.3 Supplementary  Equations 4.2.1.4, for readers so inclined.
To summarize, the intent metric tracks the percolation (Callaway et al. 2000; Moreno et
al. 2002; Barabasi  2003; Kesten 2006; Correale et al.  2006) of intentional  knowledge
generated within the directed network from courses to their subsequents.  

The  program,  Calendar  Network,  implements  an  algorithm  tailored  to  course
networks  (for the interested reader,  see Attachment 9.4 Program Code 4.2.1.4), calcu-
lates, and reports intent scores for every course node, as listed on Table 9.2-1, column
fifteen, I.  Scanning the results, looking for high magnitude outliers, one finds some of
the usual suspects: the courses that stood out based on their high distent and/or sustent
statistics, thus implying a strong correlation, at least on the extreme end, for these met-
rics; but there are some new courses making an appearance,  as well.  For example, in
University,  the Faculty of Nursing boasts eight of the top nine intent scores, but none
higher than NURS 390 (#4585), Nursing in Context C, with a score, INURS 390  ≈ ¯59,
and a course description stating: "Within the context of primary health care focus is on
restoration,  rehabilitation  and support  of clients  experiencing  more acute  variances in
health.  Discussion  related  to  health  promotion  and  disease  prevention  continues.
Advanced  health  assessment  and  nursing  skills  are  introduced.  Prerequisites:  NURS
151,  291,  294,  295."   But  breaking  the top ten  is MLCS 495 (#2696),  Modern  Lan-
guages and Cultural Studies Honors Thesis, IMLCS 495  ≈ ¯29, just above DRAMA 457
(#2005), Production & Performance, IDRAMA 457  ≈ ¯27, in eleventh spot, heralding a the
appearance of many other courses from the Faculty of Arts in the top bracket of intent
scores.

When  the  intent  scores  of  individual  courses  are  considered  collectively  in  a
frequency  distribution  (see  Figure  4.2.1.4-2),  it  is  clear  that  most  university  courses
receive  little  intentional  knowledge  from  their  prerequisites.   That  is,  most  courses
depend on prerequisite knowledge that is not specifically intended for them, as indicated
by the course structure.  Having many low intent courses in an education network is a
predictable result of certain topological features.  For example, networks dominated by a
small minority of prerequisite hubs – where few courses supply the prerequisite knowl-
edge for many subsequents – have many courses with low intent, because any intent the
hubs have to offer is split among the many subsequent courses (see Figure 4.2.1.4-3).
Grouping courses by faculty membership,  reveals Arts, Engineering, Medicine & Den-
tistry, Native Studies, and especially Nursing to be relatively high intent faculties, while
Science  is  notable  among  the  lower  intent  faculties  (see  Figure  4.2.1.4-4).   That  the
Faculty of Science has a lower intent score per course compared to the Faculty of Arts is
even more remarkable considering that Science distinguishes itself from Arts by having
a relatively much higher sustent per course (review Figure 4.2.1.2-7).  Two factors are
suggested as relevant to these observations, one resultant and one foundational: a) since
Science courses need to attend to the knowledge requirements  of so many subsequent
courses  from outside  the faculty,  for example  Nursing,  Engineering,  and Medicine  &
Dentistry,  their  intent  is  often  divided  away;  b)  since  the enterprise  of  science  is  so
dedicated to explanation, understanding causation, and establishing universalizing  laws
of nature (Rosenberg  2000:  ch. 2) its scientific  knowledge  cannot  be overly  intentive
and must needs be open to reference by all, or at least many.  For example, throughout
the Faculty of Science there are numerous high degree hubs offering foundational knowl-
edge capable of being drawn upon widely (review §4.1.1.2).  Within the Faculty of Arts
however,  and  in  particular  the  humanities,  contextualized  or  "situated"  knowledge
(Lindlof 1995: 51-54 ; Goldman 1999: §1.2 & §1.3; Woolgar 1988: 73), heterogeneous
knowledge (Easthope 1998; van Hemert et al. 2009), and interpretive knowledge (Gid-
dens 1984a;  Shapiro  2005:  ch.  1; Martin  1990: ch. 2; Belsey 2002: p. 6 &  ch.  3) is
common,  which  produces  self-referential  and  "coherent"  knowing  that  is  discipline
specific and intentional, thus rendering such a course isolated and incapable of support-
ing knowledge in many other courses, never mind many other departments,  and rarely
other faculties (review Figure 4.1.2.1-4 and see the following subsubsection,  §4.2.1.5).
Writes van Hemert et al. (2009), "Specialization . . . is reflected . . . in course offerings
at  academic  departments.  Whereas  not  very  many  years  ago,  a  couple  of  dozen
advanced  courses  in  a  social  science  reflected  the  specialization  and  diversity  of the
discipline  even  in  major  universities  with  graduate  schools,  today  a  hundred  such
courses can be found".

Understanding the patterns of intent surrounding a course is useful for students
because it informs their learning.  For example, if a student acknowledges that a certain
hub course in which they are enrolled,  supplies knowledge to many subsequents,  they
need  to accept  more  responsibility  to  actively  contextualize  the knowledge  into  their
own thinking, academic background, and towards future learning because the professor
necessarily cannot be very specific in the course without being exclusionary.  Likewise,
if professors, who might naturally be biased toward teaching as if all the students are all
destined to continue in the subject (as they themselves did), stress too narrow of a focus,
then  the  students  likely  will  not  appreciate  the  wider  applicably  of  the  knowledge
offered in the course.  On the other hand, when teaching is too abstract or generic, then
pedagogical  opportunities  to ground teaching  in relevant  phenomena  are lost  (Knight
2004:  ch.  3).   The  author  personally  felt  these  tensions  while  teaching  Physics  211
(#4254), Thermodynamics and Kinetic Theory, to a class of about 50% engineers, 40%
physics students, and 10% others. The 'conventional wisdom' at the Physics department
seemed to be that it was a tall order to interest, engage, and satisfy all groups.  It was
expected that only would the engineers be interested in the applied aspects of the course,
the physics students be interested in the theoretical  foundations,  and that the others be
confused  by  the  sophisticated  mathematics.   Some  comments  regarding  the  mixed
course are posted by students on www.ratemyprofessors.com.   In general, when teach-
ing at the university level is not sensitive to, and does not reflect, the patterns of inten-
tion  throughout  the  course  network,  then  there  is  potential  for  conflict  of  interests
between the professors and students in any particular course.

181



Figure 4.2.1.4-1
A  simple  network  diagram  to  justify  the  intent
metric.   A  metric  is  sought  to  characterize  and
distinguish the network positions of nodes A and B
on an education course network.  Let it be observed
that nodes A and B have the same order, the same
distent  from  K  (4  steps),  the  same  sustent  score
(four  nodes),  and  the  same  extent  (none).   The
metric,  intent,  is  offered  as  a measure  of  the  net-
work's dedication of knowledge towards any particu-
lar node.  It is here assumed that the knowledge in a
course  is  sustained  by the knowledge  produced  in
its  prerequisites;  conversely,  it  is  now argued  that
the knowledge  produced  in any course is,  up to a
point,  dedicated  towards  subsequent  courses.   In
general, it is here proposed the specificity of dedica-
tion a course can offer is inversely proportional  to
the number  of  subsequent  courses  that  draw upon
its knowledge.   The formal measure,  tracking,  and
summation  of  the  dedication  of  knowledge  from
courses  to  their  subsequents  is  called  network
intent.  Consider how node b exclusively dedicates
its  knowledge  to  node  c  which  exclusively  dedi-
cates its knowledge to node A.  In contrast, node d
dedicates its knowledge towards multiple nodes: e,
f, and g.  Node f, in turn, dedicates its knowledge
towards node h as well as node B.  It is here con-
tended  that  node  A  enjoys  greater  network  intent
than node B  since the sustent of A  (nodes c, b, a,
and K)  is  more  structurally  dedicated  towards  the
construction  of  knowledge  in  node  A  than  the
sustent  of  B  (nodes  f,  d,  a,  and K) is  structurally
dedicated towards the construction of knowledge in
node B.   This  is  because  the  sustent  of B  is  also
involved in sustaining knowledge in nodes e, g, h,
and i, so is less dedicated specifically towards node
B.  Minimal intent is exclusively possessed by node
K.
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Figure 4.2.1.4-2   A histogram showing the distribution of all courses in the educa-
tion system based on their intent.  The intent score for a course always includes its
own weight, so most University courses will necessarily have an intent score above
three credits, IêUNIVERSITY  ≥ ¯3.  The high peak between ¯3 and ¯4 credits indicates
most university courses inherit little intentional knowledge from their prerequisites.  
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Figure 4.2.1.4-3  A comparison of toy networks to illustrate the role of topology on
intent calculations.  To keep the sample calculations simple, let all courses have ¯1
of academic weight, and leave ¯ units implicit.   Notice, nodes c, f, and g have the
same extent (none) and distent (four nodes), while nodes c and f even have the same
sustent (four nodes).  In the left network, I, the initial node, K, has an intent score of
1, generated by itself.  Assigned intent values are indicated on the lower left of each
node.   Node  K  grants  its  intent,  (1),  exclusively  to  node  a,  which  generates  and
inherits a total intent of 2.  Node a, in turn, grants its intent, (2), exclusively to node
b, which generates and inherits a total intent of 3.  Node b passes on its intent of 3 to
be split among six courses, so each course c generates and inherits a total intent of
3/2 = 1 + 3/6.  The average intent score of the left network is 15/9 ≈ 1.67.  In the
right network, II, the starting node, K, bestows half its intent to each course, d, thus
they generate and inherent an intent of 3/2 = 1 + 1/2.  This pattern is repeated for
nodes e, which have calculated intent scores of 7/4.  Each node, e, gives its full intent
to either node f or g, which finish with high intent scores, 11/4 and 25/4 respectively.
The average intent score of the right network is 25/9 ≈ 2.22, such that, IêI  < IêII .  In
general,  the  presence  of  dominant  prerequisite  hubs,  such  as  node  b,  reduces  the
average intent score, while a more decentralized prerequisite structure, such as on the
right, leads to higher intent scores, even when the average distent score is lower (e.g.
the average distent score of I is approximately 3.3 while the average distent score of
II is about 2.8, such that, such that, Dêêê

I  > Dêêê
II ).
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they generate and inherent an intent of 3/2 = 1 + 1/2.  This pattern is repeated for
nodes e, which have calculated intent scores of 7/4.  Each node, e, gives its full intent
to either node f or g, which finish with high intent scores, 11/4 and 25/4 respectively.
The average intent score of the right network is 25/9 ≈ 2.22, such that, IêI  < IêII .  In
general,  the  presence  of  dominant  prerequisite  hubs,  such  as  node  b,  reduces  the
average intent score, while a more decentralized prerequisite structure, such as on the
right, leads to higher intent scores, even when the average distent score is lower (e.g.
the average distent score of I is approximately 3.3 while the average distent score of
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Figure 4.2.1.4-4   A bar chart indicating the average intent score for courses in each
faculty.  The bars for both Nursing and School rise far above the illustrated range.
The majority of intent for most courses in university is self generated, as indicated by
a baseline level of ¯3 for the typical course weight.  The relationships between the
intent metric and distent and sustent metrics are explored in Figures 4.2.1.4-5 & -6.
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Figure 4.2.1.4-5   A scatterplot  of  intent  and distent  scores  for  courses  where  the
points are colored by Faculty membership.  The long linear pattern of positive slope
(A) represent  early school  grades where  intent  tracks distent  scores.   Intent  scores
collapse as course choice increases and learning trajectories diverge, particularly for
academic and nonacademic courses (B).  Intent scores again increase along continu-
ous  chains  of  courses  for  subjects  in  high  school  (C).   The  Faculty  of  Nursing
appears  to  sustain  a  quasi-linear  pattern  (D)  within  the  distent  domain  of  ¯65 to
¯125 (review Figure 3.1.2-5 and notice Nursing's  network structure;  while it does
not resemble a simple chain of courses, it does appear as a multi-chain 'rope' struc-
ture).  There are many high intent courses from the Faculties of Arts and Nursing.
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Figure 4.2.1.4-6  A scatterplot of intent and sustent scores for each course in Alber-
ta's education  system where  the points  are colored by Faculty  membership.   Over
relatively narrow domains of sustent,  short,  linear patterns of positive slope persist
that represent simple chains of courses where intent is proportional to sustent.  Over
the full domain of sustent, there is no broad, simple relationship with intent.  But, at
any given sustent  in the interval,  ¯100 to ¯450, courses from the Faculty of Arts
form a clear majority of the high intent courses.  Courses from the Faculty of Science
are rarely among the top intent courses at any sustent level.
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ü 4.2.1.5 Interdisciplinarity

Disciplines  provide  the rationale  for the departmental  structure of
colleges and universities . . .

Lattuca,  Lisa  R.  (2001)  Creating  Interdisciplinarity:  Interdiscipli-
nary  Research  and  Teaching  among  College  and  University
Faculty (Nashville, TN: Vanderbilt University Press): p. 1.

The present  thesis is  written under  the formal guidelines  of the administrative
booklet titled, Graduate Interdisciplinary Studies, from the Faculty of Graduate Studies
and Research (2001) at the University of Alberta.  This document addresses the possibil-
ity of graduate research that cannot be contained within a single department, and consid-
ers such research  to be interdisciplinary  if it  requires  two administrative  departments,
such that, "it may be that a proposed area of study for an individual student cannot be
effectively accommodated within a single department."  Specifically,  "when a student's
knowledge base is at the interstices of two or more disciplines an individual interdiscipli-
nary graduate program may be an appropriate response."  Adapting similar thinking into
the present network model, an interdisciplinary course node will involve learning at the
"interstices of two or more disciplines", as exhibited by knowledge diversity among its
neighbors  from other  disciplines.   The interdisciplinary  character  of a course  node is
here defined by the amount to which it links to courses from without its home discipline
– at the University, its home department.  Implicit in the definition is that courses of the
same department represent the same discipline, and, each department represents a differ-
ent discipline.  Therefore, any link between courses of differing departments represents
an interdisciplinary  relationship,  and links between courses of the same department do
not.  Course nodes from School are excluded in these calculations for practical reasons.
Whenever  a chain of linked courses on the same subject  matter,  say, Mathematics  or
English, passes between high school to university, the courses are distinctly classified in
the source literature,  for example,  Mathematics  (MAT, high school)  and Mathematics
(MATH,  university),  or English Language Arts (ELA, high school)  and English (EN-
GLISH,  university).   This  results  in  any algorithm based  on department  membership
ascribing  some courses  in each end of such a chain as having  links to courses  in an
'external' department; but, of interest to the study here are the differences in departments
based  on  subject  matter,  or  disciplines,  and  not  academic  level,  thus,  links  between
School and University are not considered interdisciplinary.  

When considering whether Women's Studies is a disciplinary or an interdiscipli-
nary field of inquiry, Buker (2003) describes how the identity of a discipline has several
characteristics to buttress its intellectual integrity: 1) a past, present, and future to confer
identities on practising members; 2) a shared vocabulary for precise communication; 3)
a set of key questions to guide inquiry; 4) a set of methods; and 5) a shared epistemologi-
cal understanding of what counts as evidence.  But, she also notes that due to the practi-
cal demands within an education system, "Disciplines are often defined by their adminis-
trative structures.   Those fields with departments,  graduate programs, and professional
associations are considered disciplines."   The U. of A. Calendar defines department in
its glossary (p. 726), as "the basic organizational unit in an institution of higher learning
responsible for the academic functions in a field of study."  For Clark (1984), the distinc-
tion between discipline and department is a matter of scale.  The level of activity in a
discipline is characterized at the national or international level, while the department is
administered at the level of the institution; states Golde (2005) of this relationship, "the
department is the local manifestation of a discipline."  Elsewhere, Clark (2004) empha-
sizes that for the university,  as a social organization  oriented around knowledge,  "the
department-discipline  linkage  becomes  the  source  of  strength  and  stability,  and  even
steerage  [emphasis  in  original]".   Regardless  of  the  reader's  acceptance  of  the  here
assumed one-to-one correspondence between departments and disciplines, and therefore
the results presented in this section, the method of analysis might still stand.  For once
an alternative  classification  of courses into disciplines  is  proposed,  say,  by subject  to
discriminate  between MATH and STAT courses,  or to some other standard  based on
content,  the  grouped  courses  may  be  similarly  analyzed  for  boundary  crossing  links
necessary for interdisciplinarity.  

The  introduced  metric  for  interdisciplinarity  of  a  course  is  appropriately  net-
worked based.  The measure does not depend upon examining the knowledge or events
within a particular course node, but is a function of academic context established by the
surrounding neighborhood.   In a directed  network,  any neighborhood  has two distinct
parts based on neighbor nodes connected by incoming or outgoing links.  Consider the
Departments  of  Neuroscience  (NEUROSCI)  and  Medical  Laboratory  Science  (MED
LAB SC), see Figure 4.2.1.5-1,  bottom right; each course from these departments,  on
average,  is  linked  to  about  two  other  prerequisite  courses  from  other  departments.
These Departments, Neuroscience and Medical Laboratory Science, may be regarded as
very interdisciplinary in the way they maximally feed off knowledge from other depart-
ments  to  be  digested,  elaborated,  and  synthesized;  yet,  the  low  average  total  link
strength to external  subsequent  courses (≤  0.2) indicates  these two departments  retain
the generated knowledge locally.  In contrast, the Departments of Chemistry (CHEMIS-
TRY) and Mathematical  and Statistical  Sciences (MATH SCI) may be highlighted  as
very  interdisciplinary  by  the  generous  manner  they  supply  their  knowledge  to  other
departments,  see Figure 4.2.1.5-1, top left.  While each course from these departments
sports about two or more external subsequent courses, their near complete independence
upon  other  departments  for  prerequisites  (average  link  strength  ≤  0.2)  indicates  the
created knowledge they provide is narrowly based.

An exceptional  Department  is Biochemistry  (BIOCHEMISTRY),  which excels
at interacting with external departments, both as a supplier and user of knowledge.  To
capture  this  sense  of  symmetrical  exchange  that  incorporates  both  asymmetrical  pro-
cesses  of  knowledge  consumption  and knowledge  broadcasting  between  departments,
the interdisciplinary score for a course, i, represented by the Greek lowercase letter iota,
is  defined  as  the  product  of  the  node  degree  to  external  prerequisites  and  the  node
degree to external subsequents, i = Dexternal outward µ Dexternal inward  (review Figure 3.2-1).
For a department, the member courses are aggregated and the resulting interdisciplinary
score on the coarse network is used (review Figures 4.1.2.1-4 & -5).  Graphically, this is
represented by the area of a rectangle defined on Figure 4.2.1.5-1 using the origin {0, 0}
and the location of a department on the coordinate plane; for example, a red rectangle
representing the average interdisciplinary score, iECONOMICS , for courses in the Depart-
ment of Economics  is shown,  among others.   By this  measure,  the departments  com-
prised  of  the  most  interdisciplinary  courses  are,  in  descending  order:  Biochemistry,
Medical  Microbiology  & Immunology,  Physiology,  Economics,  Chemistry,  and Phys-
ics,  see  also,  Table  4.2.1.1-2,  seventh  column,  i,  for  complete  statistics.   Regarding
Economics,  the lone discipline from the Faculty of Arts on this list, van Hemert et al.
(2009) write "If there is a single social science in which a more or less unified theory
exists, with reference to the whole of the discipline, it is economics".  Any department
that is located along either axis due to the complete absence of either external prerequi-
sites or external subsequents will necessarily have a vanishing interdisciplinary score, i =
0.  It could be surprising to readers that the Department of Nursing is among the group
with  low  interdisciplinary  scores  bunched  near  the  origin,  since  it  is  composed  of
courses  with  relatively  large  distent,  extent,  and  sustent  measures.   All  results  taken
together  imply that Nursing,  after subsuming small amounts of knowledge from other
departments, builds sophisticated and autonomous (though isolated) disciplinary knowl-
edge as reflected by an intense internal network of courses.

Interestingly,  the Department of Interdisciplinary Studies (INT D) is one of the
worst  performers  on the Table  4.2.1.1-2.   The Department  harbors courses with little
internal network structure since the internal link strength (column four) is 0.24 per node,
moreover, INT D courses require few prerequisites, on average, from other departments
(0.04, column six).  The Department of Interdisciplinary  Studies is essentially ignored
by the rest of the University as a source of prerequisite knowledge since a total of three
links (Total External Subsequent Link Strength, column 3) reach from outside towards
the Department's 113 courses (column 1).  The sum total of all links to any courses in
the University is less than one third of the needed connections to have a viable network
structure at all; therefore, the core knowledge and links binding the Department together
necessarily come directly from School.  The position of the INT D node on the course-
grained  department  network  (review  Figure  4.1.2.1-4)  visually  confirms  the  Depart-
ment's close association with School and it's lack of significant engagement with other
University departments.

The  course  descriptions  from the  Department  of  Interdisciplinary  Studies  aretypically unspecific, and the knowledge within undemanding from any particular disci-pline, so that few University prerequisites from anywhere, within or without the Depart-ment, are called for.  For example, from the course description of INT D 451, Geogra-phy of Recreation and Leisure: "Geographic research on outdoor recreation; behavioral-spatial  approaches  to participation  and conflict  in  resource  use,  social  and ecologicalcarrying  capacity,  recreation  space  management.   Students  will  not  receive  Sciencecredit for this course in their programs", it can be observed that this 400-level course cantaken without  any University  prerequisite  (a point  explicitly  confirmed  by the authorthrough  email  exchanges  with  the  Department  administration).   The  same  (lack  of)conditions apply to INT D 439, Ukrainian Dance, "A theoretical and experiential investi-gation of the forms and history of Ukrainian  dance.  Course content  is focused on therelationships of this dance to Ukrainian as well as Canadian culture, with considerationto  its  artistic  and  educational  aspects",  as  well  as  many  others.   Significantly  morerobust  prerequisite  requirements  are in place  for INT D 370,  Survey on InternationalHealth:  "Overview  of  health  issues  and  organization  in  a cross-cultural  context  withemphasis on developing and newly industrialized countries. Prerequisite: Completion of10 full courses in any program"; but, they are not specific.  
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cesses  of  knowledge  consumption  and knowledge  broadcasting  between  departments,
the interdisciplinary score for a course, i, represented by the Greek lowercase letter iota,
is  defined  as  the  product  of  the  node  degree  to  external  prerequisites  and  the  node
degree to external subsequents, i = Dexternal outward µ Dexternal inward  (review Figure 3.2-1).
For a department, the member courses are aggregated and the resulting interdisciplinary
score on the coarse network is used (review Figures 4.1.2.1-4 & -5).  Graphically, this is
represented by the area of a rectangle defined on Figure 4.2.1.5-1 using the origin {0, 0}
and the location of a department on the coordinate plane; for example, a red rectangle
representing the average interdisciplinary score, iECONOMICS , for courses in the Depart-
ment of Economics  is shown,  among others.   By this  measure,  the departments  com-
prised  of  the  most  interdisciplinary  courses  are,  in  descending  order:  Biochemistry,
Medical  Microbiology  & Immunology,  Physiology,  Economics,  Chemistry,  and Phys-
ics,  see  also,  Table  4.2.1.1-2,  seventh  column,  i,  for  complete  statistics.   Regarding
Economics,  the lone discipline from the Faculty of Arts on this list, van Hemert et al.
(2009) write "If there is a single social science in which a more or less unified theory
exists, with reference to the whole of the discipline, it is economics".  Any department
that is located along either axis due to the complete absence of either external prerequi-
sites or external subsequents will necessarily have a vanishing interdisciplinary score, i =
0.  It could be surprising to readers that the Department of Nursing is among the group
with  low  interdisciplinary  scores  bunched  near  the  origin,  since  it  is  composed  of
courses  with  relatively  large  distent,  extent,  and  sustent  measures.   All  results  taken
together  imply that Nursing,  after subsuming small amounts of knowledge from other
departments, builds sophisticated and autonomous (though isolated) disciplinary knowl-
edge as reflected by an intense internal network of courses.

Interestingly,  the Department of Interdisciplinary Studies (INT D) is one of the
worst  performers  on the Table  4.2.1.1-2.   The Department  harbors courses with little
internal network structure since the internal link strength (column four) is 0.24 per node,
moreover, INT D courses require few prerequisites, on average, from other departments
(0.04, column six).  The Department of Interdisciplinary  Studies is essentially ignored
by the rest of the University as a source of prerequisite knowledge since a total of three
links (Total External Subsequent Link Strength, column 3) reach from outside towards
the Department's 113 courses (column 1).  The sum total of all links to any courses in
the University is less than one third of the needed connections to have a viable network
structure at all; therefore, the core knowledge and links binding the Department together
necessarily come directly from School.  The position of the INT D node on the course-
grained  department  network  (review  Figure  4.1.2.1-4)  visually  confirms  the  Depart-
ment's close association with School and it's lack of significant engagement with other
University departments.

The  course  descriptions  from the  Department  of  Interdisciplinary  Studies  are
typically unspecific, and the knowledge within undemanding from any particular disci-
pline, so that few University prerequisites from anywhere, within or without the Depart-
ment, are called for.  For example, from the course description of INT D 451, Geogra-
phy of Recreation and Leisure: "Geographic research on outdoor recreation; behavioral-
spatial  approaches  to participation  and conflict  in  resource  use,  social  and ecological
carrying  capacity,  recreation  space  management.   Students  will  not  receive  Science
credit for this course in their programs", it can be observed that this 400-level course can
taken without  any University  prerequisite  (a point  explicitly  confirmed  by the author
through  email  exchanges  with  the  Department  administration).   The  same  (lack  of)
conditions apply to INT D 439, Ukrainian Dance, "A theoretical and experiential investi-
gation of the forms and history of Ukrainian  dance.  Course content  is focused on the
relationships of this dance to Ukrainian as well as Canadian culture, with consideration
to  its  artistic  and  educational  aspects",  as  well  as  many  others.   Significantly  more
robust  prerequisite  requirements  are in place  for INT D 370,  Survey on International
Health:  "Overview  of  health  issues  and  organization  in  a cross-cultural  context  with
emphasis on developing and newly industrialized countries. Prerequisite: Completion of
10 full courses in any program"; but, they are not specific.  
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The present  thesis is  written under  the formal guidelines  of the administrative
booklet titled, Graduate Interdisciplinary Studies, from the Faculty of Graduate Studies
and Research (2001) at the University of Alberta.  This document addresses the possibil-
ity of graduate research that cannot be contained within a single department, and consid-
ers such research  to be interdisciplinary  if it  requires  two administrative  departments,
such that, "it may be that a proposed area of study for an individual student cannot be
effectively accommodated within a single department."  Specifically,  "when a student's
knowledge base is at the interstices of two or more disciplines an individual interdiscipli-
nary graduate program may be an appropriate response."  Adapting similar thinking into
the present network model, an interdisciplinary course node will involve learning at the
"interstices of two or more disciplines", as exhibited by knowledge diversity among its
neighbors  from other  disciplines.   The interdisciplinary  character  of a course  node is
here defined by the amount to which it links to courses from without its home discipline
– at the University, its home department.  Implicit in the definition is that courses of the
same department represent the same discipline, and, each department represents a differ-
ent discipline.  Therefore, any link between courses of differing departments represents
an interdisciplinary  relationship,  and links between courses of the same department do
not.  Course nodes from School are excluded in these calculations for practical reasons.
Whenever  a chain of linked courses on the same subject  matter,  say, Mathematics  or
English, passes between high school to university, the courses are distinctly classified in
the source literature,  for example,  Mathematics  (MAT, high school)  and Mathematics
(MATH,  university),  or English Language Arts (ELA, high school)  and English (EN-
GLISH,  university).   This  results  in  any algorithm based  on department  membership
ascribing  some courses  in each end of such a chain as having  links to courses  in an
'external' department; but, of interest to the study here are the differences in departments
based  on  subject  matter,  or  disciplines,  and  not  academic  level,  thus,  links  between
School and University are not considered interdisciplinary.  

When considering whether Women's Studies is a disciplinary or an interdiscipli-
nary field of inquiry, Buker (2003) describes how the identity of a discipline has several
characteristics to buttress its intellectual integrity: 1) a past, present, and future to confer
identities on practising members; 2) a shared vocabulary for precise communication; 3)
a set of key questions to guide inquiry; 4) a set of methods; and 5) a shared epistemologi-
cal understanding of what counts as evidence.  But, she also notes that due to the practi-
cal demands within an education system, "Disciplines are often defined by their adminis-
trative structures.   Those fields with departments,  graduate programs, and professional
associations are considered disciplines."   The U. of A. Calendar defines department in
its glossary (p. 726), as "the basic organizational unit in an institution of higher learning
responsible for the academic functions in a field of study."  For Clark (1984), the distinc-
tion between discipline and department is a matter of scale.  The level of activity in a
discipline is characterized at the national or international level, while the department is
administered at the level of the institution; states Golde (2005) of this relationship, "the
department is the local manifestation of a discipline."  Elsewhere, Clark (2004) empha-
sizes that for the university,  as a social organization  oriented around knowledge,  "the
department-discipline  linkage  becomes  the  source  of  strength  and  stability,  and  even
steerage  [emphasis  in  original]".   Regardless  of  the  reader's  acceptance  of  the  here
assumed one-to-one correspondence between departments and disciplines, and therefore
the results presented in this section, the method of analysis might still stand.  For once
an alternative  classification  of courses into disciplines  is  proposed,  say,  by subject  to
discriminate  between MATH and STAT courses,  or to some other standard  based on
content,  the  grouped  courses  may  be  similarly  analyzed  for  boundary  crossing  links
necessary for interdisciplinarity.  

The  introduced  metric  for  interdisciplinarity  of  a  course  is  appropriately  net-
worked based.  The measure does not depend upon examining the knowledge or events
within a particular course node, but is a function of academic context established by the
surrounding neighborhood.   In a directed  network,  any neighborhood  has two distinct
parts based on neighbor nodes connected by incoming or outgoing links.  Consider the
Departments  of  Neuroscience  (NEUROSCI)  and  Medical  Laboratory  Science  (MED
LAB SC), see Figure 4.2.1.5-1,  bottom right; each course from these departments,  on
average,  is  linked  to  about  two  other  prerequisite  courses  from  other  departments.
These Departments, Neuroscience and Medical Laboratory Science, may be regarded as
very interdisciplinary in the way they maximally feed off knowledge from other depart-
ments  to  be  digested,  elaborated,  and  synthesized;  yet,  the  low  average  total  link
strength to external  subsequent  courses (≤  0.2) indicates  these two departments  retain
the generated knowledge locally.  In contrast, the Departments of Chemistry (CHEMIS-
TRY) and Mathematical  and Statistical  Sciences (MATH SCI) may be highlighted  as
very  interdisciplinary  by  the  generous  manner  they  supply  their  knowledge  to  other
departments,  see Figure 4.2.1.5-1, top left.  While each course from these departments
sports about two or more external subsequent courses, their near complete independence
upon  other  departments  for  prerequisites  (average  link  strength  ≤  0.2)  indicates  the
created knowledge they provide is narrowly based.

An exceptional  Department  is Biochemistry  (BIOCHEMISTRY),  which excels
at interacting with external departments, both as a supplier and user of knowledge.  To
capture  this  sense  of  symmetrical  exchange  that  incorporates  both  asymmetrical  pro-
cesses  of  knowledge  consumption  and knowledge  broadcasting  between  departments,
the interdisciplinary score for a course, i, represented by the Greek lowercase letter iota,
is  defined  as  the  product  of  the  node  degree  to  external  prerequisites  and  the  node
degree to external subsequents, i = Dexternal outward µ Dexternal inward  (review Figure 3.2-1).
For a department, the member courses are aggregated and the resulting interdisciplinary
score on the coarse network is used (review Figures 4.1.2.1-4 & -5).  Graphically, this is
represented by the area of a rectangle defined on Figure 4.2.1.5-1 using the origin {0, 0}
and the location of a department on the coordinate plane; for example, a red rectangle
representing the average interdisciplinary score, iECONOMICS , for courses in the Depart-
ment of Economics  is shown,  among others.   By this  measure,  the departments  com-
prised  of  the  most  interdisciplinary  courses  are,  in  descending  order:  Biochemistry,
Medical  Microbiology  & Immunology,  Physiology,  Economics,  Chemistry,  and Phys-
ics,  see  also,  Table  4.2.1.1-2,  seventh  column,  i,  for  complete  statistics.   Regarding
Economics,  the lone discipline from the Faculty of Arts on this list, van Hemert et al.
(2009) write "If there is a single social science in which a more or less unified theory
exists, with reference to the whole of the discipline, it is economics".  Any department
that is located along either axis due to the complete absence of either external prerequi-
sites or external subsequents will necessarily have a vanishing interdisciplinary score, i =
0.  It could be surprising to readers that the Department of Nursing is among the group
with  low  interdisciplinary  scores  bunched  near  the  origin,  since  it  is  composed  of
courses  with  relatively  large  distent,  extent,  and  sustent  measures.   All  results  taken
together  imply that Nursing,  after subsuming small amounts of knowledge from other
departments, builds sophisticated and autonomous (though isolated) disciplinary knowl-
edge as reflected by an intense internal network of courses.

Interestingly,  the Department of Interdisciplinary Studies (INT D) is one of the
worst  performers  on the Table  4.2.1.1-2.   The Department  harbors courses with little
internal network structure since the internal link strength (column four) is 0.24 per node,
moreover, INT D courses require few prerequisites, on average, from other departments
(0.04, column six).  The Department of Interdisciplinary  Studies is essentially ignored
by the rest of the University as a source of prerequisite knowledge since a total of three
links (Total External Subsequent Link Strength, column 3) reach from outside towards
the Department's 113 courses (column 1).  The sum total of all links to any courses in
the University is less than one third of the needed connections to have a viable network
structure at all; therefore, the core knowledge and links binding the Department together
necessarily come directly from School.  The position of the INT D node on the course-
grained  department  network  (review  Figure  4.1.2.1-4)  visually  confirms  the  Depart-
ment's close association with School and it's lack of significant engagement with other
University departments.

The  course  descriptions  from the  Department  of  Interdisciplinary  Studies  are
typically unspecific, and the knowledge within undemanding from any particular disci-
pline, so that few University prerequisites from anywhere, within or without the Depart-
ment, are called for.  For example, from the course description of INT D 451, Geogra-
phy of Recreation and Leisure: "Geographic research on outdoor recreation; behavioral-
spatial  approaches  to participation  and conflict  in  resource  use,  social  and ecological
carrying  capacity,  recreation  space  management.   Students  will  not  receive  Science
credit for this course in their programs", it can be observed that this 400-level course can
taken without  any University  prerequisite  (a point  explicitly  confirmed  by the author
through  email  exchanges  with  the  Department  administration).   The  same  (lack  of)
conditions apply to INT D 439, Ukrainian Dance, "A theoretical and experiential investi-
gation of the forms and history of Ukrainian  dance.  Course content  is focused on the
relationships of this dance to Ukrainian as well as Canadian culture, with consideration
to  its  artistic  and  educational  aspects",  as  well  as  many  others.   Significantly  more
robust  prerequisite  requirements  are in place  for INT D 370,  Survey on International
Health:  "Overview  of  health  issues  and  organization  in  a cross-cultural  context  with
emphasis on developing and newly industrialized countries. Prerequisite: Completion of
10 full courses in any program"; but, they are not specific.  
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effectively accommodated within a single department."  Specifically,  "when a student's
knowledge base is at the interstices of two or more disciplines an individual interdiscipli-
nary graduate program may be an appropriate response."  Adapting similar thinking into
the present network model, an interdisciplinary course node will involve learning at the
"interstices of two or more disciplines", as exhibited by knowledge diversity among its
neighbors  from other  disciplines.   The interdisciplinary  character  of a course  node is
here defined by the amount to which it links to courses from without its home discipline
– at the University, its home department.  Implicit in the definition is that courses of the
same department represent the same discipline, and, each department represents a differ-
ent discipline.  Therefore, any link between courses of differing departments represents
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nary field of inquiry, Buker (2003) describes how the identity of a discipline has several
characteristics to buttress its intellectual integrity: 1) a past, present, and future to confer
identities on practising members; 2) a shared vocabulary for precise communication; 3)
a set of key questions to guide inquiry; 4) a set of methods; and 5) a shared epistemologi-
cal understanding of what counts as evidence.  But, she also notes that due to the practi-
cal demands within an education system, "Disciplines are often defined by their adminis-
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emphasis on developing and newly industrialized countries. Prerequisite: Completion of
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ü 4.2.1.6 Cover

Knowledge widens and deepens as students  continue to build links
between new information and experiences and their existing knowl-
edge base.

American  Psychological  Association  (1997)  Learner-centered
Psychological Principles: A Framework for School Reform &
Redesign

How much knowledge is sustained within a discipline?  How "wide" and "deep"
is it?  The disciplines seem so far apart conceptually and methodologically that a simple
comparison, such as ENGLISH > MATH, seems brute, absurd, and untenable.  Neverthe-
less, presented in this section is a brief argument for a pilot method of relative compari-
son based on the size and topology of the course structure used to sustain and develop
each type of disciplinary knowledge in the corresponding departments.  The assumption
being knowledge structures are constrained, emergent coherences that follow an underly-
ing logic common to theses types of complex systems (Kauffman 1993: ch. 5), and this
is reflected in the course network of each department as it represents a discipline (review
§4.2.1.3 if necessary).  Let the amount of measured knowledge in a department be called
the disciplinary cover, C.

The conjectured common mechanism of academic knowledge creation in Alber-
ta's  education  system  for  all  disciplines,  captured  by  the  gross,  abstract  framework
established in the thesis, has a structural grammar with four basic facets: i) knowledge,
regardless of its subject, is introduced and integrated at each node (Ê) in proportion to
the academic course weight (¯);  ii) previous knowledge is elaborated along chains of
prerequisite courses (ÊÊÊ);  iii) the outspread of knowledge occurs when the ideas

of one course are pointed to and utilized by many direct subsequents JÊá
à

Ê

Ê
N, and iv)

the merging of knowledge occurs when one course points to and combines the ideas of

many prerequisites JÊ

Ê
à
áÊN.  Using the vocabulary found in Cohen & Stewart's (1994:

411) book, The Collapse of Chaos, these simple architectural  motifs (Milo et al. 2002;
Yeger-Lotem et al. 2004) in the course network are identified as "simplexities" because
they are a direct result of the (reductionist)  rules of academic knowledge construction
applied in context.  Two rules are natural and universal for all knowers – learning is at
least a function of a) new information together with b) prior knowledge.  The context for
academic learning is the practical requirements of a workaday education system – knowl-
edge is classified into subjects and parcelled into courses.  Given the rules of academic
knowledge construction at the level addressed in the thesis plus the practical boundary
conditions,  the  building  blocks  of  the  course  network  straightforwardly  arise as  little
'structural  theorems',  which span a restricted space of possibilities.   Complicating  this
inceptive  description  is  the coevolution  between the wider  complex  world and whole
bodies  of  disciplinary  knowledge  embedded  within  the  context  of  a  large  education
system, which engenders generally complex course subnetworks as combinations of the
basic architectural  motifs.  The knowledge, methods, evidences, ways of knowing, and
personnel  within  each  divergent  discipline  are  different,  but  the  disciplines'  feedback
with the complex world is a convergent process within the education system resulting in
a  common  feature:  meaningfully  comparable  course  subnetworks.   Housed  in  each
department and here identified as "complicities" to persist with the vocabulary of Cohen
& Stewart (1994: 414), these course subnetworks emerge to explore an expanded space
of possible architectures that in some manner correspond to, or map, expansive bodies
of academic knowledge with a resolution of course-sized bundles of knowledge (about
¯3).  The network metric, C, is devised to scrutinize the 'coverage' of each departmental
subnetwork map and thus the size of each academic discipline.

From  (above)  facet  i),  any  discussion  of  how  much  knowledge  underpins  a
department  must  start  with  the  number  of  course  credits  offered.   In  this  thesis,  the
unadorned,  unqualified  course  credit  (¯)  forms  the  universal  objective  measure  of
academic knowledge available to students in any course and is a foundation for analysis.
Thus, let the disciplinary cover be proportional  to the total course weight in a depart-
ment, C ∝ W = ⁄i=1

N wi , where N is the number of courses in the department and wi  is
the weight of each course in academic credits (typically, ¯3).  But, considering the total
course  weight  alone,  while  it  may offer  an  appreciation  of  the  "knowledge  base"  or
metaphorical "width" of a department, does not imply how the knowledge is structured.

Davis  & Sumara  (2006:  57)  describe  how "the creation of  knowledge  .  .  .  is
constantly elaborating what has also been established" resulting in "expansiveness and
outward  movement"  of interpretive  possibilities.   In  rapport  with  their  ideas pointing
beyond  featureless  knowledge  accumulation,  which  an  aggregate  score  such  as  total
course  weight  in  a  department  (W)  describes,  a  complementary  structural  notion  of
knowledge  progression  is  included.   Consider  facet  ii)  (see above)  to be a statement
regarding  knowledge  elaboration  and advancement,  which is  captured numerically  by
the distent metric – the amount by which courses are structurally separated on a network
from one another, based on a 'stretching' metaphor (review 4.2.1.1).  Thus, to capture the
progression,  or  metaphorical  "depth",  of  the  knowledge  within  a  department,  let  the
disciplinary  cover  be  proportional  to  the  average  distent  score  of  courses,  with  one
important  modification:  the starting point for measuring  distent at the university  level
specific  to  disciplinary  knowledge  is  the  basic  University  Admission  requirements.
Usually, the universal reference point for distent scores is the beginning of Kindergar-
ten, but consistent with the boundaries of a discipline introduced in the previous section,
§4.2.1.5,  the  distent  relevant  for establishing  the  size of  a discipline  comes from the
boundary  between  School  and University.   Therefore,  let  the normalized  disciplinary
distent score of a department be D

`
 = ⁄i=1

N  wiHDi - DoL êW , where Di  is the distent score
of each course in academic  credits from Kindergarten  as reported on Table 4.2.1.1-3,
and Do  is the distent score of the minimum University Entrance requirements.  Combin-
ing both factors, total course weight and the normalized distent, each measured in units
of academic credits (¯), the disciplinary cover is described analogously to an 'area' (¯2)
of knowledge  in 'academic  space':  C  ∝  W  D

`
,  which unites  the academic  "width" and

"depth" of a department.

Guided  by  the  foundational  mapping  metaphor  for  this  thesis,  the  'size'  of  a
department in terms of knowledge is considered proportional to some kind of an area.
Just as Canada is considered as geographically large and covers a vast amount of terri-
tory on a political map of the world, with the formulation for disciplinary cover intro-
duced here, the measured score on a network map is maximized for departments with
many courses of high average distent.  But the 'area' of a network is a problematic con-
cept since networks are graphically comprised of effectively one-dimensional  links and
dot-like nodes (also called edges (1-D) and vertices (0-D) in graph theory).  Networks
are embedded and rendered on a two-dimensional page, but are made up of lower dimen-
sional components and so are briefly compared to another mathematical construct with
similar properties, the fractal (see Figure 4.2.1.6-1).  For example, Gianvittorio & Rah-
mat-Samii (2002) describe how fractal shaped antennas, created by the intricate bending
of (effectively 1-D) wire, out perform other types of "traditional Euclidean antenna[s]"
fit into the same area.  Elsewhere, Fuite, Tuszynski, et al. (2000) examine the structure-
function relationship of the human liver and show its reactive surfaces have a well-de-
fined  fractal  architecture,  while  Hou  et  al.  (2005)  show  that  comparable  biological
fractal structures are "space-filling" and possess "multiply optimized design".  Together
these authors  indicate  physical  fractals  are a category of objects  that especially  pene-
trate, permeate,  and interact with the surrounding space.  In comparison, complex sys-
tems, through their adaptive, self-organizing behaviors, are also shown to explore large
domains of the parameter spaces used to describe them.  Cohen & Stewart (1994: 200)
explain how a complex system's "phase space contains not just what happens but what
might happen under different circumstances.  It's the space of the possible."  Self-organi-
zation enlarges a system’s phase space, according to Juarrero (2000), by adding degrees
of freedom.  She concludes,  "enabling constraints  thus create potential  information by
opening—bottom-up—a  renewed pool of alternatives that the emergent macrostructure
can access."  Together, these authors point to an understanding of emergent phenomena
that attends to their multi–realizable nature as access to potential states of being within a
spatial  metaphor.   Network  models  reflect  the properties  of complex systems in their
structures  (review §2.3.2),  so might be able to monitor  the "space-filling"  (Krackauer
2005), alternative-creating capabilities of the referent system.

For Davis & Sumara (2006: ch. 4) learning occurs by "expanding the space of
the possible" for knowers,  which allows the "emergence of new interpretive possibili-ties".  Their "complexivist"  view of knowing (Jorg et al. 2007) draws attention to theconditions  required  for  'expansiveness'  and  'newness',  and  for  the  characterization  ofknowledge.  In terms of this thesis, their statements motivate a couple of questions to beaddressed, as follows.  How many of the courses in a department hold knowledge that isnovel  versus  superfluous?   And,  which  elaborations  of  disciplinary  knowledge  arenecessary versus redundant?  Consider  how redundant or superfluous  knowledge doesnot "expand the space of the possible" as much as novel or necessary knowledge, and,how such knowledge attenuates the effective "width", W, or the "depth", D̀, of a depart-ment.   The  presence  of  a  complex  departmental  subnetwork  implies  a  heterogeneityamongst the constituent  courses nodes, which in turn implies unique, specialized rolesfor each course (review §4.1.2.3).  Courses within less complex, structurally symmetri-cal  departmental  networks  fulfill  parallel  roles  to one another  as determined  by theirsimilar  positions  within  the  course  subnetwork.   Course  nodes  that  possess  uniquepositions and fulfill specialized roles in the network are here assumed to sustain distinc-tive knowledge.   The importance and uniqueness of any course and its knowledge arereduced  by the  presence  of  symmetries  within  the  departmental  subnetwork.   Coursenodes  that  possess  similar  positions  and fulfill  parallel  roles  in  the network  are hereassumed  to  sustain  relatively  redundant  or  superfluous  knowledge.   The  more  waysstudents may traverse a department with functionally indistinguishable learning trajecto-ries,  the less  powerful  the  conceptual  resources  of  the department  given its  size  (seeDavidson 1999 for a parallel statement regarding language†).  The offdiagonal complex-ity metric (OdC) is sensitive to the presence of nodes with diverse kinds of connectionsand is used here to measure the distinctiveness of knowledge amongst the courses in adepartment.   Therefore,  let  the  disciplinary  cover  be  proportional  to  the  offdiagonalcomplexity of a department: C ∝ OdC fl C = OdC W D̀.  Here, the OdC score serves asa coefficient to scale the 'academic area' of a discipline (W D̀), such that, noncomplexnetworks  have  symmetrical  structures  and  knowledges  which  are  in  some  sense'compressible'  (OdC  ),  while complex  networks  have intricate  structures  and knowl-edges that are 'dense' and 'incompressible' (OdC Æ).The results from calculations for disciplinary cover on each of the University'sdepartments are recorded on Table 4.2.1.1-2, thirteenth column, C.  Ranked at the top,measured at twice the magnitude as the nearest rival is the Department of Modern Lan-guages and Cultural Studies, which seems doubly fitting since language is the principalsocial  medium  of  knowledge  itself  (Brighton  et  al.  2005;  Motter  2002;  Searle  1995;Smith et al. 2003; Stahl 2000; Peim 2001) and modern cultures support the institutionsof contemporary education (Cowen 1996).  Other Departments substantiating disciplineswith large academic  coverage  are,  in descending  order:  Biological  Sciences,  Nursing,Chemical & Materials Engineering, Art & Design, Civil & Environmental Engineering,Music, and Mathematical & Statistical Sciences.  All departments with zero complexityscores,  OdC  =  0,  have (perhaps  somewhat  unfairly)  vanishing  disciplinary  covers  bydefinition.For a more specific application of cover, consider three university Departments:1. English & Film Studies, 2. East Asian Studies, and 3. Modern Languages & CulturalStudies.  Each department focuses on one or more languages and aspects of the culturesactively using those languages.  For example, the Department of English & Film Studiescontains courses titled: "Readings in Prose", "Narrative Theory and Poetics", "CanadianFilm",  "Introduction  to  Creative  Writing:  Nonfiction",  and  "Writing  Essentials"  (forEngineers);  the  other  two  Departments  have  analogous  courses  with  titles  such  as:"French  Reading  Comprehension",  "Russian  Style,  Expression  and  Composition","Meaning and Form in Spanish", "Japanese Film", and "Business Chinese".  The Depart-ment of English & Film Studies concerns itself with one language – English.  The Depart-ment of East Asian Studies concentrates on two major languages, Chinese and Japanese,while  the  Department  of  Modern  Languages  &  Cultural  Studies  carries  seven  mainlanguages: French, German, Italian, Polish, Russian, Spanish, and Ukrainian.  These lasttwo departments also offer a few minor programs in other languages, such as, Korean,Swedish, and American Sign Language.  But each of these subjects have a total courseweight of less than twenty-one credits (W < ¯21), well below the threshold required tobuild a nontrivial subnetwork (review Figure 4.1.2.3-1),  so are here not counted usingthe assumption that the departmental course subnetworks are well characterized by themajor  languages.   To summarize,  recognize  the ratio of major languages  in the threehighlighted  departments  to be 1: 2: 7.   A comparison of this ratio to the ratio of totalcourse weight (W) in each department, 1: 0.5: 1.8, indicates there are many more coursesdedicated  towards  teaching  English  over  the  other  languages.   A naive interpretationusing a linear  model  focusing  on accumulated  knowledge  as represented  by the totalcourse weight in each department  determines more knowledge underpins English overthe other languages at University.   But the ratio of each department's  academic covers(C) is 1: 2.3: 9.4 – a much closer match to the number of languages in each department.Indeed, the differences between the ratios in favor of the latter two departments could bedue to the presence of the previously ignored minor languages within them affecting theresults  after  all.   A  sophisticated  interpretation  using  the  cover  metric  suggests  theamount  of  knowledge  covered  within  each  department  is  about  proportional  to  thenumber of languages  contained in each department,  not the number of courses alone,and, it appears each contemporary, living language is adequately described by a similaramount of knowledge.  A reinterpretation of the ratio of total course weight (W) in eachdepartment, 1: 0.5: 1.8, compared to the number of languages in each department,  1: 2:7, with respect to cover implies the courses in the Department of English & Film Studiesare, on average, more redundant compared to courses of the other two Departments.  Itmay be there are too many English courses generating nearly the same knowledge at thesame level, or that too many English courses do not well elaborate on the knowledge ofother courses to build a network with proportionally large coverage.  The seemingly finegradations of knowledge in courses, such as, say, ENGL 222 Reading Politics: Race andEthnicity,  ENGL 355 American Literature and Culture: American Minority Literature,ENGL 360 American Literature and Culture: Race and Belonging in American Writing,ENGL 379 Canadian Literature and Culture: Canadian Minority Literature, ENGL 467Studies in Race and Ethnicity, and ENGL 489 Studies in Emergent Cultures and Minor-ity  Texts,  none  of  which  require  one  another  as  a  prerequisite,  are  effectively"collapsed" (Nespor 2004) into an implied, relatively smaller, underlying network struc-ture that still fills all of the structural roles and spans the knowledge of the departmentas gauged by the cover metric.Cover is described and offered as a measure of disciplinary knowledge produc-tion and maintenance as realized in university departments.   The statistic, C, is associ-ated with an area in a metaphorical academic space of possibilities.  The cover metric isargued to have a high degree of universality to permit comparison of the relative magni-tude  of  knowledges  in  all  disciplines  despite  their  radical  diversity.   The  disparateaspects of each discipline converge within the context of the education system to pro-duce instances  of the same categorical  feature:  course  subnetworks.   Transcription  ofdisciplinary  knowledges  using the same structural  grammar  occurs  via the underlyinglogic of all knowledge creation which couples introduced information with prior knowl-edge.  The diverse histories, vocabularies,  contents,  methods, and theories within eachdiscipline  combine  in  the  education  system  to  yield  course  subnetworks  of  differingsizes and unique structures.  Cover for each department is a product of two input parame-ters – total weight of course credits (W) and the normalized disciplinary distent (D̀), bothwith  units  of  academic  weight  (¯),  and  one  unitless  scaling  coefficient,  complexity(OdC).  Together, the two input parameters (W D̀) stake the boundaries of an 'area' (¯2)in academic  space with a metaphorical  "width" and "depth",  while the scaling coeffi-cient (OdC) describes  how the academic space is penetrated,  infused with interpretivepossibilities, and filled with possible states of knowing (review Figure 4.2.1.6-1).  Usingthe  cover  metric,  the  question  of  discipline  size  in  terms  of  knowledge  is  no longerignored  as  ill-posed,  left  as  fanciful  conjecture,  or  limited  to  the  simple  concept  ofaccumulation of undifferentiated knowledge.  Departments supporting knowledge regard-ing languages  are measured to have large academic  cover scores  in proportion to thenumber of languages supported.   Otherwise,  scientific departments,  such as BiologicalSciences,  applied  departments,  such as  Nursing  and  various  Engineering,  and artisticdepartments,  such as  Art  & Design  and Music,  possess  large  academic  cover  scores.Cover (C) is a novel metric that might be of interest to administrators and educationalresearchers  who  wish  to  view  the  knowledge  of  varied  disciplines  in  some  directlycomparative way within a unified framework.__________________________†"It is proposd that the degree of complexity of an object language relative to a givenmetalanguage can be gauged by the number of ways it can be translated into that metalan-guage: in analogy with other forms of measurement, the more ways the object languagecan be translated into the metalanguage,  the less powerful the conceptual  resources ofthe object language."
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How much knowledge is sustained within a discipline?  How "wide" and "deep"
is it?  The disciplines seem so far apart conceptually and methodologically that a simple
comparison, such as ENGLISH > MATH, seems brute, absurd, and untenable.  Neverthe-
less, presented in this section is a brief argument for a pilot method of relative compari-
son based on the size and topology of the course structure used to sustain and develop
each type of disciplinary knowledge in the corresponding departments.  The assumption
being knowledge structures are constrained, emergent coherences that follow an underly-
ing logic common to theses types of complex systems (Kauffman 1993: ch. 5), and this
is reflected in the course network of each department as it represents a discipline (review
§4.2.1.3 if necessary).  Let the amount of measured knowledge in a department be called
the disciplinary cover, C.

The conjectured common mechanism of academic knowledge creation in Alber-
ta's  education  system  for  all  disciplines,  captured  by  the  gross,  abstract  framework
established in the thesis, has a structural grammar with four basic facets: i) knowledge,
regardless of its subject, is introduced and integrated at each node (Ê) in proportion to
the academic course weight (¯);  ii) previous knowledge is elaborated along chains of
prerequisite courses (ÊÊÊ);  iii) the outspread of knowledge occurs when the ideas

of one course are pointed to and utilized by many direct subsequents JÊá
à

Ê

Ê
N, and iv)

the merging of knowledge occurs when one course points to and combines the ideas of

many prerequisites JÊ

Ê
à
áÊN.  Using the vocabulary found in Cohen & Stewart's (1994:

411) book, The Collapse of Chaos, these simple architectural  motifs (Milo et al. 2002;
Yeger-Lotem et al. 2004) in the course network are identified as "simplexities" because
they are a direct result of the (reductionist)  rules of academic knowledge construction
applied in context.  Two rules are natural and universal for all knowers – learning is at
least a function of a) new information together with b) prior knowledge.  The context for
academic learning is the practical requirements of a workaday education system – knowl-
edge is classified into subjects and parcelled into courses.  Given the rules of academic
knowledge construction at the level addressed in the thesis plus the practical boundary
conditions,  the  building  blocks  of  the  course  network  straightforwardly  arise as  little
'structural  theorems',  which span a restricted space of possibilities.   Complicating  this
inceptive  description  is  the coevolution  between the wider  complex  world and whole
bodies  of  disciplinary  knowledge  embedded  within  the  context  of  a  large  education
system, which engenders generally complex course subnetworks as combinations of the
basic architectural  motifs.  The knowledge, methods, evidences, ways of knowing, and
personnel  within  each  divergent  discipline  are  different,  but  the  disciplines'  feedback
with the complex world is a convergent process within the education system resulting in
a  common  feature:  meaningfully  comparable  course  subnetworks.   Housed  in  each
department and here identified as "complicities" to persist with the vocabulary of Cohen
& Stewart (1994: 414), these course subnetworks emerge to explore an expanded space
of possible architectures that in some manner correspond to, or map, expansive bodies
of academic knowledge with a resolution of course-sized bundles of knowledge (about
¯3).  The network metric, C, is devised to scrutinize the 'coverage' of each departmental
subnetwork map and thus the size of each academic discipline.

From  (above)  facet  i),  any  discussion  of  how  much  knowledge  underpins  a
department  must  start  with  the  number  of  course  credits  offered.   In  this  thesis,  the
unadorned,  unqualified  course  credit  (¯)  forms  the  universal  objective  measure  of
academic knowledge available to students in any course and is a foundation for analysis.
Thus, let the disciplinary cover be proportional  to the total course weight in a depart-
ment, C ∝ W = ⁄i=1

N wi , where N is the number of courses in the department and wi  is
the weight of each course in academic credits (typically, ¯3).  But, considering the total
course  weight  alone,  while  it  may offer  an  appreciation  of  the  "knowledge  base"  or
metaphorical "width" of a department, does not imply how the knowledge is structured.

Davis  & Sumara  (2006:  57)  describe  how "the creation of  knowledge  .  .  .  is
constantly elaborating what has also been established" resulting in "expansiveness and
outward  movement"  of interpretive  possibilities.   In  rapport  with  their  ideas pointing
beyond  featureless  knowledge  accumulation,  which  an  aggregate  score  such  as  total
course  weight  in  a  department  (W)  describes,  a  complementary  structural  notion  of
knowledge  progression  is  included.   Consider  facet  ii)  (see above)  to be a statement
regarding  knowledge  elaboration  and advancement,  which is  captured numerically  by
the distent metric – the amount by which courses are structurally separated on a network
from one another, based on a 'stretching' metaphor (review 4.2.1.1).  Thus, to capture the
progression,  or  metaphorical  "depth",  of  the  knowledge  within  a  department,  let  the
disciplinary  cover  be  proportional  to  the  average  distent  score  of  courses,  with  one
important  modification:  the starting point for measuring  distent at the university  level
specific  to  disciplinary  knowledge  is  the  basic  University  Admission  requirements.
Usually, the universal reference point for distent scores is the beginning of Kindergar-
ten, but consistent with the boundaries of a discipline introduced in the previous section,
§4.2.1.5,  the  distent  relevant  for establishing  the  size of  a discipline  comes from the
boundary  between  School  and University.   Therefore,  let  the normalized  disciplinary
distent score of a department be D

`
 = ⁄i=1

N  wiHDi - DoL êW , where Di  is the distent score
of each course in academic  credits from Kindergarten  as reported on Table 4.2.1.1-3,
and Do  is the distent score of the minimum University Entrance requirements.  Combin-
ing both factors, total course weight and the normalized distent, each measured in units
of academic credits (¯), the disciplinary cover is described analogously to an 'area' (¯2)
of knowledge  in 'academic  space':  C  ∝  W  D

`
,  which unites  the academic  "width" and

"depth" of a department.

Guided  by  the  foundational  mapping  metaphor  for  this  thesis,  the  'size'  of  a
department in terms of knowledge is considered proportional to some kind of an area.
Just as Canada is considered as geographically large and covers a vast amount of terri-
tory on a political map of the world, with the formulation for disciplinary cover intro-
duced here, the measured score on a network map is maximized for departments with
many courses of high average distent.  But the 'area' of a network is a problematic con-
cept since networks are graphically comprised of effectively one-dimensional  links and
dot-like nodes (also called edges (1-D) and vertices (0-D) in graph theory).  Networks
are embedded and rendered on a two-dimensional page, but are made up of lower dimen-
sional components and so are briefly compared to another mathematical construct with
similar properties, the fractal (see Figure 4.2.1.6-1).  For example, Gianvittorio & Rah-
mat-Samii (2002) describe how fractal shaped antennas, created by the intricate bending
of (effectively 1-D) wire, out perform other types of "traditional Euclidean antenna[s]"
fit into the same area.  Elsewhere, Fuite, Tuszynski, et al. (2000) examine the structure-
function relationship of the human liver and show its reactive surfaces have a well-de-
fined  fractal  architecture,  while  Hou  et  al.  (2005)  show  that  comparable  biological
fractal structures are "space-filling" and possess "multiply optimized design".  Together
these authors  indicate  physical  fractals  are a category of objects  that especially  pene-
trate, permeate,  and interact with the surrounding space.  In comparison, complex sys-
tems, through their adaptive, self-organizing behaviors, are also shown to explore large
domains of the parameter spaces used to describe them.  Cohen & Stewart (1994: 200)
explain how a complex system's "phase space contains not just what happens but what
might happen under different circumstances.  It's the space of the possible."  Self-organi-
zation enlarges a system’s phase space, according to Juarrero (2000), by adding degrees
of freedom.  She concludes,  "enabling constraints  thus create potential  information by
opening—bottom-up—a  renewed pool of alternatives that the emergent macrostructure
can access."  Together, these authors point to an understanding of emergent phenomena
that attends to their multi–realizable nature as access to potential states of being within a
spatial  metaphor.   Network  models  reflect  the properties  of complex systems in their
structures  (review §2.3.2),  so might be able to monitor  the "space-filling"  (Krackauer
2005), alternative-creating capabilities of the referent system.

For Davis & Sumara (2006: ch. 4) learning occurs by "expanding the space of
the possible" for knowers,  which allows the "emergence of new interpretive possibili-
ties".  Their "complexivist"  view of knowing (Jorg et al. 2007) draws attention to the
conditions  required  for  'expansiveness'  and  'newness',  and  for  the  characterization  of
knowledge.  In terms of this thesis, their statements motivate a couple of questions to be
addressed, as follows.  How many of the courses in a department hold knowledge that is
novel  versus  superfluous?   And,  which  elaborations  of  disciplinary  knowledge  are
necessary versus redundant?  Consider  how redundant or superfluous  knowledge does
not "expand the space of the possible" as much as novel or necessary knowledge, and,
how such knowledge attenuates the effective "width", W, or the "depth", D

`
, of a depart-

ment.   The  presence  of  a  complex  departmental  subnetwork  implies  a  heterogeneity
amongst the constituent  courses nodes, which in turn implies unique, specialized roles
for each course (review §4.1.2.3).  Courses within less complex, structurally symmetri-
cal  departmental  networks  fulfill  parallel  roles  to one another  as determined  by their
similar  positions  within  the  course  subnetwork.   Course  nodes  that  possess  unique
positions and fulfill specialized roles in the network are here assumed to sustain distinc-
tive knowledge.   The importance and uniqueness of any course and its knowledge are
reduced  by the  presence  of  symmetries  within  the  departmental  subnetwork.   Course
nodes  that  possess  similar  positions  and fulfill  parallel  roles  in  the network  are here
assumed  to  sustain  relatively  redundant  or  superfluous  knowledge.   The  more  ways
students may traverse a department with functionally indistinguishable learning trajecto-
ries,  the less  powerful  the  conceptual  resources  of  the department  given its  size  (see
Davidson 1999 for a parallel statement regarding language†).  The offdiagonal complex-
ity metric (OdC) is sensitive to the presence of nodes with diverse kinds of connections
and is used here to measure the distinctiveness of knowledge amongst the courses in a
department.   Therefore,  let  the  disciplinary  cover  be  proportional  to  the  offdiagonal
complexity of a department: C ∝ OdC fl C = OdC W D

`
.  Here, the OdC score serves as

a coefficient to scale the 'academic area' of a discipline (W D
`

), such that, noncomplex
networks  have  symmetrical  structures  and  knowledges  which  are  in  some  sense
'compressible'  (OdC  ),  while complex  networks  have intricate  structures  and knowl-
edges that are 'dense' and 'incompressible' (OdC Æ).

The results from calculations for disciplinary cover on each of the University's
departments are recorded on Table 4.2.1.1-2, thirteenth column, C.  Ranked at the top,
measured at twice the magnitude as the nearest rival is the Department of Modern Lan-
guages and Cultural Studies, which seems doubly fitting since language is the principal
social  medium  of  knowledge  itself  (Brighton  et  al.  2005;  Motter  2002;  Searle  1995;
Smith et al. 2003; Stahl 2000; Peim 2001) and modern cultures support the institutions
of contemporary education (Cowen 1996).  Other Departments substantiating disciplines
with large academic  coverage  are,  in descending  order:  Biological  Sciences,  Nursing,
Chemical & Materials Engineering, Art & Design, Civil & Environmental Engineering,
Music, and Mathematical & Statistical Sciences.  All departments with zero complexity
scores,  OdC  =  0,  have (perhaps  somewhat  unfairly)  vanishing  disciplinary  covers  by
definition.

For a more specific application of cover, consider three university Departments:1. English & Film Studies, 2. East Asian Studies, and 3. Modern Languages & CulturalStudies.  Each department focuses on one or more languages and aspects of the culturesactively using those languages.  For example, the Department of English & Film Studiescontains courses titled: "Readings in Prose", "Narrative Theory and Poetics", "CanadianFilm",  "Introduction  to  Creative  Writing:  Nonfiction",  and  "Writing  Essentials"  (forEngineers);  the  other  two  Departments  have  analogous  courses  with  titles  such  as:"French  Reading  Comprehension",  "Russian  Style,  Expression  and  Composition","Meaning and Form in Spanish", "Japanese Film", and "Business Chinese".  The Depart-ment of English & Film Studies concerns itself with one language – English.  The Depart-ment of East Asian Studies concentrates on two major languages, Chinese and Japanese,while  the  Department  of  Modern  Languages  &  Cultural  Studies  carries  seven  mainlanguages: French, German, Italian, Polish, Russian, Spanish, and Ukrainian.  These lasttwo departments also offer a few minor programs in other languages, such as, Korean,Swedish, and American Sign Language.  But each of these subjects have a total courseweight of less than twenty-one credits (W < ¯21), well below the threshold required tobuild a nontrivial subnetwork (review Figure 4.1.2.3-1),  so are here not counted usingthe assumption that the departmental course subnetworks are well characterized by themajor  languages.   To summarize,  recognize  the ratio of major languages  in the threehighlighted  departments  to be 1: 2: 7.   A comparison of this ratio to the ratio of totalcourse weight (W) in each department, 1: 0.5: 1.8, indicates there are many more coursesdedicated  towards  teaching  English  over  the  other  languages.   A naive interpretationusing a linear  model  focusing  on accumulated  knowledge  as represented  by the totalcourse weight in each department  determines more knowledge underpins English overthe other languages at University.   But the ratio of each department's  academic covers(C) is 1: 2.3: 9.4 – a much closer match to the number of languages in each department.Indeed, the differences between the ratios in favor of the latter two departments could bedue to the presence of the previously ignored minor languages within them affecting theresults  after  all.   A  sophisticated  interpretation  using  the  cover  metric  suggests  theamount  of  knowledge  covered  within  each  department  is  about  proportional  to  thenumber of languages  contained in each department,  not the number of courses alone,and, it appears each contemporary, living language is adequately described by a similaramount of knowledge.  A reinterpretation of the ratio of total course weight (W) in eachdepartment, 1: 0.5: 1.8, compared to the number of languages in each department,  1: 2:7, with respect to cover implies the courses in the Department of English & Film Studiesare, on average, more redundant compared to courses of the other two Departments.  Itmay be there are too many English courses generating nearly the same knowledge at thesame level, or that too many English courses do not well elaborate on the knowledge ofother courses to build a network with proportionally large coverage.  The seemingly finegradations of knowledge in courses, such as, say, ENGL 222 Reading Politics: Race andEthnicity,  ENGL 355 American Literature and Culture: American Minority Literature,ENGL 360 American Literature and Culture: Race and Belonging in American Writing,ENGL 379 Canadian Literature and Culture: Canadian Minority Literature, ENGL 467Studies in Race and Ethnicity, and ENGL 489 Studies in Emergent Cultures and Minor-ity  Texts,  none  of  which  require  one  another  as  a  prerequisite,  are  effectively"collapsed" (Nespor 2004) into an implied, relatively smaller, underlying network struc-ture that still fills all of the structural roles and spans the knowledge of the departmentas gauged by the cover metric.Cover is described and offered as a measure of disciplinary knowledge produc-tion and maintenance as realized in university departments.   The statistic, C, is associ-ated with an area in a metaphorical academic space of possibilities.  The cover metric isargued to have a high degree of universality to permit comparison of the relative magni-tude  of  knowledges  in  all  disciplines  despite  their  radical  diversity.   The  disparateaspects of each discipline converge within the context of the education system to pro-duce instances  of the same categorical  feature:  course  subnetworks.   Transcription  ofdisciplinary  knowledges  using the same structural  grammar  occurs  via the underlyinglogic of all knowledge creation which couples introduced information with prior knowl-edge.  The diverse histories, vocabularies,  contents,  methods, and theories within eachdiscipline  combine  in  the  education  system  to  yield  course  subnetworks  of  differingsizes and unique structures.  Cover for each department is a product of two input parame-ters – total weight of course credits (W) and the normalized disciplinary distent (D̀), bothwith  units  of  academic  weight  (¯),  and  one  unitless  scaling  coefficient,  complexity(OdC).  Together, the two input parameters (W D̀) stake the boundaries of an 'area' (¯2)in academic  space with a metaphorical  "width" and "depth",  while the scaling coeffi-cient (OdC) describes  how the academic space is penetrated,  infused with interpretivepossibilities, and filled with possible states of knowing (review Figure 4.2.1.6-1).  Usingthe  cover  metric,  the  question  of  discipline  size  in  terms  of  knowledge  is  no longerignored  as  ill-posed,  left  as  fanciful  conjecture,  or  limited  to  the  simple  concept  ofaccumulation of undifferentiated knowledge.  Departments supporting knowledge regard-ing languages  are measured to have large academic  cover scores  in proportion to thenumber of languages supported.   Otherwise,  scientific departments,  such as BiologicalSciences,  applied  departments,  such as  Nursing  and  various  Engineering,  and artisticdepartments,  such as  Art  & Design  and Music,  possess  large  academic  cover  scores.Cover (C) is a novel metric that might be of interest to administrators and educationalresearchers  who  wish  to  view  the  knowledge  of  varied  disciplines  in  some  directlycomparative way within a unified framework.__________________________†"It is proposd that the degree of complexity of an object language relative to a givenmetalanguage can be gauged by the number of ways it can be translated into that metalan-guage: in analogy with other forms of measurement, the more ways the object languagecan be translated into the metalanguage,  the less powerful the conceptual  resources ofthe object language."
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How much knowledge is sustained within a discipline?  How "wide" and "deep"
is it?  The disciplines seem so far apart conceptually and methodologically that a simple
comparison, such as ENGLISH > MATH, seems brute, absurd, and untenable.  Neverthe-
less, presented in this section is a brief argument for a pilot method of relative compari-
son based on the size and topology of the course structure used to sustain and develop
each type of disciplinary knowledge in the corresponding departments.  The assumption
being knowledge structures are constrained, emergent coherences that follow an underly-
ing logic common to theses types of complex systems (Kauffman 1993: ch. 5), and this
is reflected in the course network of each department as it represents a discipline (review
§4.2.1.3 if necessary).  Let the amount of measured knowledge in a department be called
the disciplinary cover, C.

The conjectured common mechanism of academic knowledge creation in Alber-
ta's  education  system  for  all  disciplines,  captured  by  the  gross,  abstract  framework
established in the thesis, has a structural grammar with four basic facets: i) knowledge,
regardless of its subject, is introduced and integrated at each node (Ê) in proportion to
the academic course weight (¯);  ii) previous knowledge is elaborated along chains of
prerequisite courses (ÊÊÊ);  iii) the outspread of knowledge occurs when the ideas

of one course are pointed to and utilized by many direct subsequents JÊá
à

Ê

Ê
N, and iv)

the merging of knowledge occurs when one course points to and combines the ideas of

many prerequisites JÊ

Ê
à
áÊN.  Using the vocabulary found in Cohen & Stewart's (1994:

411) book, The Collapse of Chaos, these simple architectural  motifs (Milo et al. 2002;
Yeger-Lotem et al. 2004) in the course network are identified as "simplexities" because
they are a direct result of the (reductionist)  rules of academic knowledge construction
applied in context.  Two rules are natural and universal for all knowers – learning is at
least a function of a) new information together with b) prior knowledge.  The context for
academic learning is the practical requirements of a workaday education system – knowl-
edge is classified into subjects and parcelled into courses.  Given the rules of academic
knowledge construction at the level addressed in the thesis plus the practical boundary
conditions,  the  building  blocks  of  the  course  network  straightforwardly  arise as  little
'structural  theorems',  which span a restricted space of possibilities.   Complicating  this
inceptive  description  is  the coevolution  between the wider  complex  world and whole
bodies  of  disciplinary  knowledge  embedded  within  the  context  of  a  large  education
system, which engenders generally complex course subnetworks as combinations of the
basic architectural  motifs.  The knowledge, methods, evidences, ways of knowing, and
personnel  within  each  divergent  discipline  are  different,  but  the  disciplines'  feedback
with the complex world is a convergent process within the education system resulting in
a  common  feature:  meaningfully  comparable  course  subnetworks.   Housed  in  each
department and here identified as "complicities" to persist with the vocabulary of Cohen
& Stewart (1994: 414), these course subnetworks emerge to explore an expanded space
of possible architectures that in some manner correspond to, or map, expansive bodies
of academic knowledge with a resolution of course-sized bundles of knowledge (about
¯3).  The network metric, C, is devised to scrutinize the 'coverage' of each departmental
subnetwork map and thus the size of each academic discipline.

From  (above)  facet  i),  any  discussion  of  how  much  knowledge  underpins  a
department  must  start  with  the  number  of  course  credits  offered.   In  this  thesis,  the
unadorned,  unqualified  course  credit  (¯)  forms  the  universal  objective  measure  of
academic knowledge available to students in any course and is a foundation for analysis.
Thus, let the disciplinary cover be proportional  to the total course weight in a depart-
ment, C ∝ W = ⁄i=1

N wi , where N is the number of courses in the department and wi  is
the weight of each course in academic credits (typically, ¯3).  But, considering the total
course  weight  alone,  while  it  may offer  an  appreciation  of  the  "knowledge  base"  or
metaphorical "width" of a department, does not imply how the knowledge is structured.

Davis  & Sumara  (2006:  57)  describe  how "the creation of  knowledge  .  .  .  is
constantly elaborating what has also been established" resulting in "expansiveness and
outward  movement"  of interpretive  possibilities.   In  rapport  with  their  ideas pointing
beyond  featureless  knowledge  accumulation,  which  an  aggregate  score  such  as  total
course  weight  in  a  department  (W)  describes,  a  complementary  structural  notion  of
knowledge  progression  is  included.   Consider  facet  ii)  (see above)  to be a statement
regarding  knowledge  elaboration  and advancement,  which is  captured numerically  by
the distent metric – the amount by which courses are structurally separated on a network
from one another, based on a 'stretching' metaphor (review 4.2.1.1).  Thus, to capture the
progression,  or  metaphorical  "depth",  of  the  knowledge  within  a  department,  let  the
disciplinary  cover  be  proportional  to  the  average  distent  score  of  courses,  with  one
important  modification:  the starting point for measuring  distent at the university  level
specific  to  disciplinary  knowledge  is  the  basic  University  Admission  requirements.
Usually, the universal reference point for distent scores is the beginning of Kindergar-
ten, but consistent with the boundaries of a discipline introduced in the previous section,
§4.2.1.5,  the  distent  relevant  for establishing  the  size of  a discipline  comes from the
boundary  between  School  and University.   Therefore,  let  the normalized  disciplinary
distent score of a department be D

`
 = ⁄i=1

N  wiHDi - DoL êW , where Di  is the distent score
of each course in academic  credits from Kindergarten  as reported on Table 4.2.1.1-3,
and Do  is the distent score of the minimum University Entrance requirements.  Combin-
ing both factors, total course weight and the normalized distent, each measured in units
of academic credits (¯), the disciplinary cover is described analogously to an 'area' (¯2)
of knowledge  in 'academic  space':  C  ∝  W  D

`
,  which unites  the academic  "width" and

"depth" of a department.

Guided  by  the  foundational  mapping  metaphor  for  this  thesis,  the  'size'  of  a
department in terms of knowledge is considered proportional to some kind of an area.
Just as Canada is considered as geographically large and covers a vast amount of terri-
tory on a political map of the world, with the formulation for disciplinary cover intro-
duced here, the measured score on a network map is maximized for departments with
many courses of high average distent.  But the 'area' of a network is a problematic con-
cept since networks are graphically comprised of effectively one-dimensional  links and
dot-like nodes (also called edges (1-D) and vertices (0-D) in graph theory).  Networks
are embedded and rendered on a two-dimensional page, but are made up of lower dimen-
sional components and so are briefly compared to another mathematical construct with
similar properties, the fractal (see Figure 4.2.1.6-1).  For example, Gianvittorio & Rah-
mat-Samii (2002) describe how fractal shaped antennas, created by the intricate bending
of (effectively 1-D) wire, out perform other types of "traditional Euclidean antenna[s]"
fit into the same area.  Elsewhere, Fuite, Tuszynski, et al. (2000) examine the structure-
function relationship of the human liver and show its reactive surfaces have a well-de-
fined  fractal  architecture,  while  Hou  et  al.  (2005)  show  that  comparable  biological
fractal structures are "space-filling" and possess "multiply optimized design".  Together
these authors  indicate  physical  fractals  are a category of objects  that especially  pene-
trate, permeate,  and interact with the surrounding space.  In comparison, complex sys-
tems, through their adaptive, self-organizing behaviors, are also shown to explore large
domains of the parameter spaces used to describe them.  Cohen & Stewart (1994: 200)
explain how a complex system's "phase space contains not just what happens but what
might happen under different circumstances.  It's the space of the possible."  Self-organi-
zation enlarges a system’s phase space, according to Juarrero (2000), by adding degrees
of freedom.  She concludes,  "enabling constraints  thus create potential  information by
opening—bottom-up—a  renewed pool of alternatives that the emergent macrostructure
can access."  Together, these authors point to an understanding of emergent phenomena
that attends to their multi–realizable nature as access to potential states of being within a
spatial  metaphor.   Network  models  reflect  the properties  of complex systems in their
structures  (review §2.3.2),  so might be able to monitor  the "space-filling"  (Krackauer
2005), alternative-creating capabilities of the referent system.

For Davis & Sumara (2006: ch. 4) learning occurs by "expanding the space of
the possible" for knowers,  which allows the "emergence of new interpretive possibili-
ties".  Their "complexivist"  view of knowing (Jorg et al. 2007) draws attention to the
conditions  required  for  'expansiveness'  and  'newness',  and  for  the  characterization  of
knowledge.  In terms of this thesis, their statements motivate a couple of questions to be
addressed, as follows.  How many of the courses in a department hold knowledge that is
novel  versus  superfluous?   And,  which  elaborations  of  disciplinary  knowledge  are
necessary versus redundant?  Consider  how redundant or superfluous  knowledge does
not "expand the space of the possible" as much as novel or necessary knowledge, and,
how such knowledge attenuates the effective "width", W, or the "depth", D

`
, of a depart-

ment.   The  presence  of  a  complex  departmental  subnetwork  implies  a  heterogeneity
amongst the constituent  courses nodes, which in turn implies unique, specialized roles
for each course (review §4.1.2.3).  Courses within less complex, structurally symmetri-
cal  departmental  networks  fulfill  parallel  roles  to one another  as determined  by their
similar  positions  within  the  course  subnetwork.   Course  nodes  that  possess  unique
positions and fulfill specialized roles in the network are here assumed to sustain distinc-
tive knowledge.   The importance and uniqueness of any course and its knowledge are
reduced  by the  presence  of  symmetries  within  the  departmental  subnetwork.   Course
nodes  that  possess  similar  positions  and fulfill  parallel  roles  in  the network  are here
assumed  to  sustain  relatively  redundant  or  superfluous  knowledge.   The  more  ways
students may traverse a department with functionally indistinguishable learning trajecto-
ries,  the less  powerful  the  conceptual  resources  of  the department  given its  size  (see
Davidson 1999 for a parallel statement regarding language†).  The offdiagonal complex-
ity metric (OdC) is sensitive to the presence of nodes with diverse kinds of connections
and is used here to measure the distinctiveness of knowledge amongst the courses in a
department.   Therefore,  let  the  disciplinary  cover  be  proportional  to  the  offdiagonal
complexity of a department: C ∝ OdC fl C = OdC W D

`
.  Here, the OdC score serves as

a coefficient to scale the 'academic area' of a discipline (W D
`

), such that, noncomplex
networks  have  symmetrical  structures  and  knowledges  which  are  in  some  sense
'compressible'  (OdC  ),  while complex  networks  have intricate  structures  and knowl-
edges that are 'dense' and 'incompressible' (OdC Æ).

The results from calculations for disciplinary cover on each of the University's
departments are recorded on Table 4.2.1.1-2, thirteenth column, C.  Ranked at the top,
measured at twice the magnitude as the nearest rival is the Department of Modern Lan-
guages and Cultural Studies, which seems doubly fitting since language is the principal
social  medium  of  knowledge  itself  (Brighton  et  al.  2005;  Motter  2002;  Searle  1995;
Smith et al. 2003; Stahl 2000; Peim 2001) and modern cultures support the institutions
of contemporary education (Cowen 1996).  Other Departments substantiating disciplines
with large academic  coverage  are,  in descending  order:  Biological  Sciences,  Nursing,
Chemical & Materials Engineering, Art & Design, Civil & Environmental Engineering,
Music, and Mathematical & Statistical Sciences.  All departments with zero complexity
scores,  OdC  =  0,  have (perhaps  somewhat  unfairly)  vanishing  disciplinary  covers  by
definition.

For a more specific application of cover, consider three university Departments:
1. English & Film Studies, 2. East Asian Studies, and 3. Modern Languages & Cultural
Studies.  Each department focuses on one or more languages and aspects of the cultures
actively using those languages.  For example, the Department of English & Film Studies
contains courses titled: "Readings in Prose", "Narrative Theory and Poetics", "Canadian
Film",  "Introduction  to  Creative  Writing:  Nonfiction",  and  "Writing  Essentials"  (for
Engineers);  the  other  two  Departments  have  analogous  courses  with  titles  such  as:
"French  Reading  Comprehension",  "Russian  Style,  Expression  and  Composition",
"Meaning and Form in Spanish", "Japanese Film", and "Business Chinese".  The Depart-
ment of English & Film Studies concerns itself with one language – English.  The Depart-
ment of East Asian Studies concentrates on two major languages, Chinese and Japanese,
while  the  Department  of  Modern  Languages  &  Cultural  Studies  carries  seven  main
languages: French, German, Italian, Polish, Russian, Spanish, and Ukrainian.  These last
two departments also offer a few minor programs in other languages, such as, Korean,
Swedish, and American Sign Language.  But each of these subjects have a total course
weight of less than twenty-one credits (W < ¯21), well below the threshold required to
build a nontrivial subnetwork (review Figure 4.1.2.3-1),  so are here not counted using
the assumption that the departmental course subnetworks are well characterized by the
major  languages.   To summarize,  recognize  the ratio of major languages  in the three
highlighted  departments  to be 1: 2: 7.   A comparison of this ratio to the ratio of total
course weight (W) in each department, 1: 0.5: 1.8, indicates there are many more courses
dedicated  towards  teaching  English  over  the  other  languages.   A naive interpretation
using a linear  model  focusing  on accumulated  knowledge  as represented  by the total
course weight in each department  determines more knowledge underpins English over
the other languages at University.   But the ratio of each department's  academic covers
(C) is 1: 2.3: 9.4 – a much closer match to the number of languages in each department.
Indeed, the differences between the ratios in favor of the latter two departments could be
due to the presence of the previously ignored minor languages within them affecting the
results  after  all.   A  sophisticated  interpretation  using  the  cover  metric  suggests  the
amount  of  knowledge  covered  within  each  department  is  about  proportional  to  the
number of languages  contained in each department,  not the number of courses alone,
and, it appears each contemporary, living language is adequately described by a similar
amount of knowledge.  A reinterpretation of the ratio of total course weight (W) in each
department, 1: 0.5: 1.8, compared to the number of languages in each department,  1: 2:
7, with respect to cover implies the courses in the Department of English & Film Studies
are, on average, more redundant compared to courses of the other two Departments.  It
may be there are too many English courses generating nearly the same knowledge at the
same level, or that too many English courses do not well elaborate on the knowledge of
other courses to build a network with proportionally large coverage.  The seemingly fine
gradations of knowledge in courses, such as, say, ENGL 222 Reading Politics: Race and
Ethnicity,  ENGL 355 American Literature and Culture: American Minority Literature,
ENGL 360 American Literature and Culture: Race and Belonging in American Writing,
ENGL 379 Canadian Literature and Culture: Canadian Minority Literature, ENGL 467Studies in Race and Ethnicity, and ENGL 489 Studies in Emergent Cultures and Minor-ity  Texts,  none  of  which  require  one  another  as  a  prerequisite,  are  effectively"collapsed" (Nespor 2004) into an implied, relatively smaller, underlying network struc-ture that still fills all of the structural roles and spans the knowledge of the departmentas gauged by the cover metric.Cover is described and offered as a measure of disciplinary knowledge produc-tion and maintenance as realized in university departments.   The statistic, C, is associ-ated with an area in a metaphorical academic space of possibilities.  The cover metric isargued to have a high degree of universality to permit comparison of the relative magni-tude  of  knowledges  in  all  disciplines  despite  their  radical  diversity.   The  disparateaspects of each discipline converge within the context of the education system to pro-duce instances  of the same categorical  feature:  course  subnetworks.   Transcription  ofdisciplinary  knowledges  using the same structural  grammar  occurs  via the underlyinglogic of all knowledge creation which couples introduced information with prior knowl-edge.  The diverse histories, vocabularies,  contents,  methods, and theories within eachdiscipline  combine  in  the  education  system  to  yield  course  subnetworks  of  differingsizes and unique structures.  Cover for each department is a product of two input parame-ters – total weight of course credits (W) and the normalized disciplinary distent (D̀), bothwith  units  of  academic  weight  (¯),  and  one  unitless  scaling  coefficient,  complexity(OdC).  Together, the two input parameters (W D̀) stake the boundaries of an 'area' (¯2)in academic  space with a metaphorical  "width" and "depth",  while the scaling coeffi-cient (OdC) describes  how the academic space is penetrated,  infused with interpretivepossibilities, and filled with possible states of knowing (review Figure 4.2.1.6-1).  Usingthe  cover  metric,  the  question  of  discipline  size  in  terms  of  knowledge  is  no longerignored  as  ill-posed,  left  as  fanciful  conjecture,  or  limited  to  the  simple  concept  ofaccumulation of undifferentiated knowledge.  Departments supporting knowledge regard-ing languages  are measured to have large academic  cover scores  in proportion to thenumber of languages supported.   Otherwise,  scientific departments,  such as BiologicalSciences,  applied  departments,  such as  Nursing  and  various  Engineering,  and artisticdepartments,  such as  Art  & Design  and Music,  possess  large  academic  cover  scores.Cover (C) is a novel metric that might be of interest to administrators and educationalresearchers  who  wish  to  view  the  knowledge  of  varied  disciplines  in  some  directlycomparative way within a unified framework.__________________________†"It is proposd that the degree of complexity of an object language relative to a givenmetalanguage can be gauged by the number of ways it can be translated into that metalan-guage: in analogy with other forms of measurement, the more ways the object languagecan be translated into the metalanguage,  the less powerful the conceptual  resources ofthe object language."
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How much knowledge is sustained within a discipline?  How "wide" and "deep"
is it?  The disciplines seem so far apart conceptually and methodologically that a simple
comparison, such as ENGLISH > MATH, seems brute, absurd, and untenable.  Neverthe-
less, presented in this section is a brief argument for a pilot method of relative compari-
son based on the size and topology of the course structure used to sustain and develop
each type of disciplinary knowledge in the corresponding departments.  The assumption
being knowledge structures are constrained, emergent coherences that follow an underly-
ing logic common to theses types of complex systems (Kauffman 1993: ch. 5), and this
is reflected in the course network of each department as it represents a discipline (review
§4.2.1.3 if necessary).  Let the amount of measured knowledge in a department be called
the disciplinary cover, C.

The conjectured common mechanism of academic knowledge creation in Alber-
ta's  education  system  for  all  disciplines,  captured  by  the  gross,  abstract  framework
established in the thesis, has a structural grammar with four basic facets: i) knowledge,
regardless of its subject, is introduced and integrated at each node (Ê) in proportion to
the academic course weight (¯);  ii) previous knowledge is elaborated along chains of
prerequisite courses (ÊÊÊ);  iii) the outspread of knowledge occurs when the ideas

of one course are pointed to and utilized by many direct subsequents JÊá
à

Ê

Ê
N, and iv)

the merging of knowledge occurs when one course points to and combines the ideas of

many prerequisites JÊ

Ê
à
áÊN.  Using the vocabulary found in Cohen & Stewart's (1994:

411) book, The Collapse of Chaos, these simple architectural  motifs (Milo et al. 2002;
Yeger-Lotem et al. 2004) in the course network are identified as "simplexities" because
they are a direct result of the (reductionist)  rules of academic knowledge construction
applied in context.  Two rules are natural and universal for all knowers – learning is at
least a function of a) new information together with b) prior knowledge.  The context for
academic learning is the practical requirements of a workaday education system – knowl-
edge is classified into subjects and parcelled into courses.  Given the rules of academic
knowledge construction at the level addressed in the thesis plus the practical boundary
conditions,  the  building  blocks  of  the  course  network  straightforwardly  arise as  little
'structural  theorems',  which span a restricted space of possibilities.   Complicating  this
inceptive  description  is  the coevolution  between the wider  complex  world and whole
bodies  of  disciplinary  knowledge  embedded  within  the  context  of  a  large  education
system, which engenders generally complex course subnetworks as combinations of the
basic architectural  motifs.  The knowledge, methods, evidences, ways of knowing, and
personnel  within  each  divergent  discipline  are  different,  but  the  disciplines'  feedback
with the complex world is a convergent process within the education system resulting in
a  common  feature:  meaningfully  comparable  course  subnetworks.   Housed  in  each
department and here identified as "complicities" to persist with the vocabulary of Cohen
& Stewart (1994: 414), these course subnetworks emerge to explore an expanded space
of possible architectures that in some manner correspond to, or map, expansive bodies
of academic knowledge with a resolution of course-sized bundles of knowledge (about
¯3).  The network metric, C, is devised to scrutinize the 'coverage' of each departmental
subnetwork map and thus the size of each academic discipline.

From  (above)  facet  i),  any  discussion  of  how  much  knowledge  underpins  a
department  must  start  with  the  number  of  course  credits  offered.   In  this  thesis,  the
unadorned,  unqualified  course  credit  (¯)  forms  the  universal  objective  measure  of
academic knowledge available to students in any course and is a foundation for analysis.
Thus, let the disciplinary cover be proportional  to the total course weight in a depart-
ment, C ∝ W = ⁄i=1

N wi , where N is the number of courses in the department and wi  is
the weight of each course in academic credits (typically, ¯3).  But, considering the total
course  weight  alone,  while  it  may offer  an  appreciation  of  the  "knowledge  base"  or
metaphorical "width" of a department, does not imply how the knowledge is structured.

Davis  & Sumara  (2006:  57)  describe  how "the creation of  knowledge  .  .  .  is
constantly elaborating what has also been established" resulting in "expansiveness and
outward  movement"  of interpretive  possibilities.   In  rapport  with  their  ideas pointing
beyond  featureless  knowledge  accumulation,  which  an  aggregate  score  such  as  total
course  weight  in  a  department  (W)  describes,  a  complementary  structural  notion  of
knowledge  progression  is  included.   Consider  facet  ii)  (see above)  to be a statement
regarding  knowledge  elaboration  and advancement,  which is  captured numerically  by
the distent metric – the amount by which courses are structurally separated on a network
from one another, based on a 'stretching' metaphor (review 4.2.1.1).  Thus, to capture the
progression,  or  metaphorical  "depth",  of  the  knowledge  within  a  department,  let  the
disciplinary  cover  be  proportional  to  the  average  distent  score  of  courses,  with  one
important  modification:  the starting point for measuring  distent at the university  level
specific  to  disciplinary  knowledge  is  the  basic  University  Admission  requirements.
Usually, the universal reference point for distent scores is the beginning of Kindergar-
ten, but consistent with the boundaries of a discipline introduced in the previous section,
§4.2.1.5,  the  distent  relevant  for establishing  the  size of  a discipline  comes from the
boundary  between  School  and University.   Therefore,  let  the normalized  disciplinary
distent score of a department be D

`
 = ⁄i=1

N  wiHDi - DoL êW , where Di  is the distent score
of each course in academic  credits from Kindergarten  as reported on Table 4.2.1.1-3,
and Do  is the distent score of the minimum University Entrance requirements.  Combin-
ing both factors, total course weight and the normalized distent, each measured in units
of academic credits (¯), the disciplinary cover is described analogously to an 'area' (¯2)
of knowledge  in 'academic  space':  C  ∝  W  D

`
,  which unites  the academic  "width" and

"depth" of a department.

Guided  by  the  foundational  mapping  metaphor  for  this  thesis,  the  'size'  of  a
department in terms of knowledge is considered proportional to some kind of an area.
Just as Canada is considered as geographically large and covers a vast amount of terri-
tory on a political map of the world, with the formulation for disciplinary cover intro-
duced here, the measured score on a network map is maximized for departments with
many courses of high average distent.  But the 'area' of a network is a problematic con-
cept since networks are graphically comprised of effectively one-dimensional  links and
dot-like nodes (also called edges (1-D) and vertices (0-D) in graph theory).  Networks
are embedded and rendered on a two-dimensional page, but are made up of lower dimen-
sional components and so are briefly compared to another mathematical construct with
similar properties, the fractal (see Figure 4.2.1.6-1).  For example, Gianvittorio & Rah-
mat-Samii (2002) describe how fractal shaped antennas, created by the intricate bending
of (effectively 1-D) wire, out perform other types of "traditional Euclidean antenna[s]"
fit into the same area.  Elsewhere, Fuite, Tuszynski, et al. (2000) examine the structure-
function relationship of the human liver and show its reactive surfaces have a well-de-
fined  fractal  architecture,  while  Hou  et  al.  (2005)  show  that  comparable  biological
fractal structures are "space-filling" and possess "multiply optimized design".  Together
these authors  indicate  physical  fractals  are a category of objects  that especially  pene-
trate, permeate,  and interact with the surrounding space.  In comparison, complex sys-
tems, through their adaptive, self-organizing behaviors, are also shown to explore large
domains of the parameter spaces used to describe them.  Cohen & Stewart (1994: 200)
explain how a complex system's "phase space contains not just what happens but what
might happen under different circumstances.  It's the space of the possible."  Self-organi-
zation enlarges a system’s phase space, according to Juarrero (2000), by adding degrees
of freedom.  She concludes,  "enabling constraints  thus create potential  information by
opening—bottom-up—a  renewed pool of alternatives that the emergent macrostructure
can access."  Together, these authors point to an understanding of emergent phenomena
that attends to their multi–realizable nature as access to potential states of being within a
spatial  metaphor.   Network  models  reflect  the properties  of complex systems in their
structures  (review §2.3.2),  so might be able to monitor  the "space-filling"  (Krackauer
2005), alternative-creating capabilities of the referent system.

For Davis & Sumara (2006: ch. 4) learning occurs by "expanding the space of
the possible" for knowers,  which allows the "emergence of new interpretive possibili-
ties".  Their "complexivist"  view of knowing (Jorg et al. 2007) draws attention to the
conditions  required  for  'expansiveness'  and  'newness',  and  for  the  characterization  of
knowledge.  In terms of this thesis, their statements motivate a couple of questions to be
addressed, as follows.  How many of the courses in a department hold knowledge that is
novel  versus  superfluous?   And,  which  elaborations  of  disciplinary  knowledge  are
necessary versus redundant?  Consider  how redundant or superfluous  knowledge does
not "expand the space of the possible" as much as novel or necessary knowledge, and,
how such knowledge attenuates the effective "width", W, or the "depth", D

`
, of a depart-

ment.   The  presence  of  a  complex  departmental  subnetwork  implies  a  heterogeneity
amongst the constituent  courses nodes, which in turn implies unique, specialized roles
for each course (review §4.1.2.3).  Courses within less complex, structurally symmetri-
cal  departmental  networks  fulfill  parallel  roles  to one another  as determined  by their
similar  positions  within  the  course  subnetwork.   Course  nodes  that  possess  unique
positions and fulfill specialized roles in the network are here assumed to sustain distinc-
tive knowledge.   The importance and uniqueness of any course and its knowledge are
reduced  by the  presence  of  symmetries  within  the  departmental  subnetwork.   Course
nodes  that  possess  similar  positions  and fulfill  parallel  roles  in  the network  are here
assumed  to  sustain  relatively  redundant  or  superfluous  knowledge.   The  more  ways
students may traverse a department with functionally indistinguishable learning trajecto-
ries,  the less  powerful  the  conceptual  resources  of  the department  given its  size  (see
Davidson 1999 for a parallel statement regarding language†).  The offdiagonal complex-
ity metric (OdC) is sensitive to the presence of nodes with diverse kinds of connections
and is used here to measure the distinctiveness of knowledge amongst the courses in a
department.   Therefore,  let  the  disciplinary  cover  be  proportional  to  the  offdiagonal
complexity of a department: C ∝ OdC fl C = OdC W D

`
.  Here, the OdC score serves as

a coefficient to scale the 'academic area' of a discipline (W D
`

), such that, noncomplex
networks  have  symmetrical  structures  and  knowledges  which  are  in  some  sense
'compressible'  (OdC  ),  while complex  networks  have intricate  structures  and knowl-
edges that are 'dense' and 'incompressible' (OdC Æ).

The results from calculations for disciplinary cover on each of the University's
departments are recorded on Table 4.2.1.1-2, thirteenth column, C.  Ranked at the top,
measured at twice the magnitude as the nearest rival is the Department of Modern Lan-
guages and Cultural Studies, which seems doubly fitting since language is the principal
social  medium  of  knowledge  itself  (Brighton  et  al.  2005;  Motter  2002;  Searle  1995;
Smith et al. 2003; Stahl 2000; Peim 2001) and modern cultures support the institutions
of contemporary education (Cowen 1996).  Other Departments substantiating disciplines
with large academic  coverage  are,  in descending  order:  Biological  Sciences,  Nursing,
Chemical & Materials Engineering, Art & Design, Civil & Environmental Engineering,
Music, and Mathematical & Statistical Sciences.  All departments with zero complexity
scores,  OdC  =  0,  have (perhaps  somewhat  unfairly)  vanishing  disciplinary  covers  by
definition.

For a more specific application of cover, consider three university Departments:
1. English & Film Studies, 2. East Asian Studies, and 3. Modern Languages & Cultural
Studies.  Each department focuses on one or more languages and aspects of the cultures
actively using those languages.  For example, the Department of English & Film Studies
contains courses titled: "Readings in Prose", "Narrative Theory and Poetics", "Canadian
Film",  "Introduction  to  Creative  Writing:  Nonfiction",  and  "Writing  Essentials"  (for
Engineers);  the  other  two  Departments  have  analogous  courses  with  titles  such  as:
"French  Reading  Comprehension",  "Russian  Style,  Expression  and  Composition",
"Meaning and Form in Spanish", "Japanese Film", and "Business Chinese".  The Depart-
ment of English & Film Studies concerns itself with one language – English.  The Depart-
ment of East Asian Studies concentrates on two major languages, Chinese and Japanese,
while  the  Department  of  Modern  Languages  &  Cultural  Studies  carries  seven  main
languages: French, German, Italian, Polish, Russian, Spanish, and Ukrainian.  These last
two departments also offer a few minor programs in other languages, such as, Korean,
Swedish, and American Sign Language.  But each of these subjects have a total course
weight of less than twenty-one credits (W < ¯21), well below the threshold required to
build a nontrivial subnetwork (review Figure 4.1.2.3-1),  so are here not counted using
the assumption that the departmental course subnetworks are well characterized by the
major  languages.   To summarize,  recognize  the ratio of major languages  in the three
highlighted  departments  to be 1: 2: 7.   A comparison of this ratio to the ratio of total
course weight (W) in each department, 1: 0.5: 1.8, indicates there are many more courses
dedicated  towards  teaching  English  over  the  other  languages.   A naive interpretation
using a linear  model  focusing  on accumulated  knowledge  as represented  by the total
course weight in each department  determines more knowledge underpins English over
the other languages at University.   But the ratio of each department's  academic covers
(C) is 1: 2.3: 9.4 – a much closer match to the number of languages in each department.
Indeed, the differences between the ratios in favor of the latter two departments could be
due to the presence of the previously ignored minor languages within them affecting the
results  after  all.   A  sophisticated  interpretation  using  the  cover  metric  suggests  the
amount  of  knowledge  covered  within  each  department  is  about  proportional  to  the
number of languages  contained in each department,  not the number of courses alone,
and, it appears each contemporary, living language is adequately described by a similar
amount of knowledge.  A reinterpretation of the ratio of total course weight (W) in each
department, 1: 0.5: 1.8, compared to the number of languages in each department,  1: 2:
7, with respect to cover implies the courses in the Department of English & Film Studies
are, on average, more redundant compared to courses of the other two Departments.  It
may be there are too many English courses generating nearly the same knowledge at the
same level, or that too many English courses do not well elaborate on the knowledge of
other courses to build a network with proportionally large coverage.  The seemingly fine
gradations of knowledge in courses, such as, say, ENGL 222 Reading Politics: Race and
Ethnicity,  ENGL 355 American Literature and Culture: American Minority Literature,
ENGL 360 American Literature and Culture: Race and Belonging in American Writing,
ENGL 379 Canadian Literature and Culture: Canadian Minority Literature, ENGL 467
Studies in Race and Ethnicity, and ENGL 489 Studies in Emergent Cultures and Minor-
ity  Texts,  none  of  which  require  one  another  as  a  prerequisite,  are  effectively
"collapsed" (Nespor 2004) into an implied, relatively smaller, underlying network struc-
ture that still fills all of the structural roles and spans the knowledge of the department
as gauged by the cover metric.

Cover is described and offered as a measure of disciplinary knowledge produc-
tion and maintenance as realized in university departments.   The statistic, C, is associ-
ated with an area in a metaphorical academic space of possibilities.  The cover metric is
argued to have a high degree of universality to permit comparison of the relative magni-
tude  of  knowledges  in  all  disciplines  despite  their  radical  diversity.   The  disparate
aspects of each discipline converge within the context of the education system to pro-
duce instances  of the same categorical  feature:  course  subnetworks.   Transcription  of
disciplinary  knowledges  using the same structural  grammar  occurs  via the underlying
logic of all knowledge creation which couples introduced information with prior knowl-
edge.  The diverse histories, vocabularies,  contents,  methods, and theories within each
discipline  combine  in  the  education  system  to  yield  course  subnetworks  of  differing
sizes and unique structures.  Cover for each department is a product of two input parame-
ters – total weight of course credits (W) and the normalized disciplinary distent (D

`
), both

with  units  of  academic  weight  (¯),  and  one  unitless  scaling  coefficient,  complexity
(OdC).  Together, the two input parameters (W D

`
) stake the boundaries of an 'area' (¯2)

in academic  space with a metaphorical  "width" and "depth",  while the scaling coeffi-
cient (OdC) describes  how the academic space is penetrated,  infused with interpretive
possibilities, and filled with possible states of knowing (review Figure 4.2.1.6-1).  Using
the  cover  metric,  the  question  of  discipline  size  in  terms  of  knowledge  is  no longer
ignored  as  ill-posed,  left  as  fanciful  conjecture,  or  limited  to  the  simple  concept  of
accumulation of undifferentiated knowledge.  Departments supporting knowledge regard-
ing languages  are measured to have large academic  cover scores  in proportion to the
number of languages supported.   Otherwise,  scientific departments,  such as Biological
Sciences,  applied  departments,  such as  Nursing  and  various  Engineering,  and artistic
departments,  such as  Art  & Design  and Music,  possess  large  academic  cover  scores.
Cover (C) is a novel metric that might be of interest to administrators and educational
researchers  who  wish  to  view  the  knowledge  of  varied  disciplines  in  some  directly
comparative way within a unified framework.
__________________________
†"It is proposd that the degree of complexity of an object language relative to a given
metalanguage can be gauged by the number of ways it can be translated into that metalan-
guage: in analogy with other forms of measurement, the more ways the object language
can be translated into the metalanguage,  the less powerful the conceptual  resources of
the object language."
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How much knowledge is sustained within a discipline?  How "wide" and "deep"is it?  The disciplines seem so far apart conceptually and methodologically that a simplecomparison, such as ENGLISH > MATH, seems brute, absurd, and untenable.  Neverthe-less, presented in this section is a brief argument for a pilot method of relative compari-son based on the size and topology of the course structure used to sustain and developeach type of disciplinary knowledge in the corresponding departments.  The assumptionbeing knowledge structures are constrained, emergent coherences that follow an underly-ing logic common to theses types of complex systems (Kauffman 1993: ch. 5), and thisis reflected in the course network of each department as it represents a discipline (review§4.2.1.3 if necessary).  Let the amount of measured knowledge in a department be calledthe disciplinary cover, C.The conjectured common mechanism of academic knowledge creation in Alber-ta's  education  system  for  all  disciplines,  captured  by  the  gross,  abstract  frameworkestablished in the thesis, has a structural grammar with four basic facets: i) knowledge,regardless of its subject, is introduced and integrated at each node (Ê) in proportion tothe academic course weight (¯);  ii) previous knowledge is elaborated along chains ofprerequisite courses (ÊÊÊ);  iii) the outspread of knowledge occurs when the ideasof one course are pointed to and utilized by many direct subsequents JÊáàÊÊN, and iv)the merging of knowledge occurs when one course points to and combines the ideas ofmany prerequisites JÊÊàáÊN.  Using the vocabulary found in Cohen & Stewart's (1994:411) book, The Collapse of Chaos, these simple architectural  motifs (Milo et al. 2002;Yeger-Lotem et al. 2004) in the course network are identified as "simplexities" becausethey are a direct result of the (reductionist)  rules of academic knowledge construction
applied in context.  Two rules are natural and universal for all knowers – learning is at
least a function of a) new information together with b) prior knowledge.  The context for
academic learning is the practical requirements of a workaday education system – knowl-
edge is classified into subjects and parcelled into courses.  Given the rules of academic
knowledge construction at the level addressed in the thesis plus the practical boundary
conditions,  the  building  blocks  of  the  course  network  straightforwardly  arise as  little
'structural  theorems',  which span a restricted space of possibilities.   Complicating  this
inceptive  description  is  the coevolution  between the wider  complex  world and whole
bodies  of  disciplinary  knowledge  embedded  within  the  context  of  a  large  education
system, which engenders generally complex course subnetworks as combinations of the
basic architectural  motifs.  The knowledge, methods, evidences, ways of knowing, and
personnel  within  each  divergent  discipline  are  different,  but  the  disciplines'  feedback
with the complex world is a convergent process within the education system resulting in
a  common  feature:  meaningfully  comparable  course  subnetworks.   Housed  in  each
department and here identified as "complicities" to persist with the vocabulary of Cohen
& Stewart (1994: 414), these course subnetworks emerge to explore an expanded space
of possible architectures that in some manner correspond to, or map, expansive bodies
of academic knowledge with a resolution of course-sized bundles of knowledge (about
¯3).  The network metric, C, is devised to scrutinize the 'coverage' of each departmental
subnetwork map and thus the size of each academic discipline.

From  (above)  facet  i),  any  discussion  of  how  much  knowledge  underpins  a
department  must  start  with  the  number  of  course  credits  offered.   In  this  thesis,  the
unadorned,  unqualified  course  credit  (¯)  forms  the  universal  objective  measure  of
academic knowledge available to students in any course and is a foundation for analysis.
Thus, let the disciplinary cover be proportional  to the total course weight in a depart-
ment, C ∝ W = ⁄i=1

N wi , where N is the number of courses in the department and wi  is
the weight of each course in academic credits (typically, ¯3).  But, considering the total
course  weight  alone,  while  it  may offer  an  appreciation  of  the  "knowledge  base"  or
metaphorical "width" of a department, does not imply how the knowledge is structured.

Davis  & Sumara  (2006:  57)  describe  how "the creation of  knowledge  .  .  .  is
constantly elaborating what has also been established" resulting in "expansiveness and
outward  movement"  of interpretive  possibilities.   In  rapport  with  their  ideas pointing
beyond  featureless  knowledge  accumulation,  which  an  aggregate  score  such  as  total
course  weight  in  a  department  (W)  describes,  a  complementary  structural  notion  of
knowledge  progression  is  included.   Consider  facet  ii)  (see above)  to be a statement
regarding  knowledge  elaboration  and advancement,  which is  captured numerically  by
the distent metric – the amount by which courses are structurally separated on a network
from one another, based on a 'stretching' metaphor (review 4.2.1.1).  Thus, to capture the
progression,  or  metaphorical  "depth",  of  the  knowledge  within  a  department,  let  the
disciplinary  cover  be  proportional  to  the  average  distent  score  of  courses,  with  one
important  modification:  the starting point for measuring  distent at the university  level
specific  to  disciplinary  knowledge  is  the  basic  University  Admission  requirements.
Usually, the universal reference point for distent scores is the beginning of Kindergar-
ten, but consistent with the boundaries of a discipline introduced in the previous section,
§4.2.1.5,  the  distent  relevant  for establishing  the  size of  a discipline  comes from the
boundary  between  School  and University.   Therefore,  let  the normalized  disciplinary
distent score of a department be D

`
 = ⁄i=1

N  wiHDi - DoL êW , where Di  is the distent score
of each course in academic  credits from Kindergarten  as reported on Table 4.2.1.1-3,
and Do  is the distent score of the minimum University Entrance requirements.  Combin-
ing both factors, total course weight and the normalized distent, each measured in units
of academic credits (¯), the disciplinary cover is described analogously to an 'area' (¯2)
of knowledge  in 'academic  space':  C  ∝  W  D

`
,  which unites  the academic  "width" and

"depth" of a department.

Guided  by  the  foundational  mapping  metaphor  for  this  thesis,  the  'size'  of  a
department in terms of knowledge is considered proportional to some kind of an area.
Just as Canada is considered as geographically large and covers a vast amount of terri-
tory on a political map of the world, with the formulation for disciplinary cover intro-
duced here, the measured score on a network map is maximized for departments with
many courses of high average distent.  But the 'area' of a network is a problematic con-
cept since networks are graphically comprised of effectively one-dimensional  links and
dot-like nodes (also called edges (1-D) and vertices (0-D) in graph theory).  Networks
are embedded and rendered on a two-dimensional page, but are made up of lower dimen-
sional components and so are briefly compared to another mathematical construct with
similar properties, the fractal (see Figure 4.2.1.6-1).  For example, Gianvittorio & Rah-
mat-Samii (2002) describe how fractal shaped antennas, created by the intricate bending
of (effectively 1-D) wire, out perform other types of "traditional Euclidean antenna[s]"
fit into the same area.  Elsewhere, Fuite, Tuszynski, et al. (2000) examine the structure-
function relationship of the human liver and show its reactive surfaces have a well-de-
fined  fractal  architecture,  while  Hou  et  al.  (2005)  show  that  comparable  biological
fractal structures are "space-filling" and possess "multiply optimized design".  Together
these authors  indicate  physical  fractals  are a category of objects  that especially  pene-
trate, permeate,  and interact with the surrounding space.  In comparison, complex sys-
tems, through their adaptive, self-organizing behaviors, are also shown to explore large
domains of the parameter spaces used to describe them.  Cohen & Stewart (1994: 200)
explain how a complex system's "phase space contains not just what happens but what
might happen under different circumstances.  It's the space of the possible."  Self-organi-
zation enlarges a system’s phase space, according to Juarrero (2000), by adding degrees
of freedom.  She concludes,  "enabling constraints  thus create potential  information by
opening—bottom-up—a  renewed pool of alternatives that the emergent macrostructure
can access."  Together, these authors point to an understanding of emergent phenomena
that attends to their multi–realizable nature as access to potential states of being within a
spatial  metaphor.   Network  models  reflect  the properties  of complex systems in their
structures  (review §2.3.2),  so might be able to monitor  the "space-filling"  (Krackauer
2005), alternative-creating capabilities of the referent system.

For Davis & Sumara (2006: ch. 4) learning occurs by "expanding the space of
the possible" for knowers,  which allows the "emergence of new interpretive possibili-
ties".  Their "complexivist"  view of knowing (Jorg et al. 2007) draws attention to the
conditions  required  for  'expansiveness'  and  'newness',  and  for  the  characterization  of
knowledge.  In terms of this thesis, their statements motivate a couple of questions to be
addressed, as follows.  How many of the courses in a department hold knowledge that is
novel  versus  superfluous?   And,  which  elaborations  of  disciplinary  knowledge  are
necessary versus redundant?  Consider  how redundant or superfluous  knowledge does
not "expand the space of the possible" as much as novel or necessary knowledge, and,
how such knowledge attenuates the effective "width", W, or the "depth", D

`
, of a depart-

ment.   The  presence  of  a  complex  departmental  subnetwork  implies  a  heterogeneity
amongst the constituent  courses nodes, which in turn implies unique, specialized roles
for each course (review §4.1.2.3).  Courses within less complex, structurally symmetri-
cal  departmental  networks  fulfill  parallel  roles  to one another  as determined  by their
similar  positions  within  the  course  subnetwork.   Course  nodes  that  possess  unique
positions and fulfill specialized roles in the network are here assumed to sustain distinc-
tive knowledge.   The importance and uniqueness of any course and its knowledge are
reduced  by the  presence  of  symmetries  within  the  departmental  subnetwork.   Course
nodes  that  possess  similar  positions  and fulfill  parallel  roles  in  the network  are here
assumed  to  sustain  relatively  redundant  or  superfluous  knowledge.   The  more  ways
students may traverse a department with functionally indistinguishable learning trajecto-
ries,  the less  powerful  the  conceptual  resources  of  the department  given its  size  (see
Davidson 1999 for a parallel statement regarding language†).  The offdiagonal complex-
ity metric (OdC) is sensitive to the presence of nodes with diverse kinds of connections
and is used here to measure the distinctiveness of knowledge amongst the courses in a
department.   Therefore,  let  the  disciplinary  cover  be  proportional  to  the  offdiagonal
complexity of a department: C ∝ OdC fl C = OdC W D

`
.  Here, the OdC score serves as

a coefficient to scale the 'academic area' of a discipline (W D
`

), such that, noncomplex
networks  have  symmetrical  structures  and  knowledges  which  are  in  some  sense
'compressible'  (OdC  ),  while complex  networks  have intricate  structures  and knowl-
edges that are 'dense' and 'incompressible' (OdC Æ).

The results from calculations for disciplinary cover on each of the University's
departments are recorded on Table 4.2.1.1-2, thirteenth column, C.  Ranked at the top,
measured at twice the magnitude as the nearest rival is the Department of Modern Lan-
guages and Cultural Studies, which seems doubly fitting since language is the principal
social  medium  of  knowledge  itself  (Brighton  et  al.  2005;  Motter  2002;  Searle  1995;
Smith et al. 2003; Stahl 2000; Peim 2001) and modern cultures support the institutions
of contemporary education (Cowen 1996).  Other Departments substantiating disciplines
with large academic  coverage  are,  in descending  order:  Biological  Sciences,  Nursing,
Chemical & Materials Engineering, Art & Design, Civil & Environmental Engineering,
Music, and Mathematical & Statistical Sciences.  All departments with zero complexity
scores,  OdC  =  0,  have (perhaps  somewhat  unfairly)  vanishing  disciplinary  covers  by
definition.

For a more specific application of cover, consider three university Departments:
1. English & Film Studies, 2. East Asian Studies, and 3. Modern Languages & Cultural
Studies.  Each department focuses on one or more languages and aspects of the cultures
actively using those languages.  For example, the Department of English & Film Studies
contains courses titled: "Readings in Prose", "Narrative Theory and Poetics", "Canadian
Film",  "Introduction  to  Creative  Writing:  Nonfiction",  and  "Writing  Essentials"  (for
Engineers);  the  other  two  Departments  have  analogous  courses  with  titles  such  as:
"French  Reading  Comprehension",  "Russian  Style,  Expression  and  Composition",
"Meaning and Form in Spanish", "Japanese Film", and "Business Chinese".  The Depart-
ment of English & Film Studies concerns itself with one language – English.  The Depart-
ment of East Asian Studies concentrates on two major languages, Chinese and Japanese,
while  the  Department  of  Modern  Languages  &  Cultural  Studies  carries  seven  main
languages: French, German, Italian, Polish, Russian, Spanish, and Ukrainian.  These last
two departments also offer a few minor programs in other languages, such as, Korean,
Swedish, and American Sign Language.  But each of these subjects have a total course
weight of less than twenty-one credits (W < ¯21), well below the threshold required to
build a nontrivial subnetwork (review Figure 4.1.2.3-1),  so are here not counted using
the assumption that the departmental course subnetworks are well characterized by the
major  languages.   To summarize,  recognize  the ratio of major languages  in the three
highlighted  departments  to be 1: 2: 7.   A comparison of this ratio to the ratio of total
course weight (W) in each department, 1: 0.5: 1.8, indicates there are many more courses
dedicated  towards  teaching  English  over  the  other  languages.   A naive interpretation
using a linear  model  focusing  on accumulated  knowledge  as represented  by the total
course weight in each department  determines more knowledge underpins English over
the other languages at University.   But the ratio of each department's  academic covers
(C) is 1: 2.3: 9.4 – a much closer match to the number of languages in each department.
Indeed, the differences between the ratios in favor of the latter two departments could be
due to the presence of the previously ignored minor languages within them affecting the
results  after  all.   A  sophisticated  interpretation  using  the  cover  metric  suggests  the
amount  of  knowledge  covered  within  each  department  is  about  proportional  to  the
number of languages  contained in each department,  not the number of courses alone,
and, it appears each contemporary, living language is adequately described by a similar
amount of knowledge.  A reinterpretation of the ratio of total course weight (W) in each
department, 1: 0.5: 1.8, compared to the number of languages in each department,  1: 2:
7, with respect to cover implies the courses in the Department of English & Film Studies
are, on average, more redundant compared to courses of the other two Departments.  It
may be there are too many English courses generating nearly the same knowledge at the
same level, or that too many English courses do not well elaborate on the knowledge of
other courses to build a network with proportionally large coverage.  The seemingly fine
gradations of knowledge in courses, such as, say, ENGL 222 Reading Politics: Race and
Ethnicity,  ENGL 355 American Literature and Culture: American Minority Literature,
ENGL 360 American Literature and Culture: Race and Belonging in American Writing,
ENGL 379 Canadian Literature and Culture: Canadian Minority Literature, ENGL 467
Studies in Race and Ethnicity, and ENGL 489 Studies in Emergent Cultures and Minor-
ity  Texts,  none  of  which  require  one  another  as  a  prerequisite,  are  effectively
"collapsed" (Nespor 2004) into an implied, relatively smaller, underlying network struc-
ture that still fills all of the structural roles and spans the knowledge of the department
as gauged by the cover metric.

Cover is described and offered as a measure of disciplinary knowledge produc-
tion and maintenance as realized in university departments.   The statistic, C, is associ-
ated with an area in a metaphorical academic space of possibilities.  The cover metric is
argued to have a high degree of universality to permit comparison of the relative magni-
tude  of  knowledges  in  all  disciplines  despite  their  radical  diversity.   The  disparate
aspects of each discipline converge within the context of the education system to pro-
duce instances  of the same categorical  feature:  course  subnetworks.   Transcription  of
disciplinary  knowledges  using the same structural  grammar  occurs  via the underlying
logic of all knowledge creation which couples introduced information with prior knowl-
edge.  The diverse histories, vocabularies,  contents,  methods, and theories within each
discipline  combine  in  the  education  system  to  yield  course  subnetworks  of  differing
sizes and unique structures.  Cover for each department is a product of two input parame-
ters – total weight of course credits (W) and the normalized disciplinary distent (D

`
), both

with  units  of  academic  weight  (¯),  and  one  unitless  scaling  coefficient,  complexity
(OdC).  Together, the two input parameters (W D

`
) stake the boundaries of an 'area' (¯2)

in academic  space with a metaphorical  "width" and "depth",  while the scaling coeffi-
cient (OdC) describes  how the academic space is penetrated,  infused with interpretive
possibilities, and filled with possible states of knowing (review Figure 4.2.1.6-1).  Using
the  cover  metric,  the  question  of  discipline  size  in  terms  of  knowledge  is  no longer
ignored  as  ill-posed,  left  as  fanciful  conjecture,  or  limited  to  the  simple  concept  of
accumulation of undifferentiated knowledge.  Departments supporting knowledge regard-
ing languages  are measured to have large academic  cover scores  in proportion to the
number of languages supported.   Otherwise,  scientific departments,  such as Biological
Sciences,  applied  departments,  such as  Nursing  and  various  Engineering,  and artistic
departments,  such as  Art  & Design  and Music,  possess  large  academic  cover  scores.
Cover (C) is a novel metric that might be of interest to administrators and educational
researchers  who  wish  to  view  the  knowledge  of  varied  disciplines  in  some  directly
comparative way within a unified framework.
__________________________
†"It is proposd that the degree of complexity of an object language relative to a given
metalanguage can be gauged by the number of ways it can be translated into that metalan-
guage: in analogy with other forms of measurement, the more ways the object language
can be translated into the metalanguage,  the less powerful the conceptual  resources of
the object language."
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How much knowledge is sustained within a discipline?  How "wide" and "deep"is it?  The disciplines seem so far apart conceptually and methodologically that a simplecomparison, such as ENGLISH > MATH, seems brute, absurd, and untenable.  Neverthe-less, presented in this section is a brief argument for a pilot method of relative compari-son based on the size and topology of the course structure used to sustain and developeach type of disciplinary knowledge in the corresponding departments.  The assumptionbeing knowledge structures are constrained, emergent coherences that follow an underly-ing logic common to theses types of complex systems (Kauffman 1993: ch. 5), and thisis reflected in the course network of each department as it represents a discipline (review§4.2.1.3 if necessary).  Let the amount of measured knowledge in a department be calledthe disciplinary cover, C.The conjectured common mechanism of academic knowledge creation in Alber-ta's  education  system  for  all  disciplines,  captured  by  the  gross,  abstract  frameworkestablished in the thesis, has a structural grammar with four basic facets: i) knowledge,regardless of its subject, is introduced and integrated at each node (Ê) in proportion tothe academic course weight (¯);  ii) previous knowledge is elaborated along chains ofprerequisite courses (ÊÊÊ);  iii) the outspread of knowledge occurs when the ideasof one course are pointed to and utilized by many direct subsequents JÊáàÊÊN, and iv)the merging of knowledge occurs when one course points to and combines the ideas ofmany prerequisites JÊÊàáÊN.  Using the vocabulary found in Cohen & Stewart's (1994:411) book, The Collapse of Chaos, these simple architectural  motifs (Milo et al. 2002;Yeger-Lotem et al. 2004) in the course network are identified as "simplexities" becausethey are a direct result of the (reductionist)  rules of academic knowledge constructionapplied in context.  Two rules are natural and universal for all knowers – learning is atleast a function of a) new information together with b) prior knowledge.  The context foracademic learning is the practical requirements of a workaday education system – knowl-edge is classified into subjects and parcelled into courses.  Given the rules of academicknowledge construction at the level addressed in the thesis plus the practical boundaryconditions,  the  building  blocks  of  the  course  network  straightforwardly  arise as  little'structural  theorems',  which span a restricted space of possibilities.   Complicating  thisinceptive  description  is  the coevolution  between the wider  complex  world and wholebodies  of  disciplinary  knowledge  embedded  within  the  context  of  a  large  educationsystem, which engenders generally complex course subnetworks as combinations of thebasic architectural  motifs.  The knowledge, methods, evidences, ways of knowing, andpersonnel  within  each  divergent  discipline  are  different,  but  the  disciplines'  feedbackwith the complex world is a convergent process within the education system resulting ina  common  feature:  meaningfully  comparable  course  subnetworks.   Housed  in  eachdepartment and here identified as "complicities" to persist with the vocabulary of Cohen& Stewart (1994: 414), these course subnetworks emerge to explore an expanded spaceof possible architectures that in some manner correspond to, or map, expansive bodiesof academic knowledge with a resolution of course-sized bundles of knowledge (about¯3).  The network metric, C, is devised to scrutinize the 'coverage' of each departmentalsubnetwork map and thus the size of each academic discipline.From  (above)  facet  i),  any  discussion  of  how  much  knowledge  underpins  adepartment  must  start  with  the  number  of  course  credits  offered.   In  this  thesis,  theunadorned,  unqualified  course  credit  (¯)  forms  the  universal  objective  measure  ofacademic knowledge available to students in any course and is a foundation for analysis.Thus, let the disciplinary cover be proportional  to the total course weight in a depart-ment, C ∝ W = ⁄i=1N wi , where N is the number of courses in the department and wi  isthe weight of each course in academic credits (typically, ¯3).  But, considering the totalcourse  weight  alone,  while  it  may offer  an  appreciation  of  the  "knowledge  base"  ormetaphorical "width" of a department, does not imply how the knowledge is structured.Davis  & Sumara  (2006:  57)  describe  how "the creation of  knowledge  .  .  .  isconstantly elaborating what has also been established" resulting in "expansiveness andoutward  movement"  of interpretive  possibilities.   In  rapport  with  their  ideas pointingbeyond  featureless  knowledge  accumulation,  which  an  aggregate  score  such  as  totalcourse  weight  in  a  department  (W)  describes,  a  complementary  structural  notion  ofknowledge  progression  is  included.   Consider  facet  ii)  (see above)  to be a statementregarding  knowledge  elaboration  and advancement,  which is  captured numerically  bythe distent metric – the amount by which courses are structurally separated on a networkfrom one another, based on a 'stretching' metaphor (review 4.2.1.1).  Thus, to capture theprogression,  or  metaphorical  "depth",  of  the  knowledge  within  a  department,  let  thedisciplinary  cover  be  proportional  to  the  average  distent  score  of  courses,  with  oneimportant  modification:  the starting point for measuring  distent at the university  level
specific  to  disciplinary  knowledge  is  the  basic  University  Admission  requirements.
Usually, the universal reference point for distent scores is the beginning of Kindergar-
ten, but consistent with the boundaries of a discipline introduced in the previous section,
§4.2.1.5,  the  distent  relevant  for establishing  the  size of  a discipline  comes from the
boundary  between  School  and University.   Therefore,  let  the normalized  disciplinary
distent score of a department be D

`
 = ⁄i=1

N  wiHDi - DoL êW , where Di  is the distent score
of each course in academic  credits from Kindergarten  as reported on Table 4.2.1.1-3,
and Do  is the distent score of the minimum University Entrance requirements.  Combin-
ing both factors, total course weight and the normalized distent, each measured in units
of academic credits (¯), the disciplinary cover is described analogously to an 'area' (¯2)
of knowledge  in 'academic  space':  C  ∝  W  D

`
,  which unites  the academic  "width" and

"depth" of a department.

Guided  by  the  foundational  mapping  metaphor  for  this  thesis,  the  'size'  of  a
department in terms of knowledge is considered proportional to some kind of an area.
Just as Canada is considered as geographically large and covers a vast amount of terri-
tory on a political map of the world, with the formulation for disciplinary cover intro-
duced here, the measured score on a network map is maximized for departments with
many courses of high average distent.  But the 'area' of a network is a problematic con-
cept since networks are graphically comprised of effectively one-dimensional  links and
dot-like nodes (also called edges (1-D) and vertices (0-D) in graph theory).  Networks
are embedded and rendered on a two-dimensional page, but are made up of lower dimen-
sional components and so are briefly compared to another mathematical construct with
similar properties, the fractal (see Figure 4.2.1.6-1).  For example, Gianvittorio & Rah-
mat-Samii (2002) describe how fractal shaped antennas, created by the intricate bending
of (effectively 1-D) wire, out perform other types of "traditional Euclidean antenna[s]"
fit into the same area.  Elsewhere, Fuite, Tuszynski, et al. (2000) examine the structure-
function relationship of the human liver and show its reactive surfaces have a well-de-
fined  fractal  architecture,  while  Hou  et  al.  (2005)  show  that  comparable  biological
fractal structures are "space-filling" and possess "multiply optimized design".  Together
these authors  indicate  physical  fractals  are a category of objects  that especially  pene-
trate, permeate,  and interact with the surrounding space.  In comparison, complex sys-
tems, through their adaptive, self-organizing behaviors, are also shown to explore large
domains of the parameter spaces used to describe them.  Cohen & Stewart (1994: 200)
explain how a complex system's "phase space contains not just what happens but what
might happen under different circumstances.  It's the space of the possible."  Self-organi-
zation enlarges a system’s phase space, according to Juarrero (2000), by adding degrees
of freedom.  She concludes,  "enabling constraints  thus create potential  information by
opening—bottom-up—a  renewed pool of alternatives that the emergent macrostructure
can access."  Together, these authors point to an understanding of emergent phenomena
that attends to their multi–realizable nature as access to potential states of being within a
spatial  metaphor.   Network  models  reflect  the properties  of complex systems in their
structures  (review §2.3.2),  so might be able to monitor  the "space-filling"  (Krackauer
2005), alternative-creating capabilities of the referent system.

For Davis & Sumara (2006: ch. 4) learning occurs by "expanding the space of
the possible" for knowers,  which allows the "emergence of new interpretive possibili-
ties".  Their "complexivist"  view of knowing (Jorg et al. 2007) draws attention to the
conditions  required  for  'expansiveness'  and  'newness',  and  for  the  characterization  of
knowledge.  In terms of this thesis, their statements motivate a couple of questions to be
addressed, as follows.  How many of the courses in a department hold knowledge that is
novel  versus  superfluous?   And,  which  elaborations  of  disciplinary  knowledge  are
necessary versus redundant?  Consider  how redundant or superfluous  knowledge does
not "expand the space of the possible" as much as novel or necessary knowledge, and,
how such knowledge attenuates the effective "width", W, or the "depth", D

`
, of a depart-

ment.   The  presence  of  a  complex  departmental  subnetwork  implies  a  heterogeneity
amongst the constituent  courses nodes, which in turn implies unique, specialized roles
for each course (review §4.1.2.3).  Courses within less complex, structurally symmetri-
cal  departmental  networks  fulfill  parallel  roles  to one another  as determined  by their
similar  positions  within  the  course  subnetwork.   Course  nodes  that  possess  unique
positions and fulfill specialized roles in the network are here assumed to sustain distinc-
tive knowledge.   The importance and uniqueness of any course and its knowledge are
reduced  by the  presence  of  symmetries  within  the  departmental  subnetwork.   Course
nodes  that  possess  similar  positions  and fulfill  parallel  roles  in  the network  are here
assumed  to  sustain  relatively  redundant  or  superfluous  knowledge.   The  more  ways
students may traverse a department with functionally indistinguishable learning trajecto-
ries,  the less  powerful  the  conceptual  resources  of  the department  given its  size  (see
Davidson 1999 for a parallel statement regarding language†).  The offdiagonal complex-
ity metric (OdC) is sensitive to the presence of nodes with diverse kinds of connections
and is used here to measure the distinctiveness of knowledge amongst the courses in a
department.   Therefore,  let  the  disciplinary  cover  be  proportional  to  the  offdiagonal
complexity of a department: C ∝ OdC fl C = OdC W D

`
.  Here, the OdC score serves as

a coefficient to scale the 'academic area' of a discipline (W D
`

), such that, noncomplex
networks  have  symmetrical  structures  and  knowledges  which  are  in  some  sense
'compressible'  (OdC  ),  while complex  networks  have intricate  structures  and knowl-
edges that are 'dense' and 'incompressible' (OdC Æ).

The results from calculations for disciplinary cover on each of the University's
departments are recorded on Table 4.2.1.1-2, thirteenth column, C.  Ranked at the top,
measured at twice the magnitude as the nearest rival is the Department of Modern Lan-
guages and Cultural Studies, which seems doubly fitting since language is the principal
social  medium  of  knowledge  itself  (Brighton  et  al.  2005;  Motter  2002;  Searle  1995;
Smith et al. 2003; Stahl 2000; Peim 2001) and modern cultures support the institutions
of contemporary education (Cowen 1996).  Other Departments substantiating disciplines
with large academic  coverage  are,  in descending  order:  Biological  Sciences,  Nursing,
Chemical & Materials Engineering, Art & Design, Civil & Environmental Engineering,
Music, and Mathematical & Statistical Sciences.  All departments with zero complexity
scores,  OdC  =  0,  have (perhaps  somewhat  unfairly)  vanishing  disciplinary  covers  by
definition.

For a more specific application of cover, consider three university Departments:
1. English & Film Studies, 2. East Asian Studies, and 3. Modern Languages & Cultural
Studies.  Each department focuses on one or more languages and aspects of the cultures
actively using those languages.  For example, the Department of English & Film Studies
contains courses titled: "Readings in Prose", "Narrative Theory and Poetics", "Canadian
Film",  "Introduction  to  Creative  Writing:  Nonfiction",  and  "Writing  Essentials"  (for
Engineers);  the  other  two  Departments  have  analogous  courses  with  titles  such  as:
"French  Reading  Comprehension",  "Russian  Style,  Expression  and  Composition",
"Meaning and Form in Spanish", "Japanese Film", and "Business Chinese".  The Depart-
ment of English & Film Studies concerns itself with one language – English.  The Depart-
ment of East Asian Studies concentrates on two major languages, Chinese and Japanese,
while  the  Department  of  Modern  Languages  &  Cultural  Studies  carries  seven  main
languages: French, German, Italian, Polish, Russian, Spanish, and Ukrainian.  These last
two departments also offer a few minor programs in other languages, such as, Korean,
Swedish, and American Sign Language.  But each of these subjects have a total course
weight of less than twenty-one credits (W < ¯21), well below the threshold required to
build a nontrivial subnetwork (review Figure 4.1.2.3-1),  so are here not counted using
the assumption that the departmental course subnetworks are well characterized by the
major  languages.   To summarize,  recognize  the ratio of major languages  in the three
highlighted  departments  to be 1: 2: 7.   A comparison of this ratio to the ratio of total
course weight (W) in each department, 1: 0.5: 1.8, indicates there are many more courses
dedicated  towards  teaching  English  over  the  other  languages.   A naive interpretation
using a linear  model  focusing  on accumulated  knowledge  as represented  by the total
course weight in each department  determines more knowledge underpins English over
the other languages at University.   But the ratio of each department's  academic covers
(C) is 1: 2.3: 9.4 – a much closer match to the number of languages in each department.
Indeed, the differences between the ratios in favor of the latter two departments could be
due to the presence of the previously ignored minor languages within them affecting the
results  after  all.   A  sophisticated  interpretation  using  the  cover  metric  suggests  the
amount  of  knowledge  covered  within  each  department  is  about  proportional  to  the
number of languages  contained in each department,  not the number of courses alone,
and, it appears each contemporary, living language is adequately described by a similar
amount of knowledge.  A reinterpretation of the ratio of total course weight (W) in each
department, 1: 0.5: 1.8, compared to the number of languages in each department,  1: 2:
7, with respect to cover implies the courses in the Department of English & Film Studies
are, on average, more redundant compared to courses of the other two Departments.  It
may be there are too many English courses generating nearly the same knowledge at the
same level, or that too many English courses do not well elaborate on the knowledge of
other courses to build a network with proportionally large coverage.  The seemingly fine
gradations of knowledge in courses, such as, say, ENGL 222 Reading Politics: Race and
Ethnicity,  ENGL 355 American Literature and Culture: American Minority Literature,
ENGL 360 American Literature and Culture: Race and Belonging in American Writing,
ENGL 379 Canadian Literature and Culture: Canadian Minority Literature, ENGL 467
Studies in Race and Ethnicity, and ENGL 489 Studies in Emergent Cultures and Minor-
ity  Texts,  none  of  which  require  one  another  as  a  prerequisite,  are  effectively
"collapsed" (Nespor 2004) into an implied, relatively smaller, underlying network struc-
ture that still fills all of the structural roles and spans the knowledge of the department
as gauged by the cover metric.

Cover is described and offered as a measure of disciplinary knowledge produc-
tion and maintenance as realized in university departments.   The statistic, C, is associ-
ated with an area in a metaphorical academic space of possibilities.  The cover metric is
argued to have a high degree of universality to permit comparison of the relative magni-
tude  of  knowledges  in  all  disciplines  despite  their  radical  diversity.   The  disparate
aspects of each discipline converge within the context of the education system to pro-
duce instances  of the same categorical  feature:  course  subnetworks.   Transcription  of
disciplinary  knowledges  using the same structural  grammar  occurs  via the underlying
logic of all knowledge creation which couples introduced information with prior knowl-
edge.  The diverse histories, vocabularies,  contents,  methods, and theories within each
discipline  combine  in  the  education  system  to  yield  course  subnetworks  of  differing
sizes and unique structures.  Cover for each department is a product of two input parame-
ters – total weight of course credits (W) and the normalized disciplinary distent (D

`
), both

with  units  of  academic  weight  (¯),  and  one  unitless  scaling  coefficient,  complexity
(OdC).  Together, the two input parameters (W D

`
) stake the boundaries of an 'area' (¯2)

in academic  space with a metaphorical  "width" and "depth",  while the scaling coeffi-
cient (OdC) describes  how the academic space is penetrated,  infused with interpretive
possibilities, and filled with possible states of knowing (review Figure 4.2.1.6-1).  Using
the  cover  metric,  the  question  of  discipline  size  in  terms  of  knowledge  is  no longer
ignored  as  ill-posed,  left  as  fanciful  conjecture,  or  limited  to  the  simple  concept  of
accumulation of undifferentiated knowledge.  Departments supporting knowledge regard-
ing languages  are measured to have large academic  cover scores  in proportion to the
number of languages supported.   Otherwise,  scientific departments,  such as Biological
Sciences,  applied  departments,  such as  Nursing  and  various  Engineering,  and artistic
departments,  such as  Art  & Design  and Music,  possess  large  academic  cover  scores.
Cover (C) is a novel metric that might be of interest to administrators and educational
researchers  who  wish  to  view  the  knowledge  of  varied  disciplines  in  some  directly
comparative way within a unified framework.
__________________________
†"It is proposd that the degree of complexity of an object language relative to a given
metalanguage can be gauged by the number of ways it can be translated into that metalan-
guage: in analogy with other forms of measurement, the more ways the object language
can be translated into the metalanguage,  the less powerful the conceptual  resources of
the object language."
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Figure 4.2.1.6-1   A stylized  diagram of  two networks  with  identical  total  course
weight, W, and distent, D.  On the left, the interior of a complex network is metaphori-
cally represented by a fractal to visually suggest how diverse and multiscaled struc-
tures fill the borders of their parameter space uniquely.  On the right, the interior of a
non-complex network is metaphorically  represented by a kind of lattice to visually
relate how simple, symmetrical, and periodic structures explore parameter space in a
redundant  manner.   Edmonds  (1999)  suggests  a relationship  between  the  level  of
'complexity'  of  a  system  and  the  amount  of  information  that  a  system is  able  to
process and store.

‡ 4.2.2 A Small Gallery of Department Sketches

It matters that networks differ.

Robins,  G.,  Pattison,  P.,  Woolcock,  J.  (2005)  Small  and  Other
Worlds:  Global  Network  Structures  from  Local  Processes,
American  Journal  of  Sociology  (AJS),  January,  110(4):
894-936.

Curation of Departments for the small collection presented here is mostly lim-
ited by the time available to the author and by appropriate length limits for a thesis.  A
focused study of any department, what Becher & Kogan (1992: ch. 6) call a basic func-
tional unit of higher education, could be of interest to at least some readers.  The limited
choices presented are based solely on the uniqueness and transparency of departmental
architectures  and how compellingly they reflect distinctive network categories (review
Figure 2.3.2.1-2).  No new theoretical ideas are introduced in this subsection, just use of
the tools developed hitherto providing short examples of what applied network research
in education could look like using the notion that departmental course structure roughly
characterizes  the  process  through  which  disciplinary  knowledge  is  experienced  by
students and shaped by the department  as it adapts to the exogenous influences of the
University and wider society.

197



ü 4.2.2.1 Department of Women's Studies

Department ¯ N sêint sêext
pre sêext

sub i Dêêê Sêê Eêêê Iê OdC C
WOMEN ST 60.0 19 1.00 0.00 0.05 0.000 67.2 165.1 3.6 3.5 0.64 236

The relevant row taken from Table 4.2.1.1-2

While the history and development  of Women's Studies is described by Boxer
(2000)  as "that  of interdisciplinary  research  and teaching",  Buker  (2003) thinks  "it  is
now time for Women's  Studies  to declare  itself a distinctive  field of inquiry,  a disci-
pline".  A network examination of the discipline as housed at the University of Alberta's
Department of Women's Studies supports Buker's contention, but minimally so.  Figure
4.2.2.1-1  reveals a well-defined,  distinct architecture  for the Department  that is maxi-
mally centralized and well insulated from the rest of the University.  In many ways, the
Department takes a form that supports Boxer's "satisfaction in recognizing the extent to
which traditional  vertical  divisions  in many [disciplines]  are giving way to horizontal
groupings,  and identities  becoming  more diffuse,  multiple,  and flexible,  thus creating
new constructions more congenial to Women's Studies".   After all, once the initiation of
W ST 201, Introduction to Women's Study, from high school is complete, the Depart-
ment is effectively 'flat' or "horizontal" since all but one remaining course are directly
accessible.   Beyond W ST 201, the "flexible",  nonhierachical  structure empowers stu-
dents to freely "diffuse" throughout  the Department  without further concern regarding
prerequisite knowledge requirements, but at what cost?

The  network  topology  of  the  Department  of  Women's  Studies  implies  certain
characteristics for the subject matter.  Based purely on structural analysis in §4.1.2.2, an
identified indivisible module (for the interested reader, review Figure 4.1.2.2-3, eleventh
bar from the top) is shown to contain the entire Department  of Women's  Studies plus
just  one  other  course:  PHIL  433,  "Topics  in  Feminist  Philosophy".   That  is,  a
"bottom-up",  purely structural analysis of divisions in the overall course network accu-
rately  identifies  the  "top-down"  administrative  construction  of  Women's  Studies  and
includes the one course external to the department that significantly couples to it.  The
null interdisciplinary score of the contemporary Department,  i = 0.000, belies the rela-
tively young discipline's history, which has as "one of its most definitive claims: interdis-
ciplinary" (Wiegman 2001).  Reminisces Klein (1991), "what was emphasized in Wom-
en's Studies were interconnections, continuity and interrelationships: the compartmental-
ization  of knowledge  was–and by some of us still  is–explicitly  opposed [emphasis  in
original]".  Though internal "continuity" is apparent in the form of the Department, since
all but three courses (W ST 201, 302, & 402) have structurally indistinguishable loca-
tions, Women's Studies itself is one of the most isolated compartments of knowledge in
the  wider  context  of  a  compartmentalized  Education  system.   It  relies  not  at  all  for
prerequisite  knowledge from anywhere else in the University (sêext

pre  = 0.00), nor does it
provide substantial amounts of knowledge to anywhere (sêext

sub  = 0.05).  Perhaps all of the
formerly interdisciplinary  tools adopted in the early development  of Women's  Studies
are now subsumed into the discipline itself, thus placing it into a kind of 'post-interdisci-
plinary'  stage  of  development.   What  was  an  interdisciplinary  field  is  now strongly
disciplinary with an internally uniform knowledge structure discontinuous with the rest
of the University.

The star-like shape of the Department has other implications for Women's Stud-
ies.   Generally,  no  courses  necessarily  exchange  knowledge  with  any  node  but  the
central  hub,  so  while  accumulation  and  diversification  of  knowledge  may  occur,  no
significant  and  consistent  elaboration  of  established  knowledge  is  possible.   This  is
reflected in the very low average distent score (Dêêê = ¯67.2), especially considering the
Department is mostly comprised of 300- & 400-level courses, thus Women's Studies is
also accused of having 'inflated' catalogue numbers (by about 68%, please review Table
4.2.1.1-3).   Because none of the courses beyond the hub especially support each other
academically,  the average  extent  (Eêêê  = ¯3.6) and sustent  (Sêê  = ¯165.1)  scores  for the
Department  are low.  By striving to keep the Department  from developing any strong
tendencies towards hierarchy or compartmentalization among the courses, the result is a
structure that inclines to isolate knowledge within each course.  Moreover, it's interest-
ing how, since the foundational  knowledge  in the hub is split  among so many subse-
quent  courses  which  in  turn  pass  their  knowledge  nowhere  in  particular,  there  is  no
significant  overall  direction,  or  intent,  to  the  assembled  courses  (Iê  = ¯3.5).   Notice,
removal of the hub node completely destroys the Department's subnetwork, but removal
of any other  single node at a star "tip" results in nothing but the proportional  loss of
academic weight (¯3 per course); because none of the symmetrically located peripheral
nodes play a necessary role in the department, there is little resultant loss of departmen-
tal form or function.

The network topology of the Department of Women's Studies has direct practi-
cal implications for students;  its structure both enables and constrains students experi-
ence of the subject in different ways.  First, the topology ensures the knowledge is easily
accessible:  after one semester  of study (¯3),  all  major  topics,  from current  issues,  to
feminist theory, to sexuality, to gender issues, to ethics, etcetera, are available.  On the
other  hand,  a  student's  failure  to understand  or be convinced  by the  knowledge  con-
tained within the hub course results in complete inaccessibility to the entire department,
since there are no alternative knowledge trajectories or other related "ways of knowing"
the subject.  There are no 100-level  courses so the student moves directly to the 200-
level,  thus  avoiding  a 100-level  course  otherwise  applied  against  the  quota  of  junior
courses for any degree program.  Since the courses of the department do not rely on one
another for prerequisite knowledge, since the department is effectively "horizontal" and
without overall "vertical" direction (called "depth" in §4.2.1.6), students must take full
responsibility  for  integrating,  synthesizing,  and advancing  (if possible)  the sophistica-
tion of the knowledge learned in each of the solitary courses.  And finally, the cliquish
structure dictates that students will not necessarily utilize their previous knowledge from
elsewhere  and cannot  necessarily  use  knowledge  from the Department  as a basis  for
further academic learning outside of Women's Studies.

The Department of Women's Studies is represented by a course structure seem-
ing to have traits that suggest it was made and not born.  Its structure appears system-
atic, theorized, self-conscious, and constituted from a deliberately egalitarian creed, such
as described above by Boxer and Klein, which results in a 'shallow', maximally symmetri-
cal form of very  low complexity  (OdC  = 0.64) unlike the network  structures  usually
resultant from natural, decentralized processes (Cancho & Sole 2003).  A star network
that  the  Department  closely  approximates  has  a  very  distinct  form  (review  Figure
2.3.2.1-2).   If the star-like course subnetwork in Women's Studies is the result of bot-
tom-up, emergent processes and not a top-down, mandated design, then the discipline is
conjectured to be under stress and/or lacking resources (please review Figure 2.3.2.3-2)
because under these conditions networks 'collapse' towards a simple form.  For example,
the  average  strength  of  internal  links  between  the  courses  holding  the  department
together  is  the  absolute  minimum  necessary  (sêint  =  1.00)  making  the  network  very
sparse.  Possibly the architecture of the department is severely constrained by the inher-
ent limitations of the subject matter – there simply may not be enough novel information
regarding the subject of Women's Studies with which to piece together a complex knowl-
edge  structure  in  the  context  of  the  university  regardless  of  interest  or  resources,  as
hinted at by its very low academic cover score (C = 236 ¯2) and scant external links.
Further consideration of Women's Studies's isolation, either by external marginalization
or internal nativism, is left for future research, though Wiegman (2001) thinks it is the
former when she states, "the current organization of knowledge, time, and resources (not
to mention prestige) undermines the rigorous development of feminist interdisciplinary
study".
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While the history and development  of Women's Studies is described by Boxer
(2000)  as "that  of interdisciplinary  research  and teaching",  Buker  (2003) thinks  "it  is
now time for Women's  Studies  to declare  itself a distinctive  field of inquiry,  a disci-
pline".  A network examination of the discipline as housed at the University of Alberta's
Department of Women's Studies supports Buker's contention, but minimally so.  Figure
4.2.2.1-1  reveals a well-defined,  distinct architecture  for the Department  that is maxi-
mally centralized and well insulated from the rest of the University.  In many ways, the
Department takes a form that supports Boxer's "satisfaction in recognizing the extent to
which traditional  vertical  divisions  in many [disciplines]  are giving way to horizontal
groupings,  and identities  becoming  more diffuse,  multiple,  and flexible,  thus creating
new constructions more congenial to Women's Studies".   After all, once the initiation of
W ST 201, Introduction to Women's Study, from high school is complete, the Depart-
ment is effectively 'flat' or "horizontal" since all but one remaining course are directly
accessible.   Beyond W ST 201, the "flexible",  nonhierachical  structure empowers stu-
dents to freely "diffuse" throughout  the Department  without further concern regarding
prerequisite knowledge requirements, but at what cost?

The  network  topology  of  the  Department  of  Women's  Studies  implies  certain
characteristics for the subject matter.  Based purely on structural analysis in §4.1.2.2, an
identified indivisible module (for the interested reader, review Figure 4.1.2.2-3, eleventh
bar from the top) is shown to contain the entire Department  of Women's  Studies plus
just  one  other  course:  PHIL  433,  "Topics  in  Feminist  Philosophy".   That  is,  a
"bottom-up",  purely structural analysis of divisions in the overall course network accu-
rately  identifies  the  "top-down"  administrative  construction  of  Women's  Studies  and
includes the one course external to the department that significantly couples to it.  The
null interdisciplinary score of the contemporary Department,  i = 0.000, belies the rela-
tively young discipline's history, which has as "one of its most definitive claims: interdis-
ciplinary" (Wiegman 2001).  Reminisces Klein (1991), "what was emphasized in Wom-
en's Studies were interconnections, continuity and interrelationships: the compartmental-
ization  of knowledge  was–and by some of us still  is–explicitly  opposed [emphasis  in
original]".  Though internal "continuity" is apparent in the form of the Department, since
all but three courses (W ST 201, 302, & 402) have structurally indistinguishable loca-
tions, Women's Studies itself is one of the most isolated compartments of knowledge in
the  wider  context  of  a  compartmentalized  Education  system.   It  relies  not  at  all  for
prerequisite  knowledge from anywhere else in the University (sêext

pre  = 0.00), nor does it
provide substantial amounts of knowledge to anywhere (sêext

sub  = 0.05).  Perhaps all of the
formerly interdisciplinary  tools adopted in the early development  of Women's  Studies
are now subsumed into the discipline itself, thus placing it into a kind of 'post-interdisci-
plinary'  stage  of  development.   What  was  an  interdisciplinary  field  is  now strongly
disciplinary with an internally uniform knowledge structure discontinuous with the rest
of the University.

The star-like shape of the Department has other implications for Women's Stud-
ies.   Generally,  no  courses  necessarily  exchange  knowledge  with  any  node  but  the
central  hub,  so  while  accumulation  and  diversification  of  knowledge  may  occur,  no
significant  and  consistent  elaboration  of  established  knowledge  is  possible.   This  is
reflected in the very low average distent score (Dêêê = ¯67.2), especially considering the
Department is mostly comprised of 300- & 400-level courses, thus Women's Studies is
also accused of having 'inflated' catalogue numbers (by about 68%, please review Table
4.2.1.1-3).   Because none of the courses beyond the hub especially support each other
academically,  the average  extent  (Eêêê  = ¯3.6) and sustent  (Sêê  = ¯165.1)  scores  for the
Department  are low.  By striving to keep the Department  from developing any strong
tendencies towards hierarchy or compartmentalization among the courses, the result is a
structure that inclines to isolate knowledge within each course.  Moreover, it's interest-
ing how, since the foundational  knowledge  in the hub is split  among so many subse-
quent  courses  which  in  turn  pass  their  knowledge  nowhere  in  particular,  there  is  no
significant  overall  direction,  or  intent,  to  the  assembled  courses  (Iê  = ¯3.5).   Notice,
removal of the hub node completely destroys the Department's subnetwork, but removal
of any other  single node at a star "tip" results in nothing but the proportional  loss of
academic weight (¯3 per course); because none of the symmetrically located peripheral
nodes play a necessary role in the department, there is little resultant loss of departmen-
tal form or function.

The network topology of the Department of Women's Studies has direct practi-
cal implications for students;  its structure both enables and constrains students experi-
ence of the subject in different ways.  First, the topology ensures the knowledge is easily
accessible:  after one semester  of study (¯3),  all  major  topics,  from current  issues,  to
feminist theory, to sexuality, to gender issues, to ethics, etcetera, are available.  On the
other  hand,  a  student's  failure  to understand  or be convinced  by the  knowledge  con-
tained within the hub course results in complete inaccessibility to the entire department,
since there are no alternative knowledge trajectories or other related "ways of knowing"
the subject.  There are no 100-level  courses so the student moves directly to the 200-
level,  thus  avoiding  a 100-level  course  otherwise  applied  against  the  quota  of  junior
courses for any degree program.  Since the courses of the department do not rely on one
another for prerequisite knowledge, since the department is effectively "horizontal" and
without overall "vertical" direction (called "depth" in §4.2.1.6), students must take full
responsibility  for  integrating,  synthesizing,  and advancing  (if possible)  the sophistica-
tion of the knowledge learned in each of the solitary courses.  And finally, the cliquish
structure dictates that students will not necessarily utilize their previous knowledge from
elsewhere  and cannot  necessarily  use  knowledge  from the Department  as a basis  for
further academic learning outside of Women's Studies.

The Department of Women's Studies is represented by a course structure seem-
ing to have traits that suggest it was made and not born.  Its structure appears system-
atic, theorized, self-conscious, and constituted from a deliberately egalitarian creed, such
as described above by Boxer and Klein, which results in a 'shallow', maximally symmetri-
cal form of very  low complexity  (OdC  = 0.64) unlike the network  structures  usually
resultant from natural, decentralized processes (Cancho & Sole 2003).  A star network
that  the  Department  closely  approximates  has  a  very  distinct  form  (review  Figure
2.3.2.1-2).   If the star-like course subnetwork in Women's Studies is the result of bot-
tom-up, emergent processes and not a top-down, mandated design, then the discipline is
conjectured to be under stress and/or lacking resources (please review Figure 2.3.2.3-2)
because under these conditions networks 'collapse' towards a simple form.  For example,
the  average  strength  of  internal  links  between  the  courses  holding  the  department
together  is  the  absolute  minimum  necessary  (sêint  =  1.00)  making  the  network  very
sparse.  Possibly the architecture of the department is severely constrained by the inher-
ent limitations of the subject matter – there simply may not be enough novel information
regarding the subject of Women's Studies with which to piece together a complex knowl-
edge  structure  in  the  context  of  the  university  regardless  of  interest  or  resources,  as
hinted at by its very low academic cover score (C = 236 ¯2) and scant external links.
Further consideration of Women's Studies's isolation, either by external marginalization
or internal nativism, is left for future research, though Wiegman (2001) thinks it is the
former when she states, "the current organization of knowledge, time, and resources (not
to mention prestige) undermines the rigorous development of feminist interdisciplinary
study".
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While the history and development  of Women's Studies is described by Boxer
(2000)  as "that  of interdisciplinary  research  and teaching",  Buker  (2003) thinks  "it  is
now time for Women's  Studies  to declare  itself a distinctive  field of inquiry,  a disci-
pline".  A network examination of the discipline as housed at the University of Alberta's
Department of Women's Studies supports Buker's contention, but minimally so.  Figure
4.2.2.1-1  reveals a well-defined,  distinct architecture  for the Department  that is maxi-
mally centralized and well insulated from the rest of the University.  In many ways, the
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which traditional  vertical  divisions  in many [disciplines]  are giving way to horizontal
groupings,  and identities  becoming  more diffuse,  multiple,  and flexible,  thus creating
new constructions more congenial to Women's Studies".   After all, once the initiation of
W ST 201, Introduction to Women's Study, from high school is complete, the Depart-
ment is effectively 'flat' or "horizontal" since all but one remaining course are directly
accessible.   Beyond W ST 201, the "flexible",  nonhierachical  structure empowers stu-
dents to freely "diffuse" throughout  the Department  without further concern regarding
prerequisite knowledge requirements, but at what cost?

The  network  topology  of  the  Department  of  Women's  Studies  implies  certain
characteristics for the subject matter.  Based purely on structural analysis in §4.1.2.2, an
identified indivisible module (for the interested reader, review Figure 4.1.2.2-3, eleventh
bar from the top) is shown to contain the entire Department  of Women's  Studies plus
just  one  other  course:  PHIL  433,  "Topics  in  Feminist  Philosophy".   That  is,  a
"bottom-up",  purely structural analysis of divisions in the overall course network accu-
rately  identifies  the  "top-down"  administrative  construction  of  Women's  Studies  and
includes the one course external to the department that significantly couples to it.  The
null interdisciplinary score of the contemporary Department,  i = 0.000, belies the rela-
tively young discipline's history, which has as "one of its most definitive claims: interdis-
ciplinary" (Wiegman 2001).  Reminisces Klein (1991), "what was emphasized in Wom-
en's Studies were interconnections, continuity and interrelationships: the compartmental-
ization  of knowledge  was–and by some of us still  is–explicitly  opposed [emphasis  in
original]".  Though internal "continuity" is apparent in the form of the Department, since
all but three courses (W ST 201, 302, & 402) have structurally indistinguishable loca-
tions, Women's Studies itself is one of the most isolated compartments of knowledge in
the  wider  context  of  a  compartmentalized  Education  system.   It  relies  not  at  all  for
prerequisite  knowledge from anywhere else in the University (sêext

pre  = 0.00), nor does it
provide substantial amounts of knowledge to anywhere (sêext

sub  = 0.05).  Perhaps all of the
formerly interdisciplinary  tools adopted in the early development  of Women's  Studies
are now subsumed into the discipline itself, thus placing it into a kind of 'post-interdisci-
plinary'  stage  of  development.   What  was  an  interdisciplinary  field  is  now strongly
disciplinary with an internally uniform knowledge structure discontinuous with the rest
of the University.

The star-like shape of the Department has other implications for Women's Stud-
ies.   Generally,  no  courses  necessarily  exchange  knowledge  with  any  node  but  the
central  hub,  so  while  accumulation  and  diversification  of  knowledge  may  occur,  no
significant  and  consistent  elaboration  of  established  knowledge  is  possible.   This  is
reflected in the very low average distent score (Dêêê = ¯67.2), especially considering the
Department is mostly comprised of 300- & 400-level courses, thus Women's Studies is
also accused of having 'inflated' catalogue numbers (by about 68%, please review Table
4.2.1.1-3).   Because none of the courses beyond the hub especially support each other
academically,  the average  extent  (Eêêê  = ¯3.6) and sustent  (Sêê  = ¯165.1)  scores  for the
Department  are low.  By striving to keep the Department  from developing any strong
tendencies towards hierarchy or compartmentalization among the courses, the result is a
structure that inclines to isolate knowledge within each course.  Moreover, it's interest-
ing how, since the foundational  knowledge  in the hub is split  among so many subse-
quent  courses  which  in  turn  pass  their  knowledge  nowhere  in  particular,  there  is  no
significant  overall  direction,  or  intent,  to  the  assembled  courses  (Iê  = ¯3.5).   Notice,
removal of the hub node completely destroys the Department's subnetwork, but removal
of any other  single node at a star "tip" results in nothing but the proportional  loss of
academic weight (¯3 per course); because none of the symmetrically located peripheral
nodes play a necessary role in the department, there is little resultant loss of departmen-
tal form or function.

The network topology of the Department of Women's Studies has direct practi-
cal implications for students;  its structure both enables and constrains students experi-
ence of the subject in different ways.  First, the topology ensures the knowledge is easily
accessible:  after one semester  of study (¯3),  all  major  topics,  from current  issues,  to
feminist theory, to sexuality, to gender issues, to ethics, etcetera, are available.  On the
other  hand,  a  student's  failure  to understand  or be convinced  by the  knowledge  con-
tained within the hub course results in complete inaccessibility to the entire department,
since there are no alternative knowledge trajectories or other related "ways of knowing"
the subject.  There are no 100-level  courses so the student moves directly to the 200-
level,  thus  avoiding  a 100-level  course  otherwise  applied  against  the  quota  of  junior
courses for any degree program.  Since the courses of the department do not rely on one
another for prerequisite knowledge, since the department is effectively "horizontal" and
without overall "vertical" direction (called "depth" in §4.2.1.6), students must take full
responsibility  for  integrating,  synthesizing,  and advancing  (if possible)  the sophistica-
tion of the knowledge learned in each of the solitary courses.  And finally, the cliquish
structure dictates that students will not necessarily utilize their previous knowledge from
elsewhere  and cannot  necessarily  use  knowledge  from the Department  as a basis  for
further academic learning outside of Women's Studies.

The Department of Women's Studies is represented by a course structure seem-
ing to have traits that suggest it was made and not born.  Its structure appears system-
atic, theorized, self-conscious, and constituted from a deliberately egalitarian creed, such
as described above by Boxer and Klein, which results in a 'shallow', maximally symmetri-
cal form of very  low complexity  (OdC  = 0.64) unlike the network  structures  usually
resultant from natural, decentralized processes (Cancho & Sole 2003).  A star network
that  the  Department  closely  approximates  has  a  very  distinct  form  (review  Figure
2.3.2.1-2).   If the star-like course subnetwork in Women's Studies is the result of bot-
tom-up, emergent processes and not a top-down, mandated design, then the discipline is
conjectured to be under stress and/or lacking resources (please review Figure 2.3.2.3-2)
because under these conditions networks 'collapse' towards a simple form.  For example,
the  average  strength  of  internal  links  between  the  courses  holding  the  department
together  is  the  absolute  minimum  necessary  (sêint  =  1.00)  making  the  network  very
sparse.  Possibly the architecture of the department is severely constrained by the inher-
ent limitations of the subject matter – there simply may not be enough novel information
regarding the subject of Women's Studies with which to piece together a complex knowl-
edge  structure  in  the  context  of  the  university  regardless  of  interest  or  resources,  as
hinted at by its very low academic cover score (C = 236 ¯2) and scant external links.
Further consideration of Women's Studies's isolation, either by external marginalization
or internal nativism, is left for future research, though Wiegman (2001) thinks it is the
former when she states, "the current organization of knowledge, time, and resources (not
to mention prestige) undermines the rigorous development of feminist interdisciplinary
study".
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Figure 4.2.2.1-1   A network  diagram of the Department  of Women's  Studies  and
close neighborhood.   The course, W ST 201 (Ê) (#3369), Introduction to Women's
Study, structurally serves as the network hub and singular entry point into the Depart-
ment.  It is a 200-level course with only the minimum University Admission Require-
ments (Ï) for a prerequisite.  From the hub course, W ST 201, all other courses in
the Department, save W ST 402 (#3381) which also requires knowledge from W ST
302  (#3372),  are  directly  accessible.   No  university  level  prerequisite  knowledge
from outside of the Department is required for any course in Women's Studies.  Only
two  courses  in  the  rest  of  the  University  specifically  refer  to  the  Department  of
Women's Studies, both partially.  The course, SOC 492 (Ê) (#3258), Queer-ing the
Social,  "Sex/gender/sexuality  as  a  complex  social  constellation.",  points  to  W ST
201,  with  a  1/5  prerequisite  connection,  and,  PHIL  433  (Ê)  (#2892),  "Topics  in
Feminist  Philosophy",  refers  to W ST 301 with  a 1/2  prerequisite  connection.   A
bunch of other nodes refer to courses in the Department of Women's Studies inciden-
tally.  These are indicated by the links exiting on the left of the network diagram,
reaching  towards  very  weakly  associated  neighboring  courses  not  shown  in,  and
hardly  affecting,  this  embedding.   View  the  Department  in  the  broader  (but  far
weaker) context of its complete neighborhood in Figure 4.2.2.1-2.
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201,  with  a  1/5  prerequisite  connection,  and,  PHIL  433  (Ê)  (#2892),  "Topics  in
Feminist  Philosophy",  refers  to W ST 301 with  a 1/2  prerequisite  connection.   A
bunch of other nodes refer to courses in the Department of Women's Studies inciden-
tally.  These are indicated by the links exiting on the left of the network diagram,
reaching  towards  very  weakly  associated  neighboring  courses  not  shown  in,  and
hardly  affecting,  this  embedding.   View  the  Department  in  the  broader  (but  far
weaker) context of its complete neighborhood in Figure 4.2.2.1-2.
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Figure 4.2.2.1-2   A network  diagram of the Department  of Women's  Studies  and
complete neighborhood.   The Department  forms a tight star-like network around a
the course, W ST 201 (Ê) (#3369),  which serves as a hub.  Some external courses
refer  to the Department  of Women's  Studies  weakly  and indirectly.   For example,
CSL 300 (#1905), Theory and Practice in Community Service-Learning,  "Prerequi-
site: Completion  of a course with a CSL component",  can be supported by several
Women's Studies courses, among others, which contain a recognized CSL (Commu-
nity Service  Learning)  component.   However,  the sum total  of  all  links to course
nodes on the periphery is less than one, so they do not significantly affect the core
structure of the highlighted portion shown above in Figure 4.2.2.1.
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ü 4.2.2.2 Department of English and Film Studies

Department ¯ N sêint sêext
pre sêext

sub i Dêêê Sêê Eêêê Iê OdC C
ENGLISH 531.0 166 1.55 0.08 0.12 0.010 68.5 255.7 9.9 5.7 1.95 2716

The relevant row taken from Table 4.2.1.1-2

In contrast to the Department of Women's Studies (see previous subsubsection),
which  was  observed  to  have  a  somewhat  minimal  architecture,  the  Department  of
English  and Film Studies  is  presented  as having a rather  maximal,  even ostentatious,
architecture constructed with bounteous connections (sêint  = 1.55) (see Figures 4.2.2.2-1
& 4.2.2.2-2).  The Departmental subnetwork has distinct regions corresponding to each
subject: English, Film Studies, and Writing.  It is decentralized enough to be split into
two modules, with almost every Films Studies (FS) course being neatly assigned to the
same community  (for  the  interested  reader,  review Figure  4.1.2.2-3,  forty-second  bar
from the top) along with a single Sociology course,  SOC 344 (#3193), Media Culture
and Society.   All the Writing (WRITE) courses and all English (ENGL) courses save
ENGL 199,  Essentials  of  Writing  for  Engineering  Students,  are  grouped into  a large
diverse  community  including  many courses  external  to the Department  (for the inter-
ested reader, review Figure 4.1.2.2-3, tenth bar from the bottom).  But despite the many
external  subsequent  courses  coupling  to  the  department  (sêext

sub  =  0.12),  English,  Film
Studies,  and Writing do not register as being particularly  interdisciplinary  (i  = 0.010)
because they hardly draw any prerequisite knowledge from outside the department (sêext

pre

= 0.08).

The  Department  subjectively  appears  oversupplied  with  information  and
resources.   After  all,  it  explores  the production,  consumption,  and analysis  of texts –
mostly narratives – created in English.  Narratives are said to support both our collective
cultures  (Brockmeier  2002)  and  our  identities  as  individuals  (Bickle  2003;  Flanagan
1996: 67; Brockmeier & Carbaugh 2001), so it is no surprise there is both a considerable
interest in, and supply of, important narratives upon which to found an academic depart-
ment.  From an evolutionary perspective, Sugiyama (2001) describes how narratives are
a safe and efficient knowledge source of local contexts, "rich with information useful to
the  pursuit  of  fitness",  and  Hendry  (2010)  argues  all  "meaning  making"  (including
scientific) is narrative.  The large number of courses (N = 166) and plethora of connec-
tions (2916 internal links) at least implies,  a) there is systemic support in the form of
administrative  funding plus willing students for a large number of courses and associ-
ated staff, and b) there is plenty of "rich information" available for interpretation into a
large body of knowledge with which to classify, arrange, and hierarchize into a complex
(OdC = 1.95) and substantial network of knowledge (C = ¯2716 ¯2).

Speculation of a relative oversupply of resources seems especially applicable to
the subject of English (see Figure 4.2.2.2-3).  The course nodes (N = 109) form a weak-
link-version of a near complete network (m = 2400), which is indicative of a low-stress,
high-resource  environment  (please  review  Figure  2.3.2.3-2).   Perhaps  there  is  little
selection pressure on English courses and the Department, since all University undergrad-
uates require at least one English course as a degree requirement.  Otherwise, the almost
perfect structural symmetry of courses at each number level implies a lack of specializa-
tion and that their knowledge is interchangeable.   For example, despite apparent differ-
ences between the texts found in any of the 300-level English courses, say, ENGL 325,
Medieval Literature and Culture: Medieval Texts, and say, ENGL 384, Popular Culture:
Reading Popular Texts, they all hold the same locations in the subject (and department)
subnetwork and perform the same roles as prerequisites and subsequents with respect to
the rest of the network.  To emphasize, all 300-level course nodes are structurally and
functionally  identical.   The same reasoning  applies  amongst  almost  all  100,  200, and
400 (& 500) level courses as well.  Considering this, it is here speculated that somehow
education  in  English  is  more  about  an  enculturation  into  a  certain  way  of  thinking,
perhaps involving tacit knowledge that is difficult to codify, rather than about the particu-
lars of any course content at each number level.  

The strong symmetries  among English courses point to a low complexity  net-
work (OdCENGLISH  ≈ 1.46 < OdCrandom).  The complexity score for the subnetwork of
English  courses  is  markedly  lower  than  that  of  the  Department  of  English  and Film
Studies as a whole, which might indicate the measured diversity of links in the entire
Department  is  mostly  a  result  of  collecting  three  distinctly  different,  low-complexity
subject subnetworks – English, Film Studies, and Writing – into one department (review
Figure  4.2.2.2-1,  identifying  regions  I,  II,  & III).   Though  similarly  symmetrical,  in
contrast to the subject of Women's Studies (review Figure 4.2.2.1-1 while ignoring all
external links), English courses have far fewer strong links but many more weak links,
and more layers in a deeper hierarchy of knowledge.  In contrast to the subject of Mathe-
matics (look ahead to Figure 4.2.2.5-1), English courses have far greater symmetry, less
complex architecture, and fewer specialized roles for courses.

The knowledge in the Department of English and Film Studies is measured to be
quite intentional  (I = ¯5.7).   For example,  notice how the separate chains of WRITE
294,  394,  494  (poetry),  WRITE  295,  395,  495  (fiction),  and  WRITE 298,  398,  498
(nonfiction)  build  knowledge  directed  towards  the  termini  (review  Figure  4.2.2.2-1,
region II).  Even the pattern for English (ENGL) courses to generate knowledge that is
equally available to all courses at the next number level (thus reducing intentionality) is
balanced by their ability to equally utilize the prerequisite knowledge from any course at
the previous number level.  The preponderance of weak links in the Department indicate
a very flexible knowledge system, tolerant to the addition or lose of new information,
such as in the form of courses.  But, on the other hand, the gain or loss of course nodes
and the corresponding knowledge does not significantly alter the form the departmental
network takes.  Accordingly, the course structure is characterized as robust but insensi-
tive to perturbations of new knowledge or the loss of old knowledge, since changes to
the  overall  network  topology  are  minimal.   Because  the  Department  has  so  many
courses with so many analogous connections resulting in so much structural symmetry,
the Department of English and Film Studies is here described as inefficient compared to
the  Departments  of  Modern  Languages  &  Cultural  Studies  and  East  Asian  Studies,
which express the same academic coverage (C) per language studied despite possessing
fewer  courses  per  language  (review  §4.2.1.6).   That  is,  it  is  here  suggested  that  the
characteristic academic knowledge structures maintaining the discipline could mostly be
maintained  with  far  fewer  redundant  courses  in the  Department  of  English  and Film
Studies.
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In contrast to the Department of Women's Studies (see previous subsubsection),
which  was  observed  to  have  a  somewhat  minimal  architecture,  the  Department  of
English  and Film Studies  is  presented  as having a rather  maximal,  even ostentatious,
architecture constructed with bounteous connections (sêint  = 1.55) (see Figures 4.2.2.2-1
& 4.2.2.2-2).  The Departmental subnetwork has distinct regions corresponding to each
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two modules, with almost every Films Studies (FS) course being neatly assigned to the
same community  (for  the  interested  reader,  review Figure  4.1.2.2-3,  forty-second  bar
from the top) along with a single Sociology course,  SOC 344 (#3193), Media Culture
and Society.   All the Writing (WRITE) courses and all English (ENGL) courses save
ENGL 199,  Essentials  of  Writing  for  Engineering  Students,  are  grouped into  a large
diverse  community  including  many courses  external  to the Department  (for the inter-
ested reader, review Figure 4.1.2.2-3, tenth bar from the bottom).  But despite the many
external  subsequent  courses  coupling  to  the  department  (sêext

sub  =  0.12),  English,  Film
Studies,  and Writing do not register as being particularly  interdisciplinary  (i  = 0.010)
because they hardly draw any prerequisite knowledge from outside the department (sêext

pre

= 0.08).

The  Department  subjectively  appears  oversupplied  with  information  and
resources.   After  all,  it  explores  the production,  consumption,  and analysis  of texts –
mostly narratives – created in English.  Narratives are said to support both our collective
cultures  (Brockmeier  2002)  and  our  identities  as  individuals  (Bickle  2003;  Flanagan
1996: 67; Brockmeier & Carbaugh 2001), so it is no surprise there is both a considerable
interest in, and supply of, important narratives upon which to found an academic depart-
ment.  From an evolutionary perspective, Sugiyama (2001) describes how narratives are
a safe and efficient knowledge source of local contexts, "rich with information useful to
the  pursuit  of  fitness",  and  Hendry  (2010)  argues  all  "meaning  making"  (including
scientific) is narrative.  The large number of courses (N = 166) and plethora of connec-
tions (2916 internal links) at least implies,  a) there is systemic support in the form of
administrative  funding plus willing students for a large number of courses and associ-
ated staff, and b) there is plenty of "rich information" available for interpretation into a
large body of knowledge with which to classify, arrange, and hierarchize into a complex
(OdC = 1.95) and substantial network of knowledge (C = ¯2716 ¯2).

Speculation of a relative oversupply of resources seems especially applicable to
the subject of English (see Figure 4.2.2.2-3).  The course nodes (N = 109) form a weak-
link-version of a near complete network (m = 2400), which is indicative of a low-stress,
high-resource  environment  (please  review  Figure  2.3.2.3-2).   Perhaps  there  is  little
selection pressure on English courses and the Department, since all University undergrad-
uates require at least one English course as a degree requirement.  Otherwise, the almost
perfect structural symmetry of courses at each number level implies a lack of specializa-
tion and that their knowledge is interchangeable.   For example, despite apparent differ-
ences between the texts found in any of the 300-level English courses, say, ENGL 325,
Medieval Literature and Culture: Medieval Texts, and say, ENGL 384, Popular Culture:
Reading Popular Texts, they all hold the same locations in the subject (and department)
subnetwork and perform the same roles as prerequisites and subsequents with respect to
the rest of the network.  To emphasize, all 300-level course nodes are structurally and
functionally  identical.   The same reasoning  applies  amongst  almost  all  100,  200, and
400 (& 500) level courses as well.  Considering this, it is here speculated that somehow
education  in  English  is  more  about  an  enculturation  into  a  certain  way  of  thinking,
perhaps involving tacit knowledge that is difficult to codify, rather than about the particu-
lars of any course content at each number level.  

The strong symmetries  among English courses point to a low complexity  net-
work (OdCENGLISH  ≈ 1.46 < OdCrandom).  The complexity score for the subnetwork of
English  courses  is  markedly  lower  than  that  of  the  Department  of  English  and Film
Studies as a whole, which might indicate the measured diversity of links in the entire
Department  is  mostly  a  result  of  collecting  three  distinctly  different,  low-complexity
subject subnetworks – English, Film Studies, and Writing – into one department (review
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quite intentional  (I = ¯5.7).   For example,  notice how the separate chains of WRITE
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(nonfiction)  build  knowledge  directed  towards  the  termini  (review  Figure  4.2.2.2-1,
region II).  Even the pattern for English (ENGL) courses to generate knowledge that is
equally available to all courses at the next number level (thus reducing intentionality) is
balanced by their ability to equally utilize the prerequisite knowledge from any course at
the previous number level.  The preponderance of weak links in the Department indicate
a very flexible knowledge system, tolerant to the addition or lose of new information,
such as in the form of courses.  But, on the other hand, the gain or loss of course nodes
and the corresponding knowledge does not significantly alter the form the departmental
network takes.  Accordingly, the course structure is characterized as robust but insensi-
tive to perturbations of new knowledge or the loss of old knowledge, since changes to
the  overall  network  topology  are  minimal.   Because  the  Department  has  so  many
courses with so many analogous connections resulting in so much structural symmetry,
the Department of English and Film Studies is here described as inefficient compared to
the  Departments  of  Modern  Languages  &  Cultural  Studies  and  East  Asian  Studies,
which express the same academic coverage (C) per language studied despite possessing
fewer  courses  per  language  (review  §4.2.1.6).   That  is,  it  is  here  suggested  that  the
characteristic academic knowledge structures maintaining the discipline could mostly be
maintained  with  far  fewer  redundant  courses  in the  Department  of  English  and Film
Studies.
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Figure 4.2.2.2-1  A network diagram of the Department of English and Film Studies
and complete neighborhood (unlabeled).   In many areas of the network, the numer-
ous links are so dense that the background is whitewashed.  The courses gather into
three  different  regions,  accentuated  with  blue  backgrounds,  corresponding  to  the
three major subjects of the Department: I. Film Studies (FS), II. Writing (WRITE),
and III. English (ENGL).  Each cluster displays a distinctive internal structure.  The
Film Studies cluster (I) is highly centralized around a few introductory courses.  The
small Writing region (II) contains most of the strong links internal to the Department
within several long chains of elaboration.  The English cluster (III) is tightly bound
together by a dense haze of weak links.
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Figure 4.2.2.2-2  A network diagram of the Department of English and Film Studies
and complete neighborhood (tabled).  Many diverse nodes external to the department
depend  on  either  ENGL (English)  or  FS  (Film  Studies)  courses,  but  not  WRITE
(Writing)  courses.   For such a large network,  there are relatively few strong links,
especially between university level courses.  The author regrets the similarity of node
color between the Department of English and Film Studies, Department of Psychol-
ogy,  Department  of  Sociology,  and  the  Department  of  East  Asian  Studies,  once
printed.
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Figure 4.2.2.2-3  A subnetwork close-up of English courses.  Besides the protruding
tail consisting of the basic English course taught exclusively to Engineering students,
ENGL 199 (#2102)  attached to the minimum University  Admission  Requirements
(Ï)  which implicitly  includes  English  at  the senior  high school  level,  the English
courses  form an intensely  bound,  dense  clique.   The internal  structure  of  English
courses (ENGL) is decentralized, hierarchical, lacking strong links, awash with weak
links, symmetrical,  and intriguingly layered.  At the center of the cluster, from high
school English,  the 100-level courses provide access to the rest of the Department.
From these gateways,  two concentric layers of courses, the two-hundred and three-
hundred  level  english  courses  are  all  available.   The  layer  of  four-hundred  level
courses are attached by a haze of weak links to all mid-level courses.  Notice, nodes
of the same number level are grouped exclusively and consistently together despite
no connections among them.  Each number level forms a distinct symmetrical layer
at the same radial distance relative to the center of the subnetwork based exclusively
on relationships with nodes of different course levels and in the complete absence of
links among nodes of the same number level.  Contrast this type of grouping to that
of modules (as described in §4.1.2.2),  which are groupings of nodes based on their
disproportionate  internal  relationships.   That  is,  nodes  of  the  same  number  level
perform the same structural role in the subnetwork, and are located in essentially the
same location (equivalence based on radial symmetry) because of similar patterns of
links to courses from other number levels.  Due to the consistent hierarchy of number
levels  and  the  prerequisite  similarities  among  courses  of  the  same  number  level,
nodes end up being placed closer to nodes to which they are least connected.  Why
the nodes order themselves from the core to the perimeter as layers of 100, 400 (&
500), 300, and then 200-level courses (see small legend inset upper right) to achieve
a lowest energy configuration is intriguing but too far off-topic for this thesis to be
detailed, and is left as an aside for interested readers after they peruse the descrip-
tions for English courses in the U. of A. Calendar (§221.117).
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ü 4.2.2.3 St. Joseph's and Saint Stephen's Colleges

Department ¯ N sêint sêext
pre sêext

sub i Dêêê Sêê Eêêê Iê OdC C
SJ 123.0 41 0.14 0.08 0.33 0.027 64.6 157.9 1.4 3.5 0.00 0
SS 30.0 10 0.00 0.00 0.00 0.000 64.0 157.3 0.0 3.0 0.00 0

Relevant rows taken from Table 4.2.1.1-2

While the formal study of nonclassical languages, such as English, is relatively
new,  since about  1700  (Cayley 2010),  the study of Christianity  and the Bible is  old,
more than 2000 years.  The early history of higher education reflects Christianity's deep
roots  in  Western  Civilization,  such  that  the  first  medieval  universities  of  Europe
enfolded four faculties: Arts, Medicine, Law, and Theology (Schulman 1986), with the
most elementary status assigned to Arts.  At the University of Alberta, Christian Theol-
ogy is studied at St. Joseph's College and St. Stephen's College from Roman Catholic
and  Methodist  perspectives  respectively,  both  of  which  are  now,  but  not  originally,
subordinate to the Faculty of Arts.  Despite its long past, comparable to Mathematics for
example,  and despite growth mechanisms for networks such as preferential attachment
which tend to favor established structures, the discipline of Christian Theology in Alber-
ta's Education system is in relative decline.  Consider that Saint Joseph's College has an
eighty-year history at the U. of A., which its website claims "parallels the growth of the
University and the Province" (University of Alberta 2010), but even a cursory investiga-
tion reveals diminishment.  For example, the "College on the University campus in 1926
housed up to 100 men" and "during the next decades the College considerably expanded
its academic offerings", yet its dignified buildings now house less than sixty men and its
academic  offerings  are few (≈1% of listed University  courses),  sequestered,  and with
fragmentary structure (see Figure 4.2.2.3-1).  Meanwhile, the U. of A. as an institution
has grown exponentially in size and stature (nationally and internationally). 

A summary of results shows both Colleges fail to distinguish themselves posi-
tively in any network statistic save one (review Table 4.2.1.1-2 or above rows).  Saint
Joseph's  College  is  measured  as  modestly  interdisciplinary  (i  =  0.027)  since  the  ten
Philosophy (PHIL) courses it offers link well (sêext

sub  = 0.33 & sêext
pre  = 0.08) with courses of

the same subject  offered by a different  department  (Philosophy).   Otherwise,  analysis
reveals the Colleges have so few internal prerequisite knowledge connections (sêint  << 1)
between  their  offered  courses  that  they  would  fail  to  be  characterized  as  much  of  a
network  at  all  without  the  presence  of  the  minimum  University  Admission  Require-
ments (Ï) to bind them.  Consequently, metrics measuring the average distent, sustent,
extent,  intent,  complexity,  and cover are at or near the very bottom for all University
departments,  which directly implies the knowledge in the Colleges is not significantly
elaborated (Dêêê

), is not established upon a large knowledge base (Sêê), does not support
further  learning (Eêêê

),  does not have measurable  focus or direction (Iê),  and does not
establish important  or specialized roles for any of the courses (OdC).   Plus the Col-
leges busy themselves with only a small amount of academic knowledge (C) yet label
their courses with the most inflated number levels (review Table 4.2.1.1-3).   From an
network perspective of the courses they offer, which in turn house the knowledge they
sustain and communicate,  St. Joseph's and Saint Stephen's Colleges are literally broken
(review Figure 2.3.2.3-2, right side).

In a recent article titled, "Can Faith Be More Than a Side Show in Contempo-
rary Academy?",  Wuthnow (2007) describes how the study of religion remains on the
"sidelines" or is otherwise "marginalized" on most North American Campuses, such that
it "attracts few students and is poorly funded".  In addition to an apparent shortage of the
critical resources of funding and students, on account of weak course network statistics,
it is also concluded here that St. Joseph's  and Saint Stephen's Colleges lack sufficient
knowledge for a vibrant academic discipline, maybe because their singular founding text
is  never updated with new information  or fundamentally  retheorized.   Therefore,  it  is
here questioned whether Saint Joseph's and Saint St. Stephen's Colleges represent genu-
ine academic  divisions  at  the University  of Alberta.   The knowledge  structures  these
Colleges  support  within the education  system exhibit  a  trivial  architecture  unlike any
other academic disciplines.   Perhaps if the two College's were disbanded and the most
relevant  courses  were  integrated  into  the  Faculty  of  Arts,  Departments  of  Religious
Studies  and  Philosophy  as  appropriate,  the  remaining  knowledge  would  find  a  less
marginalized, more engaged positions in the course network.
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While the formal study of nonclassical languages, such as English, is relatively
new,  since about  1700  (Cayley 2010),  the study of Christianity  and the Bible is  old,
more than 2000 years.  The early history of higher education reflects Christianity's deep
roots  in  Western  Civilization,  such  that  the  first  medieval  universities  of  Europe
enfolded four faculties: Arts, Medicine, Law, and Theology (Schulman 1986), with the
most elementary status assigned to Arts.  At the University of Alberta, Christian Theol-
ogy is studied at St. Joseph's College and St. Stephen's College from Roman Catholic
and  Methodist  perspectives  respectively,  both  of  which  are  now,  but  not  originally,
subordinate to the Faculty of Arts.  Despite its long past, comparable to Mathematics for
example,  and despite growth mechanisms for networks such as preferential attachment
which tend to favor established structures, the discipline of Christian Theology in Alber-
ta's Education system is in relative decline.  Consider that Saint Joseph's College has an
eighty-year history at the U. of A., which its website claims "parallels the growth of the
University and the Province" (University of Alberta 2010), but even a cursory investiga-
tion reveals diminishment.  For example, the "College on the University campus in 1926
housed up to 100 men" and "during the next decades the College considerably expanded
its academic offerings", yet its dignified buildings now house less than sixty men and its
academic  offerings  are few (≈1% of listed University  courses),  sequestered,  and with
fragmentary structure (see Figure 4.2.2.3-1).  Meanwhile, the U. of A. as an institution
has grown exponentially in size and stature (nationally and internationally). 

A summary of results shows both Colleges fail to distinguish themselves posi-
tively in any network statistic save one (review Table 4.2.1.1-2 or above rows).  Saint
Joseph's  College  is  measured  as  modestly  interdisciplinary  (i  =  0.027)  since  the  ten
Philosophy (PHIL) courses it offers link well (sêext

sub  = 0.33 & sêext
pre  = 0.08) with courses of

the same subject  offered by a different  department  (Philosophy).   Otherwise,  analysis
reveals the Colleges have so few internal prerequisite knowledge connections (sêint  << 1)
between  their  offered  courses  that  they  would  fail  to  be  characterized  as  much  of  a
network  at  all  without  the  presence  of  the  minimum  University  Admission  Require-
ments (Ï) to bind them.  Consequently, metrics measuring the average distent, sustent,
extent,  intent,  complexity,  and cover are at or near the very bottom for all University
departments,  which directly implies the knowledge in the Colleges is not significantly
elaborated (Dêêê

), is not established upon a large knowledge base (Sêê), does not support
further  learning (Eêêê

),  does not have measurable  focus or direction (Iê),  and does not
establish important  or specialized roles for any of the courses (OdC).   Plus the Col-
leges busy themselves with only a small amount of academic knowledge (C) yet label
their courses with the most inflated number levels (review Table 4.2.1.1-3).   From an
network perspective of the courses they offer, which in turn house the knowledge they
sustain and communicate,  St. Joseph's and Saint Stephen's Colleges are literally broken
(review Figure 2.3.2.3-2, right side).

In a recent article titled, "Can Faith Be More Than a Side Show in Contempo-
rary Academy?",  Wuthnow (2007) describes how the study of religion remains on the
"sidelines" or is otherwise "marginalized" on most North American Campuses, such that
it "attracts few students and is poorly funded".  In addition to an apparent shortage of the
critical resources of funding and students, on account of weak course network statistics,
it is also concluded here that St. Joseph's  and Saint Stephen's Colleges lack sufficient
knowledge for a vibrant academic discipline, maybe because their singular founding text
is  never updated with new information  or fundamentally  retheorized.   Therefore,  it  is
here questioned whether Saint Joseph's and Saint St. Stephen's Colleges represent genu-
ine academic  divisions  at  the University  of Alberta.   The knowledge  structures  these
Colleges  support  within the education  system exhibit  a  trivial  architecture  unlike any
other academic disciplines.   Perhaps if the two College's were disbanded and the most
relevant  courses  were  integrated  into  the  Faculty  of  Arts,  Departments  of  Religious
Studies  and  Philosophy  as  appropriate,  the  remaining  knowledge  would  find  a  less
marginalized, more engaged positions in the course network.
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Figure 4.2.2.3-1   A network diagram of Saint Joseph's College and Saint Stephen's
College  and  close  neighborhood.   Saint  Stephen's  offers  ten  Christian  Theology
(CHRTP) courses (Ê) at the 300- & 400-level, yet none have any University prerequi-
sites or subsequents,  either  internal  or external  to the College;  thus each course is
totally isolated but for links to the University Admission Requirements (Ï).  Simi-
larly, all 100-, 200-, & 300-level Christian Theology (CHRTC) courses (Ê) offered
by Saint Joseph's require merely high school prerequisite  knowledge (Ï).  Just the
five 400-level Christian Theology courses (CHRTC 407, 432, 449, 450, & 451) each
have  a  single  internal  University  level  prerequisite.   Saint  Joseph's  College  also
houses ten Philosophy (PHIL) courses which are well connected with other Philoso-
phy courses from the Department of Philosophy (Ê), but separate from any Christian
Theology course.  There are some very, very weakly, incidentally connected courses
not shown beyond the bottom of the diagram,  which do not affect  the form of the
Colleges' network.
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ü 4.2.2.4 Department of Art and Design

Department ¯ N sêint sêext
pre sêext

sub i Dêêê Sêê Eêêê Iê OdC C
ART & DESIG 480.0 133 1.23 0.01 0.02 0.000 72.9 321.8 16.0 7.0 1.85 9855

The relevant row taken from Table 4.2.1.1-2

A  brief  network  based  investigation  into  the  Department  of  Art  and  Design
characterizes the discipline as mature, sophisticated, and autonomous.  The low depen-
dence of the Department  on external  prerequisites  (sêext

pre  = 0.01) indicates  its knowl-
edge is self-determining, and strictly disciplinary (i = 0.000).  Moreover, few courses
from other Departments directly incorporate substantial disciplinary knowledge of Art
and Design (sêext

sub  = 0.02).  Thus, whatever course structure arises in the Department is
determined primarily on feedback with the discipline itself.  It turns out (see Figure
4.2.2.4-1),  the  relationship  between  art,  design,  and  formal  education  in  Alberta
results  in  a complex  course  network  (OdC  = 1.85)  covering  a plenteous  swathe  of
academic knowledge (C  = 9855 ¯2).  These statistics  indicate the field is rich with
novel  information  to classify and characterize  with diverse and distinctly structured
knowledge, which probably reflects a long history since complex networks often grow
and evolve slowly because the process is usually intensely iterative.  The presence of
long chains  of courses allow learning trajectories  through deeply  elaborated knowl-
edge  (Dêêê  =  ¯72.9)  that  place  the  typical  course  beyond  large  bodies  of  supporting
knowledge (Sêê = ¯321.8) and before large bodies of supported knowledge (Eêêê = ¯16.0).
With few external subsequents to complicate course objectives, and a well connected
(sêint  = 1.23), distributed internal structure (without too many peripheral nodes relying
too  heavily  on  just  a  few large  hubs  for  prerequisite  knowledge),  the  Department
generates knowledge measured as being imbued with intent (Iê = ¯7.0), as reflected in
courses with titles such as Art 569 (#1745), Sculpture: Advanced Studies V, the pres-
ence of this course leaving little doubt what Sculpture: Advanced Studies I through IV
are ultimately leading towards.
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Figure 4.2.2.4-1   A network diagram of the Department of Art and Design and its
complete neighborhood.  The three different subjects of the Department each estab-
lish a fairly exclusive slice of the subnetwork radiating from the central core area:
Art (ART) on the right hand side mostly, Art History (ART H) to the lower left side,
and Design (DES) towards the upper left.  Several backbones of strong links deter-
mine  the  dominant  infrastructure  of  the  Departmental  subnetwork,  which  is  also
intertwined by many secondary weak links.  There is a great diversity of structural
motifs especially relevant for education with many courses a) functioning as primary
and  secondary  hubs,  eg.  DES 570  & 590,  b)  serving  as  sites  that  bring  together
knowledge from two or more other courses,  eg. ART 525, and c) comprising long
chains of knowledge  elaboration,  eg. ART 522, 523, & 524.  Given its large size,
there are relatively few connections to courses from external departments.
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ü 4.2.2.5 Department of Mathematical and Statistical Sciences

Department ¯ N sêint sêext
pre sêext

sub i Dêêê Sêê Eêêê Iê OdC C
MATH SCI 288.0 99 1.29 0.02 2.61 0.061 73.7 298.9 87.8 4.5 2.17 7367

The relevant row taken from Table 4.2.1.1-2

The Department  of Mathematical  and Statistical  Sciences is remarkable  for its
unrivalled  support  of academic  knowledge  creation  in other  disciplines.   Despite  it
being a fairly  large department  with almost  one-hundred  courses  (N  = 99),  each of
them, on average, links to almost three other external courses (sêext

sub  = 2.61).  To put
this in perspective, consider that the next best connected Department is Biochemistry
(sêext

sub  = 2.60) with only fourteen courses (N = 14), or consider how a similarly sized
Department  such as English and Film Studies (N = 166) has but one external subse-
quent for every eight of its courses (sêext

sub  = 0.12).  Indeed, the amount other Depart-
ments draw from Mathematical and Statistical Sciences is equal to the next five great-
est suppliers of knowledge combined: Departments of Chemistry, Biological Sciences,
Economics,  Biochemistry,  and English,  in descending  order.   Considered otherwise,
Mathematical and Statistical Sciences furnishes over one-third of all knowledge trans-
ferred between Departments at the University.

Despite  its  extraordinary  capacity  to  influence  knowledge  creation  throughout
the University,  little external  knowledge  is  imported (sêext

pre  = 0.02), so Mathematical
and Statistical Sciences can only be considered as a modestly interdisciplinary Depart-
ment  (i  = 0.061).   Other network  metrics  indicate  that Mathematical  and Statistical
knowledge  is  well  elaborated  (Dêêê  =  ¯73.7)  from a  solid  foundation  (Sêê  =  ¯298.9),
which can be applied to a great deal of other knowledge (Eêêê = ¯87.8).  But, perhaps
because  the subject  is  so universal,  decontextualized,  and widely  utilized,  it  is  not
characterized  as  being specifically  purposeful  (Iê  = ¯4.5).   The Math  and Statistics
courses combine to form an internally cohesive (sêint  = 1.29), very complex architec-
ture (OdC = 2.17), mirroring the subjects' characterization by Mowat & Davis (2010)
as a "complex unity", which together constitute a Department with substantial disciplin-
ary expanse (C = 7367 ¯2), as seen in Figure 4.2.2.5-1.
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Figure 4.2.2.5-1  A network diagram of the Department of Mathematical & Statisti-
cal Sciences (Ê) and its complete neighborhood.  The number of nodes from without
is  much  larger  than  the  number  of  courses  in  the  Department  itself.   There  are
diverse  associations  with  many  subjects  from many  departments  from most  other
Faculties.  Two further diagrams, Figure 4.2.2.5-1-I & -II, focus on a pair of distinct
regions in the departmental neighborhood as indicated by the yellow highlight boxes
in the upper right.
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Figure 4.2.2.5-1  A network diagram of the Department of Mathematical & Statisti-
cal Sciences (Ê) and its complete neighborhood.  The number of nodes from without
is  much  larger  than  the  number  of  courses  in  the  Department  itself.   There  are
diverse  associations  with  many  subjects  from many  departments  from most  other
Faculties.  Two further diagrams, Figure 4.2.2.5-1-I & -II, focus on a pair of distinct
regions in the departmental neighborhood as indicated by the yellow highlight boxes
in the upper right.

Figure 4.2.2.5-1-I (below)  A diagram of the upper Department of Mathematical &
Statistical Sciences subnetwork and close neighborhood of mostly physical sciences
courses.  It is dominated by extensive strong links, as well as weak links, internal to
the  department  at  all  number  levels  and  external  towards  Chemistry,  Computer
Science, Engineering, and especially Physics courses from the 100-level through the
300-level.   Whereas  most  departments  are described  by a subnetwork  with  native
courses forming a relatively dense core which is less densely connected to a surround-
ing periphery  of  courses  from external  departments,  for  example  Figure  4.2.2.2-2
English  and Film Studies,  the  Department  of  Mathematical  & Statistical  Sciences
forms a sheath-like formation surrounding an interior of chemistry, engineering, and
especially physics courses†.  The Statistics (STAT) courses tend to arc towards the
right, while the Math (MATH) courses arc to the left side, all while rising upwards
from the 100-level at the bottom of the diagram to the 400-level at the top.  Observe
high  school  Math  courses  (MAT Ê)  are  pulled  tightly  into  the  network,  (bottom
right) near the basic University Admission requirements (Ï).

__________________________________
†Though never dwelling on the subject in the thesis, the author finds it irresistible not to
point out somewhere that the Department of Physics, while it particularly distinguishes
itself  not in any one statistical  category,  is  unique because it  somehow scores  'above
average' in all categories, which is interesting since some metrics, such as, interdiscipli-
narity (i) and intent (Iê) seem opposed.

Department ¯ N sêint sêext
pre sêext

sub i Dêêê Sêê Eêêê Iê OdC C
PHYSICS 207.0 72 1.48 1.02 0.26 0.261 76.1 421.4 25.1 5.9 2.22 5791

The relevant row taken from Table 4.2.1.1-2
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Figure 4.2.2.5-1-II   A diagram of the lower Department of Mathematical & Statisti-
cal Sciences subnetwork and close neighborhood of mostly biologically or business
oriented  courses.   A few MATH  and  especially  STAT  courses  serve  as  strongly
linked hubs to provide necessary prerequisite knowledge to large clusters of courses
from other  departments.   Again,  it  is apparent  how high school level mathematics
feeds into University level knowledge structures.  The Department is among the few
to have introductory  courses  which  specifically  refer  to  high school  prerequisites,
and thus include them among their 'neighbours'.
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ü 4.2.2.6 Registered Apprenticeship Program

Aside from the overtly academic thrust of Alberta's provincial education system,
there reside substantial vocational high school education programs including Career and
Technology Studies (CTS), Green Certificate Program (GCC), Integrated Occupational
Program (IOP), and Registered Apprenticeship Program (RAP).  Course credits awarded
for study in these nonacademic programs may contribute towards the fulfilment of some
requirements  for an academic  high school  diploma,  otherwise  the primary purpose of
these "school-to-work  initiatives"  is "vocational  high school education" tailored to the
job market (Lehmann & Taylor 2003).     

The Registered Apprenticeship Program (RAP) is an example in Alberta of what
is purported be part of the "new vocationalism" (Grubb 1996; Lehmann & Taylor 2003);
a movement to reform vocational syllabuses in schools, which is imbued with the egali-
tarian spirit that education needed for the workplace does not differ in its essentials from
that needed for college or advanced technical training.  Grubb says these programs can
succeed when they place learning objectives within real environments instead of insist-
ing that students first learn in the abstract what they will then be expected to apply, as is
normally the case in classroom based schooling.  But instead of just grafting academic
content onto previous vocational programs, which would still perpetuate the separation
of nonacademic and academic tracks, Lehmann & Taylor write about a "new vocational
discourse  that  challenges  traditional  academic/vocational  divisions"  with the idea that
"all  workers  need  to be  'knowledge  workers'".   Grubb envisions  reformed  vocational
education  as having more "curriculum integration",  such that "vocational  education is
not a terminal program for those not destined for college".  Implicit in the writings of
these academics  appear to be the assumptions  that segregation  of vocational  and aca-
demic  learning  is  not  a  positive  characteristic  of their  design,  that such a bifurcating
structure "reinforc[es] existing social inequalities by streaming lower-class children into
marginalized  career options"  (Lehmann  2005),  and that hope for redemption  of voca-
tional programs comes from their integration with academic programs.

Alas, a survey of course network structure in Alberta does not support the aspira-
tions of the new vocationalists.   The embedding  algorithms written into the program,
Calendar  Navigator,  spontaneously  locate  all  four  of  the  nonacademic  programs
together, such that they dominate the lower half of the overall course network structure
to the  exclusion  of  almost  all  academic  courses  (please  review Figure  3.1.2-5).   The
stark structural separation after grade nine between learning trajectories leading upwards
into university and those downwards and away from university, dismisses any notions of
"curriculum integration" at the scale of courses or subjects†.  Analysis of network struc-
ture in §4.1.2.2 identifies the separation of RAP courses from the rest of the network as
the  second  most  important  cut  to maximize  the  global  modularity  score  (Q)  and the
isolation of IOP, CTS, and GCC as the fourth (review Figure 4.1.2.2-3, cuts 2 & 4, or
review Figures 8.2-4.1.2.2-4b & -4d).  Thus, the vocational programs can be structurally
characterized as dramatically detached from further academic knowledge and even from
each other.  

In  principle,  the  Registered  Apprenticeship  Program  is  huge:  almost  ¯2000
credits of accumulated knowledge introducing over fifty different trades are represented
in its possible courses.  RAP far surpasses any other department and rivals the Faculty
of  Arts  in  breadth,  giving  anyone  who studies  the  overall  network  diagram a strong
reminder of just how much practical knowledge lies outside of the academic streams.  In
2006,  1 700  high  school  students  participated  in  RAP  (Alberta  Apprenticeship  and
Industry Training Board 2007); however, to date, only a small proportion of high school
students in the Province significantly participate in career-oriented programming (Tay-
lor 2007).  It appears the low participation in RAP despite the plentifulness of potential
knowledge  is  a  symptom  of  some  sort  of  systemic  neglect  of  vocational  programs.
Schuetze  (2003) observes  "historically,  vocational  education  has been targeted at  low
academic achievers";  Lehmann & Taylor (2003) detect the "unspoken assumption that
attracting more academically inclined students into these courses would also raise their
status";  Taylor's  research  points  to  the  "difficulty  in  hiring  qualified  CTS  teachers"
which has "contributed to a decline in facilities" for vocational learning; while, McFee-
tors  & Mason  (2005)  report  there  persists  a  negative  stigma  regarding  nonacademic
courses,  which  reflects  the  dark  side  of,  as  stated  by  Lehmann  (2005),  "a  powerful
public  discourse  advocating  high levels  of educational  attainment".   Thus a plausible
mechanism for marginalization  of vocational  programs  has the deep roots  of a social
bias towards academic learning (especially)  and away from vocational learning, which
extends into the context of the education system and expresses itself as low student and
teacher interest, plus poor funding for initiatives like RAP.  Wishart et al. (2006) goes so
far as to suggest  that the separation and neglect of the vocational  programs is part of
society's  "technologies  that  serve  to  normalize  and  pathologize  different  groups  of
students".

The paths that students must take through RAP start after grade nine via a few
small (¯1) preliminary courses in grade ten, such as OTH 1919 (#792), Career Intern-
ship 10, CTR 1010 (#210), Job Preparation, CTR 1210 (#714), Personal Safety (Manage-
ment), and CTR 2210 (#223), Workplace Safety (Practices).  From this little cluster of
courses,  each individual  apprenticeship  branches  out along a solitary linear trajectory,
never  to  cross  paths  with  another  subject  again  (see  nodes  #825  to  #1224  on  Table
9.2-1).  Together,  RAP courses form a dramatic star network of chains  (please review
Figure 3.1.2-5, lower third) which reflects and determines the nature of the knowledge
developed  therein  and its  experience  by students.   The typically  minimal  number  of
connections  to  prerequisites  (dpre ≈1)  and  subsequents  (dsub ≈1)  to  maintain  linear
trajectories,  the  modest  academic  flux  (F≈1)  through  most  courses,  the  mostly  low
academic centrality scores (ca), and the mostly very low eigenvector centrality scores
(ce), show that courses of the Registered Apprenticeship Program are located on the
periphery of the network and that they are not found at the 'cross roads' of many differ-
ent  learning  trajectories.   The  modest  extent  scores  (E¨),  the  modestly  low sustent
scores (S), and the absence of any links to external subjects reveals that learning trajec-
tories  through  RAP  also  do  not  depend  on  a  large  knowledge  base,  and,  within  the
education system, do not lead towards an expansive knowledge horizon nor any further
knowledge beyond RAP.  Indeed, most RAP training already occurs away from school
in  workplace  environments;  says  Lehmann  &  Taylor  (2003),  "RAP  establishes  the
furthest reach into employment"  such that, in particular,  the youth apprenticeship  pro-
gram (RAP)  is  completely  isolated  from any educational  objectives  or  perspectives."
While  the research developed in this thesis establishes  that RAP forms a "completely
isolated" knowledge structure, there is no support of Lehmann & Taylor's assertion that
RAP is  without  "educational  objectives  or perspectives",  just  without  academic  ones.
The typically high distent (D Æ) and very, very, high intent scores (I ÆÆ) for RAP courses
indicate,  towards  the  terminal  ends  of  any  apprenticeship,  the  knowledge  is  highly
elaborated and embodies the focused purposes of its subject.  Quite simply, the Regis-
tered Apprenticeship  Program forms a structure that reaches away from university and
functions like an advanced placement program for the trades.

In contrast to the apparent widespread negative social attitude and the pessimism
of  higher  academics'  critiques  of  Alberta's  vocational  programs,  those  closer  to  the
context where the knowledge is actually expressed are far more positive.  Proponents of
youth  apprenticeships  argue  that  participation  opens  possibilities  to  more  rewarding
careers,  provides satisfying career alternatives  to the prospect  of white-collar  employ-
ment, and generally improves a young person's range of choices and career options (see,
Careers: The Next Generation, at <http://nextgen.org/>,  for example).  Lehmann (2005)
observes how some students feel RAP offers them a kind of "accelerated maturity" by
"becoming  independent,  learning  responsibility,  and having  a plan for  [their]  future."
Actually,  successful  completion of a RAP thread does qualify a student for their first
year formal apprenticeship training in the corresponding field (Alberta Learning 2003b).
Apprenticeship  training  is  considered  to  break  a  paradoxical  situation  facing  young
people: acquiring the work experience that is needed to gain entry to stable jobs.  The
website  of  the  Alberta  Apprenticeship  and  Industry  Training  Board,
<http://www.tradesecrets.gov.ab.ca/>,  includes  RAP  as  part  of  the  "industry-driven
system" that "supports the economic progress of Alberta and its competitive role in the
global  market"  and lists  plenty  of  statistical  data  to  back its  enthusiasm,  including  a
"100%  employment  rate  for  apprentice  graduates  in  the  labour  force  [2007  survey
data]".  The advocative website gushes that students "can have it all": a head start "to a
great career" and a high school diploma, plus the possibility of scholarships.  But, consid-
ering Alberta Apprenticeship  and Industry Training Board is partly responsible for the
program,  its  support  is  expected.   Yet,  Langier  & MacKay  (2008)  offer  particularly
persuasive  praise  for  the  RAP  in  Alberta  because  as  technical  college  teachers  and
industry experts based in the southern USA, they are familiar with the conditions andopportunities many of the vocational program graduates can expect, but are not closelytied to the government, companies, nor the academy of Alberta.  These authors unapolo-getically  support  RAP  for  what  they  see  it  as:  a  direct  pipeline  to  skilled,  highdemand/under  subscribed,  middle-  to  upper-middle  class  jobs  in  trades  and industry,thus  offering  a  practical,  existentially  unexamined  assessment  awkward  for  broodingacademics.  As an unbiased, empirical testament to the continued demand for graduatesfrom vocational programs, almost every trade‡ offered in Alberta's Registered Appren-ticeship Program is also found on the current list of "Job Opportunities" maintained bythe Government of Canada, Department of Immigration (2010), where those interestedin coming to Canada can "find out where the jobs are now and where they will be in thefuture".   That  is,  the very vocational  programs in Alberta's  education system that aresocially  degraded,  structurally  segregated,  and  academically  critiqued  offer  focused,advanced  placement  training  for  careers  the  Country  and Province  presently  requiresforeign workers to fulfill.____________________________†  There  is  but  one  exception  to  the  complete  disconnect  between  nonacademic  andacademic  learning  trajectories:  a  single  university  course  from  the  Department  ofHuman Ecology, HECOL 354 (#1444), Apparel Design and Production, directly refersto a cluster of CTS Fashion Studies (FS) modules at the intermediate or advanced levelas a possible prerequisite (link strength 1/2), in lieu of HECOL 150 (#1426), The Worldof Design.‡  Some examples  of  Registered  Apprenticeship  Programs  that also  qualify  a certifiedperson  for  immigration  due to lack of  trained  Canadians:  motor  vehicle  body repair,refrigeration and air conditioning mechanic, roofer, bricklayer, hairstylist, cabinetmaker,boilermaker, tool and die maker, baker, upholsterer, electrical mechanic, cook.
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Aside from the overtly academic thrust of Alberta's provincial education system,
there reside substantial vocational high school education programs including Career and
Technology Studies (CTS), Green Certificate Program (GCC), Integrated Occupational
Program (IOP), and Registered Apprenticeship Program (RAP).  Course credits awarded
for study in these nonacademic programs may contribute towards the fulfilment of some
requirements  for an academic  high school  diploma,  otherwise  the primary purpose of
these "school-to-work  initiatives"  is "vocational  high school education" tailored to the
job market (Lehmann & Taylor 2003).     

The Registered Apprenticeship Program (RAP) is an example in Alberta of what
is purported be part of the "new vocationalism" (Grubb 1996; Lehmann & Taylor 2003);
a movement to reform vocational syllabuses in schools, which is imbued with the egali-
tarian spirit that education needed for the workplace does not differ in its essentials from
that needed for college or advanced technical training.  Grubb says these programs can
succeed when they place learning objectives within real environments instead of insist-
ing that students first learn in the abstract what they will then be expected to apply, as is
normally the case in classroom based schooling.  But instead of just grafting academic
content onto previous vocational programs, which would still perpetuate the separation
of nonacademic and academic tracks, Lehmann & Taylor write about a "new vocational
discourse  that  challenges  traditional  academic/vocational  divisions"  with the idea that
"all  workers  need  to be  'knowledge  workers'".   Grubb envisions  reformed  vocational
education  as having more "curriculum integration",  such that "vocational  education is
not a terminal program for those not destined for college".  Implicit in the writings of
these academics  appear to be the assumptions  that segregation  of vocational  and aca-
demic  learning  is  not  a  positive  characteristic  of their  design,  that such a bifurcating
structure "reinforc[es] existing social inequalities by streaming lower-class children into
marginalized  career options"  (Lehmann  2005),  and that hope for redemption  of voca-
tional programs comes from their integration with academic programs.

Alas, a survey of course network structure in Alberta does not support the aspira-
tions of the new vocationalists.   The embedding  algorithms written into the program,
Calendar  Navigator,  spontaneously  locate  all  four  of  the  nonacademic  programs
together, such that they dominate the lower half of the overall course network structure
to the  exclusion  of  almost  all  academic  courses  (please  review Figure  3.1.2-5).   The
stark structural separation after grade nine between learning trajectories leading upwards
into university and those downwards and away from university, dismisses any notions of
"curriculum integration" at the scale of courses or subjects†.  Analysis of network struc-
ture in §4.1.2.2 identifies the separation of RAP courses from the rest of the network as
the  second  most  important  cut  to maximize  the  global  modularity  score  (Q)  and the
isolation of IOP, CTS, and GCC as the fourth (review Figure 4.1.2.2-3, cuts 2 & 4, or
review Figures 8.2-4.1.2.2-4b & -4d).  Thus, the vocational programs can be structurally
characterized as dramatically detached from further academic knowledge and even from
each other.  

In  principle,  the  Registered  Apprenticeship  Program  is  huge:  almost  ¯2000
credits of accumulated knowledge introducing over fifty different trades are represented
in its possible courses.  RAP far surpasses any other department and rivals the Faculty
of  Arts  in  breadth,  giving  anyone  who studies  the  overall  network  diagram a strong
reminder of just how much practical knowledge lies outside of the academic streams.  In
2006,  1 700  high  school  students  participated  in  RAP  (Alberta  Apprenticeship  and
Industry Training Board 2007); however, to date, only a small proportion of high school
students in the Province significantly participate in career-oriented programming (Tay-
lor 2007).  It appears the low participation in RAP despite the plentifulness of potential
knowledge  is  a  symptom  of  some  sort  of  systemic  neglect  of  vocational  programs.
Schuetze  (2003) observes  "historically,  vocational  education  has been targeted at  low
academic achievers";  Lehmann & Taylor (2003) detect the "unspoken assumption that
attracting more academically inclined students into these courses would also raise their
status";  Taylor's  research  points  to  the  "difficulty  in  hiring  qualified  CTS  teachers"
which has "contributed to a decline in facilities" for vocational learning; while, McFee-
tors  & Mason  (2005)  report  there  persists  a  negative  stigma  regarding  nonacademic
courses,  which  reflects  the  dark  side  of,  as  stated  by  Lehmann  (2005),  "a  powerful
public  discourse  advocating  high levels  of educational  attainment".   Thus a plausible
mechanism for marginalization  of vocational  programs  has the deep roots  of a social
bias towards academic learning (especially)  and away from vocational learning, which
extends into the context of the education system and expresses itself as low student and
teacher interest, plus poor funding for initiatives like RAP.  Wishart et al. (2006) goes so
far as to suggest  that the separation and neglect of the vocational  programs is part of
society's  "technologies  that  serve  to  normalize  and  pathologize  different  groups  of
students".

The paths that students must take through RAP start after grade nine via a few
small (¯1) preliminary courses in grade ten, such as OTH 1919 (#792), Career Intern-
ship 10, CTR 1010 (#210), Job Preparation, CTR 1210 (#714), Personal Safety (Manage-
ment), and CTR 2210 (#223), Workplace Safety (Practices).  From this little cluster of
courses,  each individual  apprenticeship  branches  out along a solitary linear trajectory,
never  to  cross  paths  with  another  subject  again  (see  nodes  #825  to  #1224  on  Table
9.2-1).  Together,  RAP courses form a dramatic star network of chains  (please review
Figure 3.1.2-5, lower third) which reflects and determines the nature of the knowledge
developed  therein  and its  experience  by students.   The typically  minimal  number  of
connections  to  prerequisites  (dpre ≈1)  and  subsequents  (dsub ≈1)  to  maintain  linear
trajectories,  the  modest  academic  flux  (F≈1)  through  most  courses,  the  mostly  low
academic centrality scores (ca), and the mostly very low eigenvector centrality scores
(ce), show that courses of the Registered Apprenticeship Program are located on the
periphery of the network and that they are not found at the 'cross roads' of many differ-
ent  learning  trajectories.   The  modest  extent  scores  (E¨),  the  modestly  low sustent
scores (S), and the absence of any links to external subjects reveals that learning trajec-
tories  through  RAP  also  do  not  depend  on  a  large  knowledge  base,  and,  within  the
education system, do not lead towards an expansive knowledge horizon nor any further
knowledge beyond RAP.  Indeed, most RAP training already occurs away from school
in  workplace  environments;  says  Lehmann  &  Taylor  (2003),  "RAP  establishes  the
furthest reach into employment"  such that, in particular,  the youth apprenticeship  pro-
gram (RAP)  is  completely  isolated  from any educational  objectives  or  perspectives."
While  the research developed in this thesis establishes  that RAP forms a "completely
isolated" knowledge structure, there is no support of Lehmann & Taylor's assertion that
RAP is  without  "educational  objectives  or perspectives",  just  without  academic  ones.
The typically high distent (D Æ) and very, very, high intent scores (I ÆÆ) for RAP courses
indicate,  towards  the  terminal  ends  of  any  apprenticeship,  the  knowledge  is  highly
elaborated and embodies the focused purposes of its subject.  Quite simply, the Regis-
tered Apprenticeship  Program forms a structure that reaches away from university and
functions like an advanced placement program for the trades.

In contrast to the apparent widespread negative social attitude and the pessimism
of  higher  academics'  critiques  of  Alberta's  vocational  programs,  those  closer  to  the
context where the knowledge is actually expressed are far more positive.  Proponents of
youth  apprenticeships  argue  that  participation  opens  possibilities  to  more  rewarding
careers,  provides satisfying career alternatives  to the prospect  of white-collar  employ-
ment, and generally improves a young person's range of choices and career options (see,
Careers: The Next Generation, at <http://nextgen.org/>,  for example).  Lehmann (2005)
observes how some students feel RAP offers them a kind of "accelerated maturity" by
"becoming  independent,  learning  responsibility,  and having  a plan for  [their]  future."
Actually,  successful  completion of a RAP thread does qualify a student for their first
year formal apprenticeship training in the corresponding field (Alberta Learning 2003b).
Apprenticeship  training  is  considered  to  break  a  paradoxical  situation  facing  young
people: acquiring the work experience that is needed to gain entry to stable jobs.  The
website  of  the  Alberta  Apprenticeship  and  Industry  Training  Board,
<http://www.tradesecrets.gov.ab.ca/>,  includes  RAP  as  part  of  the  "industry-driven
system" that "supports the economic progress of Alberta and its competitive role in the
global  market"  and lists  plenty  of  statistical  data  to  back its  enthusiasm,  including  a
"100%  employment  rate  for  apprentice  graduates  in  the  labour  force  [2007  survey
data]".  The advocative website gushes that students "can have it all": a head start "to a
great career" and a high school diploma, plus the possibility of scholarships.  But, consid-
ering Alberta Apprenticeship  and Industry Training Board is partly responsible for the
program,  its  support  is  expected.   Yet,  Langier  & MacKay  (2008)  offer  particularly
persuasive  praise  for  the  RAP  in  Alberta  because  as  technical  college  teachers  and
industry experts based in the southern USA, they are familiar with the conditions and
opportunities many of the vocational program graduates can expect, but are not closely
tied to the government, companies, nor the academy of Alberta.  These authors unapolo-
getically  support  RAP  for  what  they  see  it  as:  a  direct  pipeline  to  skilled,  high
demand/under  subscribed,  middle-  to  upper-middle  class  jobs  in  trades  and industry,
thus  offering  a  practical,  existentially  unexamined  assessment  awkward  for  brooding
academics.  As an unbiased, empirical testament to the continued demand for graduates
from vocational programs, almost every trade‡ offered in Alberta's Registered Appren-
ticeship Program is also found on the current list of "Job Opportunities" maintained by
the Government of Canada, Department of Immigration (2010), where those interested
in coming to Canada can "find out where the jobs are now and where they will be in the
future".   That  is,  the very vocational  programs in Alberta's  education system that are
socially  degraded,  structurally  segregated,  and  academically  critiqued  offer  focused,
advanced  placement  training  for  careers  the  Country  and Province  presently  requires
foreign workers to fulfill.
____________________________
†  There  is  but  one  exception  to  the  complete  disconnect  between  nonacademic  and
academic  learning  trajectories:  a  single  university  course  from  the  Department  of
Human Ecology, HECOL 354 (#1444), Apparel Design and Production, directly refers
to a cluster of CTS Fashion Studies (FS) modules at the intermediate or advanced level
as a possible prerequisite (link strength 1/2), in lieu of HECOL 150 (#1426), The World
of Design.

‡  Some examples  of  Registered  Apprenticeship  Programs  that also  qualify  a certified
person  for  immigration  due to lack of  trained  Canadians:  motor  vehicle  body repair,
refrigeration and air conditioning mechanic, roofer, bricklayer, hairstylist, cabinetmaker,
boilermaker, tool and die maker, baker, upholsterer, electrical mechanic, cook.
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Aside from the overtly academic thrust of Alberta's provincial education system,
there reside substantial vocational high school education programs including Career and
Technology Studies (CTS), Green Certificate Program (GCC), Integrated Occupational
Program (IOP), and Registered Apprenticeship Program (RAP).  Course credits awarded
for study in these nonacademic programs may contribute towards the fulfilment of some
requirements  for an academic  high school  diploma,  otherwise  the primary purpose of
these "school-to-work  initiatives"  is "vocational  high school education" tailored to the
job market (Lehmann & Taylor 2003).     

The Registered Apprenticeship Program (RAP) is an example in Alberta of what
is purported be part of the "new vocationalism" (Grubb 1996; Lehmann & Taylor 2003);
a movement to reform vocational syllabuses in schools, which is imbued with the egali-
tarian spirit that education needed for the workplace does not differ in its essentials from
that needed for college or advanced technical training.  Grubb says these programs can
succeed when they place learning objectives within real environments instead of insist-
ing that students first learn in the abstract what they will then be expected to apply, as is
normally the case in classroom based schooling.  But instead of just grafting academic
content onto previous vocational programs, which would still perpetuate the separation
of nonacademic and academic tracks, Lehmann & Taylor write about a "new vocational
discourse  that  challenges  traditional  academic/vocational  divisions"  with the idea that
"all  workers  need  to be  'knowledge  workers'".   Grubb envisions  reformed  vocational
education  as having more "curriculum integration",  such that "vocational  education is
not a terminal program for those not destined for college".  Implicit in the writings of
these academics  appear to be the assumptions  that segregation  of vocational  and aca-
demic  learning  is  not  a  positive  characteristic  of their  design,  that such a bifurcating
structure "reinforc[es] existing social inequalities by streaming lower-class children into
marginalized  career options"  (Lehmann  2005),  and that hope for redemption  of voca-
tional programs comes from their integration with academic programs.

Alas, a survey of course network structure in Alberta does not support the aspira-
tions of the new vocationalists.   The embedding  algorithms written into the program,
Calendar  Navigator,  spontaneously  locate  all  four  of  the  nonacademic  programs
together, such that they dominate the lower half of the overall course network structure
to the  exclusion  of  almost  all  academic  courses  (please  review Figure  3.1.2-5).   The
stark structural separation after grade nine between learning trajectories leading upwards
into university and those downwards and away from university, dismisses any notions of
"curriculum integration" at the scale of courses or subjects†.  Analysis of network struc-
ture in §4.1.2.2 identifies the separation of RAP courses from the rest of the network as
the  second  most  important  cut  to maximize  the  global  modularity  score  (Q)  and the
isolation of IOP, CTS, and GCC as the fourth (review Figure 4.1.2.2-3, cuts 2 & 4, or
review Figures 8.2-4.1.2.2-4b & -4d).  Thus, the vocational programs can be structurally
characterized as dramatically detached from further academic knowledge and even from
each other.  

In  principle,  the  Registered  Apprenticeship  Program  is  huge:  almost  ¯2000
credits of accumulated knowledge introducing over fifty different trades are represented
in its possible courses.  RAP far surpasses any other department and rivals the Faculty
of  Arts  in  breadth,  giving  anyone  who studies  the  overall  network  diagram a strong
reminder of just how much practical knowledge lies outside of the academic streams.  In
2006,  1 700  high  school  students  participated  in  RAP  (Alberta  Apprenticeship  and
Industry Training Board 2007); however, to date, only a small proportion of high school
students in the Province significantly participate in career-oriented programming (Tay-
lor 2007).  It appears the low participation in RAP despite the plentifulness of potential
knowledge  is  a  symptom  of  some  sort  of  systemic  neglect  of  vocational  programs.
Schuetze  (2003) observes  "historically,  vocational  education  has been targeted at  low
academic achievers";  Lehmann & Taylor (2003) detect the "unspoken assumption that
attracting more academically inclined students into these courses would also raise their
status";  Taylor's  research  points  to  the  "difficulty  in  hiring  qualified  CTS  teachers"
which has "contributed to a decline in facilities" for vocational learning; while, McFee-
tors  & Mason  (2005)  report  there  persists  a  negative  stigma  regarding  nonacademic
courses,  which  reflects  the  dark  side  of,  as  stated  by  Lehmann  (2005),  "a  powerful
public  discourse  advocating  high levels  of educational  attainment".   Thus a plausible
mechanism for marginalization  of vocational  programs  has the deep roots  of a social
bias towards academic learning (especially)  and away from vocational learning, which
extends into the context of the education system and expresses itself as low student and
teacher interest, plus poor funding for initiatives like RAP.  Wishart et al. (2006) goes so
far as to suggest  that the separation and neglect of the vocational  programs is part of
society's  "technologies  that  serve  to  normalize  and  pathologize  different  groups  of
students".

The paths that students must take through RAP start after grade nine via a few
small (¯1) preliminary courses in grade ten, such as OTH 1919 (#792), Career Intern-
ship 10, CTR 1010 (#210), Job Preparation, CTR 1210 (#714), Personal Safety (Manage-
ment), and CTR 2210 (#223), Workplace Safety (Practices).  From this little cluster of
courses,  each individual  apprenticeship  branches  out along a solitary linear trajectory,
never  to  cross  paths  with  another  subject  again  (see  nodes  #825  to  #1224  on  Table
9.2-1).  Together,  RAP courses form a dramatic star network of chains  (please review
Figure 3.1.2-5, lower third) which reflects and determines the nature of the knowledge
developed  therein  and its  experience  by students.   The typically  minimal  number  of
connections  to  prerequisites  (dpre ≈1)  and  subsequents  (dsub ≈1)  to  maintain  linear
trajectories,  the  modest  academic  flux  (F≈1)  through  most  courses,  the  mostly  low
academic centrality scores (ca), and the mostly very low eigenvector centrality scores
(ce), show that courses of the Registered Apprenticeship Program are located on the
periphery of the network and that they are not found at the 'cross roads' of many differ-
ent  learning  trajectories.   The  modest  extent  scores  (E¨),  the  modestly  low sustent
scores (S), and the absence of any links to external subjects reveals that learning trajec-
tories  through  RAP  also  do  not  depend  on  a  large  knowledge  base,  and,  within  the
education system, do not lead towards an expansive knowledge horizon nor any further
knowledge beyond RAP.  Indeed, most RAP training already occurs away from school
in  workplace  environments;  says  Lehmann  &  Taylor  (2003),  "RAP  establishes  the
furthest reach into employment"  such that, in particular,  the youth apprenticeship  pro-
gram (RAP)  is  completely  isolated  from any educational  objectives  or  perspectives."
While  the research developed in this thesis establishes  that RAP forms a "completely
isolated" knowledge structure, there is no support of Lehmann & Taylor's assertion that
RAP is  without  "educational  objectives  or perspectives",  just  without  academic  ones.
The typically high distent (D Æ) and very, very, high intent scores (I ÆÆ) for RAP courses
indicate,  towards  the  terminal  ends  of  any  apprenticeship,  the  knowledge  is  highly
elaborated and embodies the focused purposes of its subject.  Quite simply, the Regis-
tered Apprenticeship  Program forms a structure that reaches away from university and
functions like an advanced placement program for the trades.

In contrast to the apparent widespread negative social attitude and the pessimism
of  higher  academics'  critiques  of  Alberta's  vocational  programs,  those  closer  to  the
context where the knowledge is actually expressed are far more positive.  Proponents of
youth  apprenticeships  argue  that  participation  opens  possibilities  to  more  rewarding
careers,  provides satisfying career alternatives  to the prospect  of white-collar  employ-
ment, and generally improves a young person's range of choices and career options (see,
Careers: The Next Generation, at <http://nextgen.org/>,  for example).  Lehmann (2005)
observes how some students feel RAP offers them a kind of "accelerated maturity" by
"becoming  independent,  learning  responsibility,  and having  a plan for  [their]  future."
Actually,  successful  completion of a RAP thread does qualify a student for their first
year formal apprenticeship training in the corresponding field (Alberta Learning 2003b).
Apprenticeship  training  is  considered  to  break  a  paradoxical  situation  facing  young
people: acquiring the work experience that is needed to gain entry to stable jobs.  The
website  of  the  Alberta  Apprenticeship  and  Industry  Training  Board,
<http://www.tradesecrets.gov.ab.ca/>,  includes  RAP  as  part  of  the  "industry-driven
system" that "supports the economic progress of Alberta and its competitive role in the
global  market"  and lists  plenty  of  statistical  data  to  back its  enthusiasm,  including  a
"100%  employment  rate  for  apprentice  graduates  in  the  labour  force  [2007  survey
data]".  The advocative website gushes that students "can have it all": a head start "to a
great career" and a high school diploma, plus the possibility of scholarships.  But, consid-
ering Alberta Apprenticeship  and Industry Training Board is partly responsible for the
program,  its  support  is  expected.   Yet,  Langier  & MacKay  (2008)  offer  particularly
persuasive  praise  for  the  RAP  in  Alberta  because  as  technical  college  teachers  and
industry experts based in the southern USA, they are familiar with the conditions and
opportunities many of the vocational program graduates can expect, but are not closely
tied to the government, companies, nor the academy of Alberta.  These authors unapolo-
getically  support  RAP  for  what  they  see  it  as:  a  direct  pipeline  to  skilled,  high
demand/under  subscribed,  middle-  to  upper-middle  class  jobs  in  trades  and industry,
thus  offering  a  practical,  existentially  unexamined  assessment  awkward  for  brooding
academics.  As an unbiased, empirical testament to the continued demand for graduates
from vocational programs, almost every trade‡ offered in Alberta's Registered Appren-
ticeship Program is also found on the current list of "Job Opportunities" maintained by
the Government of Canada, Department of Immigration (2010), where those interested
in coming to Canada can "find out where the jobs are now and where they will be in the
future".   That  is,  the very vocational  programs in Alberta's  education system that are
socially  degraded,  structurally  segregated,  and  academically  critiqued  offer  focused,
advanced  placement  training  for  careers  the  Country  and Province  presently  requires
foreign workers to fulfill.
____________________________
†  There  is  but  one  exception  to  the  complete  disconnect  between  nonacademic  and
academic  learning  trajectories:  a  single  university  course  from  the  Department  of
Human Ecology, HECOL 354 (#1444), Apparel Design and Production, directly refers
to a cluster of CTS Fashion Studies (FS) modules at the intermediate or advanced level
as a possible prerequisite (link strength 1/2), in lieu of HECOL 150 (#1426), The World
of Design.

‡  Some examples  of  Registered  Apprenticeship  Programs  that also  qualify  a certified
person  for  immigration  due to lack of  trained  Canadians:  motor  vehicle  body repair,
refrigeration and air conditioning mechanic, roofer, bricklayer, hairstylist, cabinetmaker,
boilermaker, tool and die maker, baker, upholsterer, electrical mechanic, cook.
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Aside from the overtly academic thrust of Alberta's provincial education system,
there reside substantial vocational high school education programs including Career and
Technology Studies (CTS), Green Certificate Program (GCC), Integrated Occupational
Program (IOP), and Registered Apprenticeship Program (RAP).  Course credits awarded
for study in these nonacademic programs may contribute towards the fulfilment of some
requirements  for an academic  high school  diploma,  otherwise  the primary purpose of
these "school-to-work  initiatives"  is "vocational  high school education" tailored to the
job market (Lehmann & Taylor 2003).     

The Registered Apprenticeship Program (RAP) is an example in Alberta of what
is purported be part of the "new vocationalism" (Grubb 1996; Lehmann & Taylor 2003);
a movement to reform vocational syllabuses in schools, which is imbued with the egali-
tarian spirit that education needed for the workplace does not differ in its essentials from
that needed for college or advanced technical training.  Grubb says these programs can
succeed when they place learning objectives within real environments instead of insist-
ing that students first learn in the abstract what they will then be expected to apply, as is
normally the case in classroom based schooling.  But instead of just grafting academic
content onto previous vocational programs, which would still perpetuate the separation
of nonacademic and academic tracks, Lehmann & Taylor write about a "new vocational
discourse  that  challenges  traditional  academic/vocational  divisions"  with the idea that
"all  workers  need  to be  'knowledge  workers'".   Grubb envisions  reformed  vocational
education  as having more "curriculum integration",  such that "vocational  education is
not a terminal program for those not destined for college".  Implicit in the writings of
these academics  appear to be the assumptions  that segregation  of vocational  and aca-
demic  learning  is  not  a  positive  characteristic  of their  design,  that such a bifurcating
structure "reinforc[es] existing social inequalities by streaming lower-class children into
marginalized  career options"  (Lehmann  2005),  and that hope for redemption  of voca-
tional programs comes from their integration with academic programs.

Alas, a survey of course network structure in Alberta does not support the aspira-
tions of the new vocationalists.   The embedding  algorithms written into the program,
Calendar  Navigator,  spontaneously  locate  all  four  of  the  nonacademic  programs
together, such that they dominate the lower half of the overall course network structure
to the  exclusion  of  almost  all  academic  courses  (please  review Figure  3.1.2-5).   The
stark structural separation after grade nine between learning trajectories leading upwards
into university and those downwards and away from university, dismisses any notions of
"curriculum integration" at the scale of courses or subjects†.  Analysis of network struc-
ture in §4.1.2.2 identifies the separation of RAP courses from the rest of the network as
the  second  most  important  cut  to maximize  the  global  modularity  score  (Q)  and the
isolation of IOP, CTS, and GCC as the fourth (review Figure 4.1.2.2-3, cuts 2 & 4, or
review Figures 8.2-4.1.2.2-4b & -4d).  Thus, the vocational programs can be structurally
characterized as dramatically detached from further academic knowledge and even from
each other.  

In  principle,  the  Registered  Apprenticeship  Program  is  huge:  almost  ¯2000
credits of accumulated knowledge introducing over fifty different trades are represented
in its possible courses.  RAP far surpasses any other department and rivals the Faculty
of  Arts  in  breadth,  giving  anyone  who studies  the  overall  network  diagram a strong
reminder of just how much practical knowledge lies outside of the academic streams.  In
2006,  1 700  high  school  students  participated  in  RAP  (Alberta  Apprenticeship  and
Industry Training Board 2007); however, to date, only a small proportion of high school
students in the Province significantly participate in career-oriented programming (Tay-
lor 2007).  It appears the low participation in RAP despite the plentifulness of potential
knowledge  is  a  symptom  of  some  sort  of  systemic  neglect  of  vocational  programs.
Schuetze  (2003) observes  "historically,  vocational  education  has been targeted at  low
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status";  Taylor's  research  points  to  the  "difficulty  in  hiring  qualified  CTS  teachers"
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tors  & Mason  (2005)  report  there  persists  a  negative  stigma  regarding  nonacademic
courses,  which  reflects  the  dark  side  of,  as  stated  by  Lehmann  (2005),  "a  powerful
public  discourse  advocating  high levels  of educational  attainment".   Thus a plausible
mechanism for marginalization  of vocational  programs  has the deep roots  of a social
bias towards academic learning (especially)  and away from vocational learning, which
extends into the context of the education system and expresses itself as low student and
teacher interest, plus poor funding for initiatives like RAP.  Wishart et al. (2006) goes so
far as to suggest  that the separation and neglect of the vocational  programs is part of
society's  "technologies  that  serve  to  normalize  and  pathologize  different  groups  of
students".
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tories  through  RAP  also  do  not  depend  on  a  large  knowledge  base,  and,  within  the
education system, do not lead towards an expansive knowledge horizon nor any further
knowledge beyond RAP.  Indeed, most RAP training already occurs away from school
in  workplace  environments;  says  Lehmann  &  Taylor  (2003),  "RAP  establishes  the
furthest reach into employment"  such that, in particular,  the youth apprenticeship  pro-
gram (RAP)  is  completely  isolated  from any educational  objectives  or  perspectives."
While  the research developed in this thesis establishes  that RAP forms a "completely
isolated" knowledge structure, there is no support of Lehmann & Taylor's assertion that
RAP is  without  "educational  objectives  or perspectives",  just  without  academic  ones.
The typically high distent (D Æ) and very, very, high intent scores (I ÆÆ) for RAP courses
indicate,  towards  the  terminal  ends  of  any  apprenticeship,  the  knowledge  is  highly
elaborated and embodies the focused purposes of its subject.  Quite simply, the Regis-
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Careers: The Next Generation, at <http://nextgen.org/>,  for example).  Lehmann (2005)
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Apprenticeship  training  is  considered  to  break  a  paradoxical  situation  facing  young
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website  of  the  Alberta  Apprenticeship  and  Industry  Training  Board,
<http://www.tradesecrets.gov.ab.ca/>,  includes  RAP  as  part  of  the  "industry-driven
system" that "supports the economic progress of Alberta and its competitive role in the
global  market"  and lists  plenty  of  statistical  data  to  back its  enthusiasm,  including  a
"100%  employment  rate  for  apprentice  graduates  in  the  labour  force  [2007  survey
data]".  The advocative website gushes that students "can have it all": a head start "to a
great career" and a high school diploma, plus the possibility of scholarships.  But, consid-
ering Alberta Apprenticeship  and Industry Training Board is partly responsible for the
program,  its  support  is  expected.   Yet,  Langier  & MacKay  (2008)  offer  particularly
persuasive  praise  for  the  RAP  in  Alberta  because  as  technical  college  teachers  and
industry experts based in the southern USA, they are familiar with the conditions and
opportunities many of the vocational program graduates can expect, but are not closely
tied to the government, companies, nor the academy of Alberta.  These authors unapolo-
getically  support  RAP  for  what  they  see  it  as:  a  direct  pipeline  to  skilled,  high
demand/under  subscribed,  middle-  to  upper-middle  class  jobs  in  trades  and industry,
thus  offering  a  practical,  existentially  unexamined  assessment  awkward  for  brooding
academics.  As an unbiased, empirical testament to the continued demand for graduates
from vocational programs, almost every trade‡ offered in Alberta's Registered Appren-
ticeship Program is also found on the current list of "Job Opportunities" maintained by
the Government of Canada, Department of Immigration (2010), where those interested
in coming to Canada can "find out where the jobs are now and where they will be in the
future".   That  is,  the very vocational  programs in Alberta's  education system that are
socially  degraded,  structurally  segregated,  and  academically  critiqued  offer  focused,
advanced  placement  training  for  careers  the  Country  and Province  presently  requires
foreign workers to fulfill.
____________________________
†  There  is  but  one  exception  to  the  complete  disconnect  between  nonacademic  and
academic  learning  trajectories:  a  single  university  course  from  the  Department  of
Human Ecology, HECOL 354 (#1444), Apparel Design and Production, directly refers
to a cluster of CTS Fashion Studies (FS) modules at the intermediate or advanced level
as a possible prerequisite (link strength 1/2), in lieu of HECOL 150 (#1426), The World
of Design.

‡  Some examples  of  Registered  Apprenticeship  Programs  that also  qualify  a certified
person  for  immigration  due to lack of  trained  Canadians:  motor  vehicle  body repair,
refrigeration and air conditioning mechanic, roofer, bricklayer, hairstylist, cabinetmaker,
boilermaker, tool and die maker, baker, upholsterer, electrical mechanic, cook.
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5. Discussion

First, knowledge is the common substance involved in the activities
of  the  system:  research  creates  it;  scholarship  preserves,  refines,
and modifies it; teaching and service disseminate it.

Clark, Burton R. (1984) The Organization Conception, in Clark, B.
(Ed.)  Perspectives  on  Higher  Education:  Eight  Disciplinary
and Comparative Views (Berkeley, CA: University of Califor-
nia Press): p. 107.

At its most elementary  level, this  thesis is about a network map of courses in
Alberta's  Provincial  education  system,  linked  by  their  prerequisite  relationships  from
K-16.  At an intermediate  level,  standard and novel network analyses characterize  the
roles of course nodes by their positions, and the performance of the global course net-
work by its topology.  At its most advanced (and speculative), the thesis is about how
disciplinary knowledge self-organizes and adapts in the context of the education system
in Alberta.   Because  learning  is  always  a function of new information  coupling  with
previous  knowing,  in  principal,  and  because  academic  knowledge  is  bundled  in  the
education system as courses and linked by prior knowledge requirements,  by practice,
departmental course subnetworks are interpreted as mesoscale structures directly result-
ing from the coevolution between disciplinary knowledge and society, which map and
reflect the influences of both.  Interpretations of the course network architecture charac-
terize the disciplines that orient it and the society whose institutions house it.  Together,
the  disciplines  and society provide  the necessary  resources  for the course  network  to
exist – knowledges, students, teachers, and funding – and they interact in the context of
the education system to determine is form and function (see Figure 5-1).

Throughout  the thesis,  much conventional  wisdom regarding education is con-
firmed, so that many of the characteristics of individual courses, departments, and facul-
ties  highlighted  in  the  network  analysis  are  hardly  surprising.   For  example,  almost
everybody  is  aware  that  English  is  an  important  academic  subject  at  high  school  to
prepare for University, or grade nine is an important time to start thinking about course
choices,  or  that  statistics  is  a  well  connected  course  in  University.   But,  novelty  is
offered because  the purely structural  theory and method based on networks  of linked
courses yields results corresponding to many of the conclusions of conventional wisdom
within Education without being based on the experiential,  social, and narrative founda-
tions  of that  conventional  wisdom.   Indeed,  the presence  of the expected  lends  more
credence to the controversial  findings using the same research methods.  The approach
offered here is abstract, objective, transparent, and open for further research, experimenta-
tion, development, and theorization to probe new directions for education research.  By
the quantitative  specification of courses and their  relationships,  plus well defined net-
work metrics,  the thesis research goes beyond the use of networks and complexity as
qualitative metaphors.

The immediate and future research possibilities  for network analysis  of educa-
tional structures could support dozens of academic careers and span several generations.
The major  present  limitations  are  access  to organized  data sources,  analytic  methods
customized  to  the  field,  attracting  the  interest  of  researchers  with  the  capabilities  to
confront  such data sets  and methods,  and perhaps  the lack of a very common,  estab-
lished vocabulary with which to widely disseminate results in Education.  Future models
could aim towards more than just characterization of the course structure by explicitly
describing the internal processes and mechanisms of network growth and adaptation at
various levels  in education.   Graduate students from Education who try to embark on
such a research path need to have a strong background,  to partake in current sophisti-
cated discourses on their own terms.   If Educational researchers wait until the required
mathematic  and analytic  tools  become so embedded  in the  computational  technology
that they become transparent enough for laymen use, then they will miss by many years
or many decades the cutting edge research opportunities  offered by a formal network
approach.

Contributions  from the  thesis  research  in the field of physics  are mostly con-
tained within the program, Calendar Navigator.  While the program is introduced, titled,
and applied in the thesis as though it is dedicated towards the study of course networks,
it is actually a new example of a generic network analysis program with some special-
ized settings and algorithms.  Indeed, over the period of time required to complete the
thesis research, the program, Calendar Navigator was employed to publish two biophys-
ics articles in the journals Genomics (Fuite et al. 2008) and Brain, Behavior, and Immu-
nity (Broderick,  Fuite, et al. 2010).  Readers of this thesis will recognize the network
graphics  in  these  articles  (and  on  the  cover  of  Genomics)  as  produced  by  Calendar
Navigator, if not the content and analysis.  In a more abstract sense, the algorithms for
the metrics distent, sustent, extent, and intent, shunted into Attachment §9.3 Supplemen-
tary  Equations,  describe  kinds  of  percolation  and flow processes  on  directed  acyclic
networks with weighted nodes and links with variable strength and dependencies among
them.  Any physicists who work with networks of this type, regardless of the particulari-
ties  of  the  system,  could  capitalize  on the  capabilities  of  these  metrics.   Also,  since
many aspects of education are infrequently analyzed quantitatively, the data set built for
this thesis research might be included as a rare example among other common types of
data  (eg.  transportation  systems)  by  physicists  looking  at  universal  patterns  across  a
wide spectrum of natural phenomena.

For the field of education, the findings of this study have implications for at least
students,  administrators,  and education researchers.   Of immediate significance to stu-
dents in Alberta would be access to the course browsing abilities of the program, Calen-
dar Navigator, for planning course choices.  Implementation of an updated version into a
computer  server could allow access for any student via the internet.   With regards to
educational leadership, administrators at the level of department, faculty, institution, or
even ministry could use some of the network based analysis introduced in the thesis to
inform strategic decisions regarding courses, their prerequisite sequences, and program
design.  Education researchers can utilize the system-wide results of the thesis to help
contextualize their thinking, extend their own work done on a local scale, or take statis-
tics  directly  from  the  comprehensive  Supplementary  Tables  in  Attachment  §9.3  and
develop their own interpretations of the unique data set.  Also, considering the doctoral
research  integrates  (network)  techniques,  (computer)  technology,  and  (educational)
documents  towards social  goals,  the thesis  could be considered as contributing  to the
field of information management (Williamson & Bow 2002).  Finally, the many graphic
representations  of wide-scale  collections  of the non-numerical  information  on courses
from education documents, allowing readers to see and visually understand the network
structure of the many prerequisite  relationships among the courses of Alberta's  educa-
tions system, qualify the thesis as making a contribution in the interdisciplinary field of
information visualization (Mazza 2009; see also <www.visualcomplexity.com>).
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terize the disciplines that orient it and the society whose institutions house it.  Together,
the  disciplines  and society provide  the necessary  resources  for the course  network  to
exist – knowledges, students, teachers, and funding – and they interact in the context of
the education system to determine is form and function (see Figure 5-1).

Throughout  the thesis,  much conventional  wisdom regarding education is con-
firmed, so that many of the characteristics of individual courses, departments, and facul-
ties  highlighted  in  the  network  analysis  are  hardly  surprising.   For  example,  almost
everybody  is  aware  that  English  is  an  important  academic  subject  at  high  school  to
prepare for University, or grade nine is an important time to start thinking about course
choices,  or  that  statistics  is  a  well  connected  course  in  University.   But,  novelty  is
offered because  the purely structural  theory and method based on networks  of linked
courses yields results corresponding to many of the conclusions of conventional wisdom
within Education without being based on the experiential,  social, and narrative founda-
tions  of that  conventional  wisdom.   Indeed,  the presence  of the expected  lends  more
credence to the controversial  findings using the same research methods.  The approach
offered here is abstract, objective, transparent, and open for further research, experimenta-
tion, development, and theorization to probe new directions for education research.  By
the quantitative  specification of courses and their  relationships,  plus well defined net-
work metrics,  the thesis research goes beyond the use of networks and complexity as
qualitative metaphors.

The immediate and future research possibilities  for network analysis  of educa-
tional structures could support dozens of academic careers and span several generations.
The major  present  limitations  are  access  to organized  data sources,  analytic  methods
customized  to  the  field,  attracting  the  interest  of  researchers  with  the  capabilities  to
confront  such data sets  and methods,  and perhaps  the lack of a very common,  estab-
lished vocabulary with which to widely disseminate results in Education.  Future models
could aim towards more than just characterization of the course structure by explicitly
describing the internal processes and mechanisms of network growth and adaptation at
various levels  in education.   Graduate students from Education who try to embark on
such a research path need to have a strong background,  to partake in current sophisti-
cated discourses on their own terms.   If Educational researchers wait until the required
mathematic  and analytic  tools  become so embedded  in the  computational  technology
that they become transparent enough for laymen use, then they will miss by many years
or many decades the cutting edge research opportunities  offered by a formal network
approach.

Contributions  from the  thesis  research  in the field of physics  are mostly con-
tained within the program, Calendar Navigator.  While the program is introduced, titled,
and applied in the thesis as though it is dedicated towards the study of course networks,
it is actually a new example of a generic network analysis program with some special-
ized settings and algorithms.  Indeed, over the period of time required to complete the
thesis research, the program, Calendar Navigator was employed to publish two biophys-
ics articles in the journals Genomics (Fuite et al. 2008) and Brain, Behavior, and Immu-
nity (Broderick,  Fuite, et al. 2010).  Readers of this thesis will recognize the network
graphics  in  these  articles  (and  on  the  cover  of  Genomics)  as  produced  by  Calendar
Navigator, if not the content and analysis.  In a more abstract sense, the algorithms for
the metrics distent, sustent, extent, and intent, shunted into Attachment §9.3 Supplemen-
tary  Equations,  describe  kinds  of  percolation  and flow processes  on  directed  acyclic
networks with weighted nodes and links with variable strength and dependencies among
them.  Any physicists who work with networks of this type, regardless of the particulari-
ties  of  the  system,  could  capitalize  on the  capabilities  of  these  metrics.   Also,  since
many aspects of education are infrequently analyzed quantitatively, the data set built for
this thesis research might be included as a rare example among other common types of
data  (eg.  transportation  systems)  by  physicists  looking  at  universal  patterns  across  a
wide spectrum of natural phenomena.

For the field of education, the findings of this study have implications for at least
students,  administrators,  and education researchers.   Of immediate significance to stu-
dents in Alberta would be access to the course browsing abilities of the program, Calen-
dar Navigator, for planning course choices.  Implementation of an updated version into a
computer  server could allow access for any student via the internet.   With regards to
educational leadership, administrators at the level of department, faculty, institution, or
even ministry could use some of the network based analysis introduced in the thesis to
inform strategic decisions regarding courses, their prerequisite sequences, and program
design.  Education researchers can utilize the system-wide results of the thesis to help
contextualize their thinking, extend their own work done on a local scale, or take statis-
tics  directly  from  the  comprehensive  Supplementary  Tables  in  Attachment  §9.3  and
develop their own interpretations of the unique data set.  Also, considering the doctoral
research  integrates  (network)  techniques,  (computer)  technology,  and  (educational)
documents  towards social  goals,  the thesis  could be considered as contributing  to the
field of information management (Williamson & Bow 2002).  Finally, the many graphic
representations  of wide-scale  collections  of the non-numerical  information  on courses
from education documents, allowing readers to see and visually understand the network
structure of the many prerequisite  relationships among the courses of Alberta's  educa-
tions system, qualify the thesis as making a contribution in the interdisciplinary field of
information visualization (Mazza 2009; see also <www.visualcomplexity.com>).
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Figure 5-1  "Really see Alaska": a brochure for Alaska Coastal Airlines indicating
service  to  small  communities,  both  on  and  off  the  mainland,  circa  1954  (image
courtesy  of  Bjorn  Larsson  at  www.timetableimages.com).   The  movement  of  the
company's airplanes along the routes shown constitutes a small, but probably impor-
tant (especially  during the era),  transportation  and communication  network.   What
influence  does the underlying  geography have in settlement  location and therefore
flight paths?  In what ways do the mountains, islands, rivers, and ocean interact with
the population to determine the network structure, how is this reflected, and can it be
measured?  In what ways is the course network similar to the communication  net-
work shown, and its topology determined by the coevolution between society and an
underlying  knowledge  'landscape'?   Is  the  course  network  topology  in  Alberta's
education  system  invented,  arbitrary,  or  implied  by  the  knowledge  it  attempts  to
sustain and communicate?
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6. Conclusion

We are discovering in nature that simplicity often lies on the "other
side" of complexity.  So for any problem, the more you can zoom out
and embrace complexity,  the better chance you have of zooming in
on the simple details that matter most.

Berlow,  Eric  (2010)  How  Complexity  Leads  to  Simplicity,  TED:
Ideas Worth Spreading  [online video blog], <www.ted.com>,
accessed 12 November 2010.

Discourses  surrounding  spatial  issues are well  represented,  especially  recently,
in the scholarly literature of the social sciences generally and Education research specifi-
cally, with the use of various types of visual maps appearing as a major theme (review
§2.1).

Complex systems are studied in Physics with growing interest and acumen using
nonlinear  and  computational  methods  while  emphasizing  self-organization  and  emer-
gence as primary topics (review §2.2.2).  Basic institutional facts regarding Education in
Alberta indicate that it is a large, important, influential,  and successful social structure
(review §2.2.4).  Education research influenced by sociology characterizes education as
a decentralized complex social system.  Some contemporary education research identi-
fies several specific points in the education system, such as, classrooms or curriculums,
as complex (review §2.2.5).

Networks  are a mathematical  framework used to abstract,  model,  analyze,  and
map many complex systems,  especially  in the research  of sociologists  and physicists.
Sociologists  emphasize  the  role  of  elements  based  on  their  position  in  the  network,
while Physicists study a) how static topology influences interactions on the network, and
b) the dynamics of networks themselves as they grow and evolve (review §2.3.2).

There  is  enough data present  in official  documents  to stitch together  by prior
knowledge relationships all of the courses taught by the Province to students from K-12,
and at the University of Alberta through undergraduate studies.  A data set representing
all of school  and about 86% of the knowledge  in undergraduate  studies  underlies the
research (review §3.1.1).

Data are meaningfully translated into a network framework by identifying each
course as a node and the prerequisite knowledge requirements between courses as logi-
cal statements which are represented as a directed link of variable strength.  Other infor-
mation, such as departmental membership and credit weight (¯) for any course can be
preserved and translated into spatial  characteristics  such as node color and size where
appropriate.  The spatialized data may be visualized by means of a expresively embed-
ded network map which preserves and emphasizes  knowledge  associations among the
course nodes (review §3.1.2).
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course as a node and the prerequisite knowledge requirements between courses as logi-
cal statements which are represented as a directed link of variable strength.  Other infor-
mation, such as departmental membership and credit weight (¯) for any course can be
preserved and translated into spatial  characteristics  such as node color and size where
appropriate.  The spatialized data may be visualized by means of a expresively embed-
ded network map which preserves and emphasizes  knowledge  associations among the
course nodes (review §3.1.2).

A full suit of dynamic, adaptive, and tailored network browsing tools are written
into a computing environment called Calendar Navigator and applied to the data as an
assist for students or counsellors to make convenient, informed course choices by allow-
ing combined educational course documents from K-16 in Alberta to be experienced as
a comprehensive 'visual calendar' (review §3.2.1).

The  network  of  courses,  as  studied,  contains  4 815  nodes  and  almost  39 000
links,  but  considering  that  a  complete  network  of  this  order  has over  eleven  million
possible connections,  the course network is characterized  as sparse.   The courses are
found to be arranged acyclically  (without  feedback loops)  in an exclusively  'feed for-
ward'  manner;  therefore,  the  course  network  is  classified  as  a  type  of  tree  network
(review §4.1.1.1).

The node degree distribution for the course network is found to closely follow a
power law with a scaling parameter  of a  = 2.41 ± 0.02,  which is consistent  with net-
works produced by complex processes in many other diverse fields of research (review
§4.1.1.2).

Important  network  positions  of  many  individual  courses  are  picked  out  and
highlighted by the metrics academic flux and eigenvector centrality (review §4.1.1.3 &
.4).

The radius of the course network is measured to be 9 steps centered on the grade
nine  node.   The average  geodesic,  or  average  path  length,  is  5.8 ± 2.7  steps  between
courses, which is close to the familiar value of "six degrees of separation", thus Alberta
has a "small-world" course network (review §4.1.1..5).

Coarse-graining of the course network through the aggregation of course nodes
and links yields informative directed networks at the level of departments and faculties
(review §4.1.2.1).

The course network is inherently modular  (Q  ≈ 0.84),  composed of eighty-six
indivisible  modules  at  the  lowest  scale  often  corresponding  to  individual,  or  closely
related, subjects, which in turn can be systematically grouped together into larger, inter-
mediate modules following a hierarchic dendrogram (review §4.1.2.2).

Departments at the University are analyzed and ranked by the diversity of their
internal course structure using the offdiagonal  complexity metric,  which, for example,
identifies  Departments  such  as  Biological  Sciences  and  Economics  as  complex  and
Saint Joseph's and Women's Studies as noncomplex (review §4.1.2.3).

The  separation  from  Kindergarten  is  estimated  for  all  courses  by  the  distent
metric, which measures prerequisite lineages in a careful way by identifying the simulta-
neously  longest  necessary  and  (fl)  shortest  optional  route  from  kindergarten  to  the
course in question.  Chains of courses are trajectories of continuous knowledge elabora-
tion proportional to the number of academic credits (¯) awarded to constituent courses
along  the  way.   Some courses  from the Faculty  of Nursing  have the greatest  distent
scores; courses from the Department of Art and Design have the greatest distent scores
from the Faculty of Arts.  Statistical  comparisons between Faculties regarding median
distent scores show significant  differences among them with Nursing and Engineering
near the top and Physical Education & Recreation near the bottom, for example.  The
overall  distribution  of distent  scores among the courses implies  access for students to
new knowledge explodes in the first two years of University and quickly drops thereaf-
ter.  This contrasts with the distribution of courses at each number level, which linearly
increases from 100- to 400-level courses.  Departments of the University are character-
ized  as  inflationist,  deflationist,  or  correspondent  as  a  function  of  the  correlation
between  the calculated  distent  scores  of constituent  courses  and stated number  levels
(review §4.2.1.1).
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scores; courses from the Department of Art and Design have the greatest distent scores
from the Faculty of Arts.  Statistical  comparisons between Faculties regarding median
distent scores show significant  differences among them with Nursing and Engineering
near the top and Physical Education & Recreation near the bottom, for example.  The
overall  distribution  of distent  scores among the courses implies  access for students to
new knowledge explodes in the first two years of University and quickly drops thereaf-
ter.  This contrasts with the distribution of courses at each number level, which linearly
increases from 100- to 400-level courses.  Departments of the University are character-
ized  as  inflationist,  deflationist,  or  correspondent  as  a  function  of  the  correlation
between  the calculated  distent  scores  of constituent  courses  and stated number  levels
(review §4.2.1.1).

The size of the entire prerequisite  genealogy supporting the knowledge  in any
course can be traced from that course back to Kindergarten, quantified, and reported as a
statistic called sustent, which is used to characterize the knowledge base for that course.
Faculties with courses that sport high sustent scores and wide knowledge bases relative
to their distent scores are characterized as integrative and include in descending order:
Medicine  & Dentistry,  Business,  and  Agriculture,  Forestry,  & Home  Economics,  for
example;  in contrast,  Native Studies  integrates  relatively less knowledge,  for example
(review §4.2.1.2).

All possible learning trajectories from a particular course can be traced from that
course out to the terminal boarders of the network, quantified, and reported as a statistic
called extent,  which is used to measure the applicability  of that course for future aca-
demic  learning.   Courses  from School  have  the greatest  potential  to influence  future
learning, while at University, the Faculty of Science contains many courses from which
to  construct  additional  knowledge,  for  example.   Combined  with  the  sustent  metric,
extent defines a statistic, called 'academic centrality' – a measure of a course's linkage to
both prerequisite and subsequent courses in terms of knowledge, and a course's connec-
tion to both past  and future  learning  for the student.   By this  structurally  determined
statistic,  the most important  academic pivot points for education in Alberta is English
Language Arts 30-2 and Grade 9 (review §4.2.1.3).

A metric that views courses as the locuses of knowledge creation and the net-
work as the structure determining a sort of knowledge percolation is called intent, and it
describes how the network architecture generates a sense of direction for building knowl-
edges.  The distribution of intent scores reveals that most university courses depend on
prerequisite  knowledge  that  is  not  especially  intended  for  them.   Courses  from  the
Faculty of Arts have relatively high intent scores, while those from the Faculty of Sci-
ence have relatively low intent scores, for example (review §4.2.1.4).
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A metric that views courses as the locuses of knowledge creation and the net-
work as the structure determining a sort of knowledge percolation is called intent, and it
describes how the network architecture generates a sense of direction for building knowl-
edges.  The distribution of intent scores reveals that most university courses depend on
prerequisite  knowledge  that  is  not  especially  intended  for  them.   Courses  from  the
Faculty of Arts have relatively high intent scores, while those from the Faculty of Sci-
ence have relatively low intent scores, for example (review §4.2.1.4).

Based on Education literature, the Departments at the University are accepted as
each representing an academic discipline within the education system.  Courses can be
characterized as interdisciplinary in proportion to the magnitude they connect to courses
external to their own department, otherwise they remain disciplinary.  The Departments
of Biochemistry  and Economics  are identified as being highly interdisciplinary,  while
Interdisciplinary Studies, notably, is not (review §4.2.1.5).

The magnitude of disciplinary knowledge maintained in each University depart-
ment is estimated  by the network metric called disciplinary  cover.   It combines mea-
sures of total course weight, average distent, and offdiagonal complexity, as respectively
representing the metaphorical width, depth, and density of the departmental knowledge
to define a scaled area in an abstract parameter space.  Departments supporting knowl-
edge regarding languages are measured to have large academic cover scores in propor-
tion to the number of languages studied (review §4.2.1.6).

In summary, the courses in Alberta's  education system are fruitfully described,
mapped,  modelled,  and analyzed  based  on prerequisite  knowledge  relationships,  as  a
sparse,  weighted,  distributed,  small-world,  modular,  complex,  hierarchical,  scale-free,
directed  tree  network  using  computational  and  analytic  methods  common  in  Physics
while interpreted based on discourses with a place in Education.
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8. Appendix

8.1  Glossary
Academic Discipline: see discipline.

Acyclic graph: a directed graph without a cycle (see also cycle).

Adaptation:   a modification  of a system or its parts and their relations that makes the
system more fit for existance under the conditions of its enviornment.

Adjacency matrix:  a N µ N matrix representation of a graph, G, of order, N, assigned the
notation (G), whose elements, ai j(or i j), for an undirected graph are given by

ai j = aji = 9 1, if $ an edge between vertices i and j
0, otherwise

Adjacent:  a property of vertices, x and y, that are directly joined by an edge {x, y}.

Aesthetic:  besides being commonly concerned with issues of beauty, more technically,
the term can describe  a work made to a set  of principles  underlying and guiding a
particular artist or artistic movement, for example, "the Cubist aesthetic".

Affordance:   a  quality  of  an  object,  or  an  environment,  that  allows  an  individual  to
perform an action; those action possibilities that are readily perceivable by an actor.

Assortative mixing:  in the study of complex networks, the bias in favor of connections
between network nodes with similar characteristics, say, degree; disassortative mixing
is a bias in favor of connections between dissimilar nodes.

Bifurcation:  a separation of a structure into two branches or parts; qualitative change in
the dynamics of a system caused by changes in certain parameters.   In a dynamical
system,  a  bifurcation  is  a  period  doubling,  quadrupling,  etc.,  that  accompanies  the
onset of chaos.

Binary graph or network:  wherein edges are either fully present or not between nodes; a
graph with binary link strengths between any two nodes i and j: si, j  œ {0, 1}.

Chain length:  see path length.

Clique:  see module.

Clusters:  "my friend's friend is my friend." (Csermely: 17)

Cluster Coefficient: a global network metric equal to the number of closed triplets (or 3
x triangles) over the total number of triplets (both open and closed).

Comparative  education:   an  academic  field  of  study  that  examines  education  in  one
country (or group of countries) or context by using data and insights drawn from the
practises  and situation  in another  country or context.   Comparative  education  com-
monly  describes  educational  systems,  processes,  outcomes,  and  the  relationship
between  education  and society,  develops  educational  institutions  and practices,  and
establishes  generalized  statements  about  education  that  are  valid  in  more  than  one
country or context.
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Comparative  education:   an  academic  field  of  study  that  examines  education  in  one
country (or group of countries) or context by using data and insights drawn from the
practises  and situation  in another  country or context.   Comparative  education  com-
monly  describes  educational  systems,  processes,  outcomes,  and  the  relationship
between  education  and society,  develops  educational  institutions  and practices,  and
establishes  generalized  statements  about  education  that  are  valid  in  more  than  one
country or context.

Complete graph:  every two vertices are adjacent.

Complex system:    a system of connected agents that exhibits an emergent global behav-
ior not imposed by a central controller, but resulting from the interactions between the
agents (Bocara 2004).  "A system with a large 'throughput'"  - Alfred Hubler,  2005,
Sante Fe Institute.

Concept  map:  a graphical  tool for organizing  and representing  relationships  between
concepts indicated by a connecting line linking two visually distinct concepts.   Also
called mind map, multimodal map, and knowledge map in the education literature.

Connected graph:  " distinct pair of vertices {i,j} $ a path joining them.

Connectionism:   a  set  of  approaches  in  the  fields  of  artificial  intelligence,  cognitive
psychology,  cognitive  science,  neuroscience  and  philosophy  of  mind,  that  models
mental  or  behavioral  phenomena  as  the  emergent  processes  of  interconnected  net-
works of simple units, whereby their properties and behavior are determined by their
architecture (see Farmer 1990).

Constructivism:   a  theory  of  learning  which  argues  humans  construct  meaning  from
current knowledge structures; the view that all learning involves the interpretation of
phenomena,  situations,  and events,  including classroom instruction,  through the per-
spective of the learner's existing knowledge and current experiences.

Context:  the surroundings,  circumstances,  environment,  background, or settings which
determine, specify, or clarify the meaning of an event or instance.

Corequisite:  "The requirement, usually a course, that must be taken in conjunction with,
or  previously  passed,  when  registering  in  a  course  with  corequisite  requirements.
(Calendar, p. 726)"  See prerequisite.

Convergence:   a  meeting,  merging,  or  otherwise  of  initially  separate  approaches  and
fields; a new epitemological catagory. (see Divergence)

Curriculum  mapping:   a  procedure  for  reviewing  the  operational  curriculum  as  it  is
entered into a structured electronic database in an education setting.

Cycle:  a path (x0,x1 ,… , x) '  ≥ 3 fl x0 = x  fl xi ≠ xj  otherwise (see also tree).

Degree:  a measure for each node of the number of links it has; the number of connec-
tions a network element has ' d e o .  For vertex x, d(x) = »(x)», the number of verti-
ces adjacent to x, where  is the neighborhood of x.  A graph is said to be regular if
d(x) = constant " x.  A vertex of degree zero is said to be isolated.

Dendrogram:   a  nonunique,  tree-like  diagram  often  used  to  illustrate  a  hierarchical
arrangement among components of a system.
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Diachrony:  concern  with  the  way  in  which  something  has  developed  and  evolved
through time (see synchrony).

Discipline: A branch of learning or field of study characterized  by a defined body of
knowledge  that  is  accepted  and augmented  by scholars  who identify  themselves  as
participating members of the discipline.

Discrete  mathematics:   also  called  finite  mathematics,  is  the  study  of  mathematical
structures that are fundamentally discrete (as opposed to continuous) such as countible
sets  or  graphs  that  require  only  integers  (as  opposed  to  real  numbers)  for  their
description.

Distributed:  an adjective to describe a system that is composed of many elements (such
as the trillions of cells in the immune system),  and that activities  of the system are
accomplished by the combined action of many of these entities.

Divergence:  (see convergence)

Dynamic  programming:  a method of problem solving  by combining  the solutions  to
subproblems.   Every  subsubproblem  is  solved  just  once and its  answer  saved  in  a
table, thereby avoiding the work of recomputing the answer every time the subsubprob-
lem is encountered.

Eccentricity:  a node property determined by the length of the longest geodesic to any
other node in the network.

Edge:  an ordered pair of distinct elements of V.  The directed edge joining element x to
y  is  denoted  (x,y);  the  undirected  edge  joining  elements  x  and  y  is  denoted  {x,y}.
Edges are called links in network theory.  Two elements joined by an edge are said to
be adjacent.

Element:  a component of a network, such as a node, link, subnetwork, or module.

Embedding:  a representation of a topological object, such as a manifold or a network, in
a  certain  space  in such  a way that  its  connectivity  or  algebraic  properties  are pre-
served.   For  example,  a  graph  embedding  preserves  connectivity.   One  space  X  is
embedded in another space Y when the properties of Y restricted to X are the same as
the properties  of X.   For example,  the rationals  are embedded  in the reals,  and the
integers are embedded in the rationals.  In geometry, the sphere is embedded in 3  as
the unit sphere.

Emergence:  the appearance, the coming into being, and the origin of a novel qualitative
or quantitative  property  of  a  system not  previously  held by its  constituents;  a  new
ontological catagory. (see Submergence)

Emergent behavior:  large-scale behavior of a system resulting from the local interac-
tions between its members and not the existence of a central controller.
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Endogenous:  having an internal cause or origin not attributable to any external or envi-
ronmental factor; confined within a group or society.  (see exogenous)

Extrinsic:  a property that depends on a thing's relationship with other things.

Exogenous:   of, relating to, or developing from external  factor  caused by an agent or
organism outside the body; relating to an external group or society.  (see endogenous)

Fractal:   an  object  or  quantity  that  displays  self-similarity,  in  a  somewhat  technical
sense,  on all  scales.   The object  need not  exhibit  exactly  the  same structure  at  all
scales,  but  the  same "type"  of  structures  must  appear  on all  scales.   A plot  of the
quantity on a log-log graph versus scale then gives a straight line, whose slope is said
to be the fractal dimension.  The prototypical example for a fractal is the length of a
coastline measured with different length rulers.  The shorter the ruler, the longer the
length measured,  a paradox known as the coastline paradox.   Many chaotic systems
have fractals as state-space structures.

Geodesic:  the shortest path traced through a network between two nodes, usually mea-
sured by the counting of intermediate links.

Graph:  G = {V, E} consists of a set of vertices V  and a set of edges E.  Two vertices
u and v form an edge of the graph if 8u, v< œ E.  The notation G(M,N) represents an
arbitrary graph of size M an order N.

Graph theory:  the study of the properties of graphs, where a graph is a set of vertices
with a set of edges, where each edge is defined by a pair of vertices. (see network)

Hierarchy:  an organizational  structure wherein every member,  except one, is subordi-
nate to at least a single other entity; members chiefly communicate with their immedi-
ate superior(s) and with their immediate subordinates.

Historicism: a philosophical theory that includes one or both of two claims: that there is
an organic succession of developments,  and/or; that local conditions and peculiarities
influence the results in a decisive way, such that, there can be no ahistorical perspec-
tive  for  an  understanding  of  human  nature  and  society.   It  can  be  contrasted  with
reductionist theories which suppose that all developments can be explained by funda-
mental principles.

Hub:  connection rich node; a network element of high degree.

Interdisciplinarity:  integrating  knowledge  from  two  or  more  distinct  academic  disci-
plines into a project that combines insight and breadth of vision arising from exploring
connections between knowledge development in the involved disciplines.

Intrinsic:  a property that an object or a thing has of itself, independently of other things,
including its context.

Junior course:  a university course numbered 100-199.

Learning:  context dependent adaptive change, context dependent.

Library  Science:   an  interdisciplinary  science  incorporating  the  humanities,  law  and
applied science to study topics related to libraries, the collection, organization, preser-
vation  and  dissemination  of  information  resources,  and  the  political  economy  of
information.   Also called  information  science,  not  to  be confused  with  information
theory.
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Library  Science:   an  interdisciplinary  science  incorporating  the  humanities,  law  and
applied science to study topics related to libraries, the collection, organization, preser-
vation  and  dissemination  of  information  resources,  and  the  political  economy  of
information.   Also called  information  science,  not  to  be confused  with  information
theory.

Link:  a connection between two elements of a network.  Links are called edges in graph
theory (for more details see edge).

Logical topology:  from network computing, a term used to describe the arrangement of
devices  on  a network,  plus  the communication  protocols  that  describe  how data  is
moved across the network.

Main diagonal:  the collection of cells,  i,i ,which run from the top left corner to the
bottom right corner of square matrix .

Markov chain:  A discrete random process with the property that the next state depends
only on the current state.

Mathematica:  a commercial program providing a high-level programming language for
integrated numerics, symbolics, and graphics.

Median deviation:  also called the median absolute deviation (MAD), is a robust mea-
sure of variability,  defined as the median of the absolute deviations  from the data's
median.

Metric:  A nonnegative  function describing the "distance" between neighboring points
for a given set.  A metric satisfies the triangle inequality, g(x,y) + g(y,z) ≥ g(x,z), and
is symmetric, so g(x,y) = g(y,x), and also satisfies g(x,y) = 0.  A set possessing a metric
is called a metric space.  When viewed as a tensor, the metric is called a metric tensor.
More generally, a system or standard of measurement.

Mode:  the statistical value that occurs the most frequently in a data set or distribution.

Model:   a simplified mathematical  representation of a system containing only the few
relevant features that are thought to play an essential role in the interpretation of the
observed phenomena should be retained (Boccara  2004: ch. 1.2).  "Whereas a good
simulation should include as much detail as possible, a good model should include as
little as possible." (Maynard Smith 1974)  (see simulation)

Module:  a subnetwork wherein nodes are densely connected to one another, while being
sparsely connected to the rest of the network.

Multidisciplinarity:  a  non-integrative  mixture  of  disciplines  in  that  each  discipline
retains its methodologies and assumptions without change or development from other
disciplines within the multidisciplinary relationship.

Naturalism:  the twofold view that (1) everything is composed of natural entities – those
studied  in the  (natural)  sciences  – whose properties  determine  all  the properites  of
things, persons included; and (2) acceptable methods of justification and explanation
are continuous, in some sense, with those in science.  Clause (1) is ontological, clause
(2) is epistemological.  Aristotle and Hobbes sometimes are counted from their eras as
ancestors of Naturalism.
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Naturalism:  the twofold view that (1) everything is composed of natural entities – those
studied  in the  (natural)  sciences  – whose properties  determine  all  the properites  of
things, persons included; and (2) acceptable methods of justification and explanation
are continuous, in some sense, with those in science.  Clause (1) is ontological, clause
(2) is epistemological.  Aristotle and Hobbes sometimes are counted from their eras as
ancestors of Naturalism.

Naturals:  the set of non-negative integers,  = {0, 1, 2, 3, 4, …}.

Nestedness:   a  structural  property  of  networks  whereby  a particular  network  contains
other networks as its elements (nodes or modules),  as well as belonging to a higher
order network as an element itself.

Neighborhood:  i  is the set of all nodes adjacent to a node, i.  In a directed graph, a
specifically incoming, -  i , and outgoing, +i , neighborhood can be defined.  For a
course network, the neighborhood can be split into prerequisites to node i, prei , and
subsequents to node i, subi .

Network:  A graph together with a function which assigns a positive real number to each
edge, and perhaps each vertex (Harary 1994, p. 52). (see graph)

Network theory:  an area of applied mathematics and an extension of graph theory.  It is
concerned with the study of graphs as a representation of either symmetric relations
or,  more  generally,  of  asymmetric  relations  between  discrete  objects.  Examples  of
which include logistical  networks,  the World Wide Web, gene regulatory  networks,
metabolic networks, social networks, epistemological networks, etc. 

Node:  an element of a network that is connected, with some degree, to other elements.
A node is called a vertex in graph theory, and often called a point in the study of social
networks.

Nonparametric statistics:  methods that rely on fewer assumptions than regular statistics
regarding  the  sample  data,  resulting  in  statistics  that  are  more  robust  and  widely
applicable, though often more requiring of data to establish confidence levels.

Number level:  a set of numbers with the same first digit used to desribe courses at a
particular level in the education system; for example, the number levels 10, 20, & 30,
describe courses in grades 10, 11, and 12 respectively, such that ,and, for example, the
number  levels 100, 200, 300, & 400, describe courses in first through fourth years,
such  that,  AN SC 375,  Animal  Health  (#1341)  is  identified  as  a  300-level  course
designed for third year students.

Objectivity:  the property of scientific measurement that can be tested independent from
the individual who proposes them.  It is thus intimately related to testability and repro-
ducibility.  The results of measurement can be communicated from person to person,
and then demonstrated for third parties, as an advance in understanding of the objec-
tive  world.   Such  demonstrable  knowledge  would  ordinarily  confer  demonstrable
powers of prediction or technological construction.  Consequently, disputes surround-
ing objective accounts can be contained to the object studied.
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Offdiagonal:  a diagonal line of matrix entries running from the top to right sides paral-
lel to, but not superimposed on, the main diagonal.

Offdiagonal  complexity: a fairly new metric proposed to measure the complexity of a
undirected,  binary network based on the variety of links between nodes of differing
degree.

Order:  N = »V(G)», the number of vertices of a graph, G (see also size).

Parameter space:  the set of values of parameters encountered in a particular mathemati-
cal model.  Often the parameters are inputs of a function, in which case the technical
term for the parameter space is domain of a function.; see phase space.

Path length: the number of ordered pairs of vertices between two vertices of a graph; the
number of intermediaries plus one between two vertices of a graph.  A path, joining
vertex x0  to x  can be represented by a sequence of vertices (x0 ,x1 ,… , x) assuming $
edges  ej = (xj-1 ,x) "  j = 1, 2, …, .   The smallest  path length from vertex x  to y  is
called the geodesic between x and y.

Percolation:  concerns the movement and filtering of fluids through porous materials in
Physics, and more abstractly within Mathematics, concerns the behavior of connected
clusters in a random graph.

Phase space:  a set  whose elements represent possible states of a system; also called
parameter space. (see also dynamical system)

Point:  see node..

Postmodernism:   The state,  condition,  or period subsequent  to  that which is  modern,
especially  styles,  concepts,  or points  of view involving  a conscious  departure  from
modernism,  especially  when characterized  by a rejection  of ideology and theory in
favour  of  a plurality  of  values  and techniques.   The term,  when used pejoratively,
describes  tendencies  perceived  as  relativist,  counter-enlightenment  or  antimodern,
particularly in relation to critiques of rationalism, universalism, or science.

Poststructuralism:  a generic term used to refer to all those theories that came to reject
principles  of  structuralism  mainly  based  on  suspicions  of  'authoritarian',  'totalizing'
and 'universal' claims, and maintain that meanings, the Self, and intellectual categories
are shifting and unstable (see structuralism).

Preferential  attachment:   a  proposed mechanism for the emergence  of scale-free  net-
works during a process of growth or evolution, such that, the attachment of each new
network element is statistically biased towards nodes of high degree, thus promoting a
"rich get richer effect".

Prerequisite:  "The preliminary requirement, usually another course, which must be met
or waived before a course can be taken. (Calendar, p. 727)"  See corequisite.

277



Probability distribution:  describes the domain of possible values that a random variable
can attain,  and,  the probability  that the  value of the random variable  is  within  any
interval of that domain.

Random graph:  a graph in which either a fixed number of edges are randomly distrib-
uted amoung all the pairs of a set of vertices, or, alternatively, a graph in which every
pair have the same independent probability of being connected.

Radius:  a network property measured as the smallest eccentricity of any vertex.

Robustness:   the possibility  of a small  network response to large stimuli;  compare  to
sensitivity.

Scale:   a  ratio  of a single  unit  of measurment  (distance)  on a map to  the equivalent
measurment of the object in question (on the ground) in cartography.

Scale-free:   a  class  of  network  topologies,  such  that,  the  distribution  describing  the
number of nodes having d links decreases as d to some characteristic power for large
d.  Such a topology implies a hierachical structure at all scales.  One requires a large
domain - a scale of several magnitudes - to show the scale-free behavior convincingly.

Self-organization:  the process whereby a structure or pattern appears in a system with-
out a central  authority  or external  element imposing it  through planning.   This glo-
bally coherent pattern appears from the local interaction of the elements that makes up
the system, thus the organization is achieved in a way that is parallel (all the elements
act  at the same time)  and distributed  (no element  is  a coordinator).   Defined  as "a
process  through  which pattern  at  the  global  level  of a  system emerges  solely from
numerous,  local interactions  amoung lower level components  of the system" (Blazis
2002).

Senior course:  a university course numbered 200-499.

Size:  M = »E(G)», the number of edges of a graph, G (see also order).  A graph is called
empty if M = 0.

Skewness:  a statistical measure of the asymetry of a distribution.

Small-world:  a network property, such that, the average number of links in the shortest
path separating an arbitrary pair of nodes remains small even for large networks.  As
famously  described  by  Watts  &  Strogatz  (Watts  & Strogatz  1998;  Strogatz  2001;
Watts  2003;  Strogatz  2003),  such  a  network  has  a  high  local  density  of  links  and
simultaneously has path lengths of the same magnitude as a random network.  Small-
world networks can be made from a regular lattice by introducing a certain amount of
randomness to the links.  

Small-world phenomenon:  two randomly chosen persons are connected by only a short
chain of acquaintances, and has been verified for many different social networks.

Social capital:  "the aggregate of the actual or potential resources which are linked to
possession  of  a  durable  network  of  more  or  less  institutionalised  relationships  of
mutual acquaintance and recognition"; "the collective value of all social networks and
the inclinations that arise from these networks to do things for each other."
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Social capital:  "the aggregate of the actual or potential resources which are linked to
possession  of  a  durable  network  of  more  or  less  institutionalised  relationships  of
mutual acquaintance and recognition"; "the collective value of all social networks and
the inclinations that arise from these networks to do things for each other."

Social cartography:  the writing and reading of maps addressing questions of location in
the social milieu, usually from a postmodern perspective.

Structuralism:  an approach to the human sciences that attempts  to analyze a specific
field as a complex system of interrelated parts.  There are four common ideas regard-
ing structuralism that form an "intellectual trend": 1. the structure is what determines
the position of each element of a whole;  2. structuralists believe that every system has
a structure  that  is,  at  least  in principle,  knowable;   3.  structuralists  are focused  on
"structural" laws that deal with coexistence rather than changes;  4. structures are the
"real things" that lie beneath the surface or the appearance of meaning.  An approach
in which social structures, constraints and opportunities are viewed as having a more
pronounced effect on human behavior than do cultural norms or other subjective states
(see poststructuralism).

Submergence:   the  disappearance  of  higher-level  things  and  their  properties,  such  as
evaporation, forgetting, and the crumbling of social systems. (see emergence)

Subnetwork:  G£  = {N£ , E£} is a subgraph of G(N, E) if N£  Õ N and E£  Õ E.

Subsequent:  any course that calls upon another course as a prerequisite.  For example,
then Math 200 is  a  subsequent  of  Math 100,  if  Math 200 refers  to Math 100 as a
prerequisite.

Syllabus:  an outline of the subjects in a course of study or teaching.

Synchrony: simultaneous action, development, or occurrence; examination of the cross-
section of a system and its arrangement at a point in time (see diachrony).

System: a collection of interracting elements making up a whole, such as, for instance, a
clock or a class of students (see distributed).

Topological sort:  a linear ordering of the nodes in a directed acyclic graph (DAG), G =
(V,E), in which each node comes before all nodes to which it has outbound edges; that
is, if G contains an edge (u,v), then node, u, appears before v in the ordering. Every
DAG has one or more topological sorts.  

Topology:  the mathematical study of spatial properties that are preserved through elastic
deformations (twisting and stretching but no tearing or gluing) of objects.

Tree:  an undirected connected graph without any cycle.

Trace:  the sum of the elements on the main diagonal of an n µ n square matrix, , such
that, Tr[] = ⁄i=1

n aij .
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Units of Course Weight:  A numerical used in computing grade point average, instruc-
tional fees, and for meeting degree requirements,  which reflects the amount of class
time devoted to the course.  Represented in the University Calendar by the symbol ¯.
(Calendar, p. 448 & 727)

Vertex:  element of a graph, also called a node if an element of a network.

Weighted graph:  a graph or network with links of various strength, say, si, j  œ [0, 1], and
nodes of various weight, say, wi  œ {¯1, ¯3, ¯5, ¯6, ¯12}.
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9. Attachment

9.1  Supplementary Figures
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Figure 9.1-3.1.2.3-1a   Highlights  of mathematics  courses on the adjacency matrix
visualization.   Courses  of a particular  subject  can be identified  and highlighted  so
specific relations can be observed.  The thin, upper left blue highlights cover the high
school math courses.  There are many more subsequent courses (white points in blue
columns) referring to math courses,  than prerequisite  courses (white points in blue
rows) referred to by math courses.  Therefore, mathematics  is clearly characterized
as a subject that provides knowledge to the rest of the education system, but does not
require significant knowledge from outside the subject.
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Figure 9.1-3.1.2.3-1b   Focus on University  mathematics  courses on the adjacency
matrix visualization.  The domain and range of the matrix is restricted to show more
detail on a larger scale.  Observe how MATH is heavily required as a prerequisite for
PHYS and STAT courses,  but not conversely.   Both MATH and STAT are richly
connected among there own kind.  The thin, lower right highlights cover the work
experience,  WKEXP,  courses  which  require  any  three-hundred  level  MATH  or
STAT course as a prerequisite.
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BIOL 332

BIOL 208 STAT 151

MATH 113

MATH 115

MATH 120

Figure 9.1-3.2.2-2   As shown in Figure 3.1.2-2,  the prerequisite  list in the course
description for BIOL 332 (#3889) implies  the illustrated neighborhood subnetwork
(above)  and  the  logical  statement:  If  (BIOL 208  fl  STAT 151  fl  (MATH  113  fi
MATH 115 fi MATH 120)) then BIOL 332 else ¬BIOL 332.  Ignored was the con-
cluding sentence,  "May not be taken for credit  if credit already obtained in ZOOL
332",  which  in  turn,  implies  the  logical  statement:  If  ZOOL 332 then BIOL 332.
Coupled with the (near) universal constraint  that courses cannot be taken twice for
credit, this implies that any student who has ZOOL 332 on their transcript also effec-
tively has BIOL 332 on their transcript,  therefore BIOL 332 cannot be enrolled in
since a course cannot be taken twice for credit.  Elsewhere in the Calendar, there are
two other  types  of administrative  constraints  within  some course  descriptions  that
refer to the year and/or degree program of a student, for example, DES 483 (#1929),
Seminar  on Design  Issues,  "Restricted  to third-year  Bachelor  of Design students".
This constraint implies the following two control statements: a) If YEAR 1 fi YEAR
2 then  ¬DES 483,  and,  b)  If  PROGRAM  Design  then DES 483 else  ¬DES 483.
None of these types of additional constraints regarding the year of a student (YEAR),
the specific program (PROGRAM) he or she is following, or the effect of overlap-
ping  courses  (see  Figure  3.2.2-2)  are  directly  represented  in  the  course  network
which is built entirely from prerequisite associations.  Indeed, these additional condi-
tions  placed  on  students  by  administration  might  be  modelled  by  a  secondary
'constraint'  network  with  different  properties  from the prerequisite  course  network
(the main subject of the thesis).  A student's academic experience would be affected
through interactions mediated by both of the networks.   This sophisticated view of
the education  system is  not  implemented  in this  thesis  in favor  of  a lesser,  more
tractable approach.   Instead, the above described logical statements are stored in a
list  with  entries  corresponding  to each course node,  to be called upon for various
student  centered  applications  described  in chapter  3.2 only.  For example,  besides
just the transcript,  the program, Calendar  Navigator,  also accepts as input the year
(YEAR) and degree program (PROGRAM) of the student.  The program takes into
account theses parameters when indicating to students what courses are, and are not,
available to them.  Otherwise, the neglect of these administrative constraints through-
out the rest  of the thesis,  say in chapter  four,  as reflected  by their  absence in the
course network, represents a deficiency to be addressed in future research.
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Figure 9.1-3.2.2-3a  
Calendar  Navigator
wigit  screenshot  exam-
ple: Network Formation.
Available  files  contain-
ing  course  data  are
listed for selection at the
top.  Subsets of the data
may  be  isolated.   A
basic  network  can  be
created  and  tested  from
the raw data.
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Figure  9.1-3.2.2-3b   Calendar  Navigator  widget  example:  Network  Transformer.
Individual  nodes  or  subsets  can  be  selected  for  manual  manipulation  of  the
embedding.
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Figure  9.1-3.2.2-3c   Calendar  Navigator  widget  example:  Weighted  Embedding.
The default embedding for the program is insensitive to the varying strength of the
edges or the varying weights of the nodes.  This widget offers capabilities to re-em-
bed the network according to a force-directed,  spring-charge  algorithm tailored for
course networks.
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Figure 9.1-3.2.2-3d   Calendar  Navigator  widget  example:  Network Presentation  –
transcript  visualization.   A student's  transcript  can  serve  as  an  input  for  directed,
adaptive, and speculative course browsing.
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Figure 9.1-3.2.2-3e   Calendar  Navigator  widget  example:  Network  Presentation  –
network visualization.   The visual  parameters  of the  graph are almost  all  open to
manipulation.
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Figure 9.1-3.2.2-3f   Calendar  Navigator  widget  example:  Network  Presentation  –
node identification.  Nodes or subnetworks can be identified and labeled with these
fields and buttons.   Corresponding  calendar  entries (review Figure 8.2-3.2.2-3)  for
any single course node can be brought up with the wide central button.
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Figure 9.1-4.2.1.2-8   An alternate scatterplot of sustent and distent scores for each
course in Alberta's education system where the points are colored by Faculty member-
ship.  The points are rendered in reverse alphabetical order by faculty, therefore, the
relatively large Faculty of Science (Ê) will appear under represented due to overlap
by other faculties; nevertheless, overall coverage of the phase space is clear.  Vertical
columns appear in the distribution of the data because course distent scores are, in a
sense,  quantized  by the  common course  credit  weights  of  ¯1.5,  ¯3,  ¯5,  and ¯6.
Linear patterns of positive slope are also apparent (A), especially among the points
from  school  and  along  the  right,  trailing  edge  of  the  distribution  of  university
courses.  These linear patterns represent long sequences of courses with one prerequi-
site that depend on each other.   In these cases,  changes in distent  are matched by
changes  in sustent  scores,  the slope  of the pattern  is  unity,  and no information  is
offered by the sustent  measure  over  the distent  measure.   Courses  that rise above
these basic patterns are those that draw on multiple prerequisites.   The greater the
diversity  of  prerequisites,  the  more  sustent  increases  relative  to  distent.   Courses
along the leading upper left edge of the distribution (B) have the maximum sustent at
any given distent.  The Faculty of Agriculture, Forestry, and Home Economics (Ê) is
disproportionately  represented  by courses  along this  leading  edge by courses  with
relatively high sustent scores.
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Figure 9.1-4.2.1.3-2   A scatterplot  of extent  and distent  scores for each course in
Alberta's  education  system  where  the  points  are  colored  by  Faculty  membership.
The reader should be aware the diagram does not communicate density well, that is,
there are no means to determine which points are degenerate, such that, they repre-
sent multiple courses with the same coordinate.  Indeed, most of the 4 815 points lie
very close to the x-axis because, as shown in Figure 4.2.1.3-2, most courses have low
extent  scores.   Moreover,  the points  are rendered in alphabetical  order by faculty,
therefore, the relatively large Faculty of Arts (Ê) appears under represented due to
overlap by other faculties; nevertheless, overall coverage of the phase space is clear.
Vertical columns appear in the distribution of the data because course distent scores
are, in a sense, quantized by the common course credit weights of ¯1.5, ¯3, ¯5, and
¯6.  A linear pattern of shallow, negative slope appears in the top left of the diagram
representing the low distent early grades, which also possess high extent since they
each influence  all subsequent  learning.   There is  a dramatic  drop in extent  scores
when the course network begins to branch around GRADE 9 (A).  At this point, no
course  influences  all  remaining  courses,  especially  after  the  bifurcation  between
academic and nonacademic high school courses.  The majority of university courses
are contained within the area outlined by the yellow box and highlighted by the inset
scatterplot,  upper right.  Most of the high extent university courses are observed to
be from the Faculty  of Science.   As distent  increases,  the number of high sustent
courses rapidly decreases.  Points such as B1, MATH 209 (#4179), Calculus III, and
B2, CH E 243 (#3590), Engineering Thermodynamics, represent the few courses that
retain higher extent scores despite their large distent.  In the course network, these
correspond to the largest outlying hubs.
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Figure 9.1-4.1.2.2-3a (previous)  A dendrogram emphasizing the size and composi-
tion  of  indivisible  modules  in  the  course  network.   A union  of  the  course  codes
(subjects) within each module is listed beside each bar.

Figure 9.1-4.1.2.2-3b (next)   A dendrogram emphasizing the hierarchical  modular
structure of the course network.   Most bifurcations  caused by cleavage of the net-
work are clearly resolved, as well as the relative contributions to modularity (DQ).
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Figure 9.1-4.1.2.2-4a (previous)  The first partition of the network into two commu-
nities that increase modularity, Q.  The split is also indicated by (1) on the dendro-
gram of Figure 4.1.2.2-3.  Here, the blue community (Ê) is shown by the associated
pie chart (Á) to consist mostly of Arts and Physical Education courses supported by
a certain portion of the academic School courses.  This is not surprising since besides
a coupling to School, the Faculties of Arts and Physical Education, given their size,
are  structurally  isolated  from the rest  of the University  (see Figure  4.1.2.1-1).   A
further  internal  split  of  the  blue  community  is  illustrated  in  Figure  8.2-4.1.2.2-4h
where most of the courses from other faculties are cleaved away.  
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Figure 9.1-4.1.2.2-4a (previous)  The first partition of the network into two commu-
nities that increase modularity, Q.  The split is also indicated by (1) on the dendro-
gram of Figure 4.1.2.2-3.  Here, the blue community (Ê) is shown by the associated
pie chart (Á) to consist mostly of Arts and Physical Education courses supported by
a certain portion of the academic School courses.  This is not surprising since besides
a coupling to School, the Faculties of Arts and Physical Education, given their size,
are  structurally  isolated  from the rest  of the University  (see Figure  4.1.2.1-1).   A
further  internal  split  of  the  blue  community  is  illustrated  in  Figure  8.2-4.1.2.2-4h
where most of the courses from other faculties are cleaved away.  

Figure 9.1-4.1.2.2-4b  (next)   The second  partition  of the remaining  network  into
two communities that increase modularity, Q.  The split is also indicated by (2) on
the dendrogram of Figure 4.1.2.2-3.  Here, the separated magenta community (Ê) is
shown by  the  associate  pie  chart  (Á)  to  be made  up of  exclusively  nonacademic
school courses – mostly from the Registered Apprenticeship  Program (RAP).  This
structurally indicates the program is extremely isolated from the knowledge of any
other portion of the education system.  The remaining red community (Ê) is shown
by the associated pie chart (Á) to consist mostly of the remaining Arts courses, plus
courses from Business, Engineering, Medicine and Science supported by the rest of
the academic School courses.  
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Figure 9.1-4.1.2.2-4c (previous)   The third partition of the remaining network into
two communities that increase modularity, Q.  The split is also indicated by (3) on
the dendrogram of Figure 4.1.2.2-3.  Here, at this stage, almost the entire Faculty of
Medicine and Dentistry, plus most of the Faculty of Agriculture, Forestry, and Home
Economics  are  grouped  together  in  one  community  (Ê),  along  with  supporting
courses from subjects in the Faculty of Science, such as, Biology, Botany, Chemis-
try, Genetics, Microbiology, and Zoology.
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Figure 9.1-4.1.2.2-4c (previous)   The third partition of the remaining network into
two communities that increase modularity, Q.  The split is also indicated by (3) on
the dendrogram of Figure 4.1.2.2-3.  Here, at this stage, almost the entire Faculty of
Medicine and Dentistry, plus most of the Faculty of Agriculture, Forestry, and Home
Economics  are  grouped  together  in  one  community  (Ê),  along  with  supporting
courses from subjects in the Faculty of Science, such as, Biology, Botany, Chemis-
try, Genetics, Microbiology, and Zoology.

Figure 9.1-4.1.2.2-4d (next)  The fourth partition of the remaining network into two
communities  that increase modularity,  Q.  The split is also indicated by (4) on the
dendrogram of  Figure  4.1.2.2-3.   Here,  most  of the  remaining  School  courses  are
separated into their own community (Ê).  These include all the primary grades, all
the nonacademic courses from the Integrated Occupational Program (IOP) and Green
Certificate  Program  (GCC),  most  of  the  nonacademic  courses  from  Career  and
Technology  Studies  (CTS),  plus  a  few  academic  courses  supporting  university
admission.
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Figure 9.1-4.1.2.2-4e (previous)   The fifth partition of the remaining network into
two communities that increase modularity, Q.  The split is also indicated by (5) on
the  dendrogram  of  Figure  4.1.2.2-3.   Here,  the  Faculties  of  Nursing  and  Native
Studies are decisively pulled away from the rest of the network.
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Figure 9.1-4.1.2.2-4e (previous)   The fifth partition of the remaining network into
two communities that increase modularity, Q.  The split is also indicated by (5) on
the  dendrogram  of  Figure  4.1.2.2-3.   Here,  the  Faculties  of  Nursing  and  Native
Studies are decisively pulled away from the rest of the network.

Figure 9.1-4.1.2.2-4f (next)   The sixth partition of the remaining network into two
communities  that increase modularity,  Q.  The split is also indicated by (6) on the
dendrogram of Figure 4.1.2.2-3.   Here, almost the entire Faculty of Engineering is
isolated  in  a  community  (Ê)  along  with  supporting  courses  from  subjects  in  the
Faculty  of  Science,  such  as,  Computer  Science,  Earth  and  Atmospheric  Science,
Mathematics, Statistics, and Physics.
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Figure 9.1-4.1.2.2-4g  (previous)   The seventh  partition  of  the remaining  network
into two communities that increase modularity, Q.  The split is also indicated by (7)
on the dendrogram of Figure 4.1.2.2-3.  Here, almost the entire Faculty of Business
is isolated into a community (Ê) along with supporting courses from subjects in the
Faculty  of  Arts  (for  example,  Economics,  English,  and Psychology)  and even the
Faculty of Science (for example, Mathematics and Statistics).
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Figure 9.1-4.1.2.2-4g  (previous)   The seventh  partition  of  the remaining  network
into two communities that increase modularity, Q.  The split is also indicated by (7)
on the dendrogram of Figure 4.1.2.2-3.  Here, almost the entire Faculty of Business
is isolated into a community (Ê) along with supporting courses from subjects in the
Faculty  of  Arts  (for  example,  Economics,  English,  and Psychology)  and even the
Faculty of Science (for example, Mathematics and Statistics).

Figure 9.1-4.1.2.2-4h (next)  The eighth partition in the network creating communi-
ties that increase modularity, Q.  The split is also indicated by (8) on the dendrogram
of Figure 4.1.2.2-3.   Here,  most of the remaining Science  and Agriculture  courses
(Ê) are pulled away from the largest module (Ê) which is left with a preponderance
of courses from the Faculties of Arts and Physical Education.
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9.2  Supplementary Table

Table 9.2-1   Course node  properties.   Each course  is  represented  by a node in a
network  with  links  determined  by prerequisite  relations.   Nodes  are  identified  by
their  administrative  names  and classifications,  and,  are  characterized  by structural
metrics, where colors gradually indicate extremely low (blue) and high (red) values.
The size or weight of a course is proportional to it's reported academic credits (¯).
The connectedness of a course node to neighboring nodes is measured by the degree,
d.  The capacity of a course to process and exchange knowledge with the rest of the
education  network  is  measured  by  the  academic  flux  statistic,  F.   The  structural
importance of a course node location in the network is estimated by the eigenvector
centrality statistic, ce .  The distent value, D, indicates the separation of each course
from kindergarten.  The sustent metric, S, measures the size of the subnetwork from
which a course draws prerequisite  knowledge.   The extent  metric, E, measures the
size of the subnetwork to which a course offers prerequisite  knowledge.   The aca-
demic centrality  score for a course,  ca ,  determines  its global influence on the net-
work.  The intent metric, I, measures the amount of specific support  received by a
course from the rest of the network.  The table is long because it is so comprehen-
sive.  Unfortunately,  its organization contains quirks reflecting the ad hoc history of
the data base creation,  as follows.   At the top, courses from school (Fac.: SH) are
listed alphabetically  by subject code (column 4), followed by courses from univer-
sity, which start at node #1328.  From there, courses are first categorized by faculty
in the somewhat  alphabetical  order data for each were processed (# starting node):
AH (#1328), AR (#1393), BC (#3410), EN (#3590), SC (#3890), MH (#4400), NS
(#4517), NU (#4561), PE (#4613), SJ (#4771), and SS (#4806).  Within each faculty,
courses are listed alphabetically by subject code, then catalogue number.

# - course node number F - academic flux
Fac. - faculty membership ce - eigenvector centrality, œ @0, 1D
Dept. - department membership D - distent, units : H¯L
Sub. - subject code S - sustent, units : H¯L
Num. - catalogue number E - extent, units : H¯L
¯ - course weight HcreditsL ca - academic centrality H10-2 L, œ @0, 1D
dpre - degree, link strength to prerequistes I - intent, units : H¯L
dsub - degree, link strength to subsequents

# Fac. Dept. Sub. Num. ¯ dpre dsub F ce D S E ca I
1 SH CTS AGR 1010 1 1.0 11.0 11.0 0.000 48.0 47.0 154.2 0.01 1.1
2 SH CTS AGR 1030 1 2.0 4.0 8.1 0.000 49.0 49.0 29.2 0.00 1.1
3 SH CTS AGR 1060 1 1.0 1.0 1.0 0.000 49.0 48.0 19.1 0.00 1.1
4 SH CTS AGR 1070 1 2.0 1.0 2.1 0.000 49.0 49.0 19.1 0.00 1.1
5 SH CTS AGR 1080 1 1.0 1.0 1.0 0.000 48.0 47.0 19.1 0.00 1.1
6 SH CTS AGR 1090 1 1.0 1.0 1.0 0.000 49.0 48.0 19.1 0.00 1.1
7 SH CTS AGR 1100 1 1.0 0.0 0.0 0.000 49.0 48.0 15.7 0.00 1.1
8 SH CTS AGR 1110 1 1.0 2.0 2.0 0.000 49.0 48.0 22.7 0.00 1.1
9 SH CTS AGR 2020 1 2.0 0.1 0.2 0.000 50.0 50.0 0.4 0.00 1.1

10 SH CTS AGR 2030 1 2.0 1.1 2.2 0.000 50.0 51.0 2.4 0.00 1.3
11 SH CTS AGR 2040 1 2.0 1.1 2.2 0.000 50.0 51.0 2.4 0.00 1.3
12 SH CTS AGR 2050 1 1.0 1.1 1.1 0.000 50.0 49.0 2.4 0.00 2.1
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12 SH CTS AGR 2050 1 1.0 1.1 1.1 0.000 50.0 49.0 2.4 0.00 2.1
13 SH CTS AGR 2060 1 2.0 1.1 2.2 0.000 50.0 51.0 2.4 0.00 2.1
14 SH CTS AGR 2070 1 2.0 1.1 2.2 0.000 50.0 51.0 2.4 0.00 1.3
15 SH CTS AGR 2080 1 1.0 1.1 1.1 0.000 49.0 48.0 2.4 0.00 2.0
16 SH CTS AGR 2090 1 1.0 1.1 1.1 0.000 50.0 49.0 2.4 0.00 2.1
17 SH CTS AGR 2100 1 1.0 0.1 0.1 0.000 49.0 48.0 0.4 0.00 1.1
18 SH CTS AGR 2120 1 1.0 1.1 1.1 0.000 50.0 49.0 4.2 0.00 1.5
19 SH CTS AGR 2130 1 1.0 0.1 0.1 0.000 49.0 48.0 0.4 0.00 1.1
20 SH CTS AGR 2140 1 2.0 1.1 2.2 0.000 50.0 51.0 2.3 0.00 1.3
21 SH CTS AGR 3010 1 1.0 0.2 0.2 0.000 49.0 48.0 1.0 0.00 1.1
22 SH CTS AGR 3030 1 1.0 0.2 0.2 0.000 51.0 52.0 1.0 0.00 2.2
23 SH CTS AGR 3040 1 1.0 0.2 0.2 0.000 51.0 52.0 1.0 0.00 2.2
24 SH CTS AGR 3050 1 1.0 0.2 0.2 0.000 51.0 50.0 1.0 0.00 2.9
25 SH CTS AGR 3060 1 1.0 0.2 0.2 0.000 51.0 52.0 1.0 0.00 2.9
26 SH CTS AGR 3070 1 1.0 0.2 0.2 0.000 51.0 52.0 1.0 0.00 2.2
27 SH CTS AGR 3080 1 1.0 0.2 0.2 0.000 50.0 49.0 1.0 0.00 2.8
28 SH CTS AGR 3090 1 1.0 0.2 0.2 0.000 51.0 50.0 1.0 0.00 2.9
29 SH CTS AGR 3100 1 1.0 0.2 0.2 0.000 49.0 48.0 1.0 0.00 1.1
30 SH CTS AGR 3110 1 1.0 0.1 0.1 0.000 50.0 49.0 0.8 0.00 1.5
31 SH CTS AGR 3120 1 1.0 1.2 1.2 0.000 51.0 50.0 2.8 0.00 2.4
32 SH CTS AGR 3130 1 2.0 0.1 0.1 0.000 50.0 54.2 0.8 0.00 4.6
33 SH CTS AGR 3140 1 1.0 0.1 0.1 0.000 51.0 52.0 0.8 0.00 2.2
34 SH SL BLC 1369 5 1.0 1.0 1.0 0.000 52.0 47.0 42.6 0.00 5.1
35 SH SL BLC 2369 5 1.0 1.0 1.0 0.000 57.0 52.0 37.6 0.00 10.1
36 SH SL BLC 3369 5 1.0 0.1 0.1 0.000 62.0 57.0 32.6 0.00 15.1
37 SH SL CHI 1094 5 1.0 1.0 1.0 0.000 52.0 47.0 46.3 0.00 5.1
38 SH SL CHI 2094 5 1.0 1.0 1.0 0.000 57.0 52.0 41.3 0.00 10.1
39 SH SL CHI 3094 5 1.0 0.6 0.6 0.000 62.0 57.0 36.3 0.00 15.1
40 SH SL CLC 1361 5 1.0 1.0 1.0 0.000 52.0 47.0 1676.1 0.15 5.1
41 SH SL CLC 2361 5 1.0 1.0 1.0 0.000 57.0 52.0 1671.1 0.16 10.1
42 SH SL CLC 3361 5 1.0 0.2 0.2 0.000 62.0 57.0 1666.1 0.18 15.1
43 SH CTS CMH 1010 1 1.0 0.0 0.0 0.000 48.0 47.0 15.7 0.00 1.1
44 SH CTS CMH 1040 1 1.0 0.0 0.0 0.000 48.0 47.0 15.7 0.00 1.1
45 SH CTS CMH 1050 1 1.0 2.0 2.0 0.000 48.0 47.0 22.1 0.00 1.1
46 SH CTS CMH 1060 1 1.0 1.0 1.0 0.000 48.0 47.0 20.1 0.00 1.1
47 SH CTS CMH 1080 1 1.0 0.0 0.0 0.000 48.0 47.0 15.7 0.00 1.1
48 SH CTS CMH 2010 1 1.0 0.0 0.0 0.000 48.0 47.0 0.3 0.00 1.1
49 SH CTS CMH 2030 1 1.0 2.0 2.0 0.000 48.0 47.0 3.1 0.00 1.1
50 SH CTS CMH 2050 1 1.0 1.0 1.0 0.000 49.0 48.0 1.9 0.00 1.5
51 SH CTS CMH 2060 1 2.0 2.0 4.0 0.000 50.0 61.7 3.4 0.00 3.7
52 SH CTS CMH 2070 1 2.0 0.0 0.0 0.000 50.0 61.7 0.0 0.00 3.2
53 SH CTS CMH 2080 1 1.0 0.0 0.0 0.000 48.0 47.0 0.3 0.00 1.1
54 SH CTS CMH 2090 1 1.0 0.0 0.0 0.000 48.0 47.0 0.3 0.00 1.1
55 SH CTS CMH 2100 1 1.0 0.0 0.0 0.000 48.0 47.0 0.3 0.00 1.1
56 SH CTS CMH 2110 1 1.0 0.0 0.0 0.000 48.0 47.0 0.3 0.00 1.1
57 SH CTS CMH 2120 1 1.0 1.0 1.0 0.000 48.0 47.0 3.2 0.00 1.1
58 SH CTS CMH 2130 1 1.0 1.0 1.0 0.000 49.0 48.0 1.9 0.00 2.0
59 SH CTS CMH 3010 1 1.0 0.1 0.1 0.000 48.0 47.0 0.8 0.00 1.1
60 SH CTS CMH 3020 1 1.0 1.1 1.1 0.000 49.0 48.0 2.6 0.00 1.5
61 SH CTS CMH 3030 1 1.0 0.1 0.1 0.000 49.0 48.0 0.8 0.00 1.5
62 SH CTS CMH 3040 1 1.0 0.0 0.0 0.000 50.0 49.0 0.7 0.00 2.4
63 SH CTS CMH 3050 1 2.0 0.0 0.1 0.000 50.0 77.0 0.6 0.00 9.9
64 SH CTS CMH 3060 1 2.0 0.0 0.1 0.000 51.0 87.0 0.6 0.00 5.3
65 SH CTS CMH 3070 1 1.0 0.1 0.1 0.000 48.0 47.0 0.8 0.00 1.1
66 SH CTS CMH 3080 1 1.0 0.1 0.1 0.000 51.0 62.7 0.8 0.00 2.8
67 SH CTS CMH 3090 1 1.0 0.1 0.1 0.000 48.0 47.0 0.8 0.00 1.1
68 SH CTS CMH 3100 1 1.0 0.1 0.1 0.000 48.0 47.0 0.8 0.00 1.1
69 SH CTS CMH 3110 1 1.0 0.1 0.1 0.000 48.0 47.0 0.8 0.00 1.1
70 SH CTS CMH 3120 1 1.0 0.1 0.1 0.000 48.0 47.0 0.8 0.00 1.1
71 SH CTS CMH 3130 1 2.0 0.0 0.1 0.000 50.0 73.8 0.7 0.00 5.4
72 SH CTS CMH 3140 1 1.0 0.1 0.1 0.000 48.0 47.0 0.8 0.00 1.1
73 SH CTS COM 1020 1 1.0 6.0 6.0 0.000 48.0 47.0 110.4 0.01 1.1
74 SH CTS COM 1030 1 1.0 5.0 5.0 0.000 49.0 48.0 25.8 0.00 1.2
75 SH CTS COM 1050 1 3.0 1.0 3.1 0.000 51.0 52.0 21.0 0.00 2.0
76 SH CTS COM 1060 1 1.0 1.0 1.0 0.000 49.0 48.0 20.7 0.00 1.2
77 SH CTS COM 1070 1 1.0 1.0 1.0 0.000 49.0 48.0 18.2 0.00 1.2
78 SH CTS COM 1080 1 1.0 2.0 2.0 0.000 49.0 48.0 37.9 0.00 1.1
79 SH CTS COM 1210 1 1.0 1.0 1.0 0.000 50.0 49.0 18.2 0.00 1.6
80 SH CTS COM 2020 1 1.0 1.0 1.0 0.000 49.0 48.0 1.5 0.00 1.2
81 SH CTS COM 2030 1 1.0 1.0 1.0 0.000 49.0 48.0 1.5 0.00 1.2
82 SH CTS COM 2040 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 1.2
83 SH CTS COM 2050 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 1.2
84 SH CTS COM 2060 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 1.2
85 SH CTS COM 2070 1 1.0 2.0 2.0 0.000 52.0 53.0 4.3 0.00 3.0
86 SH CTS COM 2080 1 1.0 1.0 1.0 0.000 53.0 54.0 1.5 0.00 2.5
87 SH CTS COM 2090 1 1.0 2.0 2.0 0.000 50.0 49.0 4.1 0.00 2.1
88 SH CTS COM 2100 1 1.0 0.0 0.0 0.000 51.0 50.0 0.3 0.00 2.1
89 SH CTS COM 2110 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 2.1
90 SH CTS COM 2120 1 2.0 2.0 4.1 0.000 50.0 50.0 4.1 0.00 1.8
91 SH CTS COM 2130 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.2
92 SH CTS COM 2210 1 2.0 1.0 2.1 0.000 51.0 52.0 1.5 0.00 3.4
93 SH CTS COM 3020 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 2.1
94 SH CTS COM 3030 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 2.1
95 SH CTS COM 3040 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 2.2
96 SH CTS COM 3050 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 2.2
97 SH CTS COM 3060 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 2.2
98 SH CTS COM 3070 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.2
99 SH CTS COM 3080 1 1.0 1.0 1.0 0.000 53.0 54.0 1.5 0.00 2.5

100 SH CTS COM 3090 1 2.0 0.0 0.1 0.000 54.0 56.0 0.2 0.00 5.8
101 SH CTS COM 3100 1 1.0 1.0 1.0 0.000 51.0 50.0 1.5 0.00 2.1
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101 SH CTS COM 3100 1 1.0 1.0 1.0 0.000 51.0 50.0 1.5 0.00 2.1
102 SH CTS COM 3110 1 1.0 0.0 0.0 0.000 52.0 51.0 0.2 0.00 3.0
103 SH CTS COM 3120 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 3.1
104 SH CTS COM 3130 1 2.0 0.0 0.1 0.000 51.0 52.0 0.2 0.00 2.4
105 SH CTS COM 3210 1 3.0 0.0 0.1 0.000 63.0 74.0 0.2 0.00 19.7
106 SH CTS CON 1010 1 1.0 8.0 8.0 0.000 48.0 47.0 231.0 0.02 1.1
107 SH CTS CON 1070 1 1.0 16.0 16.0 0.000 49.0 48.0 45.2 0.00 1.1
108 SH CTS CON 1120 1 1.0 13.0 13.0 0.000 49.0 48.0 97.1 0.01 1.1
109 SH CTS CON 1130 1 2.0 1.0 2.1 0.000 50.0 49.0 32.4 0.00 1.2
110 SH CTS CON 1140 1 2.0 0.0 0.1 0.000 51.0 50.0 15.7 0.00 2.3
111 SH CTS CON 1160 1 2.0 1.0 2.1 0.000 50.0 49.0 16.9 0.00 1.2
112 SH CTS CON 1180 1 1.0 0.0 0.0 0.000 49.0 48.0 15.7 0.00 1.1
113 SH CTS CON 2010 1 1.0 2.0 2.0 0.000 50.0 49.0 5.8 0.00 1.1
114 SH CTS CON 2020 1 2.0 2.0 4.1 0.000 51.0 50.0 4.1 0.00 1.6
115 SH CTS CON 2030 1 2.0 0.0 0.1 0.000 52.0 51.0 0.3 0.00 1.9
116 SH CTS CON 2040 1 1.0 3.0 3.0 0.000 50.0 49.0 4.0 0.00 1.1
117 SH CTS CON 2050 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 1.1
118 SH CTS CON 2060 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.1
119 SH CTS CON 2070 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.1
120 SH CTS CON 2080 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.1
121 SH CTS CON 2090 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.1
122 SH CTS CON 2100 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.1
123 SH CTS CON 2120 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.1
124 SH CTS CON 2130 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 1.1
125 SH CTS CON 2140 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 1.1
126 SH CTS CON 2150 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 1.1
127 SH CTS CON 2160 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.1
128 SH CTS CON 2170 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.1
129 SH CTS CON 2180 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.1
130 SH CTS CON 2190 1 1.0 1.0 1.0 0.000 49.0 48.0 4.1 0.00 1.1
131 SH CTS CON 2200 1 2.0 1.0 2.1 0.000 50.0 49.0 2.8 0.00 2.2
132 SH CTS CON 3010 1 2.0 1.0 2.1 0.000 52.0 51.0 1.5 0.00 2.3
133 SH CTS CON 3020 1 1.0 0.0 0.0 0.000 53.0 52.0 0.2 0.00 3.2
134 SH CTS CON 3030 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 1.4
135 SH CTS CON 3040 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 1.4
136 SH CTS CON 3050 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 2.0
137 SH CTS CON 3060 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.1
138 SH CTS CON 3070 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.1
139 SH CTS CON 3080 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.1
140 SH CTS CON 3090 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.1
141 SH CTS CON 3100 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.1
142 SH CTS CON 3110 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.1
143 SH CTS CON 3120 1 1.0 0.0 0.0 0.000 49.0 48.0 0.2 0.00 1.1
144 SH CTS CON 3130 1 2.0 0.0 0.1 0.000 51.0 51.0 0.2 0.00 3.1
145 SH CTS CON 3140 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.1
146 SH CTS CON 3150 1 2.0 0.0 0.1 0.000 51.0 51.0 0.2 0.00 3.1
147 SH CTS CON 3160 1 2.0 0.0 0.1 0.000 51.0 50.0 0.2 0.00 2.3
148 SH CTS CON 3170 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.1
149 SH CTS CON 3190 1 1.0 1.0 1.0 0.000 51.0 50.0 1.5 0.00 3.2
150 SH CTS CON 3200 1 1.0 0.0 0.0 0.000 52.0 51.0 0.2 0.00 4.0
151 SH CTS CON 3210 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 1.4
152 SH CTS COS 1010 1 1.0 6.0 6.0 0.000 48.0 47.0 227.8 0.02 1.1
153 SH CTS COS 1020 1 1.0 1.0 1.0 0.000 49.0 48.0 20.7 0.00 1.2
154 SH CTS COS 1030 1 1.0 3.0 3.0 0.000 49.0 48.0 112.6 0.01 1.2
155 SH CTS COS 1040 1 1.0 1.0 1.0 0.000 50.0 49.0 75.2 0.01 1.4
156 SH CTS COS 1050 1 2.0 1.0 2.1 0.000 50.0 49.0 24.5 0.00 1.6
157 SH CTS COS 1060 1 1.0 3.0 3.0 0.000 49.0 48.0 80.0 0.01 1.2
158 SH CTS COS 1070 1 1.0 2.0 2.0 0.000 49.0 48.0 60.5 0.01 1.2
159 SH CTS COS 1080 1 1.0 1.0 1.0 0.000 50.0 49.0 19.4 0.00 1.4
160 SH CTS COS 2010 1 1.0 2.0 2.0 0.000 50.0 49.0 4.1 0.00 2.1
161 SH CTS COS 2020 1 1.0 1.0 1.0 0.000 51.0 50.0 58.5 0.01 2.3
162 SH CTS COS 2030 1 1.0 7.0 7.0 0.000 52.0 51.0 57.3 0.01 3.3
163 SH CTS COS 2040 1 1.0 2.0 2.0 0.000 53.0 52.0 14.2 0.00 1.5
164 SH CTS COS 2050 1 1.0 1.0 1.0 0.000 54.0 53.0 10.2 0.00 1.7
165 SH CTS COS 2060 1 2.0 1.0 2.1 0.000 53.0 53.0 7.8 0.00 3.0
166 SH CTS COS 2070 1 1.0 2.0 2.0 0.000 54.0 54.0 6.5 0.00 3.9
167 SH CTS COS 2080 1 1.0 0.0 0.0 0.000 55.0 55.0 0.3 0.00 2.9
168 SH CTS COS 2090 1 1.0 1.0 1.0 0.000 50.0 49.0 12.8 0.00 1.4
169 SH CTS COS 2100 1 1.0 2.0 2.0 0.000 51.0 50.0 11.5 0.00 2.3
170 SH CTS COS 2110 1 2.0 0.0 0.1 0.000 53.0 54.0 0.3 0.00 2.6
171 SH CTS COS 2120 1 1.0 3.0 3.0 0.000 50.0 49.0 11.6 0.00 1.4
172 SH CTS COS 2130 1 1.0 1.0 1.0 0.000 51.0 50.0 4.1 0.00 1.5
173 SH CTS COS 2140 1 1.0 1.0 1.0 0.000 52.0 51.0 2.8 0.00 2.4
174 SH CTS COS 2150 1 1.0 3.0 3.0 0.000 50.0 49.0 8.5 0.00 1.6
175 SH CTS COS 2160 1 1.0 2.0 2.0 0.000 51.0 50.0 4.1 0.00 1.5
176 SH CTS COS 2170 1 1.0 1.0 1.0 0.000 52.0 51.0 1.5 0.00 1.7
177 SH CTS COS 2180 1 1.0 3.0 3.0 0.000 53.0 52.0 6.5 0.00 1.5
178 SH CTS COS 2190 1 3.0 1.0 3.1 0.000 51.0 53.0 2.8 0.00 3.0
179 SH CTS COS 2200 1 4.0 1.0 4.1 0.000 53.0 58.0 1.5 0.00 3.2
180 SH CTS COS 2210 1 1.0 2.0 2.0 0.000 49.0 48.0 4.0 0.00 1.2
181 SH CTS COS 3010 1 3.0 11.0 33.1 0.000 53.0 54.0 38.3 0.00 2.4
182 SH CTS COS 3020 1 2.0 0.0 0.1 0.000 54.0 57.0 0.2 0.00 2.3
183 SH CTS COS 3030 1 2.0 5.0 10.1 0.000 54.0 55.0 18.3 0.00 1.7
184 SH CTS COS 3040 1 2.0 1.0 2.1 0.000 55.0 57.0 1.5 0.00 1.9
185 SH CTS COS 3050 1 2.0 4.0 8.1 0.000 55.0 58.0 8.9 0.00 3.0
186 SH CTS COS 3060 1 1.0 1.0 1.0 0.000 56.0 59.0 1.5 0.00 1.7
187 SH CTS COS 3070 1 2.0 0.0 0.1 0.000 57.0 62.0 0.2 0.00 4.5
188 SH CTS COS 3080 1 2.0 2.0 4.1 0.000 55.0 59.0 4.0 0.00 3.3
189 SH CTS COS 3090 1 1.0 1.0 1.0 0.000 56.0 60.0 1.5 0.00 2.6
190 SH CTS COS 3100 1 2.0 0.0 0.1 0.000 57.0 61.0 0.2 0.00 3.8
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190 SH CTS COS 3100 1 2.0 0.0 0.1 0.000 57.0 61.0 0.2 0.00 3.8
191 SH CTS COS 3110 1 2.0 4.0 8.1 0.000 54.0 57.0 8.9 0.00 2.4
192 SH CTS COS 3120 1 2.0 1.0 2.1 0.000 55.0 59.0 1.5 0.00 1.9
193 SH CTS COS 3130 1 1.0 0.0 0.0 0.000 56.0 60.0 0.2 0.00 2.8
194 SH CTS COS 3140 1 2.0 1.0 2.1 0.000 54.0 58.0 1.5 0.00 3.6
195 SH CTS COS 3150 1 1.0 0.0 0.0 0.000 54.0 55.0 0.2 0.00 1.2
196 SH CTS COS 3160 1 1.0 0.0 0.0 0.000 55.0 59.0 0.2 0.00 4.4
197 SH CTS COS 3170 1 2.0 2.0 4.1 0.000 54.0 56.0 2.7 0.00 1.9
198 SH CTS COS 3180 1 1.0 0.0 0.0 0.000 55.0 57.0 0.2 0.00 2.0
199 SH CTS COS 3190 1 2.0 2.0 4.1 0.000 54.0 56.0 2.7 0.00 1.7
200 SH CTS COS 3200 1 2.0 1.0 2.1 0.000 54.0 56.0 1.5 0.00 1.7
201 SH CTS COS 3210 1 3.0 0.0 0.1 0.000 55.0 60.0 0.2 0.00 5.2
202 SH CTS COS 3220 1 3.0 2.0 6.1 0.000 56.0 63.0 2.7 0.00 2.8
203 SH CTS COS 3230 1 1.0 0.0 0.0 0.000 57.0 64.0 0.2 0.00 2.4
204 SH CTS COS 3240 1 2.0 1.0 2.1 0.000 54.0 60.0 1.5 0.00 4.2
205 SH CTS COS 3250 1 3.0 0.0 0.1 0.000 57.0 71.0 0.2 0.00 7.3
206 SH CTS COS 3260 1 1.0 0.0 0.0 0.000 54.0 55.0 0.2 0.00 1.2
207 SH CTS COS 3270 1 6.0 0.0 0.3 0.000 56.0 72.0 0.2 0.00 7.5
208 SH CTS COS 3280 1 2.0 0.0 0.1 0.000 54.0 56.0 0.2 0.00 1.8
209 SH CTS COS 3290 1 4.0 0.0 0.2 0.000 56.0 67.0 0.2 0.00 4.4
210 SH CTS CTR 1010 1 2.0 53.5 107.0 0.000 49.0 49.0 2015.3 0.19 1.9
211 SH CTS CTR 1030 1 2.0 1.0 2.0 0.000 49.0 48.9 17.2 0.00 1.9
212 SH CTS CTR 1110 1 1.0 1.0 1.0 0.000 49.0 48.9 31.3 0.00 1.8
213 SH CTS CTR 1120 1 2.0 0.0 0.0 0.000 50.0 51.9 15.2 0.00 3.7
214 SH CTS CTR 1210 1 1.0 70.5 70.5 0.000 48.0 47.0 2110.1 0.19 1.1
215 SH CTS CTR 2010 1 2.0 0.0 0.0 0.000 50.0 54.2 0.0 0.00 2.4
216 SH CTS CTR 2030 1 1.0 1.0 1.0 0.000 48.0 47.0 1.0 0.00 1.1
217 SH CTS CTR 2040 1 2.0 1.0 2.0 0.000 50.0 54.0 1.0 0.00 4.2
218 SH CTS CTR 2110 1 1.0 2.4 2.4 0.000 49.0 50.6 20.9 0.00 2.3
219 SH CTS CTR 2120 1 2.0 2.4 4.8 0.000 50.0 55.1 16.6 0.00 3.3
220 SH CTS CTR 2130 1 2.0 2.4 4.8 0.000 51.0 59.7 12.2 0.00 3.7
221 SH CTS CTR 2140 1 2.0 2.4 4.8 0.000 52.0 64.3 7.8 0.00 3.8
222 SH CTS CTR 2150 1 2.0 1.4 2.8 0.000 53.0 68.9 3.4 0.00 3.9
223 SH CTS CTR 2210 1 1.0 62.0 62.0 0.000 49.0 48.0 2029.8 0.18 1.0
224 SH CTS CTR 2310 1 1.0 1.0 1.0 0.000 51.0 50.0 1.0 0.00 2.5
225 SH CTS CTR 3010 1 2.0 0.0 0.0 0.000 50.0 59.1 0.0 0.00 3.7
226 SH CTS CTR 3030 1 1.0 0.0 0.0 0.000 49.0 48.0 0.0 0.00 2.1
227 SH CTS CTR 3040 1 1.0 1.2 1.2 0.000 49.0 55.4 5.6 0.00 3.5
228 SH CTS CTR 3050 1 2.0 1.2 2.4 0.000 50.0 64.8 4.3 0.00 6.5
229 SH CTS CTR 3060 1 2.0 1.2 2.4 0.000 51.0 74.0 3.0 0.00 8.9
230 SH CTS CTR 3070 1 2.0 1.2 2.4 0.000 52.0 82.9 1.6 0.00 10.9
231 SH CTS CTR 3080 1 2.0 0.2 0.4 0.000 53.0 91.4 0.3 0.00 12.6
232 SH CTS CTR 3090 1 2.0 0.0 0.0 0.000 51.0 63.6 0.0 0.00 7.8
233 SH CTS CTR 3110 1 1.0 2.4 2.4 0.000 49.0 54.3 13.3 0.00 3.4
234 SH CTS CTR 3120 1 2.0 2.4 4.8 0.000 50.0 62.6 10.4 0.00 4.8
235 SH CTS CTR 3130 1 2.0 2.4 4.8 0.000 51.0 70.8 7.6 0.00 5.4
236 SH CTS CTR 3140 1 2.0 2.4 4.8 0.000 52.0 78.7 4.7 0.00 5.7
237 SH CTS CTR 3150 1 2.0 1.4 2.8 0.000 53.0 86.2 1.9 0.00 5.8
238 SH CTS CTR 3210 1 1.0 50.0 50.0 0.000 50.0 49.0 2000.0 0.18 1.0
239 SH CTS CTR 3310 1 1.0 0.0 0.0 0.000 52.0 51.0 0.0 0.00 3.5
240 SH CTS DESs 1010 1 1.0 2.0 2.0 0.000 48.0 47.0 159.1 0.01 1.1
241 SH CTS DESs 1020 1 1.0 7.0 7.0 0.000 49.0 48.0 93.5 0.01 1.5
242 SH CTS DESs 1030 1 1.0 2.0 2.0 0.000 50.0 49.0 54.3 0.01 1.2
243 SH CTS DESs 1040 1 1.0 0.0 0.0 0.000 51.0 50.0 15.7 0.00 1.6
244 SH CTS DESs 1050 1 1.0 2.0 2.0 0.000 50.0 49.0 21.2 0.00 1.5
245 SH CTS DESs 1060 1 1.0 3.0 3.0 0.000 49.0 48.0 47.9 0.00 1.5
246 SH CTS DESs 2010 1 1.0 1.0 1.0 0.000 50.0 49.0 4.0 0.00 1.2
247 SH CTS DESs 2020 1 1.0 1.0 1.0 0.000 50.0 49.0 4.0 0.00 1.2
248 SH CTS DESs 2030 1 1.0 1.0 1.0 0.000 51.0 50.0 1.5 0.00 1.7
249 SH CTS DESs 2040 1 1.0 1.0 1.0 0.000 50.0 49.0 4.0 0.00 1.5
250 SH CTS DESs 2050 1 1.0 1.0 1.0 0.000 50.0 49.0 4.0 0.00 1.5
251 SH CTS DESs 2060 1 1.0 1.0 1.0 0.000 48.0 47.0 1.5 0.00 1.1
252 SH CTS DESs 3010 1 1.0 2.0 2.0 0.000 51.0 50.0 2.7 0.00 2.2
253 SH CTS DESs 3020 1 1.0 0.0 0.0 0.000 52.0 51.0 0.2 0.00 2.1
254 SH CTS DESs 3030 1 1.0 0.0 0.0 0.000 52.0 51.0 0.2 0.00 2.1
255 SH CTS DESs 3040 1 1.0 2.0 2.0 0.000 51.0 50.0 2.7 0.00 2.2
256 SH CTS DESs 3050 1 1.0 0.0 0.0 0.000 52.0 51.0 0.2 0.00 2.1
257 SH CTS DESs 3060 1 1.0 0.0 0.0 0.000 52.0 51.0 0.2 0.00 2.1
258 SH CTS DESs 3070 1 1.0 2.0 2.0 0.000 50.0 49.0 2.7 0.00 1.2
259 SH CTS DESs 3080 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 1.6
260 SH CTS DESs 3090 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 1.6
261 SH CTS DESs 3100 1 1.0 0.0 0.0 0.000 52.0 51.0 0.2 0.00 2.7
262 SH CTS DESs 3110 1 1.0 2.0 2.0 0.000 51.0 50.0 2.7 0.00 2.5
263 SH CTS DESs 3120 1 1.0 0.0 0.0 0.000 52.0 51.0 0.2 0.00 2.2
264 SH CTS DESs 3130 1 1.0 0.0 0.0 0.000 52.0 51.0 0.2 0.00 2.2
265 SH CTS DESs 3140 1 1.0 2.0 2.0 0.000 51.0 50.0 2.7 0.00 2.5
266 SH CTS DESs 3150 1 1.0 0.0 0.0 0.000 52.0 51.0 0.2 0.00 2.2
267 SH CTS DESs 3160 1 1.0 0.0 0.0 0.000 52.0 51.0 0.2 0.00 2.2
268 SH CTS DESs 3170 1 1.0 0.0 0.0 0.000 49.0 48.0 0.2 0.00 2.0
269 SH CTS DESs 3180 1 1.0 0.0 0.0 0.000 48.0 47.0 0.2 0.00 1.1
270 SH CTS DESs 3190 1 1.0 1.0 1.0 0.000 48.0 47.0 1.5 0.00 1.1
271 SH ELA ELA 1104 5 1.0 1.3 1.3 0.000 52.0 48.5 8135.3 0.74 11.6
272 SH ELA ELA 1105 5 1.0 0.8 0.8 0.000 52.0 50.2 6926.1 0.66 11.9
273 SH ELA ELA 2104 5 1.0 1.3 1.3 0.000 57.0 54.5 8277.3 0.85 15.7
274 SH ELA ELA 2105 5 1.0 0.8 0.8 0.000 57.0 57.4 7352.8 0.80 16.8
275 SH ELA ELA 3104 5 1.0 1.5 1.5 0.014 61.0 60.7 9133.3 1.04 19.4
276 SH ELA ELA 3105 5 1.0 1.0 1.0 0.014 62.0 64.0 7368.9 0.89 19.9
277 SH ELA ELA 9 5 1.0 2.0 2.0 0.000 47.0 42.0 10698.0 0.85 10.2
278 SH CTS ELT 1010 1 1.0 15.0 15.0 0.000 48.0 47.0 196.3 0.02 1.1
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279 SH CTS ELT 1030 1 1.0 2.0 2.0 0.000 48.0 47.0 20.7 0.00 1.1
280 SH CTS ELT 1050 1 1.0 1.0 1.0 0.000 49.0 48.0 18.2 0.00 1.1
281 SH CTS ELT 1060 1 1.0 6.0 6.0 0.000 49.0 48.0 49.7 0.00 1.1
282 SH CTS ELT 1080 1 1.0 1.0 1.0 0.000 49.0 48.0 25.7 0.00 1.1
283 SH CTS ELT 1090 1 1.0 1.0 1.0 0.000 49.0 48.0 26.9 0.00 1.1
284 SH CTS ELT 1100 1 1.0 0.0 0.0 0.000 49.0 48.0 15.7 0.00 1.1
285 SH CTS ELT 1110 1 1.0 1.0 1.0 0.000 49.0 48.0 17.0 0.00 1.1
286 SH CTS ELT 1130 1 1.0 1.0 1.0 0.000 49.0 48.0 19.4 0.00 1.1
287 SH CTS ELT 2010 1 1.0 4.0 4.0 0.000 49.0 48.0 33.5 0.00 1.1
288 SH CTS ELT 2020 1 2.0 1.0 2.1 0.000 50.0 49.0 1.5 0.00 1.3
289 SH CTS ELT 2030 1 1.0 1.0 1.0 0.000 49.0 48.0 1.5 0.00 1.5
290 SH CTS ELT 2050 1 2.0 1.0 2.1 0.000 50.0 50.0 1.5 0.00 2.3
291 SH CTS ELT 2060 1 2.0 2.0 4.1 0.000 50.0 50.0 25.9 0.00 1.4
292 SH CTS ELT 2070 1 1.0 6.0 6.0 0.000 51.0 51.0 21.4 0.00 1.7
293 SH CTS ELT 2080 1 1.0 4.0 4.0 0.000 50.0 49.0 9.0 0.00 2.0
294 SH CTS ELT 2090 1 1.0 3.0 3.0 0.000 50.0 49.0 10.3 0.00 2.0
295 SH CTS ELT 2100 1 1.0 5.0 5.0 0.000 51.0 50.0 8.0 0.00 1.7
296 SH CTS ELT 2110 1 2.0 0.0 0.1 0.000 51.0 51.0 0.3 0.00 2.5
297 SH CTS ELT 2120 1 1.0 0.0 0.0 0.000 52.0 51.0 0.3 0.00 1.3
298 SH CTS ELT 2130 1 1.0 2.0 2.0 0.000 49.0 48.0 4.1 0.00 1.1
299 SH CTS ELT 2140 1 1.0 2.0 2.0 0.000 50.0 49.0 2.8 0.00 2.0
300 SH CTS ELT 2150 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 1.5
301 SH CTS ELT 2310 1 5.0 5.0 25.1 0.000 52.0 55.0 6.5 0.00 1.9
302 SH CTS ELT 2320 1 5.0 5.0 25.1 0.000 52.0 55.0 6.5 0.00 1.9
303 SH CTS ELT 2330 1 5.0 5.0 25.1 0.000 52.0 55.0 6.5 0.00 1.9
304 SH CTS ELT 2340 1 5.0 5.0 25.1 0.000 52.0 55.0 6.5 0.00 1.9
305 SH CTS ELT 2350 1 5.0 5.0 25.1 0.000 52.0 55.0 6.5 0.00 1.9
306 SH CTS ELT 3010 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.3
307 SH CTS ELT 3020 1 3.0 0.0 0.1 0.000 52.0 53.0 0.2 0.00 3.3
308 SH CTS ELT 3030 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 2.5
309 SH CTS ELT 3040 1 1.0 1.0 1.0 0.000 49.0 48.0 1.5 0.00 1.5
310 SH CTS ELT 3060 1 1.0 1.0 1.0 0.000 51.0 51.0 5.2 0.00 1.7
311 SH CTS ELT 3070 1 1.0 1.0 1.0 0.000 52.0 52.0 4.0 0.00 2.6
312 SH CTS ELT 3080 1 3.0 1.0 3.1 0.000 53.0 56.0 2.7 0.00 4.9
313 SH CTS ELT 3090 1 2.0 1.0 2.1 0.000 54.0 59.0 1.5 0.00 6.2
314 SH CTS ELT 3100 1 3.0 2.0 6.1 0.000 52.0 53.0 2.7 0.00 2.5
315 SH CTS ELT 3110 1 2.0 0.0 0.1 0.000 53.0 57.0 0.2 0.00 4.5
316 SH CTS ELT 3130 1 2.0 0.0 0.1 0.000 53.0 54.0 0.2 0.00 2.6
317 SH CTS ELT 3140 1 3.0 0.0 0.1 0.000 51.0 53.0 0.2 0.00 3.5
318 SH CTS ELT 3150 1 3.0 0.0 0.1 0.000 55.0 65.0 0.2 0.00 8.3
319 SH CTS ELT 3160 1 2.0 0.0 0.1 0.000 51.0 52.0 0.2 0.00 3.5
320 SH CTS ELT 3310 1 5.0 0.0 0.2 0.000 53.0 60.0 0.2 0.00 2.8
321 SH CTS ELT 3320 1 5.0 0.0 0.2 0.000 53.0 60.0 0.2 0.00 2.8
322 SH CTS ELT 3330 1 5.0 0.0 0.2 0.000 53.0 60.0 0.2 0.00 2.8
323 SH CTS ELT 3340 1 5.0 0.0 0.2 0.000 53.0 60.0 0.2 0.00 2.8
324 SH CTS ELT 3350 1 5.0 0.0 0.2 0.000 53.0 60.0 0.2 0.00 2.8
325 SH CTS ENM 1010 1 1.0 4.0 4.0 0.000 48.0 47.0 81.7 0.01 1.1
326 SH CTS ENM 1020 1 2.0 5.0 10.1 0.000 49.0 49.0 27.2 0.00 1.3
327 SH CTS ENM 1050 1 1.0 1.0 1.0 0.000 49.0 48.0 18.4 0.00 1.3
328 SH CTS ENM 1060 1 1.0 1.0 1.0 0.000 49.0 48.0 18.4 0.00 1.0
329 SH CTS ENM 1090 1 1.0 0.0 0.0 0.000 49.0 48.0 15.7 0.00 1.0
330 SH CTS ENM 1100 1 1.0 0.0 0.0 0.000 49.0 48.0 15.7 0.00 1.3
331 SH CTS ENM 2010 1 1.0 1.1 1.1 0.000 49.0 48.0 1.8 0.00 1.3
332 SH CTS ENM 2020 1 4.0 1.1 4.4 0.000 51.0 68.9 1.3 0.00 3.5
333 SH CTS ENM 2030 1 4.0 1.1 4.4 0.000 51.0 68.9 1.3 0.00 3.5
334 SH CTS ENM 2040 1 4.0 1.1 4.4 0.000 51.0 68.9 1.3 0.00 3.5
335 SH CTS ENM 2050 1 1.0 1.1 1.1 0.000 50.0 49.0 1.8 0.00 2.2
336 SH CTS ENM 2060 1 4.0 1.1 4.4 0.000 51.0 68.9 1.3 0.00 3.5
337 SH CTS ENM 2070 1 4.0 1.1 4.4 0.000 51.0 68.9 1.3 0.00 3.5
338 SH CTS ENM 2080 1 1.0 1.1 1.1 0.000 50.0 49.0 1.8 0.00 2.0
339 SH CTS ENM 2090 1 1.0 1.1 1.1 0.000 48.0 47.0 1.8 0.00 1.1
340 SH CTS ENM 2100 1 1.0 0.1 0.1 0.000 48.0 47.0 0.4 0.00 1.1
341 SH CTS ENM 3010 1 1.0 0.2 0.2 0.000 50.0 49.0 0.4 0.00 2.1
342 SH CTS ENM 3020 1 3.0 0.1 0.4 0.000 52.0 98.2 0.2 0.00 7.2
343 SH CTS ENM 3030 1 3.0 0.1 0.4 0.000 52.0 98.2 0.2 0.00 7.2
344 SH CTS ENM 3040 1 3.0 0.1 0.4 0.000 52.0 98.2 0.2 0.00 7.2
345 SH CTS ENM 3050 1 1.0 0.2 0.2 0.000 51.0 50.0 0.4 0.00 3.0
346 SH CTS ENM 3060 1 3.0 0.1 0.4 0.000 52.0 98.2 0.2 0.00 7.2
347 SH CTS ENM 3070 1 3.0 0.1 0.4 0.000 52.0 98.2 0.2 0.00 7.2
348 SH CTS ENM 3080 1 1.0 0.2 0.2 0.000 51.0 50.0 0.4 0.00 2.8
349 SH CTS ENM 3090 1 1.0 0.2 0.2 0.000 49.0 48.0 0.4 0.00 1.9
350 SH CTS ENM 3100 1 2.0 0.0 0.1 0.000 50.0 89.2 0.1 0.00 8.4
351 SH CTS ENTs 1010 1 1.0 1.0 1.0 0.000 48.0 47.0 37.8 0.00 1.1
352 SH CTS ENTs 1020 1 1.0 1.0 1.0 0.000 49.0 48.0 21.1 0.00 2.0
353 SH CTS ENTs 2010 1 1.0 0.0 0.0 0.000 48.0 47.0 0.3 0.00 1.1
354 SH CTS ENTs 2020 1 1.0 0.0 0.0 0.000 48.0 47.0 0.3 0.00 1.1
355 SH CTS ENTs 2030 1 1.0 1.0 1.0 0.000 48.0 47.0 2.8 0.00 1.1
356 SH CTS ENTs 2040 1 1.0 1.0 1.0 0.000 50.0 49.0 4.4 0.00 3.0
357 SH CTS ENTs 3010 1 1.0 2.0 2.0 0.000 51.0 50.0 3.1 0.00 3.9
358 SH CTS ENTs 3020 1 1.0 0.0 0.0 0.000 52.0 51.0 0.2 0.00 2.9
359 SH CTS FAB 1010 1 1.0 10.0 10.0 0.000 48.0 47.0 232.7 0.02 1.1
360 SH CTS FAB 1040 1 1.0 3.0 3.0 0.000 49.0 48.0 45.1 0.00 1.1
361 SH CTS FAB 1048 1 1.0 2.0 2.0 0.000 50.0 49.0 25.9 0.00 1.5
362 SH CTS FAB 1050 1 1.0 2.0 2.0 0.000 49.0 48.0 48.8 0.00 1.1
363 SH CTS FAB 1090 1 1.0 1.0 1.0 0.000 49.0 48.0 21.0 0.00 1.1
364 SH CTS FAB 1100 1 1.0 1.0 1.0 0.000 49.0 48.0 18.2 0.00 1.1
365 SH CTS FAB 1110 1 1.0 3.0 3.0 0.000 49.0 48.0 19.5 0.00 1.1
366 SH CTS FAB 1120 1 1.0 1.0 1.0 0.000 49.0 48.0 18.2 0.00 1.1
367 SH CTS FAB 1130 1 1.0 3.0 3.0 0.000 49.0 48.0 23.3 0.00 1.1
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368 SH CTS FAB 1160 1 1.0 1.0 1.0 0.000 49.0 48.0 18.2 0.00 1.1
369 SH CTS FAB 2010 1 2.0 0.0 0.1 0.000 50.0 49.0 0.3 0.00 1.5
370 SH CTS FAB 2020 1 1.0 0.0 0.0 0.000 48.0 47.0 0.3 0.00 1.1
371 SH CTS FAB 2030 1 1.0 2.0 2.0 0.000 50.0 49.0 4.0 0.00 1.4
372 SH CTS FAB 2040 1 1.0 2.0 2.0 0.000 50.0 49.0 2.8 0.00 1.4
373 SH CTS FAB 2048 1 1.0 1.0 1.0 0.000 51.0 50.0 1.5 0.00 1.8
374 SH CTS FAB 2050 1 1.0 1.0 1.0 0.000 50.0 49.0 9.2 0.00 1.5
375 SH CTS FAB 2060 1 1.0 4.0 4.0 0.000 51.0 50.0 8.0 0.00 2.5
376 SH CTS FAB 2070 1 1.0 2.0 2.0 0.000 51.0 50.0 6.7 0.00 1.8
377 SH CTS FAB 2090 1 1.0 1.0 1.0 0.000 50.0 49.0 4.3 0.00 2.1
378 SH CTS FAB 2100 1 1.0 2.0 2.0 0.000 51.0 50.0 3.0 0.00 3.0
379 SH CTS FAB 2110 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.4
380 SH CTS FAB 2120 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 2.1
381 SH CTS FAB 2130 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 1.4
382 SH CTS FAB 2140 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 1.4
383 SH CTS FAB 2150 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 1.4
384 SH CTS FAB 2160 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 2.1
385 SH CTS FAB 2170 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.4
386 SH CTS FAB 3010 1 3.0 1.0 3.1 0.000 50.0 51.0 1.5 0.00 2.4
387 SH CTS FAB 3020 1 1.0 0.0 0.0 0.000 51.0 52.0 0.2 0.00 3.3
388 SH CTS FAB 3030 1 3.0 1.0 3.1 0.000 52.0 55.0 1.5 0.00 3.2
389 SH CTS FAB 3040 1 2.0 0.0 0.1 0.000 53.0 57.0 0.2 0.00 4.6
390 SH CTS FAB 3048 1 1.0 0.0 0.0 0.000 52.0 51.0 0.2 0.00 2.7
391 SH CTS FAB 3050 1 1.0 2.0 2.0 0.000 52.0 51.0 2.7 0.00 1.6
392 SH CTS FAB 3060 1 1.0 0.0 0.0 0.000 53.0 52.0 0.2 0.00 1.8
393 SH CTS FAB 3070 1 4.0 0.0 0.2 0.000 53.0 57.0 0.2 0.00 3.7
394 SH CTS FAB 3080 1 4.0 0.0 0.2 0.000 53.0 57.0 0.2 0.00 3.6
395 SH CTS FAB 3090 1 1.0 1.0 1.0 0.000 52.0 51.0 1.5 0.00 2.5
396 SH CTS FAB 3110 1 2.0 0.0 0.1 0.000 53.0 52.0 0.2 0.00 4.9
397 SH CTS FAB 3120 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 3.0
398 SH CTS FAB 3130 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 2.3
399 SH CTS FAB 3140 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 2.3
400 SH CTS FAB 3150 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 2.3
401 SH CTS FAB 3160 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 3.0
402 SH CTS FAB 3170 1 1.0 3.0 3.0 0.000 52.0 51.0 4.0 0.00 1.9
403 SH CTS FAS 1030 1 1.0 5.0 5.0 0.000 48.0 47.0 94.1 0.01 1.1
404 SH CTS FAS 1040 1 1.0 5.0 5.0 0.000 49.0 48.0 39.9 0.00 1.2
405 SH CTS FAS 1050 1 1.0 1.0 1.0 0.000 49.0 48.0 17.0 0.00 1.2
406 SH CTS FAS 1060 1 1.0 1.0 1.0 0.000 49.0 48.0 17.0 0.00 1.2
407 SH CTS FAS 1070 1 1.0 0.0 0.0 0.000 48.0 47.0 15.7 0.00 1.1
408 SH CTS FAS 2010 1 2.0 0.0 0.1 0.000 50.0 49.0 0.3 0.00 2.4
409 SH CTS FAS 2020 1 1.0 1.0 1.0 0.000 48.0 47.0 2.0 0.00 1.1
410 SH CTS FAS 2030 1 1.0 1.0 1.0 0.000 51.0 50.0 2.0 0.00 1.7
411 SH CTS FAS 2040 1 1.0 0.0 0.0 0.000 51.0 50.0 0.3 0.00 1.9
412 SH CTS FAS 2050 1 2.0 2.0 4.1 0.000 51.0 50.0 4.1 0.00 2.1
413 SH CTS FAS 2060 1 2.0 1.0 2.1 0.000 52.0 52.0 2.0 0.00 2.9
414 SH CTS FAS 2070 1 1.0 5.0 5.0 0.000 50.0 49.0 13.3 0.00 1.2
415 SH CTS FAS 2080 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.2
416 SH CTS FAS 2090 1 1.0 1.0 1.0 0.000 50.0 49.0 3.8 0.00 1.2
417 SH CTS FAS 2100 1 1.0 1.0 1.0 0.000 50.0 49.0 3.8 0.00 1.2
418 SH CTS FAS 2110 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.2
419 SH CTS FAS 2120 1 1.0 0.0 0.0 0.000 48.0 47.0 0.3 0.00 1.1
420 SH CTS FAS 2140 1 1.0 0.0 0.0 0.000 48.0 47.0 0.3 0.00 1.1
421 SH CTS FAS 2150 1 1.0 1.0 1.0 0.000 48.0 47.0 1.5 0.00 1.1
422 SH CTS FAS 2160 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 2.2
423 SH CTS FAS 3010 1 1.0 0.1 0.1 0.000 49.0 48.0 0.8 0.00 2.0
424 SH CTS FAS 3020 1 1.0 0.1 0.1 0.000 52.0 51.0 0.8 0.00 2.7
425 SH CTS FAS 3030 1 2.0 0.1 0.2 0.000 53.0 54.0 0.8 0.00 4.9
426 SH CTS FAS 3040 1 1.0 0.1 0.1 0.000 51.0 50.0 0.8 0.00 1.2
427 SH CTS FAS 3060 1 1.0 1.1 1.1 0.000 51.0 50.0 2.5 0.00 1.2
428 SH CTS FAS 3070 1 2.0 0.1 0.2 0.000 52.0 52.0 0.8 0.00 3.3
429 SH CTS FAS 3080 1 1.0 0.1 0.1 0.000 51.0 50.0 0.8 0.00 1.2
430 SH CTS FAS 3090 1 1.0 1.1 1.1 0.000 51.0 50.0 2.5 0.00 1.2
431 SH CTS FAS 3140 1 1.0 0.0 0.0 0.000 48.0 47.0 0.2 0.00 1.1
432 SH CTS FINs 1010 1 1.0 6.0 6.0 0.000 48.0 47.0 66.4 0.01 1.1
433 SH CTS FINs 1020 1 1.0 1.0 1.0 0.000 49.0 48.0 39.7 0.00 1.2
434 SH CTS FINs 1030 1 1.0 2.0 2.0 0.000 50.0 49.0 23.1 0.00 2.1
435 SH CTS FINs 2010 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.2
436 SH CTS FINs 2020 1 1.0 1.0 1.0 0.000 51.0 50.0 5.9 0.00 2.1
437 SH CTS FINs 2030 1 1.0 3.0 3.0 0.000 52.0 51.0 4.6 0.00 3.0
438 SH CTS FINs 2040 1 3.0 1.0 3.1 0.000 53.0 53.0 1.5 0.00 3.2
439 SH CTS FINs 2050 1 1.0 1.0 1.0 0.000 53.0 52.0 1.5 0.00 2.0
440 SH CTS FINs 3010 1 3.0 0.0 0.1 0.000 54.0 55.0 0.2 0.00 7.0
441 SH CTS FINs 3020 1 1.0 0.0 0.0 0.000 49.0 48.0 0.2 0.00 1.2
442 SH CTS FINs 3030 1 1.0 0.0 0.0 0.000 49.0 48.0 0.2 0.00 1.2
443 SH CTS FINs 3040 1 1.0 1.0 1.0 0.000 49.0 48.0 2.7 0.00 1.2
444 SH CTS FINs 3060 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 2.1
445 SH CTS FINs 3070 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 3.0
446 SH CTS FINs 3080 1 1.0 1.0 1.0 0.000 49.0 48.0 1.5 0.00 1.2
447 SH CTS FINs 3090 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 2.1
448 SH FNA FNA 1400 5 1.0 1.0 1.0 0.000 52.0 47.0 3198.7 0.28 6.7
449 SH FNA FNA 1405 3 1.0 1.0 1.0 0.000 50.0 47.0 3195.4 0.28 4.7
450 SH FNA FNA 1410 5 1.0 1.0 1.0 0.000 52.0 47.0 3230.6 0.29 6.7
451 SH FNA FNA 1420 5 1.0 1.0 1.0 0.000 52.0 47.0 3197.4 0.28 6.7
452 SH FNA FNA 1424 5 1.0 1.0 1.0 0.000 52.0 47.0 3197.4 0.28 6.7
453 SH FNA FNA 1425 5 1.0 1.0 1.0 0.000 52.0 47.0 3197.4 0.28 6.7
454 SH FNA FNA 2400 5 1.0 1.0 1.0 0.000 57.0 52.0 3193.7 0.31 11.7
455 SH FNA FNA 2405 3 1.0 1.0 1.0 0.000 53.0 50.0 3192.4 0.30 7.7
456 SH FNA FNA 2410 3 1.0 1.0 1.0 0.000 55.0 52.0 3227.6 0.32 9.7
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457 SH FNA FNA 2420 5 1.0 1.0 1.0 0.000 57.0 52.0 3192.4 0.31 11.7
458 SH FNA FNA 2424 5 1.0 1.0 1.0 0.000 57.0 52.0 3192.4 0.31 11.7
459 SH FNA FNA 2425 5 1.0 1.0 1.0 0.000 57.0 52.0 3192.4 0.31 11.7
460 SH FNA FNA 3400 5 1.0 1.2 1.2 0.000 62.0 57.0 3188.7 0.34 16.7
461 SH FNA FNA 3405 5 1.0 0.2 0.2 0.000 58.0 53.0 3187.4 0.32 12.7
462 SH FNA FNA 3410 5 1.0 2.2 2.2 0.002 60.0 55.0 3222.6 0.33 14.7
463 SH FNA FNA 3420 5 1.0 0.2 0.2 0.000 62.0 57.0 3187.4 0.34 16.7
464 SH FNA FNA 3424 5 1.0 0.2 0.2 0.000 62.0 57.0 3187.4 0.34 16.7
465 SH FNA FNA 3425 5 1.0 0.2 0.2 0.000 62.0 57.0 3187.4 0.34 16.7
466 SH FNA FNA 9 5 1.0 6.0 6.0 0.000 47.0 42.0 10439.1 0.83 10.2
467 SH CTS FOD 1010 1 1.0 28.0 28.0 0.000 48.0 47.0 143.8 0.01 1.1
468 SH CTS FOD 1020 1 1.0 2.0 2.0 0.000 49.0 48.0 21.5 0.00 1.0
469 SH CTS FOD 1030 1 1.0 0.0 0.0 0.000 49.0 48.0 15.7 0.00 1.0
470 SH CTS FOD 1040 1 1.0 0.0 0.0 0.000 49.0 48.0 15.7 0.00 1.0
471 SH CTS FOD 1050 1 1.0 0.0 0.0 0.000 49.0 48.0 15.7 0.00 1.0
472 SH CTS FOD 1060 1 1.0 0.0 0.0 0.000 49.0 48.0 15.7 0.00 1.0
473 SH CTS FOD 2010 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.0
474 SH CTS FOD 2020 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.0
475 SH CTS FOD 2030 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.0
476 SH CTS FOD 2040 1 1.0 1.0 1.0 0.000 50.0 49.0 1.9 0.00 1.5
477 SH CTS FOD 2050 1 1.0 1.0 1.0 0.000 50.0 49.0 1.9 0.00 1.5
478 SH CTS FOD 2060 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.0
479 SH CTS FOD 2070 1 1.0 1.0 1.0 0.000 49.0 48.0 1.9 0.00 1.0
480 SH CTS FOD 2080 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.0
481 SH CTS FOD 2090 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.0
482 SH CTS FOD 2100 1 1.0 1.0 1.0 0.000 49.0 48.0 1.9 0.00 1.0
483 SH CTS FOD 2110 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.0
484 SH CTS FOD 2120 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 2.0
485 SH CTS FOD 2130 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.0
486 SH CTS FOD 2140 1 1.0 1.0 1.0 0.000 49.0 48.0 1.6 0.00 1.0
487 SH CTS FOD 2150 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.0
488 SH CTS FOD 2160 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.0
489 SH CTS FOD 2170 1 1.0 1.0 1.0 0.000 49.0 48.0 1.9 0.00 1.0
490 SH CTS FOD 3010 1 1.0 0.1 0.1 0.000 49.0 48.0 0.6 0.00 1.0
491 SH CTS FOD 3020 1 1.0 0.1 0.1 0.000 49.0 48.0 0.6 0.00 1.0
492 SH CTS FOD 3030 1 1.0 0.1 0.1 0.000 51.0 50.0 0.6 0.00 2.5
493 SH CTS FOD 3040 1 1.0 0.1 0.1 0.000 51.0 50.0 0.6 0.00 2.5
494 SH CTS FOD 3050 1 1.0 0.1 0.1 0.000 50.0 49.0 0.6 0.00 2.0
495 SH CTS FOD 3060 1 1.0 0.1 0.1 0.000 49.0 48.0 0.6 0.00 1.0
496 SH CTS FOD 3070 1 1.0 0.1 0.1 0.000 49.0 48.0 0.6 0.00 1.0
497 SH CTS FOD 3080 1 1.0 0.1 0.1 0.000 50.0 49.0 0.6 0.00 2.0
498 SH CTS FOD 3090 1 1.0 0.1 0.1 0.000 49.0 48.0 0.6 0.00 1.0
499 SH CTS FOD 3100 1 1.0 0.1 0.1 0.000 49.0 48.0 0.6 0.00 1.0
500 SH CTS FOD 3110 1 1.0 0.1 0.1 0.000 49.0 48.0 0.6 0.00 1.0
501 SH CTS FOD 3120 1 1.0 0.1 0.1 0.000 49.0 48.0 0.6 0.00 1.0
502 SH CTS FOD 3130 1 2.0 0.1 0.1 0.000 52.0 52.0 0.6 0.00 2.9
503 SH CTS FOD 3140 1 1.0 0.1 0.1 0.000 50.0 49.0 0.6 0.00 2.0
504 SH CTS FORs 1010 1 1.0 10.0 10.0 0.000 48.0 47.0 118.6 0.01 1.1
505 SH CTS FORs 1020 1 1.0 1.0 1.0 0.000 49.0 48.0 17.0 0.00 1.1
506 SH CTS FORs 1050 1 1.0 1.0 1.0 0.000 49.0 48.0 35.5 0.00 1.1
507 SH CTS FORs 1060 1 2.0 1.0 2.1 0.000 50.0 50.0 18.8 0.00 2.1
508 SH CTS FORs 1090 1 1.0 1.5 1.5 0.000 49.0 48.0 18.4 0.00 1.1
509 SH CTS FORs 1100 1 1.0 1.0 1.0 0.000 49.0 48.0 17.0 0.00 1.1
510 SH CTS FORs 2010 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.1
511 SH CTS FORs 2030 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 2.1
512 SH CTS FORs 2060 1 1.0 1.0 1.0 0.000 51.0 51.0 2.1 0.00 3.0
513 SH CTS FORs 2070 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.1
514 SH CTS FORs 2100 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 2.1
515 SH CTS FORs 2120 1 1.0 1.0 1.0 0.000 49.0 48.0 2.1 0.00 1.1
516 SH CTS FORs 3010 1 1.0 0.1 0.1 0.000 49.0 48.0 0.8 0.00 1.1
517 SH CTS FORs 3060 1 1.0 0.1 0.1 0.000 52.0 52.0 0.8 0.00 3.9
518 SH CTS FORs 3070 1 1.0 0.1 0.1 0.000 49.0 48.0 0.8 0.00 1.1
519 SH CTS FORs 3080 1 1.0 0.1 0.1 0.000 49.0 48.0 0.8 0.00 1.1
520 SH CTS FORs 3090 1 2.0 0.1 0.1 0.000 52.0 61.1 0.8 0.00 5.4
521 SH CTS FORs 3110 1 1.0 0.1 0.1 0.000 50.0 49.0 0.8 0.00 1.7
522 SH CTS FORs 3120 1 1.0 0.1 0.1 0.000 50.0 49.0 0.8 0.00 2.1
523 SH SL FSL 1305 5 1.0 0.5 0.5 0.000 52.0 47.0 3264.7 0.29 11.8
524 SH SL FSL 1309 5 1.0 1.0 1.0 0.000 52.0 49.5 5681.2 0.53 14.3
525 SH SL FSL 2309 5 1.0 1.0 1.0 0.000 57.0 54.5 5676.2 0.58 19.3
526 SH SL FSL 3306 5 1.0 1.5 1.5 0.001 67.0 64.5 4536.5 0.55 20.7
527 SH SL FSL 3307 5 1.0 1.5 1.5 0.001 72.0 69.5 3240.5 0.42 19.2
528 SH SL FSL 3308 5 1.0 0.5 0.5 0.000 77.0 74.5 1657.2 0.23 18.2
529 SH SL FSL 3309 5 1.0 1.5 1.5 0.001 62.0 59.5 5671.2 0.64 24.3
530 SH SL FSL 9 5 1.0 1.5 1.5 0.000 47.0 42.0 5691.2 0.45 10.2
531 SH SL GER 1315 5 1.0 1.0 1.0 0.000 52.0 47.0 3302.9 0.29 5.1
532 SH SL GER 2315 5 1.0 1.0 1.0 0.000 57.0 52.0 3297.9 0.32 10.1
533 SH SL GER 3315 5 1.0 1.6 1.6 0.000 62.0 57.0 3292.9 0.35 15.1
534 SH SL GER 3317 5 1.0 0.5 0.5 0.000 67.0 62.0 1668.8 0.20 14.5
535 SH SCHOOL GRADE 0 2 0.0 1.0 0.0 0.000 2.0 0.0 14565.0 0.00 2.0
536 SH SCHOOL GRADE 1 5 1.0 1.0 1.0 0.000 7.0 2.0 14560.0 0.05 7.0
537 SH SCHOOL GRADE 2 5 1.0 1.0 1.0 0.000 12.0 7.0 14555.0 0.19 12.0
538 SH SCHOOL GRADE 3 5 1.0 1.0 1.0 0.000 17.0 12.0 14550.0 0.33 17.0
539 SH SCHOOL GRADE 4 5 1.0 1.0 1.0 0.000 22.0 17.0 14545.0 0.47 22.0
540 SH SCHOOL GRADE 5 5 1.0 1.0 1.0 0.000 27.0 22.0 14540.0 0.60 27.0
541 SH SCHOOL GRADE 6 5 1.0 1.0 1.0 0.000 32.0 27.0 14535.0 0.74 32.0
542 SH SCHOOL GRADE 7 5 1.0 1.0 1.0 0.000 37.0 32.0 14530.0 0.88 37.0
543 SH SCHOOL GRADE 8 5 1.0 8.0 8.0 0.000 42.0 37.0 14525.0 1.01 42.0
544 SH SCHOOL GRADE 9 5 1.0 153.5 153.5 0.000 47.0 42.0 12046.0 0.95 10.2
545 SH SCHOOL GRADE 10 0 1.0 13.0 13.0 0.000 47.0 47.0 73.8 0.01 0.1
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545 SH SCHOOL GRADE 10 0 1.0 13.0 13.0 0.000 47.0 47.0 73.8 0.01 0.1
546 SH SCHOOL GRADE 11 0 1.0 2.5 2.5 0.000 47.0 47.0 7.5 0.00 0.0
547 SH SCHOOL GRADE 12 0 1.0 0.0 0.0 0.000 47.0 47.0 0.0 0.00 0.0
548 SH CTS INF 1020 1 1.0 3.0 3.0 0.000 48.0 47.0 84.9 0.01 1.1
549 SH CTS INF 1030 1 1.0 5.0 5.0 0.000 49.0 48.0 56.4 0.01 1.4
550 SH CTS INF 1040 1 1.0 4.0 4.0 0.000 48.0 47.0 67.0 0.01 1.1
551 SH CTS INF 1050 1 1.0 3.0 3.0 0.000 48.0 47.0 25.3 0.00 1.1
552 SH CTS INF 1060 1 1.0 2.0 2.0 0.000 48.0 47.0 24.1 0.00 1.1
553 SH CTS INF 1070 1 1.0 8.0 8.0 0.000 48.0 47.0 113.5 0.01 1.1
554 SH CTS INF 1080 1 1.0 2.0 2.0 0.000 48.0 47.0 66.9 0.01 1.1
555 SH CTS INF 1210 1 3.0 1.0 3.1 0.000 50.0 50.0 18.2 0.00 2.4
556 SH CTS INF 2010 1 1.0 8.0 8.0 0.000 48.0 47.0 26.4 0.00 1.1
557 SH CTS INF 2030 1 1.0 6.0 6.0 0.000 49.0 48.0 15.7 0.00 1.4
558 SH CTS INF 2040 1 1.0 2.0 2.0 0.000 50.0 49.0 5.2 0.00 1.2
559 SH CTS INF 2050 1 2.0 5.0 10.1 0.000 50.0 50.0 7.9 0.00 1.5
560 SH CTS INF 2060 1 2.0 2.0 4.1 0.000 50.0 50.0 4.1 0.00 1.5
561 SH CTS INF 2070 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.4
562 SH CTS INF 2080 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.5
563 SH CTS INF 2090 1 2.0 0.0 0.1 0.000 51.0 51.0 0.3 0.00 1.5
564 SH CTS INF 2100 1 2.0 0.0 0.1 0.000 51.0 51.0 0.3 0.00 1.5
565 SH CTS INF 2110 1 2.0 0.0 0.1 0.000 51.0 51.0 0.3 0.00 1.5
566 SH CTS INF 2120 1 5.0 2.0 10.1 0.000 50.0 52.0 6.1 0.00 2.8
567 SH CTS INF 2130 1 1.0 4.0 4.0 0.000 49.0 48.0 13.2 0.00 1.1
568 SH CTS INF 2140 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.1
569 SH CTS INF 2150 1 1.0 2.0 2.0 0.000 49.0 48.0 34.0 0.00 1.5
570 SH CTS INF 2160 1 1.0 1.0 1.0 0.000 50.0 49.0 15.5 0.00 1.8
571 SH CTS INF 2170 1 1.0 3.0 3.0 0.000 51.0 50.0 14.3 0.00 2.7
572 SH CTS INF 2180 1 1.0 2.0 2.0 0.000 52.0 51.0 9.2 0.00 1.9
573 SH CTS INF 2190 1 1.0 6.0 6.0 0.000 49.0 48.0 18.9 0.00 1.1
574 SH CTS INF 2200 1 1.0 4.0 4.0 0.000 49.0 48.0 6.8 0.00 1.1
575 SH CTS INF 2210 1 4.0 1.0 4.1 0.000 52.0 55.0 1.5 0.00 4.8
576 SH CTS INF 2220 1 2.0 2.0 4.1 0.000 52.0 52.0 5.2 0.00 2.0
577 SH CTS INF 3010 1 1.0 1.0 1.0 0.000 49.0 48.0 4.0 0.00 1.1
578 SH CTS INF 3020 1 1.0 0.0 0.0 0.000 49.0 48.0 0.2 0.00 1.1
579 SH CTS INF 3030 1 1.0 1.0 1.0 0.000 51.0 50.0 2.7 0.00 1.6
580 SH CTS INF 3040 1 1.0 1.0 1.0 0.000 52.0 51.0 1.5 0.00 2.5
581 SH CTS INF 3050 1 1.0 0.0 0.0 0.000 53.0 52.0 0.2 0.00 3.4
582 SH CTS INF 3060 1 2.0 0.0 0.1 0.000 51.0 52.0 0.2 0.00 1.9
583 SH CTS INF 3070 1 1.0 0.0 0.0 0.000 51.0 51.0 0.2 0.00 1.8
584 SH CTS INF 3080 1 1.0 0.0 0.0 0.000 48.0 47.0 0.2 0.00 1.1
585 SH CTS INF 3090 1 1.0 0.5 0.5 0.000 52.0 54.0 0.9 0.00 2.2
586 SH CTS INF 3100 1 3.0 1.0 3.1 0.000 51.0 55.0 1.5 0.00 2.9
587 SH CTS INF 3110 1 2.0 0.0 0.1 0.000 52.0 57.0 0.2 0.00 4.9
588 SH CTS INF 3120 1 1.0 2.0 2.0 0.000 51.0 53.0 3.3 0.00 2.4
589 SH CTS INF 3130 1 1.0 2.5 2.5 0.000 50.0 49.0 3.3 0.00 1.3
590 SH CTS INF 3140 1 2.0 0.0 0.1 0.000 51.0 50.0 0.2 0.00 1.6
591 SH CTS INF 3150 1 1.0 3.0 3.0 0.000 53.0 52.0 7.7 0.00 1.9
592 SH CTS INF 3160 1 1.0 1.0 1.0 0.000 54.0 53.0 1.5 0.00 1.6
593 SH CTS INF 3170 1 1.0 0.0 0.0 0.000 55.0 54.0 0.2 0.00 2.6
594 SH CTS INF 3180 1 2.0 0.0 0.1 0.000 50.0 50.0 0.2 0.00 1.5
595 SH CTS INF 3190 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 1.3
596 SH CTS INF 3200 1 2.0 0.0 0.1 0.000 51.0 50.0 0.2 0.00 2.5
597 SH CTS INF 3210 1 5.0 0.0 0.2 0.000 54.0 64.0 0.2 0.00 9.6
598 SH CTS INF 3220 1 2.0 1.0 2.1 0.000 54.0 55.0 2.7 0.00 2.6
599 SH CTS INF 3230 1 1.0 1.0 1.0 0.000 55.0 56.0 1.5 0.00 3.5
600 SH CTS INF 3240 1 1.0 0.0 0.0 0.000 56.0 57.0 0.2 0.00 4.4
601 SH IOP IOP 1119 3 1.0 1.0 1.0 0.000 50.0 47.0 7034.4 0.62 8.1
602 SH IOP IOP 1159 3 1.0 1.5 1.5 0.000 50.0 47.0 575.5 0.05 7.1
603 SH IOP IOP 1226 3 1.0 1.5 1.5 0.000 50.0 47.0 1833.6 0.16 6.6
604 SH IOP IOP 1291 3 1.0 1.5 1.5 0.000 50.0 47.0 3687.4 0.33 8.1
605 SH IOP IOP 1407 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
606 SH IOP IOP 1408 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
607 SH IOP IOP 1546 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
608 SH IOP IOP 1547 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
609 SH IOP IOP 1602 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
610 SH IOP IOP 1603 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
611 SH IOP IOP 1632 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
612 SH IOP IOP 1633 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
613 SH IOP IOP 1634 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
614 SH IOP IOP 1747 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
615 SH IOP IOP 1748 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
616 SH IOP IOP 1749 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
617 SH IOP IOP 1801 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
618 SH IOP IOP 1802 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
619 SH IOP IOP 1831 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
620 SH IOP IOP 1847 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
621 SH IOP IOP 1851 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
622 SH IOP IOP 1877 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
623 SH IOP IOP 1915 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
624 SH IOP IOP 1941 3 1.0 1.0 1.0 0.000 50.0 47.0 20.0 0.00 3.1
625 SH IOP IOP 2119 3 1.0 0.8 0.8 0.000 53.0 51.8 5550.8 0.54 11.4
626 SH IOP IOP 2159 3 1.0 0.3 0.3 0.000 53.0 50.0 390.4 0.04 7.7
627 SH IOP IOP 2226 3 1.0 0.3 0.3 0.000 53.0 50.0 1.7 0.00 7.4
628 SH IOP IOP 2291 3 1.0 0.3 0.3 0.000 53.0 50.0 137.1 0.01 8.4
629 SH IOP IOP 2407 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
630 SH IOP IOP 2408 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
631 SH IOP IOP 2546 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
632 SH IOP IOP 2547 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
633 SH IOP IOP 2602 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
634 SH IOP IOP 2603 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
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634 SH IOP IOP 2603 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
635 SH IOP IOP 2632 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
636 SH IOP IOP 2633 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
637 SH IOP IOP 2634 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
638 SH IOP IOP 2747 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
639 SH IOP IOP 2748 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
640 SH IOP IOP 2749 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
641 SH IOP IOP 2801 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
642 SH IOP IOP 2802 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
643 SH IOP IOP 2831 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
644 SH IOP IOP 2847 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
645 SH IOP IOP 2851 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
646 SH IOP IOP 2877 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
647 SH IOP IOP 2915 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
648 SH IOP IOP 2941 10 1.0 1.0 1.0 0.000 60.0 50.0 10.0 0.00 13.1
649 SH IOP IOP 3119 3 1.0 0.3 0.3 0.000 56.0 57.1 4436.3 0.48 14.6
650 SH IOP IOP 3407 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
651 SH IOP IOP 3408 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
652 SH IOP IOP 3546 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
653 SH IOP IOP 3547 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
654 SH IOP IOP 3602 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
655 SH IOP IOP 3603 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
656 SH IOP IOP 3632 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
657 SH IOP IOP 3633 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
658 SH IOP IOP 3634 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
659 SH IOP IOP 3747 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
660 SH IOP IOP 3748 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
661 SH IOP IOP 3749 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
662 SH IOP IOP 3801 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
663 SH IOP IOP 3802 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
664 SH IOP IOP 3831 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
665 SH IOP IOP 3847 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
666 SH IOP IOP 3851 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
667 SH IOP IOP 3877 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
668 SH IOP IOP 3915 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
669 SH IOP IOP 3941 10 1.0 0.0 0.0 0.000 70.0 60.0 0.0 0.00 23.1
670 SH SL ITA 1322 5 1.0 1.0 1.0 0.000 52.0 47.0 1698.9 0.15 5.1
671 SH SL ITA 2322 5 1.0 1.0 1.0 0.000 57.0 52.0 1693.9 0.17 10.1
672 SH SL ITA 3322 5 1.0 0.7 0.7 0.000 62.0 57.0 1688.9 0.18 15.1
673 SH SL JLC 1097 5 1.0 1.0 1.0 0.000 52.0 47.0 1729.4 0.15 5.1
674 SH SL JLC 2097 5 1.0 1.0 1.0 0.000 57.0 52.0 1724.4 0.17 10.1
675 SH SL JLC 3097 5 1.0 1.2 1.2 0.001 62.0 57.0 1719.4 0.18 15.1
676 SH SL LAT 1325 5 1.0 1.0 1.0 0.000 52.0 47.0 42.6 0.00 5.1
677 SH SL LAT 2345 5 1.0 1.0 1.0 0.000 57.0 52.0 37.6 0.00 10.1
678 SH SL LAT 3345 5 1.0 0.1 0.1 0.000 62.0 57.0 32.6 0.00 15.1
679 SH CTS LGS 1010 1 1.0 1.0 1.0 0.000 48.0 47.0 46.2 0.00 1.1
680 SH CTS LGS 1020 1 1.0 11.0 11.0 0.000 49.0 48.0 29.5 0.00 2.0
681 SH CTS LGS 2010 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.2
682 SH CTS LGS 2020 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.2
683 SH CTS LGS 2030 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.2
684 SH CTS LGS 2050 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.2
685 SH CTS LGS 3010 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.2
686 SH CTS LGS 3020 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.2
687 SH CTS LGS 3040 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.2
688 SH CTS LGS 3050 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.2
689 SH CTS LGS 3060 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.2
690 SH CTS LGS 3070 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.2
691 SH CTS LGS 3080 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.2
692 SH CTS LOG 1010 1 1.0 4.0 4.0 0.000 48.0 47.0 75.8 0.01 1.1
693 SH CTS LOG 1020 1 1.0 1.0 1.0 0.000 49.0 48.0 18.2 0.00 1.3
694 SH CTS LOG 1030 1 1.0 1.0 1.0 0.000 49.0 48.0 18.2 0.00 1.3
695 SH CTS LOG 1040 1 1.0 1.0 1.0 0.000 49.0 48.0 18.2 0.00 1.3
696 SH CTS LOG 2010 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 2.2
697 SH CTS LOG 2020 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 2.2
698 SH CTS LOG 2030 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 2.2
699 SH CTS LOG 2040 1 1.0 1.0 1.0 0.000 49.0 48.0 1.5 0.00 1.3
700 SH CTS LOG 3010 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 3.2
701 SH CTS LOG 3020 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 3.2
702 SH CTS LOG 3030 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 3.2
703 SH CTS LOG 3040 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 2.2
704 SH CTS MAM 1010 1 1.0 7.0 7.0 0.000 48.0 47.0 90.1 0.01 1.1
705 SH CTS MAM 1020 1 1.0 1.0 1.0 0.000 49.0 48.0 19.4 0.00 1.2
706 SH CTS MAM 1030 1 2.0 1.0 2.1 0.000 50.0 50.0 18.2 0.00 1.4
707 SH CTS MAM 1040 1 2.0 1.0 2.1 0.000 49.0 49.0 18.2 0.00 1.4
708 SH CTS MAM 2010 1 1.0 2.0 2.0 0.000 49.0 48.0 4.0 0.00 1.2
709 SH CTS MAM 2030 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 1.4
710 SH CTS MAM 2040 1 1.0 2.0 2.0 0.000 50.0 49.0 2.8 0.00 2.1
711 SH CTS MAM 2050 1 2.0 1.0 2.1 0.000 50.0 50.0 1.5 0.00 1.4
712 SH CTS MAM 2060 1 1.0 1.0 1.0 0.000 51.0 51.0 1.5 0.00 2.4
713 SH CTS MAM 2080 1 1.0 1.0 1.0 0.000 49.0 48.0 1.5 0.00 1.2
714 SH CTS MAM 2090 1 1.0 3.0 3.0 0.000 49.0 48.0 5.5 0.00 1.2
715 SH CTS MAM 2110 1 4.0 1.0 4.1 0.000 51.0 56.0 1.5 0.00 4.4
716 SH CTS MAM 3010 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.6
717 SH CTS MAM 3020 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 1.6
718 SH CTS MAM 3030 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 2.5
719 SH CTS MAM 3040 1 2.0 0.0 0.1 0.000 51.0 50.0 0.2 0.00 2.7
720 SH CTS MAM 3050 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 2.0
721 SH CTS MAM 3060 1 2.0 0.0 0.1 0.000 51.0 52.0 0.2 0.00 3.4
722 SH CTS MAM 3070 1 1.0 0.0 0.0 0.000 51.0 51.0 0.2 0.00 2.4
723 SH CTS MAM 3080 1 1.0 0.0 0.0 0.000 52.0 52.0 0.2 0.00 3.3
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723 SH CTS MAM 3080 1 1.0 0.0 0.0 0.000 52.0 52.0 0.2 0.00 3.3
724 SH CTS MAM 3090 1 2.0 0.0 0.1 0.000 50.0 50.0 0.2 0.00 2.5
725 SH CTS MAM 3100 1 1.0 1.0 1.0 0.000 50.0 49.0 1.5 0.00 1.4
726 SH CTS MAM 3120 1 1.0 0.0 0.0 0.000 52.0 57.0 0.2 0.00 5.3
727 SH MAT MAT 1037 5 1.0 1.0 1.0 0.000 52.0 52.8 6588.9 0.66 13.3
728 SH MAT MAT 1038 5 1.0 0.8 0.8 0.000 52.0 51.1 5627.2 0.54 11.7
729 SH MAT MAT 1041 5 1.0 1.2 1.2 0.000 52.0 50.2 5427.5 0.51 11.3
730 SH MAT MAT 1225 5 1.0 0.8 0.8 0.000 52.0 48.5 3338.0 0.31 9.0
731 SH MAT MAT 2037 5 1.0 2.0 2.0 0.001 57.0 59.9 7112.3 0.80 17.5
732 SH MAT MAT 2038 5 1.0 1.5 1.5 0.000 57.0 57.0 6000.0 0.64 17.5
733 SH MAT MAT 2225 5 1.0 0.0 0.0 0.000 57.0 53.9 0.0 0.00 13.7
734 SH MAT MAT 3037 5 1.0 20.6 20.6 0.019 62.0 64.9 6241.4 0.76 13.7
735 SH MAT MAT 3038 5 1.0 2.1 2.1 0.003 62.0 63.4 3670.8 0.44 15.2
736 SH MAT MAT 3211 5 1.0 7.2 7.2 0.007 67.0 69.9 4007.7 0.53 5.7
737 SH MAT MAT 9 5 1.0 2.8 2.8 0.000 47.0 42.0 7779.6 0.62 10.2
738 SH CTS MEC 1010 1 1.0 0.0 0.0 0.000 48.0 47.0 15.7 0.00 1.1
739 SH CTS MEC 1020 1 1.0 1.0 1.0 0.000 48.0 47.0 18.2 0.00 1.1
740 SH CTS MEC 1040 1 1.0 4.0 4.0 0.000 48.0 47.0 36.7 0.00 1.1
741 SH CTS MEC 1090 1 1.0 3.0 3.0 0.000 48.0 47.0 31.9 0.00 1.1
742 SH CTS MEC 1110 1 1.0 5.0 5.0 0.000 48.0 47.0 24.8 0.00 1.1
743 SH CTS MEC 1130 1 1.0 1.0 1.0 0.000 48.0 47.0 20.7 0.00 1.1
744 SH CTS MEC 1150 1 1.0 2.0 2.0 0.000 48.0 47.0 24.6 0.00 1.1
745 SH CTS MEC 1160 1 1.0 5.0 5.0 0.000 48.0 47.0 45.2 0.00 1.1
746 SH CTS MEC 1170 1 2.0 1.0 2.1 0.000 50.0 50.0 20.7 0.00 1.6
747 SH CTS MEC 1190 1 1.0 2.0 2.0 0.000 48.0 47.0 27.1 0.00 1.1
748 SH CTS MEC 2010 1 1.0 2.0 2.0 0.000 49.0 48.0 2.8 0.00 1.2
749 SH CTS MEC 2020 1 1.0 1.0 1.0 0.000 49.0 48.0 1.5 0.00 2.0
750 SH CTS MEC 2030 1 1.0 2.0 2.0 0.000 49.0 48.0 10.2 0.00 1.3
751 SH CTS MEC 2040 1 1.0 1.0 1.0 0.000 49.0 48.0 9.0 0.00 1.3
752 SH CTS MEC 2050 1 1.0 1.0 1.0 0.000 49.0 48.0 1.5 0.00 1.3
753 SH CTS MEC 2060 1 2.0 2.0 4.1 0.000 49.0 49.0 10.2 0.00 1.6
754 SH CTS MEC 2070 1 3.0 2.0 6.1 0.000 50.0 52.0 7.7 0.00 3.6
755 SH CTS MEC 2090 1 1.0 3.0 3.0 0.000 49.0 48.0 7.7 0.00 1.4
756 SH CTS MEC 2100 1 2.0 0.0 0.1 0.000 49.0 49.0 0.3 0.00 1.6
757 SH CTS MEC 2110 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.2
758 SH CTS MEC 2120 1 1.0 1.0 1.0 0.000 49.0 48.0 1.5 0.00 1.2
759 SH CTS MEC 2130 1 1.0 1.0 1.0 0.000 49.0 48.0 4.1 0.00 2.0
760 SH CTS MEC 2140 1 1.0 2.0 2.0 0.000 50.0 49.0 2.8 0.00 3.0
761 SH CTS MEC 2150 1 1.0 3.0 3.0 0.000 49.0 48.0 5.5 0.00 1.5
762 SH CTS MEC 2160 1 1.0 3.0 3.0 0.000 49.0 48.0 5.5 0.00 1.5
763 SH CTS MEC 2170 1 1.0 1.0 1.0 0.000 51.0 51.0 4.0 0.00 2.5
764 SH CTS MEC 2180 1 1.0 1.0 1.0 0.000 49.0 48.0 1.5 0.00 1.5
765 SH CTS MEC 2190 1 1.0 3.0 3.0 0.000 49.0 48.0 7.9 0.00 1.5
766 SH CTS MEC 2200 1 1.0 0.0 0.0 0.000 50.0 49.0 0.3 0.00 1.5
767 SH CTS MEC 2210 1 2.0 0.0 0.1 0.000 51.0 51.0 0.3 0.00 2.1
768 SH CTS MEC 2220 1 2.0 2.0 4.1 0.000 50.0 50.0 4.1 0.00 1.7
769 SH CTS MEC 3010 1 1.0 0.0 0.0 0.000 48.0 47.0 0.2 0.00 1.1
770 SH CTS MEC 3020 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 3.0
771 SH CTS MEC 3030 1 2.0 1.0 2.1 0.000 51.0 53.0 5.2 0.00 3.6
772 SH CTS MEC 3040 1 2.0 1.0 2.1 0.000 52.0 55.0 4.0 0.00 4.9
773 SH CTS MEC 3050 1 1.0 1.0 1.0 0.000 53.0 56.0 2.7 0.00 5.7
774 SH CTS MEC 3060 1 1.0 1.0 1.0 0.000 54.0 57.0 1.5 0.00 6.4
775 SH CTS MEC 3070 1 1.0 0.0 0.0 0.000 55.0 58.0 0.2 0.00 7.2
776 SH CTS MEC 3080 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 2.2
777 SH CTS MEC 3090 1 2.0 0.0 0.1 0.000 51.0 54.0 0.2 0.00 3.2
778 SH CTS MEC 3100 1 2.0 0.0 0.1 0.000 50.0 51.0 0.2 0.00 2.0
779 SH CTS MEC 3110 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 1.6
780 SH CTS MEC 3120 1 2.0 0.0 0.1 0.000 50.0 50.0 0.2 0.00 2.8
781 SH CTS MEC 3130 1 2.0 0.0 0.1 0.000 51.0 51.0 0.2 0.00 2.7
782 SH CTS MEC 3140 1 1.0 0.0 0.0 0.000 51.0 50.0 0.2 0.00 2.5
783 SH CTS MEC 3150 1 2.0 0.0 0.1 0.000 50.0 50.0 0.2 0.00 2.0
784 SH CTS MEC 3160 1 1.0 0.0 0.0 0.000 49.0 48.0 0.2 0.00 1.2
785 SH CTS MEC 3170 1 3.0 1.0 3.1 0.000 52.0 55.0 2.7 0.00 4.5
786 SH CTS MEC 3180 1 1.0 1.0 1.0 0.000 53.0 56.0 1.5 0.00 5.3
787 SH CTS MEC 3190 1 4.0 0.0 0.2 0.000 54.0 59.0 0.2 0.00 7.6
788 SH CTS MEC 3200 1 1.0 1.0 1.0 0.000 51.0 51.0 1.5 0.00 1.8
789 SH CTS MEC 3210 1 1.0 0.0 0.0 0.000 49.0 48.0 0.2 0.00 1.2
790 SH CTS MEC 3220 1 1.0 0.0 0.0 0.000 50.0 49.0 0.2 0.00 2.5
791 SH CTS MEC 3230 1 1.0 0.0 0.0 0.000 52.0 52.0 0.2 0.00 2.8
792 SH LOCAL OTH 1910 3 1.0 50.0 50.0 0.000 50.0 47.0 2000.0 0.18 3.1
793 SH LOCAL OTH 1998 3 1.0 0.0 0.0 0.000 50.0 48.5 0.0 0.00 3.1
794 SH LOCAL OTH 1999 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
795 SH LOCAL OTH 2998 3 1.0 5.0 5.0 0.000 50.0 48.5 11.5 0.00 3.0
796 SH LOCAL OTH 2999 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.0
797 SH LOCAL OTH 3998 3 1.0 5.0 5.0 0.000 50.0 48.5 6.0 0.00 3.0
798 SH LOCAL OTH 3999 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.0
799 SH GCC OTH 9900 6 1.0 0.0 0.0 0.000 53.0 47.5 0.0 0.00 6.0
800 SH GCC OTH 9901 5 1.0 0.0 0.0 0.000 52.0 47.5 0.0 0.00 5.0
801 SH GCC OTH 9902 5 1.0 0.0 0.0 0.000 52.0 47.5 0.0 0.00 5.0
802 SH GCC OTH 9903 6 1.0 0.0 0.0 0.000 53.0 47.5 0.0 0.00 6.0
803 SH GCC OTH 9904 5 1.0 0.0 0.0 0.000 52.0 47.5 0.0 0.00 5.0
804 SH GCC OTH 9905 5 1.0 0.0 0.0 0.000 52.0 47.5 0.0 0.00 5.0
805 SH GCC OTH 9906 6 1.0 0.0 0.0 0.000 53.0 47.5 0.0 0.00 6.0
806 SH GCC OTH 9907 5 1.0 0.0 0.0 0.000 52.0 47.5 0.0 0.00 5.0
807 SH GCC OTH 9908 5 1.0 0.0 0.0 0.000 52.0 47.5 0.0 0.00 5.0
808 SH GCC OTH 9909 6 1.0 0.0 0.0 0.000 53.0 47.5 0.0 0.00 6.0
809 SH GCC OTH 9910 5 1.0 0.0 0.0 0.000 52.0 47.5 0.0 0.00 5.0
810 SH GCC OTH 9911 5 1.0 0.0 0.0 0.000 52.0 47.5 0.0 0.00 5.0
811 SH GCC OTH 9912 6 1.0 0.0 0.0 0.000 53.0 47.5 0.0 0.00 6.0
812 SH GCC OTH 9913 5 1.0 0.0 0.0 0.000 52.0 47.5 0.0 0.00 5.0
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812 SH GCC OTH 9913 5 1.0 0.0 0.0 0.000 52.0 47.5 0.0 0.00 5.0
813 SH GCC OTH 9914 5 1.0 0.0 0.0 0.000 52.0 47.5 0.0 0.00 5.0
814 SH GCC OTH 9915 6 1.0 0.0 0.0 0.000 53.0 47.5 0.0 0.00 6.0
815 SH GCC OTH 9916 5 1.0 0.0 0.0 0.000 52.0 47.5 0.0 0.00 5.0
816 SH GCC OTH 9917 5 1.0 0.0 0.0 0.000 52.0 47.5 0.0 0.00 5.0
817 SH GCC OTH 9918 6 1.0 0.0 0.0 0.000 53.0 47.5 0.0 0.00 6.0
818 SH GCC OTH 9919 5 1.0 0.0 0.0 0.000 52.0 47.5 0.0 0.00 5.0
819 SH GCC OTH 9920 5 1.0 0.0 0.0 0.000 52.0 47.5 0.0 0.00 5.0
820 SH PED PED 1445 5 1.0 2.0 2.0 0.000 52.0 47.0 1171.7 0.10 15.2
821 SH PED PED 2445 5 1.0 1.0 1.0 0.000 57.0 52.0 5.0 0.00 12.6
822 SH PED PED 3445 5 1.0 0.0 0.0 0.000 62.0 57.0 0.0 0.00 17.6
823 SH CALM PED 770 3 1.0 2.0 2.0 0.000 50.0 47.0 1163.7 0.10 3.1
824 SH PED PED 9 5 1.0 1.0 1.0 0.000 47.0 42.0 1176.7 0.09 10.2
825 SH RAP RAP 1641 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
826 SH RAP RAP 1646 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
827 SH RAP RAP 1651 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
828 SH RAP RAP 1655 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
829 SH RAP RAP 1659 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
830 SH RAP RAP 1663 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
831 SH RAP RAP 1758 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
832 SH RAP RAP 1762 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
833 SH RAP RAP 1853 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
834 SH RAP RAP 1988 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
835 SH RAP RAP 1992 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
836 SH RAP RAP 2641 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
837 SH RAP RAP 2642 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
838 SH RAP RAP 2643 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
839 SH RAP RAP 2646 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
840 SH RAP RAP 2647 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
841 SH RAP RAP 2648 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
842 SH RAP RAP 2651 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
843 SH RAP RAP 2652 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
844 SH RAP RAP 2653 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
845 SH RAP RAP 2655 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
846 SH RAP RAP 2656 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
847 SH RAP RAP 2657 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
848 SH RAP RAP 2659 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
849 SH RAP RAP 2660 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
850 SH RAP RAP 2661 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
851 SH RAP RAP 2663 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
852 SH RAP RAP 2664 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
853 SH RAP RAP 2665 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
854 SH RAP RAP 2758 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
855 SH RAP RAP 2759 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
856 SH RAP RAP 2760 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
857 SH RAP RAP 2762 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
858 SH RAP RAP 2763 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
859 SH RAP RAP 2764 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
860 SH RAP RAP 2853 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
861 SH RAP RAP 2854 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
862 SH RAP RAP 2855 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
863 SH RAP RAP 2988 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
864 SH RAP RAP 2989 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
865 SH RAP RAP 2990 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
866 SH RAP RAP 2992 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
867 SH RAP RAP 2993 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
868 SH RAP RAP 2994 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
869 SH RAP RAP 3641 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
870 SH RAP RAP 3642 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
871 SH RAP RAP 3643 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
872 SH RAP RAP 3644 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
873 SH RAP RAP 3646 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
874 SH RAP RAP 3647 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
875 SH RAP RAP 3648 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
876 SH RAP RAP 3649 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
877 SH RAP RAP 3651 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
878 SH RAP RAP 3652 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
879 SH RAP RAP 3653 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
880 SH RAP RAP 3654 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
881 SH RAP RAP 3655 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
882 SH RAP RAP 3656 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
883 SH RAP RAP 3657 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
884 SH RAP RAP 3658 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
885 SH RAP RAP 3659 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
886 SH RAP RAP 3660 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
887 SH RAP RAP 3661 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
888 SH RAP RAP 3662 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
889 SH RAP RAP 3663 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
890 SH RAP RAP 3664 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
891 SH RAP RAP 3665 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
892 SH RAP RAP 3666 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
893 SH RAP RAP 3758 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
894 SH RAP RAP 3759 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
895 SH RAP RAP 3760 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
896 SH RAP RAP 3761 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
897 SH RAP RAP 3762 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
898 SH RAP RAP 3763 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
899 SH RAP RAP 3764 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
900 SH RAP RAP 3765 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
901 SH RAP RAP 3853 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
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901 SH RAP RAP 3853 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
902 SH RAP RAP 3854 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
903 SH RAP RAP 3855 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
904 SH RAP RAP 3856 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
905 SH RAP RAP 3988 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
906 SH RAP RAP 3989 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
907 SH RAP RAP 3990 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
908 SH RAP RAP 3991 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
909 SH RAP RAP 3992 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
910 SH RAP RAP 3993 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
911 SH RAP RAP 3994 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
912 SH RAP RAP 3995 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
913 SH RAP RAP 4100 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
914 SH RAP RAP 4104 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
915 SH RAP RAP 4108 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
916 SH RAP RAP 4112 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
917 SH RAP RAP 4116 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
918 SH RAP RAP 4120 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
919 SH RAP RAP 4124 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
920 SH RAP RAP 4128 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
921 SH RAP RAP 4132 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
922 SH RAP RAP 4136 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
923 SH RAP RAP 4140 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
924 SH RAP RAP 4144 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
925 SH RAP RAP 4148 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
926 SH RAP RAP 4152 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
927 SH RAP RAP 4156 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
928 SH RAP RAP 4160 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
929 SH RAP RAP 4164 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
930 SH RAP RAP 4168 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
931 SH RAP RAP 4172 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
932 SH RAP RAP 4176 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
933 SH RAP RAP 4180 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
934 SH RAP RAP 4184 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
935 SH RAP RAP 4188 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
936 SH RAP RAP 4192 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
937 SH RAP RAP 4196 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
938 SH RAP RAP 4204 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
939 SH RAP RAP 4208 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
940 SH RAP RAP 4224 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
941 SH RAP RAP 4228 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
942 SH RAP RAP 4232 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
943 SH RAP RAP 4236 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
944 SH RAP RAP 4240 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
945 SH RAP RAP 4244 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
946 SH RAP RAP 4248 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
947 SH RAP RAP 4252 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
948 SH RAP RAP 4256 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
949 SH RAP RAP 4260 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
950 SH RAP RAP 4280 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
951 SH RAP RAP 4284 5 5.0 1.0 5.0 0.000 55.0 55.9 35.0 0.00 5.1
952 SH RAP RAP 5100 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
953 SH RAP RAP 5101 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
954 SH RAP RAP 5102 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
955 SH RAP RAP 5104 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
956 SH RAP RAP 5105 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
957 SH RAP RAP 5106 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
958 SH RAP RAP 5108 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
959 SH RAP RAP 5109 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
960 SH RAP RAP 5110 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
961 SH RAP RAP 5112 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
962 SH RAP RAP 5113 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
963 SH RAP RAP 5114 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
964 SH RAP RAP 5116 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
965 SH RAP RAP 5117 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
966 SH RAP RAP 5118 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
967 SH RAP RAP 5120 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
968 SH RAP RAP 5121 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
969 SH RAP RAP 5122 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
970 SH RAP RAP 5124 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
971 SH RAP RAP 5125 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
972 SH RAP RAP 5126 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
973 SH RAP RAP 5128 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
974 SH RAP RAP 5129 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
975 SH RAP RAP 5130 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
976 SH RAP RAP 5132 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
977 SH RAP RAP 5133 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
978 SH RAP RAP 5134 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
979 SH RAP RAP 5136 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
980 SH RAP RAP 5137 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
981 SH RAP RAP 5138 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
982 SH RAP RAP 5140 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
983 SH RAP RAP 5141 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
984 SH RAP RAP 5142 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
985 SH RAP RAP 5144 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
986 SH RAP RAP 5145 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
987 SH RAP RAP 5146 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
988 SH RAP RAP 5148 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
989 SH RAP RAP 5149 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
990 SH RAP RAP 5150 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
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990 SH RAP RAP 5150 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
991 SH RAP RAP 5152 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
992 SH RAP RAP 5153 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
993 SH RAP RAP 5154 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
994 SH RAP RAP 5156 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
995 SH RAP RAP 5157 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
996 SH RAP RAP 5158 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
997 SH RAP RAP 5160 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
998 SH RAP RAP 5161 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
999 SH RAP RAP 5162 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1

1000 SH RAP RAP 5164 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1001 SH RAP RAP 5165 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1002 SH RAP RAP 5166 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1003 SH RAP RAP 5168 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1004 SH RAP RAP 5169 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1005 SH RAP RAP 5170 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1006 SH RAP RAP 5172 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1007 SH RAP RAP 5173 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1008 SH RAP RAP 5174 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1009 SH RAP RAP 5176 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1010 SH RAP RAP 5177 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1011 SH RAP RAP 5178 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1012 SH RAP RAP 5180 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1013 SH RAP RAP 5181 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1014 SH RAP RAP 5182 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1015 SH RAP RAP 5184 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1016 SH RAP RAP 5185 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1017 SH RAP RAP 5186 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1018 SH RAP RAP 5188 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1019 SH RAP RAP 5189 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1020 SH RAP RAP 5190 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1021 SH RAP RAP 5192 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1022 SH RAP RAP 5193 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1023 SH RAP RAP 5194 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1024 SH RAP RAP 5196 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1025 SH RAP RAP 5197 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1026 SH RAP RAP 5198 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1027 SH RAP RAP 5204 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1028 SH RAP RAP 5205 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1029 SH RAP RAP 5206 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1030 SH RAP RAP 5208 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1031 SH RAP RAP 5209 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1032 SH RAP RAP 5210 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1033 SH RAP RAP 5224 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1034 SH RAP RAP 5225 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1035 SH RAP RAP 5226 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1036 SH RAP RAP 5228 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1037 SH RAP RAP 5229 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1038 SH RAP RAP 5230 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1039 SH RAP RAP 5232 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1040 SH RAP RAP 5233 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1041 SH RAP RAP 5234 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1042 SH RAP RAP 5236 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1043 SH RAP RAP 5237 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1044 SH RAP RAP 5238 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1045 SH RAP RAP 5240 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1046 SH RAP RAP 5241 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1047 SH RAP RAP 5242 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1048 SH RAP RAP 5244 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1049 SH RAP RAP 5245 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1050 SH RAP RAP 5246 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1051 SH RAP RAP 5248 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1052 SH RAP RAP 5249 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1053 SH RAP RAP 5250 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1054 SH RAP RAP 5252 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1055 SH RAP RAP 5253 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1056 SH RAP RAP 5254 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1057 SH RAP RAP 5256 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1058 SH RAP RAP 5257 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1059 SH RAP RAP 5258 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1060 SH RAP RAP 5260 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1061 SH RAP RAP 5261 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1062 SH RAP RAP 5262 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1063 SH RAP RAP 5280 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1064 SH RAP RAP 5281 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1065 SH RAP RAP 5282 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1066 SH RAP RAP 5284 5 1.0 1.0 1.0 0.000 60.0 60.9 30.0 0.00 10.1
1067 SH RAP RAP 5285 5 1.0 1.0 1.0 0.000 65.0 65.9 25.0 0.00 15.1
1068 SH RAP RAP 5286 5 1.0 1.0 1.0 0.000 70.0 70.9 20.0 0.00 20.1
1069 SH RAP RAP 6100 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1070 SH RAP RAP 6101 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1071 SH RAP RAP 6102 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1072 SH RAP RAP 6103 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1073 SH RAP RAP 6104 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1074 SH RAP RAP 6105 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1075 SH RAP RAP 6106 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1076 SH RAP RAP 6107 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1077 SH RAP RAP 6108 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1078 SH RAP RAP 6109 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
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1079 SH RAP RAP 6110 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1080 SH RAP RAP 6111 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1081 SH RAP RAP 6112 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1082 SH RAP RAP 6113 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1083 SH RAP RAP 6114 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1084 SH RAP RAP 6115 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1085 SH RAP RAP 6116 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1086 SH RAP RAP 6117 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1087 SH RAP RAP 6118 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1088 SH RAP RAP 6119 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1089 SH RAP RAP 6120 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1090 SH RAP RAP 6121 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1091 SH RAP RAP 6122 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1092 SH RAP RAP 6123 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1093 SH RAP RAP 6124 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1094 SH RAP RAP 6125 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1095 SH RAP RAP 6126 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1096 SH RAP RAP 6127 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1097 SH RAP RAP 6128 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1098 SH RAP RAP 6129 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1099 SH RAP RAP 6130 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1100 SH RAP RAP 6131 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1101 SH RAP RAP 6132 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1102 SH RAP RAP 6133 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1103 SH RAP RAP 6134 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1104 SH RAP RAP 6135 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1105 SH RAP RAP 6136 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1106 SH RAP RAP 6137 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1107 SH RAP RAP 6138 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1108 SH RAP RAP 6139 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1109 SH RAP RAP 6140 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1110 SH RAP RAP 6141 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1111 SH RAP RAP 6142 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1112 SH RAP RAP 6143 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1113 SH RAP RAP 6144 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1114 SH RAP RAP 6145 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1115 SH RAP RAP 6146 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1116 SH RAP RAP 6147 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1117 SH RAP RAP 6148 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1118 SH RAP RAP 6149 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1119 SH RAP RAP 6150 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1120 SH RAP RAP 6151 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1121 SH RAP RAP 6152 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1122 SH RAP RAP 6153 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1123 SH RAP RAP 6154 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1124 SH RAP RAP 6155 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1125 SH RAP RAP 6156 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1126 SH RAP RAP 6157 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1127 SH RAP RAP 6158 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1128 SH RAP RAP 6159 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1129 SH RAP RAP 6160 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1130 SH RAP RAP 6161 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1131 SH RAP RAP 6162 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1132 SH RAP RAP 6163 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1133 SH RAP RAP 6164 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1134 SH RAP RAP 6165 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1135 SH RAP RAP 6166 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1136 SH RAP RAP 6167 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1137 SH RAP RAP 6168 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1138 SH RAP RAP 6169 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1139 SH RAP RAP 6170 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1140 SH RAP RAP 6171 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1141 SH RAP RAP 6172 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1142 SH RAP RAP 6173 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1143 SH RAP RAP 6174 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1144 SH RAP RAP 6175 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1145 SH RAP RAP 6176 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1146 SH RAP RAP 6177 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1147 SH RAP RAP 6178 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1148 SH RAP RAP 6179 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1149 SH RAP RAP 6180 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1150 SH RAP RAP 6181 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1151 SH RAP RAP 6182 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1152 SH RAP RAP 6183 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1153 SH RAP RAP 6184 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1154 SH RAP RAP 6185 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1155 SH RAP RAP 6186 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1156 SH RAP RAP 6187 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1157 SH RAP RAP 6188 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1158 SH RAP RAP 6189 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1159 SH RAP RAP 6190 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1160 SH RAP RAP 6191 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1161 SH RAP RAP 6192 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1162 SH RAP RAP 6193 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1163 SH RAP RAP 6194 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1164 SH RAP RAP 6195 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1165 SH RAP RAP 6196 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1166 SH RAP RAP 6197 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1167 SH RAP RAP 6198 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
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1168 SH RAP RAP 6199 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1169 SH RAP RAP 6204 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1170 SH RAP RAP 6205 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1171 SH RAP RAP 6206 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1172 SH RAP RAP 6207 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1173 SH RAP RAP 6208 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1174 SH RAP RAP 6209 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1175 SH RAP RAP 6210 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1176 SH RAP RAP 6211 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1177 SH RAP RAP 6224 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1178 SH RAP RAP 6225 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1179 SH RAP RAP 6226 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1180 SH RAP RAP 6227 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1181 SH RAP RAP 6228 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1182 SH RAP RAP 6229 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1183 SH RAP RAP 6230 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1184 SH RAP RAP 6231 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1185 SH RAP RAP 6232 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1186 SH RAP RAP 6233 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1187 SH RAP RAP 6234 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1188 SH RAP RAP 6235 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1189 SH RAP RAP 6236 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1190 SH RAP RAP 6237 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1191 SH RAP RAP 6238 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1192 SH RAP RAP 6239 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1193 SH RAP RAP 6240 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1194 SH RAP RAP 6241 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1195 SH RAP RAP 6242 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1196 SH RAP RAP 6243 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1197 SH RAP RAP 6244 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1198 SH RAP RAP 6245 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1199 SH RAP RAP 6246 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1200 SH RAP RAP 6247 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1201 SH RAP RAP 6248 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1202 SH RAP RAP 6249 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1203 SH RAP RAP 6250 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1204 SH RAP RAP 6251 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1205 SH RAP RAP 6252 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1206 SH RAP RAP 6253 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1207 SH RAP RAP 6254 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1208 SH RAP RAP 6255 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1209 SH RAP RAP 6256 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1210 SH RAP RAP 6257 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1211 SH RAP RAP 6258 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1212 SH RAP RAP 6259 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1213 SH RAP RAP 6260 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1214 SH RAP RAP 6261 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1215 SH RAP RAP 6262 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1216 SH RAP RAP 6263 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1217 SH RAP RAP 6280 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1218 SH RAP RAP 6281 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1219 SH RAP RAP 6282 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1220 SH RAP RAP 6283 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1221 SH RAP RAP 6284 5 1.0 1.0 1.0 0.000 75.0 75.9 15.0 0.00 25.1
1222 SH RAP RAP 6285 5 1.0 1.0 1.0 0.000 80.0 80.9 10.0 0.00 30.1
1223 SH RAP RAP 6286 5 1.0 1.0 1.0 0.000 85.0 85.9 5.0 0.00 35.1
1224 SH RAP RAP 6287 5 1.0 0.0 0.0 0.000 90.0 90.9 0.0 0.00 40.1
1225 SH SCN SCN 1270 5 1.0 4.3 4.3 0.000 52.0 50.2 8651.9 0.82 12.7
1226 SH SCN SCN 1288 5 1.0 0.8 0.8 0.000 52.0 48.5 5949.4 0.54 10.3
1227 SH SCN SCN 2231 5 1.0 2.0 2.0 0.000 57.0 55.2 4432.0 0.46 7.9
1228 SH SCN SCN 2242 5 1.0 1.4 1.4 0.000 57.0 55.2 4747.8 0.49 7.9
1229 SH SCN SCN 2270 5 1.0 0.4 0.4 0.000 57.0 55.2 1124.7 0.12 7.9
1230 SH SCN SCN 2288 5 1.0 0.2 0.2 0.000 57.0 53.9 384.0 0.04 12.2
1231 SH SCN SCN 3230 5 1.0 6.6 6.6 0.004 62.0 60.2 3675.9 0.42 9.1
1232 SH SCN SCN 3240 5 1.0 7.1 7.1 0.005 62.0 60.2 4100.7 0.47 10.5
1233 SH SCN SCN 3260 5 1.0 7.5 7.5 0.007 62.0 60.2 3541.1 0.40 9.1
1234 SH SCN SCN 3270 5 1.0 0.6 0.6 0.000 62.0 60.2 2947.5 0.33 10.4
1235 SH SCN SCN 2261 5 1.0 2.0 2.0 0.001 57.0 55.2 4294.8 0.45 7.9
1236 SH SCN SCN 9 5 1.0 2.0 2.0 0.000 47.0 42.0 8680.1 0.69 10.2
1237 SH SL SPN 1345 5 1.0 1.0 1.0 0.000 52.0 47.0 1749.4 0.15 5.1
1238 SH SL SPN 2345 5 1.0 1.0 1.0 0.000 57.0 52.0 1744.4 0.17 10.1
1239 SH SL SPN 3345 5 1.0 1.2 1.2 0.001 62.0 57.0 1739.4 0.19 15.1
1240 SH SSN SSN 1154 3 1.0 1.0 1.0 0.000 50.0 47.0 6.0 0.00 3.1
1241 SH SSN SSN 2154 3 1.0 1.0 1.0 0.000 53.0 50.0 3.0 0.00 6.1
1242 SH SSN SSN 2155 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1243 SH SSN SSN 2156 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1244 SH SSN SSN 2160 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1245 SH SSN SSN 2161 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1246 SH SSN SSN 2166 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1247 SH SSN SSN 2171 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1248 SH SSN SSN 2172 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1249 SH SSN SSN 2176 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1250 SH SSN SSN 2177 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1251 SH SSN SSN 2181 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1252 SH SSN SSN 2182 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1253 SH SSN SSN 2185 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1254 SH SSN SSN 2186 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1255 SH SSN SSN 2187 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1256 SH SSN SSN 3154 3 1.0 0.0 0.0 0.000 56.0 53.0 0.0 0.00 9.1
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1256 SH SSN SSN 3154 3 1.0 0.0 0.0 0.000 56.0 53.0 0.0 0.00 9.1
1257 SH SSN SSN 3156 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1258 SH SSN SSN 3161 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1259 SH SSN SSN 3166 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1260 SH SSN SSN 3171 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1261 SH SSN SSN 3175 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1262 SH SSN SSN 3176 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1263 SH SSN SSN 3182 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1264 SH SSN SSN 3183 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1265 SH SSN SSN 3185 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1266 SH SSN SSN 3194 3 1.0 0.0 0.0 0.000 50.0 47.0 0.0 0.00 3.1
1267 SH SST SST 1150 5 1.0 1.3 1.3 0.000 52.0 47.0 2290.3 0.20 9.1
1268 SH SST SST 1151 5 1.0 0.3 0.3 0.000 52.0 48.5 390.4 0.04 9.4
1269 SH SST SST 2150 5 1.0 1.0 1.0 0.000 57.0 52.0 2066.2 0.20 11.8
1270 SH SST SST 2151 5 1.0 0.5 0.5 0.000 57.0 52.8 1047.6 0.10 13.0
1271 SH SST SST 3150 5 1.0 0.6 0.6 0.000 62.0 59.7 2355.3 0.27 19.6
1272 SH SST SST 3151 5 1.0 1.0 1.0 0.000 62.0 57.4 1763.6 0.19 17.4
1273 SH SST SST 9 5 1.0 2.5 2.5 0.000 47.0 42.0 2706.1 0.21 10.2
1274 SH CTS TOU 1010 1 1.0 0.0 0.0 0.000 48.0 47.0 15.7 0.00 1.1
1275 SH CTS TOU 1020 1 1.0 0.0 0.0 0.000 48.0 47.0 15.7 0.00 1.1
1276 SH CTS TOU 1030 1 1.0 0.0 0.0 0.000 48.0 47.0 15.7 0.00 1.1
1277 SH CTS TOU 1040 1 1.0 0.0 0.0 0.000 48.0 47.0 15.7 0.00 1.1
1278 SH CTS TOU 1050 1 1.0 0.0 0.0 0.000 48.0 47.0 15.7 0.00 1.1
1279 SH CTS TOU 1060 1 1.0 0.0 0.0 0.000 48.0 47.0 15.7 0.00 1.1
1280 SH CTS TOU 1070 1 1.0 1.0 1.0 0.000 48.0 47.0 16.9 0.00 1.1
1281 SH CTS TOU 2010 1 1.0 0.0 0.0 0.000 48.0 47.0 0.3 0.00 1.1
1282 SH CTS TOU 2040 1 1.0 0.0 0.0 0.000 48.0 47.0 0.3 0.00 1.1
1283 SH CTS TOU 2050 1 1.0 0.0 0.0 0.000 48.0 47.0 0.3 0.00 1.1
1284 SH CTS TOU 2060 1 1.0 1.0 1.0 0.000 48.0 47.0 1.6 0.00 1.1
1285 SH CTS TOU 2070 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 2.0
1286 SH CTS TOU 2080 1 1.0 1.0 1.0 0.000 48.0 47.0 1.5 0.00 1.1
1287 SH CTS TOU 2090 1 1.0 1.0 1.0 0.000 48.0 47.0 1.6 0.00 1.1
1288 SH CTS TOU 2100 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 2.0
1289 SH CTS TOU 3030 1 1.0 0.0 0.0 0.000 48.0 47.0 0.2 0.00 1.1
1290 SH CTS TOU 3040 1 1.0 0.0 0.0 0.000 48.0 47.0 0.2 0.00 1.1
1291 SH CTS TOU 3050 1 1.0 0.0 0.0 0.000 48.0 47.0 0.2 0.00 1.1
1292 SH CTS TOU 3060 1 1.0 0.0 0.0 0.000 49.0 48.0 0.2 0.00 2.0
1293 SH CTS TOU 3070 1 1.0 0.0 0.0 0.000 48.0 47.0 0.2 0.00 1.1
1294 SH CTS TOU 3080 1 1.0 0.0 0.0 0.000 48.0 47.0 0.2 0.00 1.1
1295 SH CTS TOU 3090 1 1.0 0.0 0.0 0.000 48.0 47.0 0.2 0.00 1.1
1296 SH CTS TOU 3100 1 1.0 0.0 0.0 0.000 49.0 48.0 0.2 0.00 2.0
1297 SH CTS TOU 3110 1 1.0 0.0 0.0 0.000 48.0 47.0 0.2 0.00 1.1
1298 SH SL ULC 1089 5 1.0 1.0 1.0 0.000 52.0 47.0 1721.1 0.15 5.1
1299 SH SL ULC 2089 5 1.0 1.0 1.0 0.000 57.0 52.0 1716.1 0.17 10.1
1300 SH SL ULC 3089 5 1.0 0.7 0.7 0.000 62.0 57.0 1711.1 0.18 15.1
1301 SH CTS WLD 1010 1 1.0 10.0 10.0 0.000 48.0 47.0 115.9 0.01 1.1
1302 SH CTS WLD 1020 1 1.0 0.0 0.0 0.000 49.0 48.0 15.7 0.00 1.1
1303 SH CTS WLD 1030 1 2.0 1.0 2.1 0.000 49.0 49.0 17.0 0.00 1.1
1304 SH CTS WLD 1050 1 1.0 0.0 0.0 0.000 49.0 48.0 15.7 0.00 1.1
1305 SH CTS WLD 1070 1 2.0 1.0 2.1 0.000 49.0 49.0 17.0 0.00 1.1
1306 SH CTS WLD 1080 1 2.0 0.0 0.1 0.000 49.0 49.0 15.7 0.00 1.1
1307 SH CTS WLD 2020 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.1
1308 SH CTS WLD 2030 1 1.0 0.0 0.0 0.000 50.0 50.0 0.3 0.00 2.1
1309 SH CTS WLD 2040 1 1.0 1.0 1.0 0.000 49.0 48.0 5.7 0.00 1.1
1310 SH CTS WLD 2060 1 1.0 0.0 0.0 0.000 49.0 48.0 0.3 0.00 1.1
1311 SH CTS WLD 2070 1 1.0 0.0 0.0 0.000 50.0 50.0 0.3 0.00 2.1
1312 SH CTS WLD 2090 1 1.0 1.0 1.0 0.000 49.0 48.0 2.1 0.00 1.1
1313 SH CTS WLD 3020 1 1.0 0.1 0.1 0.000 49.0 48.0 0.8 0.00 1.1
1314 SH CTS WLD 3040 1 1.0 1.1 1.1 0.000 50.0 49.0 4.4 0.00 2.1
1315 SH CTS WLD 3050 1 1.0 1.1 1.1 0.000 51.0 50.0 2.6 0.00 2.9
1316 SH CTS WLD 3060 1 1.0 0.1 0.1 0.000 52.0 51.0 0.8 0.00 3.8
1317 SH CTS WLD 3090 1 1.0 0.1 0.1 0.000 50.0 49.0 0.8 0.00 2.1
1328 AH AH AFHE 304 3 1.0 2.0 2.0 0.001 67.0 162.8 13.5 0.00 3.5
1329 AH AFNS AFNS 414 3 1.0 0.0 0.0 0.000 71.0 305.6 0.0 0.00 3.9
1330 AH AFNS AFNS 450 3 2.0 0.0 0.0 0.002 68.0 315.5 0.0 0.00 4.8
1331 AH AFNS AN SC 110 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1332 AH AFNS AN SC 120 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1333 AH AFNS AN SC 200 3 2.0 6.8 13.7 0.028 65.0 170.8 24.4 0.01 4.4
1334 AH AFNS AN SC 260 3 1.0 2.2 2.2 0.001 68.0 177.1 7.2 0.00 3.3
1335 AH AFNS AN SC 310 3 3.0 2.1 6.3 0.002 68.0 374.5 21.9 0.02 4.5
1336 AH AFNS AN SC 311 3 1.0 4.1 4.1 0.000 71.0 377.5 12.3 0.01 5.1
1337 AH AFNS AN SC 312 3 1.0 1.1 1.1 0.000 71.0 377.5 3.3 0.00 5.1
1338 AH AFNS AN SC 320 3 1.0 0.6 0.6 0.001 68.0 177.2 1.8 0.00 3.3
1339 AH AFNS AN SC 322 3 3.0 0.1 0.3 0.002 68.0 374.5 0.3 0.00 4.5
1340 AH AFNS AN SC 374 3 1.0 0.1 0.1 0.001 68.0 179.0 0.3 0.00 3.2
1341 AH AFNS AN SC 375 3 1.0 0.1 0.1 0.001 68.0 177.2 0.3 0.00 3.3
1342 AH AFNS AN SC 376 3 1.0 0.1 0.1 0.001 68.0 177.2 0.3 0.00 3.3
1343 AH AFNS AN SC 385 3 3.0 0.1 0.3 0.002 71.0 329.8 0.3 0.00 4.5
1344 AH AFNS AN SC 391 3 1.0 0.6 0.6 0.000 71.0 305.6 1.8 0.00 3.9
1345 AH AFNS AN SC 400 3 1.0 0.0 0.0 0.000 71.0 303.9 0.0 0.00 6.4
1346 AH AFNS AN SC 409 3 1.0 0.0 0.0 0.001 68.0 177.2 0.0 0.00 3.3
1347 AH AFNS AN SC 410 3 1.0 0.0 0.0 0.000 74.0 380.5 0.0 0.00 7.7
1348 AH AFNS AN SC 420 3 1.0 0.0 0.0 0.000 71.0 250.7 0.0 0.00 4.7
1349 AH AFNS AN SC 461 3 2.0 0.0 0.0 0.000 74.0 503.9 0.0 0.00 5.8
1350 AH AFNS AN SC 462 3 2.0 0.0 0.0 0.000 74.0 503.9 0.0 0.00 5.8
1351 AH AFNS AN SC 463 3 2.0 0.0 0.0 0.000 74.0 503.9 0.0 0.00 5.8
1352 AH AFNS AN SC 464 3 2.0 0.0 0.0 0.000 74.0 503.9 0.0 0.00 5.8
1353 AH AFNS AN SC 471 3 1.0 0.2 0.2 0.001 68.0 173.8 0.6 0.00 3.6
1354 AH AFNS AN SC 472 3 2.0 0.2 0.4 0.001 71.0 273.2 0.6 0.00 5.2
1355 AH AFNS AN SC 474 3 1.0 0.2 0.2 0.001 68.0 173.8 0.6 0.00 3.6
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1355 AH AFNS AN SC 474 3 1.0 0.2 0.2 0.001 68.0 173.8 0.6 0.00 3.6
1356 AH AFNS AN SC 475 3 1.0 0.2 0.2 0.001 68.0 173.8 0.6 0.00 3.6
1357 AH AFNS AN SC 476 3 1.0 0.2 0.2 0.001 68.0 173.8 0.6 0.00 3.6
1358 AH AFNS AN SC 479 3 1.0 0.0 0.0 0.000 71.0 198.6 0.0 0.00 7.0
1359 AH AFNS AN SC 484 3 2.0 0.0 0.0 0.000 74.0 439.3 0.0 0.00 6.1
1360 AH RURAL ECON AREC 200 3 1.0 3.0 3.0 0.001 67.0 160.3 10.7 0.00 3.1
1361 AH RURAL ECON AREC 214 3 2.0 1.0 2.0 0.029 65.0 177.3 3.2 0.00 3.7
1362 AH RURAL ECON AREC 313 3 1.0 1.6 1.6 0.001 68.0 180.3 4.8 0.00 3.2
1363 AH RURAL ECON AREC 323 3 2.0 2.8 5.7 0.001 70.0 255.1 8.6 0.00 3.2
1364 AH RURAL ECON AREC 333 3 1.0 0.8 0.8 0.000 70.0 199.1 2.6 0.00 3.6
1365 AH RURAL ECON AREC 365 3 2.0 6.1 12.2 0.001 70.0 255.1 20.0 0.01 3.2
1366 AH RURAL ECON AREC 384 3 1.0 0.8 0.8 0.000 70.0 199.1 2.6 0.00 3.6
1367 AH RURAL ECON AREC 400 3 1.0 0.0 0.0 0.000 71.0 224.3 0.0 0.00 5.1
1368 AH RURAL ECON AREC 410 3 1.0 0.0 0.0 0.000 71.0 224.3 0.0 0.00 5.1
1369 AH RURAL ECON AREC 423 3 1.0 0.0 0.0 0.000 71.0 224.3 0.0 0.00 5.1
1370 AH RURAL ECON AREC 433 3 1.0 0.0 0.0 0.000 70.0 228.6 0.0 0.00 3.5
1371 AH RURAL ECON AREC 450 3 1.0 0.0 0.0 0.000 67.0 199.1 0.0 0.00 4.5
1372 AH RURAL ECON AREC 465 3 3.0 0.0 0.0 0.000 73.0 379.5 0.0 0.00 5.6
1373 AH RURAL ECON AREC 473 3 1.0 0.0 0.0 0.000 70.0 199.1 0.0 0.00 3.6
1374 AH RURAL ECON AREC 475 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.6
1375 AH RURAL ECON AREC 482 3 1.0 0.0 0.0 0.000 70.0 199.1 0.0 0.00 3.6
1376 AH RURAL ECON AREC 484 3 1.0 0.0 0.0 0.000 70.0 214.6 0.0 0.00 3.7
1377 AH RURAL ECON AREC 485 3 1.0 0.0 0.0 0.000 67.0 199.1 0.0 0.00 4.5
1378 AH RURAL ECON AREC 487 3 1.0 0.0 0.0 0.000 70.0 222.6 0.0 0.00 4.9
1379 AH AFNS BIOEN 200 3 1.0 0.0 0.0 0.001 68.0 189.0 0.0 0.00 3.4
1380 AH RENEW RES ENCS 201 3 1.0 2.0 2.0 0.028 64.0 157.3 76.2 0.02 3.0
1381 AH RENEW RES ENCS 204 3 1.0 0.4 0.4 0.001 68.0 173.8 1.6 0.00 3.2
1382 AH RENEW RES ENCS 207 3 1.0 1.4 1.4 0.001 67.0 160.3 6.8 0.00 4.0
1383 AH RENEW RES ENCS 260 3 1.0 1.5 1.5 0.028 64.0 157.3 5.0 0.00 3.0
1384 AH RENEW RES ENCS 271 3 1.0 0.4 0.4 0.028 64.0 157.3 1.6 0.00 3.0
1385 AH RENEW RES ENCS 307 3 7.0 0.7 5.0 0.004 70.0 486.4 2.2 0.00 11.0
1386 AH RURAL ECON ENCS 352 3 1.0 0.5 0.5 0.028 64.0 157.3 1.5 0.00 3.0
1387 AH AFNS ENCS 356 3 1.0 3.0 3.0 0.001 68.0 179.0 12.0 0.00 3.2
1388 AH RENEW RES ENCS 360 3 2.0 0.7 1.4 0.000 70.0 370.9 2.2 0.00 6.1
1389 AH RENEW RES ENCS 364 3 1.5 3.1 4.6 0.001 68.0 244.0 9.3 0.00 3.7
1390 AH RENEW RES ENCS 376 3 1.0 1.1 1.1 0.001 68.0 179.0 3.6 0.00 3.2
1391 AH AFNS ENCS 406 3 1.0 3.0 3.0 0.000 67.0 176.7 12.1 0.00 3.9
1392 AH AFNS ENCS 407 3 2.0 0.0 0.0 0.000 71.0 276.3 0.0 0.00 5.4
1393 AH RENEW RES ENCS 455 3 2.0 1.0 2.0 0.000 73.0 374.8 3.1 0.00 8.5
1394 AH RENEW RES ENCS 461 3 2.0 0.0 0.0 0.001 70.0 333.3 0.0 0.00 3.9
1395 AH RENEW RES ENCS 462 3 2.0 0.0 0.0 0.001 71.0 314.3 0.0 0.00 6.2
1396 AH RENEW RES ENCS 464 3 1.0 0.0 0.0 0.000 71.0 247.0 0.0 0.00 4.2
1397 AH RENEW RES ENCS 465 3 3.0 0.0 0.0 0.001 69.5 426.7 0.0 0.00 8.2
1398 AH RENEW RES ENCS 467 3 1.0 0.0 0.0 0.000 67.0 303.1 0.0 0.00 7.2
1399 AH RENEW RES ENCS 468 3 1.0 0.0 0.0 0.000 67.0 303.1 0.0 0.00 7.2
1400 AH AFNS ENCS 471 3 2.0 0.0 0.0 0.000 71.0 276.3 0.0 0.00 5.4
1401 AH RURAL ECON ENCS 473 3 3.0 0.0 0.0 0.000 73.0 374.9 0.0 0.00 6.5
1402 AH RENEW RES ENCS 474 3 2.0 0.0 0.0 0.000 67.0 451.9 0.0 0.00 12.6
1403 AH RENEW RES ENCS 475 3 1.0 0.0 0.0 0.000 67.0 241.2 0.0 0.00 4.2
1404 AH RENEW RES ENCS 476 3 1.0 0.0 0.0 0.000 67.0 219.7 0.0 0.00 4.2
1405 AH RENEW RES FOR 100 3 1.0 0.9 0.9 0.028 64.0 157.3 5.8 0.00 3.0
1406 AH RENEW RES FOR 101 3 2.0 3.9 7.8 0.000 65.0 202.4 19.0 0.01 13.2
1407 AH RENEW RES FOR 210 3 3.0 5.2 15.7 0.004 68.0 329.0 24.6 0.02 4.6
1408 AH RENEW RES FOR 302 1 4.0 1.5 6.1 0.002 69.0 457.3 5.4 0.00 6.9
1409 AH RENEW RES FOR 303 1 4.0 1.5 6.1 0.002 69.0 457.3 5.4 0.00 6.9
1410 AH RENEW RES FOR 304 1 5.0 1.5 7.6 0.002 69.0 477.9 5.4 0.00 7.2
1411 AH RENEW RES FOR 314 3 1.0 1.5 1.5 0.000 70.0 214.3 4.9 0.00 3.3
1412 AH RENEW RES FOR 322 3 1.0 0.5 0.5 0.001 67.0 195.5 1.8 0.00 3.3
1413 AH RENEW RES FOR 323 3 1.0 2.5 2.5 0.000 71.0 274.1 9.0 0.00 7.2
1414 AH RENEW RES FOR 340 3 1.0 0.5 0.5 0.028 64.0 157.3 1.8 0.00 3.0
1415 AH RENEW RES FOR 372 3 1.0 0.5 0.5 0.028 64.0 157.3 1.8 0.00 3.0
1416 AH RENEW RES FOR 405 3 1.0 0.2 0.2 0.000 67.0 334.4 0.6 0.00 6.5
1417 AH RENEW RES FOR 423 3 1.0 0.2 0.2 0.000 74.0 277.1 0.6 0.00 5.9
1418 AH RENEW RES FOR 431 3 5.0 0.2 0.8 0.000 74.0 557.6 0.6 0.00 22.1
1419 AH RENEW RES FOR 433 3 1.0 0.2 0.2 0.000 71.0 332.0 0.6 0.00 3.9
1420 AH RURAL ECON FOREC 345 3 1.0 3.1 3.1 0.001 67.0 160.3 16.3 0.00 3.1
1421 AH RURAL ECON FOREC 400 3 1.0 0.0 0.0 0.000 67.0 319.9 0.0 0.00 6.3
1422 AH RURAL ECON FOREC 473 3 2.0 0.0 0.0 0.000 73.0 322.7 0.0 0.00 4.5
1423 AH RENEW RES FOREN 335 3 1.0 0.2 0.2 0.028 64.0 157.3 0.7 0.00 3.0
1424 AH RENEW RES FOREN 355 3 1.0 0.2 0.2 0.028 64.0 157.3 0.7 0.00 3.0
1425 AH HUMAN ECO HECOL 100 3 1.0 1.0 1.0 0.028 64.0 157.3 5.3 0.00 3.0
1426 AH HUMAN ECO HECOL 150 3 1.0 1.8 1.8 0.028 64.0 157.3 12.2 0.00 3.0
1427 AH HUMAN ECO HECOL 170 3 1.0 1.3 1.3 0.028 64.0 157.3 7.3 0.00 3.0
1428 AH HUMAN ECO HECOL 200 3 1.0 0.1 0.1 0.028 64.0 157.3 1.3 0.00 3.0
1429 AH HUMAN ECO HECOL 201 3 1.0 2.1 2.1 0.028 64.0 157.3 9.6 0.00 3.0
1430 AH HUMAN ECO HECOL 210 3 1.0 0.3 0.3 0.028 64.0 157.3 3.5 0.00 3.0
1431 AH HUMAN ECO HECOL 211 3 1.0 0.1 0.1 0.028 64.0 157.3 1.3 0.00 3.0
1432 AH HUMAN ECO HECOL 212 3 1.0 0.3 0.3 0.028 64.0 157.3 3.5 0.00 3.0
1433 AH HUMAN ECO HECOL 213 3 1.0 0.1 0.1 0.028 64.0 157.3 1.3 0.00 3.0
1434 AH HUMAN ECO HECOL 268 3 1.0 1.5 1.5 0.028 64.0 157.3 6.3 0.00 3.0
1435 AH HUMAN ECO HECOL 300 3 1.0 3.6 3.6 0.028 64.0 157.3 11.3 0.00 3.0
1436 AH HUMAN ECO HECOL 301 3 1.0 1.5 1.5 0.000 70.0 165.8 10.5 0.00 4.7
1437 AH HUMAN ECO HECOL 310 3 2.0 0.8 1.6 0.001 70.0 255.1 4.6 0.00 3.5
1438 AH HUMAN ECO HECOL 313 3 1.0 2.6 2.6 0.000 67.0 184.4 8.3 0.00 6.3
1439 AH HUMAN ECO HECOL 321 3 2.0 0.6 1.2 0.001 70.0 255.1 2.3 0.00 3.2
1440 AH HUMAN ECO HECOL 322 3 2.0 0.6 1.2 0.001 70.0 255.1 2.3 0.00 3.2
1441 AH HUMAN ECO HECOL 341 3 1.0 0.6 0.6 0.028 64.0 157.3 2.3 0.00 3.0
1442 AH HUMAN ECO HECOL 350 3 1.0 0.6 0.6 0.001 67.0 160.3 2.3 0.00 4.7
1443 AH HUMAN ECO HECOL 353 3 1.0 1.6 1.6 0.001 67.0 160.3 5.3 0.00 4.7
1444 AH HUMAN ECO HECOL 354 3 1.5 1.6 2.4 0.014 64.0 64.4 5.3 0.00 5.0

323



1444 AH HUMAN ECO HECOL 354 3 1.5 1.6 2.4 0.014 64.0 64.4 5.3 0.00 5.0
1445 AH HUMAN ECO HECOL 360 3 1.0 0.6 0.6 0.001 67.0 160.3 2.3 0.00 4.4
1446 AH HUMAN ECO HECOL 370 3 1.0 0.6 0.6 0.001 67.0 160.3 2.3 0.00 5.3
1447 AH HUMAN ECO HECOL 408 3 3.0 1.0 3.0 0.001 73.0 343.4 6.0 0.00 12.2
1448 AH HUMAN ECO HECOL 409 6 1.0 0.0 0.0 0.000 79.0 346.4 0.0 0.00 18.2
1449 AH HUMAN ECO HECOL 412 3 1.0 0.0 0.0 0.000 70.0 187.4 0.0 0.00 5.4
1450 AH HUMAN ECO HECOL 413 3 1.0 0.0 0.0 0.000 70.0 187.4 0.0 0.00 5.4
1451 AH HUMAN ECO HECOL 414 3 1.0 0.2 0.2 0.001 67.0 160.3 2.3 0.00 6.0
1452 AH HUMAN ECO HECOL 440 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.8
1453 AH HUMAN ECO HECOL 441 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.8
1454 AH HUMAN ECO HECOL 443 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.8
1455 AH HUMAN ECO HECOL 453 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 5.9
1456 AH HUMAN ECO HECOL 454 3 1.0 0.0 0.0 0.001 67.0 67.4 0.0 0.00 6.1
1457 AH HUMAN ECO HECOL 460 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.1
1458 AH HUMAN ECO HECOL 461 3 1.0 0.0 0.0 0.000 67.0 185.8 0.0 0.00 6.3
1459 AH HUMAN ECO HECOL 462 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 4.4
1460 AH HUMAN ECO HECOL 472 3 1.0 1.0 1.0 0.001 68.0 173.8 3.0 0.00 3.2
1461 AH HUMAN ECO HECOL 477 3 1.0 1.0 1.0 0.001 67.0 161.3 3.0 0.00 4.6
1462 AH HUMAN ECO HECOL 478 3 2.0 0.0 0.0 0.000 71.0 269.7 0.0 0.00 10.8
1463 AH HUMAN ECO HECOL 490 3 1.0 0.0 0.0 0.000 67.0 185.8 0.0 0.00 6.3
1464 AH HUMAN ECO HECOL 492 3 1.0 0.0 0.0 0.000 67.0 185.8 0.0 0.00 6.3
1465 AH HUMAN ECO HECOL 493 3 1.0 0.0 0.0 0.000 67.0 185.8 0.0 0.00 6.3
1466 AH HUMAN ECO HECOL 494 3 1.0 0.0 0.0 0.000 67.0 185.8 0.0 0.00 6.3
1467 AH HUMAN ECO HECOL 495 3 1.0 0.0 0.0 0.000 67.0 185.8 0.0 0.00 6.3
1468 AH AFNS INT D 208 3 1.0 0.0 0.0 0.001 68.0 183.0 0.1 0.00 3.2
1469 AH RURAL ECON INT D 303 3 1.0 0.0 0.0 0.001 67.0 161.8 0.1 0.00 3.1
1470 AH AFNS NU FS 100 3 1.0 1.0 1.0 0.028 64.0 157.3 7.2 0.00 3.0
1471 AH AFNS NU FS 200 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.3
1472 AH AFNS NU FS 201 3 2.0 2.0 4.0 0.002 71.0 280.4 11.0 0.01 3.7
1473 AH AFNS NU FS 209 3 1.0 1.0 1.0 0.028 64.0 157.3 3.0 0.00 3.0
1474 AH AFNS NU FS 210 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 6.0
1475 AH AFNS NU FS 223 3 2.0 4.0 8.0 0.002 67.0 256.1 12.9 0.01 5.6
1476 AH AFNS NU FS 283 3 1.5 1.5 2.2 0.001 68.0 307.7 8.4 0.00 5.2
1477 AH AFNS NU FS 300 3 1.0 1.3 1.3 0.000 71.0 302.6 4.7 0.00 3.1
1478 AH AFNS NU FS 305 3 2.0 2.5 4.9 0.002 67.0 325.3 8.5 0.01 6.0
1479 AH AFNS NU FS 311 3 2.0 0.3 0.6 0.000 74.0 413.7 0.9 0.00 6.0
1480 AH AFNS NU FS 312 3 2.0 1.3 2.6 0.001 71.0 338.9 3.9 0.00 4.1
1481 AH AFNS NU FS 352 3 1.0 0.3 0.3 0.000 70.0 328.3 0.9 0.00 5.5
1482 AH AFNS NU FS 353 3 1.0 1.3 1.3 0.000 71.0 310.7 3.9 0.00 6.5
1483 AH AFNS NU FS 356 3 1.0 0.3 0.3 0.000 70.0 449.7 0.9 0.00 4.5
1484 AH AFNS NU FS 361 3 1.0 4.0 4.0 0.000 71.0 308.7 13.1 0.01 3.3
1485 AH AFNS NU FS 363 3 1.0 3.0 3.0 0.001 68.0 229.1 9.3 0.00 3.2
1486 AH AFNS NU FS 372 3 2.0 4.3 8.6 0.001 71.0 302.6 20.9 0.01 3.4
1487 AH AFNS NU FS 373 3 2.0 2.3 4.6 0.001 71.0 302.6 14.1 0.01 3.4
1488 AH AFNS NU FS 374 3 1.0 3.5 3.5 0.000 74.0 305.6 13.6 0.01 4.1
1489 AH AFNS NU FS 377 3 1.0 2.3 2.3 0.000 70.0 259.1 3.9 0.00 4.4
1490 AH AFNS NU FS 393 3 3.0 0.3 0.9 0.000 74.0 465.1 0.9 0.00 7.0
1491 AH AFNS NU FS 400 3 1.0 0.0 0.0 0.000 70.0 346.2 0.0 0.00 6.1
1492 AH AFNS NU FS 401 3 1.0 0.0 0.0 0.000 70.0 346.2 0.0 0.00 6.1
1493 AH AFNS NU FS 402 3 1.0 0.0 0.0 0.000 71.0 287.4 0.0 0.00 3.7
1494 AH AFNS NU FS 403 3 1.0 0.0 0.0 0.000 77.0 308.6 0.0 0.00 4.2
1495 AH AFNS NU FS 404 3 1.0 0.0 0.0 0.000 71.0 302.6 0.0 0.00 3.1
1496 AH AFNS NU FS 405 3 1.0 0.0 0.0 0.000 71.0 302.6 0.0 0.00 3.1
1497 AH AFNS NU FS 406 3 1.0 0.0 0.0 0.001 68.0 251.2 0.0 0.00 3.4
1498 AH AFNS NU FS 427 3 2.0 0.0 0.0 0.000 71.0 419.7 0.0 0.00 3.4
1499 AH AFNS NU FS 428 3 1.0 0.0 0.0 0.000 70.0 449.7 0.0 0.00 4.2
1500 AH AFNS NU FS 430 3 2.0 0.0 0.0 0.001 74.0 360.5 0.0 0.00 4.3
1501 AH AFNS NU FS 440 3 1.0 0.0 0.0 0.000 70.0 346.2 0.0 0.00 6.1
1502 AH AFNS NU FS 450 3 1.0 0.0 0.0 0.000 70.0 346.2 0.0 0.00 6.1
1503 AH AFNS NU FS 454 3 3.0 0.0 0.0 0.000 74.0 455.8 0.0 0.00 7.8
1504 AH AFNS NU FS 461 3 3.0 2.0 6.0 0.000 77.0 450.9 3.0 0.00 6.7
1505 AH AFNS NU FS 463 3 1.0 0.0 0.0 0.000 80.0 453.9 0.0 0.00 6.3
1506 AH AFNS NU FS 480 3 1.0 0.0 0.0 0.000 71.0 287.4 0.0 0.00 3.7
1507 AH AFNS NU FS 481 3 2.0 0.0 0.0 0.000 77.0 422.5 0.0 0.00 4.3
1508 AH AFNS NU FS 490 3 3.0 0.0 0.0 0.000 74.0 473.0 0.0 0.00 12.2
1509 AH AFNS NU FS 499 3 1.0 0.0 0.0 0.000 74.0 305.6 0.0 0.00 3.8
1510 AH AFNS NUTR 100 3 1.0 2.0 2.0 0.028 64.0 157.3 23.1 0.01 3.0
1511 AH AFNS NUTR 301 3 3.0 6.6 19.8 0.000 75.5 490.3 27.0 0.02 4.2
1512 AH AFNS NUTR 302 3 3.0 6.8 20.2 0.000 75.5 490.3 24.2 0.02 4.2
1513 AH AFNS NUTR 303 3 3.0 2.8 8.2 0.000 75.5 490.3 8.5 0.01 4.2
1514 AH AFNS NUTR 304 3 3.0 2.9 8.8 0.000 75.5 490.3 8.8 0.01 4.2
1515 AH AFNS NUTR 365 3 1.0 0.7 0.7 0.000 78.5 493.3 2.0 0.00 3.6
1516 AH AFNS NUTR 400 3 2.0 1.0 2.0 0.000 78.5 511.4 3.0 0.00 4.3
1517 AH AFNS NUTR 401 3 1.0 0.0 0.0 0.000 81.5 514.4 0.0 0.00 7.3
1518 AH AFNS NUTR 440 3 2.0 0.0 0.0 0.000 78.5 511.4 0.0 0.00 4.3
1519 AH AFNS NUTR 452 3 2.0 0.0 0.0 0.000 78.5 511.4 0.0 0.00 5.1
1520 AH AFNS NUTR 468 3 1.0 2.0 2.0 0.000 78.5 493.3 3.0 0.00 3.6
1521 AH AFNS NUTR 469 0 2.0 1.0 2.0 0.000 78.5 508.3 0.0 0.00 3.2
1522 AH AFNS NUTR 470 0 2.0 1.0 2.0 0.000 70.0 376.9 0.0 0.00 3.3
1523 AH AFNS NUTR 471 0 3.0 1.0 3.0 0.000 77.0 501.1 0.0 0.00 5.4
1524 AH AFNS NUTR 472 0 4.0 0.0 0.0 0.000 81.5 570.7 0.0 0.00 17.4
1525 AH AFNS NUTR 476 3 2.0 1.0 2.0 0.000 81.5 514.4 0.0 0.00 5.5
1526 AH AFNS NUTR 477 3 2.0 0.0 0.0 0.000 78.5 508.3 0.0 0.00 6.0
1527 AH AFNS NUTR 478 3 2.0 0.0 0.0 0.000 78.5 511.4 0.0 0.00 5.1
1528 AH AFNS NUTR 479 3 2.0 0.0 0.0 0.000 78.5 511.4 0.0 0.00 5.1
1529 AH AFNS NUTR 480 3 1.5 0.0 0.0 0.000 70.0 499.0 0.0 0.00 5.3
1530 AH AFNS PL SC 220 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1531 AH AFNS PL SC 221 3 1.0 8.2 8.2 0.028 64.0 157.3 43.0 0.01 3.0
1532 AH AFNS PL SC 301 3 3.0 0.1 0.2 0.003 71.0 358.4 0.3 0.00 3.6
1533 AH AFNS PL SC 324 3 1.0 1.1 1.1 0.000 67.0 206.9 3.8 0.00 3.6
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1533 AH AFNS PL SC 324 3 1.0 1.1 1.1 0.000 67.0 206.9 3.8 0.00 3.6
1534 AH AFNS PL SC 331 3 2.0 2.1 4.1 0.001 71.0 302.6 7.4 0.00 3.4
1535 AH AFNS PL SC 335 3 1.0 0.1 0.1 0.001 67.0 160.3 0.3 0.00 3.4
1536 AH AFNS PL SC 352 3 1.0 2.1 2.1 0.001 67.0 160.3 7.2 0.00 3.4
1537 AH AFNS PL SC 354 3 1.0 1.1 1.1 0.001 67.0 160.3 3.8 0.00 3.4
1538 AH AFNS PL SC 355 3 1.0 1.1 1.1 0.001 67.0 160.3 3.8 0.00 3.4
1539 AH AFNS PL SC 357 3 1.0 0.1 0.1 0.001 67.0 160.3 0.3 0.00 3.4
1540 AH AFNS PL SC 360 3 1.0 0.1 0.1 0.001 67.0 211.3 0.3 0.00 4.2
1541 AH AFNS PL SC 380 3 1.0 3.1 3.1 0.001 68.0 183.0 10.7 0.00 3.2
1542 AH AFNS PL SC 385 3 1.0 0.1 0.1 0.001 67.0 191.9 0.3 0.00 6.2
1543 AH AFNS PL SC 432 3 1.0 0.1 0.1 0.000 71.0 305.6 0.5 0.00 3.9
1544 AH AFNS PL SC 435 3 1.0 0.1 0.1 0.001 67.0 160.3 0.5 0.00 3.4
1545 AH AFNS PL SC 465 3 2.0 0.1 0.2 0.001 71.0 282.0 0.5 0.00 3.4
1546 AH AFNS PL SC 470 3 2.0 0.1 0.2 0.000 71.0 344.8 0.5 0.00 5.3
1547 AH AFNS PL SC 472 3 1.0 0.1 0.1 0.000 70.0 163.3 0.5 0.00 6.2
1548 AH AFNS PL SC 481 3 1.0 0.1 0.1 0.000 71.0 186.0 0.5 0.00 4.0
1549 AH AFNS PL SC 482 3 1.0 0.1 0.1 0.000 71.0 186.0 0.5 0.00 4.0
1550 AH AFNS PL SC 487 3 1.0 0.1 0.1 0.000 71.0 182.0 0.5 0.00 3.9
1551 AH AFNS PL SC 495 3 3.0 0.1 0.3 0.000 71.0 335.6 0.5 0.00 6.6
1552 AH AFNS PL SC 499 3 3.0 0.1 0.3 0.000 70.0 371.4 0.5 0.00 9.9
1553 AH RURAL ECON R SOC 310 3 1.0 0.4 0.4 0.028 64.0 157.3 1.2 0.00 3.0
1554 AH RURAL ECON R SOC 355 3 1.0 1.1 1.1 0.028 64.0 157.3 3.2 0.00 3.0
1555 AH RURAL ECON R SOC 365 3 1.0 0.4 0.4 0.028 64.0 157.3 1.2 0.00 3.0
1556 AH RURAL ECON R SOC 400 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 6.0
1557 AH RURAL ECON R SOC 450 3 1.0 0.0 0.0 0.000 67.0 162.5 0.0 0.00 4.7
1558 AH RENEW RES REN R 110 3 1.0 2.9 2.9 0.028 64.0 157.3 46.3 0.01 3.0
1559 AH RENEW RES REN R 120 3 1.0 4.4 4.4 0.028 64.0 157.3 90.9 0.03 3.0
1560 AH RENEW RES REN R 201 3 1.0 3.2 3.2 0.028 64.0 157.3 14.0 0.00 3.0
1561 AH RENEW RES REN R 220 3 1.0 0.7 0.7 0.001 68.0 173.8 8.7 0.00 3.2
1562 AH RENEW RES REN R 250 3 2.0 2.2 4.5 0.002 67.0 297.1 11.3 0.01 6.2
1563 AH RENEW RES REN R 321 3 2.0 1.2 2.4 0.001 68.0 271.1 12.7 0.01 5.1
1564 AH RENEW RES REN R 350 3 1.0 2.2 2.2 0.000 70.0 214.3 6.8 0.00 3.3
1565 AH RENEW RES REN R 401 3 1.0 0.1 0.1 0.000 67.0 312.8 0.2 0.00 6.8
1566 AH RENEW RES REN R 410 3 1.0 0.1 0.1 0.000 67.0 355.7 0.2 0.00 6.7
1567 AH RENEW RES REN R 414 3 1.0 0.1 0.1 0.000 67.0 276.0 0.2 0.00 6.2
1568 AH RENEW RES REN R 421 3 1.0 0.1 0.1 0.000 67.0 276.0 0.2 0.00 6.2
1569 AH RENEW RES REN R 426 3 1.0 0.1 0.1 0.000 70.0 209.8 0.2 0.00 3.8
1570 AH RENEW RES REN R 430 3 2.0 2.1 4.1 0.000 71.0 383.3 7.0 0.01 4.9
1571 AH RENEW RES REN R 432 3 1.0 0.1 0.1 0.028 64.0 157.3 0.2 0.00 3.0
1572 AH RENEW RES REN R 435 3 2.0 0.1 0.1 0.002 68.0 266.5 0.2 0.00 7.0
1573 AH RENEW RES REN R 439 3 1.0 0.1 0.1 0.000 74.0 386.3 0.2 0.00 5.4
1574 AH RENEW RES REN R 450 3 2.0 0.0 0.0 0.001 70.0 312.4 0.0 0.00 3.6
1575 AH RENEW RES REN R 452 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1576 AH RENEW RES REN R 468 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1577 AH RENEW RES REN R 469 3 1.0 0.0 0.0 0.000 67.0 286.2 0.0 0.00 7.1
1578 AH RENEW RES REN R 475 3 6.0 1.0 6.1 0.001 73.0 520.5 3.1 0.00 18.4
1579 AH RENEW RES REN R 477 3 1.0 0.0 0.0 0.000 67.0 286.2 0.0 0.00 7.1
1580 AH RENEW RES REN R 485 3 7.0 0.0 0.1 0.001 76.0 603.3 0.0 0.00 43.7
1581 AH RENEW RES SOILS 210 3 1.0 13.2 13.2 0.001 67.0 211.3 55.3 0.02 4.2
1582 AH RENEW RES SOILS 414 3 1.0 0.1 0.1 0.000 73.0 217.3 0.2 0.00 5.2
1583 AH RENEW RES SOILS 420 3 1.0 0.1 0.1 0.000 70.0 223.8 0.2 0.00 5.9
1584 AH RENEW RES SOILS 430 3 1.0 1.1 1.1 0.000 70.0 214.3 6.2 0.00 3.3
1585 AH RENEW RES SOILS 440 3 1.0 0.0 0.0 0.000 70.0 214.3 0.0 0.00 3.3
1586 AH RENEW RES SOILS 450 3 1.0 0.0 0.0 0.001 68.0 173.8 0.0 0.00 3.5
1587 AH RENEW RES SOILS 460 3 1.0 0.0 0.0 0.000 70.0 214.3 0.0 0.00 3.3
1588 AH AH UNIV 101 2 1.0 0.0 0.0 0.000 64.0 146.3 0.0 0.00 3.9
1589 AH AH UNIV 102 2 1.0 0.0 0.0 0.000 64.0 146.3 0.0 0.00 3.9
1590 AH AH WKEXP 981 0 1.0 1.0 1.0 0.000 67.0 165.8 0.0 0.00 1.7
1591 AH AH WKEXP 982 0 1.0 1.0 1.0 0.000 67.0 165.8 0.0 0.00 1.7
1592 AH AH WKEXP 983 0 1.0 0.0 0.0 0.000 67.0 165.8 0.0 0.00 1.7
1593 AR ANTHRO ANTHR 101 3 1.0 2.6 2.6 0.028 64.0 157.3 76.1 0.02 3.0
1594 AR ANTHRO ANTHR 110 3 1.0 1.9 1.9 0.028 64.0 157.3 70.2 0.02 3.0
1595 AR ANTHRO ANTHR 150 3 1.0 1.6 1.6 0.028 64.0 157.3 68.7 0.02 3.0
1596 AR ANTHRO ANTHR 206 3 1.0 12.0 12.0 0.001 67.0 160.3 54.0 0.02 4.6
1597 AR ANTHRO ANTHR 207 3 1.0 16.8 16.8 0.001 67.0 160.3 66.3 0.02 4.6
1598 AR ANTHRO ANTHR 208 3 1.0 8.0 8.0 0.001 67.0 160.3 27.9 0.01 4.6
1599 AR ANTHRO ANTHR 209 3 1.0 6.5 6.5 0.001 67.0 160.3 33.5 0.01 4.6
1600 AR ANTHRO ANTHR 219 3 1.0 0.3 0.3 0.028 64.0 157.3 0.9 0.00 3.0
1601 AR ANTHRO ANTHR 227 3 1.0 0.3 0.3 0.028 64.0 157.3 0.9 0.00 3.0
1602 AR ANTHRO ANTHR 230 3 1.0 1.9 1.9 0.028 64.0 157.3 6.8 0.00 3.0
1603 AR ANTHRO ANTHR 246 3 1.0 2.2 2.2 0.028 64.0 157.3 7.6 0.00 3.0
1604 AR ANTHRO ANTHR 250 3 1.0 1.3 1.3 0.028 64.0 157.3 4.8 0.00 3.0
1605 AR ANTHRO ANTHR 256 3 1.0 0.3 0.3 0.028 64.0 157.3 0.9 0.00 3.0
1606 AR ANTHRO ANTHR 261 3 1.0 0.3 0.3 0.028 64.0 157.3 0.9 0.00 3.0
1607 AR ANTHRO ANTHR 262 3 1.0 0.3 0.3 0.028 64.0 157.3 0.9 0.00 3.0
1608 AR ANTHRO ANTHR 270 3 1.0 0.3 0.3 0.028 64.0 157.3 0.9 0.00 3.0
1609 AR ANTHRO ANTHR 271 3 1.0 0.3 0.3 0.028 64.0 157.3 0.9 0.00 3.0
1610 AR ANTHRO ANTHR 278 3 1.0 1.3 1.3 0.028 64.0 157.3 5.3 0.00 3.0
1611 AR ANTHRO ANTHR 280 3 1.0 0.8 0.8 0.028 64.0 157.3 3.1 0.00 3.0
1612 AR ANTHRO ANTHR 283 3 1.0 0.3 0.3 0.028 64.0 157.3 0.9 0.00 3.0
1613 AR ANTHRO ANTHR 284 3 1.0 0.3 0.3 0.028 64.0 157.3 0.9 0.00 3.0
1614 AR ANTHRO ANTHR 285 3 1.0 0.3 0.3 0.028 64.0 157.3 0.9 0.00 3.0
1615 AR ANTHRO ANTHR 310 3 1.0 0.4 0.4 0.000 67.0 162.3 1.4 0.00 3.9
1616 AR ANTHRO ANTHR 311 3 1.0 0.4 0.4 0.000 70.0 163.3 1.4 0.00 3.4
1617 AR ANTHRO ANTHR 312 3 1.0 0.4 0.4 0.000 70.0 163.3 1.4 0.00 3.4
1618 AR ANTHRO ANTHR 313 3 1.0 0.4 0.4 0.000 70.0 163.3 1.4 0.00 3.4
1619 AR ANTHRO ANTHR 318 3 1.0 0.4 0.4 0.000 70.0 163.3 1.4 0.00 3.3
1620 AR ANTHRO ANTHR 320 3 1.0 0.9 0.9 0.000 70.0 163.3 3.1 0.00 3.3
1621 AR ANTHRO ANTHR 321 3 1.0 0.4 0.4 0.001 67.0 161.8 1.4 0.00 4.4
1622 AR ANTHRO ANTHR 322 3 1.0 0.4 0.4 0.000 70.0 163.3 1.4 0.00 3.6
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1622 AR ANTHRO ANTHR 322 3 1.0 0.4 0.4 0.000 70.0 163.3 1.4 0.00 3.6
1623 AR ANTHRO ANTHR 323 3 1.0 0.4 0.4 0.000 70.0 163.3 1.4 0.00 3.3
1624 AR ANTHRO ANTHR 324 3 1.0 0.4 0.4 0.000 70.0 163.3 1.4 0.00 3.3
1625 AR ANTHRO ANTHR 331 3 1.0 0.4 0.4 0.000 67.0 162.3 1.4 0.00 3.9
1626 AR ANTHRO ANTHR 332 3 1.0 0.4 0.4 0.000 67.0 162.3 1.4 0.00 3.9
1627 AR ANTHRO ANTHR 340 3 1.0 0.4 0.4 0.001 67.0 161.8 1.4 0.00 4.4
1628 AR ANTHRO ANTHR 350 3 1.0 0.4 0.4 0.000 70.0 163.3 1.4 0.00 3.3
1629 AR ANTHRO ANTHR 366 3 1.0 0.4 0.4 0.000 70.0 163.3 1.4 0.00 3.3
1630 AR ANTHRO ANTHR 367 3 1.0 0.4 0.4 0.000 70.0 163.3 1.4 0.00 3.3
1631 AR ANTHRO ANTHR 370 3 1.0 0.4 0.4 0.001 67.0 160.3 1.4 0.00 5.7
1632 AR ANTHRO ANTHR 384 3 1.0 0.4 0.4 0.000 70.0 163.3 1.4 0.00 3.5
1633 AR ANTHRO ANTHR 385 3 1.0 0.4 0.4 0.000 70.0 163.3 1.4 0.00 3.4
1634 AR ANTHRO ANTHR 390 3 1.0 2.9 2.9 0.000 70.0 163.3 10.7 0.00 3.7
1635 AR ANTHRO ANTHR 391 3 1.0 0.4 0.4 0.000 70.0 163.3 1.4 0.00 3.7
1636 AR ANTHRO ANTHR 392 3 1.0 1.4 1.4 0.028 64.0 157.3 4.4 0.00 3.0
1637 AR ANTHRO ANTHR 393 3 1.0 1.4 1.4 0.001 67.0 160.3 4.4 0.00 4.2
1638 AR ANTHRO ANTHR 396 6 1.0 1.4 1.4 0.000 73.0 163.3 4.4 0.00 6.4
1639 AR ANTHRO ANTHR 397 3 1.0 0.4 0.4 0.000 70.0 163.3 1.4 0.00 3.3
1640 AR ANTHRO ANTHR 400 3 1.0 1.1 1.1 0.000 67.0 165.7 3.7 0.00 6.5
1641 AR ANTHRO ANTHR 401 3 1.0 0.1 0.1 0.000 70.0 163.3 0.4 0.00 3.3
1642 AR ANTHRO ANTHR 407 3 1.0 0.1 0.1 0.000 73.0 166.3 0.4 0.00 4.3
1643 AR ANTHRO ANTHR 408 3 1.0 0.1 0.1 0.000 70.0 163.3 0.4 0.00 3.6
1644 AR ANTHRO ANTHR 414 3 2.0 0.1 0.3 0.000 70.0 262.3 0.4 0.00 6.8
1645 AR ANTHRO ANTHR 415 3 2.0 0.1 0.3 0.000 70.0 263.7 0.4 0.00 7.0
1646 AR ANTHRO ANTHR 416 3 1.0 0.1 0.1 0.001 67.0 161.0 0.4 0.00 5.2
1647 AR ANTHRO ANTHR 417 3 2.0 0.1 0.3 0.000 70.0 263.7 0.4 0.00 7.0
1648 AR ANTHRO ANTHR 422 3 1.0 0.1 0.1 0.000 70.0 163.3 0.4 0.00 3.4
1649 AR ANTHRO ANTHR 424 3 1.0 0.2 0.2 0.001 67.0 160.9 0.5 0.00 5.3
1650 AR ANTHRO ANTHR 430 3 1.0 0.1 0.1 0.000 70.0 164.8 0.4 0.00 4.8
1651 AR ANTHRO ANTHR 433 3 2.0 0.1 0.3 0.000 70.0 263.7 0.4 0.00 7.0
1652 AR ANTHRO ANTHR 436 3 1.0 0.1 0.1 0.001 67.0 160.9 0.4 0.00 5.3
1653 AR ANTHRO ANTHR 437 3 1.0 0.1 0.1 0.000 70.0 163.3 0.4 0.00 3.4
1654 AR ANTHRO ANTHR 438 3 2.0 0.1 0.3 0.001 70.0 258.6 0.4 0.00 5.9
1655 AR ANTHRO ANTHR 441 3 1.0 1.1 1.1 0.000 70.0 163.3 3.8 0.00 3.4
1656 AR ANTHRO ANTHR 442 3 1.0 0.1 0.1 0.000 73.0 166.3 0.4 0.00 6.0
1657 AR ANTHRO ANTHR 445 3 2.0 0.1 0.3 0.001 67.0 258.5 0.4 0.00 7.4
1658 AR ANTHRO ANTHR 446 3 1.0 0.1 0.1 0.001 67.0 160.3 0.4 0.00 4.4
1659 AR ANTHRO ANTHR 450 3 1.0 0.1 0.1 0.000 70.0 168.7 0.4 0.00 8.9
1660 AR ANTHRO ANTHR 463 3 1.0 0.1 0.1 0.000 70.0 163.3 0.4 0.00 3.4
1661 AR ANTHRO ANTHR 471 3 1.0 0.1 0.1 0.000 67.0 165.7 0.4 0.00 6.5
1662 AR ANTHRO ANTHR 472 3 1.0 0.1 0.1 0.000 67.0 165.7 0.4 0.00 6.5
1663 AR ANTHRO ANTHR 474 3 1.0 0.1 0.1 0.001 67.0 161.8 0.4 0.00 4.4
1664 AR ANTHRO ANTHR 475 3 1.0 0.1 0.1 0.028 64.0 157.3 0.4 0.00 3.0
1665 AR ANTHRO ANTHR 479 3 1.0 0.1 0.1 0.000 70.0 209.8 0.4 0.00 3.7
1666 AR ANTHRO ANTHR 481 3 2.0 0.0 0.0 0.000 70.0 274.3 0.0 0.00 7.8
1667 AR ANTHRO ANTHR 482 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.5
1668 AR ANTHRO ANTHR 484 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.5
1669 AR ANTHRO ANTHR 485 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.5
1670 AR ANTHRO ANTHR 486 3 2.0 0.0 0.0 0.000 70.0 263.5 0.0 0.00 7.0
1671 AR ANTHRO ANTHR 487 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.5
1672 AR ANTHRO ANTHR 488 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.5
1673 AR ANTHRO ANTHR 489 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.5
1674 AR ANTHRO ANTHR 490 3 1.0 0.5 0.5 0.000 73.0 166.3 1.5 0.00 4.3
1675 AR ANTHRO ANTHR 491 3 1.0 0.0 0.0 0.000 67.0 197.7 0.0 0.00 8.2
1676 AR ANTHRO ANTHR 492 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.2
1677 AR ANTHRO ANTHR 493 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 6.0
1678 AR ANTHRO ANTHR 494 3 1.0 0.0 0.0 0.000 73.0 167.8 0.0 0.00 5.8
1679 AR ANTHRO ANTHR 495 3 2.0 0.0 0.0 0.000 70.0 286.5 0.0 0.00 8.8
1680 AR ANTHRO ANTHR 496 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 7.6
1681 AR ANTHRO ANTHR 498 3 2.0 0.0 0.0 0.000 70.0 274.7 0.0 0.00 8.1
1682 AR MODLGCULST ARAB 111 3 1.0 1.1 1.1 0.028 64.0 157.3 13.2 0.00 3.0
1683 AR MODLGCULST ARAB 112 3 1.0 1.1 1.1 0.001 67.0 160.3 9.9 0.00 5.9
1684 AR MODLGCULST ARAB 211 3 1.0 1.5 1.5 0.000 70.0 163.3 6.7 0.00 8.6
1685 AR MODLGCULST ARAB 212 3 1.0 0.5 0.5 0.000 73.0 166.3 1.8 0.00 8.6
1686 AR MODLGCULST ARAB 255 3 1.0 0.5 0.5 0.028 64.0 157.3 1.8 0.00 3.0
1687 AR MODLGCULST ARAB 499 3 1.0 0.0 0.0 0.000 67.0 165.3 0.0 0.00 8.8
1688 AR ART & DESIG ART 134 3 1.0 7.0 7.0 0.028 64.0 157.3 244.1 0.07 3.0
1689 AR ART & DESIG ART 136 3 2.0 8.5 17.0 0.001 65.0 221.5 257.6 0.11 16.1
1690 AR ART & DESIG ART 137 3 1.0 1.0 1.0 0.000 68.0 224.5 34.7 0.01 4.9
1691 AR ART & DESIG ART 140 3 4.0 1.5 6.0 0.002 71.0 416.8 31.7 0.02 13.2
1692 AR ART & DESIG ART 268 3 2.0 0.0 0.0 0.002 67.0 284.4 0.1 0.00 4.6
1693 AR ART & DESIG ART 310 3 3.0 5.4 16.3 0.003 67.0 342.3 57.4 0.04 5.0
1694 AR ART & DESIG ART 311 3 1.0 2.9 2.9 0.000 70.0 345.3 40.5 0.03 3.9
1695 AR ART & DESIG ART 316 3 1.0 0.9 0.9 0.000 70.0 345.3 14.8 0.01 3.9
1696 AR ART & DESIG ART 317 3 2.0 1.4 2.9 0.000 73.0 468.0 15.9 0.01 6.5
1697 AR ART & DESIG ART 322 6 2.0 4.4 8.9 0.002 70.0 284.4 68.9 0.04 7.6
1698 AR ART & DESIG ART 323 6 1.0 0.4 0.4 0.000 76.0 290.4 2.3 0.00 7.7
1699 AR ART & DESIG ART 337 6 2.0 0.4 0.9 0.002 70.0 284.4 2.3 0.00 7.6
1700 AR ART & DESIG ART 338 3 2.0 0.4 0.9 0.002 67.0 284.4 2.3 0.00 4.6
1701 AR ART & DESIG ART 339 6 2.0 1.9 3.9 0.002 70.0 284.4 25.3 0.01 7.6
1702 AR ART & DESIG ART 340 3 1.0 1.9 1.9 0.000 74.0 419.8 25.3 0.02 11.8
1703 AR ART & DESIG ART 361 3 2.0 5.4 10.9 0.002 67.0 284.4 56.8 0.03 4.6
1704 AR ART & DESIG ART 362 3 3.0 4.4 13.3 0.002 70.0 413.1 47.5 0.04 5.4
1705 AR ART & DESIG ART 365 3 2.0 0.4 0.9 0.000 73.0 477.0 2.3 0.00 5.1
1706 AR ART & DESIG ART 366 3 2.0 0.4 0.9 0.000 73.0 477.0 2.3 0.00 5.1
1707 AR ART & DESIG ART 410 3 2.0 4.2 8.4 0.000 73.0 468.0 30.2 0.03 5.3
1708 AR ART & DESIG ART 411 3 1.0 2.2 2.2 0.000 76.0 471.0 18.8 0.02 4.2
1709 AR ART & DESIG ART 418 3 4.0 2.7 10.8 0.000 76.0 517.2 10.6 0.01 11.0
1710 AR ART & DESIG ART 419 3 1.0 1.7 1.7 0.000 79.0 520.2 6.8 0.01 7.1
1711 AR ART & DESIG ART 422 6 1.0 4.2 4.2 0.000 76.0 290.4 41.4 0.02 7.7
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1711 AR ART & DESIG ART 422 6 1.0 4.2 4.2 0.000 76.0 290.4 41.4 0.02 7.7
1712 AR ART & DESIG ART 423 6 1.0 0.2 0.2 0.000 82.0 296.4 0.8 0.00 7.8
1713 AR ART & DESIG ART 425 6 2.0 1.7 3.4 0.000 82.0 422.1 9.8 0.01 9.5
1714 AR ART & DESIG ART 437 6 1.0 0.2 0.2 0.000 73.0 372.0 0.8 0.00 9.9
1715 AR ART & DESIG ART 438 3 1.0 0.2 0.2 0.000 70.0 372.0 0.8 0.00 6.9
1716 AR ART & DESIG ART 439 6 1.5 1.2 1.8 0.000 76.0 461.8 6.8 0.01 15.4
1717 AR ART & DESIG ART 440 3 2.0 2.2 4.4 0.000 77.0 502.3 16.6 0.02 13.0
1718 AR ART & DESIG ART 441 3 1.0 1.2 1.2 0.000 80.0 505.3 6.8 0.01 8.9
1719 AR ART & DESIG ART 450 3 4.0 0.7 2.8 0.000 70.0 531.7 2.3 0.00 18.6
1720 AR ART & DESIG ART 465 3 2.0 4.2 8.4 0.000 73.0 477.0 26.4 0.02 5.1
1721 AR ART & DESIG ART 466 3 2.0 4.2 8.4 0.000 73.0 477.0 26.4 0.02 5.1
1722 AR ART & DESIG ART 467 3 2.0 0.2 0.4 0.000 76.0 515.0 0.8 0.00 5.4
1723 AR ART & DESIG ART 468 3 2.0 0.2 0.4 0.000 76.0 515.0 0.8 0.00 5.4
1724 AR ART & DESIG ART 510 3 2.0 2.0 4.0 0.000 79.0 507.9 6.8 0.01 6.2
1725 AR ART & DESIG ART 511 3 1.0 0.0 0.0 0.000 82.0 510.9 0.0 0.00 6.1
1726 AR ART & DESIG ART 516 3 2.0 2.0 4.0 0.000 79.0 507.9 6.8 0.01 6.2
1727 AR ART & DESIG ART 517 3 1.0 0.0 0.0 0.000 82.0 510.9 0.0 0.00 6.1
1728 AR ART & DESIG ART 518 3 3.0 0.5 1.5 0.000 82.0 558.3 1.5 0.00 14.3
1729 AR ART & DESIG ART 519 3 2.5 0.0 0.0 0.000 82.0 565.6 0.0 0.00 17.4
1730 AR ART & DESIG ART 522 6 1.0 2.0 2.0 0.000 82.0 296.4 18.0 0.01 7.8
1731 AR ART & DESIG ART 523 6 1.0 1.0 1.0 0.000 88.0 302.4 6.0 0.00 9.9
1732 AR ART & DESIG ART 524 6 1.0 0.0 0.0 0.000 94.0 308.4 0.0 0.00 15.9
1733 AR ART & DESIG ART 525 6 3.0 0.0 0.0 0.000 88.0 516.9 0.0 0.00 17.3
1734 AR ART & DESIG ART 537 6 1.0 0.0 0.0 0.000 76.0 472.7 0.0 0.00 12.0
1735 AR ART & DESIG ART 538 3 1.0 0.0 0.0 0.000 73.0 472.7 0.0 0.00 9.0
1736 AR ART & DESIG ART 539 6 1.5 0.0 0.0 0.000 82.0 530.1 0.0 0.00 19.0
1737 AR ART & DESIG ART 540 3 1.5 1.0 1.5 0.000 79.0 530.1 3.0 0.00 16.0
1738 AR ART & DESIG ART 541 3 1.0 0.0 0.0 0.000 82.0 533.1 0.0 0.00 19.0
1739 AR ART & DESIG ART 550 3 2.0 0.0 0.0 0.000 73.0 553.3 0.0 0.00 21.2
1740 AR ART & DESIG ART 560 3 2.0 0.0 0.0 0.000 82.0 568.4 0.0 0.00 11.4
1741 AR ART & DESIG ART 565 3 2.0 2.0 4.0 0.000 76.0 515.0 12.0 0.01 5.4
1742 AR ART & DESIG ART 566 3 2.0 2.0 4.0 0.000 76.0 515.0 12.0 0.01 5.4
1743 AR ART & DESIG ART 567 3 2.0 2.0 4.0 0.000 79.0 540.6 6.0 0.01 8.4
1744 AR ART & DESIG ART 568 3 2.0 2.0 4.0 0.000 79.0 540.6 6.0 0.01 8.4
1745 AR ART & DESIG ART 569 3 2.0 0.0 0.0 0.000 82.0 568.4 0.0 0.00 11.4
1746 AR ART & DESIG ART H 101 3 1.0 1.0 1.0 0.028 64.0 157.3 39.9 0.01 3.0
1747 AR ART & DESIG ART H 102 3 1.0 1.3 1.3 0.028 64.0 157.3 42.7 0.01 3.0
1748 AR ART & DESIG ART H 201 3 1.0 0.5 0.5 0.028 64.0 157.3 1.4 0.00 3.0
1749 AR ART & DESIG ART H 202 3 1.0 0.5 0.5 0.028 64.0 157.3 1.4 0.00 3.0
1750 AR ART & DESIG ART H 203 3 1.0 0.5 0.5 0.028 64.0 157.3 1.4 0.00 3.0
1751 AR ART & DESIG ART H 204 3 1.0 0.5 0.5 0.028 64.0 157.3 1.4 0.00 3.0
1752 AR ART & DESIG ART H 205 3 1.0 1.5 1.5 0.028 64.0 157.3 4.4 0.00 3.0
1753 AR ART & DESIG ART H 206 3 1.0 1.5 1.5 0.028 64.0 157.3 4.4 0.00 3.0
1754 AR ART & DESIG ART H 207 3 1.0 1.5 1.5 0.028 64.0 157.3 4.4 0.00 3.0
1755 AR ART & DESIG ART H 209 3 1.0 2.8 2.8 0.028 64.0 157.3 11.2 0.00 3.0
1756 AR ART & DESIG ART H 210 3 1.0 1.5 1.5 0.028 64.0 157.3 4.4 0.00 3.0
1757 AR ART & DESIG ART H 249 3 1.0 1.5 1.5 0.028 64.0 157.3 4.4 0.00 3.0
1758 AR ART & DESIG ART H 251 3 1.0 0.5 0.5 0.028 64.0 157.3 1.4 0.00 3.0
1759 AR ART & DESIG ART H 252 3 1.0 0.5 0.5 0.028 64.0 157.3 1.4 0.00 3.0
1760 AR ART & DESIG ART H 253 3 1.0 0.5 0.5 0.028 64.0 157.3 1.4 0.00 3.0
1761 AR ART & DESIG ART H 255 3 1.0 1.5 1.5 0.028 64.0 157.3 4.4 0.00 3.0
1762 AR ART & DESIG ART H 256 3 1.0 1.5 1.5 0.028 64.0 157.3 4.4 0.00 3.0
1763 AR ART & DESIG ART H 257 3 1.0 1.5 1.5 0.028 64.0 157.3 4.4 0.00 3.0
1764 AR ART & DESIG ART H 400 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.4
1765 AR ART & DESIG ART H 405 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.1
1766 AR ART & DESIG ART H 406 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.1
1767 AR ART & DESIG ART H 407 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.1
1768 AR ART & DESIG ART H 409 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 4.1
1769 AR ART & DESIG ART H 410 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.1
1770 AR ART & DESIG ART H 411 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.4
1771 AR ART & DESIG ART H 418 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.4
1772 AR ART & DESIG ART H 430 3 2.0 0.0 0.0 0.002 67.0 255.1 0.0 0.00 7.9
1773 AR ART & DESIG ART H 431 3 2.0 0.0 0.0 0.002 67.0 255.1 0.0 0.00 7.9
1774 AR ART & DESIG ART H 449 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.1
1775 AR ART & DESIG ART H 455 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.1
1776 AR ART & DESIG ART H 456 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.1
1777 AR ART & DESIG ART H 457 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.1
1778 AR MODLGCULST ASL 111 3 1.0 1.1 1.1 0.028 64.0 157.3 11.2 0.00 3.0
1779 AR MODLGCULST ASL 112 3 1.0 1.1 1.1 0.001 67.0 160.3 7.9 0.00 5.9
1780 AR MODLGCULST ASL 211 3 1.0 1.2 1.2 0.000 70.0 163.3 4.7 0.00 8.6
1781 AR MODLGCULST ASL 212 3 1.0 0.2 0.2 0.000 73.0 166.3 0.8 0.00 10.2
1782 AR INT D C LIT 100 6 1.0 1.0 1.0 0.028 67.0 157.3 21.5 0.01 6.0
1783 AR INT D C LIT 171 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1784 AR INT D C LIT 172 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1785 AR INT D C LIT 201 3 1.0 1.0 1.0 0.028 64.0 157.3 21.7 0.01 3.0
1786 AR INT D C LIT 202 3 1.0 2.0 2.0 0.028 64.0 157.3 43.1 0.01 3.0
1787 AR INT D C LIT 206 3 1.0 1.0 1.0 0.028 64.0 157.3 3.2 0.00 3.0
1788 AR INT D C LIT 207 3 1.0 1.0 1.0 0.028 64.0 157.3 3.2 0.00 3.0
1789 AR INT D C LIT 228 3 1.0 0.0 0.0 0.028 64.0 157.3 0.2 0.00 3.0
1790 AR INT D C LIT 256 3 1.0 0.0 0.0 0.028 64.0 157.3 0.2 0.00 3.0
1791 AR INT D C LIT 266 3 1.0 0.0 0.0 0.028 64.0 157.3 0.2 0.00 3.0
1792 AR INT D C LIT 297 3 1.0 0.0 0.0 0.028 64.0 157.3 0.2 0.00 3.0
1793 AR INT D C LIT 320 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1794 AR INT D C LIT 338 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1795 AR INT D C LIT 342 3 1.0 1.2 1.2 0.028 64.0 157.3 3.8 0.00 3.0
1796 AR INT D C LIT 343 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1797 AR INT D C LIT 344 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1798 AR INT D C LIT 345 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1799 AR INT D C LIT 346 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
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1800 AR INT D C LIT 352 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1801 AR INT D C LIT 357 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1802 AR INT D C LIT 358 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1803 AR INT D C LIT 360 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1804 AR INT D C LIT 362 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1805 AR INT D C LIT 363 3 1.0 0.2 0.2 0.001 67.0 170.3 0.6 0.00 6.1
1806 AR INT D C LIT 372 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1807 AR INT D C LIT 397 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1808 AR INT D C LIT 440 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1809 AR INT D C LIT 444 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1810 AR INT D C LIT 445 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1811 AR INT D C LIT 447 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1812 AR INT D C LIT 448 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1813 AR INT D C LIT 460 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1814 AR INT D C LIT 464 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1815 AR INT D C LIT 465 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1816 AR INT D C LIT 466 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1817 AR INT D C LIT 472 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1818 AR INT D C LIT 474 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
1819 AR INT D C LIT 480 3 1.0 0.0 0.0 0.001 67.0 161.2 0.0 0.00 6.2
1820 AR INT D C LIT 497 3 1.0 0.0 0.0 0.001 67.0 161.2 0.0 0.00 6.2
1821 AR INT D C LIT 499 3 5.0 0.0 0.0 0.005 67.0 409.0 0.0 0.00 18.0
1822 AR E ASIAN ST CHINA 101 3 1.0 1.0 1.0 0.028 64.0 157.3 81.6 0.02 3.0
1823 AR E ASIAN ST CHINA 102 3 1.0 1.0 1.0 0.001 67.0 160.3 78.6 0.02 6.0
1824 AR E ASIAN ST CHINA 201 3 1.0 1.7 1.7 0.000 70.0 163.3 75.6 0.02 9.0
1825 AR E ASIAN ST CHINA 202 3 1.0 4.7 4.7 0.000 73.0 166.3 69.4 0.02 8.3
1826 AR E ASIAN ST CHINA 211 3 1.5 1.2 1.8 0.014 65.0 115.0 4.3 0.00 13.2
1827 AR E ASIAN ST CHINA 212 3 1.0 0.2 0.2 0.001 68.0 118.0 0.7 0.00 13.9
1828 AR E ASIAN ST CHINA 220 3 1.0 0.2 0.2 0.028 64.0 157.3 0.7 0.00 3.0
1829 AR E ASIAN ST CHINA 238 3 1.0 0.2 0.2 0.000 76.0 169.3 0.7 0.00 4.8
1830 AR E ASIAN ST CHINA 270 6 1.0 0.7 0.7 0.000 79.0 169.3 22.0 0.01 7.8
1831 AR E ASIAN ST CHINA 301 3 1.0 1.1 1.1 0.000 76.0 172.3 39.6 0.01 7.8
1832 AR E ASIAN ST CHINA 302 3 1.0 8.1 8.1 0.000 79.0 175.3 36.4 0.01 10.3
1833 AR E ASIAN ST CHINA 318 3 1.0 1.1 1.1 0.000 76.0 169.3 3.4 0.00 4.8
1834 AR E ASIAN ST CHINA 319 3 1.0 0.1 0.1 0.000 79.0 172.3 0.2 0.00 7.5
1835 AR E ASIAN ST CHINA 321 3 1.0 1.4 1.4 0.028 64.0 157.3 5.5 0.00 3.0
1836 AR E ASIAN ST CHINA 322 3 1.0 0.4 0.4 0.001 67.0 160.3 1.2 0.00 5.2
1837 AR E ASIAN ST CHINA 337 3 1.0 0.4 0.4 0.028 64.0 157.3 1.2 0.00 3.0
1838 AR E ASIAN ST CHINA 339 3 1.0 0.1 0.1 0.028 64.0 157.3 0.2 0.00 3.0
1839 AR E ASIAN ST CHINA 341 3 1.0 1.1 1.1 0.000 76.0 169.3 12.4 0.00 4.8
1840 AR E ASIAN ST CHINA 342 3 1.0 3.1 3.1 0.000 79.0 172.3 9.2 0.00 7.5
1841 AR E ASIAN ST CHINA 370 6 1.0 0.1 0.1 0.000 85.0 178.3 0.2 0.00 7.3
1842 AR E ASIAN ST CHINA 401 3 1.0 2.0 2.0 0.000 82.0 178.3 9.0 0.00 4.3
1843 AR E ASIAN ST CHINA 402 3 1.0 1.0 1.0 0.000 85.0 181.3 3.0 0.00 5.1
1844 AR E ASIAN ST CHINA 410 3 1.0 0.0 0.0 0.000 67.0 174.2 0.0 0.00 5.8
1845 AR E ASIAN ST CHINA 414 3 1.0 0.0 0.0 0.000 82.0 178.3 0.0 0.00 4.3
1846 AR E ASIAN ST CHINA 420 3 1.0 0.0 0.0 0.000 88.0 184.3 0.0 0.00 8.1
1847 AR E ASIAN ST CHINA 425 3 1.0 0.0 0.0 0.000 67.0 174.2 0.0 0.00 5.8
1848 AR E ASIAN ST CHINA 428 3 1.0 0.0 0.0 0.000 85.0 181.3 0.0 0.00 5.1
1849 AR E ASIAN ST CHINA 438 3 1.0 0.0 0.0 0.000 82.0 178.3 0.0 0.00 4.3
1850 AR E ASIAN ST CHINA 455 3 1.0 0.0 0.0 0.000 82.0 178.3 0.0 0.00 4.3
1851 AR E ASIAN ST CHINA 480 3 2.0 0.0 0.0 0.001 67.0 255.6 0.0 0.00 15.1
1852 AR E ASIAN ST CHINA 483 3 2.0 0.0 0.0 0.000 82.0 276.1 0.0 0.00 6.7
1853 AR E ASIAN ST CHINA 490 3 2.0 0.0 0.0 0.000 82.0 276.1 0.0 0.00 6.7
1854 AR SJ CHRTC 267 3 1.0 0.1 0.1 0.028 64.0 157.3 0.2 0.00 3.0
1855 AR SJ CHRTC 341 3 1.0 0.1 0.1 0.028 64.0 157.3 0.2 0.00 3.0
1856 AR SJ CHRTC 353 3 1.0 0.1 0.1 0.028 64.0 157.3 0.2 0.00 3.0
1857 AR SJ CHRTC 355 3 1.0 0.1 0.1 0.028 64.0 157.3 0.2 0.00 3.0
1858 AR SJ CHRTC 356 3 1.0 0.1 0.1 0.028 64.0 157.3 0.2 0.00 3.0
1859 AR SJ CHRTC 357 3 1.0 0.1 0.1 0.028 64.0 157.3 0.2 0.00 3.0
1860 AR HIST & CLASS CLASS 102 3 1.0 3.5 3.5 0.028 64.0 157.3 13.7 0.00 3.0
1861 AR HIST & CLASS CLASS 103 3 1.0 1.5 1.5 0.028 64.0 157.3 4.6 0.00 3.0
1862 AR HIST & CLASS CLASS 104 3 1.0 1.5 1.5 0.028 64.0 157.3 4.6 0.00 3.0
1863 AR HIST & CLASS CLASS 110 3 1.0 1.5 1.5 0.028 64.0 157.3 4.6 0.00 3.0
1864 AR HIST & CLASS CLASS 160 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
1865 AR HIST & CLASS CLASS 221 3 1.0 2.0 2.0 0.028 64.0 157.3 8.8 0.00 3.0
1866 AR HIST & CLASS CLASS 254 3 1.0 2.2 2.2 0.028 64.0 157.3 10.4 0.00 3.0
1867 AR HIST & CLASS CLASS 255 3 1.0 2.2 2.2 0.028 64.0 157.3 14.1 0.00 3.0
1868 AR HIST & CLASS CLASS 261 3 1.0 1.0 1.0 0.028 64.0 157.3 3.5 0.00 3.0
1869 AR HIST & CLASS CLASS 280 3 1.0 2.7 2.7 0.028 64.0 157.3 10.0 0.00 3.0
1870 AR HIST & CLASS CLASS 281 3 1.0 4.7 4.7 0.028 64.0 157.3 19.7 0.01 3.0
1871 AR HIST & CLASS CLASS 294 3 1.0 0.5 0.5 0.028 64.0 157.3 2.0 0.00 3.0
1872 AR HIST & CLASS CLASS 302 3 1.0 0.2 0.2 0.001 67.0 160.3 0.8 0.00 3.9
1873 AR HIST & CLASS CLASS 303 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1874 AR HIST & CLASS CLASS 321 3 1.0 0.7 0.7 0.001 67.0 160.3 2.3 0.00 4.2
1875 AR HIST & CLASS CLASS 322 3 1.0 0.7 0.7 0.001 67.0 160.3 2.3 0.00 4.2
1876 AR HIST & CLASS CLASS 354 3 1.0 0.5 0.5 0.001 67.0 160.3 1.6 0.00 4.3
1877 AR HIST & CLASS CLASS 355 3 1.0 3.0 3.0 0.001 67.0 160.3 9.1 0.00 4.0
1878 AR HIST & CLASS CLASS 356 3 1.0 1.0 1.0 0.001 67.0 160.3 3.1 0.00 4.4
1879 AR HIST & CLASS CLASS 358 3 1.0 0.5 0.5 0.001 67.0 160.3 1.6 0.00 4.4
1880 AR HIST & CLASS CLASS 360 3 1.0 0.2 0.2 0.001 67.0 160.3 0.8 0.00 3.9
1881 AR HIST & CLASS CLASS 375 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1882 AR HIST & CLASS CLASS 376 3 1.0 1.2 1.2 0.028 64.0 157.3 3.8 0.00 3.0
1883 AR HIST & CLASS CLASS 377 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1884 AR HIST & CLASS CLASS 380 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1885 AR HIST & CLASS CLASS 387 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
1886 AR HIST & CLASS CLASS 391 3 1.0 0.2 0.2 0.001 67.0 160.3 0.8 0.00 4.7
1887 AR HIST & CLASS CLASS 399 3 1.0 0.2 0.2 0.001 67.0 160.3 0.8 0.00 4.7
1888 AR HIST & CLASS CLASS 459 3 1.0 0.0 0.0 0.001 67.0 162.9 0.0 0.00 5.8
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1889 AR HIST & CLASS CLASS 460 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.5
1890 AR HIST & CLASS CLASS 461 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.6
1891 AR HIST & CLASS CLASS 463 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.6
1892 AR HIST & CLASS CLASS 464 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 4.4
1893 AR HIST & CLASS CLASS 473 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 6.6
1894 AR HIST & CLASS CLASS 474 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 4.1
1895 AR HIST & CLASS CLASS 475 3 2.0 1.0 2.0 0.002 67.0 256.9 3.0 0.00 8.4
1896 AR HIST & CLASS CLASS 476 3 1.0 0.0 0.0 0.000 70.0 259.9 0.0 0.00 11.4
1897 AR HIST & CLASS CLASS 478 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 5.9
1898 AR HIST & CLASS CLASS 479 3 1.0 0.0 0.0 0.001 67.0 161.8 0.0 0.00 4.0
1899 AR HIST & CLASS CLASS 480 3 1.0 0.0 0.0 0.001 67.0 161.8 0.0 0.00 4.0
1900 AR HIST & CLASS CLASS 481 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 4.1
1901 AR HIST & CLASS CLASS 489 3 1.0 0.0 0.0 0.001 67.0 161.8 0.0 0.00 6.3
1902 AR HIST & CLASS CLASS 498 3 1.0 0.0 0.0 0.001 67.0 161.8 0.0 0.00 6.3
1903 AR HIST & CLASS CLASS 499 3 1.0 0.0 0.0 0.000 67.0 162.2 0.0 0.00 6.6
1904 AR HIST & CLASS CLASS 500 3 3.0 0.0 0.0 0.003 67.0 321.6 0.0 0.00 10.1
1905 AR INT D CSL 300 3 1.0 0.0 0.0 0.000 67.0 190.4 0.0 0.00 7.0
1906 AR MODLGCULST DANSK 111 3 1.0 1.1 1.1 0.028 64.0 157.3 15.2 0.00 3.0
1907 AR MODLGCULST DANSK 112 3 1.0 1.1 1.1 0.001 67.0 160.3 11.9 0.00 5.9
1908 AR MODLGCULST DANSK 211 3 1.0 1.2 1.2 0.000 70.0 163.3 8.7 0.00 8.6
1909 AR MODLGCULST DANSK 212 3 1.0 1.2 1.2 0.000 73.0 166.3 4.8 0.00 10.2
1910 AR ART & DESIG DES 135 3 1.0 6.5 6.5 0.028 64.0 157.3 234.9 0.07 3.0
1911 AR ART & DESIG DES 138 3 1.0 8.0 8.0 0.028 64.0 157.3 263.2 0.08 3.0
1912 AR ART & DESIG DES 139 3 1.0 1.0 1.0 0.028 64.0 157.3 34.7 0.01 3.0
1913 AR ART & DESIG DES 268 3 2.0 0.0 0.0 0.002 67.0 284.4 0.1 0.00 4.6
1914 AR ART & DESIG DES 337 6 2.0 0.2 0.5 0.002 70.0 284.4 1.3 0.00 7.6
1915 AR ART & DESIG DES 338 3 2.0 0.2 0.5 0.002 67.0 284.4 1.3 0.00 4.6
1916 AR ART & DESIG DES 370 6 2.0 5.2 10.5 0.002 70.0 284.4 54.6 0.03 7.6
1917 AR ART & DESIG DES 375 6 1.0 0.2 0.2 0.000 76.0 290.4 1.3 0.00 7.4
1918 AR ART & DESIG DES 376 3 1.0 0.2 0.2 0.000 73.0 290.4 1.3 0.00 4.4
1919 AR ART & DESIG DES 384 3 1.0 0.7 0.7 0.000 73.0 290.4 4.8 0.00 4.4
1920 AR ART & DESIG DES 390 6 2.0 5.7 11.5 0.002 70.0 284.4 72.3 0.04 7.6
1921 AR ART & DESIG DES 395 3 1.0 0.2 0.2 0.000 73.0 290.4 1.3 0.00 4.3
1922 AR ART & DESIG DES 396 3 1.0 0.2 0.2 0.000 73.0 290.4 1.3 0.00 4.3
1923 AR ART & DESIG DES 425 6 2.0 0.8 1.6 0.000 76.0 422.1 4.1 0.00 9.0
1924 AR ART & DESIG DES 437 6 1.0 0.3 0.3 0.000 73.0 292.1 1.1 0.00 10.4
1925 AR ART & DESIG DES 438 3 1.0 0.3 0.3 0.000 70.0 292.1 1.1 0.00 7.4
1926 AR ART & DESIG DES 470 6 1.0 3.3 3.3 0.000 76.0 290.4 21.2 0.01 7.4
1927 AR ART & DESIG DES 475 3 1.0 0.3 0.3 0.000 79.0 296.4 1.1 0.00 5.3
1928 AR ART & DESIG DES 477 3 1.0 0.3 0.3 0.000 79.0 296.4 1.1 0.00 5.3
1929 AR ART & DESIG DES 483 3 1.0 0.3 0.3 0.001 67.0 160.3 1.1 0.00 4.1
1930 AR ART & DESIG DES 484 3 1.5 1.3 1.9 0.000 73.0 362.2 4.1 0.00 5.8
1931 AR ART & DESIG DES 485 3 1.5 1.3 1.9 0.000 73.0 362.2 4.1 0.00 5.8
1932 AR ART & DESIG DES 490 6 1.0 5.3 5.3 0.000 76.0 290.4 35.4 0.02 7.3
1933 AR ART & DESIG DES 495 3 1.0 0.3 0.3 0.000 79.0 296.4 1.1 0.00 4.4
1934 AR ART & DESIG DES 496 3 1.0 0.3 0.3 0.000 79.0 296.4 1.1 0.00 4.4
1935 AR ART & DESIG DES 497 3 1.0 0.3 0.3 0.000 79.0 296.4 1.1 0.00 4.4
1936 AR ART & DESIG DES 498 3 1.0 0.3 0.3 0.000 79.0 296.4 1.1 0.00 4.4
1937 AR ART & DESIG DES 525 6 1.0 0.0 0.0 0.000 82.0 428.1 0.0 0.00 13.3
1938 AR ART & DESIG DES 537 6 1.0 0.0 0.0 0.000 73.0 312.4 0.0 0.00 11.1
1939 AR ART & DESIG DES 538 3 1.0 0.0 0.0 0.000 70.0 312.4 0.0 0.00 8.1
1940 AR ART & DESIG DES 570 6 1.0 2.0 2.0 0.000 82.0 296.4 6.0 0.00 8.3
1941 AR ART & DESIG DES 575 3 1.0 0.0 0.0 0.000 85.0 302.4 0.0 0.00 7.1
1942 AR ART & DESIG DES 576 3 1.0 0.0 0.0 0.000 85.0 302.4 0.0 0.00 7.1
1943 AR ART & DESIG DES 584 3 1.0 0.0 0.0 0.000 76.0 365.2 0.0 0.00 7.5
1944 AR ART & DESIG DES 585 3 1.0 0.0 0.0 0.000 76.0 365.2 0.0 0.00 7.5
1945 AR ART & DESIG DES 586 3 1.0 0.0 0.0 0.000 70.0 312.4 0.0 0.00 8.1
1946 AR ART & DESIG DES 587 3 1.0 0.0 0.0 0.000 70.0 312.4 0.0 0.00 8.1
1947 AR ART & DESIG DES 590 6 1.0 4.0 4.0 0.000 82.0 296.4 12.0 0.01 7.4
1948 AR ART & DESIG DES 595 3 1.0 0.0 0.0 0.000 85.0 302.4 0.0 0.00 4.8
1949 AR ART & DESIG DES 596 3 1.0 0.0 0.0 0.000 85.0 302.4 0.0 0.00 4.8
1950 AR ART & DESIG DES 597 3 1.0 0.0 0.0 0.000 85.0 302.4 0.0 0.00 4.8
1951 AR ART & DESIG DES 598 3 1.0 0.0 0.0 0.000 85.0 302.4 0.0 0.00 4.8
1952 AR DRAMA DRAMA 101 3 1.0 0.5 0.5 0.028 64.0 157.3 6.8 0.00 3.0
1953 AR DRAMA DRAMA 102 3 1.0 2.5 2.5 0.028 64.0 157.3 25.5 0.01 3.0
1954 AR DRAMA DRAMA 103 3 2.0 2.5 5.1 0.028 64.0 167.4 25.5 0.01 9.8
1955 AR DRAMA DRAMA 149 3 1.0 3.2 3.2 0.028 64.0 157.3 27.7 0.01 3.0
1956 AR DRAMA DRAMA 150 3 2.0 3.2 6.4 0.028 64.0 167.4 27.7 0.01 9.8
1957 AR DRAMA DRAMA 208 3 1.0 1.9 1.9 0.001 67.0 164.0 13.5 0.00 5.7
1958 AR DRAMA DRAMA 209 3 1.0 0.9 0.9 0.000 70.0 167.0 5.3 0.00 6.0
1959 AR DRAMA DRAMA 240 3 1.0 1.1 1.1 0.001 67.0 165.9 10.0 0.00 5.0
1960 AR DRAMA DRAMA 247 3 1.0 0.1 0.1 0.028 64.0 157.3 0.5 0.00 3.0
1961 AR DRAMA DRAMA 249 3 1.0 0.1 0.1 0.001 67.0 165.9 0.5 0.00 5.0
1962 AR DRAMA DRAMA 257 3 2.0 2.1 4.3 0.002 67.0 262.3 16.6 0.01 7.6
1963 AR DRAMA DRAMA 259 3 2.0 2.1 4.3 0.002 67.0 262.3 7.1 0.00 7.6
1964 AR DRAMA DRAMA 279 3 1.0 1.1 1.1 0.028 64.0 157.3 23.0 0.01 3.0
1965 AR DRAMA DRAMA 301 3 1.0 0.8 0.8 0.028 64.0 157.3 5.0 0.00 3.0
1966 AR DRAMA DRAMA 302 3 1.0 0.1 0.1 0.028 64.0 157.3 0.3 0.00 3.0
1967 AR DRAMA DRAMA 306 3 1.0 1.8 1.8 0.001 67.0 160.3 11.5 0.00 5.8
1968 AR DRAMA DRAMA 307 3 1.0 0.1 0.1 0.000 67.0 194.7 0.3 0.00 6.9
1969 AR DRAMA DRAMA 308 3 1.0 1.1 1.1 0.028 64.0 157.3 14.8 0.00 3.0
1970 AR DRAMA DRAMA 325 3 1.0 0.1 0.1 0.001 67.0 165.9 0.3 0.00 5.0
1971 AR DRAMA DRAMA 327 3 1.0 1.1 1.1 0.028 64.0 157.3 3.7 0.00 3.0
1972 AR DRAMA DRAMA 331 3 1.0 0.1 0.1 0.001 67.0 165.9 0.3 0.00 5.0
1973 AR DRAMA DRAMA 334 6 1.0 1.5 1.5 0.028 67.0 157.3 14.5 0.00 6.0
1974 AR DRAMA DRAMA 335 2 1.0 0.5 0.5 0.028 63.0 157.3 2.3 0.00 2.0
1975 AR DRAMA DRAMA 344 6 1.0 1.5 1.5 0.028 67.0 157.3 14.5 0.00 6.0
1976 AR DRAMA DRAMA 345 2 1.0 0.5 0.5 0.028 63.0 157.3 2.3 0.00 2.0
1977 AR DRAMA DRAMA 355 2 1.0 0.5 0.5 0.028 63.0 157.3 2.3 0.00 2.0
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1977 AR DRAMA DRAMA 355 2 1.0 0.5 0.5 0.028 63.0 157.3 2.3 0.00 2.0
1978 AR DRAMA DRAMA 356 3 1.0 1.5 1.5 0.028 64.0 157.3 20.0 0.01 3.0
1979 AR DRAMA DRAMA 357 3 4.0 1.1 4.4 0.002 70.0 415.1 6.5 0.01 17.2
1980 AR DRAMA DRAMA 358 3 1.0 1.5 1.5 0.001 67.0 160.3 14.7 0.00 5.0
1981 AR DRAMA DRAMA 361 3 1.0 1.1 1.1 0.001 67.0 164.8 3.5 0.00 5.4
1982 AR DRAMA DRAMA 383 3 1.0 1.1 1.1 0.000 70.0 265.3 3.5 0.00 6.5
1983 AR DRAMA DRAMA 390 3 1.0 1.1 1.1 0.028 64.0 157.3 9.5 0.00 3.0
1984 AR DRAMA DRAMA 391 3 1.0 5.1 5.1 0.001 67.0 160.3 19.5 0.01 5.7
1985 AR DRAMA DRAMA 392 3 1.0 0.1 0.1 0.000 70.0 163.3 0.3 0.00 4.1
1986 AR DRAMA DRAMA 393 2 1.0 0.1 0.1 0.028 63.0 157.3 0.3 0.00 2.0
1987 AR DRAMA DRAMA 394 3 1.0 0.1 0.1 0.028 64.0 157.3 0.3 0.00 3.0
1988 AR DRAMA DRAMA 396 6 1.0 0.1 0.1 0.028 67.0 157.3 0.3 0.00 6.0
1989 AR DRAMA DRAMA 397 6 1.0 1.1 1.1 0.028 67.0 157.3 6.5 0.00 6.0
1990 AR DRAMA DRAMA 398 3 1.0 1.1 1.1 0.028 64.0 157.3 3.5 0.00 3.0
1991 AR DRAMA DRAMA 399 3 1.0 1.1 1.1 0.028 64.0 157.3 5.5 0.00 3.0
1992 AR DRAMA DRAMA 401 3 1.0 1.1 1.1 0.000 70.0 163.3 3.5 0.00 6.1
1993 AR DRAMA DRAMA 402 3 1.0 0.1 0.1 0.000 73.0 166.3 0.2 0.00 8.7
1994 AR DRAMA DRAMA 406 3 1.0 0.1 0.1 0.001 66.0 182.2 0.2 0.00 7.0
1995 AR DRAMA DRAMA 407 3 1.0 0.1 0.1 0.001 66.0 182.2 0.3 0.00 7.0
1996 AR DRAMA DRAMA 409 3 1.0 0.1 0.1 0.000 67.0 165.2 0.2 0.00 6.8
1997 AR DRAMA DRAMA 434 6 1.0 1.1 1.1 0.001 73.0 163.3 6.2 0.00 10.0
1998 AR DRAMA DRAMA 435 2 1.0 0.7 0.7 0.001 65.0 161.2 2.2 0.00 4.8
1999 AR DRAMA DRAMA 444 6 1.0 1.1 1.1 0.001 73.0 163.3 6.2 0.00 10.0
2000 AR DRAMA DRAMA 445 2 1.0 0.7 0.7 0.001 65.0 161.2 2.2 0.00 4.8
2001 AR DRAMA DRAMA 451 2 1.0 0.1 0.1 0.028 63.0 157.3 0.2 0.00 2.0
2002 AR DRAMA DRAMA 454 3 2.0 0.1 0.2 0.000 70.0 330.0 0.2 0.00 7.6
2003 AR DRAMA DRAMA 455 3 1.0 0.7 0.7 0.001 66.0 161.2 2.2 0.00 5.8
2004 AR DRAMA DRAMA 456 3 1.0 1.1 1.1 0.000 70.0 163.3 9.5 0.00 6.3
2005 AR DRAMA DRAMA 457 6 3.0 0.1 0.2 0.000 76.0 456.9 0.2 0.00 26.7
2006 AR DRAMA DRAMA 458 3 1.0 1.1 1.1 0.000 73.0 166.3 6.2 0.00 8.8
2007 AR DRAMA DRAMA 459 3 2.0 0.1 0.2 0.001 70.0 327.0 0.3 0.00 9.3
2008 AR DRAMA DRAMA 461 3 1.0 0.1 0.1 0.000 70.0 167.8 0.2 0.00 8.0
2009 AR DRAMA DRAMA 483 3 3.0 0.1 0.2 0.001 73.0 382.3 0.2 0.00 12.6
2010 AR DRAMA DRAMA 490 3 1.0 1.1 1.1 0.001 67.0 160.3 6.2 0.00 5.8
2011 AR DRAMA DRAMA 492 3 1.0 0.1 0.1 0.000 70.0 163.3 0.2 0.00 4.1
2012 AR DRAMA DRAMA 494 3 1.0 0.1 0.1 0.028 64.0 157.3 0.2 0.00 3.0
2013 AR DRAMA DRAMA 495 3 1.0 0.1 0.1 0.028 64.0 157.3 0.2 0.00 3.0
2014 AR DRAMA DRAMA 497 6 1.0 0.1 0.1 0.001 73.0 163.3 0.2 0.00 11.5
2015 AR DRAMA DRAMA 498 3 1.0 0.1 0.1 0.001 67.0 160.3 0.2 0.00 5.8
2016 AR DRAMA DRAMA 499 3 1.0 1.1 1.1 0.001 67.0 160.3 2.2 0.00 5.8
2017 AR DRAMA DRAMA 507 3 1.0 0.0 0.0 0.000 66.0 213.9 0.0 0.00 10.5
2018 AR DRAMA DRAMA 534 6 1.0 0.0 0.0 0.000 79.0 169.3 0.0 0.00 15.2
2019 AR DRAMA DRAMA 535 3 1.0 0.0 0.0 0.000 68.0 163.5 0.0 0.00 8.1
2020 AR DRAMA DRAMA 544 6 1.0 0.0 0.0 0.000 79.0 169.3 0.0 0.00 15.2
2021 AR DRAMA DRAMA 545 3 1.0 0.0 0.0 0.000 68.0 163.5 0.0 0.00 8.1
2022 AR DRAMA DRAMA 554 6 1.0 0.0 0.0 0.000 79.0 169.3 0.0 0.00 14.2
2023 AR DRAMA DRAMA 577 3 1.0 0.0 0.0 0.000 66.0 213.9 0.0 0.00 10.5
2024 AR DRAMA DRAMA 590 6 1.0 0.0 0.0 0.000 73.0 163.3 0.0 0.00 11.4
2025 AR DRAMA DRAMA 599 2 1.0 0.0 0.0 0.000 69.0 163.3 0.0 0.00 7.4
2026 AR EARTH ATSC EAS 192 3 1.0 2.7 2.7 0.028 64.0 157.3 28.9 0.01 3.0
2027 AR EARTH ATSC EAS 294 3 1.0 1.4 1.4 0.001 67.0 218.8 9.3 0.00 3.7
2028 AR EARTH ATSC EAS 295 3 1.0 1.4 1.4 0.001 67.0 218.8 9.3 0.00 3.7
2029 AR EARTH ATSC EAS 395 3 2.0 0.9 1.7 0.001 70.0 306.3 3.8 0.00 7.2
2030 AR E ASIAN ST EASIA 101 3 1.0 5.0 5.0 0.028 64.0 157.3 21.3 0.01 3.0
2031 AR E ASIAN ST EASIA 230 3 1.0 0.0 0.0 0.001 67.0 160.3 0.1 0.00 3.6
2032 AR E ASIAN ST EASIA 260 3 1.0 0.0 0.0 0.001 67.0 160.3 0.1 0.00 3.6
2033 AR E ASIAN ST EASIA 321 3 1.0 1.0 1.0 0.001 67.0 160.3 3.0 0.00 3.6
2034 AR E ASIAN ST EASIA 322 3 1.0 1.0 1.0 0.001 67.0 160.3 3.1 0.00 3.6
2035 AR E ASIAN ST EASIA 425 3 1.0 0.0 0.0 0.001 67.0 171.7 0.0 0.00 5.1
2036 AR E ASIAN ST EASIA 426 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.6
2037 AR E ASIAN ST EASIA 480 3 2.5 0.0 0.0 0.000 80.0 304.9 0.0 0.00 8.8
2038 AR E ASIAN ST EASIA 490 3 2.5 0.0 0.0 0.000 80.0 304.9 0.0 0.00 8.8
2039 AR ECONOMICS ECON 101 3 1.0 42.7 42.7 0.032 64.0 157.3 661.1 0.20 3.0
2040 AR ECONOMICS ECON 102 3 1.0 25.7 25.7 0.005 67.0 160.3 424.2 0.13 3.1
2041 AR ECONOMICS ECON 204 3 2.0 0.5 1.0 0.000 72.0 226.4 1.7 0.00 5.0
2042 AR ECONOMICS ECON 210 3 1.0 0.0 0.0 0.001 67.0 160.3 0.1 0.00 3.1
2043 AR ECONOMICS ECON 211 3 1.0 0.0 0.0 0.001 67.0 160.3 0.1 0.00 3.1
2044 AR ECONOMICS ECON 213 3 2.0 0.0 0.0 0.001 70.0 255.1 0.1 0.00 3.2
2045 AR ECONOMICS ECON 218 3 1.0 0.0 0.0 0.001 67.0 160.3 0.1 0.00 3.1
2046 AR ECONOMICS ECON 219 3 1.0 0.0 0.0 0.001 67.0 160.3 0.1 0.00 3.1
2047 AR ECONOMICS ECON 222 3 1.0 0.0 0.0 0.001 67.0 160.3 0.1 0.00 3.1
2048 AR ECONOMICS ECON 281 3 1.0 28.1 28.1 0.002 67.0 160.3 119.2 0.04 3.1
2049 AR ECONOMICS ECON 282 3 2.0 5.0 10.0 0.002 70.0 255.1 37.5 0.02 3.2
2050 AR ECONOMICS ECON 299 3 4.0 3.0 12.1 0.004 70.0 375.9 15.4 0.01 3.6
2051 AR ECONOMICS ECON 323 3 2.0 0.1 0.1 0.001 70.0 255.1 0.4 0.00 3.2
2052 AR ECONOMICS ECON 331 3 1.0 0.1 0.1 0.001 67.0 160.3 0.4 0.00 3.1
2053 AR ECONOMICS ECON 341 3 2.0 0.1 0.1 0.001 70.0 255.1 0.4 0.00 3.2
2054 AR ECONOMICS ECON 350 3 1.0 0.1 0.1 0.001 67.0 160.3 0.4 0.00 3.1
2055 AR ECONOMICS ECON 353 3 1.0 0.1 0.1 0.000 70.0 163.3 0.4 0.00 3.1
2056 AR ECONOMICS ECON 355 3 1.0 0.1 0.1 0.001 67.0 216.1 0.4 0.00 5.6
2057 AR ECONOMICS ECON 357 3 1.0 0.1 0.1 0.000 70.0 163.3 0.4 0.00 3.1
2058 AR ECONOMICS ECON 361 3 1.0 0.1 0.1 0.000 70.0 163.3 0.4 0.00 3.1
2059 AR ECONOMICS ECON 365 3 1.0 1.6 1.6 0.001 67.0 160.3 4.9 0.00 3.1
2060 AR ECONOMICS ECON 366 3 1.0 0.6 0.6 0.001 67.0 160.3 1.9 0.00 3.1
2061 AR ECONOMICS ECON 369 3 1.0 0.1 0.1 0.001 67.0 160.3 0.4 0.00 3.1
2062 AR ECONOMICS ECON 373 3 1.0 0.1 0.1 0.000 70.0 163.3 0.4 0.00 3.1
2063 AR ECONOMICS ECON 378 3 1.0 0.1 0.1 0.001 67.0 160.3 0.4 0.00 3.1
2064 AR ECONOMICS ECON 379 3 1.0 0.1 0.1 0.001 67.0 160.3 0.4 0.00 3.1
2065 AR ECONOMICS ECON 384 3 2.0 4.1 8.1 0.001 70.0 270.4 15.4 0.01 3.3
2066 AR ECONOMICS ECON 385 3 2.0 3.1 6.1 0.000 73.0 322.7 12.4 0.01 3.7
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2066 AR ECONOMICS ECON 385 3 2.0 3.1 6.1 0.000 73.0 322.7 12.4 0.01 3.7
2067 AR ECONOMICS ECON 386 3 4.0 5.1 20.3 0.003 73.0 412.5 18.7 0.01 4.3
2068 AR ECONOMICS ECON 387 3 1.0 1.1 1.1 0.000 76.0 415.5 6.4 0.00 3.8
2069 AR ECONOMICS ECON 399 3 4.0 1.1 4.3 0.002 73.0 456.0 3.4 0.00 5.2
2070 AR ECONOMICS ECON 400 3 4.0 0.0 0.0 0.000 76.0 492.4 0.0 0.00 10.7
2071 AR ECONOMICS ECON 407 3 3.0 1.0 3.0 0.000 79.0 481.8 3.0 0.00 8.6
2072 AR ECONOMICS ECON 408 3 3.0 0.0 0.0 0.000 82.0 503.4 0.0 0.00 21.3
2073 AR ECONOMICS ECON 410 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.1
2074 AR ECONOMICS ECON 412 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.1
2075 AR ECONOMICS ECON 414 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.1
2076 AR ECONOMICS ECON 418 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.1
2077 AR ECONOMICS ECON 421 3 2.0 0.0 0.0 0.001 70.0 270.4 0.0 0.00 3.3
2078 AR ECONOMICS ECON 422 3 3.0 0.0 0.0 0.001 73.0 377.7 0.0 0.00 3.9
2079 AR ECONOMICS ECON 431 3 2.0 0.0 0.0 0.001 70.0 270.4 0.0 0.00 3.3
2080 AR ECONOMICS ECON 441 3 3.0 0.0 0.0 0.001 73.0 377.7 0.0 0.00 3.9
2081 AR ECONOMICS ECON 442 3 3.0 0.0 0.0 0.003 70.0 329.3 0.0 0.00 3.6
2082 AR ECONOMICS ECON 450 3 2.0 0.0 0.0 0.001 70.0 270.4 0.0 0.00 3.3
2083 AR ECONOMICS ECON 453 3 2.0 0.0 0.0 0.001 70.0 270.4 0.0 0.00 3.3
2084 AR ECONOMICS ECON 462 3 2.0 0.0 0.0 0.001 70.0 270.4 0.0 0.00 3.3
2085 AR ECONOMICS ECON 467 3 3.0 0.0 0.0 0.001 70.0 327.7 0.0 0.00 5.8
2086 AR ECONOMICS ECON 471 3 2.0 0.0 0.0 0.001 73.0 329.3 0.0 0.00 4.0
2087 AR ECONOMICS ECON 472 3 2.0 0.0 0.0 0.001 70.0 270.4 0.0 0.00 3.3
2088 AR ECONOMICS ECON 475 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.1
2089 AR ECONOMICS ECON 481 3 2.0 1.0 2.0 0.000 76.0 445.1 3.0 0.00 4.7
2090 AR ECONOMICS ECON 482 3 2.0 1.0 2.0 0.000 76.0 457.1 3.0 0.00 5.1
2091 AR ECONOMICS ECON 484 3 2.0 0.0 0.0 0.000 73.0 429.6 0.0 0.00 5.0
2092 AR ECONOMICS ECON 485 3 2.0 0.0 0.0 0.001 76.0 380.7 0.0 0.00 4.4
2093 AR ECONOMICS ECON 498 3 1.0 1.0 1.0 0.000 70.0 253.4 3.0 0.00 6.0
2094 AR ECONOMICS ECON 499 3 1.0 0.0 0.0 0.000 73.0 256.4 0.0 0.00 9.0
2095 AR ENGLISH ENGL 104 3 1.0 11.0 11.0 0.028 64.0 157.3 97.3 0.03 3.0
2096 AR ENGLISH ENGL 105 3 1.0 11.0 11.0 0.028 64.0 157.3 97.3 0.03 3.0
2097 AR ENGLISH ENGL 108 3 1.0 11.0 11.0 0.028 64.0 157.3 97.3 0.03 3.0
2098 AR ENGLISH ENGL 111 6 1.0 19.2 19.2 0.029 67.0 157.3 179.1 0.05 6.0
2099 AR ENGLISH ENGL 112 6 1.0 19.2 19.2 0.029 67.0 157.3 179.1 0.05 6.0
2100 AR ENGLISH ENGL 113 6 1.0 19.2 19.2 0.029 67.0 157.3 179.1 0.05 6.0
2101 AR ENGLISH ENGL 114 6 1.0 19.2 19.2 0.029 67.0 157.3 179.1 0.05 6.0
2102 AR ENGLISH ENGL 199 3 1.0 3.0 3.0 0.028 64.0 157.3 52.4 0.02 3.0
2103 AR ENGLISH ENGL 208 3 1.2 0.8 0.9 0.001 67.0 184.4 2.4 0.00 3.4
2104 AR ENGLISH ENGL 209 3 1.2 0.8 0.9 0.001 67.0 184.4 2.4 0.00 3.4
2105 AR ENGLISH ENGL 210 3 1.2 0.8 0.9 0.001 67.0 184.4 2.4 0.00 3.4
2106 AR ENGLISH ENGL 212 3 1.2 0.8 0.9 0.001 67.0 184.4 2.4 0.00 3.4
2107 AR ENGLISH ENGL 217 3 1.2 0.8 0.9 0.001 67.0 184.4 2.4 0.00 3.4
2108 AR ENGLISH ENGL 218 3 1.2 0.8 0.9 0.001 67.0 184.4 2.4 0.00 3.4
2109 AR ENGLISH ENGL 219 3 1.2 0.8 0.9 0.001 67.0 184.4 2.4 0.00 3.4
2110 AR ENGLISH ENGL 220 3 1.2 0.8 0.9 0.001 67.0 184.4 2.4 0.00 3.4
2111 AR ENGLISH ENGL 221 3 1.2 0.8 0.9 0.001 67.0 184.4 2.4 0.00 3.4
2112 AR ENGLISH ENGL 222 3 1.2 0.8 0.9 0.001 67.0 184.4 2.4 0.00 3.4
2113 AR ENGLISH ENGL 223 3 1.2 0.8 0.9 0.001 67.0 184.4 2.4 0.00 3.4
2114 AR ENGLISH ENGL 224 3 1.2 0.8 0.9 0.001 67.0 184.4 2.4 0.00 3.4
2115 AR ENGLISH ENGL 299 3 1.2 0.8 0.9 0.001 67.0 184.4 2.4 0.00 3.4
2116 AR ENGLISH ENGL 300 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2117 AR ENGLISH ENGL 301 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2118 AR ENGLISH ENGL 302 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2119 AR ENGLISH ENGL 303 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2120 AR ENGLISH ENGL 304 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2121 AR ENGLISH ENGL 305 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2122 AR ENGLISH ENGL 308 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2123 AR ENGLISH ENGL 309 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2124 AR ENGLISH ENGL 312 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2125 AR ENGLISH ENGL 313 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2126 AR ENGLISH ENGL 314 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2127 AR ENGLISH ENGL 315 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2128 AR ENGLISH ENGL 320 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2129 AR ENGLISH ENGL 320 6 1.2 1.6 1.9 0.001 70.0 184.4 4.7 0.00 6.4
2130 AR ENGLISH ENGL 324 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2131 AR ENGLISH ENGL 325 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2132 AR ENGLISH ENGL 327 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2133 AR ENGLISH ENGL 336 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2134 AR ENGLISH ENGL 337 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2135 AR ENGLISH ENGL 339 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2136 AR ENGLISH ENGL 340 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2137 AR ENGLISH ENGL 341 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2138 AR ENGLISH ENGL 343 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2139 AR ENGLISH ENGL 344 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2140 AR ENGLISH ENGL 347 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2141 AR ENGLISH ENGL 348 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2142 AR ENGLISH ENGL 349 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2143 AR ENGLISH ENGL 350 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2144 AR ENGLISH ENGL 352 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2145 AR ENGLISH ENGL 353 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2146 AR ENGLISH ENGL 354 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2147 AR ENGLISH ENGL 355 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2148 AR ENGLISH ENGL 356 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2149 AR ENGLISH ENGL 357 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2150 AR ENGLISH ENGL 358 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2151 AR ENGLISH ENGL 359 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2152 AR ENGLISH ENGL 360 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2153 AR ENGLISH ENGL 361 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2154 AR ENGLISH ENGL 362 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2155 AR ENGLISH ENGL 363 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
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2155 AR ENGLISH ENGL 363 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2156 AR ENGLISH ENGL 364 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2157 AR ENGLISH ENGL 365 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2158 AR ENGLISH ENGL 366 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2159 AR ENGLISH ENGL 367 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2160 AR ENGLISH ENGL 368 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2161 AR ENGLISH ENGL 369 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2162 AR ENGLISH ENGL 373 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2163 AR ENGLISH ENGL 374 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2164 AR ENGLISH ENGL 375 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2165 AR ENGLISH ENGL 376 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2166 AR ENGLISH ENGL 377 3 1.2 1.6 1.9 0.001 67.0 184.4 4.8 0.00 3.4
2167 AR ENGLISH ENGL 378 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2168 AR ENGLISH ENGL 379 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2169 AR ENGLISH ENGL 380 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2170 AR ENGLISH ENGL 384 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2171 AR ENGLISH ENGL 385 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2172 AR ENGLISH ENGL 386 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2173 AR ENGLISH ENGL 388 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2174 AR ENGLISH ENGL 389 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2175 AR ENGLISH ENGL 390 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2176 AR ENGLISH ENGL 391 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2177 AR ENGLISH ENGL 392 3 1.2 1.6 1.9 0.001 67.0 184.4 4.7 0.00 3.4
2178 AR ENGLISH ENGL 401 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2179 AR ENGLISH ENGL 402 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2180 AR ENGLISH ENGL 405 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2181 AR ENGLISH ENGL 406 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2182 AR ENGLISH ENGL 407 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2183 AR ENGLISH ENGL 408 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2184 AR ENGLISH ENGL 409 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2185 AR ENGLISH ENGL 413 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2186 AR ENGLISH ENGL 424 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2187 AR ENGLISH ENGL 425 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2188 AR ENGLISH ENGL 426 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2189 AR ENGLISH ENGL 430 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2190 AR ENGLISH ENGL 445 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2191 AR ENGLISH ENGL 465 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2192 AR ENGLISH ENGL 466 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2193 AR ENGLISH ENGL 467 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2194 AR ENGLISH ENGL 481 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2195 AR ENGLISH ENGL 482 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2196 AR ENGLISH ENGL 483 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2197 AR ENGLISH ENGL 484 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2198 AR ENGLISH ENGL 486 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2199 AR ENGLISH ENGL 487 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2200 AR ENGLISH ENGL 489 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2201 AR ENGLISH ENGL 499 3 3.0 0.0 0.0 0.000 65.5 379.7 0.0 0.00 6.5
2202 AR ENGLISH ENGL 532 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2203 AR ENGLISH ENGL 533 3 4.0 0.0 0.0 0.000 70.0 424.4 0.0 0.00 12.2
2204 AR MODLGCULST FREN 111 3 1.0 1.1 1.1 0.028 64.0 157.3 78.6 0.02 3.0
2205 AR MODLGCULST FREN 112 3 1.0 0.6 0.6 0.001 67.0 160.3 75.3 0.02 5.9
2206 AR MODLGCULST FREN 155 3 2.0 1.1 2.1 0.028 65.0 72.0 3.5 0.00 18.4
2207 AR MODLGCULST FREN 156 3 1.0 0.1 0.1 0.001 68.0 75.0 0.3 0.00 20.4
2208 AR MODLGCULST FREN 211 3 1.5 1.2 1.8 0.014 65.0 90.6 114.1 0.02 13.6
2209 AR MODLGCULST FREN 212 3 1.0 4.2 4.2 0.001 68.0 93.6 110.2 0.02 14.5
2210 AR MODLGCULST FREN 221 3 1.0 0.2 0.2 0.000 71.0 96.6 0.8 0.00 6.5
2211 AR MODLGCULST FREN 233 3 1.0 0.2 0.2 0.000 71.0 96.6 0.8 0.00 6.5
2212 AR MODLGCULST FREN 254 3 1.0 3.2 3.2 0.000 71.0 96.6 13.1 0.00 6.5
2213 AR MODLGCULST FREN 297 3 1.0 3.2 3.2 0.000 71.0 96.6 88.6 0.02 6.5
2214 AR MODLGCULST FREN 298 3 1.0 11.2 11.2 0.000 74.0 99.6 74.0 0.01 5.0
2215 AR MODLGCULST FREN 301 3 1.0 12.1 12.1 0.000 77.0 102.6 36.5 0.01 3.4
2216 AR MODLGCULST FREN 310 3 1.0 0.1 0.1 0.000 77.0 102.6 0.2 0.00 3.4
2217 AR MODLGCULST FREN 311 3 1.0 1.6 1.6 0.000 77.0 102.6 4.7 0.00 3.4
2218 AR MODLGCULST FREN 312 3 1.0 1.6 1.6 0.000 77.0 102.6 4.7 0.00 3.4
2219 AR MODLGCULST FREN 313 3 1.0 1.6 1.6 0.000 77.0 102.6 4.7 0.00 3.4
2220 AR MODLGCULST FREN 314 3 1.0 1.6 1.6 0.000 77.0 102.6 4.7 0.00 3.4
2221 AR MODLGCULST FREN 315 3 1.0 1.6 1.6 0.000 77.0 102.6 4.7 0.00 3.4
2222 AR MODLGCULST FREN 316 3 1.0 1.6 1.6 0.000 77.0 102.6 4.7 0.00 3.4
2223 AR MODLGCULST FREN 346 3 1.0 0.1 0.1 0.000 80.0 105.6 0.2 0.00 3.3
2224 AR MODLGCULST FREN 354 3 1.0 1.1 1.1 0.000 74.0 99.6 3.2 0.00 5.0
2225 AR MODLGCULST FREN 355 3 1.0 0.1 0.1 0.000 77.0 102.6 0.2 0.00 3.4
2226 AR MODLGCULST FREN 371 3 1.0 3.6 3.6 0.000 77.0 102.6 10.7 0.00 3.4
2227 AR MODLGCULST FREN 372 3 1.0 4.6 4.6 0.000 74.0 99.6 13.7 0.00 5.0
2228 AR MODLGCULST FREN 445 3 2.0 0.0 0.0 0.000 80.0 140.0 0.0 0.00 5.5
2229 AR MODLGCULST FREN 454 3 1.0 0.0 0.0 0.000 77.0 102.6 0.0 0.00 7.7
2230 AR MODLGCULST FREN 462 3 2.0 0.0 0.0 0.000 80.0 140.0 0.0 0.00 5.5
2231 AR MODLGCULST FREN 463 3 2.0 0.0 0.0 0.000 80.0 140.0 0.0 0.00 5.5
2232 AR MODLGCULST FREN 464 3 2.0 0.0 0.0 0.000 80.0 140.0 0.0 0.00 5.5
2233 AR MODLGCULST FREN 465 3 2.0 0.0 0.0 0.000 80.0 140.0 0.0 0.00 5.5
2234 AR MODLGCULST FREN 466 3 2.0 0.0 0.0 0.000 80.0 140.0 0.0 0.00 5.5
2235 AR MODLGCULST FREN 467 3 2.0 0.0 0.0 0.000 80.0 140.0 0.0 0.00 5.5
2236 AR MODLGCULST FREN 468 3 2.0 0.0 0.0 0.000 80.0 140.0 0.0 0.00 5.5
2237 AR MODLGCULST FREN 473 3 1.0 0.0 0.0 0.000 77.0 102.6 0.0 0.00 4.1
2238 AR MODLGCULST FREN 474 3 1.0 0.0 0.0 0.000 77.0 104.1 0.0 0.00 4.0
2239 AR MODLGCULST FREN 476 3 1.0 0.0 0.0 0.000 77.0 104.1 0.0 0.00 4.0
2240 AR MODLGCULST FREN 479 3 1.0 0.0 0.0 0.000 77.0 104.1 0.0 0.00 4.0
2241 AR MODLGCULST FREN 480 3 2.0 0.0 0.0 0.000 80.0 140.0 0.0 0.00 5.5
2242 AR MODLGCULST FREN 495 3 4.0 0.0 0.0 0.000 80.0 192.8 0.0 0.00 7.4
2243 AR MODLGCULST FREN 499 3 6.0 0.0 0.0 0.000 80.0 232.4 0.0 0.00 9.8
2244 AR ENGLISH FS 200 6 2.0 12.2 24.4 0.002 70.0 256.2 59.3 0.03 9.9
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2244 AR ENGLISH FS 200 6 2.0 12.2 24.4 0.002 70.0 256.2 59.3 0.03 9.9
2245 AR ENGLISH FS 205 3 2.0 12.2 24.4 0.002 67.0 256.2 59.3 0.03 6.9
2246 AR ENGLISH FS 210 3 2.0 6.7 13.4 0.002 67.0 256.2 26.0 0.01 6.9
2247 AR ENGLISH FS 297 3 2.0 0.0 0.0 0.002 67.0 256.2 0.1 0.00 6.9
2248 AR ENGLISH FS 301 6 1.0 0.8 0.8 0.000 73.0 260.7 2.4 0.00 6.7
2249 AR ENGLISH FS 309 3 1.0 0.8 0.8 0.000 70.0 260.7 2.4 0.00 3.7
2250 AR ENGLISH FS 310 3 1.0 0.8 0.8 0.000 70.0 260.7 2.4 0.00 3.7
2251 AR ENGLISH FS 311 3 1.0 0.8 0.8 0.000 70.0 260.7 2.4 0.00 3.7
2252 AR ENGLISH FS 312 3 1.0 0.8 0.8 0.000 70.0 260.7 2.4 0.00 3.7
2253 AR ENGLISH FS 314 3 1.0 1.8 1.8 0.000 70.0 260.7 7.7 0.00 3.7
2254 AR ENGLISH FS 330 3 1.0 0.8 0.8 0.000 70.0 260.7 2.4 0.00 3.7
2255 AR ENGLISH FS 333 3 1.0 0.8 0.8 0.000 70.0 260.7 2.4 0.00 3.7
2256 AR ENGLISH FS 353 3 1.0 0.8 0.8 0.000 67.0 230.6 2.4 0.00 3.6
2257 AR ENGLISH FS 361 3 1.0 0.8 0.8 0.000 70.0 260.7 2.4 0.00 3.7
2258 AR ENGLISH FS 362 3 1.0 0.8 0.8 0.000 70.0 260.7 2.4 0.00 3.7
2259 AR ENGLISH FS 363 3 1.0 0.8 0.8 0.000 70.0 260.7 2.4 0.00 3.7
2260 AR ENGLISH FS 364 3 1.0 0.8 0.8 0.000 70.0 260.7 2.4 0.00 3.7
2261 AR ENGLISH FS 371 3 1.0 0.8 0.8 0.000 70.0 260.7 2.4 0.00 3.7
2262 AR ENGLISH FS 380 3 1.0 0.8 0.8 0.001 67.0 213.6 2.4 0.00 3.7
2263 AR ENGLISH FS 381 3 1.0 0.8 0.8 0.001 67.0 213.6 2.4 0.00 3.7
2264 AR ENGLISH FS 382 3 1.0 0.8 0.8 0.001 67.0 213.6 2.4 0.00 3.7
2265 AR ENGLISH FS 383 3 1.0 0.8 0.8 0.001 67.0 213.6 2.4 0.00 3.7
2266 AR ENGLISH FS 384 3 1.0 0.8 0.8 0.000 73.0 263.7 2.4 0.00 5.1
2267 AR ENGLISH FS 385 3 1.0 0.8 0.8 0.001 67.0 213.6 2.4 0.00 3.7
2268 AR ENGLISH FS 397 3 1.0 0.8 0.8 0.000 70.0 260.7 2.4 0.00 3.7
2269 AR ENGLISH FS 399 3 1.0 0.8 0.8 0.000 70.0 260.7 2.4 0.00 3.7
2270 AR ENGLISH FS 401 3 2.0 0.0 0.0 0.000 70.0 378.9 0.0 0.00 7.5
2271 AR ENGLISH FS 402 3 2.0 0.0 0.0 0.000 70.0 378.9 0.0 0.00 7.5
2272 AR ENGLISH FS 403 3 2.0 0.0 0.0 0.000 70.0 378.9 0.0 0.00 7.5
2273 AR ENGLISH FS 404 3 2.0 0.0 0.0 0.000 70.0 378.9 0.0 0.00 7.5
2274 AR ENGLISH FS 405 3 2.0 0.0 0.0 0.000 70.0 378.9 0.0 0.00 7.5
2275 AR ENGLISH FS 406 3 2.0 0.0 0.0 0.000 70.0 359.6 0.0 0.00 7.5
2276 AR ENGLISH FS 409 3 2.0 0.0 0.0 0.000 70.0 359.6 0.0 0.00 7.5
2277 AR ENGLISH FS 410 3 2.0 0.0 0.0 0.000 70.0 378.9 0.0 0.00 7.5
2278 AR ENGLISH FS 412 3 2.0 0.0 0.0 0.000 70.0 378.9 0.0 0.00 7.5
2279 AR ENGLISH FS 414 3 2.0 0.0 0.0 0.000 70.0 378.9 0.0 0.00 7.5
2280 AR ENGLISH FS 420 3 2.0 0.0 0.0 0.001 70.0 349.7 0.0 0.00 7.5
2281 AR ENGLISH FS 421 3 2.0 0.0 0.0 0.001 70.0 349.7 0.0 0.00 7.5
2282 AR ENGLISH FS 422 3 2.0 0.0 0.0 0.001 70.0 349.7 0.0 0.00 7.5
2283 AR ENGLISH FS 423 3 2.0 0.0 0.0 0.001 70.0 349.7 0.0 0.00 7.5
2284 AR ENGLISH FS 424 3 2.0 0.0 0.0 0.001 70.0 349.7 0.0 0.00 7.5
2285 AR ENGLISH FS 480 3 2.0 0.0 0.0 0.001 70.0 349.7 0.0 0.00 7.5
2286 AR ENGLISH FS 497 3 2.0 0.0 0.0 0.001 70.0 349.7 0.0 0.00 7.5
2287 AR MODLGCULST GERM 111 3 1.0 1.1 1.1 0.028 64.0 157.3 69.3 0.02 3.0
2288 AR MODLGCULST GERM 112 3 1.0 0.9 0.9 0.001 67.0 160.3 66.1 0.02 5.9
2289 AR MODLGCULST GERM 165 6 1.0 0.4 0.4 0.028 67.0 157.3 2.6 0.00 6.0
2290 AR MODLGCULST GERM 211 3 1.5 1.2 1.8 0.014 65.0 178.6 115.0 0.04 11.9
2291 AR MODLGCULST GERM 212 3 1.0 9.2 9.2 0.001 68.0 181.6 111.2 0.04 13.1
2292 AR MODLGCULST GERM 265 6 1.3 0.2 0.2 0.010 68.0 114.7 0.8 0.00 14.0
2293 AR MODLGCULST GERM 274 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
2294 AR MODLGCULST GERM 303 3 1.0 2.2 2.2 0.000 71.0 184.6 31.1 0.01 4.4
2295 AR MODLGCULST GERM 304 3 1.0 7.2 7.2 0.000 74.0 187.6 24.5 0.01 5.0
2296 AR MODLGCULST GERM 306 3 1.0 2.0 2.0 0.000 71.0 184.6 6.0 0.00 4.4
2297 AR MODLGCULST GERM 309 3 1.0 1.0 1.0 0.000 71.0 184.6 3.0 0.00 4.4
2298 AR MODLGCULST GERM 316 3 1.0 1.3 1.3 0.000 71.0 184.6 4.0 0.00 4.4
2299 AR MODLGCULST GERM 317 3 1.0 1.3 1.3 0.000 71.0 184.6 4.0 0.00 4.4
2300 AR MODLGCULST GERM 333 3 1.0 0.7 0.7 0.000 71.0 184.6 2.0 0.00 4.4
2301 AR MODLGCULST GERM 343 3 1.0 0.7 0.7 0.000 71.0 184.6 2.0 0.00 4.4
2302 AR MODLGCULST GERM 351 3 1.0 6.7 6.7 0.000 71.0 184.6 20.0 0.01 4.4
2303 AR MODLGCULST GERM 352 3 1.0 6.7 6.7 0.000 71.0 184.6 20.0 0.01 4.4
2304 AR MODLGCULST GERM 402 3 1.0 0.0 0.0 0.000 77.0 190.6 0.0 0.00 3.7
2305 AR MODLGCULST GERM 404 3 1.0 1.0 1.0 0.000 74.0 187.6 3.0 0.00 5.0
2306 AR MODLGCULST GERM 405 3 2.0 0.0 0.0 0.000 77.0 282.3 0.0 0.00 8.7
2307 AR MODLGCULST GERM 408 3 2.0 0.0 0.0 0.000 74.0 279.3 0.0 0.00 9.0
2308 AR MODLGCULST GERM 409 3 1.0 0.0 0.0 0.000 74.0 187.6 0.0 0.00 6.0
2309 AR MODLGCULST GERM 413 3 1.0 0.0 0.0 0.000 74.0 187.6 0.0 0.00 3.7
2310 AR MODLGCULST GERM 416 3 1.0 0.2 0.2 0.000 74.0 187.6 0.6 0.00 6.4
2311 AR MODLGCULST GERM 417 3 1.0 0.0 0.0 0.000 74.0 188.2 0.0 0.00 7.0
2312 AR MODLGCULST GERM 426 3 1.0 0.0 0.0 0.000 74.0 187.6 0.0 0.00 3.7
2313 AR MODLGCULST GERM 430 3 1.0 0.0 0.0 0.000 74.0 187.6 0.0 0.00 3.7
2314 AR MODLGCULST GERM 435 3 1.0 0.0 0.0 0.000 74.0 187.6 0.0 0.00 3.7
2315 AR MODLGCULST GERM 441 3 1.0 1.0 1.0 0.000 77.0 190.6 3.0 0.00 3.7
2316 AR MODLGCULST GERM 443 3 1.0 0.0 0.0 0.000 80.0 193.6 0.0 0.00 6.7
2317 AR MODLGCULST GERM 444 3 1.0 0.0 0.0 0.000 77.0 190.6 0.0 0.00 3.7
2318 AR MODLGCULST GERM 460 3 1.0 0.0 0.0 0.000 74.0 187.6 0.0 0.00 3.7
2319 AR MODLGCULST GERM 470 3 1.0 0.0 0.0 0.000 74.0 187.6 0.0 0.00 3.7
2320 AR MODLGCULST GERM 475 3 1.0 0.0 0.0 0.000 74.0 187.6 0.0 0.00 3.7
2321 AR MODLGCULST GERM 476 3 1.0 0.0 0.0 0.000 74.0 187.6 0.0 0.00 3.7
2322 AR MODLGCULST GERM 480 3 1.0 0.0 0.0 0.000 74.0 187.6 0.0 0.00 3.7
2323 AR MODLGCULST GERM 481 3 1.0 0.0 0.0 0.000 74.0 187.6 0.0 0.00 3.7
2324 AR MODLGCULST GERM 485 3 1.0 0.0 0.0 0.000 74.0 187.6 0.0 0.00 3.7
2325 AR MODLGCULST GERM 486 3 1.0 0.0 0.0 0.000 74.0 187.6 0.0 0.00 3.7
2326 AR MODLGCULST GERM 491 3 1.0 0.0 0.0 0.000 77.0 190.6 0.0 0.00 3.7
2327 AR MODLGCULST GERM 492 3 1.0 0.0 0.0 0.000 77.0 190.6 0.0 0.00 3.7
2328 AR MODLGCULST GERM 495 3 3.0 0.0 0.0 0.000 77.0 343.0 0.0 0.00 8.8
2329 AR MODLGCULST GERM 499 3 1.0 0.0 0.0 0.000 74.0 187.9 0.0 0.00 5.6
2330 AR HIST & CLASS GREEK 101 3 1.0 2.0 2.0 0.028 64.0 157.3 39.1 0.01 3.0
2331 AR HIST & CLASS GREEK 102 3 1.0 2.0 2.0 0.001 67.0 160.3 34.6 0.01 4.5
2332 AR HIST & CLASS GREEK 301 3 1.0 2.3 2.3 0.000 70.0 163.3 30.1 0.01 5.3
2333 AR HIST & CLASS GREEK 302 3 1.0 7.3 7.3 0.000 73.0 166.3 22.0 0.01 5.2
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2333 AR HIST & CLASS GREEK 302 3 1.0 7.3 7.3 0.000 73.0 166.3 22.0 0.01 5.2
2334 AR HIST & CLASS GREEK 399 3 1.0 0.3 0.3 0.000 73.0 166.3 1.0 0.00 5.2
2335 AR HIST & CLASS GREEK 470 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 3.7
2336 AR HIST & CLASS GREEK 475 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 3.7
2337 AR HIST & CLASS GREEK 477 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 3.7
2338 AR HIST & CLASS GREEK 479 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 3.7
2339 AR HIST & CLASS GREEK 481 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 3.7
2340 AR HIST & CLASS GREEK 488 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 3.7
2341 AR HIST & CLASS GREEK 499 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 3.7
2342 AR HIST & CLASS GREEK 500 3 5.0 0.0 0.0 0.003 73.0 413.6 0.0 0.00 14.2
2343 AR HIST & CLASS HIST 110 3 1.0 9.5 9.5 0.029 64.0 157.3 31.0 0.01 3.0
2344 AR HIST & CLASS HIST 111 3 1.0 9.8 9.8 0.029 64.0 157.3 33.0 0.01 3.0
2345 AR HIST & CLASS HIST 112 3 1.0 9.8 9.8 0.029 64.0 157.3 33.0 0.01 3.0
2346 AR HIST & CLASS HIST 113 3 1.0 9.5 9.5 0.029 64.0 157.3 31.0 0.01 3.0
2347 AR HIST & CLASS HIST 114 3 1.0 9.5 9.5 0.029 64.0 157.3 31.0 0.01 3.0
2348 AR HIST & CLASS HIST 115 3 1.0 9.5 9.5 0.029 64.0 157.3 31.0 0.01 3.0
2349 AR HIST & CLASS HIST 116 3 1.0 9.5 9.5 0.029 64.0 157.3 31.0 0.01 3.0
2350 AR HIST & CLASS HIST 117 3 1.0 9.5 9.5 0.029 64.0 157.3 31.0 0.01 3.0
2351 AR HIST & CLASS HIST 118 3 1.0 9.5 9.5 0.029 64.0 157.3 31.0 0.01 3.0
2352 AR HIST & CLASS HIST 120 6 1.0 9.8 9.8 0.029 67.0 157.3 33.0 0.01 6.0
2353 AR HIST & CLASS HIST 190 3 1.0 10.0 10.0 0.029 64.0 157.3 34.1 0.01 3.0
2354 AR HIST & CLASS HIST 206 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2355 AR HIST & CLASS HIST 207 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2356 AR HIST & CLASS HIST 208 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2357 AR HIST & CLASS HIST 209 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2358 AR HIST & CLASS HIST 210 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2359 AR HIST & CLASS HIST 228 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2360 AR HIST & CLASS HIST 229 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2361 AR HIST & CLASS HIST 231 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2362 AR HIST & CLASS HIST 232 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2363 AR HIST & CLASS HIST 241 3 1.0 6.0 6.0 0.028 64.0 157.3 27.5 0.01 3.0
2364 AR HIST & CLASS HIST 242 3 1.0 6.0 6.0 0.028 64.0 157.3 27.5 0.01 3.0
2365 AR HIST & CLASS HIST 244 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2366 AR HIST & CLASS HIST 245 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2367 AR HIST & CLASS HIST 246 3 1.0 1.5 1.5 0.028 64.0 157.3 6.3 0.00 3.0
2368 AR HIST & CLASS HIST 247 3 1.0 1.5 1.5 0.028 64.0 157.3 6.3 0.00 3.0
2369 AR HIST & CLASS HIST 250 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2370 AR HIST & CLASS HIST 251 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2371 AR HIST & CLASS HIST 260 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2372 AR HIST & CLASS HIST 261 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2373 AR HIST & CLASS HIST 270 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2374 AR HIST & CLASS HIST 271 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2375 AR HIST & CLASS HIST 272 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2376 AR HIST & CLASS HIST 273 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2377 AR HIST & CLASS HIST 274 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2378 AR HIST & CLASS HIST 275 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2379 AR HIST & CLASS HIST 276 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2380 AR HIST & CLASS HIST 280 3 1.0 1.3 1.3 0.028 64.0 157.3 4.4 0.00 3.0
2381 AR HIST & CLASS HIST 281 3 1.0 1.3 1.3 0.028 64.0 157.3 4.4 0.00 3.0
2382 AR HIST & CLASS HIST 285 3 1.0 1.3 1.3 0.028 64.0 157.3 4.4 0.00 3.0
2383 AR HIST & CLASS HIST 287 3 1.0 1.3 1.3 0.028 64.0 157.3 4.4 0.00 3.0
2384 AR HIST & CLASS HIST 290 3 1.0 1.5 1.5 0.001 67.0 160.4 6.1 0.00 5.2
2385 AR HIST & CLASS HIST 291 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2386 AR HIST & CLASS HIST 294 3 1.0 2.2 2.2 0.028 64.0 157.3 6.9 0.00 3.0
2387 AR HIST & CLASS HIST 295 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2388 AR HIST & CLASS HIST 296 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2389 AR HIST & CLASS HIST 297 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2390 AR HIST & CLASS HIST 298 3 1.0 1.0 1.0 0.028 64.0 157.3 3.3 0.00 3.0
2391 AR HIST & CLASS HIST 300 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2392 AR HIST & CLASS HIST 301 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2393 AR HIST & CLASS HIST 302 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2394 AR HIST & CLASS HIST 304 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2395 AR HIST & CLASS HIST 305 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2396 AR HIST & CLASS HIST 306 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2397 AR HIST & CLASS HIST 308 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2398 AR HIST & CLASS HIST 310 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2399 AR HIST & CLASS HIST 311 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2400 AR HIST & CLASS HIST 312 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2401 AR HIST & CLASS HIST 316 3 1.0 1.0 1.0 0.028 64.0 157.3 3.4 0.00 3.0
2402 AR HIST & CLASS HIST 317 3 1.0 1.0 1.0 0.028 64.0 157.3 3.4 0.00 3.0
2403 AR HIST & CLASS HIST 318 6 1.0 1.0 1.0 0.028 67.0 157.3 3.6 0.00 6.0
2404 AR HIST & CLASS HIST 319 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2405 AR HIST & CLASS HIST 321 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2406 AR HIST & CLASS HIST 322 3 1.0 1.0 1.0 0.028 64.0 157.3 3.6 0.00 3.0
2407 AR HIST & CLASS HIST 323 3 1.0 0.9 0.9 0.001 67.0 161.3 3.1 0.00 3.4
2408 AR HIST & CLASS HIST 324 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2409 AR HIST & CLASS HIST 325 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2410 AR HIST & CLASS HIST 326 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2411 AR HIST & CLASS HIST 327 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2412 AR HIST & CLASS HIST 328 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2413 AR HIST & CLASS HIST 329 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2414 AR HIST & CLASS HIST 331 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2415 AR HIST & CLASS HIST 332 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2416 AR HIST & CLASS HIST 335 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2417 AR HIST & CLASS HIST 336 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2418 AR HIST & CLASS HIST 338 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2419 AR HIST & CLASS HIST 339 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2420 AR HIST & CLASS HIST 340 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2421 AR HIST & CLASS HIST 341 3 2.0 0.9 1.9 0.002 67.0 255.1 3.1 0.00 4.0
2422 AR HIST & CLASS HIST 342 3 2.0 0.9 1.9 0.002 67.0 255.1 3.1 0.00 4.0
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2422 AR HIST & CLASS HIST 342 3 2.0 0.9 1.9 0.002 67.0 255.1 3.1 0.00 4.0
2423 AR HIST & CLASS HIST 343 3 2.0 0.9 1.9 0.002 67.0 255.1 3.1 0.00 4.0
2424 AR HIST & CLASS HIST 344 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2425 AR HIST & CLASS HIST 346 3 1.0 0.9 0.9 0.001 67.0 160.3 3.1 0.00 5.1
2426 AR HIST & CLASS HIST 347 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2427 AR HIST & CLASS HIST 350 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2428 AR HIST & CLASS HIST 351 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2429 AR HIST & CLASS HIST 352 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2430 AR HIST & CLASS HIST 353 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2431 AR HIST & CLASS HIST 354 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2432 AR HIST & CLASS HIST 357 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2433 AR HIST & CLASS HIST 358 3 1.0 1.0 1.0 0.028 64.0 157.3 3.6 0.00 3.0
2434 AR HIST & CLASS HIST 360 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2435 AR HIST & CLASS HIST 361 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2436 AR HIST & CLASS HIST 362 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2437 AR HIST & CLASS HIST 363 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2438 AR HIST & CLASS HIST 364 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2439 AR HIST & CLASS HIST 365 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2440 AR HIST & CLASS HIST 366 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2441 AR HIST & CLASS HIST 367 3 1.0 1.0 1.0 0.028 64.0 157.3 3.4 0.00 3.0
2442 AR HIST & CLASS HIST 368 3 1.0 1.3 1.3 0.028 64.0 157.3 5.4 0.00 3.0
2443 AR HIST & CLASS HIST 369 3 1.0 1.3 1.3 0.028 64.0 157.3 5.4 0.00 3.0
2444 AR HIST & CLASS HIST 371 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2445 AR HIST & CLASS HIST 372 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2446 AR HIST & CLASS HIST 374 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2447 AR HIST & CLASS HIST 375 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2448 AR HIST & CLASS HIST 376 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2449 AR HIST & CLASS HIST 377 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2450 AR HIST & CLASS HIST 379 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2451 AR HIST & CLASS HIST 381 3 1.0 1.3 1.3 0.028 64.0 157.3 4.2 0.00 3.0
2452 AR HIST & CLASS HIST 382 3 1.0 1.3 1.3 0.028 64.0 157.3 4.2 0.00 3.0
2453 AR HIST & CLASS HIST 383 3 1.0 1.3 1.3 0.028 64.0 157.3 4.2 0.00 3.0
2454 AR HIST & CLASS HIST 384 3 1.0 1.3 1.3 0.028 64.0 157.3 4.2 0.00 3.0
2455 AR HIST & CLASS HIST 385 3 1.0 1.3 1.3 0.028 64.0 157.3 4.2 0.00 3.0
2456 AR HIST & CLASS HIST 386 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2457 AR HIST & CLASS HIST 387 3 1.0 1.3 1.3 0.028 64.0 157.3 4.2 0.00 3.0
2458 AR HIST & CLASS HIST 389 3 1.0 0.9 0.9 0.001 67.0 161.8 3.1 0.00 4.9
2459 AR HIST & CLASS HIST 390 3 1.0 1.3 1.3 0.028 64.0 157.3 4.2 0.00 3.0
2460 AR HIST & CLASS HIST 391 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2461 AR HIST & CLASS HIST 394 3 1.0 0.9 0.9 0.028 64.0 157.3 3.1 0.00 3.0
2462 AR HIST & CLASS HIST 396 3 1.0 1.1 1.1 0.028 64.0 157.3 3.7 0.00 3.0
2463 AR HIST & CLASS HIST 397 3 1.0 1.1 1.1 0.028 64.0 157.3 3.7 0.00 3.0
2464 AR HIST & CLASS HIST 398 3 1.0 1.1 1.1 0.028 64.0 157.3 3.7 0.00 3.0
2465 AR HIST & CLASS HIST 399 3 1.0 1.1 1.1 0.028 64.0 157.3 3.7 0.00 3.0
2466 AR HIST & CLASS HIST 402 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2467 AR HIST & CLASS HIST 403 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2468 AR HIST & CLASS HIST 404 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2469 AR HIST & CLASS HIST 408 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2470 AR HIST & CLASS HIST 410 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2471 AR HIST & CLASS HIST 411 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2472 AR HIST & CLASS HIST 414 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2473 AR HIST & CLASS HIST 415 3 4.0 0.1 0.3 0.004 67.0 375.6 0.3 0.00 9.6
2474 AR HIST & CLASS HIST 416 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2475 AR HIST & CLASS HIST 418 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2476 AR HIST & CLASS HIST 419 3 4.0 0.1 0.4 0.004 67.0 375.6 0.5 0.00 9.6
2477 AR HIST & CLASS HIST 420 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2478 AR HIST & CLASS HIST 421 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2479 AR HIST & CLASS HIST 423 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2480 AR HIST & CLASS HIST 429 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2481 AR HIST & CLASS HIST 430 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2482 AR HIST & CLASS HIST 431 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2483 AR HIST & CLASS HIST 432 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2484 AR HIST & CLASS HIST 433 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2485 AR HIST & CLASS HIST 437 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2486 AR HIST & CLASS HIST 439 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2487 AR HIST & CLASS HIST 441 3 2.0 0.0 0.0 0.002 67.0 255.1 0.0 0.00 4.0
2488 AR HIST & CLASS HIST 442 3 2.0 0.0 0.0 0.002 67.0 255.1 0.0 0.00 4.0
2489 AR HIST & CLASS HIST 445 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2490 AR HIST & CLASS HIST 446 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2491 AR HIST & CLASS HIST 448 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2492 AR HIST & CLASS HIST 450 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2493 AR HIST & CLASS HIST 452 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2494 AR HIST & CLASS HIST 453 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2495 AR HIST & CLASS HIST 454 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2496 AR HIST & CLASS HIST 459 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2497 AR HIST & CLASS HIST 460 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2498 AR HIST & CLASS HIST 461 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2499 AR HIST & CLASS HIST 464 6 4.0 0.0 0.0 0.004 70.0 375.6 0.0 0.00 12.6
2500 AR HIST & CLASS HIST 467 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2501 AR HIST & CLASS HIST 468 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2502 AR HIST & CLASS HIST 469 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2503 AR HIST & CLASS HIST 470 3 4.0 0.0 0.1 0.004 67.0 375.6 0.1 0.00 9.6
2504 AR HIST & CLASS HIST 471 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2505 AR HIST & CLASS HIST 474 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2506 AR HIST & CLASS HIST 477 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2507 AR HIST & CLASS HIST 478 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2508 AR HIST & CLASS HIST 479 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2509 AR HIST & CLASS HIST 480 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.3
2510 AR HIST & CLASS HIST 481 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.3
2511 AR HIST & CLASS HIST 5.3
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2511 AR HIST & CLASS HIST 483 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.3
2512 AR HIST & CLASS HIST 484 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.3
2513 AR HIST & CLASS HIST 486 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2514 AR HIST & CLASS HIST 490 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2515 AR HIST & CLASS HIST 492 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2516 AR HIST & CLASS HIST 493 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2517 AR HIST & CLASS HIST 494 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2518 AR HIST & CLASS HIST 496 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.4
2519 AR HIST & CLASS HIST 497 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2520 AR HIST & CLASS HIST 498 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2521 AR HIST & CLASS HIST 499 3 4.0 0.0 0.0 0.004 67.0 375.6 0.0 0.00 9.6
2522 AR HIST & CLASS HIST 500 6 4.0 0.0 0.0 0.004 70.0 375.6 0.0 0.00 12.6
2523 AR HIST & CLASS HIST 501 6 4.0 0.0 0.0 0.004 70.0 375.6 0.0 0.00 12.6
2524 AR HIST & CLASS HIST 502 6 4.0 0.0 0.0 0.004 70.0 375.6 0.0 0.00 12.6
2525 AR MODLGCULST HUNG 111 3 1.0 1.2 1.2 0.028 64.0 157.3 12.8 0.00 3.0
2526 AR MODLGCULST HUNG 112 3 1.0 1.2 1.2 0.001 67.0 160.3 9.1 0.00 5.6
2527 AR MODLGCULST HUNG 211 3 1.0 1.3 1.3 0.000 70.0 163.3 5.5 0.00 7.7
2528 AR MODLGCULST HUNG 212 3 1.0 0.3 0.3 0.000 73.0 166.3 1.2 0.00 8.9
2529 AR ARTS INT D 100 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
2530 AR MODLGCULST INT D 201 3 1.0 0.2 0.2 0.028 64.0 157.3 0.9 0.00 3.0
2531 AR MODLGCULST INT D 202 3 1.0 0.2 0.2 0.028 64.0 157.3 0.9 0.00 3.0
2532 AR INT D INT D 211 3 1.0 0.0 0.0 0.028 64.0 157.3 0.2 0.00 3.0
2533 AR INT D INT D 212 3 1.0 0.0 0.0 0.028 64.0 157.3 0.2 0.00 3.0
2534 AR INT D INT D 222 3 1.0 0.0 0.0 0.028 64.0 157.3 0.2 0.00 3.0
2535 AR MODLGCULST INT D 225 3 1.0 0.2 0.2 0.028 64.0 157.3 0.9 0.00 3.0
2536 AR ECONOMICS INT D 257 3 1.0 0.0 0.0 0.028 64.0 157.3 0.2 0.00 3.0
2537 AR INT D INT D 333 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
2538 AR INT D INT D 352 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
2539 AR POLIT SCI INT D 393 3 1.0 0.0 0.0 0.001 67.0 160.3 0.1 0.00 3.3
2540 AR SOCIOLOGY INT D 394 3 1.0 0.0 0.0 0.000 70.0 163.3 0.1 0.00 3.3
2541 AR ART & DESIG INT D 425 3 1.0 0.0 0.0 0.001 67.0 179.5 0.0 0.00 6.3
2542 AR MODLGCULST INT D 444 3 1.0 0.7 0.7 0.001 67.0 191.3 2.0 0.00 7.0
2543 AR MODLGCULST INT D 445 3 1.0 0.7 0.7 0.000 73.0 166.3 2.0 0.00 6.3
2544 AR MODLGCULST INT D 448 3 1.0 0.7 0.7 0.001 67.0 192.9 2.0 0.00 7.0
2545 AR SOCIOLOGY INT D 475 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 4.1
2546 AR MODLGCULST INT D 487 3 1.0 0.0 0.0 0.000 70.0 186.9 0.0 0.00 9.8
2547 AR MODLGCULST INT D 499 3 1.0 0.0 0.0 0.000 70.0 186.9 0.0 0.00 9.8
2548 AR ARTS INT D 520 3 1.0 0.0 0.0 0.000 65.5 193.5 0.0 0.00 6.5
2549 AR MODLGCULST ITAL 111 3 1.0 1.1 1.1 0.028 64.0 157.3 27.6 0.01 3.0
2550 AR MODLGCULST ITAL 112 3 1.0 0.6 0.6 0.001 67.0 160.3 24.3 0.01 5.9
2551 AR MODLGCULST ITAL 205 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
2552 AR MODLGCULST ITAL 211 3 1.5 1.2 1.8 0.014 65.0 113.5 42.1 0.01 13.5
2553 AR MODLGCULST ITAL 212 3 1.0 6.2 6.2 0.001 68.0 116.5 38.2 0.01 14.4
2554 AR MODLGCULST ITAL 333 3 1.0 1.7 1.7 0.000 71.0 119.5 5.2 0.00 5.3
2555 AR MODLGCULST ITAL 340 3 1.0 1.7 1.7 0.000 71.0 119.5 5.2 0.00 5.3
2556 AR MODLGCULST ITAL 363 3 1.0 1.7 1.7 0.000 71.0 119.5 5.2 0.00 5.3
2557 AR MODLGCULST ITAL 375 3 1.0 1.7 1.7 0.000 71.0 119.5 5.2 0.00 5.3
2558 AR MODLGCULST ITAL 390 3 1.0 0.7 0.7 0.000 71.0 119.5 2.2 0.00 5.3
2559 AR MODLGCULST ITAL 393 3 1.0 2.7 2.7 0.000 71.0 119.5 8.2 0.00 5.3
2560 AR MODLGCULST ITAL 415 3 1.0 0.0 0.0 0.000 74.0 122.5 0.0 0.00 6.2
2561 AR MODLGCULST ITAL 419 3 1.0 0.0 0.0 0.000 74.0 122.5 0.0 0.00 6.2
2562 AR MODLGCULST ITAL 420 3 1.0 0.0 0.0 0.000 74.0 122.5 0.0 0.00 6.2
2563 AR MODLGCULST ITAL 425 3 1.0 0.0 0.0 0.000 74.0 122.5 0.0 0.00 4.9
2564 AR MODLGCULST ITAL 495 3 5.0 0.0 0.0 0.000 74.0 320.4 0.0 0.00 17.1
2565 AR MODLGCULST ITAL 499 3 1.0 0.0 0.0 0.000 74.0 122.5 0.0 0.00 6.2
2566 AR E ASIAN ST JAPAN 101 3 1.0 1.0 1.0 0.028 64.0 157.3 62.1 0.02 3.0
2567 AR E ASIAN ST JAPAN 102 3 1.0 1.5 1.5 0.001 67.0 160.3 59.1 0.02 6.0
2568 AR E ASIAN ST JAPAN 150 3 2.0 0.5 1.0 0.028 65.0 62.0 54.8 0.01 15.9
2569 AR E ASIAN ST JAPAN 201 3 1.0 1.9 1.9 0.001 68.0 115.0 84.9 0.02 13.0
2570 AR E ASIAN ST JAPAN 202 3 1.0 6.9 6.9 0.000 71.0 118.0 80.2 0.02 9.8
2571 AR E ASIAN ST JAPAN 240 3 1.0 2.4 2.4 0.028 64.0 157.3 16.1 0.00 3.0
2572 AR E ASIAN ST JAPAN 241 3 2.0 2.4 4.8 0.000 71.0 226.6 20.4 0.01 11.1
2573 AR E ASIAN ST JAPAN 250 6 1.0 0.4 0.4 0.000 77.0 121.0 1.3 0.00 7.4
2574 AR E ASIAN ST JAPAN 301 3 1.0 3.2 3.2 0.000 74.0 121.0 39.0 0.01 4.4
2575 AR E ASIAN ST JAPAN 302 3 1.0 6.1 6.1 0.000 77.0 124.0 29.2 0.01 4.4
2576 AR E ASIAN ST JAPAN 305 3 1.0 1.2 1.2 0.000 74.0 121.0 7.6 0.00 4.4
2577 AR E ASIAN ST JAPAN 306 3 1.0 0.7 0.7 0.000 77.0 124.0 4.0 0.00 6.6
2578 AR E ASIAN ST JAPAN 318 3 1.0 1.2 1.2 0.000 74.0 121.0 4.3 0.00 4.4
2579 AR E ASIAN ST JAPAN 319 3 1.0 0.2 0.2 0.000 77.0 124.0 0.6 0.00 6.6
2580 AR E ASIAN ST JAPAN 321 3 1.0 1.7 1.7 0.001 67.0 160.3 5.2 0.00 4.3
2581 AR E ASIAN ST JAPAN 322 3 1.0 1.2 1.2 0.001 67.0 160.3 3.7 0.00 4.3
2582 AR E ASIAN ST JAPAN 325 3 2.0 2.7 5.4 0.000 74.0 278.7 8.8 0.00 9.0
2583 AR E ASIAN ST JAPAN 326 3 2.0 0.2 0.4 0.000 77.0 317.4 0.6 0.00 7.7
2584 AR E ASIAN ST JAPAN 330 3 1.0 0.2 0.2 0.028 64.0 157.3 0.6 0.00 3.0
2585 AR E ASIAN ST JAPAN 341 3 2.0 1.2 2.4 0.000 74.0 278.7 4.3 0.00 9.0
2586 AR E ASIAN ST JAPAN 342 3 1.0 0.2 0.2 0.000 77.0 281.7 0.6 0.00 10.4
2587 AR E ASIAN ST JAPAN 350 6 1.0 0.2 0.2 0.000 83.0 127.0 0.6 0.00 9.7
2588 AR E ASIAN ST JAPAN 360 3 1.0 0.2 0.2 0.028 64.0 157.3 0.6 0.00 3.0
2589 AR E ASIAN ST JAPAN 401 3 1.0 2.0 2.0 0.000 80.0 127.0 9.0 0.00 3.7
2590 AR E ASIAN ST JAPAN 402 3 1.0 1.0 1.0 0.000 83.0 130.0 3.0 0.00 4.9
2591 AR E ASIAN ST JAPAN 415 3 1.0 0.0 0.0 0.000 67.0 175.1 0.0 0.00 5.3
2592 AR E ASIAN ST JAPAN 416 3 1.0 0.0 0.0 0.000 67.0 175.1 0.0 0.00 5.3
2593 AR E ASIAN ST JAPAN 419 3 1.0 0.0 0.0 0.000 67.0 175.1 0.0 0.00 5.8
2594 AR E ASIAN ST JAPAN 420 3 1.0 0.0 0.0 0.000 67.0 175.1 0.0 0.00 5.8
2595 AR E ASIAN ST JAPAN 421 3 1.0 0.0 0.0 0.000 67.0 175.1 0.0 0.00 5.3
2596 AR E ASIAN ST JAPAN 425 3 1.0 0.0 0.0 0.000 77.0 213.4 0.0 0.00 5.0
2597 AR E ASIAN ST JAPAN 426 3 1.0 0.0 0.0 0.000 77.0 124.0 0.0 0.00 4.4
2598 AR E ASIAN ST JAPAN 427 3 2.0 0.0 0.0 0.000 80.0 320.4 0.0 0.00 7.0
2599 AR E ASIAN ST JAPAN 429 3 1.0 0.0 0.0 0.000 83.0 130.0 0.0 0.00 4.9
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2600 AR E ASIAN ST JAPAN 439 3 1.0 0.0 0.0 0.000 80.0 127.0 0.0 0.00 3.7
2601 AR E ASIAN ST JAPAN 451 3 1.0 0.0 0.0 0.000 86.0 133.0 0.0 0.00 7.9
2602 AR E ASIAN ST JAPAN 460 3 2.0 0.0 0.0 0.000 67.0 273.1 0.0 0.00 12.2
2603 AR E ASIAN ST JAPAN 481 3 2.0 0.0 0.0 0.000 67.0 273.1 0.0 0.00 12.2
2604 AR E ASIAN ST JAPAN 490 3 2.0 0.0 0.0 0.000 80.0 255.2 0.0 0.00 8.9
2605 AR E ASIAN ST KOREA 101 3 1.0 1.0 1.0 0.028 64.0 157.3 21.2 0.01 3.0
2606 AR E ASIAN ST KOREA 102 3 1.0 1.0 1.0 0.001 67.0 160.3 18.2 0.01 6.0
2607 AR E ASIAN ST KOREA 201 3 1.0 1.0 1.0 0.000 70.0 163.3 15.2 0.00 9.0
2608 AR E ASIAN ST KOREA 202 3 1.0 1.0 1.0 0.000 73.0 166.3 12.1 0.00 11.9
2609 AR E ASIAN ST KOREA 301 3 1.0 1.0 1.0 0.000 76.0 169.3 9.1 0.00 14.7
2610 AR E ASIAN ST KOREA 302 3 1.0 1.0 1.0 0.000 79.0 172.3 6.0 0.00 17.5
2611 AR E ASIAN ST KOREA 401 3 1.0 1.0 1.0 0.000 82.0 175.3 3.0 0.00 20.3
2612 AR E ASIAN ST KOREA 402 3 1.0 0.0 0.0 0.000 85.0 178.3 0.0 0.00 23.3
2613 AR MODLGCULST LA ST 205 3 1.0 3.5 3.5 0.028 64.0 157.3 19.1 0.01 3.0
2614 AR MODLGCULST LA ST 210 3 1.0 3.5 3.5 0.028 64.0 157.3 19.1 0.01 3.0
2615 AR MODLGCULST LA ST 305 3 1.0 0.8 0.8 0.001 67.0 160.3 2.5 0.00 3.9
2616 AR MODLGCULST LA ST 310 3 1.0 0.8 0.8 0.001 67.0 160.3 2.5 0.00 3.9
2617 AR MODLGCULST LA ST 311 3 1.0 0.8 0.8 0.001 67.0 160.3 2.5 0.00 3.9
2618 AR MODLGCULST LA ST 312 3 1.0 0.8 0.8 0.001 67.0 160.3 2.5 0.00 3.9
2619 AR MODLGCULST LA ST 313 3 1.0 0.8 0.8 0.001 67.0 160.3 2.5 0.00 3.9
2620 AR MODLGCULST LA ST 314 3 1.0 0.8 0.8 0.001 67.0 160.3 2.5 0.00 3.9
2621 AR MODLGCULST LA ST 330 3 1.0 0.8 0.8 0.028 64.0 157.3 2.5 0.00 3.0
2622 AR MODLGCULST LA ST 360 3 1.0 0.8 0.8 0.000 67.0 172.5 2.5 0.00 6.7
2623 AR MODLGCULST LA ST 410 3 1.0 0.0 0.0 0.000 67.0 164.4 0.0 0.00 7.1
2624 AR MODLGCULST LA ST 411 3 1.0 0.0 0.0 0.000 67.0 164.4 0.0 0.00 7.1
2625 AR MODLGCULST LA ST 412 3 1.0 0.0 0.0 0.000 67.0 164.4 0.0 0.00 7.1
2626 AR MODLGCULST LA ST 413 3 1.0 0.0 0.0 0.000 67.0 164.4 0.0 0.00 7.1
2627 AR MODLGCULST LA ST 499 3 1.0 0.0 0.0 0.000 67.0 164.4 0.0 0.00 7.1
2628 AR HIST & CLASS LATIN 101 3 1.0 2.5 2.5 0.028 64.0 157.3 44.5 0.01 3.0
2629 AR HIST & CLASS LATIN 102 3 1.0 1.0 1.0 0.001 67.0 160.3 19.6 0.01 4.2
2630 AR HIST & CLASS LATIN 103 3 1.0 0.5 0.5 0.028 64.0 157.3 1.5 0.00 3.0
2631 AR HIST & CLASS LATIN 104 3 1.0 1.0 1.0 0.001 67.0 160.3 19.6 0.01 4.2
2632 AR HIST & CLASS LATIN 301 3 1.0 2.4 2.4 0.000 70.0 163.3 33.2 0.01 7.2
2633 AR HIST & CLASS LATIN 302 3 1.0 8.4 8.4 0.000 73.0 166.3 25.1 0.01 6.1
2634 AR HIST & CLASS LATIN 399 3 1.0 0.4 0.4 0.000 73.0 166.3 1.1 0.00 6.1
2635 AR HIST & CLASS LATIN 433 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 3.7
2636 AR HIST & CLASS LATIN 470 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 3.7
2637 AR HIST & CLASS LATIN 475 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 3.7
2638 AR HIST & CLASS LATIN 477 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 3.7
2639 AR HIST & CLASS LATIN 481 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 3.7
2640 AR HIST & CLASS LATIN 488 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 3.7
2641 AR HIST & CLASS LATIN 489 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 3.7
2642 AR HIST & CLASS LATIN 499 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 3.7
2643 AR HIST & CLASS LATIN 500 3 5.0 0.0 0.0 0.003 73.0 415.8 0.0 0.00 14.8
2644 AR LINGUISTIC LING 100 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
2645 AR LINGUISTIC LING 101 3 1.0 13.5 13.5 0.028 64.0 157.3 90.9 0.03 3.0
2646 AR LINGUISTIC LING 102 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.2
2647 AR LINGUISTIC LING 204 3 1.0 5.0 5.0 0.001 67.0 160.3 48.8 0.01 3.2
2648 AR LINGUISTIC LING 205 3 1.0 4.5 4.5 0.001 67.0 160.3 43.4 0.01 3.2
2649 AR LINGUISTIC LING 308 3 3.0 2.8 8.3 0.001 70.0 319.7 11.8 0.01 4.6
2650 AR LINGUISTIC LING 309 3 2.0 8.3 16.5 0.001 70.0 255.1 29.6 0.01 3.9
2651 AR LINGUISTIC LING 310 3 2.0 8.3 16.5 0.001 70.0 255.1 29.1 0.01 3.9
2652 AR LINGUISTIC LING 314 3 1.0 0.1 0.1 0.001 67.0 160.3 0.3 0.00 3.2
2653 AR LINGUISTIC LING 316 3 1.0 0.1 0.1 0.001 67.0 160.3 0.3 0.00 3.2
2654 AR LINGUISTIC LING 318 3 1.0 0.1 0.1 0.001 67.0 160.3 0.3 0.00 3.2
2655 AR LINGUISTIC LING 319 3 3.0 0.1 0.3 0.001 70.0 319.7 0.3 0.00 4.6
2656 AR LINGUISTIC LING 320 3 1.0 0.1 0.1 0.001 67.0 161.8 0.3 0.00 3.4
2657 AR LINGUISTIC LING 321 3 2.0 0.1 0.2 0.001 70.0 255.1 0.3 0.00 3.9
2658 AR LINGUISTIC LING 322 3 1.0 0.1 0.1 0.001 67.0 160.3 0.3 0.00 3.2
2659 AR LINGUISTIC LING 323 3 1.0 0.1 0.1 0.028 64.0 157.3 0.3 0.00 3.0
2660 AR LINGUISTIC LING 324 3 1.0 0.1 0.1 0.001 67.0 160.3 0.4 0.00 3.2
2661 AR LINGUISTIC LING 399 3 1.0 0.1 0.1 0.000 70.0 163.3 0.3 0.00 3.7
2662 AR LINGUISTIC LING 401 3 1.0 0.2 0.2 0.000 73.0 258.1 0.5 0.00 3.5
2663 AR LINGUISTIC LING 405 3 1.0 0.2 0.2 0.000 73.0 258.1 0.5 0.00 3.5
2664 AR LINGUISTIC LING 407 3 1.0 0.2 0.2 0.000 73.0 258.1 0.5 0.00 3.5
2665 AR LINGUISTIC LING 409 3 2.0 0.2 0.3 0.000 73.0 397.4 0.5 0.00 4.5
2666 AR LINGUISTIC LING 410 3 2.0 0.2 0.3 0.000 73.0 397.4 0.5 0.00 4.5
2667 AR LINGUISTIC LING 499 3 1.0 0.2 0.2 0.000 67.0 217.4 0.5 0.00 5.9
2668 AR LINGUISTIC LING 500 3 3.0 0.0 0.0 0.001 73.0 421.8 0.0 0.00 4.9
2669 AR LINGUISTIC LING 501 3 3.0 1.0 3.0 0.000 73.0 437.9 3.0 0.00 5.6
2670 AR LINGUISTIC LING 502 3 1.0 0.0 0.0 0.000 76.0 440.9 0.0 0.00 8.6
2671 AR LINGUISTIC LING 509 3 1.0 0.0 0.0 0.000 73.0 258.1 0.0 0.00 3.5
2672 AR LINGUISTIC LING 510 3 1.0 0.0 0.0 0.000 73.0 258.1 0.0 0.00 3.5
2673 AR LINGUISTIC LING 512 3 1.0 0.0 0.0 0.000 73.0 258.1 0.0 0.00 3.5
2674 AR LINGUISTIC LING 515 3 3.0 0.0 0.0 0.000 73.0 407.1 0.0 0.00 4.7
2675 AR LINGUISTIC LING 519 3 2.0 0.0 0.0 0.000 73.0 374.9 0.0 0.00 3.9
2676 AR LINGUISTIC LING 599 3 1.0 0.0 0.0 0.000 70.0 308.9 0.0 0.00 7.2
2677 AR INT D MEAS 200 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
2678 AR INT D MEAS 300 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
2679 AR INT D MEAS 301 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
2680 AR INT D MEAS 400 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
2681 AR INT D MEAS 480 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
2682 AR MODLGCULST MLCS 201 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
2683 AR MODLGCULST MLCS 205 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
2684 AR MODLGCULST MLCS 210 3 1.0 0.2 0.2 0.028 64.0 157.3 0.9 0.00 3.0
2685 AR MODLGCULST MLCS 300 3 2.0 0.6 1.2 0.001 67.0 244.7 1.7 0.00 14.8
2686 AR MODLGCULST MLCS 301 3 4.0 0.6 2.3 0.002 67.0 392.0 1.7 0.00 20.6
2687 AR MODLGCULST MLCS 302 3 4.0 0.6 2.3 0.002 67.0 392.0 1.7 0.00 20.6
2688 AR MODLGCULST MLCS 311 3 1.0 0.7 0.7 0.028 64.0 157.3 2.2 0.00 3.0
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2689 AR MODLGCULST MLCS 312 3 1.0 0.7 0.7 0.028 64.0 157.3 2.2 0.00 3.0
2690 AR MODLGCULST MLCS 371 3 2.0 0.6 1.2 0.001 67.0 244.7 1.7 0.00 14.8
2691 AR MODLGCULST MLCS 400 3 2.0 0.0 0.0 0.000 67.0 257.4 0.0 0.00 12.3
2692 AR MODLGCULST MLCS 441 3 2.0 0.0 0.0 0.001 67.0 286.5 0.0 0.00 10.5
2693 AR MODLGCULST MLCS 471 3 2.0 0.0 0.0 0.000 67.0 257.4 0.0 0.00 12.3
2694 AR MODLGCULST MLCS 472 3 2.0 0.0 0.0 0.001 67.0 286.5 0.0 0.00 10.5
2695 AR MODLGCULST MLCS 473 3 2.0 0.0 0.0 0.001 67.0 286.5 0.0 0.00 10.5
2696 AR MODLGCULST MLCS 495 3 2.0 0.0 0.0 0.001 67.0 418.3 0.0 0.00 28.6
2697 AR MODLGCULST MLCS 499 3 1.0 0.0 0.0 0.000 67.0 281.6 0.0 0.00 15.8
2698 AR MUSIC MUSIC 100 3 1.0 3.6 3.6 0.028 64.0 157.3 289.4 0.09 3.0
2699 AR MUSIC MUSIC 101 3 1.0 3.1 3.1 0.028 64.0 157.3 20.7 0.01 3.0
2700 AR MUSIC MUSIC 102 3 1.0 1.4 1.4 0.028 64.0 157.3 10.2 0.00 3.0
2701 AR MUSIC MUSIC 103 3 1.0 0.6 0.6 0.028 64.0 157.3 5.8 0.00 3.0
2702 AR MUSIC MUSIC 122 3 1.0 1.6 1.6 0.028 64.0 157.3 19.9 0.01 3.0
2703 AR MUSIC MUSIC 124 3 1.0 2.7 2.7 0.028 64.0 157.3 28.3 0.01 3.0
2704 AR MUSIC MUSIC 125 6 1.0 1.6 1.6 0.028 67.0 157.3 12.1 0.00 6.0
2705 AR MUSIC MUSIC 126 3 1.0 0.8 0.8 0.028 64.0 157.3 9.2 0.00 3.0
2706 AR MUSIC MUSIC 127 6 1.0 0.6 0.6 0.028 67.0 157.3 5.8 0.00 6.0
2707 AR MUSIC MUSIC 129 3 1.0 0.6 0.6 0.028 64.0 157.3 5.8 0.00 3.0
2708 AR MUSIC MUSIC 132 3 1.0 1.6 1.6 0.028 64.0 157.3 19.9 0.01 3.0
2709 AR MUSIC MUSIC 140 3 1.0 0.7 0.7 0.028 64.0 157.3 6.8 0.00 3.0
2710 AR MUSIC MUSIC 141 3 1.0 0.6 0.6 0.028 64.0 157.3 6.2 0.00 3.0
2711 AR MUSIC MUSIC 143 3 1.0 0.6 0.6 0.028 64.0 157.3 6.2 0.00 3.0
2712 AR MUSIC MUSIC 144 3 1.0 0.6 0.6 0.028 64.0 157.3 6.2 0.00 3.0
2713 AR MUSIC MUSIC 151 3 2.0 8.6 17.2 0.001 70.0 256.6 96.6 0.05 4.5
2714 AR MUSIC MUSIC 155 3 1.0 4.2 4.2 0.001 67.0 160.3 264.4 0.08 3.9
2715 AR MUSIC MUSIC 156 3 1.0 11.1 11.1 0.000 70.0 163.3 197.1 0.06 3.9
2716 AR MUSIC MUSIC 201 3 1.0 0.7 0.7 0.001 67.0 160.3 3.9 0.00 4.0
2717 AR MUSIC MUSIC 207 3 2.0 0.7 1.5 0.000 73.0 322.7 3.9 0.00 3.9
2718 AR MUSIC MUSIC 209 3 2.0 1.7 3.5 0.000 73.0 322.7 10.9 0.01 3.9
2719 AR MUSIC MUSIC 211 3 1.0 0.7 0.7 0.000 76.0 325.7 3.9 0.00 5.2
2720 AR MUSIC MUSIC 216 3 3.0 1.7 5.2 0.001 73.0 374.9 10.9 0.01 5.0
2721 AR MUSIC MUSIC 217 3 1.0 0.7 0.7 0.000 76.0 377.9 3.9 0.00 5.9
2722 AR MUSIC MUSIC 220 3 3.0 0.7 2.2 0.001 73.0 374.9 3.9 0.00 5.0
2723 AR MUSIC MUSIC 222 3 1.0 1.7 1.7 0.001 67.0 160.3 11.1 0.00 5.0
2724 AR MUSIC MUSIC 224 3 1.0 2.1 2.1 0.001 67.0 166.5 12.9 0.00 5.3
2725 AR MUSIC MUSIC 225 6 1.0 2.0 2.0 0.001 70.0 167.3 12.6 0.00 8.4
2726 AR MUSIC MUSIC 226 3 1.0 1.1 1.1 0.001 67.0 166.5 5.5 0.00 5.3
2727 AR MUSIC MUSIC 227 6 1.0 1.1 1.1 0.001 70.0 166.5 5.5 0.00 8.3
2728 AR MUSIC MUSIC 230 3 2.0 1.1 2.1 0.000 73.0 322.7 5.4 0.00 3.9
2729 AR MUSIC MUSIC 232 3 1.0 1.7 1.7 0.001 67.0 160.3 11.1 0.00 5.0
2730 AR MUSIC MUSIC 239 3 1.0 1.5 1.5 0.001 67.0 167.2 8.3 0.00 5.4
2731 AR MUSIC MUSIC 240 3 1.0 1.1 1.1 0.001 67.0 167.2 5.4 0.00 5.4
2732 AR MUSIC MUSIC 241 3 1.0 1.1 1.1 0.001 67.0 167.2 5.4 0.00 5.4
2733 AR MUSIC MUSIC 243 3 1.0 0.8 0.8 0.001 67.0 167.2 4.4 0.00 5.4
2734 AR MUSIC MUSIC 244 3 1.0 0.7 0.7 0.001 67.0 167.2 3.9 0.00 5.4
2735 AR MUSIC MUSIC 245 3 2.0 0.7 1.5 0.000 73.0 322.7 3.9 0.00 3.9
2736 AR MUSIC MUSIC 246 3 1.0 1.1 1.1 0.001 67.0 172.8 6.3 0.00 5.2
2737 AR MUSIC MUSIC 247 3 1.0 1.0 1.0 0.001 67.0 167.3 5.1 0.00 5.2
2738 AR MUSIC MUSIC 251 3 2.0 1.7 3.5 0.000 76.0 376.4 8.1 0.01 4.4
2739 AR MUSIC MUSIC 255 3 2.0 4.2 8.5 0.000 73.0 258.1 46.0 0.02 4.3
2740 AR MUSIC MUSIC 256 3 1.0 5.2 5.2 0.000 76.0 261.1 23.6 0.01 4.0
2741 AR MUSIC MUSIC 259 3 1.0 1.7 1.7 0.000 73.0 216.8 24.1 0.01 3.4
2742 AR MUSIC MUSIC 260 3 1.0 1.7 1.7 0.000 76.0 219.8 17.1 0.01 5.0
2743 AR MUSIC MUSIC 263 3 1.0 4.1 4.1 0.000 73.0 166.3 27.0 0.01 3.4
2744 AR MUSIC MUSIC 281 3 1.0 0.7 0.7 0.000 70.0 163.3 3.9 0.00 3.9
2745 AR MUSIC MUSIC 282 3 1.0 0.7 0.7 0.000 73.0 166.3 3.9 0.00 3.4
2746 AR MUSIC MUSIC 303 3 1.0 1.3 1.3 0.000 70.0 171.4 7.6 0.00 6.4
2747 AR MUSIC MUSIC 304 3 1.0 0.3 0.3 0.000 73.0 174.4 2.3 0.00 7.8
2748 AR MUSIC MUSIC 311 3 1.0 0.3 0.3 0.001 67.0 160.3 2.3 0.00 4.3
2749 AR MUSIC MUSIC 313 3 1.0 1.3 1.3 0.001 67.0 160.3 6.5 0.00 3.9
2750 AR MUSIC MUSIC 314 3 1.0 0.4 0.4 0.001 67.0 160.3 2.4 0.00 4.0
2751 AR MUSIC MUSIC 315 3 1.0 2.5 2.5 0.000 73.0 216.8 14.6 0.01 3.4
2752 AR MUSIC MUSIC 320 3 1.0 0.3 0.3 0.001 70.0 163.3 2.3 0.00 6.8
2753 AR MUSIC MUSIC 342 3 1.0 0.4 0.4 0.000 70.0 247.1 2.6 0.00 6.8
2754 AR MUSIC MUSIC 343 3 1.0 0.3 0.3 0.000 70.0 244.9 2.3 0.00 6.8
2755 AR MUSIC MUSIC 344 3 1.0 1.3 1.3 0.000 70.0 244.9 6.5 0.00 6.8
2756 AR MUSIC MUSIC 347 3 1.0 1.5 1.5 0.000 70.0 244.9 7.3 0.00 6.8
2757 AR MUSIC MUSIC 365 3 1.0 0.3 0.3 0.001 67.0 160.3 2.3 0.00 4.6
2758 AR MUSIC MUSIC 403 3 1.0 1.3 1.3 0.000 70.0 201.6 5.4 0.00 8.0
2759 AR MUSIC MUSIC 404 3 1.0 0.3 0.3 0.000 73.0 204.6 1.2 0.00 9.1
2760 AR MUSIC MUSIC 413 3 1.0 0.3 0.3 0.000 70.0 163.3 1.2 0.00 5.9
2761 AR MUSIC MUSIC 416 3 1.0 0.5 0.5 0.000 76.0 219.8 2.0 0.00 4.4
2762 AR MUSIC MUSIC 417 3 1.0 0.8 0.8 0.000 76.0 219.8 3.5 0.00 4.4
2763 AR MUSIC MUSIC 420 6 1.0 0.4 0.4 0.000 73.0 241.0 1.5 0.00 9.9
2764 AR MUSIC MUSIC 422 3 1.0 1.3 1.3 0.000 70.0 163.3 4.2 0.00 5.8
2765 AR MUSIC MUSIC 424 3 1.0 0.4 0.4 0.000 70.0 241.0 1.5 0.00 6.9
2766 AR MUSIC MUSIC 425 6 1.0 0.3 0.3 0.000 73.0 245.0 1.3 0.00 9.8
2767 AR MUSIC MUSIC 426 3 1.0 0.4 0.4 0.000 70.0 241.0 1.5 0.00 6.9
2768 AR MUSIC MUSIC 431 3 1.0 0.3 0.3 0.000 70.0 218.2 1.2 0.00 6.9
2769 AR MUSIC MUSIC 432 3 1.0 1.3 1.3 0.000 70.0 163.3 4.2 0.00 5.8
2770 AR MUSIC MUSIC 433 3 1.0 1.3 1.3 0.000 70.0 201.6 5.5 0.00 8.0
2771 AR MUSIC MUSIC 434 3 1.0 0.3 0.3 0.000 73.0 204.6 1.2 0.00 9.0
2772 AR MUSIC MUSIC 435 3 1.0 0.3 0.3 0.000 70.0 171.4 1.2 0.00 6.4
2773 AR MUSIC MUSIC 439 3 1.0 0.7 0.7 0.000 70.0 199.3 3.7 0.00 7.9
2774 AR MUSIC MUSIC 440 3 1.0 0.3 0.3 0.000 70.0 249.0 1.3 0.00 7.3
2775 AR MUSIC MUSIC 441 3 1.0 0.3 0.3 0.000 70.0 169.9 1.3 0.00 6.1
2776 AR MUSIC MUSIC 442 3 1.0 0.3 0.3 0.000 70.0 205.6 1.3 0.00 8.1
2777 AR MUSIC MUSIC 444 3 1.0 0.3 0.3 0.000 73.0 247.9 1.2 0.00 8.1
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2777 AR MUSIC MUSIC 444 3 1.0 0.3 0.3 0.000 73.0 247.9 1.2 0.00 8.1
2778 AR MUSIC MUSIC 445 3 1.0 1.3 1.3 0.000 70.0 247.1 4.2 0.00 6.8
2779 AR MUSIC MUSIC 446 3 1.0 1.3 1.3 0.000 70.0 182.8 4.2 0.00 8.4
2780 AR MUSIC MUSIC 447 3 1.0 0.3 0.3 0.000 73.0 247.9 1.2 0.00 7.4
2781 AR MUSIC MUSIC 451 3 2.0 0.3 0.6 0.000 79.0 427.8 1.2 0.00 6.3
2782 AR MUSIC MUSIC 455 3 1.0 0.3 0.3 0.000 76.0 261.1 1.2 0.00 4.0
2783 AR MUSIC MUSIC 456 3 1.0 1.3 1.3 0.000 76.0 261.1 4.2 0.00 4.0
2784 AR MUSIC MUSIC 457 3 1.0 0.3 0.3 0.000 70.0 247.1 1.2 0.00 6.8
2785 AR MUSIC MUSIC 459 3 1.0 0.3 0.3 0.000 70.0 171.2 1.2 0.00 7.8
2786 AR MUSIC MUSIC 460 6 2.0 1.3 2.6 0.000 82.0 302.1 7.2 0.00 9.7
2787 AR MUSIC MUSIC 462 3 1.0 0.3 0.3 0.000 79.0 172.3 1.2 0.00 5.9
2788 AR MUSIC MUSIC 463 3 1.0 1.3 1.3 0.000 76.0 169.3 5.4 0.00 3.8
2789 AR MUSIC MUSIC 464 3 1.0 0.3 0.3 0.000 70.0 247.1 1.2 0.00 6.8
2790 AR MUSIC MUSIC 465 3 1.0 0.3 0.3 0.000 70.0 247.1 1.2 0.00 6.8
2791 AR MUSIC MUSIC 466 3 1.0 0.3 0.3 0.000 70.0 247.1 1.2 0.00 6.8
2792 AR MUSIC MUSIC 467 3 1.0 0.3 0.3 0.000 70.0 247.1 1.2 0.00 6.8
2793 AR MUSIC MUSIC 468 3 1.0 0.3 0.3 0.000 70.0 247.1 1.2 0.00 6.8
2794 AR MUSIC MUSIC 469 3 1.0 0.3 0.3 0.000 70.0 247.1 1.2 0.00 6.8
2795 AR MUSIC MUSIC 480 3 1.0 0.3 0.3 0.000 79.0 264.1 1.2 0.00 3.8
2796 AR MUSIC MUSIC 481 3 1.0 0.3 0.3 0.000 79.0 264.1 1.2 0.00 3.8
2797 AR MUSIC MUSIC 482 3 1.0 0.3 0.3 0.000 70.0 247.1 1.2 0.00 6.8
2798 AR MUSIC MUSIC 483 3 1.0 0.3 0.3 0.000 70.0 247.1 1.2 0.00 6.8
2799 AR MUSIC MUSIC 484 3 1.0 0.3 0.3 0.000 70.0 247.1 1.2 0.00 6.8
2800 AR MUSIC MUSIC 485 3 1.0 0.3 0.3 0.000 70.0 247.1 1.2 0.00 6.8
2801 AR MUSIC MUSIC 487 3 1.0 0.3 0.3 0.000 70.0 247.1 1.2 0.00 6.8
2802 AR MUSIC MUSIC 501 3 1.0 1.0 1.0 0.000 70.0 247.1 3.0 0.00 6.8
2803 AR MUSIC MUSIC 502 3 1.0 0.0 0.0 0.000 73.0 250.1 0.0 0.00 9.8
2804 AR MUSIC MUSIC 504 3 1.0 0.0 0.0 0.000 73.0 237.7 0.0 0.00 9.4
2805 AR MUSIC MUSIC 505 3 1.0 1.0 1.0 0.000 73.0 237.7 3.0 0.00 9.4
2806 AR MUSIC MUSIC 506 3 1.0 0.0 0.0 0.000 73.0 237.7 0.0 0.00 9.4
2807 AR MUSIC MUSIC 507 3 1.0 0.0 0.0 0.000 76.0 240.7 0.0 0.00 12.4
2808 AR MUSIC MUSIC 508 3 1.0 0.0 0.0 0.000 70.0 236.2 0.0 0.00 9.4
2809 AR MUSIC MUSIC 520 3 1.0 0.0 0.0 0.000 73.0 238.2 0.0 0.00 9.5
2810 AR MUSIC MUSIC 522 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 7.5
2811 AR MUSIC MUSIC 524 3 1.0 0.0 0.0 0.000 73.0 238.2 0.0 0.00 9.5
2812 AR MUSIC MUSIC 525 6 1.0 0.0 0.0 0.000 76.0 238.0 0.0 0.00 12.5
2813 AR MUSIC MUSIC 527 6 1.0 0.0 0.0 0.000 76.0 238.2 0.0 0.00 12.5
2814 AR MUSIC MUSIC 532 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 7.5
2815 AR MUSIC MUSIC 533 3 1.0 1.0 1.0 0.000 73.0 237.7 3.0 0.00 9.4
2816 AR MUSIC MUSIC 534 3 1.0 0.0 0.0 0.000 76.0 240.7 0.0 0.00 12.4
2817 AR MUSIC MUSIC 535 3 1.0 0.0 0.0 0.000 73.0 237.0 0.0 0.00 9.4
2818 AR MUSIC MUSIC 539 3 1.0 0.0 0.0 0.000 73.0 237.0 0.0 0.00 9.5
2819 AR MUSIC MUSIC 540 3 1.0 0.0 0.0 0.000 73.0 238.0 0.0 0.00 9.5
2820 AR MUSIC MUSIC 541 3 1.0 0.0 0.0 0.000 73.0 236.4 0.0 0.00 9.4
2821 AR MUSIC MUSIC 542 3 1.0 0.0 0.0 0.000 73.0 237.1 0.0 0.00 9.5
2822 AR MUSIC MUSIC 545 3 1.0 0.0 0.0 0.000 73.0 250.1 0.0 0.00 8.2
2823 AR MUSIC MUSIC 546 3 1.0 0.0 0.0 0.000 73.0 185.8 0.0 0.00 9.4
2824 AR MUSIC MUSIC 555 3 1.0 0.0 0.0 0.000 79.0 264.1 0.0 0.00 6.1
2825 AR MUSIC MUSIC 556 3 1.0 0.0 0.0 0.000 79.0 264.1 0.0 0.00 3.8
2826 AR MUSIC MUSIC 560 6 2.0 0.0 0.0 0.000 88.0 361.4 0.0 0.00 14.2
2827 AR MODLGCULST NORW 111 3 1.0 1.1 1.1 0.028 64.0 157.3 15.2 0.00 3.0
2828 AR MODLGCULST NORW 112 3 1.0 1.1 1.1 0.001 67.0 160.3 11.9 0.00 5.9
2829 AR MODLGCULST NORW 211 3 1.0 1.2 1.2 0.000 70.0 163.3 8.7 0.00 8.6
2830 AR MODLGCULST NORW 212 3 1.0 1.2 1.2 0.000 73.0 166.3 4.8 0.00 10.2
2831 AR MODLGCULST PERS 111 3 1.0 1.1 1.1 0.028 64.0 157.3 14.2 0.00 3.0
2832 AR MODLGCULST PERS 112 3 1.0 1.1 1.1 0.001 67.0 160.3 10.9 0.00 5.9
2833 AR MODLGCULST PERS 211 3 1.0 2.2 2.2 0.000 70.0 163.3 7.7 0.00 8.6
2834 AR MODLGCULST PERS 212 3 1.0 1.2 1.2 0.000 73.0 166.3 3.8 0.00 6.9
2835 AR MODLGCULST PERS 499 3 2.0 0.0 0.0 0.000 76.0 261.1 0.0 0.00 12.7
2836 AR PHILOSOPHY PHIL 101 3 1.0 1.7 1.7 0.028 64.0 157.3 42.5 0.01 3.0
2837 AR PHILOSOPHY PHIL 102 3 1.0 1.7 1.7 0.028 64.0 157.3 42.5 0.01 3.0
2838 AR PHILOSOPHY PHIL 103 3 1.0 0.7 0.7 0.028 64.0 157.3 2.6 0.00 3.0
2839 AR PHILOSOPHY PHIL 110 3 1.0 0.7 0.7 0.028 64.0 157.3 2.6 0.00 3.0
2840 AR PHILOSOPHY PHIL 120 3 1.0 2.1 2.1 0.028 64.0 157.3 29.0 0.01 3.0
2841 AR PHILOSOPHY PHIL 125 3 1.0 0.7 0.7 0.028 64.0 157.3 2.6 0.00 3.0
2842 AR PHILOSOPHY PHIL 200 3 1.0 2.8 2.8 0.028 64.0 157.3 12.6 0.00 3.0
2843 AR PHILOSOPHY PHIL 205 3 1.0 2.8 2.8 0.028 64.0 157.3 9.6 0.00 3.0
2844 AR PHILOSOPHY PHIL 215 3 1.0 2.8 2.8 0.028 64.0 157.3 12.6 0.00 3.0
2845 AR PHILOSOPHY PHIL 217 3 1.0 2.3 2.3 0.028 64.0 157.3 7.3 0.00 3.0
2846 AR PHILOSOPHY PHIL 220 3 1.0 5.7 5.7 0.001 67.0 160.3 19.9 0.01 4.5
2847 AR PHILOSOPHY PHIL 230 3 1.0 3.6 3.6 0.028 64.0 157.3 14.6 0.00 3.0
2848 AR PHILOSOPHY PHIL 240 3 1.0 2.6 2.6 0.028 64.0 157.3 10.0 0.00 3.0
2849 AR PHILOSOPHY PHIL 250 3 1.0 2.8 2.8 0.028 64.0 157.3 12.6 0.00 3.0
2850 AR PHILOSOPHY PHIL 265 3 1.0 3.3 3.3 0.028 64.0 157.3 10.3 0.00 3.0
2851 AR PHILOSOPHY PHIL 270 3 1.0 2.8 2.8 0.028 64.0 157.3 12.6 0.00 3.0
2852 AR PHILOSOPHY PHIL 272 3 1.0 2.8 2.8 0.028 64.0 157.3 8.8 0.00 3.0
2853 AR PHILOSOPHY PHIL 280 3 1.0 2.3 2.3 0.028 64.0 157.3 7.3 0.00 3.0
2854 AR PHILOSOPHY PHIL 291 3 1.0 3.3 3.3 0.028 64.0 157.3 11.9 0.00 3.0
2855 AR PHILOSOPHY PHIL 301 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
2856 AR PHILOSOPHY PHIL 305 3 1.5 0.5 0.8 0.002 67.0 211.7 1.6 0.00 5.0
2857 AR PHILOSOPHY PHIL 316 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
2858 AR PHILOSOPHY PHIL 317 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
2859 AR PHILOSOPHY PHIL 325 3 1.0 1.4 1.4 0.028 64.0 157.3 6.7 0.00 3.0
2860 AR PHILOSOPHY PHIL 333 3 1.0 0.8 0.8 0.028 64.0 157.3 4.3 0.00 3.0
2861 AR PHILOSOPHY PHIL 336 3 1.0 0.5 0.5 0.001 67.0 160.3 1.6 0.00 3.8
2862 AR PHILOSOPHY PHIL 343 3 1.0 0.8 0.8 0.028 64.0 157.3 4.3 0.00 3.0
2863 AR PHILOSOPHY PHIL 345 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
2864 AR PHILOSOPHY PHIL 355 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
2865 AR PHILOSOPHY PHIL 357 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
2866 AR PHILOSOPHY PHIL 365 3 1.0 0.6 0.6 0.028 64.0 157.3 1.7 0.00 3.0
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2866 AR PHILOSOPHY PHIL 365 3 1.0 0.6 0.6 0.028 64.0 157.3 1.7 0.00 3.0
2867 AR PHILOSOPHY PHIL 366 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
2868 AR PHILOSOPHY PHIL 368 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
2869 AR PHILOSOPHY PHIL 375 3 1.0 0.6 0.6 0.028 64.0 157.3 1.7 0.00 3.0
2870 AR PHILOSOPHY PHIL 380 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
2871 AR PHILOSOPHY PHIL 381 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
2872 AR PHILOSOPHY PHIL 382 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
2873 AR PHILOSOPHY PHIL 384 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
2874 AR PHILOSOPHY PHIL 386 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
2875 AR PHILOSOPHY PHIL 388 1.5 1.0 2.5 2.5 0.028 62.5 157.3 9.3 0.00 1.5
2876 AR PHILOSOPHY PHIL 392 3 1.0 0.5 0.5 0.001 67.0 160.3 1.6 0.00 3.9
2877 AR PHILOSOPHY PHIL 396 3 4.0 2.5 10.2 0.004 67.0 372.9 7.6 0.01 8.7
2878 AR PHILOSOPHY PHIL 398 1.5 1.0 0.5 0.5 0.001 64.0 158.8 1.6 0.00 2.1
2879 AR PHILOSOPHY PHIL 400 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2880 AR PHILOSOPHY PHIL 401 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2881 AR PHILOSOPHY PHIL 405 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2882 AR PHILOSOPHY PHIL 411 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2883 AR PHILOSOPHY PHIL 412 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2884 AR PHILOSOPHY PHIL 415 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2885 AR PHILOSOPHY PHIL 417 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2886 AR PHILOSOPHY PHIL 420 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.8
2887 AR PHILOSOPHY PHIL 421 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.8
2888 AR PHILOSOPHY PHIL 422 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.8
2889 AR PHILOSOPHY PHIL 425 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 4.1
2890 AR PHILOSOPHY PHIL 426 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2891 AR PHILOSOPHY PHIL 428 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2892 AR PHILOSOPHY PHIL 433 3 1.0 0.0 0.0 0.001 67.0 161.8 0.0 0.00 5.1
2893 AR PHILOSOPHY PHIL 434 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2894 AR PHILOSOPHY PHIL 436 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2895 AR PHILOSOPHY PHIL 440 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2896 AR PHILOSOPHY PHIL 442 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2897 AR PHILOSOPHY PHIL 443 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2898 AR PHILOSOPHY PHIL 444 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2899 AR PHILOSOPHY PHIL 445 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2900 AR PHILOSOPHY PHIL 446 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2901 AR PHILOSOPHY PHIL 447 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2902 AR PHILOSOPHY PHIL 448 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2903 AR PHILOSOPHY PHIL 450 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2904 AR PHILOSOPHY PHIL 451 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2905 AR PHILOSOPHY PHIL 453 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2906 AR PHILOSOPHY PHIL 470 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2907 AR PHILOSOPHY PHIL 480 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2908 AR PHILOSOPHY PHIL 481 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2909 AR PHILOSOPHY PHIL 486 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2910 AR PHILOSOPHY PHIL 487 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2911 AR PHILOSOPHY PHIL 488 3 2.0 0.0 0.0 0.002 67.0 260.6 0.0 0.00 6.5
2912 AR PHILOSOPHY PHIL 493 3 1.0 0.0 0.0 0.000 70.0 375.9 0.0 0.00 6.4
2913 AR PHILOSOPHY PHIL 498 3 1.0 0.0 0.0 0.000 70.0 375.9 0.0 0.00 6.4
2914 AR POLIT SCI POL S 101 3 1.0 8.6 8.6 0.028 64.0 157.3 300.6 0.09 3.0
2915 AR POLIT SCI POL S 210 6 1.0 15.4 15.4 0.001 70.0 160.3 53.2 0.02 6.4
2916 AR POLIT SCI POL S 220 6 1.0 20.9 20.9 0.001 70.0 160.3 68.8 0.02 6.4
2917 AR POLIT SCI POL S 221 3 1.0 0.4 0.4 0.028 64.0 157.3 2.0 0.00 3.0
2918 AR POLIT SCI POL S 223 3 1.0 2.1 2.1 0.001 67.0 160.3 7.0 0.00 3.4
2919 AR POLIT SCI POL S 230 3 1.0 14.2 14.2 0.001 67.0 160.3 47.2 0.01 3.4
2920 AR POLIT SCI POL S 240 3 1.0 17.1 17.1 0.001 67.0 160.3 56.8 0.02 3.4
2921 AR POLIT SCI POL S 260 6 1.0 15.4 15.4 0.001 70.0 160.3 53.3 0.02 6.4
2922 AR POLIT SCI POL S 266 3 1.0 0.4 0.4 0.001 67.0 160.3 2.0 0.00 3.4
2923 AR POLIT SCI POL S 290 3 1.0 0.4 0.4 0.001 67.0 160.3 2.0 0.00 3.4
2924 AR POLIT SCI POL S 299 3 1.0 0.4 0.4 0.028 64.0 157.3 2.1 0.00 3.0
2925 AR POLIT SCI POL S 302 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2926 AR POLIT SCI POL S 303 3 1.0 0.0 0.0 0.000 70.0 164.3 0.0 0.00 3.3
2927 AR POLIT SCI POL S 306 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2928 AR POLIT SCI POL S 307 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2929 AR POLIT SCI POL S 315 6 1.0 1.0 1.0 0.000 76.0 166.3 6.0 0.00 6.4
2930 AR POLIT SCI POL S 321 1.5 2.0 1.0 2.0 0.000 63.5 204.6 1.6 0.00 4.7
2931 AR POLIT SCI POL S 322 1.5 1.0 0.0 0.0 0.000 65.0 206.1 0.0 0.00 6.1
2932 AR POLIT SCI POL S 324 3 1.0 0.0 0.0 0.000 73.0 166.3 0.1 0.00 3.3
2933 AR POLIT SCI POL S 325 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.3
2934 AR POLIT SCI POL S 327 3 1.0 0.0 0.0 0.000 68.0 155.5 0.0 0.00 3.3
2935 AR POLIT SCI POL S 328 3 1.0 0.0 0.0 0.000 70.0 164.8 0.0 0.00 3.3
2936 AR POLIT SCI POL S 332 3 1.0 1.3 1.3 0.000 67.0 163.6 4.5 0.00 4.6
2937 AR POLIT SCI POL S 333 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.2
2938 AR POLIT SCI POL S 334 3 1.0 0.0 0.0 0.000 70.0 164.3 0.0 0.00 3.3
2939 AR POLIT SCI POL S 345 3 1.0 0.0 0.0 0.000 70.0 164.3 0.0 0.00 3.3
2940 AR POLIT SCI POL S 350 3 1.0 0.8 0.8 0.000 67.0 163.6 2.5 0.00 4.6
2941 AR POLIT SCI POL S 354 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.2
2942 AR POLIT SCI POL S 357 3 1.0 0.0 0.0 0.000 70.0 164.8 0.0 0.00 3.3
2943 AR POLIT SCI POL S 359 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2944 AR POLIT SCI POL S 361 3 1.0 1.0 1.0 0.000 73.0 166.3 3.0 0.00 3.4
2945 AR POLIT SCI POL S 364 3 1.0 1.0 1.0 0.000 70.0 164.3 3.0 0.00 3.3
2946 AR POLIT SCI POL S 365 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2947 AR POLIT SCI POL S 370 3 1.0 0.0 0.0 0.000 70.0 164.3 0.0 0.00 3.3
2948 AR POLIT SCI POL S 374 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.2
2949 AR POLIT SCI POL S 375 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.2
2950 AR POLIT SCI POL S 376 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.2
2951 AR POLIT SCI POL S 379 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.2
2952 AR POLIT SCI POL S 380 3 1.0 0.5 0.5 0.000 70.0 163.3 1.5 0.00 3.2
2953 AR POLIT SCI POL S 385 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.3
2954 AR POLIT SCI POL S 390 3 1.0 0.5 0.5 0.000 70.0 165.4 1.5 0.00 4.3
2955 AR POLIT SCI POL S 391 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.3
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2955 AR POLIT SCI POL S 391 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.3
2956 AR POLIT SCI POL S 392 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.3
2957 AR POLIT SCI POL S 395 3 1.0 0.0 0.0 0.000 70.0 164.8 0.0 0.00 3.3
2958 AR POLIT SCI POL S 396 3 1.0 0.0 0.0 0.000 70.0 164.3 0.0 0.00 3.3
2959 AR POLIT SCI POL S 397 3 1.0 0.0 0.0 0.000 70.0 164.8 0.0 0.00 3.3
2960 AR POLIT SCI POL S 398 3 1.0 0.0 0.0 0.000 67.0 163.6 0.0 0.00 4.6
2961 AR POLIT SCI POL S 399 3 4.0 0.0 0.0 0.000 73.0 382.9 0.0 0.00 4.3
2962 AR POLIT SCI POL S 404 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2963 AR POLIT SCI POL S 406 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2964 AR POLIT SCI POL S 407 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2965 AR POLIT SCI POL S 408 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2966 AR POLIT SCI POL S 409 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2967 AR POLIT SCI POL S 410 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2968 AR POLIT SCI POL S 411 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2969 AR POLIT SCI POL S 412 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2970 AR POLIT SCI POL S 415 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2971 AR POLIT SCI POL S 419 3 1.0 0.5 0.5 0.000 73.0 166.3 1.5 0.00 3.3
2972 AR POLIT SCI POL S 421 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.3
2973 AR POLIT SCI POL S 423 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.3
2974 AR POLIT SCI POL S 424 3 1.0 0.0 0.0 0.000 70.0 164.8 0.0 0.00 3.3
2975 AR POLIT SCI POL S 428 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.3
2976 AR POLIT SCI POL S 429 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.3
2977 AR POLIT SCI POL S 431 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2978 AR POLIT SCI POL S 432 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.3
2979 AR POLIT SCI POL S 433 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 4.6
2980 AR POLIT SCI POL S 434 3 1.0 0.0 0.0 0.000 70.0 164.3 0.0 0.00 3.7
2981 AR POLIT SCI POL S 435 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.7
2982 AR POLIT SCI POL S 437 3 1.0 0.0 0.0 0.000 70.0 164.8 0.0 0.00 3.3
2983 AR POLIT SCI POL S 440 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.3
2984 AR POLIT SCI POL S 441 3 1.0 0.0 0.0 0.000 70.0 166.4 0.0 0.00 5.5
2985 AR POLIT SCI POL S 442 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.3
2986 AR POLIT SCI POL S 443 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.2
2987 AR POLIT SCI POL S 445 3 1.0 0.0 0.0 0.000 70.0 164.3 0.0 0.00 3.3
2988 AR POLIT SCI POL S 446 3 1.0 0.0 0.0 0.000 70.0 164.3 0.0 0.00 3.3
2989 AR POLIT SCI POL S 450 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.2
2990 AR POLIT SCI POL S 454 3 1.0 0.0 0.0 0.000 70.0 164.4 0.0 0.00 4.7
2991 AR POLIT SCI POL S 455 3 1.0 0.0 0.0 0.000 67.0 163.6 0.0 0.00 4.6
2992 AR POLIT SCI POL S 457 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2993 AR POLIT SCI POL S 458 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2994 AR POLIT SCI POL S 459 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2995 AR POLIT SCI POL S 460 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2996 AR POLIT SCI POL S 462 3 1.0 0.0 0.0 0.000 73.0 167.3 0.0 0.00 6.2
2997 AR POLIT SCI POL S 463 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
2998 AR POLIT SCI POL S 467 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 6.4
2999 AR POLIT SCI POL S 468 3 1.0 0.0 0.0 0.000 73.0 166.3 0.1 0.00 3.4
3000 AR POLIT SCI POL S 469 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.4
3001 AR POLIT SCI POL S 470 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.2
3002 AR POLIT SCI POL S 474 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.2
3003 AR POLIT SCI POL S 475 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.2
3004 AR POLIT SCI POL S 477 3 1.0 0.0 0.0 0.000 70.0 164.8 0.0 0.00 4.7
3005 AR POLIT SCI POL S 478 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.2
3006 AR POLIT SCI POL S 483 3 1.0 0.0 0.0 0.000 73.0 168.8 0.0 0.00 6.8
3007 AR POLIT SCI POL S 484 3 1.0 0.0 0.0 0.000 70.0 166.6 0.0 0.00 6.4
3008 AR POLIT SCI POL S 485 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.2
3009 AR POLIT SCI POL S 486 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.2
3010 AR POLIT SCI POL S 488 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.2
3011 AR POLIT SCI POL S 492 3 1.0 0.0 0.0 0.000 70.0 164.8 0.0 0.00 3.3
3012 AR POLIT SCI POL S 496 3 1.0 0.0 0.0 0.000 70.0 164.8 0.0 0.00 3.3
3013 AR POLIT SCI POL S 499 6 5.0 0.0 0.0 0.000 82.0 421.1 0.0 0.00 13.6
3014 AR MODLGCULST POLSH 111 3 1.0 1.2 1.2 0.028 64.0 157.3 48.7 0.01 3.0
3015 AR MODLGCULST POLSH 112 3 1.0 1.2 1.2 0.001 67.0 160.3 45.0 0.01 5.6
3016 AR MODLGCULST POLSH 211 3 1.0 2.3 2.3 0.000 70.0 163.3 41.4 0.01 7.7
3017 AR MODLGCULST POLSH 212 3 1.0 6.3 6.3 0.000 73.0 166.3 32.1 0.01 6.3
3018 AR MODLGCULST POLSH 303 3 1.0 1.6 1.6 0.000 76.0 169.3 9.8 0.00 4.0
3019 AR MODLGCULST POLSH 304 3 1.0 1.6 1.6 0.000 79.0 172.3 4.9 0.00 5.5
3020 AR MODLGCULST POLSH 407 3 1.0 0.0 0.0 0.000 82.0 175.3 0.0 0.00 6.4
3021 AR MODLGCULST POLSH 414 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 4.0
3022 AR MODLGCULST POLSH 415 3 1.0 1.0 1.0 0.000 76.0 169.3 3.0 0.00 4.0
3023 AR MODLGCULST POLSH 416 3 1.0 0.0 0.0 0.000 79.0 172.3 0.0 0.00 7.0
3024 AR MODLGCULST POLSH 443 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 4.0
3025 AR MODLGCULST POLSH 444 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 4.0
3026 AR MODLGCULST POLSH 499 3 1.0 0.0 0.0 0.000 79.0 173.8 0.0 0.00 5.9
3027 AR MODLGCULST PORT 111 3 1.0 1.1 1.1 0.028 64.0 157.3 10.6 0.00 3.0
3028 AR MODLGCULST PORT 112 3 1.0 0.6 0.6 0.001 67.0 160.3 7.3 0.00 5.9
3029 AR MODLGCULST PORT 211 3 1.0 1.2 1.2 0.000 70.0 143.0 11.1 0.00 10.2
3030 AR MODLGCULST PORT 212 3 1.0 1.2 1.2 0.000 73.0 146.0 7.3 0.00 11.6
3031 AR MODLGCULST PORT 303 3 1.0 1.1 1.1 0.000 76.0 149.0 3.5 0.00 12.8
3032 AR MODLGCULST PORT 304 3 1.0 0.1 0.1 0.000 79.0 152.0 0.2 0.00 14.9
3033 AR PSYCHOLOGY PSYCO 105 3 1.0 11.9 11.9 0.002 67.0 160.3 141.0 0.04 3.2
3034 AR PSYCHOLOGY PSYCO 106 3 2.0 0.2 0.4 0.000 65.0 204.6 6.8 0.00 6.2
3035 AR PSYCHOLOGY PSYCO 212 3 3.0 2.6 7.9 0.003 70.0 322.5 10.0 0.01 3.5
3036 AR PSYCHOLOGY PSYCO 223 3 2.0 6.7 13.4 0.001 70.0 255.1 40.0 0.02 3.5
3037 AR PSYCHOLOGY PSYCO 233 3 2.0 4.3 8.6 0.001 70.0 255.1 25.5 0.01 3.5
3038 AR PSYCHOLOGY PSYCO 241 3 2.0 7.0 13.9 0.001 70.0 255.1 32.8 0.02 3.5
3039 AR PSYCHOLOGY PSYCO 258 3 2.0 7.6 15.3 0.003 68.0 264.9 47.7 0.02 3.3
3040 AR PSYCHOLOGY PSYCO 300 3 4.0 1.5 5.9 0.000 71.0 437.2 4.8 0.00 5.5
3041 AR PSYCHOLOGY PSYCO 303 3 4.0 0.5 1.9 0.001 71.0 416.1 1.8 0.00 4.9
3042 AR PSYCHOLOGY PSYCO 305 3 2.0 0.5 1.0 0.001 70.0 255.1 1.8 0.00 3.5
3043 AR PSYCHOLOGY PSYCO 323 3 1.0 1.5 1.5 0.000 73.0 258.1 4.8 0.00 3.5
3044 AR PSYCHOLOGY PSYCO 325 3 2.0 0.5 1.0 0.001 73.0 325.5 1.9 0.00 3.6
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3044 AR PSYCHOLOGY PSYCO 325 3 2.0 0.5 1.0 0.001 73.0 325.5 1.9 0.00 3.6
3045 AR PSYCHOLOGY PSYCO 327 3 1.0 0.5 0.5 0.000 73.0 258.1 1.8 0.00 3.5
3046 AR PSYCHOLOGY PSYCO 339 3 1.0 3.5 3.5 0.000 70.0 248.4 10.8 0.01 3.7
3047 AR PSYCHOLOGY PSYCO 341 3 1.0 1.2 1.2 0.000 73.0 258.1 4.0 0.00 3.6
3048 AR PSYCHOLOGY PSYCO 350 3 1.0 1.7 1.7 0.000 71.0 267.9 5.4 0.00 3.4
3049 AR PSYCHOLOGY PSYCO 357 3 1.0 0.7 0.7 0.000 71.0 267.9 2.4 0.00 3.4
3050 AR PSYCHOLOGY PSYCO 399 3 4.0 1.4 5.5 0.000 71.0 437.2 4.8 0.00 5.5
3051 AR PSYCHOLOGY PSYCO 400 3 1.0 0.0 0.0 0.000 74.0 440.2 0.0 0.00 6.7
3052 AR PSYCHOLOGY PSYCO 405 3 3.0 0.0 0.0 0.003 70.0 322.5 0.0 0.00 3.5
3053 AR PSYCHOLOGY PSYCO 411 3 3.0 0.0 0.0 0.000 73.0 479.8 0.0 0.00 4.6
3054 AR PSYCHOLOGY PSYCO 412 3 2.0 0.0 0.0 0.000 73.0 409.5 0.0 0.00 5.5
3055 AR PSYCHOLOGY PSYCO 415 3 3.0 0.0 0.0 0.001 73.0 424.0 0.0 0.00 5.6
3056 AR PSYCHOLOGY PSYCO 423 3 2.0 0.0 0.0 0.001 76.0 328.5 0.0 0.00 5.4
3057 AR PSYCHOLOGY PSYCO 431 3 2.0 0.0 0.0 0.001 73.0 319.3 0.0 0.00 4.1
3058 AR PSYCHOLOGY PSYCO 432 3 1.0 0.0 0.0 0.000 73.0 258.8 0.0 0.00 4.2
3059 AR PSYCHOLOGY PSYCO 435 3 1.0 0.0 0.0 0.000 73.0 251.4 0.0 0.00 4.1
3060 AR PSYCHOLOGY PSYCO 436 3 1.0 0.0 0.0 0.000 73.0 251.4 0.0 0.00 4.1
3061 AR PSYCHOLOGY PSYCO 443 3 2.0 0.0 0.0 0.001 73.0 325.5 0.0 0.00 3.6
3062 AR PSYCHOLOGY PSYCO 450 3 1.0 0.0 0.0 0.000 74.0 270.9 0.0 0.00 5.0
3063 AR PSYCHOLOGY PSYCO 490 3 1.0 0.0 0.0 0.000 74.0 440.2 0.0 0.00 7.0
3064 AR PSYCHOLOGY PSYCO 495 3 2.0 0.0 0.0 0.000 73.0 350.9 0.0 0.00 7.0
3065 AR PSYCHOLOGY PSYCO 498 3 1.0 0.0 0.0 0.000 73.0 330.3 0.0 0.00 6.3
3066 AR INT D RELIG 101 6 1.0 0.1 0.1 0.028 67.0 157.3 0.4 0.00 6.0
3067 AR INT D RELIG 200 3 1.0 1.1 1.1 0.028 64.0 157.3 6.4 0.00 3.0
3068 AR INT D RELIG 201 6 1.0 1.7 1.7 0.028 67.0 157.3 7.8 0.00 6.0
3069 AR INT D RELIG 202 3 1.0 0.7 0.7 0.028 64.0 157.3 2.2 0.00 3.0
3070 AR INT D RELIG 205 3 1.0 0.7 0.7 0.028 64.0 157.3 2.2 0.00 3.0
3071 AR INT D RELIG 209 3 1.0 0.1 0.1 0.028 64.0 157.3 0.4 0.00 3.0
3072 AR INT D RELIG 211 3 1.0 0.3 0.3 0.028 64.0 157.3 0.9 0.00 3.0
3073 AR INT D RELIG 212 3 1.0 0.3 0.3 0.028 64.0 157.3 0.9 0.00 3.0
3074 AR INT D RELIG 215 3 1.0 0.3 0.3 0.028 64.0 157.3 0.9 0.00 3.0
3075 AR INT D RELIG 220 3 1.0 0.5 0.5 0.028 64.0 157.3 1.4 0.00 3.0
3076 AR INT D RELIG 225 3 1.0 0.1 0.1 0.028 64.0 157.3 0.4 0.00 3.0
3077 AR INT D RELIG 230 3 1.0 0.1 0.1 0.028 64.0 157.3 0.4 0.00 3.0
3078 AR INT D RELIG 239 3 1.0 1.1 1.1 0.028 64.0 157.3 3.9 0.00 3.0
3079 AR INT D RELIG 240 3 1.0 0.5 0.5 0.028 64.0 157.3 1.4 0.00 3.0
3080 AR INT D RELIG 244 3 1.0 0.1 0.1 0.028 64.0 157.3 0.4 0.00 3.0
3081 AR INT D RELIG 249 3 1.0 0.1 0.1 0.001 67.0 160.3 0.4 0.00 5.7
3082 AR INT D RELIG 252 3 1.0 0.1 0.1 0.028 64.0 157.3 0.4 0.00 3.0
3083 AR INT D RELIG 270 3 1.0 0.1 0.1 0.028 64.0 157.3 0.4 0.00 3.0
3084 AR INT D RELIG 274 3 1.0 0.1 0.1 0.028 64.0 157.3 0.4 0.00 3.0
3085 AR INT D RELIG 277 3 1.0 0.1 0.1 0.028 64.0 157.3 0.4 0.00 3.0
3086 AR INT D RELIG 279 3 1.0 0.1 0.1 0.028 64.0 157.3 0.4 0.00 3.0
3087 AR INT D RELIG 285 3 1.0 0.1 0.1 0.028 64.0 157.3 0.4 0.00 3.0
3088 AR INT D RELIG 290 3 1.0 0.1 0.1 0.028 64.0 157.3 0.4 0.00 3.0
3089 AR INT D RELIG 297 3 1.0 0.1 0.1 0.028 64.0 157.3 0.4 0.00 3.0
3090 AR INT D RELIG 301 3 1.0 0.8 0.8 0.001 70.0 163.3 2.6 0.00 6.5
3091 AR INT D RELIG 302 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
3092 AR INT D RELIG 303 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
3093 AR INT D RELIG 304 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
3094 AR INT D RELIG 305 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
3095 AR INT D RELIG 306 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
3096 AR INT D RELIG 307 3 1.0 0.8 0.8 0.028 64.0 157.3 2.6 0.00 3.0
3097 AR INT D RELIG 308 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
3098 AR INT D RELIG 312 3 1.0 0.4 0.4 0.028 64.0 157.3 1.3 0.00 3.0
3099 AR INT D RELIG 313 3 1.0 0.4 0.4 0.028 64.0 157.3 1.3 0.00 3.0
3100 AR INT D RELIG 314 3 1.0 0.4 0.4 0.028 64.0 157.3 1.3 0.00 3.0
3101 AR INT D RELIG 315 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
3102 AR INT D RELIG 320 3 1.0 0.6 0.6 0.028 64.0 157.3 1.8 0.00 3.0
3103 AR INT D RELIG 322 3 1.0 0.6 0.6 0.028 64.0 157.3 1.8 0.00 3.0
3104 AR INT D RELIG 331 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
3105 AR INT D RELIG 337 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
3106 AR INT D RELIG 343 3 1.0 0.6 0.6 0.028 64.0 157.3 1.8 0.00 3.0
3107 AR INT D RELIG 344 3 1.0 0.6 0.6 0.028 64.0 157.3 1.8 0.00 3.0
3108 AR INT D RELIG 375 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
3109 AR INT D RELIG 377 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
3110 AR INT D RELIG 378 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
3111 AR INT D RELIG 379 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
3112 AR INT D RELIG 390 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
3113 AR INT D RELIG 397 3 1.0 0.2 0.2 0.028 64.0 157.3 0.8 0.00 3.0
3114 AR INT D RELIG 402 3 1.0 0.0 0.0 0.001 67.0 162.1 0.0 0.00 6.8
3115 AR INT D RELIG 404 3 1.0 0.0 0.0 0.001 67.0 162.1 0.0 0.00 6.8
3116 AR INT D RELIG 409 3 1.0 0.0 0.0 0.001 67.0 162.1 0.0 0.00 6.8
3117 AR INT D RELIG 415 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 6.0
3118 AR INT D RELIG 422 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 6.0
3119 AR INT D RELIG 442 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 6.0
3120 AR INT D RELIG 445 3 2.0 0.0 0.0 0.002 67.0 255.7 0.0 0.00 9.5
3121 AR INT D RELIG 475 3 2.0 0.0 0.0 0.002 67.0 255.7 0.0 0.00 9.5
3122 AR INT D RELIG 480 3 2.0 0.0 0.0 0.002 67.0 255.7 0.0 0.00 9.5
3123 AR INT D RELIG 497 3 1.0 0.0 0.0 0.001 67.0 160.5 0.0 0.00 6.2
3124 AR INT D RELIG 499 6 2.0 0.0 0.0 0.002 70.0 255.3 0.0 0.00 11.9
3125 AR MODLGCULST RUSS 111 3 1.0 1.3 1.3 0.028 64.0 157.3 82.4 0.02 3.0
3126 AR MODLGCULST RUSS 112 3 1.0 1.3 1.3 0.001 67.0 160.3 78.2 0.02 5.4
3127 AR MODLGCULST RUSS 211 3 1.0 1.4 1.4 0.000 70.0 163.3 74.1 0.02 7.2
3128 AR MODLGCULST RUSS 212 3 1.0 6.4 6.4 0.000 73.0 166.3 69.3 0.02 8.0
3129 AR MODLGCULST RUSS 300 6 1.0 0.3 0.3 0.000 79.0 169.3 0.9 0.00 7.2
3130 AR MODLGCULST RUSS 303 3 1.0 1.3 1.3 0.000 76.0 169.3 37.8 0.01 4.2
3131 AR MODLGCULST RUSS 304 3 1.0 10.3 10.3 0.000 79.0 172.3 33.9 0.01 6.3
3132 AR MODLGCULST RUSS 325 3 1.0 0.3 0.3 0.000 76.0 169.3 0.9 0.00 4.2
3133 AR MODLGCULST RUSS 326 3 1.0 2.3 2.3 0.000 76.0 169.3 6.9 0.00 4.2
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3133 AR MODLGCULST RUSS 326 3 1.0 2.3 2.3 0.000 76.0 169.3 6.9 0.00 4.2
3134 AR MODLGCULST RUSS 333 3 1.0 0.3 0.3 0.028 64.0 157.3 0.9 0.00 3.0
3135 AR MODLGCULST RUSS 403 3 1.0 1.0 1.0 0.000 82.0 175.3 3.0 0.00 3.6
3136 AR MODLGCULST RUSS 404 3 1.0 0.0 0.0 0.000 85.0 178.3 0.0 0.00 6.6
3137 AR MODLGCULST RUSS 408 3 1.0 0.0 0.0 0.000 79.0 172.3 0.0 0.00 4.9
3138 AR MODLGCULST RUSS 422 3 1.0 0.0 0.0 0.000 82.0 175.3 0.0 0.00 3.6
3139 AR MODLGCULST RUSS 427 3 1.0 0.0 0.0 0.000 82.0 175.3 0.0 0.00 3.6
3140 AR MODLGCULST RUSS 428 3 1.0 0.0 0.0 0.000 82.0 175.3 0.0 0.00 3.6
3141 AR MODLGCULST RUSS 443 3 1.0 0.0 0.0 0.000 82.0 175.3 0.0 0.00 3.6
3142 AR MODLGCULST RUSS 445 3 1.0 0.0 0.0 0.000 82.0 175.3 0.0 0.00 3.6
3143 AR MODLGCULST RUSS 447 3 1.0 0.0 0.0 0.000 82.0 175.3 0.0 0.00 3.6
3144 AR MODLGCULST RUSS 461 3 1.0 0.0 0.0 0.000 82.0 175.3 0.0 0.00 3.6
3145 AR MODLGCULST RUSS 464 3 1.0 1.0 1.0 0.000 76.0 169.3 3.0 0.00 4.2
3146 AR MODLGCULST RUSS 466 3 1.0 0.0 0.0 0.000 79.0 172.3 0.0 0.00 7.2
3147 AR MODLGCULST RUSS 483 3 1.0 0.0 0.0 0.000 82.0 175.3 0.0 0.00 3.6
3148 AR MODLGCULST RUSS 495 3 2.0 0.0 0.0 0.000 82.0 270.1 0.0 0.00 5.5
3149 AR MODLGCULST RUSS 499 3 1.0 0.0 0.0 0.000 67.0 171.3 0.0 0.00 6.4
3150 AR MODLGCULST SCAND 341 3 1.0 0.2 0.2 0.028 64.0 157.3 0.7 0.00 3.0
3151 AR MODLGCULST SCAND 342 3 1.0 0.2 0.2 0.028 64.0 157.3 0.7 0.00 3.0
3152 AR MODLGCULST SCAND 345 3 1.0 0.2 0.2 0.028 64.0 157.3 0.7 0.00 3.0
3153 AR MODLGCULST SCAND 353 3 1.0 0.2 0.2 0.028 64.0 157.3 0.7 0.00 3.0
3154 AR MODLGCULST SCAND 354 3 1.0 0.2 0.2 0.028 64.0 157.3 0.7 0.00 3.0
3155 AR MODLGCULST SCAND 355 3 1.0 0.2 0.2 0.028 64.0 157.3 0.7 0.00 3.0
3156 AR MODLGCULST SCAND 356 3 1.0 0.2 0.2 0.028 64.0 157.3 0.7 0.00 3.0
3157 AR MODLGCULST SCAND 410 6 1.0 0.0 0.0 0.000 79.0 169.3 0.0 0.00 14.6
3158 AR MODLGCULST SCAND 420 3 1.0 0.0 0.0 0.000 76.0 169.3 0.0 0.00 11.6
3159 AR MODLGCULST SCAND 499 3 2.0 0.0 0.0 0.001 76.0 264.1 0.0 0.00 14.7
3160 AR MODLGCULST SLAV 401 3 2.0 0.0 0.1 0.001 68.0 267.5 0.1 0.00 11.4
3161 AR MODLGCULST SLAV 420 3 3.0 0.0 0.1 0.000 76.0 356.7 0.1 0.00 8.1
3162 AR MODLGCULST SLAV 467 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
3163 AR MODLGCULST SLAV 468 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
3164 AR MODLGCULST SLAV 469 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
3165 AR MODLGCULST SLAV 470 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
3166 AR MODLGCULST SLAV 499 3 1.0 0.0 0.0 0.000 67.0 188.2 0.0 0.00 6.7
3167 AR SOCIOLOGY SOC 100 3 1.0 15.5 15.5 0.028 64.0 157.3 164.1 0.05 3.0
3168 AR SOCIOLOGY SOC 101 3 1.0 3.0 3.0 0.001 67.0 160.3 20.9 0.01 3.2
3169 AR SOCIOLOGY SOC 102 3 1.0 1.0 1.0 0.001 67.0 160.3 5.4 0.00 3.2
3170 AR SOCIOLOGY SOC 210 3 1.0 3.8 3.8 0.001 67.0 160.3 20.3 0.01 3.2
3171 AR SOCIOLOGY SOC 212 3 1.0 4.6 4.6 0.001 67.0 160.3 29.2 0.01 3.2
3172 AR SOCIOLOGY SOC 224 3 1.0 1.8 1.8 0.001 67.0 160.3 5.4 0.00 3.2
3173 AR SOCIOLOGY SOC 225 3 1.0 12.3 12.3 0.001 67.0 160.3 51.2 0.02 3.2
3174 AR SOCIOLOGY SOC 231 3 1.0 0.8 0.8 0.001 67.0 160.3 2.3 0.00 3.2
3175 AR SOCIOLOGY SOC 241 3 1.0 4.5 4.5 0.001 67.0 161.8 14.1 0.00 3.2
3176 AR SOCIOLOGY SOC 242 3 1.0 0.3 0.3 0.001 67.0 161.0 0.8 0.00 3.2
3177 AR SOCIOLOGY SOC 251 3 1.0 5.3 5.3 0.028 64.0 157.3 15.8 0.00 3.0
3178 AR SOCIOLOGY SOC 260 3 1.0 2.3 2.3 0.001 67.0 160.3 6.9 0.00 3.2
3179 AR SOCIOLOGY SOC 269 3 1.0 2.1 2.1 0.001 67.0 160.3 10.2 0.00 3.2
3180 AR SOCIOLOGY SOC 271 3 1.0 3.0 3.0 0.001 67.0 160.3 10.8 0.00 3.2
3181 AR SOCIOLOGY SOC 300 3 1.0 13.7 13.7 0.028 64.0 157.3 158.2 0.05 3.0
3182 AR SOCIOLOGY SOC 301 3 1.0 1.9 1.9 0.001 67.0 160.3 5.9 0.00 3.2
3183 AR SOCIOLOGY SOC 302 3 1.0 0.2 0.2 0.001 67.0 160.3 0.6 0.00 3.2
3184 AR SOCIOLOGY SOC 308 3 2.0 2.1 4.2 0.001 70.0 256.6 9.2 0.00 4.3
3185 AR SOCIOLOGY SOC 315 3 1.0 4.2 4.2 0.000 70.0 163.3 13.0 0.00 3.9
3186 AR SOCIOLOGY SOC 321 3 1.0 0.2 0.2 0.000 70.0 163.3 0.6 0.00 3.3
3187 AR SOCIOLOGY SOC 327 3 1.0 4.2 4.2 0.000 70.0 163.3 23.3 0.01 3.3
3188 AR SOCIOLOGY SOC 332 3 1.0 1.2 1.2 0.000 70.0 163.3 3.8 0.00 3.7
3189 AR SOCIOLOGY SOC 333 3 1.0 2.2 2.2 0.000 70.0 163.3 6.8 0.00 3.7
3190 AR SOCIOLOGY SOC 334 3 1.0 0.7 0.7 0.000 70.0 163.3 2.3 0.00 3.7
3191 AR SOCIOLOGY SOC 342 3 1.0 0.2 0.2 0.000 70.0 216.1 0.6 0.00 3.6
3192 AR SOCIOLOGY SOC 343 3 1.0 0.2 0.2 0.001 67.0 190.0 0.6 0.00 3.4
3193 AR SOCIOLOGY SOC 344 3 1.0 7.2 7.2 0.028 64.0 157.3 28.3 0.01 3.0
3194 AR SOCIOLOGY SOC 345 3 1.0 1.7 1.7 0.001 67.0 160.3 7.4 0.00 3.2
3195 AR SOCIOLOGY SOC 346 3 1.0 1.5 1.5 0.000 70.0 163.3 4.6 0.00 4.3
3196 AR SOCIOLOGY SOC 352 3 1.0 0.2 0.2 0.001 67.0 160.3 0.6 0.00 3.2
3197 AR SOCIOLOGY SOC 353 3 1.0 1.2 1.2 0.001 67.0 160.3 3.6 0.00 3.2
3198 AR SOCIOLOGY SOC 363 3 1.0 1.2 1.2 0.001 67.0 160.3 3.6 0.00 3.2
3199 AR SOCIOLOGY SOC 366 3 1.0 0.2 0.2 0.028 64.0 157.3 0.6 0.00 3.0
3200 AR SOCIOLOGY SOC 367 3 1.0 0.7 0.7 0.001 67.0 160.3 2.1 0.00 3.2
3201 AR SOCIOLOGY SOC 369 3 1.0 1.2 1.2 0.000 70.0 163.3 3.6 0.00 4.5
3202 AR SOCIOLOGY SOC 370 3 1.0 0.2 0.2 0.000 70.0 163.3 0.6 0.00 4.1
3203 AR SOCIOLOGY SOC 372 3 1.0 0.2 0.2 0.000 70.0 163.3 0.6 0.00 4.1
3204 AR SOCIOLOGY SOC 375 3 1.0 1.7 1.7 0.001 67.0 160.3 5.1 0.00 3.2
3205 AR SOCIOLOGY SOC 376 3 1.0 2.2 2.2 0.001 67.0 160.3 6.6 0.00 3.2
3206 AR SOCIOLOGY SOC 377 3 1.0 0.2 0.2 0.028 64.0 157.3 0.6 0.00 3.0
3207 AR SOCIOLOGY SOC 382 3 1.0 1.7 1.7 0.001 67.0 160.3 5.1 0.00 3.2
3208 AR SOCIOLOGY SOC 389 3 1.0 0.2 0.2 0.000 70.0 163.3 0.6 0.00 4.4
3209 AR SOCIOLOGY SOC 399 6 3.0 1.2 3.5 0.001 76.0 322.7 6.6 0.00 7.3
3210 AR SOCIOLOGY SOC 401 3 2.0 0.0 0.0 0.000 73.0 332.5 0.0 0.00 7.8
3211 AR SOCIOLOGY SOC 402 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.2
3212 AR SOCIOLOGY SOC 403 3 2.0 0.0 0.0 0.001 67.0 269.6 0.0 0.00 5.9
3213 AR SOCIOLOGY SOC 407 3 2.0 1.0 2.0 0.000 73.0 332.5 3.0 0.00 7.8
3214 AR SOCIOLOGY SOC 408 3 1.0 0.0 0.0 0.000 76.0 335.5 0.0 0.00 10.8
3215 AR SOCIOLOGY SOC 410 3 2.0 0.0 0.0 0.000 73.0 261.1 0.0 0.00 4.8
3216 AR SOCIOLOGY SOC 418 3 2.0 0.0 0.0 0.000 73.0 261.1 0.1 0.00 4.8
3217 AR SOCIOLOGY SOC 420 3 2.0 0.0 0.0 0.000 73.0 289.7 0.0 0.00 7.2
3218 AR SOCIOLOGY SOC 421 3 2.0 0.1 0.2 0.000 73.0 261.1 0.4 0.00 4.0
3219 AR SOCIOLOGY SOC 422 3 1.0 0.1 0.1 0.000 73.0 166.3 0.4 0.00 3.8
3220 AR SOCIOLOGY SOC 423 3 2.0 0.1 0.2 0.000 73.0 261.1 0.4 0.00 4.0
3221 AR SOCIOLOGY SOC 424 3 2.0 0.1 0.2 0.000 73.0 264.1 0.4 0.00 4.2
3222 AR SOCIOLOGY SOC 425 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.3
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3222 AR SOCIOLOGY SOC 425 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 3.3
3223 AR SOCIOLOGY SOC 426 3 1.0 0.1 0.1 0.000 70.0 163.3 0.4 0.00 3.3
3224 AR SOCIOLOGY SOC 428 3 1.0 0.1 0.1 0.000 73.0 166.3 0.4 0.00 5.8
3225 AR SOCIOLOGY SOC 429 3 1.0 0.1 0.1 0.000 70.0 163.3 0.4 0.00 3.3
3226 AR SOCIOLOGY SOC 430 3 1.0 0.1 0.1 0.000 70.0 163.3 0.4 0.00 3.3
3227 AR SOCIOLOGY SOC 434 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 4.7
3228 AR SOCIOLOGY SOC 437 3 1.0 0.0 0.0 0.000 70.0 164.8 0.0 0.00 5.8
3229 AR SOCIOLOGY SOC 440 3 1.0 0.0 0.0 0.000 70.0 216.1 0.0 0.00 3.6
3230 AR SOCIOLOGY SOC 441 3 2.0 0.0 0.0 0.000 70.0 261.1 0.0 0.00 6.3
3231 AR SOCIOLOGY SOC 442 3 1.0 0.0 0.0 0.000 70.0 216.1 0.0 0.00 3.6
3232 AR SOCIOLOGY SOC 443 3 1.0 0.0 0.0 0.000 70.0 164.8 0.0 0.00 3.7
3233 AR SOCIOLOGY SOC 444 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 5.9
3234 AR SOCIOLOGY SOC 445 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 4.9
3235 AR SOCIOLOGY SOC 446 3 2.0 0.0 0.0 0.000 73.0 265.6 0.0 0.00 4.6
3236 AR SOCIOLOGY SOC 450 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.6
3237 AR SOCIOLOGY SOC 451 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.6
3238 AR SOCIOLOGY SOC 452 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.6
3239 AR SOCIOLOGY SOC 453 3 1.0 0.0 0.0 0.000 70.0 163.3 0.1 0.00 5.8
3240 AR SOCIOLOGY SOC 455 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.6
3241 AR SOCIOLOGY SOC 459 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 4.1
3242 AR SOCIOLOGY SOC 460 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 4.4
3243 AR SOCIOLOGY SOC 461 3 1.0 0.0 0.0 0.001 67.0 160.3 0.1 0.00 3.2
3244 AR SOCIOLOGY SOC 462 3 1.0 0.0 0.0 0.000 70.0 164.8 0.0 0.00 5.8
3245 AR SOCIOLOGY SOC 464 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 5.8
3246 AR SOCIOLOGY SOC 466 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.2
3247 AR SOCIOLOGY SOC 467 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 4.4
3248 AR SOCIOLOGY SOC 469 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 6.9
3249 AR SOCIOLOGY SOC 473 3 1.0 0.0 0.0 0.000 70.0 164.0 0.1 0.00 4.3
3250 AR SOCIOLOGY SOC 475 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 4.9
3251 AR SOCIOLOGY SOC 476 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 4.5
3252 AR SOCIOLOGY SOC 477 3 1.0 0.0 0.0 0.000 70.0 164.3 0.0 0.00 4.7
3253 AR SOCIOLOGY SOC 483 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 4.9
3254 AR SOCIOLOGY SOC 486 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 4.9
3255 AR SOCIOLOGY SOC 489 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.6
3256 AR SOCIOLOGY SOC 490 3 3.0 0.0 0.0 0.001 67.0 333.8 0.0 0.00 8.6
3257 AR SOCIOLOGY SOC 491 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 4.7
3258 AR SOCIOLOGY SOC 492 3 1.0 0.0 0.0 0.000 67.0 164.5 0.0 0.00 5.1
3259 AR SOCIOLOGY SOC 499 6 1.0 0.0 0.0 0.000 82.0 328.7 0.0 0.00 12.3
3260 AR MODLGCULST SPAN 111 3 1.0 1.1 1.1 0.028 64.0 157.3 80.1 0.02 3.0
3261 AR MODLGCULST SPAN 112 3 1.0 0.6 0.6 0.001 67.0 160.3 76.9 0.02 5.9
3262 AR MODLGCULST SPAN 210 3 2.0 0.7 1.4 0.028 65.0 62.0 77.4 0.01 15.9
3263 AR MODLGCULST SPAN 211 3 1.0 1.2 1.2 0.001 68.0 115.0 113.7 0.02 13.9
3264 AR MODLGCULST SPAN 212 3 1.0 1.7 1.7 0.000 71.0 118.0 109.9 0.02 14.7
3265 AR MODLGCULST SPAN 300 3 1.0 10.0 10.0 0.000 74.0 121.0 98.9 0.02 11.6
3266 AR MODLGCULST SPAN 303 3 1.0 1.0 1.0 0.000 77.0 125.5 3.0 0.00 3.8
3267 AR MODLGCULST SPAN 305 3 1.0 1.5 1.5 0.000 77.0 125.5 4.6 0.00 3.8
3268 AR MODLGCULST SPAN 306 3 1.0 9.0 9.0 0.000 77.0 124.0 66.1 0.02 4.2
3269 AR MODLGCULST SPAN 307 3 1.0 1.0 1.0 0.000 77.0 125.5 3.0 0.00 3.8
3270 AR MODLGCULST SPAN 309 3 1.0 1.0 1.0 0.000 77.0 125.5 3.0 0.00 3.8
3271 AR MODLGCULST SPAN 321 3 1.0 6.5 6.5 0.000 77.0 125.5 20.5 0.00 3.8
3272 AR MODLGCULST SPAN 322 3 1.0 6.5 6.5 0.000 77.0 125.5 20.5 0.00 3.8
3273 AR MODLGCULST SPAN 325 3 1.0 1.0 1.0 0.000 77.0 125.5 3.0 0.00 3.8
3274 AR MODLGCULST SPAN 330 3 1.0 1.0 1.0 0.028 64.0 157.3 3.0 0.00 3.0
3275 AR MODLGCULST SPAN 335 3 1.0 1.0 1.0 0.000 77.0 125.5 3.0 0.00 3.8
3276 AR MODLGCULST SPAN 341 3 1.0 1.0 1.0 0.000 77.0 125.5 3.0 0.00 3.8
3277 AR MODLGCULST SPAN 342 3 1.0 1.0 1.0 0.000 77.0 125.5 3.0 0.00 3.8
3278 AR MODLGCULST SPAN 343 3 1.0 1.0 1.0 0.000 77.0 125.5 3.0 0.00 3.8
3279 AR MODLGCULST SPAN 360 3 1.0 1.0 1.0 0.000 67.0 172.5 3.0 0.00 6.7
3280 AR MODLGCULST SPAN 370 3 1.0 1.0 1.0 0.000 77.0 125.5 3.0 0.00 3.8
3281 AR MODLGCULST SPAN 371 3 1.0 1.0 1.0 0.000 77.0 125.5 3.0 0.00 3.8
3282 AR MODLGCULST SPAN 405 3 2.0 0.1 0.1 0.000 77.0 201.4 0.2 0.00 6.9
3283 AR MODLGCULST SPAN 406 3 2.0 0.1 0.1 0.000 80.0 204.4 0.2 0.00 9.3
3284 AR MODLGCULST SPAN 407 3 1.0 0.6 0.6 0.000 77.0 125.5 1.8 0.00 3.8
3285 AR MODLGCULST SPAN 409 3 1.0 0.1 0.1 0.000 77.0 125.5 0.2 0.00 3.8
3286 AR MODLGCULST SPAN 431 3 1.0 0.1 0.1 0.000 67.0 133.0 0.2 0.00 6.1
3287 AR MODLGCULST SPAN 440 3 2.0 0.1 0.1 0.000 80.0 204.4 0.2 0.00 6.7
3288 AR MODLGCULST SPAN 441 3 2.0 0.1 0.1 0.000 80.0 204.4 0.2 0.00 6.7
3289 AR MODLGCULST SPAN 445 3 2.0 0.1 0.1 0.000 80.0 204.4 0.2 0.00 6.7
3290 AR MODLGCULST SPAN 450 3 2.0 0.1 0.1 0.000 80.0 204.4 0.2 0.00 6.7
3291 AR MODLGCULST SPAN 452 3 2.0 0.1 0.1 0.000 80.0 204.4 0.2 0.00 6.7
3292 AR MODLGCULST SPAN 455 3 2.0 0.1 0.1 0.000 80.0 204.4 0.2 0.00 6.7
3293 AR MODLGCULST SPAN 457 3 2.0 0.1 0.1 0.000 80.0 204.4 0.2 0.00 6.7
3294 AR MODLGCULST SPAN 460 3 2.0 0.1 0.1 0.000 80.0 204.4 0.2 0.00 6.7
3295 AR MODLGCULST SPAN 475 3 2.0 0.1 0.1 0.000 80.0 204.4 0.2 0.00 6.7
3296 AR MODLGCULST SPAN 476 3 2.0 0.1 0.1 0.000 80.0 204.4 0.2 0.00 6.7
3297 AR MODLGCULST SPAN 478 3 2.0 0.1 0.1 0.000 80.0 204.4 0.2 0.00 6.7
3298 AR MODLGCULST SPAN 495 3 2.0 0.0 0.0 0.000 70.0 289.5 0.0 0.00 13.6
3299 AR MODLGCULST SPAN 499 3 1.0 0.1 0.1 0.000 67.0 133.0 0.2 0.00 6.1
3300 AR INT D STS 200 3 1.0 1.0 1.0 0.028 64.0 157.3 3.1 0.00 3.0
3301 AR INT D STS 400 3 5.0 0.0 0.0 0.006 67.0 407.1 0.0 0.00 12.3
3302 AR INT D STS 498 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
3303 AR MODLGCULST SWAH 111 3 1.0 1.1 1.1 0.028 64.0 157.3 3.6 0.00 3.0
3304 AR MODLGCULST SWAH 112 3 1.0 0.1 0.1 0.001 67.0 160.3 0.3 0.00 5.9
3305 AR MODLGCULST SWED 111 3 1.0 1.1 1.1 0.028 64.0 157.3 15.2 0.00 3.0
3306 AR MODLGCULST SWED 112 3 1.0 1.1 1.1 0.001 67.0 160.3 11.9 0.00 5.9
3307 AR MODLGCULST SWED 211 3 1.0 1.2 1.2 0.000 70.0 163.3 8.7 0.00 8.6
3308 AR MODLGCULST SWED 212 3 1.0 1.2 1.2 0.000 73.0 166.3 4.8 0.00 10.2
3309 AR DRAMA T DES 170 3 2.0 0.0 0.0 0.000 65.0 221.5 0.0 0.00 16.1
3310 AR DRAMA T DES 171 6 1.0 0.0 0.0 0.028 67.0 157.3 0.0 0.00 6.0
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3311 AR DRAMA T DES 172 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
3312 AR DRAMA T DES 270 6 1.0 1.0 1.0 0.028 67.0 157.3 21.1 0.01 6.0
3313 AR DRAMA T DES 271 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
3314 AR DRAMA T DES 272 3 1.0 1.0 1.0 0.028 64.0 157.3 3.1 0.00 3.0
3315 AR DRAMA T DES 273 3 1.0 1.3 1.3 0.028 64.0 157.3 5.1 0.00 3.0
3316 AR DRAMA T DES 274 3 1.0 0.0 0.0 0.001 67.0 160.3 0.1 0.00 5.3
3317 AR DRAMA T DES 275 3 1.0 1.0 1.0 0.028 64.0 157.3 3.1 0.00 3.0
3318 AR DRAMA T DES 278 3 1.0 1.0 1.0 0.028 64.0 157.3 3.1 0.00 3.0
3319 AR DRAMA T DES 370 6 1.0 2.1 2.1 0.001 73.0 163.3 15.1 0.00 11.9
3320 AR DRAMA T DES 372 3 1.0 0.1 0.1 0.001 67.0 160.3 0.0 0.00 6.0
3321 AR DRAMA T DES 373 3 1.0 1.5 1.5 0.028 64.0 157.3 5.1 0.00 3.0
3322 AR DRAMA T DES 374 3 1.0 0.1 0.1 0.001 67.0 160.3 0.0 0.00 5.1
3323 AR DRAMA T DES 375 3 1.0 0.1 0.1 0.001 67.0 160.3 0.0 0.00 6.0
3324 AR DRAMA T DES 376 3 1.0 0.1 0.1 0.000 76.0 169.3 0.0 0.00 8.6
3325 AR DRAMA T DES 377 3 1.0 1.1 1.1 0.028 64.0 157.3 3.0 0.00 3.0
3326 AR DRAMA T DES 378 3 1.0 0.1 0.1 0.001 67.0 160.3 0.0 0.00 6.0
3327 AR DRAMA T DES 470 6 1.0 1.0 1.0 0.000 79.0 169.3 6.0 0.00 11.6
3328 AR DRAMA T DES 471 0 1.0 0.0 0.0 0.000 64.0 164.4 0.0 0.00 5.2
3329 AR DRAMA T DES 473 3 1.0 1.3 1.3 0.028 64.0 157.3 5.0 0.00 3.0
3330 AR DRAMA T DES 474 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.3
3331 AR DRAMA T DES 475 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
3332 AR DRAMA T DES 476 6 1.0 0.0 0.0 0.000 85.0 175.3 0.0 0.00 17.6
3333 AR DRAMA T DES 477 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.7
3334 AR DRAMA T DES 479 6 1.0 0.0 0.0 0.001 70.0 160.3 0.0 0.00 8.2
3335 AR MODLGCULST UKR 111 3 1.0 1.2 1.2 0.028 64.0 157.3 51.7 0.02 3.0
3336 AR MODLGCULST UKR 112 3 1.0 0.7 0.7 0.001 67.0 160.3 47.7 0.01 5.4
3337 AR MODLGCULST UKR 211 3 1.5 1.4 2.1 0.014 65.0 177.7 79.8 0.03 13.3
3338 AR MODLGCULST UKR 212 3 1.0 4.4 4.4 0.001 68.0 180.7 75.3 0.03 12.6
3339 AR MODLGCULST UKR 300 6 1.0 0.8 0.8 0.000 74.0 183.7 2.6 0.00 8.9
3340 AR MODLGCULST UKR 301 3 1.0 3.3 3.3 0.000 71.0 183.7 10.1 0.00 5.9
3341 AR MODLGCULST UKR 303 3 1.0 8.3 8.3 0.000 71.0 183.7 56.3 0.02 5.9
3342 AR MODLGCULST UKR 304 3 1.0 9.3 9.3 0.000 74.0 186.7 31.1 0.01 3.7
3343 AR MODLGCULST UKR 324 3 1.0 0.3 0.3 0.028 64.0 157.3 1.1 0.00 3.0
3344 AR MODLGCULST UKR 325 3 1.0 0.3 0.3 0.028 64.0 157.3 1.1 0.00 3.0
3345 AR MODLGCULST UKR 327 3 1.0 0.3 0.3 0.028 64.0 157.3 1.1 0.00 3.0
3346 AR MODLGCULST UKR 400 6 1.0 0.0 0.0 0.000 80.0 189.7 0.0 0.00 6.4
3347 AR MODLGCULST UKR 403 3 1.0 0.0 0.0 0.000 77.0 189.7 0.0 0.00 3.4
3348 AR MODLGCULST UKR 404 3 1.0 0.0 0.0 0.000 77.0 189.7 0.0 0.00 3.4
3349 AR MODLGCULST UKR 405 3 1.0 0.0 0.0 0.000 77.0 189.7 0.0 0.00 3.4
3350 AR MODLGCULST UKR 406 3 1.0 0.0 0.0 0.000 77.0 189.7 0.0 0.00 3.4
3351 AR MODLGCULST UKR 407 3 1.0 0.0 0.0 0.000 77.0 189.7 0.0 0.00 3.4
3352 AR MODLGCULST UKR 410 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
3353 AR MODLGCULST UKR 411 3 1.0 0.0 0.0 0.000 77.0 189.7 0.0 0.00 3.4
3354 AR MODLGCULST UKR 415 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
3355 AR MODLGCULST UKR 422 3 1.0 0.0 0.0 0.000 74.0 186.7 0.0 0.00 3.7
3356 AR MODLGCULST UKR 423 3 1.0 0.0 0.0 0.000 74.0 186.7 0.0 0.00 3.7
3357 AR MODLGCULST UKR 424 3 1.0 0.0 0.0 0.000 74.0 186.7 0.0 0.00 3.7
3358 AR MODLGCULST UKR 425 3 1.0 0.0 0.0 0.000 74.0 186.7 0.0 0.00 3.7
3359 AR MODLGCULST UKR 426 3 1.0 0.0 0.0 0.000 74.0 186.7 0.0 0.00 3.7
3360 AR MODLGCULST UKR 427 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
3361 AR MODLGCULST UKR 469 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
3362 AR MODLGCULST UKR 471 3 2.0 0.0 0.0 0.000 74.0 280.2 0.0 0.00 5.3
3363 AR MODLGCULST UKR 472 3 2.0 0.0 0.0 0.000 74.0 280.2 0.0 0.00 5.3
3364 AR MODLGCULST UKR 473 3 2.0 0.0 0.0 0.000 74.0 280.2 0.0 0.00 5.3
3365 AR MODLGCULST UKR 474 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
3366 AR MODLGCULST UKR 475 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
3367 AR MODLGCULST UKR 495 3 1.5 0.0 0.0 0.000 77.0 239.1 0.0 0.00 8.0
3368 AR MODLGCULST UKR 499 3 1.0 0.0 0.0 0.000 67.0 177.1 0.0 0.00 6.0
3369 AR WOMEN ST W ST 201 3 1.0 18.2 18.2 0.029 64.0 157.3 59.8 0.02 3.0
3370 AR WOMEN ST W ST 202 3 1.0 0.0 0.0 0.001 67.0 160.3 0.1 0.00 3.2
3371 AR WOMEN ST W ST 301 3 1.0 0.5 0.5 0.001 67.0 160.3 1.5 0.00 3.2
3372 AR WOMEN ST W ST 302 3 1.0 1.0 1.0 0.001 67.0 160.3 6.0 0.00 3.2
3373 AR WOMEN ST W ST 305 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.2
3374 AR WOMEN ST W ST 310 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.2
3375 AR WOMEN ST W ST 320 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.2
3376 AR WOMEN ST W ST 332 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.2
3377 AR WOMEN ST W ST 350 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.2
3378 AR WOMEN ST W ST 360 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.2
3379 AR WOMEN ST W ST 400 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.2
3380 AR WOMEN ST W ST 401 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.2
3381 AR WOMEN ST W ST 402 6 2.0 0.0 0.0 0.001 73.0 255.1 0.0 0.00 9.3
3382 AR WOMEN ST W ST 410 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.2
3383 AR WOMEN ST W ST 420 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.2
3384 AR WOMEN ST W ST 430 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.2
3385 AR WOMEN ST W ST 431 3 1.0 0.0 0.0 0.001 67.0 160.3 0.1 0.00 3.2
3386 AR WOMEN ST W ST 496 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.2
3387 AR WOMEN ST W ST 498 3 1.0 0.0 0.0 0.001 67.0 160.3 0.1 0.00 3.2
3388 AR ARTS WKEXP 801 0 1.0 2.0 2.0 0.000 62.5 193.5 3.0 0.00 3.5
3389 AR ARTS WKEXP 802 0 1.0 2.0 2.0 0.000 62.5 193.5 3.0 0.00 1.7
3390 AR ARTS WKEXP 803 0 1.0 1.0 1.0 0.000 62.5 193.5 3.0 0.00 0.9
3391 AR PSYCHOLOGY WKEXP 961 0 1.0 1.0 1.0 0.000 70.0 312.2 0.0 0.00 3.1
3392 AR PSYCHOLOGY WKEXP 962 0 1.0 1.0 1.0 0.000 70.0 312.2 0.0 0.00 3.1
3393 AR PSYCHOLOGY WKEXP 963 0 1.0 0.0 0.0 0.000 70.0 312.2 0.0 0.00 3.1
3394 AR ARTS WKEXP 970 0 1.0 0.0 0.0 0.000 62.5 193.5 0.0 0.00 3.5
3395 AR ARTS WKEXP 971 0 1.0 0.0 0.0 0.000 62.5 193.5 0.0 0.00 3.5
3396 AR ENGLISH WRITE 294 3 2.0 2.3 4.7 0.002 67.0 258.1 14.2 0.01 3.8
3397 AR ENGLISH WRITE 295 3 2.0 2.3 4.7 0.002 67.0 258.1 14.2 0.01 3.8
3398 AR ENGLISH WRITE 298 6 2.0 2.3 4.7 0.002 70.0 258.1 14.2 0.01 6.8
3399 AR ENGLISH WRITE 392 3 1.0 0.2 0.2 0.000 70.0 261.1 0.5 0.00 4.6
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3400 AR ENGLISH WRITE 393 3 1.0 0.2 0.2 0.000 70.0 261.1 0.5 0.00 4.6
3401 AR ENGLISH WRITE 394 6 1.0 1.2 1.2 0.000 73.0 261.1 3.5 0.00 7.6
3402 AR ENGLISH WRITE 395 6 1.0 1.2 1.2 0.000 73.0 261.1 3.5 0.00 7.6
3403 AR ENGLISH WRITE 397 3 1.0 0.2 0.2 0.000 73.0 264.1 0.5 0.00 5.9
3404 AR ENGLISH WRITE 398 6 1.0 1.2 1.2 0.000 76.0 264.1 3.5 0.00 8.9
3405 AR ENGLISH WRITE 399 3 1.0 0.2 0.2 0.000 70.0 262.1 0.5 0.00 5.0
3406 AR ENGLISH WRITE 494 3 1.0 0.0 0.0 0.000 76.0 267.1 0.0 0.00 9.6
3407 AR ENGLISH WRITE 495 3 1.0 0.0 0.0 0.000 76.0 267.1 0.0 0.00 9.6
3408 AR ENGLISH WRITE 498 3 1.0 0.0 0.0 0.000 79.0 270.1 0.0 0.00 10.5
3409 AR ENGLISH WRITE 532 3 1.0 0.0 0.0 0.000 73.0 266.4 0.0 0.00 8.8
3410 BC ACCTG & MIS ACCTG 300 3 1.0 1.3 1.3 0.028 64.0 157.3 34.5 0.01 3.0
3411 BC ACCTG & MIS ACCTG 311 3 2.0 13.8 27.7 0.002 70.0 255.1 101.1 0.05 3.2
3412 BC ACCTG & MIS ACCTG 322 3 1.0 11.0 11.0 0.000 73.0 258.1 51.5 0.03 3.2
3413 BC ACCTG & MIS ACCTG 412 3 2.0 2.0 4.0 0.000 73.0 394.3 12.0 0.01 3.5
3414 BC ACCTG & MIS ACCTG 414 3 2.0 2.5 5.0 0.000 76.0 371.9 12.0 0.01 3.5
3415 BC ACCTG & MIS ACCTG 415 3 2.0 1.5 3.0 0.000 76.0 437.0 6.0 0.00 4.8
3416 BC ACCTG & MIS ACCTG 416 3 2.0 0.0 0.0 0.000 79.0 435.2 0.0 0.00 4.6
3417 BC ACCTG & MIS ACCTG 418 3 1.0 0.0 0.0 0.000 79.0 440.0 0.0 0.00 6.2
3418 BC ACCTG & MIS ACCTG 424 3 2.0 1.0 2.0 0.000 76.0 331.5 3.0 0.00 3.5
3419 BC ACCTG & MIS ACCTG 426 3 1.0 0.0 0.0 0.000 79.0 334.5 0.0 0.00 6.5
3420 BC ACCTG & MIS ACCTG 432 3 1.0 1.0 1.0 0.000 76.0 419.1 3.0 0.00 5.5
3421 BC ACCTG & MIS ACCTG 433 3 1.0 0.0 0.0 0.000 79.0 422.1 0.0 0.00 8.5
3422 BC ACCTG & MIS ACCTG 435 3 3.0 0.0 0.0 0.000 76.0 472.7 0.0 0.00 3.7
3423 BC ACCTG & MIS ACCTG 436 3 2.0 0.0 0.0 0.000 73.0 444.9 0.0 0.00 3.4
3424 BC ACCTG & MIS ACCTG 437 3 3.0 0.0 0.0 0.000 76.0 472.7 0.0 0.00 3.7
3425 BC ACCTG & MIS ACCTG 442 3 2.0 0.1 0.2 0.000 76.0 371.9 0.3 0.00 3.5
3426 BC ACCTG & MIS ACCTG 456 3 1.0 0.0 0.0 0.000 76.0 386.8 0.0 0.00 4.6
3427 BC ACCTG & MIS ACCTG 462 3 3.0 0.0 0.0 0.000 76.0 432.2 0.0 0.00 3.7
3428 BC ACCTG & MIS ACCTG 467 3 1.0 1.0 1.0 0.000 76.0 386.8 3.0 0.00 4.6
3429 BC ACCTG & MIS ACCTG 468 3 1.0 0.0 0.0 0.000 79.0 389.8 0.0 0.00 7.6
3430 BC ACCTG & MIS ACCTG 480 3 1.0 0.0 0.0 0.000 67.0 230.8 0.0 0.00 3.9
3431 BC ACCTG & MIS ACCTG 488 3 2.0 0.0 0.0 0.000 76.0 371.9 0.0 0.00 3.5
3432 BC ACCTG & MIS ACCTG 489 3 2.0 0.0 0.0 0.000 76.0 371.9 0.0 0.00 3.5
3433 BC ACCTG & MIS ACCTG 490 1.5 1.0 1.0 1.0 0.000 65.5 230.8 1.5 0.00 2.4
3434 BC ACCTG & MIS ACCTG 491 1.5 1.0 0.0 0.0 0.000 67.0 232.3 0.0 0.00 3.9
3435 BC ACCTG & MIS ACCTG 495 3 1.0 1.0 1.0 0.000 67.0 230.8 6.0 0.00 3.9
3436 BC ACCTG & MIS ACCTG 496 3 1.0 1.0 1.0 0.000 70.0 233.8 3.0 0.00 6.9
3437 BC ACCTG & MIS ACCTG 497 3 1.0 0.0 0.0 0.000 73.0 236.8 0.0 0.00 9.9
3438 BC MRKBUSECLW B LAW 301 3 1.0 5.5 5.5 0.028 64.0 157.3 22.5 0.01 3.0
3439 BC MRKBUSECLW B LAW 402 3 1.0 0.0 0.0 0.001 67.0 308.6 0.0 0.00 4.6
3440 BC MRKBUSECLW B LAW 403 3 1.0 0.0 0.0 0.001 67.0 308.6 0.0 0.00 4.6
3441 BC MRKBUSECLW B LAW 422 3 1.0 0.0 0.0 0.001 67.0 308.6 0.0 0.00 4.6
3442 BC MRKBUSECLW B LAW 428 3 1.0 0.0 0.0 0.001 67.0 308.6 0.0 0.00 4.6
3443 BC MRKBUSECLW B LAW 432 3 1.0 0.0 0.0 0.001 67.0 308.6 0.0 0.00 4.6
3444 BC MRKBUSECLW B LAW 442 3 5.0 0.1 0.5 0.005 70.0 412.9 0.3 0.00 4.0
3445 BC MRKBUSECLW B LAW 444 3 5.0 0.1 0.5 0.005 70.0 412.9 0.3 0.00 4.0
3446 BC MRKBUSECLW B LAW 488 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.6
3447 BC MRKBUSECLW B LAW 490 1.5 1.0 1.0 1.0 0.001 65.5 160.3 1.5 0.00 2.1
3448 BC MRKBUSECLW B LAW 491 1.5 1.0 0.0 0.0 0.000 67.0 161.8 0.0 0.00 3.6
3449 BC MRKBUSECLW B LAW 495 3 1.0 1.0 1.0 0.001 67.0 160.3 6.0 0.00 3.6
3450 BC MRKBUSECLW B LAW 496 3 1.0 1.0 1.0 0.000 70.0 163.3 3.0 0.00 6.6
3451 BC MRKBUSECLW B LAW 497 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 9.6
3452 BC MRKBUSECLW BUEC 311 3 3.0 4.6 13.8 0.003 70.0 324.7 16.8 0.01 3.4
3453 BC MRKBUSECLW BUEC 342 3 5.0 1.1 5.5 0.005 70.0 412.9 3.6 0.00 4.0
3454 BC MRKBUSECLW BUEC 442 3 1.0 0.1 0.1 0.000 73.0 415.9 0.3 0.00 6.6
3455 BC MRKBUSECLW BUEC 448 3 1.0 0.0 0.0 0.000 70.0 378.4 0.0 0.00 6.5
3456 BC MRKBUSECLW BUEC 463 3 1.0 0.0 0.0 0.000 73.0 327.7 0.0 0.00 3.7
3457 BC MRKBUSECLW BUEC 466 3 5.0 0.0 0.0 0.005 70.0 412.9 0.0 0.00 4.0
3458 BC MRKBUSECLW BUEC 470 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.1
3459 BC MRKBUSECLW BUEC 479 3 1.0 0.0 0.0 0.000 73.0 327.7 0.0 0.00 3.7
3460 BC MRKBUSECLW BUEC 488 3 1.0 0.0 0.0 0.000 70.0 263.2 0.0 0.00 3.4
3461 BC MRKBUSECLW BUEC 490 1.5 1.0 1.0 1.0 0.000 68.5 263.2 1.5 0.00 1.9
3462 BC MRKBUSECLW BUEC 491 1.5 1.0 0.0 0.0 0.000 70.0 264.7 0.0 0.00 3.4
3463 BC MRKBUSECLW BUEC 495 3 1.0 1.0 1.0 0.000 70.0 263.2 6.0 0.00 3.4
3464 BC MRKBUSECLW BUEC 496 3 1.0 1.0 1.0 0.000 73.0 266.2 3.0 0.00 6.4
3465 BC MRKBUSECLW BUEC 497 3 1.0 0.0 0.0 0.000 76.0 269.2 0.0 0.00 9.4
3466 BC ORG ANALYS BUS 201 3 5.0 2.5 12.5 0.005 70.0 412.9 7.5 0.01 4.0
3467 BC ORG ANALYS BUS 488 3 1.0 0.0 0.0 0.000 73.0 415.9 0.0 0.00 4.6
3468 BC ORG ANALYS BUS 490 1.5 1.0 1.0 1.0 0.000 71.5 415.9 1.5 0.00 3.1
3469 BC ORG ANALYS BUS 491 1.5 1.0 0.0 0.0 0.000 73.0 417.4 0.0 0.00 4.6
3470 BC FINAN & MGSC FIN 301 3 2.0 18.0 36.0 0.002 68.0 288.7 83.1 0.05 4.0
3471 BC FINAN & MGSC FIN 412 3 2.0 2.0 4.0 0.000 71.0 397.1 9.0 0.01 3.4
3472 BC FINAN & MGSC FIN 413 3 1.0 0.0 0.0 0.000 71.0 291.7 0.0 0.00 3.2
3473 BC FINAN & MGSC FIN 414 3 1.0 0.0 0.0 0.000 71.0 291.7 0.0 0.00 3.2
3474 BC FINAN & MGSC FIN 416 3 1.0 1.0 1.0 0.000 74.0 400.1 3.0 0.00 4.7
3475 BC FINAN & MGSC FIN 418 3 1.0 0.0 0.0 0.000 74.0 400.1 0.0 0.00 4.7
3476 BC FINAN & MGSC FIN 422 3 2.0 0.0 0.0 0.000 71.0 397.1 0.0 0.00 3.4
3477 BC FINAN & MGSC FIN 424 3 1.0 0.0 0.0 0.000 71.0 291.7 0.0 0.00 3.2
3478 BC FINAN & MGSC FIN 434 3 2.0 0.0 0.0 0.000 71.0 397.1 0.0 0.00 3.4
3479 BC FINAN & MGSC FIN 436 3 1.0 0.0 0.0 0.000 77.0 403.1 0.0 0.00 7.7
3480 BC FINAN & MGSC FIN 442 3 1.0 0.1 0.1 0.000 71.0 291.7 0.3 0.00 3.2
3481 BC FINAN & MGSC FIN 480 3 1.0 0.0 0.0 0.000 71.0 291.7 0.0 0.00 3.2
3482 BC FINAN & MGSC FIN 488 3 1.0 0.0 0.0 0.000 71.0 291.7 0.0 0.00 3.2
3483 BC FINAN & MGSC FIN 490 1.5 1.0 1.0 1.0 0.000 69.5 291.7 1.5 0.00 1.7
3484 BC FINAN & MGSC FIN 491 1.5 1.0 0.0 0.0 0.000 71.0 293.2 0.0 0.00 3.2
3485 BC FINAN & MGSC FIN 495 3 1.0 1.0 1.0 0.000 71.0 291.7 6.0 0.00 3.2
3486 BC FINAN & MGSC FIN 496 3 1.0 1.0 1.0 0.000 74.0 294.7 3.0 0.00 6.2
3487 BC FINAN & MGSC FIN 497 3 1.0 0.0 0.0 0.000 77.0 297.7 0.0 0.00 9.2
3488 BC MRKBUSECLW MARK 301 3 3.0 13.3 40.0 0.003 70.0 324.7 54.3 0.03 3.4
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3488 BC MRKBUSECLW MARK 301 3 3.0 13.3 40.0 0.003 70.0 324.7 54.3 0.03 3.4
3489 BC MRKBUSECLW MARK 312 3 1.0 1.3 1.3 0.000 73.0 327.7 10.0 0.01 3.3
3490 BC MRKBUSECLW MARK 320 3 1.0 1.3 1.3 0.000 73.0 327.7 4.0 0.00 3.3
3491 BC MRKBUSECLW MARK 420 3 1.0 0.0 0.0 0.000 76.0 330.7 0.0 0.00 5.4
3492 BC MRKBUSECLW MARK 432 3 1.0 0.0 0.0 0.000 73.0 327.7 0.0 0.00 3.3
3493 BC MRKBUSECLW MARK 442 3 1.0 0.1 0.1 0.000 73.0 327.7 0.3 0.00 3.3
3494 BC MRKBUSECLW MARK 450 3 2.0 0.0 0.0 0.000 73.0 459.1 0.0 0.00 3.5
3495 BC MRKBUSECLW MARK 452 3 1.0 0.0 0.0 0.000 73.0 327.7 0.0 0.00 3.3
3496 BC MRKBUSECLW MARK 465 3 1.0 0.0 0.0 0.000 73.0 327.7 0.0 0.00 3.3
3497 BC MRKBUSECLW MARK 466 3 1.0 0.0 0.0 0.000 73.0 327.7 0.0 0.00 3.3
3498 BC MRKBUSECLW MARK 468 3 1.0 0.0 0.0 0.000 73.0 327.7 0.0 0.00 3.3
3499 BC MRKBUSECLW MARK 470 3 1.0 0.0 0.0 0.000 73.0 327.7 0.0 0.00 3.3
3500 BC MRKBUSECLW MARK 472 3 2.0 0.0 0.0 0.000 73.0 423.3 0.0 0.00 4.0
3501 BC MRKBUSECLW MARK 488 3 1.0 0.0 0.0 0.000 73.0 327.7 0.0 0.00 3.3
3502 BC MRKBUSECLW MARK 490 1.5 1.0 1.0 1.0 0.000 71.5 329.7 1.5 0.00 3.2
3503 BC MRKBUSECLW MARK 491 1.5 1.0 0.0 0.0 0.000 73.0 331.2 0.0 0.00 4.7
3504 BC MRKBUSECLW MARK 495 3 1.0 1.0 1.0 0.000 76.0 330.7 6.0 0.00 5.4
3505 BC MRKBUSECLW MARK 496 3 1.0 1.0 1.0 0.000 79.0 333.7 3.0 0.00 8.4
3506 BC MRKBUSECLW MARK 497 3 1.0 0.0 0.0 0.000 82.0 336.7 0.0 0.00 11.4
3507 BC FINAN & MGSC MGTSC 312 3 1.0 14.2 14.2 0.001 68.0 180.3 82.4 0.03 3.1
3508 BC FINAN & MGSC MGTSC 352 3 2.0 14.5 29.0 0.003 68.0 269.0 58.5 0.03 3.3
3509 BC FINAN & MGSC MGTSC 404 3 2.0 0.1 0.2 0.000 71.0 330.0 0.7 0.00 3.4
3510 BC FINAN & MGSC MGTSC 405 3 2.0 0.1 0.2 0.000 71.0 330.0 0.7 0.00 3.4
3511 BC FINAN & MGSC MGTSC 422 3 3.0 0.1 0.3 0.000 71.0 390.2 0.7 0.00 5.8
3512 BC FINAN & MGSC MGTSC 426 3 2.0 0.1 0.2 0.000 71.0 330.0 0.7 0.00 3.4
3513 BC FINAN & MGSC MGTSC 431 3 1.0 0.1 0.1 0.000 71.0 183.3 0.7 0.00 3.2
3514 BC FINAN & MGSC MGTSC 455 3 2.0 0.1 0.2 0.000 71.0 330.0 0.7 0.00 3.4
3515 BC FINAN & MGSC MGTSC 461 3 2.0 0.1 0.2 0.000 71.0 330.0 0.7 0.00 3.4
3516 BC FINAN & MGSC MGTSC 463 3 2.0 0.1 0.2 0.000 71.0 330.0 0.7 0.00 3.4
3517 BC FINAN & MGSC MGTSC 465 3 2.0 0.1 0.2 0.000 71.0 330.0 0.7 0.00 3.4
3518 BC FINAN & MGSC MGTSC 467 3 2.0 1.0 2.0 0.000 74.0 410.5 3.0 0.00 6.9
3519 BC FINAN & MGSC MGTSC 468 3 1.0 0.0 0.0 0.000 77.0 413.5 0.0 0.00 9.9
3520 BC FINAN & MGSC MGTSC 471 3 2.0 0.0 0.0 0.000 71.0 330.0 0.0 0.00 3.4
3521 BC FINAN & MGSC MGTSC 480 3 1.0 0.0 0.0 0.000 71.0 232.6 0.0 0.00 3.2
3522 BC FINAN & MGSC MGTSC 488 3 2.0 0.0 0.0 0.000 71.0 330.0 0.0 0.00 3.4
3523 BC FINAN & MGSC MGTSC 490 1.5 1.0 1.0 1.0 0.000 69.5 232.6 1.5 0.00 1.7
3524 BC FINAN & MGSC MGTSC 491 1.5 1.0 0.0 0.0 0.000 71.0 234.1 0.0 0.00 3.2
3525 BC FINAN & MGSC MGTSC 495 3 1.0 1.0 1.0 0.000 71.0 232.6 6.0 0.00 3.2
3526 BC FINAN & MGSC MGTSC 496 3 1.0 1.0 1.0 0.000 74.0 235.6 3.0 0.00 6.2
3527 BC FINAN & MGSC MGTSC 497 3 1.0 0.0 0.0 0.000 77.0 238.6 0.0 0.00 9.2
3528 BC ACCTG & MIS MIS 311 3 5.0 19.0 95.0 0.005 70.0 412.9 63.3 0.05 4.0
3529 BC ACCTG & MIS MIS 412 3 1.0 0.2 0.2 0.000 73.0 415.9 0.6 0.00 3.2
3530 BC ACCTG & MIS MIS 413 3 1.0 0.2 0.2 0.000 73.0 415.9 0.6 0.00 3.2
3531 BC ACCTG & MIS MIS 415 3 1.0 1.2 1.2 0.000 73.0 415.9 4.2 0.00 3.2
3532 BC ACCTG & MIS MIS 417 3 1.0 0.2 0.2 0.000 73.0 415.9 0.6 0.00 3.2
3533 BC ACCTG & MIS MIS 418 3 1.0 0.2 0.2 0.000 73.0 415.9 0.6 0.00 3.2
3534 BC ACCTG & MIS MIS 419 3 3.0 0.2 0.6 0.000 76.0 488.1 0.6 0.00 6.5
3535 BC ACCTG & MIS MIS 424 3 1.0 0.2 0.2 0.000 73.0 415.9 0.6 0.00 3.2
3536 BC ACCTG & MIS MIS 426 3 1.0 0.2 0.2 0.000 73.0 415.9 0.6 0.00 3.2
3537 BC ACCTG & MIS MIS 435 3 3.0 0.2 0.6 0.000 76.0 472.7 0.6 0.00 3.7
3538 BC ACCTG & MIS MIS 437 3 3.0 0.2 0.6 0.000 76.0 472.7 0.6 0.00 3.7
3539 BC ACCTG & MIS MIS 441 3 2.0 0.1 0.2 0.000 76.0 485.8 0.3 0.00 6.8
3540 BC ACCTG & MIS MIS 488 3 1.0 0.0 0.0 0.000 73.0 415.9 0.0 0.00 3.2
3541 BC ACCTG & MIS MIS 490 1.5 2.0 1.0 2.0 0.000 74.5 487.2 1.5 0.00 5.6
3542 BC ACCTG & MIS MIS 491 1.5 1.0 0.0 0.0 0.000 76.0 488.7 0.0 0.00 7.1
3543 BC ACCTG & MIS MIS 495 3 1.0 1.0 1.0 0.000 73.0 415.9 6.0 0.00 3.2
3544 BC ACCTG & MIS MIS 496 3 1.0 1.0 1.0 0.000 76.0 418.9 3.0 0.00 6.2
3545 BC ACCTG & MIS MIS 497 3 1.0 0.0 0.0 0.000 79.0 421.9 0.0 0.00 9.2
3546 BC ORG ANALYS ORG A 200 3 1.0 0.5 0.5 0.028 64.0 157.3 1.5 0.00 3.0
3547 BC ORG ANALYS ORG A 201 3 5.0 13.0 65.0 0.005 70.0 412.9 48.2 0.04 4.0
3548 BC ORG ANALYS ORG A 301 3 1.0 12.3 12.3 0.028 64.0 157.3 46.7 0.01 3.0
3549 BC ORG ANALYS ORG A 311 3 1.0 3.8 3.8 0.001 67.0 318.1 12.0 0.01 3.3
3550 BC ORG ANALYS ORG A 321 3 1.0 0.8 0.8 0.001 67.0 318.1 3.0 0.00 3.3
3551 BC ORG ANALYS ORG A 322 3 1.0 0.8 0.8 0.001 67.0 318.1 3.0 0.00 3.3
3552 BC ORG ANALYS ORG A 402 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3553 BC ORG ANALYS ORG A 403 3 5.0 0.0 0.0 0.005 70.0 412.9 0.0 0.00 4.0
3554 BC ORG ANALYS ORG A 404 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3555 BC ORG ANALYS ORG A 405 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3556 BC ORG ANALYS ORG A 406 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3557 BC ORG ANALYS ORG A 411 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3558 BC ORG ANALYS ORG A 412 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3559 BC ORG ANALYS ORG A 413 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3560 BC ORG ANALYS ORG A 414 3 1.0 0.0 0.0 0.000 70.0 321.1 0.0 0.00 3.9
3561 BC ORG ANALYS ORG A 415 3 1.0 0.0 0.0 0.000 70.0 321.1 0.0 0.00 3.9
3562 BC ORG ANALYS ORG A 416 3 1.0 0.0 0.0 0.000 70.0 321.1 0.0 0.00 3.9
3563 BC ORG ANALYS ORG A 417 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3564 BC ORG ANALYS ORG A 418 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3565 BC ORG ANALYS ORG A 419 3 5.0 0.0 0.0 0.005 70.0 412.9 0.0 0.00 4.0
3566 BC ORG ANALYS ORG A 420 3 5.0 0.0 0.0 0.005 70.0 412.9 0.0 0.00 4.0
3567 BC ORG ANALYS ORG A 422 3 5.0 0.0 0.0 0.005 70.0 412.9 0.0 0.00 4.0
3568 BC ORG ANALYS ORG A 423 3 5.0 0.0 0.0 0.005 70.0 412.9 0.0 0.00 4.0
3569 BC ORG ANALYS ORG A 428 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3570 BC ORG ANALYS ORG A 430 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3571 BC ORG ANALYS ORG A 431 3 2.0 0.0 0.0 0.001 71.0 422.2 0.0 0.00 3.5
3572 BC ORG ANALYS ORG A 432 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3573 BC ORG ANALYS ORG A 433 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3574 BC ORG ANALYS ORG A 434 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3575 BC ORG ANALYS ORG A 435 3 1.0 0.1 0.1 0.001 67.0 318.1 0.3 0.00 3.3
3576 BC ORG ANALYS ORG A 436 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3577 BC ORG ANALYS ORG A 437 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
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3577 BC ORG ANALYS ORG A 437 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3578 BC ORG ANALYS ORG A 438 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3579 BC ORG ANALYS ORG A 441 3 3.0 0.0 0.0 0.000 73.0 479.6 0.0 0.00 3.8
3580 BC ORG ANALYS ORG A 450 3 1.0 0.1 0.1 0.000 73.0 415.9 0.3 0.00 3.2
3581 BC ORG ANALYS ORG A 488 3 1.0 0.0 0.0 0.001 67.0 318.1 0.0 0.00 3.3
3582 BC ORG ANALYS ORG A 490 1.5 1.0 1.0 1.0 0.000 65.5 289.0 1.5 0.00 3.4
3583 BC ORG ANALYS ORG A 491 1.5 1.0 0.0 0.0 0.000 67.0 290.5 0.0 0.00 4.9
3584 BC ORG ANALYS ORG A 495 3 1.0 1.0 1.0 0.000 67.0 289.0 6.0 0.00 4.9
3585 BC ORG ANALYS ORG A 496 3 1.0 1.0 1.0 0.000 70.0 292.0 3.0 0.00 7.9
3586 BC ORG ANALYS ORG A 497 3 1.0 0.0 0.0 0.000 73.0 295.0 0.0 0.00 10.9
3587 BC BUSINESS WKEXP 911 0 1.0 1.0 1.0 0.000 64.0 289.0 0.0 0.00 1.9
3588 BC BUSINESS WKEXP 912 0 1.0 1.0 1.0 0.000 64.0 289.0 0.0 0.00 1.9
3589 BC BUSINESS WKEXP 913 0 1.0 0.0 0.0 0.000 64.0 289.0 0.0 0.00 1.9
3590 EN CH & MAT ENG CH E 243 3 2.0 11.6 23.2 0.000 79.0 424.2 227.4 0.18 4.4
3591 EN CH & MAT ENG CH E 312 3 4.0 11.2 44.8 0.000 82.0 483.7 97.4 0.09 4.8
3592 EN CH & MAT ENG CH E 314 3 3.0 10.2 30.6 0.000 85.0 520.4 60.6 0.06 4.6
3593 EN CH & MAT ENG CH E 318 3 3.0 4.2 12.6 0.000 88.0 543.4 32.5 0.03 4.7
3594 EN CH & MAT ENG CH E 343 3 2.0 5.7 11.4 0.000 85.0 508.5 58.2 0.06 4.1
3595 EN CH & MAT ENG CH E 345 3 3.0 6.2 18.6 0.000 88.0 530.3 29.2 0.03 5.4
3596 EN CH & MAT ENG CH E 351 3 4.0 1.2 4.8 0.001 85.0 524.9 9.7 0.01 5.5
3597 EN CH & MAT ENG CH E 358 3 4.0 1.7 6.8 0.000 91.0 561.0 5.7 0.01 9.6
3598 EN CH & MAT ENG CH E 374 3 4.0 4.2 16.8 0.000 79.0 445.4 75.2 0.06 4.0
3599 EN CH & MAT ENG CH E 416 3 3.0 5.6 16.9 0.000 91.0 551.4 19.7 0.02 5.3
3600 EN CH & MAT ENG CH E 435 3 3.0 0.1 0.4 0.000 97.0 571.0 0.4 0.00 11.5
3601 EN CH & MAT ENG CH E 445 3 3.0 1.1 3.4 0.000 91.0 555.3 3.9 0.00 5.5
3602 EN CH & MAT ENG CH E 446 3 3.0 2.1 6.4 0.000 85.0 493.9 6.4 0.01 3.8
3603 EN CH & MAT ENG CH E 448 3 4.0 0.1 0.6 0.000 88.0 515.0 0.4 0.00 5.3
3604 EN CH & MAT ENG CH E 454 3 3.0 0.1 0.4 0.000 94.0 563.6 0.4 0.00 8.3
3605 EN CH & MAT ENG CH E 458 3 1.0 1.1 1.1 0.000 82.0 522.3 3.9 0.00 4.9
3606 EN CH & MAT ENG CH E 459 3 1.0 0.1 0.1 0.000 85.0 525.3 0.4 0.00 7.3
3607 EN CH & MAT ENG CH E 464 3 4.0 2.1 8.6 0.000 94.0 563.9 7.3 0.01 5.9
3608 EN CH & MAT ENG CH E 465 3 3.0 0.1 0.4 0.000 97.0 568.0 0.4 0.00 7.6
3609 EN CH & MAT ENG CH E 482 3 1.0 0.1 0.1 0.000 94.0 554.4 0.4 0.00 3.9
3610 EN CH & MAT ENG CH E 484 3 1.0 0.5 0.5 0.001 68.0 183.0 1.4 0.00 3.2
3611 EN CH & MAT ENG CH E 485 3 3.0 0.1 0.4 0.000 82.0 477.2 0.4 0.00 4.2
3612 EN CH & MAT ENG CH E 486 3 1.0 0.1 0.1 0.000 71.0 308.7 0.4 0.00 3.3
3613 EN CH & MAT ENG CH E 512 3 1.0 0.0 0.0 0.000 85.0 486.7 0.0 0.00 3.4
3614 EN CH & MAT ENG CH E 520 3 1.0 0.0 0.0 0.000 85.0 486.7 0.0 0.00 3.4
3615 EN CH & MAT ENG CH E 522 3 1.0 0.0 0.0 0.000 88.0 511.5 0.0 0.00 3.7
3616 EN CH & MAT ENG CH E 534 3 2.0 0.0 0.0 0.000 88.0 526.8 0.0 0.00 3.9
3617 EN CH & MAT ENG CH E 537 3 1.0 0.0 0.0 0.000 94.0 554.4 0.0 0.00 3.9
3618 EN CH & MAT ENG CH E 555 3 2.0 0.0 0.0 0.000 82.0 469.3 0.0 0.00 4.1
3619 EN CH & MAT ENG CH E 572 3 3.0 0.0 0.0 0.000 91.0 555.3 0.0 0.00 5.5
3620 EN CH & MAT ENG CH E 573 3 2.0 0.0 0.0 0.000 94.0 567.0 0.0 0.00 10.5
3621 EN CH & MAT ENG CH E 576 3 1.0 0.0 0.0 0.000 88.0 496.9 0.0 0.00 4.8
3622 EN CH & MAT ENG CH E 580 3 1.0 0.0 0.0 0.000 88.0 523.4 0.0 0.00 3.4
3623 EN CH & MAT ENG CH E 581 3 1.0 0.0 0.0 0.000 71.0 308.7 0.0 0.00 3.3
3624 EN CH & MAT ENG CH E 582 3 1.0 0.0 0.0 0.000 68.0 198.4 0.0 0.00 5.5
3625 EN CH & MAT ENG CH E 583 3 1.0 0.0 0.0 0.000 88.0 511.5 0.0 0.00 3.7
3626 EN CH & MAT ENG CH E 594 3 1.0 0.0 0.0 0.000 71.0 524.5 0.0 0.00 7.9
3627 EN CH & MAT ENG CH E 596 3 1.0 0.0 0.0 0.000 71.0 524.5 0.0 0.00 7.9
3628 EN CIV & ENVIR CIV E 221 3 2.0 2.6 5.3 0.001 71.0 263.5 35.2 0.02 4.3
3629 EN CIV & ENVIR CIV E 240 3 3.0 1.0 3.0 0.001 74.0 387.9 13.1 0.01 6.2
3630 EN CIV & ENVIR CIV E 250 3 2.0 3.1 6.3 0.000 76.0 277.5 23.4 0.01 3.5
3631 EN CIV & ENVIR CIV E 251 1.5 2.0 1.1 2.3 0.000 77.5 394.7 13.6 0.01 3.2
3632 EN CIV & ENVIR CIV E 265 3 2.0 2.1 4.3 0.000 73.0 229.4 28.2 0.01 3.8
3633 EN CIV & ENVIR CIV E 270 3 2.0 9.1 18.3 0.000 76.0 277.5 83.2 0.04 4.6
3634 EN CIV & ENVIR CIV E 290 3 2.0 1.1 2.3 0.000 76.0 277.7 11.6 0.01 3.7
3635 EN CIV & ENVIR CIV E 295 3 3.0 2.1 6.4 0.000 79.0 381.5 22.0 0.02 3.9
3636 EN CIV & ENVIR CIV E 303 3 2.0 3.3 6.5 0.000 80.5 483.1 10.1 0.01 12.0
3637 EN CIV & ENVIR CIV E 312 3 1.0 0.2 0.2 0.000 79.0 280.5 0.8 0.00 4.1
3638 EN CIV & ENVIR CIV E 315 3 2.0 0.2 0.4 0.000 79.0 395.0 0.8 0.00 8.1
3639 EN CIV & ENVIR CIV E 321 3 2.0 6.2 12.4 0.000 82.0 434.6 24.8 0.02 5.7
3640 EN CIV & ENVIR CIV E 330 3 2.0 3.2 6.4 0.000 79.0 363.5 39.2 0.03 3.4
3641 EN CIV & ENVIR CIV E 331 3 2.0 4.7 9.4 0.000 82.0 429.3 21.4 0.02 5.3
3642 EN CIV & ENVIR CIV E 372 3 1.0 3.2 3.2 0.000 79.0 280.5 19.7 0.01 3.5
3643 EN CIV & ENVIR CIV E 374 3 1.0 2.2 2.2 0.000 82.0 283.5 9.8 0.01 4.1
3644 EN CIV & ENVIR CIV E 381 3 2.0 2.2 4.4 0.000 82.0 443.8 12.8 0.01 5.4
3645 EN CIV & ENVIR CIV E 391 3 2.0 1.2 2.4 0.000 74.0 269.5 4.7 0.00 4.7
3646 EN CIV & ENVIR CIV E 395 3 2.0 0.2 0.4 0.000 82.0 448.4 0.8 0.00 5.0
3647 EN CIV & ENVIR CIV E 398 3 2.0 0.2 0.4 0.000 79.0 384.5 0.8 0.00 3.7
3648 EN CIV & ENVIR CIV E 404 3 1.0 0.0 0.0 0.000 82.0 283.5 0.0 0.00 4.1
3649 EN CIV & ENVIR CIV E 406 3 1.0 0.0 0.0 0.000 83.5 486.1 0.0 0.00 6.7
3650 EN CIV & ENVIR CIV E 409 3 2.0 0.0 0.0 0.000 83.5 513.8 0.0 0.00 7.8
3651 EN CIV & ENVIR CIV E 421 3 1.0 1.5 1.5 0.000 85.0 437.6 4.5 0.00 3.9
3652 EN CIV & ENVIR CIV E 429 3 2.0 0.0 0.0 0.000 88.0 504.6 0.0 0.00 8.5
3653 EN CIV & ENVIR CIV E 431 3 2.0 1.0 2.0 0.000 85.0 493.3 3.0 0.00 5.1
3654 EN CIV & ENVIR CIV E 433 3 1.0 0.5 0.5 0.000 85.0 437.6 3.8 0.00 3.9
3655 EN CIV & ENVIR CIV E 439 3 2.0 0.0 0.0 0.000 88.0 504.1 0.0 0.00 9.1
3656 EN CIV & ENVIR CIV E 474 3 1.0 2.0 2.0 0.000 85.0 286.5 6.0 0.00 4.9
3657 EN CIV & ENVIR CIV E 479 3 1.0 0.0 0.0 0.000 88.0 289.5 0.0 0.00 5.4
3658 EN CIV & ENVIR CIV E 481 3 1.0 2.0 2.0 0.000 85.0 446.8 6.0 0.01 5.5
3659 EN CIV & ENVIR CIV E 489 3 1.0 0.0 0.0 0.000 88.0 449.8 0.0 0.00 5.7
3660 EN CIV & ENVIR CIV E 490 3 1.0 0.0 0.0 0.000 77.0 402.4 0.0 0.00 6.1
3661 EN CIV & ENVIR CIV E 499 3 1.0 0.0 0.0 0.000 77.0 392.5 0.0 0.00 6.1
3662 EN CIV & ENVIR CIV E 506 3 1.0 0.0 0.0 0.000 83.5 486.1 0.0 0.00 6.7
3663 EN CIV & ENVIR CIV E 521 3 3.0 0.0 0.0 0.000 88.0 493.0 0.0 0.00 8.2
3664 EN CIV & ENVIR CIV E 540 3 1.0 0.0 0.0 0.000 85.0 432.3 0.0 0.00 4.1
3665 EN CIV & ENVIR CIV E 574 3 2.0 0.0 0.0 0.000 88.0 387.5 0.0 0.00 7.3
3666 EN CIV & ENVIR CIV E 591 3 1.0 0.0 0.0 0.000 88.0 449.8 0.0 0.00 5.7
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3666 EN CIV & ENVIR CIV E 591 3 1.0 0.0 0.0 0.000 88.0 449.8 0.0 0.00 5.7
3667 EN CH & MAT ENG CME 200 1 6.0 0.0 0.0 0.000 77.0 493.8 0.0 0.00 3.7
3668 EN CH & MAT ENG CME 265 3 5.0 6.5 32.5 0.000 82.0 502.6 85.4 0.08 4.6
3669 EN CH & MAT ENG CME 481 1 2.0 1.0 2.0 0.000 73.0 478.1 1.0 0.00 3.7
3670 EN CH & MAT ENG CME 483 1 1.0 0.0 0.0 0.000 74.0 479.1 0.0 0.00 4.7
3671 EN ELEC & COMP CMPE 210 3 2.0 1.0 2.0 0.000 73.0 274.8 13.8 0.01 4.1
3672 EN ELEC & COMP CMPE 300 3 1.0 3.2 3.2 0.000 74.0 273.2 9.9 0.01 3.7
3673 EN ELEC & COMP CMPE 310 3 1.0 1.2 1.2 0.000 76.0 277.8 10.8 0.01 7.1
3674 EN ELEC & COMP CMPE 320 3 1.0 1.2 1.2 0.000 79.0 280.8 6.9 0.00 9.1
3675 EN ELEC & COMP CMPE 382 3 1.0 0.2 0.2 0.000 76.0 308.2 0.9 0.00 4.0
3676 EN ELEC & COMP CMPE 401 3 1.0 0.0 0.0 0.000 76.0 308.2 0.0 0.00 4.0
3677 EN ELEC & COMP CMPE 402 3 1.0 0.0 0.0 0.000 73.0 195.4 0.0 0.00 3.5
3678 EN ELEC & COMP CMPE 410 3 2.0 1.0 2.0 0.000 82.0 411.9 3.0 0.00 11.7
3679 EN ELEC & COMP CMPE 420 3 1.0 0.0 0.0 0.000 77.0 276.2 0.0 0.00 4.2
3680 EN ELEC & COMP CMPE 440 3 1.0 0.0 0.0 0.000 85.0 414.9 0.0 0.00 14.7
3681 EN ELEC & COMP CMPE 449 3 1.0 0.0 0.0 0.000 77.0 276.2 0.0 0.00 4.2
3682 EN ELEC & COMP CMPE 480 3 1.0 1.3 1.3 0.000 91.0 515.5 4.0 0.00 5.8
3683 EN ELEC & COMP CMPE 487 3 1.0 0.0 0.0 0.000 77.0 276.2 0.0 0.00 4.2
3684 EN ELEC & COMP CMPE 490 3 1.0 0.0 0.0 0.000 76.0 405.3 0.0 0.00 5.1
3685 EN ELEC & COMP CMPE 498 3 1.0 1.0 1.0 0.000 76.0 433.5 3.0 0.00 5.8
3686 EN ELEC & COMP CMPE 499 3 1.0 0.0 0.0 0.000 79.0 436.5 0.0 0.00 8.8
3687 EN ELEC & COMP E E 231 3 4.0 1.0 4.0 0.000 79.0 424.1 13.8 0.01 4.5
3688 EN ELEC & COMP E E 238 3 3.0 3.0 9.0 0.000 79.0 408.6 67.1 0.05 4.3
3689 EN ELEC & COMP E E 239 3 2.0 2.0 4.0 0.000 70.0 192.4 21.3 0.01 5.4
3690 EN ELEC & COMP E E 240 3 2.0 4.0 8.0 0.000 76.0 277.5 130.2 0.07 3.5
3691 EN ELEC & COMP E E 250 3 4.0 4.0 16.0 0.000 82.0 479.5 67.1 0.06 5.7
3692 EN ELEC & COMP E E 280 3 2.0 2.0 4.0 0.000 70.0 192.4 31.8 0.01 5.4
3693 EN ELEC & COMP E E 315 3 3.0 3.5 10.4 0.000 79.0 450.7 15.3 0.01 4.4
3694 EN ELEC & COMP E E 317 3 1.0 0.5 0.5 0.000 77.0 397.7 1.8 0.00 4.0
3695 EN ELEC & COMP E E 323 3 2.0 0.5 0.9 0.000 82.0 457.5 1.8 0.00 6.0
3696 EN ELEC & COMP E E 330 3 1.0 2.5 2.5 0.000 85.0 482.5 15.5 0.01 4.4
3697 EN ELEC & COMP E E 332 3 1.0 1.5 1.5 0.000 88.0 485.5 4.8 0.00 4.8
3698 EN ELEC & COMP E E 335 3 4.0 4.0 15.8 0.000 80.0 440.8 73.0 0.06 5.8
3699 EN ELEC & COMP E E 338 3 1.0 4.4 4.4 0.000 82.0 428.1 13.5 0.01 4.4
3700 EN ELEC & COMP E E 340 3 1.0 3.5 3.5 0.000 85.0 482.5 30.3 0.03 4.4
3701 EN ELEC & COMP E E 350 3 1.0 2.5 2.5 0.000 88.0 485.5 10.8 0.01 4.3
3702 EN ELEC & COMP E E 351 3 2.0 2.5 4.9 0.000 88.0 512.5 14.8 0.01 7.0
3703 EN ELEC & COMP E E 357 3 2.0 3.5 6.9 0.000 85.0 494.8 10.8 0.01 5.9
3704 EN ELEC & COMP E E 380 3 1.0 4.7 4.7 0.000 73.0 276.6 27.2 0.01 4.8
3705 EN ELEC & COMP E E 387 3 2.0 3.5 6.9 0.000 82.0 484.2 10.8 0.01 9.0
3706 EN ELEC & COMP E E 390 3 1.0 2.5 2.5 0.000 82.0 428.1 7.8 0.01 4.4
3707 EN ELEC & COMP E E 400 3 3.0 1.0 3.0 0.000 91.0 548.1 3.0 0.00 8.6
3708 EN ELEC & COMP E E 401 3 1.0 0.0 0.0 0.000 94.0 551.1 0.0 0.00 11.6
3709 EN ELEC & COMP E E 404 3 1.0 0.0 0.0 0.000 85.0 487.2 0.0 0.00 5.6
3710 EN ELEC & COMP E E 430 3 1.0 1.0 1.0 0.000 88.0 485.5 3.0 0.00 4.8
3711 EN ELEC & COMP E E 431 3 1.0 0.0 0.0 0.000 88.0 485.5 0.0 0.00 4.3
3712 EN ELEC & COMP E E 432 3 1.0 0.0 0.0 0.000 91.0 488.5 0.0 0.00 6.3
3713 EN ELEC & COMP E E 433 3 1.0 0.0 0.0 0.000 91.0 488.5 0.0 0.00 7.8
3714 EN ELEC & COMP E E 441 3 1.0 0.0 0.0 0.000 85.0 431.1 0.0 0.00 4.0
3715 EN ELEC & COMP E E 451 3 2.0 0.0 0.0 0.000 91.0 506.7 0.0 0.00 7.2
3716 EN ELEC & COMP E E 452 3 1.0 0.0 0.0 0.000 76.0 460.2 0.0 0.00 5.3
3717 EN ELEC & COMP E E 453 3 1.0 0.0 0.0 0.000 94.0 518.5 0.0 0.00 7.4
3718 EN ELEC & COMP E E 457 3 1.0 0.0 0.0 0.000 76.0 460.2 0.0 0.00 5.3
3719 EN ELEC & COMP E E 459 3 1.0 0.0 0.0 0.000 76.0 460.2 0.0 0.00 5.3
3720 EN ELEC & COMP E E 460 3 1.0 0.0 0.0 0.000 88.0 497.8 0.0 0.00 4.7
3721 EN ELEC & COMP E E 461 3 2.0 0.0 0.0 0.000 85.0 498.1 0.0 0.00 6.5
3722 EN ELEC & COMP E E 462 3 1.0 1.0 1.0 0.000 77.0 247.3 3.0 0.00 3.2
3723 EN ELEC & COMP E E 463 3 2.0 0.0 0.0 0.000 88.0 513.7 0.0 0.00 6.1
3724 EN ELEC & COMP E E 469 3 1.0 0.0 0.0 0.000 77.0 247.3 0.0 0.00 3.2
3725 EN ELEC & COMP E E 470 3 1.0 1.0 1.0 0.000 82.0 453.7 3.0 0.00 4.3
3726 EN ELEC & COMP E E 471 3 1.0 0.5 0.5 0.000 82.0 453.7 1.5 0.00 4.3
3727 EN ELEC & COMP E E 472 3 1.0 0.0 0.0 0.000 80.0 463.8 0.0 0.00 6.5
3728 EN ELEC & COMP E E 473 3 2.0 0.0 0.0 0.000 85.0 505.6 0.0 0.00 8.7
3729 EN ELEC & COMP E E 474 3 1.0 0.0 0.0 0.000 82.0 453.7 0.0 0.00 4.3
3730 EN ELEC & COMP E E 488 3 2.0 0.0 0.0 0.000 85.0 501.5 0.0 0.00 7.4
3731 EN ELEC & COMP E E 489 3 2.0 0.0 0.0 0.000 85.0 501.5 0.0 0.00 7.4
3732 EN ELEC & COMP E E 494 1 1.0 1.0 1.0 0.000 74.0 433.5 3.0 0.00 3.8
3733 EN ELEC & COMP E E 495 3 1.0 0.0 0.0 0.000 77.0 434.5 0.0 0.00 6.8
3734 EN ELEC & COMP E E 498 3 1.0 1.0 1.0 0.000 76.0 433.5 3.0 0.00 5.8
3735 EN ELEC & COMP E E 499 3 1.0 0.0 0.0 0.000 79.0 436.5 0.0 0.00 8.8
3736 EN ELEC & COMP ECE 200 2 2.0 0.0 0.0 0.000 69.0 192.4 0.0 0.00 4.4
3737 EN ELEC & COMP ENCMP 100 3 2.0 12.0 24.0 0.000 70.0 192.4 231.0 0.08 5.4
3738 EN EN ENGG 100 1 2.0 2.0 4.0 0.000 68.0 192.4 217.0 0.08 3.4
3739 EN EN ENGG 101 1 1.0 8.5 8.5 0.000 69.0 193.4 214.2 0.08 2.7
3740 EN CIV & ENVIR ENGG 130 3 1.0 3.0 3.0 0.001 73.0 191.3 374.0 0.13 4.0
3741 EN CIV & ENVIR ENGG 208 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
3742 EN CIV & ENVIR ENGG 209 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
3743 EN CNTRCOOPED ENGG 299 1 2.0 1.0 2.0 0.000 68.0 192.4 0.0 0.00 3.4
3744 EN MECH ENGG ENGG 310 3 1.0 5.0 5.0 0.000 72.0 194.4 22.1 0.01 3.3
3745 EN EN ENGG 400 1 1.0 0.0 0.0 0.000 73.0 197.4 0.0 0.00 1.7
3746 EN MECH ENGG ENGG 401 3 1.0 5.0 5.0 0.000 72.0 194.4 22.1 0.01 3.3
3747 EN MECH ENGG ENGG 402 3 1.0 0.0 0.0 0.000 67.0 351.4 0.0 0.00 6.4
3748 EN MECH ENGG ENGG 403 3 1.0 0.0 0.0 0.000 75.0 197.4 0.0 0.00 3.7
3749 EN CH & MAT ENG ENGG 404 3 1.0 0.0 0.0 0.000 67.0 322.7 0.0 0.00 4.3
3750 EN MECH ENGG ENGG 405 3 1.0 0.0 0.0 0.000 75.0 197.4 0.0 0.00 3.7
3751 EN CH & MAT ENG ENGG 406 3 1.0 0.0 0.0 0.000 67.0 322.7 0.0 0.00 4.3
3752 EN EN ENGG 420 3 1.0 2.5 2.5 0.000 76.0 397.5 7.5 0.01 6.4
3753 EN CIV & ENVIR ENV E 220 3 1.0 3.0 3.0 0.000 71.0 176.8 49.8 0.02 3.3
3754 EN CIV & ENVIR ENV E 222 3 1.0 4.5 4.5 0.000 74.0 179.8 35.8 0.01 4.1
3755 EN CIV & ENVIR ENV E 302 3 1.0 0.0 0.0 0.000 77.0 182.8 0.4 0.00 3.9
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3755 EN CIV & ENVIR ENV E 302 3 1.0 0.0 0.0 0.000 77.0 182.8 0.4 0.00 3.9
3756 EN CIV & ENVIR ENV E 320 3 2.0 0.5 1.1 0.000 85.0 480.2 4.1 0.00 5.2
3757 EN CIV & ENVIR ENV E 322 3 1.0 1.0 1.0 0.000 74.0 179.8 4.8 0.00 4.1
3758 EN CIV & ENVIR ENV E 323 3 1.0 0.0 0.0 0.000 77.0 182.8 0.4 0.00 3.9
3759 EN CIV & ENVIR ENV E 324 3 1.0 3.5 3.5 0.000 77.0 182.8 11.6 0.00 3.9
3760 EN CIV & ENVIR ENV E 351 3 3.0 2.0 6.1 0.000 79.0 443.8 6.4 0.01 7.3
3761 EN CIV & ENVIR ENV E 400 3 2.0 0.5 1.0 0.000 77.0 272.5 1.5 0.00 7.9
3762 EN CIV & ENVIR ENV E 401 3 1.0 0.5 0.5 0.000 80.0 185.8 1.5 0.00 4.1
3763 EN CIV & ENVIR ENV E 421 3 3.0 1.5 4.5 0.000 88.0 506.8 4.5 0.00 9.7
3764 EN CIV & ENVIR ENV E 432 3 2.0 0.0 0.0 0.000 82.0 481.4 0.0 0.00 7.7
3765 EN CIV & ENVIR ENV E 434 3 2.0 0.0 0.0 0.000 85.0 520.5 0.0 0.00 9.1
3766 EN CIV & ENVIR ENV E 440 3 3.0 0.0 0.0 0.000 91.0 517.7 0.0 0.00 16.6
3767 EN CIV & ENVIR ENV E 471 3 1.0 0.0 0.0 0.000 79.0 280.5 0.0 0.00 3.5
3768 EN CH & MAT ENG MAT E 251 3 1.0 1.2 1.2 0.000 71.0 176.8 7.0 0.00 3.3
3769 EN CH & MAT ENG MAT E 252 3 1.0 5.2 5.2 0.000 71.0 176.8 59.1 0.02 3.3
3770 EN CH & MAT ENG MAT E 256 3 1.0 1.3 1.3 0.000 74.0 179.8 36.5 0.01 3.6
3771 EN CH & MAT ENG MAT E 331 3 1.0 3.6 3.6 0.000 79.0 277.5 11.3 0.01 3.7
3772 EN CH & MAT ENG MAT E 332 3 2.0 1.6 3.3 0.000 85.0 511.5 6.3 0.01 4.3
3773 EN CH & MAT ENG MAT E 340 3 1.0 5.3 5.3 0.000 82.0 427.2 27.7 0.02 3.4
3774 EN CH & MAT ENG MAT E 345 3 1.0 2.3 2.3 0.000 74.0 179.8 7.0 0.00 4.7
3775 EN CH & MAT ENG MAT E 353 3 1.0 0.6 0.6 0.000 71.0 176.8 2.0 0.00 3.3
3776 EN CH & MAT ENG MAT E 357 3 1.0 4.3 4.3 0.000 77.0 182.8 32.5 0.01 5.7
3777 EN CH & MAT ENG MAT E 358 3 1.0 3.3 3.3 0.000 80.0 185.8 10.0 0.00 4.3
3778 EN CH & MAT ENG MAT E 365 3 5.0 1.3 6.6 0.000 88.0 554.1 4.0 0.00 8.1
3779 EN CH & MAT ENG MAT E 408 3 1.0 0.0 0.0 0.000 82.0 280.5 0.0 0.00 4.0
3780 EN CH & MAT ENG MAT E 410 3 1.0 0.0 0.0 0.000 83.0 188.8 0.0 0.00 4.1
3781 EN CH & MAT ENG MAT E 411 3 1.0 0.0 0.0 0.000 74.0 180.8 0.0 0.00 5.1
3782 EN CH & MAT ENG MAT E 430 3 2.0 0.3 0.7 0.000 85.0 511.5 2.3 0.00 4.3
3783 EN CH & MAT ENG MAT E 433 3 1.0 0.0 0.0 0.000 82.0 427.2 0.0 0.00 3.4
3784 EN CH & MAT ENG MAT E 434 3 3.0 0.0 0.0 0.000 88.0 535.6 0.0 0.00 7.6
3785 EN CH & MAT ENG MAT E 440 3 3.0 0.0 0.0 0.000 88.0 530.5 0.0 0.00 4.5
3786 EN CH & MAT ENG MAT E 441 1 1.0 1.0 1.0 0.000 72.0 373.7 3.0 0.00 3.3
3787 EN CH & MAT ENG MAT E 442 3 1.0 0.0 0.0 0.000 75.0 374.7 0.0 0.00 6.3
3788 EN CH & MAT ENG MAT E 443 3 5.0 0.0 0.0 0.000 83.0 480.0 0.0 0.00 9.7
3789 EN CH & MAT ENG MAT E 448 0.5 1.0 0.0 0.0 0.000 77.5 185.8 0.0 0.00 1.8
3790 EN CH & MAT ENG MAT E 452 3 1.0 4.0 4.0 0.000 80.0 185.8 12.0 0.00 4.3
3791 EN CH & MAT ENG MAT E 454 3 1.0 0.0 0.0 0.000 74.0 373.7 0.0 0.00 5.3
3792 EN CH & MAT ENG MAT E 455 3 1.0 0.0 0.0 0.000 77.0 182.8 0.0 0.00 5.1
3793 EN CH & MAT ENG MAT E 456 3 1.0 0.0 0.0 0.000 83.0 188.8 0.0 0.00 4.1
3794 EN CH & MAT ENG MAT E 460 3 1.0 0.0 0.0 0.000 74.0 179.8 0.0 0.00 5.3
3795 EN CH & MAT ENG MAT E 462 3 1.0 0.0 0.0 0.000 83.0 188.8 0.0 0.00 4.3
3796 EN CH & MAT ENG MAT E 463 3 1.0 0.0 0.0 0.000 83.0 188.8 0.0 0.00 4.3
3797 EN CH & MAT ENG MAT E 465 3 1.0 0.0 0.0 0.000 91.0 557.1 0.0 0.00 9.2
3798 EN CH & MAT ENG MAT E 467 3 4.0 0.0 0.0 0.000 85.0 511.1 0.0 0.00 5.2
3799 EN CH & MAT ENG MAT E 480 3 2.0 1.0 2.0 0.000 85.0 457.4 3.0 0.00 5.0
3800 EN CH & MAT ENG MAT E 481 3 1.0 0.0 0.0 0.000 88.0 460.4 0.0 0.00 8.0
3801 EN CH & MAT ENG MAT E 489 3 1.0 0.0 0.0 0.000 83.0 188.8 0.0 0.00 4.1
3802 EN CH & MAT ENG MAT E 533 2 1.0 0.0 0.0 0.000 81.0 280.5 0.0 0.00 3.0
3803 EN MECH ENGG MEC E 200 1 1.0 0.0 0.0 0.000 71.0 195.4 0.0 0.00 1.5
3804 EN MECH ENGG MEC E 250 3 3.0 4.0 12.0 0.000 79.0 436.4 48.9 0.04 5.7
3805 EN MECH ENGG MEC E 260 3 1.0 3.0 3.0 0.000 76.0 198.4 18.5 0.01 6.5
3806 EN MECH ENGG MEC E 265 3 1.0 1.0 1.0 0.000 73.0 195.4 21.5 0.01 3.5
3807 EN MECH ENGG MEC E 300 3 4.0 1.0 4.0 0.000 85.0 512.5 3.0 0.00 7.6
3808 EN MECH ENGG MEC E 301 3 1.0 2.0 2.0 0.000 85.0 482.6 8.5 0.01 3.7
3809 EN MECH ENGG MEC E 330 3 3.0 7.0 21.0 0.000 82.0 479.6 36.9 0.03 5.0
3810 EN MECH ENGG MEC E 340 3 1.0 2.0 2.0 0.000 82.0 427.2 6.0 0.00 3.4
3811 EN MECH ENGG MEC E 360 3 1.0 2.0 2.0 0.000 79.0 201.4 6.0 0.00 5.2
3812 EN MECH ENGG MEC E 362 3 1.0 1.0 1.0 0.000 82.0 439.4 3.0 0.00 4.4
3813 EN MECH ENGG MEC E 364 3 1.0 0.0 0.0 0.000 79.0 201.4 0.0 0.00 5.2
3814 EN MECH ENGG MEC E 370 3 3.0 4.0 12.0 0.000 85.0 502.6 12.4 0.01 4.6
3815 EN MECH ENGG MEC E 380 3 1.0 3.0 3.0 0.000 79.0 201.4 9.5 0.00 5.2
3816 EN MECH ENGG MEC E 390 3 3.0 1.0 3.0 0.000 77.0 365.5 3.0 0.00 3.8
3817 EN MECH ENGG MEC E 403 3 2.0 0.0 0.0 0.000 88.0 520.7 0.0 0.00 12.4
3818 EN MECH ENGG MEC E 409 3 2.0 1.0 2.0 0.000 88.0 510.0 2.5 0.00 5.5
3819 EN MECH ENGG MEC E 420 3 1.0 0.0 0.0 0.000 80.0 368.5 0.0 0.00 6.8
3820 EN MECH ENGG MEC E 430 3 1.0 0.0 0.0 0.000 85.0 482.6 0.0 0.00 3.7
3821 EN MECH ENGG MEC E 439 3 1.0 0.0 0.0 0.000 88.0 505.6 0.0 0.00 4.2
3822 EN MECH ENGG MEC E 443 3 1.0 0.0 0.0 0.000 85.0 430.2 0.0 0.00 4.7
3823 EN MECH ENGG MEC E 451 3 2.0 0.0 0.0 0.000 82.0 488.3 0.0 0.00 5.0
3824 EN MECH ENGG MEC E 460 3 7.0 0.0 0.0 0.000 88.0 556.8 0.0 0.00 15.9
3825 EN MECH ENGG MEC E 463 3 1.0 0.0 0.0 0.000 88.0 505.6 0.0 0.00 4.2
3826 EN MECH ENGG MEC E 469 2.5 1.0 0.0 0.0 0.000 90.5 513.0 0.0 0.00 8.0
3827 EN MECH ENGG MEC E 480 3 3.0 0.0 0.0 0.000 82.0 452.8 0.0 0.00 7.8
3828 EN MECH ENGG MEC E 494 0.5 2.0 1.0 2.0 0.000 82.5 514.0 3.0 0.00 2.9
3829 EN MECH ENGG MEC E 495 3 1.0 0.0 0.0 0.000 85.5 514.5 0.0 0.00 5.9
3830 EN CIV & ENVIR MIN E 295 3 1.0 5.0 5.0 0.000 72.0 194.4 37.2 0.01 3.3
3831 EN CIV & ENVIR MIN E 310 3 4.0 3.1 12.5 0.000 79.0 463.6 23.4 0.02 5.1
3832 EN CIV & ENVIR MIN E 323 3 1.0 2.1 2.1 0.000 79.0 280.5 19.8 0.01 3.5
3833 EN CIV & ENVIR MIN E 324 3 1.0 1.1 1.1 0.000 75.0 197.4 13.9 0.01 3.7
3834 EN CIV & ENVIR MIN E 325 3 3.0 3.1 9.4 0.000 82.0 483.1 19.9 0.02 7.1
3835 EN CIV & ENVIR MIN E 330 3 2.0 1.1 2.2 0.000 75.0 232.4 12.3 0.01 6.4
3836 EN CIV & ENVIR MIN E 402 3 4.0 1.1 4.5 0.000 88.0 565.9 3.8 0.00 20.4
3837 EN CIV & ENVIR MIN E 403 3 1.0 0.1 0.1 0.000 91.0 568.9 0.4 0.00 21.1
3838 EN CIV & ENVIR MIN E 407 3 1.0 0.1 0.1 0.000 85.0 509.0 0.4 0.00 5.6
3839 EN CIV & ENVIR MIN E 408 3 2.0 0.1 0.2 0.000 79.0 337.1 0.4 0.00 4.3
3840 EN CIV & ENVIR MIN E 413 3 4.0 1.6 6.5 0.000 85.0 544.4 8.8 0.01 14.2
3841 EN CIV & ENVIR MIN E 414 3 3.0 2.1 6.4 0.000 85.0 518.3 10.5 0.01 10.2
3842 EN CIV & ENVIR MIN E 420 3 1.0 0.1 0.1 0.000 88.0 534.3 0.4 0.00 9.8
3843 EN CIV & ENVIR MIN E 428 2 1.0 0.1 0.1 0.000 74.0 197.4 0.4 0.00 2.7
3844 EN CIV & ENVIR MIN E 555 3 1.0 0.0 0.0 0.000 77.0 493.8 0.0 0.00 12.4
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3844 EN CIV & ENVIR MIN E 555 3 1.0 0.0 0.0 0.000 77.0 493.8 0.0 0.00 12.4
3845 EN CIV & ENVIR MP E 322 3 1.0 0.0 0.0 0.000 79.0 280.5 0.4 0.00 3.5
3846 EN CIV & ENVIR MP E 499 1 1.0 0.0 0.0 0.000 74.0 432.0 0.0 0.00 4.6
3847 EN CIV & ENVIR PET E 295 3 2.0 5.0 10.0 0.000 70.0 192.4 37.1 0.01 5.4
3848 EN CIV & ENVIR PET E 362 3 3.0 4.5 13.4 0.000 82.0 495.1 26.1 0.02 4.9
3849 EN CIV & ENVIR PET E 364 3 3.0 1.5 4.4 0.000 85.0 501.1 4.4 0.00 4.4
3850 EN CIV & ENVIR PET E 365 3 1.0 0.5 0.5 0.000 85.0 498.1 0.7 0.00 4.1
3851 EN CIV & ENVIR PET E 366 3 2.0 0.5 0.9 0.000 85.0 509.3 0.7 0.00 4.5
3852 EN CIV & ENVIR PET E 367 3 3.0 0.5 1.4 0.000 88.0 539.3 0.7 0.00 8.2
3853 EN CIV & ENVIR PET E 368 3 1.0 0.5 0.5 0.000 73.0 195.4 0.7 0.00 4.1
3854 EN CIV & ENVIR PET E 444 3 1.0 0.0 0.0 0.000 85.0 498.1 0.0 0.00 4.1
3855 EN CIV & ENVIR PET E 470 3 1.0 1.0 1.0 0.000 88.0 501.1 3.0 0.00 4.4
3856 EN CIV & ENVIR PET E 471 3 1.0 0.0 0.0 0.000 91.0 504.1 0.0 0.00 7.4
3857 EN CIV & ENVIR PET E 473 3 1.0 3.0 3.0 0.000 85.0 498.1 12.0 0.01 4.1
3858 EN CIV & ENVIR PET E 475 3 1.0 0.0 0.0 0.000 88.0 501.1 0.0 0.00 4.4
3859 EN CIV & ENVIR PET E 477 3 3.0 0.0 0.0 0.000 88.0 530.4 0.0 0.00 5.0
3860 EN CIV & ENVIR PET E 484 3 1.0 1.0 1.0 0.000 75.0 197.4 3.0 0.00 3.7
3861 EN CIV & ENVIR PET E 488 0.5 2.0 0.0 0.0 0.000 73.5 485.3 0.0 0.00 5.7
3862 EN CIV & ENVIR PET E 489 1 1.0 0.0 0.0 0.000 74.0 476.7 0.0 0.00 5.2
3863 EN CIV & ENVIR PET E 496 3 1.0 0.0 0.0 0.000 78.0 200.4 0.0 0.00 6.7
3864 EN CNTRCOOPED WKEXP 901 0 1.0 1.0 1.0 0.000 68.0 193.4 0.0 0.00 3.4
3865 EN CNTRCOOPED WKEXP 902 0 1.0 1.0 1.0 0.000 68.0 193.4 0.0 0.00 3.4
3866 EN CNTRCOOPED WKEXP 903 0 1.0 1.0 1.0 0.000 68.0 193.4 0.0 0.00 3.4
3867 EN CNTRCOOPED WKEXP 904 0 1.0 1.0 1.0 0.000 68.0 193.4 0.0 0.00 3.4
3868 EN CNTRCOOPED WKEXP 905 0 1.0 0.0 0.0 0.000 68.0 193.4 0.0 0.00 3.4
3869 SC PHYSICS ASTRO 120 3 3.0 1.3 4.0 0.029 65.0 190.7 13.4 0.00 4.9
3870 SC PHYSICS ASTRO 122 3 3.0 1.3 4.0 0.029 65.0 190.7 13.4 0.00 4.9
3871 SC PHYSICS ASTRO 320 3 4.0 1.0 4.0 0.001 74.0 450.8 3.0 0.00 8.2
3872 SC PHYSICS ASTRO 322 3 4.0 0.0 0.0 0.001 74.0 450.8 0.0 0.00 8.2
3873 SC PHYSICS ASTRO 429 3 1.0 0.0 0.0 0.000 85.0 503.2 0.0 0.00 3.6
3874 SC PHYSICS ASTRO 430 3 3.0 0.0 0.0 0.000 83.0 523.6 0.0 0.00 6.7
3875 SC PHYSICS ASTRO 465 3 4.0 0.0 0.0 0.000 80.0 524.5 0.0 0.00 13.7
3876 SC BIOLOG SCI BIOIN 301 3 2.0 1.3 2.5 0.000 74.0 288.0 3.9 0.00 3.9
3877 SC BIOLOG SCI BIOIN 401 3 3.0 0.0 0.0 0.000 77.0 498.3 0.0 0.00 12.5
3878 SC BIOLOG SCI BIOL 107 3 3.0 31.8 95.3 0.031 65.0 180.0 661.1 0.22 5.9
3879 SC BIOLOG SCI BIOL 108 3 2.0 25.7 51.3 0.029 65.0 170.8 456.4 0.15 4.4
3880 SC BIOLOG SCI BIOL 201 3 2.0 4.2 8.4 0.002 68.0 305.7 34.6 0.02 3.5
3881 SC BIOLOG SCI BIOL 207 3 1.0 13.2 13.2 0.002 68.0 183.0 148.0 0.05 3.2
3882 SC BIOLOG SCI BIOL 208 3 1.5 17.1 25.7 0.002 67.0 217.7 134.8 0.06 4.2
3883 SC BIOLOG SCI BIOL 299 1.5 1.0 1.2 1.2 0.001 66.5 179.0 5.4 0.00 1.7
3884 SC BIOLOG SCI BIOL 314 3 2.0 0.3 0.5 0.001 69.5 302.4 0.9 0.00 3.9
3885 SC BIOLOG SCI BIOL 315 3 1.0 0.3 0.3 0.000 72.5 319.1 0.9 0.00 6.4
3886 SC BIOLOG SCI BIOL 321 3 2.0 0.3 0.5 0.001 71.0 272.5 0.9 0.00 3.4
3887 SC BIOLOG SCI BIOL 330 3 2.0 0.3 0.5 0.001 70.0 303.6 0.9 0.00 3.3
3888 SC BIOLOG SCI BIOL 331 3 3.0 2.0 6.1 0.002 70.0 359.1 7.0 0.00 3.6
3889 SC BIOLOG SCI BIOL 332 3 3.0 1.5 4.6 0.002 70.0 359.1 5.4 0.00 3.6
3890 SC BIOLOG SCI BIOL 333 3 2.0 0.4 0.7 0.001 69.5 312.3 1.3 0.00 5.0
3891 SC BIOLOG SCI BIOL 335 3 2.0 1.3 2.5 0.001 69.5 305.9 4.0 0.00 4.0
3892 SC BIOLOG SCI BIOL 340 3 3.0 0.3 0.8 0.001 71.0 416.7 0.9 0.00 3.8
3893 SC BIOLOG SCI BIOL 361 3 1.0 16.3 16.3 0.000 70.0 200.1 70.4 0.03 3.5
3894 SC BIOLOG SCI BIOL 364 3 1.0 1.4 1.4 0.000 70.0 220.7 5.6 0.00 3.2
3895 SC BIOLOG SCI BIOL 365 3 1.0 0.4 0.4 0.000 73.0 223.7 1.3 0.00 5.3
3896 SC BIOLOG SCI BIOL 366 3 1.0 0.4 0.4 0.000 70.0 220.7 1.3 0.00 3.2
3897 SC BIOLOG SCI BIOL 367 3 1.0 0.6 0.6 0.000 70.0 220.7 2.0 0.00 3.2
3898 SC BIOLOG SCI BIOL 380 3 1.0 1.3 1.3 0.000 71.0 186.0 4.0 0.00 3.2
3899 SC BIOLOG SCI BIOL 381 3 1.0 0.3 0.3 0.000 70.0 220.7 0.9 0.00 3.2
3900 SC BIOLOG SCI BIOL 391 3 2.0 1.8 3.5 0.000 71.0 361.4 7.5 0.01 3.4
3901 SC BIOLOG SCI BIOL 400 3 1.0 0.0 0.0 0.000 72.5 319.1 0.0 0.00 5.3
3902 SC BIOLOG SCI BIOL 430 3 2.0 0.3 0.7 0.001 72.5 373.3 1.0 0.00 6.6
3903 SC BIOLOG SCI BIOL 432 3 3.0 0.1 0.3 0.002 74.0 441.2 0.4 0.00 6.7
3904 SC BIOLOG SCI BIOL 433 3 1.0 0.0 0.0 0.000 73.0 387.3 0.0 0.00 5.0
3905 SC BIOLOG SCI BIOL 450 3 1.0 0.1 0.1 0.000 70.0 220.7 0.4 0.00 3.2
3906 SC BIOLOG SCI BIOL 464 3 3.0 0.0 0.0 0.001 72.5 415.9 0.0 0.00 7.2
3907 SC BIOLOG SCI BIOL 468 3 1.0 0.0 0.0 0.000 71.0 291.1 0.0 0.00 6.2
3908 SC BIOLOG SCI BIOL 470 3 3.0 0.1 0.3 0.001 73.0 431.9 0.4 0.00 5.4
3909 SC BIOLOG SCI BIOL 490 3 1.0 0.0 0.0 0.000 72.5 319.1 0.0 0.00 6.5
3910 SC BIOLOG SCI BIOL 495 3 1.0 0.0 0.0 0.000 72.5 319.1 0.0 0.00 6.5
3911 SC BIOLOG SCI BIOL 498 3 1.0 0.0 0.0 0.000 72.5 319.1 0.0 0.00 6.5
3912 SC BIOLOG SCI BIOL 499 3 1.0 0.0 0.0 0.000 72.5 319.1 0.0 0.00 6.5
3913 SC BIOLOG SCI BOT 205 3 1.0 8.9 8.9 0.001 68.0 173.8 53.0 0.02 3.2
3914 SC BIOLOG SCI BOT 210 3 1.0 3.6 3.6 0.001 68.0 173.8 19.8 0.01 3.2
3915 SC BIOLOG SCI BOT 240 3 2.0 4.8 9.6 0.002 68.0 283.9 19.7 0.01 3.4
3916 SC BIOLOG SCI BOT 303 3 3.0 1.6 4.7 0.000 71.0 415.8 5.4 0.00 4.7
3917 SC BIOLOG SCI BOT 306 3 2.0 0.5 1.0 0.001 69.5 304.1 1.7 0.00 3.9
3918 SC BIOLOG SCI BOT 308 3 2.0 1.3 2.6 0.001 71.0 263.5 4.7 0.00 3.5
3919 SC BIOLOG SCI BOT 310 3 2.0 0.3 0.6 0.000 71.0 266.5 1.2 0.00 4.2
3920 SC BIOLOG SCI BOT 314 3 3.0 0.3 1.0 0.001 71.0 357.0 1.2 0.00 4.6
3921 SC BIOLOG SCI BOT 321 3 2.0 1.3 2.6 0.001 71.0 263.5 5.4 0.00 3.5
3922 SC BIOLOG SCI BOT 322 3 3.0 0.3 1.0 0.001 74.0 400.7 1.2 0.00 6.5
3923 SC BIOLOG SCI BOT 330 3 2.0 0.3 0.6 0.000 70.0 321.5 1.2 0.00 4.0
3924 SC BIOLOG SCI BOT 332 3 4.0 2.2 8.6 0.002 71.0 406.6 7.2 0.01 5.0
3925 SC BIOLOG SCI BOT 350 3 2.0 0.3 0.6 0.000 71.0 361.4 1.2 0.00 3.5
3926 SC BIOLOG SCI BOT 380 3 1.0 0.3 0.3 0.000 69.5 231.8 1.2 0.00 3.8
3927 SC BIOLOG SCI BOT 382 3 2.0 1.3 2.6 0.001 69.5 305.8 4.7 0.00 4.0
3928 SC BIOLOG SCI BOT 384 3 2.0 0.3 0.6 0.000 71.0 300.6 1.2 0.00 3.6
3929 SC BIOLOG SCI BOT 403 3 2.0 0.1 0.2 0.000 74.0 451.5 0.5 0.00 8.5
3930 SC BIOLOG SCI BOT 409 3 1.0 0.1 0.1 0.000 74.0 266.5 0.5 0.00 5.7
3931 SC BIOLOG SCI BOT 411 3 2.0 0.1 0.2 0.000 71.0 371.1 0.5 0.00 7.3
3932 SC BIOLOG SCI BOT 431 3 2.0 0.1 0.2 0.000 71.0 424.7 0.5 0.00 7.3
3933 SC BIOLOG SCI BOT 445 3 2.0 0.1 0.2 0.000 72.5 382.2 0.5 0.00 6.2
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3933 SC BIOLOG SCI BOT 445 3 2.0 0.1 0.2 0.000 72.5 382.2 0.5 0.00 6.2
3934 SC CHEMISTRY CHEM 101 3 2.0 18.3 36.6 0.030 65.0 170.8 871.0 0.28 4.5
3935 SC CHEMISTRY CHEM 102 3 1.0 20.6 20.6 0.003 68.0 173.8 744.0 0.24 3.2
3936 SC CHEMISTRY CHEM 103 3 2.0 4.5 9.0 0.028 65.0 170.8 933.9 0.30 4.5
3937 SC CHEMISTRY CHEM 105 3 1.0 12.6 12.6 0.001 68.0 173.8 894.4 0.29 4.0
3938 SC CHEMISTRY CHEM 161 3 2.0 21.3 42.6 0.030 65.0 170.8 665.9 0.21 4.5
3939 SC CHEMISTRY CHEM 211 3 1.0 3.5 3.5 0.000 71.0 176.8 132.4 0.04 3.2
3940 SC CHEMISTRY CHEM 213 3 1.0 1.5 1.5 0.000 74.0 179.8 38.2 0.01 3.9
3941 SC CHEMISTRY CHEM 241 3 2.0 1.5 3.1 0.001 71.0 304.1 80.9 0.05 3.6
3942 SC CHEMISTRY CHEM 243 3 1.0 5.0 5.0 0.000 74.0 307.1 47.6 0.03 5.3
3943 SC CHEMISTRY CHEM 261 3 2.0 7.5 15.1 0.000 71.0 269.5 577.9 0.29 3.5
3944 SC CHEMISTRY CHEM 263 3 1.0 21.8 21.8 0.003 68.0 225.8 438.2 0.19 3.3
3945 SC CHEMISTRY CHEM 282 3 4.0 6.4 25.6 0.001 71.0 429.5 64.4 0.05 6.2
3946 SC CHEMISTRY CHEM 298 3 3.0 4.5 13.6 0.000 74.0 360.4 44.9 0.03 4.3
3947 SC CHEMISTRY CHEM 299 1.5 1.0 0.5 0.5 0.001 66.5 173.8 30.9 0.01 1.7
3948 SC CHEMISTRY CHEM 303 3 3.0 1.9 5.6 0.000 71.0 425.3 8.2 0.01 4.6
3949 SC CHEMISTRY CHEM 305 3 3.0 1.4 4.1 0.000 77.0 446.8 4.4 0.00 7.4
3950 SC CHEMISTRY CHEM 311 3 2.0 1.4 2.8 0.000 74.0 485.7 4.4 0.00 4.2
3951 SC CHEMISTRY CHEM 313 3 5.0 7.4 36.9 0.002 74.0 498.6 22.4 0.02 9.1
3952 SC CHEMISTRY CHEM 333 3 2.0 2.9 5.8 0.000 71.0 307.1 8.9 0.01 3.4
3953 SC CHEMISTRY CHEM 361 3 2.0 2.4 4.8 0.000 71.0 304.1 20.9 0.01 3.3
3954 SC CHEMISTRY CHEM 363 3 1.0 4.4 4.4 0.000 74.0 307.1 13.4 0.01 4.4
3955 SC CHEMISTRY CHEM 371 3 2.0 4.9 9.8 0.000 71.0 285.3 49.4 0.03 3.5
3956 SC CHEMISTRY CHEM 373 3 1.0 3.8 3.8 0.000 74.0 288.3 13.7 0.01 3.7
3957 SC CHEMISTRY CHEM 398 3 3.0 1.4 4.1 0.000 77.0 496.6 4.4 0.00 6.0
3958 SC CHEMISTRY CHEM 400 3 1.0 0.0 0.0 0.000 74.0 404.9 0.0 0.00 5.2
3959 SC CHEMISTRY CHEM 401 3 1.0 1.0 1.0 0.000 74.0 404.9 3.0 0.00 5.2
3960 SC CHEMISTRY CHEM 403 3 1.0 0.0 0.0 0.000 77.0 407.9 0.0 0.00 8.2
3961 SC CHEMISTRY CHEM 405 3 1.0 0.0 0.0 0.000 74.0 404.9 0.0 0.00 5.2
3962 SC CHEMISTRY CHEM 413 3 1.0 0.0 0.0 0.000 77.0 501.6 0.0 0.00 4.2
3963 SC CHEMISTRY CHEM 415 3 1.0 0.0 0.0 0.000 77.0 501.6 0.0 0.00 4.2
3964 SC CHEMISTRY CHEM 417 3 1.0 0.0 0.0 0.000 77.0 501.6 0.0 0.00 4.2
3965 SC CHEMISTRY CHEM 419 3 1.0 0.0 0.0 0.000 77.0 501.6 0.0 0.00 4.2
3966 SC CHEMISTRY CHEM 421 3 1.0 0.0 0.0 0.000 77.0 501.6 0.0 0.00 4.2
3967 SC CHEMISTRY CHEM 423 3 1.0 0.0 0.0 0.000 77.0 501.6 0.0 0.00 4.2
3968 SC CHEMISTRY CHEM 433 3 1.5 0.0 0.0 0.000 74.0 419.7 0.0 0.00 5.2
3969 SC CHEMISTRY CHEM 436 3 1.5 0.0 0.0 0.000 74.0 419.7 0.0 0.00 5.2
3970 SC CHEMISTRY CHEM 437 3 2.0 0.0 0.0 0.000 77.0 470.3 0.0 0.00 6.2
3971 SC CHEMISTRY CHEM 438 3 1.5 0.0 0.0 0.000 74.0 419.7 0.0 0.00 5.2
3972 SC CHEMISTRY CHEM 439 3 2.0 0.0 0.0 0.000 77.0 470.3 0.0 0.00 6.2
3973 SC CHEMISTRY CHEM 444 3 1.0 0.0 0.0 0.000 74.0 404.9 0.0 0.00 5.2
3974 SC CHEMISTRY CHEM 461 3 1.0 0.0 0.0 0.000 77.0 310.1 0.0 0.00 4.0
3975 SC CHEMISTRY CHEM 465 3 1.0 0.0 0.0 0.000 77.0 310.1 0.0 0.00 4.0
3976 SC CHEMISTRY CHEM 467 3 1.0 0.0 0.0 0.000 77.0 310.1 0.0 0.00 4.0
3977 SC CHEMISTRY CHEM 477 3 3.0 0.0 0.0 0.000 77.0 509.0 0.0 0.00 7.1
3978 SC CHEMISTRY CHEM 479 3 4.0 0.0 0.0 0.000 77.0 515.9 0.0 0.00 7.4
3979 SC CHEMISTRY CHEM 483 3 3.0 0.0 0.0 0.000 77.0 509.0 0.0 0.00 7.1
3980 SC CHEMISTRY CHEM 489 3 2.0 0.0 0.0 0.000 77.0 482.9 0.0 0.00 6.1
3981 SC CHEMISTRY CHEM 493 3 2.0 0.0 0.0 0.000 74.0 502.4 0.0 0.00 6.1
3982 SC CHEMISTRY CHEM 495 3 2.0 0.0 0.0 0.000 74.0 502.4 0.0 0.00 6.1
3983 SC COMPUT SCI CMPUT 101 3 1.0 1.1 1.1 0.028 64.0 157.3 87.9 0.03 3.0
3984 SC COMPUT SCI CMPUT 114 3 2.0 2.1 4.3 0.029 65.0 177.3 193.9 0.06 3.7
3985 SC COMPUT SCI CMPUT 115 3 1.0 7.6 7.6 0.001 68.0 180.3 177.2 0.06 4.7
3986 SC COMPUT SCI CMPUT 201 3 2.0 8.4 16.7 0.000 71.0 270.2 103.8 0.05 5.9
3987 SC COMPUT SCI CMPUT 204 3 3.0 6.9 20.6 0.001 71.0 333.2 43.3 0.03 7.1
3988 SC COMPUT SCI CMPUT 229 3 2.0 4.5 9.1 0.000 74.0 329.2 43.5 0.03 4.3
3989 SC COMPUT SCI CMPUT 272 3 1.0 2.3 2.3 0.001 67.0 172.9 129.1 0.04 5.2
3990 SC COMPUT SCI CMPUT 291 3 1.0 0.8 0.8 0.000 71.0 183.3 5.3 0.00 3.6
3991 SC COMPUT SCI CMPUT 299 3 1.0 0.3 0.3 0.001 67.0 177.2 1.2 0.00 4.7
3992 SC COMPUT SCI CMPUT 300 3 3.0 0.7 2.1 0.000 74.0 482.8 1.9 0.00 8.2
3993 SC COMPUT SCI CMPUT 301 3 1.0 4.8 4.8 0.000 74.0 273.2 17.3 0.01 3.7
3994 SC COMPUT SCI CMPUT 304 3 3.0 0.8 2.3 0.000 74.0 451.1 2.3 0.00 5.8
3995 SC COMPUT SCI CMPUT 306 3 3.0 0.8 2.3 0.000 77.0 430.4 2.3 0.00 5.5
3996 SC COMPUT SCI CMPUT 313 3 2.0 2.3 4.6 0.000 77.0 419.1 6.8 0.01 5.4
3997 SC COMPUT SCI CMPUT 320 3 2.0 0.8 1.6 0.000 74.0 416.8 2.3 0.00 4.7
3998 SC COMPUT SCI CMPUT 325 3 2.0 2.8 5.6 0.001 74.0 362.1 8.3 0.01 4.2
3999 SC COMPUT SCI CMPUT 329 3 1.0 1.8 1.8 0.000 73.0 276.6 12.7 0.01 4.8
4000 SC COMPUT SCI CMPUT 340 3 4.0 0.8 3.1 0.001 77.0 458.4 2.3 0.00 6.1
4001 SC COMPUT SCI CMPUT 366 3 3.0 1.8 5.3 0.000 74.0 454.4 5.3 0.00 6.2
4002 SC COMPUT SCI CMPUT 379 3 1.0 4.3 4.3 0.000 74.0 307.2 18.8 0.01 3.9
4003 SC COMPUT SCI CMPUT 391 3 1.0 1.8 1.8 0.000 74.0 272.1 5.3 0.00 5.3
4004 SC COMPUT SCI CMPUT 399 3 1.0 0.8 0.8 0.000 70.0 258.8 2.3 0.00 5.2
4005 SC COMPUT SCI CMPUT 400 3 1.0 0.0 0.0 0.000 73.0 390.1 0.0 0.00 4.9
4006 SC COMPUT SCI CMPUT 401 3 2.0 1.0 2.0 0.000 77.0 412.3 3.0 0.00 4.7
4007 SC COMPUT SCI CMPUT 402 3 1.0 0.0 0.0 0.000 80.0 415.3 0.0 0.00 7.7
4008 SC COMPUT SCI CMPUT 410 3 3.0 0.0 0.0 0.000 80.0 489.8 0.0 0.00 9.1
4009 SC COMPUT SCI CMPUT 411 3 3.0 0.0 0.0 0.001 77.0 436.2 0.0 0.00 5.1
4010 SC COMPUT SCI CMPUT 412 3 1.0 0.0 0.0 0.000 73.0 242.0 0.0 0.00 5.7
4011 SC COMPUT SCI CMPUT 414 3 1.0 0.0 0.0 0.000 73.0 390.1 0.0 0.00 6.9
4012 SC COMPUT SCI CMPUT 415 3 2.0 0.0 0.0 0.000 76.0 463.5 0.0 0.00 7.9
4013 SC COMPUT SCI CMPUT 422 3 1.0 0.0 0.0 0.000 77.0 369.9 0.0 0.00 4.6
4014 SC COMPUT SCI CMPUT 425 3 3.0 0.0 0.0 0.000 77.0 473.7 0.0 0.00 6.2
4015 SC COMPUT SCI CMPUT 429 3 1.0 0.0 0.0 0.000 74.0 296.8 0.0 0.00 3.9
4016 SC COMPUT SCI CMPUT 466 3 1.0 0.0 0.0 0.000 77.0 457.4 0.0 0.00 6.5
4017 SC COMPUT SCI CMPUT 474 3 2.0 0.0 0.0 0.000 77.0 427.2 0.0 0.00 5.4
4018 SC COMPUT SCI CMPUT 495 0 1.0 0.0 0.0 0.000 70.0 390.1 0.0 0.00 3.9
4019 SC COMPUT SCI CMPUT 496 3 1.0 0.0 0.0 0.000 73.0 390.1 0.0 0.00 6.9
4020 SC COMPUT SCI CMPUT 497 3 1.0 0.0 0.0 0.000 73.0 390.1 0.0 0.00 6.9
4021 SC COMPUT SCI CMPUT 498 3 1.0 0.0 0.0 0.000 73.0 390.1 0.0 0.00 6.9
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4022 SC COMPUT SCI CMPUT 499 3 1.0 0.0 0.0 0.000 73.0 390.1 0.0 0.00 6.9
4023 SC EARTH ATSC EAS 100 3 1.0 8.1 8.1 0.028 64.0 157.3 118.0 0.03 3.0
4024 SC EARTH ATSC EAS 105 3 1.0 1.4 1.4 0.001 67.0 160.3 21.4 0.01 3.4
4025 SC EARTH ATSC EAS 110 3 1.0 0.2 0.2 0.000 67.0 233.5 5.4 0.00 3.6
4026 SC EARTH ATSC EAS 200 1 1.0 0.1 0.1 0.000 68.0 209.8 0.4 0.00 1.7
4027 SC EARTH ATSC EAS 201 3 1.0 6.3 6.3 0.001 67.0 206.8 70.5 0.03 4.4
4028 SC EARTH ATSC EAS 202 3 1.0 0.1 0.1 0.001 67.0 206.8 0.4 0.00 4.4
4029 SC EARTH ATSC EAS 204 3 1.0 0.1 0.1 0.000 67.0 233.5 0.4 0.00 3.6
4030 SC EARTH ATSC EAS 205 3 1.0 0.1 0.1 0.001 67.0 206.8 0.4 0.00 4.4
4031 SC EARTH ATSC EAS 206 3 1.0 0.1 0.1 0.000 67.0 233.5 0.4 0.00 3.6
4032 SC EARTH ATSC EAS 207 3 1.0 0.1 0.1 0.001 67.0 206.8 0.4 0.00 4.4
4033 SC EARTH ATSC EAS 208 3 1.0 0.5 0.5 0.001 67.0 160.3 1.4 0.00 3.4
4034 SC EARTH ATSC EAS 209 3 1.0 0.1 0.1 0.000 67.0 233.5 0.4 0.00 3.6
4035 SC EARTH ATSC EAS 210 3 2.0 8.3 16.6 0.001 72.0 283.4 129.4 0.07 4.7
4036 SC EARTH ATSC EAS 212 3 1.0 0.1 0.1 0.001 67.0 206.8 0.4 0.00 4.4
4037 SC EARTH ATSC EAS 221 3 1.0 5.5 5.5 0.001 67.0 206.8 20.7 0.01 4.4
4038 SC EARTH ATSC EAS 222 3 1.0 1.0 1.0 0.000 67.0 233.5 3.2 0.00 3.6
4039 SC EARTH ATSC EAS 224 3 1.0 2.0 2.0 0.000 67.0 233.5 47.0 0.02 3.6
4040 SC EARTH ATSC EAS 225 3 1.0 4.9 4.9 0.000 67.0 233.5 18.5 0.01 3.6
4041 SC EARTH ATSC EAS 230 3 1.0 2.0 2.0 0.000 70.0 163.3 6.2 0.00 5.5
4042 SC EARTH ATSC EAS 232 3 1.0 2.0 2.0 0.000 70.0 236.5 30.3 0.01 4.7
4043 SC EARTH ATSC EAS 233 3 1.0 2.0 2.0 0.000 67.0 233.5 22.9 0.01 3.6
4044 SC EARTH ATSC EAS 234 3 3.0 1.0 3.1 0.000 70.0 409.3 4.7 0.00 6.8
4045 SC EARTH ATSC EAS 235 3 1.0 4.0 4.0 0.000 67.0 233.5 21.4 0.01 3.6
4046 SC EARTH ATSC EAS 236 3 1.0 3.0 3.0 0.000 67.0 233.5 16.9 0.01 3.6
4047 SC EARTH ATSC EAS 250 3 1.0 3.4 3.4 0.001 67.0 168.8 11.7 0.00 3.3
4048 SC EARTH ATSC EAS 270 3 1.0 5.0 5.0 0.001 67.0 213.1 28.8 0.01 4.4
4049 SC EARTH ATSC EAS 293 3 2.0 1.4 2.7 0.002 67.0 256.1 9.2 0.00 5.2
4050 SC EARTH ATSC EAS 320 3 3.0 3.4 10.1 0.002 70.0 359.6 13.5 0.01 5.2
4051 SC EARTH ATSC EAS 321 3 1.0 4.4 4.4 0.000 70.0 236.5 15.1 0.01 4.7
4052 SC EARTH ATSC EAS 323 3 4.0 1.4 5.5 0.003 71.0 437.6 4.5 0.00 6.4
4053 SC EARTH ATSC EAS 324 3 1.0 0.4 0.4 0.000 70.0 223.7 1.5 0.00 3.8
4054 SC EARTH ATSC EAS 325 3 1.0 0.4 0.4 0.000 70.0 209.8 1.5 0.00 3.8
4055 SC EARTH ATSC EAS 327 3 2.0 0.4 0.7 0.002 68.0 267.4 1.5 0.00 3.6
4056 SC EARTH ATSC EAS 330 3 1.0 1.4 1.4 0.000 70.0 236.5 4.5 0.00 3.9
4057 SC EARTH ATSC EAS 331 3 2.0 5.4 10.7 0.001 73.0 312.5 21.1 0.01 5.6
4058 SC EARTH ATSC EAS 332 3 2.0 3.4 6.7 0.001 73.0 312.5 12.1 0.01 5.6
4059 SC EARTH ATSC EAS 333 3 4.0 0.4 1.5 0.000 76.0 530.5 1.5 0.00 13.3
4060 SC EARTH ATSC EAS 351 3 1.0 0.4 0.4 0.000 70.0 209.8 1.5 0.00 3.8
4061 SC EARTH ATSC EAS 352 3 1.0 0.4 0.4 0.000 70.0 236.5 1.5 0.00 3.7
4062 SC EARTH ATSC EAS 354 3 3.0 0.4 1.1 0.000 70.0 381.8 1.5 0.00 5.6
4063 SC EARTH ATSC EAS 370 3 2.0 1.4 2.7 0.000 74.0 303.4 4.5 0.00 4.1
4064 SC EARTH ATSC EAS 371 3 2.0 2.4 4.7 0.000 74.0 303.4 7.5 0.00 4.1
4065 SC EARTH ATSC EAS 372 3 1.0 0.4 0.4 0.000 70.0 216.1 1.5 0.00 3.9
4066 SC EARTH ATSC EAS 373 3 1.0 1.4 1.4 0.000 70.0 216.1 4.5 0.00 3.9
4067 SC EARTH ATSC EAS 391 3 1.0 0.9 0.9 0.000 70.0 235.4 3.8 0.00 6.0
4068 SC EARTH ATSC EAS 392 3 2.0 0.9 1.7 0.001 70.0 310.1 3.8 0.00 6.6
4069 SC EARTH ATSC EAS 394 3 1.0 0.9 0.9 0.000 70.0 235.4 3.8 0.00 6.0
4070 SC EARTH ATSC EAS 400 3 1.0 0.0 0.0 0.000 71.0 308.3 0.0 0.00 7.2
4071 SC EARTH ATSC EAS 401 3 2.0 0.0 0.0 0.000 71.0 437.2 0.0 0.00 6.1
4072 SC EARTH ATSC EAS 420 3 1.0 0.0 0.0 0.000 73.0 362.6 0.0 0.00 4.5
4073 SC EARTH ATSC EAS 421 3 1.0 0.0 0.0 0.000 73.0 239.5 0.0 0.00 4.1
4074 SC EARTH ATSC EAS 422 3 2.0 0.0 0.0 0.000 70.0 340.4 0.0 0.00 5.0
4075 SC EARTH ATSC EAS 424 3 2.0 0.0 0.0 0.000 70.0 340.4 0.0 0.00 7.3
4076 SC EARTH ATSC EAS 425 3 1.0 0.0 0.0 0.000 74.0 440.6 0.0 0.00 7.7
4077 SC EARTH ATSC EAS 426 6 1.0 0.0 0.0 0.000 74.0 308.3 0.0 0.00 10.2
4078 SC EARTH ATSC EAS 427 3 1.0 1.0 1.0 0.000 71.0 308.3 3.0 0.00 7.2
4079 SC EARTH ATSC EAS 428 3 1.0 0.0 0.0 0.000 74.0 311.3 0.0 0.00 10.2
4080 SC EARTH ATSC EAS 430 3 2.0 1.0 2.0 0.000 73.0 431.5 3.0 0.00 5.7
4081 SC EARTH ATSC EAS 431 3 1.0 0.0 0.0 0.000 76.0 434.5 0.0 0.00 8.7
4082 SC EARTH ATSC EAS 432 3 2.0 0.0 0.0 0.000 76.0 454.7 0.0 0.00 5.6
4083 SC EARTH ATSC EAS 433 3 1.0 1.0 1.0 0.000 76.0 315.5 3.0 0.00 4.0
4084 SC EARTH ATSC EAS 434 3 1.0 0.0 0.0 0.000 79.0 318.5 0.0 0.00 7.0
4085 SC EARTH ATSC EAS 435 3 1.0 0.0 0.0 0.000 73.0 239.5 0.0 0.00 4.1
4086 SC EARTH ATSC EAS 436 3 2.0 0.0 0.0 0.000 76.0 431.5 0.0 0.00 5.7
4087 SC EARTH ATSC EAS 437 3 4.0 0.0 0.0 0.000 76.0 495.7 0.0 0.00 9.6
4088 SC EARTH ATSC EAS 451 3 1.0 0.0 0.0 0.000 70.0 209.8 0.0 0.00 3.8
4089 SC EARTH ATSC EAS 453 3 2.0 0.0 0.0 0.000 70.0 315.2 0.0 0.00 4.7
4090 SC EARTH ATSC EAS 455 3 2.0 0.0 0.0 0.000 70.0 315.2 0.0 0.00 4.7
4091 SC EARTH ATSC EAS 457 3 1.0 0.0 0.0 0.000 70.0 194.5 0.0 0.00 4.7
4092 SC EARTH ATSC EAS 470 3 2.0 0.0 0.0 0.000 77.0 417.5 0.0 0.00 7.8
4093 SC EARTH ATSC EAS 471 3 3.0 0.0 0.0 0.000 77.0 420.5 0.0 0.00 7.8
4094 SC EARTH ATSC EAS 475 3 4.0 0.0 0.0 0.000 77.0 487.6 0.0 0.00 8.6
4095 SC EARTH ATSC EAS 491 3 1.0 0.0 0.0 0.000 73.0 279.1 0.0 0.00 9.5
4096 SC EARTH ATSC EAS 492 3 1.0 0.0 0.0 0.000 70.0 209.8 0.0 0.00 3.8
4097 SC EARTH ATSC EAS 493 3 1.0 0.0 0.0 0.000 71.0 308.3 0.0 0.00 7.2
4098 SC EARTH ATSC EAS 494 3 1.0 0.0 0.0 0.000 71.0 308.3 0.0 0.00 7.2
4099 SC EARTH ATSC EAS 497 3 1.0 1.0 1.0 0.000 73.0 279.1 3.0 0.00 9.5
4100 SC EARTH ATSC EAS 498 3 1.0 0.0 0.0 0.000 76.0 282.1 0.0 0.00 12.5
4101 SC PHYSICS EN PH 131 3 4.0 7.0 28.0 0.003 76.0 408.3 300.4 0.23 7.6
4102 SC BIOLOG SCI ENT 207 3 1.0 3.5 3.5 0.001 68.0 179.0 13.5 0.00 3.2
4103 SC BIOLOG SCI ENT 220 3 1.0 2.5 2.5 0.001 68.0 173.8 10.8 0.00 3.2
4104 SC BIOLOG SCI ENT 302 3 2.0 0.9 1.9 0.000 71.0 362.9 3.0 0.00 5.0
4105 SC BIOLOG SCI ENT 321 3 2.0 0.3 0.7 0.001 71.0 272.5 1.3 0.00 4.4
4106 SC BIOLOG SCI ENT 378 3 1.0 0.3 0.3 0.000 71.0 311.2 0.9 0.00 6.0
4107 SC BIOLOG SCI ENT 380 3 1.0 0.6 0.6 0.000 70.0 220.7 2.0 0.00 3.2
4108 SC BIOLOG SCI ENT 392 3 1.0 0.3 0.3 0.000 71.0 179.4 1.3 0.00 4.1
4109 SC BIOLOG SCI ENT 427 3 2.0 0.0 0.0 0.000 72.5 368.0 0.0 0.00 8.4
4110 SC PHYSICS ENVPS 403 3 1.0 0.0 0.0 0.000 74.0 469.1 0.0 0.00 5.3
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4111 SC BIOLOG SCI GENET 270 3 1.0 10.2 10.2 0.000 71.0 186.0 65.9 0.02 3.2
4112 SC BIOLOG SCI GENET 275 3 1.0 3.2 3.2 0.000 71.0 186.0 24.0 0.01 3.2
4113 SC BIOLOG SCI GENET 301 3 1.0 2.6 2.6 0.000 74.0 189.0 8.3 0.00 3.3
4114 SC BIOLOG SCI GENET 302 3 2.0 2.6 5.2 0.000 74.0 275.5 9.4 0.00 4.3
4115 SC BIOLOG SCI GENET 304 3 1.0 2.6 2.6 0.000 74.0 189.0 9.4 0.00 3.3
4116 SC BIOLOG SCI GENET 364 3 1.0 1.6 1.6 0.000 74.0 189.0 6.1 0.00 3.3
4117 SC BIOLOG SCI GENET 375 3 4.0 0.9 3.7 0.000 77.0 442.1 2.9 0.00 6.3
4118 SC BIOLOG SCI GENET 390 3 3.0 1.6 4.9 0.000 74.0 406.7 5.3 0.00 3.7
4119 SC BIOLOG SCI GENET 408 3 2.0 0.0 0.0 0.000 77.0 278.5 0.0 0.00 5.5
4120 SC BIOLOG SCI GENET 412 3 2.0 0.3 0.5 0.000 77.0 337.1 0.8 0.00 5.9
4121 SC BIOLOG SCI GENET 418 3 2.0 0.0 0.0 0.000 77.0 337.1 0.0 0.00 7.2
4122 SC BIOLOG SCI GENET 420 3 3.0 0.0 0.0 0.000 77.0 490.7 0.0 0.00 10.6
4123 SC BIOLOG SCI GENET 422 3 1.0 0.0 0.0 0.000 74.0 362.9 0.0 0.00 7.6
4124 SC PHYSICS GEOPH 110 3 3.0 1.3 4.0 0.029 65.0 190.7 11.9 0.00 4.9
4125 SC PHYSICS GEOPH 210 3 2.0 0.0 0.0 0.000 71.0 376.1 0.1 0.00 4.4
4126 SC PHYSICS GEOPH 223 3 2.0 0.0 0.0 0.000 71.0 376.1 0.1 0.00 4.4
4127 SC PHYSICS GEOPH 224 3 2.0 0.0 0.0 0.000 71.0 376.1 0.1 0.00 4.4
4128 SC PHYSICS GEOPH 325 3 2.0 3.0 6.0 0.000 77.0 408.2 9.0 0.01 3.6
4129 SC PHYSICS GEOPH 326 3 2.0 4.0 8.0 0.000 77.0 408.2 15.0 0.01 3.6
4130 SC PHYSICS GEOPH 332 3 4.0 0.0 0.0 0.000 77.0 487.5 0.0 0.00 4.4
4131 SC PHYSICS GEOPH 421 3 3.0 0.0 0.0 0.000 83.0 503.8 0.0 0.00 4.5
4132 SC PHYSICS GEOPH 424 3 4.0 0.0 0.0 0.000 85.0 528.2 0.0 0.00 5.5
4133 SC PHYSICS GEOPH 426 3 3.0 2.0 6.0 0.000 80.0 503.5 6.0 0.01 5.2
4134 SC PHYSICS GEOPH 431 3 6.0 0.0 0.0 0.000 85.0 544.0 0.0 0.00 7.3
4135 SC PHYSICS GEOPH 437 3 5.0 0.0 0.0 0.000 83.0 529.8 0.0 0.00 8.1
4136 SC PHYSICS GEOPH 438 3 5.0 0.0 0.0 0.000 83.0 526.8 0.0 0.00 7.9
4137 SC PHYSICS GEOPH 440 3 3.0 0.0 0.0 0.001 83.0 465.9 0.0 0.00 7.3
4138 SC BIOLOG SCI IMIN 200 3 2.0 4.1 8.2 0.000 71.0 419.7 42.4 0.03 3.4
4139 SC BIOLOG SCI IMIN 324 3 3.0 0.9 2.6 0.000 74.0 471.6 3.5 0.00 4.2
4140 SC BIOLOG SCI IMIN 371 3 3.0 3.9 11.6 0.000 74.0 471.6 15.7 0.01 4.2
4141 SC BIOLOG SCI IMIN 372 3 1.0 0.3 0.3 0.000 77.0 474.6 0.9 0.00 4.1
4142 SC BIOLOG SCI IMIN 401 3 1.0 0.0 0.0 0.000 77.0 474.6 0.0 0.00 4.1
4143 SC BIOLOG SCI IMIN 452 3 2.0 0.5 1.0 0.000 77.0 484.4 2.3 0.00 4.2
4144 SC EARTH ATSC INT D 451 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4145 SC PHYSICS MA PH 343 3 2.0 1.0 2.0 0.000 80.0 447.7 3.0 0.00 4.7
4146 SC MATH SCI MA PH 451 3 2.0 1.0 2.0 0.000 83.0 404.5 3.0 0.00 3.7
4147 SC MATH SCI MA PH 453 3 1.0 0.0 0.0 0.000 86.0 407.5 0.0 0.00 6.7
4148 SC PHYSICS MA PH 468 3 1.0 0.0 0.0 0.000 77.0 443.8 0.0 0.00 6.0
4149 SC BIOLOG SCI MA SC 400 3 1.0 0.0 0.0 0.000 73.0 203.1 0.0 0.00 3.2
4150 SC BIOLOG SCI MA SC 401 6 1.0 0.0 0.0 0.000 76.0 203.1 0.0 0.00 6.2
4151 SC BIOLOG SCI MA SC 402 3 1.0 0.0 0.0 0.000 73.0 203.1 0.0 0.00 3.2
4152 SC BIOLOG SCI MA SC 403 3 1.0 0.0 0.0 0.000 73.0 203.1 0.0 0.00 3.2
4153 SC BIOLOG SCI MA SC 410 6 1.0 0.0 0.0 0.000 76.0 203.1 0.0 0.00 6.2
4154 SC BIOLOG SCI MA SC 412 6 1.0 0.0 0.0 0.000 76.0 203.1 0.0 0.00 6.2
4155 SC BIOLOG SCI MA SC 415 3 1.0 0.0 0.0 0.000 73.0 203.1 0.0 0.00 3.2
4156 SC BIOLOG SCI MA SC 420 6 1.0 0.0 0.0 0.000 76.0 203.1 0.0 0.00 6.2
4157 SC BIOLOG SCI MA SC 425 3 1.0 0.0 0.0 0.000 73.0 203.1 0.0 0.00 3.2
4158 SC BIOLOG SCI MA SC 430 6 1.0 0.0 0.0 0.000 76.0 203.1 0.0 0.00 6.2
4159 SC BIOLOG SCI MA SC 437 3 1.0 0.0 0.0 0.000 73.0 203.1 0.0 0.00 3.2
4160 SC BIOLOG SCI MA SC 440 6 1.0 0.0 0.0 0.000 76.0 203.1 0.0 0.00 6.2
4161 SC BIOLOG SCI MA SC 445 6 1.0 0.0 0.0 0.000 76.0 203.1 0.0 0.00 6.2
4162 SC BIOLOG SCI MA SC 454 3 1.0 0.0 0.0 0.000 73.0 203.1 0.0 0.00 3.2
4163 SC BIOLOG SCI MA SC 470 3 1.0 0.0 0.0 0.000 73.0 203.1 0.0 0.00 3.2
4164 SC BIOLOG SCI MA SC 480 3 1.0 0.0 0.0 0.000 73.0 203.1 0.0 0.00 3.2
4165 SC MATH SCI MATH 100 3 3.0 7.8 23.5 0.030 70.0 188.3 1039.4 0.37 7.7
4166 SC MATH SCI MATH 101 3 1.0 14.6 14.6 0.002 73.0 191.3 802.7 0.29 4.0
4167 SC MATH SCI MATH 102 3 1.0 18.8 18.8 0.001 73.0 191.3 662.6 0.24 4.0
4168 SC MATH SCI MATH 113 3 2.0 34.1 68.2 0.032 65.0 180.0 895.6 0.30 6.9
4169 SC MATH SCI MATH 114 3 3.0 13.4 40.2 0.031 70.0 188.3 681.1 0.24 7.7
4170 SC MATH SCI MATH 115 3 1.0 18.3 18.3 0.002 68.0 189.0 726.6 0.26 3.4
4171 SC MATH SCI MATH 117 3 3.0 1.7 5.0 0.029 70.0 185.8 89.2 0.03 4.5
4172 SC MATH SCI MATH 118 3 1.0 2.6 2.6 0.001 68.0 189.4 83.6 0.03 4.5
4173 SC MATH SCI MATH 120 3 2.0 12.0 24.1 0.029 65.0 177.3 229.2 0.08 3.7
4174 SC MATH SCI MATH 125 3 2.0 6.4 12.7 0.029 65.0 177.3 181.1 0.06 3.7
4175 SC MATH SCI MATH 153 3 2.0 0.6 1.3 0.029 65.0 177.3 11.2 0.00 3.7
4176 SC MATH SCI MATH 160 3 2.0 1.6 3.3 0.029 65.0 177.3 15.6 0.01 3.7
4177 SC MATH SCI MATH 164 3 1.0 0.6 0.6 0.028 64.0 157.3 11.2 0.00 3.0
4178 SC MATH SCI MATH 201 3 1.0 17.8 17.8 0.000 74.0 244.3 344.0 0.16 3.2
4179 SC MATH SCI MATH 209 3 2.0 17.1 34.2 0.000 76.0 277.5 496.3 0.26 3.5
4180 SC MATH SCI MATH 214 3 1.0 12.1 12.1 0.000 71.0 192.0 466.1 0.17 3.2
4181 SC MATH SCI MATH 215 3 1.0 18.5 18.5 0.000 74.0 195.0 198.2 0.07 3.3
4182 SC MATH SCI MATH 217 3 2.0 5.4 10.7 0.001 71.0 278.0 142.4 0.07 4.1
4183 SC MATH SCI MATH 222 3 1.0 0.8 0.8 0.001 67.0 187.5 3.5 0.00 4.2
4184 SC MATH SCI MATH 225 3 2.0 11.4 22.9 0.002 68.0 260.0 82.1 0.04 4.4
4185 SC MATH SCI MATH 228 3 1.0 5.7 5.7 0.001 68.0 208.9 26.5 0.01 3.4
4186 SC MATH SCI MATH 229 3 1.0 2.2 2.2 0.001 68.0 208.9 12.1 0.00 3.4
4187 SC MATH SCI MATH 241 3 1.0 2.8 2.8 0.001 67.0 188.3 11.3 0.00 4.3
4188 SC MATH SCI MATH 243 3 1.0 0.3 0.3 0.000 70.0 191.3 1.4 0.00 4.6
4189 SC MATH SCI MATH 253 3 2.0 3.3 6.5 0.000 74.0 282.2 21.4 0.01 4.0
4190 SC MATH SCI MATH 260 3 1.0 0.3 0.3 0.001 68.0 180.3 1.4 0.00 5.3
4191 SC MATH SCI MATH 300 3 2.0 6.7 13.4 0.000 79.0 390.8 55.4 0.04 3.6
4192 SC MATH SCI MATH 309 3 1.0 1.2 1.2 0.000 79.0 280.5 41.1 0.02 3.2
4193 SC MATH SCI MATH 311 3 1.0 7.2 7.2 0.000 77.0 245.8 73.3 0.03 3.2
4194 SC MATH SCI MATH 314 3 1.0 1.7 1.7 0.000 77.0 245.8 5.2 0.00 3.2
4195 SC MATH SCI MATH 317 3 1.0 6.7 6.7 0.000 74.0 281.0 95.6 0.05 3.8
4196 SC MATH SCI MATH 322 3 2.0 0.2 0.5 0.001 70.0 302.2 0.8 0.00 5.2
4197 SC MATH SCI MATH 324 3 1.0 0.2 0.2 0.000 71.0 211.9 0.7 0.00 3.6
4198 SC MATH SCI MATH 325 3 2.0 1.2 2.4 0.000 71.0 337.8 3.7 0.00 4.0
4199 SC MATH SCI MATH 329 3 3.0 1.2 3.6 0.000 71.0 399.1 3.7 0.00 5.5
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4199 SC MATH SCI MATH 329 3 3.0 1.2 3.6 0.000 71.0 399.1 3.7 0.00 5.5
4200 SC MATH SCI MATH 334 3 2.0 6.7 13.4 0.001 77.0 314.1 93.3 0.06 3.7
4201 SC MATH SCI MATH 337 3 1.0 14.2 14.2 0.000 80.0 317.1 57.9 0.03 3.6
4202 SC MATH SCI MATH 341 3 2.0 0.2 0.4 0.001 70.0 277.6 0.7 0.00 6.2
4203 SC MATH SCI MATH 343 3 1.0 0.2 0.2 0.000 70.0 191.3 0.7 0.00 4.6
4204 SC MATH SCI MATH 347 3 1.0 0.7 0.7 0.000 71.0 228.9 2.2 0.00 3.8
4205 SC MATH SCI MATH 356 3 2.0 1.2 2.4 0.000 77.0 391.0 4.4 0.00 4.6
4206 SC MATH SCI MATH 357 3 1.0 0.2 0.2 0.000 80.0 394.0 0.7 0.00 6.8
4207 SC MATH SCI MATH 363 3 3.0 0.2 0.6 0.001 71.0 357.6 0.7 0.00 5.7
4208 SC MATH SCI MATH 372 3 2.0 1.2 2.4 0.001 77.0 284.0 3.7 0.00 3.5
4209 SC MATH SCI MATH 373 3 2.0 1.2 2.4 0.001 70.0 303.8 4.4 0.00 5.0
4210 SC MATH SCI MATH 374 3 2.0 0.2 0.4 0.000 74.0 390.0 0.7 0.00 7.6
4211 SC MATH SCI MATH 381 3 2.0 1.2 2.4 0.001 74.0 320.3 3.7 0.00 3.8
4212 SC MATH SCI MATH 400 3 1.0 0.0 0.0 0.000 72.5 339.9 0.0 0.00 4.7
4213 SC MATH SCI MATH 411 3 1.0 0.0 0.0 0.000 77.0 266.9 0.0 0.00 4.2
4214 SC MATH SCI MATH 414 3 1.0 0.0 0.0 0.000 80.0 248.8 0.0 0.00 4.9
4215 SC MATH SCI MATH 417 3 1.0 1.0 1.0 0.000 77.0 284.0 3.0 0.00 3.6
4216 SC MATH SCI MATH 418 3 1.0 0.0 0.0 0.000 80.0 287.0 0.0 0.00 6.6
4217 SC MATH SCI MATH 421 3 2.0 0.0 0.0 0.000 73.0 382.2 0.0 0.00 7.1
4218 SC MATH SCI MATH 422 3 1.0 0.0 0.0 0.000 71.0 315.1 0.0 0.00 3.6
4219 SC MATH SCI MATH 428 3 1.0 0.0 0.0 0.000 74.0 340.8 0.0 0.00 6.3
4220 SC MATH SCI MATH 429 3 1.0 0.0 0.0 0.000 74.0 402.1 0.0 0.00 7.6
4221 SC MATH SCI MATH 432 3 1.0 0.0 0.0 0.000 80.0 317.1 0.0 0.00 3.6
4222 SC MATH SCI MATH 436 3 1.0 1.0 1.0 0.000 83.0 320.1 3.0 0.00 3.3
4223 SC MATH SCI MATH 438 3 1.0 0.0 0.0 0.000 86.0 323.1 0.0 0.00 6.3
4224 SC MATH SCI MATH 446 3 2.0 0.5 1.0 0.000 74.0 379.3 1.5 0.00 4.1
4225 SC MATH SCI MATH 447 3 1.0 0.0 0.0 0.000 73.0 276.6 0.0 0.00 6.5
4226 SC MATH SCI MATH 448 3 3.0 0.0 0.0 0.000 74.0 451.9 0.0 0.00 7.6
4227 SC MATH SCI MATH 472 3 1.0 0.0 0.0 0.000 80.0 287.0 0.0 0.00 6.0
4228 SC MATH SCI MATH 481 3 2.0 0.0 0.0 0.000 80.0 435.2 0.0 0.00 6.7
4229 SC MATH SCI MATH 486 3 3.0 0.0 0.0 0.000 77.0 435.9 0.0 0.00 6.0
4230 SC MATH SCI MATH 496 3 1.0 0.0 0.0 0.000 77.0 284.0 0.0 0.00 3.6
4231 SC MATH SCI MATH 497 3 1.0 0.0 0.0 0.000 73.0 316.4 0.0 0.00 6.4
4232 SC BIOLOG SCI MICRB 265 3 2.0 12.5 24.9 0.002 68.0 305.7 116.1 0.07 3.5
4233 SC BIOLOG SCI MICRB 311 3 1.0 3.6 3.6 0.000 71.0 307.9 21.1 0.01 3.2
4234 SC BIOLOG SCI MICRB 316 3 3.0 0.6 1.8 0.000 74.0 439.8 2.0 0.00 3.7
4235 SC BIOLOG SCI MICRB 343 3 1.0 1.6 1.6 0.000 74.0 310.9 7.0 0.00 3.9
4236 SC BIOLOG SCI MICRB 345 3 2.0 0.6 1.2 0.000 77.0 444.3 2.0 0.00 7.3
4237 SC BIOLOG SCI MICRB 406 3 1.0 0.0 0.0 0.000 74.0 387.7 0.0 0.00 6.6
4238 SC BIOLOG SCI MICRB 410 3 1.0 0.0 0.0 0.000 74.0 310.9 0.0 0.00 3.9
4239 SC BIOLOG SCI MICRB 415 3 2.0 1.0 2.0 0.000 74.0 367.4 3.1 0.00 4.2
4240 SC BIOLOG SCI MICRB 450 3 1.0 0.0 0.0 0.000 77.0 370.4 0.0 0.00 7.2
4241 SC BIOLOG SCI MICRB 491 3 2.0 1.0 2.0 0.000 72.5 429.7 3.1 0.00 6.7
4242 SC BIOLOG SCI MICRB 492 3 1.0 0.0 0.0 0.000 75.5 432.7 0.0 0.00 9.7
4243 SC EARTH ATSC PALEO 318 3 1.0 0.0 0.0 0.000 73.0 222.9 0.1 0.00 5.0
4244 SC EARTH ATSC PALEO 319 3 1.0 0.0 0.0 0.000 73.0 222.9 0.1 0.00 5.0
4245 SC EARTH ATSC PALEO 414 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 5.7
4246 SC PHYSICS PHYS 114 3 2.0 1.5 3.0 0.028 65.0 180.0 26.0 0.01 6.9
4247 SC PHYSICS PHYS 124 3 3.0 4.5 13.5 0.029 65.0 189.2 246.6 0.09 6.4
4248 SC PHYSICS PHYS 126 3 1.0 9.5 9.5 0.002 68.0 192.2 131.6 0.05 4.4
4249 SC PHYSICS PHYS 130 3 5.0 3.3 16.7 0.031 73.0 278.6 359.1 0.19 6.7
4250 SC PHYSICS PHYS 144 3 4.0 3.5 14.1 0.030 70.0 277.6 154.9 0.08 5.4
4251 SC PHYSICS PHYS 146 3 2.0 9.0 18.0 0.002 71.0 312.1 152.4 0.09 4.7
4252 SC PHYSICS PHYS 200 3 3.0 0.0 0.0 0.002 71.0 394.6 0.1 0.00 5.4
4253 SC PHYSICS PHYS 208 3 2.0 3.5 7.0 0.001 71.0 326.0 14.5 0.01 3.9
4254 SC PHYSICS PHYS 211 3 2.0 3.0 6.0 0.000 77.0 405.6 19.0 0.01 4.1
4255 SC PHYSICS PHYS 212 3 1.0 0.0 0.0 0.000 71.0 195.2 0.1 0.00 3.5
4256 SC PHYSICS PHYS 213 3 1.0 0.0 0.0 0.000 71.0 195.2 0.1 0.00 3.5
4257 SC PHYSICS PHYS 224 3 2.0 1.0 2.0 0.001 71.0 374.0 6.6 0.00 4.1
4258 SC PHYSICS PHYS 230 3 3.0 5.5 16.5 0.002 74.0 394.7 58.9 0.04 5.5
4259 SC PHYSICS PHYS 234 3 3.0 5.0 15.0 0.002 71.0 413.3 15.1 0.01 4.4
4260 SC PHYSICS PHYS 244 3 2.0 3.0 6.0 0.000 77.0 405.6 17.5 0.01 4.1
4261 SC PHYSICS PHYS 261 3 4.0 0.0 0.1 0.004 68.0 417.9 0.1 0.00 8.2
4262 SC PHYSICS PHYS 264 3 4.0 1.0 4.1 0.003 68.0 423.4 4.0 0.00 8.3
4263 SC PHYSICS PHYS 271 3 2.0 6.5 13.0 0.000 71.0 376.0 40.9 0.03 3.9
4264 SC PHYSICS PHYS 281 3 2.0 10.5 21.0 0.000 74.0 356.1 74.2 0.05 4.0
4265 SC PHYSICS PHYS 292 3 2.0 0.7 1.4 0.000 77.0 418.7 2.7 0.00 4.0
4266 SC PHYSICS PHYS 294 3 2.0 0.8 1.7 0.001 74.0 414.1 3.6 0.00 7.2
4267 SC PHYSICS PHYS 295 3 2.0 1.2 2.4 0.000 71.0 327.5 4.9 0.00 3.7
4268 SC PHYSICS PHYS 297 3 4.0 0.3 1.4 0.000 77.0 492.7 1.4 0.00 9.6
4269 SC PHYSICS PHYS 301 3 2.0 0.2 0.4 0.000 74.0 400.0 0.9 0.00 4.0
4270 SC PHYSICS PHYS 308 3 2.0 0.2 0.4 0.000 74.0 400.0 0.9 0.00 4.0
4271 SC PHYSICS PHYS 311 3 3.0 2.2 6.6 0.000 80.0 498.5 9.9 0.01 5.3
4272 SC PHYSICS PHYS 319 3 1.0 0.2 0.2 0.000 74.0 329.0 0.9 0.00 4.1
4273 SC PHYSICS PHYS 351 3 3.0 2.7 8.1 0.000 80.0 488.0 8.4 0.01 4.9
4274 SC PHYSICS PHYS 362 3 2.0 1.7 3.4 0.000 77.0 466.6 5.4 0.00 4.5
4275 SC PHYSICS PHYS 364 3 2.0 0.2 0.4 0.000 71.0 440.0 0.9 0.00 11.4
4276 SC PHYSICS PHYS 372 3 4.0 5.2 20.8 0.000 82.0 507.4 18.9 0.02 5.0
4277 SC PHYSICS PHYS 381 3 3.0 7.2 21.6 0.000 82.0 500.2 25.8 0.02 4.6
4278 SC PHYSICS PHYS 395 3 4.0 0.2 0.8 0.001 77.0 491.5 0.9 0.00 9.1
4279 SC PHYSICS PHYS 397 3 3.0 0.2 0.6 0.000 85.0 533.8 0.9 0.00 9.6
4280 SC PHYSICS PHYS 400 3 1.0 0.0 0.0 0.000 74.0 469.1 0.0 0.00 4.5
4281 SC PHYSICS PHYS 415 3 3.0 1.0 3.0 0.000 85.0 547.0 3.0 0.00 6.8
4282 SC PHYSICS PHYS 420 3 9.0 0.0 0.0 0.000 88.0 584.8 0.0 0.00 18.7
4283 SC PHYSICS PHYS 461 3 6.0 0.0 0.0 0.000 88.0 581.0 0.0 0.00 16.2
4284 SC PHYSICS PHYS 467 3 2.0 0.0 0.0 0.000 85.0 510.1 0.0 0.00 3.9
4285 SC PHYSICS PHYS 472 3 3.0 2.0 6.0 0.000 85.0 528.1 6.0 0.01 4.6
4286 SC PHYSICS PHYS 481 3 3.0 2.0 6.0 0.000 85.0 515.3 6.0 0.01 4.3
4287 SC PHYSICS PHYS 484 3 3.0 0.0 0.0 0.000 85.0 528.4 0.0 0.00 4.6
4288 SC PHYSICS PHYS 485 3 4.0 0.0 0.0 0.000 88.0 556.5 0.0 0.00 7.9
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4288 SC PHYSICS PHYS 485 3 4.0 0.0 0.0 0.000 88.0 556.5 0.0 0.00 7.9
4289 SC PHYSICS PHYS 499 3 1.0 0.0 0.0 0.000 74.0 469.1 0.0 0.00 7.6
4290 SC PHARMACOL PMCOL 400 3 1.0 0.0 0.0 0.000 72.5 437.4 0.0 0.00 4.4
4291 SC PSYCHOLOGY PSYCO 104 3 1.0 16.4 16.4 0.029 64.0 157.3 242.7 0.07 3.0
4292 SC PSYCHOLOGY PSYCO 267 3 2.0 5.6 11.1 0.003 68.0 264.9 37.0 0.02 3.3
4293 SC PSYCHOLOGY PSYCO 275 3 2.0 5.7 11.3 0.001 67.0 173.8 40.8 0.01 4.6
4294 SC PSYCHOLOGY PSYCO 281 3 1.0 4.6 4.6 0.001 67.0 160.3 42.4 0.01 3.2
4295 SC PSYCHOLOGY PSYCO 302 3 3.0 0.4 1.1 0.001 70.0 365.7 1.8 0.00 4.2
4296 SC PSYCHOLOGY PSYCO 304 3 4.0 0.4 1.5 0.001 71.0 416.1 1.8 0.00 4.9
4297 SC PSYCHOLOGY PSYCO 309 3 4.0 0.4 1.5 0.000 71.0 437.2 1.8 0.00 5.5
4298 SC PSYCHOLOGY PSYCO 354 3 2.0 1.6 3.2 0.001 71.0 324.1 5.4 0.00 3.5
4299 SC PSYCHOLOGY PSYCO 356 3 1.0 0.6 0.6 0.000 71.0 267.9 2.4 0.00 3.4
4300 SC PSYCHOLOGY PSYCO 364 3 2.0 0.4 0.8 0.001 71.0 324.1 1.8 0.00 3.7
4301 SC PSYCHOLOGY PSYCO 365 3 1.0 1.6 1.6 0.000 71.0 267.9 5.4 0.00 3.6
4302 SC PSYCHOLOGY PSYCO 371 3 1.0 1.4 1.4 0.000 70.0 176.8 4.8 0.00 3.8
4303 SC PSYCHOLOGY PSYCO 372 3 4.0 0.4 1.5 0.003 71.0 380.1 1.8 0.00 3.8
4304 SC PSYCHOLOGY PSYCO 377 3 1.0 1.4 1.4 0.000 70.0 176.8 4.8 0.00 3.8
4305 SC PSYCHOLOGY PSYCO 381 3 2.0 4.4 8.8 0.001 70.0 267.9 15.5 0.01 3.8
4306 SC PSYCHOLOGY PSYCO 385 3 1.0 0.4 0.4 0.000 73.0 270.9 1.8 0.00 3.9
4307 SC PSYCHOLOGY PSYCO 390 3 4.0 1.4 5.5 0.000 71.0 437.2 4.8 0.00 5.5
4308 SC PSYCHOLOGY PSYCO 402 3 2.0 0.0 0.0 0.001 73.0 381.9 0.0 0.00 6.4
4309 SC PSYCHOLOGY PSYCO 403 3 2.0 0.0 0.0 0.001 73.0 381.9 0.0 0.00 6.4
4310 SC PSYCHOLOGY PSYCO 410 3 3.0 0.0 0.0 0.000 73.0 479.8 0.0 0.00 4.6
4311 SC PSYCHOLOGY PSYCO 413 3 2.0 0.0 0.0 0.001 73.0 381.9 0.0 0.00 6.4
4312 SC PSYCHOLOGY PSYCO 414 3 2.0 0.0 0.0 0.001 73.0 381.9 0.0 0.00 6.4
4313 SC PSYCHOLOGY PSYCO 452 3 1.0 0.0 0.0 0.000 74.0 327.1 0.0 0.00 5.2
4314 SC PSYCHOLOGY PSYCO 458 3 1.0 0.0 0.0 0.000 74.0 283.3 0.0 0.00 5.7
4315 SC PSYCHOLOGY PSYCO 459 3 2.0 0.0 0.0 0.000 73.0 416.3 0.0 0.00 6.7
4316 SC PSYCHOLOGY PSYCO 468 3 1.0 0.0 0.0 0.000 74.0 270.9 0.0 0.00 5.3
4317 SC PSYCHOLOGY PSYCO 475 3 1.0 0.0 0.0 0.000 73.0 179.8 0.0 0.00 5.8
4318 SC PSYCHOLOGY PSYCO 478 3 1.0 0.0 0.0 0.000 73.0 179.8 0.0 0.00 5.8
4319 SC PSYCHOLOGY PSYCO 482 3 1.0 0.0 0.0 0.000 73.0 270.9 0.0 0.00 3.9
4320 SC PSYCHOLOGY PSYCO 485 3 1.0 0.0 0.0 0.000 73.0 270.9 0.0 0.00 3.9
4321 SC PSYCHOLOGY PSYCO 486 3 1.0 0.0 0.0 0.000 73.0 270.9 0.0 0.00 3.9
4322 SC PSYCHOLOGY PSYCO 494 3 1.0 0.0 0.0 0.000 73.0 330.3 0.0 0.00 6.3
4323 SC PSYCHOLOGY PSYCO 496 3 1.0 0.0 0.0 0.000 73.0 330.3 0.0 0.00 6.3
4324 SC PSYCHOLOGY PSYCO 499 3 1.0 0.0 0.0 0.000 74.0 440.2 0.0 0.00 7.0
4325 SC MATH SCI STAT 141 3 2.0 15.4 30.8 0.030 65.0 177.3 151.7 0.05 3.7
4326 SC MATH SCI STAT 151 3 2.0 46.9 93.8 0.033 65.0 177.3 607.0 0.20 3.7
4327 SC MATH SCI STAT 221 3 2.0 2.5 5.0 0.001 71.0 275.3 34.2 0.02 3.6
4328 SC MATH SCI STAT 222 3 1.0 3.0 3.0 0.000 74.0 278.3 20.3 0.01 4.5
4329 SC MATH SCI STAT 235 3 2.0 6.5 13.0 0.001 76.0 274.5 63.0 0.03 4.3
4330 SC MATH SCI STAT 252 3 1.0 1.3 1.3 0.001 68.0 180.3 4.7 0.00 3.2
4331 SC MATH SCI STAT 265 3 2.0 9.0 18.0 0.001 71.0 275.3 58.5 0.03 3.3
4332 SC MATH SCI STAT 312 3 2.0 0.0 0.1 0.000 77.0 332.5 0.2 0.00 3.6
4333 SC MATH SCI STAT 335 3 1.0 0.0 0.0 0.000 74.0 280.0 0.2 0.00 3.5
4334 SC MATH SCI STAT 337 3 2.0 0.4 0.7 0.001 69.5 312.1 1.2 0.00 3.9
4335 SC MATH SCI STAT 353 3 3.0 2.0 6.1 0.000 77.0 423.4 6.4 0.01 4.8
4336 SC MATH SCI STAT 354 3 1.0 0.0 0.0 0.000 80.0 426.4 0.2 0.00 5.3
4337 SC MATH SCI STAT 355 3 3.0 0.0 0.1 0.000 77.0 423.4 0.2 0.00 4.8
4338 SC MATH SCI STAT 361 3 1.0 0.0 0.0 0.000 74.0 278.3 0.2 0.00 3.4
4339 SC MATH SCI STAT 366 3 3.0 6.0 18.1 0.000 77.0 421.8 21.4 0.02 3.9
4340 SC MATH SCI STAT 368 3 2.0 0.0 0.1 0.000 74.0 357.6 0.2 0.00 3.7
4341 SC MATH SCI STAT 377 3 3.0 0.0 0.1 0.000 80.0 463.4 0.2 0.00 4.2
4342 SC MATH SCI STAT 378 3 2.0 0.0 0.1 0.000 74.0 357.6 0.2 0.00 3.7
4343 SC MATH SCI STAT 400 3 1.0 0.0 0.0 0.000 72.5 339.9 0.0 0.00 4.7
4344 SC MATH SCI STAT 432 3 1.0 0.0 0.0 0.000 80.0 424.8 0.0 0.00 3.7
4345 SC MATH SCI STAT 441 3 2.0 0.0 0.0 0.001 71.0 307.3 0.0 0.00 5.6
4346 SC MATH SCI STAT 453 3 1.0 0.0 0.0 0.000 80.0 424.8 0.0 0.00 3.7
4347 SC MATH SCI STAT 454 3 1.0 0.0 0.0 0.000 80.0 426.4 0.0 0.00 5.3
4348 SC MATH SCI STAT 455 3 1.0 0.0 0.0 0.000 80.0 424.8 0.0 0.00 3.7
4349 SC MATH SCI STAT 471 3 1.0 1.0 1.0 0.000 80.0 424.8 3.0 0.00 3.7
4350 SC MATH SCI STAT 472 3 1.0 0.0 0.0 0.000 83.0 427.8 0.0 0.00 6.7
4351 SC MATH SCI STAT 479 3 1.0 0.0 0.0 0.000 80.0 424.8 0.0 0.00 3.7
4352 SC CHEMISTRY WKEXP 401 0 1.0 1.0 1.0 0.000 71.0 404.9 3.0 0.00 2.2
4353 SC CHEMISTRY WKEXP 402 0 1.0 1.0 1.0 0.000 71.0 404.9 3.0 0.00 2.2
4354 SC EARTH ATSC WKEXP 411 0 1.0 2.0 2.0 0.000 68.0 308.3 3.0 0.00 4.2
4355 SC EARTH ATSC WKEXP 412 0 1.0 2.0 2.0 0.000 68.0 308.3 3.0 0.00 2.1
4356 SC EARTH ATSC WKEXP 413 0 1.0 0.0 0.0 0.000 68.0 308.3 0.0 0.00 1.0
4357 SC PHYSICS WKEXP 421 0 1.0 1.5 1.5 0.000 71.0 469.1 6.0 0.01 4.6
4358 SC PHYSICS WKEXP 422 0 1.0 2.0 2.0 0.000 71.0 469.1 4.5 0.00 3.1
4359 SC PHYSICS WKEXP 423 0 1.0 0.5 0.5 0.000 71.0 469.1 1.5 0.00 1.5
4360 SC COMPUT SCI WKEXP 921 0 1.0 1.0 1.0 0.000 70.0 390.1 3.0 0.00 3.9
4361 SC COMPUT SCI WKEXP 922 0 1.0 2.0 2.0 0.000 70.0 390.1 3.0 0.00 3.9
4362 SC COMPUT SCI WKEXP 923 0 1.0 0.0 0.0 0.000 70.0 390.1 0.0 0.00 1.9
4363 SC PSYCHOLOGY WKEXP 931 0 1.0 3.0 3.0 0.000 70.0 330.3 6.0 0.00 3.3
4364 SC PSYCHOLOGY WKEXP 932 0 1.0 3.0 3.0 0.000 70.0 330.3 6.0 0.00 1.1
4365 SC PSYCHOLOGY WKEXP 933 0 1.0 2.0 2.0 0.000 70.0 330.3 6.0 0.00 0.4
4366 SC BIOLOG SCI WKEXP 941 0 1.0 1.0 1.0 0.000 69.5 319.1 3.0 0.00 3.5
4367 SC BIOLOG SCI WKEXP 942 0 1.0 1.5 1.5 0.000 69.5 319.1 3.0 0.00 3.5
4368 SC BIOLOG SCI WKEXP 943 0 1.0 0.5 0.5 0.000 69.5 319.1 1.5 0.00 2.3
4369 SC MATH SCI WKEXP 951 0 1.0 1.0 1.0 0.000 69.5 339.9 6.0 0.00 3.5
4370 SC MATH SCI WKEXP 952 0 1.0 1.0 1.0 0.000 69.5 339.9 6.0 0.00 3.5
4371 SC MATH SCI WKEXP 953 0 1.0 2.0 2.0 0.000 69.5 339.9 6.0 0.00 3.5
4372 SC BIOLOG SCI ZOOL 224 3 1.0 3.3 3.3 0.001 68.0 173.8 21.8 0.01 3.2
4373 SC BIOLOG SCI ZOOL 225 3 2.0 3.2 6.4 0.001 71.0 263.5 10.9 0.01 4.1
4374 SC BIOLOG SCI ZOOL 241 3 1.0 2.5 2.5 0.001 68.0 183.0 12.4 0.00 3.2
4375 SC BIOLOG SCI ZOOL 242 3 1.0 4.0 4.0 0.001 68.0 183.0 33.9 0.01 3.2
4376 SC BIOLOG SCI ZOOL 250 3 1.0 4.6 4.6 0.001 68.0 173.8 57.8 0.02 3.2
4377 SC BIOLOG SCI ZOOL 301 3 1.0 0.3 0.3 0.000 69.5 229.3 1.2 0.00 3.8
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4377 SC BIOLOG SCI ZOOL 301 3 1.0 0.3 0.3 0.000 69.5 229.3 1.2 0.00 3.8
4378 SC BIOLOG SCI ZOOL 302 3 2.0 0.7 1.3 0.000 71.0 362.9 2.2 0.00 5.0
4379 SC BIOLOG SCI ZOOL 303 3 1.0 0.9 0.9 0.000 71.0 308.7 2.9 0.00 4.3
4380 SC BIOLOG SCI ZOOL 340 3 1.0 1.3 1.3 0.000 71.0 342.3 4.2 0.00 4.0
4381 SC BIOLOG SCI ZOOL 342 3 1.0 0.6 0.6 0.000 71.0 313.8 1.9 0.00 3.7
4382 SC BIOLOG SCI ZOOL 343 3 1.0 0.6 0.6 0.000 71.0 186.0 1.9 0.00 3.8
4383 SC BIOLOG SCI ZOOL 344 3 1.0 0.3 0.3 0.000 71.0 276.5 1.2 0.00 3.9
4384 SC BIOLOG SCI ZOOL 351 3 1.0 0.6 0.6 0.000 71.0 176.8 1.9 0.00 3.7
4385 SC BIOLOG SCI ZOOL 352 3 1.0 1.1 1.1 0.000 69.5 242.8 3.4 0.00 3.8
4386 SC BIOLOG SCI ZOOL 354 3 1.0 0.3 0.3 0.000 70.0 194.2 1.2 0.00 4.3
4387 SC BIOLOG SCI ZOOL 370 3 1.0 1.3 1.3 0.000 71.0 186.0 4.2 0.00 4.1
4388 SC BIOLOG SCI ZOOL 371 3 1.0 1.7 1.7 0.000 70.0 220.7 5.2 0.00 3.2
4389 SC BIOLOG SCI ZOOL 402 3 1.0 0.0 0.0 0.000 74.0 348.8 0.0 0.00 7.8
4390 SC BIOLOG SCI ZOOL 405 3 2.0 0.0 0.0 0.000 72.5 395.8 0.0 0.00 7.6
4391 SC BIOLOG SCI ZOOL 407 3 2.0 0.0 0.0 0.000 72.5 357.8 0.0 0.00 7.8
4392 SC BIOLOG SCI ZOOL 408 3 2.0 0.0 0.0 0.000 72.5 395.8 0.0 0.00 7.6
4393 SC BIOLOG SCI ZOOL 434 3 2.0 0.0 0.0 0.001 73.0 417.0 0.0 0.00 7.3
4394 SC BIOLOG SCI ZOOL 441 3 1.0 0.0 0.0 0.000 74.0 345.3 0.0 0.00 6.0
4395 SC BIOLOG SCI ZOOL 442 3 1.0 0.0 0.0 0.000 72.5 280.3 0.0 0.00 5.9
4396 SC BIOLOG SCI ZOOL 452 3 1.0 0.0 0.0 0.000 72.5 361.1 0.0 0.00 7.6
4397 SC BIOLOG SCI ZOOL 465 3 1.0 0.3 0.3 0.000 73.0 362.1 1.0 0.00 5.0
4398 SC BIOLOG SCI ZOOL 472 3 1.0 0.0 0.0 0.000 73.0 208.3 0.0 0.00 5.5
4399 SC BIOLOG SCI ZOOL 474 3 1.0 0.0 0.0 0.000 73.0 208.3 0.0 0.00 5.5
4400 MH ANATOMY ANAT 200 3 1.0 4.0 4.0 0.028 64.0 157.3 25.0 0.01 3.0
4401 MH ANATOMY ANAT 400 3 1.0 0.8 0.8 0.001 67.0 160.3 2.5 0.00 3.8
4402 MH ANATOMY ANAT 401 3 1.0 0.8 0.8 0.001 67.0 160.3 2.5 0.00 3.8
4403 MH ANATOMY ANAT 402 3 1.0 0.8 0.8 0.001 67.0 160.3 2.5 0.00 3.8
4404 MH ANATOMY ANAT 403 6 1.0 0.8 0.8 0.001 70.0 160.3 2.5 0.00 6.8
4405 MH ANATOMY ANAT 490 3 1.0 0.0 0.0 0.000 70.0 164.0 0.0 0.00 7.5
4406 MH ANATOMY ANAT 491 3 1.0 0.0 0.0 0.000 70.0 164.0 0.0 0.00 7.5
4407 MH ANATOMY ANAT 497 4 1.0 0.0 0.0 0.000 71.0 164.0 0.0 0.00 8.5
4408 MH BIOCHEM BIOCH 200 3 2.0 32.8 65.5 0.002 68.0 299.6 313.8 0.18 3.6
4409 MH BIOCHEM BIOCH 310 3 3.0 6.9 20.6 0.000 71.0 416.5 69.3 0.05 3.4
4410 MH BIOCHEM BIOCH 320 3 3.0 8.4 25.1 0.000 71.0 416.5 32.2 0.03 3.4
4411 MH BIOCHEM BIOCH 330 3 3.0 8.4 25.1 0.000 71.0 416.5 35.2 0.03 3.4
4412 MH BIOCHEM BIOCH 401 6 2.0 1.0 2.0 0.000 77.0 476.6 3.0 0.00 6.8
4413 MH BIOCHEM BIOCH 410 3 3.0 0.0 0.0 0.000 74.0 485.6 0.0 0.00 4.3
4414 MH BIOCHEM BIOCH 420 3 1.0 0.0 0.0 0.000 74.0 419.5 0.0 0.00 3.4
4415 MH BIOCHEM BIOCH 430 3 2.0 0.0 0.0 0.000 74.0 476.6 0.0 0.00 3.8
4416 MH BIOCHEM BIOCH 441 3 1.0 0.0 0.0 0.000 74.0 419.5 0.0 0.00 3.4
4417 MH BIOCHEM BIOCH 450 3 2.0 0.0 0.0 0.000 74.0 476.6 0.0 0.00 3.8
4418 MH BIOCHEM BIOCH 455 3 3.0 0.0 0.0 0.000 74.0 485.6 0.0 0.00 4.3
4419 MH BIOCHEM BIOCH 460 3 3.0 0.0 0.0 0.000 77.0 490.9 0.0 0.00 5.1
4420 MH BIOCHEM BIOCH 498 3 1.0 0.0 0.0 0.000 80.0 482.6 0.0 0.00 9.8
4421 MH BIOCHEM BIOCH 499 6 1.0 0.0 0.0 0.000 77.0 419.5 0.0 0.00 6.4
4422 MH BIOMED ENG BME 210 3 2.0 1.3 2.7 0.000 70.0 192.4 4.0 0.00 5.4
4423 MH BIOMED ENG BME 310 3 1.0 0.0 0.0 0.000 73.0 195.4 0.0 0.00 7.1
4424 MH CELL BIOL CELL 201 3 2.0 2.0 4.0 0.002 68.0 305.7 20.8 0.01 3.5
4425 MH CELL BIOL CELL 300 3 2.0 4.4 8.8 0.000 71.0 419.7 15.5 0.01 4.4
4426 MH CELL BIOL CELL 301 3 1.0 2.4 2.4 0.000 74.0 422.7 7.2 0.01 4.0
4427 MH CELL BIOL CELL 398 3 1.0 0.4 0.4 0.000 74.0 422.7 1.2 0.00 4.0
4428 MH CELL BIOL CELL 402 3 2.0 0.0 0.0 0.000 77.0 482.6 0.0 0.00 5.7
4429 MH CELL BIOL CELL 415 3 1.0 0.0 0.0 0.000 74.0 424.7 0.0 0.00 5.2
4430 MH CELL BIOL CELL 445 3 2.0 0.0 0.0 0.000 77.0 482.6 0.0 0.00 5.7
4431 MH CELL BIOL CELL 495 3 1.0 0.0 0.0 0.000 72.5 330.3 0.0 0.00 6.3
4432 MH CELL BIOL CELL 498 3 1.0 0.0 0.0 0.000 72.5 330.3 0.0 0.00 6.3
4433 MH CELL BIOL CELL 499 6 1.0 0.0 0.0 0.000 75.5 330.3 0.0 0.00 9.3
4434 MH BIOMED ENG EE BE 512 3 2.0 0.0 0.0 0.000 85.0 502.9 0.0 0.00 6.4
4435 MH ELEC & COMP EE BE 540 3 1.0 0.0 0.0 0.000 85.0 431.1 0.0 0.00 4.0
4436 MH LABMED & PAT LABMP 400 3 2.0 0.0 0.0 0.000 74.0 445.1 0.0 0.00 3.9
4437 MH MED LAB SC MLSCI 230 3 6.0 3.6 21.5 0.005 71.0 436.6 16.7 0.01 4.2
4438 MH MED LAB SC MLSCI 231 3 6.0 1.6 9.5 0.005 71.0 436.6 8.2 0.01 4.2
4439 MH MED LAB SC MLSCI 235 1 1.0 0.6 0.6 0.000 72.0 439.6 3.3 0.00 2.2
4440 MH MED LAB SC MLSCI 236 1 1.0 0.6 0.6 0.000 72.0 439.6 3.3 0.00 2.2
4441 MH MED LAB SC MLSCI 240 6 6.0 2.0 12.0 0.005 74.0 436.6 9.0 0.01 7.2
4442 MH MED LAB SC MLSCI 241 6 6.0 2.0 12.0 0.005 74.0 436.6 9.0 0.01 7.2
4443 MH MED LAB SC MLSCI 250 3 6.0 1.1 6.5 0.005 71.0 436.6 6.1 0.01 4.2
4444 MH MED LAB SC MLSCI 262 3 6.0 0.1 0.5 0.005 71.0 436.6 0.4 0.00 4.2
4445 MH MED LAB SC MLSCI 263 3 6.0 0.6 3.5 0.005 71.0 436.6 4.3 0.00 4.2
4446 MH MED LAB SC MLSCI 264 3 4.0 1.1 4.3 0.004 71.0 402.2 7.7 0.01 3.8
4447 MH MED LAB SC MLSCI 265 3 1.0 0.6 0.6 0.000 74.0 405.2 4.3 0.00 6.5
4448 MH MED LAB SC MLSCI 270 2 1.0 0.1 0.1 0.000 73.0 439.6 0.4 0.00 3.9
4449 MH MED LAB SC MLSCI 271 2 1.0 0.1 0.1 0.000 73.0 439.6 0.4 0.00 3.9
4450 MH MED LAB SC MLSCI 320 3 1.0 0.8 0.8 0.000 74.0 435.7 2.7 0.00 6.5
4451 MH MED LAB SC MLSCI 330 5 1.0 1.8 1.8 0.000 76.0 439.6 5.7 0.00 6.9
4452 MH MED LAB SC MLSCI 340 5 1.0 0.8 0.8 0.000 79.0 442.6 2.7 0.00 8.6
4453 MH MED LAB SC MLSCI 350 3 1.0 0.8 0.8 0.000 74.0 439.6 2.7 0.00 6.9
4454 MH MED LAB SC MLSCI 360 5 1.0 0.8 0.8 0.000 76.0 424.7 2.7 0.00 10.4
4455 MH MED LAB SC MLSCI 370 3 1.0 0.8 0.8 0.000 75.0 440.6 2.7 0.00 5.2
4456 MH MED LAB SC MLSCI 410 1 1.0 0.0 0.0 0.000 75.0 441.1 0.0 0.00 7.9
4457 MH MED LAB SC MLSCI 430 3 1.0 0.0 0.0 0.000 79.0 444.6 0.0 0.00 6.8
4458 MH MED LAB SC MLSCI 460 3 3.0 0.0 0.0 0.000 77.0 492.4 0.0 0.00 10.4
4459 MH MED LAB SC MLSCI 466 3 3.0 0.0 0.0 0.000 77.0 492.4 0.0 0.00 10.4
4460 MH MED LAB SC MLSCI 475 3 1.0 0.0 0.0 0.000 77.0 441.1 0.0 0.00 9.9
4461 MH MED LAB SC MLSCI 480 3 4.0 1.0 4.0 0.000 77.0 499.2 3.0 0.00 11.1
4462 MH MED LAB SC MLSCI 481 3 1.0 0.0 0.0 0.000 80.0 502.2 0.0 0.00 14.1
4463 MH MICBIO & IMM MMI 133 3 2.0 4.0 8.0 0.000 65.0 204.6 187.4 0.07 6.2
4464 MH MICBIO & IMM MMI 351 3 2.0 2.8 5.5 0.000 74.0 456.1 9.0 0.01 4.1
4465 MH MICBIO & IMM MMI 352 3 1.0 0.0 0.0 0.000 77.0 459.1 0.0 0.00 4.5
4466 MH MICBIO & IMM MMI 405 3 2.0 0.0 0.0 0.000 77.0 481.7 0.0 0.00 6.0
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4466 MH MICBIO & IMM MMI 405 3 2.0 0.0 0.0 0.000 77.0 481.7 0.0 0.00 6.0
4467 MH MICBIO & IMM MMI 415 3 2.0 0.0 0.0 0.000 77.0 482.4 0.0 0.00 5.9
4468 MH MICBIO & IMM MMI 426 3 1.0 0.5 0.5 0.000 74.0 436.0 1.5 0.00 5.7
4469 MH MICBIO & IMM MMI 427 3 1.0 0.0 0.0 0.000 71.0 412.9 0.0 0.00 5.4
4470 MH MICBIO & IMM MMI 440 3 1.0 0.0 0.0 0.000 77.0 449.6 0.0 0.00 5.9
4471 MH MICBIO & IMM MMI 498 3 1.0 0.0 0.0 0.000 77.0 474.2 0.0 0.00 5.7
4472 MH MICBIO & IMM MMI 499 6 1.0 0.0 0.0 0.000 80.0 474.2 0.0 0.00 8.7
4473 MH NEUROSCI NEURO 410 3 1.0 0.0 0.0 0.000 74.0 345.3 0.0 0.00 3.5
4474 MH NEUROSCI NEURO 443 3 1.0 0.0 0.0 0.000 74.0 375.3 0.0 0.00 3.7
4475 MH NEUROSCI NEURO 450 3 2.0 0.0 0.0 0.000 74.0 453.7 0.0 0.00 4.2
4476 MH NEUROSCI NEURO 451 3 2.0 0.0 0.0 0.000 74.0 453.7 0.0 0.00 4.2
4477 MH NEUROSCI NEURO 452 3 2.0 0.0 0.0 0.000 74.0 453.7 0.0 0.00 4.2
4478 MH NEUROSCI NEURO 472 3 2.0 0.0 0.0 0.000 74.0 492.5 0.0 0.00 4.7
4479 MH PHYSIOLOGY PHYSL 210 6 3.0 12.2 36.8 0.002 72.5 397.0 144.5 0.11 7.8
4480 MH PHYSIOLOGY PHYSL 211 6 3.0 5.9 17.8 0.002 74.0 387.4 73.0 0.05 6.7
4481 MH PHYSIOLOGY PHYSL 372 3 1.0 5.3 5.3 0.000 71.0 342.3 19.6 0.01 3.9
4482 MH PHYSIOLOGY PHYSL 401 3 1.0 0.8 0.8 0.000 75.5 398.3 3.6 0.00 3.9
4483 MH PHYSIOLOGY PHYSL 402 3 1.0 0.8 0.8 0.000 75.5 398.3 3.6 0.00 3.9
4484 MH PHYSIOLOGY PHYSL 403 3 1.0 0.8 0.8 0.000 75.5 403.0 3.6 0.00 3.6
4485 MH PHYSIOLOGY PHYSL 404 3 1.0 1.8 1.8 0.000 75.5 398.3 6.6 0.00 3.9
4486 MH PHYSIOLOGY PHYSL 444 3 2.0 0.8 1.7 0.000 74.0 453.7 3.6 0.00 4.2
4487 MH PHYSIOLOGY PHYSL 465 3 1.0 0.2 0.2 0.000 77.0 415.4 0.8 0.00 6.5
4488 MH PHYSIOLOGY PHYSL 466 3 1.0 0.2 0.2 0.000 77.0 415.4 0.8 0.00 6.5
4489 MH PHYSIOLOGY PHYSL 467 6 1.0 0.2 0.2 0.000 80.0 415.4 0.8 0.00 9.5
4490 MH PHYSIOLOGY PHYSL 501 3 2.0 0.0 0.0 0.000 78.5 482.5 0.0 0.00 6.0
4491 MH PHYSIOLOGY PHYSL 502 3 1.0 0.0 0.0 0.000 77.0 416.9 0.0 0.00 8.0
4492 MH PHYSIOLOGY PHYSL 506 3 1.0 0.0 0.0 0.000 77.0 416.9 0.0 0.00 8.0
4493 MH PHYSIOLOGY PHYSL 512 3 1.0 0.0 0.0 0.000 75.5 398.3 0.0 0.00 3.9
4494 MH PHYSIOLOGY PHYSL 513 3 1.0 0.0 0.0 0.000 75.5 398.3 0.0 0.00 3.9
4495 MH PHYSIOLOGY PHYSL 527 3 1.0 0.0 0.0 0.000 74.0 345.3 0.0 0.00 3.6
4496 MH PHYSIOLOGY PHYSL 545 3 1.0 0.0 0.0 0.000 71.0 310.3 0.0 0.00 4.0
4497 MH PHARMACOL PMCOL 201 3 3.0 1.0 3.0 0.003 71.0 328.1 40.5 0.03 3.6
4498 MH PHARMACOL PMCOL 303 3 2.0 1.3 2.7 0.000 75.5 449.5 4.5 0.00 4.0
4499 MH PHARMACOL PMCOL 305 3 1.0 0.3 0.3 0.000 69.5 231.8 1.5 0.00 3.8
4500 MH PHARMACOL PMCOL 337 3 2.0 0.3 0.7 0.000 81.5 511.2 1.5 0.00 4.2
4501 MH PHARMACOL PMCOL 343 3 3.0 9.8 29.5 0.000 75.5 486.2 37.5 0.03 7.6
4502 MH PHARMACOL PMCOL 344 3 1.0 8.3 8.3 0.000 78.5 489.2 27.0 0.02 3.8
4503 MH PHARMACOL PMCOL 371 3 1.0 7.6 7.6 0.000 71.0 342.3 26.9 0.02 3.9
4504 MH PHARMACOL PMCOL 401 3 2.0 0.0 0.0 0.000 81.5 511.2 0.0 0.00 4.2
4505 MH PHARMACOL PMCOL 402 3 2.0 0.0 0.0 0.000 81.5 511.2 0.0 0.00 4.2
4506 MH PHARMACOL PMCOL 407 3 1.5 0.0 0.0 0.000 74.0 498.9 0.0 0.00 3.9
4507 MH PHARMACOL PMCOL 412 3 1.5 0.0 0.0 0.000 74.0 498.9 0.0 0.00 3.9
4508 MH PHARMACOL PMCOL 415 3 2.0 0.0 0.0 0.000 81.5 511.2 0.0 0.00 4.2
4509 MH PHARMACOL PMCOL 416 3 2.0 0.0 0.0 0.000 81.5 511.2 0.0 0.00 4.2
4510 MH PHARMACOL PMCOL 424 3 1.0 0.0 0.0 0.000 78.5 452.5 0.0 0.00 6.0
4511 MH PHARMACOL PMCOL 425 3 2.0 0.0 0.0 0.000 81.5 511.2 0.0 0.00 4.2
4512 MH PHARMACOL PMCOL 442 3 2.0 0.0 0.0 0.000 81.5 511.2 0.0 0.00 4.2
4513 MH PHARMACOL PMCOL 498 6 1.0 0.0 0.0 0.000 75.5 437.4 0.0 0.00 8.1
4514 MH PHARMACOL WKEXP 990 0 1.0 1.0 1.0 0.000 69.5 437.4 3.0 0.00 2.1
4515 MH PHARMACOL WKEXP 991 0 1.0 1.5 1.5 0.000 69.5 437.4 3.0 0.00 2.1
4516 MH PHARMACOL WKEXP 992 0 1.0 0.5 0.5 0.000 69.5 437.4 1.5 0.00 1.4
4517 NS NS NS 100 3 1.0 0.0 0.0 0.000 65.0 146.3 0.0 0.00 4.9
4518 NS NS NS 105 3 1.0 1.0 1.0 0.000 65.0 146.3 10.4 0.00 4.9
4519 NS NS NS 152 6 1.0 0.5 0.5 0.000 68.0 146.3 7.4 0.00 7.9
4520 NS NS NS 153 3 1.0 0.5 0.5 0.000 68.0 149.3 7.4 0.00 7.9
4521 NS NS NS 154 3 1.0 1.0 1.0 0.000 65.0 146.3 3.0 0.00 4.9
4522 NS NS NS 155 3 1.0 0.0 0.0 0.000 68.0 149.3 0.0 0.00 7.9
4523 NS NS NS 200 3 1.0 0.0 0.0 0.000 65.0 146.3 0.0 0.00 4.9
4524 NS NS NS 210 3 1.0 15.2 15.2 0.000 65.0 146.3 88.1 0.02 4.9
4525 NS NS NS 211 3 1.0 15.2 15.2 0.000 65.0 146.3 88.1 0.02 4.9
4526 NS NS NS 240 3 1.0 1.0 1.0 0.000 65.0 146.3 7.2 0.00 4.9
4527 NS NS NS 252 6 1.0 1.0 1.0 0.000 74.0 152.3 8.7 0.00 13.9
4528 NS NS NS 260 3 1.0 0.0 0.0 0.000 65.0 146.3 0.0 0.00 4.9
4529 NS NS NS 280 3 1.0 0.0 0.0 0.000 65.0 146.3 0.0 0.00 4.9
4530 NS NS NS 300 3 2.0 1.8 3.7 0.000 68.0 199.3 5.7 0.00 3.6
4531 NS NS NS 314 3 2.0 1.2 2.5 0.000 68.0 199.3 5.0 0.00 3.6
4532 NS NS NS 320 3 2.0 1.3 2.7 0.000 68.0 199.3 4.2 0.00 3.6
4533 NS NS NS 330 3 2.0 0.9 1.8 0.000 68.0 199.3 2.9 0.00 3.6
4534 NS NS NS 335 3 2.0 0.8 1.7 0.001 67.0 248.9 2.7 0.00 6.2
4535 NS NS NS 340 3 2.0 1.3 2.7 0.000 68.0 199.3 4.2 0.00 8.2
4536 NS NS NS 345 3 2.0 0.9 1.8 0.000 68.0 199.3 2.9 0.00 3.6
4537 NS NS NS 352 6 1.0 0.8 0.8 0.000 80.0 158.3 2.7 0.00 19.9
4538 NS NS NS 355 3 2.0 0.8 1.7 0.000 68.0 199.3 2.7 0.00 3.6
4539 NS NS NS 370 3 2.0 0.8 1.7 0.000 68.0 199.3 2.7 0.00 3.6
4540 NS NS NS 372 3 2.0 0.8 1.7 0.000 68.0 199.3 2.7 0.00 3.6
4541 NS NS NS 375 3 2.0 0.8 1.7 0.000 68.0 199.3 2.7 0.00 3.6
4542 NS NS NS 380 3 2.0 0.8 1.7 0.000 68.0 199.3 2.7 0.00 3.6
4543 NS NS NS 381 3 2.0 0.8 1.7 0.000 68.0 199.3 2.7 0.00 3.6
4544 NS NS NS 390 3 2.0 3.8 7.6 0.000 68.0 199.3 11.5 0.00 3.6
4545 NS NS NS 400 3 1.0 0.0 0.0 0.000 71.0 202.3 0.0 0.00 5.0
4546 NS NS NS 403 3 1.0 0.0 0.0 0.000 70.0 204.4 0.0 0.00 7.7
4547 NS NS NS 404 3 1.0 0.0 0.0 0.000 70.0 204.4 0.0 0.00 7.7
4548 NS NS NS 405 3 1.0 0.0 0.0 0.000 70.0 204.4 0.0 0.00 7.7
4549 NS NS NS 420 3 1.0 0.0 0.0 0.000 71.0 202.3 0.0 0.00 7.4
4550 NS NS NS 430 3 1.0 0.0 0.0 0.000 70.0 204.4 0.0 0.00 7.7
4551 NS NS NS 435 3 2.0 0.0 0.0 0.000 67.0 245.4 0.0 0.00 11.6
4552 NS NS NS 440 3 1.0 0.0 0.0 0.000 70.0 204.4 0.0 0.00 7.7
4553 NS NS NS 441 3 1.0 0.0 0.0 0.000 70.0 204.4 0.0 0.00 7.7
4554 NS NS NS 442 3 3.0 0.0 0.0 0.000 70.0 228.6 0.0 0.00 8.3
4555 NS NS NS 445 3 1.0 0.0 0.0 0.000 70.0 204.2 0.0 0.00 7.5
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4555 NS NS NS 445 3 1.0 0.0 0.0 0.000 70.0 204.2 0.0 0.00 7.5
4556 NS NS NS 450 3 1.0 0.0 0.0 0.000 71.0 202.3 0.0 0.00 4.0
4557 NS NS NS 485 3 3.0 0.0 0.0 0.000 70.0 228.6 0.0 0.00 8.3
4558 NS NS NS 490 3 1.0 0.0 0.0 0.000 71.0 202.3 0.0 0.00 4.0
4559 NS NS NS 498 6 1.0 0.0 0.0 0.000 73.0 204.4 0.0 0.00 10.7
4560 NS NS NS 499 3 2.0 0.0 0.0 0.000 71.0 231.8 0.0 0.00 8.9
4561 NU NU NURS 111 3 2.0 2.1 4.2 0.000 65.0 204.6 116.1 0.04 6.2
4562 NU NU NURS 112 3 2.0 2.1 4.2 0.000 65.0 204.6 116.1 0.04 6.2
4563 NU NU NURS 113 3 2.0 1.1 2.2 0.000 68.0 267.1 95.5 0.05 8.9
4564 NU NU NURS 140 3 2.0 4.1 8.2 0.000 65.0 204.6 109.4 0.04 6.2
4565 NU NU NURS 150 4 2.0 4.1 8.2 0.000 66.0 204.6 109.4 0.04 7.2
4566 NU NU NURS 151 2 2.0 1.1 2.2 0.000 68.0 268.1 67.8 0.03 5.3
4567 NU NU NURS 190 5 2.0 6.1 12.2 0.000 67.0 204.6 123.3 0.05 8.2
4568 NU NU NURS 191 2 2.0 3.1 6.2 0.000 74.0 271.1 106.7 0.05 4.6
4569 NU NU NURS 192 5 2.0 1.1 2.2 0.000 67.0 204.6 113.2 0.04 8.2
4570 NU NU NURS 193 6 1.0 1.1 1.1 0.000 73.0 209.6 106.0 0.04 13.6
4571 NU NU NURS 194 5 1.0 5.1 5.1 0.000 72.0 209.6 116.2 0.05 6.3
4572 NU NU NURS 195 6 2.0 3.1 6.2 0.000 78.0 271.1 106.7 0.05 8.6
4573 NU NU NURS 215 3 1.0 1.2 1.2 0.000 81.0 506.0 95.6 0.09 19.3
4574 NU NU NURS 290 5 7.0 3.2 22.2 0.000 83.0 392.4 100.0 0.07 16.7
4575 NU NU NURS 291 7 8.0 1.7 13.3 0.000 90.0 477.8 75.9 0.07 24.0
4576 NU NU NURS 292 5 2.0 1.2 2.3 0.000 78.0 275.1 99.9 0.05 19.1
4577 NU NU NURS 294 5 2.0 1.2 2.3 0.000 95.0 506.8 68.2 0.07 24.7
4578 NU NU NURS 295 7 8.0 1.7 13.3 0.000 90.0 477.8 75.9 0.07 24.0
4579 NU NU NURS 301 3 2.0 1.2 2.5 0.001 68.0 493.3 12.1 0.01 7.3
4580 NU NU NURS 306 6 2.0 2.7 5.5 0.000 71.0 267.1 106.0 0.05 11.9
4581 NU NU NURS 307 6 3.0 3.7 11.2 0.000 87.0 273.1 88.4 0.05 35.2
4582 NU NU NURS 308 6 2.0 2.7 5.5 0.000 93.0 418.7 62.2 0.05 19.8
4583 NU NU NURS 309 6 2.0 3.7 7.5 0.000 99.0 457.8 44.6 0.04 22.7
4584 NU NU NURS 310 6 3.0 2.3 7.0 0.000 105.0 580.0 30.0 0.03 28.7
4585 NU NU NURS 390 5 4.0 5.3 21.3 0.000 100.0 542.0 62.0 0.06 59.8
4586 NU NU NURS 391 7 1.0 3.8 3.8 0.000 107.0 547.0 30.0 0.03 18.2
4587 NU NU NURS 394 5 2.0 3.3 6.7 0.000 112.0 551.7 26.0 0.03 21.0
4588 NU NU NURS 395 7 1.0 3.8 3.8 0.000 107.0 547.0 30.0 0.03 18.2
4589 NU NU NURS 397 2 1.0 1.8 1.8 0.000 102.0 547.0 10.5 0.01 13.2
4590 NU NU NURS 399 3 1.0 1.3 1.3 0.000 81.0 455.9 6.0 0.01 17.7
4591 NU NU NURS 405 6 2.0 4.0 8.0 0.000 111.0 586.0 21.0 0.02 24.4
4592 NU NU NURS 406 6 3.0 3.0 9.0 0.000 117.0 592.0 15.0 0.02 30.5
4593 NU NU NURS 407 6 2.0 2.0 4.0 0.000 123.0 598.0 9.0 0.01 22.3
4594 NU NU NURS 408 6 3.0 0.0 0.0 0.000 129.0 604.0 0.0 0.00 33.4
4595 NU NU NURS 409 3 3.0 0.0 0.0 0.000 126.0 604.0 0.0 0.00 30.4
4596 NU NU NURS 415 5 1.0 3.0 3.0 0.000 73.0 503.6 19.0 0.02 11.6
4597 NU NU NURS 420 3 1.0 0.0 0.0 0.000 71.0 503.6 0.0 0.00 10.7
4598 NU NU NURS 440 3 1.0 2.0 2.0 0.000 71.0 503.6 12.0 0.01 10.7
4599 NU NU NURS 453 3 1.0 1.0 1.0 0.000 71.0 503.6 3.0 0.00 10.7
4600 NU NU NURS 461 7 5.0 0.0 0.0 0.000 119.0 572.9 0.0 0.00 40.5
4601 NU NU NURS 468 4 1.0 0.0 0.0 0.000 72.0 503.6 0.0 0.00 10.6
4602 NU NU NURS 470 5 1.0 0.0 0.0 0.000 78.0 508.6 0.0 0.00 8.9
4603 NU NU NURS 475 7 1.0 0.0 0.0 0.000 80.0 508.6 0.0 0.00 10.9
4604 NU NU NURS 490 5 3.0 2.0 6.0 0.000 117.0 566.0 11.0 0.01 20.8
4605 NU NU NURS 491 7 4.0 0.0 0.0 0.000 124.0 571.0 0.0 0.00 33.2
4606 NU NU NURS 492 7 1.0 0.0 0.0 0.000 80.0 508.6 0.0 0.00 10.9
4607 NU NU NURS 493 3 1.0 0.0 0.0 0.000 74.0 506.6 0.0 0.00 13.7
4608 NU NU NURS 494 3 1.0 1.0 1.0 0.000 74.0 506.6 9.0 0.01 8.4
4609 NU NU NURS 495 9 2.0 0.0 0.0 0.000 83.0 589.2 0.0 0.00 22.7
4610 NU NU NURS 497 4 2.0 0.0 0.0 0.000 121.0 573.0 0.0 0.00 21.6
4611 NU NU NURS 498 3 1.0 0.0 0.0 0.000 71.0 503.6 0.0 0.00 10.7
4612 NU NU NURS 499 3 1.0 0.0 0.0 0.000 84.0 458.9 0.0 0.00 16.3
4613 PE PE DAC 155 1.5 1.0 0.1 0.1 0.028 62.5 157.3 0.4 0.00 1.5
4614 PE PE DAC 160 1.5 1.0 0.4 0.4 0.028 62.5 157.3 1.2 0.00 1.5
4615 PE PE DAC 165 1.5 1.0 0.4 0.4 0.028 62.5 157.3 1.2 0.00 1.5
4616 PE PE DANCE 200 3 1.0 0.4 0.4 0.028 64.0 157.3 1.2 0.00 3.0
4617 PE PE DANCE 300 3 1.0 0.1 0.1 0.028 64.0 157.3 0.4 0.00 3.0
4618 PE PE DANCE 340 3 1.0 0.9 0.9 0.028 64.0 157.3 2.7 0.00 3.0
4619 PE PE DANCE 345 3 1.0 0.1 0.1 0.001 65.5 159.5 0.4 0.00 5.3
4620 PE PE DANCE 350 3 1.0 0.1 0.1 0.028 64.0 157.3 0.4 0.00 3.0
4621 PE PE DANCE 431 3 1.0 0.5 0.5 0.001 67.0 160.3 1.5 0.00 5.5
4622 PE PE DANCE 446 3 1.0 0.0 0.0 0.001 67.0 161.8 0.0 0.00 7.3
4623 PE PE DANCE 499 3 1.0 0.0 0.0 0.001 65.5 160.0 0.0 0.00 5.8
4624 PE PE HE ED 110 3 1.0 4.5 4.5 0.028 64.0 157.3 13.5 0.00 3.0
4625 PE PE HE ED 220 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.7
4626 PE PE HE ED 221 3 3.0 0.0 0.0 0.002 70.0 319.7 0.0 0.00 6.0
4627 PE PE HE ED 311 3 2.0 0.0 0.0 0.001 70.0 258.1 0.0 0.00 4.4
4628 PE PE HE ED 320 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.7
4629 PE PE HE ED 321 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.7
4630 PE PE PAC 101 3 1.0 1.0 1.0 0.028 64.0 157.3 3.0 0.00 3.0
4631 PE PE PAC 110 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
4632 PE PE PAC 111 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
4633 PE PE PAC 112 1.5 1.0 0.1 0.1 0.028 62.5 157.3 0.2 0.00 1.5
4634 PE PE PAC 113 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
4635 PE PE PAC 114 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
4636 PE PE PAC 117 1.5 1.0 0.1 0.1 0.028 62.5 157.3 0.2 0.00 1.5
4637 PE PE PAC 118 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
4638 PE PE PAC 131 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
4639 PE PE PAC 133 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
4640 PE PE PAC 135 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
4641 PE PE PAC 137 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
4642 PE PE PAC 140 1.5 1.0 0.1 0.1 0.028 62.5 157.3 0.2 0.00 1.5
4643 PE PE PAC 145 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
4644 PE PE PAC 154 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
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4644 PE PE PAC 154 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
4645 PE PE PAC 160 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
4646 PE PE PAC 163 1.5 1.0 0.1 0.1 0.028 62.5 157.3 0.2 0.00 1.5
4647 PE PE PAC 173 1.5 1.0 0.6 0.6 0.028 62.5 157.3 1.8 0.00 1.5
4648 PE PE PAC 174 1.5 1.0 0.6 0.6 0.028 62.5 157.3 1.8 0.00 1.5
4649 PE PE PAC 180 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
4650 PE PE PAC 181 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
4651 PE PE PAC 182 1.5 1.0 0.1 0.1 0.028 62.5 157.3 0.2 0.00 1.5
4652 PE PE PAC 183 1.5 1.0 1.1 1.1 0.028 62.5 157.3 3.2 0.00 1.5
4653 PE PE PAC 197 1.5 1.0 1.0 1.0 0.028 62.5 157.3 3.1 0.00 1.5
4654 PE PE PAC 199 1.5 1.0 1.0 1.0 0.028 62.5 157.3 3.1 0.00 1.5
4655 PE PE PAC 310 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.4
4656 PE PE PAC 311 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.4
4657 PE PE PAC 313 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.4
4658 PE PE PAC 314 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.4
4659 PE PE PAC 318 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.4
4660 PE PE PAC 320 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.6
4661 PE PE PAC 325 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.7
4662 PE PE PAC 331 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.4
4663 PE PE PAC 333 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.4
4664 PE PE PAC 335 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.4
4665 PE PE PAC 337 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.4
4666 PE PE PAC 345 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.4
4667 PE PE PAC 354 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.4
4668 PE PE PAC 355 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4669 PE PE PAC 360 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.4
4670 PE PE PAC 365 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.6
4671 PE PE PAC 370 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.5
4672 PE PE PAC 380 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.4
4673 PE PE PAC 381 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.4
4674 PE PE PAC 383 3 1.0 0.0 0.0 0.001 65.5 158.8 0.0 0.00 4.4
4675 PE PE PAC 390 3 2.0 0.0 0.0 0.000 73.0 258.1 0.0 0.00 4.3
4676 PE PE PAC 391 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.8
4677 PE PE PAC 397 3 2.0 0.0 0.0 0.002 65.5 252.1 0.0 0.00 6.0
4678 PE PE PAC 399 3 2.0 0.0 0.0 0.002 65.5 252.1 0.0 0.00 6.0
4679 PE PE PEDS 100 3 1.0 5.0 5.0 0.028 64.0 157.3 38.2 0.01 3.0
4680 PE PE PEDS 101 3 1.0 3.0 3.0 0.028 64.0 157.3 65.5 0.02 3.0
4681 PE PE PEDS 103 3 1.0 3.0 3.0 0.001 67.0 160.3 31.2 0.01 4.0
4682 PE PE PEDS 200 3 1.0 8.2 8.2 0.001 67.0 160.3 52.3 0.02 4.0
4683 PE PE PEDS 202 3 1.0 0.2 0.2 0.028 64.0 157.3 1.0 0.00 3.0
4684 PE PE PEDS 203 3 1.0 3.2 3.2 0.028 64.0 157.3 11.1 0.00 3.0
4685 PE PE PEDS 205 3 1.0 2.2 2.2 0.028 64.0 157.3 8.1 0.00 3.0
4686 PE PE PEDS 206 3 1.0 4.2 4.2 0.028 64.0 157.3 33.3 0.01 3.0
4687 PE PE PEDS 240 3 1.0 2.2 2.2 0.001 67.0 160.3 7.0 0.00 3.6
4688 PE PE PEDS 245 3 4.0 2.7 10.7 0.002 70.0 374.9 19.6 0.01 6.2
4689 PE PE PEDS 246 3 1.0 2.2 2.2 0.000 73.0 377.9 14.1 0.01 5.3
4690 PE PE PEDS 293 3 1.0 1.6 1.6 0.028 64.0 157.3 6.0 0.00 3.0
4691 PE PE PEDS 294 3 1.0 1.1 1.1 0.028 64.0 157.3 3.8 0.00 3.0
4692 PE PE PEDS 302 3 1.0 2.2 2.2 0.001 67.0 160.3 7.0 0.00 4.0
4693 PE PE PEDS 303 3 1.0 2.2 2.2 0.028 64.0 157.3 7.0 0.00 3.0
4694 PE PE PEDS 305 3 1.0 0.2 0.2 0.001 67.0 160.3 1.0 0.00 4.4
4695 PE PE PEDS 306 3 1.0 0.2 0.2 0.001 67.0 160.3 1.0 0.00 3.7
4696 PE PE PEDS 307 3 1.0 0.2 0.2 0.028 64.0 157.3 1.0 0.00 3.0
4697 PE PE PEDS 309 3 1.0 3.5 3.5 0.028 64.0 157.3 20.1 0.01 3.0
4698 PE PE PEDS 334 3 1.0 0.2 0.2 0.000 70.0 163.3 1.0 0.00 3.5
4699 PE PE PEDS 335 3 1.0 4.2 4.2 0.000 70.0 163.3 13.0 0.00 3.5
4700 PE PE PEDS 338 3 1.0 0.9 0.9 0.028 64.0 157.3 4.0 0.00 3.0
4701 PE PE PEDS 345 3 4.0 0.7 2.8 0.002 70.0 374.9 2.5 0.00 6.2
4702 PE PE PEDS 346 3 1.0 1.2 1.2 0.000 76.0 380.9 7.0 0.01 5.4
4703 PE PE PEDS 385 3 1.0 0.2 0.2 0.028 64.0 157.3 1.0 0.00 3.0
4704 PE PE PEDS 391 3 1.0 0.2 0.2 0.028 64.0 157.3 1.0 0.00 3.0
4705 PE PE PEDS 400 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.6
4706 PE PE PEDS 401 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 4.3
4707 PE PE PEDS 402 3 2.0 0.0 0.0 0.001 70.0 255.1 0.0 0.00 5.8
4708 PE PE PEDS 403 3 1.0 1.0 1.0 0.001 67.0 160.3 3.0 0.00 4.4
4709 PE PE PEDS 405 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 4.4
4710 PE PE PEDS 409 3 1.0 1.0 1.0 0.001 67.0 176.2 3.0 0.00 3.4
4711 PE PE PEDS 411 3 1.0 0.0 0.0 0.000 73.0 166.3 0.0 0.00 3.8
4712 PE PE PEDS 412 3 2.0 0.0 0.0 0.000 70.0 269.5 0.0 0.00 6.9
4713 PE PE PEDS 430 3 9.0 0.0 0.0 0.004 73.0 485.8 0.0 0.00 19.5
4714 PE PE PEDS 440 3 2.0 0.0 0.0 0.001 70.0 255.1 0.0 0.00 5.3
4715 PE PE PEDS 444 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4716 PE PE PEDS 446 6 1.0 0.0 0.0 0.000 82.0 383.9 0.0 0.00 10.6
4717 PE PE PEDS 447 3 2.0 0.0 0.0 0.000 76.0 453.4 0.0 0.00 7.7
4718 PE PE PEDS 471 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.6
4719 PE PE PEDS 472 3 2.0 0.0 0.0 0.001 70.0 319.7 0.0 0.00 6.9
4720 PE PE PEDS 485 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4721 PE PE PEDS 490 6 1.0 0.0 0.0 0.001 70.0 213.0 0.0 0.00 8.5
4722 PE PE PEDS 491 12 1.0 0.0 0.0 0.001 76.0 213.0 0.0 0.00 14.5
4723 PE PE PEDS 497 3 1.0 0.0 0.0 0.001 67.0 213.0 0.0 0.00 5.5
4724 PE PE PEDS 499 3 1.0 0.0 0.0 0.001 67.0 213.0 0.0 0.00 5.5
4725 PE PE PERLS 101 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4726 PE PE PERLS 104 3 1.0 4.0 4.0 0.028 64.0 157.3 25.6 0.01 3.0
4727 PE PE PERLS 105 3 1.0 4.0 4.0 0.028 64.0 157.3 26.5 0.01 3.0
4728 PE PE PERLS 204 3 1.0 3.0 3.0 0.001 67.0 160.3 11.5 0.00 3.8
4729 PE PE PERLS 207 3 1.0 5.0 5.0 0.028 64.0 157.3 20.1 0.01 3.0
4730 PE PE PERLS 304 3 2.0 0.4 0.7 0.001 70.0 255.1 2.5 0.00 5.0
4731 PE PE PERLS 335 3 1.0 0.4 0.4 0.001 67.0 160.3 2.5 0.00 3.8
4732 PE PE PERLS 350 3 1.0 1.9 1.9 0.001 67.0 160.3 7.0 0.00 3.8
4733 PERLS 351 3 1.0 0.4 0.4 0.001 67.0 160.3 2.5 0.00 3.8
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4733 PE PE PERLS 351 3 1.0 0.4 0.4 0.001 67.0 160.3 2.5 0.00 3.8
4734 PE PE PERLS 370 3 2.0 1.4 2.7 0.002 67.0 255.1 5.5 0.00 4.5
4735 PE PE PERLS 371 3 2.0 0.4 0.7 0.002 67.0 255.1 2.5 0.00 4.5
4736 PE PE PERLS 404 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4737 PE PE PERLS 411 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4738 PE PE PERLS 420 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.6
4739 PE PE PERLS 440 3 1.0 1.0 1.0 0.000 73.0 218.1 3.1 0.00 6.4
4740 PE PE PERLS 441 3 2.0 0.0 0.0 0.000 76.0 332.7 0.1 0.00 12.6
4741 PE PE PERLS 450 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 5.0
4742 PE PE PERLS 451 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.8
4743 PE PE PERLS 452 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.8
4744 PE PE PERLS 497 3 1.0 2.0 2.0 0.000 70.0 215.1 6.2 0.00 6.7
4745 PE PE PERLS 499 3 1.0 0.0 0.0 0.000 70.0 215.1 0.0 0.00 6.7
4746 PE PE RLS 100 3 1.0 5.5 5.5 0.028 64.0 157.3 36.2 0.01 3.0
4747 PE PE RLS 122 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4748 PE PE RLS 123 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4749 PE PE RLS 133 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4750 PE PE RLS 210 3 1.0 0.6 0.6 0.001 67.0 160.3 3.4 0.00 3.6
4751 PE PE RLS 224 3 1.0 0.6 0.6 0.028 64.0 157.3 3.4 0.00 3.0
4752 PE PE RLS 225 3 1.0 2.6 2.6 0.001 67.0 160.3 9.4 0.00 3.6
4753 PE PE RLS 230 3 1.0 0.6 0.6 0.001 67.0 160.3 3.4 0.00 3.6
4754 PE PE RLS 232 3 1.0 1.1 1.1 0.001 67.0 160.3 4.9 0.00 3.8
4755 PE PE RLS 263 3 1.0 2.6 2.6 0.028 64.0 157.3 9.4 0.00 3.0
4756 PE PE RLS 331 3 1.0 0.6 0.6 0.001 67.0 160.3 3.4 0.00 3.6
4757 PE PE RLS 400 3 1.0 0.0 0.0 0.001 67.0 160.4 0.0 0.00 4.4
4758 PE PE RLS 441 3 1.0 1.0 1.0 0.000 67.0 162.4 12.0 0.00 5.8
4759 PE PE RLS 444 3 1.0 0.0 0.0 0.000 67.0 162.4 0.0 0.00 5.8
4760 PE PE RLS 449 12 1.0 0.0 0.0 0.000 79.0 165.4 0.0 0.00 17.8
4761 PE PE RLS 452 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 4.4
4762 PE PE RLS 462 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 4.4
4763 PE PE RLS 463 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 4.2
4764 PE PE RLS 464 3 1.0 0.0 0.0 0.000 70.0 163.3 0.0 0.00 5.8
4765 PE PE RLS 465 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 4.2
4766 PE PE RLS 472 3 4.0 0.0 0.0 0.002 70.0 379.6 0.0 0.00 7.7
4767 PE PE RLS 473 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 3.6
4768 PE PE RLS 497 3 1.0 0.0 0.0 0.000 67.0 162.4 0.0 0.00 5.8
4769 PE PE RLS 499 3 1.0 0.0 0.0 0.000 67.0 162.4 0.0 0.00 5.8
4770 PE PE WKEXP 399 0 1.0 0.0 0.0 0.000 64.0 189.4 0.0 0.00 4.0
4771 SJ SJ CHRTC 100 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4772 SJ SJ CHRTC 172 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4773 SJ SJ CHRTC 250 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
4774 SJ SJ CHRTC 264 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
4775 SJ SJ CHRTC 266 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
4776 SJ SJ CHRTC 270 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
4777 SJ SJ CHRTC 292 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
4778 SJ SJ CHRTC 348 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
4779 SJ SJ CHRTC 349 3 1.0 1.0 1.0 0.028 64.0 157.3 3.1 0.00 3.0
4780 SJ SJ CHRTC 350 3 1.0 1.0 1.0 0.028 64.0 157.3 3.1 0.00 3.0
4781 SJ SJ CHRTC 351 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
4782 SJ SJ CHRTC 352 3 1.0 1.0 1.0 0.028 64.0 157.3 3.1 0.00 3.0
4783 SJ SJ CHRTC 354 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
4784 SJ SJ CHRTC 371 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
4785 SJ SJ CHRTC 380 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
4786 SJ SJ CHRTC 381 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
4787 SJ SJ CHRTC 390 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
4788 SJ SJ CHRTC 391 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
4789 SJ SJ CHRTC 394 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
4790 SJ SJ CHRTC 396 3 1.0 0.0 0.0 0.028 64.0 157.3 0.1 0.00 3.0
4791 SJ SJ CHRTC 407 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 6.0
4792 SJ SJ CHRTC 432 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.9
4793 SJ SJ CHRTC 449 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.9
4794 SJ SJ CHRTC 450 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 6.0
4795 SJ SJ CHRTC 451 3 1.0 0.0 0.0 0.001 67.0 160.3 0.0 0.00 5.9
4796 SJ SJ PHIL 209 3 1.0 2.3 2.3 0.028 64.0 157.3 7.2 0.00 3.0
4797 SJ SJ PHIL 239 3 1.0 2.3 2.3 0.028 64.0 157.3 7.2 0.00 3.0
4798 SJ SJ PHIL 249 3 1.0 2.3 2.3 0.028 64.0 157.3 7.2 0.00 3.0
4799 SJ SJ PHIL 269 3 1.0 2.3 2.3 0.028 64.0 157.3 7.2 0.00 3.0
4800 SJ SJ PHIL 289 3 1.0 2.3 2.3 0.028 64.0 157.3 7.2 0.00 3.0
4801 SJ SJ PHIL 309 3 1.0 0.5 0.5 0.001 67.0 160.4 1.6 0.00 4.4
4802 SJ SJ PHIL 319 3 1.0 0.5 0.5 0.001 67.0 160.4 1.6 0.00 4.4
4803 SJ SJ PHIL 339 3 1.0 0.5 0.5 0.028 64.0 157.3 1.6 0.00 3.0
4804 SJ SJ PHIL 389 3 1.0 0.5 0.5 0.001 65.5 158.8 1.6 0.00 3.6
4805 SJ SJ PHIL 399 3 1.0 0.5 0.5 0.001 67.0 160.4 1.6 0.00 4.4
4806 SS SS CHRTP 301 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4807 SS SS CHRTP 305 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4808 SS SS CHRTP 312 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4809 SS SS CHRTP 313 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4810 SS SS CHRTP 314 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4811 SS SS CHRTP 315 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4812 SS SS CHRTP 316 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4813 SS SS CHRTP 317 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4814 SS SS CHRTP 318 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
4815 SS SS CHRTP 418 3 1.0 0.0 0.0 0.028 64.0 157.3 0.0 0.00 3.0
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9.3  Supplementary Equations

For the interested reader, this section recapitulates important theoretical hypothe-
ses, definitions,  and results from the rest of the thesis in a less diffuse, more abstract,
precise, and unified manner.

Let  the  notation  G(M,N)  specifically  represent  a  directed  acyclic  graph
(network)  of courses of size M,  the number  of links each with variable  strength,  and
order N, the number of indexed nodes each with variable weight.  Let i, j, k, and p œ 
be node indices.  Let the directed links be oriented, as usual, from a course node to its
prerequisites  (see  Figure  3.1.2-2).   Let  the  M  finite  link  strengths  between  nodes  be
normalized ' si, j  œ (0, 1], where si, j  œ {1, 1ÅÅÅÅ2 , 1ÅÅÅÅ3 , ..., 1ÅÅÅÅÅÅN , 0}, usually.  All possible binary
relations amongst nodes are represented by an N µ N asymmetrical adjacency matrix, ,
with elements, ai, j  œ [0, 1] ' if ai, j  > 0 " i, j, then ai, j  = si, j .  Alternately, let the notation
G = {V, E} specifically represent a directed acyclic graph (network) consisting of a set
of vertices (nodes) V and a set of edges (links) E of variable strength, called the adja-
cency list.  Two nodes, i  and j,  form a directed link in the network if (i, j, si, j) œ E,
where (i,  j, si, j) is a triplet  with si, j ,  the link strength.   The adjacency list notation is
useful over the adjacency matrix notation when the network is of high order (large N)
and  sparse  (relatively  low M),  because  of  the  memory  costs  and  CPU overhead  for
computer calculations manipulating large adjacency matrices of mostly zeros.

Let W = {w1, w2 , ..., wi , ..., wN } be a list of node weights with units of academic
credits (¯), where wi  œ {0, 1, 1.5, 2, 3, 5, 6, 10, 12}, usually.

Let T = {t1, t2, ..., ti , ..., tN } be a nonunique list of nonredundant node indices
after a topological sort of the course network, G, with the directed edges reversed, from
courses to their subsequents, where t1  is always kindergarten and tN  is always a terminal
course node on the periphery of the network where the network can be said to 'end' (see
Figure 4.2.1.1-3).  Note: the list T is used for calculations of distent, sustent, and intent
scores even though these calculations use the original course network, G.

Each node in the network defines a star subnetwork about it called its neighbor-
hood.  Let i  be the set of all nodes adjacent to a node, i.  For a directed course net-
work,  the neighborhood  can be split  into prerequisites,  prei ,  and subsequents,  subi
(see Figure 3.2-1).  

Let degree, di , be the measure of linkage a course node, i, has to the rest of the
network.  Let di  = predi  + subdi , where predi  is the degree of linkage to prerequisites, and
subdi  is the degree of linkage to subsequents.  Let, 

pre di = ‚
j œ prei

si, j , and subdi = ‚
j œ subi

s j,i ,
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that  is,  the  degree  of  linkage  a course  has to its  prerequisites  is  the sum of the  link
strengths to its prerequisite neighborhood.

    The vertices are modelled as similarly charged objects and so, by an electric
force,  repel  each other.   The electrical  force,  fr  = -K2 /dij

2 ,  is  global  and is  inversely
proportional to the square of the distance between vertices i and j.  The edges are mod-
elled as springs, and so, according to Hooke's law, an attractive force, fa = dij

2 êK , is
restricted to vertices in the neighborhood of a vertex and is proportional to the physical
distance between them.

‡ 9.3-3.1.2.1  Graph Drawing Algorithm – Spring-electrical 
Model

The  disadvantage  of  the  spring  model  is  that  it  requires  knowing  the  graph
distance between every pair of vertices,  so is therefore  slow for large networks.   The
spring-electrical model uses two forces.  The attractive force, fa  ∝ sij lij 2 êK , is restricted
to  adjacent  vertices  and  is  proportional  to  the  physical  distance  between  them.   The
electrical force, fr ∝ -K2  wi  wj ê lij , on the other hand, is global and is inversely propor-
tional to the physical distance between nodes i and j.  Overall, the energy to be mini-
mized is ⁄i=1

»V » fi
2, where the force on any node is

fi = -C „
j≠i

wi  wj  
K2
ÅÅÅÅÅÅÅÅÅÅ
lij

 
Hxj - xiL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

lij
+ „

j œ HiL
sij  

lij 2
ÅÅÅÅÅÅÅÅÅÅ
K

Hxj - xiL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

lij
=

-C „
j≠i

 wi  wj  
K2
ÅÅÅÅÅÅÅÅÅÅ
lij 2  Hxj - xiL + ‚

j œ HiL
sij  

lij
ÅÅÅÅÅÅÅ
K

 Hxj - xiL .

Here, C is a constant that regulates the relative strength of the repulsive and attractive
forces, sij  is the link strength between nodes i and j, wi  is the weight of node i, (i) is
the  neighborhood  around  node  i,  lij = »» xi - xj »»  is  the  Euclidean  distance  between
nodes i and j, which have coordinates xi  and xj  respectively, and K is the natural spring
length.  For a graph of two vertices,  the ideal distance between the vertices is K C1ê3,
which gives a total energy of zero.

‡ 9.3-4.1.1.2  Node Degree Distribution

Mathematically, a quantity d, say node degree, obeys a power law if it is drawn from a
probability distribution,
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pHdL ∝ d-a fl pHdL „ d = C d-a  „ d ,

where, „ indicates a differential, a is an exponent scaling parameter, such that, a œ (2,
3) typically.  The normalized equation is

pHdL =
a - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
dmin

 J d
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
dmin

N
-a

.

The probability diverges for small d, so let there be some empirically identifiable mini-
mum value, such that, d ≥ dmin=1.  Estimation of the exponent, a, comes via the maxi-
mum likelihood estimator (Clauset et al. 2009):

à = 1 + NA‚
i=1

N

ln J diÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
dmin

NE
-1

,

where, N is the number of observed node degrees (graph order), and di  " i œ {1, ..., N} fl
di  ≥  dmin .   A "hatted"  symbol,  à,  is  used to denote  estimates  derived from data;  the
hatless symbol, a, denotes the true parameter value, which is often unknown in practice.
The standard error on à, derived from the width of the likelihood maximum, is

s =
à - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!N

+ H1 êNL º
à - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!N

,

where the higher-order correction is positive.  Since N is large, this correction is ignored
in this thesis.  Calculations based on the course data result in an estimate for the expo-
nent scaling parameter of à = 2.41 ± 0.02.

A goodness-of-fit  test  generates  a p-value  which quantifies  the  plausibility  of
results.  Such a test is based on measurement of the separation between the distribution
of the empirical data and the calculated result (model distribution).   This separation is
compared with separation measurements for comparable synthetic data sets drawn from
the same model, and the p-value is defined to be the fraction of the synthetic distances
that are larger than the empirical distance.  Here, the Kolomogorov-Smirnov statistic is
used to measure the distance between distributions, such that, p-value ≈ 0.12.  
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‡ 9.3-4.1.1.4  Eigenvector Centrality

The eigenvector  centrality is a characteristic of individual nodes based on their
location in a network.  Nodes, that link to other nodes that are well connected to the rest
of the network, will receive higher eigenvector centrality scores, xi .  Eigenvector central-
ity  is  similar  to  degree,  sometimes  called  degree  centrality,  d,  but  assesses  links  to
central nodes higher than links to peripheral nodes.  The information to calculate eigen-
vector centrality scores is contained within the adjacency matrix, , for an undirected
network; therefore, the calculations are made by removing the directedness to the links
in the course network.

For the ith  node,  let the eigenvector  centrality score be proportional  to the sum of the
eigenvector centrality scores of all nodes which are connected to it, such that,

xi ∝ ‚
jœi

xj ,

where i  is the neighborhood of the ith  node as described by the adjacency matrix, .
So,

fl xi =
1
ÅÅÅÅ
l

 ‚
jœi

xj ,

where l is some constant.  So,

fl xi =
1
ÅÅÅÅ
l

 ‚
j=1

N

Ai,j  xj

fl x”÷ =
1
ÅÅÅÅ
l

  x”÷ fl  x”÷ = l x”÷ ,

the eigenvector equation, where N is the network order.  Generally, l is not unique for
eigenvector solutions, but the conditions that the adjacency matrix have only real posi-
tive values, Ai, j  ≥ 0, and that all eigenvector centrality values be positive, xi  ≥ 0 " i = 1,
…, N, implies, by the Perron-Frobenius theorem, that only the solution from the greatest
(first) eigenvalue is taken (Kleinberg 1999).  This solution is often called the principle
eigenvector.

Despite  the eigenvalues  being unique,  all  eigenvectors,  including the principle
eigenvector,  and  therefore  the  eigenvalue  centrality  measures  for  the  nodes,  are  not
uniquely  determined.   For example,  if  x”   is  the principle  eigenvector  of ,  then ax”,
where a > 0, is a principle eigenvector too, since it is also a solution of the eigenvector
equation for the greatest positive eigenvalue.  The nonuniqueness of the principle eigen-
vector provides an opportunity for scaling of eigenvector centrality values to remove the
influence of network size and allow for a more meaningful  comparison of nodes from
different networks.

A principle eigenvector,  x”, may be normalized to account for network size, as
follows:
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x̀ =
è!!!2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ˛ x”÷ ˛  x”÷ ,

where  x̀  is  the  normalized  principle  eigenvector  and ˛x”˛  is  the  norm (length)  of  the
principle eigenvector.  The principle eigenvector is scaled based on the intuitive notion
that a "star network"  represents  a structure of maximal  centralization,  such that,  xi  œ
[0,1], and the maximum eigenvalue centrality of a node, xi  = 1, only occurs if the node
is at the center of such a star network (Ruhnau 2000).  The eigenvector centrality score,
xi  from x̀, for any node from any network is scaled relative to the central node of a star
network with the same order and size.

Beyond  the  characterization  of  individual  nodes,  to  consider  the  amount  of
centralization for a network as a whole, comparison to a "star network" is made.  For
any network with order, N, and normalized principle eigenvector,  x̀ (with a maximum
component, xmax = max[xi]), a graph-eigenvector-centralization  index, C, is given by

Ceigenvector =
⁄i=1
N Hxmax - xiLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ⁄i=1
N H1 - xiL œ @0, 1D.

‡ 9.3-4.1.2.2  Community Structure - Modularity

a) Definition of modularity:  Q = (fraction of links within modules) - (fraction of links
expected within modules)

Q =
1

ÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

 ‚
i, j=1

n

@Ai, j - Pi, j D dgi ,gj , where

n  is the graph order,    is the adjacency matrix,  gi  is the community  to which node i
belongs, and the expected probability a link falls between two nodes of a random net-
work preserving each node degree is

Pi, j =
ki  kj
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

, where ki = ‚
j=1

n

Ai, j is the node degree ' ‚
j=1

n

kj = 2 m ã  is symetrical, and

m =
1
ÅÅÅÅÅ
2

 ‚
i, j=1

n

Ai, j =
1
ÅÅÅÅÅ
2

 ‚
i=1

n

‚
j>i

n

Ai, j , is the graph size.
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The following is an analytic derivation of the uncertainty in the network modularity, Q,
stated here because it could not be located in the literature.  For independent variables,
where q = f(x, y, z),

HdqL2 = J ∂q
ÅÅÅÅÅÅÅÅÅÅ
∂x

 dxN
2

+ J ∂q
ÅÅÅÅÅÅÅÅÅÅ
∂y

 dyN
2

+ J ∂q
ÅÅÅÅÅÅÅÅÅÅ
∂z

 dzN
2

fl HdQL2 = „
a=1

n

„
b>a

n
i
k
jjj ∂Q

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂aa,b

 daa,b
y
{
zzz

2

, where Q = fHm, , kL = fHai, j L, and

∂Q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂aa,b

=

„
i=1

n

„
j>i

n

9Aai, j  
∂m

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂aa,b

-
∂ai, j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂aa,b

 mEìm2 - Aki  kj  
∂H2 m2 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂aa,b

-
∂ Hki  kj L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂aa,b

 2 m2 Eì H4 m4 L= dgi ,gj ,

where

I.
∂ai, j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂aa,b

= da,i  db, j ,

II.
∂kiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂aa,b

=
∂

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂aa,b

 ‚
h=1

n

ai,h = ‚
h=1

n

da,i  db,h = da,i Ì ∂kj
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂aa,b

= db, j ,

III.
∂m

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂aa,b

=
1
ÅÅÅÅÅ
2

,

IV.
∂ H2 m2 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂aa,b

= 2 m,

V.
∂Hki  kj L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂aa,b

= da,i  kj + ki  db, j ;

fl HdQL2 = „
a=1

n

„
b>a

n

9 1
ÅÅÅÅÅÅÅÅÅÅ
m2 AW - m dga ,gb +

1
ÅÅÅÅÅ
2

 ‚
j>a

n

kj  dga ,gj +
1
ÅÅÅÅÅ
2

 ‚
i=1

n

ki  dgi ,gb

ƒƒƒƒƒƒƒƒƒƒƒƒƒ
b>iE daa,b=

2

, where

W =
1
ÅÅÅÅÅ
2

 ‚
i=1

n

‚
j>i

n

Aai, j -
1

ÅÅÅÅÅÅÅ
m

 ki  kj E dgi ,gj .

b) Community  identification  by spectral  optimization  of modularity  using the leading
eigenvector method.  Consider the division of the network, G, into just two communi-
ties, g1 and g2.  Let an index vector, s”, have n elements:

si = 9 +1 " i œ g1 ,
-1 " i œ g2 .

Notice, the index vector has the property
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dgi ,gj =
1
ÅÅÅÅÅ
2

 Hsi  sj + 1L.

This implies from above,

Q =
1

ÅÅÅÅÅÅÅÅÅÅÅÅ
4 m

 ‚
i, j=1

n

@Ai, j - Pi, j D Hsi  sj + 1L =
1

ÅÅÅÅÅÅÅÅÅÅÅÅ
4 m

 ‚
i, j=1

n

@Ai, j - Pi, j D si  sj ,

where, ⁄i, j Pi, j  = ⁄i, j Ai, j  = 2m.  Therefore, in matrix form,

Q =
1

ÅÅÅÅÅÅÅÅÅÅÅÅ
4 m

 s”T   s”,

where  is the modularity matrix, a real symmetrical matrix having elements

Bi, j = Ai, j - Pi, j .

The eigenspectrum of the modularity matrix is closely tied to the community structure
of the network.  The eigenvector, u”÷ H1L , corresponding to the most positive eigenvalue of
the modularity  matrix  (the  primary  eigenvector)  has  elements  whose signs  determine
how  the  network  should  be  divided  into  two  groups  to  maximize  modularity.   This
process of splitting networks or subnetworks into communities may be continued until
the modularity score, Q, no longer improves.  Also, the magnitudes of the elements of
the eigenvector,  u”÷ H1L , also contain useful information about the network, indicating the
centrality with which vertices belong to the communities in which they are placed; alas,
this information is not analyzed or interpreted in this thesis, but is left for later research.

‡ 9.3-4.1.2.3  Offdiagonal Complexity

Concisely  stated,  the  offdiagonal  complexity  of  a  network,  G(M,N),  is  the
entropy of the normalized diagonal sums of the node-node link correlation matrix of G,
where the node-node link correlation matrix 
is essentially a tabulation of information about the relative degree of adjacent nodes in
the network.  The node-node link correlation matrix, , is an upper-triangular matrix in
which the rows and columns correspond to the node degrees present in G, thus  is a
dMAX µdMAX  square matrix, where dMAX  is the maximum node degree contained by G.
Let,

i, j = 9 # links between nodes of degree i to nodes of degree j " i § j,
0 " i > j.

The link correlation matrix, , is attuned to the assortativity of the network, G.  Mark
Newman (2002) describes a process labelled assortative mixing in some networks where
nodes link to other nodes of similar degree.  When this is the case, the link correlation
matrix,  ,  will have nonzero entries close to the main diagonal.   A network is called
disassortative  (Maslov  & Sneppen  2002)  if  nodes  tend to  link with  other  nodes  of a
different  degree,  thus  implying    will  have  many  connections  along  offdiagonals
described by i, i+k  " k œ {1, ..., N-1}.

Claussen  (2007  & 2008)  defined  offdiagonal  complexity  as  the  magnitude  of
variation (entropy) exhibited in the sums of the diagonals of .   Each diagonal sum of
the node-node link correlation matrix, say ⁄i=1

dMAX i, i+k , represents a tendency for nodes
of degree d to link to nodes of degree d + k.  When there is a diversity in the relative
node  degree  of  neighbors  throughout  the  network,  when  it  is  neither  assortative  or
disassortative in any particular way,  will have many nonzero entries, and the normal-
ized sums of the diagonals,
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wk =
⁄i=1

dMAX -k i, i+k
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ⁄i=1

dMAX ⁄ j=i
dMAX i, j

,

will have maximum entropy, such that, the formula for offdiagonal complexity is,

OdC ª - ‚
k=1

dMAX

wk  lnHwk L.

‡ 9.3-4.2.1.1  Distent

The distent score is determined for each node across the network, G(M,N), by a
process of definite iteration in topological order, T.  Let D = {D1, D2 , ..., Di , ..., DN } be
a list of distent scores for all nodes in the network.   Let the distent for any course, i, be
resolved into two components, Di  ª inherited Di  + generatedDi , where the generated distent,
generatedDi  ª wi , is equal to the course weight in units of academic credits (¯), and the
inherited  distent  inherited Di  is  a  function  of the  prerequisites.   If  calculations  for each
node are sequenced in topological order, then all necessary distent calculations for the
prerequisites are complete as required.

Let course i have ni  prerequisite requirements, such that, Ri  = {ri,1 , ri,2 , ..., ri, j ,
...,  ri,ni } is a list of prerequisite  requirements,  ri, j .  Let each prerequisite  requirement,
ri, j , be satisfied by any course from list Pi, j .  \ Ri  fl Pi  = {Pi,1 , Pi,2 , ..., Pi, j , ..., Pi,ni }, a
list  of  sets  of courses  that  satisfy  the  prerequisite  requirements  of  course  i.   Let  the
reported distent score for any prerequisite, j, of course node, i, be the minimum distent
score from all mj  courses that can satisfy the prerequisite  requirement,  ri, j , such that,
reportedDi, j  ª Min{Di, j,k }…k œ Pi, j  where Di, j,k  is the distent of node k.  Let the inherited
distent score for course i be the maximum reported distent score from its prerequisite
requirements, such that, inherited Di  ª Max{reportedDi, j}… j = 1

ni .
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‡ 9.3-4.2.1.2  Sustent

The sustent score is determined for each node across the network, G = {V, E},
by a process of definite iteration in topological order, T.  Let S = {S1, S2 , ..., Si , ..., DN }
be a  list  of  sustent  scores  for  all  nodes  in  the  network.   The  sustent  score  for  each
course,  i, comes from the construction and analysis of an implied star network,  called
i ,  which  has  course  i  as  its  hub  and  includes  links  with  calculated  strengths  to  all
immediate, secondary, tertiary, and all ancillary prerequisites, such that, i  = {Vi , Ei} =
i(Mi , Ni) consists of a set of vertices (nodes), Vi , and a set of edges (links), Ei , each
with the form, (i, j, si, j

£ ) ' (j œ Vi) fl (i ≠ j).  Notice, si, j
£  is the strength of a link between

nodes, i and j, in the implied (star) sustent network, while si, j  is the strength of a link in
the  course  network  between  the  nodes,  i  and  j.   If  calculations  for  each  node  are
sequenced in topological order, then all necessary distent calculations for the prerequi-
sites are complete as required.

Let the notation, FH˜L
i = 1

N
ai  = a1  ˜ a2  ˜ ... ˜ ai˜ ... ˜ aN , where F is an operator

that uses the function, ˜, to combine a sequence of terms, ai ; notice, the familiar summa-
tion operator, S, is a specific example where F(+) Ø S.  Let the sustent network of any
course,  i  = {Vi , Ei}, be a function of its prerequisites  and their sustent networks.
Let Vi  ª prei  ‹ FH‹ L

j œ i

Vj , that is, the set of nodes in the sustent network for node i is
Vi , defined as the union of the set of prerequisite neighborhood nodes, prei , with the
union of the sets of nodes, Vj … j œ i , from all their sustent networks,  j .  

Let Ei  ª  g({(i,  j,  si, j)}… j œ i  ù  fi(FH‹ L
j œ i

Ej)), where  f  and g  are functions

defined below and ù is the multiset union (Bergeron & Hatcher 1997), or multiset sum
(Syropoulos 2001),  resulting in a multiset – the generalization of a set where elements
may have a multiplicity  that is explicitly significant  (Bogart  2000: ch. 2).  The union
(‹) of all sets of prerequisite sustent links, Ej … j œ i , represented as, FH‹ L

j œ i

Ej , is a set

of elements  each with  the triplet  form, (j,  k,  s j,k
£ ),  indicating  an implied  directed link

between nodes, j and k, with link strength s j,k
£ .  The function, fi , works on a set of links

to transfer their origin from nodes j to i, scaled by si, j , the coupling between them in the
network, G.  Let fi({(j, k, sj,k

£ )}… j,k) ª {(i, k, si, j s j,k
£ )}…k  " i, j, k œ , that is, the first

coordinate is changed from j to i, and the last (implied strength) coordinate is scaled by
si, j .  Because all first coordinates  are changed to i by fi , this implies the resulting set
often has redundant elements generally, so must be treated as a multiset.  The multiset
union (ù) brings all the links to the prerequisite neighbors of i, i , together with all the
transformed links from all of the sustent networks, where all links have the form, (i, l,
si,l

£ )…l œ Vi
.  The function, g, combines multiple edges – two or more edges that are inci-

dent to the same two vertices (Bollobas 1998: ch. 2; Newman 2004b), to form a regular
star network.  This also has the effect of reducing the multiset of edges to a regular set,
Ei .  Let g({(i, j, si, j,1

£ ), (i, j, si, j,2
£ ), ..., (i, j, si, j,k

£ ), ... ,  (i, j, si, j,N
£ )}) ª {(i, j, Min{1,

⁄k=1
N si, j,k

£ })} " i, j, k, N œ , that is, a set of triplets with the form, (i, j, si, j,k
£ ), where the

first two coordinates are redundant among them, is replaced by set containing a single
element of the same first two coordinates, and a third coordinate that is the summation
of all the previous third coordinates,  limited to a maximum.  Therefore, the function g
binds sets of multiple edges into a single edge with combined strength not greater than
one, the maximum link strength between any two courses.  Let g have the capacity to
function  on diverse  sets  of triplets  to return  a set  with  all  subsets  of  semi-redundant
triplets  (first  two  coordinates)  replaced  by  a  single  node  of  combined  strength  as
described above.   The final result  is an implied sustent  network,  i , in the form of a
regular star with node, i, as its hub directly linked to its prerequisite neighbors and all of
the nodes that appear in any of their sustent networks.

Once the sustent network, i , is established for any course, i, the sustent score is
calculated as follows,
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The sustent score is determined for each node across the network, G = {V, E},
by a process of definite iteration in topological order, T.  Let S = {S1, S2 , ..., Si , ..., DN }
be a  list  of  sustent  scores  for  all  nodes  in  the  network.   The  sustent  score  for  each
course,  i, comes from the construction and analysis of an implied star network,  called
i ,  which  has  course  i  as  its  hub  and  includes  links  with  calculated  strengths  to  all
immediate, secondary, tertiary, and all ancillary prerequisites, such that, i  = {Vi , Ei} =
i(Mi , Ni) consists of a set of vertices (nodes), Vi , and a set of edges (links), Ei , each
with the form, (i, j, si, j

£ ) ' (j œ Vi) fl (i ≠ j).  Notice, si, j
£  is the strength of a link between

nodes, i and j, in the implied (star) sustent network, while si, j  is the strength of a link in
the  course  network  between  the  nodes,  i  and  j.   If  calculations  for  each  node  are
sequenced in topological order, then all necessary distent calculations for the prerequi-
sites are complete as required.

Let the notation, FH˜L
i = 1

N
ai  = a1  ˜ a2  ˜ ... ˜ ai˜ ... ˜ aN , where F is an operator

that uses the function, ˜, to combine a sequence of terms, ai ; notice, the familiar summa-
tion operator, S, is a specific example where F(+) Ø S.  Let the sustent network of any
course,  i  = {Vi , Ei}, be a function of its prerequisites  and their sustent networks.
Let Vi  ª prei  ‹ FH‹ L

j œ i

Vj , that is, the set of nodes in the sustent network for node i is
Vi , defined as the union of the set of prerequisite neighborhood nodes, prei , with the
union of the sets of nodes, Vj … j œ i , from all their sustent networks,  j .  

Let Ei  ª  g({(i,  j,  si, j)}… j œ i  ù  fi(FH‹ L
j œ i

Ej)), where  f  and g  are functions

defined below and ù is the multiset union (Bergeron & Hatcher 1997), or multiset sum
(Syropoulos 2001),  resulting in a multiset – the generalization of a set where elements
may have a multiplicity  that is explicitly significant  (Bogart  2000: ch. 2).  The union
(‹) of all sets of prerequisite sustent links, Ej … j œ i , represented as, FH‹ L

j œ i

Ej , is a set

of elements  each with  the triplet  form, (j,  k,  s j,k
£ ),  indicating  an implied  directed link

between nodes, j and k, with link strength s j,k
£ .  The function, fi , works on a set of links

to transfer their origin from nodes j to i, scaled by si, j , the coupling between them in the
network, G.  Let fi({(j, k, sj,k

£ )}… j,k) ª {(i, k, si, j s j,k
£ )}…k  " i, j, k œ , that is, the first

coordinate is changed from j to i, and the last (implied strength) coordinate is scaled by
si, j .  Because all first coordinates  are changed to i by fi , this implies the resulting set
often has redundant elements generally, so must be treated as a multiset.  The multiset
union (ù) brings all the links to the prerequisite neighbors of i, i , together with all the
transformed links from all of the sustent networks, where all links have the form, (i, l,
si,l

£ )…l œ Vi
.  The function, g, combines multiple edges – two or more edges that are inci-

dent to the same two vertices (Bollobas 1998: ch. 2; Newman 2004b), to form a regular
star network.  This also has the effect of reducing the multiset of edges to a regular set,
Ei .  Let g({(i, j, si, j,1

£ ), (i, j, si, j,2
£ ), ..., (i, j, si, j,k

£ ), ... ,  (i, j, si, j,N
£ )}) ª {(i, j, Min{1,

⁄k=1
N si, j,k

£ })} " i, j, k, N œ , that is, a set of triplets with the form, (i, j, si, j,k
£ ), where the

first two coordinates are redundant among them, is replaced by set containing a single
element of the same first two coordinates, and a third coordinate that is the summation
of all the previous third coordinates,  limited to a maximum.  Therefore, the function g
binds sets of multiple edges into a single edge with combined strength not greater than
one, the maximum link strength between any two courses.  Let g have the capacity to
function  on diverse  sets  of triplets  to return  a set  with  all  subsets  of  semi-redundant
triplets  (first  two  coordinates)  replaced  by  a  single  node  of  combined  strength  as
described above.   The final result  is an implied sustent  network,  i , in the form of a
regular star with node, i, as its hub directly linked to its prerequisite neighbors and all of
the nodes that appear in any of their sustent networks.

Once the sustent network, i , is established for any course, i, the sustent score is
calculated as follows,

Si ª ‚
j œ  Vi

si, j
£ wi ,

where wj  are the node weights for each course in the implied sustent star network sur-
rounding the hub, i, where si, j

£  are the link strengths, and where Si  has units of academic
credits (¯).

‡ 9.3-4.2.1.3  Extent

The extent  of a node can be considered as the 'reverse sustent'.   By replacing
'sustent' with 'extent', 'i ' with 'i ', and 'prerequisite' with 'subsequent', by reversing the
polarity  of  the course  network,  G,  and by iterating  calculation  in reverse  topological
order (reverse T),  extent  calculations  proceed exactly the same as sustent  calculations
(see Attachment 9.3 Supplementary Equations 4.2.1.3).
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‡ 9.3-4.2.1.4  Intent

The intent score is determined for each node across the network, G = {V, E}, by
a process of definite iteration in topological order, T.  Let I = {I1 , I2, ..., Ii , ..., IN } be a
list  of intent scores for all  nodes in the network.   Let the intent for any course,  i, be
resolved into two components,  Ii  ª  dedicated Ii  + generated Ii ,  where the generated  intent,
generated Ii  ª wi , is equal to the course weight in units of academic credits (¯), and the
dedicated intent dedicated Ii  is a function of the prerequisites.  If calculations for each node
are sequenced in topological order, then all necessary intent calculations for the prerequi-
sites are complete as required.

Let I be initialized to W,  representing  the generative aspect  of intent  for each
node, before the iterative process of intent dedication begins, so that, I = W.  " i œ V,
chosen  in topological  order,  T,  a  dedication  of intent  is  made towards its  subsequent
neighbors, subi .  Let the amount of intent dedicated by node, i, to one of its subsequent
neighbors be defined as follows:

d Ii, j ª
si, j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Max 81, subdi < Ii , " j œ subi ,

where si, j  is the link strength between nodes, i and j, and subdi  is the degree of linkage of
node i to its subsequents.  The constraint appears in the denominator to ensure no single,
weakly linked subsequent,  si, j  < 1, can receive a full dedication of intent from i.  The
update to the intent score of each subsequent neighbor of node i follows as, I j  += d Ii, j  ,
" j œ subi , where the function, +=, adds d Ii, j  to I j  then returns the new value of I j .

Therefore, no equation is offered in this section to represent the intent score of a
course i Õ G; only an initial condition for intent is stated, and an algorithm for dedica-
tion of intent among nodes is described which yields intent scores for all nodes of the
network.
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9.4  Program Code

Many research decisions are reflected in the raw computer code of the primary
research tool: the program, Calendar Navigator.  Most choices of how to treat and inter-
pret the data, or, how to build, visualize, and analyze the networks are represented by
the  presence  or  absence  of  specific  sequences  of  programming.   The  raw code  and
in-line programming  comments  for Calendar  Navigator  are at least  one-hundred  fifty-
five pages long and mercifully not all shown here, but are available upon request as hard
copy or electronic  file which must  be executed in the Mathematica  5.1 programming
environment.   Warning:  the comments  and code are designed for programmer to pro-
grammer communication, and otherwise offer only vague, general impressions.

‡ 9.4-3.1.2.1  Graph Drawing Algorithms

The following functions and code determine the layout of networks based on a
modified "spring-electrical" model built into Mathematica.  A function is described that
introduces a "gravity" terms so that disconnected portions of the graph do not float away
too far  from the  main  component.   The layout  takes  into  consideration  continuously
weighted nodes and links with variable strengths.

GravityChargedWeightedSpringEmbedding::usage  =  "GravityChargedWeightedSpring-
Embedding[g,  w,  ch,  sh,  step,  increment]  is  the  same  as  ChargedWeightedSpring-
Embedding[g,  w, ch, sh, step, increment]  except it introduces a global attractive force
towards the origin to control the spread of a disconnected network.  The function, Gravi-
tyChargedWeightedSpringEmbedding[g,w,ch,sh,step,increment,grav],  sets  the  strength
of the 'gravitational'  field.  It's best to think of this as more of a spring, with a spring
constant, grav, attached to each vertex and anchored at the origin."

GravityChargedWeightedSpringEmbedding@g_Graph, w_List,
ch_List, sh_: 0, step_: 10, inc_: 0.15D := g ê; EmptyQ@gD

The basic function simply changes the vertices of the graph, g, to a new set.  The
new vertices come directly from the function, GCWUV.  Notice the adjacency matrix,
m, is undirected.  The parameter, gr, scales the repulsive force (originally set to 10).

GravityChargedWeightedSpringEmbedding@g_Graph, w_List, ch_List, sh_: 0,
step_: 10, inc_: 0.15, grav_: 0.05D := Module@8verts = Vertices@gD, new,
m = ToAdjacencyMatrix@MakeUndirected@gDD, gr = 10 ê HMean@chDL^2<,

new = GCWUV@step, inc, m, w, gr, grav, ch, sh, vertsD;
ChangeVertices@g, newDD

Inside GCWUV,  the function,  Compile,  first  identifies  a list of variables  and
their  type,  and,  last  identifies  a  subexpression  (the  function  GCWCF)  and  its  type.
First, step is the number of outer iterations, second, inc is the step size for each perturba-
tion of the coordinates, third, m is the adjacency matrix for the graph, w is the weight
(strength) matrix for the graph edges, gr is a parameter to scale the repulsive force, grav
is a constant describing the strength of the global attractive field, ch is the charge vector
for the graph vertices, sh is a (numeric) boolean variable determining shielding of neigh-
bor charges, and, last, verts is a list of the vertices' coordinates (forms a matrix).  Inside
the function, Compile, is a Module.  The inner Do loop uses a counter, u, that covers
each of the elements in the variable, verts.  For each coordinate, the function GCWCF
is  called to perturb the variables,  old  and new, which both track the evolution of the
vertices' position.  The outer Do loop repeats the process by the number of steps.
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Inside GCWUV,  the function,  Compile,  first  identifies  a list of variables  and
their  type,  and,  last  identifies  a  subexpression  (the  function  GCWCF)  and  its  type.
First, step is the number of outer iterations, second, inc is the step size for each perturba-
tion of the coordinates, third, m is the adjacency matrix for the graph, w is the weight
(strength) matrix for the graph edges, gr is a parameter to scale the repulsive force, grav
is a constant describing the strength of the global attractive field, ch is the charge vector
for the graph vertices, sh is a (numeric) boolean variable determining shielding of neigh-
bor charges, and, last, verts is a list of the vertices' coordinates (forms a matrix).  Inside
the function, Compile, is a Module.  The inner Do loop uses a counter, u, that covers
each of the elements in the variable, verts.  For each coordinate, the function GCWCF
is  called to perturb the variables,  old  and new, which both track the evolution of the
vertices' position.  The outer Do loop repeats the process by the number of steps.

GCWUV = Compile@88step, _Integer<, 8inc, _Real<,
8m, _Integer, 2<, 8w, _Real, 2<, 8gr, _Real<, 8grav, _Real<,
8ch, _Real, 1<, 8sh, _Integer<, 8verts, _Real, 2<<,
Module@8u, i, new = old = verts, n = Length@vertsD<, Do@Do@new@@uDD =

old@@uDD + inc * GCWCF@u, m, w, gr, grav, ch, sh, oldD, 8u, n<D;
old = new, 8i, step<D;

newD, 88GCWCF@___D, _Real, 1<<D

Inside GCWCF,  the function,  Compile,  first  identifies  a list of variables  and
their type.  First, u is an index to identify the node being perturbed,  second, m is the
adjacency matrix for the graph, w is the weight (strength) matrix for the graph edges, gr
is a parameter to scale the repulsive force (originally set to 10), ch is the charge vector
for the graph vertices, sh is a (numeric) boolean variable determining shielding of neigh-
bor charges,  and, last,  em  is a list of the vertices'  coordinates  (forms an nµ2 matrix).
Inside the function, Compile, is a Module.  Here local variables are defined.  First, n is
the number of vertices,  second, stc is a set parameter to scale the attractive force, f is
calculated perturbation vector to the coordinate vector, spl is an unused parameter set to
unity, v is a counter running over each vertex, and, last, dsquared is the euclidean scalar
distance between each vertex squared that has a lower limit of 0.001.  The Do loop uses
the counter, v, to consider each vertex in the graph in relation to the reference vertex
identified by the index, u.  The perturbation, f, is a coordinate vector, which is an accu-
mulation (+=) of perturbations on u by all other vertices, v.  The first term of f is the
repulsive  vector  displacement  away from each vertex,  v,  that is not a member  of the
neighborhood of u.  The second term is the attractive vector displacement toward each
vertex, v, that is linked to u.  The edge weight term, w[[u,v]], scales this displacement.
The third term is the attractive vector displacement towards the origin, intended to keep
disconnected graphs from flying apart too far.  It is scaled relative to gr by grav.  The
function returns the final value of the perturbation, f.

GCWCF = Compile@88u, _Integer<, 8m, _Integer, 2<, 8w, _Real, 2<, 8gr, _Real<,
8grav, _Real<, 8ch, _Real, 1<, 8sh, _Integer<, 8em, _Real, 2<<,
Module@8n = Length@mD, stc = 0.25, f = 80.0, 0.0<, spl = 1.0, v, dsquared<,
Do@dsquared = Max@0.001, Apply@Plus, Hem@@uDD - em@@vDDL^2DD;
f += H1 - sh m@@u, vDDL Hgr ch@@uDD ch@@vDD ê dsquaredL Hem@@uDD - em@@vDDL -

m@@u, vDD stc Log@dsquared ê splD Hw@@u, vDD Hem@@uDD - em@@vDDLL -
gr grav em@@uDD, 8v, n<D;

fDD
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‡ 9.4-4.1.2.2  Community Structure - Bottom Up

The following algorithms and code determine the modular structure of a course
network  based  first  on  eigenvectors,  then  refinement  through  node  switching  among
modules.

ü Cuts to the Network Based on Eigenvectors and Modularity

<< Statistics`ClusterAnalysis`

The function, lead, offers the first member of an input list, x, or simply the element, x.
The function, follow, is similar.

lead@x_D := If@Head@xD ã List, First@xD, x, xD
follow@x_D := If@Head@xD ã List, Last@xD, x, xD

The following  function,  normalizeAdjacencyMatrix,  accepts  a symmetric,  weighted,
adjacency matrix, , and normalizes it so its size is unity, producing an output, .

normalizeAdjacencyMatrix@ : _ListD :=  ê Total@, 3D

To establish the modularity of a network, input parameters need to be set.  The variable,
, is the weighted, symmetrical,  real valued adjacency matrix of the network in ques-
tion.  Real values, ensured by adding 0.0 to each element of the adjacency matrix, seem
to be preferred by the Mathematica algorithms producing eigenfunctions.  The weighted
degree for all nodes is recorded in the vector, k.  The real variable, m, holds the size of
the network.  The integer variable, l, holds the network order.  The "modularity matrix",
, is used for calculations to split the network.

modGraph = nestGraph;
 = prereqWeightMatrix + 0.0;
H*use this line for networks displayed in Calendar Network*L
 = normalizeAdjacencyMatrix@D;
k = Total êü ;
m = Total@kD ê 2;
n = lengthCourseData;
l = V@modGraphD; H*network order*L
 = Array@Function@8, <, P, T - kPT kPT ê H2 mLD, 8l, l<D
H*modularity matrix, 1 min*L;

indivisibles = 8<;

The function, timer, calculates the elapsed time in minutes since the last reference.  It
also updates the variable, o.

timer@tknot_D := Block@8 = SessionTime@D<, o = ; Round@ - tknotDD

The function, eigenCut, splits a subgraph to maximize contributions to modular-
ity.   The function,  eigenCut,  accepts,  as  input,  a  "modularity  matrix",  ,  an integer
length, l, indicating the number of subgraph vertices,  and a list of vertices in the sub-
graph,  cliqueNodes.   The outer  If  statement,  tests  to see if cliqueNodes  is already a
MemberQ of the indivisibles – a list of previously tested modules.  If True, then clique-
Nodes  is simply restated; if False, then the best split  is considered.   Inside the Block
statement,  a  local  variable,  ,  captures  the    corresponding  to  the
largest  of the "modularity matrix", .  The function, Positive, converts that
eigenvector to a list indicating vertex membership in one of two fragments of the sub-
graph.  Any entry of True in the list indicates the corresponding vertex belongs to the
subnetwork fragment called , and any entry of False indicates membership in
.  The local variable, , is an lµ2 matrix (Array) based on .  Vertex
membership in   is indicated in the first column, and  in the second
column, by pairs of ones and zeros.  The contribution to graph modularity, D, resulting
from the graph split is calculated from  and .  The next step refines the split.  The
function,  FixedPoint,  accepts  the  initial  value  for    from eigenvector  analysis  as  an
input and recursively refines it to improve modularity.   Inside Function, a local vari-
able, V, is given the value of .  The inner Block statement contains the local variable,
d, an Array of length, l, that records the contribution to graph modularity if the mem-
bership of any vertex,  = 1, 2, 3, …, l, is switched (Reverse).  Such vertex switches,
tracked by the variable, x, between subgraphs generally result in a change in modularity
less than it was initially, dPT < D.  If the largest (Max) change in modularity, ,
is larger than it was initially (D), then the corresponding vertex switch(es) are identi-
fied (Position) made permanent (ReplacePart).  The switching process is repeated until
modularity  is  maximized.   The  final  grouping  of  vertex  indices  into    and
 is made.  If these groupings are meaningful and modularity is increased, then
a Cluster statement is output, else, the original cliqueNodes remain intact and are, as a
set,  AppendedTo  the list,  indivisibles.   The nodes  from the "modularity  matrix",  ,
correspond  to nodes in the original  adjacency matrix,  ,  via cliqueNodes.  The "Ar-
noldi" method to finding eigenvectors works best for large, sparse, symmetric matrices.
The  second  argument  to  Eigensystem  determines  the  number  of
eigenvalues/eigenvectors  to be calculated,  instead of all of them.  If  the order  of the
matrix is small, l ≤ 10, then the default settings for the function, Eigensystem, are used.
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The function, eigenCut, splits a subgraph to maximize contributions to modular-
ity.   The function,  eigenCut,  accepts,  as  input,  a  "modularity  matrix",  ,  an integer
length, l, indicating the number of subgraph vertices,  and a list of vertices in the sub-
graph,  cliqueNodes.   The outer  If  statement,  tests  to see if cliqueNodes  is already a
MemberQ of the indivisibles – a list of previously tested modules.  If True, then clique-
Nodes  is simply restated; if False, then the best split  is considered.   Inside the Block
statement,  a  local  variable,  ,  captures  the    corresponding  to  the
largest  of the "modularity matrix", .  The function, Positive, converts that
eigenvector to a list indicating vertex membership in one of two fragments of the sub-
graph.  Any entry of True in the list indicates the corresponding vertex belongs to the
subnetwork fragment called , and any entry of False indicates membership in
.  The local variable, , is an lµ2 matrix (Array) based on .  Vertex
membership in   is indicated in the first column, and  in the second
column, by pairs of ones and zeros.  The contribution to graph modularity, D, resulting
from the graph split is calculated from  and .  The next step refines the split.  The
function,  FixedPoint,  accepts  the  initial  value  for    from eigenvector  analysis  as  an
input and recursively refines it to improve modularity.   Inside Function, a local vari-
able, V, is given the value of .  The inner Block statement contains the local variable,
d, an Array of length, l, that records the contribution to graph modularity if the mem-
bership of any vertex,  = 1, 2, 3, …, l, is switched (Reverse).  Such vertex switches,
tracked by the variable, x, between subgraphs generally result in a change in modularity
less than it was initially, dPT < D.  If the largest (Max) change in modularity, ,
is larger than it was initially (D), then the corresponding vertex switch(es) are identi-
fied (Position) made permanent (ReplacePart).  The switching process is repeated until
modularity  is  maximized.   The  final  grouping  of  vertex  indices  into    and
 is made.  If these groupings are meaningful and modularity is increased, then
a Cluster statement is output, else, the original cliqueNodes remain intact and are, as a
set,  AppendedTo  the list,  indivisibles.   The nodes  from the "modularity  matrix",  ,
correspond  to nodes in the original  adjacency matrix,  ,  via cliqueNodes.  The "Ar-
noldi" method to finding eigenvectors works best for large, sparse, symmetric matrices.
The  second  argument  to  Eigensystem  determines  the  number  of
eigenvalues/eigenvectors  to be calculated,  instead of all of them.  If  the order  of the
matrix is small, l ≤ 10, then the default settings for the function, Eigensystem, are used.

In the interests of speed, this version is designed to move all nodes that improve
modularity, instead of the just the maximum one, before d is recalculated again.  But,
the problem with moving them all, the modularity may actually decrease when they are
all  moved  despite  a  modularity  increase  when  each  is  moved  alone.   Therefore,  try
moving the first one, then the first and second one, and so on until the modularity does
not increase.  Now, If the maximum modularity after switching nodes, , is tested to
be larger than the initial modularity, D, then the variable, , identifies the Posi-
tion of all nodes that would improve on the modularity, D, if switched on their own,
Sorted in terms of impact.  Assuredly, Reverseing the First node of  results in
the maximum improvement to modularity,  .  But, to go further than the standard
function, eigenCut, If there are other nodes of interest in , such that,  > 1,
then these are to be tested, and possibly moved as well, within the Do loop.  If Reverse-
ing further members, i, of  continues to improve the test modularity, , then
these changes are incorporated into x and D, else the Do loop Breaks.  The variable, x,
which holds the meaningful nodes switches deviating from V, is reported.
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In the interests of speed, this version is designed to move all nodes that improve
modularity, instead of the just the maximum one, before d is recalculated again.  But,
the problem with moving them all, the modularity may actually decrease when they are
all  moved  despite  a  modularity  increase  when  each  is  moved  alone.   Therefore,  try
moving the first one, then the first and second one, and so on until the modularity does
not increase.  Now, If the maximum modularity after switching nodes, , is tested to
be larger than the initial modularity, D, then the variable, , identifies the Posi-
tion of all nodes that would improve on the modularity, D, if switched on their own,
Sorted in terms of impact.  Assuredly, Reverseing the First node of  results in
the maximum improvement to modularity,  .  But, to go further than the standard
function, eigenCut, If there are other nodes of interest in , such that,  > 1,
then these are to be tested, and possibly moved as well, within the Do loop.  If Reverse-
ing further members, i, of  continues to improve the test modularity, , then
these changes are incorporated into x and D, else the Do loop Breaks.  The variable, x,
which holds the meaningful nodes switches deviating from V, is reported.

eigenCut@ : _List, l : _Integer, cliqueNodes : _ListD :=
If@MemberQ@indivisibles, cliqueNodesD, cliqueNodes,
Block@8, , ,

, , , D, o = SessionTime@D<,
 = PositiveüLastüLastüSortüTransposeüEigensystem@D;
 = Map@Boole, Array@

Function@8, <, Xor@PT, Positive@DDD, 8l, 2<, 81, 0<D, 8-1<D;
D = Tr@¨..D;
 = FixedPoint@Function@8V<,

Block@8x, d = Array@0 &, lD, <,
Do@x = ReplacePart@V, Reverse@VPTD, D;

dPT = Tr@x¨..xD, 8, l<D;
 = Max@dD;
If@ > D,
Block@8, , x = V, x, <,
 =
Sort@FlattenüPosition@d, _?HD < # &LD, dP#1T > dP#2T &D;

xPFirst@DT = Reverse@xPFirst@DTD; D = ;
 = Length@D;
If@ ¥ 2, x = x;
Do@xPPiTT = Reverse@xPPiTTD;
 = Tr@x¨..xD;
If@D § , x = x; D = , Break@D,
Print@"Problem with deltaQ or with testQ"DD,

8i, 2, <DD;
xD, V, VDDD, D;

 = FlattenüPosition@PAll, 1T, 1D;  = Length@D;
 = Complement@Range@lD, D;  = Length@D;
If@HD ¥ 0L fl H > 0L fl H > 0L,
Cluster@cliqueNodesPT,
cliqueNodesPT, D, Length@D, Length@DD,
AppendTo@indivisibles, cliqueNodesD; cliqueNodes,
ConsolePrint@"Something wrong with the function eigenCut."DDDD

The  function,  modularityMatrix,  prepares  a  modularity  matrix  for  a  given
subnetwork.  It accepts, as input, a list of nodes, cliqueNodes, indicating a subnetwork
for analysis.   If the input, cliqueNodes, is not a List of nodes, then the function does
nothing, as sometimes happens when Cluster statements do not have lists of vertices as
cliques, but individual vertices.  The outer Block statement defines, as a local variable,
the size (Length) of the subnetwork, .  If this value is greater than, or equal to, two, the
subnetwork  is analyzed  and prepared for the function,  eigenCut.   The local variable,
, is a submatrix of the modularity matrix, , as determined by the subnetwork,
cliqueNodes.  The local variable,  k, is the node degree within   for clique-
Nodes.  The local variable, , is the subnetwork modularity matrix, which is passed
on to the function, eigenCut, to determine further network partitioning and modularity
calculations.
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The  function,  modularityMatrix,  prepares  a  modularity  matrix  for  a  given
subnetwork.  It accepts, as input, a list of nodes, cliqueNodes, indicating a subnetwork
for analysis.   If the input, cliqueNodes, is not a List of nodes, then the function does
nothing, as sometimes happens when Cluster statements do not have lists of vertices as
cliques, but individual vertices.  The outer Block statement defines, as a local variable,
the size (Length) of the subnetwork, .  If this value is greater than, or equal to, two, the
subnetwork  is analyzed  and prepared for the function,  eigenCut.   The local variable,
, is a submatrix of the modularity matrix, , as determined by the subnetwork,
cliqueNodes.  The local variable,  k, is the node degree within   for clique-
Nodes.  The local variable, , is the subnetwork modularity matrix, which is passed
on to the function, eigenCut, to determine further network partitioning and modularity
calculations.

modularityMatrix@cliqueNodes_D :=
If@MatchQ@Head@cliqueNodesD, ListD, Block@8 = Length@cliqueNodesD<,

Print@D;
If@ ¥ 2,
Block@8 = PcliqueNodes, cliqueNodesT, k, <,
k = Total êü ;
 =  - SparseArray@88i_, i_< ß kPiT<, 8, <D;
eigenCut@, , cliqueNodesDD,

lead@cliqueNodesDDD, Print@"not list"D;
cliqueNodes, Print@"not list"D; cliqueNodesD

The variable, splitSequence, starts with the output of eigenCut on some initial values,
, l, and m, and, via FixedPoint, repeatedly applies the function, modularityMatrix,
until the output does not change or a maximum of iterations, l.  Mapping occurs at the
level, {-2}, in a "bottom up" process, striking with the function, modularityMatrix, on
the  "tips"  of  the  "dendrogram"  -  the  innermost  nested  Cluster  statements,
Cluster[clique+ , clique- ,distance, order clique+ , order clique-].

indivisibles = 8<;
splitSequence =
FixedPoint@Function@8<, Map@modularityMatrix, , 8-2<DD,
eigenCut@, l, Range@lDD, lDH*Original*L

The modest function, spot, is designed to work within the function, clusterClump.  It
identifies the Head of leading elements of a Cluster statement, and reports back values
for numbers of nested members.  Any Lists are counted as one member, regardless of
size, and any Cluster statement reports the number of its own internal members.

spot@y_D := Which@Head@yD === List, 1, Head@yD === Cluster,
yP-1T + yP-2T, Head@yD === Integer, 1, True, ¶D

The function, clusterClump, accepts a nested Cluster statement and a  as input.
At the given , Cluster statements and their parts are identified and Replaced with
a new Cluster statement that updates internal subcluster size via the function, spot.

clusterClump@x_: Cluster,  : _IntegerD :=
Replace@x, 8Cluster@a : _, b : _, D : _Real, _, _D ß

Cluster@a, b, D, spot@aD, spot@bDD<, 8<D

The  following  Do  loop  simply  applies  the  function,  clusterClump,  at  each  level  of
splitSequence,  from  the  bottom  Cluster  level  to  the  top,  updating  splitSequence  at
each step.

Do@splitSequence = clusterClump@splitSequence, D,
8, -3, -Depth@splitSequenceD, -1<D
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ü Final Refinement

The following function is from the notebook, "Eigenvector Centrality".

rowGather@matrix_, clumps_D :=
Apply@AppendColumns, 8Plus üü Part@matrix, #D< & êü clumpsD

Identification  of  communities  in  a  Cluster  statement.   The  function,  communities,
accepts  a Cluster  statement  as input.   The Position  of each nonempty  list  of nodes,
{__},  is  identified  and Mapped under  the  Part  function  to identify  the  communities.
The output is a list of lists of clique vertex indices.

communities@x_: ClusterD := Part@x, Sequence üü #D & êü Position@x, 8__<D

The following function, coarseNormalizedAdjacencyMatrix, accepts a normal-
ized (size is unity), symmetric,  weighted, adjacency matrix, , and alters the elements
by,  alloys,  to reflect  node agglomeration.   For modularity  coefficient  calculations,  let
the matrix diagonal remain at full weight,  see Newman, M. E. J. & Givan, M. (2004)
Finding and Evaluating Community  Structure  in Networks,  Physical Review E, 69(2),
026113(15).

coarseNormalizedAdjacencyMatrix@ : _List, alloys : _ListD :=
rowGather@TransposeürowGather@, alloysD, alloysD

The  following  function,  modularity,  accepts  a  normalized,  symmetric,
weighted, adjacency matrix, , and calculates the modularity score for the network that
matrix represents,  see Newman,  M. E. J. & Givan, M. (2004) Finding and Evaluating
Community Structure in Networks, Physical Review E, 69(2), 026113(15).  Modularity
is  a  comparison  of  intracommunity  with  intercommunity  edge  weight.   For  random
networks,  modularity  is zero, while modularity  near unity indicates strong community
structure.

modularity@ : _ListD := Tr@D - Total@ , 3D

Short@founders = communities@clustersD, 10D

initialMod = modularityü
coarseNormalizedAdjacencyMatrix@normalizeAdjacencyMatrix@D, foundersD

The function, switcher, accepts a list of list of cliques as input, .  In the
outer Block statement, a local variable, , holds a list to refer to the different
cliques  by.   At  the  lowest  level,  bottom-up,  {-1},  a  Function  is  MapIndexed  over
.  To the Function, each vertex of each clique, , is sent with its struc-
tural location in the list of cliques, .  For each vertex, , the inner Block
statement  defines  a local variable,  ,  that is  all  of the cliques after the vertex in
question  has  been  Deleted;  this  forms  a  background  on  which  the  single  vertex,
, may be moved around.  Another local variable, , lists the cliques of
which the vertex, , was not originally a member.  For each clique of ,
the vertex, , is Inserted in turn to form a new perturbed set of cliques.  Based
on the normalized adjacency matrix, , and this perturbed set of cliques for the network,
a new coarseNormalizedAdjacencyMatrix  and modularity  score is calculated.   The
output  of  switcher  is  a  nested  list  of  modularity  scores  resulting  from  moving  one
vertex at a time between cliques covering all combinations.  The output's dimensions are
that of the input for the first two Levels; at the third level, {2}, the input is elemental –
the vertex  indices  – while  the  output  Head  is  a  List  of Length  equal  to  number  of
cliques minus one.
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The function, switcher, accepts a list of list of cliques as input, .  In the
outer Block statement, a local variable, , holds a list to refer to the different
cliques  by.   At  the  lowest  level,  bottom-up,  {-1},  a  Function  is  MapIndexed  over
.  To the Function, each vertex of each clique, , is sent with its struc-
tural location in the list of cliques, .  For each vertex, , the inner Block
statement  defines  a local variable,  ,  that is  all  of the cliques after the vertex in
question  has  been  Deleted;  this  forms  a  background  on  which  the  single  vertex,
, may be moved around.  Another local variable, , lists the cliques of
which the vertex, , was not originally a member.  For each clique of ,
the vertex, , is Inserted in turn to form a new perturbed set of cliques.  Based
on the normalized adjacency matrix, , and this perturbed set of cliques for the network,
a new coarseNormalizedAdjacencyMatrix  and modularity  score is calculated.   The
output  of  switcher  is  a  nested  list  of  modularity  scores  resulting  from  moving  one
vertex at a time between cliques covering all combinations.  The output's dimensions are
that of the input for the first two Levels; at the third level, {2}, the input is elemental –
the vertex  indices  – while  the  output  Head  is  a  List  of Length  equal  to  number  of
cliques minus one.

switcher@ : _ListD := Block@8 = RangeüLength@D<,
MapIndexed@Function@8, <, Block@8 = Delete@, D,

 = Complement@, ListüFirst@DD<,
modularityücoarseNormalizedAdjacencyMatrix@,

Insert@, , 8#, 1<DD & êü DD,
,
8-1<DD

The function, refinement, accepts a List of cliques with a corresponding modu-
larity  score,  modScore,  and  tries  to  improve  on  that  by  switching  vertices  between
cliques while monitoring the changes in graph modularity.  The Block statement defines
as local variables,  and , so they can be updated, while  holds a list
to refer to the different cliques by.  The FixedPoint  strikes with a Function  until the
modularity,  ¨ , does not improve.  The local variable, , carries a
nested list of modularity scores occurring due to all the possible movements of a single
vertex among other   via switcher; the dimensions of   are Pi:
Length[],  j:  Length[i],  k:  Length[]-1T.   The  local  variable,
, identifies the largest modularity value due to switcher.  If this is larger than the
current  modularity  then  the  inducing  switch  is  made  permanent.   The local  variable,
, holds the Position(s) of the largest modularity, , in .
These positions, , are transformed into corresponding locations in  by
Takeing  only  the  first  two coordinates  – the  last  coordinate  indicating  the  clique  to
where  the  vertex  was  switched,  while  the  first  coordinate  pair  indicates  from which
clique and location the vertex came.   These positions  in   are in turn Mapped
under  the   themselves  to establish  the actual  node index identities,  which are
held in the local variable, .  Both the locations, , and the vertex identi-
ties,  ,  are brought  together  in pairs by the function,  Transpose,  and Scanned
under a collection of functions that update the variable, .  Initially, each vertex
pointed to by  is Deleted from .  Next, each deleted vertex of ,
Last[#], is Inserted into the front, {_, 1}, of a new clique.  The identity of that clique is
not obvious; the function, Complement, determines what clique it is not, by removing
from   the begetting  clique,  and the position,  PT,  is  taken from that subset.
See the description  of the function,  switcher,  to better  understand  the structure of its
output.  The output of the function, refinement, is an updated list of  and corre-
sponding modularity score, .
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The function, refinement, accepts a List of cliques with a corresponding modu-
larity  score,  modScore,  and  tries  to  improve  on  that  by  switching  vertices  between
cliques while monitoring the changes in graph modularity.  The Block statement defines
as local variables,  and , so they can be updated, while  holds a list
to refer to the different cliques by.  The FixedPoint  strikes with a Function  until the
modularity,  ¨ , does not improve.  The local variable, , carries a
nested list of modularity scores occurring due to all the possible movements of a single
vertex among other   via switcher; the dimensions of   are Pi:
Length[],  j:  Length[i],  k:  Length[]-1T.   The  local  variable,
, identifies the largest modularity value due to switcher.  If this is larger than the
current  modularity  then  the  inducing  switch  is  made  permanent.   The local  variable,
, holds the Position(s) of the largest modularity, , in .
These positions, , are transformed into corresponding locations in  by
Takeing  only  the  first  two coordinates  – the  last  coordinate  indicating  the  clique  to
where  the  vertex  was  switched,  while  the  first  coordinate  pair  indicates  from which
clique and location the vertex came.   These positions  in   are in turn Mapped
under  the   themselves  to establish  the actual  node index identities,  which are
held in the local variable, .  Both the locations, , and the vertex identi-
ties,  ,  are brought  together  in pairs by the function,  Transpose,  and Scanned
under a collection of functions that update the variable, .  Initially, each vertex
pointed to by  is Deleted from .  Next, each deleted vertex of ,
Last[#], is Inserted into the front, {_, 1}, of a new clique.  The identity of that clique is
not obvious; the function, Complement, determines what clique it is not, by removing
from   the begetting  clique,  and the position,  PT,  is  taken from that subset.
See the description  of the function,  switcher,  to better  understand  the structure of its
output.  The output of the function, refinement, is an updated list of  and corre-
sponding modularity score, .

refinement@cliques : _List, modScore : _RealD :=
Block@8 = cliques,  = modScore,

, , , , , <,
 = RangeüLength@cliquesD;
FixedPoint@Function@,  = switcher@D;

 = LastüSortüFlatten@D;
If@ > ,
 = Position@, D;
 = Map@PSequence üü #1T &, Take@#, 2D & êü D;
Scan@ = Insert@Delete@, Take@First@#D, 2DD, Last@#D,

8Complement@, ListüFirstüFirst@#DDPLastüFirst@#DT, 1<D &,
Transpose@8, <DD;  = ,

, Print@"Nonlogical in function, refinement."DDD, , 10D;
8, <D

The function,  bigSpotUpdater,  works  within  the fast  version  of the function,
refinement, below.  The variable, , needs to be updated each time a node is
moved so that original coordinates are not used to incorrectly identify elements, such as
, in modified cliques.   Only coordinates  of   not yet used need to be
updated.  There are two types of changes, to coordinates from further along in the source
clique that need to be trimmed, and, to coordinates further along (all of them since the
node is prepended) in the target clique that need to be bumped.  Understand,  the third
coordinate  is  confusing  since  it  only  refers  to  other  cliques,  so  there  is  a  qualitative
difference to third coordinates less than, compared to greater than or equal to, the clique
index.

bigSpotUpdater@spots_, index_D := MapIndexed@Function@8, <,
If@index < First@D,
Which@HspotsPindex, 1T == P1TL fl

HspotsPindex, 2T < P2TL,  - 80, 1, 0<,
HspotsPindex, 3T < spotsPindex, 1TL fl HspotsPindex, 3T == P1TL,
 + 80, 1, 0<,
HspotsPindex, 3T ¥ spotsPindex, 1TL fl HspotsPindex, 3T + 1 == P1TL,
 + 80, 1, 0<,
True, D,

, Print@"Problem in function, bigSpotUpdater."D; DD,
spotsD

This faster, rougher version of the function, refinement, identifies all nodes that
would have improved the modularity of the network if moved alone.  That list is sorted,
then moved one by one until  there are no more improvements  to the modularity.   A
critical improvement is to not let a node be moved more than once, as will occur when
an improvement to modularity occurs for the same node being moved to multiple new
cliques.   The variable,  ,  identifies  the Position  in   where
improvements to modularity due to switching occur.  A Sort based on Position coordi-
nates in  leads to sequences for the same node, as identified in a Split
based  on  identical  first  two  coordinates  (Take[#,2]).   The  grouped  sequences  are
Mapped under a Function which Sorts each  based on corresponding scores
in ; then keep only the First, thus dropping all lesser moves.  Finally,
the remaining unique switch coordinates are ranked (outer Sort) based on effect.
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This faster, rougher version of the function, refinement, identifies all nodes that
would have improved the modularity of the network if moved alone.  That list is sorted,
then moved one by one until  there are no more improvements  to the modularity.   A
critical improvement is to not let a node be moved more than once, as will occur when
an improvement to modularity occurs for the same node being moved to multiple new
cliques.   The variable,  ,  identifies  the Position  in   where
improvements to modularity due to switching occur.  A Sort based on Position coordi-
nates in  leads to sequences for the same node, as identified in a Split
based  on  identical  first  two  coordinates  (Take[#,2]).   The  grouped  sequences  are
Mapped under a Function which Sorts each  based on corresponding scores
in ; then keep only the First, thus dropping all lesser moves.  Finally,
the remaining unique switch coordinates are ranked (outer Sort) based on effect.

Observation: the function, switcher[], is failing a times.  Hypothesis:  member-
ship in cliques must be greater than one.  Why and were?  It appears to be a problem
inside the function, switcher, with the local variable, .  Making this function
robust to very small cliques appears involved.  A faster patch would be to prevent the
second last member from ever being removed.  This is achieved by putting an If state-
ment to prevent  leaving cliques of Length two.

refinement@cliques : _List, modScore : _RealD :=
Block@8 = cliques,  = modScore,

 = RangeüLength@cliquesD, , , <,
FixedPoint@Function@,

 = switcher@D;
 = LastüSortüFlatten@D;
If@ > ,
Block@8, , , , <,
 = Sort@Map@Function@, FirstüSort@,

PSequence üü #1T > PSequence üü #2T &DD,
Split@SortüPosition@, _?H < # &LD,
Take@#1, 2D == Take@#2, 2D &DD,

PSequence üü #1T > PSequence üü #2T &D;
 = Map@PSequence üü #1T &, Take@#, 2D & êü D;
If@Length@PP1, 1TTD > 2,
 = ;
 =
Insert@Delete@, Take@P1T, 2DD, P1T, 8Complement@

, ListüFirstüP1TDPLastüP1TT, 1<D;
 = bigSpotUpdater@, 1DD;

 = Length@D;
If@ ¥ 2,
Do@If@Length@PPi, 1TTD > 2,

 =
Insert@Delete@, Take@PiT, 2DD, PiT, 8Complement@

, ListüFirstüPiTDPLastüPiTT, 1<D;
 = modularityücoarseNormalizedAdjacencyMatrix@, D,
 = ;  = D;
Which@ < ,
 = ;  = bigSpotUpdater@, iD;  = ,
 == ,  = ;  = ,
 > , Break@D,
True, Print@"Problem with M or testM."DD,

8i, 2, <DD;
D,

, Print@"Nonlogical in function, refinement. bigM: ",
, " : ", DDD, , 10D;

8,
<D

refinery = refinement@founders, initialModD
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ü Translation into a Dendrogram Plot

The recursive function, modularityTree, is designed to accept the output of the
function,  splitSequence,  and  properly  tally  the  cumulative  modularity  distance  – the
absolute  value of  the cumulative  modularity  contributions  – for  each branch  (not the
total  cumulative  modularity).   Any sequence  the  function,  modularityTree,  receives
that  matches  (MatchQ) the characteristic  Cluster  pattern  is acted  upon.   Cumulative
distance, , is inserted into an updated version of splitSequence.  The nested Cluster
statement communicates the order of cuts and the "distance" for visualization via Den-
drogramPlot.  The variable, , is a free parameter to scale the display of the dendro-
gram:  increase  if  the  dendrogram  folds  onto  itself,  and  decrease  if  the  detail  of  the
dendrogram is crammed to one side.

modularityTree@_,  : _RealD :=
If@MatchQ@, Cluster@_, _, _Real, _Integer, _IntegerDD,
Block@8 =  - Abs@P3TD<,
Cluster@modularityTree@P1T, D,
modularityTree@P2T, D, , P4T, P5TDD,

,
D

splitSequence = Get@"êDoctoral ProgramêCalendar
NetworkêFrom Numerical ServerêsplitSequenceMEGA"D;

The  following  Do  loop  simply  applies  the  function,  clusterClump,  at  each  level  of
splitSequence,  from  the  bottom  Cluster  level  to  the  top,  updating  splitSequence  at
each step.

Do@splitSequence = clusterClump@splitSequence, D,
8, -3, -Depth@splitSequenceD, -1<D

clusters = modularityTree@splitSequence, 10800.0D;

clusters = modularityTree@splitSequence, 50.0D;

dendroBush = DendrogramPlot@clusters,
LeafLabels Ø H8lead@#D, follow@#D< &L, Orientation Ø LeftD;

dendroTree = DendrogramPlot@clusters,
LeafLabels Ø H8lead@#D, follow@#D< &L, Orientation Ø BottomD;

Parts  of  a  dendrogram:  dendroBushP1T  =  Graphics  primitives,  dendroBushP1,1T  =
dendrogram color,  dendroBushP1,2T  = list of Lines, dendroBushP1,3T  = list of Texts,
dendroBushP2T = Graphics options.
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‡ 9.4-4.1.2.3  Offdiagonal Complexity

The function,  OdC,  accepts  as input  a square,  symmetrical,  binary,  adjacency
matrix of a graph with  nodes, such that, i, j  œ {0,1}.  The local Block variable, , is
a list  of the degree of each node;  dMax  is the Max  node degree.   The matrix,  m,n ,
records the number of edges between all pairs of nodes,  and , with node degrees,  =
() and  = (), with () ≥ ().  The constant, , is the size of the , used for normal-
ization.   The Table  is a list of the Sum  of the diagonals  of .   The product of each
member with its natural logarithm is Totalled via Map (/@).

OdC@_D := BlockA8 = Total êü ,  = Length@D, dMax, <,
dMax = Max@D;

 = TableA‚
=1



‚
=1



P, T KroneckerDelta@, PTD 

KroneckerDelta@, PTD UnitStep@PT - PTD,
8, dMax<, 8, dMax<E;

 = TotalüFlatten@D;
TotalAN@-# Log@#DD & êü

TableA ⁄=1
dMax-i P,  + iT

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ


, 8i, 0, dMax - 1<E ê. Indeterminate Ø 0EE

‡ 9.4-4.2.1.1  Distent

ü Repeatedly split string corresponding to index and calculate distent

The  function,  stringToExtrema,  accepts  an  vertex  index,  then  converts  the
complete data string of prerequisites  for that course into a nested Min/Max statement
with  node  indices,  in  string  format,  as  arguments.   The  function,  stringFormat,  is
applied to the corresponding data string from reqBase before being mapped under the
other functions.   The FixedPoint  allows the internal functions to repeatedly transform
the data string until it reaches a stable form, or until 8 iterations occur.  For each wave
of transformations at all levels of the argument by the use of MapAll (//@) functions,
first, outer brackets are removed.  Second, strings are split at the semicolons and put into
Max statements.  Last, strings are split at the commas and put into Min statements.

stringToExtrema@_IntegerD := FixedPoint@
HHstringSplitter@#, ",", Apply@Min, #D &D &L êêü

HstringSplitter@#, ";", Apply@Max, #D &D &L êêü
eliminateOuterBrackets êêü #L &,

stringFormat@reqBasePT, coursePattern, 8<D, 8D
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ü Calculate distent

The  calculation  of  distent  can  only  occur  if  the  directed  acyclic  network  is
oriented by subsequents.  The distent of a course is measured in academic course credits
from the beginning of kindergarten to the end of the course in question.  The variable,
distent, is a list of the longest, shortest distance from the beginning of kindergarten to
the end of a course (node) that satisfies each course prerequisite.  The variable, topOr-
der, is a list of the nodes of nestGraph, after a TopologicalSort.  The nodes of topOr-
der  only  refer  to  nodes  that  came before  them,  except  kindergarten,  which  refers  to
nothing  in  the  education  system.   This  allows  all  distance  calculations  to proceed  in
topological order, without concern that a particular distance calculation will depend on
incomplete calculations of its prerequisite nodes.  Since distent was initialized to zeros,
and kindergarten is assumed to be point zero, only Rest of topOrder are Mapped under
the pure Function (&).  Within the Function, the distance to each node, distentP#T, is
set to the longest, shortest distance to all of its prerequisites Plus an amount equal to the
node weight of the destination.  In a sense, distances here are measures from the point of
departure of each node to the completion of the next node.  The function, stringToEx-
trema,  prepares  a nested Min/Max  statement  with  node  indices,  in string  format,  as
arguments, while the ReplaceAll (/.) function identifies each prerequisite String, nam-
ing it , and converts it to a distent measure.  The variables, distentLocation and distent-
Dispersion,  record statistical  measures  from Report  functions  found in Statistics`De-
scriptiveStatistics.  

distent = Array@0 &, lengthCourseDataD; H*initialization*L
topOrder = ReverseüTopologicalSort@nestGraphD;

distentEstablisher@D :=
HdistentPFirst@topOrderDT = creditBasePFirst@topOrderDT;
Map@HdistentP#T =

HstringToExtrema@#D ê.  : _String ß distentPToExpression@DTL +
creditBaseP#TL &, Rest@topOrderDD;

distentLocation = LocationReport@distentD;
distentDispersion = DispersionReport@distentDL
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‡ 9.4-4.2.1.2  Sustent

The calculation of sustent  can occur if the directed acyclic network is oriented
by subsequents or by prerequisites.  By use of the variable, netOrientation, parts of the
calculations are made from both the prerequisite and subsequent perspective as required.
For each node,  the variable,  sustent,  is  a  weighted measure  of the supporting  nodes,
from immediate, to secondary, to tertiary, to all ancillary prerequisites.  The sustent is a
measure of a node's access to, or how much it draws upon, the other nodes in the net-
work.  The variable, subnetSet, holds the complete list of index-strength pairs describ-
ing all prerequisites  for a course, from immediate to ancillary.   The variable,  sustent-
Rules, is based on theRules and defined so it can be altered without affecting theRules.
Based on the boolean variable, netOrientation, an If function decides if theRules are to
be reversed; the core calculations for sustent require a prerequisite view of the network.
The List of Rules is then Sorted and Split based on the referring node.  The variable,
sustentRules, is not set to this nested list directly because it contains no information on
referring nodes, such as kindergarten, without prerequisites.  Instead, the components of
the list are Set (=) to the corresponding values in sustentRules  based on the referring
node (First@First@First[#]); nodes without prerequisites are left with the initialization
values of sustentRules  (see analysisInitialize[]).  The variable, sustentRules, is a list
of lists of the variable-strength rules of the direct prerequisites for each node index.

Once the variable, sustentRules, is defined, the second term of the Compound-
Expression determines the variable subnetSet.  The variable, topOrder, is a list of the
nodes of nestGraph, after a TopologicalSort.  The nodes of topOrder, when the net-
work  is  oriented  by  prerequisites  for  example,  only  refer  to  nodes  that  came before
them, except kindergarten, which refers to nothing in the education system.  This allows
all sustent calculations to proceed in topological order, without concern that a particular
sustent calculation will depend on incomplete calculations of its prerequisite nodes.  The
sustentRules  are  arranged  by topOrder  and Mapped under  a pure  Function  with  a
single variable, , naming each sublist of prerequisites.  An If function checks that
 is not an empty set.  Each finite  is Mapped (/@) into a Block.  There, a
local variable, , is Set to the subnetSet of the referred to node (Last@First[#]).
An If  function checks that   is not an empty set.   If not,  then the strengths of
 are multiplied by the link strength (Last[#]).  The resulting list is Flattened and
transformed by weightTally  to combine redundant edges.   The resulting list of direct
prerequisites and ancillary prerequisites defines the subnetSet for the referring node.  If
  is an empty set,  then only direct prerequisites  are used to create the referring
node's subnetwork.

From the establishment of subnetSet, the values for sustent may be calculated.
In the third term of the CompoundExpression, subnetSet  is Mapped under the outer
pure Function.   The subnetwork  for each indexed node is Sorted by,  and Split  into,
sublists  based on a common target prerequisite  node (Last@First[#]).  In turn, every
sublist of rules is Mapped under an expression that isolates (#PAll,2T) and Pluses the
edge  weights  to  the  particular.   This  is  a  measure,  between  zero  and  one,  of  how
strongly  a particular  target  prerequisite  node is a member  of the index node's  sustent
subnetwork.   The resulting  value  is  scaled  by  the  node  weight  of  target  prerequisite
node,  identified  as  the  second  (common)  index  of  the  first  rule,  creditBasePLast@-
First@First[#1]T.   The function,  Plus,  is Applyed (@@) to the list  representing  the
sustent  contributions  from  each  direct,  secondary,  and  ancillary  prerequisite  in  the
reference  node's  subnetwork,  to  calculate  the  total  sustent  for  that  node  index.   The
variables,  sustentLocation  and  sustentDispersion,  record  statistical  measures  from
Report functions found in Statistics`DescriptiveStatistics.   
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From the establishment of subnetSet, the values for sustent may be calculated.
In the third term of the CompoundExpression, subnetSet  is Mapped under the outer
pure Function.   The subnetwork  for each indexed node is Sorted by,  and Split  into,
sublists  based on a common target prerequisite  node (Last@First[#]).  In turn, every
sublist of rules is Mapped under an expression that isolates (#PAll,2T) and Pluses the
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First@First[#1]T.   The function,  Plus,  is Applyed (@@) to the list  representing  the
sustent  contributions  from  each  direct,  secondary,  and  ancillary  prerequisite  in  the
reference  node's  subnetwork,  to  calculate  the  total  sustent  for  that  node  index.   The
variables,  sustentLocation  and  sustentDispersion,  record  statistical  measures  from
Report functions found in Statistics`DescriptiveStatistics.   

sustentEstablisher@D := CompoundExpression@
HsustentRulesPFirstüFirstüFirst@#DT = #L & êü
Split@Sort@If@netOrientation, Identity, ruleTransposeD@theRulesDD,
FirstüFirst@#1D == FirstüFirst@#2D &D,

Map@Function@, If@Length@D > 0,
subnetSetPFirstüFirstüFirst@DT = weightTally@Flatten@

Block@8 = subnetSetPLastüFirst@#DT<,
If@Length@D > 0,
PAll, 2T = Last@#D PAll, 2T; 8#, <,
8#<DD & êü D, TrueDDD,

sustentRulesPIf@netOrientation, Reverse, IdentityD@topOrderDTD,
sustent = Map@Function@, Plus üü Map@HMin@Apply@Plus, #1PAll, 2TD, 1D

creditBasePLastüFirstüFirst@#1DTL &,
Split@Sort@, HLastüFirst@#1D < LastüFirst@#2DL &D,
LastüFirst@#1D == LastüFirst@#2D &DDD, subnetSetD;

sustentLocation = LocationReport@sustentD;
sustentDispersion = DispersionReport@sustentDD

‡ 9.4-4.2.1.4  Intent

For each node, the variable, intent, is a weighted measure of the mangnitude of
specific network support.  The variable, intentRules, is based on theRules and defined
so it can be altered without affecting theRules.  Based on the boolean variable, netOrien-
tation, an If function decides if theRules are to be reversed; the calculations for intent
require a subsequent view of the network.  The List of Rules is then Sorted and Split
based on the referring  node.   The variable,  intentRules,  is  not  set  to this  nested list
directly because it contains no information on referring nodes, such as terminal courses,
without subsequents.  Instead, the components of the list are Set (=) to the correspond-
ing values in intentRules  based on the referring node (First@First@First[#]); nodes
without subsequents are left with the initialization values of intentRules (see analysisIni-
tialize[]).  The variable, intentRules, is a list of lists of the weighted rules of the direct
subsequents for each node index.

Once the intentRules  are defined,  the second term of the CompoundExpres-
sion determines the variable intent.  The variable,  topOrder, is a list of the nodes of
nestGraph,  after  a  TopologicalSort.   The nodes  of  topOrder,  when the  network  is
oriented by subsequents, only refer to nodes that come after them as subsequents, except
terminal courses,  which point to nothing within the education system.  This allows all
intent  calculations  to  proceed  in  topological  order,  without  concern  that  a  particular
intent calculation will depend on incomplete calculations of its prerequisite nodes.  The
intentRules  are  arranged  by  topOrder  and  Mapped  under  a  pure  Function  with  a
single variable, , naming each sublist of subsequents.  An If function checks that
 is not an empty set.  Each finite  is Mapped (/@) into a Block statement.
There,  a  local  variable,  ,  is  Set  to the  sum of the weights  of  all  links to
subsequents,  this  is,  the outgoing degree  of the reference node;  and,  a local variable,
, which is the intent score of the reference node to be distributed amoung its
subsequents.  The intent of each subsequent in  is AddTo (+=) in proportion to
the edge  weight  (Last[#])  between  the  source  node  and the  target  prerequisite.   The
Max function in the denominator ensures that a lone weak edge, say,  = 0.2,
cannot carry too much intent from a particular reference node to a single subsequent.
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Once the intentRules  are defined,  the second term of the CompoundExpres-
sion determines the variable intent.  The variable,  topOrder, is a list of the nodes of
nestGraph,  after  a  TopologicalSort.   The nodes  of  topOrder,  when the  network  is
oriented by subsequents, only refer to nodes that come after them as subsequents, except
terminal courses,  which point to nothing within the education system.  This allows all
intent  calculations  to  proceed  in  topological  order,  without  concern  that  a  particular
intent calculation will depend on incomplete calculations of its prerequisite nodes.  The
intentRules  are  arranged  by  topOrder  and  Mapped  under  a  pure  Function  with  a
single variable, , naming each sublist of subsequents.  An If function checks that
 is not an empty set.  Each finite  is Mapped (/@) into a Block statement.
There,  a  local  variable,  ,  is  Set  to the  sum of the weights  of  all  links to
subsequents,  this  is,  the outgoing degree  of the reference node;  and,  a local variable,
, which is the intent score of the reference node to be distributed amoung its
subsequents.  The intent of each subsequent in  is AddTo (+=) in proportion to
the edge  weight  (Last[#])  between  the  source  node  and the  target  prerequisite.   The
Max function in the denominator ensures that a lone weak edge, say,  = 0.2,
cannot carry too much intent from a particular reference node to a single subsequent.

intent = creditBase;
intentRules = subnetSet = Array@8< &, lengthCourseDataD;

intentEstablisher@D := CompoundExpressionA
HintentRulesPFirstüFirstüFirst@#DT = #L & êü
Split@Sort@If@netOrientation, ruleTranspose, IdentityD@theRulesDD,
FirstüFirst@#1D == FirstüFirst@#2D &D,

MapAFunctionA, IfALength@D > 0,

BlockA8 = Plus üü PAll, 2T,
 = intentPFirstüFirstüFirst@DT<,

i
k
jjjintentPLastüFirst@#DT +=

 Last@#D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Max@1, D

y
{
zzz & êü EEE,

intentRulesPIf@netOrientation, Reverse, IdentityD@topOrderDTE,
intentLocation = LocationReport@intentD,
intentDispersion = DispersionReport@intentDE
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